WorldWideScience

Sample records for dynamic random environment

  1. Some case studies of random walks in dynamic random environments

    NARCIS (Netherlands)

    Soares dos Santos, Renato

    2012-01-01

    This thesis is dedicated to the study of random walks in dynamic random environments. These are models for the motion of a tracer particle in a disordered medium, which is called a static random environment if it stays constant in time, or dynamic otherwise. The evolution of the random walk is defi

  2. Independent Particles in a Dynamical Random Environment

    CERN Document Server

    Joseph, Mathew; Seppäläinen, Timo

    2011-01-01

    We study the motion of independent particles in a dynamical random environment on the integer lattice. The environment has a product distribution. For the multidimensional case, we characterize the class of spatially ergodic invariant measures. These invariant distributions are mixtures of inhomogeneous Poisson product measures that depend on the past of the environment, and we also investigate the correlations in this measure. For dimensions one and two, we also prove convergence to equilibrium from spatially ergodic initial distributions. In the one-dimensional situation we study fluctuations of net current seen by an observer traveling at a deterministic speed. When this current is centered by its quenched mean its limit distributions are the same as for classical independent particles.

  3. Parabolic Anderson Model in a Dynamic Random Environment: Random Conductances

    Science.gov (United States)

    Erhard, D.; den Hollander, F.; Maillard, G.

    2016-06-01

    The parabolic Anderson model is defined as the partial differential equation ∂ u( x, t)/ ∂ t = κ Δ u( x, t) + ξ( x, t) u( x, t), x ∈ ℤ d , t ≥ 0, where κ ∈ [0, ∞) is the diffusion constant, Δ is the discrete Laplacian, and ξ is a dynamic random environment that drives the equation. The initial condition u( x, 0) = u 0( x), x ∈ ℤ d , is typically taken to be non-negative and bounded. The solution of the parabolic Anderson equation describes the evolution of a field of particles performing independent simple random walks with binary branching: particles jump at rate 2 d κ, split into two at rate ξ ∨ 0, and die at rate (- ξ) ∨ 0. In earlier work we looked at the Lyapunov exponents λ p(κ ) = limlimits _{tto ∞} 1/t log {E} ([u(0,t)]p)^{1/p}, quad p in {N} , qquad λ 0(κ ) = limlimits _{tto ∞} 1/2 log u(0,t). For the former we derived quantitative results on the κ-dependence for four choices of ξ : space-time white noise, independent simple random walks, the exclusion process and the voter model. For the latter we obtained qualitative results under certain space-time mixing conditions on ξ. In the present paper we investigate what happens when κΔ is replaced by Δ𝓚, where 𝓚 = {𝓚( x, y) : x, y ∈ ℤ d , x ˜ y} is a collection of random conductances between neighbouring sites replacing the constant conductances κ in the homogeneous model. We show that the associated annealed Lyapunov exponents λ p (𝓚), p ∈ ℕ, are given by the formula λ p({K} ) = {sup} {λ p(κ ) : κ in {Supp} ({K} )}, where, for a fixed realisation of 𝓚, Supp(𝓚) is the set of values taken by the 𝓚-field. We also show that for the associated quenched Lyapunov exponent λ 0(𝓚) this formula only provides a lower bound, and we conjecture that an upper bound holds when Supp(𝓚) is replaced by its convex hull. Our proof is valid for three classes of reversible ξ, and for all 𝓚

  4. Law of large numbers for non-elliptic random walks in dynamic random environments

    CERN Document Server

    Hollander, Frank den; Sidoravicius, Vladas

    2011-01-01

    We prove a law of large numbers for a class of $\\Z^d$-valued random walks in dynamic random environments, including \\emph{non-elliptic} examples. We assume that the random environment has a mixing property called \\emph{conditional cone-mixing} and that the random walk tends to stay inside space-time cones. The proof is based on a generalization of the regeneration scheme developed by Comets and Zeitouni for static random environments, which was adapted by Avena, den Hollander and Redig to dynamic random environments. We exhibit some one-dimensional examples to which our result applies. In some cases, the sign of the speed can be determined.

  5. Continuity and anomalous fluctuations in random walks in dynamic random environments: numerics, phase diagrams and conjectures

    CERN Document Server

    Avena, L

    2012-01-01

    We perform simulations for one dimensional continuous-time random walks in two dynamic random environments with fast (independent spin-flips) and slow (simple symmetric exclusion) decay of space-time correlations, respectively. We focus on the asymptotic speeds and the scaling limits of such random walks. We observe different behaviors depending on the dynamics of the underlying random environment and the ratio between the jump rate of the random walk and the one of the environment. We compare our data with well known results for static random environment. We observe that the non-diffusive regime known so far only for the static case can occur in the dynamic setup too. Such anomalous fluctuations emerge in a new phase diagram. Further we discuss possible consequences for general static and dynamic random environments.

  6. Law of large numbers for a class of random walks in dynamic random environments

    CERN Document Server

    Avena, L; Redig, F

    2009-01-01

    In this paper we consider a class of one-dimensional interacting particle systems in equilibrium, constituting a dynamic random environment, together with a nearest-neighbor random walk that on occupied/vacant sites has a local drift to the right/left. We adapt a regeneration-time argument originally developed by Comets and Zeitouni for static random environments to prove that, under a space-time mixing property for the dynamic random environment called cone-mixing, the random walk has an a.s. constant global speed. In addition, we show that if the dynamic random environment is exponentially mixing in space-time and the local drifts are small, then the global speed can be written as a power series in the size of the local drifts. From the first term in this series the sign of the global speed can be read off. The results can be easily extended to higher dimensions.

  7. Almost Sure Invariance Principle for Continuous-Space Random Walk in Dynamic Random Environment

    CERN Document Server

    Joseph, Mathew

    2010-01-01

    We consider a random walk on $\\R^d$ in a polynomially mixing random environment that is refreshed at each time step. We use a martingale approach to give a necessary and sufficient condition for the almost-sure functional central limit theorem to hold.

  8. Random walks in nonuniform environments with local dynamic interactions

    Science.gov (United States)

    Baker, Christopher M.; Hughes, Barry D.; Landman, Kerry A.

    2013-10-01

    We consider a class of lattice random walk models in which the random walker is initially confined to a finite connected set of allowed sites but has the opportunity to enlarge this set by colliding with its boundaries, each such collision having a given probability of breaking through. The model is motivated by an analogy to cell motility in tissue, where motile cells have the ability to remodel extracellular matrix, but is presented here as a generic model for stochastic erosion. For the one-dimensional case, we report some exact analytic results, some mean-field type analytic approximate results and simulations. We compute exactly the mean and variance of the time taken to enlarge the interval from a single site to a given size. The problem of determining the statistics of the interval length and the walker's position at a given time is more difficult and we report several interesting observations from simulations. Our simulations include the case in which the initial interval length is random and the case in which the initial state of the lattice is a random mixture of allowed and forbidden sites, with the walker placed at random on an allowed site. To illustrate the extension of these ideas to higher-dimensional systems, we consider the erosion of the simple cubic lattice commencing from a single site and report simulations of measures of cluster size and shape and the mean-square displacement of the walker.

  9. A Class of Random Walks in Reversible Dynamic Environments: Antisymmetry and Applications to the East Model

    Science.gov (United States)

    Avena, Luca; Blondel, Oriane; Faggionato, Alessandra

    2016-10-01

    We introduce via perturbation a class of random walks in reversible dynamic environments having a spectral gap. In this setting one can apply the mathematical results derived in Avena et al. (L^2-Perturbed Markov processes and applications to random walks in dynamic random environments, Preprint, 2016). As first results, we show that the asymptotic velocity is antisymmetric in the perturbative parameter and, for a subclass of random walks, we characterize the velocity and a stationary distribution of the environment seen from the walker as suitable series in the perturbative parameter. We then consider as a special case a random walk on the East model that tends to follow dynamical interfaces between empty and occupied regions. We study the asymptotic velocity and density profile for the environment seen from the walker. In particular, we determine the sign of the velocity when the density of the underlying East process is not 1 / 2, and we discuss the appearance of a drift in the balanced setting given by density 1 / 2.

  10. Emergent dynamics of Cucker-Smale flocking particles in a random environment

    Science.gov (United States)

    Ha, Seung-Yeal; Jeong, Jiin; Noh, Se Eun; Xiao, Qinghua; Zhang, Xiongtao

    2017-02-01

    We present a new kinetic Cucker-Smale-Fokker-Planck (CS-FP) type equation with a degenerate diffusion, which describes the dynamics for an ensemble of infinitely many Cucker-Smale particles in a random environment. The asymptotic dynamics of the CS-FP equation exhibits a threshold-like phenomenon depending on the relative strength between the coupling strength and the noise strength. In the small coupling regime, the noise effect becomes dominant, which induces the velocity variance to increase to infinity exponentially fast. In contrast, the velocity alignment effect is strong in the large coupling regime, and the velocity variance tends to zero exponentially fast. We present the global existence of classical solutions to the CS-FP equation for a sufficiently smooth initial datum without smallness in its size. For the kinetic CS-FP equation with a metric dependent communication weight, we provide a uniform-in-time mean-field limit from the stochastic CS-model to the kinetic CS-FP equation without convergence rate.

  11. A Novel Randomized Search Technique for Multiple Mobile Robot Paths Planning In Repetitive Dynamic Environment

    Directory of Open Access Journals (Sweden)

    Vahid Behravesh

    2012-08-01

    Full Text Available Presented article is studying the issue of path navigating for numerous robots. Our presented approach is based on both priority and the robust method for path finding in repetitive dynamic. Presented model can be generally implementable and useable: We do not assume any restriction regarding the quantity of levels of freedom for robots, and robots of diverse kinds can be applied at the same time. We proposed a random method and hill-climbing technique in the area based on precedence plans, which is used to determine a solution to a given trajectory planning problem and to make less the extent of total track. Our method plans trajectories for particular robots in the setting-time scope. Therefore, in order to specifying the interval of constant objects similar to other robots and the extent of the tracks which is traversed. For measuring the hazard for robots to conflict with each other it applied a method based on probability of the movements of robots. This algorithm applied to real robots with successful results. The proposed method performed and judged on both real robots and in simulation. We performed sequence of100tests with 8 robots for comparing with coordination method and current performances are effective. However, maximizing the performance is still possible. These performances estimations performed on Windows operating system and 3GHz Intel Pentium IV with and compiles with GCC 3.4. We used our PCGA robot for all experiments.  For a large environment of 19×15m2where we accomplished 40tests, our model is competent to plan high-quality paths in a severely short time (less than a second. Moreover, this article utilized lookup tables to keep expenses the formerly navigated robots made, increasing the number of robots don’t expand computation time.

  12. Spiders in random environment

    CERN Document Server

    Gallesco, Christophe; Popov, Serguei; Vachkovskaia, Marina

    2010-01-01

    A spider consists of several, say $N$, particles. Particles can jump independently according to a random walk if the movement does not violate some given restriction rules. If the movement violates a rule it is not carried out. We consider random walk in random environment (RWRE) on $\\Z$ as underlying random walk. We suppose the environment $\\omega=(\\omega_x)_{x \\in \\Z}$ to be elliptic, with positive drift and nestling, so that there exists a unique positive constant $\\kappa$ such that $\\E[((1-\\omega_0)/\\omega_0)^{\\kappa}]=1$. The restriction rules are kept very general; we only assume transitivity and irreducibility of the spider. The main result is that the speed of a spider is positive if $\\kappa/N>1$ and null if $\\kappa/N<1$. In particular, if $\\kappa/N <1$ a spider has null speed but the speed of a (single) RWRE is positive.

  13. Extinction transition in stochastic population dynamics in a random, convective environment

    Science.gov (United States)

    Juhász, Róbert

    2013-10-01

    Motivated by modeling the dynamics of a population living in a flowing medium where the environmental factors are random in space, we have studied an asymmetric variant of the one-dimensional contact process, where the quenched random reproduction rates are systematically greater in one direction than in the opposite one. The spatial disorder turns out to be a relevant perturbation but, according to results of Monte Carlo simulations, the behavior of the model at the extinction transition is different from the (infinite-randomness) critical behavior of the disordered symmetric contact process. Depending on the strength a of the asymmetry, the critical population drifts either with a finite velocity or with an asymptotically vanishing velocity as x(t) ∼ tμ(a), where μ(a) extinction transition; the survival probability, for instance, shows multiscaling, i.e. it is characterized by a broad spectrum of effective exponents. For a sufficiently weak asymmetry, a Griffiths phase appears below the extinction transition, where the survival probability decays as a non-universal power of the time while, above the transition, another extended phase emerges, where the front of the population advances anomalously with a diffusion exponent continuously varying with the control parameter.

  14. Large deviation principle for one-dimensional random walk in dynamic random environment: attractive spin-flips and simple symmetric exclusion

    CERN Document Server

    Avena, L; Redig, F

    2009-01-01

    Consider a one-dimensional shift-invariant attractive spin-flip system in equilibrium, constituting a dynamic random environment, together with a nearest-neighbor random walk that on occupied sites has a local drift to the right but on vacant sites has a local drift to the left. In previous work we proved a law of large numbers for dynamic random environments satisfying a space-time mixing property called cone-mixing. If an attractive spin-flip system has a finite average coupling time at the origin for two copies starting from the all-occupied and the all-vacant configuration, respectively, then it is cone-mixing. In the present paper we prove a large deviation principle for the empirical speed of the random walk, both quenched and annealed, and exhibit some properties of the associated rate functions. Under an exponential space-time mixing condition for the spin-flip system, which is stronger than cone-mixing, the two rate functions have a unique zero, i.e., the slow-down phenomenon known to be possible in ...

  15. Performance analysis of an acoustic time reversal system in dynamic and random oceanic environments

    Science.gov (United States)

    Khosla, Sunny Rajendra

    This dissertation provides a theoretical framework along with specific performance predictions for an acoustic time reversal system in shallow oceanic environments. Acoustic time-reversal is a robust means of retrofocusing acoustic energy, in both time and space, to the original sound-source location without any information about the acoustic environment in which it is deployed. The effect of three performance limiting oceanic complexities addressed, include (i)ambient noise field, (ii)reflection and volume scattering from a deterministic soliton internal wave traveling on the thermocline between two water masses, and (iii)volume scattering from a random superposition of linear internal waves convecting a gradient in the sound speed profile. The performance analysis establishes acoustic time reversal to be a promising technology for a two-way communication system in an oceanic medium. For an omni-directional noisy environment a general formulation for the probability of retrofocusing is developed that includes the effect of the medium, accounts for the system hardware and the acoustic parameters. Monte-Carlo simulations in both, a free-space environment and a shallow-ocean sound-channel environment compare well with theory. A 41 element TRA spanning a shallow water depth of 60 m is predicted to return a 70% focal probability at -15 dB SNR for a source to array range of 6 km. Preliminary research with broadband signals suggest that they should outperform narrowband response in both free space and sound channel environments. The impact of the nonlinear solitary waves is addressed using a two-path Green's function to treat the presence of a flat thermocline, and the single scattering Born approximation to address scattering from the soliton internal wave. It is predicted that a stationary soliton located along ray turning paths between the source and the TRA can lead to both enhanced and degraded focal performance. Based on extension of previous research in wave

  16. Quenched Lyapunov exponent for the parabolic Anderson model in a dynamic random environment

    CERN Document Server

    Gärtner, Jürgen; Maillard, Grégory

    2010-01-01

    We continue our study of the parabolic Anderson equation $\\partial u/\\partial t = \\kappa\\Delta u + \\gamma\\xi u$ for the space-time field $u\\colon\\,\\Z^d\\times [0,\\infty)\\to\\R$, where $\\kappa \\in [0,\\infty)$ is the diffusion constant, $\\Delta$ is the discrete Laplacian, $\\gamma\\in (0,\\infty)$ is the coupling constant, and $\\xi\\colon\\,\\Z^d\\times [0,\\infty)\\to\\R$ is a space-time random environment that drives the equation. The solution of this equation describes the evolution of a "reactant" $u$ under the influence of a "catalyst" $\\xi$, both living on $\\Z^d$. In earlier work we considered three choices for $\\xi$: independent simple random walks, the symmetric exclusion process, and the symmetric voter model, all in equilibrium at a given density. We analyzed the \\emph{annealed} Lyapunov exponents, i.e., the exponential growth rates of the successive moments of $u$ w.r.t.\\ $\\xi$, and showed that these exponents display an interesting dependence on the diffusion constant $\\kappa$, with qualitatively different beha...

