WorldWideScience

Sample records for dynamic range enhancement

  1. Enhancement tuning and control for high dynamic range images in multi-scale locally adaptive contrast enhancement algorithms

    Science.gov (United States)

    Cvetkovic, Sascha D.; Schirris, Johan; de With, Peter H. N.

    2009-01-01

    For real-time imaging in surveillance applications, visibility of details is of primary importance to ensure customer confidence. If we display High Dynamic-Range (HDR) scenes whose contrast spans four or more orders of magnitude on a conventional monitor without additional processing, results are unacceptable. Compression of the dynamic range is therefore a compulsory part of any high-end video processing chain because standard monitors are inherently Low- Dynamic Range (LDR) devices with maximally two orders of display dynamic range. In real-time camera processing, many complex scenes are improved with local contrast enhancements, bringing details to the best possible visibility. In this paper, we show how a multi-scale high-frequency enhancement scheme, in which gain is a non-linear function of the detail energy, can be used for the dynamic range compression of HDR real-time video camera signals. We also show the connection of our enhancement scheme to the processing way of the Human Visual System (HVS). Our algorithm simultaneously controls perceived sharpness, ringing ("halo") artifacts (contrast) and noise, resulting in a good balance between visibility of details and non-disturbance of artifacts. The overall quality enhancement, suitable for both HDR and LDR scenes, is based on a careful selection of the filter types for the multi-band decomposition and a detailed analysis of the signal per frequency band.

  2. Video Enhancement and Dynamic Range Control of HDR Sequences for Automotive Applications

    Directory of Open Access Journals (Sweden)

    Giovanni Ramponi

    2007-01-01

    Full Text Available CMOS video cameras with high dynamic range (HDR output are particularly suitable for driving assistance applications, where lighting conditions can strongly vary, going from direct sunlight to dark areas in tunnels. However, common visualization devices can only handle a low dynamic range, and thus a dynamic range reduction is needed. Many algorithms have been proposed in the literature to reduce the dynamic range of still pictures. Anyway, extending the available methods to video is not straightforward, due to the peculiar nature of video data. We propose an algorithm for both reducing the dynamic range of video sequences and enhancing its appearance, thus improving visual quality and reducing temporal artifacts. We also provide an optimized version of our algorithm for a viable hardware implementation on an FPGA. The feasibility of this implementation is demonstrated by means of a case study.

  3. Dynamic range enhancement and amplitude regeneration in single pump fibre optic parametric amplifiers using DPSK modulation

    DEFF Research Database (Denmark)

    Peucheret, Christophe; Lorenzen, Michael Rodas; Seoane, Jorge

    2008-01-01

    Input power dynamic range enhancement and amplitude regeneration of highly distorted signals are demonstrated experimentally for 40 Gbit/s RZ-DPSK in a single-pump fibre parametric amplifier with 22 dB smallsignal gain.......Input power dynamic range enhancement and amplitude regeneration of highly distorted signals are demonstrated experimentally for 40 Gbit/s RZ-DPSK in a single-pump fibre parametric amplifier with 22 dB smallsignal gain....

  4. Fast and robust wavelet-based dynamic range compression and contrast enhancement model with color restoration

    Science.gov (United States)

    Unaldi, Numan; Asari, Vijayan K.; Rahman, Zia-ur

    2009-05-01

    Recently we proposed a wavelet-based dynamic range compression algorithm to improve the visual quality of digital images captured from high dynamic range scenes with non-uniform lighting conditions. The fast image enhancement algorithm that provides dynamic range compression, while preserving the local contrast and tonal rendition, is also a good candidate for real time video processing applications. Although the colors of the enhanced images produced by the proposed algorithm are consistent with the colors of the original image, the proposed algorithm fails to produce color constant results for some "pathological" scenes that have very strong spectral characteristics in a single band. The linear color restoration process is the main reason for this drawback. Hence, a different approach is required for the final color restoration process. In this paper the latest version of the proposed algorithm, which deals with this issue is presented. The results obtained by applying the algorithm to numerous natural images show strong robustness and high image quality.

  5. Local contrast-enhanced MR images via high dynamic range processing.

    Science.gov (United States)

    Chandra, Shekhar S; Engstrom, Craig; Fripp, Jurgen; Neubert, Ales; Jin, Jin; Walker, Duncan; Salvado, Olivier; Ho, Charles; Crozier, Stuart

    2018-09-01

    To develop a local contrast-enhancing and feature-preserving high dynamic range (HDR) image processing algorithm for multichannel and multisequence MR images of multiple body regions and tissues, and to evaluate its performance for structure visualization, bias field (correction) mitigation, and automated tissue segmentation. A multiscale-shape and detail-enhancement HDR-MRI algorithm is applied to data sets of multichannel and multisequence MR images of the brain, knee, breast, and hip. In multisequence 3T hip images, agreement between automatic cartilage segmentations and corresponding synthesized HDR-MRI series were computed for mean voxel overlap established from manual segmentations for a series of cases. Qualitative comparisons between the developed HDR-MRI and standard synthesis methods were performed on multichannel 7T brain and knee data, and multisequence 3T breast and knee data. The synthesized HDR-MRI series provided excellent enhancement of fine-scale structure from multiple scales and contrasts, while substantially reducing bias field effects in 7T brain gradient echo, T 1 and T 2 breast images and 7T knee multichannel images. Evaluation of the HDR-MRI approach on 3T hip multisequence images showed superior outcomes for automatic cartilage segmentations with respect to manual segmentation, particularly around regions with hyperintense synovial fluid, across a set of 3D sequences. The successful combination of multichannel/sequence MR images into a single-fused HDR-MR image format provided consolidated visualization of tissues within 1 omnibus image, enhanced definition of thin, complex anatomical structures in the presence of variable or hyperintense signals, and improved tissue (cartilage) segmentation outcomes. © 2018 International Society for Magnetic Resonance in Medicine.

  6. A Dynamic Range Enhanced Readout Technique with a Two-Step TDC for High Speed Linear CMOS Image Sensors

    Directory of Open Access Journals (Sweden)

    Zhiyuan Gao

    2015-11-01

    Full Text Available This paper presents a dynamic range (DR enhanced readout technique with a two-step time-to-digital converter (TDC for high speed linear CMOS image sensors. A multi-capacitor and self-regulated capacitive trans-impedance amplifier (CTIA structure is employed to extend the dynamic range. The gain of the CTIA is auto adjusted by switching different capacitors to the integration node asynchronously according to the output voltage. A column-parallel ADC based on a two-step TDC is utilized to improve the conversion rate. The conversion is divided into coarse phase and fine phase. An error calibration scheme is also proposed to correct quantization errors caused by propagation delay skew within −Tclk~+Tclk. A linear CMOS image sensor pixel array is designed in the 0.13 μm CMOS process to verify this DR-enhanced high speed readout technique. The post simulation results indicate that the dynamic range of readout circuit is 99.02 dB and the ADC achieves 60.22 dB SNDR and 9.71 bit ENOB at a conversion rate of 2 MS/s after calibration, with 14.04 dB and 2.4 bit improvement, compared with SNDR and ENOB of that without calibration.

  7. Photonic limiters with enhanced dynamic range

    Science.gov (United States)

    Kononchuk, Rodion; Limberopoulos, Nicholaos; Anisimov, Igor; Vitebskiy, Ilya; Chabanov, Andrey

    2018-02-01

    Optical limiters transmit low intensity input light while blocking input light with the intensity exceeding certain limiting threshold. Conventional passive limiters utilize nonlinear optical materials, which are transparent at low light intensity and turn absorptive at high intensity. Strong nonlinear absorption, though, can result in over- heating and destruction of the limiter. Another problem is that the limiting threshold provided by the available optical material with nonlinear absorption is too high for many applications. To address the above problems, the nonlinear material can be incorporated in a photonic structure with engineered dispersion. At low intensity, the photonic structure can display resonant transmission via localized mode(s), while at high intensity the resonant transmission can disappear, and the entire stack can become highly re ective (not absorptive) within a broad frequency range. In the proposed design, the transition from the resonant transmission at low intensity to nearly total re ectivity at high intensity does not rely on nonlinear absorption; instead, it requires only a modest change in the refractive index of the nonlinear material. The latter implies a dramatic increase in the dynamic range of the limiter. The main idea is to eliminate the high-intensity resonant transmission by decoupling the localized (resonant) modes from the input light, rather than suppressing those modes using nonlinear absorption. Similar approach can be used for light modulation and switching.

  8. Modulation of neuronal dynamic range using two different adaptation mechanisms

    Directory of Open Access Journals (Sweden)

    Lei Wang

    2017-01-01

    Full Text Available The capability of neurons to discriminate between intensity of external stimulus is measured by its dynamic range. A larger dynamic range indicates a greater probability of neuronal survival. In this study, the potential roles of adaptation mechanisms (ion currents in modulating neuronal dynamic range were numerically investigated. Based on the adaptive exponential integrate-and-fire model, which includes two different adaptation mechanisms, i.e. subthreshold and suprathreshold (spike-triggered adaptation, our results reveal that the two adaptation mechanisms exhibit rather different roles in regulating neuronal dynamic range. Specifically, subthreshold adaptation acts as a negative factor that observably decreases the neuronal dynamic range, while suprathreshold adaptation has little influence on the neuronal dynamic range. Moreover, when stochastic noise was introduced into the adaptation mechanisms, the dynamic range was apparently enhanced, regardless of what state the neuron was in, e.g. adaptive or non-adaptive. Our model results suggested that the neuronal dynamic range can be differentially modulated by different adaptation mechanisms. Additionally, noise was a non-ignorable factor, which could effectively modulate the neuronal dynamic range.

  9. Image enhancement circuit using nonlinear processing curve and constrained histogram range equalization

    NARCIS (Netherlands)

    Cvetkovic, S.D.; With, de P.H.N.; Panchanathan, S.; Vasudev, B.

    2004-01-01

    For real-time imaging in surveillance applications, image fidelity is of primary importance to ensure customer confidence. The obtained image fidelity is a result from amongst others dynamic range expansion and video signal enhancement. The dynamic range of the signal needs adaptation, because the

  10. Enhancing the dynamic range of Ultrasound Imaging Velocimetry using interleaved imaging

    NARCIS (Netherlands)

    Poelma, C.; Fraser, K.H.

    2013-01-01

    In recent years, non-invasive velocity field measurement based on correlation of ultrasound images has been introduced as a promising technique for fundamental research into disease processes, as well as a diagnostic tool. A major drawback of the method is the relatively limited dynamic range when

  11. Self-Biased Differential Rectifier with Enhanced Dynamic Range for Wireless Powering

    KAUST Repository

    Ouda, Mahmoud H.; Khalil, Waleed; Salama, Khaled N.

    2016-01-01

    A self-biased, cross-coupled, differential rectifier is proposed with enhanced power-conversion efficiency over an extended range of input power. A prototype is designed for UHF 433MHz RF power-harvesting applications and is implemented using 0.18μm

  12. Hierarchical tone mapping for high dynamic range image visualization

    Science.gov (United States)

    Qiu, Guoping; Duan, Jiang

    2005-07-01

    In this paper, we present a computationally efficient, practically easy to use tone mapping techniques for the visualization of high dynamic range (HDR) images in low dynamic range (LDR) reproduction devices. The new method, termed hierarchical nonlinear linear (HNL) tone-mapping operator maps the pixels in two hierarchical steps. The first step allocates appropriate numbers of LDR display levels to different HDR intensity intervals according to the pixel densities of the intervals. The second step linearly maps the HDR intensity intervals to theirs allocated LDR display levels. In the developed HNL scheme, the assignment of LDR display levels to HDR intensity intervals is controlled by a very simple and flexible formula with a single adjustable parameter. We also show that our new operators can be used for the effective enhancement of ordinary images.

  13. Enhancement tuning and control for high dynamic range images in multi-scale locally adaptive contrast enhancement algorithms

    NARCIS (Netherlands)

    Cvetkovic, S.D.; Schirris, J.; With, de P.H.N.

    2009-01-01

    For real-time imaging in surveillance applications, visibility of details is of primary importance to ensure customer confidence. If we display High Dynamic-Range (HDR) scenes whose contrast spans four or more orders of magnitude on a conventional monitor without additional processing, results are

  14. Self-Biased Differential Rectifier with Enhanced Dynamic Range for Wireless Powering

    KAUST Repository

    Ouda, Mahmoud H.

    2016-08-29

    A self-biased, cross-coupled, differential rectifier is proposed with enhanced power-conversion efficiency over an extended range of input power. A prototype is designed for UHF 433MHz RF power-harvesting applications and is implemented using 0.18μm CMOS technology. The proposed rectifier architecture is compared to the conventional cross-coupled rectifier. It demonstrates an improvement of more than 40% in the rectifier power conversion efficiency (PCE) and an input power range extension of more than 50% relative to the conventional crosscoupled rectifier. A sensitivity of -15.2dBm (30μW) input power for 1V output voltage and a peak power-conversion efficiency of 65% are achieved for a 50kω load. © 2004-2012 IEEE.

  15. Nonlinear dynamic range transformation in visual communication channels.

    Science.gov (United States)

    Alter-Gartenberg, R

    1996-01-01

    The article evaluates nonlinear dynamic range transformation in the context of the end-to-end continuous-input/discrete processing/continuous-display imaging process. Dynamic range transformation is required when we have the following: (i) the wide dynamic range encountered in nature is compressed into the relatively narrow dynamic range of the display, particularly for spatially varying irradiance (e.g., shadow); (ii) coarse quantization is expanded to the wider dynamic range of the display; and (iii) nonlinear tone scale transformation compensates for the correction in the camera amplifier.

  16. Dynamic Range Enhancement of High-Speed Electrical Signal Data via Non-Linear Compression

    Science.gov (United States)

    Laun, Matthew C. (Inventor)

    2016-01-01

    Systems and methods for high-speed compression of dynamic electrical signal waveforms to extend the measuring capabilities of conventional measuring devices such as oscilloscopes and high-speed data acquisition systems are discussed. Transfer function components and algorithmic transfer functions can be used to accurately measure signals that are within the frequency bandwidth but beyond the voltage range and voltage resolution capabilities of the measuring device.

  17. A Low-Power High-Dynamic-Range Receiver System for In-Probe 3-D Ultrasonic Imaging.

    Science.gov (United States)

    Attarzadeh, Hourieh; Xu, Ye; Ytterdal, Trond

    2017-10-01

    In this paper, a dual-mode low-power, high dynamic-range receiver circuit is designed for the interface with a capacitive micromachined ultrasonic transducer. The proposed ultrasound receiver chip enables the development of an in-probe digital beamforming imaging system. The flexibility of having two operation modes offers a high dynamic range with minimum power sacrifice. A prototype of the chip containing one receive channel, with one variable transimpedance amplifier (TIA) and one analog to digital converter (ADC) circuit is implemented. Combining variable gain TIA functionality with ADC gain settings achieves an enhanced overall high dynamic range, while low power dissipation is maintained. The chip is designed and fabricated in a 65 nm standard CMOS process technology. The test chip occupies an area of 76[Formula: see text] 170 [Formula: see text]. A total average power range of 60-240 [Formula: see text] for a sampling frequency of 30 MHz, and a center frequency of 5 MHz is measured. An instantaneous dynamic range of 50.5 dB with an overall dynamic range of 72 dB is obtained from the receiver circuit.

  18. A high speed, wide dynamic range digitizer circuit for photomultiplier tubes

    Energy Technology Data Exchange (ETDEWEB)

    Yarema, R.J.; Foster, G.W.; Knickerbocker, K.; Sarraj, M.; Tschirhart, R.; Whitmore, J.; Zimmerman, T. [Fermi National Accelerator Lab., Batavia, IL (United States); Lindgren, M. [Univ. of California, Los Angeles, CA (United States). Physics Dept.

    1994-06-01

    High energy physics experiments running at high interaction rates frequently require long record lengths for determining a level 1 trigger. The easiest way to provide a long event record is by digital means. In applications requiring wide dynamic range, however, digitization of an analog signal to obtain the digital record has been impossible due to lack of high speed, wide range FADCs. One such application is the readout of thousands of photomultiplier tubes in fixed target and colliding beam experiment calorimeters. A circuit has been designed for digitizing PMT signals over a wide dynamic range (17--18 bits) with 8 bits of resolution at rates up to 53 MHz. Output from the circuit is in a floating point format with a 4 bit exponent and an 8 bit mantissa. The heart of the circuit is a full custom integrated circuit called the QIE (Charge Integrator and Encoder). The design of the QIE and associated circuitry reported here permits operation over a 17 bit dynamic range. Tests of the circuit with a PMT input and a pulsed laser have provided respectable results with little off line correction. Performance of the circuit for demanding applications can be significantly enhanced with additional off line correction. Circuit design, packaging issues, and test results of a multirange device are presented for the first time.

  19. A high speed, wide dynamic range digitizer circuit for photomultiplier tubes

    International Nuclear Information System (INIS)

    Yarema, R.J.; Foster, G.W.; Knickerbocker, K.; Sarraj, M.; Tschirhart, R.; Whitmore, J.; Zimmerman, T.; Lindgren, M.

    1994-06-01

    High energy physics experiments running at high interaction rates frequently require long record lengths for determining a level 1 trigger. The easiest way to provide a long event record is by digital means. In applications requiring wide dynamic range, however, digitization of an analog signal to obtain the digital record has been impossible due to lack of high speed, wide range FADCs. One such application is the readout of thousands of photomultiplier tubes in fixed target and colliding beam experiment calorimeters. A circuit has been designed for digitizing PMT signals over a wide dynamic range (17--18 bits) with 8 bits of resolution at rates up to 53 MHz. Output from the circuit is in a floating point format with a 4 bit exponent and an 8 bit mantissa. The heart of the circuit is a full custom integrated circuit called the QIE (Charge Integrator and Encoder). The design of the QIE and associated circuitry reported here permits operation over a 17 bit dynamic range. Tests of the circuit with a PMT input and a pulsed laser have provided respectable results with little off line correction. Performance of the circuit for demanding applications can be significantly enhanced with additional off line correction. Circuit design, packaging issues, and test results of a multirange device are presented for the first time

  20. Mediator facilitates transcriptional activation and dynamic long-range contacts at the IgH locus during class switch recombination.

    Science.gov (United States)

    Thomas-Claudepierre, Anne-Sophie; Robert, Isabelle; Rocha, Pedro P; Raviram, Ramya; Schiavo, Ebe; Heyer, Vincent; Bonneau, Richard; Luo, Vincent M; Reddy, Janardan K; Borggrefe, Tilman; Skok, Jane A; Reina-San-Martin, Bernardo

    2016-03-07

    Immunoglobulin (Ig) class switch recombination (CSR) is initiated by the transcription-coupled recruitment of activation-induced cytidine deaminase (AID) to Ig switch regions (S regions). During CSR, the IgH locus undergoes dynamic three-dimensional structural changes in which promoters, enhancers, and S regions are brought to close proximity. Nevertheless, little is known about the underlying mechanisms. In this study, we show that Med1 and Med12, two subunits of the mediator complex implicated in transcription initiation and long-range enhancer/promoter loop formation, are dynamically recruited to the IgH locus enhancers and the acceptor regions during CSR and that their knockdown in CH12 cells results in impaired CSR. Furthermore, we show that conditional inactivation of Med1 in B cells results in defective CSR and reduced acceptor S region transcription. Finally, we show that in B cells undergoing CSR, the dynamic long-range contacts between the IgH enhancers and the acceptor regions correlate with Med1 and Med12 binding and that they happen at a reduced frequency in Med1-deficient B cells. Our results implicate the mediator complex in the mechanism of CSR and are consistent with a model in which mediator facilitates the long-range contacts between S regions and the IgH locus enhancers during CSR and their transcriptional activation. © 2016 Thomas-Claudepierre et al.

  1. High dynamic range image acquisition based on multiplex cameras

    Science.gov (United States)

    Zeng, Hairui; Sun, Huayan; Zhang, Tinghua

    2018-03-01

    High dynamic image is an important technology of photoelectric information acquisition, providing higher dynamic range and more image details, and it can better reflect the real environment, light and color information. Currently, the method of high dynamic range image synthesis based on different exposure image sequences cannot adapt to the dynamic scene. It fails to overcome the effects of moving targets, resulting in the phenomenon of ghost. Therefore, a new high dynamic range image acquisition method based on multiplex cameras system was proposed. Firstly, different exposure images sequences were captured with the camera array, using the method of derivative optical flow based on color gradient to get the deviation between images, and aligned the images. Then, the high dynamic range image fusion weighting function was established by combination of inverse camera response function and deviation between images, and was applied to generated a high dynamic range image. The experiments show that the proposed method can effectively obtain high dynamic images in dynamic scene, and achieves good results.

  2. The analysis on dynamic range of industrial CT system

    International Nuclear Information System (INIS)

    Wang Huiqian; Wang Jue; Tan Hui

    2011-01-01

    Concerning the limitations of the definition of the dynamic range of industrial computed tomography (ICT) system, it researches the definition, measuring method and influencing factors of the dynamic range of industrial computed tomography (ICT) system from the concept of quantization and system. First, the character of the input-output curve was analyzed, and the method of obtaining the dynamic range of industrial computed tomography (ICT) system was proposed. Then, an experiment model was designed to gain dynamic range, based on 6 MeV high-energy industrial computed tomography (ICT) system. The results show that the larger the photosurface is, the smaller the dynamic range is, when the other parameters are unchanged. (authors)

  3. Dynamic range meter for radiofrequency amplifiers

    Directory of Open Access Journals (Sweden)

    Drozd S. S.

    2009-04-01

    Full Text Available The new measurement setup having increased on 20…30 dB the own dynamic range in comparison with the standard circuit of the dynamic range meter is offered and the rated value of an error bringing by setup in the worst case does not exceed ± 2,8 dB. The measurement setup can be applied also to determinate levels of intermodulation components average power amplifiers and powerful amplifiers of a low-frequency at replacement of the quartz filter on meeting low-frequency the LC-filter and the spectrum analyzer.

  4. Comparison of three different concepts of high dynamic range and dependability optimised current measurement digitisers for beam loss systems

    CERN Document Server

    Viganò, W; Effinger, E; Venturini, G G; Zamantzas, C

    2012-01-01

    Three Different Concepts of High Dynamic Range and Dependability Optimised Current Measurement Digitisers for Beam Loss Systems will be compared on this paper. The first concept is based on Current to Frequency Conversion, enhanced with an ADC for extending the dynamic range and decreasing the response time. A summary of 3 years’ worth of operational experience with such a system for LHC beam loss monitoring will be given. The second principle is based on an Adaptive Current to Frequency Converter implemented in an ASIC. The basic parameters of the circuit are discussed and compared with measurements. Several measures are taken to harden both circuits against single event effects and to make them tolerant for operation in radioactive environments. The third circuit is based on a Fully Differential Integrator for enhanced dynamic range, where laboratory and test installation measurements will be presented. All circuits are designed to avoid any dead time in the acquisition and have reliability and fail safe...

  5. Dynamic Contrast-Enhanced Magnetic Resonance Enterography and Dynamic Contrast-Enhanced Ultrasonography in Crohn's Disease

    DEFF Research Database (Denmark)

    Wilkens, Rune; Peters, David A; Nielsen, Agnete Hedemann

    2017-01-01

    Purpose e Cross-sectional imaging methods are important for objective evaluationof small intestinal inflammationinCrohn'sdisease(CD).The primary aim was to compare relative parameters of intestinal perfusion between contrast-enhanced ultrasonography (CEUS) and dynamic contrast-enhanced magnetic...

  6. On Dynamic Range Limitations of CMOS Current Conveyors

    DEFF Research Database (Denmark)

    Bruun, Erik

    1999-01-01

    frequency band and for the situation where the conveyor is used over the full bandwidth achievable. Finally, the optimisation of the current input range is related to the distortion characteristics and it is pointed out that to a first order approximation the distortion is independent of the current range.......This paper is concerned with the dynamic range of continuous time CMOS current mode circuits. As a representative current mode device a class AB current conveyor is examined. First, the voltage input range of the high impedance Y input is investigated. Next, the current input range of the low...... impedance X input is investigated. It is compared to the thermal noise in the X to Z signal path in order to evaluate the dynamic range, and the dependencies of the dynamic range on the supply voltage and the transistor lay-out is derived, both for the situation where the conveyor is used over a narrow...

  7. HEVC for high dynamic range services

    Science.gov (United States)

    Kim, Seung-Hwan; Zhao, Jie; Misra, Kiran; Segall, Andrew

    2015-09-01

    Displays capable of showing a greater range of luminance values can render content containing high dynamic range information in a way such that the viewers have a more immersive experience. This paper introduces the design aspects of a high dynamic range (HDR) system, and examines the performance of the HDR processing chain in terms of compression efficiency. Specifically it examines the relation between recently introduced Society of Motion Picture and Television Engineers (SMPTE) ST 2084 transfer function and the High Efficiency Video Coding (HEVC) standard. SMPTE ST 2084 is designed to cover the full range of an HDR signal from 0 to 10,000 nits, however in many situations the valid signal range of actual video might be smaller than SMPTE ST 2084 supported range. The above restricted signal range results in restricted range of code values for input video data and adversely impacts compression efficiency. In this paper, we propose a code value remapping method that extends the restricted range code values into the full range code values so that the existing standards such as HEVC may better compress the video content. The paper also identifies related non-normative encoder-only changes that are required for remapping method for a fair comparison with anchor. Results are presented comparing the efficiency of the current approach versus the proposed remapping method for HM-16.2.

  8. Dynamic Range Across Music Genres and the Perception of Dynamic Compression in Hearing-Impaired Listeners

    Directory of Open Access Journals (Sweden)

    Martin Kirchberger

    2016-02-01

    Full Text Available Dynamic range compression serves different purposes in the music and hearing-aid industries. In the music industry, it is used to make music louder and more attractive to normal-hearing listeners. In the hearing-aid industry, it is used to map the variable dynamic range of acoustic signals to the reduced dynamic range of hearing-impaired listeners. Hence, hearing-aided listeners will typically receive a dual dose of compression when listening to recorded music. The present study involved an acoustic analysis of dynamic range across a cross section of recorded music as well as a perceptual study comparing the efficacy of different compression schemes. The acoustic analysis revealed that the dynamic range of samples from popular genres, such as rock or rap, was generally smaller than the dynamic range of samples from classical genres, such as opera and orchestra. By comparison, the dynamic range of speech, based on recordings of monologues in quiet, was larger than the dynamic range of all music genres tested. The perceptual study compared the effect of the prescription rule NAL-NL2 with a semicompressive and a linear scheme. Music subjected to linear processing had the highest ratings for dynamics and quality, followed by the semicompressive and the NAL-NL2 setting. These findings advise against NAL-NL2 as a prescription rule for recorded music and recommend linear settings.

  9. Dynamic Range Across Music Genres and the Perception of Dynamic Compression in Hearing-Impaired Listeners

    Science.gov (United States)

    Kirchberger, Martin

    2016-01-01

    Dynamic range compression serves different purposes in the music and hearing-aid industries. In the music industry, it is used to make music louder and more attractive to normal-hearing listeners. In the hearing-aid industry, it is used to map the variable dynamic range of acoustic signals to the reduced dynamic range of hearing-impaired listeners. Hence, hearing-aided listeners will typically receive a dual dose of compression when listening to recorded music. The present study involved an acoustic analysis of dynamic range across a cross section of recorded music as well as a perceptual study comparing the efficacy of different compression schemes. The acoustic analysis revealed that the dynamic range of samples from popular genres, such as rock or rap, was generally smaller than the dynamic range of samples from classical genres, such as opera and orchestra. By comparison, the dynamic range of speech, based on recordings of monologues in quiet, was larger than the dynamic range of all music genres tested. The perceptual study compared the effect of the prescription rule NAL-NL2 with a semicompressive and a linear scheme. Music subjected to linear processing had the highest ratings for dynamics and quality, followed by the semicompressive and the NAL-NL2 setting. These findings advise against NAL-NL2 as a prescription rule for recorded music and recommend linear settings. PMID:26868955

  10. Dynamic Range Across Music Genres and the Perception of Dynamic Compression in Hearing-Impaired Listeners.

    Science.gov (United States)

    Kirchberger, Martin; Russo, Frank A

    2016-02-10

    Dynamic range compression serves different purposes in the music and hearing-aid industries. In the music industry, it is used to make music louder and more attractive to normal-hearing listeners. In the hearing-aid industry, it is used to map the variable dynamic range of acoustic signals to the reduced dynamic range of hearing-impaired listeners. Hence, hearing-aided listeners will typically receive a dual dose of compression when listening to recorded music. The present study involved an acoustic analysis of dynamic range across a cross section of recorded music as well as a perceptual study comparing the efficacy of different compression schemes. The acoustic analysis revealed that the dynamic range of samples from popular genres, such as rock or rap, was generally smaller than the dynamic range of samples from classical genres, such as opera and orchestra. By comparison, the dynamic range of speech, based on recordings of monologues in quiet, was larger than the dynamic range of all music genres tested. The perceptual study compared the effect of the prescription rule NAL-NL2 with a semicompressive and a linear scheme. Music subjected to linear processing had the highest ratings for dynamics and quality, followed by the semicompressive and the NAL-NL2 setting. These findings advise against NAL-NL2 as a prescription rule for recorded music and recommend linear settings. © The Author(s) 2016.

  11. High dynamic range coding imaging system

    Science.gov (United States)

    Wu, Renfan; Huang, Yifan; Hou, Guangqi

    2014-10-01

    We present a high dynamic range (HDR) imaging system design scheme based on coded aperture technique. This scheme can help us obtain HDR images which have extended depth of field. We adopt Sparse coding algorithm to design coded patterns. Then we utilize the sensor unit to acquire coded images under different exposure settings. With the guide of the multiple exposure parameters, a series of low dynamic range (LDR) coded images are reconstructed. We use some existing algorithms to fuse and display a HDR image by those LDR images. We build an optical simulation model and get some simulation images to verify the novel system.

  12. Development of a dynamic flow imaging phantom for dynamic contrast-enhanced CT

    International Nuclear Information System (INIS)

    Driscoll, B.; Keller, H.; Coolens, C.

    2011-01-01

    Purpose: Dynamic contrast enhanced CT (DCE-CT) studies with modeling of blood flow and tissue perfusion are becoming more prevalent in the clinic, with advances in wide volume CT scanners allowing the imaging of an entire organ with sub-second image frequency and sub-millimeter accuracy. Wide-spread implementation of perfusion DCE-CT, however, is pending fundamental validation of the quantitative parameters that result from dynamic contrast imaging and perfusion modeling. Therefore, the goal of this work was to design and construct a novel dynamic flow imaging phantom capable of producing typical clinical time-attenuation curves (TACs) with the purpose of developing a framework for the quantification and validation of DCE-CT measurements and kinetic modeling under realistic flow conditions. Methods: The phantom is based on a simple two-compartment model and was printed using a 3D printer. Initial analysis of the phantom involved simple flow measurements and progressed to DCE-CT experiments in order to test the phantoms range and reproducibility. The phantom was then utilized to generate realistic input TACs. A phantom prediction model was developed to compute the input and output TACs based on a given set of five experimental (control) parameters: pump flow rate, injection pump flow rate, injection contrast concentration, and both control valve positions. The prediction model is then inversely applied to determine the control parameters necessary to generate a set of desired input and output TACs. A protocol was developed and performed using the phantom to investigate image noise, partial volume effects and CT number accuracy under realistic flow conditionsResults: This phantom and its surrounding flow system are capable of creating a wide range of physiologically relevant TACs, which are reproducible with minimal error between experiments (σ/μ 2 ) for the input function between 0.95 and 0.98, while the maximum enhancement differed by no more than 3.3%. The

  13. RADIANCE DOMAIN COMPOSITING FOR HIGH DYNAMIC RANGE IMAGING

    Directory of Open Access Journals (Sweden)

    M.R. Renu

    2013-02-01

    Full Text Available High dynamic range imaging aims at creating an image with a range of intensity variations larger than the range supported by a camera sensor. Most commonly used methods combine multiple exposure low dynamic range (LDR images, to obtain the high dynamic range (HDR image. Available methods typically neglect the noise term while finding appropriate weighting functions to estimate the camera response function as well as the radiance map. We look at the HDR imaging problem in a denoising frame work and aim at reconstructing a low noise radiance map from noisy low dynamic range images, which is tone mapped to get the LDR equivalent of the HDR image. We propose a maximum aposteriori probability (MAP based reconstruction of the HDR image using Gibb’s prior to model the radiance map, with total variation (TV as the prior to avoid unnecessary smoothing of the radiance field. To make the computation with TV prior efficient, we extend the majorize-minimize method of upper bounding the total variation by a quadratic function to our case which has a nonlinear term arising from the camera response function. A theoretical justification for doing radiance domain denoising as opposed to image domain denoising is also provided.

  14. Increasing Linear Dynamic Range of a CMOS Image Sensor

    Science.gov (United States)

    Pain, Bedabrata

    2007-01-01

    A generic design and a corresponding operating sequence have been developed for increasing the linear-response dynamic range of a complementary metal oxide/semiconductor (CMOS) image sensor. The design provides for linear calibrated dual-gain pixels that operate at high gain at a low signal level and at low gain at a signal level above a preset threshold. Unlike most prior designs for increasing dynamic range of an image sensor, this design does not entail any increase in noise (including fixed-pattern noise), decrease in responsivity or linearity, or degradation of photometric calibration. The figure is a simplified schematic diagram showing the circuit of one pixel and pertinent parts of its column readout circuitry. The conventional part of the pixel circuit includes a photodiode having a small capacitance, CD. The unconventional part includes an additional larger capacitance, CL, that can be connected to the photodiode via a transfer gate controlled in part by a latch. In the high-gain mode, the signal labeled TSR in the figure is held low through the latch, which also helps to adapt the gain on a pixel-by-pixel basis. Light must be coupled to the pixel through a microlens or by back illumination in order to obtain a high effective fill factor; this is necessary to ensure high quantum efficiency, a loss of which would minimize the efficacy of the dynamic- range-enhancement scheme. Once the level of illumination of the pixel exceeds the threshold, TSR is turned on, causing the transfer gate to conduct, thereby adding CL to the pixel capacitance. The added capacitance reduces the conversion gain, and increases the pixel electron-handling capacity, thereby providing an extension of the dynamic range. By use of an array of comparators also at the bottom of the column, photocharge voltages on sampling capacitors in each column are compared with a reference voltage to determine whether it is necessary to switch from the high-gain to the low-gain mode. Depending upon

  15. High Precision Sunphotometer using Wide Dynamic Range (WDR) Camera Tracking

    Science.gov (United States)

    Liss, J.; Dunagan, S. E.; Johnson, R. R.; Chang, C. S.; LeBlanc, S. E.; Shinozuka, Y.; Redemann, J.; Flynn, C. J.; Segal-Rosenhaimer, M.; Pistone, K.; Kacenelenbogen, M. S.; Fahey, L.

    2016-12-01

    High Precision Sunphotometer using Wide Dynamic Range (WDR) Camera TrackingThe NASA Ames Sun-photometer-Satellite Group, DOE, PNNL Atmospheric Sciences and Global Change Division, and NASA Goddard's AERONET (AErosol RObotic NETwork) team recently collaborated on the development of a new airborne sunphotometry instrument that provides information on gases and aerosols extending far beyond what can be derived from discrete-channel direct-beam measurements, while preserving or enhancing many of the desirable AATS features (e.g., compactness, versatility, automation, reliability). The enhanced instrument combines the sun-tracking ability of the current 14-Channel NASA Ames AATS-14 with the sky-scanning ability of the ground-based AERONET Sun/sky photometers, while extending both AATS-14 and AERONET capabilities by providing full spectral information from the UV (350 nm) to the SWIR (1,700 nm). Strengths of this measurement approach include many more wavelengths (isolated from gas absorption features) that may be used to characterize aerosols and detailed (oversampled) measurements of the absorption features of specific gas constituents. The Sky Scanning Sun Tracking Airborne Radiometer (3STAR) replicates the radiometer functionality of the AATS-14 instrument but incorporates modern COTS technologies for all instruments subsystems. A 19-channel radiometer bundle design is borrowed from a commercial water column radiance instrument manufactured by Biospherical Instruments of San Diego California (ref, Morrow and Hooker)) and developed using NASA funds under the Small Business Innovative Research (SBIR) program. The 3STAR design also incorporates the latest in robotic motor technology embodied in Rotary actuators from Oriental motor Corp. having better than 15 arc seconds of positioning accuracy. Control system was designed, tested and simulated using a Hybrid-Dynamical modeling methodology. The design also replaces the classic quadrant detector tracking sensor with a

  16. High Dynamic Range Imaging Using Multiple Exposures

    Science.gov (United States)

    Hou, Xinglin; Luo, Haibo; Zhou, Peipei; Zhou, Wei

    2017-06-01

    It is challenging to capture a high-dynamic range (HDR) scene using a low-dynamic range (LDR) camera. This paper presents an approach for improving the dynamic range of cameras by using multiple exposure images of same scene taken under different exposure times. First, the camera response function (CRF) is recovered by solving a high-order polynomial in which only the ratios of the exposures are used. Then, the HDR radiance image is reconstructed by weighted summation of the each radiance maps. After that, a novel local tone mapping (TM) operator is proposed for the display of the HDR radiance image. By solving the high-order polynomial, the CRF can be recovered quickly and easily. Taken the local image feature and characteristic of histogram statics into consideration, the proposed TM operator could preserve the local details efficiently. Experimental result demonstrates the effectiveness of our method. By comparison, the method outperforms other methods in terms of imaging quality.

  17. Benchmarking novel approaches for modelling species range dynamics.

    Science.gov (United States)

    Zurell, Damaris; Thuiller, Wilfried; Pagel, Jörn; Cabral, Juliano S; Münkemüller, Tamara; Gravel, Dominique; Dullinger, Stefan; Normand, Signe; Schiffers, Katja H; Moore, Kara A; Zimmermann, Niklaus E

    2016-08-01

    Increasing biodiversity loss due to climate change is one of the most vital challenges of the 21st century. To anticipate and mitigate biodiversity loss, models are needed that reliably project species' range dynamics and extinction risks. Recently, several new approaches to model range dynamics have been developed to supplement correlative species distribution models (SDMs), but applications clearly lag behind model development. Indeed, no comparative analysis has been performed to evaluate their performance. Here, we build on process-based, simulated data for benchmarking five range (dynamic) models of varying complexity including classical SDMs, SDMs coupled with simple dispersal or more complex population dynamic models (SDM hybrids), and a hierarchical Bayesian process-based dynamic range model (DRM). We specifically test the effects of demographic and community processes on model predictive performance. Under current climate, DRMs performed best, although only marginally. Under climate change, predictive performance varied considerably, with no clear winners. Yet, all range dynamic models improved predictions under climate change substantially compared to purely correlative SDMs, and the population dynamic models also predicted reasonable extinction risks for most scenarios. When benchmarking data were simulated with more complex demographic and community processes, simple SDM hybrids including only dispersal often proved most reliable. Finally, we found that structural decisions during model building can have great impact on model accuracy, but prior system knowledge on important processes can reduce these uncertainties considerably. Our results reassure the clear merit in using dynamic approaches for modelling species' response to climate change but also emphasize several needs for further model and data improvement. We propose and discuss perspectives for improving range projections through combination of multiple models and for making these approaches

  18. Reconstructing Interlaced High-Dynamic-Range Video Using Joint Learning.

    Science.gov (United States)

    Inchang Choi; Seung-Hwan Baek; Kim, Min H

    2017-11-01

    For extending the dynamic range of video, it is a common practice to capture multiple frames sequentially with different exposures and combine them to extend the dynamic range of each video frame. However, this approach results in typical ghosting artifacts due to fast and complex motion in nature. As an alternative, video imaging with interlaced exposures has been introduced to extend the dynamic range. However, the interlaced approach has been hindered by jaggy artifacts and sensor noise, leading to concerns over image quality. In this paper, we propose a data-driven approach for jointly solving two specific problems of deinterlacing and denoising that arise in interlaced video imaging with different exposures. First, we solve the deinterlacing problem using joint dictionary learning via sparse coding. Since partial information of detail in differently exposed rows is often available via interlacing, we make use of the information to reconstruct details of the extended dynamic range from the interlaced video input. Second, we jointly solve the denoising problem by tailoring sparse coding to better handle additive noise in low-/high-exposure rows, and also adopt multiscale homography flow to temporal sequences for denoising. We anticipate that the proposed method will allow for concurrent capture of higher dynamic range video frames without suffering from ghosting artifacts. We demonstrate the advantages of our interlaced video imaging compared with the state-of-the-art high-dynamic-range video methods.

  19. Real-time high dynamic range laser scanning microscopy

    Science.gov (United States)

    Vinegoni, C.; Leon Swisher, C.; Fumene Feruglio, P.; Giedt, R. J.; Rousso, D. L.; Stapleton, S.; Weissleder, R.

    2016-04-01

    In conventional confocal/multiphoton fluorescence microscopy, images are typically acquired under ideal settings and after extensive optimization of parameters for a given structure or feature, often resulting in information loss from other image attributes. To overcome the problem of selective data display, we developed a new method that extends the imaging dynamic range in optical microscopy and improves the signal-to-noise ratio. Here we demonstrate how real-time and sequential high dynamic range microscopy facilitates automated three-dimensional neural segmentation. We address reconstruction and segmentation performance on samples with different size, anatomy and complexity. Finally, in vivo real-time high dynamic range imaging is also demonstrated, making the technique particularly relevant for longitudinal imaging in the presence of physiological motion and/or for quantification of in vivo fast tracer kinetics during functional imaging.

  20. Dynamic Planar Range Maxima Queries

    DEFF Research Database (Denmark)

    Brodal, Gerth Stølting; Tsakalidis, Konstantinos

    2011-01-01

    We consider the dynamic two-dimensional maxima query problem. Let P be a set of n points in the plane. A point is maximal if it is not dominated by any other point in P. We describe two data structures that support the reporting of the t maximal points that dominate a given query point, and allow...... for insertions and deletions of points in P. In the pointer machine model we present a linear space data structure with O(logn + t) worst case query time and O(logn) worst case update time. This is the first dynamic data structure for the planar maxima dominance query problem that achieves these bounds...... are integers in the range U = {0, …,2 w  − 1 }. We present a linear space data structure that supports 3-sided range maxima queries in O(logn/loglogn+t) worst case time and updates in O(logn/loglogn) worst case time. These are the first sublogarithmic worst case bounds for all operations in the RAM model....

  1. Image dynamic range test and evaluation of Gaofen-2 dual cameras

    Science.gov (United States)

    Zhang, Zhenhua; Gan, Fuping; Wei, Dandan

    2015-12-01

    In order to fully understand the dynamic range of Gaofen-2 satellite data and support the data processing, application and next satellites development, in this article, we evaluated the dynamic range by calculating some statistics such as maximum ,minimum, average and stand deviation of four images obtained at the same time by Gaofen-2 dual cameras in Beijing area; then the maximum ,minimum, average and stand deviation of each longitudinal overlap of PMS1,PMS2 were calculated respectively for the evaluation of each camera's dynamic range consistency; and these four statistics of each latitudinal overlap of PMS1,PMS2 were calculated respectively for the evaluation of the dynamic range consistency between PMS1 and PMS2 at last. The results suggest that there is a wide dynamic range of DN value in the image obtained by PMS1 and PMS2 which contains rich information of ground objects; in general, the consistency of dynamic range between the single camera images is in close agreement, but also a little difference, so do the dual cameras. The consistency of dynamic range between the single camera images is better than the dual cameras'.

  2. Magnetosheath dynamic pressure enhancements: occurrence and typical properties

    Directory of Open Access Journals (Sweden)

    M. O. Archer

    2013-02-01

    Full Text Available The first comprehensive statistical study of large-amplitude (> 100% transient enhancements of the magnetosheath dynamic pressure reveals events of up to ~ 15 times the ambient dynamic pressure with durations up to 3 min and an average duration of around 30 s, predominantly downstream of the quasi-parallel shock. The dynamic pressure transients are most often dominated by velocity increases along with a small fractional increase in the density, though the velocity is generally only deflected by a few degrees. Superposed wavelet transforms of the magnetic field show that, whilst most enhancements exhibit changes in the magnetosheath magnetic field, the majority are not associated with changes in the Interplanetary Magnetic Field (IMF. However, there is a minority of enhancements that do appear to be associated with solar wind discontinuities which cannot be explained simply by random events. In general, it is found that during periods of magnetosheath dynamic pressure enhancements the IMF is steadier than usual. This suggests that a stable foreshock and hence foreshock structures or processes may be important in the generation of the majority of magnetosheath dynamic pressure enhancements.

  3. Synchronous digitization for high dynamic range lock-in amplification in beam-scanning microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Muir, Ryan D.; Sullivan, Shane Z.; Oglesbee, Robert A.; Simpson, Garth J., E-mail: gsimpson@purdue.edu [Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907 (United States)

    2014-03-15

    Digital lock-in amplification (LIA) with synchronous digitization (SD) is shown to provide significant signal to noise (S/N) and linear dynamic range advantages in beam-scanning microscopy measurements using pulsed laser sources. Direct comparisons between SD-LIA and conventional LIA in homodyne second harmonic generation measurements resulted in S/N enhancements consistent with theoretical models. SD-LIA provided notably larger S/N enhancements in the limit of low light intensities, through the smooth transition between photon counting and signal averaging developed in previous work. Rapid beam scanning instrumentation with up to video rate acquisition speeds minimized photo-induced sample damage. The corresponding increased allowance for higher laser power without sample damage is advantageous for increasing the observed signal content.

  4. High dynamic range adaptive real-time smart camera: an overview of the HDR-ARTiST project

    Science.gov (United States)

    Lapray, Pierre-Jean; Heyrman, Barthélémy; Ginhac, Dominique

    2015-04-01

    Standard cameras capture only a fraction of the information that is visible to the human visual system. This is specifically true for natural scenes including areas of low and high illumination due to transitions between sunlit and shaded areas. When capturing such a scene, many cameras are unable to store the full Dynamic Range (DR) resulting in low quality video where details are concealed in shadows or washed out by sunlight. The imaging technique that can overcome this problem is called HDR (High Dynamic Range) imaging. This paper describes a complete smart camera built around a standard off-the-shelf LDR (Low Dynamic Range) sensor and a Virtex-6 FPGA board. This smart camera called HDR-ARtiSt (High Dynamic Range Adaptive Real-time Smart camera) is able to produce a real-time HDR live video color stream by recording and combining multiple acquisitions of the same scene while varying the exposure time. This technique appears as one of the most appropriate and cheapest solution to enhance the dynamic range of real-life environments. HDR-ARtiSt embeds real-time multiple captures, HDR processing, data display and transfer of a HDR color video for a full sensor resolution (1280 1024 pixels) at 60 frames per second. The main contributions of this work are: (1) Multiple Exposure Control (MEC) dedicated to the smart image capture with alternating three exposure times that are dynamically evaluated from frame to frame, (2) Multi-streaming Memory Management Unit (MMMU) dedicated to the memory read/write operations of the three parallel video streams, corresponding to the different exposure times, (3) HRD creating by combining the video streams using a specific hardware version of the Devebecs technique, and (4) Global Tone Mapping (GTM) of the HDR scene for display on a standard LCD monitor.

  5. Time course of dynamic range adaptation in the auditory nerve

    Science.gov (United States)

    Wang, Grace I.; Dean, Isabel; Delgutte, Bertrand

    2012-01-01

    Auditory adaptation to sound-level statistics occurs as early as in the auditory nerve (AN), the first stage of neural auditory processing. In addition to firing rate adaptation characterized by a rate decrement dependent on previous spike activity, AN fibers show dynamic range adaptation, which is characterized by a shift of the rate-level function or dynamic range toward the most frequently occurring levels in a dynamic stimulus, thereby improving the precision of coding of the most common sound levels (Wen B, Wang GI, Dean I, Delgutte B. J Neurosci 29: 13797–13808, 2009). We investigated the time course of dynamic range adaptation by recording from AN fibers with a stimulus in which the sound levels periodically switch from one nonuniform level distribution to another (Dean I, Robinson BL, Harper NS, McAlpine D. J Neurosci 28: 6430–6438, 2008). Dynamic range adaptation occurred rapidly, but its exact time course was difficult to determine directly from the data because of the concomitant firing rate adaptation. To characterize the time course of dynamic range adaptation without the confound of firing rate adaptation, we developed a phenomenological “dual adaptation” model that accounts for both forms of AN adaptation. When fitted to the data, the model predicts that dynamic range adaptation occurs as rapidly as firing rate adaptation, over 100–400 ms, and the time constants of the two forms of adaptation are correlated. These findings suggest that adaptive processing in the auditory periphery in response to changes in mean sound level occurs rapidly enough to have significant impact on the coding of natural sounds. PMID:22457465

  6. Differentiation of benign and malignant solitary pulmonary nodules : value of contrast-enhanced dynamic MR imaging

    International Nuclear Information System (INIS)

    Kim, Jeong Ho; Kim, Hyung Jin; Han, Heon; Lee, Hong Lyeol; Kim, Kwang Ho; Suh, Chang Hae

    1999-01-01

    To evaluate the usefulness of contrast-enhanced dynamic MR imaging for differentiation of benign and malignant solitary pulmonary nodules (SPNs). Twenty-three patients with histologically or radiologically provened SPNs smaller than 40mm (14 benign, 9 malignant) underwent MR examination using the breath-hold fast multiplanar spoiled gradient echo (FMPSPGR) technique. Pre-enhancement MR examination was followed by serial scans obtained at one-minute intervals, beginning one-minute after the onset of bolus injection of paramagnetic contrast agent for a total of five scans. Signal intensities of SPNs were measured from pre- and post-contrast enhanced MR images and peak percentage increase in signal intensity (p%SI) was calculated. Mean percentage increase in signal intensity (m%SI) was also calculated and the time-m%SI curve was plotted. The enhancement patterns of SPNs were classified as homogeneous, peripheral rim-like, inhomogeneous, or no (or minimal) enhancement. We compared differences in p%SI, the pattern of the time-m%SI curve, and the pattern of enhancement between benign and malignant SPNs. On dynamic MR images, alignant SPNs (n=9) showed a significantly higher p%SI than benign SPNs (n=14) (malignant : mean 120.6, range 81.8-171.6; benign : mean 29.5, range 3.7-78.9)(p<0.0001). With 80 p%SI as the threshold for malignancy-positive, both sensitivity and specificity were 100%. The m%SI of malignant SPNs rapidly increased at one minute after enhancement and decreased gradually thereafter, whereas that of benign SPNs increased more slowly to form a plateau. Eighty-nine percent (8/9) of malignant SPNs showed homogeneous enhancement. In contrast, among benign SPNs, peripheral rim-like enhancement and no (or minimal) enhancement occurred in the same proportion of cases : 50%(7/14). The superb demonstration of different enhancement characteristics obtained using dynamic contrast-enhanced MR imaging is useful to discriminate malignant from benign SPNs

  7. Enhanced Microgrid Dynamic Performance Using a Modulated Power Filter Based on Enhanced Bacterial Foraging Optimization

    Directory of Open Access Journals (Sweden)

    Ahmed M. Othman

    2017-06-01

    Full Text Available This paper presents a design of microgrid (MG with enhanced dynamic performance. Distributed energy resources (DER are widely used in MGs to match the various load types and profiles. DERs include solar PV cells, wind energy sources, fuel cells, batteries, micro gas-engines and storage elements. MG will include AC/DC circuits, developed power electronics devices, inverters and power electronic controllers. A novel modulated power filters (MPF device will be applied in MG design. Enhanced bacterial foraging optimization (EBFO will be proposed to optimize and set the MPF parameters to enhance and tune the MG dynamic response. Recent dynamic control is applied to minimize the harmonic reference content. EBFO will adapt the gains of MPF dynamic control. The present research achieves an enhancement of MG dynamic performance, in addition to ensuring improvements in the power factor, bus voltage profile and power quality. MG operation will be evaluated by the dynamic response to be fine-tuned by MPF based on EBFO. Digital simulations have validated the results to show the effectiveness and efficient improvement by the proposed strategy.

  8. Evaluation of color encodings for high dynamic range pixels

    Science.gov (United States)

    Boitard, Ronan; Mantiuk, Rafal K.; Pouli, Tania

    2015-03-01

    Traditional Low Dynamic Range (LDR) color spaces encode a small fraction of the visible color gamut, which does not encompass the range of colors produced on upcoming High Dynamic Range (HDR) displays. Future imaging systems will require encoding much wider color gamut and luminance range. Such wide color gamut can be represented using floating point HDR pixel values but those are inefficient to encode. They also lack perceptual uniformity of the luminance and color distribution, which is provided (in approximation) by most LDR color spaces. Therefore, there is a need to devise an efficient, perceptually uniform and integer valued representation for high dynamic range pixel values. In this paper we evaluate several methods for encoding colour HDR pixel values, in particular for use in image and video compression. Unlike other studies we test both luminance and color difference encoding in a rigorous 4AFC threshold experiments to determine the minimum bit-depth required. Results show that the Perceptual Quantizer (PQ) encoding provides the best perceptual uniformity in the considered luminance range, however the gain in bit-depth is rather modest. More significant difference can be observed between color difference encoding schemes, from which YDuDv encoding seems to be the most efficient.

  9. Quadrant Dynamic with Automatic Plateau Limit Histogram Equalization for Image Enhancement

    Directory of Open Access Journals (Sweden)

    P. Jagatheeswari

    2014-01-01

    Full Text Available The fundamental and important preprocessing stage in image processing is the image contrast enhancement technique. Histogram equalization is an effective contrast enhancement technique. In this paper, a histogram equalization based technique called quadrant dynamic with automatic plateau limit histogram equalization (QDAPLHE is introduced. In this method, a hybrid of dynamic and clipped histogram equalization methods are used to increase the brightness preservation and to reduce the overenhancement. Initially, the proposed QDAPLHE algorithm passes the input image through a median filter to remove the noises present in the image. Then the histogram of the filtered image is divided into four subhistograms while maintaining second separated point as the mean brightness. Then the clipping process is implemented by calculating automatically the plateau limit as the clipped level. The clipped portion of the histogram is modified to reduce the loss of image intensity value. Finally the clipped portion is redistributed uniformly to the entire dynamic range and the conventional histogram equalization is executed in each subhistogram independently. Based on the qualitative and the quantitative analysis, the QDAPLHE method outperforms some existing methods in literature.

  10. Long-Range Coulomb Effect in Intense Laser-Driven Photoelectron Dynamics.

    Science.gov (United States)

    Quan, Wei; Hao, XiaoLei; Chen, YongJu; Yu, ShaoGang; Xu, SongPo; Wang, YanLan; Sun, RenPing; Lai, XuanYang; Wu, ChengYin; Gong, QiHuang; He, XianTu; Liu, XiaoJun; Chen, Jing

    2016-06-03

    In strong field atomic physics community, long-range Coulomb interaction has for a long time been overlooked and its significant role in intense laser-driven photoelectron dynamics eluded experimental observations. Here we report an experimental investigation of the effect of long-range Coulomb potential on the dynamics of near-zero-momentum photoelectrons produced in photo-ionization process of noble gas atoms in intense midinfrared laser pulses. By exploring the dependence of photoelectron distributions near zero momentum on laser intensity and wavelength, we unambiguously demonstrate that the long-range tail of the Coulomb potential (i.e., up to several hundreds atomic units) plays an important role in determining the photoelectron dynamics after the pulse ends.

  11. High Dynamic Velocity Range Particle Image Velocimetry Using Multiple Pulse Separation Imaging

    Directory of Open Access Journals (Sweden)

    Tadhg S. O’Donovan

    2010-12-01

    Full Text Available The dynamic velocity range of particle image velocimetry (PIV is determined by the maximum and minimum resolvable particle displacement. Various techniques have extended the dynamic range, however flows with a wide velocity range (e.g., impinging jets still challenge PIV algorithms. A new technique is presented to increase the dynamic velocity range by over an order of magnitude. The multiple pulse separation (MPS technique (i records series of double-frame exposures with different pulse separations, (ii processes the fields using conventional multi-grid algorithms, and (iii yields a composite velocity field with a locally optimized pulse separation. A robust criterion determines the local optimum pulse separation, accounting for correlation strength and measurement uncertainty. Validation experiments are performed in an impinging jet flow, using laser-Doppler velocimetry as reference measurement. The precision of mean flow and turbulence quantities is significantly improved compared to conventional PIV, due to the increase in dynamic range. In a wide range of applications, MPS PIV is a robust approach to increase the dynamic velocity range without restricting the vector evaluation methods.

  12. High dynamic velocity range particle image velocimetry using multiple pulse separation imaging.

    Science.gov (United States)

    Persoons, Tim; O'Donovan, Tadhg S

    2011-01-01

    The dynamic velocity range of particle image velocimetry (PIV) is determined by the maximum and minimum resolvable particle displacement. Various techniques have extended the dynamic range, however flows with a wide velocity range (e.g., impinging jets) still challenge PIV algorithms. A new technique is presented to increase the dynamic velocity range by over an order of magnitude. The multiple pulse separation (MPS) technique (i) records series of double-frame exposures with different pulse separations, (ii) processes the fields using conventional multi-grid algorithms, and (iii) yields a composite velocity field with a locally optimized pulse separation. A robust criterion determines the local optimum pulse separation, accounting for correlation strength and measurement uncertainty. Validation experiments are performed in an impinging jet flow, using laser-Doppler velocimetry as reference measurement. The precision of mean flow and turbulence quantities is significantly improved compared to conventional PIV, due to the increase in dynamic range. In a wide range of applications, MPS PIV is a robust approach to increase the dynamic velocity range without restricting the vector evaluation methods.

  13. High contrast enhancement aspect of dynamic computed tomography with arterial infusion - DCT-AI

    International Nuclear Information System (INIS)

    Kato, Seishi; Iwasaki, Naoya; Matsumura, Yoshimitsu; Kuramae, Shigeru; Mishiro, Tadashi

    1983-01-01

    Dynamic computed tomography was performed on 112 cases possibly having hepatic tumors with intraarterial infusion of undiluted contrast into a selectively placed catheter following angiographies. Our dynamic program could evaluate not only early phase of enhancement but also late phase up to 120 sec. Reconstructed views from early scans and magnified views were very useful to evaluate minute sequential changes. Hepatic masses less than 5 cm in size were found in thirty-one cases. Patterns of tumor enhancement and time-density curves have been analysed to correlate them with histology. Four types of tumor enhancement were noted: (1) homogeneous (2) patchy (3) mottled (4) ringed. Characteristic changes were observed in hepatocellular carcinoma - HCC - (mostly mottled) and haemangioma (mostly patchy). The former was divided in two groups reflecting the cellular maturity. The metastatic tumor could be enhanced in a ringed form with dendritic pattern of supplying vascularities in some cases. To support the use of undiluted contrast and to investigate the diagnostic efficacy of high contrast enhancement, experiments were performed by taking transaxial views of an acrylic phantom immersed in different concentrations of contrast. Analysis of CT images taken at different HU values ranging from 0 to 450 demonstrated that the higher the concentration of contrast, the better the spatial resolution was. Also larger magnification could be expected by using higher concentration of contrast. Although our Dynamic Computed Tomography with Arterial Infusion of Contrast still has drawbacks and limited indications, we advocate it as a better way of enhancement to detect and evaluate the hepatic masses, which sometimes elude the examiner's grasp with conventional way of enhancement. (author)

  14. High-dynamic-range imaging for cloud segmentation

    Science.gov (United States)

    Dev, Soumyabrata; Savoy, Florian M.; Lee, Yee Hui; Winkler, Stefan

    2018-04-01

    Sky-cloud images obtained from ground-based sky cameras are usually captured using a fisheye lens with a wide field of view. However, the sky exhibits a large dynamic range in terms of luminance, more than a conventional camera can capture. It is thus difficult to capture the details of an entire scene with a regular camera in a single shot. In most cases, the circumsolar region is overexposed, and the regions near the horizon are underexposed. This renders cloud segmentation for such images difficult. In this paper, we propose HDRCloudSeg - an effective method for cloud segmentation using high-dynamic-range (HDR) imaging based on multi-exposure fusion. We describe the HDR image generation process and release a new database to the community for benchmarking. Our proposed approach is the first using HDR radiance maps for cloud segmentation and achieves very good results.

  15. Entanglement Growth in Quench Dynamics with Variable Range Interactions

    Directory of Open Access Journals (Sweden)

    J. Schachenmayer

    2013-09-01

    Full Text Available Studying entanglement growth in quantum dynamics provides both insight into the underlying microscopic processes and information about the complexity of the quantum states, which is related to the efficiency of simulations on classical computers. Recently, experiments with trapped ions, polar molecules, and Rydberg excitations have provided new opportunities to observe dynamics with long-range interactions. We explore nonequilibrium coherent dynamics after a quantum quench in such systems, identifying qualitatively different behavior as the exponent of algebraically decaying spin-spin interactions in a transverse Ising chain is varied. Computing the buildup of bipartite entanglement as well as mutual information between distant spins, we identify linear growth of entanglement entropy corresponding to propagation of quasiparticles for shorter-range interactions, with the maximum rate of growth occurring when the Hamiltonian parameters match those for the quantum phase transition. Counterintuitively, the growth of bipartite entanglement for long-range interactions is only logarithmic for most regimes, i.e., substantially slower than for shorter-range interactions. Experiments with trapped ions allow for the realization of this system with a tunable interaction range, and we show that the different phenomena are robust for finite system sizes and in the presence of noise. These results can act as a direct guide for the generation of large-scale entanglement in such experiments, towards a regime where the entanglement growth can render existing classical simulations inefficient.

  16. Quantum Coherent Dynamics Enhanced by Synchronization with Nonequilibrium Environments

    Science.gov (United States)

    Ishikawa, Akira; Okada, Ryo; Uchiyama, Kazuharu; Hori, Hirokazu; Kobayashi, Kiyoshi

    2018-05-01

    We report the discovery of the anomalous enhancement of quantum coherent dynamics (CD) due to a non-Markovian mechanism originating from not thermal-equilibrium phonon baths but nonequilibrium coherent phonons. CD is an elementary process for quantum phenomena in nanosystems, such as excitation transfer (ET) in semiconductor nanostructures and light-harvesting systems. CD occurs in homogeneous nanosystems because system inhomogeneity typically destroys coherence. In real systems, however, nanosystems behave as open systems surrounded by environments such as phonon systems. Typically, CD in inhomogeneous nanosystems is enhanced by the absorption and emission of thermal-equilibrium phonons, and the enhancement is described by the conventional master equation. On the other hand, CD is also enhanced by synchronization between population dynamics in nanosystems and coherent phonons; namely, coherent phonons, which are self-consistently induced by phase matching with Rabi oscillation, are fed back to enhance CD. This anomalous enhancement of CD essentially originates from the nonequilibrium and dynamical non-Markovian nature of coherent phonon environments, and the enhancement is firstly predicted by applying time-dependent projection operators to nonequilibrium and dynamical environments. Moreover, CD is discussed by considering ET from a donor to an acceptor. It is found that the enhancement of ET by synchronization with coherent phonons depends on the competition between the output time from a system to an acceptor and the formation time of coherent phonons. These findings in this study will stimulate the design and manipulation of CD via structured environments from the viewpoint of application to nano-photoelectronic devices.

  17. A high dynamic range pulse counting detection system for mass spectrometry.

    Science.gov (United States)

    Collings, Bruce A; Dima, Martian D; Ivosev, Gordana; Zhong, Feng

    2014-01-30

    A high dynamic range pulse counting system has been developed that demonstrates an ability to operate at up to 2e8 counts per second (cps) on a triple quadrupole mass spectrometer. Previous pulse counting detection systems have typically been limited to about 1e7 cps at the upper end of the systems dynamic range. Modifications to the detection electronics and dead time correction algorithm are described in this paper. A high gain transimpedance amplifier is employed that allows a multi-channel electron multiplier to be operated at a significantly lower bias potential than in previous pulse counting systems. The system utilises a high-energy conversion dynode, a multi-channel electron multiplier, a high gain transimpedance amplifier, non-paralysing detection electronics and a modified dead time correction algorithm. Modification of the dead time correction algorithm is necessary due to a characteristic of the pulse counting electronics. A pulse counting detection system with the capability to count at ion arrival rates of up to 2e8 cps is described. This is shown to provide a linear dynamic range of nearly five orders of magnitude for a sample of aprazolam with concentrations ranging from 0.0006970 ng/mL to 3333 ng/mL while monitoring the m/z 309.1 → m/z 205.2 transition. This represents an upward extension of the detector's linear dynamic range of about two orders of magnitude. A new high dynamic range pulse counting system has been developed demonstrating the ability to operate at up to 2e8 cps on a triple quadrupole mass spectrometer. This provides an upward extension of the detector's linear dynamic range by about two orders of magnitude over previous pulse counting systems. Copyright © 2013 John Wiley & Sons, Ltd.

  18. Mitochondrial uncouplers with an extraordinary dynamic range.

    Science.gov (United States)

    Lou, Phing-How; Hansen, Birgit S; Olsen, Preben H; Tullin, Søren; Murphy, Michael P; Brand, Martin D

    2007-10-01

    We have discovered that some weak uncouplers (typified by butylated hydroxytoluene) have a dynamic range of more than 10(6) in vitro: the concentration giving measurable uncoupling is less than one millionth of the concentration causing full uncoupling. They achieve this through a high-affinity interaction with the mitochondrial adenine nucleotide translocase that causes significant but limited uncoupling at extremely low uncoupler concentrations, together with more conventional uncoupling at much higher concentrations. Uncoupling at the translocase is not by a conventional weak acid/anion cycling mechanism since it is also caused by substituted triphenylphosphonium molecules, which are not anionic and cannot protonate. Covalent attachment of the uncoupler to a mitochondrially targeted hydrophobic cation sensitizes it to membrane potential, giving a small additional effect. The wide dynamic range of these uncouplers in isolated mitochondria and intact cells reveals a novel allosteric activation of proton transport through the adenine nucleotide translocase and provides a promising starting point for designing safer uncouplers for obesity therapy.

  19. High dynamic range imaging sensors and architectures

    CERN Document Server

    Darmont, Arnaud

    2013-01-01

    Illumination is a crucial element in many applications, matching the luminance of the scene with the operational range of a camera. When luminance cannot be adequately controlled, a high dynamic range (HDR) imaging system may be necessary. These systems are being increasingly used in automotive on-board systems, road traffic monitoring, and other industrial, security, and military applications. This book provides readers with an intermediate discussion of HDR image sensors and techniques for industrial and non-industrial applications. It describes various sensor and pixel architectures capable

  20. Dynamic contrast-enhanced MR imaging of endometrial cancer. Optimizing the imaging delay for tumour-myometrium contrast

    International Nuclear Information System (INIS)

    Park, Sung Bin; Moon, Min Hoan; Sung, Chang Kyu; Oh, Sohee; Lee, Young Ho

    2014-01-01

    To investigate the optimal imaging delay time of dynamic contrast-enhanced magnetic resonance (MR) imaging in women with endometrial cancer. This prospective single-institution study was approved by the institutional review board, and informed consent was obtained from the participants. Thirty-five women (mean age, 54 years; age range, 29-66 years) underwent dynamic contrast-enhanced MR imaging with a temporal resolution of 25-40 seconds. The signal intensity difference ratios between the myometrium and endometrial cancer were analyzed to investigate the optimal imaging delay time using single change-point analysis. The optimal imaging delay time for appropriate tumour-myometrium contrast ranged from 31.7 to 268.1 seconds. The median optimal imaging delay time was 91.3 seconds, with an interquartile range of 46.2 to 119.5 seconds. The median signal intensity difference ratios between the myometrium and endometrial cancer were 0.03, with an interquartile range of -0.01 to 0.06, on the pre-contrast MR imaging and 0.20, with an interquartile range of 0.15 to 0.25, on the post-contrast MR imaging. An imaging delay of approximately 90 seconds after initiating contrast material injection may be optimal for obtaining appropriate tumour-myometrium contrast in women with endometrial cancer. (orig.)

  1. High speed, wide dynamic range analog signal processing for avalanche photodiode

    CERN Document Server

    Walder, J P; Pangaud, P

    2000-01-01

    A wide dynamic range multi-gain analog transimpedance amplifier integrated circuit has been developed for avalanche photodiode signal processing. The 96 dB input dynamic range is divided into four ranges of 12-bits each in order to provide 40 MHz analog sampled data to a 12-bits ADC. This concept which has been integrated in both BiCMOS and full complementary bipolar technology along with fitted design techniques will be presented.

  2. High speed, wide dynamic range analog signal processing for avalanche photodiode

    International Nuclear Information System (INIS)

    Walder, J.P.; El Mamouni, Houmani; Pangaud, Patrick

    2000-01-01

    A wide dynamic range multi-gain analog transimpedance amplifier integrated circuit has been developed for avalanche photodiode signal processing. The 96 dB input dynamic range is divided into four ranges of 12-bits each in order to provide 40 MHz analog sampled data to a 12-bits ADC. This concept which has been integrated in both BiCMOS and full complementary bipolar technology along with fitted design techniques will be presented

  3. High speed, wide dynamic range analog signal processing for avalanche photodiode

    Energy Technology Data Exchange (ETDEWEB)

    Walder, J.P. E-mail: walder@in2p3.fr; El Mamouni, Houmani; Pangaud, Patrick

    2000-03-11

    A wide dynamic range multi-gain analog transimpedance amplifier integrated circuit has been developed for avalanche photodiode signal processing. The 96 dB input dynamic range is divided into four ranges of 12-bits each in order to provide 40 MHz analog sampled data to a 12-bits ADC. This concept which has been integrated in both BiCMOS and full complementary bipolar technology along with fitted design techniques will be presented.

  4. Extension of photomultiplier tube dynamic range for the LHAASO-KM2A electromagnetic particle detectors

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Hongkui, E-mail: lvhk@ihep.ac.cn [Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Sheng, Xiangdong; He, Huihai; Liu, Jia [Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Zhang, Zhongquan [Shandong University, Jinan 250100 (China); Hou, Chao; Zhao, Jing [Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)

    2015-05-01

    In the Large High Altitude Air Shower Observatory (LHAASO), the 1 km{sup 2} array (KM2A) requires linear measurement of optical intensity with a wide dynamic range. Over 5000 photomultiplier tubes (PMTs) are employed in this experiment and developed as “two outputs” device (anode and dynode) to meet the relevant requirements. In this study, the linearity of the anode and the eighth dynode (DY8), which is limited by space charge effects and mainly related to the relative dynode voltage ratios of the PMT divider, is examined. A voltage divider for the Hamamatsu R11102 PMT is designed and a dramatically enhanced linearity is demonstrated. Test results show that this design can cover a wide dynamic range from 20 to 2×10{sup 5} photoelectrons and achieve a peak anode current of 380 mA at a PMT gain of 10{sup 5}, which satisfies the requirements of KM2A electromagnetic particle detectors. The circuit design has been successfully simulated using the simulation software Multisim. The details of PMT performance tests and simulations are described.

  5. Extension of photomultiplier tube dynamic range for the LHAASO-KM2A electromagnetic particle detectors

    Science.gov (United States)

    Lv, Hongkui; Sheng, Xiangdong; He, Huihai; Liu, Jia; Zhang, Zhongquan; Hou, Chao; Zhao, Jing

    2015-05-01

    In the Large High Altitude Air Shower Observatory (LHAASO), the 1 km2 array (KM2A) requires linear measurement of optical intensity with a wide dynamic range. Over 5000 photomultiplier tubes (PMTs) are employed in this experiment and developed as "two outputs" device (anode and dynode) to meet the relevant requirements. In this study, the linearity of the anode and the eighth dynode (DY8), which is limited by space charge effects and mainly related to the relative dynode voltage ratios of the PMT divider, is examined. A voltage divider for the Hamamatsu R11102 PMT is designed and a dramatically enhanced linearity is demonstrated. Test results show that this design can cover a wide dynamic range from 20 to 2×105 photoelectrons and achieve a peak anode current of 380 mA at a PMT gain of 105, which satisfies the requirements of KM2A electromagnetic particle detectors. The circuit design has been successfully simulated using the simulation software Multisim. The details of PMT performance tests and simulations are described.

  6. Extension of photomultiplier tube dynamic range for the LHAASO-KM2A electromagnetic particle detectors

    International Nuclear Information System (INIS)

    Lv, Hongkui; Sheng, Xiangdong; He, Huihai; Liu, Jia; Zhang, Zhongquan; Hou, Chao; Zhao, Jing

    2015-01-01

    In the Large High Altitude Air Shower Observatory (LHAASO), the 1 km 2 array (KM2A) requires linear measurement of optical intensity with a wide dynamic range. Over 5000 photomultiplier tubes (PMTs) are employed in this experiment and developed as “two outputs” device (anode and dynode) to meet the relevant requirements. In this study, the linearity of the anode and the eighth dynode (DY8), which is limited by space charge effects and mainly related to the relative dynode voltage ratios of the PMT divider, is examined. A voltage divider for the Hamamatsu R11102 PMT is designed and a dramatically enhanced linearity is demonstrated. Test results show that this design can cover a wide dynamic range from 20 to 2×10 5 photoelectrons and achieve a peak anode current of 380 mA at a PMT gain of 10 5 , which satisfies the requirements of KM2A electromagnetic particle detectors. The circuit design has been successfully simulated using the simulation software Multisim. The details of PMT performance tests and simulations are described

  7. Regulation of Cortical Dynamic Range by Background Synaptic Noise and Feedforward Inhibition.

    Science.gov (United States)

    Khubieh, Ayah; Ratté, Stéphanie; Lankarany, Milad; Prescott, Steven A

    2016-08-01

    The cortex encodes a broad range of inputs. This breadth of operation requires sensitivity to weak inputs yet non-saturating responses to strong inputs. If individual pyramidal neurons were to have a narrow dynamic range, as previously claimed, then staggered all-or-none recruitment of those neurons would be necessary for the population to achieve a broad dynamic range. Contrary to this explanation, we show here through dynamic clamp experiments in vitro and computer simulations that pyramidal neurons have a broad dynamic range under the noisy conditions that exist in the intact brain due to background synaptic input. Feedforward inhibition capitalizes on those noise effects to control neuronal gain and thereby regulates the population dynamic range. Importantly, noise allows neurons to be recruited gradually and occludes the staggered recruitment previously attributed to heterogeneous excitation. Feedforward inhibition protects spike timing against the disruptive effects of noise, meaning noise can enable the gain control required for rate coding without compromising the precise spike timing required for temporal coding. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. A low-power high dynamic range front-end ASIC for imaging calorimeters

    CERN Document Server

    Bagliesi, M G; Marrocchesi, P S; Meucci, M; Millucci, V; Morsani, F; Paoletti, R; Pilo, F; Scribano, A; Turini, N; Valle, G D

    2002-01-01

    High granularity calorimeters with shower imaging capabilities require dedicated front-end electronics. The ICON 4CH and VA4 PMT chip-set is suitable for very high dynamic range systems with strict noise requirements. The ICON 4CH is a 4 channel input, 12 channel output ASIC designed for use in a multi-anode photomultiplier system with very large dynamic range and low-noise requirements. Each of the four input signals to the ASIC is split equally into three branches by a current conveyor. Each of the three branches is scaled differently: 1:1, 1:8 and 1:80. The signal is read out by a 12 channel low noise/low power high dynamic range charge sensitive preamplifier-shaper circuit (VA4-PMT chip), with simultaneous sample- and-hold, multiplexed analog read-out, calibration facilities. Tests performed in our lab with a PMT are reported in terms of linearity, dynamic range and cross-talk of the system. (5 refs).

  9. Extending the Dynamic Range of a Time Projection Chamber

    Science.gov (United States)

    Estee, Justin; S πRIT Collaboration

    2017-09-01

    The use of Time Projection Chambers (TPCs) in intermediate heavy ion reactions faces some challenges in addressing the energy losses that range from the small energy loss of relativistic pions to the large energy loss of slow moving heavy ions. A typical trade-off can be to set the smallest desired signals to be well within the lower limits of the dynamic range of the electronics while allowing for some larger signals to saturate the electronics. With wire plane anodes, signals from readout pads further away from the track remain unsaturated and allow signals from tracks with saturated pads to be accurately recovered. We illustrate this technique using data from the SAMURAI Pion-Reconstruction and Ion-Tracker (S πRIT) TPC , which recently measured pions and light charged particles in collisions of Sn+Sn isotopes. Our method exploits knowledge of how the induced charge distribution depends on the distance from the track to smoothly extend dynamic range even when some of the pads in the track are saturated. To accommodate the analysis of slow moving heavy ions, we have extended the Bichsel energy loss distributions to handle slower moving ions as well. In this talk, I will discuss a combined approach which successfully extends the dynamic range of the TPC electronics. This work is supported by the U.S. DOE under Grant Nos. DE-SC0014530, DE-NA0002923, US NSF Grant No. PHY-1565546 and the Japan MEXT KAKENHI Grant No. 24105004.

  10. Analysis of normal tongue by dynamic enhanced MRI

    International Nuclear Information System (INIS)

    Ariyoshi, Yasunori; Shimahara, Masashi

    2003-01-01

    We qualitatively evaluated dynamic enhanced MR images of normal tongues of 26 patients without oral malignancy, inflammatory diseases or systemic diseases. The selected slices were not affected by apparent artifacts including motion and susceptibility, and the tongue shape was delineated as symmetrical on coronal images, which were obtained using a T1 weighted spin echo pulse sequence (repetition time/echo time (TR/TE)=200/20). Slices at the incisor and molar levels were evaluated. Structures that could be identified on each pre-contrast image could also be identified on the post-contrast dynamic enhanced image. However, identification of the intrinsic tongue musculature was impossible on the images that were composed of symmetrical, relatively high signal areas surrounded by a low signal area. Both areas were gradually but apparently enhanced. The sublingual space was easily identified at the molar level, as it was rapidly enhanced and symmetrically delineated on each image, however, it was difficult to determine at the incisor level. Further, the lingual septum could also be identified in almost all images at the molar level, and showed no enhancement pattern, whereas, the mucosal surface of the dorsum tongue was rapidly enhanced, and identified on each image. (author)

  11. Delay-active damage versus non-local enhancement for anisotropic damage dynamics computations with alternated loading

    International Nuclear Information System (INIS)

    Desmorat, R.; Chambart, M.; Gatuingt, F.; Guilbaud, D.

