WorldWideScience

Sample records for dynamic reliability models

  1. Human Performance Modeling for Dynamic Human Reliability Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Boring, Ronald Laurids [Idaho National Laboratory; Joe, Jeffrey Clark [Idaho National Laboratory; Mandelli, Diego [Idaho National Laboratory

    2015-08-01

    Part of the U.S. Department of Energy’s (DOE’s) Light Water Reac- tor Sustainability (LWRS) Program, the Risk-Informed Safety Margin Charac- terization (RISMC) Pathway develops approaches to estimating and managing safety margins. RISMC simulations pair deterministic plant physics models with probabilistic risk models. As human interactions are an essential element of plant risk, it is necessary to integrate human actions into the RISMC risk framework. In this paper, we review simulation based and non simulation based human reliability analysis (HRA) methods. This paper summarizes the founda- tional information needed to develop a feasible approach to modeling human in- teractions in RISMC simulations.

  2. A Structural Reliability Business Process Modelling with System Dynamics Simulation

    OpenAIRE

    Lam, C. Y.; S.L. Chan; Ip, W.H.

    2010-01-01

    Business activity flow analysis enables organizations to manage structured business processes, and can thus help them to improve performance. The six types of business activities identified here (i.e., SOA, SEA, MEA, SPA, MSA and FIA) are correlated and interact with one another, and the decisions from any business activity form feedback loops with previous and succeeding activities, thus allowing the business process to be modelled and simulated. For instance, for any company that is eager t...

  3. Development of Markov model of emergency diesel generator for dynamic reliability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Young Ho; Choi, Sun Yeong; Yang, Joon Eon [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-02-01

    The EDG (Emergency Diesal Generator) of nuclear power plant is one of the most important equipments in mitigating accidents. The FT (Fault Tree) method is widely used to assess the reliability of safety systems like an EDG in nuclear power plant. This method, however, has limitations in modeling dynamic features of safety systems exactly. We, hence, have developed a Markov model to represent the stochastic process of dynamic systems whose states change as time moves on. The Markov model enables us to develop a dynamic reliability model of EDG. This model can represent all possible states of EDG comparing to the FRANTIC code developed by U.S. NRC for the reliability analysis of standby systems. to access the regulation policy for test interval, we performed two simulations based on the generic data and plant specific data of YGN 3, respectively by using the developed model. We also estimate the effects of various repair rates and the fractions of starting failures by demand shock to the reliability of EDG. And finally, Aging effect is analyzed. (author). 23 refs., 19 figs., 9 tabs.

  4. Reliability analysis of repairable systems using system dynamics modeling and simulation

    Science.gov (United States)

    Srinivasa Rao, M.; Naikan, V. N. A.

    2014-07-01

    Repairable standby system's study and analysis is an important topic in reliability. Analytical techniques become very complicated and unrealistic especially for modern complex systems. There have been attempts in the literature to evolve more realistic techniques using simulation approach for reliability analysis of systems. This paper proposes a hybrid approach called as Markov system dynamics (MSD) approach which combines the Markov approach with system dynamics simulation approach for reliability analysis and to study the dynamic behavior of systems. This approach will have the advantages of both Markov as well as system dynamics methodologies. The proposed framework is illustrated for a standby system with repair. The results of the simulation when compared with that obtained by traditional Markov analysis clearly validate the MSD approach as an alternative approach for reliability analysis.

  5. Improvement of level-1 PSA computer code package - Modeling and analysis for dynamic reliability of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang Hoon; Baek, Sang Yeup; Shin, In Sup; Moon, Shin Myung; Moon, Jae Phil; Koo, Hoon Young; Kim, Ju Shin [Seoul National University, Seoul (Korea, Republic of); Hong, Jung Sik [Seoul National Polytechnology University, Seoul (Korea, Republic of); Lim, Tae Jin [Soongsil University, Seoul (Korea, Republic of)

    1996-08-01

    The objective of this project is to develop a methodology of the dynamic reliability analysis for NPP. The first year`s research was focused on developing a procedure for analyzing failure data of running components and a simulator for estimating the reliability of series-parallel structures. The second year`s research was concentrated on estimating the lifetime distribution and PM effect of a component from its failure data in various cases, and the lifetime distribution of a system with a particular structure. Computer codes for performing these jobs were also developed. The objectives of the third year`s research is to develop models for analyzing special failure types (CCFs, Standby redundant structure) that were nor considered in the first two years, and to complete a methodology of the dynamic reliability analysis for nuclear power plants. The analysis of failure data of components and related researches for supporting the simulator must be preceded for providing proper input to the simulator. Thus this research is divided into three major parts. 1. Analysis of the time dependent life distribution and the PM effect. 2. Development of a simulator for system reliability analysis. 3. Related researches for supporting the simulator : accelerated simulation analytic approach using PH-type distribution, analysis for dynamic repair effects. 154 refs., 5 tabs., 87 figs. (author)

  6. Dynamic reliability of digital-based transmitters

    Energy Technology Data Exchange (ETDEWEB)

    Brissaud, Florent, E-mail: florent.brissaud.2007@utt.f [Institut National de l' Environnement Industriel et des Risques (INERIS), Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte (France) and Universite de Technologie de Troyes - UTT, Institut Charles Delaunay - ICD and UMR CNRS 6279 STMR, 12 rue Marie Curie, BP 2060, 10010 Troyes Cedex (France); Smidts, Carol [Ohio State University (OSU), Nuclear Engineering Program, Department of Mechanical Engineering, Scott Laboratory, 201 W 19th Ave, Columbus OH 43210 (United States); Barros, Anne; Berenguer, Christophe [Universite de Technologie de Troyes (UTT), Institut Charles Delaunay (ICD) and UMR CNRS 6279 STMR, 12 rue Marie Curie, BP 2060, 10010 Troyes Cedex (France)

    2011-07-15

    Dynamic reliability explicitly handles the interactions between the stochastic behaviour of system components and the deterministic behaviour of process variables. While dynamic reliability provides a more efficient and realistic way to perform probabilistic risk assessment than 'static' approaches, its industrial level applications are still limited. Factors contributing to this situation are the inherent complexity of the theory and the lack of a generic platform. More recently the increased use of digital-based systems has also introduced additional modelling challenges related to specific interactions between system components. Typical examples are the 'intelligent transmitters' which are able to exchange information, and to perform internal data processing and advanced functionalities. To make a contribution to solving these challenges, the mathematical framework of dynamic reliability is extended to handle the data and information which are processed and exchanged between systems components. Stochastic deviations that may affect system properties are also introduced to enhance the modelling of failures. A formalized Petri net approach is then presented to perform the corresponding reliability analyses using numerical methods. Following this formalism, a versatile model for the dynamic reliability modelling of digital-based transmitters is proposed. Finally the framework's flexibility and effectiveness is demonstrated on a substantial case study involving a simplified model of a nuclear fast reactor.

  7. Dynamic performance analysis model of high-reliability EMS-Maglev system

    Institute of Scientific and Technical Information of China (English)

    FANG You-tong; YAO Ying-ying

    2007-01-01

    In this paper, a modified transient finite element (FE) algorithm for the performance analysis of magnetically levitated vehicles of electromagnetic type is presented. The algorithm incorporates the external power system and vehicle's movement equations into FE model of transient magnetic field computation directly. Sliding interface between stationary and moving region is used during the transient analysis. The periodic boundaries are implemented in an easy way to reduce the computation scale. It is proved that this method can be used for both electro-motional static and dynamic cases. The test of a transformer and an EMS-Maglev system reveals that the method generates reasonable results at very low computational costs comparing with the transient FE analysis.

  8. Trust in the CODA model: Opinion Dynamics and the reliability of other agents

    CERN Document Server

    Martins, André C R

    2013-01-01

    A model for the joint evolution of opinions and how much the agents trust each other is presented. The model is built using the framework of the Continuous Opinions and Discrete Actions (CODA) model. Instead of a fixed probability that the other agents will decide in the favor of the best choice, each agent considers that other agents might be one one of two types: trustworthy or useless. Trustworthy agents are considered more likely to be right than wrong, while the opposite holds for useless ones. Together with the opinion about the discussed issue, each agent also updates that probability for each one of the other agents it interacts withe probability each one it interacts with is of one type or the other. The dynamics of opinions and the evolution of the trust between the agents are studied. Clear evidences of the existence of two phases, one where strong polarization is observed and the other where a clear division is permanent and reinforced are observed. The transition seems signs of being a first-orde...

  9. Response and Reliability Problems of Dynamic Systems

    DEFF Research Database (Denmark)

    Nielsen, Søren R. K.

    The present thesis consists of selected parts of the work performed by the author on stochastic dynamics and reliability theory of dynamically excited structures primarily during the period 1986-1996.......The present thesis consists of selected parts of the work performed by the author on stochastic dynamics and reliability theory of dynamically excited structures primarily during the period 1986-1996....

  10. Supply chain reliability modelling

    Directory of Open Access Journals (Sweden)

    Eugen Zaitsev

    2012-03-01

    Full Text Available Background: Today it is virtually impossible to operate alone on the international level in the logistics business. This promotes the establishment and development of new integrated business entities - logistic operators. However, such cooperation within a supply chain creates also many problems related to the supply chain reliability as well as the optimization of the supplies planning. The aim of this paper was to develop and formulate the mathematical model and algorithms to find the optimum plan of supplies by using economic criterion and the model for the probability evaluating of non-failure operation of supply chain. Methods: The mathematical model and algorithms to find the optimum plan of supplies were developed and formulated by using economic criterion and the model for the probability evaluating of non-failure operation of supply chain. Results and conclusions: The problem of ensuring failure-free performance of goods supply channel analyzed in the paper is characteristic of distributed network systems that make active use of business process outsourcing technologies. The complex planning problem occurring in such systems that requires taking into account the consumer's requirements for failure-free performance in terms of supply volumes and correctness can be reduced to a relatively simple linear programming problem through logical analysis of the structures. The sequence of the operations, which should be taken into account during the process of the supply planning with the supplier's functional reliability, was presented.

  11. A Dynamical Reliability Prediction Algorithm for Composite Service

    Directory of Open Access Journals (Sweden)

    Chunli Xie

    2014-01-01

    Full Text Available Dynamic selection and dynamic binding and rebinding at runtime are new characters of composite services. The traditional static reliability prediction models are unsuitable to dynamic composite services. A new reliability predicting algorithm for composite services is proposed in this paper. Firstly, a composite service is decomposed into composition unites (executing path, composite module and atomic service according to their constituents. Consequently, a hierarchical graph of all composite units is constructed. Lastly, a new dynamic reliability prediction algorithm is presented. Comparing with the traditional reliability model, the new dynamic reliability approach is more flexible, which does not recompute reliability for all composite units and only computes the reliability of the effected composite units. In addition, an example to show how to measure the reliability based on our algorithm is designed. The experimental results show our proposed methods can give an accurate estimation of reliability. Furthermore, a more flexible sensitivity analysis is performed to determine which service component has the most significant impact on the improvement of composite service reliability.

  12. Boolean networks with reliable dynamics

    CERN Document Server

    Peixoto, Tiago P

    2009-01-01

    We investigated the properties of Boolean networks that follow a given reliable trajectory in state space. A reliable trajectory is defined as a sequence of states which is independent of the order in which the nodes are updated. We explored numerically the topology, the update functions, and the state space structure of these networks, which we constructed using a minimum number of links and the simplest update functions. We found that the clustering coefficient is larger than in random networks, and that the probability distribution of three-node motifs is similar to that found in gene regulation networks. Among the update functions, only a subset of all possible functions occur, and they can be classified according to their probability. More homogeneous functions occur more often, leading to a dominance of canalyzing functions. Finally, we studied the entire state space of the networks. We observed that with increasing systems size, fixed points become more dominant, moving the networks close to the frozen...

  13. Assessment of buckling-restrained braced frame reliability using an experimental limit-state model and stochastic dynamic analysis

    Science.gov (United States)

    Andrews, Blake M.; Song, Junho; Fahnestock, Larry A.

    2009-09-01

    Buckling-restrained braces (BRBs) have recently become popular in the United States for use as primary members of seismic lateral-force-resisting systems. A BRB is a steel brace that does not buckle in compression but instead yields in both tension and compression. Although design guidelines for BRB applications have been developed, systematic procedures for assessing performance and quantifying reliability are still needed. This paper presents an analytical framework for assessing buckling-restrained braced frame (BRBF) reliability when subjected to seismic loads. This framework efficiently quantifies the risk of BRB failure due to low-cycle fatigue fracture of the BRB core. The procedure includes a series of components that: (1) quantify BRB demand in terms of BRB core deformation histories generated through stochastic dynamic analyses; (2) quantify the limit-state of a BRB in terms of its remaining cumulative plastic ductility capacity based on an experimental database; and (3) evaluate the probability of BRB failure, given the quantified demand and capacity, through structural reliability analyses. Parametric studies were conducted to investigate the effects of the seismic load, and characteristics of the BRB and BRBF on the probability of brace failure. In addition, fragility curves (i.e., conditional probabilities of brace failure given ground shaking intensity parameters) were created by the proposed framework. While the framework presented in this paper is applied to the assessment of BRBFs, the modular nature of the framework components allows for application to other structural components and systems.

  14. Assessment of buckling-restrained braced frame reliability using an experimental limit-state model and stochastic dynamic analysis

    Institute of Scientific and Technical Information of China (English)

    Blake M. Andrews; Junho Song; Larry A. Fahnestock

    2009-01-01

    Buckling-restrained braces (BRBs) have recently become popular in the United :States for use as primary members of seismic lateral-force-resisting systems. A BRB is a steel brace that does not buckle in compression but instead yields in both tension and compression. Although design guidelines for BRB applications have been developed, systematic procedures for assessing performance and quantifying reliability are still needed. This paper presents an analytical framework for assessing buckling-restrained braced frame (BRBF) reliability when subjected to seismic loads. This framework efficiently quantifies the risk of BRB failure due to low-cycle fatigue fracture of the BRB core. The procedure includes a series of components that: (1) quantify BRB demand in terms of BRB core deformation histories generated through stochastic dynamic analyses; (2) quantify the limit-state of a BRB in terms of its remaining cumulative plastic ductility capacity based on an experimental database; and (3) evaluate the probability of BRB failure, given the quantified demand and capacity, through structural reliability analyses. Parametric studies were conducted to investigate the effects of the seismic load, and characteristics of the BRB and BRBF on the probability of brace failure. In addition, fragility curves (i.e., conditional probabilities of brace failure given ground shaking intensity parameters) were created by the proposed framework. While the framework presented in this paper is applied to the assessment of BRBFs, the modular nature of the framework components allows for application to other structural components and systems.

  15. Reliability Modeling of Wind Turbines

    DEFF Research Database (Denmark)

    Kostandyan, Erik

    and uncertainties are quantified. Further, estimation of annual failure probability for structural components taking into account possible faults in electrical or mechanical systems is considered. For a representative structural failure mode, a probabilistic model is developed that incorporates grid loss failures...... components. Thus, models of reliability should be developed and applied in order to quantify the residual life of the components. Damage models based on physics of failure combined with stochastic models describing the uncertain parameters are imperative for development of cost-optimal decision tools...... for Operation & Maintenance planning. Concentrating efforts on development of such models, this research is focused on reliability modeling of Wind Turbine critical subsystems (especially the power converter system). For reliability assessment of these components, structural reliability methods are applied...

  16. A novel model for determining the amplitude-wavelength limits of track irregularities accompanied by a reliability assessment in railway vehicle-track dynamics

    Science.gov (United States)

    Xu, Lei; Zhai, Wanming

    2017-03-01

    The loads on a vehicle and the vibrations transmitted to track infrastructures due to the operation of rolling stocks are mainly determined by the irregularities of the track profile. Hence, it is rather important to ascertain the limits of track irregularities, including amplitudes and wavelengths, to guarantee the dynamic performance of running vehicles and guiding tracks. Furthermore, the operation and management levels as well as irregularity status for different railways are highly dissimilar. Therefore, it is a necessary to conduct a reliability assessment for a specific railway line. In the present work, a large amount of measured track irregularities are concentrated as a group form of the track irregularity power spectrum density. A track irregularity inversion model is presented to obtain realistic representations of track profile deformations with information regarding amplitudes, wavelengths and probabilities. Then, the methodologies for determining the limits of track irregularities and achieving a reliability assessment are presented by introducing the probability density evolution method and development of a Wavelet-Wigner-Hough method. Using the vehicle-track interaction model, numerical studies for confirming the limits of track irregularities and evaluating the reliability of the dynamic performance of the vehicle can be conducted to provide valuable suggestions. This paper offers new possibilities for studying the limit amplitudes, characteristic wavelengths of track irregularities as well as corresponding reliabilities when a railway vehicle runs under different track geometric conditions.

  17. Web服务组合的可靠性动态评估模型%Reliability dynamic evaluation model of Web services composition

    Institute of Scientific and Technical Information of China (English)

    梁员宁; 陈喆; 谢立军

    2012-01-01

    为了合理、高效、动态地评估Web服务组合的可靠性,为服务请求者提供高质量的组合服务,提出了一个Web服务组合的可靠性动态评估模型.该模型对服务提供者发布至UDDI注册中心的Web服务进行语义预先处理,根据语义Web服务间的逻辑组合关系,基于预推理技术构造Web服务的自动组合框架,提出了Web服务的自动组合算法,建立Web服务组合方案的路径结构;利用随机Petri网对满足服务请求者需求的服务组合路径结构进行可靠性建模,结合在线获取的Web服务可靠性信息,对Web服务组合的可靠性进行动态评估.实验示例结果分析表明,提出的模型能确保Web服务组合方案的有效性和提高服务组合的效率,对Web服务组合的可靠性评估具有较强动态性和灵活适应性.%To evaluate the reliability of Web service composition logically, efficiently and dynamically, and afford a high quality composite service for service applicant, this paper proposed a reliability dynamic evaluation model of Web services composition. The model foreclosed the semantic to the Web services of UDDI(universal description, discovery and integration) register center which issued by the services providers. According to the logic of the combination between semantic Web services relationship, basing on the reasoning technology to construct an automatic combination frame, this paper put forward an automatic combination algorithm, and set up the path structures of Web service composite schemes. And it then established the reliability models for the service composite path structures which satisfied the requirement of services applicants by stochastic Petri net, evaluated the reliability of Web services composition dynamically combining the online reliability information of Web services. The experiment results indicate that the model can insure the validity of the Web service composite schemes and enhance the efficiency of services

  18. Dynamic evidential reasoning algorithm for systems reliability prediction

    Science.gov (United States)

    Hu, Chang-Hua; Si, Xiao-Sheng; Yang, Jian-Bo

    2010-07-01

    In this article, dynamic evidential reasoning (DER) algorithm is applied to forecast reliability in turbochargers engine systems and a reliability prediction model is developed. The focus of this study is to examine the feasibility and validity of DER algorithm in systems reliability prediction by comparing it with some existing approaches. To build an effective DER forecasting model, the parameters of prediction model must be set carefully. To solve this problem, a generic nonlinear optimisation model is investigated to search for the optimal parameters of forecasting model, and then the optimal parameters are adopted to construct the DER forecasting model. Finally, a numerical example is provided to demonstrate the detailed implementation procedures and the validity of the proposed approach in the areas of reliability prediction.

  19. Hybrid reliability model for fatigue reliability analysis of steel bridges

    Institute of Scientific and Technical Information of China (English)

    曹珊珊; 雷俊卿

    2016-01-01

    A kind of hybrid reliability model is presented to solve the fatigue reliability problems of steel bridges. The cumulative damage model is one kind of the models used in fatigue reliability analysis. The parameter characteristics of the model can be described as probabilistic and interval. The two-stage hybrid reliability model is given with a theoretical foundation and a solving algorithm to solve the hybrid reliability problems. The theoretical foundation is established by the consistency relationships of interval reliability model and probability reliability model with normally distributed variables in theory. The solving process is combined with the definition of interval reliability index and the probabilistic algorithm. With the consideration of the parameter characteristics of theS−N curve, the cumulative damage model with hybrid variables is given based on the standards from different countries. Lastly, a case of steel structure in the Neville Island Bridge is analyzed to verify the applicability of the hybrid reliability model in fatigue reliability analysis based on the AASHTO.

  20. Reliability Modeling of Wind Turbines

    DEFF Research Database (Denmark)

    Kostandyan, Erik

    Cost reductions for offshore wind turbines are a substantial requirement in order to make offshore wind energy more competitive compared to other energy supply methods. During the 20 – 25 years of wind turbines useful life, Operation & Maintenance costs are typically estimated to be a quarter...... the actions should be made and the type of actions requires knowledge on the accumulated damage or degradation state of the wind turbine components. For offshore wind turbines, the action times could be extended due to weather restrictions and result in damage or degradation increase of the remaining...... for Operation & Maintenance planning. Concentrating efforts on development of such models, this research is focused on reliability modeling of Wind Turbine critical subsystems (especially the power converter system). For reliability assessment of these components, structural reliability methods are applied...

  1. Achieving Reliable Communication in Dynamic Emergency Responses

    Science.gov (United States)

    Chipara, Octav; Plymoth, Anders N.; Liu, Fang; Huang, Ricky; Evans, Brian; Johansson, Per; Rao, Ramesh; Griswold, William G.

    2011-01-01

    Emergency responses require the coordination of first responders to assess the condition of victims, stabilize their condition, and transport them to hospitals based on the severity of their injuries. WIISARD is a system designed to facilitate the collection of medical information and its reliable dissemination during emergency responses. A key challenge in WIISARD is to deliver data with high reliability as first responders move and operate in a dynamic radio environment fraught with frequent network disconnections. The initial WIISARD system employed a client-server architecture and an ad-hoc routing protocol was used to exchange data. The system had low reliability when deployed during emergency drills. In this paper, we identify the underlying causes of unreliability and propose a novel peer-to-peer architecture that in combination with a gossip-based communication protocol achieves high reliability. Empirical studies show that compared to the initial WIISARD system, the redesigned system improves reliability by as much as 37% while reducing the number of transmitted packets by 23%. PMID:22195075

  2. Nonlinear Dynamic Reliability of Coupled Stay Cables and Bridge Tower

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Nonlinear vibration can cause serious problems in long span cable-stayed bridges. When the internal resonance threshold is reached between the excitation frequency and natural frequency,large amplitudes occur in the cable. Based on the current situation of lacking corresponding constraint criteria, a model was presented for analyzing the dynamic reliability of coupling oscillation between the cable and tower in a cable-stayed bridge. First of all, in the case of cable sag, the d'Alembert principle is applied to studying the nonlinear dynamic behavior of the structure, and resonance failure interval of parametric oscillation is calculated accordingly. Then the dynamic reliability model is set up using the JC method. An application of this model has been developed for the preliminary design of one cable-stayed bridge located on Hai River in Tianjin, and time histories analysis as well as reliability indexes have been obtained. When frequency ratio between the cable and tower is approaching 1∶2, the reliability index is 0.98, indicating high failure probability. And this is consistent with theoretical derivation and experimental results in reference. This model, which is capable of computing the reliability index of resonance failure, provides theoretical basis for the establishment of corresponding rule.

  3. Reliability analysis of wind turbines exposed to dynamic loads

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2014-01-01

    . Therefore the turbine components should be designed to have sufficient reliability with respect to both extreme and fatigue loads also not be too costly (and safe). This paper presents models for uncertainty modeling and reliability assessment of especially the structural components such as tower, blades...... the reliability of the structural components. Illustrative examples are presented considering uncertainty modeling and reliability assessment for structural wind turbine components exposed to extreme loads and fatigue, respectively.......Wind turbines are exposed to highly dynamic loads that cause fatigue and extreme load effects which are subject to significant uncertainties. Further, reduction of cost of energy for wind turbines are very important in order to make wind energy competitive compared to other energy sources...

  4. Embedded Sensors and Controls to Improve Component Performance and Reliability - System Dynamics Modeling and Control System Design

    Energy Technology Data Exchange (ETDEWEB)

    Melin, Alexander M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kisner, Roger A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Fugate, David L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2013-10-01

    This report documents the current status of the modeling, control design, and embedded control research for the magnetic bearing canned rotor pump being used as a demonstration platform for deeply integrating instrumentation and controls (I{\\&}C) into nuclear power plant components. This pump is a highly inter-connected thermo/electro/mechanical system that requires an active control system to operate. Magnetic bearings are inherently unstable system and without active, moment by moment control, the rotor would contact fixed surfaces in the pump causing physical damage. This report details the modeling of the pump rotordynamics, fluid forces, electromagnetic properties of the protective cans, active magnetic bearings, power electronics, and interactions between different dynamical models. The system stability of the unforced and controlled rotor are investigated analytically. Additionally, controllers are designed using proportional derivative (PD) control, proportional integral derivative (PID) control, voltage control, and linear quadratic regulator (LQR) control. Finally, a design optimization problem that joins the electrical, mechanical, magnetic, and control system design into one problem to balance the opposing needs of various design criteria using the embedded system approach is presented.

  5. Reliability models of belt drive systems under slipping failure mode

    Directory of Open Access Journals (Sweden)

    Peng Gao

    2017-01-01

    Full Text Available Conventional reliability assessment and reliability-based optimal design of belt drive are based on the stress–strength interference model. However, the stress–strength interference model is essentially a static model, and the sensitivity analysis of belt drive reliability with respect to design parameters needs further investigations. In this article, time-dependent factors that contribute the dynamic characteristics of reliability are pointed out. Moreover, dynamic reliability models and failure rate models of belt drive systems under the failure mode of slipping are developed. Furthermore, dynamic sensitivity models of belt drive reliability based on the proposed dynamic reliability models are proposed. In addition, numerical examples are given to illustrate the proposed models and analyze the influences of design parameters on dynamic characteristics of reliability, failure rate, and sensitivity functions. The results show that the statistical properties of design parameters have different influences on reliability and failure rate of belt drive in cases of different values of design parameters and different operational durations.

  6. Reliable dynamic in-vehicle navigation

    OpenAIRE

    Kaparias, I.

    2008-01-01

    Having started off from luxury makes and models, in-vehicle navigation systems are now gradually spreading through the entire vehicle fleet, as drivers appreciate their usefulness. Increasingly sophisticated systems are being developed, having much more advanced functions than simple driving directions. This thesis presents a new approach for in-vehicle navigation, in which travel time reliability is incorporated in the route finding component of the navigation system. Based on historical tra...

  7. Software reliability models for critical applications

    Energy Technology Data Exchange (ETDEWEB)

    Pham, H.; Pham, M.

    1991-12-01

    This report presents the results of the first phase of the ongoing EG&G Idaho, Inc. Software Reliability Research Program. The program is studying the existing software reliability models and proposes a state-of-the-art software reliability model that is relevant to the nuclear reactor control environment. This report consists of three parts: (1) summaries of the literature review of existing software reliability and fault tolerant software reliability models and their related issues, (2) proposed technique for software reliability enhancement, and (3) general discussion and future research. The development of this proposed state-of-the-art software reliability model will be performed in the second place. 407 refs., 4 figs., 2 tabs.

  8. Software reliability models for critical applications

    Energy Technology Data Exchange (ETDEWEB)

    Pham, H.; Pham, M.

    1991-12-01

    This report presents the results of the first phase of the ongoing EG G Idaho, Inc. Software Reliability Research Program. The program is studying the existing software reliability models and proposes a state-of-the-art software reliability model that is relevant to the nuclear reactor control environment. This report consists of three parts: (1) summaries of the literature review of existing software reliability and fault tolerant software reliability models and their related issues, (2) proposed technique for software reliability enhancement, and (3) general discussion and future research. The development of this proposed state-of-the-art software reliability model will be performed in the second place. 407 refs., 4 figs., 2 tabs.

  9. A Software Reliability Model Using Quantile Function

    Directory of Open Access Journals (Sweden)

    Bijamma Thomas

    2014-01-01

    Full Text Available We study a class of software reliability models using quantile function. Various distributional properties of the class of distributions are studied. We also discuss the reliability characteristics of the class of distributions. Inference procedures on parameters of the model based on L-moments are studied. We apply the proposed model to a real data set.

  10. Improvement of the reliability graph with general gates to analyze the reliability of dynamic systems that have various operation modes

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Seung Ki [Div. of Research Reactor System Design, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); No, Young Gyu; Seong, Poong Hyun [Dept. of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2016-04-15

    The safety of nuclear power plants is analyzed by a probabilistic risk assessment, and the fault tree analysis is the most widely used method for a risk assessment with the event tree analysis. One of the well-known disadvantages of the fault tree is that drawing a fault tree for a complex system is a very cumbersome task. Thus, several graphical modeling methods have been proposed for the convenient and intuitive modeling of complex systems. In this paper, the reliability graph with general gates (RGGG) method, one of the intuitive graphical modeling methods based on Bayesian networks, is improved for the reliability analyses of dynamic systems that have various operation modes with time. A reliability matrix is proposed and it is explained how to utilize the reliability matrix in the RGGG for various cases of operation mode changes. The proposed RGGG with a reliability matrix provides a convenient and intuitive modeling of various operation modes of complex systems, and can also be utilized with dynamic nodes that analyze the failure sequences of subcomponents. The combinatorial use of a reliability matrix with dynamic nodes is illustrated through an application to a shutdown cooling system in a nuclear power plant.

  11. Analysis on Some of Software Reliability Models

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Software reliability & maintainability evaluation tool (SRMET 3.0) is introducted in detail in this paper,which was developed by Software Evaluation and Test Center of China Aerospace Mechanical Corporation. SRMET 3.0is supported by seven soft ware reliability models and four software maintainability models. Numerical characteristicsfor all those models are deeply studied in this paper, and corresponding numerical algorithms for each model are alsogiven in the paper.

  12. Delivery Time Reliability Model of Logistics Network

    OpenAIRE

    Liusan Wu; Qingmei Tan; Yuehui Zhang

    2013-01-01

    Natural disasters like earthquake and flood will surely destroy the existing traffic network, usually accompanied by delivery delay or even network collapse. A logistics-network-related delivery time reliability model defined by a shortest-time entropy is proposed as a means to estimate the actual delivery time reliability. The less the entropy is, the stronger the delivery time reliability remains, and vice versa. The shortest delivery time is computed separately based on two different assum...

  13. 云模型下软件可靠度非线性动态衡量算法%Nonlinear Dynamic Measure Algorithm of Software Reliability in Cloud Model

    Institute of Scientific and Technical Information of China (English)

    杨梅芳

    2015-01-01

    The model for software reliability measure can improve the expansion capability of software in the cloud, and en-hance software reliability, prolong the life of software. The traditional software reliability measurement algorithm using re-peated game scheduling algorithm, can effectively realize the nonlinear dynamic software reliability tradeoff. A reliability measure algorithm for nonlinear dynamic analysis of three tuple characteristics of cloud model is proposed based on soft-ware. Building software measure sequence, measure time and measure the target matrix, each row element is a measure of the reliability of software inverse cloud generator data, according to the mutation probability cloud computing model, soft-ware reliability measure variation points in the process, get the output of software reliability dynamic weights, fuzzy mathe-matics and the theory of probability and statistics. Quantitative description of characteristics of cloud model, to obtain the desired entropy and hyper entropy, three dynamic properties, called digital characteristics of software reliability cloud. Sam-ple statistics through the calculation of a large number of samples, judge the reliability spatial lattice whether chain nodes in the cloud model, cloud comprehensive measure of reliability is obtained with output. Simulation results show that no mod-el to realize the software reliability of nonlinear dynamic measure, cloud model generated can further reflect the true mea-sure, solve the problem of trusted software reliability qualitative evaluation.%在云计算模型下进行软件可靠度衡量可以提高软件的扩展能力,增强软件的可靠性,延长软件寿命.传统的软件可靠度衡量算法采用重复博弈调度算法,不能有效实现软件可靠性的非线性动态权衡.提出一种基于云模型三元组特征分析的软件可靠度非线性动态衡量算法.构建软件衡量顺序、衡量时间和衡量目标矩阵,每一行元素都是一个

  14. SOFTWARE RELIABILITY MODEL FOR COMPONENT INTERACTION MODE

    Institute of Scientific and Technical Information of China (English)

    Wang Qiang; Lu Yang; Xu Zijun; Han Jianghong

    2011-01-01

    With the rapid progress of component technology,the software development methodology of gathering a large number of components for designing complex software systems has matured.But,how to assess the application reliability accurately with the information of system architecture and the components reliabilities together has become a knotty problem.In this paper,the defects in formal description of software architecture and the limitations in existed model assumptions are both analyzed.Moreover,a new software reliability model called Component Interaction Mode (CIM) is proposed.With this model,the problem for existed component-based software reliability analysis models that cannot deal with the cases of component interaction with non-failure independent and non-random control transition is resolved.At last,the practice examples are presented to illustrate the effectiveness of this model

  15. Modelling and Simulation of Scraper Reliability for Maintenance

    Institute of Scientific and Technical Information of China (English)

    HUANG Liang-pei; LU Zhong-hai; GONG Zheng-li

    2011-01-01

    A scraper conveyor is a kind of heavy machinery which can continuously transport goods and widely used in mines, ports and store enterprises. Since scraper failure rate directly affects production costs and production capacity, the evaluation and the prediction of scraper conveyor reliability are important for these enterprises. In this paper, the reliabilities of different parts are classified and discussed according to their structural characteristics and different failure factors. Based on the component's time-to-failure density function, the reliability model of scraper chain is constructed to track the age distribution of part population and the reliability change of the scraper chain. Based on the stress-strength interference model, considering the decrease of strength due to fatigue failure, the dynamic reliability model of such component as gear, axis is developed to observe the change of the part reliability with the service time of scraper. Finally, system reliability model of the scraper is established for the maintenance to simulate and calculate the scraper reliability.

  16. Modeling of reliable multicasting services

    DEFF Research Database (Denmark)

    Barkauskaite, Monika; Zhang, Jiang; Wessing, Henrik

    2010-01-01

    This paper addresses network survivability for Multicast transport over MPLS-TP ring topology networks. Protection mechanisms standardized for unicast are not fully suitable for multicast point-to-multipoint transmission and multicast schemes are not standardized yet. Therefore, this paper...... investigates one of the proficient protection schemes and uses OPNET Modeler for analyzing and designing networks with the chosen protection method. For failure detection and protection switching initiation, the OAM (Operation, Administration and Maintenance) functions will be added to the system model. From...

  17. Reliability Analysis of Dynamic Stability in Waves

    DEFF Research Database (Denmark)

    Søborg, Anders Veldt

    2004-01-01

    exhibit sufficient characteristics with respect to slope at zero heel (GM value), maximum leverarm, positive range of stability and area below the leverarm curve. The rule-based requirements to calm water leverarm curves are entirely based on experience obtained from vessels in operation and recorded......The assessment of a ship's intact stability is traditionally based on a semi-empirical deterministic concept that evaluates the characteristics of ship's calm water restoring leverarm curves. Today the ship is considered safe with respect to dynamic stability if its calm water leverarm curves...... accidents in the past. The rules therefore only leaves little room for evaluation and improvement of safety of a ship's dynamic stability. A few studies have evaluated the probability of ship stability loss in waves using Monte Carlo simulations. However, since this probability may be in the order of 10...

  18. Reliability Analysis of Dynamic Stability in Waves

    DEFF Research Database (Denmark)

    Søborg, Anders Veldt

    2004-01-01

    exhibit sufficient characteristics with respect to slope at zero heel (GM value), maximum leverarm, positive range of stability and area below the leverarm curve. The rule-based requirements to calm water leverarm curves are entirely based on experience obtained from vessels in operation and recorded......-4 per ship year such brute force Monte-Carlo simulations are not always feasible due to the required computational resources. Previous studies of dynamic stability of ships in waves typically focused on the capsizing event. In this study the objective is to establish a procedure that can identify...... the distribution of the exceedance probability may be established by an estimation of the out-crossing rate of the "safe set" defined by the utility function. This out-crossing rate will be established using the so-called Madsen's Formula. A bi-product of this analysis is a set of short wave time series...

  19. Reliable Approximation of Long Relaxation Timescales in Molecular Dynamics

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2017-07-01

    Full Text Available Many interesting rare events in molecular systems, like ligand association, protein folding or conformational changes, occur on timescales that often are not accessible by direct numerical simulation. Therefore, rare event approximation approaches like interface sampling, Markov state model building, or advanced reaction coordinate-based free energy estimation have attracted huge attention recently. In this article we analyze the reliability of such approaches. How precise is an estimate of long relaxation timescales of molecular systems resulting from various forms of rare event approximation methods? Our results give a theoretical answer to this question by relating it with the transfer operator approach to molecular dynamics. By doing so we also allow for understanding deep connections between the different approaches.

  20. Towards a reliable animal model of migraine

    DEFF Research Database (Denmark)

    Olesen, Jes; Jansen-Olesen, Inger

    2012-01-01

    The pharmaceutical industry shows a decreasing interest in the development of drugs for migraine. One of the reasons for this could be the lack of reliable animal models for studying the effect of acute and prophylactic migraine drugs. The infusion of glyceryl trinitrate (GTN) is the best validated...... and most studied human migraine model. Several attempts have been made to transfer this model to animals. The different variants of this model are discussed as well as other recent models....

  1. Space Vehicle Reliability Modeling in DIORAMA

    Energy Technology Data Exchange (ETDEWEB)

    Tornga, Shawn Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-07-12

    When modeling system performance of space based detection systems it is important to consider spacecraft reliability. As space vehicles age the components become prone to failure for a variety of reasons such as radiation damage. Additionally, some vehicles may lose the ability to maneuver once they exhaust fuel supplies. Typically failure is divided into two categories: engineering mistakes and technology surprise. This document will report on a method of simulating space vehicle reliability in the DIORAMA framework.

  2. Delivery Time Reliability Model of Logistics Network

    Directory of Open Access Journals (Sweden)

    Liusan Wu

    2013-01-01

    Full Text Available Natural disasters like earthquake and flood will surely destroy the existing traffic network, usually accompanied by delivery delay or even network collapse. A logistics-network-related delivery time reliability model defined by a shortest-time entropy is proposed as a means to estimate the actual delivery time reliability. The less the entropy is, the stronger the delivery time reliability remains, and vice versa. The shortest delivery time is computed separately based on two different assumptions. If a path is concerned without capacity restriction, the shortest delivery time is positively related to the length of the shortest path, and if a path is concerned with capacity restriction, a minimax programming model is built to figure up the shortest delivery time. Finally, an example is utilized to confirm the validity and practicality of the proposed approach.

  3. 航空公司机队设备可靠性非线性动态评估模型%Nonlinear Dynamic Assessment Model of Airline Fleet Equipment Reliability

    Institute of Scientific and Technical Information of China (English)

    陈勇刚; 罗晓利

    2013-01-01

    机队设备可靠性是实现航空公司“安全、正点和经济”目标的核心内容,对其进行评估是实现机队设备系统综合技术保障的重要手段.根据航空公司机队设备可靠性统计、数据采集和监控方式的关键技术与重要环节,应用物理-事理-人理(WSR)思想和Delphi法,建立了机械原因使用困难报告(SDR)和非计划停场率等航空公司机队设备可靠性的5大指标体系.基于灰色聚类方法和反步(BP)神经网络的优缺点,结合机队设备可靠性的随机性和波动性,设计了航空公司机队设备可靠性非线性动力学评估模型.航空公司机队设备可靠性评估实例的分析表明:该可靠性非线性动态评估模型是可行的,能够实现动态和静态的评估.%The reliability of the fleet equipment is at the core of an airline company's effort to achieve its goal of safety, punctuality and economy. The assessment of the reliability of the fleet equipment is an important means to realize the comprehensive technological guarantee of a fleet equipment system. In accordance with the key technology in statistics and data acquisition and the monitoring of the reliability of the fleet equipment, five indicator systems of the fleet equipment reliability, including service difficulty reports (SDR) and the rate of nonscheduled downtime etc. , are set up by the Wuli-Shili-Renli (WSR) theory and the Delphi method. In consideration of the features of randomness and volatility of fleet equipment reliability, a nonlinear dynamic assessment model of fleet equipment reliability is designed based on the advantages and disadvantages of grey clustering and back propagation (BP) neural network. The analysis of an application case of the model shows that the nonlinear dynamic assessment model is feasible and applicable to both static and dynamic assessments.

  4. Dynamic Reliability Analysis Method of Degraded Mechanical Components Based on Process Probability Density Function of Stress

    Directory of Open Access Journals (Sweden)

    Peng Gao

    2014-01-01

    Full Text Available It is necessary to develop dynamic reliability models when considering strength degradation of mechanical components. Instant probability density function (IPDF of stress and process probability density function (PPDF of stress, which are obtained via different statistical methods, are defined, respectively. In practical engineering, the probability density function (PDF for the usage of mechanical components is mostly PPDF, such as the PDF acquired via the rain flow counting method. For the convenience of application, IPDF is always approximated by PPDF when using the existing dynamic reliability models. However, it may cause errors in the reliability calculation due to the approximation of IPDF by PPDF. Therefore, dynamic reliability models directly based on PPDF of stress are developed in this paper. Furthermore, the proposed models can be used for reliability assessment in the case of small amount of stress process samples by employing the fuzzy set theory. In addition, the mechanical components in solar array of satellites are chosen as representative examples to illustrate the proposed models. The results show that errors are caused because of the approximation of IPDF by PPDF and the proposed models are accurate in the reliability computation.

  5. Reliability block diagrams to model disease management.

    Science.gov (United States)

    Sonnenberg, A; Inadomi, J M; Bauerfeind, P

    1999-01-01

    Studies of diagnostic or therapeutic procedures in the management of any given disease tend to focus on one particular aspect of the disease and ignore the interaction between the multitude of factors that determine its final outcome. The present article introduces a mathematical model that accounts for the joint contribution of various medical and non-medical components to the overall disease outcome. A reliability block diagram is used to model patient compliance, endoscopic screening, and surgical therapy for dysplasia in Barrett's esophagus. The overall probability of a patient with a Barrett's esophagus to comply with a screening program, be correctly diagnosed with dysplasia, and undergo successful therapy is 37%. The reduction in the overall success rate, despite the fact that the majority of components are assumed to function with reliability rates of 80% or more, is a reflection of the multitude of serial subsystems involved in disease management. Each serial component influences the overall success rate in a linear fashion. Building multiple parallel pathways into the screening program raises its overall success rate to 91%. Parallel arrangements render systems less sensitive to diagnostic or therapeutic failures. A reliability block diagram provides the means to model the contributions of many heterogeneous factors to disease outcome. Since no medical system functions perfectly, redundancy provided by parallel subsystems assures a greater overall reliability.

  6. A Censored Nonparametric Software Reliability Model

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This paper analyses the effct of censoring on the estimation of failure rate, and presents a framework of a censored nonparametric software reliability model. The model is based on nonparametric testing of failure rate monotonically decreasing and weighted kernel failure rate estimation under the constraint of failure rate monotonically decreasing. Not only does the model have the advantages of little assumptions and weak constraints, but also the residual defects number of the software system can be estimated. The numerical experiment and real data analysis show that the model performs well with censored data.

  7. AX-5 space suit reliability model

    Science.gov (United States)

    Reinhardt, AL; Magistad, John

    1990-01-01

    The AX-5 is an all metal Extra-vehicular (EVA) space suit currently under consideration for use on Space Station Freedom. A reliability model was developed based on the suit's unique design and on projected joint cycle requirements. Three AX-5 space suit component joints were cycled under simulated load conditions in accordance with NASA's advanced space suit evaluation plan. This paper will describe the reliability model developed, the results of the cycle testing, and an interpretation of the model and test results in terms of projected Mean Time Between Failure for the AX-5. A discussion of the maintenance implications and life cycle for the AX-5 based on this projection is also included.

  8. Dynamic Scheduling for Cloud Reliability using Transportation Problem

    Directory of Open Access Journals (Sweden)

    P. Balasubramanie

    2012-01-01

    Full Text Available Problem statement: Cloud is purely a dynamic environment and the existing task scheduling algorithms are mostly static and considered various parameters like time, cost, make span, speed, scalability, throughput, resource utilization, scheduling success rate and so on. Available scheduling algorithms are mostly heuristic in nature and more complex, time consuming and does not consider reliability and availability of the cloud computing environment. Therefore there is a need to implement a scheduling algorithm that can improve the availability and reliability in cloud environment. Approach: We propose a new algorithm using modified linear programming problem transportation based task scheduling and resource allocation for decentralized dynamic cloud computing. The Main objective is to improve the reliability of cloud computing environment by considering the resources available and it’s working status of each Cluster periodically and maximizes the profit for the cloud providers by minimizing the total cost for scheduling, allocation and execution cost and minimizing total turn-around, total waiting time and total execution time. Our proposed algorithm also utilizes task historical values such as past success rate, failure rate of task in each Cluster and previous execution time and total cost for various Clusters for each task from Task Info Container (TFC for tasks scheduling resource allocation for near future. Results: Our approach TP Scheduling (Transpotation Problem based responded for various tasks assigned by clients in poisson arrival pattern and achieved the improved reliability in dynamic decentralized cloud environment. Conclusion: With our proposed TP Scheduling algorithn we improve the Reliability of the decentralized dynamic cloud computing.

  9. Bring Your Own Device - Providing Reliable Model of Data Access

    Directory of Open Access Journals (Sweden)

    Stąpór Paweł

    2016-10-01

    Full Text Available The article presents a model of Bring Your Own Device (BYOD as a model network, which provides the user reliable access to network resources. BYOD is a model dynamically developing, which can be applied in many areas. Research network has been launched in order to carry out the test, in which as a service of BYOD model Work Folders service was used. This service allows the user to synchronize files between the device and the server. An access to the network is completed through the wireless communication by the 802.11n standard. Obtained results are shown and analyzed in this article.

  10. Overcoming some limitations of imprecise reliability models

    DEFF Research Database (Denmark)

    Kozine, Igor; Krymsky, Victor

    2011-01-01

    The application of imprecise reliability models is often hindered by the rapid growth in imprecision that occurs when many components constitute a system and by the fact that time to failure is bounded from above. The latter results in the necessity to explicitly introduce an upper bound on time...... to failure which is in reality a rather arbitrary value. The practical meaning of the models of this kind is brought to question. We suggest an approach that overcomes the issue of having to impose an upper bound on time to failure and makes the calculated lower and upper reliability measures more precise....... The main assumption consists in that failure rate is bounded. Langrage method is used to solve the non-linear program. Finally, an example is provided....

  11. Stochastic models in reliability and maintenance

    CERN Document Server

    2002-01-01

    Our daily lives can be maintained by the high-technology systems. Computer systems are typical examples of such systems. We can enjoy our modern lives by using many computer systems. Much more importantly, we have to maintain such systems without failure, but cannot predict when such systems will fail and how to fix such systems without delay. A stochastic process is a set of outcomes of a random experiment indexed by time, and is one of the key tools needed to analyze the future behavior quantitatively. Reliability and maintainability technologies are of great interest and importance to the maintenance of such systems. Many mathematical models have been and will be proposed to describe reliability and maintainability systems by using the stochastic processes. The theme of this book is "Stochastic Models in Reliability and Main­ tainability. " This book consists of 12 chapters on the theme above from the different viewpoints of stochastic modeling. Chapter 1 is devoted to "Renewal Processes," under which cla...

  12. Probabilistic Modeling of Fatigue Damage Accumulation for Reliability Prediction

    Directory of Open Access Journals (Sweden)

    Vijay Rathod

    2011-01-01

    Full Text Available A methodology for probabilistic modeling of fatigue damage accumulation for single stress level and multistress level loading is proposed in this paper. The methodology uses linear damage accumulation model of Palmgren-Miner, a probabilistic S-N curve, and an approach for a one-to-one transformation of probability density functions to achieve the objective. The damage accumulation is modeled as a nonstationary process as both the expected damage accumulation and its variability change with time. The proposed methodology is then used for reliability prediction under single stress level and multistress level loading, utilizing dynamic statistical model of cumulative fatigue damage. The reliability prediction under both types of loading is demonstrated with examples.

  13. Dynamic fatigue reliability of contact wires based on dynamic simulation of high-speed pantograph-catenary

    Science.gov (United States)

    Hu, Ping; Liang, Jie; Fan, Wenli

    2017-05-01

    This paper proposed a dynamic fatigue reliability method of contact wires based on dynamic simulation of high-speed pantograph-catenary. Firstly, the Weibull distribution was adopted to describe the fatigue life of contact wires so as to build the fatigue reliability model of contact wires. And then 10 finite element models of elastic chain type for contact networks were set up with the EN50367 parameter. Thereafter the stress time of the weakest unit on contact wires was calculated through the finite element simulation. Secondly, the mean value and amplitude of each stress cycle were calculated by means of rain flow counting method, and these values were put into the reliability model to draw the changing curve of the fatigue reliability of contact wires with time. The numerical example showed that the fatigue reliability of contact wires would be less than 0.98 when these wires were used for more than 10 years. The method provided in this paper can be used to estimate the fatigue reliability of contact wires more accurately, and it can be used as a reference for the reliability design of the catenary system and the formulation of preventive maintenance plans.

  14. Open Source Software Reliability Growth Model by Considering Change- Point

    Directory of Open Access Journals (Sweden)

    Mashaallah Basirzadeh

    2012-01-01

    Full Text Available The modeling technique for Software Reliability is reaching its prosperity. Software reliability growth models have been used extensively for closed source software. The design and development of open source software (OSS is different from closed source software. We observed some basic characteristics for open source software like (i more instructions execution and code coverage taking place with respect to time, (ii release early, release often (iii frequent addition of patches (iv heterogeneity in fault density and effort expenditure (v Frequent release activities seem to have changed the bug dynamics significantly (vi Bug reporting on bug tracking system drastically increases and decreases. Due to this reason bug reported on bug tracking system keeps an irregular state and fluctuations. Therefore, fault detection/removal process can not be smooth and may be changed at some time point called change-point. In this paper, an instructions executed dependent software reliability growth model has been developed by considering change-point in order to cater diverse and huge user profile, irregular state of bug tracking system and heterogeneity in fault distribution. We have analyzed actual software failure count data to show numerical examples of software reliability assessment for the OSS. We also compare our model with the conventional in terms of goodness-of-fit for actual data. We have shown that the proposed model can assist improvement of quality for OSS systems developed under the open source project.

  15. Design and Reliability Analysis of DP-3 Dynamic Positioning Control Architecture

    Institute of Scientific and Technical Information of China (English)

    WANG Fang; WAN Lei; JIANG Da-peng; XU Yu-ru

    2011-01-01

    As the exploration and exploitation of oil and gas proliferate throughout deepwater area,the requirements on the reliability of dynamic positioning system become increasingly stringent.The control objective ensuring safety operation at deep water will not be met by a single controller for dynamic positioning.In order to increase the availability and reliability of dynamic positioning control system,the triple redundancy hardware and software control architectures were designed and developed according to the safe specifications of DP-3 classification notation for dynamically positioned ships and rigs.The hardware redundant configuration takes the form of triple-redundant hot standby configuration including three identical operator stations and three real-time control computers which connect each other through dual networks.The function of motion control and redundancy management of control computers were implemented by software on the real-time operating system VxWorks.The software realization of task loose synchronization,majority voting and fault detection were presented in details.A hierarchical software architecture was planed during the development of software,consisting of application layer,real-time layer and physical layer.The behavior of the DP-3 dynamic positioning control system was modeled by a Markov model to analyze its reliability.The effects of variation in parameters on the reliability measures were investigated.The time domain dynamic simulation was carried out on a deepwater drilling rig to prove the feasibility of the proposed control architecture.

  16. Simulation modeling of reliability and efficiency of mine ventilation systems

    Energy Technology Data Exchange (ETDEWEB)

    Ushakov, V.K. (Moskovskii Gornyi Institut (USSR))

    1991-06-01

    Discusses a method developed by the MGI institute for computerized simulation of operation of ventilation systems used in deep underground coal mines. The modeling is aimed at assessment of system reliability and efficiency (probability of failure-free operation and stable air distribution). The following stages of the simulation procedure are analyzed: development of a scheme of the ventilation system (type, aerodynamic characteristics and parameters that describe system elements, e.g. ventilation tunnels, ventilation equipment, main blowers etc., dynamics of these parameters depending among others on mining and geologic conditions), development of mathematical models that describe system characteristics as well as external factors and their effects on the system, development of a structure of the simulated ventilation system, development of an algorithm, development of the final computer program for simulation of a mine ventilation system. Use of the model for forecasting reliability of air supply and efficiency of mine ventilation is discussed. 2 refs.

  17. Multiscale approaches to crowd dynamics and the reliability of data from experiments. Comment on "Human behaviours in evacuation crowd dynamics: From modelling to "big data" toward crisis management" by Nicola Bellomo et al.

    Science.gov (United States)

    Piccoli, Benedetto

    2016-09-01

    In this interesting essay, focused on mathematical models for crowd dynamics specifically for the purpose of management of extreme events such as evacuation from complex environment, Bellomo et al. [2] provide a critical analysis and argue that kinetic models may provide well-suited tools to support decision making.

  18. Dynamic Reliability Analysis of Gear Transmission System of Wind Turbine in Consideration of Randomness of Loadings and Parameters

    Directory of Open Access Journals (Sweden)

    Lei Wang

    2014-01-01

    Full Text Available A dynamic model of gear transmission system of wind turbine is built with consideration of randomness of loads and parameters. The dynamic response of the system is obtained using the theory of random sampling and the Runge-Kutta method. According to rain flow counting principle, the dynamic meshing forces are converted into a series of luffing fatigue load spectra. The amplitude and frequency of the equivalent stress are obtained using equivalent method of Geber quadratic curve. Moreover, the dynamic reliability model of components and system is built according to the theory of probability of cumulative fatigue damage. The system reliability with the random variation of parameters is calculated and the influence of random parameters on dynamic reliability of components is analyzed. In the end, the results of the proposed method are compared with that of Monte Carlo method. This paper can be instrumental in the design of wind turbine gear transmission system with more advantageous dynamic reliability.