  17. A random walk with a branching system in random environments

    Institute of Scientific and Technical Information of China (English)

    Ying-qiu LI; Xu LI; Quan-sheng LIU

    2007-01-01

    We consider a branching random walk in random environments, where the particles are reproduced as a branching process with a random environment (in time), and move independently as a random walk on Z with a random environment (in locations). We obtain the asymptotic properties on the position of the rightmost particle at time n, revealing a phase transition phenomenon of the system.

  18. Recurrence for random dynamical systems

    CERN Document Server

    Marie, Philippe

    2009-01-01

    This paper is a first step in the study of the recurrence behavior in random dynamical systems and randomly perturbed dynamical systems. In particular we define a concept of quenched and annealed return times for systems generated by the composition of random maps. We moreover prove that for super-polynomially mixing systems, the random recurrence rate is equal to the local dimension of the stationary measure.

  19. Quenched moderate deviations principle for random walk in random environment

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    We derive a quenched moderate deviations principle for the one-dimensional nearest random walk in random environment,where the environment is assumed to be stationary and ergodic.The approach is based on hitting time decomposition.

  20. On competitive Lotka–Volterra model in random environments

    National Research Council Canada - National Science Library

    Zhu, C; Yin, G

    2009-01-01

    Focusing on competitive Lotka-Volterra model in random environments, this paper uses regime-switching diffusions to model the dynamics of the population sizes of n different species in an ecosystem...

  1. ON THE RANGE OF RANDOM WALKS IN RANDOM ENVIRONMENT

    Institute of Scientific and Technical Information of China (English)

    ZHOUXIANYIN

    1995-01-01

    The range of roaldom walk on Zd in symmetric random environment is investigated. As results, it is proved that the strong law of large numbers for the range of random walk oil Zd in some random environments holds if d > 3, and a weak law of large numbers holds for d = 1.

  2. Branching diffusions in random environment

    CERN Document Server

    Böinghoff, Christian

    2011-01-01

    We consider the diffusion approximation of branching processes in random environment (BPREs). This diffusion approximation is similar to and mathematically more tractable than BPREs. We obtain the exact asymptotic behavior of the survival probability. As in the case of BPREs, there is a phase transition in the subcritical regime due to different survival opportunities. In addition, we characterize the process conditioned to never go extinct and establish a backbone construction. In the strongly subcritical regime, mean offspring numbers are increased but still subcritical in the process conditioned to never go extinct. Here survival is solely due to an immortal individual, whose offspring are the ancestors of additional families. In the weakly subcritical regime, the mean offspring number is supercritical in the process conditioned to never go extinct. Thus this process survives with positive probability even if there was no immortal individual.

  3. RENEWAL THEOREM FOR (L, 1)-RANDOM WALK IN RANDOM ENVIRONMENT

    Institute of Scientific and Technical Information of China (English)

    洪文明; 孙鸿雁

    2013-01-01

    We consider a random walk on Z in random environment with possible jumps{-L, · · · ,-1, 1}, in the case that the environment{ωi: i∈Z}are i.i.d.. We establish the renewal theorem for the Markov chain of “the environment viewed from the particle” in both annealed probability and quenched probability, which generalize partially the results of Kesten (1977) and Lalley (1986) for the nearest random walk in random environment on Z, respectively. Our method is based on the intrinsic branching structure within the (L, 1)-RWRE formulated in Hong and Wang (2013).

  4. Fractional random walk lattice dynamics

    CERN Document Server

    Michelitsch, Thomas; Riascos, Alejandro Perez; Nowakowski, Andrzeij; Nicolleau, Franck

    2016-01-01

    We analyze time-discrete and continuous `fractional' random walks on undirected regular networks with special focus on cubic periodic lattices in $n=1,2,3,..$ dimensions.The fractional random walk dynamics is governed by a master equation involving {\\it fractional powers of Laplacian matrices $L^{\\frac{\\alpha}{2}}$}where $\\alpha=2$ recovers the normal walk.First we demonstrate thatthe interval $0\\textless{}\\alpha\\leq 2$ is admissible for the fractional random walk. We derive analytical expressions for fractional transition matrix and closely related the average return probabilities. We further obtain thefundamental matrix $Z^{(\\alpha)}$, and the mean relaxation time (Kemeny constant) for the fractional random walk.The representation for the fundamental matrix $Z^{(\\alpha)}$ relates fractional random walks with normal random walks.We show that the fractional transition matrix elements exihibit for large cubic $n$-dimensional lattices a power law decay of an $n$-dimensional infinite spaceRiesz fractional deriva...

  5. Brownian motion on random dynamical landscapes

    Science.gov (United States)

    Suñé Simon, Marc; Sancho, José María; Lindenberg, Katja

    2016-03-01

    We present a study of overdamped Brownian particles moving on a random landscape of dynamic and deformable obstacles (spatio-temporal disorder). The obstacles move randomly, assemble, and dissociate following their own dynamics. This landscape may account for a soft matter or liquid environment in which large obstacles, such as macromolecules and organelles in the cytoplasm of a living cell, or colloids or polymers in a liquid, move slowly leading to crowding effects. This representation also constitutes a novel approach to the macroscopic dynamics exhibited by active matter media. We present numerical results on the transport and diffusion properties of Brownian particles under this disorder biased by a constant external force. The landscape dynamics are characterized by a Gaussian spatio-temporal correlation, with fixed time and spatial scales, and controlled obstacle concentrations.

  6. Dynamical invariance for random matrices

    CERN Document Server

    Unterberger, Jeremie

    2016-01-01

    We consider a general Langevin dynamics for the one-dimensional N-particle Coulomb gas with confining potential $V$ at temperature $\\beta$. These dynamics describe for $\\beta=2$ the time evolution of the eigenvalues of $N\\times N$ random Hermitian matrices. The equilibrium partition function -- equal to the normalization constant of the Laughlin wave function in fractional quantum Hall effect -- is known to satisfy an infinite number of constraints called Virasoro or loop constraints. We introduce here a dynamical generating function on the space of random trajectories which satisfies a large class of constraints of geometric origin. We focus in this article on a subclass induced by the invariance under the Schr\\"odinger-Virasoro algebra.

  7. Unreliable Retrial Queues in a Random Environment

    Science.gov (United States)

    2007-09-01

    state space decompositions. In 1992, Korotaev and Spivak [57] considered finite-capacity 6The output rate is usually deterministic. 23 queues with...and operating in a random environment. Automation and Remote Control, 37(12), 1828–1835. 158 57. Korotaev, I. A. and Spivak , L. R. (1992). Queueing

  8. Wolbachia spread dynamics in stochastic environments.

    Science.gov (United States)

    Hu, Linchao; Huang, Mugen; Tang, Moxun; Yu, Jianshe; Zheng, Bo

    2015-12-01

    Dengue fever is a mosquito-borne viral disease with 100 million people infected annually. A novel strategy for dengue control uses the bacterium Wolbachia to invade dengue vector Aedes mosquitoes. As the impact of environmental heterogeneity on Wolbachia spread dynamics in natural areas has been rarely quantified, we develop a model of differential equations for which the environmental conditions switch randomly between two regimes. We find some striking phenomena that random regime transitions could drive Wolbachia to extinction from certain initial states confirmed Wolbachia fixation in homogeneous environments, and mosquito releasing facilitates Wolbachia invasion more effectively when the regimes transit frequently. By superimposing the phase spaces of the ODE systems defined in each regime, we identify the threshold curves below which Wolbachia invades the whole population, which extends the theory of threshold infection frequency to stochastic environments.

  9. Chasing information to search in random environments

    Energy Technology Data Exchange (ETDEWEB)

    Masson, J-B; Vergassola, M [Institut Pasteur, CNRS URA 2171, Unit In Silico Genetics, 75724 Paris Cedex 15 (France); Bechet, M Bailly [Universite C Bernard Lyon 1, CNRS, UMR5558, Laboratoire de Biometrie et Biologie Evolutive, 69622, Villeurbanne (France)], E-mail: jbmasson@pasteur.fr

    2009-10-30

    We discuss search strategies for finding sources of particles transported in a random environment and detected by the searcher(s). The mixing of the particles in the environment is supposed to be strong, so that strategies based on concentration-gradient ascent are not viable. These dilute conditions are common in natural environments typical of searches performed by insects and birds. The sparseness of the detections constitutes the major stumbling block in developing efficient olfactory robots to detect mines, chemical leaks, etc. We first discuss a search strategy, 'infotaxis', recently introduced for the search of a single source by a single robot. Decisions are made by locally maximizing the rate of acquisition of information on the location of the source and they balance exploration and exploitation. We present numerical simulations demonstrating the efficiency of the method and, most importantly, its robustness to lack of detailed modeling of the transport of particles in the random environment. We then introduce a novel formulation of infotaxis for collective searches where a swarm of robots is available and must be coordinated. Gains in the search time are impressive and the method can be further generalized to deal with conflicts arising in the identification of multiple sources.

  10. Snake representation of a superprocess in random environment

    CERN Document Server

    Mytnik, Leonid; Zeitouni, Ofer

    2011-01-01

    We consider (discrete time) branching particles in a random environment which is i.i.d. in time and possibly spatially correlated. We prove a representation of the limit process by means of a Brownian snake in random environment.

  11. CONCEPTUAL ANALYSIS AND RANDOM ATTRACTOR FOR DISSIPATIVE RANDOM DYNAMICAL SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    Li Yuhong; Zdzistaw Brze(z)niak; Zhou Jianzhong

    2008-01-01

    The aim of this work is to understand better the long time behaviour of asymptotically compact random dynamical systems (RDS), which can be generated by solutions of some stochastic partial differential equations on unbounded domains. The conceptual analysis for the long time behavior of RDS will be done through some examples. An application of those analysis will be demonstrated through the proof of the existence of random attractors for asymptotically compact dissipative RDS.

  12. Dynamics of excitable nodes on random graphs

    Indian Academy of Sciences (India)

    K Manchanda; T Umeshkanta Singh; R Ramaswamy

    2011-11-01

    We study the interplay of topology and dynamics of excitable nodes on random networks. Comparison is made between systems grown by purely random (Erd˝os–Rényi) rules and those grown by the Achlioptas process. For a given size, the growth mechanism affects both the thresholds for the emergence of different structural features as well as the level of dynamical activity supported on the network.

  13. Random Matrix Theory in molecular dynamics analysis.

    Science.gov (United States)

    Palese, Luigi Leonardo

    2015-01-01

    It is well known that, in some situations, principal component analysis (PCA) carried out on molecular dynamics data results in the appearance of cosine-shaped low index projections. Because this is reminiscent of the results obtained by performing PCA on a multidimensional Brownian dynamics, it has been suggested that short-time protein dynamics is essentially nothing more than a noisy signal. Here we use Random Matrix Theory to analyze a series of short-time molecular dynamics experiments which are specifically designed to be simulations with high cosine content. We use as a model system the protein apoCox17, a mitochondrial copper chaperone. Spectral analysis on correlation matrices allows to easily differentiate random correlations, simply deriving from the finite length of the process, from non-random signals reflecting the intrinsic system properties. Our results clearly show that protein dynamics is not really Brownian also in presence of the cosine-shaped low index projections on principal axes.

  14. Dynamic monopolies with randomized starting configuration

    CERN Document Server

    Kulich, Tomas

    2010-01-01

    Properties of systems with majority voting rules have been exhaustingly studied. In this work we focus on the randomized case - where the system is initialized by randomized initial set of seeds. Our main aim is to give an asymptotic estimate for sampling probability, such that the initial set of seeds is (is not) a dynamic monopoly almost surely. After presenting some trivial examples, we present exhaustive results for toroidal mesh and random 4-regular graph under simple majority scenario.

  15. On Optimal Harvesting Problems in Random Environments

    CERN Document Server

    Song, Qingshuo; Zhu, Chao

    2010-01-01

    This paper investigates the optimal harvesting strategy for a single species living in random environments, whose growth is given by a regime-switching diffusion. Harvesting is introduced as a stochastic control. The objective is to find a harvesting strategy which maximizes the expected total discounted income from harvesting up to extinction. This is a singular stochastic control problem, with both the extinction time and harvesting policy depending on the initial condition. Consequently one no longer obtains continuity of the value function for free using the standard arguments as those in regular or singular stochastic control problems. This paper provides a sufficient condition under which the continuity of the value function is obtained. Further, we show that the value function is a viscosity solution of a coupled system of quasi-variational inequalities. A verification theorem is also established. Based upon the verification theorem, we explicitly construct an $\\varepsilon$-optimal harvesting strategy ...

  16. Population dynamics in variable environments

    CERN Document Server

    Tuljapurkar, Shripad

    1990-01-01

    Demography relates observable facts about individuals to the dynamics of populations. If the dynamics are linear and do not change over time, the classical theory of Lotka (1907) and Leslie (1945) is the central tool of demography. This book addresses the situation when the assumption of constancy is dropped. In many practical situations, a population will display unpredictable variation over time in its vital rates, which must then be described in statistical terms. Most of this book is concerned with the theory of populations which are subject to random temporal changes in their vital rates, although other kinds of variation (e. g. , cyclical) are also dealt with. The central questions are: how does temporal variation work its way into a population's future, and how does it affect our interpretation of a population's past. The results here are directed at demographers of humans and at popula­ tion biologists. The uneven mathematical level is dictated by the material, but the book should be accessible to re...

  17. Diffusion in randomly perturbed dissipative dynamics

    CERN Document Server

    Rodrigues, Christian S; de Moura, Alessandro P S; Grebogi, Celso; Klages, Rainer

    2014-01-01

    Dynamical systems having many coexisting attractors present interesting properties from both fundamental theoretical and modelling points of view. When such dynamics is under bounded random perturbations, the basins of attraction are no longer invariant and there is the possibility of transport among them. Here we introduce a basic theoretical setting which enables us to study this hopping process from the perspective of anomalous transport using the concept of a random dynamical system with holes. We apply it to a simple model by investigating the role of hyperbolicity for the transport among basins. We show numerically that our system exhibits non-Gaussian position distributions, power-law escape times, and subdiffusion. Our simulation results are reproduced consistently from stochastic Continuous Time Random Walk theory.