    2010-01-01

    Anisotropic damage thermodynamics framework allows to model the concrete-like materials behavior and in particular their dissymmetric tension/compression response. To deal with dynamics applications such as impact, it is furthermore necessary to take into account the strain rate effect observed experimentally. This is done in the present work by means of anisotropic visco-damage, by introducing a material strain rate effect in the cases of positive hydrostatic stresses only. The proposed delay-damage law assumes no viscous effect in compression as the consideration of inertia effects proves sufficient to model the apparent material strength increase. High-rate dynamics applications imply to deal with wave propagation and reflection which can generate alternated loading in the impacted structure. In order to do so, the key concept of active damage is defined and introduced within both the damage criterion and the delay-damage evolution law. At the structural level, strain localization often leads to spurious mesh dependency. Three-dimensional Finite Element computations of dynamic tensile tests by spalling are presented, with visco-damage and either without or with non-local enhancement. Delay-damage, as introduced, regularizes the solution in fast dynamics. The location of the macro-crack initiated is found influenced by non-local regularization. The strain rate range in which each enhancement, delay-damage or non-local enhancement, has a regularizing effect is studied. (authors)

  12. Gd-DTPA-enhanced dynamic MR imaging

    International Nuclear Information System (INIS)

    Frank, J.A.; Choyke, P.L.; Carvlin, M.; Inscoe, S.; Austin, H.; Dwyer, A.J.; Girton, M.; Black, J.

    1988-01-01

    This paper describes dynamic enhanced renal MR imaging, a new method of identifying specific derangements in renal function. Various diuretics were employed in 45 animal experiments to demonstrate the effects on the normal renal enhancement pattern (EP) after Gd-DTPA. Since different diuretics, osmotic (O), carbonic anhydrase (CA), and loop (L), are active at different sites, specific EP alterations are observed. Imaging was performed with 32 5.1-second sequential gradient recalled acquisition in a steady state images following a bolus of Gd-DTPA

  13. The MOLDY short-range molecular dynamics package

    Science.gov (United States)

    Ackland, G. J.; D'Mellow, K.; Daraszewicz, S. L.; Hepburn, D. J.; Uhrin, M.; Stratford, K.

    2011-12-01

    We describe a parallelised version of the MOLDY molecular dynamics program. This Fortran code is aimed at systems which may be described by short-range potentials and specifically those which may be addressed with the embedded atom method. This includes a wide range of transition metals and alloys. MOLDY provides a range of options in terms of the molecular dynamics ensemble used and the boundary conditions which may be applied. A number of standard potentials are provided, and the modular structure of the code allows new potentials to be added easily. The code is parallelised using OpenMP and can therefore be run on shared memory systems, including modern multicore processors. Particular attention is paid to the updates required in the main force loop, where synchronisation is often required in OpenMP implementations of molecular dynamics. We examine the performance of the parallel code in detail and give some examples of applications to realistic problems, including the dynamic compression of copper and carbon migration in an iron-carbon alloy. Program summaryProgram title: MOLDY Catalogue identifier: AEJU_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEJU_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License version 2 No. of lines in distributed program, including test data, etc.: 382 881 No. of bytes in distributed program, including test data, etc.: 6 705 242 Distribution format: tar.gz Programming language: Fortran 95/OpenMP Computer: Any Operating system: Any Has the code been vectorised or parallelized?: Yes. OpenMP is required for parallel execution RAM: 100 MB or more Classification: 7.7 Nature of problem: Moldy addresses the problem of many atoms (of order 10 6) interacting via a classical interatomic potential on a timescale of microseconds. It is designed for problems where statistics must be gathered over a number of equivalent runs, such as

  14. Dynamic range studies of the RCA streak tube in the LLL streak camera

    International Nuclear Information System (INIS)

    Thomas, S.W.; Phillips, G.E.

    1979-01-01

    As indicated by tests on several cameras, the dynamic range of the Lawrence Livermore Laboratory streak-camera system appears to be about two orders of magnitude greater than those reported for other systems for 10- to 200-ps pulses. The lack of a fine mesh grid in the RCA streak tube used in these cameras probably contributes to a lower system dynamic noise and therefore raises the dynamic range. A developmental tube with a mesh grid was tested and supports this conjecture. Order-of-magnitude variations in input slit width do not affect the spot size on the phosphor or the dynamic range of the RCA tube. (author)

  15. Dynamic range compression in a liquid argon calorimeter

    International Nuclear Information System (INIS)

    Cleland, W.E.; Lissauer, D.; Radeka, V.; Rescia, S.; Takai, H.; Wingerter-Seez, I.

    1996-01-01

    The anticipated range of particle energies at the LHC, coupled with the need for precision, low noise calorimetry makes severe demands on the dynamic range of the calorimeter readout. A common approach to this problem is to use shapers with two or more gain scales. In this paper, the authors describe their experience with a new approach in which a preamplifier with dynamic gain compression is used. An unavoidable consequence of dynamic gain adjustment is that the peaking time of the shaper output signal becomes amplitude dependent. The authors have carried out a test of such a readout system in the RD3 calorimeter, a liquid argon device with accordion geometry. The calibration system is used to determine both the gain of the individual channels as well as to map the shape of the waveform as a function of signal amplitude. A new procedure for waveform analysis, in which the fitted parameters describe the impulse response of the system, permits a straightforward translation of the calibration waveform to the waveform generated by a particle crossing the ionization gap. They find that the linearity and resolution of the calorimeter is equivalent to that obtained with linear preamplifiers, up to an energy of 200 GeV

  16. Dynamic range extension of BPM at the NSLS

    International Nuclear Information System (INIS)

    Bordoley, M.

    1993-01-01

    In order to overcome range limitations, the existing Beam Position Monitor (BPM) receiver was modified, extending the dynamic range from 35 dB to 60 dB. The modifications include the insertion of an RF PIN attenuator, RF amplifier, and control circuitry in line with the RF link to add an extra 25dB to the existing AGC loop. This stand alone 25dB RF gain control stage is integrated into the present system without any change to the existing receiver

  17. Unattended real-time re-establishment of visibility in high dynamic range video and stills

    Science.gov (United States)

    Abidi, B.

    2014-05-01

    We describe a portable unattended persistent surveillance system that corrects for harsh illumination conditions, where bright sun light creates mixed contrast effects, i.e., heavy shadows and washouts. These effects result in high dynamic range scenes, where illuminance can vary from few luxes to a 6 figure value. When using regular monitors and cameras, such wide span of illuminations can only be visualized if the actual range of values is compressed, leading to the creation of saturated and/or dark noisy areas and a loss of information in these areas. Images containing extreme mixed contrast cannot be fully enhanced from a single exposure, simply because all information is not present in the original data. The active intervention in the acquisition process is required. A software package, capable of integrating multiple types of COTS and custom cameras, ranging from Unmanned Aerial Systems (UAS) data links to digital single-lens reflex cameras (DSLR), is described. Hardware and software are integrated via a novel smart data acquisition algorithm, which communicates to the camera the parameters that would maximize information content in the final processed scene. A fusion mechanism is then applied to the smartly acquired data, resulting in an enhanced scene where information in both dark and bright areas is revealed. Multi-threading and parallel processing are exploited to produce automatic real time full motion corrected video. A novel enhancement algorithm was also devised to process data from legacy and non-controllable cameras. The software accepts and processes pre-recorded sequences and stills, enhances visible, night vision, and Infrared data, and successfully applies to night time and dark scenes. Various user options are available, integrating custom functionalities of the application into intuitive and easy to use graphical interfaces. The ensuing increase in visibility in surveillance video and intelligence imagery will expand the performance and

  18. Dynamical arrest in dense short-ranged attractive colloids

    International Nuclear Information System (INIS)

    Foffi, G; Sciortino, F; Zaccarelli, E; Tartaglia, P

    2004-01-01

    We study thermodynamic and dynamic properties of model colloidal systems interacting with a hard core repulsion and a short-range attraction, and provide an overall picture of their phase diagrams which shows a very rich phenomenology. We focus on the slow dynamic properties of this model, investigating in detail the glass transition lines (both repulsive and attractive), the glass-glass transitions and the location of the higher order singularities. We discuss the relative location of the glass lines and of the metastable liquid-gas binodal, an issue relevant for the understanding of low density arrested states of matter

  19. Utilizing multiple state variables to improve the dynamic range of analog switching in a memristor

    International Nuclear Information System (INIS)

    Jeong, YeonJoo; Kim, Sungho; Lu, Wei D.

    2015-01-01

    Memristors and memristive systems have been extensively studied for data storage and computing applications such as neuromorphic systems. To act as synapses in neuromorphic systems, the memristor needs to exhibit analog resistive switching (RS) behavior with incremental conductance change. In this study, we show that the dynamic range of the analog RS behavior can be significantly enhanced in a tantalum-oxide-based memristor. By controlling different state variables enabled by different physical effects during the RS process, the gradual filament expansion stage can be selectively enhanced without strongly affecting the abrupt filament length growth stage. Detailed physics-based modeling further verified the observed experimental effects and revealed the roles of oxygen vacancy drift and diffusion processes, and how the diffusion process can be selectively enhanced during the filament expansion stage. These findings lead to more desirable and reliable memristor behaviors for analog computing applications. Additionally, the ability to selectively control different internal physical processes demonstrated in the current study provides guidance for continued device optimization of memristor devices in general

  20. Dynamic optical bistability in resonantly enhanced Raman generation

    International Nuclear Information System (INIS)

    Novikova, I.; Phillips, D.F.; Zibrov, A.S.; Andre, A.; Walsworth, R.L.

    2004-01-01

    We report observations of novel dynamic behavior in resonantly enhanced stimulated Raman scattering in Rb vapor. In particular, we demonstrate a dynamic hysteresis of the Raman scattered optical field in response to changes of the drive laser field intensity and/or frequency. This effect may be described as a dynamic form of optical bistability resulting from the formation and decay of atomic coherence. We have applied this phenomenon to the realization of an all-optical switch

  1. Characterization of Enhancing MS Lesions by Dynamic Texture Parameter Analysis of Dynamic Susceptibility Perfusion Imaging

    Directory of Open Access Journals (Sweden)

    Rajeev K. Verma

    2016-01-01

    Full Text Available Purpose. The purpose of this study was to investigate statistical differences with MR perfusion imaging features that reflect the dynamics of Gadolinium-uptake in MS lesions using dynamic texture parameter analysis (DTPA. Methods. We investigated 51 MS lesions (25 enhancing, 26 nonenhancing lesions of 12 patients. Enhancing lesions (n=25 were prestratified into enhancing lesions with increased permeability (EL+; n=11 and enhancing lesions with subtle permeability (EL−; n=14. Histogram-based feature maps were computed from the raw DSC-image time series and the corresponding texture parameters were analyzed during the inflow, outflow, and reperfusion time intervals. Results. Significant differences (p<0.05 were found between EL+ and EL− and between EL+ and nonenhancing inactive lesions (NEL. Main effects between EL+ versus EL− and EL+ versus NEL were observed during reperfusion (mainly in mean and standard deviation (SD: EL+ versus EL− and EL+ versus NEL, while EL− and NEL differed only in their SD during outflow. Conclusion. DTPA allows grading enhancing MS lesions according to their perfusion characteristics. Texture parameters of EL− were similar to NEL, while EL+ differed significantly from EL− and NEL. Dynamic texture analysis may thus be further investigated as noninvasive endogenous marker of lesion formation and restoration.

  2. Active and Inactive Enhancers Cooperate to Exert Localized and Long-Range Control of Gene Regulation

    Directory of Open Access Journals (Sweden)

    Charlotte Proudhon

    2016-06-01

    Full Text Available V(DJ recombination relies on the presence of proximal enhancers that activate the antigen receptor (AgR loci in a lineage- and stage-specific manner. Unexpectedly, we find that both active and inactive AgR enhancers cooperate to disseminate their effects in a localized and long-range manner. Here, we demonstrate the importance of short-range contacts between active enhancers that constitute an Igk super-enhancer in B cells. Deletion of one element reduces the interaction frequency between other enhancers in the hub, which compromises the transcriptional output of each component. Furthermore, we establish that, in T cells, long-range contact and cooperation between the inactive Igk enhancer MiEκ and the active Tcrb enhancer Eβ alters enrichment of CBFβ binding in a manner that impacts Tcrb recombination. These findings underline the complexities of enhancer regulation and point to a role for localized and long-range enhancer-sharing between active and inactive elements in lineage- and stage-specific control.

  3. Dynamic exercise enhances regional cerebral artery mean flow velocity

    DEFF Research Database (Denmark)

    Linkis, P; Jørgensen, L G; Olesen, H L

    1995-01-01

    Dynamic exercise enhances regional cerebral artery mean flow velocity. J. Appl. Physiol. 78(1): 12-16, 1995.--Anterior (ACA) and middle (MCA) cerebral artery mean flow velocities (Vmean) and pulsatility indexes were determined using transcranial Doppler in 14 subjects during dynamic exercise afte...

  4. Wide dynamic range beam profile monitor

    International Nuclear Information System (INIS)

    Lee, D.M.; Brown, D.; Hardekopf, R.; Bilskie, J.R.; van Dyck, O.B.V.

    1985-01-01

    An economical harp multiplexer system has been developed to achieve a wide dynamic range. The harp system incorporates a pneumatically actuated harp detector with ceramic boards and carbon wires; a high-sensitivity multiplexer packaged in a double-wide NIM module; and flat, shielded ribbon cable consisting of individual twisted pairs. The system multiplexes 30 wires in each of the x and y planes simultaneously and operates with or without computer control. The system has operated in beams of 100 nA to 1 mA, 1- to 120-Hz repetition rate, with a signal-to-noise ratio of greater than 10/1

  5. Breast dynamic contrast enhanced MRI: fibrocystic changes presenting as a non-mass enhancement mimicking malignancy

    Directory of Open Access Journals (Sweden)

    Milosevic Zorica C.

    2017-06-01

    Full Text Available We aimed to analyse the morphokinetic features of breast fibrocystic changes (nonproliferative lesions, proliferative lesions without atypia and proliferative lesions with atypia presenting as a non-mass enhancement (NMEin dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI examination.

  6. Polycystic ovary syndrome: dynamic contrast-enhanced ovary MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Erdem, C. Zuhal E-mail: sunarerdem@yahoo.com; Bayar, Ulku; Erdem, L. Oktay; Barut, Aykut; Gundogdu, Sadi; Kaya, Erdal

    2004-07-01

    Objective: to determine the enhancement behaviour of the ovaries in women with polycystic ovary syndrome (PCOS) by dynamic contrast-enhanced magnetic resonance (DCE-MR) imaging and to compare these data with those of normal ovulating controls. Method: 24 women with PCOS and 12 controls underwent DCE-MR imaging. Dynamic images were acquired before and after injection of a contrast bolus at 30 s and the min of 1, 2, 3, 4 and 5. On postprocessing examination: (i) the ovarian volumes; (ii) the signal intensity value of each ovary per dynamic study; (iii) early-phase enhancement rate; (iv) time to peak enhancement (T{sub p}); and (v) percentage of washout of 5th min were determined. Data of the ovaries of the women with PCOS and controls were compared with Mann-Whitney U-test. Results: the mean values of T{sub p} were found to be significantly lower in women with PCOS than in controls (p<0.05). On the other hand, the mean values of ovarian volume, the early-phase enhancement rate, and percentage of washout of 5th min of ovaries were significantly higher in PCOS patients (p<0.05). Examination of the mean signal intensity-time curve revealed the ovaries in women with PCOS showed a faster and greater enhancement and wash-out. Conclusion: the enhancement behaviour of ovaries of women with PCOS may be significantly different from those of control subjects on DCE-MR imaging examination. In our experience, it is a valuable modality to highlight the vascularization changes in ovarian stroma with PCOS. We believe that improved DCE-MR imaging techniques may also provide us additional parameters in the diagnosis and treatment strategies of PCOS.

  7. Polycystic ovary syndrome: dynamic contrast-enhanced ovary MR imaging

    International Nuclear Information System (INIS)

    Erdem, C. Zuhal; Bayar, Ulku; Erdem, L. Oktay; Barut, Aykut; Gundogdu, Sadi; Kaya, Erdal

    2004-01-01

    Objective: to determine the enhancement behaviour of the ovaries in women with polycystic ovary syndrome (PCOS) by dynamic contrast-enhanced magnetic resonance (DCE-MR) imaging and to compare these data with those of normal ovulating controls. Method: 24 women with PCOS and 12 controls underwent DCE-MR imaging. Dynamic images were acquired before and after injection of a contrast bolus at 30 s and the min of 1, 2, 3, 4 and 5. On postprocessing examination: (i) the ovarian volumes; (ii) the signal intensity value of each ovary per dynamic study; (iii) early-phase enhancement rate; (iv) time to peak enhancement (T p ); and (v) percentage of washout of 5th min were determined. Data of the ovaries of the women with PCOS and controls were compared with Mann-Whitney U-test. Results: the mean values of T p were found to be significantly lower in women with PCOS than in controls (p<0.05). On the other hand, the mean values of ovarian volume, the early-phase enhancement rate, and percentage of washout of 5th min of ovaries were significantly higher in PCOS patients (p<0.05). Examination of the mean signal intensity-time curve revealed the ovaries in women with PCOS showed a faster and greater enhancement and wash-out. Conclusion: the enhancement behaviour of ovaries of women with PCOS may be significantly different from those of control subjects on DCE-MR imaging examination. In our experience, it is a valuable modality to highlight the vascularization changes in ovarian stroma with PCOS. We believe that improved DCE-MR imaging techniques may also provide us additional parameters in the diagnosis and treatment strategies of PCOS

  8. Dynamic contrast-enhanced subtraction MR angiography in intracranial vascular abnormalities

    International Nuclear Information System (INIS)

    Takano, K.; Ono, H.; Utsunomiya, H.; Okazaki, M.; Tanaka, A.

    1999-01-01

    We present our clinical experience with dynamic contrast-enhanced MR angiography (MRA) with subtraction for assessing intracranial vascular abnormalities. Ten patients with various cerebrovascular disorders underwent dynamic contrast-enhanced MRA on a 1.0-T system. Thirty sections (2 mm) were acquired in 29-30 s. Maximum intensity projection images and subtracted source images were compared with those obtained by conventional angiography. In all cases, the presence or absence of abnormalities in the targeted vessels, as well as the morphology of the sagittal sinuses, was clearly visualized as in conventional angiography, without any obstructions such as hyperintense hematomas or thrombi, or intraluminal turbulence. Although the temporal and spatial resolutions with current hardware are insufficient, these preliminary results suggest that dynamic contrast-enhanced MRA with subtraction may be useful for assessing vascular lesions with hemorrhage or thrombus, and the dural sinuses. (orig.)

  9. Image Alignment for Multiple Camera High Dynamic Range Microscopy.

    Science.gov (United States)

    Eastwood, Brian S; Childs, Elisabeth C

    2012-01-09

    This paper investigates the problem of image alignment for multiple camera high dynamic range (HDR) imaging. HDR imaging combines information from images taken with different exposure settings. Combining information from multiple cameras requires an alignment process that is robust to the intensity differences in the images. HDR applications that use a limited number of component images require an alignment technique that is robust to large exposure differences. We evaluate the suitability for HDR alignment of three exposure-robust techniques. We conclude that image alignment based on matching feature descriptors extracted from radiant power images from calibrated cameras yields the most accurate and robust solution. We demonstrate the use of this alignment technique in a high dynamic range video microscope that enables live specimen imaging with a greater level of detail than can be captured with a single camera.

  10. Enhancement pattern of small hepatic hemangioma: findings on multiphase spiral CT and dynamic MRI

    International Nuclear Information System (INIS)

    Choi, Byung In; Lee, Seung Koo; Kim, Myeong Jin; Chung, Jae Joon; Yoo, Hyung Sik; Lee, Jong Tae

    1999-01-01

    To compare the enhancement characteristics of small hemangiomas seen on multiphase spiral CT and dynamic MR imaging. Thirteen patients with 20 hepatic hemangiomas less than 25mm in diameter underwent both multiphase spiral CT and dynamic MR imaging. All lesions were assigned to one of three classified into 3 categories according to the enhancement pattern seen on multiphase spiral CT : typical delayed pooling, atypical early enhancement, or continuous low attenuation. The enhancement patterns seen on spiral CT and on dynamic MRI were correlated. On CT scans, ten lesions (50%) showed delayed pooling. Six (30%) showed early arterial enhancement and four (20%) showed continuous low attenuation. On delayed-phase MRI, all lesions showed delayed high signal intensity compared to adjacent liver parenchyma. Four of six lesions with early enhancement on CT showed peripheral globular enhancement on early arterial-phase MRI. On multiphase spiral CT scans, small hemangiomas can show variable atypical enhancement features. In this situation, contrast-enhanced dynamic MRI is helpful for the diagnosis of hemangiomas

  11. Dynamic Response and Simulations of Nanoparticle-Enhanced Composites

    National Research Council Canada - National Science Library

    Mantena, P. R; Al-Ostaz, Ahmed; Cheng, Alexander H

    2007-01-01

    ...) molecular dynamics simulations of nanoparticle-enhanced composites and fly- ash based foams that are being considered for the future generation naval structures or retrofitting of existing ones...

  12. Dynamic enhanced MRI of the subacromial bursa: correlation with arthroscopic and histological findings

    International Nuclear Information System (INIS)

    Matsuzaki, S.; Yoneda, M.; Kobayashi, Y.; Fukushima, S.; Wakitani, S.

    2003-01-01

    Objective: To assess dynamic MRI with Gd-DTPA enhancement for evaluating inflammatory changes in the subacromial bursa. Design and patients: We detected the signal intensity changes in dynamic MRI of the subacromial bursa, and confirmed these macroscopically by arthroscopy and histologically. The signal intensity was measured using built-in software, and the enhancement ratio (E ratio) was calculated from dynamic MR images. In addition, as a parameter of the rate of the increase in the signal intensity from 0 to 80 s, the mean increase per second in the E ratio was obtained as the coefficient of enhancement (CE). The correlation was studied of the E ratio and CE with the arthroscopic findings (redness, villous formation, thickening and adhesion), and of the E ratio and CE with the histological findings (capillary proliferation, papillary hyperplasia, fibrosis and inflammatory cell infiltration) of the subacromial bursa. Of patients with shoulder pain, this study included those with rotator cuff injury; patients with rheumatoid arthritis or pitching shoulder disorders were excluded. There were 27 patients (15 men, 12 women) ranging in age from 25 to 73 years (mean 49.1 years). Dynamic MRI of the shoulder was also performed on the healthy side of 10 patients and in five normal young volunteers. Results and conclusions: Changes in signal intensity on dynamic MRI were measured in the subacromial bursa. The E ratio (80 s) and CE (0-80 s) were significantly correlated with redness and villous formation as arthroscopic findings, positively correlated with capillary proliferation and papillary hyperplasia as histological findings (p < 0.05), and negatively correlated with fibrosis as a histological finding (p < 0.05) in the subacromial bursa. The patterns of dynamic curves were well correlated with the bursoscopic and histological findings of the synovium of the subacromial bursa. Dynamic MRI appears to correlate with inflammatory activity of synovium of the subacromial

  13. Active and Inactive Enhancers Cooperate to Exert Localized and Long-Range Control of Gene Regulation.

    Science.gov (United States)

    Proudhon, Charlotte; Snetkova, Valentina; Raviram, Ramya; Lobry, Camille; Badri, Sana; Jiang, Tingting; Hao, Bingtao; Trimarchi, Thomas; Kluger, Yuval; Aifantis, Iannis; Bonneau, Richard; Skok, Jane A

    2016-06-07

    V(D)J recombination relies on the presence of proximal enhancers that activate the antigen receptor (AgR) loci in a lineage- and stage-specific manner. Unexpectedly, we find that both active and inactive AgR enhancers cooperate to disseminate their effects in a localized and long-range manner. Here, we demonstrate the importance of short-range contacts between active enhancers that constitute an Igk super-enhancer in B cells. Deletion of one element reduces the interaction frequency between other enhancers in the hub, which compromises the transcriptional output of each component. Furthermore, we establish that, in T cells, long-range contact and cooperation between the inactive Igk enhancer MiEκ and the active Tcrb enhancer Eβ alters enrichment of CBFβ binding in a manner that impacts Tcrb recombination. These findings underline the complexities of enhancer regulation and point to a role for localized and long-range enhancer-sharing between active and inactive elements in lineage- and stage-specific control. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  14. Probing the role of long-range interactions in the dynamics of a long-range Kitaev chain

    Science.gov (United States)

    Dutta, Anirban; Dutta, Amit

    2017-09-01

    We study the role of long-range interactions (more precisely, the long-range superconducting gap term) on the nonequilibrium dynamics considering a long-range p -wave superconducting chain in which the superconducting term decays with distance between two sites in a power-law fashion characterized by an exponent α . We show that the Kibble-Zurek scaling exponent, dictating the power-law decay of the defect density in the final state reached following a slow (in comparison to the time scale associated with the minimum gap in the spectrum of the Hamiltonian) quenching of the chemical potential μ across a quantum critical point, depends nontrivially on the exponent α as long as α 2 , we find that the exponent saturates to the corresponding well-known value of 1 /2 expected for the short-range model. Furthermore, studying the dynamical quantum phase transitions manifested in the nonanalyticities in the rate function of the return possibility I (t ) in subsequent temporal evolution following a sudden change in μ , we show the existence of a new region; in this region, we find three instants of cusp singularities in I (t ) associated with a single sector of Fisher zeros. Notably, the width of this region shrinks as α increases and vanishes in the limit α →2 , indicating that this special region is an artifact of the long-range nature of the Hamiltonian.

  15. Quantum gases. Observation of many-body dynamics in long-range tunneling after a quantum quench.

    Science.gov (United States)

    Meinert, Florian; Mark, Manfred J; Kirilov, Emil; Lauber, Katharina; Weinmann, Philipp; Gröbner, Michael; Daley, Andrew J; Nägerl, Hanns-Christoph

    2014-06-13

    Quantum tunneling is at the heart of many low-temperature phenomena. In strongly correlated lattice systems, tunneling is responsible for inducing effective interactions, and long-range tunneling substantially alters many-body properties in and out of equilibrium. We observe resonantly enhanced long-range quantum tunneling in one-dimensional Mott-insulating Hubbard chains that are suddenly quenched into a tilted configuration. Higher-order tunneling processes over up to five lattice sites are observed as resonances in the number of doubly occupied sites when the tilt per site is tuned to integer fractions of the Mott gap. This forms a basis for a controlled study of many-body dynamics driven by higher-order tunneling and demonstrates that when some degrees of freedom are frozen out, phenomena that are driven by small-amplitude tunneling terms can still be observed. Copyright © 2014, American Association for the Advancement of Science.

  16. Fibroadenomas of the breast: histopathological/dynamic contrast-enhanced MR correlation

    Energy Technology Data Exchange (ETDEWEB)

    Gilles, R. [Dept. of Radiology, Inst. Gustave Roussy, 94 - Villejuif (France)]|[CIERM, Hopital Bicetre, 94 - Le Kremin-Bicetre (France); Garnier, C. [Dept. of Radiology, Inst. Gustave Roussy, 94 - Villejuif (France)]|[CIERM, Hopital Bicetre, 94 - Le Kremin-Bicetre (France); Meingan, P. [Dept. of Radiology, Inst. Gustave Roussy, 94 - Villejuif (France)]|[CIERM, Hopital Bicetre, 94 - Le Kremin-Bicetre (France); Zemoura, L. [Dept. of Histopathology C, Inst. Gustave Roussy, 94 - Villejuif (France); Lucidarme, O. [Dept. of Radiology, Hopital Salpetriere, 75 - Paris (France); Guinebretiere, J.M. [Dept. of Histopathology C, Inst. Gustave Roussy, 94 - Villejuif (France); Tardivon, A.A. [Dept. of Radiology, Inst. Gustave Roussy, 94 - Villejuif (France)]|[CIERM, Hopital Bicetre, 94 - Le Kremin-Bicetre (France); Arriagada, R. [Breast Cancer Study Group, Inst. Gustave Roussy, 94 - Villejuif, (France)

    1995-12-31

    A total of 22 women with fibroadenomas had preoperative dynamic MR study (T1-weighted images every 47 s after injection of Gd-DOTA). Their age, hormonal status, breast MR studies and histopathological slides were retrospectively reviewed. Eleven pre- (n = 2) or post-menopausal (n = 9) women showed no early contrast enhancement. The absence of early contrast enhancement correlated with hyalin stromal component. Eleven pre- (n = 7) or post-menopausal (n = 4) women showed focal (n = 9) or diffuse (n = 2) early contrast enhancement. Early focal contrast enhancement correlated with myxoid (n = 9), mixed hyalin/myxoid (n = 1) or hyalin (n = 1) fibroadenomas. Early diffuse contrast enhancement of the breast correlated with myxoid (n = 1) or hyalin (n = 1) stromal component associated with proliferative fibrocystic disease of the breast parenchyma. The presence of contrast enhancement correlated with myxoid fibroadenomas, whereas absence of contrast enhancement correlated with hyalin fibroadenomas. As hyalin fibroadenomas occurs in post-menopausal women, the diagnostic accuracy of dynamic MRI may be improved in this age group. (orig.)

  17. Fibroadenomas of the breast: histopathological/dynamic contrast-enhanced MR correlation

    International Nuclear Information System (INIS)

    Gilles, R.; Garnier, C.; Meingan, P.; Zemoura, L.; Lucidarme, O.; Guinebretiere, J.M.; Tardivon, A.A.; Arriagada, R.

    1995-01-01

    A total of 22 women with fibroadenomas had preoperative dynamic MR study (T1-weighted images every 47 s after injection of Gd-DOTA). Their age, hormonal status, breast MR studies and histopathological slides were retrospectively reviewed. Eleven pre- (n = 2) or post-menopausal (n = 9) women showed no early contrast enhancement. The absence of early contrast enhancement correlated with hyalin stromal component. Eleven pre- (n = 7) or post-menopausal (n = 4) women showed focal (n = 9) or diffuse (n = 2) early contrast enhancement. Early focal contrast enhancement correlated with myxoid (n = 9), mixed hyalin/myxoid (n 1) or hyalin (n = 1) fibroadenomas. Early diffuse contrast enhancement of the breast correlated with myxoid (n = 1) or hyalin (n = 1) stromal component associated with proliferative fibrocystic disease of the breast parenchyma. The presence of contrast enhancement correlated with myxoid fibroadenomas, whereas absence of contrast enhancement correlated with hyalin fibroadenomas. As hyalin fibroadenomas occurs in post-menopausal women, the diagnostic accuracy of dynamic MRI may be improved in this age group. (orig.)

  18. Medial tibial pain: a dynamic contrast-enhanced MRI study.

    Science.gov (United States)

    Mattila, K T; Komu, M E; Dahlström, S; Koskinen, S K; Heikkilä, J

    1999-09-01

    The purpose of this study was to compare the sensitivity of different magnetic resonance imaging (MRI) sequences to depict periosteal edema in patients with medial tibial pain. Additionally, we evaluated the ability of dynamic contrast-enhanced imaging (DCES) to depict possible temporal alterations in muscular perfusion within compartments of the leg. Fifteen patients with medial tibial pain were examined with MRI. T1-, T2-weighted, proton density axial images and dynamic and static phase post-contrast images were compared in ability to depict periosteal edema. STIR was used in seven cases to depict bone marrow edema. Images were analyzed to detect signs of compartment edema. Region-of-interest measurements in compartments were performed during DCES and compared with controls. In detecting periosteal edema, post-contrast T1-weighted images were better than spin echo T2-weighted and proton density images or STIR images, but STIR depicted the bone marrow edema best. DCES best demonstrated the gradually enhancing periostitis. Four subjects with severe periosteal edema had visually detectable pathologic enhancement during DCES in the deep posterior compartment of the leg. Percentage enhancement in the deep posterior compartment of the leg was greater in patients than in controls. The fast enhancement phase in the deep posterior compartment began slightly slower in patients than in controls, but it continued longer. We believe that periosteal edema in bone stress reaction can cause impairment of venous flow in the deep posterior compartment. MRI can depict both these conditions. In patients with medial tibial pain, MR imaging protocol should include axial STIR images (to depict bone pathology) with T1-weighted axial pre and post-contrast images, and dynamic contrast enhanced imaging to show periosteal edema and abnormal contrast enhancement within a compartment.

  19. Low Power High Dynamic Range A/D Conversion Channel

    DEFF Research Database (Denmark)

    Marker-Villumsen, Niels; Rombach, Pirmin

    in the conversion channel in order to avoid distortion for large input signals. In combination with a low resolution A/D converter (ADC) and a digital gain block, the adaptive A/D conversion channel achieves an extended dynamic range beyond that of the ADC. This in turn reduces the current consumption......This work concerns the analysis of an adaptive analog-to-digital (A/D) conversion channel for use with a micro electromechanical system (MEMS) microphone for audio applications. The adaptive A/D conversion channel uses an automatic gain control (AGC) for adjusting the analog preamplifier gain...... of the conversion channel in comparison to a static A/D conversion channel; this at the cost of a reduced peak signal-to-noise ratio (SNR). The adaptive A/D conversion channel compensates for the change in analog gain by a digital gain, thus achieving a constant channel gain in the full dynamic range. However...

  20. Gamut mapping in a high-dynamic-range color space

    Science.gov (United States)

    Preiss, Jens; Fairchild, Mark D.; Ferwerda, James A.; Urban, Philipp

    2014-01-01

    In this paper, we present a novel approach of tone mapping as gamut mapping in a high-dynamic-range (HDR) color space. High- and low-dynamic-range (LDR) images as well as device gamut boundaries can simultaneously be represented within such a color space. This enables a unified transformation of the HDR image into the gamut of an output device (in this paper called HDR gamut mapping). An additional aim of this paper is to investigate the suitability of a specific HDR color space to serve as a working color space for the proposed HDR gamut mapping. For the HDR gamut mapping, we use a recent approach that iteratively minimizes an image-difference metric subject to in-gamut images. A psychophysical experiment on an HDR display shows that the standard reproduction workflow of two subsequent transformations - tone mapping and then gamut mapping - may be improved by HDR gamut mapping.

  1. Extending the dynamic range of silicon photomultipliers without increasing pixel count

    International Nuclear Information System (INIS)

    Johnson, Kurtis F.

    2010-01-01

    A silicon photomultiplier, sometimes called 'multipixel photon counter', which we here refer to as a 'SiPM', is a photo-sensitive device built from an avalanche photodiode array of pixels on a common silicon substrate, such that it can detect single photon events. The dimensions of a pixel may vary from 20 to 100 μm and their density can be greater than 1000 per square millimeter. Each pixel in a SiPM operates in Geiger mode and is coupled to the output by a quenching resistor. Although each pixel operates in digital mode, the SiPM is an analog device because all the pixels are read in parallel, making it possible to generate signals within a dynamic range from a single photon to a large number of photons, ultimately limited by the number of pixels on the chip. In this note we describe a simple and general method of increasing the dynamic range of a SiPM beyond that one may naively assume from the shape of the cumulative distribution function of the SiPM response to the average number of photons per pixel. We show that by rendering the incoming flux of photons to be non-uniform in a prescribed manner, a significant increase in dynamic range is achievable. Such re-distribution of the incoming flux may be accomplished with simple, non-focusing lenses, prisms, interference films, mirrors or attenuating films. Almost any optically non-inert interceding device can increase the dynamic range of the SiPM.

  2. Binaural model-based dynamic-range compression.

    Science.gov (United States)

    Ernst, Stephan M A; Kortlang, Steffen; Grimm, Giso; Bisitz, Thomas; Kollmeier, Birger; Ewert, Stephan D

    2018-01-26

    Binaural cues such as interaural level differences (ILDs) are used to organise auditory perception and to segregate sound sources in complex acoustical environments. In bilaterally fitted hearing aids, dynamic-range compression operating independently at each ear potentially alters these ILDs, thus distorting binaural perception and sound source segregation. A binaurally-linked model-based fast-acting dynamic compression algorithm designed to approximate the normal-hearing basilar membrane (BM) input-output function in hearing-impaired listeners is suggested. A multi-center evaluation in comparison with an alternative binaural and two bilateral fittings was performed to assess the effect of binaural synchronisation on (a) speech intelligibility and (b) perceived quality in realistic conditions. 30 and 12 hearing impaired (HI) listeners were aided individually with the algorithms for both experimental parts, respectively. A small preference towards the proposed model-based algorithm in the direct quality comparison was found. However, no benefit of binaural-synchronisation regarding speech intelligibility was found, suggesting a dominant role of the better ear in all experimental conditions. The suggested binaural synchronisation of compression algorithms showed a limited effect on the tested outcome measures, however, linking could be situationally beneficial to preserve a natural binaural perception of the acoustical environment.

  3. A high speed, wide dynamic range digitizer circuit for photomultiplier tubes

    International Nuclear Information System (INIS)

    Yarema, R.J.; Foster, G.W.; Knickerbocker, K.; Sarraj, M.; Tschirhart, R.; Whitmore, J.; Zimmerman, T.; Lindgren, M.

    1995-01-01

    A circuit has been designed for digitizing PMT signals over a wide dynamic range (17-18 bits) with 8 bits of resolution at rates up to 53 MHz. Output from the circuit is in a floating point format with a 4 bit exponent and an 8 bit mantissa. The heart of the circuit is a full custom integrated circuit called the QIE (Charge Integrator and Encoder). The design of the QIE and associated circuitry reported here permits operation over a 17 bit dynamic range. Test results of a multirange device are presented for the first time. (orig.)

  4. Active and inactive enhancers co-operate to exert localized and long-range control of gene regulation

    Science.gov (United States)

    Proudhon, Charlotte; Snetkova, Valentina; Raviram, Ramya; Lobry, Camille; Badri, Sana; Jiang, Tingting; Hao, Bingtao; Trimarchi, Thomas; Kluger, Yuval; Aifantis, Iannis; Bonneau, Richard; Skok, Jane A

    2016-01-01

    V(D)J recombination relies on the presence of proximal enhancers that activate the antigen receptor (AgR) loci in a lineage and stage specific manner. Unexpectedly we find that both active and inactive AgR enhancers co-operate to disseminate their effects in a localized and long-range manner. Here we demonstrate the importance of short-range contacts between active enhancers that constitute an Igk super-enhancer in B cells. Deletion of one element reduces the interaction frequency between other enhancers in the hub, which compromises the transcriptional output of each component. We further establish that in T cells long-range contact and co-operation between the inactive Igk enhancer, MiEκ and the active Tcrb enhancer, Eβ, alters enrichment of CBFβ binding in a manner that impacts Tcrb recombination. These findings underline the complexities of enhancer regulation and point to a role for localized and long-range enhancer-sharing between active and inactive elements in lineage and stage specific control. PMID:27239026

  5. Dynamic contrast enhanced MRI in prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Alonzi, Roberto [Marie Curie Research Wing, Mount Vernon Cancer Centre, Rickmansworth Road, Northwood, Middlesex, HA6 2RN (United Kingdom)], E-mail: robertoalonzi@btinternet.com; Padhani, Anwar R. [Paul Strickland Scanner Centre, Mount Vernon Cancer Centre, Rickmansworth Road, Northwood, Middlesex, HA6 2RN (United Kingdom); Synarc Inc. 575 Market Street, San Francisco, CA 94105 (United States)], E-mail: anwar.padhani@paulstrickland-scannercentre.org.uk; Allen, Clare [Department of Imaging, University College Hospital, London, 235 Euston Road, NW1 2BU (United Kingdom)], E-mail: clare.allen@uclh.nhs.uk

    2007-09-15

    Angiogenesis is an integral part of benign prostatic hyperplasia (BPH), is associated with prostatic intraepithelial neoplasia (PIN) and is key to the growth and for metastasis of prostate cancer. Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) using small molecular weight gadolinium chelates enables non-invasive imaging characterization of tissue vascularity. Depending on the technique used, data reflecting tissue perfusion, microvessel permeability surface area product, and extracellular leakage space can be obtained. Two dynamic MRI techniques (T{sub 2}*-weighted or susceptibility based and T{sub 1}-weighted or relaxivity enhanced methods) for prostate gland evaluations are discussed in this review with reference to biological basis of observations, data acquisition and analysis methods, technical limitations and validation. Established clinical roles of T{sub 1}-weighted imaging evaluations will be discussed including lesion detection and localisation, for tumour staging and for the detection of suspected tumour recurrence. Limitations include inadequate lesion characterisation particularly differentiating prostatitis from cancer, and in distinguishing between BPH and central gland tumours.

  6. Sensitivity and Dynamic Range Considerations for Homodyne Detection Systems

    DEFF Research Database (Denmark)

    Jaggard, Dwight L.; King, Ray J

    1973-01-01

    The effects of modulation frequency, RF reference power, and external bias upon the sensitivity and dynamic range of microwave homodyne detection systems was measured for point contact diodes and low l/f noise Schottky and backward diodes. The measurements were made at 4.89 GHz using a signal...... to noise ratio of 3 dB and a detection system bandwidth of 10 Hz. Maximum sensitivities of -135, -150, and -145 dBm, and dynamic ranges of 92, 110, and 124 dB were measured for the point contact, Schottky, and backward diodes at modulation frequencies of 30, 30, and 3 kHz, respectively. It was found...... that the level of RF reference signal needed to obtain the maximum sensitivity was equal to or somewhat above the point where the diode changes from square law to linear detection. The results are significant in that previously reported homodyne sensitivities (not necessarily maximum) were on the order of -90...

  7. Thermal and dynamic range characterization of a photonics-based RF amplifier

    Science.gov (United States)

    Noque, D. F.; Borges, R. M.; Muniz, A. L. M.; Bogoni, A.; Cerqueira S., Arismar, Jr.

    2018-05-01

    This work reports a thermal and dynamic range characterization of an ultra-wideband photonics-based RF amplifier for microwave and mm-waves future 5G optical-wireless networks. The proposed technology applies the four-wave mixing nonlinear effect to provide RF amplification in analog and digital radio-over-fiber systems. The experimental analysis from 300 kHz to 50 GHz takes into account different figures of merit, such as RF gain, spurious-free dynamic range and RF output power stability as a function of temperature. The thermal characterization from -10 to +70 °C demonstrates a 27 dB flat photonics-assisted RF gain over the entire frequency range under real operational conditions of a base station for illustrating the feasibility of the photonics-assisted RF amplifier for 5G networks.

  8. Dynamic contrast-enhanced magnetic resonance imaging of the wrist in children with juvenile idiopathic arthritis

    Energy Technology Data Exchange (ETDEWEB)

    Nusman, Charlotte M. [Emma Children' s Hospital, Department of Pediatric Hematology, Immunology, Rheumatology and Infectious Disease, Academic Medical Center, Amsterdam (Netherlands); Academic Medical Center, Department of Radiology, Amsterdam (Netherlands); Lavini, Cristina; Hemke, Robert; Caan, Matthan W.A.; Maas, Mario [Academic Medical Center, Department of Radiology, Amsterdam (Netherlands); Schonenberg-Meinema, Dieneke; Berg, J.M. van den; Kuijpers, Taco W. [Emma Children' s Hospital, Department of Pediatric Hematology, Immunology, Rheumatology and Infectious Disease, Academic Medical Center, Amsterdam (Netherlands); Dolman, Koert M. [Sint Lucas Andreas Hospital, Department of Pediatrics, Amsterdam (Netherlands); Reade Institute location Jan van Breemen, Department of Pediatric Rheumatology, Amsterdam (Netherlands); Rossum, Marion A.J. van [Reade Institute location Jan van Breemen, Department of Pediatric Rheumatology, Amsterdam (Netherlands); Emma Children' s Hospital, Department of Pediatrics, Academic Medical Center, Amsterdam (Netherlands)

    2017-02-15

    Dynamic contrast-enhanced MRI provides information on the heterogeneity of the synovium, the primary target of disease in children with juvenile idiopathic arthritis (JIA). To evaluate the feasibility of dynamic contrast-enhanced MRI in the wrist of children with JIA using conventional descriptive measures and time-intensity-curve shape analysis. To explore the association between enhancement characteristics and clinical disease status. Thirty-two children with JIA and wrist involvement underwent dynamic contrast-enhanced MRI with movement-registration and were classified using validated criteria as clinically active (n = 27) or inactive (n = 5). Outcome measures included descriptive parameters and the classification into time-intensity-curve shapes, which represent the patterns of signal intensity change over time. Differences in dynamic contrast-enhanced MRI outcome measures between clinically active and clinically inactive disease were analyzed and correlation with the Juvenile Arthritis Disease Activity Score was determined. Comprehensive evaluation of disease status was technically feasible and the quality of the dynamic dataset was improved by movement registration. The conventional descriptive measure maximum enhancement differed significantly between clinically active and inactive disease (P = 0.019), whereas time-intensity-curve shape analysis showed no differences. Juvenile Arthritis Disease Activity Score correlated moderately with enhancing volume (P = 0.484). Dynamic contrast-enhanced MRI is a promising biomarker for evaluating disease status in children with JIA and wrist involvement. Conventional descriptive dynamic contrast-enhanced MRI measures are better associated with clinically active disease than time-intensity-curve shape analysis. (orig.)

  9. Value of fat suppression and dynamic contrast-enhanced MRI in the diagnosis of insulinoma

    International Nuclear Information System (INIS)

    Xu Zengbin; Ruan Lingxiang; Peng Zhiyi; Zhang Minming; Xu Shunliang; Zhang Xidao

    2003-01-01

    Objective: To evaluate the value of fat suppression and dynamic contrast-enhanced MRI in the preoperative localization of insulinoma. Methods: Twelve cases with pathologically proven insulinoma were evaluated with MRI. SE T 1 WI, FSE T 2 WI, T 1 WI and T 2 WI with fat suppression, dynamic contrast-enhanced FMPSPGR sequences were used in MR scanning. Results: On SE T 1 WI, the lesions displayed hypointense in 4, isointense in 8 cases. Lesions showed hyperintense in 4, isointense in 8 cases on FSE T 2 WI. In contrast, 7 cases appeared as hypointense on T 1 WI with fat suppression and 6 cases appeared as hyperintense on T 2 WI with fat suppression. With dynamic contrast-enhanced FMPSPGR sequence 11 of 12 insulinomas were detected. In the arterial phase, the lesions presented as hyperintense with different degrees in 11 cases and isointense in 1 case. 6 cases remained hyperintense and 6 cases were isointense in pancreatic parenchymal and portal phase. 4 lesions were identified only in dynamic enhancement images. The diagnostic accuracy of insulinoma by dynamic contrast-enhanced MRI was 91.7% (11/12) as compared with histological study. Conclusion: The results indicate that dynamic contrast-enhanced MRI is an sensitive and accurate method for the preoperative localization of insulinoma

  10. A Novel Range Compression Algorithm for Resolution Enhancement in GNSS-SARs

    Directory of Open Access Journals (Sweden)

    Yu Zheng

    2017-06-01

    Full Text Available In this paper, a novel range compression algorithm for enhancing range resolutions of a passive Global Navigation Satellite System-based Synthetic Aperture Radar (GNSS-SAR is proposed. In the proposed algorithm, within each azimuth bin, firstly range compression is carried out by correlating a reflected GNSS intermediate frequency (IF signal with a synchronized direct GNSS base-band signal in the range domain. Thereafter, spectrum equalization is applied to the compressed results for suppressing side lobes to obtain a final range-compressed signal. Both theoretical analysis and simulation results have demonstrated that significant range resolution improvement in GNSS-SAR images can be achieved by the proposed range compression algorithm, compared to the conventional range compression algorithm.

  11. Usefulness of dynamic contrast-enhanced MRI in the evaluation of the viability of acute scaphoid fracture

    Energy Technology Data Exchange (ETDEWEB)

    Larribe, Maud [Hopital La Conception, Service d' imagerie medicale, Marseille (France); Hopital Sainte Marguerite, Service d' imagerie medicale, Marseille (France); Gay, Andre [Hopital La Conception, Service de chirurgie de la main, Marseille (France); Freire, Veronique [Centre hospitalier de l' Universite de Montreal, Department of Radiology, Notre-Dame Hospital, Montreal, QC (Canada); Bouvier, Corinne [Hopital La Timone, Service d' anatomopathologie, Marseille (France); Chagnaud, Christophe; Souteyrand, Philippe [Hopital La Conception, Service d' imagerie medicale, Marseille (France)

    2014-12-15

    To evaluate the usefulness of dynamic gadolinium-enhanced magnetic resonance imaging (MRI) for assessing the viability of the proximal pole of the scaphoid in patients with acute scaphoid fractures. Eighteen consecutive patients with acute scaphoid fracture who underwent dynamic gadolinium-enhanced MRI 7 days or less before surgery were prospectively included between August 2011 and December 2012. All patients underwent MR imaging with unenhanced images, enhanced images, and dynamic enhanced images. A radiologist first classified the MRI results as necrotic or viable based on T1- and T2-weighted images only, followed by a second blinded interpretation, this time including analysis of pre- and post-gadolinium administration images and a third blinded interpretation based on the time-intensity curve of the dynamic enhanced study. The standard of reference was the histologic assessment of a cylindrical specimen of the proximal pole obtained during surgery in all patients. The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were calculated for unenhanced, enhanced, and dynamic gadolinium-enhanced MRI studies. The sensitivity, specificity, PPV, and NPV were 67, 67, 50, and 80 % for unenhanced images, 83, 100, 100, and 92 for enhanced images, and 83, 92, 83, and 92 for dynamic contrast-enhanced images. Our data are consistent with previously reported data supporting contrast-enhanced MRI for assessment of viability, and showing that dynamic imaging with time-intensity curve analysis does not provide additional predictive value over standard delayed enhanced imaging for acute scaphoid fracture. (orig.)

  12. Usefulness of dynamic contrast-enhanced MRI in the evaluation of the viability of acute scaphoid fracture

    International Nuclear Information System (INIS)

    Larribe, Maud; Gay, Andre; Freire, Veronique; Bouvier, Corinne; Chagnaud, Christophe; Souteyrand, Philippe

    2014-01-01

    To evaluate the usefulness of dynamic gadolinium-enhanced magnetic resonance imaging (MRI) for assessing the viability of the proximal pole of the scaphoid in patients with acute scaphoid fractures. Eighteen consecutive patients with acute scaphoid fracture who underwent dynamic gadolinium-enhanced MRI 7 days or less before surgery were prospectively included between August 2011 and December 2012. All patients underwent MR imaging with unenhanced images, enhanced images, and dynamic enhanced images. A radiologist first classified the MRI results as necrotic or viable based on T1- and T2-weighted images only, followed by a second blinded interpretation, this time including analysis of pre- and post-gadolinium administration images and a third blinded interpretation based on the time-intensity curve of the dynamic enhanced study. The standard of reference was the histologic assessment of a cylindrical specimen of the proximal pole obtained during surgery in all patients. The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were calculated for unenhanced, enhanced, and dynamic gadolinium-enhanced MRI studies. The sensitivity, specificity, PPV, and NPV were 67, 67, 50, and 80 % for unenhanced images, 83, 100, 100, and 92 for enhanced images, and 83, 92, 83, and 92 for dynamic contrast-enhanced images. Our data are consistent with previously reported data supporting contrast-enhanced MRI for assessment of viability, and showing that dynamic imaging with time-intensity curve analysis does not provide additional predictive value over standard delayed enhanced imaging for acute scaphoid fracture. (orig.)

  13. Robust brightness enhancement across a luminance range of the glare illusion.

    Science.gov (United States)

    Tamura, Hideki; Nakauchi, Shigeki; Koida, Kowa

    2016-01-01

    The glare illusion refers to brightness enhancement and the perception of a self-luminous appearance that occurs when a central region is surrounded by a luminance gradient. The center region appears to be a light source, with its light dispersing into the surrounding region. If the luminous edge is critical for generating the illusion, modulating the perceived luminance of the image, and switching its appearance from luminous to nonluminous, would have a strong impact on lightness and brightness estimation. Here, we quantified the illusion in two ways, by assessing brightness enhancement and examining whether the center region appeared luminous. Thus, we could determine whether the two effects occurred jointly or independently. We examined a wide luminance range of center regions, from 0 to 200% relative to background. Brightness enhancement in the illusion was observed for a wide range of luminances (20% to 200% relative to background), while a luminous-white appearance was observed when the center region luminance was 145% of the background. These results exclude the possibility that brightness enhancement occurs because the stimuli appear self-luminous. We suggest that restoring the original image intensity precedes the perceptual process of lightness estimation.

  14. A dynamic range upgrade for neutron backscattering spectroscopy

    International Nuclear Information System (INIS)

    Cook, J.C.; Petry, W.; Heidemann, A.; Barthelemy, J.F.

    1992-01-01

    We report on an instrumental development of the cold neutron backscattering spectrometer IN10 at the Institut Laue-Langevin which has led to a significant increase in its dynamic range. Thermal expansion of a variety of neutron monochromator crystals is used instead of a mechanical oscillation of the monochromator, yielding an increase in the energy transfer range by nearly two orders of magnitude in an elastic wave vector transfer range of 0.07≤Q (A -1 )≤2.0. Using this new configuration, first inelastic measurements have been performed using the (200) reflections from KCl and NaCl monochromators with crystal temperatures between 80 K and 700 K. The thermal expansion of these crystals in this temperature range gives rise to energy transfer ranges (neutron energy gain) of -16<ℎω(μeV)<+83 for KCl and -530<ℎω(μeV)<-420 for NaCl with energy resolution (FWHM) of around 0.6 and 1.4 μeV for KCl and NaCl respectively. These figures represent the highest energy resolution currently available at these energy and wave vector transfers. (orig.)

  15. Validation of enhanced and dynamic computed tomography for cerebral ischemia

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Kenichiro; Arimoto, Hirohiko; Wada, Kojiro; Takahara, Takashi; Shirotani, Toshiki; Shimizu, Akira [Japan Self-Defense Forces Central Hospital, Tokyo (Japan); Hatanaka, Kosuke [Japan Self-Defense Forces Medical School, Tokyo (Japan)

    2003-03-01

    This paper shows the usefulness of enhanced and dynamic CT for ischemic stroke patients. Sixteen patients with disturbance of consciousness or neurological sign who did not have low-density area on plain CT were selected for this study. We performed enhanced CT sequentially. Enhanced CT image, time-density curve and functional image were compared with final infarcted area and occlusion level of cerebral artery. Three patients whose enhanced CT images showed obvious laterality had occlusion of internal carotid (IC) or horizontal portion of middle cerebral artery (M1). Four of five patients whose functional image and time density curve revealed abnormal region had ischemia because of more peripheral vessel occlusion or IC stenosis. Others with no abnormality on all images had lacunar infarction or did not have infarction finally. Occlusion of cerebral artery proximal portion could be diagnosed only with enhanced CT images. If selected slice was fit to the lesion, more distant level of ischemic area could be determined 100% by time-density curve and functional image. This examination takes only about ten minutes without transferring the patient. Enhanced CT and dynamic scan is useful tool to determine the diagnosis and management for ischemic stroke patients. (author)

  16. Validation of enhanced and dynamic computed tomography for cerebral ischemia

    International Nuclear Information System (INIS)

    Ono, Kenichiro; Arimoto, Hirohiko; Wada, Kojiro; Takahara, Takashi; Shirotani, Toshiki; Shimizu, Akira; Hatanaka, Kosuke

    2003-01-01

    This paper shows the usefulness of enhanced and dynamic CT for ischemic stroke patients. Sixteen patients with disturbance of consciousness or neurological sign who did not have low-density area on plain CT were selected for this study. We performed enhanced CT sequentially. Enhanced CT image, time-density curve and functional image were compared with final infarcted area and occlusion level of cerebral artery. Three patients whose enhanced CT images showed obvious laterality had occlusion of internal carotid (IC) or horizontal portion of middle cerebral artery (M1). Four of five patients whose functional image and time density curve revealed abnormal region had ischemia because of more peripheral vessel occlusion or IC stenosis. Others with no abnormality on all images had lacunar infarction or did not have infarction finally. Occlusion of cerebral artery proximal portion could be diagnosed only with enhanced CT images. If selected slice was fit to the lesion, more distant level of ischemic area could be determined 100% by time-density curve and functional image. This examination takes only about ten minutes without transferring the patient. Enhanced CT and dynamic scan is useful tool to determine the diagnosis and management for ischemic stroke patients. (author)

  17. Transmission dynamic range in chest radiology

    International Nuclear Information System (INIS)

    Lemmers, H.E.A.S.J.; Schultze Kool, L.J.; van Elburg, H.J.; Boelens, F.

    1989-01-01

    Due to the large difference in transmission between the lung area and the mediastinum, the human chest is a challenging object for radiographic imaging. This study is performed in order to define the dynamic range needed for a chest imaging chain. Eight hundred seventy-five consecutive outpatients were imaged with a prototype AMBER (advanced multiple beam equalization radiography) unit at 141 kVp. The equalization facility was disabled, allowing for the simultaneous capture of a film image and a digital dataset representing the local patient transmission in fields of approximately 2x2 cm. The datasets were analyzed to obtain the relation between the average transmission distribution in a subset of the population and physical parameters characterizing this subset, such as body weight or length

  18. Comparison of linear intrascan and interscan dynamic ranges of Orbitrap and ion-mobility time-of-flight mass spectrometers.

    Science.gov (United States)

    Kaufmann, Anton; Walker, Stephan

    2017-11-30

    The linear intrascan and interscan dynamic ranges of mass spectrometers are important in metabolome and residue analysis. A large linear dynamic range is mandatory if both low- and high-abundance ions have to be detected and quantitated in heavy matrix samples. These performance criteria, as provided by modern high-resolution mass spectrometry (HRMS), were systematically investigated. The comparison included two generations of Orbitraps, and an ion mobility quadrupole time-of-flight (QTOF) system In addition, different scan modes, as provided by the utilized instruments, were investigated. Calibration curves of different compounds covering a concentration range of five orders of magnitude were measured to evaluate the linear interscan dynamic range. The linear intrascan dynamic range and the resulting mass accuracy were evaluated by repeating these measurements in the presence of a very intense background. Modern HRMS instruments can show linear dynamic ranges of five orders of magnitude. Often, however, the linear dynamic range is limited by the detection capability (sensitivity and selectivity) and by the electrospray ionization. Orbitraps, as opposed to TOF instruments, show a reduced intrascan dynamic range. This is due to the limited C-trap and Orbitrap capacity. The tested TOF instrument shows poorer mass accuracies than the Orbitraps. In contrast, hyphenation with an ion-mobility device seems not to affect the linear dynamic range. The linear dynamic range of modern HRMS instrumentation has been significantly improved. This also refers to the virtual absence of systematic mass shifts at high ion abundances. The intrascan dynamic range of the current Orbitrap technology may still be a limitation when analyzing complex matrix extracts. On the other hand, the linear dynamic range is not only limited by the detector technology, but can also be shortened by peripheral devices, where the ionization and transfer of ions take place. Copyright © 2017 John Wiley

  19. Fractional quantum mechanics on networks: Long-range dynamics and quantum transport.

    Science.gov (United States)

    Riascos, A P; Mateos, José L

    2015-11-01

    In this paper we study the quantum transport on networks with a temporal evolution governed by the fractional Schrödinger equation. We generalize the dynamics based on continuous-time quantum walks, with transitions to nearest neighbors on the network, to the fractional case that allows long-range displacements. By using the fractional Laplacian matrix of a network, we establish a formalism that combines a long-range dynamics with the quantum superposition of states; this general approach applies to any type of connected undirected networks, including regular, random, and complex networks, and can be implemented from the spectral properties of the Laplacian matrix. We study the fractional dynamics and its capacity to explore the network by means of the transition probability, the average probability of return, and global quantities that characterize the efficiency of this quantum process. As a particular case, we explore analytically these quantities for circulant networks such as rings, interacting cycles, and complete graphs.

  20. Territorial dynamics and stable home range formation for central place foragers.

    Directory of Open Access Journals (Sweden)

    Jonathan R Potts

    Full Text Available Uncovering the mechanisms behind territory formation is a fundamental problem in behavioural ecology. The broad nature of the underlying conspecific avoidance processes are well documented across a wide range of taxa. Scent marking in particular is common to a large range of terrestrial mammals and is known to be fundamental for communication. However, despite its importance, exact quantification of the time-scales over which scent cues and messages persist remains elusive. Recent work by the present authors has begun to shed light on this problem by modelling animals as random walkers with scent-mediated interaction processes. Territories emerge as dynamic objects that continually change shape and slowly move without settling to a fixed location. As a consequence, the utilisation distribution of such an animal results in a slowly increasing home range, as shown for urban foxes (Vulpes vulpes. For certain other species, however, home ranges reach a stable state. The present work shows that stable home ranges arise when, in addition to scent-mediated conspecific avoidance, each animal moves as a central place forager. That is, the animal's movement has a random aspect but is also biased towards a fixed location, such as a den or nest site. Dynamic territories emerge but the probability distribution of the territory border locations reaches a steady state, causing stable home ranges to emerge from the territorial dynamics. Approximate analytic expressions for the animal's probability density function are derived. A programme is given for using these expressions to quantify both the strength of the animal's movement bias towards the central place and the time-scale over which scent messages persist. Comparisons are made with previous theoretical work modelling central place foragers with conspecific avoidance. Some insights into the mechanisms behind allometric scaling laws of animal space use are also given.

  1. Passive Wireless Temperature Sensors with Enhanced Sensitivity and Range, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes the development of passive surface acoustic wave (SAW) temperature sensors with enhanced sensitivity and detection range for NASA application...

  2. Dynamic contrast-enhanced MR of the prostatic cancer and benign prostatic hyperplasia: correlation with angiogenesis

    International Nuclear Information System (INIS)

    Ni Xinchu; Shen Junkang; Lu Zhian; Zhou Lijuan; Yang Xiaochun; Wang Guanzhong; Zhang Caiyuan; Wang Shuizhen; Qian Minghui; Chan Yuxi; Qian Nong; Xiang Jianpo; Pan Changjie; Rong Weiliang; Chen Jianguo

    2005-01-01

    Objective: To evaluate the role of dynamic contrast-enhanced magnetic resonance imaging (MRI) in the diagnose of prostatic cancer and benign prostatic hyperplasia (BPH), and to determine the correlation between dynamic MRI findings with angiogenesis. Methods: Thirty-two cases of prostatic cancer and 40 cases of BPH underwent dynamic contrast-enhanced MRI. All the patients in this study were diagnosed by histopathology. The results of dynamic contrast-enhanced MRI were evaluated by early-phase enhancement parameters and time-signal intensity curves (SI-T curves), and the curves were classified according to their shapes as type I, which had steady enhancement; type II, plateau of signal intensity; and type III, washout of signal intensity. The pathologic specimens of region of interest (ROI ) were obtained, and HE staining, immunohistochemical vascular endothelial growth factor (VEGF), and microvessel density (MVD) measurements were performed. The relationships among dynamic contrast-enhanced MRI features, VEGF, and MVD expression were analyzed. Results: In the early-phase enhancement parameters of dynamic contrast-enhanced MRI, onset time, maximum signal intensity, and early-phase enhancement rate differed between prostatic cancer and BPH (P<0.01, 0.05, 0.01), but there were some overlaps between them. The intermediate and late post-contrast periods were characterized with the lesion SI-T curves. The SI-T curve of prostatic cancer was mainly type III (21 cases). Type II could be seen in both prostatic cancer (8 cases) and BPH (19 cases). Type I most appeared in BPH (18 cases). The distributions proved to have significant difference (P<0.001). The mean VEGF and MVD level of 32 prostatic cancer patients were significantly higher than those of 40 BPH patients (P<0.001). MVD level of prostatic cancer and BPH showed an association with VEGF level (P<0.01). The maximum signal intensity and early-phase enhancement rate in both prostatic cancer and BPH showed an association

  3. Extraordinary tunable dynamic range of electrochemical aptasensor for accurate detection of ochratoxin A in food samples

    Directory of Open Access Journals (Sweden)

    Lin Cheng

    2017-06-01

    Full Text Available We report the design of a sensitive, electrochemical aptasensor for detection of ochratoxin A (OTA with an extraordinary tunable dynamic sensing range. This electrochemical aptasensor is constructed based on the target induced aptamer-folding detection mechanism and the recognition between OTA and its aptamers results in the conformational change of the aptamer probe and thus signal changes for measurement. The dynamic sensing range of the electrochemical aptasensor is successfully tuned by introduction of free assistant aptamer probes in the sensing system. Our electrochemical aptasensor shows an extraordinary dynamic sensing range of 11-order magnitude of OTA concentration from 10−8 to 102 ng/g. Of great significance, the signal response in all OTA concentration ranges is at the same current scale, demonstrating that our sensing protocol in this research could be applied for accurate detections of OTA in a broad range without using any complicated treatment of signal amplification. Finally, OTA spiked red wine and maize samples in different dynamic sensing ranges are determined with the electrochemical aptasensor under optimized sensing conditions. This tuning strategy of dynamic sensing range may offer a promising platform for electrochemical aptasensor optimizations in practical applications.

  4. Seasonal source-sink dynamics at the edge of a species' range

    Science.gov (United States)

    Kanda, L.L.; Fuller, T.K.; Sievert, P.R.; Kellogg, R.L.

    2009-01-01

    The roles of dispersal and population dynamics in determining species' range boundaries recently have received theoretical attention but little empirical work. Here we provide data on survival, reproduction, and movement for a Virginia opossum (Didelphis virginiana) population at a local distributional edge in central Massachusetts (USA). Most juvenile females that apparently exploited anthropogenic resources survived their first winter, whereas those using adjacent natural resources died of starvation. In spring, adult females recolonized natural areas. A life-table model suggests that a population exploiting anthropogenic resources may grow, acting as source to a geographically interlaced sink of opossums using only natural resources, and also providing emigrants for further range expansion to new human-dominated landscapes. In a geographical model, this source-sink dynamic is consistent with the local distribution identified through road-kill surveys. The Virginia opossum's exploitation of human resources likely ameliorates energetically restrictive winters and may explain both their local distribution and their northward expansion in unsuitable natural climatic regimes. Landscape heterogeneity, such as created by urbanization, may result in source-sink dynamics at highly localized scales. Differential fitness and individual dispersal movements within local populations are key to generating regional distributions, and thus species ranges, that exceed expectations. ?? 2009 by the Ecological Society of America.

  5. Seasonal source-sink dynamics at the edge of a species' range.

    Science.gov (United States)

    Kanda, L Leann; Fuller, Todd K; Sievert, Paul R; Kellogg, Robert L

    2009-06-01

    The roles of dispersal and population dynamics in determining species' range boundaries recently have received theoretical attention but little empirical work. Here we provide data on survival, reproduction, and movement for a Virginia opossum (Didelphis virginiana) population at a local distributional edge in central Massachusetts (USA). Most juvenile females that apparently exploited anthropogenic resources survived their first winter, whereas those using adjacent natural resources died of starvation. In spring, adult females recolonized natural areas. A life-table model suggests that a population exploiting anthropogenic resources may grow, acting as source to a geographically interlaced sink of opossums using only natural resources, and also providing emigrants for further range expansion to new human-dominated landscapes. In a geographical model, this source-sink dynamic is consistent with the local distribution identified through road-kill surveys. The Virginia opossum's exploitation of human resources likely ameliorates energetically restrictive winters and may explain both their local distribution and their northward expansion in unsuitable natural climatic regimes. Landscape heterogeneity, such as created by urbanization, may result in source-sink dynamics at highly localized scales. Differential fitness and individual dispersal movements within local populations are key to generating regional distributions, and thus species ranges, that exceed expectations.

  6. The high dynamic range pixel array detector (HDR-PAD): Concept and design

    Energy Technology Data Exchange (ETDEWEB)

    Shanks, Katherine S.; Philipp, Hugh T.; Weiss, Joel T.; Becker, Julian; Tate, Mark W. [Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853 (United States); Gruner, Sol M., E-mail: smg26@cornell.edu [Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853 (United States); Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY 14853 (United States)

    2016-07-27

    Experiments at storage ring light sources as well as at next-generation light sources increasingly require detectors capable of high dynamic range operation, combining low-noise detection of single photons with large pixel well depth. XFEL sources in particular provide pulse intensities sufficiently high that a purely photon-counting approach is impractical. The High Dynamic Range Pixel Array Detector (HDR-PAD) project aims to provide a dynamic range extending from single-photon sensitivity to 10{sup 6} photons/pixel in a single XFEL pulse while maintaining the ability to tolerate a sustained flux of 10{sup 11} ph/s/pixel at a storage ring source. Achieving these goals involves the development of fast pixel front-end electronics as well as, in the XFEL case, leveraging the delayed charge collection due to plasma effects in the sensor. A first prototype of essential electronic components of the HDR-PAD readout ASIC, exploring different options for the pixel front-end, has been fabricated. Here, the HDR-PAD concept and preliminary design will be described.

  7. Transmitted wavefront testing with large dynamic range based on computer-aided deflectometry

    Science.gov (United States)

    Wang, Daodang; Xu, Ping; Gong, Zhidong; Xie, Zhongmin; Liang, Rongguang; Xu, Xinke; Kong, Ming; Zhao, Jun

    2018-06-01

    The transmitted wavefront testing technique is demanded for the performance evaluation of transmission optics and transparent glass, in which the achievable dynamic range is a key issue. A computer-aided deflectometric testing method with fringe projection is proposed for the accurate testing of transmitted wavefronts with a large dynamic range. Ray tracing of the modeled testing system is carried out to achieve the virtual ‘null’ testing of transmitted wavefront aberrations. The ray aberration is obtained from the ray tracing result and measured slope, with which the test wavefront aberration can be reconstructed. To eliminate testing system modeling errors, a system geometry calibration based on computer-aided reverse optimization is applied to realize accurate testing. Both numerical simulation and experiments have been carried out to demonstrate the feasibility and high accuracy of the proposed testing method. The proposed testing method can achieve a large dynamic range compared with the interferometric method, providing a simple, low-cost and accurate way for the testing of transmitted wavefronts from various kinds of optics and a large amount of industrial transmission elements.

  8. Comparison of AMI-25 enhanced MRI and helical dynamic CT in the detection of hepatic lesions

    International Nuclear Information System (INIS)

    Saitou, Kazuhiro; Matsuda, Hiromichi; Fukushima, Hiroaki; Kanzaki, Hiroshi; Hirose, Takashi; Karizaki, Dai; Abe, Kimihiko; Amino, Saburou

    1994-01-01

    We performed AMI-25 enhanced MRI and helical dynamic CT in 12 cases of hepatic lesions. Nine of these were hepatocellular carcinomas. Two cases were metastatic liver tumors (the primary lesion was gastric in one and the other was gallbladder cancer). One case was suspected to be adenomatous hyperplasia. Thirty-two lesions were detected in T2-weighted SE images before AMI-25 administration, while 46 lesions were detected in AMI-25 enhanced MRI images. In particular, AMI-25 enhanced MRI was superior to plain MRI in lesions less than 10 mm in size. A total of 48 lesions were detected in helical dynamic CT. Although AMI-25 enhanced MRI almost equaled helical dynamic CT in the detection of liver tumors, helical dynamic CT was slightly superior to AMI-25 enhanced MRI in the detection of subphrenic lesions. It was possible to know the hemodynamics in each hepatic lesion by helical dynamic CT. AMI-25 enhanced MRI was useful to know the inclusion of reticuloendothelial system, and that yielded different diagnoses in adenomatous hyperplasia and well differentiated hepatocellular carcinoma. Helical dynamic CT was useful for qualitative diagnosis. Both AMI-25 enhanced MRI and helical dynamic CT contributed to the detection of liver tumor and qualitative diagnosis. (author)

  9. Perceptual Effects of Dynamic Range Compression in Popular Music Recordings

    DEFF Research Database (Denmark)

    Hjortkjær, Jens; Walther-Hansen, Mads

    2014-01-01

    There is a widespread belief that the increasing use of dynamic range compression in music mastering (the loudnesswar) deteriorates sound quality but experimental evidence of perceptual effects is lacking. In this study, normal hearing listeners were asked to evaluate popular music recordings in ...

  10. SAW passive wireless sensor-RFID tags with enhanced range, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes the development of passive wireless surface acoustic wave (SAW) RFID sensor-tags with enhanced range for remote monitoring of large groups of...

  11. Dynamic modeling method for infrared smoke based on enhanced discrete phase model

    Science.gov (United States)

    Zhang, Zhendong; Yang, Chunling; Zhang, Yan; Zhu, Hongbo

    2018-03-01

    The dynamic modeling of infrared (IR) smoke plays an important role in IR scene simulation systems and its accuracy directly influences the system veracity. However, current IR smoke models cannot provide high veracity, because certain physical characteristics are frequently ignored in fluid simulation; simplifying the discrete phase as a continuous phase and ignoring the IR decoy missile-body spinning. To address this defect, this paper proposes a dynamic modeling method for IR smoke, based on an enhanced discrete phase model (DPM). A mathematical simulation model based on an enhanced DPM is built and a dynamic computing fluid mesh is generated. The dynamic model of IR smoke is then established using an extended equivalent-blackbody-molecule model. Experiments demonstrate that this model realizes a dynamic method for modeling IR smoke with higher veracity.

  12. Enhanced UWB Radio Channel Model for Short-Range Communication Scenarios Including User Dynamics

    DEFF Research Database (Denmark)

    Kovacs, Istvan Zsolt; Nguyen, Tuan Hung; Eggers, Patrick Claus F.

    2005-01-01

    channel model represents an enhancement of the existing IEEE 802.15.3a/4a PAN channel model, where antenna and user-proximity effects are not included. Our investigations showed that significant variations of the received wideband power and time-delay signal clustering are possible due the human body...

  13. Correlation between computer-aided dynamic gadolinium-enhanced MRI assessment of inflammation and semi-quantitative synovitis and bone marrow oedema scores of the wrist in patients with rheumatoid arthritis--a cohort study

    DEFF Research Database (Denmark)

    Boesen, Mikael; Kubassova, Olga; Bouert, Rasmus

    2012-01-01

    Objective. To test the correlation between assessment of inflammation using dynamic contrast-enhanced MRI (DCE-MRI) analysed by a novel computer-aided approach and semi-quantitative scores of synovitis and bone marrow oedema (BME) using the OMERACT-RA MRI Scoring (RAMRIS) system, in the wrist...... extended region of interest (ROI) placed around the wrist joint (semi-automated approach) and (iii) within a small ROI placed in the area with most visual enhancement (semi-automated approach). Time spent on each procedure was noted. Spearman's rank correlation test was applied to assess the correlation...... between RAMRIS and the computer-generated dynamic parameters. Results. RAMRIS synovitis (range 2-9), BME (range 0-39) and the dynamic parameters reflecting the number of enhancing voxels were significantly correlated, especially when an extended ROI around the wrist was used (¿¿=¿0.74; P¿...

  14. Multi-input wide dynamic range ADC system for use with nuclear detectors

    Energy Technology Data Exchange (ETDEWEB)

    Austin, R W [National Aeronautics and Space Administration, Huntsville, Ala. (USA). George C. Marshall Space Flight Center

    1976-04-15

    A wide dynamic range, eight input analog-to-digital converter system has been developed for use in nuclear experiments. The system consists of eight dual-range sample and hold modules, an eight input multiplexer, a ten-bit analog-to-digital converter, and the associated control logic.

  15. Statistical Characteristics of Solar Wind Dynamic Pressure Enhancements During Geomagnetic Storms

    Directory of Open Access Journals (Sweden)

    C.-R. Choi

    2008-06-01

    Full Text Available Solar wind dynamic pressure enhancements are known to cause various types of disturbances to the magnetosphere. In particular, dynamic pressure enhancements may affect the evolution of magnetic storms when they occur during storm times. In this paper, we have investigated the statistical significance and features of dynamic pressure enhancements during magnetic storm times. For the investigation, we have used a total of 91 geomagnetic storms for 2001-2003, for which the Dst minimum (Dst_min is below -50 nT. Also, we have imposed a set of selection criteria for a pressure enhancement to be considered an event: The main selection criterion is that the pressure increases by ≥50% or ≥3nPa within 30 min and remains to be elevated for 10 min or longer. For our statistical analysis, we define the storm time to be the interval from the main Dst decrease, through Dst_min, to the point where the Dst index recovers by 50%. Our main results are summarized as follows. (i ~81% of the studied storms indicate at least one event of pressure enhancements. When averaged over all the 91 storms, the occurrence rate is 4.5 pressure enhancement events per storm and 0.15 pressure enhancement events per hour. (ii The occurrence rate of the pressure enhancements is about three times higher for CME-driven storm times than for CIR-driven storm times. (iii Only 21.1% of the pressure enhancements show a clear association with an interplanetary shock. (iv A large number of the pressure enhancement events are accompanied with a simultaneous change of IMF By and/or Bz: For example, 73.5% of the pressure enhancement events are associated with an IMF change of either |∆Bz|>2nT or |∆By|>2nT. This last finding suggests that one should consider possible interplay effects between the simultaneous pressure and IMF changes in many situations.