  19. Applying reliability models to the maintenance of Space Shuttle software

    Science.gov (United States)

    Schneidewind, Norman F.

    1992-01-01

    Software reliability models provide the software manager with a powerful tool for predicting, controlling, and assessing the reliability of software during maintenance. We show how a reliability model can be effectively employed for reliability prediction and the development of maintenance strategies using the Space Shuttle Primary Avionics Software Subsystem as an example.

  20. Effective stimuli for constructing reliable neuron models.

    Directory of Open Access Journals (Sweden)

    Shaul Druckmann

    2011-08-01

    Full Text Available The rich dynamical nature of neurons poses major conceptual and technical challenges for unraveling their nonlinear membrane properties. Traditionally, various current waveforms have been injected at the soma to probe neuron dynamics, but the rationale for selecting specific stimuli has never been rigorously justified. The present experimental and theoretical study proposes a novel framework, inspired by learning theory, for objectively selecting the stimuli that best unravel the neuron's dynamics. The efficacy of stimuli is assessed in terms of their ability to constrain the parameter space of biophysically detailed conductance-based models that faithfully replicate the neuron's dynamics as attested by their ability to generalize well to the neuron's response to novel experimental stimuli. We used this framework to evaluate a variety of stimuli in different types of cortical neurons, ages and animals. Despite their simplicity, a set of stimuli consisting of step and ramp current pulses outperforms synaptic-like noisy stimuli in revealing the dynamics of these neurons. The general framework that we propose paves a new way for defining, evaluating and standardizing effective electrical probing of neurons and will thus lay the foundation for a much deeper understanding of the electrical nature of these highly sophisticated and non-linear devices and of the neuronal networks that they compose.

  1. Reliability and availability analysis of dependent-dynamic systems with DRBDs

    Energy Technology Data Exchange (ETDEWEB)

    Distefano, Salvatore [University of Messina, Department of Mathematics, Engineering Faculty, Contrada di Dio, S. Agata, 98166 Messina (Italy)], E-mail: sdistefano@unime.it; Puliafito, Antonio [University of Messina, Department of Mathematics, Engineering Faculty, Contrada di Dio, S. Agata, 98166 Messina (Italy)], E-mail: apuliafito@unime.it

    2009-09-15

    Reliability/availability evaluation is an important, often indispensable, step in designing and analyzing (critical) systems, whose importance is constantly growing. When the complexity of a system is high, dynamic effects can arise or become significant. The system might be affected by dependent, cascade, on-demand and/or common cause failures, its units could interfere (load sharing, inter/sequence-dependency), and so on. It is also of great interest to evaluate redundancy and maintenance policies but, since dynamic behaviors usually do not satisfy the stochastic independence assumption, notations such as reliability block diagrams (RBDs), fault trees (FTs) or reliability graphs (RGs) become approximated/simplified techniques, unable to capture dynamic-dependent behaviors. To overcome such problem we developed a new formalism derived from RBDs: the dynamic RBDs (DRBDs). In this paper we explain how the DRBDs notation is able to adequately model and therefore analyze dynamic-dependent behaviors and complex systems. Particular emphasis is given to the modeling and the analysis phases, from both the theoretical and the practical point of views. Several case studies of dynamic-dependent systems, selected from literature and related to different application fields, are proposed. In this way we also compare the DRBDs approach with other methodologies, demonstrating its effectiveness.

  2. Research on Wind Turbine Generator Dynamic Reliability Test System Based on Feature Recognition

    Directory of Open Access Journals (Sweden)

    Bin Wang

    2013-09-01

    Full Text Available Wind power resource development is increasingly becoming the focus of the current research and development in various countries' relevant scientific institutions. To make sure the secure and reliable operation of wind turbine generator, the study develops the wind turbine generator dynamic reliability test system. When the fault of gearbox and spindle occurs, their features of vibration signals are special. According to the feature recognition technology, the application of time and frequency domain model identification method has practical significance to the test system. Based on Bayesian network fault diagnosis method, the vibration feature recognition system of wind turbine generator is constructed. Finally, the paper uses GPRS technology to realize the wireless transmission of operation information. The wind turbine generator dynamic reliability test system is built based on GPRS technology to realize automatic control and remote intelligent monitoring and to ensure the safe and stable operation of wind farms.

  3. Suitability Analysis of Continuous-Use Reliability Growth Projection Models

    Science.gov (United States)

    2015-03-26

    exists for all types, shapes, and sizes. The primary focus of this study is a comparison of reliability growth projection models designed for...requirements to use reliability growth models, recent studies have noted trends in reliability failures throughout the DoD. In [14] Dr. Michael Gilmore...so a strict exponential distribu- tion was used to stay within their assumptions. In reality, however, reliability growth models often must be used

  4. Reliability and Correlation of Static and Dynamic Foot Arch Measurement in a Healthy Pediatric Population.

    Science.gov (United States)

    Scholz, Timo; Zech, Astrid; Wegscheider, Karl; Lezius, Susanne; Braumann, Klaus-Michael; Sehner, Susanne; Hollander, Karsten

    2017-07-14

    Measurement of the medial longitudinal foot arch in children is a controversial topic, as there are many different methods without a definite standard procedure. The purpose of this study was to 1) investigate intraday and interrater reliability regarding dynamic arch index and static arch height, 2) explore the correlation between both arch indices, and 3) examine the variation of the medial longitudinal arch at two different times of the day. Eighty-six children (mean ± SD age, 8.9 ± 1.9 years) participated in the study. Dynamic footprint data were captured with a pedobarographic platform. For static arch measurements, a specially constructed caliper was used to assess heel-to-toe length and dorsum height. A mixed model was established to determine reliability and variation. Reliability was found to be excellent for the static arch height index in sitting (intraday, 0.90; interrater, 0.80) and standing positions (0.88 and 0.85) and for the dynamic arch index (both 1.00). There was poor correlation between static and dynamic assessment of the medial longitudinal arch (standing dynamic arch index, r = -0.138; sitting dynamic arch index, r = -0.070). Static measurements were found to be significantly influenced by the time of day (P static arch height index is influenced by gender (P = .004), whereas dynamic arch index is influenced by side (P = .011) and body mass index (P static foot measurements are reliable for medial longitudinal foot arch assessment in children. The variation of static arch measurements during the day has to be kept in mind. For clinical purposes, static and dynamic arch data should be interpreted separately.

  5. A reliability assessment method using system dynamics and application

    Energy Technology Data Exchange (ETDEWEB)

    Kyung, Min Kang; Moosung, Jae [Hanyang Univ., Dept. of Nuclear Engineering, Seoul (Korea, Republic of); Sangman, Kwak [Systemix, Inc, Seoul (Korea, Republic of)

    2005-07-01

    An advanced method for assessing dynamic safety of nuclear power plants is introduced and applied. A commercial software, VENtana SIMulation environment, VENSIM, is used to develop a dynamics model for an example system. In this study the 18-month refuel cycle is simulated for the dynamic analysis. The failure rate when the plant is a zero power like maintenance, test, and refueling processes, which are not properly modeled in conventional method using event/fault trees, is higher than that of the full power. This also means the human failure rate during both standby and shutdown operation is higher than that of normal operations. Various time steps are applied for the different failure cases. The simulation results show that the common cause failure is much affected by the time step process. The results also include the dynamic simulation for the standby-running and shutdown-running cases. The graphical presentation has been easily modeled by a unique graphic designed method incorporated in the VENSIM. The diagrams well understood by operators or system analysts are constructed and evaluated quantitatively using system dynamics. (authors)

  6. Reliability physics and engineering time-to-failure modeling

    CERN Document Server

    McPherson, J W

    2013-01-01

    Reliability Physics and Engineering provides critically important information that is needed for designing and building reliable cost-effective products. Key features include:  ·       Materials/Device Degradation ·       Degradation Kinetics ·       Time-To-Failure Modeling ·       Statistical Tools ·       Failure-Rate Modeling ·       Accelerated Testing ·       Ramp-To-Failure Testing ·       Important Failure Mechanisms for Integrated Circuits ·       Important Failure Mechanisms for  Mechanical Components ·       Conversion of Dynamic  Stresses into Static Equivalents ·       Small Design Changes Producing Major Reliability Improvements ·       Screening Methods ·       Heat Generation and Dissipation ·       Sampling Plans and Confidence Intervals This textbook includes numerous example problems with solutions. Also, exercise problems along with the answers are included at the end of each chapter. Relia...

  7. Dynamic Latent Classification Model

    DEFF Research Database (Denmark)

    Zhong, Shengtong; Martínez, Ana M.; Nielsen, Thomas Dyhre

    as possible. Motivated by this problem setting, we propose a generative model for dynamic classification in continuous domains. At each time point the model can be seen as combining a naive Bayes model with a mixture of factor analyzers (FA). The latent variables of the FA are used to capture the dynamics...... in the process as well as modeling dependences between attributes....

  8. Dynamic Human Reliability Analysis: Benefits and Challenges of Simulating Human Performance

    Energy Technology Data Exchange (ETDEWEB)

    R. L. Boring

    2007-06-01

    To date, there has been considerable work on dynamic event trees and other areas related to dynamic probabilistic safety assessment (PSA). The counterpart to these efforts in human reliability analysis (HRA) has centered on the development of specific methods to account for the dynamic nature of human performance. In this paper, the author posits that the key to dynamic HRA is not in the development of specific methods but in the utilization of cognitive modeling and simulation to produce a framework of data that may be used in quantifying the likelihood of human error. This paper provides an overview of simulation approaches to HRA; reviews differences between first, second, and dynamic generation HRA; and outlines potential benefits and challenges of this approach.

  9. A new fuzzy-dynamic risk and reliability assessment

    Directory of Open Access Journals (Sweden)

    Majid Vaziri Sarashk

    2014-06-01

    Full Text Available The purpose of this article is to consider system safety and reliability analysts to evaluate the risk associated with item failure modes. The factors considered in traditional failure mode and effect analysis (FMEA for risk assessment are frequency of occurrence (O, severity (S and detectability (D of an item failure mode. Because of the subjective, qualitative and dynamic nature of the information and to make the analysis more consistent and logical, an approach using fuzzy logic and system dynamics methodology is proposed. In the proposed approach, severity is replaced by dependency parameter then, these parameters are represented as members of a fuzzy set fuzzified by using appropriate membership functions and they are evaluated in fuzzy inference engine, which makes use of well-defined rule base and fuzzy logic operations to determine the value of parameters related to system’s transfer functions. The fuzzy conclusion is then defuzzified to get transfer function for risk and failure rate. The applicability of the proposed approach is investigated with the help of an illustrative case study from the automotive industry.

  10. Reliability Modeling and Optimization Strategy for Manufacturing System Based on RQR Chain

    Directory of Open Access Journals (Sweden)

    Yihai He

    2015-01-01

    Full Text Available Accurate and dynamic reliability modeling for the running manufacturing system is the prerequisite to implement preventive maintenance. However, existing studies could not output the reliability value in real time because their abandonment of the quality inspection data originated in the operation process of manufacturing system. Therefore, this paper presents an approach to model the manufacturing system reliability dynamically based on their operation data of process quality and output data of product reliability. Firstly, on the basis of importance explanation of the quality variations in manufacturing process as the linkage for the manufacturing system reliability and product inherent reliability, the RQR chain which could represent the relationships between them is put forward, and the product qualified probability is proposed to quantify the impacts of quality variation in manufacturing process on the reliability of manufacturing system further. Secondly, the impact of qualified probability on the product inherent reliability is expounded, and the modeling approach of manufacturing system reliability based on the qualified probability is presented. Thirdly, the preventive maintenance optimization strategy for manufacturing system driven by the loss of manufacturing quality variation is proposed. Finally, the validity of the proposed approach is verified by the reliability analysis and optimization example of engine cover manufacturing system.

  11. Equivalent reliability polynomials modeling EAS and their geometries

    Directory of Open Access Journals (Sweden)

    Hassan Zahir Abdul Haddi

    2015-07-01

    Full Text Available In this paper we shall introduce two equivalent techniques in order to evaluate reliability analysis of electrical aircrafts systems (EAS: (i graph theory technique, and (ii simplifying diffeomorphism technique. Geometric modeling of reliability models is based on algebraic hypersurfaces, whose intrinsic properties are able to select those models which are relevant for applications. The basic idea is to cover the reliability hypersurfaces by exponentially decay curves. Most of the calculations made in this paper have used Maple and Matlab software.

  12. Spatiotemporal Dynamics and Reliable Computations in Recurrent Spiking Neural Networks

    Science.gov (United States)

    Pyle, Ryan; Rosenbaum, Robert

    2017-01-01

    Randomly connected networks of excitatory and inhibitory spiking neurons provide a parsimonious model of neural variability, but are notoriously unreliable for performing computations. We show that this difficulty is overcome by incorporating the well-documented dependence of connection probability on distance. Spatially extended spiking networks exhibit symmetry-breaking bifurcations and generate spatiotemporal patterns that can be trained to perform dynamical computations under a reservoir computing framework.

  13. A continuous-time Bayesian network reliability modeling and analysis framework

    NARCIS (Netherlands)

    Boudali, H.; Dugan, J.B.

    2006-01-01

    We present a continuous-time Bayesian network (CTBN) framework for dynamic systems reliability modeling and analysis. Dynamic systems exhibit complex behaviors and interactions between their components; where not only the combination of failure events matters, but so does the sequence ordering of th

  14. A continuous-time Bayesian network reliability modeling and analysis framework

    NARCIS (Netherlands)

    Boudali, H.; Dugan, J.B.

    2006-01-01

    We present a continuous-time Bayesian network (CTBN) framework for dynamic systems reliability modeling and analysis. Dynamic systems exhibit complex behaviors and interactions between their components; where not only the combination of failure events matters, but so does the sequence ordering of th

  15. Real-time reliability prediction for dynamic systems with both deteriorating and unreliable components

    Institute of Scientific and Technical Information of China (English)

    XU ZhengGuo; JI YinDong; ZHOU DongHua

    2009-01-01

    As an important technology for predictive maintenance,failure prognosis has attracted more and more attentions in recent years.Real-time reliability prediction is one effective solution to failure prognosis.Considering a dynamic system that is composed of normal,deteriorating and unreliable components,this paper proposes an integrated approach to perform real-time reliability prediction for such a class of systems.For s deteriorating component,the degradation is modeled by a time-varying fault process which is a linear or approximately linear function of time.The behavior of an unreliable component is described by a random variable which has two possible values corresponding to the operating and malfunction conditions of this component.The whole proposed approach contains three algorithms.A modified interacting multiple model particle filter is adopted to estimate the dynamic system's state variables and the unmeasurable time-varying fault.An exponential smoothing algorithm named the Holt's method is used to predict the fault process.In the end,the system's reliability is predicted in real time by use of the Monte Carlo strategy.The proposed approach can effectively predict the impending failure of a dynamic system,which is verified by computer simulations based on a three-vessel water tank system.

  16. Combined HW/SW Reliability Models.

    Science.gov (United States)

    1982-04-01

    Stone, C. J. (1972). Introduction to Stochastic Processes . New York: Houghton Mifflin. Jelinski, Z. and Moranda, P. (1972). Software reliability...research. Statistical Computer Performance Evaluation, New York: Academic Press, 465-484. Kannan, D. (1979). An Introduction to Stochastic Processes . New

  17. Singularity of Some Software Reliability Models and Parameter Estimation Method

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    According to the principle, “The failure data is the basis of software reliability analysis”, we built a software reliability expert system (SRES) by adopting the artificial intelligence technology. By reasoning out the conclusion from the fitting results of failure data of a software project, the SRES can recommend users “the most suitable model” as a software reliability measurement model. We believe that the SRES can overcome the inconsistency in applications of software reliability models well. We report investigation results of singularity and parameter estimation methods of experimental models in SRES.

  18. Assessment of stochastically updated finite element models using reliability indicator

    Science.gov (United States)

    Hua, X. G.; Wen, Q.; Ni, Y. Q.; Chen, Z. Q.

    2017-01-01

    Finite element (FE) model updating techniques have been a viable approach to correcting an initial mathematical model based on test data. Validation of the updated FE models is usually conducted by comparing model predictions with independent test data that have not been used for model updating. This approach of model validation cannot be readily applied in the case of a stochastically updated FE model. In recognizing that structural reliability is a major decision factor throughout the lifecycle of a structure, this study investigates the use of structural reliability as a measure for assessing the quality of stochastically updated FE models. A recently developed perturbation method for stochastic FE model updating is first applied to attain the stochastically updated models by using the measured modal parameters with uncertainty. The reliability index and failure probability for predefined limit states are computed for the initial and the stochastically updated models, respectively, and are compared with those obtained from the 'true' model to assess the quality of the two models. Numerical simulation of a truss bridge is provided as an example. The simulated modal parameters involving different uncertainty magnitudes are used to update an initial model of the bridge. It is shown that the reliability index obtained from the updated model is much closer to true reliability index than that obtained from the initial model in the case of small uncertainty magnitude; in the case of large uncertainty magnitude, the reliability index computed from the initial model rather than from the updated model is closer to the true value. The present study confirms the usefulness of measurement-calibrated FE models and at the same time also highlights the importance of the uncertainty reduction in test data for reliable model updating and reliability evaluation.

  19. A Note on Structural Equation Modeling Estimates of Reliability

    Science.gov (United States)

    Yang, Yanyun; Green, Samuel B.

    2010-01-01

    Reliability can be estimated using structural equation modeling (SEM). Two potential problems with this approach are that estimates may be unstable with small sample sizes and biased with misspecified models. A Monte Carlo study was conducted to investigate the quality of SEM estimates of reliability by themselves and relative to coefficient…

  20. Nanowire growth process modeling and reliability models for nanodevices

    Science.gov (United States)

    Fathi Aghdam, Faranak

    Nowadays, nanotechnology is becoming an inescapable part of everyday life. The big barrier in front of its rapid growth is our incapability of producing nanoscale materials in a reliable and cost-effective way. In fact, the current yield of nano-devices is very low (around 10 %), which makes fabrications of nano-devices very expensive and uncertain. To overcome this challenge, the first and most important step is to investigate how to control nano-structure synthesis variations. The main directions of reliability research in nanotechnology can be classified either from a material perspective or from a device perspective. The first direction focuses on restructuring materials and/or optimizing process conditions at the nano-level (nanomaterials). The other direction is linked to nano-devices and includes the creation of nano-electronic and electro-mechanical systems at nano-level architectures by taking into account the reliability of future products. In this dissertation, we have investigated two topics on both nano-materials and nano-devices. In the first research work, we have studied the optimization of one of the most important nanowire growth processes using statistical methods. Research on nanowire growth with patterned arrays of catalyst has shown that the wire-to-wire spacing is an important factor affecting the quality of resulting nanowires. To improve the process yield and the length uniformity of fabricated nanowires, it is important to reduce the resource competition between nanowires during the growth process. We have proposed a physical-statistical nanowire-interaction model considering the shadowing effect and shared substrate diffusion area to determine the optimal pitch that would ensure the minimum competition between nanowires. A sigmoid function is used in the model, and the least squares estimation method is used to estimate the model parameters. The estimated model is then used to determine the optimal spatial arrangement of catalyst arrays

  1. Reliability and Security Analysis on Two-Cell Dynamic Redundant System

    Directory of Open Access Journals (Sweden)

    Hongsheng Su

    2013-05-01

    Full Text Available Based on analysis on reliability and security on three types of two-cell dynamic redundant systems which has been widely applied in modern railway signal system, whose isomorphic Markov model was established in this paper. During modeling several important factors, including common-cause failure, coverage of diagnostic systems, online maintainability, and periodic inspection maintenance, and as well as many failure modes, were considered, which made the established model more credible. Through analysis and calculation on reliability and security indexes of the three types of two-module dynamic redundant structures, the paper acquires a significant conclusion, i.e., the safety and reliability of the kind of structure possesses an upper limit, and can not be inordinately improved through the hardware and software comparison methods under the failure and repairing rate fixed. Finally, the paper performs the simulation investigations, and compares the calculation results of the three redundant systems, and analysis each advantages and disadvantages, and gives out each application scope, which provides a theoretical technical support for the railway signal equipments selection.

  2. Reliability models applicable to space telescope solar array assembly system

    Science.gov (United States)

    Patil, S. A.

    1986-01-01

    A complex system may consist of a number of subsystems with several components in series, parallel, or combination of both series and parallel. In order to predict how well the system will perform, it is necessary to know the reliabilities of the subsystems and the reliability of the whole system. The objective of the present study is to develop mathematical models of the reliability which are applicable to complex systems. The models are determined by assuming k failures out of n components in a subsystem. By taking k = 1 and k = n, these models reduce to parallel and series models; hence, the models can be specialized to parallel, series combination systems. The models are developed by assuming the failure rates of the components as functions of time and as such, can be applied to processes with or without aging effects. The reliability models are further specialized to Space Telescope Solar Arrray (STSA) System. The STSA consists of 20 identical solar panel assemblies (SPA's). The reliabilities of the SPA's are determined by the reliabilities of solar cell strings, interconnects, and diodes. The estimates of the reliability of the system for one to five years are calculated by using the reliability estimates of solar cells and interconnects given n ESA documents. Aging effects in relation to breaks in interconnects are discussed.

  3. Dynamical model of brushite precipitation

    Science.gov (United States)

    Oliveira, Cristina; Georgieva, Petia; Rocha, Fernando; Ferreira, António; Feyo de Azevedo, Sebastião

    2007-07-01

    The objectives of this work are twofold. From academic point of view the aim is to build a dynamical macro model to fit the material balance and explain the main kinetic mechanisms that govern the transformation of the hydroxyapatite (HAP) into brushite and the growth of brushite, based on laboratory experiments and collected database. From practical point of view, the aim is to design a reliable process simulator that can be easily imbedded in industrial software for model driven monitoring, optimization and control purposes. Based upon a databank of laboratory measurements of the calcium concentration in solution (on-line) and the particle size distribution (off-line) a reliable dynamical model of the dual nature of brushite particle formation for a range of initial concentrations of the reagents was derived as a system of ordinary differential equations of time. The performance of the model is tested with respect to the predicted evolution of mass of calcium in solution and the average (in mass) particle size along time. Results obtained demonstrate a good agreement between the model time trajectories and the available experimental data for a number of different initial concentrations of reagents.

  4. Modeling of humidity-related reliability in enclosures with electronics

    DEFF Research Database (Denmark)

    Hygum, Morten Arnfeldt; Popok, Vladimir

    2015-01-01

    Reliability of electronics that operate outdoor is strongly affected by environmental factors such as temperature and humidity. Fluctuations of these parameters can lead to water condensation inside enclosures. Therefore, modelling of humidity distribution in a container with air and freely exposed...... to predict humidity-related reliability of a printed circuit board (PCB) located in a cabinet by combining structural reliability methods and non-linear diffusion models. This framework can, thus, be used for reliability prediction from a climatic point-of-view. The proposed numerical approach is then tested...

  5. Models for Dynamic Applications

    DEFF Research Database (Denmark)

    2011-01-01

    be applied to formulate, analyse and solve these dynamic problems and how in the case of the fuel cell problem the model consists of coupledmeso and micro scale models. It is shown how data flows are handled between the models and how the solution is obtained within the modelling environment....

  6. Models of travel time and reliability for freight transport

    Energy Technology Data Exchange (ETDEWEB)

    Terziev, M.N.; Roberts, P.O.

    1976-12-01

    The model produces a probability distribution of the trip time associated with the shipment of freight between a given origin and destination by a given mode and route. Using distributions of the type produced by the model, it is possible to determine two important measures of the quality of service offered by the carrier. These measures are the main travel time and the reliability of delivery. The reliability measure describes the spread of the travel-time distribution. The model described herein was developed originally as part of the railroad rationalization study conducted at MIT and sponsored by the Federal Railroad Administration. This work built upon earlier research in railroad reliability models. Because of the predominantly rail background of this model, the initial discussion focuses on the problem of modeling rail-trip-time reliability. Then, it is shown that the model can also be used to study truck and barge operations.

  7. How reliable are Finite-Size Lyapunov Exponents for the assessment of ocean dynamics?

    CERN Document Server

    Hernández-Carrasco, Ismael; López, Cristóbal; Turiel, Antonio

    2010-01-01

    Much of atmospheric and oceanic transport is associated with coherent structures. Lagrangian methods are emerging as optimal tools for their identification and analysis. An important Lagrangian technique which is starting to be widely used in oceanography is that of Finite-Size Lyapunov Exponents (FSLEs). Despite this growing relevance there are still many open questions concerning the reliability of the FSLEs in order to analyse the ocean dynamics. In particular, it is still unclear how robust they are when confronted with real data. In this paper we analyze the effect on this Lagrangian technique of the two most important effects when facing real data, namely noise and dynamics of unsolved scales. Our results, using as a benchmarch data from a primitive numerical model of the Mediterranean Sea, show that even when some dynamics is missed the FSLEs results still give an accurate picture of the oceanic transport properties.

  8. Developing Fast and Reliable Flood Models

    DEFF Research Database (Denmark)

    Thrysøe, Cecilie; Toke, Jens; Borup, Morten

    2016-01-01

    State-of-the-art flood modelling in urban areas are based on distributed physically based models. However, their usage is impeded by high computational demands and numerical instabilities, which make calculations both difficult and time consuming. To address these challenges we develop and test...... is modelled by response surface surrogates, which are empirical data driven models. These are trained using the volume-discharge relations by piecewise linear functions. (ii) The surface flooding is modelled by lower-fidelity physically based surrogates, which are based on surface depressions and flow paths....... A surrogate model is set up for a case study area in Aarhus, Denmark, to replace a MIKE FLOOD model. The drainage surrogates are able to reproduce the MIKE URBAN results for a set of rain inputs. The coupled drainage-surface surrogate model lacks details in the surface description which reduces its overall...

  9. Dynamic term structure models

    DEFF Research Database (Denmark)

    Andreasen, Martin Møller; Meldrum, Andrew

    This paper studies whether dynamic term structure models for US nominal bond yields should enforce the zero lower bound by a quadratic policy rate or a shadow rate specification. We address the question by estimating quadratic term structure models (QTSMs) and shadow rate models with at most four...

  10. Transformer real-time reliability model based on operating conditions

    Institute of Scientific and Technical Information of China (English)

    HE Jian; CHENG Lin; SUN Yuan-zhang

    2007-01-01

    Operational reliability evaluation theory reflects real-time reliability level of power system. The component failure rate varies with operating conditions. The impact of real-time operating conditions such as ambient temperature and transformer MVA (megavolt-ampere) loading on transformer insulation life is studied in this paper. The formula of transformer failure rate based on the winding hottest-spot temperature (HST) is given. Thus the real-time reliability model of transformer based on operating conditions is presented. The work is illustrated using the 1979 IEEE Reliability Test System. The changes of operating conditions are simulated by using hourly load curve and temperature curve, so the curves of real-time reliability indices are obtained by using operational reliability evaluation.

  11. Models for Battery Reliability and Lifetime

    Energy Technology Data Exchange (ETDEWEB)

    Smith, K.; Wood, E.; Santhanagopalan, S.; Kim, G. H.; Neubauer, J.; Pesaran, A.

    2014-03-01

    Models describing battery degradation physics are needed to more accurately understand how battery usage and next-generation battery designs can be optimized for performance and lifetime. Such lifetime models may also reduce the cost of battery aging experiments and shorten the time required to validate battery lifetime. Models for chemical degradation and mechanical stress are reviewed. Experimental analysis of aging data from a commercial iron-phosphate lithium-ion (Li-ion) cell elucidates the relative importance of several mechanical stress-induced degradation mechanisms.

  12. An Interactive Whiteboard Model Survey: Reliable Development

    Directory of Open Access Journals (Sweden)

    Bih-Yaw Shih

    2012-04-01

    Full Text Available Applications and practices of interactive whiteboards (IWBs in school learning is important focus and development trend for developmented countries in recent years. There are rare researches and discussions about IWB teaching materials for course teaching and teaching effectiveness. As for the aspect of academic studies, there is more practical teaching sharing for subjects such as language learning, mathematical learning and physical science learning; however, it is rarely seen empirical research on the application of IWB for educational acceptances of interactive whiteboards. Based on its imporatances, we summarize previous literatures to establish a theoretical model for interactive whiteboards (IWBs. Variables in this model are then discussed to find out the interaction between each other. The contribution of the study develops an innovative model for educational acceptances of interactive whiteboards using hybrid TAM, ECM, and Flow models.

  13. Construction of a reliable model pyranometer for irradiance ...

    African Journals Online (AJOL)

    USER

    2010-03-22

    Mar 22, 2010 ... design, construction and testing of a reliable model pyranometer (RMP001) was done in Mubi,. Adamawa ... Pyranometers are widely used in meteorology, climate- .... It is calculated that an appropriate value for the capa-.

  14. Reliability Modeling and Analysis of SCI Topological Network

    Directory of Open Access Journals (Sweden)

    Hongzhe Xu

    2012-03-01

    Full Text Available The problem of reliability modeling on the Scalable Coherent Interface (SCI rings and topological network is studied. The reliability models of three SCI rings are developed and the factors which influence the reliability of SCI rings are studied. By calculating the shortest path matrix and the path quantity matrix of different types SCI network topology, the communication characteristics of SCI network are obtained. For the situations of the node-damage and edge-damage, the survivability of SCI topological network is studied.

  15. MODELING HUMAN RELIABILITY ANALYSIS USING MIDAS

    Energy Technology Data Exchange (ETDEWEB)

    Ronald L. Boring; Donald D. Dudenhoeffer; Bruce P. Hallbert; Brian F. Gore

    2006-05-01

    This paper summarizes an emerging collaboration between Idaho National Laboratory and NASA Ames Research Center regarding the utilization of high-fidelity MIDAS simulations for modeling control room crew performance at nuclear power plants. The key envisioned uses for MIDAS-based control room simulations are: (i) the estimation of human error with novel control room equipment and configurations, (ii) the investigative determination of risk significance in recreating past event scenarios involving control room operating crews, and (iii) the certification of novel staffing levels in control rooms. It is proposed that MIDAS serves as a key component for the effective modeling of risk in next generation control rooms.

  16. Discrete dynamical models

    CERN Document Server

    Salinelli, Ernesto

    2014-01-01

    This book provides an introduction to the analysis of discrete dynamical systems. The content is presented by an unitary approach that blends the perspective of mathematical modeling together with the ones of several discipline as Mathematical Analysis, Linear Algebra, Numerical Analysis, Systems Theory and Probability. After a preliminary discussion of several models, the main tools for the study of linear and non-linear scalar dynamical systems are presented, paying particular attention to the stability analysis. Linear difference equations are studied in detail and an elementary introduction of Z and Discrete Fourier Transform is presented. A whole chapter is devoted to the study of bifurcations and chaotic dynamics. One-step vector-valued dynamical systems are the subject of three chapters, where the reader can find the applications to positive systems, Markov chains, networks and search engines. The book is addressed mainly to students in Mathematics, Engineering, Physics, Chemistry, Biology and Economic...

  17. Modeling dynamic swarms

    KAUST Repository

    Ghanem, Bernard

    2013-01-01

    This paper proposes the problem of modeling video sequences of dynamic swarms (DSs). We define a DS as a large layout of stochastically repetitive spatial configurations of dynamic objects (swarm elements) whose motions exhibit local spatiotemporal interdependency and stationarity, i.e., the motions are similar in any small spatiotemporal neighborhood. Examples of DS abound in nature, e.g., herds of animals and flocks of birds. To capture the local spatiotemporal properties of the DS, we present a probabilistic model that learns both the spatial layout of swarm elements (based on low-level image segmentation) and their joint dynamics that are modeled as linear transformations. To this end, a spatiotemporal neighborhood is associated with each swarm element, in which local stationarity is enforced both spatially and temporally. We assume that the prior on the swarm dynamics is distributed according to an MRF in both space and time. Embedding this model in a MAP framework, we iterate between learning the spatial layout of the swarm and its dynamics. We learn the swarm transformations using ICM, which iterates between estimating these transformations and updating their distribution in the spatiotemporal neighborhoods. We demonstrate the validity of our method by conducting experiments on real and synthetic video sequences. Real sequences of birds, geese, robot swarms, and pedestrians evaluate the applicability of our model to real world data. © 2012 Elsevier Inc. All rights reserved.

  18. Modeling Reliability Growth in Accelerated Stress Testing

    Science.gov (United States)

    2013-12-01

    projection models for both continuous use and discrete use systems found anywhere in the literature. The review comprises a synopsis of over 80...pertaining to the research that may have been unfamiliar to the reader. The Chapter has provided a synopsis of the research accomplished in the fields of...Cox, "Analysis of the probability and risk of cause specific failure," International Journal of Radiology Oncology, Biology, Physics, vol. 29, no. 5

  19. Quantitative metal magnetic memory reliability modeling for welded joints

    Science.gov (United States)

    Xing, Haiyan; Dang, Yongbin; Wang, Ben; Leng, Jiancheng

    2016-03-01

    Metal magnetic memory(MMM) testing has been widely used to detect welded joints. However, load levels, environmental magnetic field, and measurement noises make the MMM data dispersive and bring difficulty to quantitative evaluation. In order to promote the development of quantitative MMM reliability assessment, a new MMM model is presented for welded joints. Steel Q235 welded specimens are tested along the longitudinal and horizontal lines by TSC-2M-8 instrument in the tensile fatigue experiments. The X-ray testing is carried out synchronously to verify the MMM results. It is found that MMM testing can detect the hidden crack earlier than X-ray testing. Moreover, the MMM gradient vector sum K vs is sensitive to the damage degree, especially at early and hidden damage stages. Considering the dispersion of MMM data, the K vs statistical law is investigated, which shows that K vs obeys Gaussian distribution. So K vs is the suitable MMM parameter to establish reliability model of welded joints. At last, the original quantitative MMM reliability model is first presented based on the improved stress strength interference theory. It is shown that the reliability degree R gradually decreases with the decreasing of the residual life ratio T, and the maximal error between prediction reliability degree R 1 and verification reliability degree R 2 is 9.15%. This presented method provides a novel tool of reliability testing and evaluating in practical engineering for welded joints.

  20. A Reliability Based Model for Wind Turbine Selection

    Directory of Open Access Journals (Sweden)

    A.K. Rajeevan

    2013-06-01

    Full Text Available A wind turbine generator output at a specific site depends on many factors, particularly cut- in, rated and cut-out wind speed parameters. Hence power output varies from turbine to turbine. The objective of this paper is to develop a mathematical relationship between reliability and wind power generation. The analytical computation of monthly wind power is obtained from weibull statistical model using cubic mean cube root of wind speed. Reliability calculation is based on failure probability analysis. There are many different types of wind turbinescommercially available in the market. From reliability point of view, to get optimum reliability in power generation, it is desirable to select a wind turbine generator which is best suited for a site. The mathematical relationship developed in this paper can be used for site-matching turbine selection in reliability point of view.

  1. Reliability Analysis and Modeling of ZigBee Networks

    Science.gov (United States)

    Lin, Cheng-Min

    The architecture of ZigBee networks focuses on developing low-cost, low-speed ubiquitous communication between devices. The ZigBee technique is based on IEEE 802.15.4, which specifies the physical layer and medium access control (MAC) for a low rate wireless personal area network (LR-WPAN). Currently, numerous wireless sensor networks have adapted the ZigBee open standard to develop various services to promote improved communication quality in our daily lives. The problem of system and network reliability in providing stable services has become more important because these services will be stopped if the system and network reliability is unstable. The ZigBee standard has three kinds of networks; star, tree and mesh. The paper models the ZigBee protocol stack from the physical layer to the application layer and analyzes these layer reliability and mean time to failure (MTTF). Channel resource usage, device role, network topology and application objects are used to evaluate reliability in the physical, medium access control, network, and application layers, respectively. In the star or tree networks, a series system and the reliability block diagram (RBD) technique can be used to solve their reliability problem. However, a division technology is applied here to overcome the problem because the network complexity is higher than that of the others. A mesh network using division technology is classified into several non-reducible series systems and edge parallel systems. Hence, the reliability of mesh networks is easily solved using series-parallel systems through our proposed scheme. The numerical results demonstrate that the reliability will increase for mesh networks when the number of edges in parallel systems increases while the reliability quickly drops when the number of edges and the number of nodes increase for all three networks. More use of resources is another factor impact on reliability decreasing. However, lower network reliability will occur due to

  2. System Reliability Analysis Capability and Surrogate Model Application in RAVEN

    Energy Technology Data Exchange (ETDEWEB)

    Rabiti, Cristian; Alfonsi, Andrea; Huang, Dongli; Gleicher, Frederick; Wang, Bei; Adbel-Khalik, Hany S.; Pascucci, Valerio; Smith, Curtis L.

    2015-11-01

    This report collect the effort performed to improve the reliability analysis capabilities of the RAVEN code and explore new opportunity in the usage of surrogate model by extending the current RAVEN capabilities to multi physics surrogate models and construction of surrogate models for high dimensionality fields.

  3. Dynamic causal modelling revisited.

    Science.gov (United States)

    Friston, K J; Preller, Katrin H; Mathys, Chris; Cagnan, Hayriye; Heinzle, Jakob; Razi, Adeel; Zeidman, Peter

    2017-02-17

    This paper revisits the dynamic causal modelling of fMRI timeseries by replacing the usual (Taylor) approximation to neuronal dynamics with a neural mass model of the canonical microcircuit. This provides a generative or dynamic causal model of laminar specific responses that can generate haemodynamic and electrophysiological measurements. In principle, this allows the fusion of haemodynamic and (event related or induced) electrophysiological responses. Furthermore, it enables Bayesian model comparison of competing hypotheses about physiologically plausible synaptic effects; for example, does attentional modulation act on superficial or deep pyramidal cells - or both? In this technical note, we describe the resulting dynamic causal model and provide an illustrative application to the attention to visual motion dataset used in previous papers. Our focus here is on how to answer long-standing questions in fMRI; for example, do haemodynamic responses reflect extrinsic (afferent) input from distant cortical regions, or do they reflect intrinsic (recurrent) neuronal activity? To what extent do inhibitory interneurons contribute to neurovascular coupling? What is the relationship between haemodynamic responses and the frequency of induced neuronal activity? This paper does not pretend to answer these questions; rather it shows how they can be addressed using neural mass models of fMRI timeseries. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Maximum Entropy Discrimination Poisson Regression for Software Reliability Modeling.

    Science.gov (United States)

    Chatzis, Sotirios P; Andreou, Andreas S

    2015-11-01

    Reliably predicting software defects is one of the most significant tasks in software engineering. Two of the major components of modern software reliability modeling approaches are: 1) extraction of salient features for software system representation, based on appropriately designed software metrics and 2) development of intricate regression models for count data, to allow effective software reliability data modeling and prediction. Surprisingly, research in the latter frontier of count data regression modeling has been rather limited. More specifically, a lack of simple and efficient algorithms for posterior computation has made the Bayesian approaches appear unattractive, and thus underdeveloped in the context of software reliability modeling. In this paper, we try to address these issues by introducing a novel Bayesian regression model for count data, based on the concept of max-margin data modeling, effected in the context of a fully Bayesian model treatment with simple and efficient posterior distribution updates. Our novel approach yields a more discriminative learning technique, making more effective use of our training data during model inference. In addition, it allows of better handling uncertainty in the modeled data, which can be a significant problem when the training data are limited. We derive elegant inference algorithms for our model under the mean-field paradigm and exhibit its effectiveness using the publicly available benchmark data sets.

  5. Quasi-Bayesian software reliability model with small samples

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jin; TU Jun-xiang; CHEN Zhuo-ning; YAN Xiao-guang

    2009-01-01

    In traditional Bayesian software reliability models,it was assume that all probabilities are precise.In practical applications the parameters of the probability distributions are often under uncertainty due to strong dependence on subjective information of experts' judgments on sparse statistical data.In this paper,a quasi-Bayesian software reliability model using interval-valued probabilities to clearly quantify experts' prior beliefs on possible intervals of the parameters of the probability distributions is presented.The model integrates experts' judgments with statistical data to obtain more convincible assessments of software reliability with small samples.For some actual data sets,the presented model yields better predictions than the Jelinski-Moranda (JM) model using maximum likelihood (ML).

  6. Modeling and Analysis of Component Faults and Reliability

    DEFF Research Database (Denmark)

    Le Guilly, Thibaut; Olsen, Petur; Ravn, Anders Peter;

    2016-01-01

    that are automatically generated. The stochastic information on the faults is used to estimate the reliability of the fault affected system. The reliability is given with respect to properties of the system state space. We illustrate the process on a concrete example using the Uppaal model checker for validating...... the ideal system model and the fault modeling. Then the statistical version of the tool, UppaalSMC, is used to find reliability estimates.......This chapter presents a process to design and validate models of reactive systems in the form of communicating timed automata. The models are extended with faults associated with probabilities of occurrence. This enables a fault tree analysis of the system using minimal cut sets...

  7. An interval-valued reliability model with bounded failure rates

    DEFF Research Database (Denmark)

    Kozine, Igor; Krymsky, Victor

    2012-01-01

    The approach to deriving interval-valued reliability measures described in this paper is distinctive from other imprecise reliability models in that it overcomes the issue of having to impose an upper bound on time to failure. It rests on the presupposition that a constant interval-valued failure...... function if only partial failure information is available. An example is provided. © 2012 Copyright Taylor and Francis Group, LLC....

  8. Characterizing and modeling citation dynamics

    CERN Document Server

    Eom, Young-Ho; 10.1371/journal.pone.0024926

    2011-01-01

    Citation distributions are crucial for the analysis and modeling of the activity of scientists. We investigated bibliometric data of papers published in journals of the American Physical Society, searching for the type of function which best describes the observed citation distributions. We used the goodness of fit with Kolmogorov-Smirnov statistics for three classes of functions: log-normal, simple power law and shifted power law. The shifted power law turns out to be the most reliable hypothesis for all citation networks we derived, which correspond to different time spans. We find that citation dynamics is characterized by bursts, usually occurring within a few years since publication of a paper, and the burst size spans several orders of magnitude. We also investigated the microscopic mechanisms for the evolution of citation networks, by proposing a linear preferential attachment with time dependent initial attractiveness. The model successfully reproduces the empirical citation distributions and accounts...

  9. Corruption dynamics model

    Science.gov (United States)

    Malafeyev, O. A.; Nemnyugin, S. A.; Rylow, D.; Kolpak, E. P.; Awasthi, Achal

    2017-07-01

    The corruption dynamics is analyzed by means of the lattice model which is similar to the three-dimensional Ising model. Agents placed at nodes of the corrupt network periodically choose to perfom or not to perform the act of corruption at gain or loss while making decisions based on the process history. The gain value and its dynamics are defined by means of the Markov stochastic process modelling with parameters established in accordance with the influence of external and individual factors on the agent's gain. The model is formulated algorithmically and is studied by means of the computer simulation. Numerical results are obtained which demonstrate asymptotic behaviour of the corruption network under various conditions.

  10. Dynamic Systems Modeling

    Directory of Open Access Journals (Sweden)

    Sorin Dan ŞANDOR

    2003-01-01

    Full Text Available System Dynamics was introduced by Jay W. Forrester in the 1960s. Since then the methodology was adopted in many areas of natural or social sciences. This article tries to present briefly how this methodology works, both as Systems Thinking and as Modelling with Vensim computer software.

  11. Dynamic modelling of windmills

    DEFF Research Database (Denmark)

    Akhmatov, Vladislav; Knudsen, Hans

    1999-01-01

    An empirical dynamic model of windmills is set up based on analysis of measured Fourier spectra of the active electric power from a wind farm. The model is based on the assumption that eigenswings of the mechanical construction of the windmills excited by the phenomenon of vortex tower interaction...... will be transferred through the shaft to the electrical generator and result in disturbances of the active electric power supplied by the windmills. The results of the model are found to be in agreement with measurements in the frequency range of the model that is from 0.1 to 10 Hz....

  12. Dynamic Network Models

    CERN Document Server

    Armbruster, Benjamin

    2011-01-01

    We analyze random networks that change over time. First we analyze a dynamic Erdos-Renyi model, whose edges change over time. We describe its stationary distribution, its convergence thereto, and the SI contact process on the network, which has relevance for connectivity and the spread of infections. Second, we analyze the effect of node turnover, when nodes enter and leave the network, which has relevance for network models incorporating births, deaths, aging, and other demographic factors.

  13. Singularity of Software Reliability Models LVLM and LVQM

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    According to the principle, “The failure data is the basis of software reliabilityanalysis”, we built a software reliability expert system (SRES) by adopting the artificialtechnology. By reasoning out the conclusion from the fitting results of failure data of asoftware project, the SRES can recommend users “the most suitable model”as a softwarereliability measurement model. We believe that the SRES can overcome the inconsistency inapplications of software reliability models well. We report investigation results of singularity and parameter estimation methods of models, LVLM and LVQM.

  14. Learning reliable manipulation strategies without initial physical models

    Science.gov (United States)

    Christiansen, Alan D.; Mason, Matthew T.; Mitchell, Tom M.

    1990-01-01

    A description is given of a robot, possessing limited sensory and effectory capabilities but no initial model of the effects of its actions on the world, that acquires such a model through exploration, practice, and observation. By acquiring an increasingly correct model of its actions, it generates increasingly successful plans to achieve its goals. In an apparently nondeterministic world, achieving reliability requires the identification of reliable actions and a preference for using such actions. Furthermore, by selecting its training actions carefully, the robot can significantly improve its learning rate.

  15. Coverage Modeling and Reliability Analysis Using Multi-state Function

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Fault tree analysis is an effective method for predicting the reliability of a system. It gives a pictorial representation and logical framework for analyzing the reliability. Also, it has been used for a long time as an effective method for the quantitative and qualitative analysis of the failure modes of critical systems. In this paper, we propose a new general coverage model (GCM) based on hardware independent faults. Using this model, an effective software tool can be constructed to detect, locate and recover fault from the faulty system. This model can be applied to identify the key component that can cause the failure of the system using failure mode effect analysis (FMEA).

  16. Modeling HVDC links in composite reliability evaluation: issues and solutions

    Energy Technology Data Exchange (ETDEWEB)

    Reis, Lineu B. de [Sao Paulo Univ., SP (Brazil). Escola Politecnica; Ramos, Dorel S. [Centrais Eletricas de Sao Paulo, SP (Brazil); Morozowski Filho, Marciano [Santa Catarina Univ., Florianopolis, SC (Brazil)

    1992-12-31

    This paper deals with theoretical and practical aspects of HVDC link modeling for composite (generation and transmission) system reliability evaluation purposes. The conceptual framework used in the analysis, as well as the practical aspects, are illustrated through an application example. Initially, two distinct HVDC link operation models are described: synchronous and asynchronous. An analysis of the most significant internal failure modes and their effects on HVDC link transmission capability is presented and a reliability model is proposed. Finally, a historical performance data of the Itaipu HVDC system is shown. 6 refs., 5 figs., 8 tabs.

  17. Modeling Sensor Reliability in Fault Diagnosis Based on Evidence Theory.

    Science.gov (United States)

    Yuan, Kaijuan; Xiao, Fuyuan; Fei, Liguo; Kang, Bingyi; Deng, Yong

    2016-01-18

    Sensor data fusion plays an important role in fault diagnosis. Dempster-Shafer (D-R) evidence theory is widely used in fault diagnosis, since it is efficient to combine evidence from different sensors. However, under the situation where the evidence highly conflicts, it may obtain a counterintuitive result. To address the issue, a new method is proposed in this paper. Not only the statistic sensor reliability, but also the dynamic sensor reliability are taken into consideration. The evidence distance function and the belief entropy are combined to obtain the dynamic reliability of each sensor report. A weighted averaging method is adopted to modify the conflict evidence by assigning different weights to evidence according to sensor reliability. The proposed method has better performance in conflict management and fault diagnosis due to the fact that the information volume of each sensor report is taken into consideration. An application in fault diagnosis based on sensor fusion is illustrated to show the efficiency of the proposed method. The results show that the proposed method improves the accuracy of fault diagnosis from 81.19% to 89.48% compared to the existing methods.

  18. Advancing Climate Dynamics Toward Reliable Regional Climate Projections

    Institute of Scientific and Technical Information of China (English)

    XIE Shang-Ping

    2013-01-01

    With a scientific consensus reached regarding the anthropogenic effect on global mean temperature,developing reliable regional climate projections has emerged as a new challenge for climate science.A national project was launched in China in 2012 to study ocean's role in regional climate change.This paper starts with a review of recent advances in the study of regional climate response to global warming,followed by a description of the Chinese project including the rationale,objectives,and plan for field observations.The 15 research articles that follow in the special issue are highlighted,representing some of the initial results from the project.

  19. A random effects generalized linear model for reliability compositive evaluation

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    This paper first proposes a random effects generalized linear model to evaluate the storage life of one kind of high reliable and small sample-sized products by combining multi-sources information of products coming from the same population but stored at different environments. The relevant algorithms are also provided. Simulation results manifest the soundness and effectiveness of the proposed model.

  20. Design of a Human Reliability Assessment model for structural engineering

    NARCIS (Netherlands)

    De Haan, J.; Terwel, K.C.; Al-Jibouri, S.H.S.

    2013-01-01

    It is generally accepted that humans are the “weakest link” in structural design and construction processes. Despite this, few models are available to quantify human error within engineering processes. This paper demonstrates the use of a quantitative Human Reliability Assessment model within struct

  1. A random effects generalized linear model for reliability compositive evaluation

    Institute of Scientific and Technical Information of China (English)

    ZHAO Hui; YU Dan

    2009-01-01

    This paper first proposes a random effects generalized linear model to evaluate the storage life of one kind of high reliable and small sample-sized products by combining multi-sources information of products coming from the same population but stored at different environments.The relevant algorithms are also provided.Simulation results manifest the soundness and effectiveness of the proposed model.

  2. Modal aerosol dynamics modeling

    Energy Technology Data Exchange (ETDEWEB)

    Whitby, E.R.; McMurry, P.H.; Shankar, U.; Binkowski, F.S.

    1991-02-01

    The report presents the governing equations for representing aerosol dynamics, based on several different representations of the aerosol size distribution. Analytical and numerical solution techniques for these governing equations are also reviewed. Described in detail is a computationally efficient numerical technique for simulating aerosol behavior in systems undergoing simultaneous heat transfer, fluid flow, and mass transfer in and between the gas and condensed phases. The technique belongs to a general class of models known as modal aerosol dynamics (MAD) models. These models solve for the temporal and spatial evolution of the particle size distribution function. Computational efficiency is achieved by representing the complete aerosol population as a sum of additive overlapping populations (modes), and solving for the time rate of change of integral moments of each mode. Applications of MAD models for simulating aerosol dynamics in continuous stirred tank aerosol reactors and flow aerosol reactors are provided. For the application to flow aerosol reactors, the discussion is developed in terms of considerations for merging a MAD model with the SIMPLER routine described by Patankar (1980). Considerations for incorporating a MAD model into the U.S. Environmental Protection Agency's Regional Particulate Model are also described. Numerical and analytical techniques for evaluating the size-space integrals of the modal dynamics equations (MDEs) are described. For multimodal logonormal distributions, an analytical expression for the coagulation integrals of the MDEs, applicable for all size regimes, is derived, and is within 20% of accurate numerical evaluation of the same moment coagulation integrals. A computationally efficient integration technique, based on Gauss-Hermite numerical integration, is also derived.

  3. Exponential order statistic models of software reliability growth

    Science.gov (United States)

    Miller, D. R.

    1986-01-01

    Failure times of a software reliability growth process are modeled as order statistics of independent, nonidentically distributed exponential random variables. The Jelinsky-Moranda, Goel-Okumoto, Littlewood, Musa-Okumoto Logarithmic, and Power Law models are all special cases of Exponential Order Statistic Models, but there are many additional examples also. Various characterizations, properties and examples of this class of models are developed and presented.

  4. Reliability-based Dynamic Network Design with Stochastic Networks

    NARCIS (Netherlands)

    Li, H.

    2009-01-01

    Transportation systems are stochastic and dynamic systems. The road capacities and the travel demand are fluctuating from time to time within a day and at the same time from day to day. For road users, the travel time and travel costs experienced over time and space are stochastic, thus desire relia

  5. Web software reliability modeling with random impulsive shocks

    Institute of Scientific and Technical Information of China (English)

    Jianfeng Yang; Ming Zhao; Wensheng Hu

    2014-01-01

    As the web-server based business is rapidly developed and popularized, how to evaluate and improve the reliability of web-servers has been extremely important. Although a large num-ber of software reliability growth models (SRGMs), including those combined with multiple change-points (CPs), have been available, these conventional SRGMs cannot be directly applied to web soft-ware reliability analysis because of the complex web operational profile. To characterize the web operational profile precisely, it should be realized that the workload of a web server is normal y non-homogeneous and often observed with the pattern of random impulsive shocks. A web software reliability model with random im-pulsive shocks and its statistical analysis method are developed. In the proposed model, the web server workload is characterized by a geometric Brownian motion process. Based on a real data set from IIS server logs of ICRMS website (www.icrms.cn), the proposed model is demonstrated to be powerful for estimating impulsive shocks and web software reliability.

  6. Modelling sea ice dynamics

    Science.gov (United States)

    Murawski, Jens; Kleine, Eckhard

    2017-04-01

    Sea ice remains one of the frontiers of ocean modelling and is of vital importance for the correct forecasts of the northern oceans. At large scale, it is commonly considered a continuous medium whose dynamics is modelled in terms of continuum mechanics. Its specifics are a matter of constitutive behaviour which may be characterised as rigid-plastic. The new developed sea ice dynamic module bases on general principles and follows a systematic approach to the problem. Both drift field and stress field are modelled by a variational property. Rigidity is treated by Lagrangian relaxation. Thus one is led to a sensible numerical method. Modelling fast ice remains to be a challenge. It is understood that ridging and the formation of grounded ice keels plays a role in the process. The ice dynamic model includes a parameterisation of the stress associated with grounded ice keels. Shear against the grounded bottom contact might lead to plastic deformation and the loss of integrity. The numerical scheme involves a potentially large system of linear equations which is solved by pre-conditioned iteration. The entire algorithm consists of several components which result from decomposing the problem. The algorithm has been implemented and tested in practice.