  18. Perturbing transient Random Walk in a Random Environment with cookies of maximal strength

    CERN Document Server

    Bauernschubert, Elisabeth

    2011-01-01

    We consider a left-transient random walk in a random environment on Z that will be disturbed by cookies inducing a drift to the right of strength 1. The number of cookies per site is i.i.d. and independent of the environment. Criteria for recurrence and transience of the random walk are obtained. For this purpose we use subcritical branching processes in random environments with immigration and formulate criteria for recurrence and transience for these processes.

  19. ON MARKOV CHAINS IN SPACE-TIME RANDOM ENVIRONMENTS

    Institute of Scientific and Technical Information of China (English)

    Hu Dihe; Hu Xiaoyu

    2009-01-01

    In Section 1, the authors establish the models of two kinds of Markov chains in space-time random environments (MCSTRE and MCSTRE(+)) with Abstract state space. In Section 2, the authors construct a MCSTRE and a MCSTRE(+) by an initial distribution Ф and a random Markov kernel (RMK) p(γ). In Section 3, the authors establish several equivalence theorems on MCSTRE and MCSTRE(+). Finally, the authors give two very important examples of MCMSTRE, the random walk in spce-time random environment and the Markov branching chain in space-time random environment.

  20. Convergence of clock processes in random environments and ageing in the p-spin SK model

    CERN Document Server

    Bovier, Anton

    2010-01-01

    We derive a general criterion for the convergence of clock processes in random dynamics in random environments that is applicable in cases when correlations are not negligible, extending recent results by Gayrard [15,16], based on general criterion for convergence of sums of dependent random variables due to Durrett and Resnick [13]. We demonstrate the power of this criterion by applying it to the case of random hopping time dynamics of the p-spin SK model. We prove that on a wide range of time scales, the clock process converges to a stable subordinator almost surely with respect to the environment. We also show that a time-time correlation function converges to the arcsine law for this subordinator, almost surely. This improves recent results of Ben Arous et al. [1] that obtained similar convergence result in law with respect to the random environment.

  1. Quantum chaotic dynamics and random polynomials

    Energy Technology Data Exchange (ETDEWEB)

    Bogomolny, E.; Bohigas, O.; Leboeuf, P.

    1995-11-01

    The distribution of roots of polynomials of high degree with random coefficients is investigated which, among others, appear naturally in the context of `quantum chaotic dynamics`. It is shown that under quite general conditions their roots tend to concentrate near the unit circle in the complex plane. In order to further increase this tendency, the particular case of self-inverse random polynomials is studied, and it is shown that for them a finite portion of all roots lies exactly on the unit circle. Correlation functions of these roots are also computed analytically, and compared to the correlations of eigenvalues of random matrices. The problem of ergodicity of chaotic wavefunctions is also considered. Special attention is devoted to the role of symmetries in the distribution of roots of random polynomials. (author). 32 refs.

  2. Inherent randomicity in 4-symbolic dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yagang [Department of Applied Mathematics, School of Mathematics and Physics, North China Electric Power University, Box 235, Baoding, Hebei 071003 (China); Center for Nonlinear Complex Systems, Department of Physics, Yunnan University, Kunming, Yunnan 650091 (China); E-mail: ygzhg@163.com; Wang Changjiang [Department of Physics, Yunnan University, Kunming, Yunnan 650091 (China); Zhou Zhong [Center for Nonlinear Complex Systems, Department of Physics, Yunnan University, Kunming, Yunnan 650091 (China)

    2006-04-01

    The inherent randomicity in 4-symbolic dynamics will be clarified in this paper. The symbolic sequences bear three characteristics. The distribution of frequency, inter-occurrence times and the alignment of two random sequences are amplified in detail. By using transfer probability of Markov chain (MC), we obtain analytic expressions of generating functions in four probabilities stochastic wander model, which can be applied to all 4-symbolic systems. We hope to offer a symbolic platform that satisfies these stochastic properties and to study some properties of DNA sequences.

  3. Adaptation and inertia in dynamic environments

    DEFF Research Database (Denmark)

    Stieglitz, Nils; Knudsen, Thorbjørn; Becker, Markus C.

    2016-01-01

    , in dynamic environments, the best-performing organizations are generally more inert than less successful organizations. Managerial summary: Our research helps managers to understand under what business conditions investments into exploration and strategic flexibility are more likely to pay off. Dynamic...... business environments characterized by persistent trends and by large, infrequently occurring structural shocks reward strategic pursuit of temporary advantage. Thus, exploration and strategic flexibility are preferred strategies. In contrast, the challenge in frequently changing environments with fleeting...

  4. Rings in random environments: sensing disorder through topology.

    Science.gov (United States)

    Michieletto, Davide; Baiesi, Marco; Orlandini, Enzo; Turner, Matthew S

    2015-02-14

    In this paper we study the role of topology in DNA gel electrophoresis experiments via molecular dynamics simulations. The gel is modelled as a 3D array of obstacles from which half edges are removed at random with probability p, thereby generating a disordered environment. Changes in the microscopic structure of the gel are captured by measuring the electrophoretic mobility of ring polymers moving through the medium, while their linear counterparts provide a control system as we show they are insensitive to these changes. We show that ring polymers provide a novel, non-invasive way of exploiting topology to sense microscopic disorder. Finally, we compare the results from the simulations with an analytical model for the non-equilibrium differential mobility, and find a striking agreement between simulation and theory.

  5. Dynamic random walks theory and applications

    CERN Document Server

    Guillotin-Plantard, Nadine

    2006-01-01

    The aim of this book is to report on the progress realized in probability theory in the field of dynamic random walks and to present applications in computer science, mathematical physics and finance. Each chapter contains didactical material as well as more advanced technical sections. Few appendices will help refreshing memories (if necessary!).· New probabilistic model, new results in probability theory· Original applications in computer science· Applications in mathematical physics· Applications in finance

  6. A Random Laser as a Dynamical Network

    CERN Document Server

    Höfner, M; Henneberger, F

    2013-01-01

    The mode dynamics of a random laser is investigated in experiment and theory. The laser consists of a ZnCdO/ZnO multiple quantum well with air-holes that provide the necessary feedback. Time-resolved measurements reveal multimode spectra with individually developing features but no variation from shot to shot. These findings are qualitatively reproduced with a model that exploits the specifics of a dilute system of weak scatterers and can be interpreted in terms of a lasing network. Introducing the phase-sensitive node coherence reveals new aspects of the self-organization of the laser field. Lasing is carried by connected links between a subset of scatterers, the fields on which are oscillating coherently in phase. In addition, perturbing feedback with possibly unfitting phases from frustrated other scatterers is suppressed by destructive superposition. We believe that our findings are representative at least for weakly scattering random lasers. A generalization to random laser with dense and strong scattere...

  7. Symmetry in Critical Random Boolean Networks Dynamics

    Science.gov (United States)

    Bassler, Kevin E.; Hossein, Shabnam

    2014-03-01

    Using Boolean networks as prototypical examples, the role of symmetry in the dynamics of heterogeneous complex systems is explored. We show that symmetry of the dynamics, especially in critical states, is a controlling feature that can be used to both greatly simplify analysis and to characterize different types of dynamics. Symmetry in Boolean networks is found by determining the frequency at which the various Boolean output functions occur. Classes of functions occur at the same frequency. These classes are orbits of the controlling symmetry group. We find the nature of the symmetry that controls the dynamics of critical random Boolean networks by determining the frequency of output functions utilized by nodes that remain active on dynamical attractors. This symmetry preserves canalization, a form of network robustness. We compare it to a different symmetry known to control the dynamics of an evolutionary process that allows Boolean networks to organize into a critical state. Our results demonstrate the usefulness and power of using symmetry to characterize complex network dynamics, and introduce a novel approach to the analysis of heterogeneous complex systems. This work was supported by the NSF through grants DMR-0908286 and DMR-1206839, and by the AFSOR and DARPA through grant FA9550-12-1-0405.

  8. A self-similar process arising from a random walk with random environment in random scenery

    CERN Document Server

    Franke, Brice; 10.3150/09-BEJ234

    2011-01-01

    In this article, we merge celebrated results of Kesten and Spitzer [Z. Wahrsch. Verw. Gebiete 50 (1979) 5-25] and Kawazu and Kesten [J. Stat. Phys. 37 (1984) 561-575]. A random walk performs a motion in an i.i.d. environment and observes an i.i.d. scenery along its path. We assume that the scenery is in the domain of attraction of a stable distribution and prove that the resulting observations satisfy a limit theorem. The resulting limit process is a self-similar stochastic process with non-trivial dependencies.

  9. Symmetry in critical random Boolean network dynamics

    Science.gov (United States)

    Hossein, Shabnam; Reichl, Matthew D.; Bassler, Kevin E.

    2014-04-01

    Using Boolean networks as prototypical examples, the role of symmetry in the dynamics of heterogeneous complex systems is explored. We show that symmetry of the dynamics, especially in critical states, is a controlling feature that can be used both to greatly simplify analysis and to characterize different types of dynamics. Symmetry in Boolean networks is found by determining the frequency at which the various Boolean output functions occur. There are classes of functions that consist of Boolean functions that behave similarly. These classes are orbits of the controlling symmetry group. We find that the symmetry that controls the critical random Boolean networks is expressed through the frequency by which output functions are utilized by nodes that remain active on dynamical attractors. This symmetry preserves canalization, a form of network robustness. We compare it to a different symmetry known to control the dynamics of an evolutionary process that allows Boolean networks to organize into a critical state. Our results demonstrate the usefulness and power of using the symmetry of the behavior of the nodes to characterize complex network dynamics, and introduce an alternative approach to the analysis of heterogeneous complex systems.

  10. Symmetry in critical random Boolean network dynamics.

    Science.gov (United States)

    Hossein, Shabnam; Reichl, Matthew D; Bassler, Kevin E

    2014-04-01

    Using Boolean networks as prototypical examples, the role of symmetry in the dynamics of heterogeneous complex systems is explored. We show that symmetry of the dynamics, especially in critical states, is a controlling feature that can be used both to greatly simplify analysis and to characterize different types of dynamics. Symmetry in Boolean networks is found by determining the frequency at which the various Boolean output functions occur. There are classes of functions that consist of Boolean functions that behave similarly. These classes are orbits of the controlling symmetry group. We find that the symmetry that controls the critical random Boolean networks is expressed through the frequency by which output functions are utilized by nodes that remain active on dynamical attractors. This symmetry preserves canalization, a form of network robustness. We compare it to a different symmetry known to control the dynamics of an evolutionary process that allows Boolean networks to organize into a critical state. Our results demonstrate the usefulness and power of using the symmetry of the behavior of the nodes to characterize complex network dynamics, and introduce an alternative approach to the analysis of heterogeneous complex systems.

  11. Process-level quenched large deviations for random walk in random environment

    CERN Document Server

    Rassoul-Agha, Firas

    2009-01-01

    We consider a bounded step size random walk in an ergodic random environment with some ellipticity, on an integer lattice of arbitrary dimension. We prove a level 3 large deviation principle, under almost every environment, with rate function related to a relative entropy.

  12. A Hybrid Immigrants Scheme for Genetic Algorithms in Dynamic Environments

    Institute of Scientific and Technical Information of China (English)

    Shengxiang Yang; Renato Tinós

    2007-01-01

    Dynamic optimization problems are a kind of optimization problems that involve changes over time. They pose a serious challenge to traditional optimization methods as well as conventional genetic algorithms since the goal is no longer to search for the optimal solution(s) of a fixed problem but to track the moving optimum over time. Dynamic optimization problems have attracted a growing interest from the genetic algorithm community in recent years. Several approaches have been developed to enhance the performance of genetic algorithms in dynamic environments. One approach is to maintain the diversity of the population via random immigrants. This paper proposes a hybrid immigrants scheme that combines the concepts of elitism, dualism and random immigrants for genetic algorithms to address dynamic optimization problems. In this hybrid scheme, the best individual, i.e., the elite, from the previous generation and its dual individual are retrieved as the bases to create immigrants via traditional mutation scheme. These elitism-based and dualism-based immigrants together with some random immigrants are substituted into the current population, replacing the worst individuals in the population. These three kinds of immigrants aim to address environmental changes of slight, medium and significant degrees respectively and hence efficiently adapt genetic algorithms to dynamic environments that are subject to different severities of changes. Based on a series of systematically constructed dynamic test problems, experiments are carried out to investigate the performance of genetic algorithms with the hybrid immigrants scheme and traditional random immigrants scheme. Experimental results validate the efficiency of the proposed hybrid immigrants scheme for improving the performance of genetic algorithms in dynamic environments.

  13. Path planning in dynamic environments

    NARCIS (Netherlands)

    Berg, J.P. van den

    2007-01-01

    Path planning plays an important role in various fields of application, such as CAD design, computer games and virtual environments, molecular biology, and robotics. In its most general form, the path planning problem is formulated as finding a collision-free path for a moving entity between a start

  14. Extremal dynamics in random replicator ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Kärenlampi, Petri P., E-mail: petri.karenlampi@uef.fi

    2015-10-02

    The seminal numerical experiment by Bak and Sneppen (BS) is repeated, along with computations with replicator models, including a greater amount of features. Both types of models do self-organize, and do obey power-law scaling for the size distribution of activity cycles. However species extinction within the replicator models interferes with the BS self-organized critical (SOC) activity. Speciation–extinction dynamics ruins any stationary state which might contain a steady size distribution of activity cycles. The BS-type activity appears as a dissimilar phenomenon in comparison to speciation–extinction dynamics in the replicator system. No criticality is found from the speciation–extinction dynamics. Neither are speciations and extinctions in real biological macroevolution known to contain any diverging distributions, or self-organization towards any critical state. Consequently, biological macroevolution probably is not a self-organized critical phenomenon. - Highlights: • Extremal Dynamics organizes random replicator ecosystems to two phases in fitness space. • Replicator systems show power-law scaling of activity. • Species extinction interferes with Bak–Sneppen type mutation activity. • Speciation–extinction dynamics does not show any critical phase transition. • Biological macroevolution probably is not a self-organized critical phenomenon.

  15. Dynamical correlations among vicious random walkers

    Energy Technology Data Exchange (ETDEWEB)

    Nagao, Taro; Katori, Makoto; Tanemura, Hideki

    2003-01-20

    Nonintersecting motion of Brownian particles in one dimension is studied. The system is constructed as the diffusion scaling limit of Fisher's vicious random walk. N particles start from the origin at time t=0 and then undergo mutually avoiding Brownian motion until a finite time t=T. In the short time limit t<random matrices. At the end time t=T, it is identical to that of Gaussian Orthogonal Ensemble (GOE). We show that the most general dynamical correlations among arbitrary number of particles at arbitrary number of times are written in the forms of quaternion determinants. Asymptotic forms of the correlations in the limit N{yields}{infinity} are evaluated and a discontinuous transition of the universality class from GUE to GOE is observed.

  16. Sensing dynamic interaction with the environment

    NARCIS (Netherlands)

    Veltink, P.H.; Kortier, H.G.; Schepers, H.M.

    2007-01-01

    Study of the dynamic interaction with the environment and loading of the human body is important in ergonomics, sports and rehabilititation. This paper presents a method to estimate power transfer between the human body and the environment during short interactions and relatively arbitrary movements

  17. Sensing dynamic interaction with the environment

    NARCIS (Netherlands)

    Veltink, P.H.; Kortier, H.G.; Schepers, H.M.; Bussmann, J.B.J; Horemans, H.L.D.; Hurkmans, H.L.P.