  16. Gadolinium-enhanced dynamic magnetic resonance imaging with endorectal coil for local staging of rectal cancer

    International Nuclear Information System (INIS)

    Tamakawa, Mitsuharu; Kawaai, Yuriko; Shirase, Ryuji

    2010-01-01

    The aim of this study was to evaluate the accuracy of dynamic gadolinium (Gd)-enhanced magnetic resonance imaging (MRI) with endorectal coil for assessing tumor invasion based on simple classification criteria. A total of 58 patients with operable primary rectal cancer underwent preoperative MRI. An enhancement pattern in Gd-enhanced dynamic MRI with regard to tumor penetration was clarified. Retrospectively, two observers independently scored T2-weighted MRI and T2-weighted MRI combined with Gd-enhanced dynamic MRI for tumor penetration using the following criteria: With Gd-enhanced dynamic MRI, T1 tumors showed an early enhanced line around the tumor as rim enhancement; T2 tumors appeared as black lines or double layers, as the muscularis propria kept its integrity; T3 tumors showed partial discontinuity of the muscularis propria as a dotted line and a perforated area as an interrupted line. A confidence level scoring system was used, and receiver operating characteristic curves were generated. There were no significant differences at the T1 stage. There were significant differences for observer 1 (P=0.001 for observer 1) at the T2 stage. There were significant differences for both observers (P=0.001 for observer 1 and P=0.005 for observer 2) at the T3 stage. Our criteria for Gd-enhanced dynamic MRI were effective for T3 stage tumors. (author)

  17. Multi-exposure high dynamic range image synthesis with camera shake correction

    Science.gov (United States)

    Li, Xudong; Chen, Yongfu; Jiang, Hongzhi; Zhao, Huijie

    2017-10-01

    Machine vision plays an important part in industrial online inspection. Owing to the nonuniform illuminance conditions and variable working distances, the captured image tends to be over-exposed or under-exposed. As a result, when processing the image such as crack inspection, the algorithm complexity and computing time increase. Multiexposure high dynamic range (HDR) image synthesis is used to improve the quality of the captured image, whose dynamic range is limited. Inevitably, camera shake will result in ghost effect, which blurs the synthesis image to some extent. However, existed exposure fusion algorithms assume that the input images are either perfectly aligned or captured in the same scene. These assumptions limit the application. At present, widely used registration based on Scale Invariant Feature Transform (SIFT) is usually time consuming. In order to rapidly obtain a high quality HDR image without ghost effect, we come up with an efficient Low Dynamic Range (LDR) images capturing approach and propose a registration method based on ORiented Brief (ORB) and histogram equalization which can eliminate the illumination differences between the LDR images. The fusion is performed after alignment. The experiment results demonstrate that the proposed method is robust to illumination changes and local geometric distortion. Comparing with other exposure fusion methods, our method is more efficient and can produce HDR images without ghost effect by registering and fusing four multi-exposure images.

  18. Note: A high dynamic range, linear response transimpedance amplifier.

    Science.gov (United States)

    Eckel, S; Sushkov, A O; Lamoreaux, S K

    2012-02-01

    We have built a high dynamic range (nine decade) transimpedance amplifier with a linear response. The amplifier uses junction-gate field effect transistors (JFETs) to switch between three different resistors in the feedback of a low input bias current operational amplifier. This allows for the creation of multiple outputs, each with a linear response and a different transimpedance gain. The overall bandwidth of the transimpedance amplifier is set by the bandwidth of the most sensitive range. For our application, we demonstrate a three-stage amplifier with transimpedance gains of approximately 10(9)Ω, 3 × 10(7)Ω, and 10(4)Ω with a bandwidth of 100 Hz.

  19. Stereo Vision-Based High Dynamic Range Imaging Using Differently-Exposed Image Pair

    Directory of Open Access Journals (Sweden)

    Won-Jae Park

    2017-06-01

    Full Text Available In this paper, a high dynamic range (HDR imaging method based on the stereo vision system is presented. The proposed method uses differently exposed low dynamic range (LDR images captured from a stereo camera. The stereo LDR images are first converted to initial stereo HDR images using the inverse camera response function estimated from the LDR images. However, due to the limited dynamic range of the stereo LDR camera, the radiance values in under/over-exposed regions of the initial main-view (MV HDR image can be lost. To restore these radiance values, the proposed stereo matching and hole-filling algorithms are applied to the stereo HDR images. Specifically, the auxiliary-view (AV HDR image is warped by using the estimated disparity between initial the stereo HDR images and then effective hole-filling is applied to the warped AV HDR image. To reconstruct the final MV HDR, the warped and hole-filled AV HDR image is fused with the initial MV HDR image using the weight map. The experimental results demonstrate objectively and subjectively that the proposed stereo HDR imaging method provides better performance compared to the conventional method.

  20. Wavepacket dynamics in one-dimensional system with long-range correlated disorder

    Science.gov (United States)

    Yamada, Hiroaki S.

    2018-03-01

    We numerically investigate dynamical property in the one-dimensional tight-binding model with long-range correlated disorder having power spectrum 1 /fα (α: spectrum exponent) generated by Fourier filtering method. For relatively small α MSD) of the initially localized wavepacket shows ballistic spread and localizes as time elapses. It is shown that α-dependence of the dynamical localization length determined by the MSD exhibits a simple scaling law in the localization regime for the relatively weak disorder strength W. Furthermore, scaled MSD by the dynamical localization length almost obeys an universal function from the ballistic to the localization regime in the various combinations of the parameters α and W.

  1. Sorting method to extend the dynamic range of the Shack-Hartmann wave-front sensor

    International Nuclear Information System (INIS)

    Lee, Junwon; Shack, Roland V.; Descour, Michael R.

    2005-01-01

    We propose a simple and powerful algorithm to extend the dynamic range of a Shack-Hartmann wave-front sensor. In a conventional Shack-Hartmann wave-front sensor the dynamic range is limited by the f-number of a lenslet, because the focal spot is required to remain in the area confined by the single lenslet. The sorting method proposed here eliminates such a limitation and extends the dynamic range by tagging each spot in a special sequence. Since the sorting method is a simple algorithm that does not change the measurement configuration, there is no requirement for extra hardware, multiple measurements, or complicated algorithms. We not only present the theory and a calculation example of the sorting method but also actually implement measurement of a highly aberrated wave front from nonrotational symmetric optics

  2. Automated Processing of Dynamic Contrast-Enhanced MRI: Correlation of Advanced Pharmacokinetic Metrics with Tumor Grade in Pediatric Brain Tumors.

    Science.gov (United States)

    Vajapeyam, S; Stamoulis, C; Ricci, K; Kieran, M; Poussaint, T Young

    2017-01-01

    Pharmacokinetic parameters from dynamic contrast-enhanced MR imaging have proved useful for differentiating brain tumor grades in adults. In this study, we retrospectively reviewed dynamic contrast-enhanced perfusion data from children with newly diagnosed brain tumors and analyzed the pharmacokinetic parameters correlating with tumor grade. Dynamic contrast-enhanced MR imaging data from 38 patients were analyzed by using commercially available software. Subjects were categorized into 2 groups based on pathologic analyses consisting of low-grade (World Health Organization I and II) and high-grade (World Health Organization III and IV) tumors. Pharmacokinetic parameters were compared between the 2 groups by using linear regression models. For parameters that were statistically distinct between the 2 groups, sensitivity and specificity were also estimated. Eighteen tumors were classified as low-grade, and 20, as high-grade. Transfer constant from the blood plasma into the extracellular extravascular space (K trans ), rate constant from extracellular extravascular space back into blood plasma (K ep ), and extracellular extravascular volume fraction (V e ) were all significantly correlated with tumor grade; high-grade tumors showed higher K trans , higher K ep , and lower V e . Although all 3 parameters had high specificity (range, 82%-100%), K ep had the highest specificity for both grades. Optimal sensitivity was achieved for V e , with a combined sensitivity of 76% (compared with 71% for K trans and K ep ). Pharmacokinetic parameters derived from dynamic contrast-enhanced MR imaging can effectively discriminate low- and high-grade pediatric brain tumors. © 2017 by American Journal of Neuroradiology.

  3. Enhanced subliminal emotional responses to dynamic facial expressions

    Directory of Open Access Journals (Sweden)

    Wataru eSato

    2014-09-01

    Full Text Available Emotional processing without conscious awareness plays an important role in human social interaction. Several behavioral studies reported that subliminal presentation of photographs of emotional facial expressions induces unconscious emotional processing. However, it was difficult to elicit strong and robust effects using this method. We hypothesized that dynamic presentations of facial expressions would enhance subliminal emotional effects and tested this hypothesis with two experiments. Fearful or happy facial expressions were presented dynamically or statically in either the left or the right visual field for 20 (Experiment 1 and 30 (Experiment 2 ms. Nonsense target ideographs were then presented, and participants reported their preference for them. The results consistently showed that dynamic presentations of emotional facial expressions induced more evident emotional biases toward subsequent targets than did static ones. These results indicate that dynamic presentations of emotional facial expressions induce more evident unconscious emotional processing.

  4. 78 FR 51176 - Record of Decision for the Modernization and Enhancement of Ranges, Airspace, and Training Areas...

    Science.gov (United States)

    2013-08-20

    ... Enhancement of Ranges, Airspace, and Training Areas in the Joint Pacific Alaska Range Complex in Alaska ACTION... Enhancement of Ranges, Airspace, and Training Areas in the Joint Pacific Alaska Range Complex (JPARC) in... the EIS, including technical considerations, public review and Tribal and agency input. The Final EIS...

  5. Seasonality in cholera dynamics: A rainfall-driven model explains the wide range of patterns in endemic areas

    Science.gov (United States)

    Baracchini, Theo; King, Aaron A.; Bouma, Menno J.; Rodó, Xavier; Bertuzzo, Enrico; Pascual, Mercedes

    2017-10-01

    Seasonal patterns in cholera dynamics exhibit pronounced variability across geographical regions, showing single or multiple peaks at different times of the year. Although multiple hypotheses related to local climate variables have been proposed, an understanding of this seasonal variation remains incomplete. The historical Bengal region, which encompasses the full range of cholera's seasonality observed worldwide, provides a unique opportunity to gain insights on underlying environmental drivers. Here, we propose a mechanistic, rainfall-temperature driven, stochastic epidemiological model which explicitly accounts for the fluctuations of the aquatic reservoir, and analyze with this model the historical dataset of cholera mortality in the Bengal region. Parameters are inferred with a recently developed sequential Monte Carlo method for likelihood maximization in partially observed Markov processes. Results indicate that the hydrological regime is a major driver of the seasonal dynamics of cholera. Rainfall tends to buffer the propagation of the disease in wet regions due to the longer residence times of water in the environment and an associated dilution effect, whereas it enhances cholera resurgence in dry regions. Moreover, the dynamics of the environmental water reservoir determine whether the seasonality is unimodal or bimodal, as well as its phase relative to the monsoon. Thus, the full range of seasonal patterns can be explained based solely on the local variation of rainfall and temperature. Given the close connection between cholera seasonality and environmental conditions, a deeper understanding of the underlying mechanisms would allow the better management and planning of public health policies with respect to climate variability and climate change.

  6. Automatic Generation of Wide Dynamic Range Image without Pseudo-Edge Using Integration of Multi-Steps Exposure Images

    Science.gov (United States)

    Migiyama, Go; Sugimura, Atsuhiko; Osa, Atsushi; Miike, Hidetoshi

    Recently, digital cameras are offering technical advantages rapidly. However, the shot image is different from the sight image generated when that scenery is seen with the naked eye. There are blown-out highlights and crushed blacks in the image that photographed the scenery of wide dynamic range. The problems are hardly generated in the sight image. These are contributory cause of difference between the shot image and the sight image. Blown-out highlights and crushed blacks are caused by the difference of dynamic range between the image sensor installed in a digital camera such as CCD and CMOS and the human visual system. Dynamic range of the shot image is narrower than dynamic range of the sight image. In order to solve the problem, we propose an automatic method to decide an effective exposure range in superposition of edges. We integrate multi-step exposure images using the method. In addition, we try to erase pseudo-edges using the process to blend exposure values. Afterwards, we get a pseudo wide dynamic range image automatically.

  7. Solitary hepatic infantile hemangioendothelioma: dynamic gadolinium-enhanced MR imaging findings

    International Nuclear Information System (INIS)

    Mortele, Koenraad J.; Vanzieleghem, Bart; Mortele, Bart; Benoit, Yves; Ros, Pablo R.

    2002-01-01

    We report the MRI findings of a solitary hepatic infantile hemangioendothelioma (IHE) diagnosed in a 14-day-old girl. To the best of our knowledge, only one report has illustrated the dynamic gadolinium-enhanced MR imaging features of IHE previously. Compounding the rarity of presentation as a solitary mass, the gadolinium-enhanced MRI appearance in our case is unique, because the IHE showed an early rim-like pseudocapsular enhancement followed by progressive fill-in of the lesion on delayed imaging. (orig.)

  8. Numerical analysis for finite-range multitype stochastic contact financial market dynamic systems

    International Nuclear Information System (INIS)

    Yang, Ge; Wang, Jun; Fang, Wen

    2015-01-01

    In an attempt to reproduce and study the dynamics of financial markets, a random agent-based financial price model is developed and investigated by the finite-range multitype contact dynamic system, in which the interaction and dispersal of different types of investment attitudes in a stock market are imitated by viruses spreading. With different parameters of birth rates and finite-range, the normalized return series are simulated by Monte Carlo simulation method and numerical studied by power-law distribution analysis and autocorrelation analysis. To better understand the nonlinear dynamics of the return series, a q-order autocorrelation function and a multi-autocorrelation function are also defined in this work. The comparisons of statistical behaviors of return series from the agent-based model and the daily historical market returns of Shanghai Composite Index and Shenzhen Component Index indicate that the proposed model is a reasonable qualitative explanation for the price formation process of stock market systems

  9. Numerical analysis for finite-range multitype stochastic contact financial market dynamic systems

    Science.gov (United States)

    Yang, Ge; Wang, Jun; Fang, Wen

    2015-04-01

    In an attempt to reproduce and study the dynamics of financial markets, a random agent-based financial price model is developed and investigated by the finite-range multitype contact dynamic system, in which the interaction and dispersal of different types of investment attitudes in a stock market are imitated by viruses spreading. With different parameters of birth rates and finite-range, the normalized return series are simulated by Monte Carlo simulation method and numerical studied by power-law distribution analysis and autocorrelation analysis. To better understand the nonlinear dynamics of the return series, a q-order autocorrelation function and a multi-autocorrelation function are also defined in this work. The comparisons of statistical behaviors of return series from the agent-based model and the daily historical market returns of Shanghai Composite Index and Shenzhen Component Index indicate that the proposed model is a reasonable qualitative explanation for the price formation process of stock market systems.

  10. Numerical analysis for finite-range multitype stochastic contact financial market dynamic systems

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ge; Wang, Jun [School of Science, Beijing Jiaotong University, Beijing 100044 (China); Fang, Wen, E-mail: fangwen@bjtu.edu.cn [School of Economics and Management, Beijing Jiaotong University, Beijing 100044 (China)

    2015-04-15

    In an attempt to reproduce and study the dynamics of financial markets, a random agent-based financial price model is developed and investigated by the finite-range multitype contact dynamic system, in which the interaction and dispersal of different types of investment attitudes in a stock market are imitated by viruses spreading. With different parameters of birth rates and finite-range, the normalized return series are simulated by Monte Carlo simulation method and numerical studied by power-law distribution analysis and autocorrelation analysis. To better understand the nonlinear dynamics of the return series, a q-order autocorrelation function and a multi-autocorrelation function are also defined in this work. The comparisons of statistical behaviors of return series from the agent-based model and the daily historical market returns of Shanghai Composite Index and Shenzhen Component Index indicate that the proposed model is a reasonable qualitative explanation for the price formation process of stock market systems.

  11. Angiogenesis and dynamic contrast enhanced MRI of benign and malignant breast lesions: preliminary results

    International Nuclear Information System (INIS)

    Liu Peifang; Bao Runxian; Niu Yun; Yu Yong

    2002-01-01

    Objective: To determine whether dynamic contrast enhanced MRI features of early-phase enhancement rate, enhancement amplitude, and signal intensity (SI) time course are associated with the microvessel density (MVD) and vascular endothelial growth factor (VEGF) expression of malignant and benign breast lesions. Methods: Thirty-eight patients with histopathologically verified breast lesions underwent dynamic contrast enhanced MRI. SI changes during dynamic scanning were assessed quantitatively. Early-phase enhancement rate and enhancement amplitude were calculated. Time-SI curves of the lesions were obtained and classified according to their shapes as type I (which was steady enhancement to the end of the dynamic data acquisition at 7.5 min), type II (plateau of SI after avid initial contrast enhancement), or type III (washout of SI after avid initial contrast enhancement). the mean MVD and VEGF expression of the lesions were measured with immuno-histochemical staining method in all the histologic specimens by pathologists without the knowledge of the results of the MR examination. The relationships among dynamic contrast enhanced MRI features, MVD, and VEGF expression of benign and malignant breast lesions were analyzed. Results: Histology revealed 21 malignancies and 17 benign lesions. The mean MVD and VEGF expression for 21 malignant lesions were statistically higher than the mean MVD and VEGF expression for 17 benign lesions. High VEGF expression of benign and malignant breast lesions showed an association with increased MVD. Among all 38 lesions, greater (> 60%) MR early-phase enhancement rate and time-SI curve type II and III showed an association with increased MVD and higher VEGF expression level. All the differences mentioned above showed statistical significance except that the difference between VEGF expression and the distribution of curve types had no statistical significance. No significant relationships were observed between the mean of enhancement

  12. Mangrove microclimates alter seedling dynamics at the range edge.

    Science.gov (United States)

    Devaney, John L; Lehmann, Michael; Feller, Ilka C; Parker, John D

    2017-10-01

    Recent climate warming has led to asynchronous species migrations, with major consequences for ecosystems worldwide. In woody communities, localized microclimates have the potential to create feedback mechanisms that can alter the rate of species range shifts attributed to macroclimate drivers alone. Mangrove encroachment into saltmarsh in many areas is driven by a reduction in freeze events, and this encroachment can further modify local climate, but the subsequent impacts on mangrove seedling dynamics are unknown. We monitored microclimate conditions beneath mangrove canopies and adjacent open saltmarsh at a freeze-sensitive mangrove-saltmarsh ecotone and assessed survival of experimentally transplanted mangrove seedlings. Mangrove canopies buffered night time cooling during the winter, leading to interspecific differences in freeze damage on mangrove seedlings. However, mangrove canopies also altered biotic interactions. Herbivore damage was higher under canopies, leading to greater mangrove seedling mortality beneath canopies relative to saltmarsh. While warming-induced expansion of mangroves can lead to positive microclimate feedbacks, simultaneous fluctuations in biotic drivers can also alter seedling dynamics. Thus, climate change can drive divergent feedback mechanisms through both abiotic and biotic channels, highlighting the importance of vegetation-microclimate interactions as important moderators of climate driven range shifts. © 2017 by the Ecological Society of America.

  13. Diagnostic value of contrast-enhanced dynamic CT in predicting the malignancy of solitary pulmonary nodules

    International Nuclear Information System (INIS)

    Goo, Hyun Woo; Song, Koun Sik; Lee, Eun Hye; Kim, Ji Hoon; Lee, Jin Seong; Lim, Tae Hwan

    1997-01-01

    To determine whether the maximal enhancement time in dynamic CT is different between benign and malignant solitary pulmonary nodules (SPN)s, and to evaluate the value of densitometry on dynamic CT in predicting the malignancy of SPN. Fifty-six patients with SPN of less than 4cm in diameter as seen on chest radiograph and SPN without benign pattern of calcification or fat, as seen on pre-enhance-ment spiral CT scans were included in this study. SPN with small cavitation sufficient to measure CT density, were also included. Thirty-four SPNs were diagnosed pathologically or radiologically as 20 malignant nodules and 14 benign nodules. Dynamic CT was performed by two techniques after injection of 50ml of nonionic contrast media at the rate of 2ml/sec. In 28 patients, incremental dynamic CT was performed before and of 15 seconds, 1 minute, 2 minutes, 3 minutes, and 4 minutes after injection of contrast media during shallow respiration. In 28 patients, double spiral CT was performed 2 minutes and 3 minutes after injection of contrast media during single breath hold. CT readings were taken at the central portion of SPNs, with a circular region of interest. The degree and time of maximal enhancement were recorded. In dynamic CT the maximal enhancement time of SPNs was not significantly different between malignant (2.73±1.27 minute) and benign nodules (2.56±1.24 minute). The enhancement of malignant nodules was significantly greater (21.42±12.17 HU) than of benign nodules (5.15±5.25 HU) (p<.0001). In dynamic CT of SPNs, there is no difference in maximal enhancement time between benign and malignant nodules;enhancement of the latter is significantly greater than that of the former. Maximal enhancement greater than 15 HU can be a good predictor of malignancy of SPNs

  14. Characterization of the enhancing lesions on dynamic contrast enhanced magnetic resonance imaging in patients with interstitial mammoplasty

    International Nuclear Information System (INIS)

    Kim, Tae Yun; Kim, Sung Hun; Kang, Bong Joo; Kim, Hyeon Sook; Cha, Eun Suk; Kim, Ji Youn; Song, Byung Joo

    2013-01-01

    Purpose: The purpose of this study was to categorize the morphologic and kinetic features of enhancing lesions in breasts with interstitial mammoplasty using dynamic contrast-enhanced magnetic resonance imaging and to assess factors predictive of breast cancer. Materials and methods: We retrospectively reviewed the clinical and radiological data of 21 enhancing lesions in 19 patients with interstitial mammoplasty, who underwent breast magnetic resonance imaging and biopsy or an operation in our hospital from September 2008 to July 2012. These lesions were sorted by morphological and kinetic features and final assessment category according to the BI-RADS lexicon. Results: Nine cases were confirmed to be ductal carcinoma in situ (n = 2) and invasive ductal carcinoma (n = 7), and the remaining 12 cases were fibrocystic disease (n = 2), fibroadenoma (n = 2), fat necrosis (n = 1), foreign body granuloma (n = 3) and silicone mastitis (n = 1). Common features of malignancy included irregular shape (50.0%), spiculated margins (75.0%), heterogeneous enhancement (50.0%) and type III kinetic pattern (87.5%). The correlations of margins and kinetic curve pattern with benignity and malignancy approached statistical significance (p = 0.02, respectively). We found no correlation for shape (p = 0.33) or internal enhancement (p = 0.42) between lesion types. The malignancy rate of enhancing lesions was 42.8% (9/21). The sensitivity and specificity of dynamic contrast-enhanced magnetic resonance imaging were 100% and 16.67%, respectively. The positive predictive value, negative predictive value and accuracy of magnetic resonance imaging were 47.38%, 100% and 52.38%. Overall inter-observer agreement for the kinetic curve pattern was good (κ = 0.67). Moderate agreement was seen in describing the shape, margin, enhancement and assessing the final category (κ = 0.59, 0.46, 0.58 and 0.49, respectively). Conclusion: Dynamic contrast-enhanced magnetic resonance imaging had a high

  15. Characterization of the enhancing lesions on dynamic contrast enhanced magnetic resonance imaging in patients with interstitial mammoplasty

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Yun [Department of Radiology, Seoul St. Mary' s Hospital, The Catholic University of Korea (Korea, Republic of); Kim, Sung Hun, E-mail: rad-ksh@catholic.ac.kr [Department of Radiology, Seoul St. Mary' s Hospital, The Catholic University of Korea (Korea, Republic of); Kang, Bong Joo [Department of Radiology, Seoul St. Mary' s Hospital, The Catholic University of Korea (Korea, Republic of); Kim, Hyeon Sook [Department of Radiology, St. Paul Hospital, The Catholic University of Korea (Korea, Republic of); Cha, Eun Suk [Department of Radiology, Ewha Womans University, School of Medicine, Mokdong Hospital (Korea, Republic of); Kim, Ji Youn [Department of Radiology, Yeouido St. Mary' s Hospital, The Catholic University of Korea (Korea, Republic of); Song, Byung Joo [Department of Surgery, Seoul St. Mary' s Hospital, The Catholic University of Korea, Seoul (Korea, Republic of)

    2013-12-01

    Purpose: The purpose of this study was to categorize the morphologic and kinetic features of enhancing lesions in breasts with interstitial mammoplasty using dynamic contrast-enhanced magnetic resonance imaging and to assess factors predictive of breast cancer. Materials and methods: We retrospectively reviewed the clinical and radiological data of 21 enhancing lesions in 19 patients with interstitial mammoplasty, who underwent breast magnetic resonance imaging and biopsy or an operation in our hospital from September 2008 to July 2012. These lesions were sorted by morphological and kinetic features and final assessment category according to the BI-RADS lexicon. Results: Nine cases were confirmed to be ductal carcinoma in situ (n = 2) and invasive ductal carcinoma (n = 7), and the remaining 12 cases were fibrocystic disease (n = 2), fibroadenoma (n = 2), fat necrosis (n = 1), foreign body granuloma (n = 3) and silicone mastitis (n = 1). Common features of malignancy included irregular shape (50.0%), spiculated margins (75.0%), heterogeneous enhancement (50.0%) and type III kinetic pattern (87.5%). The correlations of margins and kinetic curve pattern with benignity and malignancy approached statistical significance (p = 0.02, respectively). We found no correlation for shape (p = 0.33) or internal enhancement (p = 0.42) between lesion types. The malignancy rate of enhancing lesions was 42.8% (9/21). The sensitivity and specificity of dynamic contrast-enhanced magnetic resonance imaging were 100% and 16.67%, respectively. The positive predictive value, negative predictive value and accuracy of magnetic resonance imaging were 47.38%, 100% and 52.38%. Overall inter-observer agreement for the kinetic curve pattern was good (κ = 0.67). Moderate agreement was seen in describing the shape, margin, enhancement and assessing the final category (κ = 0.59, 0.46, 0.58 and 0.49, respectively). Conclusion: Dynamic contrast-enhanced magnetic resonance imaging had a high

  16. Image Alignment for Multiple Camera High Dynamic Range Microscopy

    OpenAIRE

    Eastwood, Brian S.; Childs, Elisabeth C.

    2012-01-01

    This paper investigates the problem of image alignment for multiple camera high dynamic range (HDR) imaging. HDR imaging combines information from images taken with different exposure settings. Combining information from multiple cameras requires an alignment process that is robust to the intensity differences in the images. HDR applications that use a limited number of component images require an alignment technique that is robust to large exposure differences. We evaluate the suitability fo...

  17. Hepatic blood perfusion estimated by dynamic contrast-enhanced computed tomography in pigs

    DEFF Research Database (Denmark)

    Winterdahl, Michael; Sørensen, Michael; Keiding, Inger Susanne

    2012-01-01

    The aim of this study was to determine whether dynamic contrast-enhanced computed tomography (DCE-CT) and the slope method can provide absolute measures of hepatic blood perfusion from the hepatic artery (HA) and portal vein (PV) at experimentally varied blood flow rates.......The aim of this study was to determine whether dynamic contrast-enhanced computed tomography (DCE-CT) and the slope method can provide absolute measures of hepatic blood perfusion from the hepatic artery (HA) and portal vein (PV) at experimentally varied blood flow rates....

  18. Expanding the dynamic measurement range for polymeric nanoparticle pH sensors

    DEFF Research Database (Denmark)

    Sun, Honghao; Almdal, Kristoffer; Andresen, Thomas Lars

    2011-01-01

    Conventional optical nanoparticle pH sensors that are designed for ratiometric measurements in cells have been based on utilizing one sensor fluorophore and one reference fluorophore in each nanoparticle, which results in a relatively narrow dynamic measurement range. This results in substantial...

  19. High Dynamic Range adaptive ΔΣ-based Focal Plane Array architecture

    KAUST Repository

    Yao, Shun; Kavusi, Sam; Salama, Khaled N.

    2012-01-01

    In this paper, an Adaptive Delta-Sigma based architecture for High Dynamic Range (HDR) Focal Plane Arrays is presented. The noise shaping effect of the Delta-Sigma modulation in the low end, and the distortion noise induced in the high end of Photo

  20. Value of fast dynamic enhanced MR imaging for the differential diagnosis between ovarian fibroma and subserosal leiomyoma

    International Nuclear Information System (INIS)

    Shan Jun; Wang Xiaomei; Xu Jianmin; Xu Hongli; Feng Xiaofeng; Gong Jingshan; Ling Rennan; Rao Zibin

    2004-01-01

    Objective: To study the value of dynamic enhanced MRI in the differential diagnosis between subserosal uterine leiomyoma and ovarian fibroma which were iso-signal and low signal ones on T 2 WI. Methods: Plain and dynamic enhanced MRI findings of 45 patients with histologically proved subserosal leiomyoma or ovarian fibroma were analyzed. There were 35 cases of subserosal leiomyoma and 10 cases of ovarian fibroma. The enhancement index of early phase (100 sec after the contrast medial administration) and the time to peak during 200 sec after the contrast administration (TTP 200 ) were analyzed. Results: On plain scanning, both subserosal leiomyoma and ovarian fibrioma appeared similarly as intrapelvic masses with low signal on T 2 WI. On Gadolinium dynamic enhancement, subserosal leiomyomas showed early and evident enhancement while ovarian fibroma showed delayed and moderate enhancement. The difference of the enhancement index of early phase and TTP 200 was statistically significant (P<0.001). Conclusion: Gadolinium dynamic enhanced MR imaging was helpful in the differential diagnosis between subserosal uterine leiomyoma and ovarian fibroma by the difference in the enhancement pattern

  1. Lithium-ion battery dynamic model for wide range of operating conditions

    DEFF Research Database (Denmark)

    Stroe, Ana-Irina; Stroe, Daniel-Ioan; Swierczynski, Maciej Jozef

    2017-01-01

    In order to analyze the dynamic behavior of a Lithium-ion (Li-ion) battery and to determine their suitability for various applications, battery models are needed. An equivalent electrical circuit model is the most common way of representing the behavior of a Li-ion battery. There are different...... characterization tests performed for a wide range of operating conditions (temperature, load current and state-of-charge) on a commercial available 13Ah high-power lithium titanate oxide battery cell. The obtained results were used to parametrize the proposed dynamic model of the battery cell. To assess...

  2. Clinical implementation of enhanced dynamic wedge

    International Nuclear Information System (INIS)

    Klein, Eric E.; Zhu Xiaorong; Low, Daniel A.; Drzymala, Robert E.; Harms, William B.; Purdy, James A.

    1996-01-01

    Purpose/Objective: Our clinic has been using dynamic wedge since 1993. We appreciate the customized wedge shaped distributions (independent of field size) and the positive aspects of replacing filters with dynamic jaw motion. Varian recently introduced enhanced dynamic wedge (EDW) software. The EDW can be delivered over; a 30 cm field, asymmetric fields (in both wedged and non-wedged directions), and additional wedge angles (10, 15, 20, 25, 30, 45, 60). The EDW software creates customized segmented treatment tables (STTs) for the desired wedge angle and field size. The STT is created from a 'golden' fluence profile of 60 deg. over 30 cm. The wedge STT is derived using ratio-of-tangents and the truncated field segment extracted from the 'golden' table. A review of our dosimetric studies will be presented as well as a discussion of clinical implementation issues including treatment planning and quality assurance. Methods and Materials: We tested a set of angle and field size combinations chosen to encompass clinical needs. The wedge factor (WF) was measured using an ionization chamber along central axis for symmetric fields ranging from 4 to 20 cm, and asymmetric fields to 30 cm. The non-wedged field dimension was found to be inconsequential. An algorithm was developed to predict the wedge factor for any angle and field dimension. Isodoses were measured with film and used for profile evaluation and treatment planning development. The 'golden' fluence table was used to create a universal 60 deg. 'physical' wedge for planning. The universal wedge is combined with an open field (to derive intermediate wedge angles) and blocked according to the treatment field segment. A quality assurance program was developed that relies on multi-point diode measurements. Results: We found the WF is a function of wedge angle and field settings of the final sweep position. There is a nearly linear dependence of WF vs. field size thus allowing a minimal WF table. This eliminates a

  3. Diagnostic usefulness of segmental and linear enhancement in dynamic breast MRI

    International Nuclear Information System (INIS)

    Morakkabati-Spitz, N.; Leutner, C.; Schild, H.; Traeber, F.; Kuhl, C.

    2005-01-01

    The aim of this study was the evaluation of the diagnostic usefulness of ductal or segmental enhancement in dynamic breast MRI. Segmental and ductal enhancement have been established as the breast MRI hallmarks of intraductal breast cancer (DCIS); however, the positive predictive value of this imaging finding is still unknown. In our study, we analysed the overall prevalence of a segmental or a linear enhancement pattern on breast MRI for an unselected cohort of patients. The aim was to evaluate the diagnostic usefulness of segmental or linear enhancement. Second, we asked whether biopsy was necessary also in the absence of mammographic findings suggestive of DCIS. Prospective, consecutive evaluation of 1,003 patients undergoing bilateral dynamic breast MRI. Studies were interpreted by two experienced breast radiologists. A diagnostic or screening two-view mammogram was available for all patients. Biopsy or short-term breast MRI follow-up was recommended for patients showing a segmental or a linear enhancement pattern on breast MRI. The patients' final diagnoses were established by imaging guided excisional or core biopsy or by clinical plus conventional imaging follow-up for a period of 2 years. The prevalence of segmental or linear enhancement was determined for patients with a final diagnosis of benign breast disease compared with those with a diagnosis of breast cancer. One hundred twenty patients had invasive breast cancer, 24 patients had DCIS and 859 patients had unsuspicious breast MRI or benign breast disease. A segmental or a linear enhancement pattern was found for 50/1,003 (5%) patients (17 DCIS, 33 benign breast diseases). Accordingly, the positive predictive value of segmental and linear enhancement is 34% (17/50); the specificity of this criterion is 96% (826/859). For 4/24 (17%) patients, DCIS was visible as segmental or linear enhancement on dynamic breast MRI, whereas no abnormalities were visible on the corresponding mammogram. The overall

  4. Contrast kinetics of the malignant breast tumour - border versus centre enhancement on dynamic midfield MRI

    DEFF Research Database (Denmark)

    Marklund, M.; Torp-Pedersen, S.; Bentzon, N.

    2008-01-01

    receptor negative tumours. CONCLUSION: The border/centre enhancement difference in malignant breast tumours is easily visualized on midfield dynamic magnetic resonance mammography. The dynamic behaviour is significantly correlated to histological features and receptor status of the tumours Udgivelsesdato......PURPOSE: To quantify the border versus centre enhancement of malignant breast tumours on dynamic magnetic resonance mammography. MATERIALS AND METHODS: Fifty-two women diagnosed with primary breast cancer underwent dynamic magnetic resonance mammography (Omniscan 0.2 mmol/kg bodyweight......) on a midfield scanner (0.6 T), prior to surgery. The following five variables were recorded from the border and centre regions of the tumours: Early Enhancement, Time to Peak, Wash-in rate, Wash-out rate and Area under Curve. Information on histology type, oestrogen and progesterone receptor status...

  5. High dynamic range isotope ratio measurements using an analog electron multiplier

    Czech Academy of Sciences Publication Activity Database

    Williams, P.; Lorinčík, Jan; Franzreb, K.; Herwig, R.

    2013-01-01

    Roč. 45, č. 1 (2013), s. 549-552 ISSN 0142-2421 R&D Projects: GA MŠk ME 894 Institutional support: RVO:67985882 Keywords : Isotope ratios * electron multiplier * dynamic range Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.393, year: 2013

  6. Budd-Chiari syndrome: dynamic enhancement findings with multi-slice helical CT and CT angiography analysis

    International Nuclear Information System (INIS)

    Meng Xiaochun; Shan Hong; Zhu Kangshun; Xu Chuan; Zhang Jiansheng; Liu Lingyun; Ye Binbin

    2005-01-01

    Objective: To investigate the dynamic enhancement regulations of liver and their mechanism in Budd-Chiari syndrome (BCS) by using multi-slice CT and evaluate the value of CT angiography in the diagnosis of BCS. Methods: 28 cases with BCS confirmed by digital subtraction angiography (DSA) were retrospectively analyzed. All patients underwent dynamic enhancement examinations with multi-slice CT within 1 week before DSA. The relevant vessels were reconstructed respectively with MIP, VR and MPR. Compared with the results of DSA, we analyzed the dynamic enhancement regulations of liver in BCS, estimated the value of dynamic enhancement CT exams and CTA techniques in judging the obstruction level and showing collateral vessels. Results: Of all 28 cases, CT correctly showed the obstruction level in 26 cases, and 2 had incorrect results which proved to be membranous obstruction of the inferior vena cava superior to diaphragm. In 22 cases with hepatic vein obstructions, hepatic parenchyma displayed typical patchy enhancement in 19, atypical patchy enhancement in 3.8 cases among these showed benign nodules. Simultaneously, CT showed stenosis and rigidity of portal vein branches in 20, enlargement of hepatic artery in 14, hepatic collateral vessels in 20 out of 22 cases. In 6 cases with simple obstruction of inferior vena cava, hepatic changes were not found. Collateral circulations in or out of liver corresponded to the obstruction level. Conclusion: Dynamic enhancement examinations with multi-slice CT can correctly reflect the hepatic hemodynamic changes. Transverse images, combined with CTA, can explicitly display the obstruction level of vascular lesions and collateral circulations in BCS. (authors)

  7. A digital strategy for manometer dynamic enhancement. [for wind tunnel monitoring

    Science.gov (United States)

    Stoughton, J. W.

    1978-01-01

    Application of digital signal processing techniques to improve the non-linear dynamic characteristics of a sonar-type mercury manometer is described. The dynamic enhancement strategy quasi-linearizes the manometer characteristics and improves the effective bandwidth in the context of a wind-tunnel pressure regulation system. Model identification data and real-time hybrid simulation data demonstrate feasibility of approach.

  8. Hepatocellular carcinoma on MR diffusion weighted imaging and dynamic contrast-enhanced imaging

    International Nuclear Information System (INIS)

    Dong Aisheng; Zuo Changjing; Tian Jianming; Lu Jianping; Wang Jian; Wang Li; Wang Fei

    2009-01-01

    Objective: To evaluate the findings of hepatocellular carcinoma (HCC) on DWI and dynamic Gd-DTPA-enhanced MR imaging. Methods: Eighty one patients with chronic hepatitis or liver cirrhosis underwent both DWI and dynamic Gd-DTPA-enhanced MRI studies of the liver for HCC detection. MR data of were retrospectively analyzed. Two observers determined in consensus the location and the number of focal lesions. The signal manifestation of the lesions on DWI and dynamic Gd-DTPA-enhanced MR imaging were analyzed. Results: DWI and Gd-DTPA-enhanced MR images detected 122 HCCs and 14 benign lesions. One hundred and sixteen HCCs (95.1%) showed hyperintensity on DWI and 6 HCCs in patients with severe cirrhosis showed isointensity. One hundred and five HCCs (86.1%) revealed hypointensity, 11 HCCs (9.0%) showed isointensity and 6 HCCs (4.9%) exhibited hyperintensity on T 1 weighted images. On Gd-DTPA-enhanced MR images, 101 HCCs(82.8%) were significantly enhanced on arterial phase and 99 HCCs showed hypointensity on portal and equilibrium phases. Twenty HCCs (16.4%), 18 of 20 less than 20 mm in diameter, showed isointensity on arterial phase and hyperintensity on DWI. Eight of 14 benign lesions showed hyperintensity and 6 isointensity on DWI. Five benign lesions with hypointensity on T 1 weighted images without contrast and hyperintensity on DWI showed no enhancement on Gd-DTPA-enhanced MR images; 6 benign lesions with isointensity on both T 1 weighted imaging without contrast and DWI exhibited avid enhancement on arterial phase and isointensty on portal and equilibrium phases; one of the two benign lesions, with isointensity before and after contrast images and hyperintentiy on DWI, was a regenerative nodule; another regenerative nodule with hyperintensity on both T 1 weighted images without contrast and DWI was greatly enhanced on arterial phase and showed isointensity on portal and equilibrium phases. Conclusions: Most of the HCCs were greatly enhanced on arterial phase on Gd-DTPA-enhanced

  9. Enhanced optoelastic interaction range in liquid crystals with negative dielectric anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Simoni, F.; Lalli, S.; Lucchetti, L. [Dipartimento di Scienze e Ingegneria della Materia, dell' Ambiente ed Urbanistica and CNISM, Università Politecnica delle Marche, Ancona (Italy); Criante, L. [Center for Nano Science and Technology-PoliMi, Istituto Italiano di Tecnologia, Via Giovanni Pascoli, 70/3, 20133 Milano (Italy); Brasselet, E. [Univ. Bordeaux and CNRS, Laboratoire Ondes et Matière d' Aquitaine, UMR 5798, F-33400 Talence (France)

    2014-01-06

    We demonstrate that the long-range interaction between surface-functionalized microparticles immersed a nematic liquid crystal—a “nematic colloid”—and a laser-induced “ghost colloid” can be enhanced by a low-voltage quasistatic electric field when the nematic mesophase has a negative dielectric anisotropy. The optoelastic trapping distance is shown to be enhanced by a factor up to 2.5 in presence of an electric field. Experimental data are quantitatively described with a theoretical model accounting for the spatial overlap between the orientational distortions around the microparticle and those induced by the trapping light beam itself.

  10. A highly sensitive RF-to-DC power converter with an extended dynamic range

    KAUST Repository

    Almansouri, Abdullah Saud Mohammed

    2017-10-24

    This paper proposes a highly sensitive RF-to-DC power converter with an extended dynamic range that is designed to operate at the medical band 433 MHz and simulated using 0.18 μm CMOS technology. Compared to the conventional fully cross-coupled rectifier, the proposed design offers 3.2× the dynamic range. It is also highly sensitive and requires −18 dBm of input power to produce a 1 V-output voltage when operating with a 100 kΩ load. Furthermore, the proposed design offers an open circuit sensitivity of −23.4 dBm and a peak power conversion efficiency of 67%.

  11. Robust image registration for multiple exposure high dynamic range image synthesis

    Science.gov (United States)

    Yao, Susu

    2011-03-01

    Image registration is an important preprocessing technique in high dynamic range (HDR) image synthesis. This paper proposed a robust image registration method for aligning a group of low dynamic range images (LDR) that are captured with different exposure times. Illumination change and photometric distortion between two images would result in inaccurate registration. We propose to transform intensity image data into phase congruency to eliminate the effect of the changes in image brightness and use phase cross correlation in the Fourier transform domain to perform image registration. Considering the presence of non-overlapped regions due to photometric distortion, evolutionary programming is applied to search for the accurate translation parameters so that the accuracy of registration is able to be achieved at a hundredth of a pixel level. The proposed algorithm works well for under and over-exposed image registration. It has been applied to align LDR images for synthesizing high quality HDR images..

  12. Enhanced Strain Measurement Range of an FBG Sensor Embedded in Seven-Wire Steel Strands.

    Science.gov (United States)

    Kim, Jae-Min; Kim, Chul-Min; Choi, Song-Yi; Lee, Bang Yeon

    2017-07-18

    FBG sensors offer many advantages, such as a lack of sensitivity to electromagnetic waves, small size, high durability, and high sensitivity. However, their maximum strain measurement range is lower than the yield strain range (about 1.0%) of steel strands when embedded in steel strands. This study proposes a new FBG sensing technique in which an FBG sensor is recoated with polyimide and protected by a polyimide tube in an effort to enhance the maximum strain measurement range of FBG sensors embedded in strands. The validation test results showed that the proposed FBG sensing technique has a maximum strain measurement range of 1.73% on average, which is 1.73 times higher than the yield strain of the strands. It was confirmed that recoating the FBG sensor with polyimide and protecting the FBG sensor using a polyimide tube could effectively enhance the maximum strain measurement range of FBG sensors embedded in strands.

  13. A wide variety of dynamic contrast-enhanced MR appearances of breast cancer: Pathologic correlation study

    International Nuclear Information System (INIS)

    Onishi, Masayuki; Furukawa, Akira; Takahashi, Masashi; Murata, Kiyoshi

    2008-01-01

    Purpose: The aim of this study was to elucidate the characteristic magnetic resonance (MR) appearance of breast cancers, as well as, its variations and to investigate the pathology providing different patterns of dynamic-MR appearances. Materials and methods: Fifty-two women with cancer underwent mastectomy (52 tumors resected) and had MR imaging at our institution between April 2001 and March 2004. MR images of T1WI, T2WI, dynamic-MRI and contrast-enhanced T1WI were obtained and evaluated. Dynamic-MR images were correlated with pathological findings. Results: Common MR appearance of breast cancer was a focal mass either with irregular or spiculated margins with similar signal intensity on T1WI as and similar to higher signal intensity on T2WI compared to the normal mammary gland. On static contrast-enhanced T1WI, apparent enhancement was typically observed. On dynamic MRI, tumor-rim-enhancement on an early phase image and washout enhancement pattern on dynamic images, both characteristic for breast cancer, were observed, however, the prevalence of them was relatively low, which could be explained by the variation of histopathology among breast cancer nodules. Conclusion: In diagnosing breast masses on MRI, as well as the common and characteristic findings of breast cancer, the variations of MR findings and their underlying histopathology should also be considered

  14. Optimal interdependence enhances the dynamical robustness of complex systems

    Science.gov (United States)

    Singh, Rishu Kumar; Sinha, Sitabhra

    2017-08-01

    Although interdependent systems have usually been associated with increased fragility, we show that strengthening the interdependence between dynamical processes on different networks can make them more likely to survive over long times. By coupling the dynamics of networks that in isolation exhibit catastrophic collapse with extinction of nodal activity, we demonstrate system-wide persistence of activity for an optimal range of interdependence between the networks. This is related to the appearance of attractors of the global dynamics comprising disjoint sets ("islands") of stable activity.

  15. In-Vivo High Dynamic Range Vector Flow Imaging

    DEFF Research Database (Denmark)

    Villagómez Hoyos, Carlos Armando; Stuart, Matthias Bo; Jensen, Jørgen Arendt

    2015-01-01

    example with a high dynamic velocity range. Velocities with an order of magnitude apart are detected on the femoral artery of a 41 years old healthy individual. Three distinct heart cycles are captured during a 3 secs acquisition. The estimated vector velocities are compared against each other within...... the heart cycle. The relative standard deviation of the measured velocity magnitude between the three peak systoles was found to be 5.11% with a standard deviation on the detected angle of 1.06◦ . In the diastole, it was 1.46% and 6.18◦ , respectively. Results proves that the method is able to estimate flow...

  16. Picosecond X-ray streak camera dynamic range measurement

    Energy Technology Data Exchange (ETDEWEB)

    Zuber, C., E-mail: celine.zuber@cea.fr; Bazzoli, S.; Brunel, P.; Gontier, D.; Raimbourg, J.; Rubbelynck, C.; Trosseille, C. [CEA, DAM, DIF, F-91297 Arpajon (France); Fronty, J.-P.; Goulmy, C. [Photonis SAS, Avenue Roger Roncier, BP 520, 19106 Brive Cedex (France)

    2016-09-15

    Streak cameras are widely used to record the spatio-temporal evolution of laser-induced plasma. A prototype of picosecond X-ray streak camera has been developed and tested by Commissariat à l’Énergie Atomique et aux Énergies Alternatives to answer the Laser MegaJoule specific needs. The dynamic range of this instrument is measured with picosecond X-ray pulses generated by the interaction of a laser beam and a copper target. The required value of 100 is reached only in the configurations combining the slowest sweeping speed and optimization of the streak tube electron throughput by an appropriate choice of high voltages applied to its electrodes.

  17. A high linearity current mode multiplier/divider with a wide dynamic range

    International Nuclear Information System (INIS)

    Liao Pengfei; Luo Ping; Zhang Bo; Li Zhaoji

    2012-01-01

    A high linearity current mode multiplier/divider (CMM/D) with a wide dynamic range is presented. The proposed CMM/D is based on the voltage—current characteristic of the diode, thus wide dynamic range is achieved. In addition, high linearity is achieved because high accuracy current mirrors are adopted and the output current is insensitive to the temperature and device parameters of the fabrication process. Furthermore, no extra bias current for all input signals is required and thus power saving is realized. With proper selection of establishing the input terminal, the proposed circuit can perform as a multifunction circuit to be operated as a multiplier/divider, without changing its topology. The proposed circuit is implemented in a 0.25 μm BCD process and the chip area is 0.26 × 0.24 mm 2 . The simulation and measurement results show that the maximum static linearity error is ±1.8% and the total harmonic distortion is 0.4% while the input current ranges from 0 to 200 μA. (semiconductor integrated circuits)

  18. Technique for increasing dynamic range of space-borne ion composition instruments

    International Nuclear Information System (INIS)

    Burch, J.L.; Miller, G.P.; Santos, A. de los; Pollock, C.J.; Pope, S.E.; Valek, P. W.; Young, D.T.

    2005-01-01

    The dynamic range of ion composition spectrometers is limited by several factors, including saturation of particle counters and spillover of signals from highly dominant species into channels tuned to minor species. Instruments designed for composition measurements of hot plasmas in space can suffer greatly from both of these problems because of the wide energy range required and the wide disparity in fluxes encountered in various regions of interest. In order to detect minor ions in regions of very weak fluxes, geometry factors need to be as large as possible within the mass and volume resources available. As a result, problems with saturation by the dominant fluxes and spillover to minor-ion channels in plasma regions with intense fluxes become especially acute. This article reports on a technique for solving the dynamic-range problem in the few eV to several keV energy/charge range that is of central importance for space physics research where the dominant ion is of low mass/charge (typically H + ), and the minor ions are of higher mass/charge (typically O + ). The technique involves employing a radio-frequency modulation of the deflection electric field in the back section of an electrostatic analyzer in a time-of-flight instrument. This technique is shown to reduce H + counts by a controllable amount of up to factors of 1000 while reducing O + counts by only a few percent that can be calibrated

  19. Dynamic random links enhance diversity-induced coherence in ...

    Indian Academy of Sciences (India)

    tions among the units of complex biological and sociological systems. For small world ... of neuronal dynamics ranging from regular spiking to self-sustained chaotic bursting. Temporal ... The pulse interval is defined as, Sk(i) = Pramana – J.

  20. Dynamic contrast enhanced MRI study of primary primitive neuroectodermal tumor in the thoracic spine

    International Nuclear Information System (INIS)

    Chen Yu; Xu Jianmin; Li Ying; Zhang Jingzhong; Zhu Jing

    2004-01-01

    Objective: To investigate the value of dynamic contrast-enhanced MR imaging in the diagnosis and differentiation of primitive neuroectodermal tumor (PNET) in the thoracic spine. Methods: The dynamic contrast-enhanced MR imaging of 2 patients (3 times) with PNET in the thoracic spine proved by surgery and pathology were prospectively studied. Results: In the curves of SI-time and CER-time, PNET in the thoracic spine showed a rapid rise to the peak between 60 s and 120 s, then the flat level was kept and no obvious decline was detected after about 3.5 minute. Conclusion: Dynamic contrast-enhanced MRI can help to make the diagnosis and differential diagnosis for PNET in the thoracic spine, offer reliable information for the choice of clinical management, and predict the prognosis

  1. Microspatial ecotone dynamics at a shifting range limit: plant-soil variation across salt marsh-mangrove interfaces.

    Science.gov (United States)

    Yando, E S; Osland, M J; Hester, M W

    2018-05-01

    Ecotone dynamics and shifting range limits can be used to advance our understanding of the ecological implications of future range expansions in response to climate change. In the northern Gulf of Mexico, the salt marsh-mangrove ecotone is an area where range limits and ecotone dynamics can be studied in tandem as recent decreases in winter temperature extremes have allowed for mangrove expansion at the expense of salt marsh. In this study, we assessed aboveground and belowground plant-soil dynamics across the salt marsh-mangrove ecotone quantifying micro-spatial patterns in horizontal extent. Specifically, we studied vegetation and rooting dynamics of large and small trees, the impact of salt marshes (e.g. species and structure) on mangroves, and the influence of vegetation on soil properties along transects from underneath the mangrove canopy into the surrounding salt marsh. Vegetation and rooting dynamics differed in horizontal reach, and there was a positive relationship between mangrove tree height and rooting extent. We found that the horizontal expansion of mangrove roots into salt marsh extended up to eight meters beyond the aboveground boundary. Variation in vegetation structure and local hydrology appear to control mangrove seedling dynamics. Finally, soil carbon density and organic matter did not differ within locations across the salt marsh-mangrove interface. By studying aboveground and belowground variation across the ecotone, we can better predict the ecological effects of continued range expansion in response to climate change.

  2. Microspatial ecotone dynamics at a shifting range limit: plant–soil variation across salt marsh–mangrove interfaces

    Science.gov (United States)

    Yando, Erik S.; Osland, Michael J.; Hester, Mark H.

    2018-01-01

    Ecotone dynamics and shifting range limits can be used to advance our understanding of the ecological implications of future range expansions in response to climate change. In the northern Gulf of Mexico, the salt marsh–mangrove ecotone is an area where range limits and ecotone dynamics can be studied in tandem as recent decreases in winter temperature extremes have allowed for mangrove expansion at the expense of salt marsh. In this study, we assessed aboveground and belowground plant–soil dynamics across the salt marsh–mangrove ecotone quantifying micro-spatial patterns in horizontal extent. Specifically, we studied vegetation and rooting dynamics of large and small trees, the impact of salt marshes (e.g. species and structure) on mangroves, and the influence of vegetation on soil properties along transects from underneath the mangrove canopy into the surrounding salt marsh. Vegetation and rooting dynamics differed in horizontal reach, and there was a positive relationship between mangrove tree height and rooting extent. We found that the horizontal expansion of mangrove roots into salt marsh extended up to eight meters beyond the aboveground boundary. Variation in vegetation structure and local hydrology appear to control mangrove seedling dynamics. Finally, soil carbon density and organic matter did not differ within locations across the salt marsh-mangrove interface. By studying aboveground and belowground variation across the ecotone, we can better predict the ecological effects of continued range expansion in response to climate change.

  3. Enhancement of concentration range of chromatographically detectable components with array detector mass spectrometry

    Science.gov (United States)

    Enke, Christie

    2013-02-19

    Methods and instruments for high dynamic range analysis of sample components are described. A sample is subjected to time-dependent separation, ionized, and the ions dispersed with a constant integration time across an array of detectors according to the ions m/z values. Each of the detectors in the array has a dynamically adjustable gain or a logarithmic response function, producing an instrument capable of detecting a ratio of responses or 4 or more orders of magnitude.

  4. UMER: An analog computer for dynamics of swarms interacting via long-range forces

    International Nuclear Information System (INIS)

    Kishek, R.A.; Bai, G.; Bernal, S.; Feldman, D.; Godlove, T.F.; Haber, I.; O'Shea, P.G.; Quinn, B.; Papadopoulos, C.; Reiser, M.; Stratakis, D.; Tian, K.; Tobin, C.J.; Walter, M.

    2006-01-01

    Some of the most challenging and interesting problems in nature involve large numbers of objects or particles mutually interacting through long-range forces. Examples range from galaxies and plasmas to flocks of birds and traffic flow on a highway. Even in cases where the form of the interacting force is precisely known, such as the 1/r 2 -dependent Coulomb and gravitational forces, such problems present a formidable theoretical and modeling challenge for large numbers of interacting bodies. This paper reports on a newly constructed, scaled particle accelerator that will serve as an experimental testbed for the dynamics of swarms interacting through long-range forces. Primarily designed for intense beam dynamics studies for advanced accelerators, the University of Maryland Electron Ring (UMER) design is described in detail and an update on commissioning is provided. An example application to a system other than a charged particle beam is discussed

  5. Sensitivity of the Speech Intelligibility Index to the Assumed Dynamic Range

    Science.gov (United States)

    Jin, In-Ki; Kates, James M.; Arehart, Kathryn H.

    2017-01-01

    Purpose: This study aims to evaluate the sensitivity of the speech intelligibility index (SII) to the assumed speech dynamic range (DR) in different languages and with different types of stimuli. Method: Intelligibility prediction uses the absolute transfer function (ATF) to map the SII value to the predicted intelligibility for a given stimuli.…

  6. Subendometrial enhancement and peritumoral enhancement for assessing endometrial cancer on dynamic contrast enhanced MR imaging

    International Nuclear Information System (INIS)

    Fujii, Shinya; Kido, Aki; Baba, Tsukasa; Fujimoto, Koji; Daido, Sayaka; Matsumura, Noriomi; Konishi, Ikuo; Togashi, Kaori

    2015-01-01

    Highlights: •We have assessed the peritumoral enhancement (PTE), which mimics SEE on DCE. •We evaluated the diagnostic accuracy of SEE for the myometrial invasion and the frequency of PTE. •We assessed the relationship between these enhancements and important pathologic factors. •PTE Type 1 is the main factor causing the overestimation of myometrial invasion using SEE on DCE. •PTE Type 2 correlates the myometrial invasion and may play an important role in the diagnosis of LVSI. -- Abstract: Objectives: To evaluate the diagnostic accuracy of subendometrial enhancement (SEE) in assessing the myometrial invasion in endometrial cancer, the frequency and clinical significance of peritumoral enhancement (PTE) on dynamic contrast enhanced (DCE) imaging. Materials and methods: MR images of 147 patients with endometrial cancer were retrospectively analyzed for intact SEE and PTEs: Type 1, a focal early enhancement peritumorally, and Type 2, an irregular thin-layered early intense enhancement peritumorally. Two radiologists independently assessed intact SEE and PTEs on DCE imaging and compared the lesions by the presence and depth of myometrial invasion, grade, lymphovascular space involvement (LVSI), and lymph node metastasis. The relationship between SEE, PTEs, and each factor was analyzed using univariate and multivariate analyses. The sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and diagnostic accuracy were calculated for SEE. Results: The sensitivity, specificity, PPV, NPV and diagnostic accuracy for myometrial invasion based on SEE disruption on DCE were 96.6%, 32.1–46.4%, 85.8–88.5%, 69.2–76.5%, and 84.4–87.1%. According to multivariate analysis, SEE significantly predicted myometrial invasion (p < 0.0001). PTE Type 2 significantly predicted myometrial invasion presence (p < 0.05) and depth (p < 0.01). Conclusion: Diagnosis of myometrial invasion only by using SEE might be difficult on DCE-MRI due to the

  7. Subendometrial enhancement and peritumoral enhancement for assessing endometrial cancer on dynamic contrast enhanced MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Shinya [Division of Radiology, Department of Pathophysiological and Therapeutic Science, Faculty of Medicine, Tottori University, Yonago (Japan); Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto (Japan); Kido, Aki, E-mail: akikido@kuhp.kyoto-u.ac.jp [Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto (Japan); Baba, Tsukasa [Departments of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto (Japan); Fujimoto, Koji; Daido, Sayaka [Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto (Japan); Matsumura, Noriomi; Konishi, Ikuo [Departments of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto (Japan); Togashi, Kaori [Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto (Japan)

    2015-04-15

    Highlights: •We have assessed the peritumoral enhancement (PTE), which mimics SEE on DCE. •We evaluated the diagnostic accuracy of SEE for the myometrial invasion and the frequency of PTE. •We assessed the relationship between these enhancements and important pathologic factors. •PTE Type 1 is the main factor causing the overestimation of myometrial invasion using SEE on DCE. •PTE Type 2 correlates the myometrial invasion and may play an important role in the diagnosis of LVSI. -- Abstract: Objectives: To evaluate the diagnostic accuracy of subendometrial enhancement (SEE) in assessing the myometrial invasion in endometrial cancer, the frequency and clinical significance of peritumoral enhancement (PTE) on dynamic contrast enhanced (DCE) imaging. Materials and methods: MR images of 147 patients with endometrial cancer were retrospectively analyzed for intact SEE and PTEs: Type 1, a focal early enhancement peritumorally, and Type 2, an irregular thin-layered early intense enhancement peritumorally. Two radiologists independently assessed intact SEE and PTEs on DCE imaging and compared the lesions by the presence and depth of myometrial invasion, grade, lymphovascular space involvement (LVSI), and lymph node metastasis. The relationship between SEE, PTEs, and each factor was analyzed using univariate and multivariate analyses. The sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and diagnostic accuracy were calculated for SEE. Results: The sensitivity, specificity, PPV, NPV and diagnostic accuracy for myometrial invasion based on SEE disruption on DCE were 96.6%, 32.1–46.4%, 85.8–88.5%, 69.2–76.5%, and 84.4–87.1%. According to multivariate analysis, SEE significantly predicted myometrial invasion (p < 0.0001). PTE Type 2 significantly predicted myometrial invasion presence (p < 0.05) and depth (p < 0.01). Conclusion: Diagnosis of myometrial invasion only by using SEE might be difficult on DCE-MRI due to the

  8. High contrast enhancement aspect of dynamic computed tomography with arterial infusion - DCT-AI. Its clinical applications on hepatic tumors and basic experiments

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Seishi; Iwasaki, Naoya; Matsumura, Yoshimitsu; Kuramae, Shigeru; Mishiro, Tadashi

    1983-06-01

    Dynamic computed tomography was performed on 112 cases possibly having hepatic tumors with intraarterial infusion of undiluted contrast into a selectively placed catheter following angiographies. Our dynamic program could evaluate not only early phase of enhancement but also late phase up to 120 sec. Reconstructed views from early scans and magnified views were very useful to evaluate minute sequential changes. Hepatic masses less than 5 cm in size were found in thirty-one cases. Patterns of tumor enhancement and time-density curves have been analysed to correlate them with histology. Four types of tumor enhancement were noted: (1) homogeneous (2) patchy (3) mottled (4) ringed. Characteristic changes were observed in hepatocellular carcinoma - HCC - (mostly mottled) and haemangioma (mostly patchy). The former was divided in two groups reflecting the cellular maturity. The metastatic tumor could be enhanced in a ringed form with dendritic pattern of supplying vascularities in some cases. To support the use of undiluted contrast and to investigate the diagnostic efficacy of high contrast enhancement, experiments were performed by taking transaxial views of an acrylic phantom immersed in different concentrations of contrast. Analysis of CT images taken at different HU values ranging from 0 to 450 demonstrated that the higher the concentration of contrast, the better the spatial resolution was. Also larger magnification could be expected by using higher concentration of contrast. Although our Dynamic Computed Tomography with Arterial Infusion of Contrast still has drawbacks and limited indications, we advocate it as a better way of enhancement to detect and evaluate the hepatic masses, which sometimes elude the examiner's grasp with conventional way of enhancement. (author).

  9. Impacts of land cover data selection and trait parameterisation on dynamic modelling of species' range expansion.

    Directory of Open Access Journals (Sweden)

    Risto K Heikkinen

    Full Text Available Dynamic models for range expansion provide a promising tool for assessing species' capacity to respond to climate change by shifting their ranges to new areas. However, these models include a number of uncertainties which may affect how successfully they can be applied to climate change oriented conservation planning. We used RangeShifter, a novel dynamic and individual-based modelling platform, to study two potential sources of such uncertainties: the selection of land cover data and the parameterization of key life-history traits. As an example, we modelled the range expansion dynamics of two butterfly species, one habitat specialist (Maniola jurtina and one generalist (Issoria lathonia. Our results show that projections of total population size, number of occupied grid cells and the mean maximal latitudinal range shift were all clearly dependent on the choice made between using CORINE land cover data vs. using more detailed grassland data from three alternative national databases. Range expansion was also sensitive to the parameterization of the four considered life-history traits (magnitude and probability of long-distance dispersal events, population growth rate and carrying capacity, with carrying capacity and magnitude of long-distance dispersal showing the strongest effect. Our results highlight the sensitivity of dynamic species population models to the selection of existing land cover data and to uncertainty in the model parameters and indicate that these need to be carefully evaluated before the models are applied to conservation planning.

  10. Dynamic contrast-enhanced MRI in patients with luminal Crohn's disease

    NARCIS (Netherlands)

    Ziech, M. L. W.; Lavini, C.; Caan, M. W. A.; Nio, C. Y.; Stokkers, P. C. F.; Bipat, S.; Ponsioen, C. Y.; Nederveen, A. J.; Stoker, J.

    2012-01-01

    Objectives: To prospectively assess dynamic contrast-enhanced (DCE-)MRI as compared to conventional sequences in patients with luminal Crohn's disease. Methods: Patients with Crohn's disease undergoing MRI and ileocolonoscopy within 1 month had DCE-MRI (3T) during intravenous contrast injection of

  11. Real-time dynamic range and signal to noise enhancement in beam-scanning microscopy by integration of sensor characteristics, data acquisition hardware, and statistical methods

    Science.gov (United States)

    Kissick, David J.; Muir, Ryan D.; Sullivan, Shane Z.; Oglesbee, Robert A.; Simpson, Garth J.

    2013-02-01

    Despite the ubiquitous use of multi-photon and confocal microscopy measurements in biology, the core techniques typically suffer from fundamental compromises between signal to noise (S/N) and linear dynamic range (LDR). In this study, direct synchronous digitization of voltage transients coupled with statistical analysis is shown to allow S/N approaching the theoretical maximum throughout an LDR spanning more than 8 decades, limited only by the dark counts of the detector on the low end and by the intrinsic nonlinearities of the photomultiplier tube (PMT) detector on the high end. Synchronous digitization of each voltage transient represents a fundamental departure from established methods in confocal/multi-photon imaging, which are currently based on either photon counting or signal averaging. High information-density data acquisition (up to 3.2 GB/s of raw data) enables the smooth transition between the two modalities on a pixel-by-pixel basis and the ultimate writing of much smaller files (few kB/s). Modeling of the PMT response allows extraction of key sensor parameters from the histogram of voltage peak-heights. Applications in second harmonic generation (SHG) microscopy are described demonstrating S/N approaching the shot-noise limit of the detector over large dynamic ranges.

  12. Connection Between Thermodynamics and Dynamics of Simple Fluids in Pores: Impact of Fluid-Fluid Interaction Range and Fluid-Solid Interaction Strength.

    Science.gov (United States)

    Krekelberg, William P; Siderius, Daniel W; Shen, Vincent K; Truskett, Thomas M; Errington, Jeffrey R

    2017-08-03

    Using molecular simulations, we investigate how the range of fluid-fluid (adsorbate-adsorbate) interactions and the strength of fluid-solid (adsorbate-adsorbent) interactions impact the strong connection between distinct adsorptive regimes and distinct self-diffusivity regimes reported in [Krekelberg, W. P.; Siderius, D. W.; Shen, V. K.; Truskett, T. M.; Errington, J. R. Langmuir 2013 , 29 , 14527-14535]. Although increasing the fluid-fluid interaction range changes both the thermodynamics and the dynamic properties of adsorbed fluids, the previously reported connection between adsorptive filling regimes and self-diffusivity regimes remains. Increasing the fluid-fluid interaction range leads to enhanced layering and decreased self-diffusivity in the multilayer-formation regime but has little effect on the properties within film-formation and pore-filling regimes. We also find that weakly attractive adsorbents, which do not display distinct multilayer formation, are hard-sphere-like at super- and subcritical temperatures. In this case, the self-diffusivity of the confined and bulk fluid has a nearly identical scaling-relationship with effective density.

  13. Quantitative evaluation of contrast agent uptake in standard fat-suppressed dynamic contrast-enhanced MRI examinations of the breast.

    Science.gov (United States)

    Kousi, Evanthia; Smith, Joely; Ledger, Araminta E; Scurr, Erica; Allen, Steven; Wilson, Robin M; O'Flynn, Elizabeth; Pope, Romney J E; Leach, Martin O; Schmidt, Maria A

    2018-01-01

    To propose a method to quantify T 1 and contrast agent uptake in breast dynamic contrast-enhanced (DCE) examinations undertaken with standard clinical fat-suppressed MRI sequences and to demonstrate the proposed approach by comparing the enhancement characteristics of lobular and ductal carcinomas. A standard fat-suppressed DCE of the breast was performed at 1.5 T (Siemens Aera), followed by the acquisition of a proton density (PD)-weighted sequence, also fat suppressed. Both sequences were characterized with test objects (T 1 ranging from 30 ms to 2,400 ms) and calibration curves were obtained to enable T 1 calculation. The reproducibility and accuracy of the calibration curves were also investigated. Healthy volunteers and patients were scanned with Ethics Committee approval. The effect of B 0 field inhomogeneity was assessed in test objects and healthy volunteers. The T 1 of breast tumors was calculated at different time points (pre-, peak-, and post-contrast agent administration) for 20 patients, pre-treatment (10 lobular and 10 ductal carcinomas) and the two cancer types were compared (Wilcoxon rank-sum test). The calibration curves proved to be highly reproducible (coefficient of variation under 10%). T 1 measurements were affected by B 0 field inhomogeneity, but frequency shifts below 50 Hz introduced only 3% change to fat-suppressed T 1 measurements of breast parenchyma in volunteers. The values of T 1 measured pre-, peak-, and post-contrast agent administration demonstrated that the dynamic range of the DCE sequence was correct, that is, image intensity is approximately directly proportional to 1/T 1 for that range. Significant differences were identified in the width of the distributions of the post-contrast T 1 values between lobular and ductal carcinomas (P contrast T 1 values, potentially related to their infiltrative growth pattern. This work has demonstrated the feasibility of fat-suppressed T 1 measurements as a tool for clinical studies. The

  14. Observed Orbit Effects during Long Range Beam-Beam Studies

    CERN Document Server

    Alemany, R; Buffat, X; Calaga, R; Fitterer, M; Giachino, R; Hemelsoet, GH; Herr, W; Papotti, G; Pieloni, T; Poyer, M; Schaumann, M; Trad, G; Wollmann, D

    2012-01-01

    Possible limitations due to long range beam-beam effects at the LHC have been studied and are presented in this note. With a larger number of bunches and collisions in all interaction points, the crossing angles were reduced to enhance long range beam-beam effects. The analysis of the effects on the dynamic aperture and losses are documented in [1]. This note concentrates on the bunch-by-bunch orbit effects observed during the experiment.

  15. Dynamic oxygen-enhanced magnetic resonance imaging of the lung in asthma—Initial experience

    International Nuclear Information System (INIS)

    Zhang, Wei-Juan; Niven, Robert M.; Young, Simon S.; Liu, Yu-Zhen; Parker, Geoffrey J.M.; Naish, Josephine H.

    2015-01-01

    Highlights: • Oxygen-enhanced MRI may have a role in the estimation of disease severity in asthma. • Heterogeneity of parameter maps reflects localized functional impairment in asthma. • OE-MRI provides non-ionising, spatial and temporal information on oxygen delivery. - Abstract: Objectives: To prospectively estimate the feasibility and reproducibility of dynamic oxygen-enhanced magnetic resonance imaging (OE-MRI) in the assessment of regional oxygen delivery, uptake and washout in asthmatic lungs. Materials and methods: The study was approved by the National Research Ethics Committee and written informed consent was obtained. Dynamic OE-MRI was performed twice at one month apart on four mild asthmatic patients (23 ± 5 years old, FEV 1 = 96 ± 3% of predicted value) and six severe asthmatic patients (41 ± 12 years old, FEV 1 = 60 ± 14% of predicted value) on a 1.5 T MR scanner using a two-dimensional T 1 -weighted inversion-recovery turbo spin echo sequence. The enhancing fraction (EF), the maximal change in the partial pressure of oxygen in lung tissue (ΔPO 2max l ) and arterial blood of the aorta (ΔPO 2max a ), and the oxygen wash-in (τ up l , τ up a ) and wash-out (τ down l , τ down a ) time constants were extracted and compared between groups using the independent-samples t-test (two-tailed). Correlations between imaging readouts and clinical measurements were assessed by Pearson's correlation analysis. Bland–Altman analysis was used to estimate the levels of agreement between the repeat scans and the intra-observer agreement in the MR imaging readouts. Results: The severe asthmatic group had significantly smaller EF (70 ± 16%) and median ΔPO 2max l (156 ± 52 mmHg) and significantly larger interquartile range of τ up l (0.84 ± 0.26 min) than the mild asthmatic group (95 ± 3%, P = 0.014; 281 ± 40 mmHg, P = 0.004; 0.20 ± 0.07 min, P = 0.001, respectively). EF, median ΔPO 2max l and τ down l and the interquartile range of τ up l

  16. Density matrix renormalization group with efficient dynamical electron correlation through range separation

    DEFF Research Database (Denmark)

    Hedegård, Erik D.; Knecht, Stefan; Kielberg, Jesper Skau

    2015-01-01

    We present a new hybrid multiconfigurational method based on the concept of range-separation that combines the density matrix renormalization group approach with density functional theory. This new method is designed for the simultaneous description of dynamical and static electroncorrelation...... effects in multiconfigurational electronic structure problems....

  17. Enhancing pattern of gastric carcinoma at dynamic incremental CT: correlation with gross and histologic findings

    International Nuclear Information System (INIS)

    Shin, Hong Seop; Lee, Dong Ho; Kim, Yoon Hwa; Ko, Young Tae; Lim, Joo Won; Yoon, Yup

    1996-01-01

    To evaluate the enhancing pattern of gastric carcinomas at dynamic incremental CT and to correlate it with pathologic findings. We retrospectively evaluated the enhancement pattern of stomach cancer on dynamic incremental CT of the 78 patients. All the lesions had been pathologically proved after surgery. The enhancement pattern was categorized as good or poor in the early phase;homogeneous, heterogeneous or ring enhancement;the presence or absence of delayed enhancement. There were 16 cases of early gastric cancer (EGC), and 62 cases of advanced gastric cancer(AGC). The Borrmann type of AGC were 1(n=1), 2(n=20), 3=(n=32), 4(n=8) and 5(n=1). The histologic patterns of AGC were tubular(n=49), signet ring cell(n=10), and mucinous(n=3). The enhancing patterns were compared with gross and histologic findings and delayed enhancement was correlated with pathologic evidence of desmoplasia. Good enhancement of tumor was seen in 24/41cases (58.5%) with AGC Borrmann type 3-5, in 6/21(28.6%) with AGC Borrmann type 1-2, and in 3/16(18.8%) with EGC (P<.05). By histologic pattern, good enhancement of tumor was seen in 8/10(80%) with signet ring cell type, in 21/49(42.9%) with tubular type, and in 1/3(33.3%) with mucinous type(P<.05). EGC was homogeneously enhanced in 14/16cases (87.5%), but AGC was heterogeneously enhanced in 33/62(53.2%), respectively(P<.01). There was no significant correlation between delayed enhancement and the presence of desmoplasia. AGC Borrmann type 3-5 and signet ring cell type have a tendency to show good enhancement and EGC is more homogeneously enhanced at dynamic incremental CT

  18. POTENTIALS OF IMAGE BASED ACTIVE RANGING TO CAPTURE DYNAMIC SCENES

    Directory of Open Access Journals (Sweden)

    B. Jutzi

    2012-09-01

    Full Text Available Obtaining a 3D description of man-made and natural environments is a basic task in Computer Vision and Remote Sensing. To this end, laser scanning is currently one of the dominating techniques to gather reliable 3D information. The scanning principle inherently needs a certain time interval to acquire the 3D point cloud. On the other hand, new active sensors provide the possibility of capturing range information by images with a single measurement. With this new technique image-based active ranging is possible which allows capturing dynamic scenes, e.g. like walking pedestrians in a yard or moving vehicles. Unfortunately most of these range imaging sensors have strong technical limitations and are not yet sufficient for airborne data acquisition. It can be seen from the recent development of highly specialized (far-range imaging sensors – so called flash-light lasers – that most of the limitations could be alleviated soon, so that future systems will be equipped with improved image size and potentially expanded operating range. The presented work is a first step towards the development of methods capable for application of range images in outdoor environments. To this end, an experimental setup was set up for investigating these proposed possibilities. With the experimental setup a measurement campaign was carried out and first results will be presented within this paper.

  19. Pharmacokinetic analysis of Gd-DTPA enhancement in dynamic MR of breast carcinoma

    International Nuclear Information System (INIS)

    Hess, T.; Knopp, M.V.; Hoffmann, U.; Brix, G.; Junkermann, H.; Zuna, I.; Fournier, D. von; Kaick, G. van

    1994-01-01

    Dynamic Gd-DTPA enhanced MR of the breast was performed in one single slice in 27 patients with suspicious nodular lesions. The results could be histologically verified in all cases. A rapid spin-echo sequence with a time resolution of 8.75 s was used for the dynamic examination. The signal changes were analysed using a pharmacokinetic model which allowed parametrization of the contrast enhancement and transformation of the data into colour coded parameter images. The parameters allowed reliable distinction of 9 benign from 18 malignant lesions (p 21 ''). One fibroadenoma could not be distinguished from the carcinomas. Lymph node metastases and the pharmacokinetic parameter amplitude correlated significantly (p<0.05). (orig.)

  20. Quantum dynamical simulations of local field enhancement in metal nanoparticles.

    Science.gov (United States)

    Negre, Christian F A; Perassi, Eduardo M; Coronado, Eduardo A; Sánchez, Cristián G

    2013-03-27

    Field enhancements (Γ) around small Ag nanoparticles (NPs) are calculated using a quantum dynamical simulation formalism and the results are compared with electrodynamic simulations using the discrete dipole approximation (DDA) in order to address the important issue of the intrinsic atomistic structure of NPs. Quite remarkably, in both quantum and classical approaches the highest values of Γ are located in the same regions around single NPs. However, by introducing a complete atomistic description of the metallic NPs in optical simulations, a different pattern of the Γ distribution is obtained. Knowing the correct pattern of the Γ distribution around NPs is crucial for understanding the spectroscopic features of molecules inside hot spots. The enhancement produced by surface plasmon coupling is studied by using both approaches in NP dimers for different inter-particle distances. The results show that the trend of the variation of Γ versus inter-particle distance is different for classical and quantum simulations. This difference is explained in terms of a charge transfer mechanism that cannot be obtained with classical electrodynamics. Finally, time dependent distribution of the enhancement factor is simulated by introducing a time dependent field perturbation into the Hamiltonian, allowing an assessment of the localized surface plasmon resonance quantum dynamics.