  7. Structural hybrid reliability index and its convergent solving method based on random–fuzzy–interval reliability model

    Directory of Open Access Journals (Sweden)

    Hai An

    2016-08-01

    Full Text Available Aiming to resolve the problems of a variety of uncertainty variables that coexist in the engineering structure reliability analysis, a new hybrid reliability index to evaluate structural hybrid reliability, based on the random–fuzzy–interval model, is proposed in this article. The convergent solving method is also presented. First, the truncated probability reliability model, the fuzzy random reliability model, and the non-probabilistic interval reliability model are introduced. Then, the new hybrid reliability index definition is presented based on the random–fuzzy–interval model. Furthermore, the calculation flowchart of the hybrid reliability index is presented and it is solved using the modified limit-step length iterative algorithm, which ensures convergence. And the validity of convergent algorithm for the hybrid reliability model is verified through the calculation examples in literature. In the end, a numerical example is demonstrated to show that the hybrid reliability index is applicable for the wear reliability assessment of mechanisms, where truncated random variables, fuzzy random variables, and interval variables coexist. The demonstration also shows the good convergence of the iterative algorithm proposed in this article.

  8. RELIABLE DYNAMIC SOURCE ROUTING PROTOCOL (RDSRP FOR ENERGY HARVESTING WIRELESS SENSOR NETWORKS

    Directory of Open Access Journals (Sweden)

    B. Narasimhan

    2015-03-01

    Full Text Available Wireless sensor networks (WSNs carry noteworthy pros over traditional communication. Though, unkind and composite environments fake great challenges in the reliability of WSN communications. It is more vital to develop a reliable unipath dynamic source routing protocol (RDSRPl for WSN to provide better quality of service (QoS in energy harvesting wireless sensor networks (EH-WSN. This paper proposes a dynamic source routing approach for attaining the most reliable route in EH-WSNs. Performance evaluation is carried out using NS-2 and throughput and packet delivery ratio are chosen as the metrics.

  9. MCTSSA Software Reliability Handbook, Volume II: Data Collection Demonstration and Software Reliability Modeling for a Multi-Function Distributed System

    OpenAIRE

    Schneidewind, Norman F.

    1997-01-01

    The purpose of this handbook is threefold. Specifically, it: Serves as a reference guide for implementing standard software reliability practices at Marine Corps Tactical Systems Support Activity and aids in applying the software reliability model; Serves as a tool for managing the software reliability program; and Serves as a training aid. U.S. Marine Corps Tactical Systems Support Activity, Camp Pendleton, CA. RLACH

  10. Statistical models and methods for reliability and survival analysis

    CERN Document Server

    Couallier, Vincent; Huber-Carol, Catherine; Mesbah, Mounir; Huber -Carol, Catherine; Limnios, Nikolaos; Gerville-Reache, Leo

    2013-01-01

    Statistical Models and Methods for Reliability and Survival Analysis brings together contributions by specialists in statistical theory as they discuss their applications providing up-to-date developments in methods used in survival analysis, statistical goodness of fit, stochastic processes for system reliability, amongst others. Many of these are related to the work of Professor M. Nikulin in statistics over the past 30 years. The authors gather together various contributions with a broad array of techniques and results, divided into three parts - Statistical Models and Methods, Statistical

  11. Modelling application for cognitive reliability and error analysis method

    Directory of Open Access Journals (Sweden)

    Fabio De Felice

    2013-10-01

    Full Text Available The automation of production systems has delegated to machines the execution of highly repetitive and standardized tasks. In the last decade, however, the failure of the automatic factory model has led to partially automated configurations of production systems. Therefore, in this scenario, centrality and responsibility of the role entrusted to the human operators are exalted because it requires problem solving and decision making ability. Thus, human operator is the core of a cognitive process that leads to decisions, influencing the safety of the whole system in function of their reliability. The aim of this paper is to propose a modelling application for cognitive reliability and error analysis method.

  12. Modeling and Simulation Reliable Spacecraft On-Board Computing

    Science.gov (United States)

    Park, Nohpill

    1999-01-01

    The proposed project will investigate modeling and simulation-driven testing and fault tolerance schemes for Spacecraft On-Board Computing, thereby achieving reliable spacecraft telecommunication. A spacecraft communication system has inherent capabilities of providing multipoint and broadcast transmission, connectivity between any two distant nodes within a wide-area coverage, quick network configuration /reconfiguration, rapid allocation of space segment capacity, and distance-insensitive cost. To realize the capabilities above mentioned, both the size and cost of the ground-station terminals have to be reduced by using reliable, high-throughput, fast and cost-effective on-board computing system which has been known to be a critical contributor to the overall performance of space mission deployment. Controlled vulnerability of mission data (measured in sensitivity), improved performance (measured in throughput and delay) and fault tolerance (measured in reliability) are some of the most important features of these systems. The system should be thoroughly tested and diagnosed before employing a fault tolerance into the system. Testing and fault tolerance strategies should be driven by accurate performance models (i.e. throughput, delay, reliability and sensitivity) to find an optimal solution in terms of reliability and cost. The modeling and simulation tools will be integrated with a system architecture module, a testing module and a module for fault tolerance all of which interacting through a centered graphical user interface.

  13. A stochastic evolutionary model for survival dynamics

    CERN Document Server

    Fenner, Trevor; Loizou, George

    2014-01-01

    The recent interest in human dynamics has led researchers to investigate the stochastic processes that explain human behaviour in different contexts. Here we propose a generative model to capture the essential dynamics of survival analysis, traditionally employed in clinical trials and reliability analysis in engineering. In our model, the only implicit assumption made is that the longer an actor has been in the system, the more likely it is to have failed. We derive a power-law distribution for the process and provide preliminary empirical evidence for the validity of the model from two well-known survival analysis data sets.

  14. Analysis of Gumbel Model for Software Reliability Using Bayesian Paradigm

    Directory of Open Access Journals (Sweden)

    Raj Kumar

    2012-12-01

    Full Text Available In this paper, we have illustrated the suitability of Gumbel Model for software reliability data. The model parameters are estimated using likelihood based inferential procedure: classical as well as Bayesian. The quasi Newton-Raphson algorithm is applied to obtain the maximum likelihood estimates and associated probability intervals. The Bayesian estimates of the parameters of Gumbel model are obtained using Markov Chain Monte Carlo(MCMC simulation method in OpenBUGS(established software for Bayesian analysis using Markov Chain Monte Carlo methods. The R functions are developed to study the statistical properties, model validation and comparison tools of the model and the output analysis of MCMC samples generated from OpenBUGS. Details of applying MCMC to parameter estimation for the Gumbel model are elaborated and a real software reliability data set is considered to illustrate the methods of inference discussed in this paper.

  15. Dynamic wake meandering modeling

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Gunner C.; Aagaard Madsen, H.; Bingoel, F. (and others)

    2007-06-15

    We present a consistent, physically based theory for the wake meandering phenomenon, which we consider of crucial importance for the overall description of wind turbine loadings in wind farms. In its present version the model is confined to single wake situations. The model philosophy does, however, have the potential to include also mutual wake interaction phenomenons. The basic conjecture behind the dynamic wake meandering model is that wake transportation in the atmospheric boundary layer is driven by the large scale lateral- and vertical turbulence components. Based on this conjecture a stochastic model of the downstream wake meandering is formulated. In addition to the kinematic formulation of the dynamics of the 'meandering frame of reference', models characterizing the mean wake deficit as well as the added wake turbulence, described in the meandering frame of reference, are an integrated part the model complex. For design applications, the computational efficiency of wake deficit prediction is a key issue. Two computationally low cost models are developed for this purpose. The character of the added wake turbulence, generated by the up-stream turbine in the form of shed and trailed vorticity, has been approached by analytical as well as by numerical studies. The dynamic wake meandering philosophy has been verified by comparing model predictions with extensive full-scale measurements. These comparisons have demonstrated good agreement, both qualitatively and quantitatively, concerning both flow characteristics and turbine load characteristics. Contrary to previous attempts to model wake loading, the dynamic wake meandering approach opens for a unifying description in the sense that turbine power and load aspects can be treated simultaneously. This capability is a direct and attractive consequence of the model being based on the underlying physical process, and it potentially opens for optimization of wind farm topology, of wind farm operation as

  16. Dynamic control of the lumbopelvic complex; lack of reliability of established test procedures

    DEFF Research Database (Denmark)

    Henriksen, Marius; Lund, Hans; Bliddal, Henning

    2007-01-01

    Impairment of the dynamic control of the lumbopelvic complex in LBP has gained increased focus both clinically and experimentally. The objectives of this study were to determine the reliability of inclinometry as a measure of dynamic lumbopelvic control. Lumbopelvic reposition accuracy during pel...

  17. Dynamic wake meandering modeling

    DEFF Research Database (Denmark)

    Larsen, Gunner Chr.; Madsen Aagaard, Helge; Bingöl, Ferhat;

    , are an integrated part the model complex. For design applications, the computational efficiency of wake deficit prediction is a key issue. Two computationally low cost models are developed for this purpose. The character of the added wake turbulence, generated by the up-stream turbine in the form of shed......We present a consistent, physically based theory for the wake meandering phenomenon, which we consider of crucial importance for the overall description of wind turbine loadings in wind farms. In its present version the model is confined to single wake situations. The model philosophy does, however......, have the potential to include also mutual wake interaction phenomenons. The basic conjecture behind the dynamic wake meandering model is that wake transportation in the atmospheric boundary layer is driven by the large scale lateral- and vertical turbulence components. Based on this conjecture...

  18. Modeling earthquake dynamics

    Science.gov (United States)

    Charpentier, Arthur; Durand, Marilou

    2015-07-01

    In this paper, we investigate questions arising in Parsons and Geist (Bull Seismol Soc Am 102:1-11, 2012). Pseudo causal models connecting magnitudes and waiting times are considered, through generalized regression. We do use conditional model (magnitude given previous waiting time, and conversely) as an extension to joint distribution model described in Nikoloulopoulos and Karlis (Environmetrics 19: 251-269, 2008). On the one hand, we fit a Pareto distribution for earthquake magnitudes, where the tail index is a function of waiting time following previous earthquake; on the other hand, waiting times are modeled using a Gamma or a Weibull distribution, where parameters are functions of the magnitude of the previous earthquake. We use those two models, alternatively, to generate the dynamics of earthquake occurrence, and to estimate the probability of occurrence of several earthquakes within a year or a decade.

  19. Potential Negative Impact of DG on Reliability Index: A Study Based on Time-Domain Modeling

    Science.gov (United States)

    Ran, Xuanchang

    This thesis presents an original insight of the negative impact of distributed generation on reliability index based on dynamic time-domain modeling. Models for essential power system components, such as protective devices and synchronous generators, were developed and tested. A 4 kV distribution loop which carries relatively high power demand was chosen for the analysis. The characteristic curves of all protective devices were extracted from utility database and applied to the time domain relay model. The performance of each device was investigated in details. The negative effect on reliability is due to the fuse opening caused by the installation of DG at the wrong location and inappropriate relay setup. Over 50% of the possible DG locations can produce an undesirable impact. The study conclusion is that there exists a significant potential for the installation of DG to negatively affect the reliability of power systems.

  20. Modeling and Forecasting (Un)Reliable Realized Covariances for More Reliable Financial Decisions

    DEFF Research Database (Denmark)

    Bollerslev, Tim; Patton, Andrew J.; Quaedvlieg, Rogier

    We propose a new framework for modeling and forecasting common financial risks based on (un)reliable realized covariance measures constructed from high-frequency intraday data. Our new approach explicitly incorporates the effect of measurement errors and time-varying attenuation biases...... turnover and statistically superior positions compared to existing procedures. Translating these statistical improvements into economic gains, we find that under empirically realistic assumptions a risk-averse investor would be willing to pay up to 170 basis points per year to shift to using the new class...

  1. Fuse Modeling for Reliability Study of Power Electronics Circuits

    DEFF Research Database (Denmark)

    Bahman, Amir Sajjad; Iannuzzo, Francesco; Blaabjerg, Frede

    2017-01-01

    This paper describes a comprehensive modeling approach on reliability of fuses used in power electronic circuits. When fuses are subjected to current pulses, cyclic temperature stress is introduced to the fuse element and will wear out the component. Furthermore, the fuse may be used in a large...

  2. Fuse Modeling for Reliability Study of Power Electronics Circuits

    DEFF Research Database (Denmark)

    Bahman, Amir Sajjad; Iannuzzo, Francesco; Blaabjerg, Frede

    2017-01-01

    This paper describes a comprehensive modeling approach on reliability of fuses used in power electronic circuits. When fuses are subjected to current pulses, cyclic temperature stress is introduced to the fuse element and will wear out the component. Furthermore, the fuse may be used in a large...

  3. Semigroup Method for a Mathematical Model in Reliability Analysis

    Institute of Scientific and Technical Information of China (English)

    Geni Gupur; LI Xue-zhi

    2001-01-01

    The system which consists of a reliable machine, an unreliable machine and a storage buffer with infinite many workpieces has been studied. The existence of a unique positive time-dependent solution of the model corresponding to the system has been obtained by using C0-semigroup theory of linear operators in functional analysis.

  4. Structural dynamic modifications via models

    Indian Academy of Sciences (India)

    T K Kundra

    2000-06-01

    Structural dynamic modification techniques attempt to reduce dynamic design time and can be implemented beginning with spatial models of structures, dynamic test data or updated models. The models assumed in this discussion are mathematical models, namely mass, stiffness, and damping matrices of the equations of motion of a structure. These models are identified/extracted from dynamic test data viz. frequency response functions (FRFs). Alternatively these models could have been obtained by adjusting or updating the finite element model of the structure in the light of the test data. The methods of structural modification for getting desired dynamic characteristics by using modifiers namely mass, beams and tuned absorbers are discussed.

  5. Effective turbulence models and fatigue reliability in wind farms

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Frandsen, Sten Tronæs; Tarp-Johansen, N.J.

    2008-01-01

    intensity in wakes behind wind turbines can imply a significant reduction in the fatigue lifetime of wind turbines placed in wakes. Ill this paper the design code model ill the wind turbine code [IEC 61400-1, Wind turbine generator systems - Part 1: Safety requirements. 2005] is evaluated from...... a probabilistic point of view, including the importance of modeling the SN-curve by a bi-linear model. Fatigue models relevant for welded, cast steel and fiber reinforced details are considered. Further, the influence on the fatigue reliability is investigated from modeling the fatigue response by a stochastic...

  6. Stochastic Differential Equation-Based Flexible Software Reliability Growth Model

    Directory of Open Access Journals (Sweden)

    P. K. Kapur

    2009-01-01

    Full Text Available Several software reliability growth models (SRGMs have been developed by software developers in tracking and measuring the growth of reliability. As the size of software system is large and the number of faults detected during the testing phase becomes large, so the change of the number of faults that are detected and removed through each debugging becomes sufficiently small compared with the initial fault content at the beginning of the testing phase. In such a situation, we can model the software fault detection process as a stochastic process with continuous state space. In this paper, we propose a new software reliability growth model based on Itô type of stochastic differential equation. We consider an SDE-based generalized Erlang model with logistic error detection function. The model is estimated and validated on real-life data sets cited in literature to show its flexibility. The proposed model integrated with the concept of stochastic differential equation performs comparatively better than the existing NHPP-based models.

  7. SIERRA - A 3-D device simulator for reliability modeling

    Science.gov (United States)

    Chern, Jue-Hsien; Arledge, Lawrence A., Jr.; Yang, Ping; Maeda, John T.

    1989-05-01

    SIERRA is a three-dimensional general-purpose semiconductor-device simulation program which serves as a foundation for investigating integrated-circuit (IC) device and reliability issues. This program solves the Poisson and continuity equations in silicon under dc, transient, and small-signal conditions. Executing on a vector/parallel minisupercomputer, SIERRA utilizes a matrix solver which uses an incomplete LU (ILU) preconditioned conjugate gradient square (CGS, BCG) method. The ILU-CGS method provides a good compromise between memory size and convergence rate. The authors have observed a 5x to 7x speedup over standard direct methods in simulations of transient problems containing highly coupled Poisson and continuity equations such as those found in reliability-oriented simulations. The application of SIERRA to parasitic CMOS latchup and dynamic random-access memory single-event-upset studies is described.

  8. Reliability modeling and analysis of smart power systems

    CERN Document Server

    Karki, Rajesh; Verma, Ajit Kumar

    2014-01-01

    The volume presents the research work in understanding, modeling and quantifying the risks associated with different ways of implementing smart grid technology in power systems in order to plan and operate a modern power system with an acceptable level of reliability. Power systems throughout the world are undergoing significant changes creating new challenges to system planning and operation in order to provide reliable and efficient use of electrical energy. The appropriate use of smart grid technology is an important drive in mitigating these problems and requires considerable research acti

  9. Field Programmable Gate Array Reliability Analysis Using the Dynamic Flowgraph Methodology

    Directory of Open Access Journals (Sweden)

    Phillip McNelles

    2016-10-01

    Full Text Available Field programmable gate array (FPGA-based systems are thought to be a practical option to replace certain obsolete instrumentation and control systems in nuclear power plants. An FPGA is a type of integrated circuit, which is programmed after being manufactured. FPGAs have some advantages over other electronic technologies, such as analog circuits, microprocessors, and Programmable Logic Controllers (PLCs, for nuclear instrumentation and control, and safety system applications. However, safety-related issues for FPGA-based systems remain to be verified. Owing to this, modeling FPGA-based systems for safety assessment has now become an important point of research. One potential methodology is the dynamic flowgraph methodology (DFM. It has been used for modeling software/hardware interactions in modern control systems. In this paper, FPGA logic was analyzed using DFM. Four aspects of FPGAs are investigated: the “IEEE 1164 standard,” registers (D flip-flops, configurable logic blocks, and an FPGA-based signal compensator. The ModelSim simulations confirmed that DFM was able to accurately model those four FPGA properties, proving that DFM has the potential to be used in the modeling of FPGA-based systems. Furthermore, advantages of DFM over traditional reliability analysis methods and FPGA simulators are presented, along with a discussion of potential issues with using DFM for FPGA-based system modeling.

  10. Field programmable gate array reliability analysis using the dynamic flow graph methodology

    Energy Technology Data Exchange (ETDEWEB)

    McNelles, Phillip; Lu, Lixuan [Faculty of Energy Systems and Nuclear Science, University of Ontario Institute of Technology (UOIT), Ontario (Canada)

    2016-10-15

    Field programmable gate array (FPGA)-based systems are thought to be a practical option to replace certain obsolete instrumentation and control systems in nuclear power plants. An FPGA is a type of integrated circuit, which is programmed after being manufactured. FPGAs have some advantages over other electronic technologies, such as analog circuits, microprocessors, and Programmable Logic Controllers (PLCs), for nuclear instrumentation and control, and safety system applications. However, safety-related issues for FPGA-based systems remain to be verified. Owing to this, modeling FPGA-based systems for safety assessment has now become an important point of research. One potential methodology is the dynamic flowgraph methodology (DFM). It has been used for modeling software/hardware interactions in modern control systems. In this paper, FPGA logic was analyzed using DFM. Four aspects of FPGAs are investigated: the 'IEEE 1164 standard', registers (D flip-flops), configurable logic blocks, and an FPGA-based signal compensator. The ModelSim simulations confirmed that DFM was able to accurately model those four FPGA properties, proving that DFM has the potential to be used in the modeling of FPGA-based systems. Furthermore, advantages of DFM over traditional reliability analysis methods and FPGA simulators are presented, along with a discussion of potential issues with using DFM for FPGA-based system modeling.

  11. Strength Reliability Analysis of Turbine Blade Using Surrogate Models

    Directory of Open Access Journals (Sweden)

    Wei Duan

    2014-05-01

    Full Text Available There are many stochastic parameters that have an effect on the reliability of steam turbine blades performance in practical operation. In order to improve the reliability of blade design, it is necessary to take these stochastic parameters into account. In this study, a variable cross-section twisted blade is investigated and geometrical parameters, material parameters and load parameters are considered as random variables. A reliability analysis method as a combination of a Finite Element Method (FEM, a surrogate model and Monte Carlo Simulation (MCS, is applied to solve the blade reliability analysis. Based on the blade finite element parametrical model and the experimental design, two kinds of surrogate models, Polynomial Response Surface (PRS and Artificial Neural Network (ANN, are applied to construct the approximation analytical expressions between the blade responses (including maximum stress and deflection and random input variables, which act as a surrogate of finite element solver to drastically reduce the number of simulations required. Then the surrogate is used for most of the samples needed in the Monte Carlo method and the statistical parameters and cumulative distribution functions of the maximum stress and deflection are obtained by Monte Carlo simulation. Finally, the probabilistic sensitivities analysis, which combines the magnitude of the gradient and the width of the scatter range of the random input variables, is applied to evaluate how much the maximum stress and deflection of the blade are influenced by the random nature of input parameters.

  12. Reliability-based design optimization with progressive surrogate models

    Science.gov (United States)

    Kanakasabai, Pugazhendhi; Dhingra, Anoop K.

    2014-12-01

    Reliability-based design optimization (RBDO) has traditionally been solved as a nested (bilevel) optimization problem, which is a computationally expensive approach. Unilevel and decoupled approaches for solving the RBDO problem have also been suggested in the past to improve the computational efficiency. However, these approaches also require a large number of response evaluations during optimization. To alleviate the computational burden, surrogate models have been used for reliability evaluation. These approaches involve construction of surrogate models for the reliability computation at each point visited by the optimizer in the design variable space. In this article, a novel approach to solving the RBDO problem is proposed based on a progressive sensitivity surrogate model. The sensitivity surrogate models are built in the design variable space outside the optimization loop using the kriging method or the moving least squares (MLS) method based on sample points generated from low-discrepancy sampling (LDS) to estimate the most probable point of failure (MPP). During the iterative deterministic optimization, the MPP is estimated from the surrogate model for each design point visited by the optimizer. The surrogate sensitivity model is also progressively updated for each new iteration of deterministic optimization by adding new points and their responses. Four example problems are presented showing the relative merits of the kriging and MLS approaches and the overall accuracy and improved efficiency of the proposed approach.

  13. NHPP-Based Software Reliability Models Using Equilibrium Distribution

    Science.gov (United States)

    Xiao, Xiao; Okamura, Hiroyuki; Dohi, Tadashi

    Non-homogeneous Poisson processes (NHPPs) have gained much popularity in actual software testing phases to estimate the software reliability, the number of remaining faults in software and the software release timing. In this paper, we propose a new modeling approach for the NHPP-based software reliability models (SRMs) to describe the stochastic behavior of software fault-detection processes. The fundamental idea is to apply the equilibrium distribution to the fault-detection time distribution in NHPP-based modeling. We also develop efficient parameter estimation procedures for the proposed NHPP-based SRMs. Through numerical experiments, it can be concluded that the proposed NHPP-based SRMs outperform the existing ones in many data sets from the perspective of goodness-of-fit and prediction performance.

  14. The establishment of reliability model for LED lamps

    Science.gov (United States)

    Jian, Hao; Lei, Jing; Yao, Wang; Qun, Gao; Hongliang, Ke; Xiaoxun, Wang; Yanchao, Zhang; Qiang, Sun; Zhijun, Xu

    2016-07-01

    In order to verify which of the distributions and established methods of reliability model are more suitable for the analysis of the accelerated aging of LED lamp, three established methods (approximate method, analytical method and two-stage method) of reliability model are used to analyze the experimental data under the condition of the Weibull distribution and Lognormal distribution, in this paper. Ten LED lamps are selected for the accelerated aging experiment and the luminous fluxes are measured at an accelerated aging temperature. AIC information criterion is adopted in the evaluation of the models. The results show that the accuracies of the analytical method and the two-stage method are higher than that of the approximation method, with the widths of confidence intervals of unknown parameters of the reliability model being the smallest for the two-stage method. In a comparison between the two types of distributions, the accuracies are nearly identical. Project supported by the National High Technology Research and Development Program of China (Nos. 2015AA03A101, 2013AA03A116), the Cuican Project of Chinese Academy of Sciences (No. KZCC-EW-102), and the Jilin Province Science and Technology Development Plan Item (No. 20130206018GX).

  15. Testing the reliability of ice-cream cone model

    Science.gov (United States)

    Pan, Zonghao; Shen, Chenglong; Wang, Chuanbing; Liu, Kai; Xue, Xianghui; Wang, Yuming; Wang, Shui

    2015-04-01

    Coronal Mass Ejections (CME)'s properties are important to not only the physical scene itself but space-weather prediction. Several models (such as cone model, GCS model, and so on) have been raised to get rid of the projection effects within the properties observed by spacecraft. According to SOHO/ LASCO observations, we obtain the 'real' 3D parameters of all the FFHCMEs (front-side full halo Coronal Mass Ejections) within the 24th solar cycle till July 2012, by the ice-cream cone model. Considering that the method to obtain 3D parameters from the CME observations by multi-satellite and multi-angle has higher accuracy, we use the GCS model to obtain the real propagation parameters of these CMEs in 3D space and compare the results with which by ice-cream cone model. Then we could discuss the reliability of the ice-cream cone model.

  16. Aircraft conceptual design modelling incorporating reliability and maintainability predictions

    OpenAIRE

    Vaziry-Zanjany , Mohammad Ali (F)

    1996-01-01

    A computer assisted conceptual aircraft design program has been developed (CACAD). It has an optimisation capability, with extensive break-down in maintenance costs. CACAD's aim is to optimise the size, and configurations of turbofan-powered transport aircraft. A methodology was developed to enhance the reliability of current aircraft systems, and was applied to avionics systems. R&M models of thermal management were developed and linked with avionics failure rate and its ma...

  17. Comparing different dynamic stall models

    Energy Technology Data Exchange (ETDEWEB)

    Holierhoek, J.G. [Unit Wind Energy, Energy research Centre of the Netherlands, ZG, Petten (Netherlands); De Vaal, J.B.; Van Zuijlen, A.H.; Bijl, H. [Aerospace Engineering, Delft University of Technology, Delft (Netherlands)

    2012-07-16

    The dynamic stall phenomenon and its importance for load calculations and aeroelastic simulations is well known. Different models exist to model the effect of dynamic stall; however, a systematic comparison is still lacking. To investigate if one is performing better than another, three models are used to simulate the Ohio State University measurements and a set of data from the National Aeronautics and Space Administration Ames experimental study of dynamic stall and compare results. These measurements were at conditions and for aerofoils that are typical for wind turbines, and the results are publicly available. The three selected dynamic stall models are the ONERA model, the Beddoes-Leishman model and the Snel model. The simulations show that there are still significant differences between measurements and models and that none of the models is significantly better in all cases than the other models. Especially in the deep stall regime, the accuracy of each of the dynamic stall models is limited.

  18. A literature review on inventory modeling with reliability consideration

    Directory of Open Access Journals (Sweden)

    Imtiaz Ahmed

    2014-01-01

    Full Text Available Inventories are the materials stored either waiting for processing or experiencing processing and in some cases for future delivery. Inventories are treated both as blessings and evil. As they are like money placed in a drawer, assets tied up in investments, incurring costs for the care of the stored material and also subject to spoilage and obsolescence there have been a spate of programs developed by industries, all aimed at reducing inventory levels and increasing efficiency on the shop floor. Nevertheless, they do have positive purposes such as stable source of input required for production, less replenishment and may reduce ordering costs because of economies of scale. Finished goods inventories provide for better customer service. So formulating a suitable inventory model is one of the major concerns for an industry. Again considering reliability of any process is an important trend in the current research activities. Inventory models could be both deterministic and probabilistic and both of which must account for the reliability of the associated production process. This paper discusses the major works in the field of inventory modeling driven by reliability considerations, which ranges from the very beginning to latest works just published.

  19. Dynamic Linear Models with R

    CERN Document Server

    Campagnoli, Patrizia; Petris, Giovanni

    2009-01-01

    State space models have gained tremendous popularity in as disparate fields as engineering, economics, genetics and ecology. Introducing general state space models, this book focuses on dynamic linear models, emphasizing their Bayesian analysis. It illustrates the fundamental steps needed to use dynamic linear models in practice, using R package.

  20. The dynamic control ratio at the equilibrium point (DCRe): introducing relative and absolute reliability scores.

    Science.gov (United States)

    Alt, Tobias; Knicker, Axel J; Strüder, Heiko K

    2017-04-01

    Analytical methods to assess thigh muscle balance need to provide reliable data to allow meaningful interpretation. However, reproducibility of the dynamic control ratio at the equilibrium point has not been evaluated yet. Therefore, the aim of this study was to compare relative and absolute reliability indices of its angle and moment values with conventional and functional hamstring-quadriceps ratios. Furthermore, effects of familiarisation and angular velocity on reproducibility were analysed. A number of 33 male volunteers participated in 3 identical test sessions. Peak moments (PMs) were determined unilaterally during maximum concentric and eccentric knee flexion (prone) and extension (supine position) at 0.53, 1.57 and 2.62 rad · s(-1). A repeated measure, ANOVA, confirmed systematic bias. Intra-class correlation coefficients and standard errors of measurement indicated relative and absolute reliability. Correlation coefficients were averaged over respective factors and tested for significant differences. All balance scores showed comparable low-to-moderate relative (Relative reproducibility of dynamic control equilibrium parameters augmented with increasing angular velocity, but not with familiarisation. At 2.62 rad · s(-1), high (moment: 0.906) to moderate (angle: 0.833) relative reliability scores with accordingly high absolute indices (4.9% and 6.4%) became apparent. Thus, the dynamic control equilibrium is an equivalent method for the reliable assessment of thigh muscle balance.

  1. DESIGNING, MODELLING AND OPTIMISING OF AN INTEGRATED RELIABILITY REDUNDANT SYSTEM

    Directory of Open Access Journals (Sweden)

    G. Sankaraiah

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: The reliability of a system is generally treated as a function of cost; but in many real-life situations reliability will depend on a variety of factors. It is therefore interesting to probe the hidden impact of constraints apart from cost – such as weight, volume, and space. This paper attempts to study the impact of multiple constraints on system reliability. For the purposes of analysis, an integrated redundant reliability system is considered, modelled and solved by applying a Lagrangian multiplier that gives a real valued solution for the number of components, for its reliability at each stage, and for the system. The problem is further studied by using a heuristic algorithm and an integer programming method, and is validated by sensitivity analysis to present an integer solution.

    AFRIKAANSE OPSOMMING: Die betroubaarheid van ‘n sisteem word normaalweg as ‘n funksie van koste beskou, alhoewel dit in baie gevalle afhang van ‘n verskeidenheid faktore. Dit is dus interessant om die verskuilde impak van randvoorwaardes soos massa, volume en ruimte te ondersoek. Hierdie artikel poog om die impak van meervoudige randvoorwaardes op sisteem-betroubaarheid te bestudeer. Vir die ontleding, word ‘n geïntegreerde betroubaarheid-sisteem met oortolligheid beskou, gemodelleer en opgelos aan die hand van ‘n Lagrange-vermenigvuldiger. Die problem word verder bestudeer deur gebruik te maak van ‘n heuristiese algoritme en heeltalprogrammering asook gevalideer by wyse van ‘n sensitiwiteitsanalise sodat ‘n heeltaloplossing voorgehou kan word.

  2. Characterizing and modeling citation dynamics.

    Directory of Open Access Journals (Sweden)

    Young-Ho Eom

    Full Text Available Citation distributions are crucial for the analysis and modeling of the activity of scientists. We investigated bibliometric data of papers published in journals of the American Physical Society, searching for the type of function which best describes the observed citation distributions. We used the goodness of fit with Kolmogorov-Smirnov statistics for three classes of functions: log-normal, simple power law and shifted power law. The shifted power law turns out to be the most reliable hypothesis for all citation networks we derived, which correspond to different time spans. We find that citation dynamics is characterized by bursts, usually occurring within a few years since publication of a paper, and the burst size spans several orders of magnitude. We also investigated the microscopic mechanisms for the evolution of citation networks, by proposing a linear preferential attachment with time dependent initial attractiveness. The model successfully reproduces the empirical citation distributions and accounts for the presence of citation bursts as well.

  3. Reliability Assessment of IGBT Modules Modeled as Systems with Correlated Components

    DEFF Research Database (Denmark)

    Kostandyan, Erik; Sørensen, John Dalsgaard

    2013-01-01

    configuration. The estimated system reliability by the proposed method is a conservative estimate. Application of the suggested method could be extended for reliability estimation of systems composing of welding joints, bolts, bearings, etc. The reliability model incorporates the correlation between...

  4. Reliability modelling - PETROBRAS 2010 integrated gas supply chain

    Energy Technology Data Exchange (ETDEWEB)

    Faertes, Denise; Heil, Luciana; Saker, Leonardo; Vieira, Flavia; Risi, Francisco; Domingues, Joaquim; Alvarenga, Tobias; Carvalho, Eduardo; Mussel, Patricia

    2010-09-15

    The purpose of this paper is to present the innovative reliability modeling of Petrobras 2010 integrated gas supply chain. The model represents a challenge in terms of complexity and software robustness. It was jointly developed by PETROBRAS Gas and Power Department and Det Norske Veritas. It was carried out with the objective of evaluating security of supply of 2010 gas network design that was conceived to connect Brazilian Northeast and Southeast regions. To provide best in class analysis, state of the art software was used to quantify the availability and the efficiency of the overall network and its individual components.

  5. The reliability and representativity of non-dynamic bone histomorphometry in uremic osteodystrophy

    DEFF Research Database (Denmark)

    Heaf, J G; Pødenphant, J; Gammelgaard, Bente

    1993-01-01

    In order to evaluate the reliability and representativity of iliac crest bone biopsy in uremic osteodystrophy, non-dynamic bone histomorphometry was performed post-mortem on the right and left iliac crests and the 3rd lumbar vertebra in 20 patients with chronic uremia. High (> 0.8) right-left cor...

  6. Dynamic sonographic measurements at the carpal tunnel inlet: Reliability and reference values in healthy wrists

    NARCIS (Netherlands)

    A. Filius (Anika); J.-W.H. Korstanje (Jan-Wiebe); R.W. Selles (Ruud); S.E.R. Hovius (Steven); H.P. Slijper

    2013-01-01

    textabstractIntroduction: Reliability and reference values are not well-established for most dynamic sonographic measurements of the median nerve (MN) and flexor tendons that may be used for diagnosing carpal tunnel syndrome (CTS). Methods: Wrists of 20 healthy participants were imaged using ultraso

  7. A Chaotic Model for Software Reliability%软件可靠性混沌模型

    Institute of Scientific and Technical Information of China (English)

    邹丰忠; 李传湘

    2001-01-01

    在分析软件失效机理后认为:有些软件失效行为具有混沌性,所以可以用混沌方法来处理其软件可靠性推断问题.但在应用混沌方法前先要进行系统辨识,确定为混沌系统后,才能应用嵌入空间技术从软件失效时间序列重建系统相空间和吸引子,进而用吸引子所揭示的混沌属性来估计软件可靠性.文中在三个标准数据集的基础上对此进行了实证分析,结果表明其中两个数据集源于混沌机制,他们的吸引子具有低维的小数极限维数,而且预测与实际可靠性吻合较好.值得指出的是文中所提混沌方法突破了软件可靠性一贯使用随机分析的局限.%Computers affected almost every aspect of human lives. As thedependency on computer systems of human beings grows, so does the need for the technology of reliability of computer systems. In contrast to computer hardware, software is far more complicated. Thus the key is to improve the reliability of software if the overall reliability of a system is to be improved. Although scientists, in the past few decades, proposed lots of reliability models for software, which greatly enhanced the reliability and productivity of software products, these models are far from satisfactory. To build models of high accuracy and to improve the existing models is therefore of practical significance. Conventional theory of software reliability assumes that the failure processes of software are completely random, whereas authors of this paper, on the basis of careful investigation on physical mechanics of software failures,suggest that some dynamics of software failures are of chaotic features. Thus the reliability issue of these systems can be addressed with chaotic approaches. But before applying chaotic methodology to estimate the reliability of the software under consideration, the first thing to do is system identification that uses certain standards to distinguish chaotic dynamics

  8. Power Electronic Packaging Design, Assembly Process, Reliability and Modeling

    CERN Document Server

    Liu, Yong

    2012-01-01

    Power Electronic Packaging presents an in-depth overview of power electronic packaging design, assembly,reliability and modeling. Since there is a drastic difference between IC fabrication and power electronic packaging, the book systematically introduces typical power electronic packaging design, assembly, reliability and failure analysis and material selection so readers can clearly understand each task's unique characteristics. Power electronic packaging is one of the fastest growing segments in the power electronic industry, due to the rapid growth of power integrated circuit (IC) fabrication, especially for applications like portable, consumer, home, computing and automotive electronics. This book also covers how advances in both semiconductor content and power advanced package design have helped cause advances in power device capability in recent years. The author extrapolates the most recent trends in the book's areas of focus to highlight where further improvement in materials and techniques can d...

  9. Reliability modeling of hydraulic system of drum shearer machine

    Institute of Scientific and Technical Information of China (English)

    SEYED HADI Hoseinie; MOHAMMAD Ataie; REZA Khalookakaei; UDAY Kumar

    2011-01-01

    The hydraulic system plays an important role in supplying power and its transition to other working parts of a coal shearer machine.In this paper,the reliability of the hydraulic system of a drum shearer was analyzed.A case study was done in the Tabas Coal Mine in Iran for failure data collection.The results of the statistical analysis show that the time between failures (TBF)data of this system followed the 3-parameters Weibull distribution.There is about a 54% chance that the hydraulic system of the drum shearer will not fail for the first 50 h of operation.The developed model shows that the reliability of the hydraulic system reduces to a zero value after approximately 1 650 hours of operation.The failure rate of this system decreases when time increases.Therefore,corrective maintenance(run-to-failure)was selected as the best maintenance strategy for it.

  10. Modelling dynamic roughness during floods

    NARCIS (Netherlands)

    Paarlberg, Andries; Dohmen-Janssen, Catarine M.; Hulscher, Suzanne J.M.H.; Termes, A.P.P.

    2007-01-01

    In this paper, we present a dynamic roughness model to predict water levels during floods. Hysteresis effects of dune development are explicitly included. It is shown that differences between the new dynamic roughness model, and models where the roughness coefficient is calibrated, are most

  11. Charge transport model to predict intrinsic reliability for dielectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Ogden, Sean P. [Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); GLOBALFOUNDRIES, 400 Stonebreak Rd. Ext., Malta, New York 12020 (United States); Borja, Juan; Plawsky, Joel L., E-mail: plawsky@rpi.edu; Gill, William N. [Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Lu, T.-M. [Department of Physics, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Yeap, Kong Boon [GLOBALFOUNDRIES, 400 Stonebreak Rd. Ext., Malta, New York 12020 (United States)

    2015-09-28

    Several lifetime models, mostly empirical in nature, are used to predict reliability for low-k dielectrics used in integrated circuits. There is a dispute over which model provides the most accurate prediction for device lifetime at operating conditions. As a result, there is a need to transition from the use of these largely empirical models to one built entirely on theory. Therefore, a charge transport model was developed to predict the device lifetime of low-k interconnect systems. The model is based on electron transport and donor-type defect formation. Breakdown occurs when a critical defect concentration accumulates, resulting in electron tunneling and the emptying of positively charged traps. The enhanced local electric field lowers the barrier for electron injection into the dielectric, causing a positive feedforward failure. The charge transport model is able to replicate experimental I-V and I-t curves, capturing the current decay at early stress times and the rapid current increase at failure. The model is based on field-driven and current-driven failure mechanisms and uses a minimal number of parameters. All the parameters have some theoretical basis or have been measured experimentally and are not directly used to fit the slope of the time-to-failure versus applied field curve. Despite this simplicity, the model is able to accurately predict device lifetime for three different sources of experimental data. The simulation's predictions at low fields and very long lifetimes show that the use of a single empirical model can lead to inaccuracies in device reliability.

  12. Dynamic causal modelling.

    Science.gov (United States)

    Friston, K J; Harrison, L; Penny, W

    2003-08-01

    In this paper we present an approach to the identification of nonlinear input-state-output systems. By using a bilinear approximation to the dynamics of interactions among states, the parameters of the implicit causal model reduce to three sets. These comprise (1) parameters that mediate the influence of extrinsic inputs on the states, (2) parameters that mediate intrinsic coupling among the states, and (3) [bilinear] parameters that allow the inputs to modulate that coupling. Identification proceeds in a Bayesian framework given known, deterministic inputs and the observed responses of the system. We developed this approach for the analysis of effective connectivity using experimentally designed inputs and fMRI responses. In this context, the coupling parameters correspond to effective connectivity and the bilinear parameters reflect the changes in connectivity induced by inputs. The ensuing framework allows one to characterise fMRI experiments, conceptually, as an experimental manipulation of integration among brain regions (by contextual or trial-free inputs, like time or attentional set) that is revealed using evoked responses (to perturbations or trial-bound inputs, like stimuli). As with previous analyses of effective connectivity, the focus is on experimentally induced changes in coupling (cf., psychophysiologic interactions). However, unlike previous approaches in neuroimaging, the causal model ascribes responses to designed deterministic inputs, as opposed to treating inputs as unknown and stochastic.

  13. A Model of Ship Auxiliary System for Reliable Ship Propulsion

    Directory of Open Access Journals (Sweden)

    Dragan Martinović

    2012-03-01

    Full Text Available The main purpose of a vessel is to transport goods and passengers at minimum cost. Out of the analysis of relevant global databases on ship machinery failures, it is obvious that the most frequent failures occur precisely on the generator-running diesel engines. Any failure in the electrical system can leave the ship without propulsion, even if the main engine is working properly. In that case, the consequences could be devastating: higher running expenses, damage to the ship, oil spill or substantial marine pollution. These are the reasons why solutions that will prevent the ship being unable to manoeuvre during her exploitation should be implemented. Therefore, it is necessary to define a propulsion restoration model which would not depend on the primary electrical energy. The paper provides a model of the marine auxiliary system for more reliable propulsion. This includes starting, reversing and stopping of the propulsion engine. The proposed solution of reliable propulsion model based on the use of a shaft generator and an excitation engine enables the restoration of propulsion following total failure of the electrical energy primary production system, and the self-propelled ship navigation. A ship is an important factor in the Technology of Transport, and the implementation of this model increases safety, reduces downtime, and significantly decreases hazards of pollution damage.KEYWORDSreliable propulsion, failure, ship auxiliary system, control, propulsion restoration

  14. The long-term reliability of static and dynamic Quantitative Sensory Testing in healthy individuals.

    Science.gov (United States)

    Marcuzzi, Anna; Wrigley, Paul J; Dean, Catherine M; Adams, Roger; Hush, Julia M

    2017-03-21

    Quantitative sensory tests (QST) have been increasingly used to investigate alterations in somatosensory function in a wide range of painful conditions. The interpretation of these findings is based on the assumption that the measures are stable and reproducible. To date, reliability of QST has been investigated for short test-retest intervals. The aim of this study was to investigate the long-term reliability of a multimodal QST assessment in healthy people, with testing conducted on three occasions over 4-months. Forty-two healthy people were enrolled in the study. Static and dynamic tests were performed, including cold and heat pain threshold (CPT, HPT), mechanical wind up (WUR), pressure pain threshold (PPT), two-point discrimination (TPD) and conditioned pain modulation (CPM). Systematic bias, relative reliability and agreement were analysed using repeated measure ANOVA, intraclass correlation coefficients (ICCs3,1) and standard error of the measurement (SEM), respectively. Static QST (CPT, HPT, PPT and TPD) showed good to excellent reliability (ICCs: 0.68 to 0.90). Dynamic QST (WUR and CPM) showed poor to good reliability (ICCs: 0.35 to 0.61). A significant linear decrease over time was observed for mechanical QST at the back (PPT and TPD) and for CPM (p<0.01). Static QST were stable over a period of 4 months; however, a small systematic decrease over time has been observed for mechanical QST. Dynamic QST showed considerable variability over time; in particular, CPM using PPT as the test stimulus did not show adequate reliability, suggesting that this test paradigm may be less useful for monitoring individuals over time.

  15. An Otto Engine Dynamic Model

    OpenAIRE

    Florian Ion Tiberiu Petrescu; Relly Victoria Virgil Petrescu

    2016-01-01

    Otto engine dynamics are similar in almost all common internal combustion engines. We can speak so about dynamics of engines: Lenoir, Otto, and Diesel. The dynamic presented model is simple and original. The first thing necessary in the calculation of Otto engine dynamics, is to determine the inertial mass reduced at the piston. One uses then the Lagrange equation. Kinetic energy conservation shows angular speed variation (from the shaft) with inertial masses. One uses and elastic constant of...

  16. Using the Weibull distribution reliability, modeling and inference

    CERN Document Server

    McCool, John I

    2012-01-01

    Understand and utilize the latest developments in Weibull inferential methods While the Weibull distribution is widely used in science and engineering, most engineers do not have the necessary statistical training to implement the methodology effectively. Using the Weibull Distribution: Reliability, Modeling, and Inference fills a gap in the current literature on the topic, introducing a self-contained presentation of the probabilistic basis for the methodology while providing powerful techniques for extracting information from data. The author explains the use of the Weibull distribution

  17. Reliability prediction from burn-in data fit to reliability models

    CERN Document Server

    Bernstein, Joseph

    2014-01-01

    This work will educate chip and system designers on a method for accurately predicting circuit and system reliability in order to estimate failures that will occur in the field as a function of operating conditions at the chip level. This book will combine the knowledge taught in many reliability publications and illustrate how to use the knowledge presented by the semiconductor manufacturing companies in combination with the HTOL end-of-life testing that is currently performed by the chip suppliers as part of their standard qualification procedure and make accurate reliability predictions. Th

  18. The validity and reliability of a dynamic neuromuscular stabilization-heel sliding test for core stability.

    Science.gov (United States)

    Cha, Young Joo; Lee, Jae Jin; Kim, Do Hyun; You, Joshua Sung H

    2017-07-21

    Core stabilization plays an important role in the regulation of postural stability. To overcome shortcomings associated with pain and severe core instability during conventional core stabilization tests, we recently developed the dynamic neuromuscular stabilization-based heel sliding (DNS-HS) test. The purpose of this study was to establish the criterion validity and test-retest reliability of the novel DNS-HS test. Twenty young adults with core instability completed both the bilateral straight leg lowering test (BSLLT) and DNS-HS test for the criterion validity study and repeated the DNS-HS test for the test-retest reliability study. Criterion validity was determined by comparing hip joint angle data that were obtained from BSLLT and DNS-HS measures. The test-retest reliability was determined by comparing hip joint angle data. Criterion validity was (ICC2,3) = 0.700 (pcore stability measures. Test-retest reliability was (ICC3,3) = 0.953 (pcore stability measures. Test-retest reliability data suggests that DNS-HS core stability was a reliable test for core stability. Clinically, the DNS-HS test is useful to objectively quantify core instability and allow early detection and evaluation.

  19. Modeling service time reliability in urban ferry system

    Science.gov (United States)

    Chen, Yifan; Luo, Sida; Zhang, Mengke; Shen, Hanxia; Xin, Feifei; Luo, Yujie

    2017-09-01

    The urban ferry system can carry a large number of travelers, which may alleviate the pressure on road traffic. As an indicator of its service quality, service time reliability (STR) plays an essential part in attracting travelers to the ferry system. A wide array of studies have been conducted to analyze the STR of land transportation. However, the STR of ferry systems has received little attention in the transportation literature. In this study, a model was established to obtain the STR in urban ferry systems. First, the probability density function (PDF) of the service time provided by ferry systems was constructed. Considering the deficiency of the queuing theory, this PDF was determined by Bayes’ theorem. Then, to validate the function, the results of the proposed model were compared with those of the Monte Carlo simulation. With the PDF, the reliability could be determined mathematically by integration. Results showed how the factors including the frequency, capacity, time schedule and ferry waiting time affected the STR under different degrees of congestion in ferry systems. Based on these results, some strategies for improving the STR were proposed. These findings are of great significance to increasing the share of ferries among various urban transport modes.

  20. Reliability Index for Reinforced Concrete Frames using Nonlinear Pushover and Dynamic Analysis

    Directory of Open Access Journals (Sweden)

    Ahmad A. Fallah

    2009-12-01

    Full Text Available In the conventional design and analysis methods affecting parameters loads, materials' strength, etc are not set as probable variables. Safety factors in the current Codes and Standards are usually obtained on the basis of judgment and experience, which may be improper or uneconomical. In technical literature, a method based on nonlinear static analysis is suggested to set Reliability Index on strength of structural systems. In this paper, a method based on Nonlinear Dynamic analysis with rising acceleration (or Incremental Dynamic Analysis is introduced, the results of which are compared with those of the previous (Static Pushover Analysis method and two concepts namely Redundancy Strength and Redundancy Variations are proposed as an index to these impacts. The Redundancy Variation Factor and Redundancy Strength Factor indices for reinforced concrete frames with varying number of bays and stories and different ductility potentials are computed and ultimately, Reliability Index is determined using these two indices.

  1. Modeling the City Distribution System Reliability with Bayesian Networks to Identify Influence Factors

    Directory of Open Access Journals (Sweden)

    Hao Zhang

    2016-01-01

    Full Text Available Under the increasingly uncertain economic environment, the research on the reliability of urban distribution system has great practical significance for the integration of logistics and supply chain resources. This paper summarizes the factors that affect the city logistics distribution system. Starting from the research of factors that influence the reliability of city distribution system, further construction of city distribution system reliability influence model is built based on Bayesian networks. The complex problem is simplified by using the sub-Bayesian network, and an example is analyzed. In the calculation process, we combined the traditional Bayesian algorithm and the Expectation Maximization (EM algorithm, which made the Bayesian model able to lay a more accurate foundation. The results show that the Bayesian network can accurately reflect the dynamic relationship among the factors affecting the reliability of urban distribution system. Moreover, by changing the prior probability of the node of the cause, the correlation degree between the variables that affect the successful distribution can be calculated. The results have significant practical significance on improving the quality of distribution, the level of distribution, and the efficiency of enterprises.

  2. System reliability assessment with an approximate reasoning model

    Energy Technology Data Exchange (ETDEWEB)

    Eisenhawer, S.W.; Bott, T.F.; Helm, T.M.; Boerigter, S.T.

    1998-12-31

    The projected service life of weapons in the US nuclear stockpile will exceed the original design life of their critical components. Interim metrics are needed to describe weapon states for use in simulation models of the nuclear weapons complex. The authors present an approach to this problem based upon the theory of approximate reasoning (AR) that allows meaningful assessments to be made in an environment where reliability models are incomplete. AR models are designed to emulate the inference process used by subject matter experts. The emulation is based upon a formal logic structure that relates evidence about components. This evidence is translated using natural language expressions into linguistic variables that describe membership in fuzzy sets. The authors introduce a metric that measures the acceptability of a weapon to nuclear deterrence planners. Implication rule bases are used to draw a series of forward chaining inferences about the acceptability of components, subsystems and individual weapons. They describe each component in the AR model in some detail and illustrate its behavior with a small example. The integration of the acceptability metric into a prototype model to simulate the weapons complex is also described.

  3. A New 3-Dimensional Dynamic Quantitative Analysis System of Facial Motion: An Establishment and Reliability Test

    Science.gov (United States)

    Feng, Guodong; Zhao, Yang; Tian, Xu; Gao, Zhiqiang

    2014-01-01

    This study aimed to establish a 3-dimensional dynamic quantitative facial motion analysis system, and then determine its accuracy and test-retest reliability. The system could automatically reconstruct the motion of the observational points. Standardized T-shaped rod and L-shaped rods were used to evaluate the static and dynamic accuracy of the system. Nineteen healthy volunteers were recruited to test the reliability of the system. The average static distance error measurement was 0.19 mm, and the average angular error was 0.29°. The measuring results decreased with the increase of distance between the cameras and objects, 80 cm of which was considered to be optimal. It took only 58 seconds to perform the full facial measurement process. The average intra-class correlation coefficient for distance measurement and angular measurement was 0.973 and 0.794 respectively. The results demonstrated that we successfully established a practical 3-dimensional dynamic quantitative analysis system that is accurate and reliable enough to meet both clinical and research needs. PMID:25390881

  4. Reliability assessment using degradation models: bayesian and classical approaches

    Directory of Open Access Journals (Sweden)

    Marta Afonso Freitas

    2010-04-01

    Full Text Available Traditionally, reliability assessment of devices has been based on (accelerated life tests. However, for highly reliable products, little information about reliability is provided by life tests in which few or no failures are typically observed. Since most failures arise from a degradation mechanism at work for which there are characteristics that degrade over time, one alternative is monitor the device for a period of time and assess its reliability from the changes in performance (degradation observed during that period. The goal of this article is to illustrate how degradation data can be modeled and analyzed by using "classical" and Bayesian approaches. Four methods of data analysis based on classical inference are presented. Next we show how Bayesian methods can also be used to provide a natural approach to analyzing degradation data. The approaches are applied to a real data set regarding train wheels degradation.Tradicionalmente, o acesso à confiabilidade de dispositivos tem sido baseado em testes de vida (acelerados. Entretanto, para produtos altamente confiáveis, pouca informação a respeito de sua confiabilidade é fornecida por testes de vida no quais poucas ou nenhumas falhas são observadas. Uma vez que boa parte das falhas é induzida por mecanismos de degradação, uma alternativa é monitorar o dispositivo por um período de tempo e acessar sua confiabilidade através das mudanças em desempenho (degradação observadas durante aquele período. O objetivo deste artigo é ilustrar como dados de degradação podem ser modelados e analisados utilizando-se abordagens "clássicas" e Bayesiana. Quatro métodos de análise de dados baseados em inferência clássica são apresentados. A seguir, mostramos como os métodos Bayesianos podem também ser aplicados para proporcionar uma abordagem natural à análise de dados de degradação. As abordagens são aplicadas a um banco de dados real relacionado à degradação de rodas de trens.