    2008-01-01

    Study of the dynamic interaction with the environment and loading of the human body is important in ergonomics, sports and rehabilitation. This paper presents a method to estimate power transfer between the human body and the environment during short interactions and relatively arbitrary movements u

  18. Flexible access control for dynamic collaborative environments

    NARCIS (Netherlands)

    Dekker, Mari Antonius Cornelis

    2009-01-01

    Access control is used in computer systems to control access to confidential data. In this thesis we focus on access control for dynamic collaborative environments where multiple users and systems access and exchange data in an ad hoc manner. In such environments it is difficult to protect confident

  19. The biennial life strategy in a random environment

    NARCIS (Netherlands)

    Roerdink, J.B.T.M.

    1988-01-01

    A discrete-time population model with two age classes is studied which describes the growth of biennial plants in a randomly varying environment. A fraction of the oldest age class delays its flowering each year. The solution of the model involves products of random matrices. We calculate the exact

  20. The spectrum of the random environment and localization of noise

    OpenAIRE

    Cheliotis, D Dimitris; Virág, B

    2008-01-01

    We consider random walk on a mildly random environment on finite transitive d- regular graphs of increasing girth. After scaling and centering, the analytic spectrum of the transition matrix converges in distribution to a Gaussian noise. An interesting phenomenon occurs at d = 2: as the limit graph changes from a regular tree to the integers, the noise becomes localized.

  1. Quantum Entanglement Growth under Random Unitary Dynamics

    Science.gov (United States)

    Nahum, Adam; Ruhman, Jonathan; Vijay, Sagar; Haah, Jeongwan

    2017-07-01

    Characterizing how entanglement grows with time in a many-body system, for example, after a quantum quench, is a key problem in nonequilibrium quantum physics. We study this problem for the case of random unitary dynamics, representing either Hamiltonian evolution with time-dependent noise or evolution by a random quantum circuit. Our results reveal a universal structure behind noisy entanglement growth, and also provide simple new heuristics for the "entanglement tsunami" in Hamiltonian systems without noise. In 1D, we show that noise causes the entanglement entropy across a cut to grow according to the celebrated Kardar-Parisi-Zhang (KPZ) equation. The mean entanglement grows linearly in time, while fluctuations grow like (time )1/3 and are spatially correlated over a distance ∝(time )2/3. We derive KPZ universal behavior in three complementary ways, by mapping random entanglement growth to (i) a stochastic model of a growing surface, (ii) a "minimal cut" picture, reminiscent of the Ryu-Takayanagi formula in holography, and (iii) a hydrodynamic problem involving the dynamical spreading of operators. We demonstrate KPZ universality in 1D numerically using simulations of random unitary circuits. Importantly, the leading-order time dependence of the entropy is deterministic even in the presence of noise, allowing us to propose a simple coarse grained minimal cut picture for the entanglement growth of generic Hamiltonians, even without noise, in arbitrary dimensionality. We clarify the meaning of the "velocity" of entanglement growth in the 1D entanglement tsunami. We show that in higher dimensions, noisy entanglement evolution maps to the well-studied problem of pinning of a membrane or domain wall by disorder.

  2. Quantum Entanglement Growth under Random Unitary Dynamics

    Directory of Open Access Journals (Sweden)

    Adam Nahum

    2017-07-01

    Full Text Available Characterizing how entanglement grows with time in a many-body system, for example, after a quantum quench, is a key problem in nonequilibrium quantum physics. We study this problem for the case of random unitary dynamics, representing either Hamiltonian evolution with time-dependent noise or evolution by a random quantum circuit. Our results reveal a universal structure behind noisy entanglement growth, and also provide simple new heuristics for the “entanglement tsunami” in Hamiltonian systems without noise. In 1D, we show that noise causes the entanglement entropy across a cut to grow according to the celebrated Kardar-Parisi-Zhang (KPZ equation. The mean entanglement grows linearly in time, while fluctuations grow like (time^{1/3} and are spatially correlated over a distance ∝(time^{2/3}. We derive KPZ universal behavior in three complementary ways, by mapping random entanglement growth to (i a stochastic model of a growing surface, (ii a “minimal cut” picture, reminiscent of the Ryu-Takayanagi formula in holography, and (iii a hydrodynamic problem involving the dynamical spreading of operators. We demonstrate KPZ universality in 1D numerically using simulations of random unitary circuits. Importantly, the leading-order time dependence of the entropy is deterministic even in the presence of noise, allowing us to propose a simple coarse grained minimal cut picture for the entanglement growth of generic Hamiltonians, even without noise, in arbitrary dimensionality. We clarify the meaning of the “velocity” of entanglement growth in the 1D entanglement tsunami. We show that in higher dimensions, noisy entanglement evolution maps to the well-studied problem of pinning of a membrane or domain wall by disorder.

  3. THE DIMENSIONS OF THE RANGE OF RANDOM WALKS IN TIME-RANDOM ENVIRONMENTS

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Suppose {Xn} is a random walk in time-random environment with state space Zd, |Xn| approaches infinity, then under some reasonable conditions of stability, the upper bound of the discrete Packing dimension of the range of {Xn} is any stability index α.Moreover, if the environment is stationary, a similar result for the lower bound of the discrete Hausdorff dimension is derived. Thus, the range is a fractal set for almost every environment.

  4. Agreement dynamics on directed random graphs

    CERN Document Server

    Lipowski, Adam; Ferreira, Antonio L

    2016-01-01

    When agreement-dynamics models are placed on a directed random graph, a fraction of sites $\\exp(-z)$, where $z$ is the average degree, becomes permanently fixed or flickering. In the Voter model, which has no surface tension, such zealots or flickers freely spread their opinions and that makes the system disordered. For models with a surface tension, like the Ising model or the Naming Game model, their role is limited and such systems are ordered at large~$z$. However, when $z$ decreases, the density of zealots or flickers increases, and below a certain threshold ($z\\sim 1.9-2.0$) the system becomes disordered. Our results show that the agreement dynamics on directed networks is much different from their undirected analogues.

  5. Chemical Reaction Dynamics in Nanoscle Environments

    Energy Technology Data Exchange (ETDEWEB)

    Evelyn M. Goldfield

    2006-09-26

    The major focus of the research in this program is the study of the behavior of molecular systems confined in nanoscale environments. The goal is to develop a theoretical framework for predicting how chemical reactions occur in nanoscale environments. To achieve this goal we have employed ab initio quantum chemistry, classical dynamics and quantum dynamics methods. Much of the research has focused on the behavior of molecules confined within single-walled carbon nanotubes (SWCNTs). We have also studied interactions of small molecules with the exterior surface of SWCNTs. Nonequilibrium molecular dynamics of interfaces of sliding surface interfaces have also been performed.

  6. THE CONSTRUCTION OF DENUMERABLE q-PROCESSES IN RANDOM ENVIRONMENTS-THE EXISTENCE AND UNIQUENESS

    Institute of Scientific and Technical Information of China (English)

    Hu Dihe; Hu Xiaoyu

    2008-01-01

    The concepts of Markov process in random environment, q-matrix in random environment, and q-process in random environment are introduced. The minimal q-process in random environment is constructed and the necessary and sufficient conditions for the uniqueness of q-process in random environment are given.

  7. Quantum Entanglement Growth Under Random Unitary Dynamics

    CERN Document Server

    Nahum, Adam; Vijay, Sagar; Haah, Jeongwan

    2016-01-01

    Characterizing how entanglement grows with time in a many-body system, for example after a quantum quench, is a key problem in non-equilibrium quantum physics. We study this problem for the case of random unitary dynamics, representing either Hamiltonian evolution with time--dependent noise or evolution by a random quantum circuit. Our results reveal a universal structure behind noisy entanglement growth, and also provide simple new heuristics for the `entanglement tsunami' in Hamiltonian systems without noise. In 1D, we show that noise causes the entanglement entropy across a cut to grow according to the celebrated Kardar--Parisi--Zhang (KPZ) equation. The mean entanglement grows linearly in time, while fluctuations grow like $(\\text{time})^{1/3}$ and are spatially correlated over a distance $\\propto (\\text{time})^{2/3}$. We derive KPZ universal behaviour in three complementary ways, by mapping random entanglement growth to: (i) a stochastic model of a growing surface; (ii) a `minimal cut' picture, reminisce...

  8. Random graph models for dynamic networks

    CERN Document Server

    Zhang, Xiao; Newman, M E J

    2016-01-01

    We propose generalizations of a number of standard network models, including the classic random graph, the configuration model, and the stochastic block model, to the case of time-varying networks. We assume that the presence and absence of edges are governed by continuous-time Markov processes with rate parameters that can depend on properties of the nodes. In addition to computing equilibrium properties of these models, we demonstrate their use in data analysis and statistical inference, giving efficient algorithms for fitting them to observed network data. This allows us, for instance, to estimate the time constants of network evolution or infer community structure from temporal network data using cues embedded both in the probabilities over time that node pairs are connected by edges and in the characteristic dynamics of edge appearance and disappearance. We illustrate our methods with a selection of applications, both to computer-generated test networks and real-world examples.

  9. Some Probability Properties of Random Walk in Time-Random Environment

    Institute of Scientific and Technical Information of China (English)

    Zhang Xiao-min; Li Bo

    2004-01-01

    A general formulation of the stochastic model for random walk in time-random environment and an equivalent definition is established in this paper. Moreover, some basic probability relations similar to the classical case which are very useful in the corresponding research of fractal properties are given. At the end, a typical example is provided to show the recurrence and transience.

  10. Network Randomization and Dynamic Defense for Critical Infrastructure Systems

    Energy Technology Data Exchange (ETDEWEB)

    Chavez, Adrian R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Martin, Mitchell Tyler [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hamlet, Jason [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stout, William M.S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lee, Erik [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-04-01

    Critical Infrastructure control systems continue to foster predictable communication paths, static configurations, and unpatched systems that allow easy access to our nation's most critical assets. This makes them attractive targets for cyber intrusion. We seek to address these attack vectors by automatically randomizing network settings, randomizing applications on the end devices themselves, and dynamically defending these systems against active attacks. Applying these protective measures will convert control systems into moving targets that proactively defend themselves against attack. Sandia National Laboratories has led this effort by gathering operational and technical requirements from Tennessee Valley Authority (TVA) and performing research and development to create a proof-of-concept solution. Our proof-of-concept has been tested in a laboratory environment with over 300 nodes. The vision of this project is to enhance control system security by converting existing control systems into moving targets and building these security measures into future systems while meeting the unique constraints that control systems face.

  11. Memory in random bouncing ball dynamics

    Science.gov (United States)

    Zouabi, C.; Scheibert, J.; Perret-Liaudet, J.

    2016-09-01

    The bouncing of an inelastic ball on a vibrating plate is a popular model used in various fields, from granular gases to nanometer-sized mechanical contacts. For random plate motion, so far, the model has been studied using Poincaré maps in which the excitation by the plate at successive bounces is assumed to be a discrete Markovian (memoryless) process. Here, we investigate numerically the behaviour of the model for continuous random excitations with tunable correlation time. We show that the system dynamics are controlled by the ratio of the Markovian mean flight time of the ball and the mean time between successive peaks in the motion of the exciting plate. When this ratio, which depends on the bandwidth of the excitation signal, exceeds a certain value, the Markovian approach is appropriate; below, memory of preceding excitations arises, leading to a significant decrease of the jump duration; at the smallest values of the ratio, chattering occurs. Overall, our results open the way for uses of the model in the low-excitation regime, which is still poorly understood.

  12. Memory in random bouncing ball dynamics

    CERN Document Server

    Zouabi, C; Perret-Liaudet, J

    2016-01-01

    The bouncing of an inelastic ball on a vibrating plate is a popular model used in various fields, from granular gases to nanometer-sized mechanical contacts. For random plate motion, so far, the model has been studied using Poincar{\\'e} maps in which the excitation by the plate at successive bounces is assumed to be a discrete Markovian (memoryless) process. Here, we investigate numerically the behaviour of the model for continuous random excitations with tunable correlation time. We show that the system's dynamics are controlled by the ratio of the Markovian mean flight time of the ball and the mean time between successive peaks in the motion of the exciting plate. When this ratio, which depends on the bandwidth of the excitation signal, exceeds a certain value, the Markovian approach is appropriate; below, memory of preceding excitations arises, leading to a significant decrease of the jump duration; at the smallest values of the ratio, chattering occurs. Overall, our results open the way for uses of the mo...

  13. On potential kernels associated with random dynamical systems

    Directory of Open Access Journals (Sweden)

    Mohamed Hmissi

    2015-01-01

    In particular, we provide a constructive method for global Lyapunov functions for gradient-like random dynamical systems. This result generalizes an analogous theorem known for deterministic dynamical systems.

  14. Conceptual Model of Dynamic Geographic Environment

    Directory of Open Access Journals (Sweden)

    Martínez-Rosales Miguel Alejandro

    2014-04-01

    Full Text Available In geographic environments, there are many and different types of geographic entities such as automobiles, trees, persons, buildings, storms, hurricanes, etc. These entities can be classified into two groups: geographic objects and geographic phenomena. By its nature, a geographic environment is dynamic, thus, it’s static modeling is not sufficient. Considering the dynamics of geographic environment, a new type of geographic entity called event is introduced. The primary target is a modeling of geographic environment as an event sequence, because in this case the semantic relations are much richer than in the case of static modeling. In this work, the conceptualization of this model is proposed. It is based on the idea to process each entity apart instead of processing the environment as a whole. After that, the so called history of each entity and its spatial relations to other entities are defined to describe the whole environment. The main goal is to model systems at a conceptual level that make use of spatial and temporal information, so that later it can serve as the semantic engine for such systems.

  15. Bisexual Galton-Watson Branching Processes in Random Environments

    Institute of Scientific and Technical Information of China (English)

    Shi-xia Ma

    2006-01-01

    In this paper, we consider a bisexual Galton-Watson branching process whose offspring probability distribution is controlled by a random environment process. Some results for the probability generating functions associated with the process are obtained and sufficient conditions for certain extinction and for non-certain extinction are established.

  16. Transport properties of anyons in random topological environments

    Science.gov (United States)

    Zatloukal, V.; Lehman, L.; Singh, S.; Pachos, J. K.; Brennen, G. K.

    2014-10-01

    The quasi-one-dimensional transport of Abelian and non-Abelian anyons is studied in the presence of a random topological background. In particular, we consider the quantum walk of an anyon that braids around islands of randomly filled static anyons of the same type. Two distinct behaviors are identified. We analytically demonstrate that all types of Abelian anyons localize purely due to the statistical phases induced by their random anyonic environment. In contrast, we numerically show that non-Abelian Ising anyons do not localize. This is due to their entanglement with the anyonic environment, which effectively induces dephasing. Our study demonstrates that localization properties strongly depend on nonlocal topological interactions, and it provides a clear distinction in the transport properties of Abelian and non-Abelian anyons.

  17. The existence and uniqueness of q-process in random environment

    Institute of Scientific and Technical Information of China (English)

    HU; Dihe

    2004-01-01

    We introduce some basic concepts such as random (sub-)transition function,q-function in random environment, q-process in random environment and some basic lemmas. For any continuous q-function in random environment, we prove that the q-process in random environment always exists, and that any q-process in random environment satisfies the random Kolmogorov backward equation and the minimal q-process in random environment always exists. When q is a continuous and conservative q-function in random environment, the necessary and sufficient conditions for the uniqueness of q-process in random environment are given. Finally the special cases, homogeneous random transition functions and homogeneous q-processes in random environments are considered.