  1. Molecular dynamics based enhanced sampling of collective variables with very large time steps

    Science.gov (United States)

    Chen, Pei-Yang; Tuckerman, Mark E.

    2018-01-01

    Enhanced sampling techniques that target a set of collective variables and that use molecular dynamics as the driving engine have seen widespread application in the computational molecular sciences as a means to explore the free-energy landscapes of complex systems. The use of molecular dynamics as the fundamental driver of the sampling requires the introduction of a time step whose magnitude is limited by the fastest motions in a system. While standard multiple time-stepping methods allow larger time steps to be employed for the slower and computationally more expensive forces, the maximum achievable increase in time step is limited by resonance phenomena, which inextricably couple fast and slow motions. Recently, we introduced deterministic and stochastic resonance-free multiple time step algorithms for molecular dynamics that solve this resonance problem and allow ten- to twenty-fold gains in the large time step compared to standard multiple time step algorithms [P. Minary et al., Phys. Rev. Lett. 93, 150201 (2004); B. Leimkuhler et al., Mol. Phys. 111, 3579-3594 (2013)]. These methods are based on the imposition of isokinetic constraints that couple the physical system to Nosé-Hoover chains or Nosé-Hoover Langevin schemes. In this paper, we show how to adapt these methods for collective variable-based enhanced sampling techniques, specifically adiabatic free-energy dynamics/temperature-accelerated molecular dynamics, unified free-energy dynamics, and by extension, metadynamics, thus allowing simulations employing these methods to employ similarly very large time steps. The combination of resonance-free multiple time step integrators with free-energy-based enhanced sampling significantly improves the efficiency of conformational exploration.

  2. Dynamic rayed aurora and enhanced ion-acoustic radar echoes

    Directory of Open Access Journals (Sweden)

    E. M. Blixt

    2005-01-01

    Full Text Available The generation mechanism for naturally enhanced ion-acoustic echoes is still debated. One important issue is how these enhancements are related to auroral activity. All events of enhanced ion-acoustic echoes observed simultaneously with the EISCAT Svalbard Radar (ESR and with high-resolution narrow field-of-view auroral imagers have been collected and studied. Characteristic of all the events is the appearance of very dynamic rayed aurora, and some of the intrinsic features of these auroral displays are identified. Several of these identified features are directly related to the presence of low energy (10-100eV precipitating electrons in addition to the higher energy population producing most of the associated light. The low energy contribution is vital for the formation of the enhanced ion-acoustic echoes. We argue that this type of aurora is sufficient for the generation of naturally enhanced ion-acoustic echoes. In one event two imagers were used to observe the auroral rays simultaneously, one from the radar site and one 7km away. The data from these imagers shows that the auroral rays and the strong backscattering filaments (where the enhanced echoes are produced are located on the same field line, which is in contrast to earlier statements in the litterature that they should be separated.

  3. First full dynamic range calibration of the JUNGFRAU photon detector

    Science.gov (United States)

    Redford, S.; Andrä, M.; Barten, R.; Bergamaschi, A.; Brückner, M.; Dinapoli, R.; Fröjdh, E.; Greiffenberg, D.; Lopez-Cuenca, C.; Mezza, D.; Mozzanica, A.; Ramilli, M.; Ruat, M.; Ruder, C.; Schmitt, B.; Shi, X.; Thattil, D.; Tinti, G.; Vetter, S.; Zhang, J.

    2018-01-01

    The JUNGFRAU detector is a charge integrating hybrid silicon pixel detector developed at the Paul Scherrer Institut for photon science applications, in particular for the upcoming free electron laser SwissFEL. With a high dynamic range, analogue readout, low noise and three automatically switching gains, JUNGFRAU promises excellent performance not only at XFELs but also at synchrotrons in areas such as protein crystallography, ptychography, pump-probe and time resolved measurements. To achieve its full potential, the detector must be calibrated on a pixel-by-pixel basis. This contribution presents the current status of the JUNGFRAU calibration project, in which a variety of input charge sources are used to parametrise the energy response of the detector across four orders of magnitude of dynamic range. Building on preliminary studies, the first full calibration procedure of a JUNGFRAU 0.5 Mpixel module is described. The calibration is validated using alternative sources of charge deposition, including laboratory experiments and measurements at ESRF and LCLS. The findings from these measurements are presented. Calibrated modules have already been used in proof-of-principle style protein crystallography experiments at the SLS. A first look at selected results is shown. Aspects such as the conversion of charge to number of photons, treatment of multi-size pixels and the origin of non-linear response are also discussed.

  4. Dynamic oxygen-enhanced MRI of cerebrospinal fluid.

    Directory of Open Access Journals (Sweden)

    Taha M Mehemed

    Full Text Available Oxygen causes an increase in the longitudinal relaxation rate of tissues through its T1-shortening effect owing to its paramagnetic properties. Due to such effects, MRI has been used to study oxygen-related signal intensity changes in various body parts including cerebrospinal fluid (CSF space. Oxygen enhancement of CSF has been mainly studied using MRI sequences with relatively longer time resolution such as FLAIR, and T1 value calculation. In this study, fifteen healthy volunteers were scanned using fast advanced spin echo MRI sequence with and without inversion recovery pulse in order to dynamically track oxygen enhancement of CSF. We also focused on the differences of oxygen enhancement at sulcal and ventricular CSF. Our results revealed that CSF signal after administration of oxygen shows rapid signal increase in both sulcal CSF and ventricular CSF on both sequences, with statistically significant predominant increase in sulcal CSF compared with ventricular CSF. CSF is traditionally thought to mainly form from the choroid plexus in the ventricles and is absorbed at the arachnoid villi, however, it is also believed that cerebral arterioles contribute to the production and absorption of CSF, and controversy remains in terms of the precise mechanism. Our results demonstrated rapid oxygen enhancement in sulcal CSF, which may suggest inhaled oxygen may diffuse into sulcal CSF space rapidly probably due to the abundance of pial arterioles on the brain sulci.

  5. Dynamic enhanced computed tomographic findings of a perirenal capillary hemangioma

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Min; Kim, Sang Won; Kim, Hyun Cheol; Yang, Dal Mo; Ryu, Jung Kyu; Lim, Sung Jig [Kyung Hee University Hospital at Gangdong, Seoul (Korea, Republic of)

    2016-05-15

    Hemangiomas are benign mesenchymal neoplasms that rarely occur in the kidney and perirenal space. Perirenal hemangiomas can mimic the appearance of exophytic renal cell carcinoma or various retroperitoneal tumors. We report a case of perirenal hemangioma detected by dynamic enhanced computed tomography in a 43-year-old female.

  6. Dynamics of contrast enhancement in MR imaging and power Doppler ultrasonography of solid breast lesions

    International Nuclear Information System (INIS)

    Reinikainen, H.; Paeaekkoe, E.; Suramo, I.; Paeivaensalo, M.; Rissanen, T.

    2002-01-01

    Purpose: To evaluate the dynamics of contrast enhancement in solid breast lesions at contrast-enhanced MR imaging and power Doppler ultrasonography (US) and to compare the methods to histology and to each other. Material and Methods: Forty breast lesions were prospectively examined with dynamic MR and power Doppler US. Time-signal intensity curves of enhancement were obtained for both methods. The shape of the curve was analyzed to be benign, indeterminate or malignant. The curves were also analyzed quantitatively by calculating the slope of the curve and the area under the curve (both methods), relative enhancement (MR), and time to peak (US). The lesions were divided into malignant lesions, fibroadenomas, and other benign lesions. The results were compared to histology. Results: In the subjective analysis of the MR curve in differentiating between benign and malignant lesions the accuracy was 90%. The MR curve also enabled differentiation between fibroadenomas and malignancies. The accuracy of the US curve was 38%. Quantitatively, statistically significant differences were found using all the MR variables, except between malignancies and fibroadenomas. Using the US variables, no significant difference was found between the groups. Conclusion: The dynamics of contrast-enhanced MR were reliable in the differential diagnosis of solid breast lesions, but contrast-enhanced power Doppler US was of limited value

  7. Surface and finite size effect on fluctuations dynamics in nanoparticles with long-range order

    Science.gov (United States)

    Morozovska, A. N.; Eliseev, E. A.

    2010-02-01

    The influence of surface and finite size on the dynamics of the order parameter fluctuations and critical phenomena in the three-dimensional (3D)-confined systems with long-range order was not considered theoretically. In this paper, we study the influence of surface and finite size on the dynamics of the order parameter fluctuations in the particles of arbitrary shape. We consider concrete examples of the spherical and cylindrical ferroic nanoparticles within Landau-Ginzburg-Devonshire phenomenological approach. Allowing for the strong surface energy contribution in micro and nanoparticles, the analytical expressions derived for the Ornstein-Zernike correlator of the long-range order parameter spatial-temporal fluctuations, dynamic generalized susceptibility, relaxation times, and correlation radii discrete spectra are different from those known for bulk systems. Obtained analytical expressions for the correlation function of the order parameter spatial-temporal fluctuations in micro and nanosized systems can be useful for the quantitative analysis of the dynamical structural factors determined from magnetic resonance diffraction and scattering spectra. Besides the practical importance of the correlation function for the analysis of the experimental data, derived expressions for the fluctuations strength determine the fundamental limits of phenomenological theories applicability for 3D-confined systems.

  8. Effects of sample injection amount and time-of-flight mass spectrometric detection dynamic range on metabolome analysis by high-performance chemical isotope labeling LC-MS.

    Science.gov (United States)

    Zhou, Ruokun; Li, Liang

    2015-04-06

    The effect of sample injection amount on metabolome analysis in a chemical isotope labeling (CIL) liquid chromatography-mass spectrometry (LC-MS) platform was investigated. The performance of time-of-flight (TOF) mass spectrometers with and without a high-dynamic-range (HD) detection system was compared in the analysis of (12)C2/(13)C2-dansyl labeled human urine samples. An average of 1635 ± 21 (n = 3) peak pairs or putative metabolites was detected using the HD-TOF-MS, compared to 1429 ± 37 peak pairs from a conventional or non-HD TOF-MS. In both instruments, signal saturation was observed. However, in the HD-TOF-MS, signal saturation was mainly caused by the ionization process, while in the non-HD TOF-MS, it was caused by the detection process. To extend the MS detection range in the non-HD TOF-MS, an automated switching from using (12)C to (13)C-natural abundance peaks for peak ratio calculation when the (12)C peaks are saturated has been implemented in IsoMS, a software tool for processing CIL LC-MS data. This work illustrates that injecting an optimal sample amount is important to maximize the metabolome coverage while avoiding the sample carryover problem often associated with over-injection. A TOF mass spectrometer with an enhanced detection dynamic range can also significantly increase the number of peak pairs detected. In chemical isotope labeling (CIL) LC-MS, relative metabolite quantification is done by measuring the peak ratio of a (13)C2-/(12)C2-labeled peak pair for a given metabolite present in two comparative samples. The dynamic range of peak ratio measurement does not need to be very large, as only subtle changes of metabolite concentrations are encountered in most metabolomic studies where relative metabolome quantification of different groups of samples is performed. However, the absolute concentrations of different metabolites can be very different, requiring a technique to provide a wide detection dynamic range to allow the detection of as

  9. Improved laser-based triangulation sensor with enhanced range and resolution through adaptive optics-based active beam control.

    Science.gov (United States)

    Reza, Syed Azer; Khwaja, Tariq Shamim; Mazhar, Mohsin Ali; Niazi, Haris Khan; Nawab, Rahma

    2017-07-20

    Various existing target ranging techniques are limited in terms of the dynamic range of operation and measurement resolution. These limitations arise as a result of a particular measurement methodology, the finite processing capability of the hardware components deployed within the sensor module, and the medium through which the target is viewed. Generally, improving the sensor range adversely affects its resolution and vice versa. Often, a distance sensor is designed for an optimal range/resolution setting depending on its intended application. Optical triangulation is broadly classified as a spatial-signal-processing-based ranging technique and measures target distance from the location of the reflected spot on a position sensitive detector (PSD). In most triangulation sensors that use lasers as a light source, beam divergence-which severely affects sensor measurement range-is often ignored in calculations. In this paper, we first discuss in detail the limitations to ranging imposed by beam divergence, which, in effect, sets the sensor dynamic range. Next, we show how the resolution of laser-based triangulation sensors is limited by the interpixel pitch of a finite-sized PSD. In this paper, through the use of tunable focus lenses (TFLs), we propose a novel design of a triangulation-based optical rangefinder that improves both the sensor resolution and its dynamic range through adaptive electronic control of beam propagation parameters. We present the theory and operation of the proposed sensor and clearly demonstrate a range and resolution improvement with the use of TFLs. Experimental results in support of our claims are shown to be in strong agreement with theory.

  10. Kernel optimization for short-range molecular dynamics

    Science.gov (United States)

    Hu, Changjun; Wang, Xianmeng; Li, Jianjiang; He, Xinfu; Li, Shigang; Feng, Yangde; Yang, Shaofeng; Bai, He

    2017-02-01

    To optimize short-range force computations in Molecular Dynamics (MD) simulations, multi-threading and SIMD optimizations are presented in this paper. With respect to multi-threading optimization, a Partition-and-Separate-Calculation (PSC) method is designed to avoid write conflicts caused by using Newton's third law. Serial bottlenecks are eliminated with no additional memory usage. The method is implemented by using the OpenMP model. Furthermore, the PSC method is employed on Intel Xeon Phi coprocessors in both native and offload models. We also evaluate the performance of the PSC method under different thread affinities on the MIC architecture. In the SIMD execution, we explain the performance influence in the PSC method, considering the "if-clause" of the cutoff radius check. The experiment results show that our PSC method is relatively more efficient compared to some traditional methods. In double precision, our 256-bit SIMD implementation is about 3 times faster than the scalar version.

  11. Resolution enhancement in neural networks with dynamical synapses

    Directory of Open Access Journals (Sweden)

    C. C. Alan Fung

    2013-06-01

    Full Text Available Conventionally, information is represented by spike rates in the neural system. Here, we consider the ability of temporally modulated activities in neuronal networks to carry information extra to spike rates. These temporal modulations, commonly known as population spikes, are due to the presence of synaptic depression in a neuronal network model. We discuss its relevance to an experiment on transparent motions in macaque monkeys by Treue et al. in 2000. They found that if the moving directions of objects are too close, the firing rate profile will be very similar to that with one direction. As the difference in the moving directions of objects is large enough, the neuronal system would respond in such a way that the network enhances the resolution in the moving directions of the objects. In this paper, we propose that this behavior can be reproduced by neural networks with dynamical synapses when there are multiple external inputs. We will demonstrate how resolution enhancement can be achieved, and discuss the conditions under which temporally modulated activities are able to enhance information processing performances in general.

  12. Evaluation of liver parenchyma and perfusion using dynamic contrast-enhanced computed tomography and contrast-enhanced ultrasonography in captive green iguanas (Iguana iguana) under general anesthesia.

    Science.gov (United States)

    Nardini, Giordano; Di Girolamo, Nicola; Leopardi, Stefania; Paganelli, Irene; Zaghini, Anna; Origgi, Francesco C; Vignoli, Massimo

    2014-05-13

    Contrast-enhanced diagnostic imaging techniques are considered useful in veterinary and human medicine to evaluate liver perfusion and focal hepatic lesions. Although hepatic diseases are a common occurrence in reptile medicine, there is no reference to the use of contrast-enhanced ultrasound (CEUS) and contrast-enhanced computed tomography (CECT) to evaluate the liver in lizards. Therefore, the aim of this study was to evaluate the pattern of change in echogenicity and attenuation of the liver in green iguanas (Iguana iguana) after administration of specific contrast media. An increase in liver echogenicity and density was evident during CEUS and CECT, respectively. In CEUS, the mean ± SD (median; range) peak enhancement was 19.9% ± 7.5 (18.3; 11.7-34.6). Time to peak enhancement was 134.0 ± 125.1 (68.4; 59.6-364.5) seconds. During CECT, first visualization of the contrast medium was at 3.6 ± 0.5 (4; 3-4) seconds in the aorta, 10.7 ± 2.2 (10.5; 7-14) seconds in the hepatic arteries, and 15 ± 4.5 (14.5; 10-24) seconds in the liver parenchyma. Time to peak was 14.1 ± 3.4 (13; 11-21) and 31 ± 9.6 (29; 23-45) seconds in the aorta and the liver parenchyma, respectively. CEUS and dynamic CECT are practical means to determine liver hemodynamics in green iguanas. Distribution of contrast medium in iguana differed from mammals. Specific reference ranges of hepatic perfusion for diagnostic evaluation of the liver in iguanas are necessary since the use of mammalian references may lead the clinician to formulate incorrect diagnostic suspicions.

  13. Dynamic performance enhancement of microgrids by advanced sliding mode controller

    Energy Technology Data Exchange (ETDEWEB)

    Sofla, Mohammadhassan Abdollahi [Electrical Engineering and Computer Science Dept., University of Toledo, Ohio (United States); Gharehpetian, Gevorg B. [Electrical Engineering Dept., Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)

    2011-01-15

    Dynamics are the most important problems in the microgrid operation. In the islanded microgrid, the mismatch of parallel operations of inverters during dynamics can result in the instability. This paper considers severe dynamics which can occur in the microgrid. Microgrid can have different configurations with different load and generation dynamics which are facing voltage disturbances. As a result, microgrid has many uncertainties and is placed in the distribution network where is full of voltage disturbances. Moreover, characteristics of the distribution network and distributed energy resources in the islanded mode make microgrid vulnerable and easily lead to instability. The main aim of this paper is to discuss the suitable mathematical modeling based on microgrid characteristics and to design properly inner controllers to enhance the dynamics of microgrid with uncertain and changing parameters. This paper provides a method for inner controllers of inverter-based distributed energy resources to have a suitable response for different dynamics. Parallel inverters in distribution networks were considered to be controlled by nonlinear robust voltage and current controllers. Theoretical prove beyond simulation results, reveal evidently the effectiveness of the proposed controller. (author)

  14. Clinical evaluation of a medical high dynamic range display

    International Nuclear Information System (INIS)

    Marchessoux, Cedric; Paepe, Lode de; Vanovermeire, Olivier; Albani, Luigi

    2016-01-01

    Purpose: Recent new medical displays do have higher contrast and higher luminance but do not have a High Dynamic Range (HDR). HDR implies a minimum luminance value close to zero. A medical HDR display prototype based on two Liquid Crystal layers has been developed. The goal of this study is to evaluate the potential clinical benefit of such display in comparison with a low dynamic range (LDR) display. Methods: The study evaluated the clinical performance of the displays in a search and detection task. Eight radiologists read chest x-ray images some of which contained simulated lung nodules. The study used a JAFROC (Jacknife Free Receiver Operating Characteristic) approach for analyzing FROC data. The calculated figure of merit (FoM) is the probability that a lesion is rated higher than all rated nonlesions on all images. Time per case and accuracy for locating the center of the nodules were also compared. The nodules were simulated using Samei’s model. 214 CR and DR images [half were “healthy images” (chest nodule-free) and half “diseased images”] were used resulting in a total number of nodules equal to 199 with 25 images with 1 nodule, 51 images with 2 nodules, and 24 images with 3 nodules. A dedicated software interface was designed for visualizing the images for each session. For the JAFROC1 statistical analysis, the study is done per nodule category: all nodules, difficult nodules, and very difficult nodules. Results: For all nodules, the averaged FoM HDR is slightly higher than FoM LDR with 0.09% of difference. For the difficult nodules, the averaged FoM HDR is slightly higher than FoM LDR with 1.38% of difference. The averaged FoM HDR is slightly higher than FoM LDR with 0.71% of difference. For the true positive fraction (TPF), both displays (the HDR and the LDR ones) have similar TPF for all nodules, but looking at difficult and very difficult nodules, there are more TP for the HDR display. The true positive fraction has been also computed in

  15. Implementing Molecular Dynamics for Hybrid High Performance Computers - 1. Short Range Forces

    International Nuclear Information System (INIS)

    Brown, W. Michael; Wang, Peng; Plimpton, Steven J.; Tharrington, Arnold N.

    2011-01-01

    The use of accelerators such as general-purpose graphics processing units (GPGPUs) have become popular in scientific computing applications due to their low cost, impressive floating-point capabilities, high memory bandwidth, and low electrical power requirements. Hybrid high performance computers, machines with more than one type of floating-point processor, are now becoming more prevalent due to these advantages. In this work, we discuss several important issues in porting a large molecular dynamics code for use on parallel hybrid machines - (1) choosing a hybrid parallel decomposition that works on central processing units (CPUs) with distributed memory and accelerator cores with shared memory, (2) minimizing the amount of code that must be ported for efficient acceleration, (3) utilizing the available processing power from both many-core CPUs and accelerators, and (4) choosing a programming model for acceleration. We present our solution to each of these issues for short-range force calculation in the molecular dynamics package LAMMPS. We describe algorithms for efficient short range force calculation on hybrid high performance machines. We describe a new approach for dynamic load balancing of work between CPU and accelerator cores. We describe the Geryon library that allows a single code to compile with both CUDA and OpenCL for use on a variety of accelerators. Finally, we present results on a parallel test cluster containing 32 Fermi GPGPUs and 180 CPU cores.

  16. Transducer-based fiber Bragg grating high-temperature sensor with enhanced range and stability

    Science.gov (United States)

    Mamidi, Venkata Reddy; Kamineni, Srimannarayana; Ravinuthala, Lakshmi Narayana Sai Prasad; Tumu, Venkatappa Rao

    2017-09-01

    Fiber Bragg grating (FBG)-based high-temperature sensor with enhanced-temperature range and stability has been developed and tested. The sensor consists of an FBG and a mechanical transducer, which furnishes a linear temperature-dependent tensile strain on FBG by means of differential linear thermal expansion of two different ceramic materials. The designed sensor is tested over a range: 20°C to 1160°C and is expected to measure up to 1500°C.

  17. Evaluation of dynamic enhanced CT scanning in the differentiation of adrenal lipid-poor adenomas with metastases

    International Nuclear Information System (INIS)

    Fang Xiangming; Hu Chunhong; Hu Xiaoyun; Chen Hongwei; Wu Liyuan; Zou Xinnong; Qian Pingyan

    2006-01-01

    Objective: To evaluate dynamic enhanced CT in differentiating adrenal metastases from adrenal lipid-poor adenomas(ALPA). Methods: Both plain and dynamic enhanced CT scanning was performed in 9 metastases with 13 masses and 28 lipid-poor adenoma with 30 masses. The types of time-density curve according to peak time(PT) and relative washout percentage(Washr) besides shape, size, margin, internal structure, surrounding status and enhanced pattern of each lesion were measuerd and compared between the two groups of metastases and ALPA. Results: There is difference between metastases and ALPA in the aspects of shape, density, neighboring structure and the type of enhancement. The type of TDC of matastases was characterized by fast-washin and fast-washout, which was quite differed from the type of TDC of ALPA characterized by fast-washin and slow-washout. According to this, the sensitiveity and specificity for differentiating metastases from ALPA were 96.7%, 92.3%. Conclusion: The types of TDC of dynamic enhanced CT is of great value in differentiating metastases from ALPA. (authors)

  18. An operating principle of the turtle utricle to detect wide dynamic range.

    Science.gov (United States)

    Nam, Jong-Hoon

    2018-03-01

    The utricle encodes both static information such as head orientation, and dynamic information such as vibrations. It is not well understood how the utricle can encode both static and dynamic information for a wide dynamic range (from 2 times the gravitational acceleration; from DC to > 1000 Hz vibrations). Using computational models of the hair cells in the turtle utricle, this study presents an explanation on how the turtle utricle encodes stimulations over such a wide dynamic range. Two hair bundles were modeled using the finite element method-one representing the striolar hair cell (Cell S), and the other representing the medial extrastriolar hair cell (Cell E). A mechano-transduction (MET) channel model was incorporated to compute MET current (i MET ) due to hair bundle deflection. A macro-mechanical model of the utricle was used to compute otoconial motions from head accelerations (a Head ). According to known anatomical data, Cell E has a long kinocilium that is embedded into the stiff otoconial layer. Unlike Cell E, the hair bundle of Cell S falls short of the otoconial layer. Considering such difference in the mechanical connectivity between the hair cell bundle and the otoconial layer, three cases were simulated: Cell E displacement-clamped, Cell S viscously-coupled, and Cell S displacement-clamped. Head accelerations at different amplitude levels and different frequencies were simulated for the three cases. When a realistic head motion was simulated, Cell E was responsive to head orientation, while the viscously-coupled Cell S was responsive to fast head motion imitating the feeding strike of a turtle. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Estimating the arterial input function from dynamic contrast-enhanced MRI data with compensation for flow enhancement (I): Theory, method, and phantom experiments

    NARCIS (Netherlands)

    van Schie, Jeroen J. N.; Lavini, Cristina; van Vliet, Lucas J.; Vos, Frans M.

    2017-01-01

    The arterial input function (AIF) represents the time-dependent arterial contrast agent (CA) concentration that is used in pharmacokinetic modeling. To develop a novel method for estimating the AIF from dynamic contrast-enhanced (DCE-) MRI data, while compensating for flow enhancement. Signal

  20. Increasing the Dynamic Range of Synthetic Aperture Vector Flow Imaging

    DEFF Research Database (Denmark)

    Villagómez Hoyos, Carlos Armando; Stuart, Matthias Bo; Jensen, Jørgen Arendt

    2014-01-01

    images. The emissions for the two imaging modes are interleaved 1-to-1 ratio, providing a high frame rate equal to the effective pulse repetition frequency of each imaging mode. The direction of the flow is estimated, and the velocity is then determined in that direction. This method Works for all angles...... standard deviations are 1.59% and 6.12%, respectively. The presented method can improve the estimates by synthesizing a lower pulse repetition frequency, thereby increasing the dynamic range of the vector velocity imaging....

  1. Abstract of Dynamic Range: When Game Design and Narratives Unite

    OpenAIRE

    Arsenault, Dominic

    2005-01-01

    This paper proposes a tool and methodology for measuring the degree of freedom given to a player in any resource-driven game (that is, any game in which managing resources is an integral part of the gameplay). This concept, which I call the Dynamic Range, can be used namely to evaluate a given game system’s potential for developing emergent narratives, as defined by Henry Jenkins in his publication Game Design as Narrative Architecture. While Jenkins places at the heart of the creation of nar...

  2. Dynamic Gesture Recognition with a Terahertz Radar Based on Range Profile Sequences and Doppler Signatures.

    Science.gov (United States)

    Zhou, Zhi; Cao, Zongjie; Pi, Yiming

    2017-12-21

    The frequency of terahertz radar ranges from 0.1 THz to 10 THz, which is higher than that of microwaves. Multi-modal signals, including high-resolution range profile (HRRP) and Doppler signatures, can be acquired by the terahertz radar system. These two kinds of information are commonly used in automatic target recognition; however, dynamic gesture recognition is rarely discussed in the terahertz regime. In this paper, a dynamic gesture recognition system using a terahertz radar is proposed, based on multi-modal signals. The HRRP sequences and Doppler signatures were first achieved from the radar echoes. Considering the electromagnetic scattering characteristics, a feature extraction model is designed using location parameter estimation of scattering centers. Dynamic Time Warping (DTW) extended to multi-modal signals is used to accomplish the classifications. Ten types of gesture signals, collected from a terahertz radar, are applied to validate the analysis and the recognition system. The results of the experiment indicate that the recognition rate reaches more than 91%. This research verifies the potential applications of dynamic gesture recognition using a terahertz radar.

  3. Pioneer factors govern super-enhancer dynamics in stem cell plasticity and lineage choice

    Science.gov (United States)

    Adam, Rene C.; Yang, Hanseul; Rockowitz, Shira; Larsen, Samantha B.; Nikolova, Maria; Oristian, Daniel S.; Polak, Lisa; Kadaja, Meelis; Asare, Amma; Zheng, Deyou; Fuchs, Elaine

    2015-01-01

    Adult stem cells (SCs) reside in niches which balance self-renewal with lineage selection and progression during tissue homeostasis. Following injury, culture or transplantation, SCs outside their niche often display fate flexibility1-4. Here we show that super-enhancers5 underlie the identity, lineage commitment and plasticity of adult SCs in vivo. Using hair follicle (HF) as model, we map the global chromatin domains of HFSCs and their committed progenitors in their native microenvironments. We show that super-enhancers and their dense clusters (‘epicenters’) of transcription factor (TF) binding sites change upon lineage progression. New fate is acquired by decommissioning old and establishing new super-enhancers and/or epicenters, an auto-regulatory process that abates one master regulator subset while enhancing another. We further show that when outside their niche, either in vitro or in wound-repair, HFSCs dynamically remodel super-enhancers in response to changes in their microenvironment. Intriguingly, some key super-enhancers shift epicenters, enabling them to remain active and maintain a transitional state in an ever-changing transcriptional landscape. Finally, we identify SOX9 as a crucial chromatin rheostat of HFSC super-enhancers, and provide functional evidence that super-enhancers are dynamic, dense TF-binding platforms which are acutely sensitive to pioneer master regulators whose levels define not only spatial and temporal features of lineage-status, but also stemness, plasticity in transitional states and differentiation. PMID:25799994

  4. Independent component analysis of dynamic contrast-enhanced computed tomography images

    Energy Technology Data Exchange (ETDEWEB)

    Koh, T S [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Ave, Singapore 639798 (Singapore); Yang, X [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Ave, Singapore 639798 (Singapore); Bisdas, S [Department of Diagnostic and Interventional Radiology, Johann Wolfgang Goethe University Hospital, Theodor-Stern-Kai 7, D-60590 Frankfurt (Germany); Lim, C C T [Department of Neuroradiology, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore 308433 (Singapore)

    2006-10-07

    Independent component analysis (ICA) was applied on dynamic contrast-enhanced computed tomography images of cerebral tumours to extract spatial component maps of the underlying vascular structures, which correspond to different haemodynamic phases as depicted by the passage of the contrast medium. The locations of arteries, veins and tumours can be separately identified on these spatial component maps. As the contrast enhancement behaviour of the cerebral tumour differs from the normal tissues, ICA yields a tumour component map that reveals the location and extent of the tumour. Tumour outlines can be generated using the tumour component maps, with relatively simple segmentation methods. (note)

  5. Multifractal analysis of the long-range correlations in the cardiac dynamics of Drosophila melanogaster

    International Nuclear Information System (INIS)

    Vitanov, Nikolay K.; Yankulova, Elka D.

    2006-01-01

    By means of the multifractal detrended fluctuation analysis (MFDFA) we investigate long-range correlations in the interbeat time series of heart activity of Drosophila melanogaster-the classical object of research in genetics. Our main investigation tool are the fractal spectra f(α) and h(q) by means of which we trace the correlation properties of Drosophila heartbeat dynamics for three consequent generations of species. We observe that opposite to the case of humans the time series of the heartbeat activity of healthy Drosophila do not have scaling properties. Time series from species with genetic defects can be long-range correlated. Different kinds of genetic heart defects lead to different shape of the fractal spectra. The fractal heartbeat dynamics of Drosophila is transferred from generation to generation

  6. Context-dependent JPEG backward-compatible high-dynamic range image compression

    Science.gov (United States)

    Korshunov, Pavel; Ebrahimi, Touradj

    2013-10-01

    High-dynamic range (HDR) imaging is expected, together with ultrahigh definition and high-frame rate video, to become a technology that may change photo, TV, and film industries. Many cameras and displays capable of capturing and rendering both HDR images and video are already available in the market. The popularity and full-public adoption of HDR content is, however, hindered by the lack of standards in evaluation of quality, file formats, and compression, as well as large legacy base of low-dynamic range (LDR) displays that are unable to render HDR. To facilitate the wide spread of HDR usage, the backward compatibility of HDR with commonly used legacy technologies for storage, rendering, and compression of video and images are necessary. Although many tone-mapping algorithms are developed for generating viewable LDR content from HDR, there is no consensus of which algorithm to use and under which conditions. We, via a series of subjective evaluations, demonstrate the dependency of the perceptual quality of the tone-mapped LDR images on the context: environmental factors, display parameters, and image content itself. Based on the results of subjective tests, it proposes to extend JPEG file format, the most popular image format, in a backward compatible manner to deal with HDR images also. An architecture to achieve such backward compatibility with JPEG is proposed. A simple implementation of lossy compression demonstrates the efficiency of the proposed architecture compared with the state-of-the-art HDR image compression.

  7. Large dynamic range pressure sensor based on two semicircle-holes microstructured fiber.

    Science.gov (United States)

    Liu, Zhengyong; Htein, Lin; Lee, Kang-Kuen; Lau, Kin-Tak; Tam, Hwa-Yaw

    2018-01-08

    This paper presents a sensitive and large dynamic range pressure sensor based on a novel birefringence microstructured optical fiber (MOF) deployed in a Sagnac interferometer configuration. The MOF has two large semicircle holes in the cladding and a rectangular strut with germanium-doped core in the center. The fiber structure permits surrounding pressure to induce large effective index difference between the two polarized modes. The calculated and measured group birefringence of the fiber are 1.49 × 10 -4 , 1.23 × 10 -4 , respectively, at the wavelength of 1550 nm. Experimental results shown that the pressure sensitivity of the sensor varied from 45,000 pm/MPa to 50,000 pm/MPa, and minimum detectable pressure of 80 Pa and dynamic range of better than 116 dB could be achieved with the novel fiber sensor. The proposed sensor could be used in harsh environment and is an ideal candidate for downhole applications where high pressure measurement at elevated temperature up to 250 °C is needed.

  8. High-dynamic range compressive spectral imaging by grayscale coded aperture adaptive filtering

    Directory of Open Access Journals (Sweden)

    Nelson Eduardo Diaz

    2015-09-01

    Full Text Available The coded aperture snapshot spectral imaging system (CASSI is an imaging architecture which senses the three dimensional informa-tion of a scene with two dimensional (2D focal plane array (FPA coded projection measurements. A reconstruction algorithm takes advantage of the compressive measurements sparsity to recover the underlying 3D data cube. Traditionally, CASSI uses block-un-block coded apertures (BCA to spatially modulate the light. In CASSI the quality of the reconstructed images depends on the design of these coded apertures and the FPA dynamic range. This work presents a new CASSI architecture based on grayscaled coded apertu-res (GCA which reduce the FPA saturation and increase the dynamic range of the reconstructed images. The set of GCA is calculated in a real-time adaptive manner exploiting the information from the FPA compressive measurements. Extensive simulations show the attained improvement in the quality of the reconstructed images when GCA are employed.  In addition, a comparison between traditional coded apertures and GCA is realized with respect to noise tolerance.

  9. A highly sensitive RF-to-DC power converter with an extended dynamic range

    KAUST Repository

    Almansouri, Abdullah Saud Mohammed; Ouda, Mahmoud H.; Salama, Khaled N.

    2017-01-01

    This paper proposes a highly sensitive RF-to-DC power converter with an extended dynamic range that is designed to operate at the medical band 433 MHz and simulated using 0.18 μm CMOS technology. Compared to the conventional fully cross

  10. A high gain wide dynamic range transimpedance amplifier for optical receivers

    International Nuclear Information System (INIS)

    Liu Lianxi; Zou Jiao; Liu Shubin; Niu Yue; Zhu Zhangming; Yang Yintang; En Yunfei

    2014-01-01

    As the front-end preamplifiers in optical receivers, transimpedance amplifiers (TIAs) are commonly required to have a high gain and low input noise to amplify the weak and susceptible input signal. At the same time, the TIAs should possess a wide dynamic range (DR) to prevent the circuit from becoming saturated by high input currents. Based on the above, this paper presents a CMOS transimpedance amplifier with high gain and a wide DR for 2.5 Gbit/s communications. The TIA proposed consists of a three-stage cascade pull push inverter, an automatic gain control circuit, and a shunt transistor controlled by the resistive divider. The inductive-series peaking technique is used to further extend the bandwidth. The TIA proposed displays a maximum transimpedance gain of 88.3 dBΩ with the −3 dB bandwidth of 1.8 GHz, exhibits an input current dynamic range from 100 nA to 10 mA. The output voltage noise is less than 48.23 nV/√Hz within the −3 dB bandwidth. The circuit is fabricated using an SMIC 0.18 μm 1P6M RFCMOS process and dissipates a dc power of 9.4 mW with 1.8 V supply voltage. (semiconductor integrated circuits)

  11. OTDM Networking for Short Range High-Capacity Highly Dynamic Networks

    DEFF Research Database (Denmark)

    Medhin, Ashenafi Kiros

    This PhD thesis aims at investigating the possibility of designing energy-efficient high-capacity (up to Tbit/s) optical network scenarios, leveraging on the effect of collective switching of many bits simultaneously, as is inherent in high bit rate serial optical data signals. The focus...... is on short range highly dynamic networks, catering to data center needs. The investigation concerns optical network scenarios, and experimental implementations of high bit rate serial data packet generation and reception, scalable optical packet labeling, simple optical label extraction and stable ultra...

  12. An objective method for High Dynamic Range source content selection

    DEFF Research Database (Denmark)

    Narwaria, Manish; Mantel, Claire; Da Silva, Matthieu Perreira

    2014-01-01

    With the aim of improving the immersive experience of the end user, High Dynamic Range (HDR) imaging has been gaining popularity. Therefore, proper validation and performance benchmarking of HDR processing algorithms is a key step towards standardization and commercial deployment. A crucial...... component of such validation studies is the selection of a challenging and balanced set of source (reference) HDR content. In order to facilitate this, we present an objective method based on the premise that a more challenging HDR scene encapsulates higher contrast, and as a result will show up more...

  13. SU-E-T-362: Enhanced Dynamic Wedge Output Factors for Varian 2300CD and the Case for a Reference Database

    International Nuclear Information System (INIS)

    Njeh, C

    2015-01-01

    Purpose: Dose inhomogeneity in treatment planning can be compensated using physical wedges. Enhanced dynamic wedges (EDW) were introduced by Varian to overcome some of the short comings of physical wedges. The objectives of this study were to measure EDW output factors for 6 MV and 20 MV photon energies for a Varian 2300CD. Secondly to review the literature in terms of published enhanced dynamic wedge output factors (EDWOF) for different Varian models and thereby adding credence to the case of the validity of reference databases. Methods: The enhanced dynamic wedge output factors were measured for the Varian 2300CD for both 6 MV and 20 MV photon energies. Twelve papers with published EDWOF for different Varian Linac models were found in the literature. Results: The EDWOF for 6 MV varied from 0.980 for a 5×5 cm 10 degree wedge to 0.424 for 20×20 cm 60 degree wedge. Similarly for 20 MV, the EDWOF varied from 0.986 for 5×5 cm 10 degree wedge to 0.529 for 20×20 cm 60 degree wedge. EDWOF are highly dependent on field size. Comparing our results with the published mean, we found an excellent agreement for 6 MV EDWOF with the percentage differences ranging from 0.01% to 0.57% with a mean of 0.03%. The coefficient of variation of published EDWOF ranged from 0.17% to 0.85% and 0.1% to 0.9% for the for 6 MV and 18MV photon energies respectively. This paper provides the first published EDWOF for 20 MV photon energy. In addition, we have provided the first compendium of EDWOFs for different Varian linac models. Conclusion: The consistency of EDWOF across models and institution provide further support that, a standard data set of basic photon and electron dosimetry could be established, as a guide for future commissioning, beam modeling and quality assurance purposes

  14. Dynamic contrast enhanced ultrasound for therapy monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, John M. [Department of Medical Biophysics, University of Toronto, Toronto, ON (Canada); Williams, Ross [Imaging Research, Sunnybrook Research Institute, Toronto, ON (Canada); Tremblay-Darveau, Charles; Sheeran, Paul S. [Department of Medical Biophysics, University of Toronto, Toronto, ON (Canada); Milot, Laurent [Department of Medical Imaging, University of Toronto, Toronto, ON (Canada); Bjarnason, Georg A. [Department of Medical Oncology, University of Toronto, and Sunnybrook Odette Cancer Centre, Toronto, ON (Canada); Burns, Peter N., E-mail: burns@sri.utoronto.ca [Department of Medical Biophysics, University of Toronto, Toronto, ON (Canada); Imaging Research, Sunnybrook Research Institute, Toronto, ON (Canada); Department of Medical Imaging, University of Toronto, Toronto, ON (Canada)

    2015-09-15

    Quantitative imaging is a crucial component of the assessment of therapies that target the vasculature of angiogenic or inflamed tissue. Dynamic contrast-enhanced ultrasound (DCE-US) using microbubble contrast offers the advantages of being sensitive to perfusion, non-invasive, cost effective and well suited to repeated use at the bedside. Uniquely, it employs an agent that is truly intravascular. This papers reviews the principles and methodology of DCE-US, especially as applied to anti-angiogenic cancer therapies. Reproducibility is an important attribute of such a monitoring method: results are discussed. More recent technical advances in parametric and 3D DCE-US imaging are also summarised and illustrated.

  15. Dynamic contrast-enhanced magnetic resonance imaging and pharmacokinetic models in prostate cancer

    International Nuclear Information System (INIS)

    Franiel, Tobias; Hamm, Bernd; Hricak, Hedvig

    2011-01-01

    Dynamic contrast-enhanced MRI enables noninvasive analysis of prostate vascularization as well as tumour angiogenesis and capillary permeability characteristics in prostate cancers. Pharmacokinetic models summarizing the complex information provided by signal intensity-time curves for a few quantitative pharmacokinetic parameters are increasingly being used in the routine clinical setting. This review consists of two parts. The first part discusses the advantages and disadvantages of the MR pulse sequences that can be used for performing DCE-MRI and also of the most widely used pharmacokinetic parameters and models and the parameters they describe. The second part outlines the range of current and potential future clinical applications of DCE-MRI and pharmacokinetic parametric maps in patients with prostate cancer, with reference to the current scientific literature on the topic. The potential clinical applications of DCE-MRI for prostate cancer include detection, localization, and staging, differentiation of recurrent cancer and estimation of the patient's prognosis, as well as monitoring of treatment response. (orig.)

  16. A Hybrid Shared-Memory Parallel Max-Tree Algorithm for Extreme Dynamic-Range Images

    NARCIS (Netherlands)

    Moschini, Ugo; Meijster, Arnold; Wilkinson, Michael

    Max-trees, or component trees, are graph structures that represent the connected components of an image in a hierarchical way. Nowadays, many application fields rely on images with high-dynamic range or floating point values. Efficient sequential algorithms exist to build trees and compute

  17. Effects of dynamic-range compression on temporal acuity

    DEFF Research Database (Denmark)

    Wiinberg, Alan; Jepsen, Morten Løve; Epp, Bastian

    2016-01-01

    Some of the challenges that hearing-aid listeners experience with speech perception in complex acoustic environments may originate from limitations in the temporal processing of sounds. To systematically investigate the influence of hearing impairment and hearing-aid signal processing on temporal...... processing, temporal modulation transfer functions (TMTFs) and “supra-threshold” modulation-depth discrimination (MDD) thresholds were obtained in normal-hearing (NH) and hearing-impaired (HI) listeners with and without wide-dynamic range compression (WDRC). The TMTFs were obtained using tonal carriers of 1...... with the physical compression of the modulation depth due to the WDRC. Indications of reduced temporal resolution in the HI listeners were observed in the TMTF patterns for the 5 kHz carrier. Significantly higher MDD thresholds were found for the HI group relative to the NH group. No relationship was found between...

  18. A High Dynamic-Range Beam Position Measurement System for ELSA-2

    CERN Document Server

    Balleyguier, P; Guimbal, P; Borrion, H

    2003-01-01

    New beamlines are presently under construction for ELSA, a 20 MeV electron linac located at Bruyères-le-Châtel. These lines need a beam position measurement system filling the following requirements: small footprint, wide dynamic range, single-bunch/multi-bunch capability, simple design. We designed a compact 4-stripline sensor and an electronic treatment chain based on logarithmic amplifiers. This paper presents the design, cold and hot test results.

  19. Dynamic oxygen-enhanced magnetic resonance imaging of the lung in asthma—Initial experience

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wei-Juan, E-mail: weijuan.zhang@postgrad.manchester.ac.uk [Centre for Imaging Sciences, The University of Manchester, Oxford Road, Manchester M13 9PT (United Kingdom); Biomedical Imaging Institute, The University of Manchester, Oxford Road, Manchester M13 9PT (United Kingdom); Niven, Robert M., E-mail: robert.niven@uhsm.nhs.uk [North West Lung Research Centre, University Hospital of South Manchester, Southmoor Road, Manchester M23 9LT (United Kingdom); Young, Simon S., E-mail: Simon.Young1@astrazeneca.com [Personalised Healthcare and Biomarkers, AstraZeneca R and D, Alderley Park, Macclesfield SK10 4TF (United Kingdom); Liu, Yu-Zhen, E-mail: yu-zhen.liu@astrazeneca.com [Personalised Healthcare and Biomarkers, AstraZeneca R and D, Alderley Park, Macclesfield SK10 4TF (United Kingdom); Parker, Geoffrey J.M., E-mail: Geoff.parker@manchester.ac.uk [Centre for Imaging Sciences, The University of Manchester, Oxford Road, Manchester M13 9PT (United Kingdom); Biomedical Imaging Institute, The University of Manchester, Oxford Road, Manchester M13 9PT (United Kingdom); Bioxydyn Limited, Rutherford House, Pencroft Way, Manchester M15 6SZ (United Kingdom); Naish, Josephine H., E-mail: Josephine.naish@manchester.ac.uk [Centre for Imaging Sciences, The University of Manchester, Oxford Road, Manchester M13 9PT (United Kingdom); Biomedical Imaging Institute, The University of Manchester, Oxford Road, Manchester M13 9PT (United Kingdom)

    2015-02-15

    Highlights: • Oxygen-enhanced MRI may have a role in the estimation of disease severity in asthma. • Heterogeneity of parameter maps reflects localized functional impairment in asthma. • OE-MRI provides non-ionising, spatial and temporal information on oxygen delivery. - Abstract: Objectives: To prospectively estimate the feasibility and reproducibility of dynamic oxygen-enhanced magnetic resonance imaging (OE-MRI) in the assessment of regional oxygen delivery, uptake and washout in asthmatic lungs. Materials and methods: The study was approved by the National Research Ethics Committee and written informed consent was obtained. Dynamic OE-MRI was performed twice at one month apart on four mild asthmatic patients (23 ± 5 years old, FEV{sub 1} = 96 ± 3% of predicted value) and six severe asthmatic patients (41 ± 12 years old, FEV{sub 1} = 60 ± 14% of predicted value) on a 1.5 T MR scanner using a two-dimensional T{sub 1}-weighted inversion-recovery turbo spin echo sequence. The enhancing fraction (EF), the maximal change in the partial pressure of oxygen in lung tissue (ΔPO{sub 2max{sub l}}) and arterial blood of the aorta (ΔPO{sub 2max{sub a}}), and the oxygen wash-in (τ{sub up{sub l}}, τ{sub up{sub a}}) and wash-out (τ{sub down{sub l}}, τ{sub down{sub a}}) time constants were extracted and compared between groups using the independent-samples t-test (two-tailed). Correlations between imaging readouts and clinical measurements were assessed by Pearson's correlation analysis. Bland–Altman analysis was used to estimate the levels of agreement between the repeat scans and the intra-observer agreement in the MR imaging readouts. Results: The severe asthmatic group had significantly smaller EF (70 ± 16%) and median ΔPO{sub 2max{sub l}} (156 ± 52 mmHg) and significantly larger interquartile range of τ{sub up{sub l}} (0.84 ± 0.26 min) than the mild asthmatic group (95 ± 3%, P = 0.014; 281 ± 40 mmHg, P = 0.004; 0.20 ± 0.07 min, P = 0

  20. In-medium short-range dynamics of nucleons: Recent theoretical and experimental advances

    Energy Technology Data Exchange (ETDEWEB)

    Atti, Claudio Ciofi degli, E-mail: ciofi@pg.infn.it

    2015-08-14

    The investigation of in-medium short-range dynamics of nucleons, usually referred to as the study of short-range correlations (SRCs), is a key issue in nuclear and hadronic physics. As a matter of fact, even in the simplified assumption that the nucleus could be described as a system of protons and neutrons interacting via effective nucleon–nucleon (NN) interactions, several non trivial problems arise concerning the description of in-medium (NN short-range dynamics, namely: (i) the behavior of the NN interaction at short inter-nucleon distances in medium cannot be uniquely constrained by the experimental NN scattering phase shifts due to off-shell effects; (ii) by rigorous renormalization group (RG) techniques entire families of phase equivalent interactions differing in the short-range part can be derived; (iii) the in-medium NN interaction may be, in principle, different from the free one; (iv) when the short inter-nucleon separation is of the order of the nucleon size, the question arises of possible effects from quark and gluon degrees of freedom. For more than fifty years, experimental evidence of SRCs has been searched by means of various kinds of nuclear reactions, without however convincing results, mainly because the effects of SRCs arise from non observable quantities, like, e.g., the momentum distributions, and have been extracted from observable cross sections where short- and long-range effects, effects from nucleonic and non nucleonic degrees of freedom, and effects from final state interaction, could not be unambiguously separated out. Recent years, however, were witness of new progress in the field: from one side, theoretical and computational progress has allowed one to solve ab initio the many-nucleon non relativistic Schrödinger equation in terms of realistic NN interactions, obtaining realistic microscopic wave functions, unless the case of parametrized wave functions used frequently in the past, moreover the development of advanced

  1. Quantum-Enhanced Sensing Based on Time Reversal of Nonlinear Dynamics.

    Science.gov (United States)

    Linnemann, D; Strobel, H; Muessel, W; Schulz, J; Lewis-Swan, R J; Kheruntsyan, K V; Oberthaler, M K

    2016-07-01

    We experimentally demonstrate a nonlinear detection scheme exploiting time-reversal dynamics that disentangles continuous variable entangled states for feasible readout. Spin-exchange dynamics of Bose-Einstein condensates is used as the nonlinear mechanism which not only generates entangled states but can also be time reversed by controlled phase imprinting. For demonstration of a quantum-enhanced measurement we construct an active atom SU(1,1) interferometer, where entangled state preparation and nonlinear readout both consist of parametric amplification. This scheme is capable of exhausting the quantum resource by detecting solely mean atom numbers. Controlled nonlinear transformations widen the spectrum of useful entangled states for applied quantum technologies.

  2. Quantitative assessment of synovial inflammation by dynamic gadolinium-enhanced magnetic resonance imaging. A study of the effect of intra-articular methylprednisolone on the rate of early synovial enhancement

    DEFF Research Database (Denmark)

    Østergaard, Mikkel; Stoltenberg, M; Henriksen, O

    1996-01-01

    The effect of temporary inflammatory suppression on synovial membrane enhancement, as determined by dynamic and static gadolinium-DTPA enhanced magnetic resonance imaging (MRI), was studied. MRI of 18 arthritic knees was performed before and 1, 7, 30 and 180 days after intra-articular methylpredn......The effect of temporary inflammatory suppression on synovial membrane enhancement, as determined by dynamic and static gadolinium-DTPA enhanced magnetic resonance imaging (MRI), was studied. MRI of 18 arthritic knees was performed before and 1, 7, 30 and 180 days after intra...

  3. Ischemic Preconditioning of One Forearm Enhances Static and Dynamic Apnea

    DEFF Research Database (Denmark)

    Kjeld, Thomas; Rasmussen, Mads Reinholdt; Jattu, Timo

    2014-01-01

    INTRODUCTION: Ischemic preconditioning enhances ergometer cycling and swimming performance. We evaluated whether ischemic preconditioning of one forearm (four times for 5 min) also affects static breath hold and underwater swimming, whereas the effect of similar preconditioning on ergometer rowing...... preconditioning reduced the forearm oxygen saturation from 65% ± 7% to 19% ± 7% (mean ± SD; P right thigh.......05). CONCLUSIONS: We conclude that while the effect of ischemic preconditioning (of one forearm) on ergometer rowing was minimal, probably because of reduced muscle oxygenation during the warm-up, ischemic preconditioning does enhance both static and dynamic apnea, supporting that muscle ischemia is an important...

  4. A wideband large dynamic range and high linearity RF front-end for U-band mobile DTV

    International Nuclear Information System (INIS)

    Liu Rongjiang; Liu Shengyou; Guo Guiliang; Cheng Xu; Yan Yuepeng

    2013-01-01

    A wideband large dynamic range and high linearity U-band RF front-end for mobile DTV is introduced, and includes a noise-cancelling low-noise amplifier (LNA), an RF programmable gain amplifier (RFPGA) and a current communicating passive mixer. The noise/distortion cancelling structure and RC post-distortion compensation are employed to improve the linearity of the LNA. An RFPGA with five stages provides large dynamic range and fine gain resolution. A simple resistor voltage network in the passive mixer decreases the gate bias voltage of the mixing transistor, and optimum linearity and symmetrical mixing is obtained at the same time. The RF front-end is implemented in a 0.25 μm CMOS process. Tests show that it achieves an IIP3 (third-order intercept point) of −17 dBm, a conversion gain of 39 dB, and a noise figure of 5.8 dB. The RFPGA achieves a dynamic range of −36.2 to 23.5 dB with a resolution of 0.32 dB. (semiconductor integrated circuits)

  5. Diagnostic Accuracy of Dynamic Contrast Enhanced Magnetic Resonance Imaging in Characterizing Lung Masses

    Science.gov (United States)

    Inan, Nagihan; Arslan, Arzu; Donmez, Muhammed; Sarisoy, Hasan Tahsin

    2016-01-01

    Background Imaging plays a critical role not only in the detection, but also in the characterization of lung masses as benign or malignant. Objectives To determine the diagnostic accuracy of dynamic magnetic resonance imaging (MRI) in the differential diagnosis of benign and malignant lung masses. Patients and Methods Ninety-four masses were included in this prospective study. Five dynamic series of T1-weighted spoiled gradient echo (FFE) images were obtained, followed by a T1-weighted FFE sequence in the late phase (5th minutes). Contrast enhancement patterns in the early (25th second) and late (5th minute) phase images were evaluated. For the quantitative evaluation, signal intensity (SI)-time curves were obtained and the maximum relative enhancement, wash-in rate, and time-to-peak enhancement of masses in both groups were calculated. Results The early phase contrast enhancement patterns were homogeneous in 78.2% of the benign masses, while heterogeneous in 74.4% of the malignant tumors. On the late phase images, 70.8% of the benign masses showed homogeneous enhancement, while most of the malignant masses showed heterogeneous enhancement (82.4%). During the first pass, the maximum relative enhancement and wash-in rate values of malignant masses were significantly higher than those of the benign masses (P = 0.03 and 0.04, respectively). The cutoff value at 15% yielded a sensitivity of 85.4%, specificity of 61.2%, and positive predictive value of 68.7% for the maximum relative enhancement. Conclusion Contrast enhancement patterns and SI-time curve analysis of MRI are helpful in the differential diagnosis of benign and malignant lung masses. PMID:27703654

  6. Development of a Stirling System Dynamic Model with Enhanced Thermodynamics

    Science.gov (United States)

    Regan, Timothy F.; Lewandowski, Edward J.

    2005-02-01

    The Stirling Convertor System Dynamic Model developed at NASA Glenn Research Center is a software model developed from first principles that includes the mechanical and mounting dynamics, the thermodynamics, the linear alternator, and the controller of a free-piston Stirling power convertor, along with the end user load. As such it represents the first detailed modeling tool for fully integrated Stirling convertor-based power systems. The thermodynamics of the model were originally a form of the isothermal Stirling cycle. In some situations it may be desirable to improve the accuracy of the Stirling cycle portion of the model. An option under consideration is to enhance the SDM thermodynamics by coupling the model with Gedeon Associates' Sage simulation code. The result will be a model that gives a more accurate prediction of the performance and dynamics of the free-piston Stirling convertor. A method of integrating the Sage simulation code with the System Dynamic Model is described. Results of SDM and Sage simulation are compared to test data. Model parameter estimation and model validation are discussed.

  7. A large dynamic range radiation-tolerant analog memory in a quarter- micron CMOS technology

    CERN Document Server

    Anelli, G; Rivetti, A

    2001-01-01

    An analog memory prototype containing 8*128 cells has been designed in a commercial quarter-micron CMOS process. The aim of this work is to investigate the possibility of designing large dynamic range mixed-mode switched capacitor circuits for high-energy physics (HEP) applications in deep submicron CMOS technologies. Special layout techniques have been used to make the circuit radiation tolerant. The memory cells employ gate-oxide capacitors for storage, permitting a very high density. A voltage write-voltage read architecture has been chosen to minimize the sensitivity to absolute capacitor values. The measured input voltage range is 2.3 V (the power supply voltage V/sub DD/ is equal to 2.5 V), with a linearity of almost 8 bits over 2 V. The dynamic range is more than 11 bits. The pedestal variation is +or-0.5 mV peak-to-peak. The noise measured, which is dominated by the noise of the measurement setup, is around 0.8 mV rms. The characteristics of the memory have been measured before irradiation and after 1...

  8. A large dynamic range radiation tolerant analog memory in a quarter micron CMOS technology

    CERN Document Server

    Anelli, G; Rivetti, A

    2000-01-01

    A 8*128 cell analog memory prototype has been designed in a commercial 0.25 jam CMOS process. The aim of this work was to investigate the possibility of designing large dynamic range mixed- mode switched capacitor circuits for High-Energy Physics (HEP) applications in deep submicron CMOS technologies. Special layout techniques have been used to make the circuit radiation tolerant left bracket 1 right bracket . The memory cells employ gate-oxide capacitors for storage, allowing for a very high density. A voltage write - voltage read architecture has been chosen to minimize the sensitivity to absolute capacitor values. The measured input voltage range is 2.3 V (V//D//D = 2.5 V), with a linearity of at least 7.5 bits over 2 V. The dynamic range is more than 11 bits. The pedestal variation is plus or minus 0.5 mV peak-to-peak. The noise measured, which is dominated by the noise of the measurement setup, is around 0.8 mV rms. The characteristics of the memory have been measured before irradiation and after lOMrd (...

  9. Dynamic contrast-enhanced MRI of the prostate. Comparison of two different post-processing algorithms

    International Nuclear Information System (INIS)

    Beyersdorff, Dirk; Franiel, T.; Luedemann, L.; Dietz, E.; Galler, D.; Marchot, P.

    2011-01-01

    Purpose: To evaluate the usefulness of a commercially available post-processing software tool for detecting prostate cancer on dynamic contrast-enhanced magnetic resonance imaging (MRI) and to compare the results to those obtained with a custom-made post-processing algorithm already tested under clinical conditions. Materials and Methods: Forty-eight patients with proven prostate cancer were examined by standard MRI supplemented by dynamic contrast-enhanced dual susceptibility contrast (DCE-DSC) MRI prior to prostatectomy. A custom-made post-processing algorithm was used to analyze the MRI data sets and the results were compared to those obtained using a post-processing algorithm from Invivo Corporation (Dyna CAD for Prostate) applied to dynamic T 1-weighted images. Histology was used as the gold standard. Results: The sensitivity for prostate cancer detection was 78 % for the custom-made algorithm and 60 % for the commercial algorithm and the specificity was 79 % and 82 %, respectively. The accuracy was 79 % for our algorithm and 77.5 % for the commercial software tool. The chi-square test (McNemar-Bowker test) yielded no significant differences between the two tools (p = 0.06). Conclusion: The two investigated post-processing algorithms did not differ in terms of prostate cancer detection. The commercially available software tool allows reliable and fast analysis of dynamic contrast-enhanced MRI for the detection of prostate cancer. (orig.)

  10. Simultaneous broadband laser ranging and photonic Doppler velocimetry for dynamic compression experiments

    Energy Technology Data Exchange (ETDEWEB)

    La Lone, B. M., E-mail: lalonebm@nv.doe.gov; Marshall, B. R.; Miller, E. K.; Stevens, G. D.; Turley, W. D. [National Security Technologies, LLC, Special Technologies Laboratory, Santa Barbara, California 93111 (United States); Veeser, L. R. [National Security Technologies, LLC, Los Alamos Operations, Los Alamos, New Mexico 87544 (United States)

    2015-02-15

    A diagnostic was developed to simultaneously measure both the distance and velocity of rapidly moving surfaces in dynamic compression experiments, specifically non-planar experiments where integrating the velocity in one direction does not always give the material position accurately. The diagnostic is constructed mainly from fiber-optic telecommunications components. The distance measurement is based on a technique described by Xia and Zhang [Opt. Express 18, 4118 (2010)], which determines the target distance every 20 ns and is independent of the target speed. We have extended the full range of the diagnostic to several centimeters to allow its use in dynamic experiments, and we multiplexed it with a photonic Doppler velocimetry (PDV) system so that distance and velocity histories can be measured simultaneously using one fiber-optic probe. The diagnostic was demonstrated on a spinning square cylinder to show how integrating a PDV record can give an incorrect surface position and how the ranging diagnostic described here obtains it directly. The diagnostic was also tested on an explosive experiment where copper fragments and surface ejecta were identified in both the distance and velocity signals. We show how the distance measurements complement the velocity data. Potential applications are discussed.

  11. Contrast-enhanced magnetic resonance imaging of the breast: the value of pharmacokinetic parameters derived from fast dynamic imaging during initial enhancement in classifying lesions

    International Nuclear Information System (INIS)

    Veltman, J.; Stoutjesdijk, M.; Mann, R.; Huisman, H.J.; Barentsz, J.O.; Blickman, J.G.; Boetes, C.

    2008-01-01

    The value of pharmacokinetic parameters derived from fast dynamic imaging during initial enhancement in characterizing breast lesions on magnetic resonance imaging (MRI) was evaluated. Sixty-eight malignant and 34 benign lesions were included. In the scanning protocol, high temporal resolution imaging was combined with high spatial resolution imaging. The high temporal resolution images were recorded every 4.1 s during initial enhancement (fast dynamic analysis). The high spatial resolution images were recorded at a temporal resolution of 86 s (slow dynamic analysis). In the fast dynamic evaluation pharmacokinetic parameters (K trans , V e and k ep ) were evaluated. In the slow dynamic analysis, each lesion was scored according to the BI-RADS classification. Two readers evaluated all data prospectively. ROC and multivariate analysis were performed. The slow dynamic analysis resulted in an AUC of 0.85 and 0.83, respectively. The fast dynamic analysis resulted in an AUC of 0.83 in both readers. The combination of both the slow and fast dynamic analyses resulted in a significant improvement of diagnostic performance with an AUC of 0.93 and 0.90 (P = 0.02). The increased diagnostic performance found when combining both methods demonstrates the additional value of our method in further improving the diagnostic performance of breast MRI. (orig.)

  12. Deeply trapped electrons in imaging plates and their utilization for extending the dynamic range

    International Nuclear Information System (INIS)

    Ohuchi, Hiroko; Kondo, Yasuhiro

    2010-01-01

    The absorption spectra of deep centers in an imaging plate (IP) made of BaFBr 0:85 I 0:15 :Eu 2+ have been studied in the ultraviolet region. Electrons trapped in deep centers are considered to be the cause of unerasable and reappearing latent images in IPs over-irradiated with X-rays. Deep centers showed a dominant peak at around 320 nm, followed by two small peaks at around 345 and 380 nm. By utilizing deeply trapped electrons, we have attempted to extend the dynamic range of an IP. The IP was irradiated by 150-kV X-rays with doses from 8.07 mGy to 80.7 Gy. Reading out the latent image by the stimulation of Eu 2+ luminescence with a 633-nm He-Ne laser light from a conventional Fuji reader showed a linear relationship with irradiated dose up to 0.8 Gy, but then becoming non-linear. After fully erasing with visible light, unerasable latent images were read out using 635-nm semi-conductor laser light combined with a photon-counting detection system. The dose-response curve so obtained gave a further two orders of magnitude extending the dynamic range up to 80.7 Gy. Comprehensive results indicate that electrons supplied from deep centers to the F centers provided the extended dynamic range after the F centers became saturated. Based on these facts, a model of the excitation of deeply trapped electrons and PSL processes is proposed.

  13. How interactions between animal movement and landscape processes modify range dynamics and extinction risk

    Science.gov (United States)

    Range dynamics models now incorporate many of the mechanisms and interactions that drive species distributions. However, connectivity continues to be studied using overly simple distance-based dispersal models with little consideration of how the individual behavior of dispersin...

  14. Expanding the linear dynamic range for quantitative liquid chromatography-high resolution mass spectrometry utilizing natural isotopologue signals

    International Nuclear Information System (INIS)

    Liu, Hanghui; Lam, Lily; Yan, Lin; Chi, Bert; Dasgupta, Purnendu K.

    2014-01-01

    Highlights: • Less abundant isotopologue ions were utilized to decrease detector saturation. • A 25–50 fold increase in the upper limit of dynamic range was demonstrated. • Linear dynamic range was expanded without compromising mass resolution. - Abstract: The linear dynamic range (LDR) for quantitative liquid chromatography–mass spectrometry can be extended until ionization saturation is reached by using a number of target isotopologue ions in addition to the normally used target ion that provides the highest sensitivity. Less abundant isotopologue ions extend the LDR: the lower ion abundance decreases the probability of ion detector saturation. Effectively the sensitivity decreases and the upper limit of the LDR increases. We show in this paper that the technique is particularly powerful with a high resolution time of flight mass spectrometer because the data for all ions are automatically acquired, and we demonstrated this for four small organic molecules; the upper limits of LDRs increased by 25–50 times

  15. Dynamic range in BOLD modulation: lifespan aging trajectories and association with performance.

    Science.gov (United States)

    Kennedy, Kristen M; Boylan, Maria A; Rieck, Jenny R; Foster, Chris M; Rodrigue, Karen M

    2017-12-01

    Alteration of dynamic range of modulation to cognitive difficulty has been proposed as a salient predictor of cognitive aging. Here, we examine in 171 adults (aged 20-94 years) the effects of age on dynamic modulation of blood oxygenation-level dependent activation to difficulty in parametrically increasing working memory (WM) load (0-, 2-, 3-, and 4-back conditions). First, we examined parametric increases and decreases in activation to increasing WM load (positive modulation effect and negative modulation effect). Second, we examined the effect of age on modulation to difficulty (WM load) to identify regions that differed with age as difficulty increased (age-related positive and negative modulation effects). Weakened modulation to difficulty with age was found in both the positive modulation (middle frontal, superior/inferior parietal) and negative modulation effect (deactivated) regions (insula, cingulate, medial superior frontal, fusiform, and parahippocampal gyri, hippocampus, and lateral occipital cortex). Age-related alterations to positive modulation emerged later in the lifespan than negative modulation. Furthermore, these effects were significantly coupled in that greater upmodulation was associated with lesser downmodulation. Importantly, greater fronto-parietal upmodulation to difficulty and greater downmodulation of deactivated regions were associated with better task accuracy and upmodulation with better WM span measured outside the scanner. These findings suggest that greater dynamic range of modulation of activation to cognitive challenge is in service of current task performance, as well as generalizing to cognitive ability beyond the scanner task, lending support to its utility as a marker of successful cognitive aging. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Cochlear function tests in estimation of speech dynamic range.

    Science.gov (United States)

    Han, Jung Ju; Park, So Young; Park, Shi Nae; Na, Mi Sun; Lee, Philip; Han, Jae Sang

    2016-10-01

    The loss of active cochlear mechanics causes elevated thresholds, loudness recruitment, and reduced frequency selectivity. The problems faced by hearing-impaired listeners are largely related with reduced dynamic range (DR). The aim of this study was to determine which index of the cochlear function tests correlates best with the DR to speech stimuli. Audiological data on 516 ears with pure tone average (PTA) of ≤55 dB and word recognition score of ≥70% were analyzed. PTA, speech recognition threshold (SRT), uncomfortable loudness (UCL), and distortion product otoacoustic emission (DPOAE) were explored as the indices of cochlear function. Audiometric configurations were classified. Correlation between each index and the DR was assessed and multiple regression analysis was done. PTA and SRT demonstrated strong negative correlations with the DR (r = -0.788 and -0.860, respectively), while DPOAE sum was moderately correlated (r = 0.587). UCLs remained quite constant for the total range of the DR. The regression equation was Y (DR) = 75.238 - 0.719 × SRT (R(2 )=( )0.721, p equation.

  17. Regorafenib effects on human colon carcinoma xenografts monitored by dynamic contrast-enhanced computed tomography with immunohistochemical validation.

    Directory of Open Access Journals (Sweden)

    Clemens C Cyran

    Full Text Available To investigate dynamic contrast-enhanced computed tomography for monitoring the effects of regorafenib on experimental colon carcinomas in rats by quantitative assessments of tumor microcirculation parameters with immunohistochemical validation.Colon carcinoma xenografts (HT-29 implanted subcutaneously in female athymic rats (n = 15 were imaged at baseline and after a one-week treatment with regorafenib by dynamic contrast-enhanced computed tomography (128-slice dual-source computed tomography. The therapy group (n = 7 received regorafenib daily (10 mg/kg bodyweight. Quantitative parameters of tumor microcirculation (plasma flow, mL/100 mL/min, endothelial permeability (PS, mL/100 mL/min, and tumor vascularity (plasma volume, % were calculated using a 2-compartment uptake model. Dynamic contrast-enhanced computed tomography parameters were validated with immunohistochemical assessments of tumor microvascular density (CD-31, tumor cell apoptosis (TUNEL, and proliferation (Ki-67.Regorafenib suppressed tumor vascularity (15.7±5.3 to 5.5±3.5%; p<0.05 and tumor perfusion (12.8±2.3 to 8.8±2.9 mL/100 mL/min; p = 0.063. Significantly lower microvascular density was observed in the therapy group (CD-31; 48±10 vs. 113±25, p<0.05. In regorafenib-treated tumors, significantly more apoptotic cells (TUNEL; 11844±2927 vs. 5097±3463, p<0.05 were observed. Dynamic contrast-enhanced computed tomography tumor perfusion and tumor vascularity correlated significantly (p<0.05 with microvascular density (CD-31; r = 0.84 and 0.66 and inversely with apoptosis (TUNEL; r = -0.66 and -0.71.Regorafenib significantly suppressed tumor vascularity (plasma volume quantified by dynamic contrast-enhanced computed tomography in experimental colon carcinomas in rats with good-to-moderate correlations to an immunohistochemical gold standard. Tumor response biomarkers assessed by dynamic contrast-enhanced computed tomography may be a promising future

  18. Solitary pulmonary nodules: Comparison of dynamic first-pass contrast-enhanced perfusion area-detector CT, dynamic first-pass contrast-enhanced MR imaging, and FDG PET/CT.

    Science.gov (United States)

    Ohno, Yoshiharu; Nishio, Mizuho; Koyama, Hisanobu; Seki, Shinichiro; Tsubakimoto, Maho; Fujisawa, Yasuko; Yoshikawa, Takeshi; Matsumoto, Sumiaki; Sugimura, Kazuro

    2015-02-01

    To prospectively compare the capabilities of dynamic perfusion area-detector computed tomography (CT), dynamic magnetic resonance (MR) imaging, and positron emission tomography (PET) combined with CT (PET/CT) with use of fluorine 18 fluorodeoxyglucose (FDG) for the diagnosis of solitary pulmonary nodules. The institutional review board approved this study, and written informed consent was obtained from each subject. A total of 198 consecutive patients with 218 nodules prospectively underwent dynamic perfusion area-detector CT, dynamic MR imaging, FDG PET/CT, and microbacterial and/or pathologic examinations. Nodules were classified into three groups: malignant nodules (n = 133) and benign nodules with low (n = 53) or high (n = 32) biologic activity. Total perfusion was determined with dual-input maximum slope models at area-detector CT, maximum and slope of enhancement ratio at MR imaging, and maximum standardized uptake value (SUVmax) at PET/CT. Next, all indexes for malignant and benign nodules were compared with the Tukey honest significant difference test. Then, receiver operating characteristic analysis was performed for each index. Finally, sensitivity, specificity, and accuracy were compared with the McNemar test. All indexes showed significant differences between malignant nodules and benign nodules with low biologic activity (P Dynamic perfusion area-detector CT is more specific and accurate than dynamic MR imaging and FDG PET/CT in the diagnosis of solitary pulmonary nodules in routine clinical practice. © RSNA, 2014.

  19. Some connections between importance sampling and enhanced sampling methods in molecular dynamics.

    Science.gov (United States)

    Lie, H C; Quer, J

    2017-11-21

    In molecular dynamics, enhanced sampling methods enable the collection of better statistics of rare events from a reference or target distribution. We show that a large class of these methods is based on the idea of importance sampling from mathematical statistics. We illustrate this connection by comparing the Hartmann-Schütte method for rare event simulation (J. Stat. Mech. Theor. Exp. 2012, P11004) and the Valsson-Parrinello method of variationally enhanced sampling [Phys. Rev. Lett. 113, 090601 (2014)]. We use this connection in order to discuss how recent results from the Monte Carlo methods literature can guide the development of enhanced sampling methods.

  20. Using Dynamic Contrast-Enhanced Magnetic Resonance Imaging Data to Constrain a Positron Emission Tomography Kinetic Model: Theory and Simulations

    Directory of Open Access Journals (Sweden)

    Jacob U. Fluckiger

    2013-01-01

    Full Text Available We show how dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI data can constrain a compartmental model for analyzing dynamic positron emission tomography (PET data. We first develop the theory that enables the use of DCE-MRI data to separate whole tissue time activity curves (TACs available from dynamic PET data into individual TACs associated with the blood space, the extravascular-extracellular space (EES, and the extravascular-intracellular space (EIS. Then we simulate whole tissue TACs over a range of physiologically relevant kinetic parameter values and show that using appropriate DCE-MRI data can separate the PET TAC into the three components with accuracy that is noise dependent. The simulations show that accurate blood, EES, and EIS TACs can be obtained as evidenced by concordance correlation coefficients >0.9 between the true and estimated TACs. Additionally, provided that the estimated DCE-MRI parameters are within 10% of their true values, the errors in the PET kinetic parameters are within approximately 20% of their true values. The parameters returned by this approach may provide new information on the transport of a tracer in a variety of dynamic PET studies.

  1. Differentiation of recurrent breast cancer from radiation fibrosis with dynamic gadolinium-enhanced MR imaging

    International Nuclear Information System (INIS)

    Dao, T.H.; Campana, F.; Fourquet, A.; Rahmouni, A.

    1991-01-01

    This paper assesses the ability of dynamic gadolinium-enhanced MR imaging to differentiate radiation fibrosis from tumor recurrence of breast cancer after conservative treatment. Twenty-five women with previous breast cancer treated with radiation therapy underwent MR imaging examination. Tumor recurrence was suspected on palpation of masses (18 cases) or at mammography (7 cases). The MR imaging protocol was performed on a 0.5-T imager with a breast coil and included T1 and T2 spin-echo, short To inversion recovery (STIR), and dynamic gadolinium-enhanced T1-weighted sequenced to evaluate the hemokinetics of the lesion. Ratios of signal intensity of suspected lesions to that of fat, surrounding breast gland, and background noise were calculated. Percutaneous biopsies were performed in all cases after MR imaging. Curves of signal-to-noise ratio of recurrences (5 cases) showed an early enhancement within the first minutes after injection, although localized fibrosis (20 cases) was not significantly enhanced. T2 and STIR sequences were not contributive in differentiating fibrosis from tumor recurrence

  2. Fundamentals of quantitative dynamic contrast-enhanced MR imaging.

    Science.gov (United States)

    Paldino, Michael J; Barboriak, Daniel P

    2009-05-01

    Quantitative analysis of dynamic contrast-enhanced MR imaging (DCE-MR imaging) has the power to provide information regarding physiologic characteristics of the microvasculature and is, therefore, of great potential value to the practice of oncology. In particular, these techniques could have a significant impact on the development of novel anticancer therapies as a promising biomarker of drug activity. Standardization of DCE-MR imaging acquisition and analysis to provide more reproducible measures of tumor vessel physiology is of crucial importance to realize this potential. The purpose of this article is to review the pathophysiologic basis and technical aspects of DCE-MR imaging techniques.

  3. The dynamical mechanical properties of tungsten under compression at working temperature range of divertors

    International Nuclear Information System (INIS)

    Zhu, C.C.; Song, Y.T.; Peng, X.B.; Wei, Y.P.; Mao, X.; Li, W.X.; Qian, X.Y.

    2016-01-01

    In the divertor structure of ITER and EAST with mono-block module, tungsten plays not only a role of armor material but also a role of structural material, because electromagnetic (EM) impact will be exerted on tungsten components in VDEs or CQ. The EM loads can reach to 100 MN, which would cause high strain rates. In addition, directly exposed to high-temperature plasma, the temperature regime of divertor components is complex. Aiming at studying dynamical response of tungsten divertors under EM loads, an experiment on tungsten employed in EAST divertors was performed using a Kolsky bar system. The testing strain rates and temperatures is derived from actual working conditions, which makes the constitutive equation concluded by using John-Cook model and testing data very accurate and practical. The work would give a guidance to estimate the dynamical response, fatigue life and damage evolution of tungsten divertor components under EM impact loads. - Graphical abstract: From the comparison between the experimental curves and the predicted curves calculated by adopting the corrected m, it is very clear that the new model is of great capability to explain the deformation behavior of the tungsten material under dynamic compression at high temperatures. (EC, PC and PCM refers to experimental curve, predicted curve and predicted curve with a corrected m. Different colors represent different scenarios.). - Highlights: • Test research on dynamic properties of tungsten at working temperature range and strain rate range of divertors. • Constitutive equation descrbing strain hardening, strain rate hardening and temperature softening. • A guidance to estimate dynamical response and damage evolution of tungsten divertor components under impact.