  5. Computer Modelling of Dynamic Processes

    Directory of Open Access Journals (Sweden)

    B. Rybakin

    2000-10-01

    Full Text Available Results of numerical modeling of dynamic problems are summed in the article up. These problems are characteristic for various areas of human activity, in particular for problem solving in ecology. The following problems are considered in the present work: computer modeling of dynamic effects on elastic-plastic bodies, calculation and determination of performances of gas streams in gas cleaning equipment, modeling of biogas formation processes.

  6. Reliable Estimation of Prediction Uncertainty for Physicochemical Property Models.

    Science.gov (United States)

    Proppe, Jonny; Reiher, Markus

    2017-07-11

    One of the major challenges in computational science is to determine the uncertainty of a virtual measurement, that is the prediction of an observable based on calculations. As highly accurate first-principles calculations are in general unfeasible for most physical systems, one usually resorts to parameteric property models of observables, which require calibration by incorporating reference data. The resulting predictions and their uncertainties are sensitive to systematic errors such as inconsistent reference data, parametric model assumptions, or inadequate computational methods. Here, we discuss the calibration of property models in the light of bootstrapping, a sampling method that can be employed for identifying systematic errors and for reliable estimation of the prediction uncertainty. We apply bootstrapping to assess a linear property model linking the (57)Fe Mössbauer isomer shift to the contact electron density at the iron nucleus for a diverse set of 44 molecular iron compounds. The contact electron density is calculated with 12 density functionals across Jacob's ladder (PWLDA, BP86, BLYP, PW91, PBE, M06-L, TPSS, B3LYP, B3PW91, PBE0, M06, TPSSh). We provide systematic-error diagnostics and reliable, locally resolved uncertainties for isomer-shift predictions. Pure and hybrid density functionals yield average prediction uncertainties of 0.06-0.08 mm s(-1) and 0.04-0.05 mm s(-1), respectively, the latter being close to the average experimental uncertainty of 0.02 mm s(-1). Furthermore, we show that both model parameters and prediction uncertainty depend significantly on the composition and number of reference data points. Accordingly, we suggest that rankings of density functionals based on performance measures (e.g., the squared coefficient of correlation, r(2), or the root-mean-square error, RMSE) should not be inferred from a single data set. This study presents the first statistically rigorous calibration analysis for theoretical M

  7. A Markov chain model for reliability growth and decay

    Science.gov (United States)

    Siegrist, K.

    1982-01-01

    A mathematical model is developed to describe a complex system undergoing a sequence of trials in which there is interaction between the internal states of the system and the outcomes of the trials. For example, the model might describe a system undergoing testing that is redesigned after each failure. The basic assumptions for the model are that the state of the system after a trial depends probabilistically only on the state before the trial and on the outcome of the trial and that the outcome of a trial depends probabilistically only on the state of the system before the trial. It is shown that under these basic assumptions, the successive states form a Markov chain and the successive states and outcomes jointly form a Markov chain. General results are obtained for the transition probabilities, steady-state distributions, etc. A special case studied in detail describes a system that has two possible state ('repaired' and 'unrepaired') undergoing trials that have three possible outcomes ('inherent failure', 'assignable-cause' 'failure' and 'success'). For this model, the reliability function is computed explicitly and an optimal repair policy is obtained.

  8. Numerical Model based Reliability Estimation of Selective Laser Melting Process

    DEFF Research Database (Denmark)

    Mohanty, Sankhya; Hattel, Jesper Henri

    2014-01-01

    Selective laser melting is developing into a standard manufacturing technology with applications in various sectors. However, the process is still far from being at par with conventional processes such as welding and casting, the primary reason of which is the unreliability of the process. While...... of the selective laser melting process. A validated 3D finite-volume alternating-direction-implicit numerical technique is used to model the selective laser melting process, and is calibrated against results from single track formation experiments. Correlation coefficients are determined for process input...... parameters such as laser power, speed, beam profile, etc. Subsequently, uncertainties in the processing parameters are utilized to predict a range for the various outputs, using a Monte Carlo method based uncertainty analysis methodology, and the reliability of the process is established....

  9. THE DYNAMIC LEAP AND BALANCE TEST (DLBT): A TEST-RETEST RELIABILITY STUDY.

    Science.gov (United States)

    Jaffri, Abbis H; Newman, Thomas M; Smith, Brent I; John Miller, Sayers

    2017-08-01

    There is a need for new clinical assessment tools to test dynamic balance during typical functional movements. Common methods for assessing dynamic balance, such as the Star Excursion Balance Test, which requires controlled movement of body segments over an unchanged base of support, may not be an adequate measure for testing typical functional movements that involve controlled movement of body segments along with a change in base of support. The purpose of this study was to determine the reliability of the Dynamic Leap and Balance Test (DLBT) by assessing its test-retest reliability. It was hypothesized that there would be no statistically significant differences between testing days in time taken to complete the test. Reliability study. Thirty healthy college aged individuals participated in this study. Participants performed a series of leaps in a prescribed sequence, unique to the DLBT test. Time required by the participants to complete the 20-leap task was the dependent variable. Subjects leaped back and forth from peripheral to central targets alternating weight bearing from one leg to the other. Participants landed on the central target with the tested limb and were required to stabilize for two seconds before leaping to the next target. Stability was based upon qualitative measures similar to Balance Error Scoring System. Each assessment was comprised of three trials and performed on two days with a separation of at least six days. Two-way mixed ANOVA was used to analyze the differences in time to complete the sequence between the three trial averages of the two testing sessions. Intraclass Correlation Coefficient (ICC3,1) was used to establish between session test-retest reliability of the test trial averages. Significance was set a priori at p ≤ 0.05. No significant differences (p > 0.05) were detected between the two testing sessions. The ICC was 0.93 with a 95% confidence interval from 0.84 to 0.96. This test is a cost-effective, easy to

  10. Fatigue reliability based on residual strength model with hybrid uncertain parameters

    Institute of Scientific and Technical Information of China (English)

    Jun Wang; Zhi-Ping Qiu

    2012-01-01

    The aim of this paper is to evaluate the fatigue reliability with hybrid uncertain parameters based on a residual strength model.By solving the non-probabilistic setbased reliability problem and analyzing the reliability with randomness,the fatigue reliability with hybrid parameters can be obtained.The presented hybrid model can adequately consider all uncertainties affecting the fatigue reliability with hybrid uncertain parameters.A comparison among the presented hybrid model,non-probabilistic set-theoretic model and the conventional random model is made through two typical numerical examples.The results show that the presented hybrid model,which can ensure structural security,is effective and practical.

  11. Launch Vehicle Dynamics Demonstrator Model

    Science.gov (United States)

    1963-01-01

    Launch Vehicle Dynamics Demonstrator Model. The effect of vibration on launch vehicle dynamics was studied. Conditions included three modes of instability. The film includes close up views of the simulator fuel tank with and without stability control. [Entire movie available on DVD from CASI as Doc ID 20070030984. Contact help@sti.nasa.gov

  12. Generative models of conformational dynamics.

    Science.gov (United States)

    Langmead, Christopher James

    2014-01-01

    Atomistic simulations of the conformational dynamics of proteins can be performed using either Molecular Dynamics or Monte Carlo procedures. The ensembles of three-dimensional structures produced during simulation can be analyzed in a number of ways to elucidate the thermodynamic and kinetic properties of the system. The goal of this chapter is to review both traditional and emerging methods for learning generative models from atomistic simulation data. Here, the term 'generative' refers to a model of the joint probability distribution over the behaviors of the constituent atoms. In the context of molecular modeling, generative models reveal the correlation structure between the atoms, and may be used to predict how the system will respond to structural perturbations. We begin by discussing traditional methods, which produce multivariate Gaussian models. We then discuss GAMELAN (GRAPHICAL MODELS OF ENERGY LANDSCAPES), which produces generative models of complex, non-Gaussian conformational dynamics (e.g., allostery, binding, folding, etc.) from long timescale simulation data.

  13. Fractal Models of Earthquake Dynamics

    CERN Document Server

    Bhattacharya, Pathikrit; Kamal,; Samanta, Debashis

    2009-01-01

    Our understanding of earthquakes is based on the theory of plate tectonics. Earthquake dynamics is the study of the interactions of plates (solid disjoint parts of the lithosphere) which produce seismic activity. Over the last about fifty years many models have come up which try to simulate seismic activity by mimicking plate plate interactions. The validity of a given model is subject to the compliance of the synthetic seismic activity it produces to the well known empirical laws which describe the statistical features of observed seismic activity. Here we present a review of two such models of earthquake dynamics with main focus on a relatively new model namely The Two Fractal Overlap Model.

  14. Dynamic programming models and applications

    CERN Document Server

    Denardo, Eric V

    2003-01-01

    Introduction to sequential decision processes covers use of dynamic programming in studying models of resource allocation, methods for approximating solutions of control problems in continuous time, production control, more. 1982 edition.

  15. Building dynamic spatial environmental models

    NARCIS (Netherlands)

    Karssenberg, D.J.

    2003-01-01

    An environmental model is a representation or imitation of complex natural phenomena that can be discerned by human cognitive processes. This thesis deals with the type of environmental models referred to as dynamic spatial environmental models. The word ‘spatial’ refers to the geographic domain whi

  16. Dynamical models of the Galaxy

    Directory of Open Access Journals (Sweden)

    McMillan P.J.

    2012-02-01

    Full Text Available I discuss the importance of dynamical models for exploiting survey data, focusing on the advantages of “torus” models. I summarize a number of applications of these models to the study of the Milky Way, including the determination of the peculiar Solar velocity and investigation of the Hyades moving group.

  17. Research on Dynamic Model's Building of Active Magnetic Suspension Systems

    Institute of Scientific and Technical Information of China (English)

    SHI Jian; YAN Guo-zheng; LI Li-chuan; WANG Kun-dong

    2006-01-01

    An experimental method is introduced in this paper to build the dynamics of AMSS (the active magnetic suspension system), which doesn't depend on system's physical parameters. The rotor can be reliably suspended under the unit feedback control system designed with the primary dynamic model obtained. Online identification in frequency domain is processed to give the precise model. Comparisons show that the experimental method is much closer to the precise model than the theoretic method based on magnetic circuit law. So this experimental method is a good choice to build the primary dynamic model of AMSS.

  18. Validated dynamic flow model

    DEFF Research Database (Denmark)

    Knudsen, Torben

    2011-01-01

    The purpose with this deliverable 2.5 is to use fresh experimental data for validation and selection of a flow model to be used for control design in WP3-4. Initially the idea was to investigate the models developed in WP2. However, in the project it was agreed to include and focus on a additive...... model turns out not to be useful for prediction of the flow. Moreover, standard Box Jenkins model structures and multiple output auto regressive models proves to be superior as they can give useful predictions of the flow....

  19. Predictive models of forest dynamics.

    Science.gov (United States)

    Purves, Drew; Pacala, Stephen

    2008-06-13

    Dynamic global vegetation models (DGVMs) have shown that forest dynamics could dramatically alter the response of the global climate system to increased atmospheric carbon dioxide over the next century. But there is little agreement between different DGVMs, making forest dynamics one of the greatest sources of uncertainty in predicting future climate. DGVM predictions could be strengthened by integrating the ecological realities of biodiversity and height-structured competition for light, facilitated by recent advances in the mathematics of forest modeling, ecological understanding of diverse forest communities, and the availability of forest inventory data.

  20. COLD-SAT dynamic model

    Science.gov (United States)

    Adams, Neil S.; Bollenbacher, Gary

    1992-01-01

    This report discusses the development and underlying mathematics of a rigid-body computer model of a proposed cryogenic on-orbit liquid depot storage, acquisition, and transfer spacecraft (COLD-SAT). This model, referred to in this report as the COLD-SAT dynamic model, consists of both a trajectory model and an attitudinal model. All disturbance forces and torques expected to be significant for the actual COLD-SAT spacecraft are modeled to the required degree of accuracy. Control and experimental thrusters are modeled, as well as fluid slosh. The model also computes microgravity disturbance accelerations at any specified point in the spacecraft. The model was developed by using the Boeing EASY5 dynamic analysis package and will run on Apollo, Cray, and other computing platforms.

  1. Reliability and responsiveness of dynamic contrast-enhanced magnetic resonance imaging in rheumatoid arthritis

    DEFF Research Database (Denmark)

    Axelsen, M.B.; Poggenborg, R.P.; Stoltenberg, M.;

    2013-01-01

    ’. The smallest detectable difference (SDD), the smallest detectable change (SDC), and intra- and inter-reader intraclass correlation coefficients (ICCs) were used to assess the reliability of DCE-MRI. Responsiveness to treatment was assessed by the standardized response mean (SRM). Results: In all patients......Objectives: To investigate the responsiveness to treatment and the reliability of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in rheumatoid arthritis (RA) knee joints. Methods: DCE-MRI was performed in 12 clinically active RA knee joints before and 1, 7, 30, and 180 days after......- and interreader ICCs were very high (0.96–1.00). The decrease in DCE-MRI parameters was larger than the SDC for all patients. SRM was large for all parameters, ranging from –1.04 to –2.40. When the Whole slice ROI method was used, no parameters were responsive to treatment. Conclusions: DCE-MRI analysed using...

  2. From network reliability to the Ising model: A parallel scheme for estimating the joint density of states

    Science.gov (United States)

    Ren, Yihui; Eubank, Stephen; Nath, Madhurima

    2016-10-01

    Network reliability is the probability that a dynamical system composed of discrete elements interacting on a network will be found in a configuration that satisfies a particular property. We introduce a reliability property, Ising feasibility, for which the network reliability is the Ising model's partition function. As shown by Moore and Shannon, the network reliability can be separated into two factors: structural, solely determined by the network topology, and dynamical, determined by the underlying dynamics. In this case, the structural factor is known as the joint density of states. Using methods developed to approximate the structural factor for other reliability properties, we simulate the joint density of states, yielding an approximation for the partition function. Based on a detailed examination of why naïve Monte Carlo sampling gives a poor approximation, we introduce a parallel scheme for estimating the joint density of states using a Markov-chain Monte Carlo method with a spin-exchange random walk. This parallel scheme makes simulating the Ising model in the presence of an external field practical on small computer clusters for networks with arbitrary topology with ˜106 energy levels and more than 10308 microstates.

  3. A particle swarm model for estimating reliability and scheduling system maintenance

    Science.gov (United States)

    Puzis, Rami; Shirtz, Dov; Elovici, Yuval

    2016-05-01

    Modifying data and information system components may introduce new errors and deteriorate the reliability of the system. Reliability can be efficiently regained with reliability centred maintenance, which requires reliability estimation for maintenance scheduling. A variant of the particle swarm model is used to estimate reliability of systems implemented according to the model view controller paradigm. Simulations based on data collected from an online system of a large financial institute are used to compare three component-level maintenance policies. Results show that appropriately scheduled component-level maintenance greatly reduces the cost of upholding an acceptable level of reliability by reducing the need in system-wide maintenance.

  4. Quantification of Wave Model Uncertainties Used for Probabilistic Reliability Assessments of Wave Energy Converters

    DEFF Research Database (Denmark)

    Ambühl, Simon; Kofoed, Jens Peter; Sørensen, John Dalsgaard

    2015-01-01

    Wave models used for site assessments are subjected to model uncertainties, which need to be quantified when using wave model results for probabilistic reliability assessments. This paper focuses on determination of wave model uncertainties. Four different wave models are considered, and validation...... uncertainties can be implemented in probabilistic reliability assessments....

  5. Dynamic Boolean models

    OpenAIRE

    Berg, van den, Aad; Meester, R.; White, Damien

    1997-01-01

    Consider an ordinary Boolean model, that is, a homogeneous Poisson point process in Rd, where the points are all centres of random balls with i.i.d. radii. Now let these points move around according to i.i.d. stochastic processes. It is not hard to show that at each xed time t we again have a Boolean model with the original distribution. Hence if the original model is supercritical then, for any t, the probability of having an unbounded occupied component at time t equals 1. We show that unde...

  6. Dynamic Reliability Evaluation of Double-Layer Cylindrical Latticed Shell under Multi-Support Excitations

    Institute of Scientific and Technical Information of China (English)

    柳春光; 李会军

    2010-01-01

    To overcome the excessive computational cost and/or bad accuracy of traditional approaches,the probabilistic density evolution method(PDEM) is introduced.The dynamic reliability of a double-layer cylindrical latticed shell is evaluated by applying PDEM and Monte Carlo Method(MCM) respectively,and four apparent wave velocities(100 m/s,500 m/s,800 m/s and 1 200 m/s) and five thresholds(0.1 m,0.2 m,0.3 m,0.4 m and 0.5 m) are taken into consideration.Only the difference between threshold and maximal deformation...

  7. Reliable Dynamic Voltage Scaling for Real-Time Systems with Uncertain Execution Time and Resource Constraints

    Directory of Open Access Journals (Sweden)

    G. AZHAGUNILA,

    2011-02-01

    Full Text Available The main aim of this work is to develop a Dynamic Voltage Scaling (DVS algorithm for real- time system with resource constraints and the system thus developed is fault tolerant as well. The system is assumed to contain independent periodic tasks. Earliest Deadline Firstscheduling algorithm is considered in this. The algorithm helps in meeting the deadlines of all the tasks and also ensures that the total power consumption is minimized. The other objective is to develop a fault tolerant system. The proposed system is designed to handle hardware faults. Thus the proposed system is energy efficient and reliable.

  8. Modelling group dynamic animal movement

    DEFF Research Database (Denmark)

    Langrock, Roland; Hopcraft, J. Grant C.; Blackwell, Paul G.

    2014-01-01

    Group dynamic movement is a fundamental aspect of many species' movements. The need to adequately model individuals' interactions with other group members has been recognised, particularly in order to differentiate the role of social forces in individual movement from environmental factors. However......, to date, practical statistical methods which can include group dynamics in animal movement models have been lacking. We consider a flexible modelling framework that distinguishes a group-level model, describing the movement of the group's centre, and an individual-level model, such that each individual...... makes its movement decisions relative to the group centroid. The basic idea is framed within the flexible class of hidden Markov models, extending previous work on modelling animal movement by means of multi-state random walks. While in simulation experiments parameter estimators exhibit some bias...

  9. Reliability block diagrams to model the management of colorectal cancer.

    Science.gov (United States)

    Sonnenberg, A; Inadomi, J M

    1999-02-01

    The present study aims to show how various medical and nonmedical components contribute to success and failure in the management of colorectal cancer. The first encounter, subsequent diagnosis, and surgical therapy of a patient with Dukes B sigmoid cancer is modeled as a reliability block diagram with a serial and parallel arrangement of various components. The overall probability of a patient with new-onset colorectal cancer to visit a physician, be correctly diagnosed, and undergo successful therapy is 69%. The reduction in the overall success, despite the fact that the majority of components are assumed to function with failure rates of 5% or less, is a reflection of the multitude of serial subsystems involved in the management of the patient. In contrast, the parallel arrangement of subsystems results in a relative insensitivity of the overall system to failure, a greater stability, and an improved performance. Since no medical system functions perfectly, redundancy associated with parallel subsystems assures a better overall outcome. System analysis of health care provides a means to improve its performance.

  10. Impact of Loss Synchronization on Reliable High Speed Networks: A Model Based Simulation

    Directory of Open Access Journals (Sweden)

    Suman Kumar

    2014-01-01

    Full Text Available Contemporary nature of network evolution demands for simulation models which are flexible, scalable, and easily implementable. In this paper, we propose a fluid based model for performance analysis of reliable high speed networks. In particular, this paper aims to study the dynamic relationship between congestion control algorithms and queue management schemes, in order to develop a better understanding of the causal linkages between the two. We propose a loss synchronization module which is user configurable. We validate our model through simulations under controlled settings. Also, we present a performance analysis to provide insights into two important issues concerning 10 Gbps high speed networks: (i impact of bottleneck buffer size on the performance of 10 Gbps high speed network and (ii impact of level of loss synchronization on link utilization-fairness tradeoffs. The practical impact of the proposed work is to provide design guidelines along with a powerful simulation tool to protocol designers and network developers.

  11. Safety and reliability analysis in a polyvinyl chloride batch process using dynamic simulator-case study: Loss of containment incident.

    Science.gov (United States)

    Rizal, Datu; Tani, Shinichi; Nishiyama, Kimitoshi; Suzuki, Kazuhiko

    2006-10-11

    In this paper, a novel methodology in batch plant safety and reliability analysis is proposed using a dynamic simulator. A batch process involving several safety objects (e.g. sensors, controller, valves, etc.) is activated during the operational stage. The performance of the safety objects is evaluated by the dynamic simulation and a fault propagation model is generated. By using the fault propagation model, an improved fault tree analysis (FTA) method using switching signal mode (SSM) is developed for estimating the probability of failures. The timely dependent failures can be considered as unavailability of safety objects that can cause the accidents in a plant. Finally, the rank of safety object is formulated as performance index (PI) and can be estimated using the importance measures. PI shows the prioritization of safety objects that should be investigated for safety improvement program in the plants. The output of this method can be used for optimal policy in safety object improvement and maintenance. The dynamic simulator was constructed using Visual Modeler (VM, the plant simulator, developed by Omega Simulation Corp., Japan). A case study is focused on the loss of containment (LOC) incident at polyvinyl chloride (PVC) batch process which is consumed the hazardous material, vinyl chloride monomer (VCM).

  12. Modeling Cultural Dynamics

    CERN Document Server

    Gabora, Liane

    2008-01-01

    EVOC (for EVOlution of Culture) is a computer model of culture that enables us to investigate how various factors such as barriers to cultural diffusion, the presence and choice of leaders, or changes in the ratio of innovation to imitation affect the diversity and effectiveness of ideas. It consists of neural network based agents that invent ideas for actions, and imitate neighbors' actions. The model is based on a theory of culture according to which what evolves through culture is not memes or artifacts, but the internal models of the world that give rise to them, and they evolve not through a Darwinian process of competitive exclusion but a Lamarckian process involving exchange of innovation protocols. EVOC shows an increase in mean fitness of actions over time, and an increase and then decrease in the diversity of actions. Diversity of actions is positively correlated with population size and density, and with barriers between populations. Slowly eroding borders increase fitness without sacrificing diver...

  13. Reliability Modeling of Microelectromechanical Systems Using Neural Networks

    Science.gov (United States)

    Perera. J. Sebastian

    2000-01-01

    Microelectromechanical systems (MEMS) are a broad and rapidly expanding field that is currently receiving a great deal of attention because of the potential to significantly improve the ability to sense, analyze, and control a variety of processes, such as heating and ventilation systems, automobiles, medicine, aeronautical flight, military surveillance, weather forecasting, and space exploration. MEMS are very small and are a blend of electrical and mechanical components, with electrical and mechanical systems on one chip. This research establishes reliability estimation and prediction for MEMS devices at the conceptual design phase using neural networks. At the conceptual design phase, before devices are built and tested, traditional methods of quantifying reliability are inadequate because the device is not in existence and cannot be tested to establish the reliability distributions. A novel approach using neural networks is created to predict the overall reliability of a MEMS device based on its components and each component's attributes. The methodology begins with collecting attribute data (fabrication process, physical specifications, operating environment, property characteristics, packaging, etc.) and reliability data for many types of microengines. The data are partitioned into training data (the majority) and validation data (the remainder). A neural network is applied to the training data (both attribute and reliability); the attributes become the system inputs and reliability data (cycles to failure), the system output. After the neural network is trained with sufficient data. the validation data are used to verify the neural networks provided accurate reliability estimates. Now, the reliability of a new proposed MEMS device can be estimated by using the appropriate trained neural networks developed in this work.

  14. Swimmers’ Collective Dynamics Modelization

    OpenAIRE

    Ferré Porta, Guillem

    2011-01-01

    English: We describe a new model in order to study the properties of collections of self-propelled particles swimming in a two-dimensional fluid. Our model consist in two types of particles, the first interacting with each other with a soft potential and thus representing the fluid while the second type are self-propelled particles of biological nature capable of changing its orientation following the velocity field of the fluid. The results of the simulations show how a super-diffusive regim...

  15. Response and reliability analysis of nonlinear uncertain dynamical structures by the probability density evolution method

    DEFF Research Database (Denmark)

    Nielsen, Søren R. K.; Peng, Yongbo; Sichani, Mahdi Teimouri

    2016-01-01

    The paper deals with the response and reliability analysis of hysteretic or geometric nonlinear uncertain dynamical systems of arbitrary dimensionality driven by stochastic processes. The approach is based on the probability density evolution method proposed by Li and Chen (Stochastic dynamics...... of structures, 1st edn. Wiley, London, 2009; Probab Eng Mech 20(1):33–44, 2005), which circumvents the dimensional curse of traditional methods for the determination of non-stationary probability densities based on Markov process assumptions and the numerical solution of the related Fokker–Planck and Kolmogorov......–Feller equations. The main obstacle of the method is that a multi-dimensional convolution integral needs to be carried out over the sample space of a set of basic random variables, for which reason the number of these need to be relatively low. In order to handle this problem an approach is suggested, which...

  16. Hierarchical modeling for reliability analysis using Markov models. B.S./M.S. Thesis - MIT

    Science.gov (United States)

    Fagundo, Arturo

    1994-01-01

    Markov models represent an extremely attractive tool for the reliability analysis of many systems. However, Markov model state space grows exponentially with the number of components in a given system. Thus, for very large systems Markov modeling techniques alone become intractable in both memory and CPU time. Often a particular subsystem can be found within some larger system where the dependence of the larger system on the subsystem is of a particularly simple form. This simple dependence can be used to decompose such a system into one or more subsystems. A hierarchical technique is presented which can be used to evaluate these subsystems in such a way that their reliabilities can be combined to obtain the reliability for the full system. This hierarchical approach is unique in that it allows the subsystem model to pass multiple aggregate state information to the higher level model, allowing more general systems to be evaluated. Guidelines are developed to assist in the system decomposition. An appropriate method for determining subsystem reliability is also developed. This method gives rise to some interesting numerical issues. Numerical error due to roundoff and integration are discussed at length. Once a decomposition is chosen, the remaining analysis is straightforward but tedious. However, an approach is developed for simplifying the recombination of subsystem reliabilities. Finally, a real world system is used to illustrate the use of this technique in a more practical context.

  17. Model of THz Magnetization Dynamics

    Science.gov (United States)

    Bocklage, Lars

    2016-01-01

    Magnetization dynamics can be coherently controlled by THz laser excitation, which can be applied in ultrafast magnetization control and switching. Here, transient magnetization dynamics are calculated for excitation with THz magnetic field pulses. We use the ansatz of Smit and Beljers, to formulate dynamic properties of the magnetization via partial derivatives of the samples free energy density, and extend it to solve the Landau-Lifshitz-equation to obtain the THz transients of the magnetization. The model is used to determine the magnetization response to ultrafast multi- and single-cycle THz pulses. Control of the magnetization trajectory by utilizing the THz pulse shape and polarization is demonstrated. PMID:26956997

  18. Modeling Manufacturing Impacts on Aging and Reliability of Polyurethane Foams

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Rekha R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roberts, Christine Cardinal [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mondy, Lisa Ann [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Soehnel, Melissa Marie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Johnson, Kyle [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lorenzo, Henry T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-09-25

    Polyurethane is a complex multiphase material that evolves from a viscous liquid to a system of percolating bubbles, which are created via a CO2 generating reaction. The continuous phase polymerizes to a solid during the foaming process generating heat. Foams introduced into a mold increase their volume up to tenfold, and the dynamics of the expansion process may lead to voids and will produce gradients in density and degree of polymerization. These inhomogeneities can lead to structural stability issues upon aging. For instance, structural components in weapon systems have been shown to change shape as they age depending on their molding history, which can threaten critical tolerances. The purpose of this project is to develop a Cradle-to-Grave multiphysics model, which allows us to predict the material properties of foam from its birth through aging in the stockpile, where its dimensional stability is important.

  19. Modeling Manufacturing Impacts on Aging and Reliability of Polyurethane Foams

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Rekha R.; Roberts, Christine Cardinal; Mondy, Lisa Ann; Soehnel, Melissa Marie; Johnson, Kyle; Lorenzo, Henry T.

    2016-10-01

    Polyurethane is a complex multiphase material that evolves from a viscous liquid to a system of percolating bubbles, which are created via a CO2 generating reaction. The continuous phase polymerizes to a solid during the foaming process generating heat. Foams introduced into a mold increase their volume up to tenfold, and the dynamics of the expansion process may lead to voids and will produce gradients in density and degree of polymerization. These inhomogeneities can lead to structural stability issues upon aging. For instance, structural components in weapon systems have been shown to change shape as they age depending on their molding history, which can threaten critical tolerances. The purpose of this project is to develop a Cradle-to-Grave multiphysics model, which allows us to predict the material properties of foam from its birth through aging in the stockpile, where its dimensional stability is important.

  20. Modeling Internet Topology Dynamics

    NARCIS (Netherlands)

    Haddadi, H.; Uhlig, S.; Moore, A.; Mortier, R.; Rio, M.

    Despite the large number of papers on network topology modeling and inference, there still exists ambiguity about the real nature of the Internet AS and router level topology. While recent findings have illustrated the inaccuracies in maps inferred from BGP peering and traceroute measurements, exist

  1. Reliability Modeling and Optimization Using Fuzzy Logic and Chaos Theory

    Directory of Open Access Journals (Sweden)

    Alexander Rotshtein

    2012-01-01

    Full Text Available Fuzzy sets membership functions integrated with logistic map as the chaos generator were used to create reliability bifurcations diagrams of the system with redundancy of the components. This paper shows that increasing in the number of redundant components results in a postponement of the moment of the first bifurcation which is considered as most contributing to the loss of the reliability. The increasing of redundancy also provides the shrinkage of the oscillation orbit of the level of the system’s membership to reliable state. The paper includes the problem statement of redundancy optimization under conditions of chaotic behavior of influencing parameters and genetic algorithm of this problem solving. The paper shows the possibility of chaos-tolerant systems design with the required level of reliability.

  2. Reliability Analysis of Wireless Sensor Networks Using Markovian Model

    Directory of Open Access Journals (Sweden)

    Jin Zhu

    2012-01-01

    Full Text Available This paper investigates reliability analysis of wireless sensor networks whose topology is switching among possible connections which are governed by a Markovian chain. We give the quantized relations between network topology, data acquisition rate, nodes' calculation ability, and network reliability. By applying Lyapunov method, sufficient conditions of network reliability are proposed for such topology switching networks with constant or varying data acquisition rate. With the conditions satisfied, the quantity of data transported over wireless network node will not exceed node capacity such that reliability is ensured. Our theoretical work helps to provide a deeper understanding of real-world wireless sensor networks, which may find its application in the fields of network design and topology control.

  3. Vehicle dynamics modeling and simulation

    CERN Document Server

    Schramm, Dieter; Bardini, Roberto

    2014-01-01

    The authors examine in detail the fundamentals and mathematical descriptions of the dynamics of automobiles. In this context different levels of complexity will be presented, starting with basic single-track models up to complex three-dimensional multi-body models. A particular focus is on the process of establishing mathematical models on the basis of real cars and the validation of simulation results. The methods presented are explained in detail by means of selected application scenarios.

  4. Semi-Markov Models for Degradation-Based Reliability

    Science.gov (United States)

    2010-01-01

    aircraft, marine sys- tems, and machinery ( Jardine and Anderson, 1985; Jardine et al., 1987, 1989; Zhan et al., 2003). An excellent review of PHMs...distributions in a time-varying environment. IEEE Transactions on Reliability, 57, 539–550. Jardine , A.K.S. and Anderson, M. (1985) Use of...concomitant variables for reliability estimation. Maintenance Management International, 5, 135–140. Jardine , A.K.S., Anderson, P.M. and Mann, D.S. (1987

  5. Benchmarking novel approaches for modelling species range dynamics.

    Science.gov (United States)

    Zurell, Damaris; Thuiller, Wilfried; Pagel, Jörn; Cabral, Juliano S; Münkemüller, Tamara; Gravel, Dominique; Dullinger, Stefan; Normand, Signe; Schiffers, Katja H; Moore, Kara A; Zimmermann, Niklaus E

    2016-08-01

    Increasing biodiversity loss due to climate change is one of the most vital challenges of the 21st century. To anticipate and mitigate biodiversity loss, models are needed that reliably project species' range dynamics and extinction risks. Recently, several new approaches to model range dynamics have been developed to supplement correlative species distribution models (SDMs), but applications clearly lag behind model development. Indeed, no comparative analysis has been performed to evaluate their performance. Here, we build on process-based, simulated data for benchmarking five range (dynamic) models of varying complexity including classical SDMs, SDMs coupled with simple dispersal or more complex population dynamic models (SDM hybrids), and a hierarchical Bayesian process-based dynamic range model (DRM). We specifically test the effects of demographic and community processes on model predictive performance. Under current climate, DRMs performed best, although only marginally. Under climate change, predictive performance varied considerably, with no clear winners. Yet, all range dynamic models improved predictions under climate change substantially compared to purely correlative SDMs, and the population dynamic models also predicted reasonable extinction risks for most scenarios. When benchmarking data were simulated with more complex demographic and community processes, simple SDM hybrids including only dispersal often proved most reliable. Finally, we found that structural decisions during model building can have great impact on model accuracy, but prior system knowledge on important processes can reduce these uncertainties considerably. Our results reassure the clear merit in using dynamic approaches for modelling species' response to climate change but also emphasize several needs for further model and data improvement. We propose and discuss perspectives for improving range projections through combination of multiple models and for making these approaches

  6. Girsanov's transformation based variance reduced Monte Carlo simulation schemes for reliability estimation in nonlinear stochastic dynamics

    Science.gov (United States)

    Kanjilal, Oindrila; Manohar, C. S.

    2017-07-01

    The study considers the problem of simulation based time variant reliability analysis of nonlinear randomly excited dynamical systems. Attention is focused on importance sampling strategies based on the application of Girsanov's transformation method. Controls which minimize the distance function, as in the first order reliability method (FORM), are shown to minimize a bound on the sampling variance of the estimator for the probability of failure. Two schemes based on the application of calculus of variations for selecting control signals are proposed: the first obtains the control force as the solution of a two-point nonlinear boundary value problem, and, the second explores the application of the Volterra series in characterizing the controls. The relative merits of these schemes, vis-à-vis the method based on ideas from the FORM, are discussed. Illustrative examples, involving archetypal single degree of freedom (dof) nonlinear oscillators, and a multi-degree of freedom nonlinear dynamical system, are presented. The credentials of the proposed procedures are established by comparing the solutions with pertinent results from direct Monte Carlo simulations.

  7. Dynamic Characteristics and Models

    DEFF Research Database (Denmark)

    Pedersen, Lars

    2007-01-01

    Vibration levels of flooring-systems are generally difficult to predict. Nevertheless an estimate may be needed for flooring-systems that are prone to vibrate to actions of humans in motion (e.g. grandstands, footbridges or long-span office floors). One reason for the difficulties...... and the paper therefore looks into this mechanism which is done by carrying out controlled modal identification tests on a test floor. The paper describes the experimental investigations and the basic principles adopted for modal identification. Since there is an interest in being able to model the scenario...

  8. Handbook of electrical power system dynamics modeling, stability, and control

    CERN Document Server

    Eremia, Mircea

    2013-01-01

    Complete guidance for understanding electrical power system dynamics and blackouts This handbook offers a comprehensive and up-to-date treatment of power system dynamics. Addressing the full range of topics, from the fundamentals to the latest technologies in modeling, stability, and control, Handbook of Electrical Power System Dynamics provides engineers with hands-on guidance for understanding the phenomena leading to blackouts so they can design the most appropriate solutions for a cost-effective and reliable operation. Focusing on system dynamics, the book details

  9. Improved resolution and reliability in dynamic PET using Bayesian regularization of MRTM2

    DEFF Research Database (Denmark)

    Agn, Mikael; Svarer, Claus; Frokjaer, Vibe G.;

    2014-01-01

    This paper presents a mathematical model that regularizes dynamic PET data by using a Bayesian framework. We base the model on the well known two-parameter multilinear reference tissue method MRTM2 and regularize on the assumption that spatially close regions have similar parameters. The developed...

  10. Fracture mechanics models developed for piping reliability assessment in light water reactors: piping reliability project

    Energy Technology Data Exchange (ETDEWEB)

    Harris, D.O.; Lim, E.Y.; Dedhia, D.D.; Woo, H.H.; Chou, C.K.

    1982-06-01

    The efforts concentrated on modifications of the stratified Monte Carlo code called PRAISE (Piping Reliability Analysis Including Seismic Events) to make it more widely applicable to probabilistic fracture mechanics analysis of nuclear reactor piping. Pipe failures are considered to occur as the result of crack-like defects introduced during fabrication, that escape detection during inspections. The code modifications allow the following factors in addition to those considered in earlier work to be treated: other materials, failure criteria and subcritical crack growth characteristic; welding residual and vibratory stresses; and longitudinal welds (the original version considered only circumferential welds). The fracture mechanics background for the code modifications is included, and details of the modifications themselves provided. Additionally, an updated version of the PRAISE user's manual is included. The revised code, known as PRAISE-B was then applied to a variety of piping problems, including various size lines subject to stress corrosion cracking and vibratory stresses. Analyses including residual stresses and longitudinal welds were also performed.

  11. Global/Local Dynamic Models

    Energy Technology Data Exchange (ETDEWEB)

    Pfeffer, A; Das, S; Lawless, D; Ng, B

    2006-10-10

    Many dynamic systems involve a number of entities that are largely independent of each other but interact with each other via a subset of state variables. We present global/local dynamic models (GLDMs) to capture these kinds of systems. In a GLDM, the state of an entity is decomposed into a globally influenced state that depends on other entities, and a locally influenced state that depends only on the entity itself. We present an inference algorithm for GLDMs called global/local particle filtering, that introduces the principle of reasoning globally about global dynamics and locally about local dynamics. We have applied GLDMs to an asymmetric urban warfare environment, in which enemy units form teams to attack important targets, and the task is to detect such teams as they form. Experimental results for this application show that global/local particle filtering outperforms ordinary particle filtering and factored particle filtering.

  12. A dynamical model of terrorism

    Directory of Open Access Journals (Sweden)

    Firdaus Udwadia

    2006-01-01

    Full Text Available This paper develops a dynamical model of terrorism. We consider the population in a given region as being made up of three primary components: terrorists, those susceptible to both terrorist and pacifist propaganda, and nonsusceptibles, or pacifists. The dynamical behavior of these three populations is studied using a model that incorporates the effects of both direct military/police intervention to reduce the terrorist population, and nonviolent, persuasive intervention to influence the susceptibles to become pacifists. The paper proposes a new paradigm for studying terrorism, and looks at the long-term dynamical evolution in time of these three population components when such interventions are carried out. Many important features—some intuitive, others not nearly so—of the nature of terrorism emerge from the dynamical model proposed, and they lead to several important policy implications for the management of terrorism. The different circumstances in which nonviolent intervention and/or military/police intervention may be beneficial, and the specific conditions under which each mode of intervention, or a combination of both, may be useful, are obtained. The novelty of the model presented herein is that it deals with the time evolution of terrorist activity. It appears to be one of the few models that can be tested, evaluated, and improved upon, through the use of actual field data.

  13. Reliability and validity of measurements on digital study models and plaster models.

    Science.gov (United States)

    Reuschl, Ralph Philip; Heuer, Wieland; Stiesch, Meike; Wenzel, Daniela; Dittmer, Marc Philipp

    2016-02-01

    To compare manual plaster cast and digitized model analysis for accuracy and efficiency. Nineteen plaster models of orthodontic patients in permanent dentition were analyzed by two calibrated examiners. Analyses were performed with a diagnostic calliper and computer-assisted analysis after digitization of the plaster models. The reliability and efficiency of different examiners and methods were compared statistically using a mixed model. Statistically significant differences were found for comparisons of all 28 teeth (P plaster model analysis appears to be an adequate, reliable, and time saving alternative to analogue model analysis using a calliper. © The Author 2015. Published by Oxford University Press on behalf of the European Orthodontic Society. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  14. Modular System Modeling for Quantitative Reliability Evaluation of Technical Systems

    Directory of Open Access Journals (Sweden)

    Stephan Neumann

    2016-01-01

    Full Text Available In modern times, it is necessary to offer reliable products to match the statutory directives concerning product liability and the high expectations of customers for durable devices. Furthermore, to maintain a high competitiveness, engineers need to know as accurately as possible how long their product will last and how to influence the life expectancy without expensive and time-consuming testing. As the components of a system are responsible for the system reliability, this paper introduces and evaluates calculation methods for life expectancy of common machine elements in technical systems. Subsequently, a method for the quantitative evaluation of the reliability of technical systems is proposed and applied to a heavy-duty power shift transmission.

  15. Experimental Modeling of Dynamic Systems

    DEFF Research Database (Denmark)

    Knudsen, Morten Haack

    2006-01-01

    An engineering course, Simulation and Experimental Modeling, has been developed that is based on a method for direct estimation of physical parameters in dynamic systems. Compared with classical system identification, the method appears to be easier to understand, apply, and combine with physical...

  16. Nonlinear Dynamic Model Explains The Solar Dynamic

    Science.gov (United States)

    Kuman, Maria

    Nonlinear mathematical model in torus representation describes the solar dynamic. Its graphic presentation shows that without perturbing force the orbits of the planets would be circles; only perturbing force could elongate the circular orbits into ellipses. Since the Hubble telescope found that the planetary orbits of other stars in the Milky Way are also ellipses, powerful perturbing force must be present in our galaxy. Such perturbing force is the Sagittarius Dwarf Galaxy with its heavy Black Hole and leftover stars, which we see orbiting around the center of our galaxy. Since observations of NASA's SDO found that magnetic fields rule the solar activity, we can expect when the planets align and their magnetic moments sum up, the already perturbed stars to reverse their magnetic parity (represented graphically as periodic looping through the hole of the torus). We predict that planets aligned on both sides of the Sun, when their magnetic moments sum-up, would induce more flares in the turbulent equatorial zone, which would bulge. When planets align only on one side of the Sun, the strong magnetic gradient of their asymmetric pull would flip the magnetic poles of the Sun. The Sun would elongate pole-to-pole, emit some energy through the poles, and the solar activity would cease. Similar reshaping and emission was observed in stars called magnetars and experimentally observed in super-liquid fast-spinning Helium nanodroplets. We are certain that NASA's SDO will confirm our predictions.

  17. Competing risk models in reliability systems, a weibull distribution model with bayesian analysis approach

    Science.gov (United States)

    Iskandar, Ismed; Satria Gondokaryono, Yudi

    2016-02-01

    In reliability theory, the most important problem is to determine the reliability of a complex system from the reliability of its components. The weakness of most reliability theories is that the systems are described and explained as simply functioning or failed. In many real situations, the failures may be from many causes depending upon the age and the environment of the system and its components. Another problem in reliability theory is one of estimating the parameters of the assumed failure models. The estimation may be based on data collected over censored or uncensored life tests. In many reliability problems, the failure data are simply quantitatively inadequate, especially in engineering design and maintenance system. The Bayesian analyses are more beneficial than the classical one in such cases. The Bayesian estimation analyses allow us to combine past knowledge or experience in the form of an apriori distribution with life test data to make inferences of the parameter of interest. In this paper, we have investigated the application of the Bayesian estimation analyses to competing risk systems. The cases are limited to the models with independent causes of failure by using the Weibull distribution as our model. A simulation is conducted for this distribution with the objectives of verifying the models and the estimators and investigating the performance of the estimators for varying sample size. The simulation data are analyzed by using Bayesian and the maximum likelihood analyses. The simulation results show that the change of the true of parameter relatively to another will change the value of standard deviation in an opposite direction. For a perfect information on the prior distribution, the estimation methods of the Bayesian analyses are better than those of the maximum likelihood. The sensitivity analyses show some amount of sensitivity over the shifts of the prior locations. They also show the robustness of the Bayesian analysis within the range

  18. An Otto Engine Dynamic Model

    Directory of Open Access Journals (Sweden)

    Florian Ion Tiberiu Petrescu

    2016-03-01

    Full Text Available Otto engine dynamics are similar in almost all common internal combustion engines. We can speak so about dynamics of engines: Lenoir, Otto, and Diesel. The dynamic presented model is simple and original. The first thing necessary in the calculation of Otto engine dynamics, is to determine the inertial mass reduced at the piston. One uses then the Lagrange equation. Kinetic energy conservation shows angular speed variation (from the shaft with inertial masses. One uses and elastic constant of the crank shaft, k. Calculations should be made for an engine with a single cylinder. Finally it makes a dynamic analysis of the mechanism with discussion and conclusions. The ratio between the crank length r and the length of the connecting-rod l is noted with landa. When landa increases the mechanism dynamics is deteriorating. For a proper operation is necessary the reduction of the ratio landa, especially if we want to increase the engine speed. We can reduce the acceleration values by reducing the dimensions r and l.

  19. Fault maintenance trees: reliability centered maintenance via statistical model checking

    NARCIS (Netherlands)

    Ruijters, Enno; Guck, Dennis; Drolenga, Peter; Stoelinga, Mariëlle

    2016-01-01

    The current trend in infrastructural asset management is towards risk-based (a.k.a. reliability centered) maintenance, promising better performance at lower cost. By maintaining crucial components more intensively than less important ones, dependability increases while costs decrease. This requires

  20. Fault maintenance trees: reliability centered maintenance via statistical model checking

    NARCIS (Netherlands)

    Ruijters, Enno Jozef Johannes; Guck, Dennis; Drolenga, Peter; Stoelinga, Mariëlle Ida Antoinette

    The current trend in infrastructural asset management is towards risk-based (a.k.a. reliability centered) maintenance, promising better performance at lower cost. By maintaining crucial components more intensively than less important ones, dependability increases while costs decrease. This requires

  1. Continuously Optimized Reliable Energy (CORE) Microgrid: Models & Tools (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2013-07-01

    This brochure describes Continuously Optimized Reliable Energy (CORE), a trademarked process NREL employs to produce conceptual microgrid designs. This systems-based process enables designs to be optimized for economic value, energy surety, and sustainability. Capabilities NREL offers in support of microgrid design are explained.

  2. Business model dynamics and innovation

    DEFF Research Database (Denmark)

    Cavalcante, Sergio Andre; Kesting, Peter; Ulhøi, John Parm

    2011-01-01

    Purpose – This paper aims to discuss the need to dynamize the existing conceptualization of business model, and proposes a new typology to distinguish different types of business model change. Design/methodology/approach – The paper integrates basic insights of innovation, business process...... and routine research into the concept of business model. The main focus of the paper is on strategic and terminological issues. Findings – The paper offers a new, process-based conceptualization of business model, which recognizes and integrates the role of individual agency. Based on this, it distinguishes...... and specifies four different types of business model change: business model creation, extension, revision, and termination. Each type of business model change is associated with specific challenges. Practical implications – The proposed typology can serve as a basis for developing a management tool to evaluate...

  3. DYNAMIC TEACHING RATIO PEDAGOGIC MODEL

    Directory of Open Access Journals (Sweden)

    Chen Jiaying

    2010-11-01

    Full Text Available This paper outlines an innovative pedagogic model, Dynamic Teaching Ratio (DTR Pedagogic Model, for learning design and teaching strategy aimed at the postsecondary technical education. The model draws on the theory of differential learning, which is widely recognized as an important tool for engaging students and addressing the individual needs of all students. The DTR model caters to the different abilities, interest or learning needs of students and provides different learning approaches based on a student’s learning ability. The model aims to improve students’ academic performance through increasing the lecturer-to-student ratio in the classroom setting. An experimental case study on the model was conducted and the outcome was favourable. Hence, a large-scale implementation was carried out upon the successful trial run. The paper discusses the methodology of the model and its application through the case study and the large-scale implementation.

  4. DYNAMIC MODELING OF METAMORPHIC MECHANISM

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The concept of metamorphic mechanism is put forward according to the change of configurations from one state to another. Different configurations of metamorphic mechanism are described through the method of Huston lower body arrays. Kinematics analyses for metamorphic mechanism with generalized topological structure, including the velocity, angular velocity, acceleration and angular acceleration, are given. Dynamic equations for an arbitrary configuration, including close-loop constraints, are formed by using Kane's equations. For an arbitrary metamorphic mechanism, the transformation matrix of generalized speeds between configuration (*)and(*)+1 is obtained for the first time. Furthermore, configuration-complete dynamic modeling of metamorphic mechanism including all configurations is completely established.

  5. Stochastic Model of Microtubule Dynamics

    Science.gov (United States)

    Hryniv, Ostap; Martínez Esteban, Antonio

    2017-10-01

    We introduce a continuous time stochastic process on strings made of two types of particle, whose dynamics mimics that of microtubules in a living cell. The long term behaviour of the system is described in terms of the velocity v of the string end. We show that v is an analytic function of its parameters and study its monotonicity properties. We give a complete characterisation of the phase diagram of the model and derive several criteria of the growth (v>0) and the shrinking (v<0) regimes of the dynamics.

  6. Reliability and Minimum Detectable Change of Temporal-Spatial, Kinematic, and Dynamic Stability Measures during Perturbed Gait.

    Directory of Open Access Journals (Sweden)

    Christopher A Rábago

    Full Text Available Temporal-spatial, kinematic variability, and dynamic stability measures collected during perturbation-based assessment paradigms are often used to identify dysfunction associated with gait instability. However, it remains unclear which measures are most reliable for detecting and tracking responses to perturbations. This study systematically determined the between-session reliability and minimum detectable change values of temporal-spatial, kinematic variability, and dynamic stability measures during three types of perturbed gait. Twenty young healthy adults completed two identical testing sessions two weeks apart, comprised of an unperturbed and three perturbed (cognitive, physical, and visual walking conditions in a virtual reality environment. Within each session, perturbation responses were compared to unperturbed walking using paired t-tests. Between-session reliability and minimum detectable change values were also calculated for each measure and condition. All temporal-spatial, kinematic variability and dynamic stability measures demonstrated fair to excellent between-session reliability. Minimal detectable change values, normalized to mean values ranged from 1-50%. Step width mean and variability measures demonstrated the greatest response to perturbations with excellent between-session reliability and low minimum detectable change values. Orbital stability measures demonstrated specificity to perturbation direction and sensitivity with excellent between-session reliability and low minimum detectable change values. We observed substantially greater between-session reliability and lower minimum detectable change values for local stability measures than previously described which may be the result of averaging across trials within a session and using velocity versus acceleration data for reconstruction of state spaces. Across all perturbation types, temporal-spatial, orbital and local measures were the most reliable measures with the

  7. Novel Software Reliability Estimation Model for Altering Paradigms of Software Engineering

    Directory of Open Access Journals (Sweden)

    Ritika Wason

    2012-05-01

    Full Text Available A number of different software engineering paradigms like Component-Based Software Engineering (CBSE, Autonomic Computing, Service-Oriented Computing (SOC, Fault-Tolerant Computing and many others are being researched currently. These paradigms denote a paradigm shift from the currently mainstream object-oriented paradigm and are altering the way we view, design, develop and exercise software. Though these paradigms indicate a major shift in the way we design and code software. However, we still rely on traditional reliability models for estimating the reliability of any of the above systems. This paper analyzes the underlying characteristics of these paradigms and proposes a novel Finite Automata Based Reliability model as a suitable model for estimating reliability of modern, complex, distributed and critical software applications. We further outline the basic framework for an intelligent, automata-based reliability model that can be used for accurate estimation of system reliability of software systems at any point in the software life cycle.

  8. Energy Balanced Dynamic Deployment Optimization to Enhance Reliable Lifetime of Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    J.Roselin

    2013-08-01

    Full Text Available In Wireless Sensor Networks (WSNs, the available energy of sensor nodes is limited and hard to renew. The energy supervision is also very critical. In Mission Critical Surveillance application, due tonode’s battery depletion, coverage hole may be created. Hole at Critical Point (CP leads to performance degradation of overall network. It is merely impossible, to redeploy sensor nodes or to recharge the battery in middle run during monitoring. The proposed Energy Balanced-Dynamic Deployment (EB-DD Optimization approach, positions the self deployable mobile sensors towards CP according to its Energy Density. This balances the Energy Density of the network thereby increasing the Reliable Lifetime. The simulation results show the effectiveness of the approach in terms of balanced Energy Density around CPs with less mobility.

  9. Dynamic Mechanism for the Transcription Apparatus Orchestrating Reliable Responses to Activators

    Science.gov (United States)

    Wang, Yaolai; Liu, Feng; Wang, Wei

    2012-05-01

    The transcription apparatus (TA) is a huge molecular machine. It detects the time-varying concentrations of transcriptional activators and initiates mRNA transcripts at appropriate rates. Based on the general structural organizations of the TA, we propose how the TA dynamically orchestrates transcriptional responses. The activators rapidly cycle in and out of a clamp-like space temporarily formed between the enhancer and the Mediator, with the concentration of activators encoded as their temporal occupancy rate (RTOR) within the space. The entry of activators into this space induces allostery in the Mediator, resulting in a facilitated circumstance for transcriptional reinitiation. The reinitiation rate is much larger than the cycling rate of activators, thereby RTOR guiding the amount of transcripts. Based on this mechanism, stochastic simulations can qualitatively reproduce and interpret multiple features of gene expression, e.g., transcriptional bursting is not mere noise as traditionally believed, but rather the basis of reliable transcriptional responses.