  18. Age-dependent branching processes in random environments

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    We consider an age-dependent branching process in random environments. The environments are represented by a stationary and ergodic sequence ξ = (ξ0,ξ1,...) of random variables. Given an environment ξ, the process is a non-homogenous Galton-Watson process, whose particles in n-th generation have a life length distribution G(ξn) on R+, and reproduce independently new particles according to a probability law p(ξn) on N. Let Z(t) be the number of particles alive at time t. We first find a characterization of the conditional probability generating function of Z(t) (given the environment ξ) via a functional equation, and obtain a criterion for almost certain extinction of the process by comparing it with an embedded Galton-Watson process. We then get expressions of the conditional mean EξZ(t) and the global mean EZ(t), and show their exponential growth rates by studying a renewal equation in random environments.

  19. Age-dependent branching processes in random environments

    Institute of Scientific and Technical Information of China (English)

    LI YingQiu; LIU QuanSheng

    2008-01-01

    We consider an age-dependent branching process in random environments.The environments are represented by a stationary and ergodic sequence ξ = (ξ0,ξ1,...) of random variables.Given an environment ξ,the process is a non-homogenous Galton-Watson process,whose particles in n-th generation have a life length distribution G(ξn) on R+,and reproduce independently new particles according to a probability law p(ξn) on N.Let Z(t) be the number of particles alive at time t.We first find a characterization of the conditional probability generating function of Z(t) (given the environment ξ) via a functional equation,and obtain a criterion for almost certain extinction of the process by comparing it with an embedded Galton-Watson process.We then get expressions of the conditional mean EξZ(t) and the global mean EZ(t),and show their exponential growth rates by studying a renewal equation in random environments.

  20. Directed polymers in random environment with heavy tails

    CERN Document Server

    Auffinger, Antonio

    2010-01-01

    We study the model of Directed Polymers in Random Environment in 1+1 dimensions, where the distribution at a site has a tail which decays regularly polynomially with power \\alpha, where \\alpha \\in (0,2). After proper scaling of temperature \\beta^{-1}, we show strong localization of the polymer to a favorable region in the environment where energy and entropy are best balanced. We prove that this region has a weak limit under linear scaling and identify the limiting distribution as an (\\alpha, \\beta)-indexed family of measures on Lipschitz curves lying inside the 45-degrees-rotated square with unit diagonal. In particular, this shows order n transversal fluctuations of the polymer. If, and only if, \\alpha is small enough, we find that there exists a random critical temperature below which, but not above, the effect of the environment is macroscopic. The results carry over to d+1 dimensions for d>1 with minor modifications.

  1. Doppler Spectrum from Moving Scatterers in a Random Environment

    DEFF Research Database (Denmark)

    Andersen, Jørgen Bach; Nielsen, Jesper Ødum; Pedersen, Gert Frølund

    2009-01-01

    as well as sharply peaked distributions are considered in the theory. The Doppler spectra are in all cases sharply peaked at zero frequency due to forward scattering, but the actually measured distribution depends on the degree and type of activity in the environment, as well as the spectrum estimation......A random non-line-of-sight environment with stationary transmitter and receiver is considered. In such an environment movement of a scatterer will lead to perturbations of the otherwise static channel with a resulting Doppler spectrum. This is quite a general situation in outdoor environments...... with moving traffic or indoor situations with moving people. Here we study the latter situation in detail with experimental results from a large office environment. A general theory of Doppler spectra is developed. The impact of a scatterer depends on the angular distribution of scattered energy, and uniform...

  2. The Laplace Functional and Moments for Markov Branching Chains in Random Environments

    Institute of Scientific and Technical Information of China (English)

    HU Di-he; ZHANG Shu-lin

    2005-01-01

    The concepts of random Markov matrix, Markov branching chain in random environment (MBCRE) and Laplace functional of Markov branching chain in random environment (LFMBCRE) are introduced. The properties of LFMBCRE and the explicit formulas of moments of MBCRE are given.

  3. Infinitely dimensional control Markov branching chains in random environments

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    First of all we introduce the concepts of infinitely dimensional control Markov branching chains in random environments (β-MBCRE) and prove the existence of such chains, then we introduce the concepts of conditional generating functionals and random Markov transition functions of such chains and investigate their branching property. Base on these concepts we calculate the moments of the β-MBCRE and obtain the main results of this paper such as extinction probabilities, polarization and proliferation rate. Finally we discuss the classification ofβ-MBCRE according to the different standards.

  4. ELASTIC: A Large Scale Dynamic Tuning Environment

    Directory of Open Access Journals (Sweden)

    Andrea Martínez

    2014-01-01

    Full Text Available The spectacular growth in the number of cores in current supercomputers poses design challenges for the development of performance analysis and tuning tools. To be effective, such analysis and tuning tools must be scalable and be able to manage the dynamic behaviour of parallel applications. In this work, we present ELASTIC, an environment for dynamic tuning of large-scale parallel applications. To be scalable, the architecture of ELASTIC takes the form of a hierarchical tuning network of nodes that perform a distributed analysis and tuning process. Moreover, the tuning network topology can be configured to adapt itself to the size of the parallel application. To guide the dynamic tuning process, ELASTIC supports a plugin architecture. These plugins, called ELASTIC packages, allow the integration of different tuning strategies into ELASTIC. We also present experimental tests conducted using ELASTIC, showing its effectiveness to improve the performance of large-scale parallel applications.

  5. Maximal Displacement for Bridges of Random Walks in a Random Environment

    CERN Document Server

    Gantert, Nina

    2009-01-01

    It is well known that the distribution of simple random walks on $\\bf{Z}$ conditioned on returning to the origin after $2n$ steps does not depend on $p= P(S_1 = 1)$, the probability of moving to the right. Moreover, conditioned on $\\{S_{2n}=0\\}$ the maximal displacement $\\max_{k\\leq 2n} |S_k|$ converges in distribution when scaled by $\\sqrt{n}$ (diffusive scaling). We consider the analogous problem for transient random walks in random environments on $\\bf{Z}$. We show that under the quenched law $P_\\omega$ (conditioned on the environment $\\omega$), the maximal displacement of the random walk when conditioned to return to the origin at time $2n$ is no longer necessarily of the order $\\sqrt{n}$. If the environment is nestling (both positive and negative local drifts exist) then the maximal displacement conditioned on returning to the origin at time $2n$ is of order $n^{\\kappa/(\\kappa+1)}$, where the constant $\\kappa>0$ depends on the law on environment. On the other hand, if the environment is marginally nestli...

  6. Dynamic thermal environment and thermal comfort.

    Science.gov (United States)

    Zhu, Y; Ouyang, Q; Cao, B; Zhou, X; Yu, J

    2016-02-01

    Research has shown that a stable thermal environment with tight temperature control cannot bring occupants more thermal comfort. Instead, such an environment will incur higher energy costs and produce greater CO2 emissions. Furthermore, this may lead to the degeneration of occupants' inherent ability to combat thermal stress, thereby weakening thermal adaptability. Measured data from many field investigations have shown that the human body has a higher acceptance to the thermal environment in free-running buildings than to that in air-conditioned buildings with similar average parameters. In naturally ventilated environments, occupants have reported superior thermal comfort votes and much greater thermal comfort temperature ranges compared to air-conditioned environments. This phenomenon is an integral part of the adaptive thermal comfort model. In addition, climate chamber experiments have proven that people prefer natural wind to mechanical wind in warm conditions; in other words, dynamic airflow can provide a superior cooling effect. However, these findings also indicate that significant questions related to thermal comfort remain unanswered. For example, what is the cause of these phenomena? How we can build a comfortable and healthy indoor environment for human beings? This article summarizes a series of research achievements in recent decades, tries to address some of these unanswered questions, and attempts to summarize certain problems for future research.

  7. Trajectory Planning for Robots in Dynamic Human Environments

    DEFF Research Database (Denmark)

    Svenstrup, Mikael; Bak, Thomas; Andersen, Hans Jørgen

    2010-01-01

    This paper present a trajectory planning algorithm for a robot operating in dynamic human environments. Environments such as pedestrian streets, hospital corridors and train stations. We formulate the problem as planning a minimal cost trajectory through a potential field, defined from...... the perceived position and motion of persons in the environment. A Rapidly-exploring Random Tree (RRT) algorithm is proposed as a solution to the planning problem. A new method for selecting the best trajectory in the RRT, according to the cost of traversing a potential field, is presented. The RRT expansion...... vertex to the tree. Instead of executing a whole trajectory, when planned, the algorithm uses an Model Predictive Control (MPC) approach, where only a short segment of the trajectory is executed while a new iteration of the RRT is done. The planning algorithm is demonstrated in a simulated pedestrian...

  8. A Bell pair in a generic random matrix environment

    CERN Document Server

    Pineda, C; Pineda, Carlos; Seligman, Thomas H.

    2006-01-01

    Two non-interacting qubits are coupled to an environment. Both coupling and environment are represented by random matrix ensembles. The initial state of the pair is a Bell state, though we also consider arbitrary pure states. Decoherence of the pair is evaluated analytically in terms of purity; Monte Carlo calculations confirm these results and also yield the concurrence of the pair. Entanglement within the pair accelerates decoherence. Numerics display the relation between concurrence and purity known for Werner states, allowing us to give a formula for concurrence decay.

  9. Bell pair in a generic random matrix environment

    Science.gov (United States)

    Pineda, Carlos; Seligman, Thomas H.

    2007-01-01

    Two noninteracting qubits are coupled to an environment. Both coupling and environment are chosen as random matrices to obtain generic results. The initial state of the pair ranges from a Bell state to a product state. Decoherence of the pair is evaluated analytically in terms of purity; Monte Carlo calculations confirm these results and also yield concurrence of the pair. Entanglement within the pair accelerates decoherence. Numerics displays the relation between concurrence and purity known for Werner states. A closed albeit heuristic formula for concurrence decay ensues.

  10. Dynamic Output Feedback Control for Nonlinear Networked Control Systems with Random Packet Dropout and Random Delay

    Directory of Open Access Journals (Sweden)

    Shuiqing Yu

    2013-01-01

    Full Text Available This paper investigates the dynamic output feedback control for nonlinear networked control systems with both random packet dropout and random delay. Random packet dropout and random delay are modeled as two independent random variables. An observer-based dynamic output feedback controller is designed based upon the Lyapunov theory. The quantitative relationship of the dropout rate, transition probability matrix, and nonlinear level is derived by solving a set of linear matrix inequalities. Finally, an example is presented to illustrate the effectiveness of the proposed method.

  11. Continuous state branching processes in random environment: The Brownian case

    OpenAIRE

    Palau, Sandra; Pardo, Juan Carlos

    2015-01-01

    We consider continuous state branching processes that are perturbed by a Brownian motion. These processes are constructed as the unique strong solution of a stochastic differential equation. The long-term extinction and explosion behaviours are studied. In the stable case, the extinction and explosion probabilities are given explicitly. We find three regimes for the asymptotic behaviour of the explosion probability and, as in the case of branching processes in random environment, we find five...

  12. Tail estimates for one-dimensional non-nearest-neighbor random walk in random environment

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Suppose that the integers are assigned i.i.d. random variables {(β gx , . . . , β 1x , α x )} (each taking values in the unit interval and the sum of them being 1), which serve as an environment. This environment defines a random walk {X n } (called RWRE) which, when at x, moves one step of length 1 to the right with probability α x and one step of length k to the left with probability β kx for 1≤ k≤ g. For certain environment distributions, we determine the almost-sure asymptotic speed of the RWRE and show that the chance of the RWRE deviating below this speed has a polynomial rate of decay. This is the generalization of the results by Dembo, Peres and Zeitouni in 1996. In the proof we use a large deviation result for the product of random matrices and some tail estimates and moment estimates for the total population size in a multi-type branching process with random environment.

  13. The dynamic radiation environment assimilation model (DREAM)

    Energy Technology Data Exchange (ETDEWEB)

    Reeves, Geoffrey D [Los Alamos National Laboratory; Koller, Josef [Los Alamos National Laboratory; Tokar, Robert L [Los Alamos National Laboratory; Chen, Yue [Los Alamos National Laboratory; Henderson, Michael G [Los Alamos National Laboratory; Friedel, Reiner H [Los Alamos National Laboratory

    2010-01-01

    The Dynamic Radiation Environment Assimilation Model (DREAM) is a 3-year effort sponsored by the US Department of Energy to provide global, retrospective, or real-time specification of the natural and potential nuclear radiation environments. The DREAM model uses Kalman filtering techniques that combine the strengths of new physical models of the radiation belts with electron observations from long-term satellite systems such as GPS and geosynchronous systems. DREAM includes a physics model for the production and long-term evolution of artificial radiation belts from high altitude nuclear explosions. DREAM has been validated against satellites in arbitrary orbits and consistently produces more accurate results than existing models. Tools for user-specific applications and graphical displays are in beta testing and a real-time version of DREAM has been in continuous operation since November 2009.

  14. THE DECOMPOSITION OF STATE SPACE FOR MARKOV CHAIN IN RANDOM ENVIRONMENT

    Institute of Scientific and Technical Information of China (English)

    Hu Dihe

    2005-01-01

    This paper is a continuation of [8] and [9]. The author obtains the decomposition of state space χof an Markov chain in random environment by making use of the results in [8] and [9], gives three examples, random walk in random environment, renewal process in random environment and queue process in random environment, and obtains the decompositions of the state spaces of these three special examples.

  15. THE CONSTRUCTION OF DENUMERABLE q-PROCESSES IN RANDOM ENVIRONMENTS SATISFYING (F) OR (B)

    Institute of Scientific and Technical Information of China (English)

    Hu Dihe; Hu Xiaoyu

    2008-01-01

    This article is a continuation of [9]. Based on the discussion of random Kol-mogorov forward (backward) equations, for any given q-matrix in random environment,Q(θ) = (q(θ; x, y), x, y ∈ X), an infinite class of q-processes in random environments sat-isfying the random Kolmogorov forward (backward) equation is constructed. Moreover,under some conditions, all the q-processes in random environments satisfying the random Kolmogorov forward (backward) equation are constructed.

  16. Single-qubit decoherence under a separable coupling to a random matrix environment

    Science.gov (United States)

    Carrera, M.; Gorin, T.; Seligman, T. H.

    2014-08-01

    This paper describes the dynamics of a quantum two-level system (qubit) under the influence of an environment modeled by an ensemble of random matrices. In distinction to earlier work, we consider here separable couplings and focus on a regime where the decoherence time is of the same order of magnitude as the environmental Heisenberg time. We derive an analytical expression in the linear response approximation, and study its accuracy by comparison with numerical simulations. We discuss a series of unusual properties, such as purity oscillations, strong signatures of spectral correlations (in the environment Hamiltonian), memory effects, and symmetry-breaking equilibrium states.