  4. Diagnositc value of 3D-gradient echo dynamic contrast enhanced MRI in breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ik; Chung, Soo Young; Park, Hai Jung; Lee, Yul; Chung, Bong Wha; Shim, Jeong Won [Hallym Univ. College of Medicine, Seoul (Korea, Republic of)

    1997-10-01

    To assess the usefulness of 3D-gradient echo dynamic contrast enhanced MRI (3D-DMRI) in the diagnosis of breast cancer and to determine the most useful parameter for this diagnosis. Using a 1.0T MR unit, (Magnetom, Siemens, Erlaugen, Germany), 3D-DMRI (TR/TE=3D30/12) with Gd-DTPA was performed in 38 cases of breast cancer, 22 of fibroadenoma, and in three normal volunteers. We retrospectively evaluated the findings according to the speed on dynamic study and maximal amount of contrast enhancement during the delayed phase;we calculated the contrast index and morphology of the cancers and compared diagnostic accuracy among these three diagnostic parameters. On conventional spin-echo T1-and T2-weighted images, there was no significant difference of signal intensity between benign fibroadenoma and breast carcinoma. Rapid contrast enhancement (within one minute) was noted in 35 breast cancer lesions (92.1%), but relatively low and slow contrast enhancement (after five minutes) was noted in three such lesions (7.9%). Gradual contrast enhancement was noted in 21 lesions of fibroadenoma(95.5%), but a moderate degree of rapid contrast enhancement (from three to five minutes) was noted in the other case (7.9%). of On the delayed enhanced phase of 3D-DMRI, the maximal amount of contrast enhancement showed no significant difference between fibroadenoma and cancer. On 3D-DMRI, an irregular, spiculated border, with high contrast enhancement was noted in all cases of breast cancer, in particular, irregular thick peripheral contrast enhancement with central necrosis was noted 11cases(28.9%). For the diagnosis of breast cancer, 3D-DMRI is a useful technique. Among the diagnostic criteria of speed, maximal amount of contrast enhancement and morphology, morphologic change after contrast enhancement study was the most useful diagnostic parameter.=20.

  5. Diagnositc value of 3D-gradient echo dynamic contrast enhanced MRI in breast cancer

    International Nuclear Information System (INIS)

    Yang, Ik; Chung, Soo Young; Park, Hai Jung; Lee, Yul; Chung, Bong Wha; Shim, Jeong Won

    1997-01-01

    To assess the usefulness of 3D-gradient echo dynamic contrast enhanced MRI (3D-DMRI) in the diagnosis of breast cancer and to determine the most useful parameter for this diagnosis. Using a 1.0T MR unit, (Magnetom, Siemens, Erlaugen, Germany), 3D-DMRI (TR/TE=3D30/12) with Gd-DTPA was performed in 38 cases of breast cancer, 22 of fibroadenoma, and in three normal volunteers. We retrospectively evaluated the findings according to the speed on dynamic study and maximal amount of contrast enhancement during the delayed phase;we calculated the contrast index and morphology of the cancers and compared diagnostic accuracy among these three diagnostic parameters. On conventional spin-echo T1-and T2-weighted images, there was no significant difference of signal intensity between benign fibroadenoma and breast carcinoma. Rapid contrast enhancement (within one minute) was noted in 35 breast cancer lesions (92.1%), but relatively low and slow contrast enhancement (after five minutes) was noted in three such lesions (7.9%). Gradual contrast enhancement was noted in 21 lesions of fibroadenoma(95.5%), but a moderate degree of rapid contrast enhancement (from three to five minutes) was noted in the other case (7.9%). of On the delayed enhanced phase of 3D-DMRI, the maximal amount of contrast enhancement showed no significant difference between fibroadenoma and cancer. On 3D-DMRI, an irregular, spiculated border, with high contrast enhancement was noted in all cases of breast cancer, in particular, irregular thick peripheral contrast enhancement with central necrosis was noted 11cases(28.9%). For the diagnosis of breast cancer, 3D-DMRI is a useful technique. Among the diagnostic criteria of speed, maximal amount of contrast enhancement and morphology, morphologic change after contrast enhancement study was the most useful diagnostic parameter.=20

  6. Diagnostic value of dynamic contrast-enhanced MRI for submucosal palatal tumors

    International Nuclear Information System (INIS)

    Matsuzaki, Hidenobu; Yanagi, Yoshinobu; Hara, Marina; Katase, Naoki; Hisatomi, Miki; Unetsubo, Teruhisa; Konouchi, Hironobu; Takenobu, Toshihiko

    2012-01-01

    Objectives: To evaluate the diagnostic value of dynamic contrast-enhanced MRI (DCE-MRI) for differentiating between benign and malignant tumors in the palate. Materials and methods: 26 patients with submucosal palatal tumors were preoperatively examined using DCE-MRI. Their maximum contrast index (CImax), time of CImax (Tmax), and washout ratios (WR300 and WR600) were determined from contrast index curves. The submucosal palatal tumors were divided into two groups according to their Tmax values: the early enhancement group (Tmax 2 = 0.92, P < 0.001). Conclusions: Tmax is a useful parameter for distinguishing between benign and malignant submucosal palatal tumors.

  7. Smartphone-based accelerometry is a valid tool for measuring dynamic changes in knee extension range of motion

    DEFF Research Database (Denmark)

    Støve, Morten Pallisgaard; Palsson, Thorvaldur Skuli; Hirata, Rogerio Pessoto

    2018-01-01

    Introduction: Measurement of static joint range of motion is used extensively in orthopaedic and rehabilitative communities to benchmark treatment efficacy. Static measures are, however, insufficient in providing detailed information about patient impairments. Dynamic range of motion measures cou...

  8. Dynamic contrast enhancement in widefield microscopy using projector-generated illumination patterns

    International Nuclear Information System (INIS)

    Samson, Edward Carlo; Blanca, Carlo Mar

    2007-01-01

    We present a simple and cost-effective optical protocol to realize contrast-enhancement imaging (such as dark-field, optical-staining and oblique illumination microscopy) of transparent samples on a conventional widefield microscope using commercial multimedia projectors. The projector functions as both light source and mask generator implemented by creating slideshows of the filters projected along the illumination planes of the microscope. The projected optical masks spatially modulate the distribution of the incident light to selectively enhance structures within the sample according to spatial frequency thereby increasing the image contrast of translucent biological specimens. Any amplitude filter can be customized and dynamically controlled so that switching from one imaging modality to another involves a simple slide transition and can be executed at a keystroke with no physical filters and no moving optical parts. The method yields an image contrast of 89-96% comparable with standard enhancement techniques. The polarization properties of the projector are then utilized to discriminate birefringent and non-birefringent sites on the sample using single-shot, simultaneous polarization and optical-staining microscopy. In addition to dynamic pattern generation and polarization, the projector also provides high illumination power and spectral excitation selectivity through its red-green-blue (RGB) channels. We exploit this last property to explore the feasibility of using video projectors to selectively excite stained samples and perform fluorescence imaging in tandem with reflectance and polarization reflectance microscopy

  9. When and where to move: Dynamic occupancy models explain the range dynamics of a food nomadic bird under climate and land cover change.

    Science.gov (United States)

    Kalle, Riddhika; Ramesh, Tharmalingam; Downs, Colleen T

    2018-01-01

    Globally, long-term research is critical to monitor the responses of tropical species to climate and land cover change at the range scale. Citizen science surveys can reveal the long-term persistence of poorly known nomadic tropical birds occupying fragmented forest patches. We applied dynamic occupancy models to 13 years (2002-2014) of citizen science-driven presence/absence data on Cape parrot (Poicephalus robustus), a food nomadic bird endemic to South Africa. We modeled its underlying range dynamics as a function of resource distribution, and change in climate and land cover through the estimation of colonization and extinction patterns. The range occupancy of Cape parrot changed little over time (ψ = 0.75-0.83) because extinction was balanced by recolonization. Yet, there was considerable regional variability in occupancy and detection probability increased over the years. Colonizations increased with warmer temperature and area of orchards, thus explaining their range shifts southeastwards in recent years. Although colonizations were higher in the presence of nests and yellowwood trees (Afrocarpus and Podocarpus spp.), the extinctions in small forest patches (≤227 ha) and during low precipitation (≤41 mm) are attributed to resource constraints and unsuitable climatic conditions. Loss of indigenous forest cover and artificial lake/water bodies increased extinction probabilities of Cape parrot. The land use matrix (fruit farms, gardens, and cultivations) surrounding forest patches provides alternative food sources, thereby facilitating spatiotemporal colonization and extinction in the human-modified matrix. Our models show that Cape parrots are vulnerable to extreme climatic conditions such as drought which is predicted to increase under climate change. Therefore, management of optimum sized high-quality forest patches is essential for long-term survival of Cape parrot populations. Our novel application of dynamic occupancy models to long-term citizen

  10. A design of an on-orbit radiometric calibration device for high dynamic range infrared remote sensors

    Science.gov (United States)

    Sheng, Yicheng; Jin, Weiqi; Dun, Xiong; Zhou, Feng; Xiao, Si

    2017-10-01

    With the demand of quantitative remote sensing technology growing, high reliability as well as high accuracy radiometric calibration technology, especially the on-orbit radiometric calibration device has become an essential orientation in term of quantitative remote sensing technology. In recent years, global launches of remote sensing satellites are equipped with innovative on-orbit radiometric calibration devices. In order to meet the requirements of covering a very wide dynamic range and no-shielding radiometric calibration system, we designed a projection-type radiometric calibration device for high dynamic range sensors based on the Schmidt telescope system. In this internal radiometric calibration device, we select the EF-8530 light source as the calibration blackbody. EF-8530 is a high emittance Nichrome (Ni-Cr) reference source. It can operate in steady or pulsed state mode at a peak temperature of 973K. The irradiance from the source was projected to the IRFPA. The irradiance needs to ensure that the IRFPA can obtain different amplitude of the uniform irradiance through the narrow IR passbands and cover the very wide dynamic range. Combining the internal on-orbit radiometric calibration device with the specially designed adaptive radiometric calibration algorithms, an on-orbit dynamic non-uniformity correction can be accomplished without blocking the optical beam from outside the telescope. The design optimizes optics, source design, and power supply electronics for irradiance accuracy and uniformity. The internal on-orbit radiometric calibration device not only satisfies a series of indexes such as stability, accuracy, large dynamic range and uniformity of irradiance, but also has the advantages of short heating and cooling time, small volume, lightweight, low power consumption and many other features. It can realize the fast and efficient relative radiometric calibration without shielding the field of view. The device can applied to the design and

  11. Histopathologic diversity of gastric cancers: Relationship between enhancement pattern on dynamic contrast-enhanced CT and histological type.

    Science.gov (United States)

    Tsurumaru, Daisuke; Miyasaka, Mitsutoshi; Muraki, Toshio; Nishie, Akihiro; Asayama, Yoshiki; Oki, Eiji; Oda, Yoshinao; Honda, Hiroshi

    2017-12-01

    To evaluate the diagnostic value of contrast-enhanced computed tomography gastrography (CE-CTG) to predict the histological type of gastric cancer. We analyzed 47 consecutive patients with resectable advanced gastric cancer preoperatively evaluated by multiphasic dynamic contrast-enhanced CT. Two radiologists independently reviewed the CT images and they determined the peak enhancement phase, and then measured the CT attenuation value of the gastric lesion for each phase. The histological types of gastric cancers were assigned to three groups as differentiated-type, undifferentiated-type, and mixed-type. We compared the peak enhancement phase of the three types and compared the CT attenuation values in each phase. The peak enhancement was significantly different between the three types of gastric cancers for both readers (reader 1, p=0.001; reader 2, p=0.009); most of the undifferentiated types had peak enhancement in the delayed phase. The CT attenuation values of undifferentiated type were significantly higher than those of differentiated or mixed type in the delayed phase according to both readers (reader 1, p=0.002; reader 2, p=0.004). CE-CTG could provide helpful information in diagnosing the histological type of gastric cancers preoperatively. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. High-dynamic-range coherent diffractive imaging: ptychography using the mixed-mode pixel array detector

    Energy Technology Data Exchange (ETDEWEB)

    Giewekemeyer, Klaus, E-mail: klaus.giewekemeyer@xfel.eu [European XFEL GmbH, Hamburg (Germany); Philipp, Hugh T. [Cornell University, Ithaca, NY (United States); Wilke, Robin N. [Georg-August-Universität Göttingen, Göttingen (Germany); Aquila, Andrew [European XFEL GmbH, Hamburg (Germany); Osterhoff, Markus [Georg-August-Universität Göttingen, Göttingen (Germany); Tate, Mark W.; Shanks, Katherine S. [Cornell University, Ithaca, NY (United States); Zozulya, Alexey V. [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Salditt, Tim [Georg-August-Universität Göttingen, Göttingen (Germany); Gruner, Sol M. [Cornell University, Ithaca, NY (United States); Cornell University, Ithaca, NY (United States); Kavli Institute of Cornell for Nanoscience, Ithaca, NY (United States); Mancuso, Adrian P. [European XFEL GmbH, Hamburg (Germany)

    2014-08-07

    The advantages of a novel wide dynamic range hard X-ray detector are demonstrated for (ptychographic) coherent X-ray diffractive imaging. Coherent (X-ray) diffractive imaging (CDI) is an increasingly popular form of X-ray microscopy, mainly due to its potential to produce high-resolution images and the lack of an objective lens between the sample and its corresponding imaging detector. One challenge, however, is that very high dynamic range diffraction data must be collected to produce both quantitative and high-resolution images. In this work, hard X-ray ptychographic coherent diffractive imaging has been performed at the P10 beamline of the PETRA III synchrotron to demonstrate the potential of a very wide dynamic range imaging X-ray detector (the Mixed-Mode Pixel Array Detector, or MM-PAD). The detector is capable of single photon detection, detecting fluxes exceeding 1 × 10{sup 8} 8-keV photons pixel{sup −1} s{sup −1}, and framing at 1 kHz. A ptychographic reconstruction was performed using a peak focal intensity on the order of 1 × 10{sup 10} photons µm{sup −2} s{sup −1} within an area of approximately 325 nm × 603 nm. This was done without need of a beam stop and with a very modest attenuation, while ‘still’ images of the empty beam far-field intensity were recorded without any attenuation. The treatment of the detector frames and CDI methodology for reconstruction of non-sensitive detector regions, partially also extending the active detector area, are described.

  13. Evaluating automated dynamic contrast enhanced wrist 3T MRI in healthy volunteers

    DEFF Research Database (Denmark)

    Rastogi, Anshul; Kubassova, Olga; Krasnosselskaia, Lada V

    2013-01-01

    Dynamic contrast enhanced (DCE)-MRI has great potential to provide quantitative measure of inflammatory activity in rheumatoid arthritis. There is no current benchmark to establish the stability of signal in the joints of healthy subjects when imaged with DCE-MRI longitudinally, which is crucial so...

  14. Metastability and avalanche dynamics in strongly correlated gases with long-range interactions

    Science.gov (United States)

    Hruby, Lorenz; Dogra, Nishant; Landini, Manuele; Donner, Tobias; Esslinger, Tilman

    2018-03-01

    We experimentally study the stability of a bosonic Mott insulator against the formation of a density wave induced by long-range interactions and characterize the intrinsic dynamics between these two states. The Mott insulator is created in a quantum degenerate gas of 87-Rubidium atoms, trapped in a 3D optical lattice. The gas is located inside and globally coupled to an optical cavity. This causes interactions of global range, mediated by photons dispersively scattered between a transverse lattice and the cavity. The scattering comes with an atomic density modulation, which is measured by the photon flux leaking from the cavity. We initialize the system in a Mott-insulating state and then rapidly increase the global coupling strength. We observe that the system falls into either of two distinct final states. One is characterized by a low photon flux, signaling a Mott insulator, and the other is characterized by a high photon flux, which we associate with a density wave. Ramping the global coupling slowly, we observe a hysteresis loop between the two states—a further signature of metastability. A comparison with a theoretical model confirms that the metastability originates in the competition between short- and global-range interactions. From the increasing photon flux monitored during the switching process, we find that several thousand atoms tunnel to a neighboring site on the timescale of the single-particle dynamics. We argue that a density modulation, initially forming in the compressible surface of the trapped gas, triggers an avalanche tunneling process in the Mott-insulating region.

  15. Sensitivity Enhancement of FBG-Based Strain Sensor.

    Science.gov (United States)

    Li, Ruiya; Chen, Yiyang; Tan, Yuegang; Zhou, Zude; Li, Tianliang; Mao, Jian

    2018-05-17

    A novel fiber Bragg grating (FBG)-based strain sensor with a high-sensitivity is presented in this paper. The proposed FBG-based strain sensor enhances sensitivity by pasting the FBG on a substrate with a lever structure. This typical mechanical configuration mechanically amplifies the strain of the FBG to enhance overall sensitivity. As this mechanical configuration has a high stiffness, the proposed sensor can achieve a high resonant frequency and a wide dynamic working range. The sensing principle is presented, and the corresponding theoretical model is derived and validated. Experimental results demonstrate that the developed FBG-based strain sensor achieves an enhanced strain sensitivity of 6.2 pm/με, which is consistent with the theoretical analysis result. The strain sensitivity of the developed sensor is 5.2 times of the strain sensitivity of a bare fiber Bragg grating strain sensor. The dynamic characteristics of this sensor are investigated through the finite element method (FEM) and experimental tests. The developed sensor exhibits an excellent strain-sensitivity-enhancing property in a wide frequency range. The proposed high-sensitivity FBG-based strain sensor can be used for small-amplitude micro-strain measurement in harsh industrial environments.

  16. An integrate-over-temperature approach for enhanced sampling.

    Science.gov (United States)

    Gao, Yi Qin

    2008-02-14

    A simple method is introduced to achieve efficient random walking in the energy space in molecular dynamics simulations which thus enhances the sampling over a large energy range. The approach is closely related to multicanonical and replica exchange simulation methods in that it allows configurations of the system to be sampled in a wide energy range by making use of Boltzmann distribution functions at multiple temperatures. A biased potential is quickly generated using this method and is then used in accelerated molecular dynamics simulations.

  17. A wide dynamic range BF3 neutron monitor with front-end electronics based on a logarithmic amplifier

    International Nuclear Information System (INIS)

    Ferrarini, M.; Varoli, V.; Favalli, A.; Caresana, M.; Pedersen, B.

    2010-01-01

    This paper describes a wide dynamic range neutron monitor based on a BF 3 neutron detector. The detector is used in current mode, and front-end electronics based on a logarithmic amplifier are used in order to have a measurement capability ranging over many orders of magnitude. The system has been calibrated at the Polytechnic of Milan, CESNEF, with an AmBe neutron source, and has been tested in a pulsed field at the PUNITA facility at JRC, Ispra. The detector has achieved a dynamic range of over 6 orders of magnitude, being able to measure single neutron pulses and showing saturation-free response for a reaction rate up to 10 6 s -1 . It has also proved effective in measuring the PUNITA facility pulse integral fluence.

  18. Short-Range Electron Transfer in Reduced Flavodoxin: Ultrafast Nonequilibrium Dynamics Coupled with Protein Fluctuations.

    Science.gov (United States)

    Kundu, Mainak; He, Ting-Fang; Lu, Yangyi; Wang, Lijuan; Zhong, Dongping

    2018-05-03

    Short-range electron transfer (ET) in proteins is an ultrafast process on the similar timescales as local protein-solvent fluctuations thus the two dynamics are coupled. Here, we use semiquinone flavodoxin and systematically characterized the photoinduced redox cycle with eleven mutations of different aromatic electron donors (tryptophan and tyrosine) and local residues to change redox properties. We observed the forward and backward ET dynamics in a few picoseconds, strongly following a stretched behavior resulting from a coupling between local environment relaxations and these ET processes. We further observed the hot vibrational-state formation through charge recombination and the subsequent cooling dynamics also in a few picoseconds. Combined with the ET studies in oxidized flavodoxin, these results coherently reveal the evolution of the ET dynamics from single to stretched exponential behaviors and thus elucidate critical timescales for the coupling. The observed hot vibration-state formation is robust and should be considered in all photoinduced back ET processes in flavoproteins.

  19. Low Parametric Sensitivity Realizations with relaxed L2-dynamic-range-scaling constraints

    OpenAIRE

    Hilaire , Thibault

    2009-01-01

    This paper presents a new dynamic-range scaling for the implementation of filters/controllers in state-space form. Relaxing the classical L2-scaling constraints by specific fixed-point considerations allows for a higher degree of freedom for the optimal L2-parametric sensitivity problem. However, overflows in the implementation are still prevented. The underlying constrained problem is converted into an unconstrained problem for which a solution can be provided. This leads to realizations whi...

  20. The Permeability Enhancing Mechanism of DMSO in Ceramide Bilayers Simulated by Molecular Dynamics

    Science.gov (United States)

    Notman, Rebecca; den Otter, Wouter K.; Noro, Massimo G.; Briels, W. J.; Anwar, Jamshed

    2007-01-01

    The lipids of the topmost layer of the skin, the stratum corneum, represent the primary barrier to molecules penetrating the skin. One approach to overcoming this barrier for the purpose of delivery of active molecules into or via the skin is to employ chemical permeability enhancers, such as dimethylsulfoxide (DMSO). How these molecules exert their effect at the molecular level is not understood. We have investigated the interaction of DMSO with gel-phase bilayers of ceramide 2, the predominant lipid in the stratum corneum, by means of molecular dynamics simulations. The simulations satisfactorily reproduce the phase behavior and the known structural parameters of ceramide 2 bilayers in water. The effect of DMSO on the gel-phase bilayers was investigated at various concentrations over the range 0.0−0.6 mol fraction DMSO. The DMSO molecules accumulate in the headgroup region and weaken the lateral forces between the ceramides. At high concentrations of DMSO (≥0.4 mol fraction), the ceramide bilayers undergo a phase transition from the gel phase to the liquid crystalline phase. The liquid-crystalline phase of ceramides is expected to be markedly more permeable to solutes than the gel phase. The results are consistent with the experimental evidence that high concentrations of DMSO fluidize the stratum corneum lipids and enhance permeability. PMID:17513383

  1. Configurable Electronics with Low Noise and 14-bit Dynamic Range for Photodiode-based Photon Detectors

    CERN Document Server

    Müller, H; Yin, Z; Zhou, D; Cao, X; Li, Q; Liu, Y; Zou, F; Skaali, B; Awes, T C

    2006-01-01

    We describe the principles and measured performance characteristics of custom configurable 32-channel shaper/digitizer Front End Electronics (FEE) cards with 14-bit dynamic range for use with gain-adjustable photon detectors. The electronics has been designed for the PHOS calorimeter of ALICE with avalanche photodiode (APD) readout operated at -25 C ambient temperature and a signal shaping time of $1 {\\mu}s$. The electronics has also been adopted by the EMCal detector of ALICE with the same APD readout, but operated at an ambient temperature of +20 C and with a shaping time of 100ns. The CR-RC2 signal shapers on the FEE cards are implemented in discrete logic on a 10-layer board with two shaper sections for each input channel. The two shaper sections with gain ratio of 16:1 are digitized by 10-bit ADCs and provide an effective dynamic range of 14 bits. Gain adjustment for each individual APD is available through 32 bias voltage control registers of 10-bit range. The fixed gains and shaping times of the pole-z...

  2. Centrifugal (inside-out) enhancement of liver hemangiomas: A possible atypical appearance on contrast-enhanced US

    International Nuclear Information System (INIS)

    Bartolotta, Tommaso Vincenzo; Taibbi, Adele; Galia, Massimo; Lo Re, Giuseppe; La Grutta, Ludovico; Grassi, Roberto; Midiri, Massimo

    2007-01-01

    Objective: To report the prevalence and to describe the atypical centrifugal (inside-out) appearance of contrast-enhancement of liver hemangiomas on contrast-enhanced sonography. Materials and methods: Baseline and SonoVue-enhanced ultrasonography of 92 patients with 158 liver hemangiomas - considered atypical at grey-scale examination and confirmed by computed tomography, magnetic resonance imaging and ultrasound follow-up - were reviewed in consensus by two experienced radiologists, who evaluated baseline echogenicity and the dynamic enhancement pattern of each lesion looking for the presence of central enhancing foci in the arterial phase followed by a centrifugal (inside-out) enhancement in the portal-venous and late phases. Results: After administration of SonoVue, 12/158 hemangiomas (7.6%) (size range: 1-7 cm; mean: 3.2 cm) in seven patients (5 women, 2 men; age range: 34-71 years, mean: 50.8 years) showed a central enhancing focus in the arterial phase followed by a centrifugal enhancement in the portal-venous and late phases. In all cases centrifugal enhancement was incomplete at contrast-enhanced sonography, whereas computed tomography and/or magnetic resonance imaging were able to depict a complete and homogeneous fill-in. Conclusion: Radiologist should be aware that centrifugal (inside-out) appearance on contrast-enhanced sonography is a rare but possible feature of liver hemangioma

  3. Centrifugal (inside-out) enhancement of liver hemangiomas: A possible atypical appearance on contrast-enhanced US

    Energy Technology Data Exchange (ETDEWEB)

    Bartolotta, Tommaso Vincenzo [Department of Radiology, University of Palermo, Via Del Vespro 127, 90127 Palermo (Italy)], E-mail: tv.bartolotta@unipa.it; Taibbi, Adele [Department of Radiology, University of Palermo, Via Del Vespro 127, 90127 Palermo (Italy)], E-mail: taibbi_adele@yahoo.it; Galia, Massimo [Department of Radiology, University of Palermo, Via Del Vespro 127, 90127 Palermo (Italy)], E-mail: mgalia@yahoo.com; Lo Re, Giuseppe [Department of Radiology, University of Palermo, Via Del Vespro 127, 90127 Palermo (Italy)], E-mail: giuseppe.lore12@tin.it; La Grutta, Ludovico [Department of Radiology, University of Palermo, Via Del Vespro 127, 90127 Palermo (Italy)], E-mail: lagrutta@mbox.infcom.it; Grassi, Roberto [Institute of Radiology, Second University of Naples, Piazza Miraglia, 80138 Naples (Italy)], E-mail: roberto.grassi@libero.it; Midiri, Massimo [Department of Radiology, University of Palermo, Via Del Vespro 127, 90127 Palermo (Italy)], E-mail: mmidiri@hotmail.com

    2007-12-15

    Objective: To report the prevalence and to describe the atypical centrifugal (inside-out) appearance of contrast-enhancement of liver hemangiomas on contrast-enhanced sonography. Materials and methods: Baseline and SonoVue-enhanced ultrasonography of 92 patients with 158 liver hemangiomas - considered atypical at grey-scale examination and confirmed by computed tomography, magnetic resonance imaging and ultrasound follow-up - were reviewed in consensus by two experienced radiologists, who evaluated baseline echogenicity and the dynamic enhancement pattern of each lesion looking for the presence of central enhancing foci in the arterial phase followed by a centrifugal (inside-out) enhancement in the portal-venous and late phases. Results: After administration of SonoVue, 12/158 hemangiomas (7.6%) (size range: 1-7 cm; mean: 3.2 cm) in seven patients (5 women, 2 men; age range: 34-71 years, mean: 50.8 years) showed a central enhancing focus in the arterial phase followed by a centrifugal enhancement in the portal-venous and late phases. In all cases centrifugal enhancement was incomplete at contrast-enhanced sonography, whereas computed tomography and/or magnetic resonance imaging were able to depict a complete and homogeneous fill-in. Conclusion: Radiologist should be aware that centrifugal (inside-out) appearance on contrast-enhanced sonography is a rare but possible feature of liver hemangioma.

  4. Improvement of Lambert-Beer law dynamic range by the use of temporal gates on transmitted light pulse through a scattering medium

    International Nuclear Information System (INIS)

    Yoshino, Hironori; Wada, Kenji; Horinaka, Hiromichi; Cho, Yoshio; Umeda, Tokuo; Osawa, Masahiko.

    1995-01-01

    The Lambert-Beer law holding for pulsed lights transmitted through a scattering medium was examined using a streak camera. The Lambert-Beer law dynamic range is found to be limited by floor levels that are caused by scattered photons and are controllable by the use of a temporal gate on the transmitted pulse. The dynamic range improvement obtained for a scattering medium of 2.8 cm -1 scattering coefficient of a thickness of 80 mm by a temporal gate of 60 ps was as much as 50 dB and the Lambert-Beer law dynamic rang reached to 140 dB. (author)

  5. Dynamic contrast enhanced MRI in the differential diagnosis of adrenal adenomas and malignant adrenal masses

    International Nuclear Information System (INIS)

    Inan, Nagihan; Arslan, Arzu; Akansel, Gur; Anik, Yonca; Balci, N. Cem; Demirci, Ali

    2008-01-01

    Objective: To evaluate the value of dynamic MR imaging in the differential diagnosis of adrenal adenomas and malignant tumors, especially in cases with atypical adenomas. Materials and methods: Sixty-four masses (48 adenomas, 16 malignant tumors) were included in this prospective study. Signal loss of masses was evaluated using chemical shift MR imaging. Five dynamic series of T1-weighted spoiled gradient echo (FFE) images were obtained, with the acquisition starting simultaneously with i.v. contrast administration (0-100 s) followed by a T1-weighted FFE sequence in the late phase (5th minute). Contrast enhancement patterns in the early (25th second) and late (5th minute) phase images were evaluated. For the quantitative evaluation, signal intensity (SI)-time curves were obtained according to the SIs on the 0th, 25th, 50th 75th and 100th second. Also, the wash-in rate, maximum relative enhancement, time-to-peak, and wash-out of contrast at 100 s of masses in both groups were calculated. The statistical significance was determined by Mann-Whitney U test. To evaluate the diagnostic performance of the quantitative tests, receiver operating characteristic (ROC) analysis was performed. Results: Chemical shift MR imaging was able to differentiate 44 out of 48 adenomas (91.7%) from non-adenomas. The 4 adenomas (8.3%) which could not be differentiated from non-adenomas by this technique did not exhibit signal loss on out-of-phase images. With a cut-off value of 30, SI indices of adenomas had a sensitivity of 93.8%, specificity of 100% and a positive predictive value of 100%. On visual evaluation of dynamic MR imaging, early phase contrast enhancement patterns were homogeneous in 75% and punctate in 20,83% of the adenomas; while patchy in 56.25% and peripheral in 25% of the malignant tumors. On the late phase images 58.33% of the adenomas showed peripheral ring-shaped enhancement and 10.41% showed heterogeneous enhancement. All of the malignant masses showed heterogeneous

  6. Dynamic multidetector CT and non-contrast-enhanced MR for right adrenal vein imaging: comparison with catheter venography in adrenal venous sampling

    Energy Technology Data Exchange (ETDEWEB)

    Ota, Hideki; Seiji, Kazumasa; Kawabata, Masahiro; Satani, Nozomi; Matsuura, Tomonori; Tominaga, Junya; Takase, Kei [Tohoku University Hospital, Department of Diagnostic Radiology, Sendai (Japan); Omata, Kei; Ono, Yoshikiyo; Iwakura, Yoshitsugu; Morimoto, Ryo; Kudo, Masataka; Satoh, Fumitoshi; Ito, Sadayoshi [Tohoku University Hospital, Division of Nephrology, Endocrinology and Vascular Medicine, Sendai (Japan)

    2016-03-15

    To evaluate visualization of the right adrenal vein (RAV) with multidetector CT and non-contrast-enhanced MR imaging in patients with primary aldosteronism. A total of 125 patients (67 men) scheduled for adrenal venous sampling (AVS) were included. Dynamic 64-detector-row CT and balanced steady-state free precession-based non-contrast-enhanced 3-T MR imaging were performed. RAV visualization based on a four-point score was documented. Both anatomical location and variation on cross-sectional imaging were evaluated, and the findings were compared with catheter venography as the gold standard. The RAV was visualized in 93.2 % by CT and 84.8 % by MR imaging (p = 0.02). Positive predictive values of RAV visualization were 100 % for CT and 95.2 % for MR imaging. Imaging score was significantly higher in CT than MR imaging (p < 0.01). The RAV formed a common trunk with an accessory hepatic vein in 16 % of patients. The RAV orifice level on cross-sectional imaging was concordant with catheter venography within the range of 1/3 vertebral height in >70 % of subjects. Success rate of AVS was 99.2 %. Dynamic CT is a reliable way to map the RAV prior to AVS. Non-contrast-enhanced MR imaging is an alternative when there is a risk of complication from contrast media or radiation exposure. (orig.)

  7. An Integrated Tone Mapping for High Dynamic Range Image Visualization

    Science.gov (United States)

    Liang, Lei; Pan, Jeng-Shyang; Zhuang, Yongjun

    2018-01-01

    There are two type tone mapping operators for high dynamic range (HDR) image visualization. HDR image mapped by perceptual operators have strong sense of reality, but will lose local details. Empirical operators can maximize local detail information of HDR image, but realism is not strong. A common tone mapping operator suitable for all applications is not available. This paper proposes a novel integrated tone mapping framework which can achieve conversion between empirical operators and perceptual operators. In this framework, the empirical operator is rendered based on improved saliency map, which simulates the visual attention mechanism of the human eye to the natural scene. The results of objective evaluation prove the effectiveness of the proposed solution.

  8. Dynamic contrast-enhanced MRI examination of atherosclerotic plaques: an animal study using rabbit model

    International Nuclear Information System (INIS)

    Li Mingli; Sun Jie; Chang Xiaoyan; Jin Zhengyu

    2011-01-01

    Objective: The enhanced patterns of atherosclerotic plaque on dynamic contrast- enhanced MRI have not been well studied. The aim of this study was to explore the patterns of plaque enhancement and their underlying mechanism by using dynamic contrast-enhanced MRI (DCE-MRI). Methods: Atherosclerotic plaques were induced in the aorta of 12 New Zealand White rabbits by a combination of endothelial denudation and high-cholesterol diet. Ten to sixteen weeks after surgery, DCE- MRI was performed with a fast spin echo T 1 weighted sequence. Thirty-five phases of images were obtained at 71-second intervals. Gd-DTPA was injected coincident with the third scan via marginal ear vein. Specimens were harvested within 12 hours after imaging for HE staining and CD31 immunohistochemical staining which was used to highlight neo-vessels. Plaque enhancement patterns were studied and compared with histological findings. Signal intensity of each plaque section was normalized to pre-contrast signal intensity of psoas muscle, after which signal intensity versus time curve was drawn. Pearson correlation coefficient was used to reveal association between histological neo-vessel count and descriptive parameters derived from signal intensity versus time curve. Results: Plaques were significantly enhanced by Gd-DTPA. Enhancement patterns could be described as 'fast-in and slow-out'. Differences in patterns of enhancement were observed between tissues, with fibrous tissue enhanced more than lipid aggregation and leukocyte foci. Peak enhancement (1.05±0.30), initial slope (0.82±0.28) and area under the curve at early phase (4.97± 1.67) derived from signal intensity-time curve had significant correlations with neo-vessel count (117.7± 93.3) (r=0.553, 0.468, 0.554 respectively, P<0.05). Conclusions: The enhanced patterns of atherosclerotic plaque by Gd-DTPA were 'fast- in and slow-out'. Neovascularization, increased endothelial permeability and extracellular matrix may be the reasons for

  9. Markov Processes: Exploring the Use of Dynamic Visualizations to Enhance Student Understanding

    Science.gov (United States)

    Pfannkuch, Maxine; Budgett, Stephanie

    2016-01-01

    Finding ways to enhance introductory students' understanding of probability ideas and theory is a goal of many first-year probability courses. In this article, we explore the potential of a prototype tool for Markov processes using dynamic visualizations to develop in students a deeper understanding of the equilibrium and hitting times…

  10. Dynamic range of atomically thin vibrating nanomechanical resonators

    International Nuclear Information System (INIS)

    Wang, Zenghui; Feng, Philip X.-L.

    2014-01-01

    Atomically thin two-dimensional (2D) crystals offer attractive properties for making resonant nanoelectromechanical systems (NEMS) operating at high frequencies. While the fundamental limits of linear operation in such systems are important, currently there is very little quantitative knowledge of the linear dynamic range (DR) and onset of nonlinearity in these devices, which are different than in conventional 1D NEMS such as nanotubes and nanowires. Here, we present theoretical analysis and quantitative models that can be directly used to predict the DR of vibrating 2D circular drumhead NEMS resonators. We show that DR has a strong dependence ∝10log(E Y 3/2 ρ 3D -1/2 rtε 5/2 ) on device parameters, in which strain ε plays a particularly important role in these 2D systems, dominating over dimensions (radius r, thickness t). This study formulizes the effects from device physical parameters upon DR and sheds light on device design rules toward achieving high DR in 2D NEMS vibrating at radio and microwave frequencies

  11. Dynamic gadolinium-enhanced MRI evaluation of porcine femoral head ischemia and reperfusion

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, T. [Clinic for Orthopaedics and Sports Traumatology, Dreifaltigkeits-Krankenhaus GmbH, Aachener Str. 445-449, 50933 Koeln (Germany); Drescher, W. [Department of Orthopaedics, Christian Albrechts University, Kiel (Germany); Becker, C. [Department of Orthopaedics, Heinrich Heine University, Duesseldorf (Germany); Sangill, R.; Stoedkilde-Joergensen, H. [Institute for Magnetic Resonance Imaging Tomography, University of Aarhus, Skejby Hospital, Aarhus (Denmark); Heydthausen, M. [Computing Center, Heinrich Heine University, Duesseldorf (Germany); Hansen, E.S.; Buenger, C. [Spine Section, Department of Orthopaedics, University of Aarhus (Denmark)

    2003-02-01

    To examine the potential of gadolinium (Gd)-enhanced dynamic MRI in the detection of early femoral head ischemia. Furthermore, to apply a three-compartment model to achieve a clinically applicable MR index for femoral head perfusion during the steady state and arterial hip joint tamponade.Design and materials In a porcine model femoral head perfusion was measured by radioactive tracer microspheres and by using a dynamic Gd-enhanced MRI protocol. Femoral head perfusion measurements and MRI tests were performed unilaterally before, during and after the experimentally induced ischemia of one of the hip joints. Ischemia was induced by increasing intra-articular pressure to 250 mmHg. All pigs showed ischemia of the femoral head epiphysis under hip joint tamponade followed by reperfusion to the same level as before joint tamponade. In two cases perfusion after removal of tamponade continued to be low. In dynamic MRI measurements increases in signal intensity were seen after intravenous infusion of Gd-DTPA, followed by a slow decrease in signal intensity. The signal-intensity curve during femoral head ischemia had a minor increase. Also the coefficient determined was a helpful indicator of femoral head ischemia. Femoral head blood flow as measured by microspheres fell significantly under joint tamponade. Early detection of this disturbed regional blood flow was possible using a dynamic MRI procedure. A biomathematical model resulted from the evaluation of the intervals of signal intensity over time which allows detection of bone blood flow changes at a very early stage. Using this new method earlier detection of femoral head necrosis may be possible. (orig.)

  12. Dynamic range majority data structures

    DEFF Research Database (Denmark)

    Elmasry, Amr Ahmed Abd Elmoneim; He, Meng; Munro, J. Ian

    2011-01-01

    Given a set P of n coloured points on the real line, we study the problem of answering range α-majority (or "heavy hitter") queries on P. More specifically, for a query range Q, we want to return each colour that is assigned to more than an α-fraction of the points contained in Q. We present a ne...

  13. Image fusion for dynamic contrast enhanced magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Leach Martin O

    2004-10-01

    Full Text Available Abstract Background Multivariate imaging techniques such as dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI have been shown to provide valuable information for medical diagnosis. Even though these techniques provide new information, integrating and evaluating the much wider range of information is a challenging task for the human observer. This task may be assisted with the use of image fusion algorithms. Methods In this paper, image fusion based on Kernel Principal Component Analysis (KPCA is proposed for the first time. It is demonstrated that a priori knowledge about the data domain can be easily incorporated into the parametrisation of the KPCA, leading to task-oriented visualisations of the multivariate data. The results of the fusion process are compared with those of the well-known and established standard linear Principal Component Analysis (PCA by means of temporal sequences of 3D MRI volumes from six patients who took part in a breast cancer screening study. Results The PCA and KPCA algorithms are able to integrate information from a sequence of MRI volumes into informative gray value or colour images. By incorporating a priori knowledge, the fusion process can be automated and optimised in order to visualise suspicious lesions with high contrast to normal tissue. Conclusion Our machine learning based image fusion approach maps the full signal space of a temporal DCE-MRI sequence to a single meaningful visualisation with good tissue/lesion contrast and thus supports the radiologist during manual image evaluation.

  14. Characterization of breast masses by dynamic enhanced MR imaging. A logistic regression analysis

    International Nuclear Information System (INIS)

    Ikeda, O.; Morishita, S.; Kido, T.; Kitajima, M.; Yamashita, Y.; Takahashi, M.; Okamura, K.; Fukuda, S.

    1999-01-01

    Purpose: To identify features useful for differentiation between malignant and benign breast neoplasms using multivariate analysis of findings by MR imaging. Material and Methods: In a retrospective analysis, 61 patients with 64 breast masses underwent MR imaging and the time-signal intensity curves for precontrast dynamic postcontrast images were quantitatively analyzed. Statistical analysis was performed using a logistic regression model, which was prospectively tested in another 34 patients with suspected breast masses. Results: Univariate analysis revealed that the reliable indicators for malignancy were first the appearance of the tumor border, followed by the washout ratio, internal architecture after contrast enhancement, and peak time. The factors significantly associated with malignancy were irregular tumor border, followed by washout ratio, internal architecture, and peak time. For differentiation between benignity and malignancy, the maximum cut-off point was to be found between 0.47 and 0.51. In a prospective application of this model, 91% of the lesions were accurately discriminated as benign or malignant lesions. Conclusion: Combination of contrast-enhanced dynamic and postcontrast-enhanced MR imaging provided accurate data for the diagnosis of malignant neoplasms of the breast. The model had an accuracy of 91% (sensitivity 90%, specificity 93%). (orig.)

  15. The dynamic range of ultra-high-resolution cryogenic gamma-ray spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Shafinaz [Advanced Detector Group, Lawrence Livermore National Laboratory, 7000 East Avenue, L-270, Livermore, CA 94550 (United States); Terracol, Stephane F. [Advanced Detector Group, Lawrence Livermore National Laboratory, 7000 East Avenue, L-270, Livermore, CA 94550 (United States); Drury, Owen B. [Advanced Detector Group, Lawrence Livermore National Laboratory, 7000 East Avenue, L-270, Livermore, CA 94550 (United States); Friedrich, Stephan [Advanced Detector Group, Lawrence Livermore National Laboratory, 7000 East Avenue, L-270, Livermore, CA 94550 (United States)]. E-mail: friedrich1@llnl.gov

    2006-04-15

    We are developing high-resolution cryogenic gamma-ray spectrometers for nuclear science and non-proliferation applications. The gamma-ray detectors are composed of a bulk superconducting Sn foil absorber attached to a multilayer Mo/Cu transition-edge sensor (TES). The energy resolution of a detector with a 1x1x0.25 mm{sup 3} Sn absorber is 50-90 eV FWHM for {gamma}-rays up to 100 keV, and it decreases for larger absorbers. Here, we present the detector performance for different absorber volumes, and discuss the trade-offs between energy resolution and dynamic range.

  16. The Dynamic Range of Ultra-High Resolution Cryogenic Gamma-ray Spectrometers

    International Nuclear Information System (INIS)

    Ali, S; Terracol, S F; Drury, O B; Friedrich, S

    2005-01-01

    We are developing high-resolution cryogenic gamma-ray spectrometers for nuclear science and non-proliferation applications. The gamma-ray detectors are composed of a bulk superconducting Sn foil absorber attached to multilayer Mo/Cu transition-edge sensors (TES). The energy resolution achieved with a 1 x 1 x 0.25 mm 3 Sn absorber is 50 -90eV for γ-rays up to 100 keV and it decreases for large absorber sizes. We discuss the trade-offs between energy resolution and dynamic range, as well as development of TES arrays for higher count rates and better sensitivity

  17. Ultrafast carrier dynamics in bimetallic nanostructure-enhanced methylammonium lead bromide perovskites.

    Science.gov (United States)

    Zarick, Holly F; Boulesbaa, Abdelaziz; Puretzky, Alexander A; Talbert, Eric M; DeBra, Zachary R; Soetan, Naiya; Geohegan, David B; Bardhan, Rizia

    2017-01-26

    In this work, we examine the impact of hybrid bimetallic Au/Ag core/shell nanostructures on the carrier dynamics of methylammonium lead tribromide (MAPbBr 3 ) mesoporous perovskite solar cells (PSCs). Plasmon-enhanced PSCs incorporated with Au/Ag nanostructures demonstrated improved light harvesting and increased power conversion efficiency by 26% relative to reference devices. Two complementary spectral techniques, transient absorption spectroscopy (TAS) and time-resolved photoluminescence (trPL), were employed to gain a mechanistic understanding of plasmonic enhancement processes. TAS revealed a decrease in the photobleach formation time, which suggests that the nanostructures improve hot carrier thermalization to an equilibrium distribution, relieving hot phonon bottleneck in MAPbBr 3 perovskites. TAS also showed a decrease in carrier decay lifetimes, indicating that nanostructures enhance photoinduced carrier generation and promote efficient electron injection into TiO 2 prior to bulk recombination. Furthermore, nanostructure-incorporated perovskite films demonstrated quenching in steady-state PL and decreases in trPL carrier lifetimes, providing further evidence of improved carrier injection in plasmon-enhanced mesoporous PSCs.

  18. Contour junctions defined by dynamic image deformations enhance perceptual transparency.

    Science.gov (United States)

    Kawabe, Takahiro; Nishida, Shin'ya

    2017-11-01

    The majority of work on the perception of transparency has focused on static images with luminance-defined contour junctions, but recent work has shown that dynamic image sequences with dynamic image deformations also provide information about transparency. The present study demonstrates that when part of a static image is dynamically deformed, contour junctions at which deforming and nondeforming contours are connected facilitate the deformation-based perception of a transparent layer. We found that the impression of a transparent layer was stronger when a dynamically deforming area was adjacent to static nondeforming areas than when presented alone. When contour junctions were not formed at the dynamic-static boundaries, however, the impression of a transparent layer was not facilitated by the presence of static surrounding areas. The effect of the deformation-defined junctions was attenuated when the spatial pattern of luminance contrast at the junctions was inconsistent with the perceived transparency related to luminance contrast, while the effect did not change when the spatial luminance pattern was consistent with it. In addition, the results showed that contour completions across the junctions were required for the perception of a transparent layer. These results indicate that deformation-defined junctions that involve contour completion between deforming and nondeforming regions enhance the perception of a transparent layer, and that the deformation-based perceptual transparency can be promoted by the simultaneous presence of appropriately configured luminance and contrast-other features that can also by themselves produce the sensation of perceiving transparency.

  19. High Dynamic Range adaptive ΔΣ-based Focal Plane Array architecture

    KAUST Repository

    Yao, Shun

    2012-10-16

    In this paper, an Adaptive Delta-Sigma based architecture for High Dynamic Range (HDR) Focal Plane Arrays is presented. The noise shaping effect of the Delta-Sigma modulation in the low end, and the distortion noise induced in the high end of Photo-diode current were analyzed in detail. The proposed architecture can extend the DR for about 20N log2 dB at the high end of Photo-diode current with an N bit Up-Down counter. At the low end, it can compensate for the larger readout noise by employing Extended Counting. The Adaptive Delta-Sigma architecture employing a 4-bit Up-Down counter achieved about 160dB in the DR, with a Peak SNR (PSNR) of 80dB at the high end. Compared to the other HDR architectures, the Adaptive Delta-Sigma based architecture provides the widest DR with the best SNR performance in the extended range.

  20. Image Enhancement In HSI Space Using Wavelet Transform

    Science.gov (United States)

    Bansal, Sonia; Malhotra, Deepti

    2010-11-01

    Image processing modifies images to improve them (enhancement, restoration), extract information (analysis, recognition), and change their structure (composition, image editing). Image Enhancement is simple and most appealing area among all the digital image processing techniques. The main purpose of image enhancement is to bring out detail that is hidden in an image or to increase contrast in a low contrast image [1]. The color restoration functions of some real color image enhancement algorithms are greatly at random and not proved , and the real color images enhanced which are based on illumination-reflectance model have the loss of details and the `halos', we proposed a new algorithm to overcome these disadvantages. Firstly, we transform the real color image from RGB space to HSI space which is approximately orthonormal system. Secondly, the illumination and the reflectance of value are separated by homomorphic filtering based on illumination-reflectance model. We have discovered that the high dynamic range of image including high bright lights is mainly caused by the reflectance. Thirdly, the details of reflectance are preserved by wavelet transform. Fourthly, the dynamic range of reflectance is compressed by Butterworth filtering. Lastly, the energy of the saturation of real color image in HSI space is attenuated according to the spectral sensitivity of most human vision.

  1. A high sensitive 66 dB linear dynamic range receiver for 3-D laser radar

    Science.gov (United States)

    Ma, Rui; Zheng, Hao; Zhu, Zhangming

    2017-08-01

    This study presents a CMOS receiver chip realized in 0.18 μm standard CMOS technology and intended for high precision 3-D laser radar. The chip includes an adjustable gain transimpedance pre-amplifier, a post-amplifier and two timing comparators. An additional feedback is employed in the regulated cascode transimpedance amplifier to decrease the input impedance, and a variable gain transimpedance amplifier controlled by digital switches and analog multiplexer is utilized to realize four gain modes, extending the input dynamic range. The measurement shows that the highest transimpedance of the channel is 50 k {{Ω }}, the uncompensated walk error is 1.44 ns in a wide linear dynamic range of 66 dB (1:2000), and the input referred noise current is 2.3 pA/\\sqrt{{Hz}} (rms), resulting in a very low detectable input current of 1 μA with SNR = 5.

  2. Dynamic gadolinium-enhanced subtraction MR imaging - a simple technique for the early diagnosis of Legg-Calve-Perthes disease: preliminary results

    International Nuclear Information System (INIS)

    Sebag, G.; Ducou Le Pointe, H.; Klein, I.; Maiza, D.; Mazda, K.; Bensahel, H.; Hassan, M.

    1997-01-01

    To determine whether the simple technique of dynamic gadolinium-enhanced subtraction MR imaging, which is available on standard MR units, can detect ischemia of the femoral head in children with early Legg-Calve-Perthes disease (LCP). Bone perfusion of eight hips in four patients (mean age 7.5 years) was studied using dynamic gadolinium-enhanced substraction MR imaging at the onset of proven LCP (with initial negative plain films). Enhancement of subtracted images was compared with that on standard MR images and with bone scintigraphy findings. Subtraction MR imaging depicted ischemia as a widespread absence of enhancement and was in good agreement with bone scintigraphy. The subtraction technique improved the sensitivity and the specificity of MR imaging in two children. Furthermore, subtraction MR imaging allowed recognition of the pattern of early reperfusion. Our preliminary results indicate that dynamic gadolinium-enhanced subtraction MRI is a simple and promising means of early recognition of ischemia in LCP. (orig.)

  3. An improved contrast enhancement algorithm for infrared images based on adaptive double plateaus histogram equalization

    Science.gov (United States)

    Li, Shuo; Jin, Weiqi; Li, Li; Li, Yiyang

    2018-05-01

    Infrared thermal images can reflect the thermal-radiation distribution of a particular scene. However, the contrast of the infrared images is usually low. Hence, it is generally necessary to enhance the contrast of infrared images in advance to facilitate subsequent recognition and analysis. Based on the adaptive double plateaus histogram equalization, this paper presents an improved contrast enhancement algorithm for infrared thermal images. In the proposed algorithm, the normalized coefficient of variation of the histogram, which characterizes the level of contrast enhancement, is introduced as feedback information to adjust the upper and lower plateau thresholds. The experiments on actual infrared images show that compared to the three typical contrast-enhancement algorithms, the proposed algorithm has better scene adaptability and yields better contrast-enhancement results for infrared images with more dark areas or a higher dynamic range. Hence, it has high application value in contrast enhancement, dynamic range compression, and digital detail enhancement for infrared thermal images.

  4. HDR Pathological Image Enhancement Based on Improved Bias Field Correction and Guided Image Filter

    Directory of Open Access Journals (Sweden)

    Qingjiao Sun

    2016-01-01

    Full Text Available Pathological image enhancement is a significant topic in the field of pathological image processing. This paper proposes a high dynamic range (HDR pathological image enhancement method based on improved bias field correction and guided image filter (GIF. Firstly, a preprocessing including stain normalization and wavelet denoising is performed for Haematoxylin and Eosin (H and E stained pathological image. Then, an improved bias field correction model is developed to enhance the influence of light for high-frequency part in image and correct the intensity inhomogeneity and detail discontinuity of image. Next, HDR pathological image is generated based on least square method using low dynamic range (LDR image, H and E channel images. Finally, the fine enhanced image is acquired after the detail enhancement process. Experiments with 140 pathological images demonstrate the performance advantages of our proposed method as compared with related work.

  5. Gold nanoparticle assisted assembly of a heme protein for enhancement of long-range interfacial electron transfer

    DEFF Research Database (Denmark)

    Jensen, Palle Skovhus; Chi, Qijin; Grumsen, Flemming Bjerg

    2007-01-01

    and characterization of water-soluble gold nanoparticles (AuNPs) with core diameter 3-4 nm and their application for the enhancement of long-range interfacial ET of a heme protein. Gold nanoparticles were electrostatically conjugated with cyt c to form nanoparticle-protein hybrid ET systems with well...... and the protein molecule. When the nanoparticle-protein conjugates are assembled on Au(111) surfaces, long-range interfacial ET across a physical distance of over 50 A via the nanoparticle becomes feasible. Moreover, significant enhancement of the interfacial ET rate by more than an order of magnitude compared...... with that of cyt c in the absence of AuNPs is observed. AuNPs appear to serve as excellent ET relays, most likely by facilitating the electronic coupling between the protein redox center and the electrode surface....

  6. Dynamic Nuclear Polarization enhanced NMR at 187 GHz/284 MHz using an Extended Interaction Klystron amplifier.

    Science.gov (United States)

    Kemp, Thomas F; Dannatt, Hugh R W; Barrow, Nathan S; Watts, Anthony; Brown, Steven P; Newton, Mark E; Dupree, Ray

    2016-04-01

    A Dynamic Nuclear Polarisation (DNP) enhanced solid-state Magic Angle Spinning (MAS) NMR spectrometer which uses a 187 GHz (corresponding to (1)H NMR frequency of 284 MHz) Extended Interaction Klystron (EIK) amplifier as the microwave source is briefly described. Its performance is demonstrated for a biomolecule (bacteriorhodopsin), a pharmaceutical, and surface functionalised silica. The EIK is very compact and easily incorporated into an existing spectrometer. The bandwidth of the amplifier is sufficient that it obviates the need for a sweepable magnetic field, once set, for all commonly used radicals. The variable power (CW or pulsed) output from the EIK is transmitted to the DNP-NMR probe using a quasi-optic system with a high power isolator and a corrugated waveguide which feeds the microwaves into the DNP-NMR probe. Curved mirrors inside the probe project the microwaves down the axis of the MAS rotor, giving a very efficient system such that maximum DNP enhancement is achieved with less than 3 W output from the microwave source. The DNP-NMR probe operates with a sample temperature down to 90K whilst spinning at 8 kHz. Significant enhancements, in excess of 100 for bacteriorhodopsin in purple membrane (bR in PM), are shown along with spectra which are enhanced by ≈25 with respect to room temperature, for both the pharmaceutical furosemide and surface functionalised silica. These enhancements allow hitherto prohibitively time consuming experiments to be undertaken. The power at which the DNP enhancement in bR in PM saturates does not change significantly between 90K and 170 K even though the enhancement drops by a factor of ≈11. As the DNP build up time decreases by a factor 3 over this temperature range, the reduction in T1n is presumably a significant contribution to the drop in enhancement. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Dynamic placement of plasmonic hotspots for super-resolution surface-enhanced Raman scattering.

    Science.gov (United States)

    Ertsgaard, Christopher T; McKoskey, Rachel M; Rich, Isabel S; Lindquist, Nathan C

    2014-10-28

    In this paper, we demonstrate dynamic placement of locally enhanced plasmonic fields using holographic laser illumination of a silver nanohole array. To visualize these focused "hotspots", the silver surface was coated with various biological samples for surface-enhanced Raman spectroscopy (SERS) imaging. Due to the large field enhancements, blinking behavior of the SERS hotspots was observed and processed using a stochastic optical reconstruction microscopy algorithm enabling super-resolution localization of the hotspots to within 10 nm. These hotspots were then shifted across the surface in subwavelength (hotspots. Using this technique, we also show that such subwavelength shifting and localization of plasmonic hotspots has potential for imaging applications. Interestingly, illuminating the surface with randomly shifting SERS hotspots was sufficient to completely fill in a wide field of view for super-resolution chemical imaging.

  8. Study on Dynamic Characteristics of Microbial Enhanced Oil Recovery

    Science.gov (United States)

    Zhao, Yang; Shi, Fang; Qin, Wuying; Yan, Jing

    2018-01-01

    With the rapid development of economy, the demand for oil is increasing day by day. MEOR has the advantages of low cost and no pollution to the environment, attracted widespread attention. In this paper, the dynamic characteristics of microbial enhanced oil recovery were studied by laboratory experiments. The result showed that all the microbial flooding recovery rate could reach more than 5%, and the total recovery could reach more than 35% and if the injection period of microbial composite system was advanced, the whole oil displacement process could be shortened and the workload would be reduced.

  9. Short-time dynamics of lysozyme solutions with competing short-range attraction and long-range repulsion: Experiment and theory

    Science.gov (United States)

    Riest, Jonas; Nägele, Gerhard; Liu, Yun; Wagner, Norman J.; Godfrin, P. Douglas

    2018-02-01

    Recently, atypical static features of microstructural ordering in low-salinity lysozyme protein solutions have been extensively explored experimentally and explained theoretically based on a short-range attractive plus long-range repulsive (SALR) interaction potential. However, the protein dynamics and the relationship to the atypical SALR structure remain to be demonstrated. Here, the applicability of semi-analytic theoretical methods predicting diffusion properties and viscosity in isotropic particle suspensions to low-salinity lysozyme protein solutions is tested. Using the interaction potential parameters previously obtained from static structure factor measurements, our results of Monte Carlo simulations representing seven experimental lysoyzme samples indicate that they exist either in dispersed fluid or random percolated states. The self-consistent Zerah-Hansen scheme is used to describe the static structure factor, S(q), which is the input to our calculation schemes for the short-time hydrodynamic function, H(q), and the zero-frequency viscosity η. The schemes account for hydrodynamic interactions included on an approximate level. Theoretical predictions for H(q) as a function of the wavenumber q quantitatively agree with experimental results at small protein concentrations obtained using neutron spin echo measurements. At higher concentrations, qualitative agreement is preserved although the calculated hydrodynamic functions are overestimated. We attribute the differences for higher concentrations and lower temperatures to translational-rotational diffusion coupling induced by the shape and interaction anisotropy of particles and clusters, patchiness of the lysozyme particle surfaces, and the intra-cluster dynamics, features not included in our simple globular particle model. The theoretical results for the solution viscosity, η, are in qualitative agreement with our experimental data even at higher concentrations. We demonstrate that semi

  10. Signature of biased range in the non-dynamical Chern-Simons modified gravity and its measurements with satellite-satellite tracking missions: theoretical studies

    Science.gov (United States)

    Qiang, Li-E.; Xu, Peng

    2015-08-01

    Having great accuracy in the range and range rate measurements, the GRACE mission and the planed GRACE follow on mission can in principle be employed to place strong constraints on certain relativistic gravitational theories. In this paper, we work out the range observable of the non-dynamical Chern-Simons modified gravity for the satellite-to-satellite tracking (SST) measurements. We find out that a characteristic time accumulating range signal appears in non-dynamical Chern-Simons gravity, which has no analogue found in the standard parity-preserving metric theories of gravity. The magnitude of this Chern-Simons range signal will reach a few times of cm for each free flight of these SST missions, here is the dimensionless post-Newtonian parameter of the non-dynamical Chern-Simons theory. Therefore, with the 12 years data of the GRACE mission, one expects that the mass scale of the non-dynamical Chern-Simons gravity could be constrained to be larger than eV. For the GRACE FO mission that scheduled to be launched in 2017, the much stronger bound that eV is expected.

  11. Collateral Ventilation to Congenital Hyperlucent Lung Lesions Assessed on Xenon-Enhanced Dynamic Dual-Energy CT: an Initial Experience

    OpenAIRE

    Goo, Hyun Woo; Yang, Dong Hyun; Kim, Namkug; Park, Seung Il; Kim, Dong Kwan; Kim, Ellen Ai-Rhan

    2011-01-01

    Objective We wanted to evaluate the resistance to collateral ventilation in congenital hyperlucent lung lesions and to correlate that with the anatomic findings on xenon-enhanced dynamic dual-energy CT. Materials and Methods Xenon-enhanced dynamic dual-energy CT was successfully and safely performed in eight children (median age: 5.5 years, 4 boys and 4 girls) with congenital hyperlucent lung lesions. Functional assessment of the lung lesions on the xenon map was done, including performing a ...

  12. Preamplifier development for high count-rate, large dynamic range readout of inorganic scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Keshelashvili, Irakli; Erni, Werner; Steinacher, Michael; Krusche, Bernd; Collaboration: PANDA-Collaboration

    2013-07-01

    Electromagnetic calorimeter are central component of many experiments in nuclear and particle physics. Modern ''trigger less'' detectors run with very high count-rates, require good time and energy resolution, and large dynamic range. In addition photosensors and preamplifiers must work in hostile environments (magnetic fields). Due to later constraints mainly Avalanche Photo Diodes (APD's), Vacuum Photo Triodes (VPT's), and Vacuum Photo Tetrodes (VPTT's) are used. A disadvantage is their low gain which together with other requirements is a challenge for the preamplifier design. Our group has developed special Low Noise / Low Power (LNP) preamplifier for this purpose. They will be used to equip PANDA EMC forward end-cap (dynamic range 15'000, rate 1MHz), where the PWO II crystals and preamplifier have to run in an environment cooled down to -25{sup o}C. Further application is the upgrade of the Crystal Barrel detector at the Bonn ELSA accelerator with APD readout for which special temperature comparison of the APD gain and good time resolution is necessary. Development and all test procedures after the mass production done by our group during past several years in Basel University will be reported.

  13. Molecular dynamics simulations of short-range force systems on 1024-node hypercubes

    International Nuclear Information System (INIS)

    Plimpton, S.J.

    1990-01-01

    In this paper, two parallel algorithms for classical molecular dynamics are presented. The first assigns each processor to a subset of particles; the second assigns each to a fixed region of 3d space. The algorithms are implemented on 1024-node hypercubes for problems characterized by short-range forces, diffusion (so that each particle's neighbors change in time), and problem size ranging from 250 to 10000 particles. Timings for the algorithms on the 1024-node NCUBE/ten and the newer NCUBE 2 hypercubes are given. The latter is found to be competitive with a CRAY-XMP, running an optimized serial algorithm. For smaller problems the NCUBE 2 and CRAY-XMP are roughly the same; for larger ones the NCUBE 2 is up to twice as fast. Parallel efficiencies of the algorithms and communication parameters for the two hypercubes are also examined

  14. Patients with liver FNH and HCC patients with negative AFP: plain and dynamic enhanced MRI and CT findings

    Directory of Open Access Journals (Sweden)

    LI Mingtong

    2015-05-01

    Full Text Available ObjectiveTo investigate plain and dynamic enhanced magnetic resonance imaging (MRI and computed tomography (CT findings in patients with focal nodular hyperplasia (FNH of the liver and hepatocellular carcinoma (HCC patients with negative alpha-fetoprotein (AFP. MethodsA statistical analysis was performed on the clinical data of 124 cases of liver tumor admitted to Beijing Miyun County Hospital from April 2012 to April 2014. ResultsFifty-five of the 74 patients with FNH underwent CT examination, among whom 38 patients received three-phase dynamic enhanced scan and 16 received only plain scan; 62 cases had plain and enhanced MRI with the application of contrast agent Gd-BOPTA in 42 patients. Among the 50 HCC patients with negative AFP, CT examination was performed in 40 and 10 only had plain scan; 46 patients received plain and enhanced MRI with the use of contrast agent Gd-BOPTA in 30. Delayed scan after 1-2 h demonstrated low signal in 30 lesions of the 30 cases. ConclusionFor patients with liver FNH and AFP-negative HCC patients, their plain and dynamic enhanced MRI and CT scan have respective characteristics. A combination of multiple examination methods can significantly improve diagnostic yield of the two diseases.

  15. What controls the population dynamics of the invasive thistle Carduus nutans in its native range?

    NARCIS (Netherlands)

    Jongejans, E.; Sheppard, A.W.; Shea, K.

    2006-01-01

    1. The invasive thistle Carduus nutans causes major economic losses in the Americas, Australia and New Zealand. For the first time, we have modelled its population dynamics in its native range, Eurasia, where it rarely reaches problematic densities, in order to identify ways to improve management

  16. An improved method to estimate reflectance parameters for high dynamic range imaging

    Science.gov (United States)

    Li, Shiying; Deguchi, Koichiro; Li, Renfa; Manabe, Yoshitsugu; Chihara, Kunihiro

    2008-01-01

    Two methods are described to accurately estimate diffuse and specular reflectance parameters for colors, gloss intensity and surface roughness, over the dynamic range of the camera used to capture input images. Neither method needs to segment color areas on an image, or to reconstruct a high dynamic range (HDR) image. The second method improves on the first, bypassing the requirement for specific separation of diffuse and specular reflection components. For the latter method, diffuse and specular reflectance parameters are estimated separately, using the least squares method. Reflection values are initially assumed to be diffuse-only reflection components, and are subjected to the least squares method to estimate diffuse reflectance parameters. Specular reflection components, obtained by subtracting the computed diffuse reflection components from reflection values, are then subjected to a logarithmically transformed equation of the Torrance-Sparrow reflection model, and specular reflectance parameters for gloss intensity and surface roughness are finally estimated using the least squares method. Experiments were carried out using both methods, with simulation data at different saturation levels, generated according to the Lambert and Torrance-Sparrow reflection models, and the second method, with spectral images captured by an imaging spectrograph and a moving light source. Our results show that the second method can estimate the diffuse and specular reflectance parameters for colors, gloss intensity and surface roughness more accurately and faster than the first one, so that colors and gloss can be reproduced more efficiently for HDR imaging.

  17. High Dynamic Range RF Front End with Noise Cancellation and Linearization for WiMAX Receivers

    Directory of Open Access Journals (Sweden)

    J.-M. Wu

    2012-06-01

    Full Text Available This research deals with verification of the high dynamic range for a heterodyne radio frequency (RF front end. A 2.6 GHz RF front end is designed and implemented in a hybrid microwave integrated circuit (HMIC for worldwide interoperability for microwave access (WiMAX receivers. The heterodyne RF front end consists of a low-noise amplifier (LNA with noise cancellation, an RF bandpass filter (BPF, a downconverter with linearization, and an intermediate frequency (IF BPF. A noise canceling technique used in the low-noise amplifier eliminates a thermal noise and then reduces the noise figure (NF of the RF front end by 0.9 dB. Use of a downconverter with diode linearizer also compensates for gain compression, which increases the input-referred third-order intercept point (IIP3 of the RF front end by 4.3 dB. The proposed method substantially increases the spurious-free dynamic range (DRf of the RF front end by 3.5 dB.

  18. A wide dynamic range BF{sub 3} neutron monitor with front-end electronics based on a logarithmic amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Ferrarini, M., E-mail: michele.ferrarini@polimi.i [Politecnico di Milano, Dipartimento Energia, via G. Ponzio 34/3, I-20133 Milano (Italy); Fondazione CNAO, via Caminadella 16, 20123 Milano (Italy); Varoli, V. [Politecnico di Milano, Dipartimento Energia, via G. Ponzio 34/3, I-20133 Milano (Italy); Favalli, A. [European Commission, Joint Research Centre, Institute for the Protection and Security of Citizen, TP 800, Via E. Fermi, 21027 Ispra (Vatican City State, Holy See) (Italy); Caresana, M. [Politecnico di Milano, Dipartimento Energia, via G. Ponzio 34/3, I-20133 Milano (Italy); Pedersen, B. [European Commission, Joint Research Centre, Institute for the Protection and Security of Citizen, TP 800, Via E. Fermi, 21027 Ispra (Italy)

    2010-02-01

    This paper describes a wide dynamic range neutron monitor based on a BF{sub 3} neutron detector. The detector is used in current mode, and front-end electronics based on a logarithmic amplifier are used in order to have a measurement capability ranging over many orders of magnitude. The system has been calibrated at the Polytechnic of Milan, CESNEF, with an AmBe neutron source, and has been tested in a pulsed field at the PUNITA facility at JRC, Ispra. The detector has achieved a dynamic range of over 6 orders of magnitude, being able to measure single neutron pulses and showing saturation-free response for a reaction rate up to 10{sup 6} s{sup -1}. It has also proved effective in measuring the PUNITA facility pulse integral fluence.

  19. Primary pulmonary low-grade angiosarcoma characterized by mismatch between {sup 18}F-FDG FET and dynamic contrast-enhanced CT

    Energy Technology Data Exchange (ETDEWEB)

    KIm, Eun Young; Lee, Ho Yun; Han, Joung Ho; Choi, Joon Young [Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2015-10-15

    We report a rare case of primary pulmonary low-grade angiosarcoma on dynamic contrast-enhanced CT and {sup 18}F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/CT imaging. A 38-year-old, asymptomatic woman was hospitalized because of an abnormality on chest radiography. A dynamic contrast-enhanced chest CT showed a 1.2 cm-sized irregular-margined nodule with strong and persistent enhancement in the right lower lobe. The lesion had low metabolic activity on an {sup 18}F-FDG PET/CT scan. The patient underwent a wedge resection for the lesion, and pathology revealed a primary pulmonary low-grade angiosarcoma.

  20. Molecular dynamics simulations of ion range profiles for heavy ions in light targets

    Energy Technology Data Exchange (ETDEWEB)

    Lan, C. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996 (United States); State Key Laboratory of Nuclear Physics and Technology, Peking University, 100871 (China); Xue, J.M. [State Key Laboratory of Nuclear Physics and Technology, Peking University, 100871 (China); Zhang, Y., E-mail: Zhangy1@ornl.gov [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Morris, J.R. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Zhu, Z. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Gao, Y.; Wang, Y.G.; Yan, S. [State Key Laboratory of Nuclear Physics and Technology, Peking University, 100871 (China); Weber, W.J. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2012-09-01

    The determination of stopping powers for slow heavy ions in targets containing light elements is important to accurately describe ion-solid interactions, evaluate ion irradiation effects and predict ion ranges for device fabrication and nuclear applications. Recently, discrepancies of up to 40% between the experimental results and SRIM (Stopping and Range of Ions in Matter) predictions of ion ranges for heavy ions with medium and low energies (<{approx}25 keV/nucleon) in light elemental targets have been reported. The longer experimental ion ranges indicate that the stopping powers used in the SRIM code are overestimated. Here, a molecular dynamics simulation scheme is developed to calculate the ion ranges of heavy ions in light elemental targets. Electronic stopping powers generated from both a reciprocity approach and the SRIM code are used to investigate the influence of electronic stopping on ion range profiles. The ion range profiles for Au and Pb ions in SiC and Er ions in Si, with energies between 20 and 5250 keV, are simulated. The simulation results show that the depth profiles of implanted ions are deeper and in better agreement with the experiments when using the electronic stopping power values derived from the reciprocity approach. These results indicate that the origin of the discrepancy in ion ranges between experimental results and SRIM predictions in the low energy region may be an overestimation of the electronic stopping powers used in SRIM.

  1. Pain following double-bundle anterior cruciate ligament reconstruction: Correlation with morphological graft findings and dynamic contrast-enhanced MRI

    International Nuclear Information System (INIS)

    Lin, Y.-C.; Mhuircheartaigh, J.N.; Cheung, Y.-C.; Juan, Y.-H.; Chiu, C.-H.; Yeh, W.-L.; Wu, J.S.

    2014-01-01

    Aim: To determine the relationship between knee pain following anterior cruciate ligament (ACL) graft placement with morphological graft findings and dynamic contrast enhancement as assessed at MRI. Material and methods: Following institutional review board approval, 37 consecutive patients with double-bundle ACL reconstruction were enrolled. Thirteen patients had pain and 24 were asymptomatic. Imaging was performed using a 1.5 T MRI machine an average of 7.6 months after surgery. Graft-related (increase signal intensity, abnormal orientation, discontinuity, cystic degeneration, anterior translation of lateral tibia, arthrofibrosis), and non-graft related causes of knee pain (meniscal tear, cartilage injury, loose bodies, and synovitis) were evaluated. During dynamic contrast enhancement analysis, peak enhancement (ePeak) was calculated by placing a region of interest at the osteoligamentous interface of each bundle. Student's t-test was used for continuous variables analysis and chi-square or Fisher's exact test was used for categorical variables analysis. Results: There was no difference between symptomatic and asymptomatic patients regarding morphological graft-related or non-graft-related causes of knee pain. For dynamic contrast enhancement analysis, symptomatic patients had significantly lower ePeak values than asymptomatic patients in the anteromedial (p = 0.008) and posterolateral (p = 0.001) bundles or when using the higher ePeak value in either bundle (p = 0.003). Conclusion: Morphological ACL graft findings as assessed at MRI could not be used to distinguish between symptomatic and asymptomatic patients. However, lower ePeak values had a significant association with knee pain. This may indicate poor neovascularization of the graft, potentially leading to graft failure. - Highlights: • Morphologic graft findings of MRI are poorly associated with knee pain. • Lower contrast enhancement values are significantly associated with knee pain

  2. Range use and dynamics in the agropastoral system of ...

    African Journals Online (AJOL)

    Occurrence of equilibrium and non equilibrium system dynamics in semiarid environments present serious management challenges. In these areas, resource management strategies are increasingly based on equilibrium rather than non equilibrium dynamics that assume simple system dynamics and strong coupling of ...

  3. Heterogeneous patterns enhancing static and dynamic texture classification

    International Nuclear Information System (INIS)

    Silva, Núbia Rosa da; Martinez Bruno, Odemir

    2013-01-01

    Some mixtures, such as colloids like milk, blood, and gelatin, have homogeneous appearance when viewed with the naked eye, however, to observe them at the nanoscale is possible to understand the heterogeneity of its components. The same phenomenon can occur in pattern recognition in which it is possible to see heterogeneous patterns in texture images. However, current methods of texture analysis can not adequately describe such heterogeneous patterns. Common methods used by researchers analyse the image information in a global way, taking all its features in an integrated manner. Furthermore, multi-scale analysis verifies the patterns at different scales, but still preserving the homogeneous analysis. On the other hand various methods use textons to represent the texture, breaking texture down into its smallest unit. To tackle this problem, we propose a method to identify texture patterns not small as textons at distinct scales enhancing the separability among different types of texture. We find sub patterns of texture according to the scale and then group similar patterns for a more refined analysis. Tests were performed in four static texture databases and one dynamical one. Results show that our method provide better classification rate compared with conventional approaches both in static and in dynamic texture.

  4. Enhancement and creation of secondary channel habitat: Review of project performance across a range of project types and settings

    Science.gov (United States)

    Epstein, J.; Lind, P.

    2017-12-01

    Secondary channels provide critical off-channel habitat for key life stages of aquatic species. In many systems, interruption of natural processes via anthropogenic influences have reduced the quantity of secondary channel habitat and have impaired the processes that help form and maintain them. Creation and enhancement of secondary channels is therefore a key component of stream rehabilitation, particularly in the Pacific Northwest where the focus has been on enhancement of habitat for ESA-listed salmonids. Secondary channel enhancement varies widely in scope, scale, and approach depending on species requirements, hydrology/hydraulics, geomorphologic setting, sediment dynamics, and human constraints. This presentation will review case studies from numerous secondary channel projects constructed over the last 20 years by different entities and in different settings. Lessons learned will be discussed that help to understand project performance and inform future project design. A variety of secondary channel project types will be reviewed, including mainstem flow splits, year-round flow through, seasonally activated, backwater alcove, natural groundwater-fed, and engineered groundwater-fed (i.e. groundwater collection galleries). Projects will be discussed that span a range of project construction intensities, such as full excavation of side channels, select excavation to increase flow, or utilizing mainstem structures to activate channels. Different configurations for connecting to the main channel, and their relative performance, will also be presented. A variety of connection types will be discussed including stabilized channel entrance, free-formed entrance, using bar apex jams to split flows, using `bleeder' jams to limit secondary channel flow, and obstructing the main channel to divert flows into secondary channels. The performance and longevity of projects will be discussed, particularly with respect to the response to sediment mobilizing events. Lessons

  5. Diffusion-weighted imaging and dynamic contrast-enhanced MRI of experimental breast cancer bone metastases – A correlation study with histology

    Energy Technology Data Exchange (ETDEWEB)

    Merz, Maximilian [Department of Medical Physics in Radiology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Department of Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg (Germany); Seyler, Lisa; Bretschi, Maren; Semmler, Wolfhard [Department of Medical Physics in Radiology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Bäuerle, Tobias, E-mail: tobias.baeuerle@uk-erlangen.de [Department of Medical Physics in Radiology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Institute of Radiology, University Medical Center Erlangen, Palmsanlage 5, 90154 Erlangen (Germany)

    2015-04-15

    Purpose: To validate imaging parameters from diffusion-weighted imaging and dynamic contrast-enhanced MRI with immunohistology and to non-invasively assess microstructure of experimental breast cancer bone metastases. Materials and methods: Animals bearing breast cancer bone metastases were imaged in a clinical 1.5 T MRI scanner. HASTE sequences were performed to calculate apparent diffusion coefficients. Saturation recovery turbo FLASH sequences were conducted while infusing 0.1 mmol/l Gd–DTPA for dynamic contrast-enhanced MRI to quantify parameters amplitude A and exchange rate constant k{sub ep}. After imaging, bone metastases were analyzed immunohistologically. Results: We found correlations of the apparent diffusion coefficients from diffusion-weighted imaging with tumor cellularity as assessed with cell nuclei staining. Histological vessel maturity was correlated negatively with parameters A and k{sub ep} from dynamic contrast-enhanced MRI. Tumor size correlated inversely with cell density and vessel permeability as well as positively with mean vessel calibers. Parameters from the rim of bone metastases differed significantly from values of the center. Conclusion: In vivo diffusion-weighted imaging and dynamic contrast-enhanced MRI in experimental bone metastases provide information about tumor cellularity and vascularity and correlate well with immunohistology.