  10. A dynamic programming algorithm for the buffer allocation problem in homogeneous asymptotically reliable serial production lines

    Directory of Open Access Journals (Sweden)

    Diamantidis A. C.

    2004-01-01

    Full Text Available In this study, the buffer allocation problem (BAP in homogeneous, asymptotically reliable serial production lines is considered. A known aggregation method, given by Lim, Meerkov, and Top (1990, for the performance evaluation (i.e., estimation of throughput of this type of production lines when the buffer allocation is known, is used as an evaluative method in conjunction with a newly developed dynamic programming (DP algorithm for the BAP. The proposed algorithm is applied to production lines where the number of machines is varying from four up to a hundred machines. The proposed algorithm is fast because it reduces the volume of computations by rejecting allocations that do not lead to maximization of the line's throughput. Numerical results are also given for large production lines.

  11. Dynamical Modelling of Meteoroid Streams

    Science.gov (United States)

    Clark, David; Wiegert, P. A.

    2012-10-01

    Accurate simulations of meteoroid streams permit the prediction of stream interaction with Earth, and provide a measure of risk to Earth satellites and interplanetary spacecraft. Current cometary ejecta and meteoroid stream models have been somewhat successful in predicting some stream observations, but have required questionable assumptions and significant simplifications. Extending on the approach of Vaubaillon et al. (2005)1, we model dust ejection from the cometary nucleus, and generate sample particles representing bins of distinct dynamical evolution-regulating characteristics (size, density, direction, albedo). Ephemerides of the sample particles are integrated and recorded for later assignment of frequency based on model parameter changes. To assist in model analysis we are developing interactive software to permit the “turning of knobs” of model parameters, allowing for near-real-time 3D visualization of resulting stream structure. With this tool, we will revisit prior assumptions made, and will observe the impact of introducing non-uniform cometary surface attributes and temporal activity. The software uses a single model definition and implementation throughout model verification, sample particle bin generation and integration, and analysis. It supports the adjustment with feedback of both independent and independent model values, with the intent of providing an interface supporting multivariate analysis. Propagations of measurement uncertainties and model parameter precisions are tracked rigorously throughout. We maintain a separation of the model itself from the abstract concepts of model definition, parameter manipulation, and real-time analysis and visualization. Therefore we are able to quickly adapt to fundamental model changes. It is hoped the tool will also be of use in other solar system dynamics problems. 1 Vaubaillon, J.; Colas, F.; Jorda, L. (2005) A new method to predict meteor showers. I. Description of the model. Astronomy and

  12. Dynamic Model of Mesoscale Eddies

    Science.gov (United States)

    Dubovikov, Mikhail S.

    2003-04-01

    Oceanic mesoscale eddies which are analogs of well known synoptic eddies (cyclones and anticyclones), are studied on the basis of the turbulence model originated by Dubovikov (Dubovikov, M.S., "Dynamical model of turbulent eddies", Int. J. Mod. Phys.B7, 4631-4645 (1993).) and further developed by Canuto and Dubovikov (Canuto, V.M. and Dubovikov, M.S., "A dynamical model for turbulence: I. General formalism", Phys. Fluids8, 571-586 (1996a) (CD96a); Canuto, V.M. and Dubovikov, M.S., "A dynamical model for turbulence: II. Sheardriven flows", Phys. Fluids8, 587-598 (1996b) (CD96b); Canuto, V.M., Dubovikov, M.S., Cheng, Y. and Dienstfrey, A., "A dynamical model for turbulence: III. Numerical results", Phys. Fluids8, 599-613 (1996c)(CD96c); Canuto, V.M., Dubovikov, M.S. and Dienstfrey, A., "A dynamical model for turbulence: IV. Buoyancy-driven flows", Phys. Fluids9, 2118-2131 (1997a) (CD97a); Canuto, V.M. and Dubovikov, M.S., "A dynamical model for turbulence: V. The effect of rotation", Phys. Fluids9, 2132-2140 (1997b) (CD97b); Canuto, V.M., Dubovikov, M.S. and Wielaard, D.J., "A dynamical model for turbulence: VI. Two dimensional turbulence", Phys. Fluids9, 2141-2147 (1997c) (CD97c); Canuto, V.M. and Dubovikov, M.S., "Physical regimes and dimensional structure of rotating turbulence", Phys. Rev. Lett. 78, 666-669 (1997d) (CD97d); Canuto, V.M., Dubovikov, M.S. and Dienstfrey, A., "Turbulent convection in a spectral model", Phys. Rev. Lett. 78, 662-665 (1997e) (CD97e); Canuto, V.M. and Dubovikov, M.S., "A new approach to turbulence", Int. J. Mod. Phys.12, 3121-3152 (1997f) (CD97f); Canuto, V.M. and Dubovikov, M.S., "Two scaling regimes for rotating Raleigh-Benard convection", Phys. Rev. Letters78, 281-284, (1998) (CD98); Canuto, V.M. and Dubovikov, M.S., "A dynamical model for turbulence: VII. The five invariants for shear driven flows", Phys. Fluids11, 659-664 (1999a) (CD99a); Canuto, V.M., Dubovikov, M.S. and Yu, G., "A dynamical model for turbulence: VIII. IR and UV

  13. Dynamic queuing transmission model for dynamic network loading

    DEFF Research Database (Denmark)

    Raovic, Nevena; Nielsen, Otto Anker; Prato, Carlo Giacomo

    2017-01-01

    This paper presents a new macroscopic multi-class dynamic network loading model called Dynamic Queuing Transmission Model (DQTM). The model utilizes ‘good’ properties of the Dynamic Queuing Model (DQM) and the Link Transmission Model (LTM) by offering a DQM consistent with the kinematic wave theory...... and allowing for the representation of multiple vehicle classes, queue spillbacks and shock waves. The model assumes that a link is split into a moving part plus a queuing part, and p that traffic dynamics are given by a triangular fundamental diagram. A case-study is investigated and the DQTM is compared...

  14. Relating structure and dynamics in organisation models

    NARCIS (Netherlands)

    Jonkers, C.M.; Treur, J.

    To understand how an organisational structure relates to dynamics is an interesting fundamental challenge in the area of social modelling. Specifications of organisational structure usually have a diagrammatic form that abstracts from more detailed dynamics. Dynamic properties of agent systems,

  15. Modelling Reliability-adaptive Multi-system Operation

    Institute of Scientific and Technical Information of China (English)

    Uwe K. Rakowsky

    2006-01-01

    This contribution discusses the concept of Reliability-Adaptive Systems (RAS) to multi-system operation. A fleet of independently operating systems and a single maintenance unit are considered. It is the objective in this paper to increase overall performance or workload respectively by avoiding delay due to busy maintenance units. This is achieved by concerted and coordinated derating of individual system performance, which increases reliability. Quantification is carried out by way of a convolution-based approach. The approach is tailored to fleets of ships, aeroplanes, spacecraft, and vehicles (trains, trams, buses, cars, trucks, etc.) - Finally, the effectiveness of derating is validated using different criteria. The RAS concept makes sense if average system output loss due to lowered performance level (yielding longer time to failure) is smaller than average loss due to waiting for maintenance in a non-adaptive case.

  16. Liquefaction of Tangier soils by using physically based reliability analysis modelling

    Directory of Open Access Journals (Sweden)

    Dubujet P.

    2012-07-01

    Full Text Available Approaches that are widely used to characterize propensity of soils to liquefaction are mainly of empirical type. The potential of liquefaction is assessed by using correlation formulas that are based on field tests such as the standard and the cone penetration tests. These correlations depend however on the site where they were derived. In order to adapt them to other sites where seismic case histories are not available, further investigation is required. In this work, a rigorous one-dimensional modelling of the soil dynamics yielding liquefaction phenomenon is considered. Field tests consisting of core sampling and cone penetration testing were performed. They provided the necessary data for numerical simulations performed by using DeepSoil software package. Using reliability analysis, the probability of liquefaction was estimated and the obtained results were used to adapt Juang method to the particular case of sandy soils located in Tangier.

  17. Traffic chaotic dynamics modeling and analysis of deterministic network

    Science.gov (United States)

    Wu, Weiqiang; Huang, Ning; Wu, Zhitao

    2016-07-01

    Network traffic is an important and direct acting factor of network reliability and performance. To understand the behaviors of network traffic, chaotic dynamics models were proposed and helped to analyze nondeterministic network a lot. The previous research thought that the chaotic dynamics behavior was caused by random factors, and the deterministic networks would not exhibit chaotic dynamics behavior because of lacking of random factors. In this paper, we first adopted chaos theory to analyze traffic data collected from a typical deterministic network testbed — avionics full duplex switched Ethernet (AFDX, a typical deterministic network) testbed, and found that the chaotic dynamics behavior also existed in deterministic network. Then in order to explore the chaos generating mechanism, we applied the mean field theory to construct the traffic dynamics equation (TDE) for deterministic network traffic modeling without any network random factors. Through studying the derived TDE, we proposed that chaotic dynamics was one of the nature properties of network traffic, and it also could be looked as the action effect of TDE control parameters. A network simulation was performed and the results verified that the network congestion resulted in the chaotic dynamics for a deterministic network, which was identical with expectation of TDE. Our research will be helpful to analyze the traffic complicated dynamics behavior for deterministic network and contribute to network reliability designing and analysis.

  18. Model correction factor method for reliability problems involving integrals of non-Gaussian random fields

    DEFF Research Database (Denmark)

    Franchin, P.; Ditlevsen, Ove Dalager; Kiureghian, Armen Der

    2002-01-01

    The model correction factor method (MCFM) is used in conjunction with the first-order reliability method (FORM) to solve structural reliability problems involving integrals of non-Gaussian random fields. The approach replaces the limit-state function with an idealized one, in which the integrals...... are considered to be Gaussian. Conventional FORM analysis yields the linearization point of the idealized limit-state surface. A model correction factor is then introduced to push the idealized limit-state surface onto the actual limit-state surface. A few iterations yield a good approximation of the reliability...... reliability method; Model correction factor method; Nataf field integration; Non-Gaussion random field; Random field integration; Structural reliability; Pile foundation reliability...

  19. Sensitivity of Reliability Estimates in Partially Damaged RC Structures subject to Earthquakes, using Reduced Hysteretic Models

    DEFF Research Database (Denmark)

    Iwankiewicz, R.; Nielsen, Søren R. K.; Skjærbæk, P. S.

    The subject of the paper is the investigation of the sensitivity of structural reliability estimation by a reduced hysteretic model for a reinforced concrete frame under an earthquake excitation.......The subject of the paper is the investigation of the sensitivity of structural reliability estimation by a reduced hysteretic model for a reinforced concrete frame under an earthquake excitation....

  20. Reliability of Summed Item Scores Using Structural Equation Modeling: An Alternative to Coefficient Alpha

    Science.gov (United States)

    Green, Samuel B.; Yang, Yanyun

    2009-01-01

    A method is presented for estimating reliability using structural equation modeling (SEM) that allows for nonlinearity between factors and item scores. Assuming the focus is on consistency of summed item scores, this method for estimating reliability is preferred to those based on linear SEM models and to the most commonly reported estimate of…

  1. A Cumulative Damage Reliability Model on the Basis of Contact Fatigue of the Rolling Bearing

    Institute of Scientific and Technical Information of China (English)

    HUANG Li

    2006-01-01

    A cumulative damage reliability model of contact fatigue of the rolling bearing is more identical with the actual conditions. It is put forward on the basis of contact fatigue life probability distribution of the rolling bearing that obey Weibull distribution and rest on the Miner cumulative damage theory. Finally a case is given to predict the reliability of bearing roller by using these models.

  2. Testing substellar models with dynamical mass measurements

    Directory of Open Access Journals (Sweden)

    Liu M.C.

    2011-07-01

    Full Text Available We have been using Keck laser guide star adaptive optics to monitor the orbits of ultracool binaries, providing dynamical masses at lower luminosities and temperatures than previously available and enabling strong tests of theoretical models. We have identified three specific problems with theory: (1 We find that model color–magnitude diagrams cannot be reliably used to infer masses as they do not accurately reproduce the colors of ultracool dwarfs of known mass. (2 Effective temperatures inferred from evolutionary model radii are typically inconsistent with temperatures derived from fitting atmospheric models to observed spectra by 100–300 K. (3 For the only known pair of field brown dwarfs with a precise mass (3% and age determination (≈25%, the measured luminosities are ~2–3× higher than predicted by model cooling rates (i.e., masses inferred from Lbol and age are 20–30% larger than measured. To make progress in understanding the observed discrepancies, more mass measurements spanning a wide range of luminosity, temperature, and age are needed, along with more accurate age determinations (e.g., via asteroseismology for primary stars with brown dwarf binary companions. Also, resolved optical and infrared spectroscopy are needed to measure lithium depletion and to characterize the atmospheres of binary components in order to better assess model deficiencies.

  3. A New Metamodeling Approach for Time-dependent Reliability of Dynamic Systems with Random Parameters Excited by Input Random Processes

    Science.gov (United States)

    2014-04-09

    Simulation-based Time-dependent Reliability Analysis for Composite Hydrokinetic Turbine Blades,” Structural and Multidisciplinary Optimization...Genetic Algorithm,” ASME Journal of Mechanical Design, 131(7). 13. Hu, Z., and Du, X., 2012, “Reliability Analysis for Hydrokinetic Turbine Blades...to Seismic Risk Based on Dynamic Analysis,” Journal of Engineering Mechanics, 129, 901- 917. 19. Beck, J. L., and Au, S. K., 2002, “Bayesian Updating

  4. Windowed R-PDLF recoupling: a flexible and reliable tool to characterize molecular dynamics.

    Science.gov (United States)

    Gansmüller, Axel; Simorre, Jean-Pierre; Hediger, Sabine

    2013-09-01

    This work focuses on the improvement of the R-PDLF heteronuclear recoupling scheme, a method that allows quantification of molecular dynamics up to the microsecond timescale in heterogeneous materials. We show how the stability of the sequence towards rf-imperfections, one of the main sources of error of this technique, can be improved by the insertion of windows without irradiation into the basic elements of the symmetry-based recoupling sequence. The impact of this modification on the overall performance of the sequence in terms of scaling factor and homonuclear decoupling efficiency is evaluated. This study indicates the experimental conditions for which precise and reliable measurement of dipolar couplings can be obtained using the popular R18(1)(7) recoupling sequence, as well as alternative symmetry-based R sequences suited for fast MAS conditions. An analytical expression for the recoupled dipolar modulation has been derived that applies to a whole class of sequences with similar recoupling properties as R18(1)(7). This analytical expression provides an efficient and precise way to extract dipolar couplings from the experimental dipolar modulation curves. We hereby provide helpful tools and information for tailoring R-PDLF recoupling schemes to specific sample properties and hardware capabilities. This approach is particularly well suited for the study of materials with strong and heterogeneous molecular dynamics where a precise measurement of dipolar couplings is crucial.

  5. Dynamics Modeling of Heavy Special Driving Simulator

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Based on the dynamical characteristic parameters of the real vehicle, the modeling approach and procedure of dynamics of vehicles are expatiated. The layout of vehicle dynamics is proposed, and the sub-models of the diesel engine, drivetrain system and vehicle multi-body dynamics are introduced. Finally, the running characteristic data of the virtual and real vehicles are compared, which shows that the dynamics model is similar closely to the real vehicle system.

  6. Modeling and Simulation of Sensor-to-Sink Data Transport Reliability in WSNs

    Directory of Open Access Journals (Sweden)

    Faisal Karim Shaikh

    2012-01-01

    Full Text Available The fundamental functionality of WSN (Wireless Sensor Networks is to transport data from sensor nodes to the sink. To increase the fault tolerance, inherent sensor node redundancy in WSN can be exploited but the reliability guarantees are not ensured. The data transport process in WSN is devised as a set of operations on raw data generated in response to user requirements. The different operations filter the raw data to rationalize the reliable transport. Accordingly, we provide reliability models for various data transport semantics. In this paper we argue for the effectiveness of the proposed reliability models by comparing analytically and via simulations in TOSSIM.

  7. Supply reliability and dynamic safety analysis of an alternative energy supply chain

    DEFF Research Database (Denmark)

    Herbert-Hansen, Zaza Nadja Lee; Markert, Frank; Jacobsen, Peter

    2016-01-01

    This paper focuses on the integration of risk and supply chain modelling by means of analysing a case concerning a Hydrogen Refuelling Station in Berlin. It presents a framework that can analyse an energy supply chain and at the same time enables easy reporting and presentation of various results...... by utilizing Dis-crete Event Simulation (DES). The industrial implication of this work is to provide practitioners with an anal-ysis framework for improved decision support. The novelty of this paper is the approach to model a supply chain together with a dynamically modelled event tree-based approach...

  8. The FFA dynamic stall model. The Beddoes-Leishman dynamic stall model modified for lead-lag oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Bjoerck, A. [FFA, The Aeronautical Research Institute of Sweden, Bromma (Sweden)

    1997-08-01

    For calculations of the dynamics of wind turbines the inclusion of a dynamic stall model is necessary in order to obtain reliable results at high winds. For blade vibrations in the lead-lag motion the velocity relative to the blade will vary in time. In the present paper modifications to the Beddoes-Leishman model is presented in order to improve the model for calculations of cases with a varying relative velocity. Comparisons with measurement are also shown and the influence on the calculated aerodynamic damping by the modifications are investigated. (au)

  9. Models of ungulate population dynamics

    Directory of Open Access Journals (Sweden)

    L. L. Eberhardt

    1991-10-01

    Full Text Available A useful theory for analyzing ungulate population dynamics is available in the form of equations based on the work of A. J. Lotka. Because the Leslie matrix model yields identical results and is widely known, it is convenient to label the resulting equations as the "Lotka-Leslie" model. The approach is useful for assessing population trends and attempting to predict the outcomes of various management actions. A broad list of applications to large mammals, and two examples specific to caribou are presented with a simple spreadsheet approach to calculations.

  10. Development of an Environment for Software Reliability Model Selection

    Science.gov (United States)

    1992-09-01

    t-1, the reliability of the system is estimated to be [1:954] •i~t): •_’(i• !(2-11) + tp(i,j3) where 5 and f5 are the NIL estimates of a, 3. This...extern FILE f5 extern double ka[]; static FILE *fpl; static boolean DIFFERENT = TRUE; static double LRT, X1[MAX..SAMPLES], Yi[MAX-.SAMPLES]; .static int...function replaced** ** by printfo) function double Betacf(double a, double b, double x) { double qap, qam, qab, em, tem, d; double bz, bm = 1.0, bp, bpp

  11. A new approach to real-time reliability analysis of transmission system using fuzzy Markov model

    Energy Technology Data Exchange (ETDEWEB)

    Tanrioven, M.; Kocatepe, C. [University of Yildiz Technical, Istanbul (Turkey). Dept. of Electrical Engineering; Wu, Q.H.; Turner, D.R.; Wang, J. [Liverpool Univ. (United Kingdom). Dept. of Electrical Engineering and Economics

    2004-12-01

    To date the studies of power system reliability over a specified time period have used average values of the system transition rates in Markov techniques. [Singh C, Billinton R. System reliability modeling and evaluation. London: Hutchison Educational; 1977]. However, the level of power systems reliability varies from time to time due to weather conditions, power demand and random faults [Billinton R, Wojczynski E. Distributional variation of distribution system reliability indices. IEEE Trans Power Apparatus Systems 1985; PAS-104(11):3152-60]. It is essential to obtain an estimate of system reliability under all environmental and operating conditions. In this paper, fuzzy logic is used in the Markov model to describe both transition rates and temperature-based seasonal variations, which identifies multiple weather conditions such as normal, less stormy, very stormy, etc. A three-bus power system model is considered to determine the variation of system reliability in real-time, using this newly developed fuzzy Markov model (FMM). The results cover different aspects such as daily and monthly reliability changes during January and August. The reliability of the power transmission system is derived as a function of augmentation in peak load level. Finally the variation of the system reliability with weather conditions is determined. (author)

  12. Time-Dependent Reliability Modeling and Analysis Method for Mechanics Based on Convex Process

    Directory of Open Access Journals (Sweden)

    Lei Wang

    2015-01-01

    Full Text Available The objective of the present study is to evaluate the time-dependent reliability for dynamic mechanics with insufficient time-varying uncertainty information. In this paper, the nonprobabilistic convex process model, which contains autocorrelation and cross-correlation, is firstly employed for the quantitative assessment of the time-variant uncertainty in structural performance characteristics. By combination of the set-theory method and the regularization treatment, the time-varying properties of structural limit state are determined and a standard convex process with autocorrelation for describing the limit state is formulated. By virtue of the classical first-passage method in random process theory, a new nonprobabilistic measure index of time-dependent reliability is proposed and its solution strategy is mathematically conducted. Furthermore, the Monte-Carlo simulation method is also discussed to illustrate the feasibility and accuracy of the developed approach. Three engineering cases clearly demonstrate that the proposed method may provide a reasonable and more efficient way to estimate structural safety than Monte-Carlo simulations throughout a product life-cycle.

  13. Using PoF models to predict system reliability considering failure collaboration

    Directory of Open Access Journals (Sweden)

    Zhiguo Zeng

    2016-10-01

    Full Text Available Existing Physics-of-Failure-based (PoF-based system reliability prediction methods are grounded on the independence assumption, which overlooks the dependency among the components. In this paper, a new type of dependency, referred to as failure collaboration, is introduced and considered in reliability predictions. A PoF-based model is developed to describe the failure behavior of systems subject to failure collaboration. Based on the developed model, the Bisection-based Reliability Analysis Method (BRAM is exploited to calculate the system reliability. The developed methods are applied to predicting the reliability of a Hydraulic Servo Actuator (HSA. The results demonstrate that the developed methods outperform the traditional PoF-based reliability prediction methods when applied to systems subject to failure collaboration.

  14. DYNAMIC MODELLING OF VIBRATIONS ASSISTED DRILLING

    Directory of Open Access Journals (Sweden)

    Mathieu LADONNE

    2015-05-01

    Full Text Available The number of multi-materials staking configurations for aeronautical structures is increasing, with the evolution of composite and metallic materials. For drilling the fastening holes, the processes of Vibration Assisted Drilling (VAD expand rapidly, as it permits to improve reliability of drilling operations on multilayer structures. Among these processes of VAD, the solution with forced vibrations added to conventional feed to create a discontinuous cutting is the more developed in industry. The back and forth movement allows to improve the evacuation of chips by breaking it. This technology introduces two new operating parameters, the frequency and the amplitude of the oscillation. To optimize the process, the choice of those parameters requires first to model precisely the operation cutting and dynamics. In this paper, a kinematic modelling of the process is firstly proposed. The limits of the model are analysed through comparison between simulations and measurements. The proposed model is used to develop a cutting force model that allows foreseeing the operating conditions which ensure good chips breaking and tool life improvement.

  15. Stochastic modeling for reliability shocks, burn-in and heterogeneous populations

    CERN Document Server

    Finkelstein, Maxim

    2013-01-01

    Focusing on shocks modeling, burn-in and heterogeneous populations, Stochastic Modeling for Reliability naturally combines these three topics in the unified stochastic framework and presents numerous practical examples that illustrate recent theoretical findings of the authors.  The populations of manufactured items in industry are usually heterogeneous. However, the conventional reliability analysis is performed under the implicit assumption of homogeneity, which can result in distortion of the corresponding reliability indices and various misconceptions. Stochastic Modeling for Reliability fills this gap and presents the basics and further developments of reliability theory for heterogeneous populations. Specifically, the authors consider burn-in as a method of elimination of ‘weak’ items from heterogeneous populations. The real life objects are operating in a changing environment. One of the ways to model an impact of this environment is via the external shocks occurring in accordance with some stocha...

  16. Using Model Replication to Improve the Reliability of Agent-Based Models

    Science.gov (United States)

    Zhong, Wei; Kim, Yushim

    The basic presupposition of model replication activities for a computational model such as an agent-based model (ABM) is that, as a robust and reliable tool, it must be replicable in other computing settings. This assumption has recently gained attention in the community of artificial society and simulation due to the challenges of model verification and validation. Illustrating the replication of an ABM representing fraudulent behavior in a public service delivery system originally developed in the Java-based MASON toolkit for NetLogo by a different author, this paper exemplifies how model replication exercises provide unique opportunities for model verification and validation process. At the same time, it helps accumulate best practices and patterns of model replication and contributes to the agenda of developing a standard methodological protocol for agent-based social simulation.

  17. Dynamic pricing models for electronic business

    Indian Academy of Sciences (India)

    Y Narahari; C V L Raju; K Ravikumar; Sourabh Shah

    2005-04-01

    Dynamic pricing is the dynamic adjustment of prices to consumers depending upon the value these customers attribute to a product or service. Today’s digital economy is ready for dynamic pricing; however recent research has shown that the prices will have to be adjusted in fairly sophisticated ways, based on sound mathematical models, to derive the benefits of dynamic pricing. This article attempts to survey different models that have been used in dynamic pricing. We first motivate dynamic pricing and present underlying concepts, with several examples, and explain conditions under which dynamic pricing is likely to succeed. We then bring out the role of models in computing dynamic prices. The models surveyed include inventory-based models, data-driven models, auctions, and machine learning. We present a detailed example of an e-business market to show the use of reinforcement learning in dynamic pricing.

  18. A New Reliable Method for Evaluating Gallbladder Dynamics: The 3-Dimensional Sonographic Examination.

    Science.gov (United States)

    Serra, Carla; Pallotti, Francesca; Bortolotti, Mauro; Caputo, Carla; Felicani, Cristina; De Giorgio, Roberto; Barbara, Giovanni; Nardi, Elena; Labate, Antonio Maria Morselli

    2016-02-01

    The purpose of this study was to compare conventional 2-dimensional (2D) B-mode sonography with 3-dimensional (3D) sonography for assessing gallbladder volume and contractility. Gallbladder volume and contractility were evaluated in 32 healthy volunteers after fasting and abstinence from smoking for 8 hours and after a standardized balanced liquid meal. The gallbladder was evaluated with 2D sonography (with the use of the ellipsoid method) and with 3D sonography using a volumetric matrix probe. Both measurements were made by an operator who was skilled in sonography and an unskilled operator. The group of volunteers was subdivided into 2 subgroups including 16 participants, which represented the "2 moments" of acquisition by the techniques, particularly for the unskilled operator. The postprandial volumes obtained with 3D sonography were significantly lower in comparison to the volumes obtained with 2D sonography (P= .013), and there was a significant difference between the measurements made by the skilled and unskilled operators only for 2D sonography (P< .001), whereas between the 2 moments of acquisition by the 3D technique, there was no significant difference. The reproducibility of the technique for evaluation of gallbladder volumes was higher for 3D sonography than 2D sonography, particularly for the postprandial evaluation. The new 3D sonographic method using a volumetric matrix probe is a simple, reliable, and more reproducible technique than conventional 2D sonography, even if performed by an unskilled operator, and it allows a reliable stimulation test for a gallbladder dynamic study. © 2016 by the American Institute of Ultrasound in Medicine.

  19. Analysis of whisker-toughened CMC structural components using an interactive reliability model

    Science.gov (United States)

    Duffy, Stephen F.; Palko, Joseph L.

    1992-01-01

    Realizing wider utilization of ceramic matrix composites (CMC) requires the development of advanced structural analysis technologies. This article focuses on the use of interactive reliability models to predict component probability of failure. The deterministic William-Warnke failure criterion serves as theoretical basis for the reliability model presented here. The model has been implemented into a test-bed software program. This computer program has been coupled to a general-purpose finite element program. A simple structural problem is presented to illustrate the reliability model and the computer algorithm.

  20. Intra- and interobserver reliability of gray scale/dynamic range evaluation of ultrasonography using a standardized phantom

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Song; Choi, Joon Il; Park, Michael Yong; Yeo, Dong Myung; Byun, Jae Young; Jung, Seung Eun; Rha, Sung Eun; Oh, Soon Nam; Lee, Young Joon [Dept. of Radiology, Seoul St. Mary' s Hospital, The Catholic University of Korea College of Medicine, Seoul (Korea, Republic of)

    2014-04-15

    To evaluate intra- and interobserver reliability of the gray scale/dynamic range of the phantom image evaluation of ultrasonography using a standardized phantom, and to assess the effect of interactive education on the reliability. Three radiologists (a resident, and two board-certified radiologists with 2 and 7 years of experience in evaluating ultrasound phantom images) performed the gray scale/dynamic range test for an ultrasound machine using a standardized phantom. They scored the number of visible cylindrical structures of varying degrees of brightness and made a pass or fail decision. First, they scored 49 phantom images twice from a 2010 survey with limited knowledge of phantom images. After this, the radiologists underwent two hours of interactive education for the phantom images and scored another 91 phantom images from a 2011 survey twice. Intra- and interobserver reliability before and after the interactive education session were analyzed using K analyses. Before education, the K-value for intraobserver reliability for the radiologist with 7 years of experience, 2 years of experience, and the resident was 0.386, 0.469, and 0.465, respectively. After education, the K-values were improved (0.823, 0.611, and 0.711, respectively). For interobserver reliability, the K-value was also better after the education for the 3 participants (0.067, 0.002, and 0.547 before education; 0.635, 0.667, and 0.616 after education, respectively). The intra- and interobserver reliability of the gray scale/dynamic range was fair to substantial. Interactive education can improve reliability. For more reliable results, double- checking of phantom images by multiple reviewers is recommended.

  1. A stochastic evolutionary model for capturing human dynamics

    CERN Document Server

    Fenner, Trevor; Loizou, George

    2015-01-01

    The recent interest in human dynamics has led researchers to investigate the stochastic processes that explain human behaviour in various contexts. Here we propose a generative model to capture the dynamics of survival analysis, traditionally employed in clinical trials and reliability analysis in engineering. We derive a general solution for the model in the form of a product, and then a continuous approximation to the solution via the renewal equation describing age-structured population dynamics. This enables us to model a wide rage of survival distributions, according to the choice of the mortality distribution. We provide empirical evidence for the validity of the model from a longitudinal data set of popular search engine queries over 114 months, showing that the survival function of these queries is closely matched by the solution for our model with power-law mortality.

  2. Modelling of the Manifold Filling Dynamics

    DEFF Research Database (Denmark)

    Hendricks, Elbert; Chevalier, Alain Marie Roger; Jensen, Michael

    1996-01-01

    Mean Value Engine Models (MVEMs) are dynamic models which describe dynamic engine variable (or state) responses on time scales slightly longer than an engine event. This paper describes a new model of the intake manifold filling dynamics which is simple and easy to calibrate for use in engine con...

  3. Dynamic modeling and simulation of power transformer maintenance costs

    Directory of Open Access Journals (Sweden)

    Ristić Olga

    2016-01-01

    Full Text Available The paper presents the dynamic model of maintenance costs of the power transformer functional components. Reliability is modeled combining the exponential and Weibull's distribution. The simulation was performed with the aim of corrective maintenance and installation of the continuous monitoring system of the most critical components. Simulation Dynamic System (SDS method and VENSIM PLE software was used to simulate the cost. In this way, significant savings in maintenance costs will be achieved with a small initial investment. [Projekat Ministarstva nauke Republike Srbije, br. III 41025 i br. OI 171007

  4. RELIABLE ROBUST CONTROLLER FOR HALF-CAR ACTIVE SUSPENSION SYSTEMS BASED ON HUMAN-BODY DYNAMICS

    Directory of Open Access Journals (Sweden)

    Mohammad Gudarzi

    2016-08-01

    Full Text Available The paper investigates a non-fragile robust control strategy for a half-car active suspension system considering human-body dynamics. A 4-DoF uncertain vibration model of the driver’s body is combined with the car’s model in order to make the controller design procedure more accurate. The desired controller is obtained by solving a linear matrix inequality formulation. Then the performance of the active suspension system with the designed controller is compared to the passive one in both frequency and time domain simulations. Finally, the effect of the controller gain variations on the closed-loop system performance is investigated numerically.

  5. Analysis and Application of Mechanical System Reliability Model Based on Copula Function

    Directory of Open Access Journals (Sweden)

    An Hai

    2016-10-01

    Full Text Available There is complicated correlations in mechanical system. By using the advantages of copula function to solve the related issues, this paper proposes the mechanical system reliability model based on copula function. And makes a detailed research for the serial and parallel mechanical system model and gets their reliability function respectively. Finally, the application research is carried out for serial mechanical system reliability model to prove its validity by example. Using Copula theory to make mechanical system reliability modeling and its expectation, studying the distribution of the random variables (marginal distribution of the mechanical product’ life and associated structure of variables separately, can reduce the difficulty of multivariate probabilistic modeling and analysis to make the modeling and analysis process more clearly.

  6. Multiscale modeling of pedestrian dynamics

    CERN Document Server

    Cristiani, Emiliano; Tosin, Andrea

    2014-01-01

    This book presents mathematical models and numerical simulations of crowd dynamics. The core topic is the development of a new multiscale paradigm, which bridges the microscopic and macroscopic scales taking the most from each of them for capturing the relevant clues of complexity of crowds. The background idea is indeed that most of the complex trends exhibited by crowds are due to an intrinsic interplay between individual and collective behaviors. The modeling approach promoted in this book pursues actively this intuition and profits from it for designing general mathematical structures susceptible of application also in fields different from the inspiring original one. The book considers also the two most traditional points of view: the microscopic one, in which pedestrians are tracked individually, and the macroscopic one, in which pedestrians are assimilated to a continuum. Selected existing models are critically analyzed. The work is addressed to researchers and graduate students.

  7. Software reliability

    CERN Document Server

    Bendell, A

    1986-01-01

    Software Reliability reviews some fundamental issues of software reliability as well as the techniques, models, and metrics used to predict the reliability of software. Topics covered include fault avoidance, fault removal, and fault tolerance, along with statistical methods for the objective assessment of predictive accuracy. Development cost models and life-cycle cost models are also discussed. This book is divided into eight sections and begins with a chapter on adaptive modeling used to predict software reliability, followed by a discussion on failure rate in software reliability growth mo

  8. The Quadrotor Dynamic Modeling and Indoor Target Tracking Control Method

    Directory of Open Access Journals (Sweden)

    Dewei Zhang

    2014-01-01

    Full Text Available A reliable nonlinear dynamic model of the quadrotor is presented. The nonlinear dynamic model includes actuator dynamic and aerodynamic effect. Since the rotors run near a constant hovering speed, the dynamic model is simplified at hovering operating point. Based on the simplified nonlinear dynamic model, the PID controllers with feedback linearization and feedforward control are proposed using the backstepping method. These controllers are used to control both the attitude and position of the quadrotor. A fully custom quadrotor is developed to verify the correctness of the dynamic model and control algorithms. The attitude of the quadrotor is measured by inertia measurement unit (IMU. The position of the quadrotor in a GPS-denied environment, especially indoor environment, is estimated from the downward camera and ultrasonic sensor measurements. The validity and effectiveness of the proposed dynamic model and control algorithms are demonstrated by experimental results. It is shown that the vehicle achieves robust vision-based hovering and moving target tracking control.

  9. Nonlinear Mixed-Effects Models for Repairable Systems Reliability

    Institute of Scientific and Technical Information of China (English)

    TAN Fu-rong; JIANG Zhi-bin; KUO Way; Suk Joo BAE

    2007-01-01

    Mixed-effects models, also called random-effects models, are a regression type of analysis which enables the analyst to not only describe the trend over time within each subject, but also to describe the variation among different subjects. Nonlinear mixed-effects models provide a powerful and flexible tool for handling the unbalanced count data. In this paper, nonlinear mixed-effects models are used to analyze the failure data from a repairable system with multiple copies. By using this type of models, statistical inferences about the population and all copies can be made when accounting for copy-to-copy variance. Results of fitting nonlinear mixed-effects models to nine failure-data sets show that the nonlinear mixed-effects models provide a useful tool for analyzing the failure data from multi-copy repairable systems.

  10. DYNAMICAL MODEL OF ELECTROMAGNETIC DRIVE

    Directory of Open Access Journals (Sweden)

    Trunev A. P.

    2016-02-01

    Full Text Available The article discusses the dynamic model of the rocket motor electromagnetic type, consisting of a source of electromagnetic waves of radio frequency band and a conical cavity in which electromagnetic waves are excited. The processes of excitation of electromagnetic oscillations in a cavity with conducting walls, as well as the waves of the YangMills field have been investigated. Multi-dimensional transient numerical model describing the processes of establishment of electromagnetic oscillations in a cavity with the conducting wall was created Separately, the case of standing waves in the cavity with conducting walls been tested. It is shown that the oscillation mode in the conducting resonator different from that in an ideal resonator, both in the steady and unsteady processes. The mechanism of formation of traction for the changes in the space-time metric, the contribution of particle currents, the Yang-Mills and electromagnetic field proposed. It is shown that the effect of the Yang-Mills field calls change the dielectric properties of vacuum, which leads to a change in capacitance of the resonator. Developed a dynamic model, which enables optimal traction on a significant number of parameters. It was found that the thrust increases in the Yang-Mills field parameters near the main resonance frequency. In the presence of thermal fluctuations and the Yang-Mills field as well the traction force changes sign, indicating the presence of various oscillation modes

  11. Young Children's Selective Learning of Rule Games from Reliable and Unreliable Models

    Science.gov (United States)

    Rakoczy, Hannes; Warneken, Felix; Tomasello, Michael

    2009-01-01

    We investigated preschoolers' selective learning from models that had previously appeared to be reliable or unreliable. Replicating previous research, children from 4 years selectively learned novel words from reliable over unreliable speakers. Extending previous research, children also selectively learned other kinds of acts--novel games--from…

  12. Reliability of travel times to groundwater abstraction wells: Application of the Netherlands Groundwater Model - LGM

    NARCIS (Netherlands)

    Kovar K; Leijnse A; Uffink G; Pastoors MJH; Mulschlegel JHC; Zaadnoordijk WJ; LDL; IMD; TNO/NITG; Haskoning

    2005-01-01

    A modelling approach was developed, incorporated in the finite-element method based program LGMLUC, making it possible to determine the reliability of travel times of groundwater flowing to groundwater abstraction sites. The reliability is seen here as a band (zone) around the expected travel-time i

  13. Reliability Based Optimal Design of Vertical Breakwaters Modelled as a Series System Failure

    DEFF Research Database (Denmark)

    Christiani, E.; Burcharth, H. F.; Sørensen, John Dalsgaard

    1996-01-01

    Reliability based design of monolithic vertical breakwaters is considered. Probabilistic models of important failure modes such as sliding and rupture failure in the rubble mound and the subsoil are described. Characterisation of the relevant stochastic parameters are presented, and relevant design...... variables are identified and an optimal system reliability formulation is presented. An illustrative example is given....

  14. A modelling approach to find stable and reliable soil organic carbon values for further regionalization.

    Science.gov (United States)

    Bönecke, Eric; Franko, Uwe

    2015-04-01

    Soil organic matter (SOM) and carbon (SOC) might be the most important components to describe soil fertility of agricultural used soils. It is sensitive to temporal and spatial changes due to varying weather conditions, uneven crops and soil management practices and still struggles with providing reliable delineation of spatial variability. Soil organic carbon, furthermore, is an essential initial parameter for dynamic modelling, understanding e.g. carbon and nitrogen processes. Alas it requires cost and time intensive field and laboratory work to attain and using this information. The objective of this study is to assess an approach that reduces efforts of laboratory and field analyses by using method to find stable initial soil organic carbon values for further soil process modelling and regionalization on field scale. The demand of strategies, technics and tools to improve reliable soil organic carbon high resolution maps and additionally reducing cost constraints is hence still facing an increasing attention of scientific research. Although, it is nowadays a widely used practice, combining effective sampling schemes with geophysical sensing techniques, to describe within-field variability of soil organic carbon, it is still challenging large uncertainties, even at field scale in both, science and agriculture. Therefore, an analytical and modelling approach might facilitate and improve this strategy on small and large field scale. This study will show a method, how to find reliable steady state values of soil organic carbon at particular points, using the approved soil process model CANDY (Franko et al. 1995). It is focusing on an iterative algorithm of adjusting the key driving components: soil physical properties, meteorological data and management information, for which we quantified the input and the losses of soil carbon (manure, crop residues, other organic inputs, decomposition, leaching). Furthermore, this approach can be combined with geophysical

  15. Reliability and safety engineering

    CERN Document Server

    Verma, Ajit Kumar; Karanki, Durga Rao

    2016-01-01

    Reliability and safety are core issues that must be addressed throughout the life cycle of engineering systems. Reliability and Safety Engineering presents an overview of the basic concepts, together with simple and practical illustrations. The authors present reliability terminology in various engineering fields, viz.,electronics engineering, software engineering, mechanical engineering, structural engineering and power systems engineering. The book describes the latest applications in the area of probabilistic safety assessment, such as technical specification optimization, risk monitoring and risk informed in-service inspection. Reliability and safety studies must, inevitably, deal with uncertainty, so the book includes uncertainty propagation methods: Monte Carlo simulation, fuzzy arithmetic, Dempster-Shafer theory and probability bounds. Reliability and Safety Engineering also highlights advances in system reliability and safety assessment including dynamic system modeling and uncertainty management. Cas...

  16. Eigenvalue dynamics for multimatrix models

    Science.gov (United States)

    de Mello Koch, Robert; Gossman, David; Nkumane, Lwazi; Tribelhorn, Laila

    2017-07-01

    By performing explicit computations of correlation functions, we find evidence that there is a sector of the two matrix model defined by the S U (2 ) sector of N =4 super Yang-Mills theory that can be reduced to eigenvalue dynamics. There is an interesting generalization of the usual Van der Monde determinant that plays a role. The observables we study are the Bogomol'nyi-Prasad-Sommerfield operators of the S U (2 ) sector and include traces of products of both matrices, which are genuine multimatrix observables. These operators are associated with supergravity solutions of string theory.

  17. Eigenvalue Dynamics for Multimatrix Models

    CERN Document Server

    Koch, Robert de Mello; Nkumane, Lwazi; Tribelhorn, Laila

    2016-01-01

    By performing explicit computations of correlation functions, we find evidence that there is a sector of the two matrix model defined by the $SU(2)$ sector of ${\\cal N}=4$ super Yang-Mills theory, that can be reduced to eigenvalue dynamics. There is an interesting generalization of the usual Van der Monde determinant that plays a role. The observables we study are the BPS operators of the $SU(2)$ sector and include traces of products of both matrices, which are genuine multi matrix observables. These operators are associated to supergravity solutions of string theory.

  18. Bayesian Estimation of Categorical Dynamic Factor Models

    Science.gov (United States)

    Zhang, Zhiyong; Nesselroade, John R.

    2007-01-01

    Dynamic factor models have been used to analyze continuous time series behavioral data. We extend 2 main dynamic factor model variations--the direct autoregressive factor score (DAFS) model and the white noise factor score (WNFS) model--to categorical DAFS and WNFS models in the framework of the underlying variable method and illustrate them with…

  19. Dynamical models of NGC 3115

    CERN Document Server

    Emsellem, E; Bacon, R; Emsellem, Eric; Dejonghe, Herwig; Bacon, Roland

    1998-01-01

    We present new dynamical models of the S0 galaxy N3115, making use of the available published photometry and kinematics as well as of two-dimensional TIGER spectrography. We first examined the kinematics in the central 40 arcsec in the light of two integral f(E,J) models. Jeans equations were used to constrain the mass to light ratio, and the central dark mass whose existence was suggested by previous studies. The even part of the distribution function was then retrieved via the Hunter & Qian formalism. We thus confirmed that the velocity and dispersion profiles in the central region could be well fit with a two-integral model, given the presence of a central dark mass of ~10^9 Msun. However, no two integral model could fit the h_3 profile around a radius of 25 arcsec where the outer disc dominates the surface brightness distribution. Three integral analytical models were therefore built using a Quadratic Programming technique. These models showed that three integral components do indeed provide a reasona...

  20. Dynamical Models for Computer Viruses Propagation

    Directory of Open Access Journals (Sweden)

    José R. C. Piqueira

    2008-01-01

    Full Text Available Nowadays, digital computer systems and networks are the main engineering tools, being used in planning, design, operation, and control of all sizes of building, transportation, machinery, business, and life maintaining devices. Consequently, computer viruses became one of the most important sources of uncertainty, contributing to decrease the reliability of vital activities. A lot of antivirus programs have been developed, but they are limited to detecting and removing infections, based on previous knowledge of the virus code. In spite of having good adaptation capability, these programs work just as vaccines against diseases and are not able to prevent new infections based on the network state. Here, a trial on modeling computer viruses propagation dynamics relates it to other notable events occurring in the network permitting to establish preventive policies in the network management. Data from three different viruses are collected in the Internet and two different identification techniques, autoregressive and Fourier analyses, are applied showing that it is possible to forecast the dynamics of a new virus propagation by using the data collected from other viruses that formerly infected the network.

  1. Exponentiated Weibull distribution approach based inflection S-shaped software reliability growth model

    Directory of Open Access Journals (Sweden)

    B.B. Sagar

    2016-09-01

    Full Text Available The aim of this paper was to estimate the number of defects in software and remove them successfully. This paper incorporates Weibull distribution approach along with inflection S-shaped Software Reliability Growth Models (SRGM. In this combination two parameter Weibull distribution methodology is used. Relative Prediction Error (RPE is calculated to predict the validity criterion of the developed model. Experimental results on actual data from five data sets are compared with two other existing models, which expose that the proposed software reliability growth model predicts better estimation to remove the defects. This paper presents best software reliability growth model with including feature of both Weibull distribution and inflection S-shaped SRGM to estimate the defects of software system, and provide help to researchers and software industries to develop highly reliable software products.

  2. A Novel OBDD-Based Reliability Evaluation Algorithm for Wireless Sensor Networks on the Multicast Model

    Directory of Open Access Journals (Sweden)

    Zongshuai Yan

    2015-01-01

    Full Text Available The two-terminal reliability calculation for wireless sensor networks (WSNs is a #P-hard problem. The reliability calculation of WSNs on the multicast model provides an even worse combinatorial explosion of node states with respect to the calculation of WSNs on the unicast model; many real WSNs require the multicast model to deliver information. This research first provides a formal definition for the WSN on the multicast model. Next, a symbolic OBDD_Multicast algorithm is proposed to evaluate the reliability of WSNs on the multicast model. Furthermore, our research on OBDD_Multicast construction avoids the problem of invalid expansion, which reduces the number of subnetworks by identifying the redundant paths of two adjacent nodes and s-t unconnected paths. Experiments show that the OBDD_Multicast both reduces the complexity of the WSN reliability analysis and has a lower running time than Xing’s OBDD- (ordered binary decision diagram- based algorithm.

  3. Wind Farm Reliability Modelling Using Bayesian Networks and Semi-Markov Processes

    Directory of Open Access Journals (Sweden)

    Robert Adam Sobolewski

    2015-09-01

    Full Text Available Technical reliability plays an important role among factors affecting the power output of a wind farm. The reliability is determined by an internal collection grid topology and reliability of its electrical components, e.g. generators, transformers, cables, switch breakers, protective relays, and busbars. A wind farm reliability’s quantitative measure can be the probability distribution of combinations of operating and failed states of the farm’s wind turbines. The operating state of a wind turbine is its ability to generate power and to transfer it to an external power grid, which means the availability of the wind turbine and other equipment necessary for the power transfer to the external grid. This measure can be used for quantitative analysis of the impact of various wind farm topologies and the reliability of individual farm components on the farm reliability, and for determining the expected farm output power with consideration of the reliability. This knowledge may be useful in an analysis of power generation reliability in power systems. The paper presents probabilistic models that quantify the wind farm reliability taking into account the above-mentioned technical factors. To formulate the reliability models Bayesian networks and semi-Markov processes were used. Using Bayesian networks the wind farm structural reliability was mapped, as well as quantitative characteristics describing equipment reliability. To determine the characteristics semi-Markov processes were used. The paper presents an example calculation of: (i probability distribution of the combination of both operating and failed states of four wind turbines included in the wind farm, and (ii expected wind farm output power with consideration of its reliability.

  4. AN IMPROVED FUZZY MODEL TO PREDICT SOFTWARE RELIABILITY

    Directory of Open Access Journals (Sweden)

    Deepika Chawla

    2012-09-01

    Full Text Available Software faults are one of major criteria to estimate the software quality or the software reliability. There are number of matrices defined that uses the software faults to estimate the software quality. But when we have a large software system with thousands of class modules, in such case it is not easy to apply the software matrices on each module of software system. The present work isthe solution of the defined problem. In this work software quality is estimated by using the rejection method on software faults. The rejection method is applied on the basis on Fuzzy Logic in a softwaresystem. To perform the analysis in an effective way the weightage approach is used on the software faults. In this work we have assigned different weightage on software faults to categorize the faults respective to fault criticality and the frequency. Once the faults are categorized the next work is the implementation of proposed work software fault to represents the accepted and rejectedmodules from the software system. The obtained result shows the better visualization of software quality in case of software fault analysis.

  5. Powering stochastic reliability models by discrete event simulation

    DEFF Research Database (Denmark)

    Kozine, Igor; Wang, Xiaoyun

    2012-01-01

    it difficult to find a solution to the problem. The power of modern computers and recent developments in discrete-event simulation (DES) software enable to diminish some of the drawbacks of stochastic models. In this paper we describe the insights we have gained based on using both Markov and DES models...

  6. Fatigue Reliability and Effective Turbulence Models in Wind Farms

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Frandsen, S.; Tarp-Johansen, N.J.

    2007-01-01

    behind wind turbines can imply a significant reduction in the fatigue lifetime of wind turbines placed in wakes. In this paper the design code model in the wind turbine code IEC 61400-1 (2005) is evaluated from a probabilistic point of view, including the importance of modeling the SN-curve by linear...

  7. NERF - A Computer Program for the Numerical Evaluation of Reliability Functions - Reliability Modelling, Numerical Methods and Program Documentation,

    Science.gov (United States)

    1983-09-01

    Industry Australian Atomic Energy Commission, Director CSIROj Materials Science Division, Library Trans-Australia Airlines, Library Qantas Airways ...designed to evaluate the reliability functions that result from the application of reliability analysis to the fatigue of aircraft structures, in particular...Messages 60+ A.4. Program Assembly 608 DISTRIBUTION DOCUMENT CONTROL DATA II 1. INTRODUCTION The application of reliability analysis to the fatigue

  8. Modeling and Quantification of Team Performance in Human Reliability Analysis for Probabilistic Risk Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey C. JOe; Ronald L. Boring

    2014-06-01

    Probabilistic Risk Assessment (PRA) and Human Reliability Assessment (HRA) are important technical contributors to the United States (U.S.) Nuclear Regulatory Commission’s (NRC) risk-informed and performance based approach to regulating U.S. commercial nuclear activities. Furthermore, all currently operating commercial NPPs in the U.S. are required by federal regulation to be staffed with crews of operators. Yet, aspects of team performance are underspecified in most HRA methods that are widely used in the nuclear industry. There are a variety of "emergent" team cognition and teamwork errors (e.g., communication errors) that are 1) distinct from individual human errors, and 2) important to understand from a PRA perspective. The lack of robust models or quantification of team performance is an issue that affects the accuracy and validity of HRA methods and models, leading to significant uncertainty in estimating HEPs. This paper describes research that has the objective to model and quantify team dynamics and teamwork within NPP control room crews for risk informed applications, thereby improving the technical basis of HRA, which improves the risk-informed approach the NRC uses to regulate the U.S. commercial nuclear industry.

  9. Developing a highly reliable cae analysis model of the mechanisms that cause bolt loosening in automobiles

    Directory of Open Access Journals (Sweden)

    Ken Hashimoto

    2014-10-01

    Full Text Available In this study, we developed a highly reliable CAE analysis model of the mechanisms that cause loosening of bolt fasteners, which has been a bottleneck in automobile development and design, using a technical element model for highly accurate CAE that we had previously developed, and verified its validity. Specifically, drawing on knowledge gained from our clarification of the mechanisms that cause loosening of bolt fasteners using actual machine tests, we conducted an accelerated bench test consisting of a threedimensional vibration load test of the loosening of bolt fasteners used in mounts and rear suspension arms, where interviews with personnel at an automaker indicated loosening was most pronounced, and reproduced actual machine tests with CAE analysis based on a technical element model for highly accurate CAE analysis. Based on these results, we were able to reproduce dynamic behavior in which larger screw pitches (lead angles lead to greater non-uniformity of surface pressure, particularly around the nut seating surface, causing loosening to occur in areas with the lowest surface pressure. Furthermore, we implemented highly accurate CAE analysis with no error (gap compared to actual machine tests.

  10. 多维MANET可靠性建模研究%Research of Multiple Dimensional Reliability Model for MANET

    Institute of Scientific and Technical Information of China (English)

    赵志峰; 赵曦滨; 陈丹宁

    2011-01-01

    移动自组织网络(MANET,Mobile Ad hoc Network)是一种不依赖固定基础设施且不需要中心控制的动态无线网络.由于其开放自治的无线网络环境及无中心、动态拓扑等特性,导致MANET无法保障通讯的持续性,同时容易受到各种安全攻击.因此相对于传统网络,MANET在网络的可靠性上存在很大的局限性.综合考虑了影响MANET可靠性的两大因素,即节点移动性和安全攻击,提出了多维MANET可靠性模型,并对模型结果进行了实验分析,进一步指出了影响MANET系统可靠性的关键参数.%Without infrastructure, Mobile Ad Hoc Network(MANET) is a kind of self-organized and dynamic wireless communication network that is lack of any centralized control.These characteristics make it vulnerable to communication continuity and security attack.Comparing with traditional network, MANET has great limitation in network reliability.Many researches have been focused on two main factors of reliability or reliability model, which influence the reliability of MANET.Therefore, this paper proposed a multiple dimensional reliability model,which considers both movement and security attack, for MANET.Furthermore, the experimental analysis of the model was given.According to the result of experimental analysis, the key factor of MANET reliability was presented.