  17. Genetic algorithms with memory- and elitism-based immigrants in dynamic environments.

    Science.gov (United States)

    Yang, Shengxiang

    2008-01-01

    In recent years the genetic algorithm community has shown a growing interest in studying dynamic optimization problems. Several approaches have been devised. The random immigrants and memory schemes are two major ones. The random immigrants scheme addresses dynamic environments by maintaining the population diversity while the memory scheme aims to adapt genetic algorithms quickly to new environments by reusing historical information. This paper investigates a hybrid memory and random immigrants scheme, called memory-based immigrants, and a hybrid elitism and random immigrants scheme, called elitism-based immigrants, for genetic algorithms in dynamic environments. In these schemes, the best individual from memory or the elite from the previous generation is retrieved as the base to create immigrants into the population by mutation. This way, not only can diversity be maintained but it is done more efficiently to adapt genetic algorithms to the current environment. Based on a series of systematically constructed dynamic problems, experiments are carried out to compare genetic algorithms with the memory-based and elitism-based immigrants schemes against genetic algorithms with traditional memory and random immigrants schemes and a hybrid memory and multi-population scheme. The sensitivity analysis regarding some key parameters is also carried out. Experimental results show that the memory-based and elitism-based immigrants schemes efficiently improve the performance of genetic algorithms in dynamic environments.

  18. Kardar-Parisi-Zhang Equation and Large Deviations for Random Walks in Weak Random Environments

    Science.gov (United States)

    Corwin, Ivan; Gu, Yu

    2017-01-01

    We consider the transition probabilities for random walks in 1+1 dimensional space-time random environments (RWRE). For critically tuned weak disorder we prove a sharp large deviation result: after appropriate rescaling, the transition probabilities for the RWRE evaluated in the large deviation regime, converge to the solution to the stochastic heat equation (SHE) with multiplicative noise (the logarithm of which is the KPZ equation). We apply this to the exactly solvable Beta RWRE and additionally present a formal derivation of the convergence of certain moment formulas for that model to those for the SHE.

  19. Rendering of 3D Dynamic Virtual Environments

    CERN Document Server

    Catanese, Salvatore; Fiumara, Giacomo; Pagano, Francesco

    2011-01-01

    In this paper we present a framework for the rendering of dynamic 3D virtual environments which can be integrated in the development of videogames. It includes methods to manage sounds and particle effects, paged static geometries, the support of a physics engine and various input systems. It has been designed with a modular structure to allow future expansions. We exploited some open-source state-of-the-art components such as OGRE, PhysX, ParticleUniverse, etc.; all of them have been properly integrated to obtain peculiar physical and environmental effects. The stand-alone version of the application is fully compatible with Direct3D and OpenGL APIs and adopts OpenAL APIs to manage audio cards. Concluding, we devised a showcase demo which reproduces a dynamic 3D environment, including some particular effects: the alternation of day and night infuencing the lighting of the scene, the rendering of terrain, water and vegetation, the reproduction of sounds and atmospheric agents.

  20. Robot dynamics in reduced gravity environment

    Science.gov (United States)

    Workman, Gary L.; Grisham, Tollie; Hinman, Elaine; Coker, Cindy

    1990-01-01

    Robot dynamics and control will become an important issue for productive platforms in space. Robotic operations will be necessary for both man tended stations and for the efficient performance of routine operations in a manned platform. The current constraints on the use of robotic devices in a microgravity environment appears to be due to safety concerns and an anticipated increase in acceleration levels due to manipulator motion. The robot used for the initial studies was a UMI RTX robot, which was adapted to operate in a materials processing workcell to simulate sample changing in a microgravity environment. The robotic cell was flown several times on the KC-135 aircraft at Ellington Field. The primary objective of the initial flights was to determine operating characteristics of both the robot and the operator in the variable gravity of the KC-135 during parabolic maneuvers. It was demonstrated that the KC-135 aircraft can be used for observing dynamics of robotic manipulators. The difficulties associated with humans performing teleoperation tasks during varying G levels were also observed and can provide insight into some areas in which the use of artificial techniques would provide improved system performance. Additionally a graphic simulation of the workcell was developed on a Silicon Graphics Workstation using the IGRIP simulation language from Deneb Robotics. The simulation is intended to be used for predictive displays of the robot operating on the aircraft. It is also anticipated that this simulation can be useful for off-line programming of tasks in the future.

  1. Deterministic walks in quenched random environments of chaotic maps

    Energy Technology Data Exchange (ETDEWEB)

    Simula, Tapio [Mathematical Physics Laboratory, Department of Physics, Okayama University, Okayama 700-8530 (Japan); Stenlund, Mikko [Courant Institute of Mathematical Sciences, New York, NY 10012 (United States)], E-mail: mikko@cims.nyu.edu

    2009-06-19

    This paper concerns the propagation of particles through a quenched random medium. In the one- and two-dimensional models considered, the local dynamics is given by expanding circle maps and hyperbolic toral automorphisms, respectively. The particle motion in both models is chaotic and found to fluctuate about a linear drift. In the proper scaling limit, the cumulative distribution function of the fluctuations converges to a Gaussian one with system-dependent variance while the density function shows no convergence to any function. We have verified our analytical results using extreme precision numerical computations.

  2. Random field estimation approach to robot dynamics

    Science.gov (United States)

    Rodriguez, Guillermo

    1990-01-01

    The difference equations of Kalman filtering and smoothing recursively factor and invert the covariance of the output of a linear state-space system driven by a white-noise process. Here it is shown that similar recursive techniques factor and invert the inertia matrix of a multibody robot system. The random field models are based on the assumption that all of the inertial (D'Alembert) forces in the system are represented by a spatially distributed white-noise model. They are easier to describe than the models based on classical mechanics, which typically require extensive derivation and manipulation of equations of motion for complex mechanical systems. With the spatially random models, more primitive locally specified computations result in a global collective system behavior equivalent to that obtained with deterministic models. The primary goal of applying random field estimation is to provide a concise analytical foundation for solving robot control and motion planning problems.

  3. Subsystem's dynamics under random Hamiltonian evolution

    CERN Document Server

    Vinayak,

    2011-01-01

    We study time evolution of a subsystem's density matrix under a unitary evolution, generated by a sufficiently complex, say quantum chaotic, Hamiltonian. We exactly calculate all coherences, purity and fluctuations. The reduced density matrix is described in terms of a noncentral correlated Wishart ensemble. Our description accounts for a transition from an arbitrary initial state towards a random state at large times, enabling us to determine the convergence time after which random states are reached. We identify and describe a number of other interesting features, like a series of collisions between the largest eigenvalue and the bulk, accompanied by a phase transition in its distribution function.

  4. 75 FR 16507 - In the Matter of Certain Semiconductor Chips Having Synchronous Dynamic Random Access Memory...

    Science.gov (United States)

    2010-04-01

    ... COMMISSION In the Matter of Certain Semiconductor Chips Having Synchronous Dynamic Random Access Memory... certain semiconductor chips having synchronous dynamic random access memory controllers and products... section 337 by importing certain semiconductor chips having synchronous dynamic random access...

  5. 75 FR 44989 - In the Matter of Certain Semiconductor Chips Having Synchronous Dynamic Random Access Memory...

    Science.gov (United States)

    2010-07-30

    ... Certain Semiconductor Chips Having Synchronous Dynamic Random Access Memory Controllers and Products... chips having synchronous dynamic random access memory controllers and product containing the same by... importing certain semiconductor chips having synchronous dynamic random access memory controllers and...

  6. Asymptotic Analysis of Invariant Density of Randomly Perturbed Dynamical Systems

    OpenAIRE

    Mikami, Toshio

    1990-01-01

    The invariant density of diffusion processes which are small random perturbations of dynamical systems can be expanded in W.K.B. type, as the random effect disappears, in the set in which the Freidlin-Wentzell quasipotential $V(\\cdot)$ is of $C^\\infty$-class and each coefficient which appears in the expansion is of $C^\\infty$-class.

  7. Sharp critical behavior for pinning model in random correlated environment

    CERN Document Server

    Berger, Quentin

    2011-01-01

    This article investigates the effect for random pinning models of long range power-law decaying correlations in the environment. For a particular type of environment based on a renewal construction, we are able to sharply describe the phase transition from the delocalized phase to the localized one, giving the critical exponent for the (quenched) free-energy, and proving that at the critical point the trajectories are fully delocalized. These results contrast with what happens both for the pure model (i.e. without disorder) and for the widely studied case of i.i.d. disorder, where the relevance or irrelevance of disorder on the critical properties is decided via the so-called Harris Criterion.

  8. Simulation of machine interference in randomly changing environments

    Directory of Open Access Journals (Sweden)

    Sztrik J.

    2002-01-01

    Full Text Available The simulation tool lcpSim can be used to investigate special level crossing problems of queuing systems of type HYPOk / HYPOr / 1 // n embedded in different Markovian environments (recently referred to as Markov modulated ones. Our observed system consists of n heterogeneous machines (requests and a server that 'repairs' the broken machines according to the most commonly used service disciplines, such as FIFO, LIFO, PPS, HOL, Preemptive Priorities (Resume, Repeat, Transfer, Polling, Nearest. We specify a maximum number of stopped machines for an operating system and our aim is to give the main steady-state performance measures of the system, such as, server utilization, machine utilization, mean waiting times, mean response times, the probability of an operating system and the mean operating time of the system. These values can be calculated by lcpSim level crossing problem Simulation package for different random environment types and service disciplines.

  9. Modular knowledge systems accelerate human migration in asymmetric random environments.

    Science.gov (United States)

    Wang, Dong; Deem, Michael W

    2016-12-01

    Migration is a key mechanism for expansion of communities. In spatially heterogeneous environments, rapidly gaining knowledge about the local environment is key to the evolutionary success of a migrating population. For historical human migration, environmental heterogeneity was naturally asymmetric in the north-south (NS) and east-west (EW) directions. We here consider the human migration process in the Americas, modelled as random, asymmetric, modularly correlated environments. Knowledge about the environments determines the fitness of each individual. We present a phase diagram for asymmetry of migration as a function of carrying capacity and fitness threshold. We find that the speed of migration is proportional to the inverse complement of the spatial environmental gradient, and in particular, we find that NS migration rates are lower than EW migration rates when the environmental gradient is higher in the NS direction. Communication of knowledge between individuals can help to spread beneficial knowledge within the population. The speed of migration increases when communication transmits pieces of knowledge that contribute in a modular way to the fitness of individuals. The results for the dependence of migration rate on asymmetry and modularity are consistent with existing archaeological observations. The results for asymmetry of genetic divergence are consistent with patterns of human gene flow. © 2016 The Author(s).

  10. A Note on Multitype Branching Process with Bounded Immigration in Random Environment

    Institute of Scientific and Technical Information of China (English)

    Hua Ming WANG

    2013-01-01

    In this paper,we study the total number of progeny,W,before regenerating of multitype branching process with immigration in random environment.We show that the tail probability of |W| is of order t-κ as t → ∞,with κ some constant.As an application,we prove a stable law for (L-1) random walk in random environment,generalizing the stable law for the nearest random walk in random environment (see "Kesten,Kozlov,Spitzer:A limit law for random walk in a random environment.Compositio Math.,30,145-168 (1975)").

  11. Entanglement dynamics in critical random quantum Ising chain with perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yichen, E-mail: ychuang@caltech.edu

    2017-05-15

    We simulate the entanglement dynamics in a critical random quantum Ising chain with generic perturbations using the time-evolving block decimation algorithm. Starting from a product state, we observe super-logarithmic growth of entanglement entropy with time. The numerical result is consistent with the analytical prediction of Vosk and Altman using a real-space renormalization group technique. - Highlights: • We study the dynamical quantum phase transition between many-body localized phases. • We simulate the dynamics of a very long random spin chain with matrix product states. • We observe numerically super-logarithmic growth of entanglement entropy with time.

  12. Path Planning in a Dynamic Environment

    Directory of Open Access Journals (Sweden)

    Mohamed EL KHAILI

    2014-08-01

    Full Text Available Path planning is an important area in the control of autonomous mobile robots. Recent work has focused on aspects reductions in processing time than the memory requirements. A dynamic environment uses a lot of memory and hence the processing time increases too. Our approach is to reduce the processing time by the use of a pictorial approach to reduce the number of data used. In this paper, we present a path planning approach that operates in three steps. First, a construction of the visibility tree is performed. The following treatments are not performed on the original image but on the result tree whose elements are specific points of the environment linked by the relationship of visibility. We construct thereafter a visibility graph which one seeks the shortest path. This approach has a great interest because of its fast execution speed. The path search is extended also for the case where obstacles can move. The moving obstacles may be other mobile robots whose trajectories and speeds are known initially. At the end, some applications are provided on solving similar problem such civil aviation in order to guide plane avoiding collisions.

  13. Mobile Robot Path Planning by RRT* in Dynamic Environments

    Directory of Open Access Journals (Sweden)

    Roudabe Seif

    2015-05-01

    Full Text Available Robot navigation is challenging for mobile robots technology in environments with maps. Since finding an optimal path for the agent is complicated and time consuming, path planning in robot navigation is an axial issue. The objective of this paper is to find a reasonable relation between parameters used in the path planning algorithm in a platform which a robot will be able to move from the start point in a dynamic environment with map and plan an optimal path to specified goal without any collision with moving and static obstacles. For this purpose, an asymptotically optimal version of Rapidly-exploring Random Tree RRT algorithm, named RRT* is used. The algorithm is based on an incremental sampling which covers the whole space and acts fast. Moreover this algorithm is computationally efficient, therefore it can be used in multidimensional environments. The obtained results indicate that a feasible path for mobile holomonic robot may be found in a short time by using this algorithm. Also different standard distances measurements like (Chebyshev, Euclidean, and City Block are examined, and coordinated with sampling node number in order to reach the suitable result based on environment circumstances.

  14. Value of the future: Discounting in random environments

    Science.gov (United States)

    Farmer, J. Doyne; Geanakoplos, John; Masoliver, Jaume; Montero, Miquel; Perelló, Josep

    2015-05-01

    We analyze how to value future costs and benefits when they must be discounted relative to the present. We introduce the subject for the nonspecialist and take into account the randomness of the economic evolution by studying the discount function of three widely used processes for the dynamics of interest rates: Ornstein-Uhlenbeck, Feller, and log-normal. Besides obtaining exact expressions for the discount function and simple asymptotic approximations, we show that historical average interest rates overestimate long-run discount rates and that this effect can be large. In other words, long-run discount rates should be substantially less than the average rate observed in the past, otherwise any cost-benefit calculation would be biased in favor of the present and against interventions that may protect the future.

  15. The construction of Markov processes in random environments and the equivalence theorems

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    In sec.1, we introduce several basic concepts such as random transition function, p-m process and Markov process in random environment and give some examples to construct a random transition function from a non-homogeneous density function. In sec.2, we construct the Markov process in random enviromment and skew product Markov process by p - m process and investigate the properties of Markov process in random environment and the original process and environment process and skew product process. In sec. 3, we give several equivalence theorems on Markov process in random environment.

  16. Human Activity Recognition in AAL Environments Using Random Projections

    Directory of Open Access Journals (Sweden)

    Robertas Damaševičius

    2016-01-01

    Full Text Available Automatic human activity recognition systems aim to capture the state of the user and its environment by exploiting heterogeneous sensors attached to the subject’s body and permit continuous monitoring of numerous physiological signals reflecting the state of human actions. Successful identification of human activities can be immensely useful in healthcare applications for Ambient Assisted Living (AAL, for automatic and intelligent activity monitoring systems developed for elderly and disabled people. In this paper, we propose the method for activity recognition and subject identification based on random projections from high-dimensional feature space to low-dimensional projection space, where the classes are separated using the Jaccard distance between probability density functions of projected data. Two HAR domain tasks are considered: activity identification and subject identification. The experimental results using the proposed method with Human Activity Dataset (HAD data are presented.