  6. Optimal design of a vehicle magnetorheological damper considering the damping force and dynamic range

    International Nuclear Information System (INIS)

    Nguyen, Quoc-Hung; Choi, Seung-Bok

    2009-01-01

    This paper presents an optimal design of a passenger vehicle magnetorheological (MR) damper based on finite element analysis. The MR damper is constrained in a specific volume and the optimization problem identifies the geometric dimensions of the damper that minimize an objective function. The objective function consists of the damping force, the dynamic range, and the inductive time constant of the damper. After describing the configuration of the MR damper, the damping force and dynamic range are obtained on the basis of the Bingham model of an MR fluid. Then, the control energy (power consumption of the damper coil) and the inductive time constant are derived. The objective function for the optimization problem is determined based on the solution of the magnetic circuit of the initial damper. Subsequently, the optimization procedure, using a golden-section algorithm and a local quadratic fitting technique, is constructed via commercial finite element method parametric design language. Using the developed optimization tool, optimal solutions of the MR damper, which are constrained in a specific cylindrical volume defined by its radius and height, are determined and a comparative work on damping force and inductive time constant between the initial and optimal design is undertaken

  7. Face recognition based on matching of local features on 3D dynamic range sequences

    Science.gov (United States)

    Echeagaray-Patrón, B. A.; Kober, Vitaly

    2016-09-01

    3D face recognition has attracted attention in the last decade due to improvement of technology of 3D image acquisition and its wide range of applications such as access control, surveillance, human-computer interaction and biometric identification systems. Most research on 3D face recognition has focused on analysis of 3D still data. In this work, a new method for face recognition using dynamic 3D range sequences is proposed. Experimental results are presented and discussed using 3D sequences in the presence of pose variation. The performance of the proposed method is compared with that of conventional face recognition algorithms based on descriptors.

  8. Wide-spectral/dynamic-range skin-compatible phototransistors enabled by floated heterojunction structures with surface functionalized SWCNTs and amorphous oxide semiconductors.

    Science.gov (United States)

    Hwang, Insik; Kim, Jaehyun; Lee, Minkyung; Lee, Min-Wook; Kim, Hee-Joong; Kwon, Hyuck-In; Hwang, Do Kyung; Kim, Myunggil; Yoon, Haeyoung; Kim, Yong-Hoon; Park, Sung Kyu

    2017-11-09

    Purified semiconducting single-walled carbon nanotubes (sc-SWCNTs) have been researched for optoelectronic applications due to their high absorption coefficient from the visible to even the near-infrared (NIR) region. Nevertheless, the insufficient electrical characteristics and incompatibility with conventional CMOS processing have limited their wide utilization in this emerging field. Here, we demonstrate highly detective and wide spectral/dynamic range phototransistors incorporating floated heterojunction active layers which are composed of low-temperature sol-gel processed n-type amorphous indium gallium zinc oxide (a-IGZO) stacked with a purified p-type sc-SWCNT layer. To achieve a high and broad spectral/dynamic range photo-response of the heterogeneous transistors, photochemically functionalized sc-SWCNT layers were carefully implemented onto the a-IGZO channel area with a floating p-n heterojunction active layer, resulting in the suppression of parasitic charge leakage and good bias driven opto-electrical properties. The highest photosensitivity (R) of 9.6 × 10 2 A W -1 and a photodetectivity (D*) of 4 × 10 14 Jones along with a dynamic range of 100-180 dB were achieved for our phototransistor in the spectral range of 400-780 nm including continuous and minimal frequency independent behaviors. More importantly, to demonstrate the diverse application of the ultra-flexible hybrid photosensor platform as skin compatible electronics, the sc-SWCNT/a-IGZO phototransistors were fabricated on an ultra-thin (∼1 μm) polyimide film along with a severe static and dynamic electro-mechanical test. The skin-like phototransistors showed excellent mechanical stability such as sustainable good electrical performance and high photosensitivity in a wide dynamic range without any visible cracks or damage and little noise interference after being rolled-up on the 150 μm-thick optical fiber as well as more than 1000 times cycling.

  9. Tissue oximetry: a comparison of mean values of regional tissue saturation, reproducibility and dynamic range of four NIRS-instruments on the human forearm

    DEFF Research Database (Denmark)

    Hyttel-Sørensen, Simon; Sorensen, Line C; Riera, Joan

    2011-01-01

    We compared absolute values of regional tissue hemoglobin saturation (StO(2)), reproducibility, and dynamic range of four different instruments on the forearm of adults. The sensors were repositioned 10 times on each subject. Dynamic range was estimated by exercise with subsequent arterial occlus...

  10. ATMOSPHERIC DYNAMICS OF TERRESTRIAL EXOPLANETS OVER A WIDE RANGE OF ORBITAL AND ATMOSPHERIC PARAMETERS

    Energy Technology Data Exchange (ETDEWEB)

    Kaspi, Yohai [Department of Earth and Planetary Sciences, Weizmann Institute of Science, 234 Herzl st., 76100, Rehovot (Israel); Showman, Adam P., E-mail: yohai.kaspi@weizmann.ac.il [Department of Planetary Sciences and Lunar and Planetary Laboratory, The University of Arizona, 1629 University Blvd., Tucson, AZ 85721 (United States)

    2015-05-01

    The recent discoveries of terrestrial exoplanets and super-Earths extending over a broad range of orbital and physical parameters suggest that these planets will span a wide range of climatic regimes. Characterization of the atmospheres of warm super-Earths has already begun and will be extended to smaller and more distant planets over the coming decade. The habitability of these worlds may be strongly affected by their three-dimensional atmospheric circulation regimes, since the global climate feedbacks that control the inner and outer edges of the habitable zone—including transitions to Snowball-like states and runaway-greenhouse feedbacks—depend on the equator-to-pole temperature differences, patterns of relative humidity, and other aspects of the dynamics. Here, using an idealized moist atmospheric general circulation model including a hydrological cycle, we study the dynamical principles governing the atmospheric dynamics on such planets. We show how the planetary rotation rate, stellar flux, atmospheric mass, surface gravity, optical thickness, and planetary radius affect the atmospheric circulation and temperature distribution on such planets. Our simulations demonstrate that equator-to-pole temperature differences, meridional heat transport rates, structure and strength of the winds, and the hydrological cycle vary strongly with these parameters, implying that the sensitivity of the planet to global climate feedbacks will depend significantly on the atmospheric circulation. We elucidate the possible climatic regimes and diagnose the mechanisms controlling the formation of atmospheric jet streams, Hadley and Ferrel cells, and latitudinal temperature differences. Finally, we discuss the implications for understanding how the atmospheric circulation influences the global climate.

  11. ATMOSPHERIC DYNAMICS OF TERRESTRIAL EXOPLANETS OVER A WIDE RANGE OF ORBITAL AND ATMOSPHERIC PARAMETERS

    International Nuclear Information System (INIS)

    Kaspi, Yohai; Showman, Adam P.

    2015-01-01

    The recent discoveries of terrestrial exoplanets and super-Earths extending over a broad range of orbital and physical parameters suggest that these planets will span a wide range of climatic regimes. Characterization of the atmospheres of warm super-Earths has already begun and will be extended to smaller and more distant planets over the coming decade. The habitability of these worlds may be strongly affected by their three-dimensional atmospheric circulation regimes, since the global climate feedbacks that control the inner and outer edges of the habitable zone—including transitions to Snowball-like states and runaway-greenhouse feedbacks—depend on the equator-to-pole temperature differences, patterns of relative humidity, and other aspects of the dynamics. Here, using an idealized moist atmospheric general circulation model including a hydrological cycle, we study the dynamical principles governing the atmospheric dynamics on such planets. We show how the planetary rotation rate, stellar flux, atmospheric mass, surface gravity, optical thickness, and planetary radius affect the atmospheric circulation and temperature distribution on such planets. Our simulations demonstrate that equator-to-pole temperature differences, meridional heat transport rates, structure and strength of the winds, and the hydrological cycle vary strongly with these parameters, implying that the sensitivity of the planet to global climate feedbacks will depend significantly on the atmospheric circulation. We elucidate the possible climatic regimes and diagnose the mechanisms controlling the formation of atmospheric jet streams, Hadley and Ferrel cells, and latitudinal temperature differences. Finally, we discuss the implications for understanding how the atmospheric circulation influences the global climate

  12. Self-organizing neural networks for automatic detection and classification of contrast-enhancing lesions in dynamic MR-mammography

    International Nuclear Information System (INIS)

    Vomweg, T.W.; Teifke, A.; Kauczor, H.U.; Achenbach, T.; Rieker, O.; Schreiber, W.G.; Heitmann, K.R.; Beier, T.; Thelen, M.

    2005-01-01

    Purpose: Investigation and statistical evaluation of 'Self-Organizing Maps', a special type of neural networks in the field of artificial intelligence, classifying contrast enhancing lesions in dynamic MR-mammography. Material and Methods: 176 investigations with proven histology after core biopsy or operation were randomly divided into two groups. Several Self-Organizing Maps were trained by investigations of the first group to detect and classify contrast enhancing lesions in dynamic MR-mammography. Each single pixel's signal/time curve of all patients within the second group was analyzed by the Self-Organizing Maps. The likelihood of malignancy was visualized by color overlays on the MR-images. At last assessment of contrast-enhancing lesions by each different network was rated visually and evaluated statistically. Results: A well balanced neural network achieved a sensitivity of 90.5% and a specificity of 72.2% in predicting malignancy of 88 enhancing lesions. Detailed analysis of false-positive results revealed that every second fibroadenoma showed a 'typical malignant' signal/time curve without any chance to differentiate between fibroadenomas and malignant tissue regarding contrast enhancement alone; but this special group of lesions was represented by a well-defined area of the Self-Organizing Map. Discussion: Self-Organizing Maps are capable of classifying a dynamic signal/time curve as 'typical benign' or 'typical malignant'. Therefore, they can be used as second opinion. In view of the now known localization of fibroadenomas enhancing like malignant tumors at the Self-Organizing Map, these lesions could be passed to further analysis by additional post-processing elements (e.g., based on T2-weighted series or morphology analysis) in the future. (orig.)

  13. Rabbit System. Low cost, high reliability front end electronics featuring 16 bit dynamic range

    International Nuclear Information System (INIS)

    Drake, G.; Droege, T.F.; Nelson, C.A. Jr.; Turner, K.J.; Ohska, T.K.

    1985-10-01

    A new crate-based front end system has been built which features low cost, compact packaging, command capability, 16 bit dynamic range digitization, and a high degree of redundancy. The crate can contain a variety of instrumentation modules, and is designed to be situated close to the detector. The system is suitable for readout of a large number of channels via parallel multiprocessor data acquisition

  14. Contrast between hypervascularized liver lesions and hepatic parenchyma. Early dynamic PET versus contrast-enhanced CT

    International Nuclear Information System (INIS)

    Freesmeyer, M.; Winkens, T.; Schierz, J.-H.

    2014-01-01

    To detect hypervascularized liver lesions, early dynamic (ED) 18 F-FDG PET may be an alternative when contrast-enhanced (CE) imaging is infeasible. This retrospective pilot analysis compared contrast between such lesions and liver parenchyma, an important objective image quality variable, in ED PET versus CE CT. Twenty-eight hypervascularized liver lesions detected by CE CT [21 (75%) hepatocellular carcinomas; mean (range) diameter 4.9 ± 3.5 (1-14) cm] in 20 patients were scanned with ED PET. Using regions of interest, maximum and mean lesional and parenchymal signals at baseline, arterial and venous phases were calculated for ED PET and CE CT. Lesional/parenchymal signal ratio was significantly higher (P < 0.005) with ED PET versus CE CT at the arterial phase and similar between the methods at the venous phase. In liver imaging, ED PET generates greater lesional-parenchymal contrast during the arterial phase than does CE CT; these observations should be formally, prospectively evaluated. (author)

  15. Breast Dynamic Contrast Enhanced MRI: Fibrocystic Changes Presenting as a Non-mass Enhancement Mimicking Malignancy.

    Science.gov (United States)

    Milosevic, Zorica C; Nadrljanski, Mirjan M; Milovanovic, Zorka M; Gusic, Nina Z; Vucicevic, Slavko S; Radulovic, Olga S

    2017-06-01

    We aimed to analyse the morphokinetic features of breast fibrocystic changes (nonproliferative lesions, proliferative lesions without atypia and proliferative lesions with atypia) presenting as a non-mass enhancement (NME)in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) examination. Forty-six patients with histologically proven fibrocystic changes (FCCs) were retrospectively reviewed, according to Breast Imaging Reporting and Data System (BI-RADS) lexicon. Prior to DCE-MRI examination, a unilateral breast lesion suspicious of malignancy was detected clinically, on mammography or breast ultrasonography. The predominant features of FCCs presenting as NME in DCE-MRI examination were: unilateral regional or diffuse distribution (in 35 patients or 76.1%), heterogeneous or clumped internal pattern of enhancement (in 36 patients or 78.3%), plateau time-intensity curve (in 25 patients or 54.3%), moderate or fast wash-in (in 31 patients or 67.4%).Nonproliferative lesions were found in 11 patients (24%), proliferative lesions without atypia in 29 patients (63%) and lesions with atypia in six patients (13%), without statistically significant difference of morphokinetic features, except of the association of clustered microcysts with proliferative dysplasia without atypia. FCCs presenting as NME in DCE-MRI examination have several morphokinetic features suspicious of malignancy, therefore requiring biopsy (BI-RADS 4). Nonproliferative lesions, proliferative lesions without atypia and proliferative lesions with atypia predominantly share the same predefined DCE-MRI morphokinetic features.

  16. A High-Dynamic-Range Optical Remote Sensing Imaging Method for Digital TDI CMOS

    Directory of Open Access Journals (Sweden)

    Taiji Lan

    2017-10-01

    Full Text Available The digital time delay integration (digital TDI technology of the complementary metal-oxide-semiconductor (CMOS image sensor has been widely adopted and developed in the optical remote sensing field. However, the details of targets that have low illumination or low contrast in scenarios of high contrast are often drowned out because of the superposition of multi-stage images in digital domain multiplies the read noise and the dark noise, thus limiting the imaging dynamic range. Through an in-depth analysis of the information transfer model of digital TDI, this paper attempts to explore effective ways to overcome this issue. Based on the evaluation and analysis of multi-stage images, the entropy-maximized adaptive histogram equalization (EMAHE algorithm is proposed to improve the ability of images to express the details of dark or low-contrast targets. Furthermore, in this paper, an image fusion method is utilized based on gradient pyramid decomposition and entropy weighting of different TDI stage images, which can improve the detection ability of the digital TDI CMOS for complex scenes with high contrast, and obtain images that are suitable for recognition by the human eye. The experimental results show that the proposed methods can effectively improve the high-dynamic-range imaging (HDRI capability of the digital TDI CMOS. The obtained images have greater entropy and average gradients.

  17. Observation of plasma-facing-wall via high dynamic range imaging

    International Nuclear Information System (INIS)

    Villamayor, Michelle Marie S.; Rosario, Leo Mendel D.; Viloan, Rommel Paulo B.

    2013-01-01

    Pictures of plasmas and deposits in a discharge chamber taken by varying shutter speeds have been integrated into high dynamic range (HDR) images. The HDR images of a graphite target surface of a compact planar magnetron (CPM) discharge device have clearly indicated the erosion pattern of the target, which are correlated to the light intensity distribution of plasma during operation. Based upon the HDR image technique coupled to colorimetry, a formation history of dust-like deposits inside of the CPM chamber has been recorded. The obtained HDR images have shown how the patterns of deposits changed in accordance with discharge duration. Results show that deposition takes place near the evacuation ports during the early stage of the plasma discharge. Discoloration of the plasma-facing-walls indicating erosion and redeposition eventually spreads at the periphery after several hours of operation. (author)

  18. Combined dynamic contrast-enhancement and serial 3D-subtraction analysis in magnetic resonance imaging of osteoid osteomas

    Energy Technology Data Exchange (ETDEWEB)

    Kalle, T. von; Winkler, P. [Klinikum Stuttgart Olgahospital, Department of Paediatric Radiology, Stuttgart (Germany); Langendoerfer, M.; Fernandez, F.F. [Klinikum Stuttgart Olgahospital, Department of Paediatric Orthopaedics, Stuttgart (Germany)

    2009-10-15

    The purpose of this study was to retrospectively correlate the results of dynamic contrast-enhanced magnetic resonance imaging (MRI) with histological and clinical diagnoses in patients with osteoid osteomas. Fifty-four patients with the MR diagnosis of osteoid osteoma were studied. MRI (1.5 Tesla) consisted of thin-section STIR sequences, dynamic 3D T1 gradient echo sequences during application of contrast material, and high-resolution postcontrast T1 spin echo sequences with fat saturation (maximum voxel size 0.6 x 0.6 x 3.0 mm). Evaluation was focused on serial image subtraction during the early phase after contrast injection and on time-intensity curves. The surrounding edema was helpful in finding the nidus in each lesion. In 49 of 54 patients (90.7%), the diagnosis of osteoid osteoma was certain or highly probable (sensitivity 1.0, positive predictive value 0.91). A total of 38 of 54 osteoid osteomas were histologically proven. Five MRI diagnoses were regarded as false positives. A similar proportion has been reported for computed tomography. Tailored high-resolution MR examinations with dynamic contrast enhancement can reliably diagnose osteoid osteomas and exactly localize the nidus without radiation exposure. We propose a stepwise approach with STIR sequences, dynamic contrast-enhanced scanning, and high-resolution postcontrast T1 spin echo sequences with fat saturation. (orig.)

  19. Combined dynamic contrast-enhancement and serial 3D-subtraction analysis in magnetic resonance imaging of osteoid osteomas

    International Nuclear Information System (INIS)

    Kalle, T. von; Winkler, P.; Langendoerfer, M.; Fernandez, F.F.

    2009-01-01

    The purpose of this study was to retrospectively correlate the results of dynamic contrast-enhanced magnetic resonance imaging (MRI) with histological and clinical diagnoses in patients with osteoid osteomas. Fifty-four patients with the MR diagnosis of osteoid osteoma were studied. MRI (1.5 Tesla) consisted of thin-section STIR sequences, dynamic 3D T1 gradient echo sequences during application of contrast material, and high-resolution postcontrast T1 spin echo sequences with fat saturation (maximum voxel size 0.6 x 0.6 x 3.0 mm). Evaluation was focused on serial image subtraction during the early phase after contrast injection and on time-intensity curves. The surrounding edema was helpful in finding the nidus in each lesion. In 49 of 54 patients (90.7%), the diagnosis of osteoid osteoma was certain or highly probable (sensitivity 1.0, positive predictive value 0.91). A total of 38 of 54 osteoid osteomas were histologically proven. Five MRI diagnoses were regarded as false positives. A similar proportion has been reported for computed tomography. Tailored high-resolution MR examinations with dynamic contrast enhancement can reliably diagnose osteoid osteomas and exactly localize the nidus without radiation exposure. We propose a stepwise approach with STIR sequences, dynamic contrast-enhanced scanning, and high-resolution postcontrast T1 spin echo sequences with fat saturation. (orig.)

  20. Estimating the arterial input function from dynamic contrast-enhanced MRI data with compensation for flow enhancement (I): Theory, method, and phantom experiments.

    Science.gov (United States)

    van Schie, Jeroen J N; Lavini, Cristina; van Vliet, Lucas J; Vos, Frans M

    2018-05-01

    The arterial input function (AIF) represents the time-dependent arterial contrast agent (CA) concentration that is used in pharmacokinetic modeling. To develop a novel method for estimating the AIF from dynamic contrast-enhanced (DCE-) MRI data, while compensating for flow enhancement. Signal simulation and phantom measurements. Time-intensity curves (TICs) were simulated for different numbers of excitation pulses modeling flow effects. A phantom experiment was performed in which a solution (without CA) was passed through a straight tube, at constant flow velocity. Dynamic fast spoiled gradient echo (FSPGRs) at 3T MRI, both in the simulations and in the phantom experiment. TICs were generated for a duration of 373 seconds and sampled at intervals of 1.247 seconds (300 timepoints). The proposed method first estimates the number of pulses that spins have received, and then uses this knowledge to accurately estimate the CA concentration. The difference between the median of the estimated number of pulses and the true value was determined, as well as the interquartile range (IQR) of the estimations. The estimated CA concentrations were evaluated in the same way. The estimated number of pulses was also used to calculate flow velocity. The difference between the median estimated and reference number of pulses varied from -0.005 to -1.371 (corresponding IQRs: 0.853 and 48.377) at true values of 10 and 180 pulses, respectively. The difference between the median estimated CA concentration and the reference value varied from -0.00015 to 0.00306 mmol/L (corresponding IQRs: 0.01989 and 1.51013 mmol/L) at true values of 0.5 and 8.0 mmol/l, respectively, at an intermediate value of 100 pulses. The estimated flow velocities in the phantom were within 10% of the reference value. The proposed method accurately corrects the MRI signal affected by the inflow effect. 1 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2018;47:1190-1196. © 2017 International Society for Magnetic

  1. A research on radiation calibration of high dynamic range based on the dual channel CMOS

    Science.gov (United States)

    Ma, Kai; Shi, Zhan; Pan, Xiaodong; Wang, Yongsheng; Wang, Jianghua

    2017-10-01

    The dual channel complementary metal-oxide semiconductor (CMOS) can get high dynamic range (HDR) image through extending the gray level of the image by using image fusion with high gain channel image and low gain channel image in a same frame. In the process of image fusion with dual channel, it adopts the coefficients of radiation response of a pixel from dual channel in a same frame, and then calculates the gray level of the pixel in the HDR image. For the coefficients of radiation response play a crucial role in image fusion, it has to find an effective method to acquire these parameters. In this article, it makes a research on radiation calibration of high dynamic range based on the dual channel CMOS, and designs an experiment to calibrate the coefficients of radiation response for the sensor it used. In the end, it applies these response parameters in the dual channel CMOS which calibrates, and verifies the correctness and feasibility of the method mentioned in this paper.

  2. Sensitivity of electrospray molecular dynamics simulations to long-range Coulomb interaction models.

    Science.gov (United States)

    Mehta, Neil A; Levin, Deborah A

    2018-03-01

    Molecular dynamics (MD) electrospray simulations of 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIM-BF_{4}) ion liquid were performed with the goal of evaluating the influence of long-range Coulomb models on ion emission characteristics. The direct Coulomb (DC), shifted force Coulomb sum (SFCS), and particle-particle particle-mesh (PPPM) long-range Coulomb models were considered in this work. The DC method with a sufficiently large cutoff radius was found to be the most accurate approach for modeling electrosprays, but, it is computationally expensive. The Coulomb potential energy modeled by the DC method in combination with the radial electric fields were found to be necessary to generate the Taylor cone. The differences observed between the SFCS and the DC in terms of predicting the total ion emission suggest that the former should not be used in MD electrospray simulations. Furthermore, the common assumption of domain periodicity was observed to be detrimental to the accuracy of the capillary-based electrospray simulations.

  3. Reliability and responsiveness of dynamic contrast-enhanced magnetic resonance imaging in rheumatoid arthritis

    DEFF Research Database (Denmark)

    Axelsen, M.B.; Poggenborg, R.P.; Stoltenberg, M.

    2013-01-01

    intraarticular injection with 80 mg methylprednisolone. Using semi-automated image processing software, DCE-MRI parameters, including the initial rate of enhancement (IRE) and maximal enhancement (ME), were generated for three regions of interest (ROIs): ‘Whole slice’, ‘Quick ROI’, and ‘Precise ROI......Objectives: To investigate the responsiveness to treatment and the reliability of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in rheumatoid arthritis (RA) knee joints. Methods: DCE-MRI was performed in 12 clinically active RA knee joints before and 1, 7, 30, and 180 days after......’. The smallest detectable difference (SDD), the smallest detectable change (SDC), and intra- and inter-reader intraclass correlation coefficients (ICCs) were used to assess the reliability of DCE-MRI. Responsiveness to treatment was assessed by the standardized response mean (SRM). Results: In all patients...

  4. Geosynchronous magnetic field responses to fast solar wind dynamic pressure enhancements: MHD field model

    Directory of Open Access Journals (Sweden)

    T. R. Sun

    2012-08-01

    Full Text Available We performed global MHD simulations of the geosynchronous magnetic field in response to fast solar wind dynamic pressure (Pd enhancements. Taking three Pd enhancement events in 2000 as examples, we found that the main features of the total field B and the dominant component Bz can be efficiently predicted by the MHD model. The predicted B and Bz varies with local time, with the highest level near noon and a slightly lower level around mid-night. However, it is more challenging to accurately predict the responses of the smaller component at the geosynchronous orbit (i.e., Bx and By. In contrast, the limitations of T01 model in predicting responses to fast Pd enhancements are presented.

  5. Dynamic gradient descent learning algorithms for enhanced empirical modeling of power plants

    International Nuclear Information System (INIS)

    Parlos, A.G.; Atiya, Amir; Chong, K.T.

    1991-01-01

    A newly developed dynamic gradient descent-based learning algorithm is used to train a recurrent multilayer perceptron network for use in empirical modeling of power plants. The two main advantages of the proposed learning algorithm are its ability to consider past error gradient information for future use and the two forward passes associated with its implementation, instead of one forward and one backward pass of the backpropagation algorithm. The latter advantage results in computational time saving because both passes can be performed simultaneously. The dynamic learning algorithm is used to train a hybrid feedforward/feedback neural network, a recurrent multilayer perceptron, which was previously found to exhibit good interpolation and extrapolation capabilities in modeling nonlinear dynamic systems. One of the drawbacks, however, of the previously reported work has been the long training times associated with accurate empirical models. The enhanced learning capabilities provided by the dynamic gradient descent-based learning algorithm are demonstrated by a case study of a steam power plant. The number of iterations required for accurate empirical modeling has been reduced from tens of thousands to hundreds, thus significantly expediting the learning process

  6. Volumetric dynamic contrast enhanced Computed Tomography (DCE-CT) for preoperative assessment of the vascularity of spinal metastases

    DEFF Research Database (Denmark)

    Lauridsen, Carsten Ammitzbøl

    Purpose To investigate the feasibility of measuring and grading the vascularity of spinal metastases using dynamic contrast enhanced CT (DCE-CT). Materials and methods Prior to surgical treatment of symptomatic metastatic spinal cord compression, 20 patients were examined using DCE-CT. The 320......–detector row CT scanner allowed a volumetric acquisition over a range of 16 cm, covering three to four vertebrae. Image analysis was performed at a dedicated workstation, encompassing quantitative and qualitative measurement of the arterial flow (AF) in mL/min/100mL of the vertebrae. The perfusion values...... were analysed using a single input, maximum slope model. The AF assessed by DCE-CT of affected and non-affected vertebrae will be compared, and furthermore, the correlation between AF and intraoperative blood loss will be examined. Results Preliminary results for 5 patients: In two patients the AF...

  7. Investigating the Partial Relationships Between Testability and the Dynamic Range-to-Domain Ratio

    Directory of Open Access Journals (Sweden)

    Zuhoor Al-Khanjari

    2003-11-01

    Full Text Available The word ‘testability’ has been used variously in the software community to represent a number of different concepts such as how easy it is to test a program or how easy it is to achieve execution coverage of certain program components. Voas and colleagues have used the word to capture a slightly different notion, namely the ease with which faults, if present in a program, can be revealed by the testing process. The significance of this concept is twofold. First, if it is possible to measure or estimate testability, it can guide the tester in deciding where to focus the testing effort. Secondly, knowledge about what makes some programs more testable than others can guide the developer so that design-for-test features are built in to the software. The propagation, infection and execution (PIE analysis technique has been proposed as a way of estimating the Voas notion of testability. Unfortunately, estimating testability via the PIE technique is a difficult and costly process. However, Voas has suggested a link with the metric, domain-to-range ratio (DRR. This paper reviews the various testability concepts and summarises the PIE technique. A prototype tool developed by the authors to automate part of the PIE analysis is described and a method is proposed for dynamically determining the inverse of the domain-to-range ratio. This inverse ratio can be considered more natural in some sense and the idea of calculating its value from program execution leads to the possibility of automating its determination. Some experiments have been performed to investigate empirically whether there is a partial link between testability and this dynamic range-to-domain ratio (DRDR. Statistical tests have shown that for some programs and computational functions there is a strong relationship, but for others the relationship is weak.

  8. Assessment of ameloblastomas using MRI and dynamic contrast-enhanced MRI

    International Nuclear Information System (INIS)

    Asaumi, Jun-ichi; Hisatomi, Miki; Yanagi, Yoshinobu; Matsuzaki, Hidenobu; Choi, Yong Suk; Kawai, Noriko; Konouchi, Hironobu; Kishi, Kanji

    2005-01-01

    We retrospectively evaluated magnetic resonance images (MRI) and dynamic contrast-enhanced MRI (DCE-MRI) of ameloblastomas. MRI and DCE-MRI were performed for 10 ameloblastomas. We obtained the following results from the MRI and DCE-MRI. (a) Ameloblastomas can be divided into solid and cystic portions on the basis of MR signal intensities. (b) Ameloblastomas show a predilection for intermediate signal intensity on T1WI, high signal intensity on T2WI, and well enhancement in the solid portion; they also show a homogeneous intermediate signal intensity on T1WI and homogeneous high signal intensity on T2WI, and no enhancement in the cystic portion. (c) The mural nodule or thick wall can be detected in ameloblastomas lesions. (d) CI curves of ameloblastomas show two patterns: the first pattern increases, reaches a plateau at 100-300 s, then sustains the plateau or decreases gradually to 600-900 s, while the other increases relatively rapidly, reaches a plateau at 90-120 s, then decreases relatively rapidly to 300 s, and decreases gradually thereafter. There was no difference in the CI curve patterns among primary and recurrent cases, a case with glandular odontogenic tumor in ameloblastoma or among histopathological types such as plexiform, follicular, mixed, desmoplastic, and unicystic type

  9. Transcription factor assisted loading and enhancer dynamics dictate the hepatic fasting response

    Science.gov (United States)

    Goldstein, Ido; Baek, Songjoon; Presman, Diego M.; Paakinaho, Ville; Swinstead, Erin E.; Hager, Gordon L.

    2017-01-01

    Fasting elicits transcriptional programs in hepatocytes leading to glucose and ketone production. This transcriptional program is regulated by many transcription factors (TFs). To understand how this complex network regulates the metabolic response to fasting, we aimed at isolating the enhancers and TFs dictating it. Measuring chromatin accessibility revealed that fasting massively reorganizes liver chromatin, exposing numerous fasting-induced enhancers. By utilizing computational methods in combination with dissecting enhancer features and TF cistromes, we implicated four key TFs regulating the fasting response: glucocorticoid receptor (GR), cAMP responsive element binding protein 1 (CREB1), peroxisome proliferator activated receptor alpha (PPARA), and CCAAT/enhancer binding protein beta (CEBPB). These TFs regulate fuel production by two distinctly operating modules, each controlling a separate metabolic pathway. The gluconeogenic module operates through assisted loading, whereby GR doubles the number of sites occupied by CREB1 as well as enhances CREB1 binding intensity and increases accessibility of CREB1 binding sites. Importantly, this GR-assisted CREB1 binding was enhancer-selective and did not affect all CREB1-bound enhancers. Single-molecule tracking revealed that GR increases the number and DNA residence time of a portion of chromatin-bound CREB1 molecules. These events collectively result in rapid synergistic gene expression and higher hepatic glucose production. Conversely, the ketogenic module operates via a GR-induced TF cascade, whereby PPARA levels are increased following GR activation, facilitating gradual enhancer maturation next to PPARA target genes and delayed ketogenic gene expression. Our findings reveal a complex network of enhancers and TFs that dynamically cooperate to restore homeostasis upon fasting. PMID:28031249

  10. Estimating indices of range shifts in birds using dynamic models when detection is imperfect

    Science.gov (United States)

    Clement, Matthew J.; Hines, James E.; Nichols, James D.; Pardieck, Keith L.; Ziolkowski, David J.

    2016-01-01

    There is intense interest in basic and applied ecology about the effect of global change on current and future species distributions. Projections based on widely used static modeling methods implicitly assume that species are in equilibrium with the environment and that detection during surveys is perfect. We used multiseason correlated detection occupancy models, which avoid these assumptions, to relate climate data to distributional shifts of Louisiana Waterthrush in the North American Breeding Bird Survey (BBS) data. We summarized these shifts with indices of range size and position and compared them to the same indices obtained using more basic modeling approaches. Detection rates during point counts in BBS surveys were low, and models that ignored imperfect detection severely underestimated the proportion of area occupied and slightly overestimated mean latitude. Static models indicated Louisiana Waterthrush distribution was most closely associated with moderate temperatures, while dynamic occupancy models indicated that initial occupancy was associated with diurnal temperature ranges and colonization of sites was associated with moderate precipitation. Overall, the proportion of area occupied and mean latitude changed little during the 1997–2013 study period. Near-term forecasts of species distribution generated by dynamic models were more similar to subsequently observed distributions than forecasts from static models. Occupancy models incorporating a finite mixture model on detection – a new extension to correlated detection occupancy models – were better supported and may reduce bias associated with detection heterogeneity. We argue that replacing phenomenological static models with more mechanistic dynamic models can improve projections of future species distributions. In turn, better projections can improve biodiversity forecasts, management decisions, and understanding of global change biology.

  11. Detectability of hepatocellular carcinoma: comparison of Gd-DTPA-enhanced and SPIO-enhanced MR imaging

    International Nuclear Information System (INIS)

    Kwak, Hyo Sung; Lee, Jeong Min; Kim In Hwan; Kim, Chong Soo; Han, Hyeun Young; Yoon, Kwon ha; Shin, Kyung Sook

    2000-01-01

    To compare the detectability of hepatocellular carcinoma (HCC) using superparamagnetic iron oxide (SPIO)-enhanced T2-weighted turbo spin echo (TSE), SPIO-enhanced T2-weighted FISP, and dynamic Gd-DTPA-enhanced fast low-angle shot (FLASH) MR images. In order to assess their hepatic lesions, 25 patients (20 men and 5 women) with HCC were enrolled in an MR study in which both gadolinium and Spiro were used. Since the lesions were most conspicuous during the phase of dynamic arterial dominant phase of dynamic gadolinium-enhanced imaging, this was the phase used for analysis. Images were analyzed qualitatively and quantitatively, and to compare the diagnostic value of gadolinium-enhanced imaging with that of SPIO-enhanced imaging for the detection of HCCs, a receiver-operated characteristic curve was obtained. Qualitative analysis revealed a significantly higher percentage of signal loss and a higher liver-lesion contrast-to-noise ratio on SPIO-enhanced FISP imaging than on SPIO-enhanced T2-weighted TSE imaging (p less than 0.05). It also showed that the lesions were most clearly visible on SPIO-enhanced FISP imaging (and significantly so), followed by SPIO-enhanced T2-weighted TSE imaging, and dynamic gadolinium-enhanced imaging. Imaging artifacts were more prominent on SPIO-enhanced T2-weighted TSE than on SPIO-enhanced PISF imaging or dynamic gadolinium-enhanced imaging (p less than 0.05). According to ROC analysis, SPIO-enhanced T2-weighted turbo spin echo (TSE) or SPIO-enhanced FISP imaging achieved higher accuracy than did dynamic gadolinium-enhanced FLASH imaging (p less than 0.05). For the detection of hepatocellular carcinomas, SPIO-enhanced MR imaging is better than gadolinium-enhanced FLASH imaging

  12. Dynamic contrast-enhanced MRI evaluation of cerebral cavernous malformations.

    Science.gov (United States)

    Hart, Blaine L; Taheri, Saeid; Rosenberg, Gary A; Morrison, Leslie A

    2013-10-01

    The aim of this study is to quantitatively evaluate the behavior of CNS cavernous malformations (CCMs) using a dynamic contrast-enhanced MRI (DCEMRI) technique sensitive for slow transfer rates of gadolinium. The prospective study was approved by the institutional review board and was HIPPA compliant. Written informed consent was obtained from 14 subjects with familial CCMs (4 men and 10 women, ages 22-76 years, mean 48.1 years). Following routine anatomic MRI of the brain, DCEMRI was performed for six slices, using T1 mapping with partial inversion recovery (TAPIR) to calculate T1 values, following administration of 0.025 mmol/kg gadolinium DTPA. The transfer rate (Ki) was calculated using the Patlak model, and Ki within CCMs was compared to normal-appearing white matter as well as to 17 normal control subjects previously studied. All subjects had typical MRI appearance of CCMs. Thirty-nine CCMs were studied using DCEMRI. Ki was low or normal in 12 lesions and elevated from 1.4 to 12 times higher than background in the remaining 27 lesions. Ki ranged from 2.1E-6 to 9.63E-4 min(-1), mean 3.55E-4. Normal-appearing white matter in the CCM patients had a mean Ki of 1.57E-4, not statistically different from mean WM Ki of 1.47E-4 in controls. TAPIR-based DCEMRI technique permits quantifiable assessment of CCMs in vivo and reveals considerable differences not seen with conventional MRI. Potential applications include correlation with biologic behavior such as lesion growth or hemorrage, and measurement of drug effects.

  13. Synovitis assessed on static and dynamic contrast-enhanced magnetic resonance imaging and its association with pain in knee osteoarthritis

    DEFF Research Database (Denmark)

    Riis, Robert Gabriel Coumine; Gudbergsen, Henrik; Henriksen, Marius

    2016-01-01

    OBJECTIVES: To investigate the association between pain and peripatellar-synovitis on static and dynamic contrast-enhanced MRI in knee osteoarthritis. METHODS: In a cross-sectional setting, knee synovitis was assessed using 3-Tesla MRI and correlated with pain using the knee injury and osteoarthr......OBJECTIVES: To investigate the association between pain and peripatellar-synovitis on static and dynamic contrast-enhanced MRI in knee osteoarthritis. METHODS: In a cross-sectional setting, knee synovitis was assessed using 3-Tesla MRI and correlated with pain using the knee injury...

  14. Collateral ventilation to congenital hyperlucent lung lesions assessed on xenon-enhanced dynamic dual-energy CT: an initial experience.

    Science.gov (United States)

    Goo, Hyun Woo; Yang, Dong Hyun; Kim, Namkug; Park, Seung Il; Kim, Dong Kwan; Kim, Ellen Ai-Rhan

    2011-01-01

    We wanted to evaluate the resistance to collateral ventilation in congenital hyperlucent lung lesions and to correlate that with the anatomic findings on xenon-enhanced dynamic dual-energy CT. Xenon-enhanced dynamic dual-energy CT was successfully and safely performed in eight children (median age: 5.5 years, 4 boys and 4 girls) with congenital hyperlucent lung lesions. Functional assessment of the lung lesions on the xenon map was done, including performing a time-xenon value curve analysis and assessing the amplitude of xenon enhancement (A) value, the rate of xenon enhancement (K) value and the time of arrival value. Based on the A value, the lung lesions were categorized into high or low (A value > 10 Hounsfield unit [HU]) resistance to collateral ventilation. In addition, the morphologic CT findings of the lung lesions, including cyst, mucocele and an accessory or incomplete fissure, were assessed on the weighted-average CT images. The xenon-enhanced CT radiation dose was estimated. Five of the eight lung lesions were categorized into the high resistance group and three lesions were categorized into the low resistance group. The A and K values in the normal lung were higher than those in the low resistance group. The time of arrival values were delayed in the low resistance group. Cysts were identified in five lesions, mucocele in four, accessory fissure in three and incomplete fissure in two. Either cyst or an accessory fissure was seen in four of the five lesions showing high resistance to collateral ventilation. The xenon-enhanced CT radiation dose was 2.3 ± 0.6 mSv. Xenon-enhanced dynamic dual-energy CT can help visualize and quantitate various degrees of collateral ventilation to congenital hyperlucent lung lesions in addition to assessing the anatomic details of the lung.

  15. Intra- and interobserver reliability of gray scale/dynamic range evaluation of ultrasonography using a standardized phantom

    International Nuclear Information System (INIS)

    Lee, Song; Choi, Joon Il; Park, Michael Yong; Yeo, Dong Myung; Byun, Jae Young; Jung, Seung Eun; Rha, Sung Eun; Oh, Soon Nam; Lee, Young Joon

    2014-01-01

    To evaluate intra- and interobserver reliability of the gray scale/dynamic range of the phantom image evaluation of ultrasonography using a standardized phantom, and to assess the effect of interactive education on the reliability. Three radiologists (a resident, and two board-certified radiologists with 2 and 7 years of experience in evaluating ultrasound phantom images) performed the gray scale/dynamic range test for an ultrasound machine using a standardized phantom. They scored the number of visible cylindrical structures of varying degrees of brightness and made a pass or fail decision. First, they scored 49 phantom images twice from a 2010 survey with limited knowledge of phantom images. After this, the radiologists underwent two hours of interactive education for the phantom images and scored another 91 phantom images from a 2011 survey twice. Intra- and interobserver reliability before and after the interactive education session were analyzed using K analyses. Before education, the K-value for intraobserver reliability for the radiologist with 7 years of experience, 2 years of experience, and the resident was 0.386, 0.469, and 0.465, respectively. After education, the K-values were improved (0.823, 0.611, and 0.711, respectively). For interobserver reliability, the K-value was also better after the education for the 3 participants (0.067, 0.002, and 0.547 before education; 0.635, 0.667, and 0.616 after education, respectively). The intra- and interobserver reliability of the gray scale/dynamic range was fair to substantial. Interactive education can improve reliability. For more reliable results, double- checking of phantom images by multiple reviewers is recommended.

  16. Dynamic contrast-enhanced breast MRI at 7 Tesla utilizing a single-loop coil: a feasibility trial.

    Science.gov (United States)

    Umutlu, Lale; Maderwald, Stefan; Kraff, Oliver; Theysohn, Jens M; Kuemmel, Sherko; Hauth, Elke A; Forsting, Michael; Antoch, Gerald; Ladd, Mark E; Quick, Harald H; Lauenstein, Thomas C

    2010-08-01

    The aim of this study was to assess the feasibility of dynamic contrast-enhanced ultra-high-field breast imaging at 7 Tesla. A total of 15 subjects, including 5 patients with histologically proven breast cancer, were examined on a 7 Tesla whole-body magnetic resonance imaging system using a unilateral linearly polarized single-loop coil. Subjects were placed in prone position on a biopsy support system, with the coil placed directly below the region of interest. The examination protocol included the following sequences: 1) T2-weighted turbo spin echo sequence; 2) six dynamic T1-weighted spoiled gradient-echo sequences; and 3) subtraction imaging. Contrast-enhanced T1-weighted imaging at 7 Tesla could be obtained at high spatial resolution with short acquisition times, providing good image accuracy and a conclusively good delineation of small anatomical and pathological structures. T2-weighted imaging could be obtained with high spatial resolution at adequate acquisition times. Because of coil limitations, four high-field magnetic resonance examinations showed decreased diagnostic value. This first scientific approach of dynamic contrast-enhanced breast magnetic resonance imaging at 7 Tesla demonstrates the complexity of ultra-high-field breast magnetic resonance imaging and countenances the implementation of further advanced bilateral coil concepts to circumvent current limitations from the coil and ultra-high-field magnetic strength. 2010 AUR. Published by Elsevier Inc. All rights reserved.

  17. Changes in signal-to-noise ratios and contrast-to-noise ratios of hypervascular hepatocellular carcinomas on ferucarbotran-enhanced dynamic MR imaging

    International Nuclear Information System (INIS)

    Park, Yulri; Choi, Dongil; Kim, Seong Hyun; Kim, Seung Hoon; Kim, Min Ju; Lee, Jongmee; Lim, Jae Hoon; Lee, Won Jae; Lim, Hyo K.

    2006-01-01

    Purpose: To verify changes in the signal-to-noise ratios (SNRs) and contrast-to-noise ratios (CNRs) of hypervascular hepatocellular carcinomas (HCCs) on ferucarbotran-enhanced dynamic T1-weighted MR imaging. Materials and methods: Fifty-two patients with 61 hypervascular HCCs underwent ferucarbotran-enhanced dynamic MR imaging, and then hepatic resection. Hypervascular HCCs were identified when definite enhancement was noted during the arterial dominant phase of three-phase MDCT. Dynamic MR Images with T1-weighted fast multiplanar spoiled gradient-recalled echo sequence (TR200/TE4.2) were obtained before and 20 s, and 1, 3, 5, and 10 min, after bolus injection of ferucarbotran. We estimated the signal intensities of tumors and livers, and calculated the SNRs and CNRs of the tumors. Results: On ferucarbotran-enhanced dynamic MR imaging, SNR measurements showed a fluctuating pattern, namely, an increase in SNR followed by a decrease and a subsequent increase (or a decrease in SNR followed by a increase and a subsequent decrease) in 50 (82.0%) of 61 tumors, a single-peak SNR pattern (highest SNR on 20 s, 1, 3, or 5 min delayed images followed by a decrease) in seven (11.5%), and a decrease in SNR followed by an increase in four (6.6%). Maximum absolute CNRs with positive value were noted on 10 min delayed images in 41 (67.2%) tumors, and maximum absolute CNRs with negative value were observed on 20 s delayed images in 12 (19.7%) and on 1 min delayed images in eight (13.1%). Conclusion: Despite showing various SNR and CNR changes, the majority of hypervascular HCCs demonstrated a fluctuating SNR pattern on ferucarbotran-enhanced dynamic MR imaging and a highest CNR on 10 min delayed image, which differed from the classic enhancement pattern on multiphasic CT

  18. Coupled quantum-classical method for long range charge transfer: relevance of the nuclear motion to the quantum electron dynamics

    International Nuclear Information System (INIS)

    Da Silva, Robson; Hoff, Diego A; Rego, Luis G C

    2015-01-01

    Charge and excitonic-energy transfer phenomena are fundamental for energy conversion in solar cells as well as artificial photosynthesis. Currently, much interest is being paid to light-harvesting and energy transduction processes in supramolecular structures, where nuclear dynamics has a major influence on electronic quantum dynamics. For this reason, the simulation of long range electron transfer in supramolecular structures, under environmental conditions described within an atomistic framework, has been a difficult problem to study. This work describes a coupled quantum mechanics/molecular mechanics method that aims at describing long range charge transfer processes in supramolecular systems, taking into account the atomistic details of large molecular structures, the underlying nuclear motion, and environmental effects. The method is applied to investigate the relevance of electron–nuclei interaction on the mechanisms for photo-induced electron–hole pair separation in dye-sensitized interfaces as well as electronic dynamics in molecular structures. (paper)

  19. Enhancement of dynamic myocardial perfusion PET images based on low-rank plus sparse decomposition.

    Science.gov (United States)

    Lu, Lijun; Ma, Xiaomian; Mohy-Ud-Din, Hassan; Ma, Jianhua; Feng, Qianjin; Rahmim, Arman; Chen, Wufan

    2018-02-01

    The absolute quantification of dynamic myocardial perfusion (MP) PET imaging is challenged by the limited spatial resolution of individual frame images due to division of the data into shorter frames. This study aims to develop a method for restoration and enhancement of dynamic PET images. We propose that the image restoration model should be based on multiple constraints rather than a single constraint, given the fact that the image characteristic is hardly described by a single constraint alone. At the same time, it may be possible, but not optimal, to regularize the image with multiple constraints simultaneously. Fortunately, MP PET images can be decomposed into a superposition of background vs. dynamic components via low-rank plus sparse (L + S) decomposition. Thus, we propose an L + S decomposition based MP PET image restoration model and express it as a convex optimization problem. An iterative soft thresholding algorithm was developed to solve the problem. Using realistic dynamic 82 Rb MP PET scan data, we optimized and compared its performance with other restoration methods. The proposed method resulted in substantial visual as well as quantitative accuracy improvements in terms of noise versus bias performance, as demonstrated in extensive 82 Rb MP PET simulations. In particular, the myocardium defect in the MP PET images had improved visual as well as contrast versus noise tradeoff. The proposed algorithm was also applied on an 8-min clinical cardiac 82 Rb MP PET study performed on the GE Discovery PET/CT, and demonstrated improved quantitative accuracy (CNR and SNR) compared to other algorithms. The proposed method is effective for restoration and enhancement of dynamic PET images. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Memory Transformation Enhances Reinforcement Learning in Dynamic Environments.

    Science.gov (United States)

    Santoro, Adam; Frankland, Paul W; Richards, Blake A

    2016-11-30

    Over the course of systems consolidation, there is a switch from a reliance on detailed episodic memories to generalized schematic memories. This switch is sometimes referred to as "memory transformation." Here we demonstrate a previously unappreciated benefit of memory transformation, namely, its ability to enhance reinforcement learning in a dynamic environment. We developed a neural network that is trained to find rewards in a foraging task where reward locations are continuously changing. The network can use memories for specific locations (episodic memories) and statistical patterns of locations (schematic memories) to guide its search. We find that switching from an episodic to a schematic strategy over time leads to enhanced performance due to the tendency for the reward location to be highly correlated with itself in the short-term, but regress to a stable distribution in the long-term. We also show that the statistics of the environment determine the optimal utilization of both types of memory. Our work recasts the theoretical question of why memory transformation occurs, shifting the focus from the avoidance of memory interference toward the enhancement of reinforcement learning across multiple timescales. As time passes, memories transform from a highly detailed state to a more gist-like state, in a process called "memory transformation." Theories of memory transformation speak to its advantages in terms of reducing memory interference, increasing memory robustness, and building models of the environment. However, the role of memory transformation from the perspective of an agent that continuously acts and receives reward in its environment is not well explored. In this work, we demonstrate a view of memory transformation that defines it as a way of optimizing behavior across multiple timescales. Copyright © 2016 the authors 0270-6474/16/3612228-15$15.00/0.

  1. Accurate determination of blood–brain barrier permeability using dynamic contrast-enhanced T1-weighted MRI

    DEFF Research Database (Denmark)

    Cramer, Stig P; Larsson, Henrik B W

    2014-01-01

    Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is increasingly used to estimate permeability in situations with subtle blood-brain barrier (BBB) leakage. However, the method's ability to differentiate such low values from zero is unknown, and no consensus exists on optimal selection...

  2. An enhanced particle swarm optimization for dynamic economic dispatch problem considering valve-point loading

    Energy Technology Data Exchange (ETDEWEB)

    Sriyanyong, P. [King Mongkut' s Univ. of Technology, Bangkok (Thailand). Dept. of Teacher Training in Electrical Engineering

    2008-07-01

    This paper described the use of an enhanced particle swarm optimization (PSO) model to address the problem of dynamic economic dispatch (DED). A modified heuristic search method was incorporated into the PSO model. Both smooth and non-smooth cost functions were considered. The enhanced PSO model not only utilized the basic PSO algorithm in order to seek the optimal solution for the DED problem, but it also used a modified heuristic method to deal with constraints and increase the possibility of finding a feasible solution. In order to validate the enhanced PSO model, it was used and tested on 10-unit systems considering both smooth and non-smooth cost functions characteristics. The experimental results were also compared to other methods. The proposed technique was found to be better than other approaches. The enhanced PSO model outperformed others with respect to quality, stability and reliability. 23 refs., 1 tab., 8 figs.

  3. Modeling a color-rendering operator for high dynamic range images using a cone-response function

    Science.gov (United States)

    Choi, Ho-Hyoung; Kim, Gi-Seok; Yun, Byoung-Ju

    2015-09-01

    Tone-mapping operators are the typical algorithms designed to produce visibility and the overall impression of brightness, contrast, and color of high dynamic range (HDR) images on low dynamic range (LDR) display devices. Although several new tone-mapping operators have been proposed in recent years, the results of these operators have not matched those of the psychophysical experiments based on the human visual system. A color-rendering model that is a combination of tone-mapping and cone-response functions using an XYZ tristimulus color space is presented. In the proposed method, the tone-mapping operator produces visibility and the overall impression of brightness, contrast, and color in HDR images when mapped onto relatively LDR devices. The tone-mapping resultant image is obtained using chromatic and achromatic colors to avoid well-known color distortions shown in the conventional methods. The resulting image is then processed with a cone-response function wherein emphasis is placed on human visual perception (HVP). The proposed method covers the mismatch between the actual scene and the rendered image based on HVP. The experimental results show that the proposed method yields an improved color-rendering performance compared to conventional methods.

  4. Computational model of lightness perception in high dynamic range imaging

    Science.gov (United States)

    Krawczyk, Grzegorz; Myszkowski, Karol; Seidel, Hans-Peter

    2006-02-01

    An anchoring theory of lightness perception by Gilchrist et al. [1999] explains many characteristics of human visual system such as lightness constancy and its spectacular failures which are important in the perception of images. The principal concept of this theory is the perception of complex scenes in terms of groups of consistent areas (frameworks). Such areas, following the gestalt theorists, are defined by the regions of common illumination. The key aspect of the image perception is the estimation of lightness within each framework through the anchoring to the luminance perceived as white, followed by the computation of the global lightness. In this paper we provide a computational model for automatic decomposition of HDR images into frameworks. We derive a tone mapping operator which predicts lightness perception of the real world scenes and aims at its accurate reproduction on low dynamic range displays. Furthermore, such a decomposition into frameworks opens new grounds for local image analysis in view of human perception.

  5. Dynamic contrast-enhanced quantitative perfusion measurement of the brain using T-1-weighted MRI at 3T

    DEFF Research Database (Denmark)

    Larsson, H.B.W.; Hansen, A.E.; Berg, H.K.

    2008-01-01

    Purpose: To develop a method for the measurement of brain perfusion based on dynamic contrast-enhanced T-1-weighted MR imaging. Materials and Methods: Dynamic imaging of the first pass of a bolus of a paramagnetic contrast agent was performed using a 3T whole-body magnet and a T-1-weighted fast...... field echo sequence. The input function was obtained from the internal carotid artery. An initial T-1 measurement was performed in order to convert the MR signal to concentration of the contrast agent. Pixelwise and region of interest (ROI)based calculation of cerebral perfusion (CBF) was performed...... inside the infarct core was, 9 mL/100g/min in one of the stroke patients. The other stroke patient had postischemic hyperperfusion and CBF was 140 mL/100g/min. Conclusion: Absolute values of brain perfusion can be obtained using dynamic contrast-enhanced MRI. These values correspond,to expected values...

  6. Dosimetric parameters of enhanced dynamic wedge for treatment planning and verification

    International Nuclear Information System (INIS)

    Leavitt, Dennis D.; Lee, Wing Lok; Gaffney, David K.

    1996-01-01

    Purpose/Objective: Enhanced Dynamic Wedge (EDW) is an intensity-modulated radiotherapy technique in which one collimating jaw sweeps across the field to define a desired wedge dose distribution while dose rate is modified according to jaw position. This tool enables discrete or continuous wedge angles from zero to sixty degrees for field widths from three cm to 30 cm in the direction of the wedge, and up to 40 cm perpendicular to the wedge direction. Additionally, asymmetric wedge fields not centered on the line through isocenter can be created for applications such as tangential breast irradiation. The unique range of field shapes and wedge angles introduce a new set of dosimetric challenges to be resolved before routine clinical use of EDW, and especially require that a simple set of independent dose calculation and verification techniques be developed to check computerized treatment planning results. Using terminology in common use in treatment planning, this work defines the effective wedge factor vs. field width and wedge angle, evaluates the depth dose vs. open field values, defines primary intensity functions from which specific dynamic wedges can be calculated in treatment planning systems, and describes the technique for independent calculation of Monitor Units for EDW fields. Materials and Methods: Using 6- and 18-MV beams from a CI2100C, EDW beam profiles were measured in water phantom for depths from near-surface to 30 cm for the full range of field widths and wedge angles using a linear detector array of 25 energy-compensated diodes. Asymmetric wedge field profiles were likewise measured. Depth doses were measured in water phantom using an ionization chamber sequentially positioned to depths of 30 cm. Effective wedge factors for the full range of field widths and wedge angles were measured using an ionization chamber in water-equivalent plastic at a depth of 10 cm on central axis. Dose profiles were calculated by computer as the summation of a series

  7. New segmentation-based tone mapping algorithm for high dynamic range image

    Science.gov (United States)

    Duan, Weiwei; Guo, Huinan; Zhou, Zuofeng; Huang, Huimin; Cao, Jianzhong

    2017-07-01

    The traditional tone mapping algorithm for the display of high dynamic range (HDR) image has the drawback of losing the impression of brightness, contrast and color information. To overcome this phenomenon, we propose a new tone mapping algorithm based on dividing the image into different exposure regions in this paper. Firstly, the over-exposure region is determined using the Local Binary Pattern information of HDR image. Then, based on the peak and average gray of the histogram, the under-exposure and normal-exposure region of HDR image are selected separately. Finally, the different exposure regions are mapped by differentiated tone mapping methods to get the final result. The experiment results show that the proposed algorithm achieve the better performance both in visual quality and objective contrast criterion than other algorithms.

  8. The Contribution of Matched Envelope Dynamic Range to the Binaural Benefits in Simulated Bilateral Electric Hearing

    Science.gov (United States)

    Chen, Fei; Wong, Lena L. N.; Qiu, Jianxin; Liu, Yehai; Azimi, Behnam; Hu, Yi

    2013-01-01

    Purpose: This study examined the effects of envelope dynamic-range mismatch on the intelligibility of Mandarin speech in noise by simulated bilateral electric hearing. Method: Noise-vocoded Mandarin speech, corrupted by speech-shaped noise at 5 and 0 dB signal-to-noise ratios, was presented unilaterally or bilaterally to 10 normal-hearing…

  9. Liver hemangioma : comparison of echogenecity and contrast-enhancement on dynamic MRI

    International Nuclear Information System (INIS)

    Seong, Chang Kyu; Han, Joon Koo; Choi, Byung Ihn; Kim, Seog Joon; Yeon, Kyung Mo; Han, Man Chung

    1998-01-01

    To evaluate the differences in sonographic appearance and hemodynamics between hypoechoic and hyperechoic hemangioma Material and Method : We retrospectively reviewed the sonographic appearance and MRI findings of 23 hypoechoic hepatic hemangiomas in 16 consecutive patients. Nine were men and seven were women, witha mean age of 50 years(range, 40-72). We analyzed the sonographic appearance such as size, shape, border,echogenecity, posterior acoustic enhancement and the presence of fatty liver, and MRI findings such as signal intensity, enhancement pattern. For comparison, we also reviewed the sonographic appearance and MRI findings of 23 hyperechoic hemangiomas in 16 randomly selected patients. Results : There were no differences in size, shape,incidence of posterior acoustic enhancement, MR signal intensity or enhancement pattern between hypoechoic and hyperechoic hemangiomas(p>0.05, Chi-square). However, fatty infiltration of the liver and echogenic rim of the masses were more commonly seen in hypoechoic hemangiomas(9:1, 5:0, respectively, p<0.05). Conclusions : There we reno differences in MR enhomcement pattern or incidence of posterior acoustic enhancement between hypoechoic hyperechoic hemangioma. The vascularity of a mass therefore seems to contribute little to its echogenecity

  10. Modeling Dynamic Contrast-Enhanced MRI Data with a Constrained Local AIF

    DEFF Research Database (Denmark)

    Duan, Chong; Kallehauge, Jesper F.; Pérez-Torres, Carlos J

    2018-01-01

    PURPOSE: This study aims to develop a constrained local arterial input function (cL-AIF) to improve quantitative analysis of dynamic contrast-enhanced (DCE)-magnetic resonance imaging (MRI) data by accounting for the contrast-agent bolus amplitude error in the voxel-specific AIF. PROCEDURES....... RESULTS: When the data model included the cL-AIF, tracer kinetic parameters were correctly estimated from in silico data under contrast-to-noise conditions typical of clinical DCE-MRI experiments. Considering the clinical cervical cancer data, Bayesian model selection was performed for all tumor voxels...

  11. Dynamic Contrast-Enhanced Computed Tomography-Derived Blood Volume and Blood Flow Correlate With Patient Outcome in Metastatic Renal Cell Carcinoma

    DEFF Research Database (Denmark)

    Mains, Jill Rachel; Donskov, Frede; Pedersen, Erik Morre

    2017-01-01

    = 7). Using a prototype software program (Advanced Perfusion and Permeability Application, Philips Healthcare, Best, the Netherlands), blood volume (BV), blood flow (BF), and permeability surface area product (PS) were calculated for each tumor at baseline, week 5, and week 10. These parameters......OBJECTIVES: The aim was to explore the potential for using dynamic contrast-enhanced computed tomography as a noninvasive functional imaging biomarker before and during the early treatment of metastatic renal cell carcinoma (mRCC). MATERIALS AND METHODS: Dynamic contrast-enhanced computed...

  12. Dynamic characterization of hydrophobic and hydrophilic solutes in oleic-acid enhanced transdermal delivery using two-photon fluorescence microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, Te-Yu; Yang, Chiu-Sheng; Chen, Yang-Fang [Department of Physics, National Taiwan University, Taipei, Taiwan (China); Tsai, Tsung-Hua [Department of Dermatology, Far Eastern Memorial Hospital, New Taipei City, Taiwan (China); Dong, Chen-Yuan, E-mail: cydong@phys.ntu.edu.tw [Department of Physics, National Taiwan University, Taipei, Taiwan (China); Center for Quantum Science and Engineering, National Taiwan University, Taipei, Taiwan (China); Center for Optoelectronic Biomedicine, National Taiwan University, Taipei, Taiwan (China)

    2014-10-20

    In this letter, we propose an efficient methodology of investigating dynamic properties of sulforhodamine B and rhodamine B hexyl ester molecules transporting across ex-vivo human stratum corneum with and without oleic acid enhancement. Three-dimensional, time-lapse fluorescence images of the stratum corneum can be obtained using two-photon fluorescence microscopy. Furthermore, temporal quantifications of transport enhancements in diffusion parameters can be achieved with the use of Fick's second law. Dynamic characterization of solutes transporting across the stratum corneum is an effective method for understanding transient phenomena in transdermal delivery of probe molecules, leading to improved delivery strategies of molecular species for therapeutic purposes.

  13. Analysis of dynamic enhancement of natural convection cooling by a discrete vibrating plate

    Energy Technology Data Exchange (ETDEWEB)

    Florio, L.A.; Harnoy, A. [New Jersey Institute of Technology, Department of Mechanical Engineering, Newark, NJ (United States)

    2006-12-15

    A dynamic means of locally enhancing laminar natural convection cooling in a vertical channel through the localized application of fluid oscillations is numerically investigated. The two-dimensional system considered for these purposes is a vertical channel with a small transversely oscillating plate placed near a constant heat flux channel wall. The flow and heat transfer in the system resulting from the combined effects of the natural convection and the oscillating plate were determined. The results indicate that for displacement amplitudes of at least one-third of the mean spacing and with dimensionless frequencies (Re/{radical}(Gr)) of at least 2{pi}, the local heat transfer coefficient can be enhanced by as much as 41%. (orig.)

  14. Development and testing of a fast Fourier transform high dynamic-range spectral diagnostics for millimeter wave characterization

    International Nuclear Information System (INIS)

    Thoen, D. J.; Bongers, W. A.; Westerhof, E.; Baar, M. R. de; Berg, M. A. van den; Beveren, V. van; Goede, A. P. H.; Graswinckel, M. F.; Schueller, F. C.; Oosterbeek, J. W.; Buerger, A.; Hennen, B. A.

    2009-01-01

    A fast Fourier transform (FFT) based wide range millimeter wave diagnostics for spectral characterization of scattered millimeter waves in plasmas has been successfully brought into operation. The scattered millimeter waves are heterodyne downconverted and directly digitized using a fast analog-digital converter and a compact peripheral component interconnect computer. Frequency spectra are obtained by FFT in the time domain of the intermediate frequency signal. The scattered millimeter waves are generated during high power electron cyclotron resonance heating experiments on the TEXTOR tokamak and demonstrate the performance of the diagnostics and, in particular, the usability of direct digitizing and Fourier transformation of millimeter wave signals. The diagnostics is able to acquire 4 GHz wide spectra of signals in the range of 136-140 GHz. The rate of spectra is tunable and has been tested between 200 000 spectra/s with a frequency resolution of 100 MHz and 120 spectra/s with a frequency resolution of 25 kHz. The respective dynamic ranges are 52 and 88 dB. Major benefits of the new diagnostics are a tunable time and frequency resolution due to postdetection, near-real time processing of the acquired data. This diagnostics has a wider application in astrophysics, earth observation, plasma physics, and molecular spectroscopy for the detection and analysis of millimeter wave radiation, providing high-resolution spectra at high temporal resolution and large dynamic range.

  15. Discrimination between glioma grades II and III in suspected low-grade gliomas using dynamic contrast-enhanced and dynamic susceptibility contrast perfusion MR imaging

    DEFF Research Database (Denmark)

    Falk, Anna; Fahlström, Markus; Rostrup, Egill

    2014-01-01

    INTRODUCTION: Perfusion magnetic resonance imaging (MRI) can be used in the pre-operative assessment of brain tumours. The aim of this prospective study was to identify the perfusion parameters from dynamic contrast-enhanced (DCE) and dynamic susceptibility contrast (DSC) perfusion imaging...... written informed consent in this review board-approved study. Regions of interests (ROIs) in tumour area were delineated on FLAIR images co-registered to DCE and DSC, respectively, in 25 patients with histopathological grade II (n = 18) and III (n = 7) gliomas. Statistical analysis of differences between...

  16. Creating Dynamic Learning Environment to Enhance Students’ Engagement in Learning Geometry

    Science.gov (United States)

    Sariyasa

    2017-04-01

    Learning geometry gives many benefits to students. It strengthens the development of deductive thinking and reasoning; it also provides an opportunity to improve visualisation and spatial ability. Some studies, however, have pointed out the difficulties that students encountered when learning geometry. A preliminary study by the author in Bali revealed that one of the main problems was teachers’ difficulties in delivering geometry instruction. It was partly due to the lack of appropriate instructional media. Coupling with dynamic geometry software, dynamic learning environments is a promising solution to this problem. Employing GeoGebra software supported by the well-designed instructional process may result in more meaningful learning, and consequently, students are motivated to engage in the learning process more deeply and actively. In this paper, we provide some examples of GeoGebra-aided learning activities that allow students to interactively explore and investigate geometry concepts and the properties of geometry objects. Thus, it is expected that such learning environment will enhance students’ internalisation process of geometry concepts.

  17. Observation of silicon self-diffusion enhanced by the strain originated from end-of-range defects using isotope multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Isoda, Taiga; Uematsu, Masashi; Itoh, Kohei M., E-mail: kitoh@appi.keio.ac.jp [School of Fundamental Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan)

    2015-09-21

    Si self-diffusion in the presence of end-of-range (EOR) defects is investigated using {sup nat}Si/{sup 28}Si isotope multilayers. The isotope multilayers were amorphized by Ge ion implantation, and then annealed at 800–950 °C. The behavior of Si self-interstitials is investigated through the {sup 30}Si self-diffusion. The experimental {sup 30}Si profiles show further enhancement of Si self-diffusion at the EOR defect region, in addition to the transient enhanced diffusion via excess Si self-interstitials by EOR defects. To explain this additional enhanced diffusion, we propose a model which takes into account enhanced diffusion by tensile strain originated from EOR defects. The calculation results based on this model have well reproduced the experimental {sup 30}Si profiles.

  18. An enhanced dynamic model of battery using genetic algorithm suitable for photovoltaic applications

    International Nuclear Information System (INIS)

    Blaifi, S.; Moulahoum, S.; Colak, I.; Merrouche, W.

    2016-01-01

    Highlights: • We proposed a developed dynamic battery model suitable for photovoltaic systems. • We used genetic algorithm optimization method to find parameters that gives minimized error. • The validation was carried out with real measurements from stand-alone photovoltaic string. - Abstract: Modeling of batteries in photovoltaic systems has been a major issue related to the random dynamic regime imposed by the changes of solar irradiation and ambient temperature added to the complexity of battery electrochemical and electrical behaviors. However, various approaches have been proposed to model the battery behavior by predicting from detailed electrochemical, electrical or analytical models to high-level stochastic models. In this paper, an improvement of dynamic electrical battery model is proposed by automatic parameter extraction using genetic algorithm in order to give usefulness and future implementation for practical application. It is highlighted that the enhancement of 21 values of the parameters of CEIMAT model presents a good agreement with real measurements for different modes like charge or discharge and various conditions.

  19. Adaptive digital fringe projection technique for high dynamic range three-dimensional shape measurement.

    Science.gov (United States)

    Lin, Hui; Gao, Jian; Mei, Qing; He, Yunbo; Liu, Junxiu; Wang, Xingjin

    2016-04-04

    It is a challenge for any optical method to measure objects with a large range of reflectivity variation across the surface. Image saturation results in incorrect intensities in captured fringe pattern images, leading to phase and measurement errors. This paper presents a new adaptive digital fringe projection technique which avoids image saturation and has a high signal to noise ratio (SNR) in the three-dimensional (3-D) shape measurement of objects that has a large range of reflectivity variation across the surface. Compared to previous high dynamic range 3-D scan methods using many exposures and fringe pattern projections, which consumes a lot of time, the proposed technique uses only two preliminary steps of fringe pattern projection and image capture to generate the adapted fringe patterns, by adaptively adjusting the pixel-wise intensity of the projected fringe patterns based on the saturated pixels in the captured images of the surface being measured. For the bright regions due to high surface reflectivity and high illumination by the ambient light and surfaces interreflections, the projected intensity is reduced just to be low enough to avoid image saturation. Simultaneously, the maximum intensity of 255 is used for those dark regions with low surface reflectivity to maintain high SNR. Our experiments demonstrate that the proposed technique can achieve higher 3-D measurement accuracy across a surface with a large range of reflectivity variation.

  20. Charge-leveling and proper treatment of long-range electrostatics in all-atom molecular dynamics at constant pH.

    Science.gov (United States)

    Wallace, Jason A; Shen, Jana K

    2012-11-14

    Recent development of constant pH molecular dynamics (CpHMD) methods has offered promise for adding pH-stat in molecular dynamics simulations. However, until now the working pH molecular dynamics (pHMD) implementations are dependent in part or whole on implicit-solvent models. Here we show that proper treatment of long-range electrostatics and maintaining charge neutrality of the system are critical for extending the continuous pHMD framework to the all-atom representation. The former is achieved here by adding forces to titration coordinates due to long-range electrostatics based on the generalized reaction field method, while the latter is made possible by a charge-leveling technique that couples proton titration with simultaneous ionization or neutralization of a co-ion in solution. We test the new method using the pH-replica-exchange CpHMD simulations of a series of aliphatic dicarboxylic acids with varying carbon chain length. The average absolute deviation from the experimental pK(a) values is merely 0.18 units. The results show that accounting for the forces due to extended electrostatics removes the large random noise in propagating titration coordinates, while maintaining charge neutrality of the system improves the accuracy in the calculated electrostatic interaction between ionizable sites. Thus, we believe that the way is paved for realizing pH-controlled all-atom molecular dynamics in the near future.

  1. Development of a High Dynamic Range Pixel Array Detector for Synchrotrons and XFELs

    Science.gov (United States)

    Weiss, Joel Todd

    Advances in synchrotron radiation light source technology have opened new lines of inquiry in material science, biology, and everything in between. However, x-ray detector capabilities must advance in concert with light source technology to fully realize experimental possibilities. X-ray free electron lasers (XFELs) place particularly large demands on the capabilities of detectors, and developments towards diffraction-limited storage ring sources also necessitate detectors capable of measuring very high flux [1-3]. The detector described herein builds on the Mixed Mode Pixel Array Detector (MM-PAD) framework, developed previously by our group to perform high dynamic range imaging, and the Adaptive Gain Integrating Pixel Detector (AGIPD) developed for the European XFEL by a collaboration between Deustsches Elektronen-Synchrotron (DESY), the Paul-Scherrer-Institute (PSI), the University of Hamburg, and the University of Bonn, led by Heinz Graafsma [4, 5]. The feasibility of combining adaptive gain with charge removal techniques to increase dynamic range in XFEL experiments is assessed by simulating XFEL scatter with a pulsed infrared laser. The strategy is incorporated into pixel prototypes which are evaluated with direct current injection to simulate very high incident x-ray flux. A fully functional 16x16 pixel hybrid integrating x-ray detector featuring several different pixel architectures based on the prototypes was developed. This dissertation describes its operation and characterization. To extend dynamic range, charge is removed from the integration node of the front-end amplifier without interrupting integration. The number of times this process occurs is recorded by a digital counter in the pixel. The parameter limiting full well is thereby shifted from the size of an integration capacitor to the depth of a digital counter. The result is similar to that achieved by counting pixel array detectors, but the integrators presented here are designed to tolerate a

  2. The pelvis after surgery and radio-chemotherapy for rectal cancer studied with Gd-DTPA-enhanced fast dynamic MR imaging

    International Nuclear Information System (INIS)

    Blomqvist, L.; Fransson, P.; Hindmarsh, T.

    1998-01-01

    The aim of this work was to study the gadolinium-enhancement of malignant and benign pathology in the pelvis after surgery for rectal cancer. Thirty patients with either local recurrence (n = 17) or benign changes related to treatment for rectal cancer (n = 13) were studied with pelvic MR imaging. T2-weighted fast spin-echo as well as T1-weighted spin- or gradient-echo imaging before and after intravenous contrast was performed and referred to as contrast-enhanced MRI (CEMRI). In addition, between the pre- and postcontrast images, dynamic contrast-enhanced MRI (DCEMRI) was performed using a single-slice, multi-phase, contrast-enhanced T1-weighted fast spoiled gradient-echo sequence. The time between the start of contrast injection to the beginning of enhancement, the duration and rate of enhancement as well as enhancement amplitude were recorded. The data were compared with the clinical diagnosis according to biopsy in 8 patients and surgery in 6 patients. In the remaining 16 patients, the clinical diagnosis was obtained by clinical or radiological follow-up. DCEMRI did not improve the diagnostic information compared with CEMRI. None of the examined parameters were found to help discriminating malignant from benign changes. Characterisation of lesions in the pelvis after rectal cancer surgery was not improved by a dynamic gadolinium-enhanced sequence. (orig.)

  3. Combining short- and long-range fluorescence reporters with simulations to explore the intramolecular dynamics of an intrinsically disordered protein

    Science.gov (United States)

    Zosel, Franziska; Haenni, Dominik; Soranno, Andrea; Nettels, Daniel; Schuler, Benjamin

    2017-10-01

    Intrinsically disordered proteins (IDPs) are increasingly recognized as a class of molecules that can exert essential biological functions even in the absence of a well-defined three-dimensional structure. Understanding the conformational distributions and dynamics of these highly flexible proteins is thus essential for explaining the molecular mechanisms underlying their function. Single-molecule fluorescence spectroscopy in combination with Förster resonance energy transfer (FRET) is a powerful tool for probing intramolecular distances and the rapid long-range distance dynamics in IDPs. To complement the information from FRET, we combine it with photoinduced electron transfer (PET) quenching to monitor local loop-closure kinetics at the same time and in the same molecule. Here we employed this combination to investigate the intrinsically disordered N-terminal domain of HIV-1 integrase. The results show that both long-range dynamics and loop closure kinetics on the sub-microsecond time scale can be obtained reliably from a single set of measurements by the analysis with a comprehensive model of the underlying photon statistics including both FRET and PET. A more detailed molecular interpretation of the results is enabled by direct comparison with a recent extensive atomistic molecular dynamics simulation of integrase. The simulations are in good agreement with experiment and can explain the deviation from simple models of chain dynamics by the formation of persistent local secondary structure. The results illustrate the power of a close combination of single-molecule spectroscopy and simulations for advancing our understanding of the dynamics and detailed mechanisms in unfolded and intrinsically disordered proteins.

  4. Free Energy Calculations using a Swarm-Enhanced Sampling Molecular Dynamics Approach.

    Science.gov (United States)

    Burusco, Kepa K; Bruce, Neil J; Alibay, Irfan; Bryce, Richard A

    2015-10-26

    Free energy simulations are an established computational tool in modelling chemical change in the condensed phase. However, sampling of kinetically distinct substates remains a challenge to these approaches. As a route to addressing this, we link the methods of thermodynamic integration (TI) and swarm-enhanced sampling molecular dynamics (sesMD), where simulation replicas interact cooperatively to aid transitions over energy barriers. We illustrate the approach by using alchemical alkane transformations in solution, comparing them with the multiple independent trajectory TI (IT-TI) method. Free energy changes for transitions computed by using IT-TI grew increasingly inaccurate as the intramolecular barrier was heightened. By contrast, swarm-enhanced sampling TI (sesTI) calculations showed clear improvements in sampling efficiency, leading to more accurate computed free energy differences, even in the case of the highest barrier height. The sesTI approach, therefore, has potential in addressing chemical change in systems where conformations exist in slow exchange. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Computational Fluid Dynamic Analysis of Enhancing Passenger Cabin Comfort Using PCM

    Science.gov (United States)

    Purusothaman, M.; Valarmathi, T. N.; Dada Mohammad, S. K.