  11. CoDCon Dynamic Modeling.

    Energy Technology Data Exchange (ETDEWEB)

    Cipiti, Benjamin B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-03-01

    The Co-Decontamination (CoDCon) Demonstration project is designed to test the separation of a mixed U and Pu product from dissolved spent nuclear fuel. The primary purpose of the project is to quantify the accuracy and precision to which a U/Pu mass ratio can be achieved without removing a pure Pu product. The system includes an on-line monitoring system using spectroscopy to monitor the ratios throughout the process. A dynamic model of the CoDCon flowsheet and on-line monitoring system was developed in order to expand the range of scenarios that can be examined for process control and determine overall measurement uncertainty. The model development and initial results are presented here.

  12. Finite State Machine Based Evaluation Model for Web Service Reliability Analysis

    CERN Document Server

    M, Thirumaran; Abarna, S; P, Lakshmi

    2011-01-01

    Now-a-days they are very much considering about the changes to be done at shorter time since the reaction time needs are decreasing every moment. Business Logic Evaluation Model (BLEM) are the proposed solution targeting business logic automation and facilitating business experts to write sophisticated business rules and complex calculations without costly custom programming. BLEM is powerful enough to handle service manageability issues by analyzing and evaluating the computability and traceability and other criteria of modified business logic at run time. The web service and QOS grows expensively based on the reliability of the service. Hence the service provider of today things that reliability is the major factor and any problem in the reliability of the service should overcome then and there in order to achieve the expected level of reliability. In our paper we propose business logic evaluation model for web service reliability analysis using Finite State Machine (FSM) where FSM will be extended to analy...

  13. Dynamics Model Abstraction Scheme Using Radial Basis Functions

    Directory of Open Access Journals (Sweden)

    Silvia Tolu

    2012-01-01

    Full Text Available This paper presents a control model for object manipulation. Properties of objects and environmental conditions influence the motor control and learning. System dynamics depend on an unobserved external context, for example, work load of a robot manipulator. The dynamics of a robot arm change as it manipulates objects with different physical properties, for example, the mass, shape, or mass distribution. We address active sensing strategies to acquire object dynamical models with a radial basis function neural network (RBF. Experiments are done using a real robot’s arm, and trajectory data are gathered during various trials manipulating different objects. Biped robots do not have high force joint servos and the control system hardly compensates all the inertia variation of the adjacent joints and disturbance torque on dynamic gait control. In order to achieve smoother control and lead to more reliable sensorimotor complexes, we evaluate and compare a sparse velocity-driven versus a dense position-driven control scheme.

  14. Digital Avionics Information System (DAIS): Reliability and Maintainability Model. Final Report.

    Science.gov (United States)

    Czuchry, Andrew J.; And Others

    The reliability and maintainability (R&M) model described in this report represents an important portion of a larger effort called the Digital Avionics Information System (DAIS) Life Cycle Cost (LCC) Study. The R&M model is the first of three models that comprise a modeling system for use in LCC analysis of avionics systems. The total…

  15. Dynamic mechanism and its modelling of micromachined electrostatic ultrasonic transducers

    Institute of Scientific and Technical Information of China (English)

    葛立峰

    1999-01-01

    A tensile-plate-on-air-spring model (or called TDK model for short) for micromachined electrostatic ultrasonic transducers has been developed based on a thorough investigation of their dynamic mechanism. The mechanical stiffness effects caused by the compressibility of air gaps, bending stiffness of the diaphragm and in-plane tension applied to the diaphragm, together with an electrostatic negative stiffness effect are included completely in the model. Desired particular fundamental frequency and bandwidth can be obtained by only properly tailoring the geometry, dimensions and materials of transducers according to the model, which provides thereby a reliable theoretical basis for the understanding and optimised design of such transducers.

  16. BUILDING MODEL ANALYSIS APPLICATIONS WITH THE JOINT UNIVERSAL PARAMETER IDENTIFICATION AND EVALUATION OF RELIABILITY (JUPITER) API

    Science.gov (United States)

    The open-source, public domain JUPITER (Joint Universal Parameter IdenTification and Evaluation of Reliability) API (Application Programming Interface) provides conventions and Fortran-90 modules to develop applications (computer programs) for analyzing process models. The input ...

  17. Reliability analysis of diesel engine crankshaft based on 2D stress strength interference model

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A 2D stress strength interference model (2D-SSIM) considering that the fatigue reliability of engineering structural components has close relationship to load asymmetric ratio and its variability to some extent is put forward. The principle, geometric schematic and limit state equation of this model are presented. Reliability evaluation for a kind of diesel engine crankshaft was made based on this theory, in which multi-axial loading fatigue criteria was employed. Because more important factors, i.e.stress asymmetric ratio and its variability, are considered, it theoretically can make more accurate evaluation for structural component reliability than the traditional interference model. Correspondingly, a Monte-Carlo Method simulation solution is also given. The computation suggests that this model can yield satisfactory reliability evaluation.

  18. Reliability Modeling Development and Its Applications for Ceramic Capacitors with Base-Metal Electrodes (BMEs)

    Science.gov (United States)

    Liu, Donhang

    2014-01-01

    This presentation includes a summary of NEPP-funded deliverables for the Base-Metal Electrodes (BMEs) capacitor task, development of a general reliability model for BME capacitors, and a summary and future work.

  19. Onboard Robust Visual Tracking for UAVs Using a Reliable Global-Local Object Model

    National Research Council Canada - National Science Library

    Fu, Changhong; Duan, Ran; Kircali, Dogan; Kayacan, Erdal

    2016-01-01

    In this paper, we present a novel onboard robust visual algorithm for long-term arbitrary 2D and 3D object tracking using a reliable global-local object model for unmanned aerial vehicle (UAV) applications, e.g...

  20. 汽车前轴动态特性的可靠性优化设计%Reliability Optimization Design of Dynamic Characteristics of Automotive Front Axle

    Institute of Scientific and Technical Information of China (English)

    臧献国; 于德介; 姚凌云

    2011-01-01

    Combining with the reliability analysis and the optimization technique, a reliability optimization design method was presented for improving the dynamic characteristics of automotive front axle.A reliability optimization model of dynamic characteristics of automotive front axle was established, the first order mode frequency and the velocity admittance of driving point of engine excitation were used as design constraints of reliability—based optimization, the total mass of front axle was used as the design objective.The reliability-based optimization problem of a micro—car front axle was solved, which shows that the dynamic characteristics of front axle are improved and the goals of reliability optimization design are achieved.%将可靠性分析与优化技术相结合,提出一种改善汽车前轴动态特性的可靠性优化设计方法.该方法建立了汽车前轴动态特性的可靠性优化模型,以一阶模态频率和发动机激励点的驱动点速度导纳为动态特性约束,以前轴总质量为优化目标,对前轴进行可靠性优化.对某微车前轴动态特性的可靠性优化设计结果表明,该方法有效酶善了前轴的动态特性,动态特性约束满足了可靠度设计要求,达到了可靠性优化设计的目的.

  1. Reliability-cost models for the power switching devices of wind power converters

    DEFF Research Database (Denmark)

    Ma, Ke; Blaabjerg, Frede

    2012-01-01

    In order to satisfy the growing reliability requirements for the wind power converters with more cost-effective solution, the target of this paper is to establish a new reliability-cost model which can connect the relationship between reliability performances and corresponding semiconductor cost...... for power switching devices. First the conduction loss, switching loss as well as thermal impedance models of power switching devices (IGBT module) are related to the semiconductor chip number information respectively. Afterwards simplified analytical solutions, which can directly extract the junction...

  2. Microstructural Modeling of Brittle Materials for Enhanced Performance and Reliability.

    Energy Technology Data Exchange (ETDEWEB)

    Teague, Melissa Christine [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Teague, Melissa Christine [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rodgers, Theron [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rodgers, Theron [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Grutzik, Scott Joseph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Grutzik, Scott Joseph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Meserole, Stephen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Meserole, Stephen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-08-01

    Brittle failure is often influenced by difficult to measure and variable microstructure-scale stresses. Recent advances in photoluminescence spectroscopy (PLS), including improved confocal laser measurement and rapid spectroscopic data collection have established the potential to map stresses with microscale spatial resolution (%3C2 microns). Advanced PLS was successfully used to investigate both residual and externally applied stresses in polycrystalline alumina at the microstructure scale. The measured average stresses matched those estimated from beam theory to within one standard deviation, validating the technique. Modeling the residual stresses within the microstructure produced general agreement in comparison with the experimentally measured results. Microstructure scale modeling is primed to take advantage of advanced PLS to enable its refinement and validation, eventually enabling microstructure modeling to become a predictive tool for brittle materials.

  3. Parametric and semiparametric models with applications to reliability, survival analysis, and quality of life

    CERN Document Server

    Nikulin, M; Mesbah, M; Limnios, N

    2004-01-01

    Parametric and semiparametric models are tools with a wide range of applications to reliability, survival analysis, and quality of life. This self-contained volume examines these tools in survey articles written by experts currently working on the development and evaluation of models and methods. While a number of chapters deal with general theory, several explore more specific connections and recent results in "real-world" reliability theory, survival analysis, and related fields.

  4. Dynamical Modeling of Mars' Paleoclimate

    Science.gov (United States)

    Richardson, Mark I.

    2004-01-01

    This report summarizes work undertaken under a one-year grant from the NASA Mars Fundamental Research Program. The goal of the project was to initiate studies of the response of the Martian climate to changes in planetary obliquity and orbital elements. This work was undertaken with a three-dimensional numerical climate model based on the Geophysical Fluid Dynamics Laboratory (GFDL) Skyhi General Circulation Model (GCM). The Mars GCM code was adapted to simulate various obliquity and orbital parameter states. Using a version of the model with a basic water cycle (ice caps, vapor, and clouds), we examined changes in atmospheric water abundances and in the distribution of water ice sheets on the surface. This work resulted in a paper published in the Journal of Geophysical Research - Planets. In addition, the project saw the initial incorporation of a regolith water transport and storage scheme into the model. This scheme allows for interaction between water in the pores of the near subsurface (<3m) and the atmosphere. This work was not complete by the end of the one-year grant, but is now continuing within the auspices of a three-year grant of the same title awarded by the Mars Fundamental Research Program in late 2003.

  5. Electromagnetic Model Reliably Predicts Radar Scattering Characteristics of Airborne Organisms

    Science.gov (United States)

    Mirkovic, Djordje; Stepanian, Phillip M.; Kelly, Jeffrey F.; Chilson, Phillip B.

    2016-10-01

    The radar scattering characteristics of aerial animals are typically obtained from controlled laboratory measurements of a freshly harvested specimen. These measurements are tedious to perform, difficult to replicate, and typically yield only a small subset of the full azimuthal, elevational, and polarimetric radio scattering data. As an alternative, biological applications of radar often assume that the radar cross sections of flying animals are isotropic, since sophisticated computer models are required to estimate the 3D scattering properties of objects having complex shapes. Using the method of moments implemented in the WIPL-D software package, we show for the first time that such electromagnetic modeling techniques (typically applied to man-made objects) can accurately predict organismal radio scattering characteristics from an anatomical model: here the Brazilian free-tailed bat (Tadarida brasiliensis). The simulated scattering properties of the bat agree with controlled measurements and radar observations made during a field study of bats in flight. This numerical technique can produce the full angular set of quantitative polarimetric scattering characteristics, while eliminating many practical difficulties associated with physical measurements. Such a modeling framework can be applied for bird, bat, and insect species, and will help drive a shift in radar biology from a largely qualitative and phenomenological science toward quantitative estimation of animal densities and taxonomic identification.

  6. On new cautious structural reliability models in the framework of imprecise probabilities

    DEFF Research Database (Denmark)

    Utkin, Lev; Kozine, Igor

    2010-01-01

    New imprecise structural reliability models are described in this paper. They are developed based on the imprecise Bayesian inference and are imprecise Dirichlet, imprecise negative binomial, gamma-exponential and normal models. The models are applied to computing cautious structural reliability...... measures when the number of events of interest or observations is very small. The main feature of the models is that prior ignorance is not modelled by a fixed single prior distribution, but by a class of priors which is defined by upper and lower probabilities that can converge as statistical data...

  7. Reliable grading robust stabilization for uncertain time-varying systems via dynamic compensator

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A new general model for uncertain time-varying parameters and a new measure sensor failure model are presented, and the problems of both grading robust stabilization and reliable grading robust stabilization for such systems are studied. By the Lyapunov stability theory and matrix algebra method, some sufficient criteria for the above two control problems are established in quasi-linear matrix inequalities (Q-LMIS) forms. In view of linear matrix inequality (LMI) approach, a solving procedure for the Q-LMIS problem is proposed. The solvability of the Q-LMIS problem can be improved obviously by adding some LMI constraints to the Q-LMIS. Based on the two Q-LMIS criteria, a grading robust stable control strategy, namely, the controller with different energy is acted on the system with different uncertain parameter range, is presented. The numerical simulating results show that the grading robust stable control strategy for the robust stabilization of uncertain systems has important theoretical and practical significance.

  8. Testing the stability and reliability of starspot modelling.

    Science.gov (United States)

    Kovari, Zs.; Bartus, J.

    1997-07-01

    Since the mid 70's different starspot modelling techniques have been used to describe the observed spot variability on active stars. Spot positions and temperatures are calculated by application of surface integration techniques or solution of analytic equations on observed photometric data. Artificial spotted light curves were generated, by use of the analytic expressions of Budding (1977Ap&SS..48..207B), to test how the different constraints like the intrinsic scatter of the observed data or the angle of inclination affects the spot solutions. Counteractions between the different parameters like inclination, latitude and spot size were also investigated. The results of re-modelling the generated data were scrutinized statistically. It was found, that (1) 0.002-0.005mag of photometric accuracy is required to recover geometrical spot parameters within an acceptable error box; (2) even a 0.03-0.05mag error in unspotted brightness substantially affects the recovery of the original spot distribution; (3) especially at low inclination, under- or overestimation of inclination by 10° leads to an important systematic error in spot latitude and size; (4) when the angle of inclination i<~20° photometric spot modelling is unable to provide satisfactory information on spot location and size.

  9. An Imprecise Probability Model for Structural Reliability Based on Evidence and Gray Theory

    Directory of Open Access Journals (Sweden)

    Bin Suo

    2013-01-01

    Full Text Available To avoid the shortages and limitations of probabilistic and non-probabilistic reliability model for structural reliability analysis in the case of limited samples for basic variables, a new imprecise probability model is proposed. Confidence interval with a given confidence is calculated on the basis of small samples by gray theory, which is not depending on the distribution pattern of variable. Then basic probability assignments and focal elements are constructed and approximation methods of structural reliability based on belief and plausibility functions are proposed in the situation that structure limit state function is monotonic and non-monotonic, respectively. The numerical examples show that the new reliability model utilizes all the information included in small samples and considers both aleatory and epistemic uncertainties in them, thus it can rationally measure the safety of the structure and the measurement can be more and more accurate with the increasing of sample size.

  10. Pulse Control Assisted Dynamical Decoupling in a Central Spin Model

    Science.gov (United States)

    Li, Zhao-Yan; Wei, Yong-Bo; Wang, Zhao-Ming; Gu, Yong-Jian; Li, Wen-Dong; Ma, Xiao-Ping

    2017-02-01

    We study pulse control assisted dynamical decoupling through a central spin model in a total Hilbert space. We find that the effective decoupling can be realized by applying a sequence of external pulses. Compared with the bang-bang control which needs infinite strength and infinitesimal short pulses, we show that there is a large parameter space that allows an effective nonperturbative dynamical control. Furthermore, our numerical calculation shows that the reliability can be held for random pulses, such as random pulse time interval or random strength.

  11. Stochastic data-flow graph models for the reliability analysis of communication networks and computer systems

    Energy Technology Data Exchange (ETDEWEB)

    Chen, D.J.

    1988-01-01

    The literature is abundant with combinatorial reliability analysis of communication networks and fault-tolerant computer systems. However, it is very difficult to formulate reliability indexes using combinatorial methods. These limitations have led to the development of time-dependent reliability analysis using stochastic processes. In this research, time-dependent reliability-analysis techniques using Dataflow Graphs (DGF) are developed. The chief advantages of DFG models over other models are their compactness, structural correspondence with the systems, and general amenability to direct interpretation. This makes the verification of the correspondence of the data-flow graph representation to the actual system possible. Several DGF models are developed and used to analyze the reliability of communication networks and computer systems. Specifically, Stochastic Dataflow graphs (SDFG), both the discrete-time and the continuous time models are developed and used to compute time-dependent reliability of communication networks and computer systems. The repair and coverage phenomenon of communication networks is also analyzed using SDFG models.

  12. Reliable modeling of the electronic spectra of realistic uranium complexes

    Science.gov (United States)

    Tecmer, Paweł; Govind, Niranjan; Kowalski, Karol; de Jong, Wibe A.; Visscher, Lucas

    2013-07-01

    We present an EOMCCSD (equation of motion coupled cluster with singles and doubles) study of excited states of the small [UO2]2+ and [UO2]+ model systems as well as the larger UVIO2(saldien) complex. In addition, the triples contribution within the EOMCCSDT and CR-EOMCCSD(T) (completely renormalized EOMCCSD with non-iterative triples) approaches for the [UO2]2+ and [UO2]+ systems as well as the active-space variant of the CR-EOMCCSD(T) method—CR-EOMCCSd(t)—for the UVIO2(saldien) molecule are investigated. The coupled cluster data were employed as benchmark to choose the "best" appropriate exchange-correlation functional for subsequent time-dependent density functional (TD-DFT) studies on the transition energies for closed-shell species. Furthermore, the influence of the saldien ligands on the electronic structure and excitation energies of the [UO2]+ molecule is discussed. The electronic excitations as well as their oscillator dipole strengths modeled with TD-DFT approach using the CAM-B3LYP exchange-correlation functional for the [UVO2(saldien)]- with explicit inclusion of two dimethyl sulfoxide molecules are in good agreement with the experimental data of Takao et al. [Inorg. Chem. 49, 2349 (2010), 10.1021/ic902225f].

  13. Reliability of linear measurements on a virtual bilateral cleft lip and palate model

    NARCIS (Netherlands)

    Oosterkamp, B.C.M.; van der Meer, W.J.; Rutenfrans, M.; Dijkstra, P.U.

    2006-01-01

    Objective: To assess the reliability and validity of measurements performed on three-dimensional virtual models of neonatal bilateral cleft lip and palate patients, compared with measurements performed on plaster cast models. Materials and Methods: Ten high-quality plaster cast models of bilateral c

  14. Forecasting relativistic electron flux using dynamic multiple regression models

    Directory of Open Access Journals (Sweden)

    H.-L. Wei

    2011-02-01

    Full Text Available The forecast of high energy electron fluxes in the radiation belts is important because the exposure of modern spacecraft to high energy particles can result in significant damage to onboard systems. A comprehensive physical model of processes related to electron energisation that can be used for such a forecast has not yet been developed. In the present paper a systems identification approach is exploited to deduce a dynamic multiple regression model that can be used to predict the daily maximum of high energy electron fluxes at geosynchronous orbit from data. It is shown that the model developed provides reliable predictions.

  15. Wind Farm Decentralized Dynamic Modeling With Parameters

    DEFF Research Database (Denmark)

    Soltani, Mohsen; Shakeri, Sayyed Mojtaba; Grunnet, Jacob Deleuran;

    2010-01-01

    Development of dynamic wind flow models for wind farms is part of the research in European research FP7 project AEOLUS. The objective of this report is to provide decentralized dynamic wind flow models with parameters. The report presents a structure for decentralized flow models with inputs from...

  16. Dynamical model for virus spread

    CERN Document Server

    Camelo-Neto, G

    1995-01-01

    The steady state properties of the mean density population of infected cells in a viral spread is simulated by a general forest fire like cellular automaton model with two distinct populations of cells ( permissive and resistant ones) and studied in the framework of the mean field approximation. Stochastic dynamical ingredients are introduced in this model to mimic cells regeneration (with probability {\\it p}) and to consider infection processes by other means than contiguity (with probability {\\it f}). Simulations are carried on a L \\times L square lattice considering the eight first neighbors. The mean density population of infected cells (D_i) is measured as function of the regeneration probability {\\it p}, and analyzed for small values of the ratio {\\it f/p } and for distinct degrees of the cell resistance. The results obtained by a mean field like approach recovers the simulations results. The role of the resistant parameter R (R \\geq 2) on the steady state properties is investigated and discussed in com...

  17. Maintenance overtime policies in reliability theory models with random working cycles

    CERN Document Server

    Nakagawa, Toshio

    2015-01-01

    This book introduces a new concept of replacement in maintenance and reliability theory. Replacement overtime, where replacement occurs at the first completion of a working cycle over a planned time, is a new research topic in maintenance theory and also serves to provide a fresh optimization technique in reliability engineering. In comparing replacement overtime with standard and random replacement techniques theoretically and numerically, 'Maintenance Overtime Policies in Reliability Theory' highlights the key benefits to be gained by adopting this new approach and shows how they can be applied to inspection policies, parallel systems and cumulative damage models. Utilizing the latest research in replacement overtime by internationally recognized experts, readers are introduced to new topics and methods, and learn how to practically apply this knowledge to actual reliability models. This book will serve as an essential guide to a new subject of study for graduate students and researchers and also provides a...

  18. A Generalized Model for Electrical Power Distribution Feeders’ Contributions to System Reliability Indices

    Directory of Open Access Journals (Sweden)

    Ganiyu A. Ajenikoko

    2014-01-01

    Full Text Available Reliability indices are parametric quantities used to assess the performance levels of electrical power distribution systems. In this work, a generalized quadratic model is developed for electrical power distribution system contributions to system reliability indices using Ikeja, Port-Harcourt, Kaduna and Kano distribution system feeders as case studies. The mean System Average Interruption Duration Index (SAIDI, System Average Interruption Frequency Index (SAIFI and Customer Average Interruption Duration Index (CAIDI contributions to system reliability indices for Ikeja, Port-Harcourt, Kaduna and Kano distribution systems were 0.0033, 0.0026, 0.0033 and 0.0018 respectively due to the fact that a prolonged period of interruptions was recorded on most of the feeders attached to Port-Harcourt and Kano distribution systems making them to be less reliable compared to Ikeja and Kaduna distribution systems. The generalized Quadratic model forms a basis for a good design, planning and maintenance of distribution systems at large.

  19. Study on Modeling and Simulation of Reliability Diagnosis of Supply Chain Based on Common Cause Failure

    Directory of Open Access Journals (Sweden)

    Guohua Chen

    2013-01-01

    Full Text Available To diagnose key factors which cause the failure of supply chain, on the base of taking 3-tier supply chain centering on manufacturer as the object, the diagnostic model of reliability of supply chain with common cause failure was established. Then considering unreliability and key importance as quantitative index, the diagnostic algorism of key factors of reliability of supply chain with common cause failure was studied by the method of Monte Carlo Simulation. The algorism can be used to evaluate the reliability of f supply chain and determine key factors which cause the failure of supply chain, which supplies a new method for diagnosing reliability of supply chain based on common cause failure. Finally, an example was presented to prove the feasibility and validity of the model and method.

  20. Dynamic Scapular Movement Analysis: Is It Feasible and Reliable in Stroke Patients during Arm Elevation?

    Science.gov (United States)

    De Baets, Liesbet; Van Deun, Sara; Desloovere, Kaat; Jaspers, Ellen

    2013-01-01

    Knowledge of three-dimensional scapular movements is essential to understand post-stroke shoulder pain. The goal of the present work is to determine the feasibility and the within and between session reliability of a movement protocol for three-dimensional scapular movement analysis in stroke patients with mild to moderate impairment, using an optoelectronic measurement system. Scapular kinematics of 10 stroke patients and 10 healthy controls was recorded on two occasions during active anteflexion and abduction from 0° to 60° and from 0° to 120°. All tasks were executed unilaterally and bilaterally. The protocol’s feasibility was first assessed, followed by within and between session reliability of scapular total range of motion (ROM), joint angles at start position and of angular waveforms. Additionally, measurement errors were calculated for all parameters. Results indicated that the protocol was generally feasible for this group of patients and assessors. Within session reliability was very good for all tasks. Between sessions, scapular angles at start position were measured reliably for most tasks, while scapular ROM was more reliable during the 120° tasks. In general, scapular angles showed higher reliability during anteflexion compared to abduction, especially for protraction. Scapular lateral rotations resulted in smallest measurement errors. This study indicates that scapular kinematics can be measured reliably and with precision within one measurement session. In case of multiple test sessions, further methodological optimization is required for this protocol to be suitable for clinical decision-making and evaluation of treatment efficacy. PMID:24244414

  1. Dynamic scapular movement analysis: is it feasible and reliable in stroke patients during arm elevation?

    Directory of Open Access Journals (Sweden)

    Liesbet De Baets

    Full Text Available Knowledge of three-dimensional scapular movements is essential to understand post-stroke shoulder pain. The goal of the present work is to determine the feasibility and the within and between session reliability of a movement protocol for three-dimensional scapular movement analysis in stroke patients with mild to moderate impairment, using an optoelectronic measurement system. Scapular kinematics of 10 stroke patients and 10 healthy controls was recorded on two occasions during active anteflexion and abduction from 0° to 60° and from 0° to 120°. All tasks were executed unilaterally and bilaterally. The protocol's feasibility was first assessed, followed by within and between session reliability of scapular total range of motion (ROM, joint angles at start position and of angular waveforms. Additionally, measurement errors were calculated for all parameters. Results indicated that the protocol was generally feasible for this group of patients and assessors. Within session reliability was very good for all tasks. Between sessions, scapular angles at start position were measured reliably for most tasks, while scapular ROM was more reliable during the 120° tasks. In general, scapular angles showed higher reliability during anteflexion compared to abduction, especially for protraction. Scapular lateral rotations resulted in smallest measurement errors. This study indicates that scapular kinematics can be measured reliably and with precision within one measurement session. In case of multiple test sessions, further methodological optimization is required for this protocol to be suitable for clinical decision-making and evaluation of treatment efficacy.

  2. Reliability analysis and prediction of mixed mode load using Markov Chain Model

    Science.gov (United States)

    Nikabdullah, N.; Singh, S. S. K.; Alebrahim, R.; Azizi, M. A.; K, Elwaleed A.; Noorani, M. S. M.

    2014-06-01

    The aim of this paper is to present the reliability analysis and prediction of mixed mode loading by using a simple two state Markov Chain Model for an automotive crankshaft. The reliability analysis and prediction for any automotive component or structure is important for analyzing and measuring the failure to increase the design life, eliminate or reduce the likelihood of failures and safety risk. The mechanical failures of the crankshaft are due of high bending and torsion stress concentration from high cycle and low rotating bending and torsional stress. The Markov Chain was used to model the two states based on the probability of failure due to bending and torsion stress. In most investigations it revealed that bending stress is much serve than torsional stress, therefore the probability criteria for the bending state would be higher compared to the torsion state. A statistical comparison between the developed Markov Chain Model and field data was done to observe the percentage of error. The reliability analysis and prediction was derived and illustrated from the Markov Chain Model were shown in the Weibull probability and cumulative distribution function, hazard rate and reliability curve and the bathtub curve. It can be concluded that Markov Chain Model has the ability to generate near similar data with minimal percentage of error and for a practical application; the proposed model provides a good accuracy in determining the reliability for the crankshaft under mixed mode loading.

  3. Reliability analysis and prediction of mixed mode load using Markov Chain Model

    Energy Technology Data Exchange (ETDEWEB)

    Nikabdullah, N. [Department of Mechanical and Materials Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia and Institute of Space Science (ANGKASA), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (Malaysia); Singh, S. S. K.; Alebrahim, R.; Azizi, M. A. [Department of Mechanical and Materials Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (Malaysia); K, Elwaleed A. [Institute of Space Science (ANGKASA), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (Malaysia); Noorani, M. S. M. [School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (Malaysia)

    2014-06-19

    The aim of this paper is to present the reliability analysis and prediction of mixed mode loading by using a simple two state Markov Chain Model for an automotive crankshaft. The reliability analysis and prediction for any automotive component or structure is important for analyzing and measuring the failure to increase the design life, eliminate or reduce the likelihood of failures and safety risk. The mechanical failures of the crankshaft are due of high bending and torsion stress concentration from high cycle and low rotating bending and torsional stress. The Markov Chain was used to model the two states based on the probability of failure due to bending and torsion stress. In most investigations it revealed that bending stress is much serve than torsional stress, therefore the probability criteria for the bending state would be higher compared to the torsion state. A statistical comparison between the developed Markov Chain Model and field data was done to observe the percentage of error. The reliability analysis and prediction was derived and illustrated from the Markov Chain Model were shown in the Weibull probability and cumulative distribution function, hazard rate and reliability curve and the bathtub curve. It can be concluded that Markov Chain Model has the ability to generate near similar data with minimal percentage of error and for a practical application; the proposed model provides a good accuracy in determining the reliability for the crankshaft under mixed mode loading.

  4. A New Software Reliability Framework——An Extended Cleanroom Model

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Cleanroom software engineering has been proven effective in improving software development quality while at the same time increasing reliability. To adapt to large software system development, the paper presents an extended the Cleanroom model, which integrates object-oriented method based on stimulus history, reversed engineering idea, automatic testing and reliability assessment into software development. The paper discusses the architecture and realizing technology of ECM.

  5. Relating structure and dynamics in organisation models

    NARCIS (Netherlands)

    Jonkers, C.M.; Treur, J.

    2008-01-01

    To understand how an organisational structure relates to dynamics is an interesting fundamental challenge in the area of social modelling. Specifications of organisational structure usually have a diagrammatic form that abstracts from more detailed dynamics. Dynamic properties of agent systems, on t

  6. Modelling the dynamics of youth subcultures

    CERN Document Server

    Holme, P; Holme, Petter; Gronlund, Andreas

    2005-01-01

    What are the dynamics behind youth subcultures such as punk, hippie, or hip-hop cultures? How does the global dynamics of these subcultures relate to the individual's search for a personal identity? We propose a simple dynamical model to address these questions and find that only a few assumptions of the individual's behaviour are necessary to regenerate known features of youth culture.

  7. Reliability of dynamic sitting balance tests and their correlations with functional mobility for wheelchair users with chronic spinal cord injury

    Directory of Open Access Journals (Sweden)

    Kelly L. Gao

    2015-01-01

    Full Text Available The purpose of this study is to develop a reliable and valid tool for measuring the dynamic sitting balance of wheelchair users with spinal cord injury. The balance tests were performed in nine patients with chronic spinal cord injury (average of 17.2 years postinjury between levels C6 and L1, while they were sitting in their wheelchairs and on a standardized stool (unsupported sitting, twice, 7 days apart. Limits of stability (LOS and sequential weight shifting (SWS were designed in this study. The balance tests measured participants' volitional weight shifting in multiple directions within their base of support. Their mobility scores on the Spinal Cord Independence Measure III were correlated with the balance test results. The LOS results showed moderate to excellent test–retest reliability (intraclass correlation coefficients ranged from 0.673 to 0.990 for both the wheelchair and the unsupported sitting. The SWS results showed moderate to excellent reliability (intraclass correlation coefficients ranged from 0.688 to 0.952. The LOS results correlated significantly with the Spinal Cord Independence Measure III mobility scores only in case of unsupported sitting, but the SWS test results showed significant correlations in both sitting conditions. To sum up, the sitting LOS and SWS tests are reliable and valid tools for assessing the dynamic sitting balance control of patients with spinal cord injury.

  8. Reliability and reference values of two clinical measurements of dynamic and static knee position in healthy children

    DEFF Research Database (Denmark)

    Ortqvist, Maria; Moström, Eva B; Roos, Ewa M.

    2011-01-01

    PURPOSE: The purposes of this study were to evaluate reliability of the Single-limb mini squat test (a dynamic measure of medio-lateral knee position) and the Quadriceps-angle (Q-angle) (a static measure of medio-lateral knee position), present paediatric reference values of the Q......-angle, and evaluate the association between the tests. METHODS: Two hundred and forty-six healthy children (9-16 years) were included (intra/inter-rater reliability for Q-angle (n = 37/85) and for Single-limb mini squat test (n = 33/28)). Dynamic medio-lateral knee position was assessed by the Single-limb mini squat...... test. Static medio-lateral knee position was evaluated by the Q-angle. RESULTS: The reliability of the Single-limb mini squat test was found to be moderate (kappa 0.48-0.57, 95% CI 0.16-0.85, 76-79% agreement). Fair to moderate reliability (ICC 0.35-0.42, 95% CI 0.11-0.66, SEM 1.4°-1.9°, n.s.) of the Q...

  9. A Tutorial on Nonlinear Time-Series Data Mining in Engineering Asset Health and Reliability Prediction: Concepts, Models, and Algorithms

    Directory of Open Access Journals (Sweden)

    Ming Dong

    2010-01-01

    Full Text Available The primary objective of engineering asset management is to optimize assets service delivery potential and to minimize the related risks and costs over their entire life through the development and application of asset health and usage management in which the health and reliability prediction plays an important role. In real-life situations where an engineering asset operates under dynamic operational and environmental conditions, the lifetime of an engineering asset is generally described as monitored nonlinear time-series data and subject to high levels of uncertainty and unpredictability. It has been proved that application of data mining techniques is very useful for extracting relevant features which can be used as parameters for assets diagnosis and prognosis. In this paper, a tutorial on nonlinear time-series data mining in engineering asset health and reliability prediction is given. Besides that an overview on health and reliability prediction techniques for engineering assets is covered, this tutorial will focus on concepts, models, algorithms, and applications of hidden Markov models (HMMs and hidden semi-Markov models (HSMMs in engineering asset health prognosis, which are representatives of recent engineering asset health prediction techniques.

  10. Time-dependent Reliability of Dynamic Systems using Subset Simulation with Splitting over a Series of Correlated Time Intervals

    Science.gov (United States)

    2013-08-01

    Analysis for Composite Hydrokinetic Turbine Blades,” Structural and Multidisciplinary Optimization, DOI 10.1007/s00158-012-0839-8, 2012. 19. Li, J...Design, 131(7), 2009. 20. Hu, Z., and Du, X., “Reliability Analysis for Hydrokinetic Turbine Blades,” Renewable Energy, 48, 251-262, 2012. 21...K., and Beck, J. L., “Subset Simulation and its Application to Seismic Risk Based on Dynamic Analysis,” Journal of Engineering Mechanics, 129, 901

  11. Markov Chain Modelling of Reliability Analysis and Prediction under Mixed Mode Loading

    Institute of Scientific and Technical Information of China (English)

    SINGH Salvinder; ABDULLAH Shahrum; NIK MOHAMED Nik Abdullah; MOHD NOORANI Mohd Salmi

    2015-01-01

    The reliability assessment for an automobile crankshaft provides an important understanding in dealing with the design life of the component in order to eliminate or reduce the likelihood of failure and safety risks. The failures of the crankshafts are considered as a catastrophic failure that leads towards a severe failure of the engine block and its other connecting subcomponents. The reliability of an automotive crankshaft under mixed mode loading using the Markov Chain Model is studied. The Markov Chain is modelled by using a two-state condition to represent the bending and torsion loads that would occur on the crankshaft. The automotive crankshaft represents a good case study of a component under mixed mode loading due to the rotating bending and torsion stresses. An estimation of the Weibull shape parameter is used to obtain the probability density function, cumulative distribution function, hazard and reliability rate functions, the bathtub curve and the mean time to failure. The various properties of the shape parameter is used to model the failure characteristic through the bathtub curve is shown. Likewise, an understanding of the patterns posed by the hazard rate onto the component can be used to improve the design and increase the life cycle based on the reliability and dependability of the component. The proposed reliability assessment provides an accurate, efficient, fast and cost effective reliability analysis in contrast to costly and lengthy experimental techniques.

  12. Reliability of static and dynamic quantitative sensory testing in patients with painful chronic pancreatitis.

    NARCIS (Netherlands)

    Olesen, S.S.; Goor, H. van; Bouwense, S.A.W.; Wilder-Smith, O.H.G.; Drewes, A.M.

    2012-01-01

    BACKGROUND AND OBJECTIVES: Quantitative sensory testing (QST) has proven to be an important instrument to characterize mechanisms underlying somatic and neuropathic pain disorders. However, its reliability has not previously been established in patients with visceral pain. We investigated the

  13. Comparison of Model Reliabilities from Single-Step and Bivariate Blending Methods

    DEFF Research Database (Denmark)

    Taskinen, Matti; Mäntysaari, Esa; Lidauer, Martin;

    2013-01-01

    Model based reliabilities in genetic evaluation are compared between three methods: animal model BLUP, single-step BLUP, and bivariate blending after genomic BLUP. The original bivariate blending is revised in this work to better account animal models. The study data is extracted from the product......Model based reliabilities in genetic evaluation are compared between three methods: animal model BLUP, single-step BLUP, and bivariate blending after genomic BLUP. The original bivariate blending is revised in this work to better account animal models. The study data is extracted from...... the production trait evaluation of Nordic Red dairy cattle. Genotyped bulls with daughters are used as training animals, and genotyped bulls and producing cows as candidate animals. For simplicity, size of the data is chosen so that the full inverses of the mixed model equation coefficient matrices can...... be calculated. Model reliabilities by the single-step and the bivariate blending methods were higher than by animal model due to genomic information. Compared to the single-step method, the bivariate blending method reliability estimates were, in general, lower. Computationally bivariate blending method was...

  14. Statistical Degradation Models for Reliability Analysis in Non-Destructive Testing

    Science.gov (United States)

    Chetvertakova, E. S.; Chimitova, E. V.

    2017-04-01

    In this paper, we consider the application of the statistical degradation models for reliability analysis in non-destructive testing. Such models enable to estimate the reliability function (the dependence of non-failure probability on time) for the fixed critical level using the information of the degradation paths of tested items. The most widely used models are the gamma and Wiener degradation models, in which the gamma or normal distributions are assumed as the distribution of degradation increments, respectively. Using the computer simulation technique, we have analysed the accuracy of the reliability estimates, obtained for considered models. The number of increments can be enlarged by increasing the sample size (the number of tested items) or by increasing the frequency of measuring degradation. It has been shown, that the sample size has a greater influence on the accuracy of the reliability estimates in comparison with the measuring frequency. Moreover, it has been shown that another important factor, influencing the accuracy of reliability estimation, is the duration of observing degradation process.

  15. Dynamic stall model for wind turbine airfoils

    DEFF Research Database (Denmark)

    Larsen, J.W.; Nielsen, S.R.K.; Krenk, Steen

    2007-01-01

    A model is presented for aerodynamic lift of wind turbine profiles under dynamic stall. The model combines memory delay effects under attached flow with reduced lift due to flow separation under dynamic stall conditions. The model is based on a backbone curve in the form of the static lift...... conditions, nonstationary effects are included by three mechanisms: a delay of the lift coefficient of fully attached flow via a second-order filter, a delay of the development of separation represented via a first-order filter, and a lift contribution due to leading edge separation also represented via...... during dynamic stall conditions. The proposed model is compared with five other dynamic stall models including, among others, the Beddoes-Leishman model and the ONERA model. It is demonstrated that the proposed model performs equally well or even better than more complicated models and that the included...

  16. An adaptive neuro fuzzy model for estimating the reliability of component-based software systems

    Directory of Open Access Journals (Sweden)

    Kirti Tyagi

    2014-01-01

    Full Text Available Although many algorithms and techniques have been developed for estimating the reliability of component-based software systems (CBSSs, much more research is needed. Accurate estimation of the reliability of a CBSS is difficult because it depends on two factors: component reliability and glue code reliability. Moreover, reliability is a real-world phenomenon with many associated real-time problems. Soft computing techniques can help to solve problems whose solutions are uncertain or unpredictable. A number of soft computing approaches for estimating CBSS reliability have been proposed. These techniques learn from the past and capture existing patterns in data. The two basic elements of soft computing are neural networks and fuzzy logic. In this paper, we propose a model for estimating CBSS reliability, known as an adaptive neuro fuzzy inference system (ANFIS, that is based on these two basic elements of soft computing, and we compare its performance with that of a plain FIS (fuzzy inference system for different data sets.

  17. TWO-PROCEDURE OF MODEL RELIABILITY-BASED OPTIMIZATION FOR WATER DISTRIBUTION SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Recently, considerable emphasis has been laid to the reliability-based optimization model for water distribution systems. But considerable computational effort is needed to determine the reliability-based optimal design of large networks, even of mid-sized networks. In this paper, a new methodology is presented for the reliability analysis for water distribution systems. This methodology consists of two procedures. The first is that the optimal design is constrained only by the pressure heads at demand nodes, done in GRG2. Because the reliability constrains are removed from the optimal problem, a number of simulations do not need to be conducted, so the computer time is greatly decreased. Then, the second procedure is a linear optimal search procedure. In this linear procedure, the optimal results obtained by GRG2 are adjusted by the reliability constrains. The results are a group of commercial diameters of pipes and the constraints of pressure heads and reliability at nodes are satisfied. Therefore, the computer burden is significantly decreased, and the reliability-based optimization is of more practical use.

  18. Reliability Analysis of a Composite Blade Structure Using the Model Correction Factor Method

    DEFF Research Database (Denmark)

    Dimitrov, Nikolay Krasimiroy; Friis-Hansen, Peter; Berggreen, Christian

    2010-01-01

    This paper presents a reliability analysis of a composite blade profile. The so-called Model Correction Factor technique is applied as an effective alternate approach to the response surface technique. The structural reliability is determined by use of a simplified idealised analytical model which...... in a probabilistic sense is model corrected so that it, close to the design point, represents the same structural behaviour as a realistic FE model. This approach leads to considerable improvement of computational efficiency over classical response surface methods, because the numerically “cheap” idealistic model...... is used as the response surface, while the time-consuming detailed model is called only a few times until the simplified model is calibrated to the detailed model....

  19. Model dynamics for quantum computing

    Science.gov (United States)

    Tabakin, Frank

    2017-08-01

    A model master equation suitable for quantum computing dynamics is presented. In an ideal quantum computer (QC), a system of qubits evolves in time unitarily and, by virtue of their entanglement, interfere quantum mechanically to solve otherwise intractable problems. In the real situation, a QC is subject to decoherence and attenuation effects due to interaction with an environment and with possible short-term random disturbances and gate deficiencies. The stability of a QC under such attacks is a key issue for the development of realistic devices. We assume that the influence of the environment can be incorporated by a master equation that includes unitary evolution with gates, supplemented by a Lindblad term. Lindblad operators of various types are explored; namely, steady, pulsed, gate friction, and measurement operators. In the master equation, we use the Lindblad term to describe short time intrusions by random Lindblad pulses. The phenomenological master equation is then extended to include a nonlinear Beretta term that describes the evolution of a closed system with increasing entropy. An external Bath environment is stipulated by a fixed temperature in two different ways. Here we explore the case of a simple one-qubit system in preparation for generalization to multi-qubit, qutrit and hybrid qubit-qutrit systems. This model master equation can be used to test the stability of memory and the efficacy of quantum gates. The properties of such hybrid master equations are explored, with emphasis on the role of thermal equilibrium and entropy constraints. Several significant properties of time-dependent qubit evolution are revealed by this simple study.

  20. Value-Added Models for Teacher Preparation Programs: Validity and Reliability Threats, and a Manageable Alternative

    Science.gov (United States)

    Brady, Michael P.; Heiser, Lawrence A.; McCormick, Jazarae K.; Forgan, James

    2016-01-01

    High-stakes standardized student assessments are increasingly used in value-added evaluation models to connect teacher performance to P-12 student learning. These assessments are also being used to evaluate teacher preparation programs, despite validity and reliability threats. A more rational model linking student performance to candidates who…

  1. solveME: fast and reliable solution of nonlinear ME models

    DEFF Research Database (Denmark)

    Yang, Laurence; Ma, Ding; Ebrahim, Ali

    2016-01-01

    reconstructions (M models), are multiscale, and growth maximization is a nonlinear programming (NLP) problem, mainly due to macromolecule dilution constraints. Results: Here, we address these computational challenges. We develop a fast and numerically reliable solution method for growth maximization in ME models...

  2. Reliability-economics analysis models for photovoltaic power systems. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Stember, L.H.; Huss, W.R.; Bridgman, M.S.

    1982-11-01

    This report describes the development of modeling techniques to characterize the reliability, availability, and maintenance costs of photovoltaic power systems. The developed models can be used by designers of PV systems in making design decisions and trade-offs to minimize life-cycle energy costs.

  3. Bitwise identical compiling setup: prospective for reproducibility and reliability of earth system modeling

    Directory of Open Access Journals (Sweden)

    R. Li

    2015-11-01

    Full Text Available Reproducibility and reliability are fundamental principles of scientific research. A compiling setup that includes a specific compiler version and compiler flags is essential technical supports for Earth system modeling. With the fast development of computer software and hardware, compiling setup has to be updated frequently, which challenges the reproducibility and reliability of Earth system modeling. The existing results of a simulation using an original compiling setup may be irreproducible by a newer compiling setup because trivial round-off errors introduced by the change of compiling setup can potentially trigger significant changes in simulation results. Regarding the reliability, a compiler with millions of lines of codes may have bugs that are easily overlooked due to the uncertainties or unknowns in Earth system modeling. To address these challenges, this study shows that different compiling setups can achieve exactly the same (bitwise identical results in Earth system modeling, and a set of bitwise identical compiling setups of a model can be used across different compiler versions and different compiler flags. As a result, the original results can be more easily reproduced; for example, the original results with an older compiler version can be reproduced exactly with a newer compiler version. Moreover, this study shows that new test cases can be generated based on the differences of bitwise identical compiling setups between different models, which can help detect software bugs or risks in the codes of models and compilers and finally improve the reliability of Earth system modeling.

  4. Reliable dual tensor model estimation in single and crossing fibers based on jeffreys prior

    NARCIS (Netherlands)

    J. Yang (Jianfei); D.H.J. Poot; M.W.A. Caan (Matthan); Su, T. (Tanja); C.B. Majoie (Charles); L.J. van Vliet (Lucas); F. Vos (Frans)

    2016-01-01

    textabstractPurpose This paper presents and studies a framework for reliable modeling of diffusion MRI using a data-acquisition adaptive prior. Methods Automated relevance determination estimates the mean of the posterior distribution of a rank-2 dual tensor model exploiting Jeffreys prior (JARD).

  5. An immune based dynamic intrusion detection model

    Institute of Scientific and Technical Information of China (English)

    LI Tao

    2005-01-01

    With the dynamic description method for self and antigen, and the concept of dynamic immune tolerance for lymphocytes in network-security domain presented in this paper, a new immune based dynamic intrusion detection model (Idid) is proposed. In Idid, the dynamic models and the corresponding recursive equations of the lifecycle of mature lymphocytes, and the immune memory are built. Therefore, the problem of the dynamic description of self and nonself in computer immune systems is solved, and the defect of the low efficiency of mature lymphocyte generating in traditional computer immune systems is overcome. Simulations of this model are performed, and the comparison experiment results show that the proposed dynamic intrusion detection model has a better adaptability than the traditional methods.

  6. Reliability modeling of digital RPS with consideration of undetected software faults

    Energy Technology Data Exchange (ETDEWEB)

    Khalaquzzaman, M.; Lee, Seung Jun; Jung, Won Dea [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Man Cheol [Chung Ang Univ., Seoul (Korea, Republic of)

    2013-10-15

    This paper provides overview of different software reliability methodologies and proposes a technic for estimating the reliability of RPS with consideration of undetected software faults. Software reliability analysis of safety critical software has been challenging despite spending a huge effort for developing large number of software reliability models, and no consensus yet to attain on an appropriate modeling methodology. However, it is realized that the combined application of BBN based SDLC fault prediction method and random black-box testing of software would provide better ground for reliability estimation of safety critical software. Digitalizing the reactor protection system of nuclear power plant has been initiated several decades ago and now full digitalization has been adopted in the new generation of NPPs around the world because digital I and C systems have many better technical features like easier configurability and maintainability over analog I and C systems. Digital I and C systems are also drift-free and incorporation of new features is much easier. Rules and regulation for safe operation of NPPs are established and has been being practiced by the operators as well as regulators of NPPs to ensure safety. The failure mechanism of hardware and analog systems well understood and the risk analysis methods for these components and systems are well established. However, digitalization of I and C system in NPP introduces some crisis and uncertainty in reliability analysis methods of the digital systems/components because software failure mechanisms are still unclear.

  7. Reliability Measure Model for Assistive Care Loop Framework Using Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Venki Balasubramanian

    2010-01-01

    Full Text Available Body area wireless sensor networks (BAWSNs are time-critical systems that rely on the collective data of a group of sensor nodes. Reliable data received at the sink is based on the collective data provided by all the source sensor nodes and not on individual data. Unlike conventional reliability, the definition of retransmission is inapplicable in a BAWSN and would only lead to an elapsed data arrival that is not acceptable for time-critical application. Time-driven applications require high data reliability to maintain detection and responses. Hence, the transmission reliability for the BAWSN should be based on the critical time. In this paper, we develop a theoretical model to measure a BAWSN's transmission reliability, based on the critical time. The proposed model is evaluated through simulation and then compared with the experimental results conducted in our existing Active Care Loop Framework (ACLF. We further show the effect of the sink buffer in transmission reliability after a detailed study of various other co-existing parameters.

  8. Operation reliability assessment for cutting tools by applying a proportional covariate model to condition monitoring information.

    Science.gov (United States)

    Cai, Gaigai; Chen, Xuefeng; Li, Bing; Chen, Baojia; He, Zhengjia

    2012-09-25

    The reliability of cutting tools is critical to machining precision and production efficiency. The conventional statistic-based reliability assessment method aims at providing a general and overall estimation of reliability for a large population of identical units under given and fixed conditions. However, it has limited effectiveness in depicting the operational characteristics of a cutting tool. To overcome this limitation, this paper proposes an approach to assess the operation reliability of cutting tools. A proportional covariate model is introduced to construct the relationship between operation reliability and condition monitoring information. The wavelet packet transform and an improved distance evaluation technique are used to extract sensitive features from vibration signals, and a covariate function is constructed based on the proportional covariate model. Ultimately, the failure rate function of the cutting tool being assessed is calculated using the baseline covariate function obtained from a small sample of historical data. Experimental results and a comparative study show that the proposed method is effective for assessing the operation reliability of cutting tools.

  9. Workflow-Based Dynamic Enterprise Modeling

    Institute of Scientific and Technical Information of China (English)

    黄双喜; 范玉顺; 罗海滨; 林慧萍

    2002-01-01

    Traditional systems for enterprise modeling and business process control are often static and cannot adapt to the changing environment. This paper presents a workflow-based method to dynamically execute the enterprise model. This method gives an explicit representation of the business process logic and the relationships between the elements involved in the process. An execution-oriented integrated enterprise modeling system is proposed in combination with other enterprise views. The enterprise model can be established and executed dynamically in the actual environment due to the dynamic properties of the workflow model.

  10. Dynamical model of the kinesin protein motor

    CERN Document Server

    Nesterov, Alexander I; Ramírez, Mónica F

    2016-01-01

    We model and simulate the stepping dynamics of the kinesin motor including electric and mechanical forces, environmental noise, and the complicated potentials produced by tracking and neighboring protofilaments. Our dynamical model supports the hand-over-hand mechanism of the kinesin stepping. Our theoretical predictions and numerical simulations include the off-axis displacements of the kinesin heads while the steps are performed. The results obtained are in a good agreement with recent experiments on the kinesin dynamics.

  11. A simplified model of software project dynamics

    OpenAIRE

    Ruiz Carreira, Mercedes; Ramos Román, Isabel; Toro Bonilla, Miguel

    2001-01-01

    The simulation of a dynamic model for software development projects (hereinafter SDPs) helps to investigate the impact of a technological change, of different management policies, and of maturity level of organisations over the whole project. In the beginning of the 1990s, with the appearance of the dynamic model for SDPs by Abdel-Hamid and Madnick [Software Project Dynamics: An Integrated Approach, Prentice-Hall, Englewood Cliffs, NJ, 1991], a significant advance took place in the field of p...

  12. Reliability Stress-Strength Models for Dependent Observations with Applications in Clinical Trials

    Science.gov (United States)

    Kushary, Debashis; Kulkarni, Pandurang M.

    1995-01-01

    We consider the applications of stress-strength models in studies involving clinical trials. When studying the effects and side effects of certain procedures (treatments), it is often the case that observations are correlated due to subject effect, repeated measurements and observing many characteristics simultaneously. We develop maximum likelihood estimator (MLE) and uniform minimum variance unbiased estimator (UMVUE) of the reliability which in clinical trial studies could be considered as the chances of increased side effects due to a particular procedure compared to another. The results developed apply to both univariate and multivariate situations. Also, for the univariate situations we develop simple to use lower confidence bounds for the reliability. Further, we consider the cases when both stress and strength constitute time dependent processes. We define the future reliability and obtain methods of constructing lower confidence bounds for this reliability. Finally, we conduct simulation studies to evaluate all the procedures developed and also to compare the MLE and the UMVUE.

  13. Modeling Optimal Scheduling for Pumping System to Minimize Operation Cost and Enhance Operation Reliability

    Directory of Open Access Journals (Sweden)

    Yin Luo

    2012-01-01

    Full Text Available Traditional pump scheduling models neglect the operation reliability which directly relates with the unscheduled maintenance cost and the wear cost during the operation. Just for this, based on the assumption that the vibration directly relates with the operation reliability and the degree of wear, it could express the operation reliability as the normalization of the vibration level. The characteristic of the vibration with the operation point was studied, it could be concluded that idealized flow versus vibration plot should be a distinct bathtub shape. There is a narrow sweet spot (80 to 100 percent BEP to obtain low vibration levels in this shape, and the vibration also follows similar law with the square of the rotation speed without resonance phenomena. Then, the operation reliability could be modeled as the function of the capacity and rotation speed of the pump and add this function to the traditional model to form the new. And contrast with the tradition method, the result shown that the new model could fix the result produced by the traditional, make the pump operate in low vibration, then the operation reliability could increase and the maintenance cost could decrease.