  17. Guiding locomotion in complex dynamic environments

    Directory of Open Access Journals (Sweden)

    Brett R Fajen

    2013-07-01

    Full Text Available Locomotion in complex dynamic environments is an integral part of many daily activities, including walking in crowded spaces, driving on busy roadways, and playing sports. Many of the tasks that humans perform in such environments involve interactions with moving objects -- that is, they require people to coordinate their own movement with the movements of other objects. A widely adopted framework for research on the detection, avoidance, and interception of moving objects is the bearing angle model, according to which observers move so as to keep the bearing angle of the object constant for interception and varying for obstacle avoidance. The bearing angle model offers a simple, parsimonious account of visual control but has several significant limitations and does not easily scale up to more complex tasks. In this paper, I introduce an alternative account of how humans choose actions and guide locomotion in the presence of moving objects. I show how the new approach addresses the limitations of the bearing angle model and accounts for a variety of behaviors involving moving objects, including (1 choosing whether to pass in front of or behind a moving obstacle, (2 perceiving whether a gap between a pair of moving obstacles is passable, (3 avoiding a collision while passing through single or multiple lanes of traffic, (4 coordinating speed and direction of locomotion during interception, (5 simultaneously intercepting a moving target while avoiding a stationary or moving obstacle, and (6 knowing whether to abandon the chase of a moving target. I also summarize data from recent studies that support the new approach.

  18. Development of a Family Dynamic Environment Scale for Korean adolescents.

    Science.gov (United States)

    Kim, Hyun-Sil; Kim, Hun-Soo

    2007-01-01

    The objective of this study was to develop a short and reliable Family Dynamic Environment Scale (FDES) that would better serve the needs of mental health professionals in detecting the potential for delinquent behavior in Korean adolescents related to a dysfunctional family dynamic environment. Semi-structured interviews with 30 adolescents were initially conducted to generate a set of items, after which, 44 participants were included in method test-retest reliability test. Finally, 544 participants recruited by proportional stratified random sampling were included in a factor analysis. The original version of the FDES had 60 items in 7 categories; the final version included 42 items grouped into 5 factors. Both test-retest reliability and Cronbach's alpha coefficient were high for the final version of the scale. As a result of factor analysis, five factors were extracted: family psychological climate, parent-child relationship, paternal parenting attitude, family cohesion, and maternal parenting attitude. These contributed 50.3% of the variance in the item scores. All 42 items loaded above .35 on their respective factors. The Cronbach's alpha coefficients for internal consistency were .95 for the total 42 items and .92, .81, .82, .78, and .71, respectively, for each of the 5 factors.

  19. Adaptive typography for dynamic mapping environments

    Science.gov (United States)

    Bardon, Didier

    1991-08-01

    When typography moves across a map, it passes over areas of different colors, densities, and textures. In such a dynamic environment, the aspect of typography must be constantly adapted to provide disernibility for every new background. Adaptive typography undergoes two adaptive operations: background control and contrast control. The background control prevents the features of the map (edges, lines, abrupt changes of densities) from destroying the integrity of the letterform. This is achieved by smoothing the features of the map in the area where a text label is displayed. The modified area is limited to the space covered by the characters of the label. Dispositions are taken to insure that the smoothing operation does not introduce any new visual noise. The contrast control assures that there are sufficient lightness differences between the typography and its ever-changing background. For every new situation, background color and foreground color are compared and the foreground color lightness is adjusted according to a chosen contrast value. Criteria and methods of choosing the appropriate contrast value are presented as well as the experiments that led to them.

  20. Asset Return Dynamics under Bad Environment Good Environment Fundamentals

    OpenAIRE

    2009-01-01

    We introduce a "bad environment-good environment" technology for consumption growth in a consumption- based asset pricing model. Using the preference structure from Campbell and Cochrane (1999), the model generates realistic time-varying volatility, skewness and kurtosis in fundamentals while still permitting closed-form solutions for asset prices. The model not only fits standard salient asset prices features including means and volatilities for equity returns and risk free rates, but also g...

  1. THE EXISTENCE AND MOMENTS OF CANONICAL BRANCHING CHAIN IN RANDOM ENVIRONMENT

    Institute of Scientific and Technical Information of China (English)

    胡迪鹤

    2004-01-01

    The concepts of branching chain in random environmnet and canonical branching chain in random environment axe introduced. Moreover the existence of these chains is proved. Finally the exact formulas of mathematical expectation and variance of branching chain in random environment axe also given.

  2. Entanglement dynamics in critical random quantum Ising chain with perturbations

    Science.gov (United States)

    Huang, Yichen

    2017-05-01

    We simulate the entanglement dynamics in a critical random quantum Ising chain with generic perturbations using the time-evolving block decimation algorithm. Starting from a product state, we observe super-logarithmic growth of entanglement entropy with time. The numerical result is consistent with the analytical prediction of Vosk and Altman using a real-space renormalization group technique.

  3. Triangular Dynamic Architecture for Distributed Computing in a LAN Environment

    CERN Document Server

    Hossain, M Shahriar; Fuad, M Muztaba; Deb, Debzani

    2011-01-01

    A computationally intensive large job, granulized to concurrent pieces and operating in a dynamic environment should reduce the total processing time. However, distributing jobs across a networked environment is a tedious and difficult task. Job distribution in a Local Area Network based on Triangular Dynamic Architecture (TDA) is a mechanism that establishes a dynamic environment for job distribution, load balancing and distributed processing with minimum interaction from the user. This paper introduces TDA and discusses its architecture and shows the benefits gained by utilizing such architecture in a distributed computing environment.

  4. Single-cluster dynamics for the random-cluster model

    Science.gov (United States)

    Deng, Youjin; Qian, Xiaofeng; Blöte, Henk W. J.

    2009-09-01

    We formulate a single-cluster Monte Carlo algorithm for the simulation of the random-cluster model. This algorithm is a generalization of the Wolff single-cluster method for the q -state Potts model to noninteger values q>1 . Its results for static quantities are in a satisfactory agreement with those of the existing Swendsen-Wang-Chayes-Machta (SWCM) algorithm, which involves a full-cluster decomposition of random-cluster configurations. We explore the critical dynamics of this algorithm for several two-dimensional Potts and random-cluster models. For integer q , the single-cluster algorithm can be reduced to the Wolff algorithm, for which case we find that the autocorrelation functions decay almost purely exponentially, with dynamic exponents zexp=0.07 (1), 0.521 (7), and 1.007 (9) for q=2 , 3, and 4, respectively. For noninteger q , the dynamical behavior of the single-cluster algorithm appears to be very dissimilar to that of the SWCM algorithm. For large critical systems, the autocorrelation function displays a range of power-law behavior as a function of time. The dynamic exponents are relatively large. We provide an explanation for this peculiar dynamic behavior.

  5. Dynamic Capabilities within the Project Management Environment

    OpenAIRE

    2015-01-01

    Dynamic Capabilities is a contemporary popular notion, incorporating the ability to adjust a company’s resources adequately to exploit opportunities, prevent threats and consequently retain competitive advantage. Teece et al. (1997) coined Dynamic Capabilities and triggered a wave of research on the topic. However the notion is still in its infancy through academic disputes, different viewpoints and multiple definitions. Consequently tool, measure and procedures of Dynamic Capabilities are ab...

  6. Computing Bisectors in a Dynamic Geometry Environment

    Science.gov (United States)

    Botana, Francisco

    2013-01-01

    In this note, an approach combining dynamic geometry and automated deduction techniques is used to study the bisectors between points and curves. Usual teacher constructions for bisectors are discussed, showing that inherent limitations in dynamic geometry software impede their thorough study. We show that the interactive sketching of bisectors…

  7. Resource Matchmaking Algorithm using Dynamic Rough Set in Grid Environment

    CERN Document Server

    Ataollahi, Iraj

    2009-01-01

    Grid environment is a service oriented infrastructure in which many heterogeneous resources participate to provide the high performance computation. One of the bug issues in the grid environment is the vagueness and uncertainty between advertised resources and requested resources. Furthermore, in an environment such as grid dynamicity is considered as a crucial issue which must be dealt with. Classical rough set have been used to deal with the uncertainty and vagueness. But it can just be used on the static systems and can not support dynamicity in a system. In this work we propose a solution, called Dynamic Rough Set Resource Discovery (DRSRD), for dealing with cases of vagueness and uncertainty problems based on Dynamic rough set theory which considers dynamic features in this environment. In this way, requested resource properties have a weight as priority according to which resource matchmaking and ranking process is done. We also report the result of the solution obtained from the simulation in GridSim s...

  8. Random Group Problem-Based Learning in Engineering Dynamics

    CERN Document Server

    Fleischfresser, Luciano

    2014-01-01

    Dynamics problem solving is highly specific to the problem at hand and to develop the general mind framework to become an effective problem solver requires ingenuity and creativity on top of a solid grounding on theoretical and conceptual knowledge. A blended approach with prototype demo, problem-based learning, and an opinion questionnaire was used during first semester of 2013. Students working in randomly selected teams had to interact with classmates while solving a randomly selected problem. The approach helps improve awareness of what is important to learn in this class while reducing grading load. It also provides a more rewarding contact time for both pupils and instructor.

  9. First passage failure of dynamical power systems under random perturbations

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The first-passage problem of dynamical power system of a single-machine-infinite-bus (SMIB) system under random perturbations is studied.First,the stochastic averaging method for quasi non-integrable generalized Hamiltonian systems is applied to reduce the equations of the SMIB system under random perturbations to a set of averaged It? equations.Then,the backward Kolmogorov equation governing the conditional reliability function and the Pontryagin equation governing the conditional mean of first passage time are established and solved numerically,respectively.Finally,the proposed method is verified by using the Monte Carlo simulation of the original system.

  10. Dynamical continuous time random Lévy flights

    Science.gov (United States)

    Liu, Jian; Chen, Xiaosong

    2016-03-01

    The Lévy flights' diffusive behavior is studied within the framework of the dynamical continuous time random walk (DCTRW) method, while the nonlinear friction is introduced in each step. Through the DCTRW method, Lévy random walker in each step flies by obeying the Newton's Second Law while the nonlinear friction f(v) = - γ0v - γ2v3 being considered instead of Stokes friction. It is shown that after introducing the nonlinear friction, the superdiffusive Lévy flights converges, behaves localization phenomenon with long time limit, but for the Lévy index μ = 2 case, it is still Brownian motion.

  11. On the pertinence to Physics of random walks induced by random dynamical systems: a survey

    Science.gov (United States)

    Petritis, Dimitri

    2016-08-01

    Let be an abstract space and a denumerable (finite or infinite) alphabet. Suppose that is a family of functions such that for all we have and a family of transformations . The pair ((Sa)a , (pa)a ) is termed an iterated function system with place dependent probabilities. Such systems can be thought as generalisations of random dynamical systems. As a matter of fact, suppose we start from a given ; we pick then randomly, with probability pa (x), the transformation Sa and evolve to Sa (x). We are interested in the behaviour of the system when the iteration continues indefinitely. Random walks of the above type are omnipresent in both classical and quantum Physics. To give a small sample of occurrences we mention: random walks on the affine group, random walks on Penrose lattices, random walks on partially directed lattices, evolution of density matrices induced by repeated quantum measurements, quantum channels, quantum random walks, etc. In this article, we review some basic properties of such systems and provide with a pathfinder in the extensive bibliography (both on mathematical and physical sides) where the main results have been originally published.

  12. Dynamic decoupling in the presence of 1D random walk

    Science.gov (United States)

    Chakrabarti, Arnab; Chakraborty, Ipsita; Bhattacharyya, Rangeet

    2016-05-01

    In the recent past, many dynamic decoupling sequences have been proposed for the suppression of decoherence of spins connected to thermal baths of various natures. Dynamic decoupling schemes for suppressing decoherence due to Gaussian diffusion have also been developed. In this work, we study the relative performances of dynamic decoupling schemes in the presence of a non-stationary Gaussian noise such as a 1D random walk. Frequency domain analysis is not suitable to determine the performances of various dynamic decoupling schemes in suppressing decoherence due to such a process. Thus, in this work, we follow a time domain calculation to arrive at the following conclusions: in the presence of such a noise, we show that (i) the traditional Carr-Purcell-Meiboom-Gill (CPMG) sequence outperforms Uhrig’s dynamic decoupling scheme, (ii) CPMG remains the optimal sequence for suppression of decoherence due to random walk in the presence of an external field gradient. Later, the theoretical predictions are experimentally verified by using nuclear magnetic resonance spectroscopy on spin 1/2 particles diffusing in a liquid medium.

  13. Complex Langevin dynamics for chiral random matrix theory

    Science.gov (United States)

    Mollgaard, A.; Splittorff, K.

    2013-12-01

    We apply complex Langevin dynamics to chiral random matrix theory at nonzero chemical potential. At large quark mass, the simulations agree with the analytical results while incorrect convergence is found for small quark masses. The region of quark masses for which the complex Langevin dynamics converges incorrectly is identified as the region where the fermion determinant frequently traces out a path surrounding the origin of the complex plane during the Langevin flow. This links the incorrect convergence to an ambiguity in the Langevin force due to the presence of the logarithm of the fermion determinant in the action.

  14. Complex Langevin Dynamics for chiral Random Matrix Theory

    CERN Document Server

    Mollgaard, A

    2013-01-01

    We apply complex Langevin dynamics to chiral random matrix theory at nonzero chemical potential. At large quark mass the simulations agree with the analytical results while incorrect convergence is found for small quark masses. The region of quark masses for which the complex Langevin dynamics converges incorrectly is identified as the region where the fermion determinant frequently traces out a path surrounding the origin of the complex plane during the Langevin flow. This links the incorrect convergence to an ambiguity in the Langevin force due to the presence of the logarithm of the fermion determinant in the action.

  15. A Hybrid Data Association Approach for SLAM in Dynamic Environments

    Directory of Open Access Journals (Sweden)

    Baifan Chen

    2013-02-01

    Full Text Available Data association is critical for Simultaneous Localization and Mapping (SLAM. In a real environment, dynamic obstacles will lead to false data associations which compromise SLAM results. This paper presents a simple and effective data association method for SLAM in dynamic environments. A hybrid approach of data association based on local maps by combining ICNN and JCBB algorithms is used initially. Secondly, we set a judging condition of outlier features in association assumptions and then the static and dynamic features are detected according to spatial and temporal difference. Finally, association assumptions are updated by filtering out the dynamic features. Simulations and experimental results show that this method is feasible.

  16. Dynamical Stationarity as a Result of Sustained Random Growth

    CERN Document Server

    Biró, Tamás

    2016-01-01

    In sustained growth with random dynamics stationary distributions can exist without detailed balance. This suggests thermodynamical behavior in fast growing complex systems. In order to model such phenomena we apply both a discrete and a continuous master equation. The derivation of elementary rates from known stationary distributions is a generalization of the fluctuation--dissipation theorem. Entropic distance evolution is given for such systems. We reconstruct distributions obtained for growing networks, particle production, scientific citations and income distribution.

  17. Random Matrix Theory of Dynamical Cross Correlations in Financial Data

    Science.gov (United States)

    Nakayama, Y.; Iyetomi, H.