    2016-09-01

    The main purpose of this study is to determine a cost effective way to enhance passenger cabin comfort by analyzing the effect of solar radiation of a open parked vehicle, which is exposed to constant solar radiation on a hot and sunny day. Maximum heat accumulation occurs in the car cabin due to the solar radiation. By means of computational fluid dynamics (CFD) analysis, a simulation process is conducted for the thermal regulation of the passenger cabin using a layer of phase change material (PCM) on the roof structure of a stationary car when exposed to ambient temperature on a hot sunny day. The heat energy accumulated in the passenger cabin is absorbed by a layer of PCM for phase change process. The installation of a ventilation system which uses an exhaust fan to create a natural convection scenario in the cabin is also considered to enhance passenger comfort along with PCM.

  6. [Dynamic enhanced recovery techniques]. Quarterly technical report, April 1994--June 1994

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, R.N.

    1994-07-15

    Global Basins Research Network will perform a field demonstration of their ``Dynamic Enhanced Recovery Technology`` to test the concept that the growth of faults in Eugene Island Block 330 (EI-330 field) are conduits through which producing reservoirs are charged and that enhanced production can be developed by producing directly from the fault zone. The site, operated by Penzoil, is located in 250 feet of water and the productive depth intervals include 4000 to 9000 feet. The field demonstration will be accomplished by drilling and production testing of growth fault systems associated with the EI-330 field. The project utilizes advanced 3-D seismic analysis, geochemical studies, structural and stratigraphic reservoir characterization, reservoir simulation, and compact visualization systems. In this quarterly report, progress reports are presented for the following tasks: Task one--management start-up; Task two--database management; Task three--field demonstration experiment; Task four--reservoir characterization; Task five--modeling; Task six--geochemistry; and Task seven--data integration.

  7. High Dynamic Range Imaging at the Quantum Limit with Single Photon Avalanche Diode-Based Image Sensors †

    Science.gov (United States)

    Mattioli Della Rocca, Francescopaolo

    2018-01-01

    This paper examines methods to best exploit the High Dynamic Range (HDR) of the single photon avalanche diode (SPAD) in a high fill-factor HDR photon counting pixel that is scalable to megapixel arrays. The proposed method combines multi-exposure HDR with temporal oversampling in-pixel. We present a silicon demonstration IC with 96 × 40 array of 8.25 µm pitch 66% fill-factor SPAD-based pixels achieving >100 dB dynamic range with 3 back-to-back exposures (short, mid, long). Each pixel sums 15 bit-planes or binary field images internally to constitute one frame providing 3.75× data compression, hence the 1k frames per second (FPS) output off-chip represents 45,000 individual field images per second on chip. Two future projections of this work are described: scaling SPAD-based image sensors to HDR 1 MPixel formats and shrinking the pixel pitch to 1–3 µm. PMID:29641479

  8. High dynamic range vision sensor for automotive applications

    Science.gov (United States)

    Grenet, Eric; Gyger, Steve; Heim, Pascal; Heitger, Friedrich; Kaess, Francois; Nussbaum, Pascal; Ruedi, Pierre-Francois

    2005-02-01

    A 128 x 128 pixels, 120 dB vision sensor extracting at the pixel level the contrast magnitude and direction of local image features is used to implement a lane tracking system. The contrast representation (relative change of illumination) delivered by the sensor is independent of the illumination level. Together with the high dynamic range of the sensor, it ensures a very stable image feature representation even with high spatial and temporal inhomogeneities of the illumination. Dispatching off chip image feature is done according to the contrast magnitude, prioritizing features with high contrast magnitude. This allows to reduce drastically the amount of data transmitted out of the chip, hence the processing power required for subsequent processing stages. To compensate for the low fill factor (9%) of the sensor, micro-lenses have been deposited which increase the sensitivity by a factor of 5, corresponding to an equivalent of 2000 ASA. An algorithm exploiting the contrast representation output by the vision sensor has been developed to estimate the position of a vehicle relative to the road markings. The algorithm first detects the road markings based on the contrast direction map. Then, it performs quadratic fits on selected kernel of 3 by 3 pixels to achieve sub-pixel accuracy on the estimation of the lane marking positions. The resulting precision on the estimation of the vehicle lateral position is 1 cm. The algorithm performs efficiently under a wide variety of environmental conditions, including night and rainy conditions.

  9. A > 4 MGy radiation tolerant 8 THzOhm transimpedance amplifier with 50 dB dynamic range

    International Nuclear Information System (INIS)

    Verbeeck, J; Steyaert, M; Leroux, P

    2013-01-01

    A 130 nm Transimpedance Amplifier has been developed with a 255 MHz bandwidth, 90 dBΩ transimpedance gain and a dynamic input range of 1:325 or 50 dB for a photo-diode capacitance of 0.75 pF. The equivalent integrated input noise is 160 nA - 25°C. The gain of the voltage amplifier, used in the transimpedance amplifier (TIA), degrades less than 3% over a temperature range from -40 °C up to 125 °C. The TIA and attenuator exhibit a radiation tolerance larger than 4 MGy, as evidenced by radiation assessment.

  10. Dynamic contrast-enhanced MRI of benign prostatic hyperplasia and prostatic carcinoma: correlation with angiogenesis

    International Nuclear Information System (INIS)

    Ren, J.; Huan, Y.; Wang, H.; Chang, Y.-J.; Zhao, H.-T.; Ge, Y.-L.; Liu, Y.; Yang, Y.

    2008-01-01

    Aim: To investigate the diagnostic and differential diagnostic values of dynamic contrast-enhanced magnetic resonance imaging (DCE MRI) in prostatic diseases, and to investigate the correlation between the parameters of SI-T curves and angiogenesis. Materials and methods: Twenty-one patients with proven prostatic carcinoma (Pca) and 29 patients with proven benign prostatic hyperplasia (BPH) were examined using DCE MRI. Diagnostic characteristics for differentiation were examined using threshold values for maximum peak time, enhancement degree, and enhancement rate. Then, the signal intensity-time curves (SI-T curves) were analysed, and the correlations between the parameters of SI-T curves and the expression levels of vascular endothelial growth factor (VEGF) and microvascular density (MVD) were investigated. All patients underwent prostatectomy. DCE MRI and histological findings were correlated. Results: Pca showed stronger enhancement with an earlier peak time, higher enhancement, and enhancement rate (p 2 = 13.57, P < 0.005). The VEGF and MVD expression levels of Pca were higher than those of BPH. Peak time was negatively correlated with the expression levels of VEGF and MVD, whereas the enhancement degree and enhancement rate showed positive correlations (Pearson correlation, p < 0.05). Conclusion: Based on T2-weighted imaging, DCE MRI curves can help to differentiate benign from malignant prostate tissue. In the present study the type C curve was rarely seen with malignant disease, but these results need confirmation

  11. Carcinoma of the uterine cervix. High-resolution turbo spin-echo MR imaging with contrast-enhanced dynamic scanning and T2-weighting

    International Nuclear Information System (INIS)

    Abe, Y.; Yamashita, Y.; Namimoto, T.; Takahashi, M.; Katabuchi, H.; Tanaka, N.; Okamura, H.

    1998-01-01

    Purpose: To compare high-resolution contrast-enhanced (Gd-DTPA) dynamic MR imaging with T2-weighted turbo spin-echo (TSE) imaging in the evaluation of uterine cervical carcinoma. Material and Methods: Thirty-two patients with cervical carcinoma underwent MR imaging on a 1.5 T superconductive unit to have the extension of the disease assessed before treatment. A phased-array coil was used in all patients. In 25 patients, surgical confirmation of the diagnosis was obtained after imaging. Radiation therapy was selected for the remaining 7 patients with advanced carcinoma. Qualitative and quantitative image analyses were also performed. Results: The cervical carcinomas showed maximum contrast in the cervical stroma and myometrium in the early dynamic phase. The tumor/cervical-stroma contrast in the early dynamic phase obtained with the T1-weighted TSE technique (contrast-to-noise ratio 22.6) was significantly higher than that obtained in T2-weighted TSE imaging (contrast-to-noise ratio 4.3). In the evaluation of parametrial invasion, the accuracy of T2-weighted imaging was 71.8% and contrast-enhanced dynamic imaging 81.2%. Conclusion: High-resolution contrast-enhanced (Gd-DTPA) dynamic MR imaging in cervical cancer offers improved tumor/cervical-stroma contrast and provides useful information on parametrial invasion. (orig.)

  12. Data driven analysis of dynamic contrast-enhanced magnetic resonance imaging data in breast cancer diagnosis

    NARCIS (Netherlands)

    Twellmann, T.

    2005-01-01

    In the European Union, breast cancer is the most common type of cancer affecting women. If diagnosed in an early stage, breast cancer has an encouraging cure rate. Thus, early detection of breast cancer continues to be the key for an effective treatment. Recently, Dynamic Contrast-Enhanced Magnetic

  13. HDR Image Quality Enhancement Based on Spatially Variant Retinal Response

    Directory of Open Access Journals (Sweden)

    Horiuchi Takahiko

    2010-01-01

    Full Text Available There is a growing demand for being able to display high dynamic range (HDR images on low dynamic range (LDR devices. Tone mapping is a process for enhancing HDR image quality on an LDR device by converting the tonal values of the original image from HDR to LDR. This paper proposes a new tone mapping algorithm for enhancing image quality by deriving a spatially-variant operator for imitating S-potential response in human retina, which efficiently improves local contrasts while conserving good global appearance. The proposed tone mapping operator is studied from a system construction point of view. It is found that the operator is regarded as a natural extension of the Retinex algorithm by adding a global adaptation process to the local adaptation. The feasibility of the proposed algorithm is examined in detail on experiments using standard HDR images and real HDR scene images, comparing with conventional tone mapping algorithms.

  14. Dynamic contrast-enhanced MRI in patients with luminal Crohn's disease

    International Nuclear Information System (INIS)

    Ziech, M.L.W.; Lavini, C.; Caan, M.W.A.; Nio, C.Y.; Stokkers, P.C.F.; Bipat, S.; Ponsioen, C.Y.; Nederveen, A.J.; Stoker, J.

    2012-01-01

    Objectives: To prospectively assess dynamic contrast-enhanced (DCE-)MRI as compared to conventional sequences in patients with luminal Crohn's disease. Methods: Patients with Crohn's disease undergoing MRI and ileocolonoscopy within 1 month had DCE-MRI (3T) during intravenous contrast injection of gadobutrol, single shot fast spin echo sequence and 3D T1-weighted spoiled gradient echo sequence, a dynamic coronal 3D T1-weighted fast spoiled gradient were performed before and after gadobutrol. Maximum enhancement (ME) and initial slope of increase (ISI) were calculated for four colon segments (ascending colon + coecum, transverse colon, descending colon + sigmoid, rectum) and (neo)terminal ileum. C-reactive protein (CRP), Crohn's disease activity index (CDAI), per patient and per segment Crohn's disease endoscopic index of severity (CDEIS) and disease duration were determined. Mean values of the (DCE-)MRI parameters in each segment from each patient were compared between four disease activity groups (normal mucosa, non-ulcerative lesions, mild ulcerative and severe ulcerative disease) with Mann–Whitney test with Bonferroni adjustment. Spearman correlation coefficients were calculated for continuous variables. Results: Thirty-three patients were included (mean age 37 years; 23 females, median CDEIS 4.4). ME and ISI correlated weakly with segmental CDEIS (r = 0.485 and r = 0.206) and ME per patient correlated moderately with CDEIS (r = 0.551). ME was significantly higher in segments with mild (0.378) or severe (0.388) ulcerative disease compared to normal mucosa (0.304) (p < 0.001). No ulcerations were identified at conventional sequences. ME correlated with disease duration in diseased segments (r = 0.492), not with CDAI and CRP. Conclusions: DCE-MRI can be used as a method for detecting Crohn's disease ulcerative lesions.

  15. Dynamic-range reduction by peak clipping or compression and its effects on phoneme perception in hearing-impaired listeners

    NARCIS (Netherlands)

    Dreschler, W. A.

    1988-01-01

    In this study, differences between dynamic-range reduction by peak clipping and single-channel compression for phoneme perception through conventional hearing aids have been investigated. The results from 16 hearing-impaired listeners show that compression limiting yields significantly better

  16. A wide-range model of two-group gross sections in the dynamics code HEXTRAN

    International Nuclear Information System (INIS)

    Kaloinen, E.; Peltonen, J.

    2002-01-01

    In dynamic analyses the thermal hydraulic conditions within the reactor core may have a large variation, which sets a special requirement on the modeling of cross sections. The standard model in the dynamics code HEXTRAN is the same as in the static design code HEXBU-3D/MODS. It is based on a linear and second order fitting of two-group cross sections on fuel and moderator temperature, moderator density and boron density. A new, wide-range model of cross sections developed in Fortum Nuclear Services for HEXBU-3D/MOD6 has been included as an option into HEXTRAN. In this model the nodal cross sections are constructed from seven state variables in a polynomial of more than 40 terms. Coefficients of the polynomial are created by a least squares fitting to the results of a large number of fuel assembly calculations. Depending on the choice of state variables for the spectrum calculations, the new cross section model is capable to cover local conditions from cold zero power to boiling at full power. The 5. dynamic benchmark problem of AER is analyzed with the new option and results are compared to calculations with the standard model of cross sections in HEXTRAN (Authors)

  17. New approach of financial volatility duration dynamics by stochastic finite-range interacting voter system.

    Science.gov (United States)

    Wang, Guochao; Wang, Jun

    2017-01-01

    We make an approach on investigating the fluctuation behaviors of financial volatility duration dynamics. A new concept of volatility two-component range intensity (VTRI) is developed, which constitutes the maximal variation range of volatility intensity and shortest passage time of duration, and can quantify the investment risk in financial markets. In an attempt to study and describe the nonlinear complex properties of VTRI, a random agent-based financial price model is developed by the finite-range interacting biased voter system. The autocorrelation behaviors and the power-law scaling behaviors of return time series and VTRI series are investigated. Then, the complexity of VTRI series of the real markets and the proposed model is analyzed by Fuzzy entropy (FuzzyEn) and Lempel-Ziv complexity. In this process, we apply the cross-Fuzzy entropy (C-FuzzyEn) to study the asynchrony of pairs of VTRI series. The empirical results reveal that the proposed model has the similar complex behaviors with the actual markets and indicate that the proposed stock VTRI series analysis and the financial model are meaningful and feasible to some extent.

  18. Statistical mechanics and dynamics of solvable models with long-range interactions

    International Nuclear Information System (INIS)

    Campa, Alessandro; Dauxois, Thierry; Ruffo, Stefano

    2009-01-01

    For systems with long-range interactions, the two-body potential decays at large distances as V(r)∼1/r α , with α≤d, where d is the space dimension. Examples are: gravitational systems, two-dimensional hydrodynamics, two-dimensional elasticity, charged and dipolar systems. Although such systems can be made extensive, they are intrinsically non additive: the sum of the energies of macroscopic subsystems is not equal to the energy of the whole system. Moreover, the space of accessible macroscopic thermodynamic parameters might be non convex. The violation of these two basic properties of the thermodynamics of short-range systems is at the origin of ensemble inequivalence. In turn, this inequivalence implies that specific heat can be negative in the microcanonical ensemble, and temperature jumps can appear at microcanonical first order phase transitions. The lack of convexity allows us to easily spot regions of parameter space where ergodicity may be broken. Historically, negative specific heat had been found for gravitational systems and was thought to be a specific property of a system for which the existence of standard equilibrium statistical mechanics itself was doubted. Realizing that such properties may be present for a wider class of systems has renewed the interest in long-range interactions. Here, we present a comprehensive review of the recent advances on the statistical mechanics and out-of-equilibrium dynamics of solvable systems with long-range interactions. The core of the review consists in the detailed presentation of the concept of ensemble inequivalence, as exemplified by the exact solution, in the microcanonical and canonical ensembles, of mean-field type models. Remarkably, the entropy of all these models can be obtained using the method of large deviations. Long-range interacting systems display an extremely slow relaxation towards thermodynamic equilibrium and, what is more striking, the convergence towards quasi-stationary states. The

  19. Dynamic gadolinium-enhanced MR imaging in active and inactive immunoinflammatory gonarthritis

    DEFF Research Database (Denmark)

    Østergaard, Mikkel; Lorenzen, I; Henriksen, O

    1994-01-01

    examined 16 clinically active (CAG), 7 clinically inactive (CIG) and 4 healthy knees. The synovium of a preselected slice was outlined. Its area and relative signal intensity increase after gadopentetate dimeglumine on T1-SE and FLASH (at each time t) were calculated. The CAG knees showed a mean signal...... intensity increase on early dynamic FLASH images higher by far than the CIG knees, while no significant difference was found on spin-echo images obtained 5 to 15 min after contrast injection. The early signal enhancement probably reflects the perfusion and capillary permeability of the synovium. The area...

  20. Reduction of the unnecessary dose from the over-range area with a spiral dynamic z-collimator: comparison of beam pitch and detector coverage with 128-detector row CT.

    Science.gov (United States)

    Shirasaka, Takashi; Funama, Yoshinori; Hayashi, Mutsukazu; Awamoto, Shinichi; Kondo, Masatoshi; Nakamura, Yasuhiko; Hatakenaka, Masamitsu; Honda, Hiroshi

    2012-01-01

    Our purpose in this study was to assess the radiation dose reduction and the actual exposed scan length of over-range areas using a spiral dynamic z-collimator at different beam pitches and detector coverage. Using glass rod dosimeters, we measured the unilateral over-range scan dose between the beginning of the planned scan range and the beginning of the actual exposed scan range. Scanning was performed at detector coverage of 80.0 and 40.0 mm, with and without the spiral dynamic z-collimator. The dose-saving ratio was calculated as the ratio of the unnecessary over-range dose, with and without the spiral dynamic z-collimator. In 80.0 mm detector coverage without the spiral dynamic z-collimator, the actual exposed scan length for the over-range area was 108, 120, and 126 mm, corresponding to a beam pitch of 0.60, 0.80, and 0.99, respectively. With the spiral dynamic z-collimator, the actual exposed scan length for the over-range area was 48, 66, and 84 mm with a beam pitch of 0.60, 0.80, and 0.99, respectively. The dose-saving ratios with and without the spiral dynamic z-collimator for a beam pitch of 0.60, 0.80, and 0.99 were 35.07, 24.76, and 13.51%, respectively. With 40.0 mm detector coverage, the dose-saving ratios with and without the spiral dynamic z-collimator had the highest value of 27.23% with a low beam pitch of 0.60. The spiral dynamic z-collimator is important for a reduction in the unnecessary over-range dose and makes it possible to reduce the unnecessary dose by means of a lower beam pitch.

  1. New facade concepts ranging from statics to dynamics; Neue Fassadenkonzepte. Von der Statik zur Dynamik

    Energy Technology Data Exchange (ETDEWEB)

    Kranz, H.R. [Siemens AG, Karlsruhe (Germany)

    1995-12-31

    In chapter 9 of the anthology about building control new facade concepts are presented, including new facade technologies, conductivity of new facade concepts and combination of new technologies. The whole complex ranging from statics to dynamics is explained. (BWI) [Deutsch] Kapitel 9 des Sammelbandes ueber Building Control stellt neue Fassadenkonzepte vor: Neue Fassadentechnologien, Leitfunktionen neuer Fassadenkonzepte, Kombination neuer Technologien. In diesem Zusammenhang wird der gesamte Komplex von der Statik bis zur Dynamik behandelt. (BWI)

  2. Quantitative high dynamic range beam profiling for fluorescence microscopy

    International Nuclear Information System (INIS)

    Mitchell, T. J.; Saunter, C. D.; O’Nions, W.; Girkin, J. M.; Love, G. D.

    2014-01-01

    Modern developmental biology relies on optically sectioning fluorescence microscope techniques to produce non-destructive in vivo images of developing specimens at high resolution in three dimensions. As optimal performance of these techniques is reliant on the three-dimensional (3D) intensity profile of the illumination employed, the ability to directly record and analyze these profiles is of great use to the fluorescence microscopist or instrument builder. Though excitation beam profiles can be measured indirectly using a sample of fluorescent beads and recording the emission along the microscope detection path, we demonstrate an alternative approach where a miniature camera sensor is used directly within the illumination beam. Measurements taken using our approach are solely concerned with the illumination optics as the detection optics are not involved. We present a miniature beam profiling device and high dynamic range flux reconstruction algorithm that together are capable of accurately reproducing quantitative 3D flux maps over a large focal volume. Performance of this beam profiling system is verified within an optical test bench and demonstrated for fluorescence microscopy by profiling the low NA illumination beam of a single plane illumination microscope. The generality and success of this approach showcases a widely flexible beam amplitude diagnostic tool for use within the life sciences

  3. Low-power low-noise mixed-mode VLSI ASIC for infinite dynamic range imaging applications

    Science.gov (United States)

    Turchetta, Renato; Hu, Y.; Zinzius, Y.; Colledani, C.; Loge, A.

    1998-11-01

    Solid state solutions for imaging are mainly represented by CCDs and, more recently, by CMOS imagers. Both devices are based on the integration of the total charge generated by the impinging radiation, with no processing of the single photon information. The dynamic range of these devices is intrinsically limited by the finite value of noise. Here we present the design of an architecture which allows efficient, in-pixel, noise reduction to a practically zero level, thus allowing infinite dynamic range imaging. A detailed calculation of the dynamic range is worked out, showing that noise is efficiently suppressed. This architecture is based on the concept of single-photon counting. In each pixel, we integrate both the front-end, low-noise, low-power analog part and the digital part. The former consists of a charge preamplifier, an active filter for optimal noise bandwidth reduction, a buffer and a threshold comparator, and the latter is simply a counter, which can be programmed to act as a normal shift register for the readout of the counters' contents. Two different ASIC's based on this concept have been designed for different applications. The first one has been optimized for silicon edge-on microstrips detectors, used in a digital mammography R and D project. It is a 32-channel circuit, with a 16-bit binary static counter.It has been optimized for a relatively large detector capacitance of 5 pF. Noise has been measured to be equal to 100 + 7*Cd (pF) electron rms with the digital part, showing no degradation of the noise performances with respect to the design values. The power consumption is 3.8mW/channel for a peaking time of about 1 microsecond(s) . The second circuit is a prototype for pixel imaging. The total active area is about (250 micrometers )**2. The main differences of the electronic architecture with respect to the first prototype are: i) different optimization of the analog front-end part for low-capacitance detectors, ii) in- pixel 4-bit comparator

  4. Intelligibility and Clarity of Reverberant Speech: Effects of Wide Dynamic Range Compression Release Time and Working Memory

    Science.gov (United States)

    Reinhart, Paul N.; Souza, Pamela E.

    2016-01-01

    Purpose: The purpose of this study was to examine the effects of varying wide dynamic range compression (WDRC) release time on intelligibility and clarity of reverberant speech. The study also considered the role of individual working memory. Method: Thirty older listeners with mild to moderately-severe sloping sensorineural hearing loss…

  5. ABT737 enhances cholangiocarcinoma sensitivity to cisplatin through regulation of mitochondrial dynamics

    International Nuclear Information System (INIS)

    Fan, Zhongqi; Yu, Huimei; Cui, Ni; Kong, Xianggui; Liu, Xiaomin; Chang, Yulei; Wu, Yao; Sun, Liankun; Wang, Guangyi

    2015-01-01

    Cholangiocarcinoma responses weakly to cisplatin. Mitochondrial dynamics participate in the response to various stresses, and mainly involve mitophagy and mitochondrial fusion and fission. Bcl-2 family proteins play critical roles in orchestrating mitochondrial dynamics, and are involved in the resistance to cisplatin. Here we reported that ABT737, combined with cisplatin, can promote cholangiocarcinoma cells to undergo apoptosis. We found that the combined treatment decreased the Mcl-1 pro-survival form and increased Bak. Cells undergoing cisplatin treatment showed hyperfused mitochondria, whereas fragmentation was dominant in the mitochondria of cells exposed to the combined treatment, with higher Fis1 levels, decreased Mfn2 and OPA1 levels, increased ratio of Drp1 60 kD to 80 kD form, and more Drp1 located on mitochondria. More p62 aggregates were observed in cells with fragmented mitochondria, and they gradually translocated to mitochondria. Mitophagy was induced by the combined treatment. Knockdown p62 decreased the Drp1 ratio, increased Tom20, and increased cell viability. Our data indicated that mitochondrial dynamics play an important role in the response of cholangiocarcinoma to cisplatin. ABT737 might enhance cholangiocarcinoma sensitivity to cisplatin through regulation of mitochondrial dynamics and the balance within Bcl-2 family proteins. Furthermore, p62 seems to be critical in the regulation of mitochondrial dynamics. - Highlights: • Cholangiocarcinoma may adapt to cisplatin through mitochondrial fusion. • ABT737 sensitizes cholangiocarcinoma to cisplatin by promoting fission and mitophagy. • p62 might participate in the regulation of mitochondrial fission and mitophagy

  6. Dynamic State Estimation for Multi-Machine Power System by Unscented Kalman Filter With Enhanced Numerical Stability

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Junjian; Sun, Kai; Wang, Jianhui; Liu, Hui

    2018-03-01

    In this paper, in order to enhance the numerical stability of the unscented Kalman filter (UKF) used for power system dynamic state estimation, a new UKF with guaranteed positive semidifinite estimation error covariance (UKFGPS) is proposed and compared with five existing approaches, including UKFschol, UKF-kappa, UKFmodified, UKF-Delta Q, and the squareroot UKF (SRUKF). These methods and the extended Kalman filter (EKF) are tested by performing dynamic state estimation on WSCC 3-machine 9-bus system and NPCC 48-machine 140-bus system. For WSCC system, all methods obtain good estimates. However, for NPCC system, both EKF and the classic UKF fail. It is found that UKFschol, UKF-kappa, and UKF-Delta Q do not work well in some estimations while UKFGPS works well in most cases. UKFmodified and SRUKF can always work well, indicating their better scalability mainly due to the enhanced numerical stability.

  7. Dynamic Contrast-Enhanced MRI of Cervical Cancers: Temporal Percentile Screening of Contrast Enhancement Identifies Parameters for Prediction of Chemoradioresistance

    International Nuclear Information System (INIS)

    Andersen, Erlend K.F.; Hole, Knut Håkon; Lund, Kjersti V.; Sundfør, Kolbein; Kristensen, Gunnar B.; Lyng, Heidi; Malinen, Eirik

    2012-01-01

    Purpose: To systematically screen the tumor contrast enhancement of locally advanced cervical cancers to assess the prognostic value of two descriptive parameters derived from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Methods and Materials: This study included a prospectively collected cohort of 81 patients who underwent DCE-MRI with gadopentetate dimeglumine before chemoradiotherapy. The following descriptive DCE-MRI parameters were extracted voxel by voxel and presented as histograms for each time point in the dynamic series: normalized relative signal increase (nRSI) and normalized area under the curve (nAUC). The first to 100th percentiles of the histograms were included in a log-rank survival test, resulting in p value and relative risk maps of all percentile–time intervals for each DCE-MRI parameter. The maps were used to evaluate the robustness of the individual percentile–time pairs and to construct prognostic parameters. Clinical endpoints were locoregional control and progression-free survival. The study was approved by the institutional ethics committee. Results: The p value maps of nRSI and nAUC showed a large continuous region of percentile–time pairs that were significantly associated with locoregional control (p < 0.05). These parameters had prognostic impact independent of tumor stage, volume, and lymph node status on multivariate analysis. Only a small percentile–time interval of nRSI was associated with progression-free survival. Conclusions: The percentile–time screening identified DCE-MRI parameters that predict long-term locoregional control after chemoradiotherapy of cervical cancer.

  8. A 1.2-V 165-μW 0.29-mm² Multibit Sigma-Delta ADC for Hearing Aids Using Nonlinear DACs and With Over 91 dB Dynamic-Range

    DEFF Research Database (Denmark)

    Custódio, José R.; Goes, João; Paulino, Nuno

    2013-01-01

    This paper describes the design and experimental evaluation of a multibit Sigma-Delta (ΣΔ) modulator (ΣΔM) with enhanced dynamic range (DR) through the use of nonlinear digital-to-analog converters (DACs) in the feedback paths. This nonlinearity imposes a trade-off between DR and distortion, which...... in a 130 nm digital CMOS technology, which includes the proposed modulator with nonlinear DACs and a modulator with conventional linear DACs, for comparison purposes. The measured results show that the ΣΔM using nonlinear DACs achieves an enhancement of the DR around 8.4 dB (to 91.4 dB). Power dissipation...... and silicon area are about the same for the two cases. The performance achieved is comparable to that of the best reported multibit ΣΔ ADCs, with the advantage of occupying less silicon area (7.5 times lower area when compared with the most energy efficient ΣΔM)....

  9. Image processing pipeline for segmentation and material classification based on multispectral high dynamic range polarimetric images.

    Science.gov (United States)

    Martínez-Domingo, Miguel Ángel; Valero, Eva M; Hernández-Andrés, Javier; Tominaga, Shoji; Horiuchi, Takahiko; Hirai, Keita

    2017-11-27

    We propose a method for the capture of high dynamic range (HDR), multispectral (MS), polarimetric (Pol) images of indoor scenes using a liquid crystal tunable filter (LCTF). We have included the adaptive exposure estimation (AEE) method to fully automatize the capturing process. We also propose a pre-processing method which can be applied for the registration of HDR images after they are already built as the result of combining different low dynamic range (LDR) images. This method is applied to ensure a correct alignment of the different polarization HDR images for each spectral band. We have focused our efforts in two main applications: object segmentation and classification into metal and dielectric classes. We have simplified the segmentation using mean shift combined with cluster averaging and region merging techniques. We compare the performance of our segmentation with that of Ncut and Watershed methods. For the classification task, we propose to use information not only in the highlight regions but also in their surrounding area, extracted from the degree of linear polarization (DoLP) maps. We present experimental results which proof that the proposed image processing pipeline outperforms previous techniques developed specifically for MSHDRPol image cubes.

  10. Increasing dynamic range of a fibre Bragg grating edge-filtering interrogator with a proportional control loop

    International Nuclear Information System (INIS)

    Stan, Nikola; Bailey, D C; Chadderdon, S L; Selfridge, R H; Schultz, S M; Webb, S; Zikry, M; Peters, K J

    2014-01-01

    We present a fibre Bragg grating (FBG) interrogator that uses a microcontroller board and a tunable optical filter in a proportional control loop to increase dynamic range and achieve high strain sensitivity. It is an edge-filtering interrogator with added proportional control loop that locks the operating wavelength to the mid-reflection point on the FBG spectrum. The interrogator separates low-frequency (LF) components of strain and measures them with extended dynamic range, while at the same time measuring high-frequency (HF) strain without loss in strain sensitivity. In this paper, we describe the implementation of the interrogator and analyse the characteristics of individual components, such as the speed and voltage resolution of the microcontroller and the tunable optical filter. We measure the performance of the proportional control loop at frequencies up to 1 kHz and characterize the system using control theory. We illustrate the limitation of the conventional interrogator to measure strains greater than 40 μϵ and demonstrate successful application of the proposed interrogator for simultaneous measurement of 450 μϵ LF strain at 50 Hz superimposed with 32 kHz HF strain. (paper)

  11. Is dynamic contrast-enhanced MRI useful for assessing proximal fragment vascularity in scaphoid fracture delayed and non-union?

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Alex W.H.; Griffith, James F.; Li, Alvin [The Chinese University of Hong Kong, Department of Imaging and Interventional Radiology, Prince of Wales Hospital, Hong Kong, SAR (China); Taljanovic, Mihra S. [The University of Arizona Health Network, Department of Medical Imaging, 1501 N. Campbell Ave., P.O. Box 245067, Tucson, AZ (United States); Tse, W.L.; Ho, P.C. [The Chinese University of Hong Kong, Department of Orthopedics and Traumatology, Prince of Wales Hospital, Hong Kong (China)

    2013-07-15

    To assess dynamic contrast-enhanced magnetic resonance imaging (DCE MRI) as a measure of vascularity in scaphoid delayed-union or non-union. Thirty-five patients (34 male, one female; mean age, 27.4 {+-} 9.4 years; range, 16-51 years) with scaphoid delayed-union and non-union who underwent DCE MRI of the scaphoid between September 2002 and October 2012 were retrospectively reviewed. Proximal fragment vascularity was classified as good, fair, or poor on unenhanced MRI, contrast-enhanced MRI, and DCE MRI. For DCE MRI, enhancement slope, E{sub slope} comparison of proximal and distal fragments was used to classify the proximal fragment as good, fair, or poor vascularity. Proximal fragment vascularity was similarly graded at surgery in all patients. Paired t test and McNemar test were used for data comparison. Kappa value was used to assess level of agreement between MRI findings and surgical findings. Twenty-five (71 %) of 35 patients had good vascularity, four (11 %) had fair vascularity, and six (17 %) had poor vascularity of the proximal scaphoid fragment at surgery. DCE MRI parameters had the highest correlation with surgical findings (kappa = 0.57). Proximal scaphoid fragments with surgical poor vascularity had a significantly lower E{sub max} and E{sub slope} than those with good vascularity (p = 0.0043 and 0.027). The sensitivity, specificity, positive and negative predictive value and accuracy of DCE MRI in predicting impaired vascularity was 67, 86, 67, 86, and 80 %, respectively, which was better than that seen with unenhanced and post-contrast MRI. Flattened time intensity curves in both proximal and distal fragments were a feature of protracted non-union with a mean time interval of 101.6 {+-} 95.5 months between injury and MRI. DCE MRI has a higher diagnostic accuracy than either non-enhanced MRI or contrast enhanced MRI for assessing proximal fragment vascularity in scaphoid delayed-union and non-union. For proper interpretation of contrast-enhanced

  12. The efficacy of fat suppressed and gadolinium enhanced dynamic MR imaging in pancreatic adenocarcinomas

    International Nuclear Information System (INIS)

    Gabata, Toshifumi

    1994-01-01

    The efficacy of both fat suppressed T1-weighted imaging (T1WI) and dynamic gadolinium-enhanced MR imaging (dynamic MRI) was compared with conventional MR sequences and dynamic CT in 22 patients with histologically proven pancreatic adenocarcinoma (PAC). In the control group of 30 patients without pancreatic disease, the pancreas was shown as a markedly higher signal intensity on fat suppressed T1WI than on conventional MR sequences. The signal noise ratio (SNR) of the normal pancreas and the contrast noise ratio (CNR) between the normal pancreas and muscle were significantly higher on fat suppressed T1WI than the other MR sequences. In the group of PAC patients without chronic pancreatitis (n=14), CNR between the tumor and the normal pancreas significantly differed among imaging techniques, including fat suppressed T1WI, dynamic MRI, and the other conventional MR sequences. In the group of PAC with chronic pancreatitis (n=8), CNR between the tumor and the associated chronic pancreatitis was remarkably diminished on both fat suppressed T1WI and conventional T1WI; however, it was significantly higher on dynamic MRI than the other pulse sequences. The early phase of dynamic MRI clearly identified the tumors in the group of PAC. The capability of conventional T1WI and dynamic CT to demonstrate peripancreatic tumor extension was significantly higher than that of fat suppressed T1WI. In conclusion, fat suppressed T1WI and dynamic MRI were useful in detecting pancreatic carcinoma. (N.K.)

  13. Positive enhancement integral values in dynamic contrast enhanced magnetic resonance imaging of breast carcinoma: Ductal carcinoma in situ vs. invasive ductal carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Nadrljanski, Mirjan, E-mail: dr.m.nadrljanski@gmail.com [Clinic for Radiology and Radiation Oncology, Institute of Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade (Serbia); Maksimović, Ružica [Center for Radiology and Magnetic Resonance Imaging, Clinical Center of Serbia, Pasterova 2, 11000 Belgrade (Serbia); Faculty of Medicine, University of Belgrade, Dr Subotića 8, 11000 Belgrade (Serbia); Plešinac-Karapandžić, Vesna; Nikitović, Marina [Clinic for Radiology and Radiation Oncology, Institute of Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade (Serbia); Faculty of Medicine, University of Belgrade, Dr Subotića 8, 11000 Belgrade (Serbia); Marković-Vasiljković, Biljana [Center for Radiology and Magnetic Resonance Imaging, Clinical Center of Serbia, Pasterova 2, 11000 Belgrade (Serbia); Faculty of Medicine, University of Belgrade, Dr Subotića 8, 11000 Belgrade (Serbia); Milošević, Zorica [Clinic for Radiology and Radiation Oncology, Institute of Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade (Serbia); Faculty of Medicine, University of Belgrade, Dr Subotića 8, 11000 Belgrade (Serbia)

    2014-08-15

    Objectives: The aim of this study was to contribute to the standardization of the numeric positive enhancement integral (PEI) values in breast parenchyma, ductal carcinoma in situ (DCIS) and invasive ductal carcinoma (IDC) and to evaluate the significance of the difference in PEI values between IDC and parenchyma, DCIS and parenchyma and IDC and DCIS. Materials and Methods: In the prospective trial, we analyzed the dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) of 60 consecutive patients with histologically confirmed unilateral DCIS (n = 30) and IDC (n = 30) and defined the PEI values (range; mean ± SD) for the lesions and the breast parenchyma. Tumor-to-non-tumor (T/NT) ratios were calculated for DCIS and IDC and compared. PEI color maps (PEICM) were created. The differences in PEI values between IDC and parenchyma and between DCIS and parenchyma were tested according to t-test. Analysis of variance (ANOVA) was used to test the differences between the mean PEI values of parenchyma, DCIS and IDC. Results: IDC showed highly statistically different PEI numeric values compared to breast parenchyma (748.7 ± 32.2 vs. 74.6 ± 17.0; p < 0.0001). The same applied to the differences in the group of patients with DCIS (428.0 ± 25.0 vs. 66.0 ± 10.6; p < 0.0001). The difference between IDC, DCIS and parenchyma were also considered highly statistically significant (p < 0.0001) and so were the T/NT ratios for IDC and DCIS (10.1 ± 2.4 vs. 6.6 ± 1.4; p < 0.0001). Conclusions: PEI numeric values may contribute to differentiation between invasive and in situ breast carcinoma.

  14. MR of normal pancreas : comparison of five pulse sequences and enhancing patterns on dynamic imaging

    International Nuclear Information System (INIS)

    Jang, Hyun Jung; Kim, Tae Kyoung; Hong, Sung Hwan; Han, Joon Koo; Choi, Byung Ihn

    1997-01-01

    To compare T1-weighted FLASH and turbo spin echo (SE) T2-weighted sequences with conventional T1- and T2-weighted sequences in imaging normal pancreas and to describe the enhancing patterns on dynamic MR imging. Forty-four patients with presumed hepatic hemangiomas were studied at 1.0T or 1.5T by using conventional SE sequences (T1-weighted, T2-weighted, and heavily T2-weighted), turbo-SE T2-weighted sequences, and breath-hold T1-weighted FLASH sequences acquired before, immediately on, and at 1, 2, 3, and 5 or 10 minutes after injection of a bolus of gadopentetate dimeglumine. No patients had either a history or its clinical features of pancreatic disease. Images were quantitatively analyzed for signal-difference-to noise ratios (SD/Ns) between the pancreas and peripancreatic fat. Percentage enhancement of the pancreas was measured on each dynamic MR image. Conspicuity of the pancreatic border was qualitatively evaluated according to a consensus, reached by three radiologists. Turbo-SE T2-weighted images had a significantly higher SD/N ratio (p<0.001) and better conspicuity of the pancreatic border (p<0.001) than SE T2- and heavily T2-weighted images;T1-weighted SE images had a significantly higher SD/N ratio than T1-weighted FLASH images (p<0.001), but there was no significant difference between tham in qualitative analysis (p=0.346). Percentage enhancement immediately on and at 1, 2, 3, 5, and 10 minutes after administration of contrast material was 39.9%, 44.5%, 42.9%, 40.8%, 36.3%, 29.9%, respectively, with peak enhancement at 1 minute. In MR imaging of normal pancreas, turbo-SE T2-weighted imaging is superior to SE T2- and heavily T2- weighted imaging, and SE T1-weighted imaging is superior to T1-weighted FLASH imaging. On serial gadolinium-enhanced FLASH imaging, normal pancreas shows peak enhancement at 1 minute

  15. Low-mass molecular dynamics simulation: A simple and generic technique to enhance configurational sampling

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Yuan-Ping, E-mail: pang@mayo.edu

    2014-09-26

    Highlights: • Reducing atomic masses by 10-fold vastly improves sampling in MD simulations. • CLN025 folded in 4 of 10 × 0.5-μs MD simulations when masses were reduced by 10-fold. • CLN025 folded as early as 96.2 ns in 1 of the 4 simulations that captured folding. • CLN025 did not fold in 10 × 0.5-μs MD simulations when standard masses were used. • Low-mass MD simulation is a simple and generic sampling enhancement technique. - Abstract: CLN025 is one of the smallest fast-folding proteins. Until now it has not been reported that CLN025 can autonomously fold to its native conformation in a classical, all-atom, and isothermal–isobaric molecular dynamics (MD) simulation. This article reports the autonomous and repeated folding of CLN025 from a fully extended backbone conformation to its native conformation in explicit solvent in multiple 500-ns MD simulations at 277 K and 1 atm with the first folding event occurring as early as 66.1 ns. These simulations were accomplished by using AMBER forcefield derivatives with atomic masses reduced by 10-fold on Apple Mac Pros. By contrast, no folding event was observed when the simulations were repeated using the original AMBER forcefields of FF12SB and FF14SB. The results demonstrate that low-mass MD simulation is a simple and generic technique to enhance configurational sampling. This technique may propel autonomous folding of a wide range of miniature proteins in classical, all-atom, and isothermal–isobaric MD simulations performed on commodity computers—an important step forward in quantitative biology.

  16. Enhanced Sampling in Molecular Dynamics Using Metadynamics, Replica-Exchange, and Temperature-Acceleration

    Directory of Open Access Journals (Sweden)

    Cameron Abrams

    2013-12-01

    Full Text Available We review a selection of methods for performing enhanced sampling in molecular dynamics simulations. We consider methods based on collective variable biasing and on tempering, and offer both historical and contemporary perspectives. In collective-variable biasing, we first discuss methods stemming from thermodynamic integration that use mean force biasing, including the adaptive biasing force algorithm and temperature acceleration. We then turn to methods that use bias potentials, including umbrella sampling and metadynamics. We next consider parallel tempering and replica-exchange methods. We conclude with a brief presentation of some combination methods.

  17. Differentiation of prostate cancer from normal prostate tissue in an animal model: conventional MRI and dynamic contrast-enhanced MRI

    International Nuclear Information System (INIS)

    Gemeinhardt, O.; Prochnow, D.; Taupitz, M.; Hamm, B.; Beyersdorff, D.; Luedemann, L.; Abramjuk, C.

    2005-01-01

    Purpose: to differentiate orthotopically implanted prostate cancer from normal prostate tissue using magnetic resonance imaging (MRI) and Gd-DTPA-BMA-enhanced dynamic MRI in the rat model. Material and methods: tumors were induced in 15 rats by orthotopic implantation of G subline Dunning rat prostatic tumor cells. MRI was performed 56 to 60 days after tumor cell implantation using T1-weighted spin-echo, T2-weighted turbo SE sequences, and a 2D FLASH sequence for the contrast medium based dynamic study. The interstitial leakage volume, normalized permeability and the permeability surface area product of tumor and healthy prostate were determined quantitatively using a pharmacokinetic model. The results were confirmed by histologic examination. Results: axial T2-weighted TSE images depicted low-intensity areas suspicious for tumor in all 15 animals. The mean tumor volume was 46.5 mm3. In the dynamic study, the suspicious areas in all animals displayed faster and more pronounced signal enhancement than surrounding prostate tissue. The interstitial volume and the permeability surface area product of the tumors increased significantly by 420% (p<0.001) and 424% (p<0.001), respectively, compared to normal prostate tissue, while no significant difference was seen for normalized permeability alone. Conclusion: the results of the present study demonstrate that quantitative analysis of contrast-enhanced dynamic MRI data enables differentiation of small, slowly growing orthotopic prostate cancer from normal prostate tissue in the rat model. (orig.)

  18. Dynamics of bad-cavity-enhanced interaction with cold Sr atoms for laser stabilization

    DEFF Research Database (Denmark)

    Schäffer, S. A.; Christensen, B. T.R.; Henriksen, M. R.

    2017-01-01

    Hybrid systems of cold atoms and optical cavities are promising systems for increasing the stability of laser oscillators used in quantum metrology and atomic clocks. In this paper we map out the atom-cavity dynamics in such a system and demonstrate limitations as well as robustness of the approach....... We investigate the phase response of an ensemble of cold Sr88 atoms inside an optical cavity for use as an error signal in laser frequency stabilization. With this system we realize a regime where the high atomic phase shift limits the dynamical locking range. The limitation is caused by the cavity...

  19. Determination of boron over a large dynamic range by prompt-gamma activation analysis

    International Nuclear Information System (INIS)

    Harrison, R.K.; Landsberger, S.

    2009-01-01

    An evaluation of the PGAA method for the determination of boron across a wide dynamic range of concentrations was performed for trace levels up to 5 wt.% boron. This range encompasses a transition from neutron transparency to significant self- shielding conditions. To account for self-shielding, several PGAA techniques were employed. First, a calibration curve was developed in which a set of boron standards was tested and the count rate to boron mass curve was determined. This set of boron measurements was compared with an internal standard self-shielding correction method and with a method for determining composition using PGAA peak ratios. The advantages and disadvantages of each method are analyzed. The boron concentrations of several laboratory-grade chemicals and standard reference materials were measured with each method and compared. The evaluation of the boron content of nanocrystalline transition metals prepared with a boron-containing reducing agent was also performed with each of the methods tested. Finally, the k 0 method was used for non-destructive measurement of boron in catalyst materials for the characterization of new non-platinum fuel cell catalysts.

  20. Identifying Triple-Negative Breast Cancer Using Background Parenchymal Enhancement Heterogeneity on Dynamic Contrast-Enhanced MRI: A Pilot Radiomics Study.

    Directory of Open Access Journals (Sweden)

    Jeff Wang

    Full Text Available To determine the added discriminative value of detailed quantitative characterization of background parenchymal enhancement in addition to the tumor itself on dynamic contrast-enhanced (DCE MRI at 3.0 Tesla in identifying "triple-negative" breast cancers.In this Institutional Review Board-approved retrospective study, DCE-MRI of 84 women presenting 88 invasive carcinomas were evaluated by a radiologist and analyzed using quantitative computer-aided techniques. Each tumor and its surrounding parenchyma were segmented semi-automatically in 3-D. A total of 85 imaging features were extracted from the two regions, including morphologic, densitometric, and statistical texture measures of enhancement. A small subset of optimal features was selected using an efficient sequential forward floating search algorithm. To distinguish triple-negative cancers from other subtypes, we built predictive models based on support vector machines. Their classification performance was assessed with the area under receiver operating characteristic curve (AUC using cross-validation.Imaging features based on the tumor region achieved an AUC of 0.782 in differentiating triple-negative cancers from others, in line with the current state of the art. When background parenchymal enhancement features were included, the AUC increased significantly to 0.878 (p<0.01. Similar improvements were seen in nearly all subtype classification tasks undertaken. Notably, amongst the most discriminating features for predicting triple-negative cancers were textures of background parenchymal enhancement.Considering the tumor as well as its surrounding parenchyma on DCE-MRI for radiomic image phenotyping provides useful information for identifying triple-negative breast cancers. Heterogeneity of background parenchymal enhancement, characterized by quantitative texture features on DCE-MRI, adds value to such differentiation models as they are strongly associated with the triple-negative subtype

  1. Usefulness of the dynamic gadolinium-enhanced magnetic resonance imaging with simultaneous acquisition of coronal and sagittal planes for detection of pituitary microadenomas.

    Science.gov (United States)

    Lee, Han Bee; Kim, Sung Tae; Kim, Hyung-Jin; Kim, Keon Ha; Jeon, Pyoung; Byun, Hong Sik; Choi, Jin Wook

    2012-03-01

    Does dynamic gadolinium-enhanced imaging with simultaneous acquisition of coronal and sagittal planes improve diagnostic accuracy of pituitary microadenomas compared with coronal images alone? Fifty-six patients underwent 3-T sella MRI including dynamic simultaneous acquisition of coronal and sagittal planes after gadolinium injection. According to conspicuity, lesions were divided into four scores (0, no; 1, possible; 2, probable; 3, definite delayed enhancing lesion). Additional information on supplementary sagittal images compared with coronal ones was evaluated with a 4-point score (0, no; 1, possible; 2, probable; 3, definite additional information). Accuracy of tumour detection was calculated. Average scores for lesion detection of a combination of two planes, coronal, and sagittal images were 2.59, 2.32, and 2.18. 6/10 lesions negative on coronal images were detected on sagittal ones. Accuracy of a combination of two planes, of coronal and of sagittal images was 92.86%, 82.14% and 75%. Six patients had probable or definite additional information on supplementary sagittal images compared with coronal ones alone (10.71%). Dynamic MRI with combined coronal and sagittal planes was more accurate for detection of pituitary microadenomas than routinely used coronal images. Simultaneous dynamic enhanced acquisition can make study time fast and costs low. We present a new dynamic MRI technique for evaluating pituitary microadenomas • This technique provides simultaneous acquisition of contrast enhanced coronal and sagittal images. • This technique makes the diagnosis more accurate and reduces the examination time. • Such MR imaging only requires one single bolus of contrast agent.

  2. A STEP TOWARDS DYNAMIC SCENE ANALYSIS WITH ACTIVE MULTI-VIEW RANGE IMAGING SYSTEMS

    Directory of Open Access Journals (Sweden)

    M. Weinmann

    2012-07-01

    Full Text Available Obtaining an appropriate 3D description of the local environment remains a challenging task in photogrammetric research. As terrestrial laser scanners (TLSs perform a highly accurate, but time-dependent spatial scanning of the local environment, they are only suited for capturing static scenes. In contrast, new types of active sensors provide the possibility of simultaneously capturing range and intensity information by images with a single measurement, and the high frame rate also allows for capturing dynamic scenes. However, due to the limited field of view, one observation is not sufficient to obtain a full scene coverage and therefore, typically, multiple observations are collected from different locations. This can be achieved by either placing several fixed sensors at different known locations or by using a moving sensor. In the latter case, the relation between different observations has to be estimated by using information extracted from the captured data and then, a limited field of view may lead to problems if there are too many moving objects within it. Hence, a moving sensor platform with multiple and coupled sensor devices offers the advantages of an extended field of view which results in a stabilized pose estimation, an improved registration of the recorded point clouds and an improved reconstruction of the scene. In this paper, a new experimental setup for investigating the potentials of such multi-view range imaging systems is presented which consists of a moving cable car equipped with two synchronized range imaging devices. The presented setup allows for monitoring in low altitudes and it is suitable for getting dynamic observations which might arise from moving cars or from moving pedestrians. Relying on both 3D geometry and 2D imagery, a reliable and fully automatic approach for co-registration of captured point cloud data is presented which is essential for a high quality of all subsequent tasks. The approach involves using

  3. Dynamic Displays Enhance the Ability to Discriminate Genuine and Posed Facial Expressions of Emotion

    Science.gov (United States)

    Namba, Shushi; Kabir, Russell S.; Miyatani, Makoto; Nakao, Takashi

    2018-01-01

    Accurately gauging the emotional experience of another person is important for navigating interpersonal interactions. This study investigated whether perceivers are capable of distinguishing between unintentionally expressed (genuine) and intentionally manipulated (posed) facial expressions attributed to four major emotions: amusement, disgust, sadness, and surprise. Sensitivity to this discrimination was explored by comparing unstaged dynamic and static facial stimuli and analyzing the results with signal detection theory. Participants indicated whether facial stimuli presented on a screen depicted a person showing a given emotion and whether that person was feeling a given emotion. The results showed that genuine displays were evaluated more as felt expressions than posed displays for all target emotions presented. In addition, sensitivity to the perception of emotional experience, or discriminability, was enhanced in dynamic facial displays, but was less pronounced in the case of static displays. This finding indicates that dynamic information in facial displays contributes to the ability to accurately infer the emotional experiences of another person. PMID:29896135

  4. Increase in tumour permeability following TGF-? type I receptor-inhibitor treatment observed by dynamic contrast-enhanced MRI

    OpenAIRE

    Minowa, T; Kawano, K; Kuribayashi, H; Shiraishi, K; Sugino, T; Hattori, Y; Yokoyama, M; Maitani, Y

    2009-01-01

    Background: To enhance the success rate of nanocarrier-mediated chemotherapy combined with an anti-angiogenic agent, it is crucial to identify parameters for tumour vasculature that can predict a response to the treatment of the anti-angiogenic agent. Methods: To apply transforming growth factor (TGF)-? type I receptor (T?R-I) inhibitor, A-83-01, to combined therapy, dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) was carried out in mice bearing colon 26 cells using gadolinium ...

  5. Ultra-rare mutation in long-range enhancer predisposes to thyroid carcinoma with high penetrance.

    Directory of Open Access Journals (Sweden)

    Huiling He

    Full Text Available Thyroid cancer shows high heritability but causative genes remain largely unknown. According to a common hypothesis the genetic predisposition to thyroid cancer is highly heterogeneous; being in part due to many different rare alleles. Here we used linkage analysis and targeted deep sequencing to detect a novel single-nucleotide mutation in chromosome 4q32 (4q32A>C in a large pedigree displaying non-medullary thyroid carcinoma (NMTC. This mutation is generally ultra-rare; it was not found in 38 NMTC families, in 2676 sporadic NMTC cases or 2470 controls. The mutation is located in a long-range enhancer element whose ability to bind the transcription factors POU2F and YY1 is significantly impaired, with decreased activity in the presence of the C- allele compared with the wild type A-allele. An enhancer RNA (eRNA is transcribed in thyroid tissue from this region and is greatly downregulated in NMTC tumors. We suggest that this is an example of an ultra-rare mutation predisposing to thyroid cancer with high penetrance.

  6. Dynamic contrast-enhanced MR imaging in predicting progression of enhancing lesions persisting after standard treatment in glioblastoma patients: a prospective study

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Roh-Eul; Choi, Hye Jeong; You, Sung-Hye; Kang, Koung Mi; Yun, Tae Jin; Kim, Ji-Hoon; Sohn, Chul-Ho [Seoul National University College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Choi, Seung Hong [Seoul National University College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Seoul National University, Center for Nanoparticle Research, Institute for Basic Science, and School of Chemical and Biological Engineering, Seoul (Korea, Republic of); Seoul National University, School of Chemical and Biological Engineering, Seoul (Korea, Republic of); Kim, Tae Min [Seoul National University College of Medicine, Department of Internal Medicine, Cancer Research Institute, Seoul (Korea, Republic of); Park, Chul-Kee [Seoul National University College of Medicine, Department of Neurosurgery, Biomedical Research Institute, Seoul (Korea, Republic of); Park, Sung-Hye; Won, Jae-Kyung [Seoul National University College of Medicine, Department of Pathology, Seoul (Korea, Republic of); Kim, Il Han [Seoul National University College of Medicine, Department of Radiation Oncology, Cancer Research Institute, Seoul (Korea, Republic of); Lee, Soon Tae [Seoul National University College of Medicine, Department of Neurology, Seoul (Korea, Republic of)

    2017-08-15

    To prospectively explore the value of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in predicting the progression of enhancing lesions persisting after standard treatment in patients with surgically resected glioblastoma (GBM). Forty-seven GBM patients, who underwent near-total tumorectomy followed by concurrent chemoradiation therapy (CCRT) with temozolomide (TMZ) between May 2014 and February 2016, were enrolled. Twenty-four patients were finally analyzed for measurable enhancing lesions persisting after standard treatment. DCE-MRI parameters were calculated at enhancing lesions. Mann-Whitney U tests and multivariable stepwise logistic regression were used to compare parameters between progression (n = 16) and non-progression (n = 8) groups. Mean K{sup trans} and v{sub e} were significantly lower in progression than in non-progression (P = 0.037 and P = 0.037, respectively). The 5th percentile of the cumulative K{sup trans} histogram was also significantly lower in the progression than in non-progression group (P = 0.017). Mean v{sub e} was the only independent predictor of progression (P = 0.007), with a sensitivity of 100%, specificity of 63%, and an overall accuracy of 88% at a cut-off value of 0.873. DCE-MRI may help predict the progression of enhancing lesions persisting after the completion of standard treatment in patients with surgically resected GBM, with mean v{sub e} serving as an independent predictor of progression. (orig.)

  7. Dynamic contrast-enhanced MR imaging in predicting progression of enhancing lesions persisting after standard treatment in glioblastoma patients: a prospective study

    International Nuclear Information System (INIS)

    Yoo, Roh-Eul; Choi, Hye Jeong; You, Sung-Hye; Kang, Koung Mi; Yun, Tae Jin; Kim, Ji-Hoon; Sohn, Chul-Ho; Choi, Seung Hong; Kim, Tae Min; Park, Chul-Kee; Park, Sung-Hye; Won, Jae-Kyung; Kim, Il Han; Lee, Soon Tae

    2017-01-01

    To prospectively explore the value of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in predicting the progression of enhancing lesions persisting after standard treatment in patients with surgically resected glioblastoma (GBM). Forty-seven GBM patients, who underwent near-total tumorectomy followed by concurrent chemoradiation therapy (CCRT) with temozolomide (TMZ) between May 2014 and February 2016, were enrolled. Twenty-four patients were finally analyzed for measurable enhancing lesions persisting after standard treatment. DCE-MRI parameters were calculated at enhancing lesions. Mann-Whitney U tests and multivariable stepwise logistic regression were used to compare parameters between progression (n = 16) and non-progression (n = 8) groups. Mean K trans and v e were significantly lower in progression than in non-progression (P = 0.037 and P = 0.037, respectively). The 5th percentile of the cumulative K trans histogram was also significantly lower in the progression than in non-progression group (P = 0.017). Mean v e was the only independent predictor of progression (P = 0.007), with a sensitivity of 100%, specificity of 63%, and an overall accuracy of 88% at a cut-off value of 0.873. DCE-MRI may help predict the progression of enhancing lesions persisting after the completion of standard treatment in patients with surgically resected GBM, with mean v e serving as an independent predictor of progression. (orig.)

  8. Dynamic range of frontoparietal functional modulation is associated with working memory capacity limitations in older adults.

    Science.gov (United States)

    Hakun, Jonathan G; Johnson, Nathan F

    2017-11-01

    Older adults tend to over-activate regions throughout frontoparietal cortices and exhibit a reduced range of functional modulation during WM task performance compared to younger adults. While recent evidence suggests that reduced functional modulation is associated with poorer task performance, it remains unclear whether reduced range of modulation is indicative of general WM capacity-limitations. In the current study, we examined whether the range of functional modulation observed over multiple levels of WM task difficulty (N-Back) predicts in-scanner task performance and out-of-scanner psychometric estimates of WM capacity. Within our sample (60-77years of age), age was negatively associated with frontoparietal modulation range. Individuals with greater modulation range exhibited more accurate N-Back performance. In addition, despite a lack of significant relationships between N-Back and complex span task performance, range of frontoparietal modulation during the N-Back significantly predicted domain-general estimates of WM capacity. Consistent with previous cross-sectional findings, older individuals with less modulation range exhibited greater activation at the lowest level of task difficulty but less activation at the highest levels of task difficulty. Our results are largely consistent with existing theories of neurocognitive aging (e.g. CRUNCH) but focus attention on dynamic range of functional modulation asa novel marker of WM capacity-limitations in older adults. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Improving visibility in limited-view scenarios with dynamic particle-enhanced optoacoustic tomography

    Science.gov (United States)

    Deán-Ben, X. Luís.; Ding, Lu; Razansky, Daniel

    2017-03-01

    Limited-view artefacts affect most optoacoustic (photoacoustic) imaging systems due to geometrical constraints that impede achieving full tomographic coverage as well as limited light penetration into scattering and absorbing objects. Indeed, it has been theoretically established and experimentally verified that accurate optoacoustic images can only be obtained if the imaged sample is fully enclosed (orientations is hampered. These effects are of particular relevance in the case of hand-held scanners with the imaged volume only accessible from one side. Herein, a new approach termed dynamic particle-enhanced optoacoustic tomography (DPOT) is described for accurate structural imaging in limited-view scenarios. The method is based on the non-linear combination of a sequence of tomographic reconstructions representing sparsely distributed moving particles. Good performance of the method is demonstrated in experiments consisting of dynamic visualization of flow of suspended microspheres in three-dimensions. The method is expected to be applicable for improving accuracy of angiographic optoacoustic imaging in living organisms.

  10. Quantitative analysis of dynamic airway changes after methacholine and salbutamol inhalation on xenon-enhanced chest CT

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Joon; Goo, Jin Mo; Kim, Jong Hyo; Park, Eun-Ah [Seoul National University College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Seoul National University College of Medicine, Institute of Radiation Medicine, Medical Research Center, Seoul (Korea, Republic of); Lee, Chang Hyun [Seoul National University College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Seoul National University College of Medicine, Institute of Radiation Medicine, Medical Research Center, Seoul (Korea, Republic of); Seoul National University Hospital, Healthcare Gangnam Center, Seoul (Korea, Republic of); Jung, Jae-Woo; Park, Heung-Woo [Seoul National University College of Medicine, Department of Internal Medicine, Seoul (Korea, Republic of); Seoul National University College of Medicine, Institute of Allergy and Clinical Immunology, Seoul (Korea, Republic of); Cho, Sang-Heon [Seoul National University Hospital, Healthcare Gangnam Center, Seoul (Korea, Republic of); Seoul National University College of Medicine, Department of Internal Medicine, Seoul (Korea, Republic of); Seoul National University College of Medicine, Institute of Allergy and Clinical Immunology, Seoul (Korea, Republic of)

    2012-11-15

    To investigate the dynamic changes in airways in response to methacholine and salbutamol inhalation and to correlate the xenon ventilation index on xenon-enhanced chest CTs in asthmatics. Thirty-one non-smokers (6 normal, 25 asthmatics) underwent xenon-enhanced chest CT and pulmonary function tests. Images were obtained at three stages (basal state, after methacholine inhalation and after salbutamol inhalation), and the total xenon ventilation index (TXVI) as well as airway values were measured and calculated. The repeated measures ANOVA and Spearman's correlation coefficient were used for statistical analysis. TXVI in the normal group did not significantly change (P > 0.05) with methacholine and salbutamol. For asthmatics, however, the TXVI significantly decreased after methacholine inhalation and increased after salbutamol inhalation (P < 0.05). Of the airway parameters, the airway inner area (IA) significantly increased after salbutamol inhalation in all airways (P < 0.01) in asthmatics. Airway IA, wall thickness and wall area percentage did not significantly decrease after methacholine inhalation (P > 0.05). IA of the large airways was well correlated with basal TXVI, FEV{sub 1} and FVC (P < 0.05). Airway IA is the most reliable parameter for reflecting the dynamic changes after methacholine and salbutamol inhalation, and correlates well with TXVI in asthmatics on xenon-enhanced CT. (orig.)

  11. Fast negative feedback enables mammalian auditory nerve fibers to encode a wide dynamic range of sound intensities.

    Directory of Open Access Journals (Sweden)

    Mark Ospeck

    Full Text Available Mammalian auditory nerve fibers (ANF are remarkable for being able to encode a 40 dB, or hundred fold, range of sound pressure levels into their firing rate. Most of the fibers are very sensitive and raise their quiescent spike rate by a small amount for a faint sound at auditory threshold. Then as the sound intensity is increased, they slowly increase their spike rate, with some fibers going up as high as ∼300 Hz. In this way mammals are able to combine sensitivity and wide dynamic range. They are also able to discern sounds embedded within background noise. ANF receive efferent feedback, which suggests that the fibers are readjusted according to the background noise in order to maximize the information content of their auditory spike trains. Inner hair cells activate currents in the unmyelinated distal dendrites of ANF where sound intensity is rate-coded into action potentials. We model this spike generator compartment as an attenuator that employs fast negative feedback. Input current induces rapid and proportional leak currents. This way ANF are able to have a linear frequency to input current (f-I curve that has a wide dynamic range. The ANF spike generator remains very sensitive to threshold currents, but efferent feedback is able to lower its gain in response to noise.

  12. Three-dimensional dynamic contrast-enhanced MRI for the accurate, extensive quantification of microvascular permeability in atherosclerotic plaques

    NARCIS (Netherlands)

    Calcagno, Claudia; Lobatto, Mark E.; Dyvorne, Hadrien; Robson, Philip M.; Millon, Antoine; Senders, Max L.; Lairez, Olivier; Ramachandran, Sarayu; Coolen, Bram F.; Black, Alexandra; Mulder, Willem J. M.; Fayad, Zahi A.

    2015-01-01

    Atherosclerotic plaques that cause stroke and myocardial infarction are characterized by increased microvascular permeability and inflammation. Dynamic contrast-enhanced MRI (DCE-MRI) has been proposed as a method to quantify vessel wall microvascular permeability in vivo. Until now, most DCE-MRI

  13. AML1/ETO trans-activates c-KIT expression through the long range interaction between promoter and intronic enhancer.

    Science.gov (United States)

    Tian, Ying; Wang, Genjie; Hu, Qingzhu; Xiao, Xichun; Chen, Shuxia

    2018-04-01

    The AML1/ETO onco-fusion protein is crucial for the genesis of t(8;21) acute myeloid leukemia (AML) and is well documented as a transcriptional repressor through dominant-negative effect. However, little is known about the transactivation mechanism of AML1/ETO. Through large cohort of patient's expression level data analysis and a series of experimental validation, we report here that AML1/ETO transactivates c-KIT expression through directly binding to and mediating the long-range interaction between the promoter and intronic enhancer regions of c-KIT. Gene expression analyses verify that c-KIT expression is significantly high in t(8;21) AML. Further ChIP-seq analysis and motif scanning identify two regulatory regions located in the promoter and intronic enhancer region of c-KIT, respectively. Both regions are enriched by co-factors of AML1/ETO, such as AML1, CEBPe, c-Jun, and c-Fos. Further luciferase reporter assays show that AML1/ETO trans-activates c-KIT promoter activity through directly recognizing the AML1 motif and the co-existence of co-factors. The induction of c-KIT promoter activity is reinforced with the existence of intronic enhancer region. Furthermore, ChIP-3C-qPCR assays verify that AML1/ETO mediates the formation of DNA-looping between the c-KIT promoter and intronic enhancer region through the long-range interaction. Collectively, our data uncover a novel transcriptional activity mechanism of AML1/ETO and enrich our knowledge of the onco-fusion protein mediated transcription regulation. © 2017 Wiley Periodicals, Inc.

  14. SiGe HBT linear-in-dB high dynamic range RF envelope detectors and wideband high linearity amplifiers

    OpenAIRE

    Pan, Hsuan-yu

    2010-01-01

    This research work aims on exploiting SiGe HBT technologies in high dynamic range wideband RF linear-in- dB envelope detectors and linear amplifiers. First, an improved all-npn broadband highly linear SiGe HBT differential amplifier is presented based on a variation of Caprio's Quad. A broadband linear amplifier with 46dBm OIP₃ at 20MHz, 34dBm OIP₃ at 1GHz, 6dB noise figure and 10.3dBm P₁dB is demonstrated. Second, an improved exact dynamic model of a fast-settling linear-in-dB Automatic Gain...

  15. Calibration and assessment of channel-specific biases in microarray data with extended dynamical range.

    Science.gov (United States)

    Bengtsson, Henrik; Jönsson, Göran; Vallon-Christersson, Johan

    2004-11-12

    Non-linearities in observed log-ratios of gene expressions, also known as intensity dependent log-ratios, can often be accounted for by global biases in the two channels being compared. Any step in a microarray process may introduce such offsets and in this article we study the biases introduced by the microarray scanner and the image analysis software. By scanning the same spotted oligonucleotide microarray at different photomultiplier tube (PMT) gains, we have identified a channel-specific bias present in two-channel microarray data. For the scanners analyzed it was in the range of 15-25 (out of 65,535). The observed bias was very stable between subsequent scans of the same array although the PMT gain was greatly adjusted. This indicates that the bias does not originate from a step preceding the scanner detector parts. The bias varies slightly between arrays. When comparing estimates based on data from the same array, but from different scanners, we have found that different scanners introduce different amounts of bias. So do various image analysis methods. We propose a scanning protocol and a constrained affine model that allows us to identify and estimate the bias in each channel. Backward transformation removes the bias and brings the channels to the same scale. The result is that systematic effects such as intensity dependent log-ratios are removed, but also that signal densities become much more similar. The average scan, which has a larger dynamical range and greater signal-to-noise ratio than individual scans, can then be obtained. The study shows that microarray scanners may introduce a significant bias in each channel. Such biases have to be calibrated for, otherwise systematic effects such as intensity dependent log-ratios will be observed. The proposed scanning protocol and calibration method is simple to use and is useful for evaluating scanner biases or for obtaining calibrated measurements with extended dynamical range and better precision. The

  16. Hydration and temperature interdependence of protein picosecond dynamics.

    Science.gov (United States)

    Lipps, Ferdinand; Levy, Seth; Markelz, A G

    2012-05-14

    We investigate the nature of the solvent motions giving rise to the rapid temperature dependence of protein picoseconds motions at 220 K, often referred to as the protein dynamical transition. The interdependence of picoseconds dynamics on hydration and temperature is examined using terahertz time domain spectroscopy to measure the complex permittivity in the 0.2-2.0 THz range for myoglobin. Both the real and imaginary parts of the permittivity over the frequency range measured have a strong temperature dependence at >0.27 h (g water per g protein), however the permittivity change is strongest for frequencies 1 THz, and 0.27 h for frequencies <1 THz. The data are consistent with the dynamical transition solvent fluctuations requiring only clusters of ~5 water molecules, whereas the enhancement of lowest frequency motions requires a fully spanning water network. This journal is © the Owner Societies 2012

  17. Infrared Lunar Laser Ranging at Calern : Impact on Lunar Dynamics

    Science.gov (United States)

    Viswanathan, Vishnu; Fienga, Agnes; Manche, Herve; Gastineau, Mickael; Courde, Clement; Torre, Jean Marie; Exertier, Pierre; Laskar, Jacques

    2017-04-01

    Introduction: Since 2015, in addition to the traditional green (532nm), infrared (1064nm) has been the preferred wavelength for lunar laser ranging at the Calern lunar laser ranging (LLR) site in France. Due to the better atmospheric transmission of IR with respect to Green, nearly 3 times the number of normal points have been obtained in IR than in Green [1]. Dataset: In our study, in addition to the historical data obtained from various other LLR sites, we include the recent IR normal points obtained from Calern over the 1 year time span (2015-2016), constituting about 4.2% of data spread over 46 years of LLR. Near even distribution of data provided by IR on both the spatial and temporal domain, helps us to improve constraints on the internal structure of the Moon modeled within the planetary ephemeris : INPOP [2]. Data reduction: IERS recommended models have been used in the data reduction software GINS (GRGS,CNES) [3]. Constraints provided by GRAIL [4], on the Lunar gravitational potential and Love numbers have been taken into account in the least-square fit procedure. Earth orientation parameters from KEOF series have been used as per a recent study [5]. Results: New estimates on the dynamical parameters of the lunar core will be presented. Acknowledgements: We thank the lunar laser ranging observers at Observatoire de la Côte d'Azur, France, McDonald Observatory, Texas, Haleakala Observatory, Hawaii, and Apache Point Observatory in New Mexico for providing LLR observations that made this study possible. The research described in this abstract was carried out at Geoazur-CNRS, France, as a part of a PhD thesis funded by Observatoire de Paris and French Ministry of Education and Research. References: [1] Clement C. et al. (2016) submitted to A&A [2] Fienga A. et al. (2015) Celest Mech Dyn Astr, 123: 325. doi:10.1007/s10569-015-9639-y [3] Viswanathan V. et al. (2015) EGU, Abstract 18, 13995 [4] Konopliv A. S. et al. (2013) J. Geophys. Res. Planets, 118, 1415

  18. Exploring the dynamics of phase separation in colloid-polymer mixtures with long range attraction.

    Science.gov (United States)

    Sabin, Juan; Bailey, Arthur E; Frisken, Barbara J

    2016-06-28

    We have studied the kinetics of phase separation and gel formation in a low-dispersity colloid - non-adsorbing polymer system with long range attraction using small-angle light scattering. This system exhibits two-phase and three-phase coexistence of gas, liquid and crystal phases when the strength of attraction is between 2 and 4kBT and gel phases when the strength of attraction is increased. For those samples that undergo macroscopic phase separation, whether to gas-crystal, gas-liquid or gas-liquid-crystal coexistence, we observe dynamic scaling of the structure factor and growth of a characteristic length scale that behaves as expected for phase separation in fluids. In samples that gel, the power law associated with the growth of the dominant length scale is not equal to 1/3, but appears to depend mainly on the strength of attraction, decreasing from 1/3 for samples near the coexistence region to 1/27 at 8kBT, over a wide range of colloid and polymer concentrations.

  19. Dynamic Contrast-Enhanced MR Imaging of Renal Ischemia-Reperfusion Injury

    Energy Technology Data Exchange (ETDEWEB)

    Baik, Jun Hyun; Ahn, Myeong Im; Park, Young Ha; Chung, Soo Kyo [Catholic University, Seoul (Korea, Republic of)

    2010-02-15

    To evaluate the usefulness of magnetic resonance imaging (MRI) in a renal ischemia-reperfusion injury. Twenty-four rabbits were randomly divided into four groups, including a sham operated group (n=3). Renal ischemia was induced for 30 minutes (group 1), 60 minutes (group 2) and 120 minutes (group 3). MR imaging was performed before ischemia as well as one hour, 24 hours, and 72 hours after reperfusion. A 99mTc-dimercaptosuccinic acid (DMSA) scintigraphy was performed before ischemia, as well as 24 hours and 72 hours after reperfusion. The signal-to-noise ratio (SNR) on the T2WI, time-relative signal intensity (%RSI) curve on dynamic enhanced images, and relative left renal uptake (%) on DMSA scan were obtained and compared to the histologic findings. The SNR of the cortex on the T2WI changed significantly over the course of the reperfusion time (p<0.001), but was not significantly different among the ischemia groups. The area under the time-%RSI curve gradually decreased from cortex to inner medulla before ischemia, which was reversed and gradually increased after reperfusion. The areas under the time-%RSI curve of outer and inner medulla were significantly different among the ischemia groups (p=0.04, p=0.008). The relative renal uptake (%) of left kidney decreased significantly over the reperfusion time (p=0.03), and was also significantly different among the ischemia groups (p=0.005). Tubular cell necrosis was observed in 16 rabbits (76.2%). The histologic grades of group 3 were higher than those of group 1 and group 2 (p=0.002). Even in rabbits without tubular cell necrosis, the areas under the time-%RSI curves of the cortex, outer, and inner medulla after a 72 hour reperfusion time were significantly lower than those before ischemia (p=0.007, p=0.005, p=0.004). The results of this study suggest that dynamic enhanced MR imaging could be a useful tool for the evaluation of renal ischemia and reperfusion injury.

  20. Reactive surface organometallic complexes observed using dynamic nuclear polarization surface enhanced NMR spectroscopy

    KAUST Repository

    Pump, Eva; Viger-Gravel, Jasmine; Abou-Hamad, Edy; Samantaray, Manoja; Hamzaoui, Bilel; Gurinov, Andrei; Anjum, Dalaver H.; Gajan, David; Lesage, Anne; Bendjeriou-Sedjerari, Anissa; Emsley, Lyndon; Basset, Jean-Marie

    2016-01-01

    Dynamic Nuclear Polarization Surface Enhanced NMR Spectroscopy (DNP SENS) is an emerging technique that allows access to high-sensitivity NMR spectra from surfaces. However, DNP SENS usually requires the use of radicals as an exogenous source of polarization, which has so far limited applications for organometallic surface species to those that do not react with the radicals. Here we show that reactive surface species can be studied if they are immobilized inside porous materials with suitably small windows, and if bulky nitroxide bi-radicals (here TEKPol) are used as the polarization source and which cannot enter the pores. The method is demonstrated by obtaining significant DNP enhancements from highly reactive complelxes [(equivalent to Si-O-)W(Me)(5)] supported on MCM-41, and effects of pore size (6.0, 3.0 and 2.5 nm) on the performance are discussed.

  1. Reactive surface organometallic complexes observed using dynamic nuclear polarization surface enhanced NMR spectroscopy

    KAUST Repository

    Pump, Eva

    2016-08-15

    Dynamic Nuclear Polarization Surface Enhanced NMR Spectroscopy (DNP SENS) is an emerging technique that allows access to high-sensitivity NMR spectra from surfaces. However, DNP SENS usually requires the use of radicals as an exogenous source of polarization, which has so far limited applications for organometallic surface species to those that do not react with the radicals. Here we show that reactive surface species can be studied if they are immobilized inside porous materials with suitably small windows, and if bulky nitroxide bi-radicals (here TEKPol) are used as the polarization source and which cannot enter the pores. The method is demonstrated by obtaining significant DNP enhancements from highly reactive complelxes [(equivalent to Si-O-)W(Me)(5)] supported on MCM-41, and effects of pore size (6.0, 3.0 and 2.5 nm) on the performance are discussed.

  2. Increase of the dynamic range of catchup experiments by high-pass filtering

    Energy Technology Data Exchange (ETDEWEB)

    Erskine, D.J.

    1995-08-01

    The release-catchup shock experiment is an important tool for measuring the speed of sound in compressed matter. The catchup of the release wave to the leading shock is sensitively detected optically, through an indicating fluid which produces light approximately to the 4th power of the shock pressure. However, this sensitivity demands a dynamic range which exceeds the capabilities of our digitizer. The catchup signature lies at the top of a flat pulse, thus any signal clipping is a catastrophic loss of data. We have invented a simple and accurate method for recording the catchup signature that is insensitive to signal clipping. A high pass circuit prior to the digitizer is used with post experiment integration. The insensitivity to clipping allows recording the catchup signature at higher gain, and thus with an improved signal to noise ratio.