  14. Explicit models for dynamic software

    NARCIS (Netherlands)

    Bosloper, Ivor; Siljee, Johanneke; Nijhuis, Jos; Nord, R; Medvidovic, N; Krikhaar, R; Khrhaar, R; Stafford, J; Bosch, J

    2006-01-01

    A key aspect in creating autonomous dynamic software systems is the possibility of reasoning about properties of runtime variability and dynamic behavior, e.g. when and how to reconfigure the system. Currently these properties are often not made explicit in the software architecture. We argue that

  15. Explicit models for dynamic software

    NARCIS (Netherlands)

    Bosloper, Ivor; Siljee, Johanneke; Nijhuis, Jos; Nord, R; Medvidovic, N; Krikhaar, R; Khrhaar, R; Stafford, J; Bosch, J

    2006-01-01

    A key aspect in creating autonomous dynamic software systems is the possibility of reasoning about properties of runtime variability and dynamic behavior, e.g. when and how to reconfigure the system. Currently these properties are often not made explicit in the software architecture. We argue that h

  16. Comparative dynamics in a health investment model.

    Science.gov (United States)

    Eisenring, C

    1999-10-01

    The method of comparative dynamics fully exploits the inter-temporal structure of optimal control models. I derive comparative dynamic results in a simplified demand for health model. The effect of a change in the depreciation rate on the optimal paths for health capital and investment in health is studied by use of a phase diagram.

  17. Dynamic Heat Transfer Model of Refrigerated Foodstuff

    DEFF Research Database (Denmark)

    Cai, Junping; Risum, Jørgen; Thybo, Claus

    2006-01-01

    their temperature relation. This paper discusses the dynamic heat transfer model of foodstuff inside the display cabinet, one-dimensional dynamic model is developed, and the Explicit Finite Difference Method is applied, to handle the unsteady heat transfer problem with phase change, as well as time varying boundary...

  18. System dynamics modelling of situation awareness

    CSIR Research Space (South Africa)

    Oosthuizen, R

    2015-11-01

    Full Text Available . The feedback loops and delays in the Command and Control system also contribute to the complex dynamic behavior. This paper will build on existing situation awareness models to develop a System Dynamics model to support a qualitative investigation through...

  19. Bayesian Hierarchical Scale Mixtures of Log-Normal Models for Inference in Reliability with Stochastic Constraint

    Directory of Open Access Journals (Sweden)

    Hea-Jung Kim

    2017-06-01

    Full Text Available This paper develops Bayesian inference in reliability of a class of scale mixtures of log-normal failure time (SMLNFT models with stochastic (or uncertain constraint in their reliability measures. The class is comprehensive and includes existing failure time (FT models (such as log-normal, log-Cauchy, and log-logistic FT models as well as new models that are robust in terms of heavy-tailed FT observations. Since classical frequency approaches to reliability analysis based on the SMLNFT model with stochastic constraint are intractable, the Bayesian method is pursued utilizing a Markov chain Monte Carlo (MCMC sampling based approach. This paper introduces a two-stage maximum entropy (MaxEnt prior, which elicits a priori uncertain constraint and develops Bayesian hierarchical SMLNFT model by using the prior. The paper also proposes an MCMC method for Bayesian inference in the SMLNFT model reliability and calls attention to properties of the MaxEnt prior that are useful for method development. Finally, two data sets are used to illustrate how the proposed methodology works.

  20. The Challenges to Coupling Dynamic Geospatial Models

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, N

    2006-06-23

    Many applications of modeling spatial dynamic systems focus on a single system and a single process, ignoring the geographic and systemic context of the processes being modeled. A solution to this problem is the coupled modeling of spatial dynamic systems. Coupled modeling is challenging for both technical reasons, as well as conceptual reasons. This paper explores the benefits and challenges to coupling or linking spatial dynamic models, from loose coupling, where information transfer between models is done by hand, to tight coupling, where two (or more) models are merged as one. To illustrate the challenges, a coupled model of Urbanization and Wildfire Risk is presented. This model, called Vesta, was applied to the Santa Barbara, California region (using real geospatial data), where Urbanization and Wildfires occur and recur, respectively. The preliminary results of the model coupling illustrate that coupled modeling can lead to insight into the consequences of processes acting on their own.

  1. Hydration dynamics near a model protein surface

    Energy Technology Data Exchange (ETDEWEB)

    Russo, Daniela; Hura, Greg; Head-Gordon, Teresa

    2003-09-01

    The evolution of water dynamics from dilute to very high concentration solutions of a prototypical hydrophobic amino acid with its polar backbone, N-acetyl-leucine-methylamide (NALMA), is studied by quasi-elastic neutron scattering and molecular dynamics simulation for both the completely deuterated and completely hydrogenated leucine monomer. We observe several unexpected features in the dynamics of these biological solutions under ambient conditions. The NALMA dynamics shows evidence of de Gennes narrowing, an indication of coherent long timescale structural relaxation dynamics. The translational water dynamics are analyzed in a first approximation with a jump diffusion model. At the highest solute concentrations, the hydration water dynamics is significantly suppressed and characterized by a long residential time and a slow diffusion coefficient. The analysis of the more dilute concentration solutions takes into account the results of the 2.0M solution as a model of the first hydration shell. Subtracting the first hydration layer based on the 2.0M spectra, the translational diffusion dynamics is still suppressed, although the rotational relaxation time and residential time are converged to bulk-water values. Molecular dynamics analysis shows spatially heterogeneous dynamics at high concentration that becomes homogeneous at more dilute concentrations. We discuss the hydration dynamics results of this model protein system in the context of glassy systems, protein function, and protein-protein interfaces.

  2. Proof-of-Concept Demonstrations for Computation-Based Human Reliability Analysis. Modeling Operator Performance During Flooding Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Joe, Jeffrey Clark [Idaho National Lab. (INL), Idaho Falls, ID (United States); Boring, Ronald Laurids [Idaho National Lab. (INL), Idaho Falls, ID (United States); Herberger, Sarah Elizabeth Marie [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mandelli, Diego [Idaho National Lab. (INL), Idaho Falls, ID (United States); Smith, Curtis Lee [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    The United States (U.S.) Department of Energy (DOE) Light Water Reactor Sustainability (LWRS) program has the overall objective to help sustain the existing commercial nuclear power plants (NPPs). To accomplish this program objective, there are multiple LWRS “pathways,” or research and development (R&D) focus areas. One LWRS focus area is called the Risk-Informed Safety Margin and Characterization (RISMC) pathway. Initial efforts under this pathway to combine probabilistic and plant multi-physics models to quantify safety margins and support business decisions also included HRA, but in a somewhat simplified manner. HRA experts at Idaho National Laboratory (INL) have been collaborating with other experts to develop a computational HRA approach, called the Human Unimodel for Nuclear Technology to Enhance Reliability (HUNTER), for inclusion into the RISMC framework. The basic premise of this research is to leverage applicable computational techniques, namely simulation and modeling, to develop and then, using RAVEN as a controller, seamlessly integrate virtual operator models (HUNTER) with 1) the dynamic computational MOOSE runtime environment that includes a full-scope plant model, and 2) the RISMC framework PRA models already in use. The HUNTER computational HRA approach is a hybrid approach that leverages past work from cognitive psychology, human performance modeling, and HRA, but it is also a significant departure from existing static and even dynamic HRA methods. This report is divided into five chapters that cover the development of an external flooding event test case and associated statistical modeling considerations.

  3. Model specification and the reliability of fMRI results: implications for longitudinal neuroimaging studies in psychiatry.

    Directory of Open Access Journals (Sweden)

    Jay C Fournier

    Full Text Available Functional Magnetic Resonance Imagine (fMRI is an important assessment tool in longitudinal studies of mental illness and its treatment. Understanding the psychometric properties of fMRI-based metrics, and the factors that influence them, will be critical for properly interpreting the results of these efforts. The current study examined whether the choice among alternative model specifications affects estimates of test-retest reliability in key emotion processing regions across a 6-month interval. Subjects (N = 46 performed an emotional-faces paradigm during fMRI in which neutral faces dynamically morphed into one of four emotional faces. Median voxelwise intraclass correlation coefficients (mvICCs were calculated to examine stability over time in regions showing task-related activity as well as in bilateral amygdala. Four modeling choices were evaluated: a default model that used the canonical hemodynamic response function (HRF, a flexible HRF model that included additional basis functions, a modified CompCor (mCompCor model that added corrections for physiological noise in the global signal, and a final model that combined the flexible HRF and mCompCor models. Model residuals were examined to determine the degree to which each pipeline met modeling assumptions. Results indicated that the choice of modeling approaches impacts both the degree to which model assumptions are met and estimates of test-retest reliability. ICC estimates in the visual cortex increased from poor (mvICC = 0.31 in the default pipeline to fair (mvICC = 0.45 in the full alternative pipeline - an increase of 45%. In nearly all tests, the models with the fewest assumption violations generated the highest ICC estimates. Implications for longitudinal treatment studies that utilize fMRI are discussed.

  4. STOCHASTIC OBJECT-ORIENTED PETRI NETS (SOPNS) AND ITS APPLICATION IN MODELING OF MANUFACTURING SYSTEM RELIABILITY

    Institute of Scientific and Technical Information of China (English)

    Jiang Zhibin; He Junming

    2003-01-01

    Object-oriented Petri nets (OPNs) is extended into stochastic object-oriented Petri nets (SOPNs) by associating the OPN of an object with stochastic transitions and introducing stochastic places. The stochastic transition of the SOPNs of a production resources can be used to model its reliability, while the SOPN of a production resource can describe its performance with reliability considered. The SOPN model of a case production system is built to illustrate the relationship between the system's performances and the failures of individual production resources.

  5. Dynamic Factor Models for the Volatility Surface

    DEFF Research Database (Denmark)

    van der Wel, Michel; Ozturk, Sait R.; Dijk, Dick van

    The implied volatility surface is the collection of volatilities implied by option contracts for different strike prices and time-to-maturity. We study factor models to capture the dynamics of this three-dimensional implied volatility surface. Three model types are considered to examine desirable...... features for representing the surface and its dynamics: a general dynamic factor model, restricted factor models designed to capture the key features of the surface along the moneyness and maturity dimensions, and in-between spline-based methods. Key findings are that: (i) the restricted and spline......-based models are both rejected against the general dynamic factor model, (ii) the factors driving the surface are highly persistent, (iii) for the restricted models option Delta is preferred over the more often used strike relative to spot price as measure for moneyness....

  6. Comprehensive Survey on Dynamic Graph Models

    Directory of Open Access Journals (Sweden)

    Aya Zaki

    2016-02-01

    Full Text Available Most of the critical real-world networks are con-tinuously changing and evolving with time. Motivated by the growing importance and widespread impact of this type of networks, the dynamic nature of these networks have gained a lot of attention. Because of their intrinsic and special characteristics, these networks are best represented by dynamic graph models. To cope with their evolving nature, the representation model must keep the historical information of the network along with its temporal time. Storing such amount of data, poses many problems from the perspective of dynamic graph data management. This survey provides an in-depth overview on dynamic graph related problems. Novel categorization and classification of the state of the art dynamic graph models are also presented in a systematic and comprehensive way. Finally, we discuss dynamic graph processing including the output representation of its algorithms.

  7. Dynamics Models of Interacting Torques of Hydrodynamic Retarder Braking Process

    Directory of Open Access Journals (Sweden)

    Wenhao Shen

    2013-01-01

    Full Text Available Hydrodynamic retarder is a kind of assist braking device, which can transfer the vehicle kinetic energy into the heat energy of working medium. There are complicated three-dimensional viscous incompressible turbulent flows in hydrodynamic retarder, so that it is difficult to represent the parameters changing phenomenon and investigate the interactional law. In order to develop a kind of reliable theoretical model for internal flow field, in this study, the dynamics models of interacting torques between impellers and working fluid were constructed based on braking energy transfer principle by using Euler theory to describe the flow state in view of time scale. The model can truly represent the dynamic braking process.

  8. Reliability based design optimization of concrete mix proportions using generalized ridge regression model

    Directory of Open Access Journals (Sweden)

    Rachna Aggarwal

    2014-12-01

    Full Text Available This paper presents Reliability Based Design Optimization (RBDO model to deal with uncertainties involved in concrete mix design process. The optimization problem is formulated in such a way that probabilistic concrete mix input parameters showing random characteristics are determined by minimizing the cost of concrete subjected to concrete compressive strength constraint for a given target reliability.  Linear and quadratic models based on Ordinary Least Square Regression (OLSR, Traditional Ridge Regression (TRR and Generalized Ridge Regression (GRR techniques have been explored to select the best model to explicitly represent compressive strength of concrete. The RBDO model is solved by Sequential Optimization and Reliability Assessment (SORA method using fully quadratic GRR model. Optimization results for a wide range of target compressive strength and reliability levels of 0.90, 0.95 and 0.99 have been reported. Also, safety factor based Deterministic Design Optimization (DDO designs for each case are obtained. It has been observed that deterministic optimal designs are cost effective but proposed RBDO model gives improved design performance.

  9. Time Dependent Dielectric Breakdown in Copper Low-k Interconnects: Mechanisms and Reliability Models

    Directory of Open Access Journals (Sweden)

    Terence K.S. Wong

    2012-09-01

    Full Text Available The time dependent dielectric breakdown phenomenon in copper low-k damascene interconnects for ultra large-scale integration is reviewed. The loss of insulation between neighboring interconnects represents an emerging back end-of-the-line reliability issue that is not fully understood. After describing the main dielectric leakage mechanisms in low-k materials (Poole-Frenkel and Schottky emission, the major dielectric reliability models that had appeared in the literature are discussed, namely: the Lloyd model, 1/E model, thermochemical E model, E1/2 models, E2 model and the Haase model. These models can be broadly categorized into those that consider only intrinsic breakdown (Lloyd, 1/E, E and Haase and those that take into account copper migration in low-k materials (E1/2, E2. For each model, the physical assumptions and the proposed breakdown mechanism will be discussed, together with the quantitative relationship predicting the time to breakdown and supporting experimental data. Experimental attempts on validation of dielectric reliability models using data obtained from low field stressing are briefly discussed. The phenomenon of soft breakdown, which often precedes hard breakdown in porous ultra low-k materials, is highlighted for future research.

  10. Modelling the dynamics of turbulent floods

    CERN Document Server

    Mei, Z; Li, Z; Li, Zhenquan

    1999-01-01

    Consider the dynamics of turbulent flow in rivers, estuaries and floods. Based on the widely used k-epsilon model for turbulence, we use the techniques of centre manifold theory to derive dynamical models for the evolution of the water depth and of vertically averaged flow velocity and turbulent parameters. This new model for the shallow water dynamics of turbulent flow: resolves the vertical structure of the flow and the turbulence; includes interaction between turbulence and long waves; and gives a rational alternative to classical models for turbulent environmental flows.

  11. Flapping Wing Flight Dynamic Modeling

    Science.gov (United States)

    2011-08-22

    von Karman, T. and Burgers, J. M., Gerneral Aerodynamic Theory - Perfect Fluids , Vol. II, Julius Springer , Berlin, 1935. [24] Pesavento, U. and Wang...L., Methods of Analytical Dynamics , McGraw-Hill Book Company, New York, 1970. [34] Deng, X., Schenato, L., Wu, W. C., and Sastry, S. S., Flapping...Micro air vehicle- motivated computational biomechanics in bio ights: aerodynamics, ight dynamics and maneuvering stability, Acta Mechanica

  12. Algorithm for break even availability allocation in process system modification using deterministic valuation model incorporating reliability

    Energy Technology Data Exchange (ETDEWEB)

    Shouri, P.V.; Sreejith, P.S. [Division of Mechanical Engineering, School of Engineering, Cochin University of Science and Technology (CUSAT), Cochin 682 022, Kerala (India)

    2008-06-15

    In the present scenario of energy demand overtaking energy supply, top priority is given for energy conservation programs and policies. As a result, most existing systems are redesigned or modified with a view for improving energy efficiency. Often these modifications can have an impact on process system configuration, thereby affecting process system reliability. The paper presents a model for valuation of process systems incorporating reliability that can be used to determine the change in process system value resulting from system modification. The model also determines the break even system availability and presents an algorithm for allocation of component reliabilities of the modified system based on the break even system availability. The developed equations are applied to a steam power plant to study the effect of various operating parameters on system value. (author)

  13. Reliable gain-scheduled control of discrete-time systems and its application to CSTR model

    Science.gov (United States)

    Sakthivel, R.; Selvi, S.; Mathiyalagan, K.; Shi, Y.

    2016-10-01

    This paper is focused on reliable gain-scheduled controller design for a class of discrete-time systems with randomly occurring nonlinearities and actuator fault. Further, the nonlinearity in the system model is assumed to occur randomly according to a Bernoulli distribution with measurable time-varying probability in real time. The main purpose of this paper is to design a gain-scheduled controller by implementing a probability-dependent Lyapunov function and linear matrix inequality (LMI) approach such that the closed-loop discrete-time system is stochastically stable for all admissible randomly occurring nonlinearities. The existence conditions for the reliable controller is formulated in terms of LMI constraints. Finally, the proposed reliable gain-scheduled control scheme is applied on continuously stirred tank reactor model to demonstrate the effectiveness and applicability of the proposed design technique.

  14. A testing-coverage software reliability model considering fault removal efficiency and error generation.

    Science.gov (United States)

    Li, Qiuying; Pham, Hoang

    2017-01-01

    In this paper, we propose a software reliability model that considers not only error generation but also fault removal efficiency combined with testing coverage information based on a nonhomogeneous Poisson process (NHPP). During the past four decades, many software reliability growth models (SRGMs) based on NHPP have been proposed to estimate the software reliability measures, most of which have the same following agreements: 1) it is a common phenomenon that during the testing phase, the fault detection rate always changes; 2) as a result of imperfect debugging, fault removal has been related to a fault re-introduction rate. But there are few SRGMs in the literature that differentiate between fault detection and fault removal, i.e. they seldom consider the imperfect fault removal efficiency. But in practical software developing process, fault removal efficiency cannot always be perfect, i.e. the failures detected might not be removed completely and the original faults might still exist and new faults might be introduced meanwhile, which is referred to as imperfect debugging phenomenon. In this study, a model aiming to incorporate fault introduction rate, fault removal efficiency and testing coverage into software reliability evaluation is developed, using testing coverage to express the fault detection rate and using fault removal efficiency to consider the fault repair. We compare the performance of the proposed model with several existing NHPP SRGMs using three sets of real failure data based on five criteria. The results exhibit that the model can give a better fitting and predictive performance.

  15. Estimating the Parameters of Software Reliability Growth Models Using the Grey Wolf Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Alaa F. Sheta

    2016-04-01

    Full Text Available In this age of technology, building quality software is essential to competing in the business market. One of the major principles required for any quality and business software product for value fulfillment is reliability. Estimating software reliability early during the software development life cycle saves time and money as it prevents spending larger sums fixing a defective software product after deployment. The Software Reliability Growth Model (SRGM can be used to predict the number of failures that may be encountered during the software testing process. In this paper we explore the advantages of the Grey Wolf Optimization (GWO algorithm in estimating the SRGM’s parameters with the objective of minimizing the difference between the estimated and the actual number of failures of the software system. We evaluated three different software reliability growth models: the Exponential Model (EXPM, the Power Model (POWM and the Delayed S-Shaped Model (DSSM. In addition, we used three different datasets to conduct an experimental study in order to show the effectiveness of our approach.

  16. Reliability of Coulomb stress changes inferred from correlated uncertainties of finite-fault source models

    KAUST Repository

    Woessner, J.

    2012-07-14

    Static stress transfer is one physical mechanism to explain triggered seismicity. Coseismic stress-change calculations strongly depend on the parameterization of the causative finite-fault source model. These models are uncertain due to uncertainties in input data, model assumptions, and modeling procedures. However, fault model uncertainties have usually been ignored in stress-triggering studies and have not been propagated to assess the reliability of Coulomb failure stress change (ΔCFS) calculations. We show how these uncertainties can be used to provide confidence intervals for co-seismic ΔCFS-values. We demonstrate this for the MW = 5.9 June 2000 Kleifarvatn earthquake in southwest Iceland and systematically map these uncertainties. A set of 2500 candidate source models from the full posterior fault-parameter distribution was used to compute 2500 ΔCFS maps. We assess the reliability of the ΔCFS-values from the coefficient of variation (CV) and deem ΔCFS-values to be reliable where they are at least twice as large as the standard deviation (CV ≤ 0.5). Unreliable ΔCFS-values are found near the causative fault and between lobes of positive and negative stress change, where a small change in fault strike causes ΔCFS-values to change sign. The most reliable ΔCFS-values are found away from the source fault in the middle of positive and negative ΔCFS-lobes, a likely general pattern. Using the reliability criterion, our results support the static stress-triggering hypothesis. Nevertheless, our analysis also suggests that results from previous stress-triggering studies not considering source model uncertainties may have lead to a biased interpretation of the importance of static stress-triggering.

  17. Technique for Early Reliability Prediction of Software Components Using Behaviour Models

    Science.gov (United States)

    Ali, Awad; N. A. Jawawi, Dayang; Adham Isa, Mohd; Imran Babar, Muhammad

    2016-01-01

    Behaviour models are the most commonly used input for predicting the reliability of a software system at the early design stage. A component behaviour model reveals the structure and behaviour of the component during the execution of system-level functionalities. There are various challenges related to component reliability prediction at the early design stage based on behaviour models. For example, most of the current reliability techniques do not provide fine-grained sequential behaviour models of individual components and fail to consider the loop entry and exit points in the reliability computation. Moreover, some of the current techniques do not tackle the problem of operational data unavailability and the lack of analysis results that can be valuable for software architects at the early design stage. This paper proposes a reliability prediction technique that, pragmatically, synthesizes system behaviour in the form of a state machine, given a set of scenarios and corresponding constraints as input. The state machine is utilized as a base for generating the component-relevant operational data. The state machine is also used as a source for identifying the nodes and edges of a component probabilistic dependency graph (CPDG). Based on the CPDG, a stack-based algorithm is used to compute the reliability. The proposed technique is evaluated by a comparison with existing techniques and the application of sensitivity analysis to a robotic wheelchair system as a case study. The results indicate that the proposed technique is more relevant at the early design stage compared to existing works, and can provide a more realistic and meaningful prediction. PMID:27668748

  18. Technique for Early Reliability Prediction of Software Components Using Behaviour Models.

    Science.gov (United States)

    Ali, Awad; N A Jawawi, Dayang; Adham Isa, Mohd; Imran Babar, Muhammad

    Behaviour models are the most commonly used input for predicting the reliability of a software system at the early design stage. A component behaviour model reveals the structure and behaviour of the component during the execution of system-level functionalities. There are various challenges related to component reliability prediction at the early design stage based on behaviour models. For example, most of the current reliability techniques do not provide fine-grained sequential behaviour models of individual components and fail to consider the loop entry and exit points in the reliability computation. Moreover, some of the current techniques do not tackle the problem of operational data unavailability and the lack of analysis results that can be valuable for software architects at the early design stage. This paper proposes a reliability prediction technique that, pragmatically, synthesizes system behaviour in the form of a state machine, given a set of scenarios and corresponding constraints as input. The state machine is utilized as a base for generating the component-relevant operational data. The state machine is also used as a source for identifying the nodes and edges of a component probabilistic dependency graph (CPDG). Based on the CPDG, a stack-based algorithm is used to compute the reliability. The proposed technique is evaluated by a comparison with existing techniques and the application of sensitivity analysis to a robotic wheelchair system as a case study. The results indicate that the proposed technique is more relevant at the early design stage compared to existing works, and can provide a more realistic and meaningful prediction.

  19. Modeling Mitochondrial Bioenergetics with Integrated Volume Dynamics

    OpenAIRE

    Bazil, Jason N.; Buzzard, Gregery T.; Ann E Rundell

    2010-01-01

    Author Summary Mathematically modeling biological systems challenges our current understanding of the physical and biochemical events contributing to the observed dynamics. It requires careful consideration of hypothesized mechanisms, model development assumptions and details regarding the experimental conditions. We have adopted a modeling approach to translate these factors that explicitly considers the thermodynamic constraints, biochemical states and reaction mechanisms during model devel...

  20. Dynamical CP violation in composite Higgs models

    OpenAIRE

    Hashimoto, S.; Inagaki, Tomohiro; Muta, Taizo

    1993-01-01

    The dynamical origin of the CP violation in electroweak theory is investigated in composite Higgs models. The mechanism of the spontaneous CP violation proposed in other context by Dashen is adopted to construct simple models of the dynamical CP violation. Within the models the size of the neutron electric dipole moment is estimated and the constraint on the $\\varepsilon$-parameter in K-meson decays is discussed.

  1. Reliability and validation of a behavioral model of clinical behavioral formulation

    Directory of Open Access Journals (Sweden)

    Amanda M Muñoz-Martínez

    2011-05-01

    Full Text Available The aim of this study was to determine the reliability and content and predictive validity of a clinical case formulation, developed from a behavioral perspective. A mixed design integrating levels of descriptive analysis and A-B case study with follow-up was used. The study established the reliability of the following descriptive and explanatory categories: (a problem description, (b predisposing factors, (c precipitating factors, (d acquisition and (e inferred mechanism (maintenance. The analysis was performed on cases from 2005 to 2008 formulated with the model derived from the current study. With regards to validity, expert judges considered that the model had content validity. The predictive validity was established across application of model to three case studies. Discussion shows the importance of extending the investigation with the model in other populations and to establish the clinical and concurrent validity of the model.

  2. Reliability reallocation models as a support tools in traffic safety analysis.

    Science.gov (United States)

    Bačkalić, Svetlana; Jovanović, Dragan; Bačkalić, Todor

    2014-04-01

    One of the essential questions placed before a road authority is where to act first, i.e. which road sections should be treated in order to achieve the desired level of reliability of a particular road, while this is at the same time the subject of this research. The paper shows how the reliability reallocation theory can be applied in safety analysis of a road consisting of sections. The model has been successfully tested using two apportionment techniques - ARINC and the minimum effort algorithm. The given methods were applied in the traffic safety analysis as a basic step, for the purpose of achieving a higher level of reliability. The previous methods used for selecting hazardous locations do not provide precise values for the required frequency of accidents, i.e. the time period between the occurrences of two accidents. In other words, they do not allow for the establishment of a connection between a precise demand for increased reliability (expressed as a percentage) and the selection of particular road sections for further analysis. The paper shows that reallocation models can also be applied in road safety analysis, or more precisely, as part of the measures for increasing their level of safety. A tool has been developed for selecting road sections for treatment on the basis of a precisely defined increase in the level of reliability of a particular road, i.e. the mean time between the occurrences of two accidents.

  3. Very Large System Dynamics Models - Lessons Learned

    Energy Technology Data Exchange (ETDEWEB)

    Jacob J. Jacobson; Leonard Malczynski

    2008-10-01

    This paper provides lessons learned from developing several large system dynamics (SD) models. System dynamics modeling practice emphasize the need to keep models small so that they are manageable and understandable. This practice is generally reasonable and prudent; however, there are times that large SD models are necessary. This paper outlines two large SD projects that were done at two Department of Energy National Laboratories, the Idaho National Laboratory and Sandia National Laboratories. This paper summarizes the models and then discusses some of the valuable lessons learned during these two modeling efforts.

  4. Comparing models of Red Knot population dynamics

    Science.gov (United States)

    McGowan, Conor

    2015-01-01

    Predictive population modeling contributes to our basic scientific understanding of population dynamics, but can also inform management decisions by evaluating alternative actions in virtual environments. Quantitative models mathematically reflect scientific hypotheses about how a system functions. In Delaware Bay, mid-Atlantic Coast, USA, to more effectively manage horseshoe crab (Limulus polyphemus) harvests and protect Red Knot (Calidris canutus rufa) populations, models are used to compare harvest actions and predict the impacts on crab and knot populations. Management has been chiefly driven by the core hypothesis that horseshoe crab egg abundance governs the survival and reproduction of migrating Red Knots that stopover in the Bay during spring migration. However, recently, hypotheses proposing that knot dynamics are governed by cyclical lemming dynamics garnered some support in data analyses. In this paper, I present alternative models of Red Knot population dynamics to reflect alternative hypotheses. Using 2 models with different lemming population cycle lengths and 2 models with different horseshoe crab effects, I project the knot population into the future under environmental stochasticity and parametric uncertainty with each model. I then compare each model's predictions to 10 yr of population monitoring from Delaware Bay. Using Bayes' theorem and model weight updating, models can accrue weight or support for one or another hypothesis of population dynamics. With 4 models of Red Knot population dynamics and only 10 yr of data, no hypothesis clearly predicted population count data better than another. The collapsed lemming cycle model performed best, accruing ~35% of the model weight, followed closely by the horseshoe crab egg abundance model, which accrued ~30% of the weight. The models that predicted no decline or stable populations (i.e. the 4-yr lemming cycle model and the weak horseshoe crab effect model) were the most weakly supported.

  5. The dynamic postural control is impaired in patients with chronic ankle instability: reliability and validity of the multiple hop test.

    Science.gov (United States)

    Eechaute, Christophe; Vaes, Peter; Duquet, William

    2009-03-01

    To investigate the reliability and validity of a clinical evaluation method for the assessment of the dynamic postural control in patients with chronic ankle instability (CAI). Cross-sectional study. All tests were conducted at the practice room of the Physical Therapy Department. Twenty-nine healthy subjects and 29 patients with CAI were selected. Participants performed twice a multiple hop test within a 1-week time interval. Subjects hopped on 10 different tape markers while trying to avoid any postural correction. The number and type of balance errors were documented by analyzing the digital video images. Test-retest reliability of the number of balance errors was excellent in patients (intraclass correlation coefficient, ICC = 0.83; standard errors of measurement = 2.6) and moderate in healthy subjects (ICC = 0.64; standard errors of measurement = 2.8). The intra-observer and inter-observer reliability was excellent (ICC > 0.90). Both for the test (P = 0.000) and for the retest (P = 0.000), the number of balance errors in patients was significantly higher (17.9 +/- 6.6) when compared with healthy subjects (10.9 +/- 4.6). On both test occasions, patients with CAI used significantly more a change-in-support strategy (test: P = 0.000; retest: P = 0.000). The number of balance errors was significantly correlated with the time needed to perform the test (r = 0.60; P = 0.000) and the perceived difficulty of the hop test as rated on a visual analogue scale (r = 0.44; P = 0.014). The multiple hop test is a reliable and valid test for detecting an impaired dynamic postural control in patients with CAI.

  6. A Stochastic Cobweb Dynamical Model

    Directory of Open Access Journals (Sweden)

    Serena Brianzoni

    2008-01-01

    _,__0__1, and the forward predictor with probability (1−, so that the expected price at time is a random variable and consequently the dynamics describing the price evolution in time is governed by a stochastic dynamical system. The dynamical system becomes a Markov process when the memory rate vanishes. In particular, we study the Markov chain in the cases of discrete and continuous time. Using a mixture of analytical tools and numerical methods, we show that, when prices take discrete values, the corresponding Markov chain is asymptotically stable. In the case with continuous prices and nonnecessarily zero memory rate, numerical evidence of bounded price oscillations is shown. The role of the memory rate is studied through numerical experiments, this study confirms the stabilizing effects of the presence of resistant memory.

  7. A fast, reliable algorithm for computing frequency responses of state space models

    Science.gov (United States)

    Wette, Matt

    1991-01-01

    Computation of frequency responses for large order systems described by time invariant state space systems often provides a bottleneck in control system analysis. It is shown that banding the A-matrix in the state space model can effectively reduce the computation time for such systems while maintaining reliability in the results produced.

  8. Reviewing progress in PJM's capacity market structure via the new reliability pricing model

    Energy Technology Data Exchange (ETDEWEB)

    Sener, Adil Caner; Kimball, Stefan

    2007-12-15

    The Reliability Pricing Model introduces significant changes to the capacity market structure of PJM. The main feature of the RPM design is a downward-sloping demand curve, which replaces the highly volatile vertical demand curve. The authors review the latest RPM structure, results of the auctions, and the future course of the implementation process. (author)

  9. Bayesian zero-failure reliability modeling and assessment method for multiple numerical control (NC) machine tools

    Institute of Scientific and Technical Information of China (English)

    阚英男; 杨兆军; 李国发; 何佳龙; 王彦鹍; 李洪洲

    2016-01-01

    A new problem that classical statistical methods are incapable of solving is reliability modeling and assessment when multiple numerical control machine tools (NCMTs) reveal zero failures after a reliability test. Thus, the zero-failure data form and corresponding Bayesian model are developed to solve the zero-failure problem of NCMTs, for which no previous suitable statistical model has been developed. An expert−judgment process that incorporates prior information is presented to solve the difficulty in obtaining reliable prior distributions of Weibull parameters. The equations for the posterior distribution of the parameter vector and the Markov chain Monte Carlo (MCMC) algorithm are derived to solve the difficulty of calculating high-dimensional integration and to obtain parameter estimators. The proposed method is applied to a real case; a corresponding programming code and trick are developed to implement an MCMC simulation in WinBUGS, and a mean time between failures (MTBF) of 1057.9 h is obtained. Given its ability to combine expert judgment, prior information, and data, the proposed reliability modeling and assessment method under the zero failure of NCMTs is validated.

  10. 76 FR 28819 - NUREG/CR-XXXX, Development of Quantitative Software Reliability Models for Digital Protection...

    Science.gov (United States)

    2011-05-18

    ... COMMISSION NUREG/CR-XXXX, Development of Quantitative Software Reliability Models for Digital Protection... issued for public comment a document entitled: NUREG/CR-XXXX, ``Development of Quantitative Software... development of regulatory guidance for using risk information related to digital systems in the...

  11. THE EXPECTABLE MODEL OF PARAMETRIC RELIABILITY FOR POWERED ELECTROMAGNETIC UNITS OF RAILWAY ROLLING STOCK

    Directory of Open Access Journals (Sweden)

    M. O. Kostin

    2010-09-01

    Full Text Available The probabilistic model of parametric reliability of power electromagnetic valve contactors of rolling stock which helps to evaluate the probability of failures in condition of switching a contactor (the tractive force during the whole process of operation should be greater than the resulting counteracting force is proposed in the paper.

  12. Mathematical Model of Equipment Unit Reliability for Determination of Optimum Overhaul Periods

    Directory of Open Access Journals (Sweden)

    M. A. Pasiouk

    2009-01-01

    Full Text Available The paper proposes a mathematical model of the equipment unit reliability with due account of operational mode effect and main influencing factors.Its application contributes to reduction of operating costs, optimization of overhaul periods, prolongation of life-service and rational usage of fleet resource.

  13. Modeling the Dynamics of an Information System

    Directory of Open Access Journals (Sweden)

    Jacek Unold

    2003-11-01

    Full Text Available The article concentrates on the nature of a social subsystem of an information system. It analyzes the nature of information processes of collectivity within an IS and introduces a model of IS dynamics. The model is based on the assumption that a social subsystem of an information system works as a nonlinear dynamic system. The model of IS dynamics is verified on the indexes of the stock market. It arises from the basic assumption of the technical analysis of the markets, that is, the index chart reflects the play of demand and supply, which in turn represents the crowd sentiment on the market.

  14. Structural Dynamics Model of a Cartesian Robot

    Science.gov (United States)

    1985-10-01

    34 D FILE COPY AD-A198 053 *.CC Technical Report 1009 Structural Dynamics Model of a Cartesian Robot "DTIC SELEC T E 0 Alfonso Garcia Reynoso MIT...COVERED Structural Dynamics Model of a Cartesian Robot technical report G. PERFORMING ORG. REPORT NUM9ER 7. AUTHO0R(@) S. CONTRACT On GRANT NUMSER...8217 %S S Structural Dynamics Model of a Cartesian Robot by Alfonso Garcia Reynoso BSME Instituto Tecnol6gico de Veracruz (1967) MSME Instituto Tecnol6gico

  15. Equivalent dynamic model of DEMES rotary joint

    Science.gov (United States)

    Zhao, Jianwen; Wang, Shu; Xing, Zhiguang; McCoul, David; Niu, Junyang; Huang, Bo; Liu, Liwu; Leng, Jinsong

    2016-07-01

    The dielectric elastomer minimum energy structure (DEMES) can realize large angular deformations by a small voltage-induced strain of the dielectric elastomer (DE), so it is a suitable candidate to make a rotary joint for a soft robot. Dynamic analysis is necessary for some applications, but the dynamic response of DEMESs is difficult to model because of the complicated morphology and viscoelasticity of the DE film. In this paper, a method composed of theoretical analysis and experimental measurement is presented to model the dynamic response of a DEMES rotary joint under an alternating voltage. Based on measurements of equivalent driving force and damping of the DEMES, the model can be derived. Some experiments were carried out to validate the equivalent dynamic model. The maximum angle error between model and experiment is greater than ten degrees, but it is acceptable to predict angular velocity of the DEMES, therefore, it can be applied in feedforward-feedback compound control.

  16. Modeling microbial growth and dynamics.

    Science.gov (United States)

    Esser, Daniel S; Leveau, Johan H J; Meyer, Katrin M

    2015-11-01

    Modeling has become an important tool for widening our understanding of microbial growth in the context of applied microbiology and related to such processes as safe food production, wastewater treatment, bioremediation, or microbe-mediated mining. Various modeling techniques, such as primary, secondary and tertiary mathematical models, phenomenological models, mechanistic or kinetic models, reactive transport models, Bayesian network models, artificial neural networks, as well as agent-, individual-, and particle-based models have been applied to model microbial growth and activity in many applied fields. In this mini-review, we summarize the basic concepts of these models using examples and applications from food safety and wastewater treatment systems. We further review recent developments in other applied fields focusing on models that explicitly include spatial relationships. Using these examples, we point out the conceptual similarities across fields of application and encourage the combined use of different modeling techniques in hybrid models as well as their cross-disciplinary exchange. For instance, pattern-oriented modeling has its origin in ecology but may be employed to parameterize microbial growth models when experimental data are scarce. Models could also be used as virtual laboratories to optimize experimental design analogous to the virtual ecologist approach. Future microbial growth models will likely become more complex to benefit from the rich toolbox that is now available to microbial growth modelers.

  17. Determination of Wave Model Uncertainties used for Probabilistic Reliability Assessments of Wave Energy Devices

    DEFF Research Database (Denmark)

    Ambühl, Simon; Kofoed, Jens Peter; Sørensen, John Dalsgaard

    2014-01-01

    Wave models used for site assessments are subject to model uncertainties, which need to be quantified when using wave model results for probabilistic reliability assessments. This paper focuses on determination of wave model uncertainties. Considered are four different wave models and validation...... data is collected from published scientific research. The bias, the root-mean-square error as well as the scatter index are considered for the significant wave height as well as the mean zero-crossing wave period. Based on an illustrative generic example it is shown how the estimated uncertainties can...

  18. Forecasting house prices in the 50 states using Dynamic Model Averaging and Dynamic Model Selection

    DEFF Research Database (Denmark)

    Bork, Lasse; Møller, Stig Vinther

    2015-01-01

    We examine house price forecastability across the 50 states using Dynamic Model Averaging and Dynamic Model Selection, which allow for model change and parameter shifts. By allowing the entire forecasting model to change over time and across locations, the forecasting accuracy improves...

  19. Meeting Human Reliability Requirements through Human Factors Design, Testing, and Modeling

    Energy Technology Data Exchange (ETDEWEB)

    R. L. Boring

    2007-06-01

    In the design of novel systems, it is important for the human factors engineer to work in parallel with the human reliability analyst to arrive at the safest achievable design that meets design team safety goals and certification or regulatory requirements. This paper introduces the System Development Safety Triptych, a checklist of considerations for the interplay of human factors and human reliability through design, testing, and modeling in product development. This paper also explores three phases of safe system development, corresponding to the conception, design, and implementation of a system.

  20. On New Cautious Structural Reliability Models in the Framework of imprecise Probabilities

    DEFF Research Database (Denmark)

    Utkin, Lev V.; Kozine, Igor

    2010-01-01

    both aleatory (stochas-tic) and epistemic uncertainty and the flexibility with which information can be represented. The previous research of the authors related to generalizing structural reliability models to impre-cise statistical measures is summarized in Utkin & Kozine (2002) and Utkin (2004...... the above mentioned inputs do not exist and the analyst has on-ly some judgments or measurements (observations) of values of stress and strength. How to utilize this available information for computing the structural reliability and what to do if the number of judgments or measurements is very small...

  1. Mathematic Modeling of Complex Hydraulic Machinery Systems When Evaluating Reliability Using Graph Theory

    Science.gov (United States)

    Zemenkova, M. Yu; Shipovalov, A. N.; Zemenkov, Yu D.

    2016-04-01

    The main technological equipment of pipeline transport of hydrocarbons are hydraulic machines. During transportation of oil mainly used of centrifugal pumps, designed to work in the “pumping station-pipeline” system. Composition of a standard pumping station consists of several pumps, complex hydraulic piping. The authors have developed a set of models and algorithms for calculating system reliability of pumps. It is based on the theory of reliability. As an example, considered one of the estimation methods with the application of graph theory.

  2. Reliability modelling of repairable systems using Petri nets and fuzzy Lambda-Tau methodology

    Energy Technology Data Exchange (ETDEWEB)

    Knezevic, J.; Odoom, E.R

    2001-07-01

    A methodology is developed which uses Petri nets instead of the fault tree methodology and solves for reliability indices utilising fuzzy Lambda-Tau method. Fuzzy set theory is used for representing the failure rate and repair time instead of the classical (crisp) set theory because fuzzy numbers allow expert opinions, linguistic variables, operating conditions, uncertainty and imprecision in reliability information to be incorporated into the system model. Petri nets are used because unlike the fault tree methodology, the use of Petri nets allows efficient simultaneous generation of minimal cut and path sets.

  3. Phone Routing using the Dynamic Memory Model

    DEFF Research Database (Denmark)

    Bendtsen, Claus Nicolaj; Krink, Thiemo

    2002-01-01

    In earlier studies a genetic algorithm (GA) extended with the dynamic memory model has shown remarkable performance on real-world-like problems. In this paper we experiment with routing in communication networks and show that the dynamic memory GA performs remarkable well compared to ant colony o...

  4. System Dynamics Modelling for a Balanced Scorecard

    DEFF Research Database (Denmark)

    Nielsen, Steen; Nielsen, Erland Hejn

    2008-01-01

    Purpose - To construct a dynamic model/framework inspired by a case study based on an international company. As described by the theory, one of the main difficulties of BSC is to foresee the time lag dimension of different types of indicators and their combined dynamic effects. Design/methodology...

  5. Nonlinear dynamic phenomena in the beer model

    DEFF Research Database (Denmark)

    Mosekilde, Erik; Laugesen, Jakob Lund

    2007-01-01

    The production-distribution system or "beer game" is one of the most well-known system dynamics models. Notorious for the complex dynamics it produces, the beer game has been used for nearly five decades to illustrate how structure generates behavior and to explore human decision making. Here we...

  6. Gearbox Reliability Collaborative Phase 1 and 2: Testing and Modeling Results; Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Keller, J.; Guo, Y.; LaCava, W.; Link, H.; McNiff, B.

    2012-05-01

    The Gearbox Reliability Collaborative (GRC) investigates root causes of wind turbine gearbox premature failures and validates design assumptions that affect gearbox reliability using a combined testing and modeling approach. Knowledge gained from the testing and modeling of the GRC gearboxes builds an understanding of how the selected loads and events translate into internal responses of three-point mounted gearboxes. This paper presents some testing and modeling results of the GRC research during Phase 1 and 2. Non-torque loads from the rotor including shaft bending and thrust, traditionally assumed to be uncoupled with gearbox, affect gear and bearing loads and resulting gearbox responses. Bearing clearance increases bearing loads and causes cyclic loading, which could contribute to a reduced bearing life. Including flexibilities of key drivetrain subcomponents is important in order to reproduce the measured gearbox response during the tests using modeling approaches.

  7. Intra- and interrater reliability and agreement of the Danish version of the Dynamic Gait Index in older people with balance impairments

    DEFF Research Database (Denmark)

    Jønsson, Line R; Kristensen, Morten; Tibaek, Sigrid

    2011-01-01

    To examine the intrarater and interrater reliability and agreement of the Danish version of the Dynamic Gait Index (DGI) in hospitalized and community-dwelling older people with balance impairments....

  8. Modeling and Simulation of Reliability & Maintainability Parameters for Reusable Launch Vehicles using Design of Experiments

    Science.gov (United States)

    Unal, Resit; Morris, W. Douglas; White, Nancy H.; Lepsch, Roger A.

    2004-01-01

    This paper describes the development of a methodology for estimating reliability and maintainability distribution parameters for a reusable launch vehicle. A disciplinary analysis code and experimental designs are used to construct approximation models for performance characteristics. These models are then used in a simulation study to estimate performance characteristic distributions efficiently. The effectiveness and limitations of the developed methodology for launch vehicle operations simulations are also discussed.

  9. An Analysis of Starting Points for Setting Up a Model of a More Reliable Ship Propulsion

    OpenAIRE

    Martinović, Dragan; Tudor, Mato; Bernečić, Dean

    2011-01-01

    This paper considers the important requirement for ship propulsion necessary for its immaculate operation, since any failure can endanger the ship and render it useless. Particular attention is given to the failure of auxiliary engines that can also seriously jeopardise the safety of the ship. Therefore the paper presents preliminary investigations for setting up models of reliable ship propulsion accounting for the failure of auxiliary engines. Models of most frequent implementations of e...

  10. A new dynamics model for traffic flow

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    As a study method of traffic flow, dynamics models were developedand applied in the last few decades. However, there exist some flaws in most existing models. In this note, a new dynamics model is proposed by using car-following theory and the usual connection method of micro-macro variables, which can overcome some ubiquitous problems in the existing models. Numerical results show that the new model can very well simulate traffic flow conditions, such as congestion, evacuation of congestion, stop-and-go phenomena and phantom jam.

  11. System principles, mathematical models and methods to ensure high reliability of safety systems

    Science.gov (United States)

    Zaslavskyi, V.

    2017-04-01

    Modern safety and security systems are composed of a large number of various components designed for detection, localization, tracking, collecting, and processing of information from the systems of monitoring, telemetry, control, etc. They are required to be highly reliable in a view to correctly perform data aggregation, processing and analysis for subsequent decision making support. On design and construction phases of the manufacturing of such systems a various types of components (elements, devices, and subsystems) are considered and used to ensure high reliability of signals detection, noise isolation, and erroneous commands reduction. When generating design solutions for highly reliable systems a number of restrictions and conditions such as types of components and various constrains on resources should be considered. Various types of components perform identical functions; however, they are implemented using diverse principles, approaches and have distinct technical and economic indicators such as cost or power consumption. The systematic use of different component types increases the probability of tasks performing and eliminates the common cause failure. We consider type-variety principle as an engineering principle of system analysis, mathematical models based on this principle, and algorithms for solving optimization problems of highly reliable safety and security systems design. Mathematical models are formalized in a class of two-level discrete optimization problems of large dimension. The proposed approach, mathematical models, algorithms can be used for problem solving of optimal redundancy on the basis of a variety of methods and control devices for fault and defects detection in technical systems, telecommunication networks, and energy systems.

  12. Uncertainty quantification and reliability assessment in operational oil spill forecast modeling system.

    Science.gov (United States)

    Hou, Xianlong; Hodges, Ben R; Feng, Dongyu; Liu, Qixiao

    2017-03-15

    As oil transport increasing in the Texas bays, greater risks of ship collisions will become a challenge, yielding oil spill accidents as a consequence. To minimize the ecological damage and optimize rapid response, emergency managers need to be informed with how fast and where oil will spread as soon as possible after a spill. The state-of-the-art operational oil spill forecast modeling system improves the oil spill response into a new stage. However uncertainty due to predicted data inputs often elicits compromise on the reliability of the forecast result, leading to misdirection in contingency planning. Thus understanding the forecast uncertainty and reliability become significant. In this paper, Monte Carlo simulation is implemented to provide parameters to generate forecast probability maps. The oil spill forecast uncertainty is thus quantified by comparing the forecast probability map and the associated hindcast simulation. A HyosPy-based simple statistic model is developed to assess the reliability of an oil spill forecast in term of belief degree. The technologies developed in this study create a prototype for uncertainty and reliability analysis in numerical oil spill forecast modeling system, providing emergency managers to improve the capability of real time operational oil spill response and impact assessment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Data Applicability of Heritage and New Hardware for Launch Vehicle System Reliability Models

    Science.gov (United States)

    Al Hassan Mohammad; Novack, Steven

    2015-01-01

    Many launch vehicle systems are designed and developed using heritage and new hardware. In most cases, the heritage hardware undergoes modifications to fit new functional system requirements, impacting the failure rates and, ultimately, the reliability data. New hardware, which lacks historical data, is often compared to like systems when estimating failure rates. Some qualification of applicability for the data source to the current system should be made. Accurately characterizing the reliability data applicability and quality under these circumstances is crucial to developing model estimations that support confident decisions on design changes and trade studies. This presentation will demonstrate a data-source classification method that ranks reliability data according to applicability and quality criteria to a new launch vehicle. This method accounts for similarities/dissimilarities in source and applicability, as well as operating environments like vibrations, acoustic regime, and shock. This classification approach will be followed by uncertainty-importance routines to assess the need for additional data to reduce uncertainty.

  14. MODELING MICROBUBBLE DYNAMICS IN BIOMEDICAL APPLICATIONS

    Institute of Scientific and Technical Information of China (English)

    CHAHINE Georges L.; HSIAO Chao-Tsung

    2012-01-01

    Controlling mierobubble dynamics to produce desirable biomedical outcomes when and where necessary and avoid deleterious effects requires advanced knowledge,which can be achieved only through a combination of experimental and numerical/analytical techniques.The present communication presents a multi-physics approach to study the dynamics combining viscousinviseid effects,liquid and structure dynamics,and multi bubble interaction.While complex numerical tools are developed and used,the study aims at identifying the key parameters influencing the dynamics,which need to be included in simpler models.

  15. Practical applications of age-dependent reliability models and analysis of operational data

    Energy Technology Data Exchange (ETDEWEB)

    Lannoy, A.; Nitoi, M.; Backstrom, O.; Burgazzi, L.; Couallier, V.; Nikulin, M.; Derode, A.; Rodionov, A.; Atwood, C.; Fradet, F.; Antonov, A.; Berezhnoy, A.; Choi, S.Y.; Starr, F.; Dawson, J.; Palmen, H.; Clerjaud, L

    2005-07-01

    The purpose of the workshop was to present the experience of practical application of time-dependent reliability models. The program of the workshop comprises the following sessions: -) aging management and aging PSA (Probabilistic Safety Assessment), -) modeling, -) operation experience, and -) accelerating aging tests. In order to introduce time aging effect of particular component to the PSA model, it has been proposed to use the constant unavailability values on the short period of time (one year for example) calculated on the basis of age-dependent reliability models. As for modeling, it appears that the problem of too detailed statistical models for application is the lack of data for required parameters. As for operating experience, several methods of operating experience analysis have been presented (algorithms for reliability data elaboration and statistical identification of aging trend). As for accelerated aging tests, it is demonstrated that a combination of operating experience analysis with the results of accelerated aging tests of naturally aged equipment could provide a good basis for continuous operation of instrumentation and control systems.

  16. Airship dynamics modeling: A literature review

    Science.gov (United States)

    Li, Yuwen; Nahon, Meyer; Sharf, Inna

    2011-04-01

    The resurgence of airships has created a need for dynamics models and simulation capabilities adapted to these lighter-than-air vehicles. However, the modeling techniques for airship dynamics have lagged behind and are less systematic than those for fixed-wing aircraft. A state-of-the-art literature review is presented on airship dynamics modeling, aiming to provide a comprehensive description of the main problems in this area and a useful source of references for researchers and engineers interested in modern airship applications. The references are categorized according to the major topics in this area: aerodynamics, flight dynamics, incorporation of structural flexibility, incorporation of atmospheric turbulence, and effects of ballonets. Relevant analytical, numerical, and semi-empirical techniques are discussed, with a particular focus on how the main differences between lighter-than-air and heavier-than-air aircraft have been addressed in the modeling. Directions are suggested for future research on each of these topics.

  17. Computational fluid dynamics modeling in yarn engineering

    CSIR Research Space (South Africa)

    Patanaik, A

    2011-07-01

    Full Text Available This chapter deals with the application of computational fluid dynamics (CFD) modeling in reducing yarn hairiness during the ring spinning process and thereby “engineering” yarn with desired properties. Hairiness significantly affects the appearance...

  18. Molecular dynamics model of dimethyl ether

    Energy Technology Data Exchange (ETDEWEB)

    Lin, B.; Halley, W.J. [Univ. of Minnesota, Minneapolis, MN (United States)

    1995-11-02

    We report a molecular dynamics model of the monomeric liquid dimethyl ether. The united atom approach is used to treat CH{sub 3} groups as point source centers. Partial charges are derived from the experimental dipole moment. Harmonic force constants are used for intramolecular interactions, and their values are so chosen that the model`s fundamental frequencies agree with experimental results. Because we are interested in solvation properties, the model contains flexible molecules, allowing molecular distortion and internal dynamical quantities. We report radial distribution functions and the static structure factors as well as some dynamical quantities such as the dynamical structure factor, infrared absorption, and Raman scattering spectra. Calculated results agree reasonably well with experimental and other simulation results. 25 refs., 8 figs., 1 tab.