  3. Clinical validation of semi-automated software for volumetric and dynamic contrast enhancement analysis of soft tissue venous malformations on magnetic resonance imaging examination

    Energy Technology Data Exchange (ETDEWEB)

    Caty, Veronique [Hopital Maisonneuve-Rosemont, Universite de Montreal, Department of Radiology, Montreal, QC (Canada); Kauffmann, Claude; Giroux, Marie-France; Oliva, Vincent; Therasse, Eric [Centre Hospitalier de l' Universite de Montreal (CHUM), Universite de Montreal and Research Centre, CHUM (CRCHUM), Department of Radiology, Montreal, QC (Canada); Dubois, Josee [Centre Hospitalier Universitaire Sainte-Justine et Universite de Montreal, Department of Radiology, Montreal, QC (Canada); Mansour, Asmaa [Institut de Cardiologie de Montreal, Heart Institute Coordinating Centre, Montreal, QC (Canada); Piche, Nicolas [Object Research System, Montreal, QC (Canada); Soulez, Gilles [Centre Hospitalier de l' Universite de Montreal (CHUM), Universite de Montreal and Research Centre, CHUM (CRCHUM), Department of Radiology, Montreal, QC (Canada); CHUM - Hopital Notre-Dame, Department of Radiology, Montreal, Quebec (Canada)

    2014-02-15

    To evaluate venous malformation (VM) volume and contrast-enhancement analysis on magnetic resonance imaging (MRI) compared with diameter evaluation. Baseline MRI was undertaken in 44 patients, 20 of whom were followed by MRI after sclerotherapy. All patients underwent short-tau inversion recovery (STIR) acquisitions and dynamic contrast assessment. VM diameters in three orthogonal directions were measured to obtain the largest and mean diameters. Volumetric reconstruction of VM was generated from two orthogonal STIR sequences and fused with acquisitions after contrast medium injection. Reproducibility (interclass correlation coefficients [ICCs]) of diameter and volume measurements was estimated. VM size variations in diameter and volume after sclerotherapy and contrast enhancement before sclerotherapy were compared in patients with clinical success or failure. Inter-observer ICCs were similar for diameter and volume measurements at baseline and follow-up (range 0.87-0.99). Higher percentages of size reduction after sclerotherapy were observed with volume (32.6 ± 30.7 %) than with diameter measurements (14.4 ± 21.4 %; P = 0.037). Contrast enhancement values were estimated at 65.3 ± 27.5 % and 84 ± 13 % in patients with clinical failure and success respectively (P = 0.056). Venous malformation volume was as reproducible as diameter measurement and more sensitive in detecting therapeutic responses. Patients with better clinical outcome tend to have stronger malformation enhancement. (orig.)

  4. Regeneration of Achilles' tendon: the role of dynamic stimulation for enhanced cell proliferation and mechanical properties.

    Science.gov (United States)

    Lee, Jongman; Guarino, Vincenzo; Gloria, Antonio; Ambrosio, Luigi; Tae, Giyoong; Kim, Young Ha; Jung, Youngmee; Kim, Sang-Heon; Kim, Soo Hyun

    2010-01-01

    The tissue engineering of tendon was studied using highly elastic poly(L-lactide-co-epsilon-caprolactone) (PLCL) scaffolds and focusing on the effect of dynamic tensile stimulation. Tenocytes from rabbit Achilles tendon were seeded (1.0 x 10(6) cells/scaffold) onto porous PLCL scaffolds and cultured for periods of 2 weeks and 4 weeks. This was performed in a static system and also in a bioreactor equipped with tensile modulation which mimicked the environmental surroundings of tendons with respect to tensile extension. The degradation of the polymeric scaffolds during the culture was relatively slow. However, there was an indication that cells accelerated the degradation of PLCL scaffolds. The scaffold/cell adducts from the static culture exhibited inferior strength (at 2 weeks 350 kPa, 4 weeks 300 kPa) compared to the control without cells (at 2 weeks 460 kPa, 4 weeks 340 kPa), indicating that the cells contributed to the enhanced degradation. On the contrary, the corresponding values of the adducts from the dynamic culture (at 2 weeks 430 kPa, 4 weeks 370 kPa) were similar to, or higher than, those from the control. This could be explained by the increased quantity of cells and neo-tissues in the case of dynamic culture compensating for the loss in tensile strength. Compared with static and dynamic culture conditions, mechanical stimulation played a crucial role in the regeneration of tendon tissue. In the case of the dynamic culture system, cell proliferation was enhanced and secretion of collagen type I was increased, as evidenced by DNA assay and histological and immunofluorescence analysis. Thus, tendon regeneration, indicated by improved mechanical and biological properties, was demonstrated, confirming the effect of mechanical stimulation. It could be concluded that the dynamic tensile stimulation appeared to be an essential factor in tendon/ligament tissue engineering, and that elastic PLCL co-polymers could be very beneficial in this process.

  5. Comparison of capability of dynamic O2-enhanced MRI and quantitative thin-section MDCT to assess COPD in smokers

    International Nuclear Information System (INIS)

    Ohno, Yoshiharu; Koyama, Hisanobu; Yoshikawa, Takeshi; Matsumoto, Keiko; Aoyama, Nobukazu; Onishi, Yumiko; Takenaka, Daisuke; Matsumoto, Sumiaki; Nishimura, Yoshihiro; Sugimura, Kazuro

    2012-01-01

    Purpose: The purpose of this study was to directly and prospectively compare the capability of dynamic O 2 -enhanced MRI and quantitatively assessed thin-section MDCT to assess smokers’ COPD in a large prospective cohort. Materials and methods: The GOLD criteria for smokers were used to classify 187 smokers into four clinical stage groups as follows: smokers without COPD (n = 56) and with mild (n = 54), moderate (n = 52) and severe or very severe COPD (n = 24). All smokers underwent dynamic O 2 -enhanced MRI, MDCT and pulmonary function tests. Mean relative enhancement ratio and mean wash-in time on MRI and CT-based functional lung volume (CT-based FLV) as well as the ratio of airway wall area to total airway area on MDCT were computationally calculated. Then, all indexes were significantly correlated with functional parameters. To determine the efficacy of all indexes for clinical stage classification, the indexes for the four clinical groups were statistically compared by using Tukey's honestly significant difference multiple comparison test. Results: All indexes had significant correlations with functional parameters (p 2 -enhanced MRI for assessment of COPD in smokers is potentially as efficacious as quantitatively assessed thin-section MDCT.

  6. Screening variability and change of soil moisture under wide-ranging climate conditions: Snow dynamics effects.

    Science.gov (United States)

    Verrot, Lucile; Destouni, Georgia

    2015-01-01

    Soil moisture influences and is influenced by water, climate, and ecosystem conditions, affecting associated ecosystem services in the landscape. This paper couples snow storage-melting dynamics with an analytical modeling approach to screening basin-scale, long-term soil moisture variability and change in a changing climate. This coupling enables assessment of both spatial differences and temporal changes across a wide range of hydro-climatic conditions. Model application is exemplified for two major Swedish hydrological basins, Norrström and Piteälven. These are located along a steep temperature gradient and have experienced different hydro-climatic changes over the time period of study, 1950-2009. Spatially, average intra-annual variability of soil moisture differs considerably between the basins due to their temperature-related differences in snow dynamics. With regard to temporal change, the long-term average state and intra-annual variability of soil moisture have not changed much, while inter-annual variability has changed considerably in response to hydro-climatic changes experienced so far in each basin.

  7. Method for enhancing the resolving power of ion mobility separations over a limited mobility range

    Science.gov (United States)

    Shvartsburg, Alexandre A; Tang, Keqi; Smith, Richard D

    2014-09-23

    A method for raising the resolving power, specificity, and peak capacity of conventional ion mobility spectrometry is disclosed. Ions are separated in a dynamic electric field comprising an oscillatory field wave and opposing static field, or at least two counter propagating waves with different parameters (amplitude, profile, frequency, or speed). As the functional dependencies of mean drift velocity on the ion mobility in a wave and static field or in unequal waves differ, only single species is equilibrated while others drift in either direction and are mobility-separated. An ion mobility spectrum over a limited range is then acquired by measuring ion drift times through a fixed distance inside the gas-filled enclosure. The resolving power in the vicinity of equilibrium mobility substantially exceeds that for known traveling-wave or drift-tube IMS separations, with spectra over wider ranges obtainable by stitching multiple segments. The approach also enables low-cutoff, high-cutoff, and bandpass ion mobility filters.

  8. ISSLS PRIZE IN BIOENGINEERING SCIENCE 2018: dynamic imaging of degenerative spondylolisthesis reveals mid-range dynamic lumbar instability not evident on static clinical radiographs.

    Science.gov (United States)

    Dombrowski, Malcolm E; Rynearson, Bryan; LeVasseur, Clarissa; Adgate, Zach; Donaldson, William F; Lee, Joon Y; Aiyangar, Ameet; Anderst, William J

    2018-04-01

    Degenerative spondylolisthesis (DS) in the setting of symptomatic lumbar spinal stenosis is commonly treated with spinal fusion in addition to decompression with laminectomy. However, recent studies have shown similar clinical outcomes after decompression alone, suggesting that a subset of DS patients may not require spinal fusion. Identification of dynamic instability could prove useful for predicting which patients are at higher risk of post-laminectomy destabilization necessitating fusion. The goal of this study was to determine if static clinical radiographs adequately characterize dynamic instability in patients with lumbar degenerative spondylolisthesis (DS) and to compare the rotational and translational kinematics in vivo during continuous dynamic flexion activity in DS versus asymptomatic age-matched controls. Seven patients with symptomatic single level lumbar DS (6 M, 1 F; 66 ± 5.0 years) and seven age-matched asymptomatic controls (5 M, 2 F age 63.9 ± 6.4 years) underwent biplane radiographic imaging during continuous torso flexion. A volumetric model-based tracking system was used to track each vertebra in the radiographic images using subject-specific 3D bone models from high-resolution computed tomography (CT). In vivo continuous dynamic sagittal rotation (flexion/extension) and AP translation (slip) were calculated and compared to clinical measures of intervertebral flexion/extension and AP translation obtained from standard lateral flexion/extension radiographs. Static clinical radiographs underestimate the degree of AP translation seen on dynamic in vivo imaging (1.0 vs 3.1 mm; p = 0.03). DS patients demonstrated three primary motion patterns compared to a single kinematic pattern in asymptomatic controls when analyzing continuous dynamic in vivo imaging. 3/7 (42%) of patients with DS demonstrated aberrant mid-range motion. Continuous in vivo dynamic imaging in DS reveals a spectrum of aberrant motion with significantly greater

  9. Apparent diffusion coefficient values and dynamic contrast enhancement patterns in differentiating seminomas from nonseminomatous testicular neoplasms

    Energy Technology Data Exchange (ETDEWEB)

    Tsili, Athina C., E-mail: a_tsili@yahoo.gr [Department of Radiology, Medical School, University of Ioannina, 45110 Ioannina (Greece); Sylakos, Anastasios, E-mail: anasylakos@yahoo.gr [Department of Urology, Medical School, University of Ioannina, 45110 Ioannina (Greece); Ntorkou, Alexandra, E-mail: alexdorkou@yahoo.com [Department of Radiology, Medical School, University of Ioannina, 45110 Ioannina (Greece); Stavrou, Sotirios, E-mail: s.sotiris@yahoo.gr [Department of Urology, Medical School, University of Ioannina, 45110 Ioannina (Greece); Astrakas, Loukas G., E-mail: astrakas@uoi.gr [Department of Medical Physics, Medical School, University of Ioannina, 45110 Ioannina (Greece); Sofikitis, Nikolaos, E-mail: akrosnin@hotmail.com [Department of Urology, Medical School, University of Ioannina, 45110 Ioannina (Greece); Argyropoulou, Maria I., E-mail: margyrop@cc.uoi.gr [Department of Radiology, Medical School, University of Ioannina, 45110 Ioannina (Greece)

    2015-07-15

    Highlights: • Functional MRI in the characterization of testicular germ cell tumors was assessed. • ADC values proved useful in the characterization of testicular germ cell tumors. • Testicular germ cell tumors had similar enhancement patterns of dynamic MRI. - Abstract: Introduction: The aim of this study is to investigate the role of apparent diffusion coefficient (ADC) values and dynamic contrast enhancement (DCE) patterns in differentiating seminomas from nonseminomatous germ cell tumors (NSGCTs). Materials and methods: The MRI examinations of the scrotum of 26 men with histologically proven testicular GCTs were reviewed. DWI was performed in all patients, using a single shot, multi-slice spin-echo planar diffusion pulse sequence and b-values of 0 and 900 s/mm{sup 2}. Subtraction DCE-MRI was performed in 20 cases using a 3D fast-field echo sequence after gadolinium administration. Time-signal intensity curves were created and semi-quantitative parameters (peak enhancement, time to peak, wash-in and wash-out rate) were calculated. The Student's t-test was used to compare the mean values of ADC, peak enhancement, time to peak, wash-in and wash-out rate between seminomas and NSGCTs. ROC analysis was also performed. Results: Histopathology disclosed the presence of 15 seminomas and 11 NSGCTs. The mean ± s.d. of ADC values (× 10{sup −3} mm{sup 2}/s) of seminomas (0.59 ± 0.009) were significantly lower than those of NSGCTs (0.90 ± 0.33) (P = 0.01). The optimal ADC cut-off value was 0.68 × 10{sup −3} mm{sup 2}/s. No differences between the two groups were observed for peak enhancement (P = 0.18), time to peak (P = 0.63) wash-in rate (P = 0.32) and wash-out rate (P = 0.18). Conclusions: ADC values may be used to preoperatively differentiate seminomas from NSGCTs.

  10. Apparent diffusion coefficient values and dynamic contrast enhancement patterns in differentiating seminomas from nonseminomatous testicular neoplasms

    International Nuclear Information System (INIS)

    Tsili, Athina C.; Sylakos, Anastasios; Ntorkou, Alexandra; Stavrou, Sotirios; Astrakas, Loukas G.; Sofikitis, Nikolaos; Argyropoulou, Maria I.

    2015-01-01

    Highlights: • Functional MRI in the characterization of testicular germ cell tumors was assessed. • ADC values proved useful in the characterization of testicular germ cell tumors. • Testicular germ cell tumors had similar enhancement patterns of dynamic MRI. - Abstract: Introduction: The aim of this study is to investigate the role of apparent diffusion coefficient (ADC) values and dynamic contrast enhancement (DCE) patterns in differentiating seminomas from nonseminomatous germ cell tumors (NSGCTs). Materials and methods: The MRI examinations of the scrotum of 26 men with histologically proven testicular GCTs were reviewed. DWI was performed in all patients, using a single shot, multi-slice spin-echo planar diffusion pulse sequence and b-values of 0 and 900 s/mm 2 . Subtraction DCE-MRI was performed in 20 cases using a 3D fast-field echo sequence after gadolinium administration. Time-signal intensity curves were created and semi-quantitative parameters (peak enhancement, time to peak, wash-in and wash-out rate) were calculated. The Student's t-test was used to compare the mean values of ADC, peak enhancement, time to peak, wash-in and wash-out rate between seminomas and NSGCTs. ROC analysis was also performed. Results: Histopathology disclosed the presence of 15 seminomas and 11 NSGCTs. The mean ± s.d. of ADC values (× 10 −3 mm 2 /s) of seminomas (0.59 ± 0.009) were significantly lower than those of NSGCTs (0.90 ± 0.33) (P = 0.01). The optimal ADC cut-off value was 0.68 × 10 −3 mm 2 /s. No differences between the two groups were observed for peak enhancement (P = 0.18), time to peak (P = 0.63) wash-in rate (P = 0.32) and wash-out rate (P = 0.18). Conclusions: ADC values may be used to preoperatively differentiate seminomas from NSGCTs

  11. Average arterial input function for quantitative dynamic contrast enhanced magnetic resonance imaging of neck nodal metastases

    International Nuclear Information System (INIS)

    Shukla-Dave, Amita; Lee, Nancy; Stambuk, Hilda; Wang, Ya; Huang, Wei; Thaler, Howard T; Patel, Snehal G; Shah, Jatin P; Koutcher, Jason A

    2009-01-01

    The present study determines the feasibility of generating an average arterial input function (Avg-AIF) from a limited population of patients with neck nodal metastases to be used for pharmacokinetic modeling of dynamic contrast-enhanced MRI (DCE-MRI) data in clinical trials of larger populations. Twenty patients (mean age 50 years [range 27–77 years]) with neck nodal metastases underwent pretreatment DCE-MRI studies with a temporal resolution of 3.75 to 7.5 sec on a 1.5T clinical MRI scanner. Eleven individual AIFs (Ind-AIFs) met the criteria of expected enhancement pattern and were used to generate Avg-AIF. Tofts model was used to calculate pharmacokinetic DCE-MRI parameters. Bland-Altman plots and paired Student t-tests were used to describe significant differences between the pharmacokinetic parameters obtained from individual and average AIFs. Ind-AIFs obtained from eleven patients were used to calculate the Avg-AIF. No overall significant difference (bias) was observed for the transfer constant (K trans ) measured with Ind-AIFs compared to Avg-AIF (p = 0.20 for region-of-interest (ROI) analysis and p = 0.18 for histogram median analysis). Similarly, no overall significant difference was observed for interstitial fluid space volume fraction (v e ) measured with Ind-AIFs compared to Avg-AIF (p = 0.48 for ROI analysis and p = 0.93 for histogram median analysis). However, the Bland-Altman plot suggests that as K trans increases, the Ind-AIF estimates tend to become proportionally higher than the Avg-AIF estimates. We found no statistically significant overall bias in K trans or v e estimates derived from Avg-AIF, generated from a limited population, as compared with Ind-AIFs. However, further study is needed to determine whether calibration is needed across the range of K trans . The Avg-AIF obtained from a limited population may be used for pharmacokinetic modeling of DCE-MRI data in larger population studies with neck nodal metastases. Further validation of

  12. Differentiation of mass-forming focal pancreatitis from pancreatic ductal adenocarcinoma: value of characterizing dynamic enhancement patterns on contrast-enhanced MR images by adding signal intensity color mapping

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Mimi [Hanyang University College of Medicine, Department of Radiology, Hanyang Medical Center, Seoul (Korea, Republic of); Jang, Kyung Mi [Sungkyunkwan University School of Medicine, Department of Radiology, Samsung Medical Center, Seoul (Korea, Republic of); Sungkyunkwan University School of Medicine, Department of Radiology and Center for Imaging Science, Samsung Medical Center, Seoul (Korea, Republic of); Kim, Jae-Hun; Jeong, Woo Kyoung; Kim, Seong Hyun; Kang, Tae Wook; Kim, Young Kon; Cha, Dong Ik [Sungkyunkwan University School of Medicine, Department of Radiology, Samsung Medical Center, Seoul (Korea, Republic of); Kim, Kyunga [Samsung Medical Center, Biostatics and Clinical Epidemiology Center, Research Institute for Future Medicine, Seoul (Korea, Republic of)

    2017-04-15

    To evaluate the value of dynamic enhancement patterns on contrast-enhanced MR images by adding signal intensity colour mapping (SICM) to differentiate mass-forming focal pancreatitis (MFFP) from pancreatic ductal adenocarcinoma (PDAC). Forty-one clinicopathologically proven MFFPs and 144 surgically confirmed PDACs were enrolled. Laboratory and MR imaging parameters were used to differentiate MFFP from PDAC. In particular, enhancement patterns on MR images adding SICM were evaluated. By using classification tree analysis (CTA), we determined the predictors for the differentiation of MFFP from PDAC. In the CTA, with all parameters except enhancement pattern on SICM images, ductal obstruction grade and T1 hypointensity grade of the pancreatic lesion were the first and second splitting predictor for differentiation of MFFP from PDAC, in order. By adding an enhancement pattern on the SICM images to CTA, the enhancement pattern was the only splitting predictor to differentiate MFFP from PDAC. The CTA model including enhancement pattern on SICM images has sensitivity of 78.0 %, specificity of 99.3 %, and accuracy of 94.6 % for differentiating MFFP from PDAC. The characterization of enhancement pattern for pancreatic lesions on contrast-enhanced MR images adding SICM would be helpful to differentiate MFFP from PDAC. (orig.)

  13. Subdigital setae of chameleon feet: friction-enhancing microstructures for a wide range of substrate roughness.

    Science.gov (United States)

    Spinner, Marlene; Westhoff, Guido; Gorb, Stanislav N

    2014-06-27

    Hairy adhesive systems of microscopic setae with triangular flattened tips have evolved convergently in spiders, insects and arboreal lizards. The ventral sides of the feet and tails in chameleons are also covered with setae. However, chameleon setae feature strongly elongated narrow spatulae or fibrous tips. The friction enhancing function of these microstructures has so far only been demonstrated in contact with glass spheres. In the present study, the frictional properties of subdigital setae of Chamaeleo calyptratus were measured under normal forces in the physical range on plane substrates having different roughness. We showed that chameleon setae maximize friction on a wide range of substrate roughness. The highest friction was measured on asperities of 1 μm. However, our observations of the climbing ability of Ch. calyptratus on rods of different diameters revealed that also claws and grasping feet are additionally responsible for the force generation on various substrates during locomotion.

  14. Tracer kinetic model selection for dynamic contrast-enhanced magnetic resonance imaging of locally advanced cervical cancer

    DEFF Research Database (Denmark)

    Kallehauge, Jesper Folsted; Tanderup, Kari; Duan, Chong

    2014-01-01

    , the TM was optimal in 17.0%, the ETM was optimal in 2.2%, the C-TU in 23.4% and the 2CXM was optimal in 57.3%. Throughout the tumour, a high correlation was found between Ktrans(TM) and Fp(2CXM), ρ = 0.91. Conclusion. The 2CXM was most often optimal in describing the contrast agent enhancement of pre......Background. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) offers a unique capability to probe tumour microvasculature. Different analysis of the acquired data will possibly lead to different conclusions. Therefore, the objective of this study was to investigate under which...

  15. Diagnosis of renal cell cancer by dynamic MRI

    International Nuclear Information System (INIS)

    Togami, Izumi; Kitagawa, Takahiro; Katoh, Katsuya

    1992-01-01

    Dynamic MRI was performed in 15 cases (16 lesions) of renal cell cancer. The enhanced pattern of the tumor was mainly evaluated and findings were compared with these of dynamic CT and renal angiography. Enhanced patterns on dynamic MRI and dynamic CT were similar, but each phase on dynamic MRI tended to be prolonged compared with dynamic CT. Many hypervascular tumors on renal angiography had prominent enhancement in an early phase on dynamic MRI, but there was no prominent enhancement in cases with tumor thrombi in the renal vein or IVC. All hypovascular tumors were enhanced to some degree without exception on dynamic MRI. Dynamic MRI is considered to be useful for the evaluation of the characterization, especially vascularity, of renal cell cancer, but we should pay attention to the differential diagnosis from other tumor in atypical cases because its enhanced patterns are various on dynamic MRI. (author)

  16. Ventilation imaging of the paranasal sinuses using xenon-enhanced dynamic single-energy CT and dual-energy CT: a feasibility study in a nasal cast

    Energy Technology Data Exchange (ETDEWEB)

    Thieme, Sven F.; Helck, Andreas D.; Reiser, Maximilian F.; Johnson, Thorsten R.C. [Ludwig Maximilians University Hospital Munich, Institute for Clinical Radiology, Munich (Germany); Moeller, Winfried; Eickelberg, Oliver [Institute for Lung Biology and Disease (iLBD) and Comprehensive Pneumology Center (CPC), Helmholtz Zentrum Muenchen, Neuherberg, Munich (Germany); Becker, Sven [Ludwig-Maximilians-Universitaet, Department of Otorhinolaryngology - Head and Neck Surgery, Munich (Germany); Schuschnig, Uwe [Pari Pharma GmbH, Graefelfing (Germany)

    2012-10-15

    To show the feasibility of dual-energy CT (DECT) and dynamic CT for ventilation imaging of the paranasal sinuses in a nasal cast. In a first trial, xenon gas was administered to a nasal cast with a laminar flow of 7 L/min. Dynamic CT acquisitions of the nasal cavity and the sinuses were performed. This procedure was repeated with pulsating xenon flow. Local xenon concentrations in the different compartments of the model were determined on the basis of the enhancement levels. In a second trial, DECT measurements were performed both during laminar and pulsating xenon administration and the xenon concentrations were quantified directly. Neither with dynamic CT nor DECT could xenon-related enhancement be detected in the sinuses during laminar airflow. Using pulsating flow, dynamic imaging showed a xenon wash-in and wash-out in the sinuses that followed a mono-exponential function with time constants of a few seconds. Accordingly, DECT revealed xenon enhancement in the sinuses only after pulsating xenon administration. The feasibility of xenon-enhanced DECT for ventilation imaging was proven in a nasal cast. The superiority of pulsating gas flow for the administration of gas or aerosolised drugs to the paranasal sinuses was demonstrated. (orig.)

  17. Optimisation of design parameters for modular range enhanced projectile

    OpenAIRE

    Jelic, Z

    2016-01-01

    There is an underpinning requirement for artillery systems to achieve longer range, better precision, and an adequate lethal effect. The main objective of this research is to investigate various methods of range increase and propose optimal solution for range extension of existing artillery systems. The proposed solution is novel, modular projectile design. Several methodologies for projectile range increment (such as improved aerodynamics and ballistic profile) were combined to achieve the "...

  18. A Doherty Power Amplifier with Large Back-Off Power Range Using Integrated Enhancing Reactance

    Directory of Open Access Journals (Sweden)

    Wa Kong

    2018-01-01

    Full Text Available A symmetric Doherty power amplifier (DPA based on integrated enhancing reactance (IER was proposed for large back-off applications. The IER was generated using the peaking amplifier with the help of a desired impedance transformation in the low-power region to enhance the back-off efficiency of the carrier amplifier. To convert the impedances properly, both in the low-power region and at saturation, a two-impedance matching method was employed to design the output matching networks. For verification, a symmetric DPA with large back-off power range over 2.2–2.5 GHz was designed and fabricated. Measurement results show that the designed DPA has the 9 dB back-off efficiency of higher than 45%, while the saturated output power is higher than 44 dBm over the whole operation bandwidth. When driven by a 20 MHz LTE signal, the DPA can achieve good average efficiency of around 50% with adjacent channel leakage ratio of about –50 dBc after linearization over the frequency band of interest. The linearity improvement of the DPA for multistandard wireless communication system was also verified with a dual-band modulated signal.

  19. Dynamic MRI of tumours in head and neck with a contrast-enhanced FLASH-2D sequence

    International Nuclear Information System (INIS)

    Maeurer, J.; Rausch, M.; Richter, W.S.; Boeck, J.C.; Steinkamp, H.J.; Vogl, T.J.; Felix, R.

    1995-01-01

    The purpose of this study was to evaluate the utility of a dynamic contrast enhanced FLASH-2D sequence for differential diagnosis of tumours in head and neck in 93 patients. Initially, the localization of the lesion and the selection of four representative slices for the dynamic study were obtained by a T2-weighted spin-echo sequence (TR 2000-3000 ms; TE 25/90 ms). After IV bolus injection of the contrast agent 10 images were acquired during a period of 3 min by a FLASH-2D sequence (TR 60 ms; TE 6 ms; flip angle 40 ; matrix 256 x 256; one acquisition). The percentage signal intensity (SI) increase (r) and the slope (S) of the curve were calculated on the basis of the SI time curve of the pathological lesion and of muscle. Inflammatory processes could be differentiated from malignant or benign tumours by means of a higher contrast enhancement. The time of the maximum SI was not specific for the different lesions. In comparison with muscle the maximum SI change was achieved earlier in a pathological process. (orig.)

  20. Particle identification in a wide dynamic range based on pulse-shape analysis with solid-state detectors

    International Nuclear Information System (INIS)

    Pausch, G.; Hilscher, D.; Ortlepp, H.G.

    1994-04-01

    Heavy ions detected in a planar silicon detector were identified by exploiting a recently proposed combination of the pulse-shape and the time-of-flight techniques. We were able to resolve charge numbers up to Z = 16 within a wide dynamic range of ∼ 1:5, and to identify even isotopes for the elements up to Magnesium. The simple scheme of signal processing is based on conventional electronics and cheap enough to be exploited in large multidetector arrays. (orig.)

  1. Differentiation between early rheumatoid arthritis patients and healthy persons by conventional and dynamic contrast-enhanced magnetic resonance imaging

    DEFF Research Database (Denmark)

    Axelsen, Mette Bjørndal; Ejbjerg, B J; Hetland, M L

    2014-01-01

    OBJECTIVES: To identify the magnetic resonance imaging (MRI) parameter that best differentiates healthy persons and patients with early rheumatoid arthritis (RA), and to investigated responsiveness to treatment of various MRI parameters. METHOD: Conventional MRI and dynamic contrast-enhanced (DCE...

  2. Tracer kinetic model-driven registration for dynamic contrast-enhanced MRI time-series data.

    Science.gov (United States)

    Buonaccorsi, Giovanni A; O'Connor, James P B; Caunce, Angela; Roberts, Caleb; Cheung, Sue; Watson, Yvonne; Davies, Karen; Hope, Lynn; Jackson, Alan; Jayson, Gordon C; Parker, Geoffrey J M

    2007-11-01

    Dynamic contrast-enhanced MRI (DCE-MRI) time series data are subject to unavoidable physiological motion during acquisition (e.g., due to breathing) and this motion causes significant errors when fitting tracer kinetic models to the data, particularly with voxel-by-voxel fitting approaches. Motion correction is problematic, as contrast enhancement introduces new features into postcontrast images and conventional registration similarity measures cannot fully account for the increased image information content. A methodology is presented for tracer kinetic model-driven registration that addresses these problems by explicitly including a model of contrast enhancement in the registration process. The iterative registration procedure is focused on a tumor volume of interest (VOI), employing a three-dimensional (3D) translational transformation that follows only tumor motion. The implementation accurately removes motion corruption in a DCE-MRI software phantom and it is able to reduce model fitting errors and improve localization in 3D parameter maps in patient data sets that were selected for significant motion problems. Sufficient improvement was observed in the modeling results to salvage clinical trial DCE-MRI data sets that would otherwise have to be rejected due to motion corruption. Copyright 2007 Wiley-Liss, Inc.

  3. Enhanced Neuroplasticity by the Metabolic Enhancer Piracetam Associated with Improved Mitochondrial Dynamics and Altered Permeability Transition Pore Function.

    Science.gov (United States)

    Stockburger, Carola; Miano, Davide; Pallas, Thea; Friedland, Kristina; Müller, Walter E

    2016-01-01

    The mitochondrial cascade hypothesis of dementia assumes mitochondrial dysfunction leading to reduced energy supply, impaired neuroplasticity, and finally cell death as one major pathomechanism underlying the continuum from brain aging over mild cognitive impairment to initial and advanced late onset Alzheimer's disease. Accordingly, improving mitochondrial function has become an important strategy to treat the early stages of this continuum. The metabolic enhancer piracetam has been proposed as possible prototype for those compounds by increasing impaired mitochondrial function and related aspects like mechanisms of neuroplasticity. We here report that piracetam at therapeutically relevant concentrations improves neuritogenesis in the human cell line SH-SY5Y over conditions mirroring the whole spectrum of age-associated cognitive decline. These effects go parallel with improvement of impaired mitochondrial dynamics shifting back fission and fusion balance to the energetically more favorable fusion site. Impaired fission and fusion balance can also be induced by a reduction of the mitochondrial permeability transition pore (mPTP) function as atractyloside which indicates the mPTP has similar effects on mitochondrial dynamics. These changes are also reduced by piracetam. These findings suggest the mPTP as an important target for the beneficial effects of piracetam on mitochondrial function.

  4. Hemophilic arthropathy of the knee joint: static and dynamic Gd-DTPA - enhanced MRI

    Energy Technology Data Exchange (ETDEWEB)

    Naegele, M. [Dept. of Radiology, Univ. Bonn (Germany); Bruening, R. [Dept. of Radiology, Univ. Muenchen (Germany); Kunze, V. [Dept. of Radiology, Univ. Bonn (Germany); Eickhoff, H. [Dept. of Orthopedic Surgery, Troisdorf (Germany); Koch, W. [Dept. of Orthopedic Surgery, Troisdorf (Germany); Reiser, M. [Dept. of Radiology, Univ. Muenchen (Germany)

    1995-12-31

    A total of 17 patients with hemophilic arthropathy of the knee joint were studied with static and dynamic MRI before and after an IV bolus injection of Gadolinium-DTPA (Gd-DTPA; 0.1 mmol/kg body weight). The T1-weighted spin-echo (SE) and gradient-echo (fast-field echo [FFE]) sequences were applied. The FFE sequences of eight consecutive scans carried out over a time interval of 160 s were used in order to determine the time to signal intensity (SI) curves of the synovial proliferations surrounding soft tissue, bone marrow, and joint effusion. After the administration of a contrast agent, synovial proliferations exhibited an increase on FFE and SE images of 47.7% (SD {+-} 14.3%) and 37.4% (SD {+-} 11.2%), respectively, whereas muscle and fatty tissue, tendons, bone marrow, and joint effusion revealed only a minor increase in SI. The gradient of SI (ratio SI/time) of pannus was 39.6%/min (SD {+-} 7.7%/min) and differed significantly (P < 0.001) from that of bone marrow, fatty tissue, muscle tissue, tendons, and joint effusion (P < 0.05). In contrast to synovial proliferations in rheumatoid arthritis, no differentiation between various pannus vascularities based on the degree of enhancement was possible. The Gd-DTPA-enhanced MRI studies delineate and quantify the synovial proliferations in hemophilic arthropathy. Dynamic studies in hemophilic arthropathy do not provide qualitative assessment of the inflammatory process. (orig.)

  5. Hemophilic arthropathy of the knee joint: static and dynamic Gd-DTPA -enhanced MRI

    International Nuclear Information System (INIS)

    Naegele, M.; Bruening, R.; Kunze, V.; Eickhoff, H.; Koch, W.; Reiser, M.

    1995-01-01

    A total of 17 patients with hemophilic arthropathy of the knee joint were studied with static and dynamic MRI before and after an IV bolus injection of Gadolinium-DTPA (Gd-DTPA; 0.1 mmol/kg body weight). The T1-weighted spin-echo (SE) and gradient-echo (fast-field echo [FFE]) sequences were applied. The FFE sequences of eight consecutive scans carried out over a time interval of 160 s were used in order to determine the time to signal intensity (SI) curves of the synovial proliferations surrounding soft tissue, bone marrow, and joint effusion. After the administration of a contrast agent, synovial proliferations exhibited an increase on FFE and SE images of 47.7% (SD ± 14.3%) and 37.4% (SD ± 11.2%), respectively, whereas muscle and fatty tissue, tendons, bone marrow, and joint effusion revealed only a minor increase in SI. The gradient of SI (ratio SI/time) of pannus was 39.6%/min (SD ± 7.7%/min) and differed significantly (P < 0.001) from that of bone marrow, fatty tissue, muscle tissue, tendons, and joint effusion (P < 0.05). In contrast to synovial proliferations in rheumatoid arthritis, no differentiation between various pannus vascularities based on the degree of enhancement was possible. The Gd-DTPA-enhanced MRI studies delineate and quantify the synovial proliferations in hemophilic arthropathy. Dynamic studies in hemophilic arthropathy do not provide qualitative assessment of the inflammatory process. (orig.)

  6. Contrast-enhanced dynamic MR imaging of parasellar tumor using fast spin-echo sequence

    International Nuclear Information System (INIS)

    Kusunoki, Katsusuke; Ohue, Shiro; Ichikawa, Haruhisa; Saito, Masahiro; Sadamoto, Kazuhiko; Sakaki, Saburo; Miki, Hitoshi.

    1995-01-01

    We have applied a new dynamic MRI technique that uses a fast spin-echo sequence to parasellar tumors. This sequence has less susceptible effect and better spatial resolution than a gradient echo sequence, providing faster images than a short spin-echo sequence does. Image was obtained in the coronal or sagittal plane using a 1.5T clinical MRI system, and then, dynamic MR images were acquired every 10 to 20 sec after administration of Gd-DTPA (0.1 mmol/kg). The subjects were 12 patients (5 microadenomas, 5 macroadenomas and 2 Rathke's cleft cysts) and 5 normal volunteers. As for volunteers, the cavernous sinus, pituitary stalk and posterior pituitary gland were contrasted on the first image, followed by visualization of the proximal portion adjacent to the junction of the infundibulum and the anterior pituitary gland, and finally by contrasting the distal portion of the anterior pituitary gland. There was a difference with respect to tumor contrast between microadenomas and macroadenomas. In the case of the macroadenomas, the tumor was contrasted at the same time as, or faster than the anterior pituitary gland, while with the microadenomas the tumor was enhanced later than the anterior pituitary gland. No enhancement with contrast medium was seen in Rathke's cleft cysts. In addition, it was possible to differentiate a recurrent tumor from a piece of muscle placed at surgery since the images obtained by the fast spin-echo sequence were clearer than those obtained by gradient echo sequence. (author)

  7. Modeling Study of the Geospace System Response to the Solar Wind Dynamic Pressure Enhancement on 17 March 2015

    Science.gov (United States)

    Ozturk, D. S.; Zou, S.; Ridley, A. J.; Slavin, J. A.

    2018-04-01

    The global magnetosphere-ionosphere-thermosphere system is intrinsically coupled and susceptible to external drivers such as solar wind dynamic pressure enhancements. In order to understand the large-scale dynamic processes in the magnetosphere-ionosphere-thermosphere system due to the compression from the solar wind, the 17 March 2015 sudden commencement was studied in detail using global numerical models. This storm was one of the most geoeffective events of the solar cycle 24 with a minimum Dst of -222 nT. The Wind spacecraft recorded a 10-nPa increment in the solar wind dynamic pressure, while the interplanetary magnetic field BZ became further northward. The University of Michigan Block-Adaptive-Tree Solar wind Roe-type Upwind Scheme global magnetohydrodynamic code was utilized to study the generation and propagation of perturbations associated with the compression of the magnetosphere system. In addition, the high-resolution electric potential and auroral power output from the magnetohydrodynamic model was used to drive the global ionosphere-thermosphere model to investigate the ionosphere-thermosphere system response to pressure enhancement. During the compression, the electric potentials and convection patterns in the polar ionosphere were significantly altered when the preliminary impulse and main impulse field-aligned currents moved from dayside to nightside. As a result of enhanced frictional heating, plasma and neutral temperatures increased at the locations where the flow speeds were enhanced, whereas the electron density dropped at these locations. In particular, the region between the preliminary impulse and main impulse field-aligned currents experienced the most significant heating with 1000-K ion temperature increase and 20-K neutral temperature increase within 2 min. Comparison of the simulation results with the Poker Flat Incoherent Scatter Radar observations showed reasonable agreements despite underestimated magnitudes.

  8. Gaussian process inference for estimating pharmacokinetic parameters of dynamic contrast-enhanced MR images.

    Science.gov (United States)

    Wang, Shijun; Liu, Peter; Turkbey, Baris; Choyke, Peter; Pinto, Peter; Summers, Ronald M

    2012-01-01

    In this paper, we propose a new pharmacokinetic model for parameter estimation of dynamic contrast-enhanced (DCE) MRI by using Gaussian process inference. Our model is based on the Tofts dual-compartment model for the description of tracer kinetics and the observed time series from DCE-MRI is treated as a Gaussian stochastic process. The parameter estimation is done through a maximum likelihood approach and we propose a variant of the coordinate descent method to solve this likelihood maximization problem. The new model was shown to outperform a baseline method on simulated data. Parametric maps generated on prostate DCE data with the new model also provided better enhancement of tumors, lower intensity on false positives, and better boundary delineation when compared with the baseline method. New statistical parameter maps from the process model were also found to be informative, particularly when paired with the PK parameter maps.

  9. Convective heat transfer enhancement by diamond shaped micro-protruded patterns for heat sinks: Thermal fluid dynamic investigation and novel optimization methodology

    International Nuclear Information System (INIS)

    Ventola, Luigi; Dialameh, Masoud; Fasano, Matteo; Chiavazzo, Eliodoro; Asinari, Pietro

    2016-01-01

    Highlights: • A novel methodology for optimal design of patterned heat sink surfaces is proposed. • Heat transfer enhancement by patterned surfaces is measured experimentally. • Role of fluid dynamics and geometrical scales on heat transfer is clarified. - Abstract: In the present work, micro-protruded patterns on flush mounted heat sinks for convective heat transfer enhancement are investigated and a novel methodology for thermal optimization is proposed. Patterned heat sinks are experimentally characterized in fully turbulent regime, and the role played by geometrical parameters and fluid dynamic scales is discussed. A methodology specifically suited for micro-protruded pattern optimization is designed, leading to 73% enhancement in thermal performance respect to commercially available heat sinks, at fixed costs. This work is expected to introduce a new methodological approach for a more systematic and efficient development of solutions for electronics cooling.

  10. Quantitative myocardial perfusion from static cardiac and dynamic arterial CT

    Science.gov (United States)

    Bindschadler, Michael; Branch, Kelley R.; Alessio, Adam M.

    2018-05-01

    Quantitative myocardial blood flow (MBF) estimation by dynamic contrast enhanced cardiac computed tomography (CT) requires multi-frame acquisition of contrast transit through the blood pool and myocardium to inform the arterial input and tissue response functions. Both the input and the tissue response functions for the entire myocardium are sampled with each acquisition. However, the long breath holds and frequent sampling can result in significant motion artifacts and relatively high radiation dose. To address these limitations, we propose and evaluate a new static cardiac and dynamic arterial (SCDA) quantitative MBF approach where (1) the input function is well sampled using either prediction from pre-scan timing bolus data or measured from dynamic thin slice ‘bolus tracking’ acquisitions, and (2) the whole-heart tissue response data is limited to one contrast enhanced CT acquisition. A perfusion model uses the dynamic arterial input function to generate a family of possible myocardial contrast enhancement curves corresponding to a range of MBF values. Combined with the timing of the single whole-heart acquisition, these curves generate a lookup table relating myocardial contrast enhancement to quantitative MBF. We tested the SCDA approach in 28 patients that underwent a full dynamic CT protocol both at rest and vasodilator stress conditions. Using measured input function plus single (enhanced CT only) or plus double (enhanced and contrast free baseline CT’s) myocardial acquisitions yielded MBF estimates with root mean square (RMS) error of 1.2 ml/min/g and 0.35 ml/min/g, and radiation dose reductions of 90% and 83%, respectively. The prediction of the input function based on timing bolus data and the static acquisition had an RMS error compared to the measured input function of 26.0% which led to MBF estimation errors greater than threefold higher than using the measured input function. SCDA presents a new, simplified approach for quantitative

  11. Dynamics of Wetting of Ultra Hydrophobic Surfaces

    Science.gov (United States)

    Mohammad Karim, Alireza; Kim, Jeong-Hyun; Rothstein, Jonathan; Kavehpour, Pirouz; Mechanical and Industrial Engineering, University of Massachusetts, Amherst Collaboration

    2013-11-01

    Controlling the surface wettability of hydrophobic and super hydrophobic surfaces has extensive industrial applications ranging from coating, painting and printing technology and waterproof clothing to efficiency increase in power and water plants. This requires enhancing the knowledge about the dynamics of wetting on these hydrophobic surfaces. We have done experimental investigation on the dynamics of wetting on hydrophobic surfaces by looking deeply in to the dependency of the dynamic contact angles both advancing and receding on the velocity of the three-phase boundary (Solid/Liquid/Gas interface) using the Wilhelmy plate method with different ultra-hydrophobic surfaces. Several fluids with different surface tension and viscosity are used to study the effect of physical properties of liquids on the governing laws.

  12. A review on brightness preserving contrast enhancement methods for digital image

    Science.gov (United States)

    Rahman, Md Arifur; Liu, Shilong; Li, Ruowei; Wu, Hongkun; Liu, San Chi; Jahan, Mahmuda Rawnak; Kwok, Ngaiming

    2018-04-01

    Image enhancement is an imperative step for many vision based applications. For image contrast enhancement, popular methods adopt the principle of spreading the captured intensities throughout the allowed dynamic range according to predefined distributions. However, these algorithms take little or no consideration into account of maintaining the mean brightness of the original scene, which is of paramount importance to carry the true scene illumination characteristics to the viewer. Though there have been significant amount of reviews on contrast enhancement methods published, updated review on overall brightness preserving image enhancement methods is still scarce. In this paper, a detailed survey is performed on those particular methods that specifically aims to maintain the overall scene illumination characteristics while enhancing the digital image.

  13. All-phase MR angiography using independent component analysis of dynamic contrast enhanced MRI time series. φ-MRA

    International Nuclear Information System (INIS)

    Suzuki, Kiyotaka; Matsuzawa, Hitoshi; Watanabe, Masaki; Nakada, Tsutomu; Nakayama, Naoki; Kwee, I.L.

    2003-01-01

    Dynamic contrast enhanced magnetic resonance imaging (dynamic MRI) represents a MRI version of non-diffusible tracer methods, the main clinical use of which is the physiological construction of what is conventionally referred to as perfusion images. The raw data utilized for constructing MRI perfusion images are time series of pixel signal alterations associated with the passage of a gadolinium containing contrast agent. Such time series are highly compatible with independent component analysis (ICA), a novel statistical signal processing technique capable of effectively separating a single mixture of multiple signals into their original independent source signals (blind separation). Accordingly, we applied ICA to dynamic MRI time series. The technique was found to be powerful, allowing for hitherto unobtainable assessment of regional cerebral hemodynamics in vivo. (author)

  14. Effects of dynamic range compression on spatial selective auditory attention in normal-hearing listeners.

    Science.gov (United States)

    Schwartz, Andrew H; Shinn-Cunningham, Barbara G

    2013-04-01

    Many hearing aids introduce compressive gain to accommodate the reduced dynamic range that often accompanies hearing loss. However, natural sounds produce complicated temporal dynamics in hearing aid compression, as gain is driven by whichever source dominates at a given moment. Moreover, independent compression at the two ears can introduce fluctuations in interaural level differences (ILDs) important for spatial perception. While independent compression can interfere with spatial perception of sound, it does not always interfere with localization accuracy or speech identification. Here, normal-hearing listeners reported a target message played simultaneously with two spatially separated masker messages. We measured the amount of spatial separation required between the target and maskers for subjects to perform at threshold in this task. Fast, syllabic compression that was independent at the two ears increased the required spatial separation, but linking the compressors to provide identical gain to both ears (preserving ILDs) restored much of the deficit caused by fast, independent compression. Effects were less clear for slower compression. Percent-correct performance was lower with independent compression, but only for small spatial separations. These results may help explain differences in previous reports of the effect of compression on spatial perception of sound.

  15. Interobserver Variation of the Bolus-and-Burst Method for Pancreatic Perfusion with Dynamic – Contrast-Enhanced Ultrasound

    Czech Academy of Sciences Publication Activity Database

    Stangeland, M.; Engjom, T.; Mézl, M.; Jiřík, Radovan; Gilja, O.H.; Dimcevski, G.; Nylund, K.

    2017-01-01

    Roč. 3, č. 3 (2017), E99-E106 E-ISSN 2199-7152 Institutional support: RVO:68081731 Keywords : interobserver * dynamic contrast-enhanced ultrasound * perfusion * pancreas Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Medical engineering https://www.thieme-connect.com/products/ejournals/abstract/10.1055/s-0043-110475

  16. Differentiation between benign and malignant colon tumors using fast dynamic gadolinium-enhanced MR colonography; a feasibility study

    DEFF Research Database (Denmark)

    Achiam, M P; Andersen, L P H; Klein, M

    2010-01-01

    Colorectal cancer will present itself as a bowel obstruction in 16-23% of all cases. However, not all obstructing tumors are malignant and the differentiation between a benign and a malignant tumor can be difficult. The purpose of our study was to determine whether fast dynamic gadolinium-enhance...

  17. Human cerebral blood volume measurements using dynamic contrast enhancement in comparison to dynamic susceptibility contrast MRI

    Energy Technology Data Exchange (ETDEWEB)

    Artzi, Moran [Tel Aviv Sourasky Medical Center, Functional Brain Center, The Wohl Institute for Advanced Imaging, Tel Aviv (Israel); Tel Aviv University, Sackler Faculty of Medicine, Tel Aviv (Israel); Liberman, Gilad; Vitinshtein, Faina; Aizenstein, Orna [Tel Aviv Sourasky Medical Center, Functional Brain Center, The Wohl Institute for Advanced Imaging, Tel Aviv (Israel); Nadav, Guy [Tel Aviv Sourasky Medical Center, Functional Brain Center, The Wohl Institute for Advanced Imaging, Tel Aviv (Israel); Tel Aviv University, Faculty of Engineering, Tel Aviv (Israel); Blumenthal, Deborah T.; Bokstein, Felix [Tel Aviv Sourasky Medical Center, Neuro-Oncology Service, Tel Aviv (Israel); Bashat, Dafna Ben [Tel Aviv Sourasky Medical Center, Functional Brain Center, The Wohl Institute for Advanced Imaging, Tel Aviv (Israel); Tel Aviv University, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv (Israel)

    2015-07-15

    Cerebral blood volume (CBV) is an important parameter for the assessment of brain tumors, usually obtained using dynamic susceptibility contrast (DSC) MRI. However, this method often suffers from low spatial resolution and high sensitivity to susceptibility artifacts and usually does not take into account the effect of tissue permeability. The plasma volume (v{sub p}) can also be extracted from dynamic contrast enhancement (DCE) MRI. The aim of this study was to investigate whether DCE can be used for the measurement of cerebral blood volume in place of DSC for the assessment of patients with brain tumors. Twenty-eight subjects (17 healthy subjects and 11 patients with glioblastoma) were scanned using DCE and DSC. v{sub p} and CBV values were measured and compared in different brain components in healthy subjects and in the tumor area in patients. Significant high correlations were detected between v{sub p} and CBV in healthy subjects in the different brain components; white matter, gray matter, and arteries, correlating with the known increased tissue vascularity, and within the tumor area in patients. This work proposes the use of DCE as an alternative method to DSC for the assessment of blood volume, given the advantages of its higher spatial resolution, its lower sensitivity to susceptibility artifacts, and its ability to provide additional information regarding tissue permeability. (orig.)

  18. Enhanced Dynamics of Hydrated tRNA on Nanodiamond Surfaces: A Combined Neutron Scattering and MD Simulation Study.

    Science.gov (United States)

    Dhindsa, Gurpreet K; Bhowmik, Debsindhu; Goswami, Monojoy; O'Neill, Hugh; Mamontov, Eugene; Sumpter, Bobby G; Hong, Liang; Ganesh, Panchapakesan; Chu, Xiang-Qiang

    2016-09-14

    Nontoxic, biocompatible nanodiamonds (ND) have recently been implemented in rational, systematic design of optimal therapeutic use in nanomedicines. However, hydrophilicity of the ND surface strongly influences structure and dynamics of biomolecules that restrict in situ applications of ND. Therefore, fundamental understanding of the impact of hydrophilic ND surface on biomolecules at the molecular level is essential. For tRNA, we observe an enhancement of dynamical behavior in the presence of ND contrary to generally observed slow motion at strongly interacting interfaces. We took advantage of neutron scattering experiments and computer simulations to demonstrate this atypical faster dynamics of tRNA on ND surface. The strong attractive interactions between ND, tRNA, and water give rise to unlike dynamical behavior and structural changes of tRNA in front of ND compared to without ND. Our new findings may provide new design principles for safer, improved drug delivery platforms.

  19. Studying wedge factors and beam profiles for physical and enhanced dynamic wedges

    Directory of Open Access Journals (Sweden)

    Ahmad Misbah

    2010-01-01

    Full Text Available This study was designed to investigate variation in Varian′s Physical and Enhanced Dynamic Wedge Factors (WF as a function of depth and field size. The profiles for physical wedges (PWs and enhanced dynamic wedges (EDWs were also measured using LDA-99 array and compared for confirmation of EDW angles at different depths and field sizes. WF measurements were performed in water phantom using cylindrical 0.66 cc ionization chamber. WF was measured by taking the ratio of wedge and open field ionization data. A normalized wedge factor (NWF was introduced to circumvent large differences between wedge factors for different wedge angles. A strong linear dependence of PW Factor (PWF with depth was observed. Maximum variation of 8.9% and 4.1% was observed for 60° PW with depth at 6 and 15 MV beams respectively. The variation in EDW Factor (EDWF with depth was almost negligible and less than two per cent. The highest variation in PWF as a function of field size was 4.1% and 3.4% for thicker wedge (60° at 6 and 15 MV beams respectively and decreases with decreasing wedge angle. EDWF shows strong field size dependence and significant variation was observed for all wedges at both photon energies. Differences in profiles between PW and EDW were observed on toe and heel sides. These differences were dominant for larger fields, shallow depths, thicker wedges and low energy beam. The study indicated that ignoring depth and field size dependence of WF may result in under/over dose to the patient especially doing manual point dose calculation.

  20. Dynamic contrast-enhanced magnetic resonance imaging of the sarcopenic muscle

    Energy Technology Data Exchange (ETDEWEB)

    Nicolato, Elena; Farace, Paolo; Asperio, Roberto M; Marzola, Pasquina; Lunati, Ernesto; Sbarbati, Andrea; Osculati, Francesco [Dipartimento di Scienze Morfologico-Biomediche, Sezione di Anatomia ed Istologia, Università di Verona, Verona, I-37194 (Italy)

    2002-06-05

    Studies about capillarity of the aged muscle provided conflicting results and no data are currently available about the magnetic resonance imaging (MRI) in vivo characteristics of the microvascular bed in aged rats. We have studied age-related modifications of the skeletal muscle by in vivo T2-relaxometry and dynamic contrast-enhanced magnetic resonance imaging (CE-MRI) at high field intensity (4.7 T). The aim of the work was to test the hypothesis that the ageing process involves microvessels in skeletal muscle. The study was performed in 4-month-old (n = 6) and 20-month-old (n = 6) rats. At MRI examination, the relaxation time T2 of the gastrocnemius muscle showed no significant difference between these two groups. The kinetic of contrast penetration in the tissue showed that in 4-month-old rats the enhancement values of the signal intensity at different time-points were significantly higher than those found in senescent rats. The reported finding suggests that there is a modification of the microcirculatory function in skeletal muscle of aged rats. This work also demonstrates that CE-MRI allows for an in vivo quantification of the multiple biological processes involving the skeletal muscle during aging. Therefore, CE-MRI could represent a further tool for the follow up of tissue modification and therapeutic intervention both in patients with sarcopenia and in experimental models of this pathology.

  1. Dynamic contrast-enhanced magnetic resonance imaging of the sarcopenic muscle

    International Nuclear Information System (INIS)

    Nicolato, Elena; Farace, Paolo; Asperio, Roberto M; Marzola, Pasquina; Lunati, Ernesto; Sbarbati, Andrea; Osculati, Francesco

    2002-01-01

    Studies about capillarity of the aged muscle provided conflicting results and no data are currently available about the magnetic resonance imaging (MRI) in vivo characteristics of the microvascular bed in aged rats. We have studied age-related modifications of the skeletal muscle by in vivo T2-relaxometry and dynamic contrast-enhanced magnetic resonance imaging (CE-MRI) at high field intensity (4.7 T). The aim of the work was to test the hypothesis that the ageing process involves microvessels in skeletal muscle. The study was performed in 4-month-old (n = 6) and 20-month-old (n = 6) rats. At MRI examination, the relaxation time T2 of the gastrocnemius muscle showed no significant difference between these two groups. The kinetic of contrast penetration in the tissue showed that in 4-month-old rats the enhancement values of the signal intensity at different time-points were significantly higher than those found in senescent rats. The reported finding suggests that there is a modification of the microcirculatory function in skeletal muscle of aged rats. This work also demonstrates that CE-MRI allows for an in vivo quantification of the multiple biological processes involving the skeletal muscle during aging. Therefore, CE-MRI could represent a further tool for the follow up of tissue modification and therapeutic intervention both in patients with sarcopenia and in experimental models of this pathology

  2. Quantifying heterogeneity of lesion uptake in dynamic contrast enhanced MRI for breast cancer diagnosis

    International Nuclear Information System (INIS)

    Karahaliou, A; Skiadopoulos, S; Yiakoumelos, A; Costaridou, L; Vassiou, K; Kanavou, T

    2009-01-01

    The current study investigates whether texture features extracted from lesion kinetics feature maps can be used for breast cancer diagnosis. Fifty five women with 57 breast lesions (27 benign, 30 malignant) were subjected to dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) on 1.5T system. A linear-slope model was fitted pixel-wise to a representative lesion slice time series and fitted parameters were used to create three kinetic maps (wash out, time to peak enhancement and peak enhancement). 28 grey level co-occurrence matrices features were extracted from each lesion kinetic map. The ability of texture features per map in discriminating malignant from benign lesions was investigated using a Probabilistic Neural Network classifier. Additional classification was performed by combining classification outputs of most discriminating feature subsets from the three maps, via majority voting. The combined scheme outperformed classification based on individual maps achieving area under Receiver Operating Characteristics curve 0.960±0.029. Results suggest that heterogeneity of breast lesion kinetics, as quantified by texture analysis, may contribute to computer assisted tissue characterization in DCE-MRI.

  3. Long-range correlations and fractal dynamics in C. elegans: Changes with aging and stress

    Science.gov (United States)

    Alves, Luiz G. A.; Winter, Peter B.; Ferreira, Leonardo N.; Brielmann, Renée M.; Morimoto, Richard I.; Amaral, Luís A. N.

    2017-08-01

    Reduced motor control is one of the most frequent features associated with aging and disease. Nonlinear and fractal analyses have proved to be useful in investigating human physiological alterations with age and disease. Similar findings have not been established for any of the model organisms typically studied by biologists, though. If the physiology of a simpler model organism displays the same characteristics, this fact would open a new research window on the control mechanisms that organisms use to regulate physiological processes during aging and stress. Here, we use a recently introduced animal-tracking technology to simultaneously follow tens of Caenorhabdits elegans for several hours and use tools from fractal physiology to quantitatively evaluate the effects of aging and temperature stress on nematode motility. Similar to human physiological signals, scaling analysis reveals long-range correlations in numerous motility variables, fractal properties in behavioral shifts, and fluctuation dynamics over a wide range of timescales. These properties change as a result of a superposition of age and stress-related adaptive mechanisms that regulate motility.

  4. Final Project Report: Data Locality Enhancement of Dynamic Simulations for Exascale Computing

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Xipeng [North Carolina State Univ., Raleigh, NC (United States)

    2016-04-27

    The goal of this project is to develop a set of techniques and software tools to enhance the matching between memory accesses in dynamic simulations and the prominent features of modern and future manycore systems, alleviating the memory performance issues for exascale computing. In the first three years, the PI and his group have achieves some significant progress towards the goal, producing a set of novel techniques for improving the memory performance and data locality in manycore systems, yielding 18 conference and workshop papers and 4 journal papers and graduating 6 Ph.Ds. This report summarizes the research results of this project through that period.

  5. Encounter success of free-ranging marine predator movements across a dynamic prey landscape.

    Science.gov (United States)

    Sims, David W; Witt, Matthew J; Richardson, Anthony J; Southall, Emily J; Metcalfe, Julian D

    2006-05-22

    Movements of wide-ranging top predators can now be studied effectively using satellite and archival telemetry. However, the motivations underlying movements remain difficult to determine because trajectories are seldom related to key biological gradients, such as changing prey distributions. Here, we use a dynamic prey landscape of zooplankton biomass in the north-east Atlantic Ocean to examine active habitat selection in the plankton-feeding basking shark Cetorhinus maximus. The relative success of shark searches across this landscape was examined by comparing prey biomass encountered by sharks with encounters by random-walk simulations of 'model' sharks. Movements of transmitter-tagged sharks monitored for 964 days (16754 km estimated minimum distance) were concentrated on the European continental shelf in areas characterized by high seasonal productivity and complex prey distributions. We show movements by adult and sub-adult sharks yielded consistently higher prey encounter rates than 90% of random-walk simulations. Behavioural patterns were consistent with basking sharks using search tactics structured across multiple scales to exploit the richest prey areas available in preferred habitats. Simple behavioural rules based on learned responses to previously encountered prey distributions may explain the high performances. This study highlights how dynamic prey landscapes enable active habitat selection in large predators to be investigated from a trophic perspective, an approach that may inform conservation by identifying critical habitat of vulnerable species.

  6. Assessment of inflammatory activity in Crohn's disease by means of dynamic contrast-enhanced MRI.

    Science.gov (United States)

    Pupillo, V A; Di Cesare, E; Frieri, G; Limbucci, N; Tanga, M; Masciocchi, C

    2007-09-01

    Our aim was to perform a dynamic study of contrast enhancement of the intestinal wall in patients with Crohn's disease to quantitatively assess local inflammatory activity. We studied a population of 50 patients with histologically proven Crohn's disease. Magnetic resonance imaging (MRI) was performed using a 1.5-T magnet with a phased-array coil and acquisition of T2-weighted single-shot fast spin echo (SSFSE) half Fourier sequences before intravenous administration of gadolinium, and T1-weighted fast spoiled gradient (FSPGR) fat-saturated sequences before and after contrast administration. Before the examination, patents received oral polyethylene glycol (PEG) (1,000 ml for adults; 10 ml/Kg of body weight for children). Regions of interest (ROI) were placed on the normal and diseased intestinal wall to assess signal intensity and rate of increase in contrast enhancement over time. Data were compared with the Crohn's Disease Activity Index (CDAI). The diseased bowel wall showed early and intense uptake of contrast that increases over time until a plateau is reached. In patients in the remission phase after treatment, signal intensity was only slightly higher in diseased bowel loops than in healthy loops. There was a significant correlation between the peak of contrast uptake and CDAI. Dynamic MRI is a good technique for quantifying local inflammatory activity of bowel wall in patients with Crohn's disease.

  7. Multimodality functional imaging of spontaneous canine tumors using 64CU-ATSM and 18FDG PET/CT and dynamic contrast enhanced perfusion CT

    DEFF Research Database (Denmark)

    Hansen, Anders E; Kristensen, Annemarie T; Law, Ian

    2012-01-01

    To compare the distribution and uptake of the hypoxia tracer (64)Cu-diacetyl-bis(N(4)-methylthiosemicarbazone) ((64)Cu-ATSM) PET/CT, FDG PET/CT and dynamic contrast enhanced perfusion CT (DCE-pCT) in spontaneous canine tumors. In addition (64)Cu-ATSM distribution over time was evaluated.......To compare the distribution and uptake of the hypoxia tracer (64)Cu-diacetyl-bis(N(4)-methylthiosemicarbazone) ((64)Cu-ATSM) PET/CT, FDG PET/CT and dynamic contrast enhanced perfusion CT (DCE-pCT) in spontaneous canine tumors. In addition (64)Cu-ATSM distribution over time was evaluated....

  8. Understanding synthesis imaging dynamic range

    Science.gov (United States)

    Braun, R.

    2013-03-01

    We develop a general framework for quantifying the many different contributions to the noise budget of an image made with an array of dishes or aperture array stations. Each noise contribution to the visibility data is associated with a relevant correlation timescale and frequency bandwidth so that the net impact on a complete observation can be assessed when a particular effect is not captured in the instrumental calibration. All quantities are parameterised as function of observing frequency and the visibility baseline length. We apply the resulting noise budget analysis to a wide range of existing and planned telescope systems that will operate between about 100 MHz and 5 GHz to ascertain the magnitude of the calibration challenges that they must overcome to achieve thermal noise limited performance. We conclude that calibration challenges are increased in several respects by small dimensions of the dishes or aperture array stations. It will be more challenging to achieve thermal noise limited performance using 15 m class dishes rather than the 25 m dishes of current arrays. Some of the performance risks are mitigated by the deployment of phased array feeds and more with the choice of an (alt,az,pol) mount, although a larger dish diameter offers the best prospects for risk mitigation. Many improvements to imaging performance can be anticipated at the expense of greater complexity in calibration algorithms. However, a fundamental limitation is ultimately imposed by an insufficient number of data constraints relative to calibration variables. The upcoming aperture array systems will be operating in a regime that has never previously been addressed, where a wide range of effects are expected to exceed the thermal noise by two to three orders of magnitude. Achieving routine thermal noise limited imaging performance with these systems presents an extreme challenge. The magnitude of that challenge is inversely related to the aperture array station diameter.

  9. Dynamic contrast-enhanced CT appearances of the intraductal papillary neoplasms of the bile duct

    International Nuclear Information System (INIS)

    Song Fengxiang; Zhou Jianjun; Zeng Mengsu; Zhou Kangrong; Ding Yuqin; He Deming; Shi Yuxin; Zhou Jun

    2013-01-01

    Objective: To analyze the dynamic contrast-enhanced CT appearances of intraductal papillary neoplasms of the bile duct and improve its diagnostic accuracy. Methods: Sixteen patients with intraductal papillary neoplasms of the bile duct confirmed histopathologically after surgical operation underwent dynamic contrast-enhanced multi-detector row CT scans. All imaging data were reviewed and analyzed retrospectively in correlation with surgical and pathological findings. CT values of 38 well-visualized lesions in 12 of the 16 patients at the pre-contrast phase, arterial phase and venous phase were measured. Four of the 12 patients with 17 lesions had benign tumors, and 8 of the 12 patients with 21 lesions had malignant tumors. Comparisons of CT values at the three phases between the two groups were carried out using independent sample t test. The bile CT values were measured in these 12 cases, 40 normal volunteers, and 40 subjects with bile duct stones, and the Wilcoxon signed-rank test was applied to compare the bile CT values between tumor group and the normal group and between tumor group and the bile duct stone group. The diameters of the bile ducts proximal to and distal to tumors were also measured, and Fisher exact method was carried to analyze the data. Results: Lesions located at the left lobe in 8 out of the 16 patients, the right lobe in 1 case, both the left and right lobes in 1 case, the hepatic hilum in 1 case, the common bile duct in 3 cases, and both the right lobe and the common bile duct in 2 cases. Eleven lesions appeared as papillary masses, 3 as flat masses, 1 as mixed papillary and flat masses. In one case, tumor mass could not be definitely visualized, and only dilated bile ducts and stones were demonstrated. The mean CT values of the benign tumors were (25.8 ± 8.0), (37.7 ± 10.3) and (51.7 ± 17.1) HU respectively at pre-contrast phase, arterial phase, and venous phase, and the malignant tumors were (38.4 ± 10.2), (56.6 ± 18.0) and (68.4

  10. The use of isothermal titration calorimetry to assess the solubility enhancement of simvastatin by a range of surfactants

    International Nuclear Information System (INIS)

    Patel, Rajesh; Buckton, Graham; Gaisford, Simon

    2007-01-01

    Surfactants are commonly used to increase the solubility of poorly water soluble drugs but the interactions between drug and surfactant can be complex and quantitative relationships can be hard to derive. One approach is to quantify the thermodynamics of interaction and relate these parameters to known solubility or dissolution rate enhancement data. Isothermal titration calorimetry (ITC) was used to measure the enthalpy and free energy of transfer of a model drug (simvastatin) to a number of surfactant (SDS, HTAB, SDCH and Brij 35) micelles. These data were then compared with the solubility enhancements determined for each surfactant using HPLC assays. As expected, there was correlation between the free energy of transfer for the drug to each surfactant and the solubility enhancement of that surfactant. Although the data set is limited, the results suggest that ITC screening of a range of surfactants against a poorly water soluble drug may allow the selection of the best potential solubilising surfactants

  11. An adaptive scheme for robot localization and mapping with dynamically configurable inter-beacon range measurements.

    Science.gov (United States)

    Torres-González, Arturo; Martinez-de Dios, Jose Ramiro; Ollero, Anibal

    2014-04-25

    This work is motivated by robot-sensor network cooperation techniques where sensor nodes (beacons) are used as landmarks for range-only (RO) simultaneous localization and mapping (SLAM). This paper presents a RO-SLAM scheme that actuates over the measurement gathering process using mechanisms that dynamically modify the rate and variety of measurements that are integrated in the SLAM filter. It includes a measurement gathering module that can be configured to collect direct robot-beacon and inter-beacon measurements with different inter-beacon depth levels and at different rates. It also includes a supervision module that monitors the SLAM performance and dynamically selects the measurement gathering configuration balancing SLAM accuracy and resource consumption. The proposed scheme has been applied to an extended Kalman filter SLAM with auxiliary particle filters for beacon initialization (PF-EKF SLAM) and validated with experiments performed in the CONET Integrated Testbed. It achieved lower map and robot errors (34% and 14%, respectively) than traditional methods with a lower computational burden (16%) and similar beacon energy consumption.

  12. Fast, Highly-Sensitive, and Wide-Dynamic-Range Interdigitated Capacitor Glucose Biosensor Using Solvatochromic Dye-Containing Sensing Membrane.

    Science.gov (United States)

    Khan, Md Rajibur Rahaman; Khalilian, Alireza; Kang, Shin-Won

    2016-02-20

    In this paper, we proposed an interdigitated capacitor (IDC)-based glucose biosensor to measure different concentrations of glucose from 1 μM to 1 M. We studied four different types of solvatochromic dyes: Auramine O, Nile red, Rhodamine B, and Reichardt's dye (R-dye). These dyes were individually incorporated into a polymer [polyvinyl chloride (PVC)] and N,N-Dimethylacetamide (DMAC) solution to make the respective dielectric/sensing materials. To the best of our knowledge, we report for the first time an IDC glucose biosensing system utilizing a solvatochromic-dye-containing sensing membrane. These four dielectric or sensing materials were individually placed into the interdigitated electrode (IDE) by spin coating to make four IDC glucose biosensing elements. The proposed IDC glucose biosensor has a high sensing ability over a wide dynamic range and its sensitivity was about 23.32 mV/decade. It also has fast response and recovery times of approximately 7 s and 5 s, respectively, excellent reproducibility with a standard deviation of approximately 0.023, highly stable sensing performance, and real-time monitoring capabilities. The proposed IDC glucose biosensor was compared with an IDC, potentiometric, FET, and fiber-optic glucose sensor with respect to response time, dynamic range width, sensitivity, and linearity. We observed that the designed IDC glucose biosensor offered excellent performance.

  13. Role of network dynamics in shaping spike timing reliability

    International Nuclear Information System (INIS)

    Bazhenov, Maxim; Rulkov, Nikolai F.; Fellous, Jean-Marc; Timofeev, Igor

    2005-01-01

    We study the reliability of cortical neuron responses to periodically modulated synaptic stimuli. Simple map-based models of two different types of cortical neurons are constructed to replicate the intrinsic resonances of reliability found in experimental data and to explore the effects of those resonance properties on collective behavior in a cortical network model containing excitatory and inhibitory cells. We show that network interactions can enhance the frequency range of reliable responses and that the latter can be controlled by the strength of synaptic connections. The underlying dynamical mechanisms of reliability enhancement are discussed

  14. Dynamic contrast-enhanced magnetic resonance imaging of articular and extraarticular synovial structures of the hands in patients with psoriatic arthritis

    DEFF Research Database (Denmark)

    Cimmino, Marco Amedeo; Barbieri, Francesca; Boesen, Mikael

    2012-01-01

    Dynamic, contrast-enhanced magnetic resonance imaging (DCE-MRI), the quantification of enhancement within the synovial membrane and bone by extracting curves using fast T1-weighted sequences during intravenous administration of contrast agent, evaluates synovitis and bone marrow edema in psoriati...... arthritis (PsA). In this pilot study, we looked at possible differences between joint synovitis and tenosynovitis in PsA as compared with rheumatoid arthritis (RA)....

  15. Geomorphic evidence for enhanced Pliocene-Quaternary faulting in the northwestern Basin and Range

    Science.gov (United States)

    Ellis, Magdalena A; Barnes Jason B,; Colgan, Joseph P.

    2014-01-01

    Mountains in the U.S. Basin and Range Province are similar in form, yet they have different histories of deformation and uplift. Unfortunately, chronicling fault slip with techniques like thermochronology and geodetics can still leave sizable, yet potentially important gaps at Pliocene–Quaternary (∼105–106 yr) time scales. Here, we combine existing geochronology with new geomorphic observations and approaches to investigate the Miocene to Quaternary slip history of active normal faults that are exhuming three footwall ranges in northwestern Nevada: the Pine Forest Range, the Jackson Mountains, and the Santa Rosa Range. We use the National Elevation Dataset (10 m) digital elevation model (DEM) to measure bedrock river profiles and hillslope gradients from these ranges. We observe a prominent suite of channel convexities (knickpoints) that segment the channels into upper reaches with low steepness (mean ksn = ∼182; θref = 0.51) and lower, fault-proximal reaches with high steepness (mean ksn = ∼361), with a concomitant increase in hillslope angles of ∼6°–9°. Geologic maps and field-based proxies for rock strength allow us to rule out static causes for the knickpoints and interpret them as transient features triggered by a drop in base level that created ∼20% of the existing relief (∼220 m of ∼1050 m total). We then constrain the timing of base-level change using paleochannel profile reconstructions, catchment-scale volumetric erosion fluxes, and a stream-power–based knickpoint celerity (migration) model. Low-temperature thermochronology data show that faulting began at ca. 11–12 Ma, yet our results estimate knickpoint initiation began in the last 5 Ma and possibly as recently as 0.1 Ma with reasonable migration rates of 0.5–2 mm/yr. We interpret the collective results to be evidence for enhanced Pliocene–Quaternary fault slip that may be related to tectonic reorganization in the American West, although we cannot rule out climate as a

  16. Improved evaluation of antivascular cancer therapy using constrained tracer-kinetic modeling for multi-agent dynamic contrast-enhanced MRI

    NARCIS (Netherlands)

    Hectors, Stefanie; Jacobs, Igor; Lok, Jasper; Peters, Johannes; Bussink, Johan; Hoeben, Freek J. M.; Keizer, Henk; Janssen, Henk M.; Nicolay, Klaas; Schabel, Matthias; Strijkers, Gustav

    2018-01-01

    Dynamic contrast-enhanced MRI (DCE-MRI) is a promising technique for assessing the response of tumor vasculature to anti-vascular therapies. Multi-agent DCE-MRI employs a combination of low and high molecular weight contrast agents, which potentially improves the accuracy of estimation of tumor

  17. Repeatability and correlations of dynamic contrast enhanced and T2* MRI in patients with advanced pancreatic ductal adenocarcinoma

    NARCIS (Netherlands)

    Klaassen, Remy; Gurney-Champion, Oliver J.; Wilmink, Johanna W.; Besselink, Marc G.; Engelbrecht, Marc R. W.; Stoker, Jaap; Nederveen, Aart J.; van Laarhoven, Hanneke W. M.

    2018-01-01

    In current oncological practice of pancreatic ductal adenocarcinoma (PDAC), there is a great demand for response predictors and markers for early treatment evaluation. In this study, we investigated the repeatability and the interaction of dynamic contrast enhanced (DCE) and T2* MRI in patients with

  18. DFTBaby: A software package for non-adiabatic molecular dynamics simulations based on long-range corrected tight-binding TD-DFT(B)

    Science.gov (United States)

    Humeniuk, Alexander; Mitrić, Roland

    2017-12-01

    A software package, called DFTBaby, is published, which provides the electronic structure needed for running non-adiabatic molecular dynamics simulations at the level of tight-binding DFT. A long-range correction is incorporated to avoid spurious charge transfer states. Excited state energies, their analytic gradients and scalar non-adiabatic couplings are computed using tight-binding TD-DFT. These quantities are fed into a molecular dynamics code, which integrates Newton's equations of motion for the nuclei together with the electronic Schrödinger equation. Non-adiabatic effects are included by surface hopping. As an example, the program is applied to the optimization of excited states and non-adiabatic dynamics of polyfluorene. The python and Fortran source code is available at http://www.dftbaby.chemie.uni-wuerzburg.de.

  19. ECCOMAS Thematic Conference on Multibody Dynamics

    CERN Document Server

    Fisette, Paul; Multibody Dynamics : Computational Methods and Applications

    2013-01-01

    This volume provides the international multibody dynamics community with an up-to-date view on the state of the art in this rapidly growing field of research which now plays a central role in the modeling, analysis, simulation and optimization of mechanical systems in a variety of fields and for a wide range of industrial applications. This book contains selected contributions delivered at the ECCOMAS Thematic Conference on Multibody Dynamics, which was held in Brussels, Belgium and organized by the Université catholique de Louvain, from 4th to 7th July 2011.  Each paper reflects the State-of-Art in the application of Multibody Dynamics to different areas of engineering. They are enlarged and revised versions of the communications, which were enhanced in terms of self-containment and tutorial quality by the authors. The result is a comprehensive text that constitutes a valuable reference for researchers and design engineers which helps to appraise the potential for the application of multibody dynamics meth...

  20. Dynamics and diffusive-conformational coupling in polymer bulk samples and surfaces: a molecular dynamics study

    International Nuclear Information System (INIS)

    Vree, C; Mayr, S G

    2010-01-01

    The impact of free surfaces on the mobility and conformational fluctuations of model polymer chains is investigated with the help of classical molecular dynamics simulations over a broad temperature range. Below a critical temperature, T*, similar to the critical temperature of the mode coupling theory, the center-of-mass displacements and temporal fluctuations of the radius of gyration of individual chains-as a fingerprint of structural reconfigurations-reveal a strong enhancement close to surfaces, while this effect diminishes with increasing temperature and observation time. Interpreting conformational fluctuations as a random walk in conformational space, identical activation enthalpies for structural reconfigurations and diffusion are obtained within the error bars in the bulk and at the surfaces, thus indicating a coupling of diffusive and conformational dynamics.