  19. Theoretical Model and Dynamic Analysis of Soft Yoke Mooring System

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    As a popular solution for mooring an FPSO (Floating Production, Storage and Offloading) permanently in shallow water, the soft yoke mooring system has been widely used in ocean oil production activities in the Bohai Bay of China. In order to simulate the interaction mechanism and conduct dynamic analysis of the soft yoke mooring system, a theoretical model with basic dynamic equations is established. A numerical iteration algorithm based on error estimation is developed to solve the equations and calculate the dynamic response of the mooring system due to FPSO motions. Validation is conducted by wave basin experimentation. It is shown that the numerical simulation takes only a few iteration times and the final errors are small. Furthermore, the calculated results of both the static and dynamic responses agree well with those ones obtained by the model test. It indicates that the efficiency, the precision, the reliability and the validity of the developed numerical algorithm and program are rather good. It is proposed to develop a real-time monitoring system to further monitor the dynamic performance of the FPSO with a soft yoke mooring system under various real sea environments.

  20. A Reliability Model for Ni-BaTiO3-Based (BME) Ceramic Capacitors

    Science.gov (United States)

    Liu, Donhang

    2014-01-01

    The evaluation of multilayer ceramic capacitors (MLCCs) with base-metal electrodes (BMEs) for potential NASA space project applications requires an in-depth understanding of their reliability. The reliability of an MLCC is defined as the ability of the dielectric material to retain its insulating properties under stated environmental and operational conditions for a specified period of time t. In this presentation, a general mathematic expression of a reliability model for a BME MLCC is developed and discussed. The reliability model consists of three parts: (1) a statistical distribution that describes the individual variation of properties in a test group of samples (Weibull, log normal, normal, etc.), (2) an acceleration function that describes how a capacitors reliability responds to external stresses such as applied voltage and temperature (All units in the test group should follow the same acceleration function if they share the same failure mode, independent of individual units), and (3) the effect and contribution of the structural and constructional characteristics of a multilayer capacitor device, such as the number of dielectric layers N, dielectric thickness d, average grain size r, and capacitor chip size S. In general, a two-parameter Weibull statistical distribution model is used in the description of a BME capacitors reliability as a function of time. The acceleration function that relates a capacitors reliability to external stresses is dependent on the failure mode. Two failure modes have been identified in BME MLCCs: catastrophic and slow degradation. A catastrophic failure is characterized by a time-accelerating increase in leakage current that is mainly due to existing processing defects (voids, cracks, delamination, etc.), or the extrinsic defects. A slow degradation failure is characterized by a near-linear increase in leakage current against the stress time; this is caused by the electromigration of oxygen vacancies (intrinsic defects). The

  1. Stochastic population dynamic models as probability networks

    Science.gov (United States)

    M.E. and D.C. Lee. Borsuk

    2009-01-01

    The dynamics of a population and its response to environmental change depend on the balance of birth, death and age-at-maturity, and there have been many attempts to mathematically model populations based on these characteristics. Historically, most of these models were deterministic, meaning that the results were strictly determined by the equations of the model and...

  2. System Identification by Dynamic Factor Models

    NARCIS (Netherlands)

    C. Heij (Christiaan); W. Scherrer; M. Destler

    1996-01-01

    textabstractThis paper concerns the modelling of stochastic processes by means of dynamic factor models. In such models the observed process is decomposed into a structured part called the latent process, and a remainder that is called noise. The observed variables are treated in a symmetric way, so

  3. Damping mechanisms and models in structural dynamics

    DEFF Research Database (Denmark)

    Krenk, Steen

    2002-01-01

    Several aspects of damping models for dynamic analysis of structures are investigated. First the causality condition for structural response is used to identify rules for the use of complex-valued frequency dependent material models, illustrated by the shortcomings of the elastic hysteretic model...

  4. Bayesian semiparametric dynamic Nelson-Siegel model

    NARCIS (Netherlands)

    C. Cakmakli

    2011-01-01

    This paper proposes the Bayesian semiparametric dynamic Nelson-Siegel model where the density of the yield curve factors and thereby the density of the yields are estimated along with other model parameters. This is accomplished by modeling the error distributions of the factors according to a Diric

  5. Use of measurement theory for operationalization and quantification of psychological constructs in systems dynamics modelling

    Science.gov (United States)

    Fitkov-Norris, Elena; Yeghiazarian, Ara

    2016-11-01

    The analytical tools available to social scientists have traditionally been adapted from tools originally designed for analysis of natural science phenomena. This article discusses the applicability of systems dynamics - a qualitative based modelling approach, as a possible analysis and simulation tool that bridges the gap between social and natural sciences. After a brief overview of the systems dynamics modelling methodology, the advantages as well as limiting factors of systems dynamics to the potential applications in the field of social sciences and human interactions are discussed. The issues arise with regards to operationalization and quantification of latent constructs at the simulation building stage of the systems dynamics methodology and measurement theory is proposed as a ready and waiting solution to the problem of dynamic model calibration, with a view of improving simulation model reliability and validity and encouraging the development of standardised, modular system dynamics models that can be used in social science research.

  6. Probabilistic Modeling in Dynamic Information Retrieval

    OpenAIRE

    Sloan, M. C.

    2016-01-01

    Dynamic modeling is used to design systems that are adaptive to their changing environment and is currently poorly understood in information retrieval systems. Common elements in the information retrieval methodology, such as documents, relevance, users and tasks, are dynamic entities that may evolve over the course of several interactions, which is increasingly captured in search log datasets. Conventional frameworks and models in information retrieval treat these elements as static, or only...

  7. Identification and Modelling of Linear Dynamic Systems

    Directory of Open Access Journals (Sweden)

    Stanislav Kocur

    2006-01-01

    Full Text Available System identification and modelling are very important parts of system control theory. System control is only as good as good is created model of system. So this article deals with identification and modelling problems. There are simple classification and evolution of identification methods, and then the modelling problem is described. Rest of paper is devoted to two most known and used models of linear dynamic systems.

  8. Assessing Reliability of Cellulose Hydrolysis Models to Support Biofuel Process Design – Identifiability and Uncertainty Analysis

    DEFF Research Database (Denmark)

    Sin, Gürkan; Meyer, Anne S.; Gernaey, Krist

    2010-01-01

    The reliability of cellulose hydrolysis models is studied using the NREL model. An identifiability analysis revealed that only 6 out of 26 parameters are identifiable from the available data (typical hydrolysis experiments). Attempting to identify a higher number of parameters (as done...... are not informative enough (sensitivities of 16 parameters were insignificant). This indicates that the NREL model has severe parameter uncertainty, likely to be the case for other hydrolysis models as well since similar kinetic expressions are used. To overcome this impasse, we have used the Monte Carlo procedure...

  9. Frontiers of reliability

    CERN Document Server

    Basu, Asit P; Basu, Sujit K

    1998-01-01

    This volume presents recent results in reliability theory by leading experts in the world. It will prove valuable for researchers, and users of reliability theory. It consists of refereed invited papers on a broad spectrum of topics in reliability. The subjects covered include Bayesian reliability, Bayesian reliability modeling, confounding in a series system, DF tests, Edgeworth approximation to reliability, estimation under random censoring, fault tree reduction for reliability, inference about changes in hazard rates, information theory and reliability, mixture experiment, mixture of Weibul

  10. LED Lighting System Reliability Modeling and Inference via Random Effects Gamma Process and Copula Function

    Directory of Open Access Journals (Sweden)

    Huibing Hao

    2015-01-01

    Full Text Available Light emitting diode (LED lamp has attracted increasing interest in the field of lighting systems due to its low energy and long lifetime. For different functions (i.e., illumination and color, it may have two or more performance characteristics. When the multiple performance characteristics are dependent, it creates a challenging problem to accurately analyze the system reliability. In this paper, we assume that the system has two performance characteristics, and each performance characteristic is governed by a random effects Gamma process where the random effects can capture the unit to unit differences. The dependency of performance characteristics is described by a Frank copula function. Via the copula function, the reliability assessment model is proposed. Considering the model is so complicated and analytically intractable, the Markov chain Monte Carlo (MCMC method is used to estimate the unknown parameters. A numerical example about actual LED lamps data is given to demonstrate the usefulness and validity of the proposed model and method.

  11. Reliability and Maintainability model (RAM) user and maintenance manual. Part 2

    Science.gov (United States)

    Ebeling, Charles E.

    1995-01-01

    This report documents the procedures for utilizing and maintaining the Reliability and Maintainability Model (RAM) developed by the University of Dayton for the NASA Langley Research Center (LaRC). The RAM model predicts reliability and maintainability (R&M) parameters for conceptual space vehicles using parametric relationships between vehicle design and performance characteristics and subsystem mean time between maintenance actions (MTBM) and manhours per maintenance action (MH/MA). These parametric relationships were developed using aircraft R&M data from over thirty different military aircraft of all types. This report describes the general methodology used within the model, the execution and computational sequence, the input screens and data, the output displays and reports, and study analyses and procedures. A source listing is provided.

  12. Simultaneous parameter and tolerance optimization of structures via probability-interval mixed reliability model

    DEFF Research Database (Denmark)

    Luo, Yangjun; Wu, Xiaoxiang; Zhou, Mingdong

    2015-01-01

    on a probability-interval mixed reliability model, the imprecision of design parameters is modeled as interval uncertainties fluctuating within allowable tolerance bounds. The optimization model is defined as to minimize the total manufacturing cost under mixed reliability index constraints, which are further...... transformed into their equivalent formulations by using the performance measure approach. The optimization problem is then solved with the sequential approximate programming. Meanwhile, a numerically stable algorithm based on the trust region method is proposed to efficiently update the target performance......Both structural sizes and dimensional tolerances strongly influence the manufacturing cost and the functional performance of a practical product. This paper presents an optimization method to simultaneously find the optimal combination of structural sizes and dimensional tolerances. Based...

  13. Reliability and efficiency of generalized rumor spreading model on complex social networks

    CERN Document Server

    Naimi, Yaghoob

    2013-01-01

    We introduce the generalized rumor spreading model and investigate some properties of this model on different complex social networks. Despite pervious rumor models that both the spreader-spreader ($SS$) and the spreader-stifler ($SR$) interactions have the same rate $\\alpha$, we define $\\alpha^{(1)}$ and $\\alpha^{(2)}$ for $SS$ and $SR$ interactions, respectively. The effect of variation of $\\alpha^{(1)}$ and $\\alpha^{(2)}$ on the final density of stiflers is investigated. Furthermore, the influence of the topological structure of the network in rumor spreading is studied by analyzing the behavior of several global parameters such as reliability and efficiency. Our results show that while networks with homogeneous connectivity patterns reach a higher reliability, scale-free topologies need a less time to reach a steady state with respect the rumor.

  14. Reliability and Efficiency of Generalized Rumor Spreading Model on Complex Social Networks

    Institute of Scientific and Technical Information of China (English)

    Yaghoob Naimi; Mohammad Naimi

    2013-01-01

    We introduce the generalized rumor spreading model and investigate some properties of this model on different complex social networks.Despite pervious rumor models that both the spreader-spreader (SS) and the spreaderstifler (SR) interactions have the same rate α,we define α(1) and α(2) for SS and SR interactions,respectively.The effect of variation of α(1) and α(2) on the final density of stiflers is investigated.Furthermore,the influence of the topological structure of the network in rumor spreading is studied by analyzing the behavior of several global parameters such as reliability and efficiency.Our results show that while networks with homogeneous connectivity patterns reach a higher reliability,scale-free topologies need a less time to reach a steady state with respect the rumor.

  15. Specification and Design of a Fault Recovery Model for the Reliable Multicast Protocol

    Science.gov (United States)

    Montgomery, Todd; Callahan, John R.; Whetten, Brian

    1996-01-01

    The Reliable Multicast Protocol (RMP) provides a unique, group-based model for distributed programs that need to handle reconfiguration events at the application layer. This model, called membership views, provides an abstraction in which events such as site failures, network partitions, and normal join-leave events are viewed as group reformations. RMP provides access to this model through an application programming interface (API) that notifies an application when a group is reformed as the result of a some event. RMP provides applications with reliable delivery of messages using an underlying IP Multicast media to other group members in a distributed environment even in the case of reformations. A distributed application can use various Quality of Service (QoS) levels provided by RMP to tolerate group reformations. This paper explores the implementation details of the mechanisms in RMP that provide distributed applications with membership view information and fault recovery capabilities.

  16. A competing risk model for the reliability of cylinder liners in marine Diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Bocchetti, D. [Grimaldi Group, Naples (Italy); Giorgio, M. [Department of Aerospace and Mechanical Engineering, Second University of Naples, Aversa (Italy); Guida, M. [Department of Information Engineering and Electrical Engineering, University of Salerno, Fisciano (Italy); Pulcini, G. [Istituto Motori, National Research Council-CNR, Naples (Italy)], E-mail: g.pulcini@im.cnr.it

    2009-08-15

    In this paper, a competing risk model is proposed to describe the reliability of the cylinder liners of a marine Diesel engine. Cylinder liners presents two dominant failure modes: wear degradation and thermal cracking. The wear process is described through a stochastic process, whereas the failure time due to the thermal cracking is described by the Weibull distribution. The use of the proposed model allows performing goodness-of-fit test and parameters estimation on the basis of both wear and failure data. Moreover, it enables reliability estimates of the state of the liners to be obtained and the hierarchy of the failure mechanisms to be determined for any given age and wear level of the liner. The model has been applied to a real data set: 33 cylinder liners of Sulzer RTA 58 engines, which equip twin ships of the Grimaldi Group. Estimates of the liner reliability and of other quantities of interest under the competing risk model are obtained, as well as the conditional failure probability and mean residual lifetime, given the survival age and the accumulated wear. Furthermore, the model has been used to estimate the probability that a liner fails due to one of the failure modes when both of these modes act.

  17. Bayesian Reliability Modeling and Assessment Solution for NC Machine Tools under Small-sample Data

    Institute of Scientific and Technical Information of China (English)

    YANG Zhaojun; KAN Yingnan; CHEN Fei; XU Binbin; CHEN Chuanhai; YANG Chuangui

    2015-01-01

    Although Markov chain Monte Carlo(MCMC) algorithms are accurate, many factors may cause instability when they are utilized in reliability analysis; such instability makes these algorithms unsuitable for widespread engineering applications. Thus, a reliability modeling and assessment solution aimed at small-sample data of numerical control(NC) machine tools is proposed on the basis of Bayes theories. An expert-judgment process of fusing multi-source prior information is developed to obtain the Weibull parameters’ prior distributions and reduce the subjective bias of usual expert-judgment methods. The grid approximation method is applied to two-parameter Weibull distribution to derive the formulas for the parameters’ posterior distributions and solve the calculation difficulty of high-dimensional integration. The method is then applied to the real data of a type of NC machine tool to implement a reliability assessment and obtain the mean time between failures(MTBF). The relative error of the proposed method is 5.8020×10-4 compared with the MTBF obtained by the MCMC algorithm. This result indicates that the proposed method is as accurate as MCMC. The newly developed solution for reliability modeling and assessment of NC machine tools under small-sample data is easy, practical, and highly suitable for widespread application in the engineering field; in addition, the solution does not reduce accuracy.

  18. Reliability estimation and remaining useful lifetime prediction for bearing based on proportional hazard model

    Institute of Scientific and Technical Information of China (English)

    王鹭; 张利; 王学芝

    2015-01-01

    As the central component of rotating machine, the performance reliability assessment and remaining useful lifetime prediction of bearing are of crucial importance in condition-based maintenance to reduce the maintenance cost and improve the reliability. A prognostic algorithm to assess the reliability and forecast the remaining useful lifetime (RUL) of bearings was proposed, consisting of three phases. Online vibration and temperature signals of bearings in normal state were measured during the manufacturing process and the most useful time-dependent features of vibration signals were extracted based on correlation analysis (feature selection step). Time series analysis based on neural network, as an identification model, was used to predict the features of bearing vibration signals at any horizons (feature prediction step). Furthermore, according to the features, degradation factor was defined. The proportional hazard model was generated to estimate the survival function and forecast the RUL of the bearing (RUL prediction step). The positive results show that the plausibility and effectiveness of the proposed approach can facilitate bearing reliability estimation and RUL prediction.

  19. Modeling of reliability and performance assessment of a dissimilar redundancy actuation system with failure monitoring

    Institute of Scientific and Technical Information of China (English)

    Wang Shaoping; Cui Xiaoyu; Shi Jian; Mileta M. Tomovic; Jiao Zongxia

    2016-01-01

    Actuation system is a vital system in an aircraft, providing the force necessary to move flight control surfaces. The system has a significant influence on the overall aircraft performance and its safety. In order to further increase already high reliability and safety, Airbus has imple-mented a dissimilar redundancy actuation system (DRAS) in its aircraft. The DRAS consists of a hydraulic actuation system (HAS) and an electro-hydrostatic actuation system (EHAS), in which the HAS utilizes a hydraulic source (HS) to move the control surface and the EHAS utilizes an elec-trical supply (ES) to provide the motion force. This paper focuses on the performance degradation processes and fault monitoring strategies of the DRAS, establishes its reliability model based on the generalized stochastic Petri nets (GSPN), and carries out a reliability assessment considering the fault monitoring coverage rate and the false alarm rate. The results indicate that the proposed reli-ability model of the DRAS, considering the fault monitoring, can express its fault logical relation and redundancy degradation process and identify potential safety hazards.

  20. Closed-Loop Dynamic Modeling of Cerebral Hemodynamics

    Science.gov (United States)

    Marmarelis, V. Z.; Shin, D. C.; Orme, M. E.; Zhang, R.

    2013-01-01

    The dynamics of cerebral hemodynamics have been studied extensively because of their fundamental physiological and clinical importance. In particular, the dynamic processes of cerebral flow autoregulation and CO2 vasomotor reactivity have attracted broad attention because of their involvement in a host of pathologies and clinical conditions (e.g. hypertension, syncope, stroke, traumatic brain injury, vascular dementia, Alzheimer’s disease, mild cognitive impairment etc.). This raises the prospect of useful diagnostic methods being developed on the basis of quantitative models of cerebral hemodynamics, if cerebral vascular dysfunction can be quantified reliably from data collected within practical clinical constraints. This paper presents a modeling method that utilizes beat-to-beat measurements of mean arterial blood pressure, cerebral blood flow velocity and end-tidal CO2 (collected non-invasively under resting conditions) to quantify the dynamics of cerebral flow autoregulation (CFA) and cerebral vasomotor reactivity (CVMR). The unique and novel aspect of this dynamic model is that it is nonlinear and operates in a closed-loop configuration. PMID:23292615

  1. Girsanov's transformation based variance reduced Monte Carlo simulation schemes for reliability estimation in nonlinear stochastic dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Kanjilal, Oindrila, E-mail: oindrila@civil.iisc.ernet.in; Manohar, C.S., E-mail: manohar@civil.iisc.ernet.in

    2017-07-15

    The study considers the problem of simulation based time variant reliability analysis of nonlinear randomly excited dynamical systems. Attention is focused on importance sampling strategies based on the application of Girsanov's transformation method. Controls which minimize the distance function, as in the first order reliability method (FORM), are shown to minimize a bound on the sampling variance of the estimator for the probability of failure. Two schemes based on the application of calculus of variations for selecting control signals are proposed: the first obtains the control force as the solution of a two-point nonlinear boundary value problem, and, the second explores the application of the Volterra series in characterizing the controls. The relative merits of these schemes, vis-à-vis the method based on ideas from the FORM, are discussed. Illustrative examples, involving archetypal single degree of freedom (dof) nonlinear oscillators, and a multi-degree of freedom nonlinear dynamical system, are presented. The credentials of the proposed procedures are established by comparing the solutions with pertinent results from direct Monte Carlo simulations. - Highlights: • The distance minimizing control forces minimize a bound on the sampling variance. • Establishing Girsanov controls via solution of a two-point boundary value problem. • Girsanov controls via Volterra's series representation for the transfer functions.

  2. A stochastic model of human gait dynamics

    Science.gov (United States)

    Ashkenazy, Yosef; M. Hausdorff, Jeffrey; Ch. Ivanov, Plamen; Eugene Stanley, H.

    2002-12-01

    We present a stochastic model of gait rhythm dynamics, based on transitions between different “neural centers”, that reproduces distinctive statistical properties of normal human walking. By tuning one model parameter, the transition (hopping) range, the model can describe alterations in gait dynamics from childhood to adulthood-including a decrease in the correlation and volatility exponents with maturation. The model also generates time series with multifractal spectra whose broadness depends only on this parameter. Moreover, we find that the volatility exponent increases monotonically as a function of the width of the multifractal spectrum, suggesting the possibility of a change in multifractality with maturation.

  3. Integration of Dynamic Models in Range Operations

    Science.gov (United States)

    Bardina, Jorge; Thirumalainambi, Rajkumar

    2004-01-01

    This work addresses the various model interactions in real-time to make an efficient internet based decision making tool for Shuttle launch. The decision making tool depends on the launch commit criteria coupled with physical models. Dynamic interaction between a wide variety of simulation applications and techniques, embedded algorithms, and data visualizations are needed to exploit the full potential of modeling and simulation. This paper also discusses in depth details of web based 3-D graphics and applications to range safety. The advantages of this dynamic model integration are secure accessibility and distribution of real time information to other NASA centers.

  4. Long-term dynamics simulation: Modeling requirements

    Energy Technology Data Exchange (ETDEWEB)

    Morched, A.S.; Kar, P.K.; Rogers, G.J.; Morison, G.K. (Ontario Hydro, Toronto, ON (Canada))

    1989-12-01

    This report details the required performance and modelling capabilities of a computer program intended for the study of the long term dynamics of power systems. Following a general introduction which outlines the need for long term dynamic studies, the modelling requirements for the conduct of such studies is discussed in detail. Particular emphasis is placed on models for system elements not normally modelled in power system stability programs, which will have a significant impact in the long term time frame of minutes to hours following the initiating disturbance. The report concludes with a discussion of the special computational and programming requirements for a long term stability program. 43 refs., 36 figs.

  5. Development of Probabilistic Reliability Models of Photovoltaic System Topologies for System Adequacy Evaluation

    Directory of Open Access Journals (Sweden)

    Ahmad Alferidi

    2017-02-01

    Full Text Available The contribution of solar power in electric power systems has been increasing rapidly due to its environmentally friendly nature. Photovoltaic (PV systems contain solar cell panels, power electronic converters, high power switching and often transformers. These components collectively play an important role in shaping the reliability of PV systems. Moreover, the power output of PV systems is variable, so it cannot be controlled as easily as conventional generation due to the unpredictable nature of weather conditions. Therefore, solar power has a different influence on generating system reliability compared to conventional power sources. Recently, different PV system designs have been constructed to maximize the output power of PV systems. These different designs are commonly adopted based on the scale of a PV system. Large-scale grid-connected PV systems are generally connected in a centralized or a string structure. Central and string PV schemes are different in terms of connecting the inverter to PV arrays. Micro-inverter systems are recognized as a third PV system topology. It is therefore important to evaluate the reliability contribution of PV systems under these topologies. This work utilizes a probabilistic technique to develop a power output model for a PV generation system. A reliability model is then developed for a PV integrated power system in order to assess the reliability and energy contribution of the solar system to meet overall system demand. The developed model is applied to a small isolated power unit to evaluate system adequacy and capacity level of a PV system considering the three topologies.

  6. Advanced modeling and simulation to design and manufacture high performance and reliable advanced microelectronics and microsystems.

    Energy Technology Data Exchange (ETDEWEB)

    Nettleship, Ian (University of Pittsburgh, Pittsburgh, PA); Hinklin, Thomas; Holcomb, David Joseph; Tandon, Rajan; Arguello, Jose Guadalupe, Jr. (,; .); Dempsey, James Franklin; Ewsuk, Kevin Gregory; Neilsen, Michael K.; Lanagan, Michael (Pennsylvania State University, University Park, PA)

    2007-07-01

    An interdisciplinary team of scientists and engineers having broad expertise in materials processing and properties, materials characterization, and computational mechanics was assembled to develop science-based modeling/simulation technology to design and reproducibly manufacture high performance and reliable, complex microelectronics and microsystems. The team's efforts focused on defining and developing a science-based infrastructure to enable predictive compaction, sintering, stress, and thermomechanical modeling in ''real systems'', including: (1) developing techniques to and determining materials properties and constitutive behavior required for modeling; (2) developing new, improved/updated models and modeling capabilities, (3) ensuring that models are representative of the physical phenomena being simulated; and (4) assessing existing modeling capabilities to identify advances necessary to facilitate the practical application of Sandia's predictive modeling technology.

  7. Uncertainty and Sensitivity in Surface Dynamics Modeling

    Science.gov (United States)

    Kettner, Albert J.; Syvitski, James P. M.

    2016-05-01

    Papers for this special issue on 'Uncertainty and Sensitivity in Surface Dynamics Modeling' heralds from papers submitted after the 2014 annual meeting of the Community Surface Dynamics Modeling System or CSDMS. CSDMS facilitates a diverse community of experts (now in 68 countries) that collectively investigate the Earth's surface-the dynamic interface between lithosphere, hydrosphere, cryosphere, and atmosphere, by promoting, developing, supporting and disseminating integrated open source software modules. By organizing more than 1500 researchers, CSDMS has the privilege of identifying community strengths and weaknesses in the practice of software development. We recognize, for example, that progress has been slow on identifying and quantifying uncertainty and sensitivity in numerical modeling of earth's surface dynamics. This special issue is meant to raise awareness for these important subjects and highlight state-of-the-art progress.

  8. The future dynamic world model

    Science.gov (United States)

    Karr, Thomas J.

    2014-10-01

    Defense and security forces exploit sensor data by means of a model of the world. They use a world model to geolocate sensor data, fuse it with other data, navigate platforms, recognize features and feature changes, etc. However, their need for situational awareness today exceeds the capabilities of their current world model for defense operations, despite the great advances of sensing technology in recent decades. I review emerging technologies that may enable a great improvement in the spatial and spectral coverage, the timeliness, and the functional insight of their world model.

  9. Using multi-model averaging to improve the reliability of catchment scale nitrogen predictions

    Science.gov (United States)

    Exbrayat, J.-F.; Viney, N. R.; Frede, H.-G.; Breuer, L.

    2013-01-01

    Hydro-biogeochemical models are used to foresee the impact of mitigation measures on water quality. Usually, scenario-based studies rely on single model applications. This is done in spite of the widely acknowledged advantage of ensemble approaches to cope with structural model uncertainty issues. As an attempt to demonstrate the reliability of such multi-model efforts in the hydro-biogeochemical context, this methodological contribution proposes an adaptation of the reliability ensemble averaging (REA) philosophy to nitrogen losses predictions. A total of 4 models are used to predict the total nitrogen (TN) losses from the well-monitored Ellen Brook catchment in Western Australia. Simulations include re-predictions of current conditions and a set of straightforward management changes targeting fertilisation scenarios. Results show that, in spite of good calibration metrics, one of the models provides a very different response to management changes. This behaviour leads the simple average of the ensemble members to also predict reductions in TN export that are not in agreement with the other models. However, considering the convergence of model predictions in the more sophisticated REA approach assigns more weight to previously less well-calibrated models that are more in agreement with each other. This method also avoids having to disqualify any of the ensemble members.

  10. Stochastic reliability and maintenance modeling essays in honor of Professor Shunji Osaki on his 70th birthday

    CERN Document Server

    Nakagawa, Toshio

    2013-01-01

    In honor of the work of Professor Shunji Osaki, Stochastic Reliability and Maintenance Modeling provides a comprehensive study of the legacy of and ongoing research in stochastic reliability and maintenance modeling. Including associated application areas such as dependable computing, performance evaluation, software engineering, communication engineering, distinguished researchers review and build on the contributions over the last four decades by Professor Shunji Osaki. Fundamental yet significant research results are presented and discussed clearly alongside new ideas and topics on stochastic reliability and maintenance modeling to inspire future research. Across 15 chapters readers gain the knowledge and understanding to apply reliability and maintenance theory to computer and communication systems. Stochastic Reliability and Maintenance Modeling is ideal for graduate students and researchers in reliability engineering, and workers, managers and engineers engaged in computer, maintenance and management wo...

  11. Brand Equity Evolution: a System Dynamics Model

    Directory of Open Access Journals (Sweden)

    Edson Crescitelli

    2009-04-01

    Full Text Available One of the greatest challenges in brand management lies in monitoring brand equity over time. This paper aimsto present a simulation model able to represent this evolution. The model was drawn on brand equity concepts developed by Aaker and Joachimsthaler (2000, using the system dynamics methodology. The use ofcomputational dynamic models aims to create new sources of information able to sensitize academics and managers alike to the dynamic implications of their brand management. As a result, an easily implementable model was generated, capable of executing continuous scenario simulations by surveying casual relations among the variables that explain brand equity. Moreover, the existence of a number of system modeling tools will allow extensive application of the concepts used in this study in practical situations, both in professional and educational settings

  12. Dynamic stiffness model of spherical parallel robots

    Science.gov (United States)

    Cammarata, Alessandro; Caliò, Ivo; D`Urso, Domenico; Greco, Annalisa; Lacagnina, Michele; Fichera, Gabriele

    2016-12-01

    A novel approach to study the elastodynamics of Spherical Parallel Robots is described through an exact dynamic model. Timoshenko arches are used to simulate flexible curved links while the base and mobile platforms are modelled as rigid bodies. Spatial joints are inherently included into the model without Lagrangian multipliers. At first, the equivalent dynamic stiffness matrix of each leg, made up of curved links joined by spatial joints, is derived; then these matrices are assembled to obtain the Global Dynamic Stiffness Matrix of the robot at a given pose. Actuator stiffness is also included into the model to verify its influence on vibrations and modes. The latter are found by applying the Wittrick-Williams algorithm. Finally, numerical simulations and direct comparison to commercial FE results are used to validate the proposed model.

  13. Stirling Engine Dynamic System Modeling

    Science.gov (United States)

    Nakis, Christopher G.

    2004-01-01

    The Thermo-Mechanical systems branch at the Glenn Research Center focuses a large amount time on Stirling engines. These engines will be used on missions where solar power is inefficient, especially in deep space. I work with Tim Regan and Ed Lewandowski who are currently developing and validating a mathematical model for the Stirling engines. This model incorporates all aspects of the system including, mechanical, electrical and thermodynamic components. Modeling is done through Simplorer, a program capable of running simulations of the model. Once created and then proven to be accurate, a model is used for developing new ideas for engine design. My largest specific project involves varying key parameters in the model and quantifying the results. This can all be done relatively trouble-free with the help of Simplorer. Once the model is complete, Simplorer will do all the necessary calculations. The more complicated part of this project is determining which parameters to vary. Finding key parameters depends on the potential for a value to be independently altered in the design. For example, a change in one dimension may lead to a proportional change to the rest of the model, and no real progress is made. Also, the ability for a changed value to have a substantial impact on the outputs of the system is important. Results will be condensed into graphs and tables with the purpose of better communication and understanding of the data. With the changing of these parameters, a more optimal design can be created without having to purchase or build any models. Also, hours and hours of results can be simulated in minutes. In the long run, using mathematical models can save time and money. Along with this project, I have many other smaller assignments throughout the summer. My main goal is to assist in the processes of model development, validation and testing.

  14. Haptics-based dynamic implicit solid modeling.

    Science.gov (United States)

    Hua, Jing; Qin, Hong

    2004-01-01

    This paper systematically presents a novel, interactive solid modeling framework, Haptics-based Dynamic Implicit Solid Modeling, which is founded upon volumetric implicit functions and powerful physics-based modeling. In particular, we augment our modeling framework with a haptic mechanism in order to take advantage of additional realism associated with a 3D haptic interface. Our dynamic implicit solids are semi-algebraic sets of volumetric implicit functions and are governed by the principles of dynamics, hence responding to sculpting forces in a natural and predictable manner. In order to directly manipulate existing volumetric data sets as well as point clouds, we develop a hierarchical fitting algorithm to reconstruct and represent discrete data sets using our continuous implicit functions, which permit users to further design and edit those existing 3D models in real-time using a large variety of haptic and geometric toolkits, and visualize their interactive deformation at arbitrary resolution. The additional geometric and physical constraints afford more sophisticated control of the dynamic implicit solids. The versatility of our dynamic implicit modeling enables the user to easily modify both the geometry and the topology of modeled objects, while the inherent physical properties can offer an intuitive haptic interface for direct manipulation with force feedback.

  15. Synaptic dynamics: linear model and adaptation algorithm.

    Science.gov (United States)

    Yousefi, Ali; Dibazar, Alireza A; Berger, Theodore W

    2014-08-01

    In this research, temporal processing in brain neural circuitries is addressed by a dynamic model of synaptic connections in which the synapse model accounts for both pre- and post-synaptic processes determining its temporal dynamics and strength. Neurons, which are excited by the post-synaptic potentials of hundred of the synapses, build the computational engine capable of processing dynamic neural stimuli. Temporal dynamics in neural models with dynamic synapses will be analyzed, and learning algorithms for synaptic adaptation of neural networks with hundreds of synaptic connections are proposed. The paper starts by introducing a linear approximate model for the temporal dynamics of synaptic transmission. The proposed linear model substantially simplifies the analysis and training of spiking neural networks. Furthermore, it is capable of replicating the synaptic response of the non-linear facilitation-depression model with an accuracy better than 92.5%. In the second part of the paper, a supervised spike-in-spike-out learning rule for synaptic adaptation in dynamic synapse neural networks (DSNN) is proposed. The proposed learning rule is a biologically plausible process, and it is capable of simultaneously adjusting both pre- and post-synaptic components of individual synapses. The last section of the paper starts with presenting the rigorous analysis of the learning algorithm in a system identification task with hundreds of synaptic connections which confirms the learning algorithm's accuracy, repeatability and scalability. The DSNN is utilized to predict the spiking activity of cortical neurons and pattern recognition tasks. The DSNN model is demonstrated to be a generative model capable of producing different cortical neuron spiking patterns and CA1 Pyramidal neurons recordings. A single-layer DSNN classifier on a benchmark pattern recognition task outperforms a 2-Layer Neural Network and GMM classifiers while having fewer numbers of free parameters and

  16. Dynamics modeling and simulation of flexible airships

    Science.gov (United States)

    Li, Yuwen

    The resurgence of airships has created a need for dynamics models and simulation capabilities of these lighter-than-air vehicles. The focus of this thesis is a theoretical framework that integrates the flight dynamics, structural dynamics, aerostatics and aerodynamics of flexible airships. The study begins with a dynamics model based on a rigid-body assumption. A comprehensive computation of aerodynamic effects is presented, where the aerodynamic forces and moments are categorized into various terms based on different physical effects. A series of prediction approaches for different aerodynamic effects are unified and applied to airships. The numerical results of aerodynamic derivatives and the simulated responses to control surface deflection inputs are verified by comparing to existing wind-tunnel and flight test data. With the validated aerodynamics and rigid-body modeling, the equations of motion of an elastic airship are derived by the Lagrangian formulation. The airship is modeled as a free-free Euler-Bernoulli beam and the bending deformations are represented by shape functions chosen as the free-free normal modes. In order to capture the coupling between the aerodynamic forces and the structural elasticity, local velocity on the deformed vehicle is used in the computation of aerodynamic forces. Finally, with the inertial, gravity, aerostatic and control forces incorporated, the dynamics model of a flexible airship is represented by a single set of nonlinear ordinary differential equations. The proposed model is implemented as a dynamics simulation program to analyze the dynamics characteristics of the Skyship-500 airship. Simulation results are presented to demonstrate the influence of structural deformation on the aerodynamic forces and the dynamics behavior of the airship. The nonlinear equations of motion are linearized numerically for the purpose of frequency domain analysis and for aeroelastic stability analysis. The results from the latter for the

  17. Reliability-based dynamic positioning of floating vessels with riser and mooring system

    DEFF Research Database (Denmark)

    Fang, Shaoji; Leira, Bernt J.; Blanke, Mogens

    2011-01-01

    To maintain safety of a floating vessel with associated slender components such as risers and mooring line, the vessel is normally kept within a limited region. To specify a safe position in that region, this paper suggests a new position chasing algorithm with the consideration of both riser...... angles and mooring line tensions. The riser angles were considered in an object function in [1] and the mooring line tension was considered in an object function in [2]. The contribution of this paper is to combine riser angle and mooring line tension together in one unified object function....... A combination of scaled riser angles and structural reliability index is utilized to evaluate the “reserve capacity” relative to failure events. With this object function, the riser angles and mooring line tension are considered in a unified formulation, with higher weight added to the riser angles due...

  18. A Novel Two-Terminal Reliability Analysis for MANET

    OpenAIRE

    Xibin Zhao; Zhiyang You; Hai Wan

    2013-01-01

    Mobile ad hoc network (MANET) is a dynamic wireless communication network. Because of the dynamic and infrastructureless characteristics, MANET is vulnerable in reliability. This paper presents a novel reliability analysis for MANET. The node mobility effect and the node reliability based on a real MANET platform are modeled and analyzed. An effective Monte Carlo method for reliability analysis is proposed. A detailed evaluation is performed in terms of the experiment results.

  19. A Novel Two-Terminal Reliability Analysis for MANET

    Directory of Open Access Journals (Sweden)

    Xibin Zhao

    2013-01-01

    Full Text Available Mobile ad hoc network (MANET is a dynamic wireless communication network. Because of the dynamic and infrastructureless characteristics, MANET is vulnerable in reliability. This paper presents a novel reliability analysis for MANET. The node mobility effect and the node reliability based on a real MANET platform are modeled and analyzed. An effective Monte Carlo method for reliability analysis is proposed. A detailed evaluation is performed in terms of the experiment results.

  20. Optimization of Measurements on Dynamically Sensitive Structures Using a Reliability Approach

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Sørensen, John Dalsgaard; Brincker, Rune

    1990-01-01

    Design of measuring program devoted to parameter identification of structural dynamic systems described by random fields is considered. The design problem is formulated as an optimization problem to minimize the total expected costs due to failure and costs of masuring program. Design variables...... are the numbers of measuring points, the locations of these points and the required number of sample records. An example with a simply supported plane, vibrating beam is considered and tentative results are presented....

  1. Optimization of Measurements on Dynamically Sensitive Structures Using a Reliability Approach

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Sørensen, John Dalsgaard; Brincker, Rune

    Design of a measuring program devoted to parameter identification of structural dynamic systems described by random fields is considered. The design problem is formulated as an optimization problem to minimize the total expected costs due to failure and costs of a measuring program. Design...... variables are the numbers of measuring points, the locations of these points and the required number of sample records. An example with a simply supported plane, vibrating beam is considered and tentative results are presented....

  2. Modeling and simulation for microelectronic packaging assembly manufacturing, reliability and testing

    CERN Document Server

    Liu, Sheng

    2011-01-01

    Although there is increasing need for modeling and simulation in the IC package design phase, most assembly processes and various reliability tests are still based on the time consuming ""test and try out"" method to obtain the best solution. Modeling and simulation can easily ensure virtual Design of Experiments (DoE) to achieve the optimal solution. This has greatly reduced the cost and production time, especially for new product development. Using modeling and simulation will become increasingly necessary for future advances in 3D package development.  In this book, Liu and Liu allow people

  3. Reliability and Maintainability Model (RAM): User and Maintenance Manual. Part 2; Improved Supportability Analysis

    Science.gov (United States)

    Ebeling, Charles E.

    1996-01-01

    This report documents the procedures for utilizing and maintaining the Reliability & Maintainability Model (RAM) developed by the University of Dayton for the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC). The purpose of the grant is to provide support to NASA in establishing operational and support parameters and costs of proposed space systems. As part of this research objective, the model described here was developed. This Manual updates and supersedes the 1995 RAM User and Maintenance Manual. Changes and enhancements from the 1995 version of the model are primarily a result of the addition of more recent aircraft and shuttle R&M data.

  4. Development of thermal hydraulic models for the reliable regulatory auditing code

    Energy Technology Data Exchange (ETDEWEB)

    Chung, B. D.; Song, C. H.; Lee, Y. J.; Kwon, T. S. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2003-04-15

    The objective of this project is to develop thermal hydraulic models for use in improving the reliability of the regulatory auditing codes. The current year fall under the first step of the 3 year project, and the main researches were focused on identifying the candidate thermal hydraulic models for improvement and to develop prototypical model development. During the current year, the verification calculations submitted for the APR 1400 design certification have been reviewed, the experimental data from the MIDAS DVI experiment facility in KAERI have been analyzed and evaluated, candidate thermal hydraulic models for improvement have been identified, prototypical models for the improved thermal hydraulic models have been developed, items for experiment in connection with the model development have been identified, and preliminary design of the experiment has been carried out.

  5. Model Reduction of Nonlinear Fire Dynamics Models

    OpenAIRE

    Lattimer, Alan Martin

    2016-01-01

    Due to the complexity, multi-scale, and multi-physics nature of the mathematical models for fires, current numerical models require too much computational effort to be useful in design and real-time decision making, especially when dealing with fires over large domains. To reduce the computational time while retaining the complexity of the domain and physics, our research has focused on several reduced-order modeling techniques. Our contributions are improving wildland fire reduced-order mod...

  6. Forecasting with Dynamic Regression Models

    CERN Document Server

    Pankratz, Alan

    2012-01-01

    One of the most widely used tools in statistical forecasting, single equation regression models is examined here. A companion to the author's earlier work, Forecasting with Univariate Box-Jenkins Models: Concepts and Cases, the present text pulls together recent time series ideas and gives special attention to possible intertemporal patterns, distributed lag responses of output to input series and the auto correlation patterns of regression disturbance. It also includes six case studies.

  7. An Efficient Variable Screening Method for Effective Surrogate Models for Reliability-Based Design Optimization

    Science.gov (United States)

    2014-04-01

    reliability-based design optimization ( RBDO ) process, surrogate models are frequently used to reduce the number of simulations because analysis of a...the RBDO problem and thus mitigate the curse of dimensionality. Therefore, it is desirable to develop an efficient and effective variable...screening method for reduction of the dimension of the RBDO problem. In this paper, requirements of the variable screening method for deterministic design

  8. Lessons Learned from Quantitative Dynamical Modeling in Systems Biology

    Science.gov (United States)

    Bachmann, Julie; Matteson, Andrew; Schelke, Max; Kaschek, Daniel; Hug, Sabine; Kreutz, Clemens; Harms, Brian D.; Theis, Fabian J.; Klingmüller, Ursula; Timmer, Jens

    2013-01-01

    Due to the high complexity of biological data it is difficult to disentangle cellular processes relying only on intuitive interpretation of measurements. A Systems Biology approach that combines quantitative experimental data with dynamic mathematical modeling promises to yield deeper insights into these processes. Nevertheless, with growing complexity and increasing amount of quantitative experimental data, building realistic and reliable mathematical models can become a challenging task: the quality of experimental data has to be assessed objectively, unknown model parameters need to be estimated from the experimental data, and numerical calculations need to be precise and efficient. Here, we discuss, compare and characterize the performance of computational methods throughout the process of quantitative dynamic modeling using two previously established examples, for which quantitative, dose- and time-resolved experimental data are available. In particular, we present an approach that allows to determine the quality of experimental data in an efficient, objective and automated manner. Using this approach data generated by different measurement techniques and even in single replicates can be reliably used for mathematical modeling. For the estimation of unknown model parameters, the performance of different optimization algorithms was compared systematically. Our results show that deterministic derivative-based optimization employing the sensitivity equations in combination with a multi-start strategy based on latin hypercube sampling outperforms the other methods by orders of magnitude in accuracy and speed. Finally, we investigated transformations that yield a more efficient parameterization of the model and therefore lead to a further enhancement in optimization performance. We provide a freely available open source software package that implements the algorithms and examples compared here. PMID:24098642

  9. Lessons learned from quantitative dynamical modeling in systems biology.

    Directory of Open Access Journals (Sweden)

    Andreas Raue

    Full Text Available Due to the high complexity of biological data it is difficult to disentangle cellular processes relying only on intuitive interpretation of measurements. A Systems Biology approach that combines quantitative experimental data with dynamic mathematical modeling promises to yield deeper insights into these processes. Nevertheless, with growing complexity and increasing amount of quantitative experimental data, building realistic and reliable mathematical models can become a challenging task: the quality of experimental data has to be assessed objectively, unknown model parameters need to be estimated from the experimental data, and numerical calculations need to be precise and efficient. Here, we discuss, compare and characterize the performance of computational methods throughout the process of quantitative dynamic modeling using two previously established examples, for which quantitative, dose- and time-resolved experimental data are available. In particular, we present an approach that allows to determine the quality of experimental data in an efficient, objective and automated manner. Using this approach data generated by different measurement techniques and even in single replicates can be reliably used for mathematical modeling. For the estimation of unknown model parameters, the performance of different optimization algorithms was compared systematically. Our results show that deterministic derivative-based optimization employing the sensitivity equations in combination with a multi-start strategy based on latin hypercube sampling outperforms the other methods by orders of magnitude in accuracy and speed. Finally, we investigated transformations that yield a more efficient parameterization of the model and therefore lead to a further enhancement in optimization performance. We provide a freely available open source software package that implements the algorithms and examples compared here.

  10. A Stochastic-Dynamic Model for Real Time Flood Forecasting

    Science.gov (United States)

    Chow, K. C. A.; Watt, W. E.; Watts, D. G.

    1983-06-01

    A stochastic-dynamic model for real time flood forecasting was developed using Box-Jenkins modelling techniques. The purpose of the forecasting system is to forecast flood levels of the Saint John River at Fredericton, New Brunswick. The model consists of two submodels: an upstream model used to forecast the headpond level at the Mactaquac Dam and a downstream model to forecast the water level at Fredericton. Inputs to the system are recorded values of the water level at East Florenceville, the headpond level and gate position at Mactaquac, and the water level at Fredericton. The model was calibrated for the spring floods of 1973, 1974, 1977, and 1978, and its usefulness was verified for the 1979 flood. The forecasting results indicated that the stochastic-dynamic model produces reasonably accurate forecasts for lead times up to two days. These forecasts were then compared to those from the existing forecasting system and were found to be as reliable as those from the existing system.

  11. A model for reliability analysis and calculation applied in an example from chemical industry

    Directory of Open Access Journals (Sweden)

    Pejović Branko B.

    2010-01-01

    Full Text Available The subject of the paper is reliability design in polymerization processes that occur in reactors of a chemical industry. The designed model is used to determine the characteristics and indicators of reliability, which enabled the determination of basic factors that result in a poor development of a process. This would reduce the anticipated losses through the ability to control them, as well as enabling the improvement of the quality of production, which is the major goal of the paper. The reliability analysis and calculation uses the deductive method based on designing of a scheme for fault tree analysis of a system based on inductive conclusions. It involves the use standard logical symbols and rules of Boolean algebra and mathematical logic. The paper eventually gives the results of the work in the form of quantitative and qualitative reliability analysis of the observed process, which served to obtain complete information on the probability of top event in the process, as well as objective decision making and alternative solutions.

  12. COMPETENCY ASSESSMENT OF CLOTHING FASHION DESIGN: RASCH MEASUREMENT MODEL FOR CONSTRUCT VALIDITY AND RELIABILITY

    Directory of Open Access Journals (Sweden)

    Arasinah Kamis

    2013-12-01

    Full Text Available The Clothing Fashion Design (CFaD assessment instrument was used to measure the level of competence among instructors in Skills Training Institute (STI. This study was conducted to select items that are valid, fair, and of quality. The CFaD instrument consists of 97 Likert scale items with six constructs of designing, pattern drafting, computer, sewing, creative, and trade/entrepreneurship. The instrument was administered for the first stage of testing to 95 instructors in STI who teach in the field of fashion and clothing. The Rasch measurement model was used to obtain the reliability, validity, relevance of person items and unidimensionality of items. Therefore, Winsteps software version 3.72.3 was used to analyze the data. The findings showed that the items in the six constructs of skill competency have high reliability, from 0.63 to 0.96 for the Likert scale items. Meanwhile, the reliability of the respondents was estimated between 0.93-0.98. The analysis also indicate that 11 out of the 97 items were misfit while 32 items need to be repaired prior to the decision of dropping some of them due to lack of unidimensionality and differing levels of difficulty. Decisions to remove or repair were made so that the instrument is more fair and equitable to all respondents, and reliable.

  13. Online Learning of Industrial Manipulators' Dynamics Models

    DEFF Research Database (Denmark)

    Polydoros, Athanasios

    2017-01-01

    The robotics industry has introduced light-weight compliant manipulators to increase the safety during human-robot interaction. This characteristic is achieved by replacing the stiff actuators of the traditional robots with compliant ones which creates challenges in the analytical derivation...... of the dynamics models. Those mainly derive from physics-based methods and thus they are based on physical properties which are hard to be calculated.  In this thesis, is presented, a novel online machine learning approach  which is able to model both inverse and forward dynamics models of industrial manipulators...

  14. Cellular automata modeling of pedestrian's crossing dynamics

    Institute of Scientific and Technical Information of China (English)

    张晋; 王慧; 李平

    2004-01-01

    Cellular automata modeling techniques and the characteristics of mixed traffic flow were used to derive the 2-dimensional model presented here for simulation of pedestrian's crossing dynamics.A conception of "stop point" is introduced to deal with traffic obstacles and resolve conflicts among pedestrians or between pedestrians and the other vehicles on the crosswalk.The model can be easily extended,is very efficient for simulation of pedestrian's crossing dynamics,can be integrated into traffic simulation software,and has been proved feasible by simulation experiments.

  15. Dynamical modelling of coordinated multiple robot systems

    Science.gov (United States)

    Hayati, Samad

    1987-01-01

    The state of the art in the modeling of the dynamics of coordinated multiple robot manipulators is summarized and various problems related to this subject are discussed. It is recognized that dynamics modeling is a component used in the design of controllers for multiple cooperating robots. As such, the discussion addresses some problems related to the control of multiple robots. The techniques used to date in the modeling of closed kinematic chains are summarized. Various efforts made to date for the control of coordinated multiple manipulators is summarized.

  16. Stochastic transition model for pedestrian dynamics

    CERN Document Server

    Schultz, Michael

    2012-01-01

    The proposed stochastic model for pedestrian dynamics is based on existing approaches using cellular automata, combined with substantial extensions, to compensate the deficiencies resulting of the discrete grid structure. This agent motion model is extended by both a grid-based path planning and mid-range agent interaction component. The stochastic model proves its capabilities for a quantitative reproduction of the characteristic shape of the common fundamental diagram of pedestrian dynamics. Moreover, effects of self-organizing behavior are successfully reproduced. The stochastic cellular automata approach is found to be adequate with respect to uncertainties in human motion patterns, a feature previously held by artificial noise terms alone.

  17. Quantum Dynamics of the HMF Model

    OpenAIRE

    Plestid, Ryan; Mahon, Perry; O'Dell, Duncan

    2016-01-01

    We study the dynamics of the quantized Hamiltonian Mean Field (HMF) model assuming a gas of bosons in the large N limit. We characterize the full set of stationary states, and study the dynamics of the model numerically focussing on competition between classical and quantum effects. We make contact with the existing literature on the HMF model as a classical system, and stress universal features which can be inferred in the semi-classical limit.In particular we show that the characteristic ch...

  18. Towards Disaggregate Dynamic Travel Forecasting Models

    Institute of Scientific and Technical Information of China (English)

    Moshe Ben-Akiva; Jon Bottom; Song Gao; Haris N. Koutsopoulos; Yang Wen

    2007-01-01

    The authors argue that travel forecasting models should be dynamic and disaggregate in their representation of demand, supply, and supply-demand interactions, and propose a framework for such models.The proposed framework consists of disaggregate activity-based representation of travel choices of individual motorists on the demand side integrated with disaggregate dynamic modeling of network performance,through vehicle-based traffic simulation models on the supply side. The demand model generates individual members of the population and assigns to them socioeconomic characteristics. The generated motorists maintain these characteristics when they are loaded on the network by the supply model. In an equilibrium setting, the framework lends itself to a fixed-point formulation to represent and resolve demand-supply interactions. The paper discusses some of the remaining development challenges and presents an example of an existing travel forecasting model system that incorporates many of the proposed elements.

  19. Dynamical effects of overparametrization in nonlinear models

    Science.gov (United States)

    Aguirre, Luis Antonio; Billings, S. A.

    1995-01-01

    This paper is concemed with dynamical reconstruction for nonlinear systems. The effects of the driving function and of the complexity of a given representation on the bifurcation patter are investigated. It is shown that the use of different driving functions to excite the system may yield models with different bifurcation patterns. The complexity of the reconstructions considered is quantified by the embedding dimension and the number of estimated parameters. In this respect it appears that models which reproduce the original bifurcation behaviour are of limited complexity and that excessively complex models tend to induce ghost bifurcations and spurious dynamical regimes. Moreover, some results suggest that the effects of overparametrization on the global dynamical behaviour of a nonlinear model may be more deleterious than the presence of moderate noise levels. In order to precisely quantify the complexity of the reconstructions, global polynomials are used although the results are believed to apply to a much wider class of representations including neural networks.

  20. Dynamic optimization deterministic and stochastic models

    CERN Document Server

    Hinderer, Karl; Stieglitz, Michael

    2016-01-01

    This book explores discrete-time dynamic optimization and provides a detailed introduction to both deterministic and stochastic models. Covering problems with finite and infinite horizon, as well as Markov renewal programs, Bayesian control models and partially observable processes, the book focuses on the precise modelling of applications in a variety of areas, including operations research, computer science, mathematics, statistics, engineering, economics and finance. Dynamic Optimization is a carefully presented textbook which starts with discrete-time deterministic dynamic optimization problems, providing readers with the tools for sequential decision-making, before proceeding to the more complicated stochastic models. The authors present complete and simple proofs and illustrate the main results with numerous examples and exercises (without solutions). With relevant material covered in four appendices, this book is completely self-contained.