    A new method taking advantage of the random matrix theory is proposed to extract genuine dynamical correlations between price fluctuations of different stocks. One-day returns of 557 Japanese major stocks for the 11-year period from 1996 to 2006 are used for this study. We carry out the discrete Fourier transform of the returns to construct a correlation matrix at each frequency. Also we prepare series of random numbers which are mutually uncorrelated and hence serve as a reference. Comparison of the eigenvalues of the empirical correlation matrix with the reference results of the random one enables us to distinguish between information and noise involved in complicated behavior of the stock returns. It is thus demonstrated that there exist collective motions of the stock prices with periods well over days. Finally we indicate a possible application of the present finding to the risk evaluation of portfolios.

  18. Effects of random noise in a dynamical model of love

    Energy Technology Data Exchange (ETDEWEB)

    Xu Yong, E-mail: hsux3@nwpu.edu.cn [Department of Applied Mathematics, Northwestern Polytechnical University, Xi' an 710072 (China); Gu Rencai; Zhang Huiqing [Department of Applied Mathematics, Northwestern Polytechnical University, Xi' an 710072 (China)

    2011-07-15

    Highlights: > We model the complexity and unpredictability of psychology as Gaussian white noise. > The stochastic system of love is considered including bifurcation and chaos. > We show that noise can both suppress and induce chaos in dynamical models of love. - Abstract: This paper aims to investigate the stochastic model of love and the effects of random noise. We first revisit the deterministic model of love and some basic properties are presented such as: symmetry, dissipation, fixed points (equilibrium), chaotic behaviors and chaotic attractors. Then we construct a stochastic love-triangle model with parametric random excitation due to the complexity and unpredictability of the psychological system, where the randomness is modeled as the standard Gaussian noise. Stochastic dynamics under different three cases of 'Romeo's romantic style', are examined and two kinds of bifurcations versus the noise intensity parameter are observed by the criteria of changes of top Lyapunov exponent and shape of stationary probability density function (PDF) respectively. The phase portraits and time history are carried out to verify the proposed results, and the good agreement can be found. And also the dual roles of the random noise, namely suppressing and inducing chaos are revealed.

  19. Dynamic CDM strategies in an EHR environment.

    Science.gov (United States)

    Bieker, Michael; Bailey, Spencer

    2012-02-01

    A dynamic charge description master (CDM) integrates information from clinical ancillary systems into the charge-capture process, so an organization can reduce its reliance on the patient accounting system as the sole source of billing information. By leveraging the information from electronic ancillary systems, providers can eliminate the need for paper charge-capture forms and see increased accuracy and efficiency in the maintenance of billing information. Before embarking on a dynamic CDM strategy, organizations should first determine their goals for implementing an EHR system, include revenue cycle leaders on the EHR implementation team, and carefully weigh the pros and cons of CDM design decisions.

  20. Dynamic process management for engineering environments

    NARCIS (Netherlands)

    Mentink, R.J.; Houten, van F.J.A.M.; Kals, H.J.J.

    2003-01-01

    The research presented in this paper proposes a concept for dynamic process management as part of an integrated approach to engineering process support. The theory of information management is the starting point for the development of a process management system based on evolution of information con

  1. Spatially random models, estimation theory, and robot arm dynamics

    Science.gov (United States)

    Rodriguez, G.

    1987-01-01

    Spatially random models provide an alternative to the more traditional deterministic models used to describe robot arm dynamics. These alternative models can be used to establish a relationship between the methodologies of estimation theory and robot dynamics. A new class of algorithms for many of the fundamental robotics problems of inverse and forward dynamics, inverse kinematics, etc. can be developed that use computations typical in estimation theory. The algorithms make extensive use of the difference equations of Kalman filtering and Bryson-Frazier smoothing to conduct spatial recursions. The spatially random models are very easy to describe and are based on the assumption that all of the inertial (D'Alembert) forces in the system are represented by a spatially distributed white-noise model. The models can also be used to generate numerically the composite multibody system inertia matrix. This is done without resorting to the more common methods of deterministic modeling involving Lagrangian dynamics, Newton-Euler equations, etc. These methods make substantial use of human knowledge in derivation and minipulation of equations of motion for complex mechanical systems.

  2. Randomized Dynamical Decoupling Techniques for Coherent Quantum Control

    CERN Document Server

    Viola, L; Viola, Lorenza; Santos, Lea F.

    2006-01-01

    The need for strategies able to accurately manipulate quantum dynamics is ubiquitous in quantum control and quantum information processing. We investigate two scenarios where randomized dynamical decoupling techniques become more advantageous with respect to standard deterministic methods in switching off unwanted dynamical evolution in a closed quantum system: when dealing with decoupling cycles which involve a large number of control actions and/or when seeking long-time quantum information storage. Highly effective hybrid decoupling schemes, which combine deterministic and stochastic features are discussed, as well as the benefits of sequentially implementing a concatenated method, applied at short times, followed by a hybrid protocol, employed at longer times. A quantum register consisting of a chain of spin-1/2 particles interacting via the Heisenberg interaction is used as a model for the analysis throughout.

  3. PREFACE: Complex dynamics of fluids in disordered and crowded environments Complex dynamics of fluids in disordered and crowded environments

    Science.gov (United States)

    Coslovich, Daniele; Kahl, Gerhard; Krakoviack, Vincent

    2011-06-01

    T Fischer and R L C Vink Lennard-Jones binary mixture in disordered matrices: exploring the mode coupling scenario at increasing confinement P Gallo and M Rovere Static and dynamic contributions to anomalous chain dynamics in polymer blends Marco Bernabei, Angel J Moreno and J Colmenero Anomalous transport of a tracer on percolating clusters Markus Spanner, Felix Höfling, Gerd E Schröder-Turk, Klaus Mecke and Thomas Franosch Long-wavelength anomalies in the asymptotic behavior of mode-coupling theory S K Schnyder, F Höfling, T Franosch and Th Voigtmann Dynamic arrest of colloids in porous environments: disentangling crowding and confinement Jan Kurzidim, Daniele Coslovich and Gerhard Kahl Slow dynamics, dynamic heterogeneities, and fragility of supercooled liquids confined in random media Kang Kim, Kunimasa Miyazaki and Shinji Saito

  4. A Dynamic Service Description for Mobile Environments

    OpenAIRE

    Verma, Rohit; Srivastava, Abhishek

    2016-01-01

    With the increasing processing capability of mobile platforms and advancements in Internet of Things, modern mobile devices have shown a favorable prospect for on-the-go service provisioning. However, there is much to be done to realize this. A detailed, dynamic, and lightweight service description is an important requirement for automatic and efficient discovery, selection, and subsequent provisioning of services over mobile devices. Traditional approaches for service description are usually...

  5. Entanglement dynamics of qubits in a common environment

    CERN Document Server

    An, J H; Luo, H G; An, Jun-Hong; Wang, Shun-Jin; Luo, Hong-Gang

    2006-01-01

    The entanglement dynamics of a quantum register with two or three two-level atoms interacting with a common environment is analytically studied by the quantum jump method. In contrast to the usual belief that the environment plays a role of destroying the entanglement, it is found that the environment can also produce stable entanglement between the qubits that are prepared initially in a separable state. Our study indicates how the environment noise produces the entanglement in manner of incoherence and emphasizes the constructive role played by the environment in certain tasks of quantum information processing.

  6. Qubit dynamics in a q-deformed oscillators environment

    CERN Document Server

    L'Innocente, S; Mancini, S

    2009-01-01

    We study the dynamics of one and two qubits plunged in a q-deformed oscillators environment. Specifically we evaluate the decay of quantum coherence and entanglement in time when passing from bosonic to fermionic environments. Slowing down of decoherence in the fermionic case is found. The effect only manifests at finite temperature.

  7. Mapping and tracking of moving objects in dynamic environments

    CSIR Research Space (South Africa)

    Pancham, A

    2012-10-01

    Full Text Available In order for mobile robots to operate in dynamic or real world environments they must be able to localise themselves while building a map of the environment, and detect and track moving objects. This work involves the research and implementation...

  8. On Natural Genetic Engineering: Structural Dynamism in Random Boolean Networks

    CERN Document Server

    Bull, Larry

    2012-01-01

    This short paper presents an abstract, tunable model of genomic structural change within the cell lifecycle and explores its use with simulated evolution. A well-known Boolean model of genetic regulatory networks is extended to include changes in node connectivity based upon the current cell state, e.g., via transposable elements. The underlying behaviour of the resulting dynamical networks is investigated before their evolvability is explored using a version of the NK model of fitness landscapes. Structural dynamism is found to be selected for in non-stationary environments and subsequently shown capable of providing a mechanism for evolutionary innovation when such reorganizations are inherited.

  9. Quantum dynamics of bio-molecular systems in noisy environments

    OpenAIRE

    Huelga S.F.; Plenio M.B.

    2012-01-01

    We discuss three different aspects of the quantum dynamics of bio-molecular systems and more generally complex networks in the presence of strongly coupled environments. Firstly, we make a case for the systematic study of fundamental structural elements underlying the quantum dynamics of these systems, identify such elements and explore the resulting interplay of quantum dynamics and environmental decoherence. Secondly, we critically examine some existing approaches to the numerical descripti...

  10. Development of baseline random vibration environment criteria for Shuttle pallet payload subsystems

    Science.gov (United States)

    On, F. J.

    1984-01-01

    This paper presents a statistical evaluation of measured random vibration response data obtained from the Office of Space Science-1 (OSS-1) pallet payload. The data were measured during the acoustic test simulation (September 1980) and the ascent phase of the flight of STS-3, Orbiter 102 (launched from the Kennedy Space Center on March 22, 1982). Acoustic test efficiency factors are evaluated based on the Dynamic, Acoustic and Thermal Environments (DATE) instrumentation as the source of the measured vibration data. Test efficiency correction to test data is applied in the extrapolation of non-DATE acoustic test data to increase sample population size for improved statistical evaluation. For baseline criteria evaluation and development, data are grouped in accordance with the payload zone in which the component is mounted.

  11. Recurrence and invariant measure of Markov chains in double-infinite random environments

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The concepts of π-irreduciblity, recurrence and transience are introduced into the research field of Markov chains in random environments.That a π-irreducible chain must be either recurrent or transient is proved, a criterion is shown for recurrent Markov chains in double-infinite random environments, the existence of invariant measure of π-irreducible chains in double-infinite environments is discussed,and then Orey's open-questions are partially answered.

  12. Quantum dynamics of bio-molecular systems in noisy environments

    CERN Document Server

    Plenio, M B

    2012-01-01

    We discuss three different aspects of the quantum dynamics of bio-molecular systems and more generally complex networks in the presence of strongly coupled environments. Firstly, we make a case for the systematic study of fundamental structural elements underlying the quantum dynamics of these systems, identify such elements and explore the resulting interplay of quantum dynamics and environmental decoherence. Secondly, we critically examine some existing approaches to the numerical description of system-environment interaction in the non-perturbative regime and present a promising new method that can overcome some limitations of existing methods. Thirdly, we present an approach towards deciding and quantifying the non-classicality of the action of the environment and the observed system-dynamics. We stress the relevance of these tools for strengthening the interplay between theoretical and experimental research in this field.

  13. Computational Fluid Dynamics In GARUDA Grid Environment

    CERN Document Server

    Roy, Chandra Bhushan

    2011-01-01

    GARUDA Grid developed on NKN (National Knowledge Network) network by Centre for Development of Advanced Computing (C-DAC) hubs High Performance Computing (HPC) Clusters which are geographically separated all over India. C-DAC has been associated with development of HPC infrastructure since its establishment in year 1988. The Grid infrastructure provides a secure and efficient way of accessing heterogeneous resource . Enabling scientific applications on Grid has been researched for some time now. In this regard we have successfully enabled Computational Fluid Dynamics (CFD) application which can help CFD community as a whole in effective manner to carry out computational research which requires huge compuational resource beyond once in house capability. This work is part of current on-going project Grid GARUDA funded by Department of Information Technology.

  14. Random Scenario Generation for a Multiple Target Tracking Environment Evaluation

    DEFF Research Database (Denmark)

    Hussain, Dil Muhammad Akbar

    2006-01-01

    The paper presents a simulation study on the generation of a random scenario for the performance of track splitting algorithm on a digital signal processor.  Much of the previous work [1] was done on specific (deterministic) scenarios. One of the reasons for considering the specific scenarios...

  15. Imaging plants dynamics in heterogenic environments.

    Science.gov (United States)

    Fiorani, Fabio; Rascher, Uwe; Jahnke, Siegfried; Schurr, Ulrich

    2012-04-01

    Noninvasive imaging sensors and computer vision approaches are key technologies to quantify plant structure, physiological status, and performance. Today, imaging sensors exploit a wide range of the electromagnetic spectrum, and they can be deployed to measure a growing number of traits, also in heterogenic environments. Recent advances include the possibility to acquire high-resolution spectra by imaging spectroscopy and classify signatures that might be informative of plant development, nutrition, health, and disease. Three-dimensional (3D) reconstruction of surfaces and volume is of particular interest, enabling functional and mechanistic analyses. While taking pictures is relatively easy, quantitative interpretation often remains challenging and requires integrating knowledge of sensor physics, image analysis, and complex traits characterizing plant phenotypes.

  16. Dynamics of generalized Gaussian polymeric structures in random layered flows

    Science.gov (United States)

    Katyal, Divya; Kant, Rama

    2015-04-01

    We develop a formalism for the dynamics of a flexible branched polymer with arbitrary topology in the presence of random flows. This is achieved by employing the generalized Gaussian structure (GGS) approach and the Matheron-de Marsily model for the random layered flow. The expression for the average square displacement (ASD) of the center of mass of the GGS is obtained in such flow. The averaging is done over both the thermal noise and the external random flow. Although the formalism is valid for branched polymers with various complex topologies, we mainly focus here on the dynamics of the flexible star and dendrimer. We analyze the effect of the topology (the number and length of branches for stars and the number of generations for dendrimers) on the dynamics under the influence of external flow, which is characterized by their root-mean-square velocity, persistence flow length, and flow exponent α . Our analysis shows two anomalous power-law regimes, viz., subdiffusive (intermediate-time polymer stretching and flow-induced diffusion) and superdiffusive (long-time flow-induced diffusion). The influence of the topology of the GGS is unraveled in the intermediate-time regime, while the long-time regime is only weakly dependent on the topology of the polymer. With the decrease in the value of α , the magnitude of the ASD decreases, while the temporal exponent of the ASD increases in both the time regimes. Also there is an increase in both the magnitude of the ASD and the crossover time (from the subdiffusive to the superdiffusive regime) with an increase in the total mass of the polymeric structure.

  17. Failure of random matrix theory to correctly describe quantum dynamics.

    Science.gov (United States)

    Kottos, T; Cohen, D

    2001-12-01

    Consider a classically chaotic system that is described by a Hamiltonian H(0). At t=0 the Hamiltonian undergoes a sudden change (H)0-->H. We consider the quantum-mechanical spreading of the evolving energy distribution, and argue that it cannot be analyzed using a conventional random-matrix theory (RMT) approach. Conventional RMT can be trusted only to the extent that it gives trivial results that are implied by first-order perturbation theory. Nonperturbative effects are sensitive to the underlying classical dynamics, and therefore the Planck's over 2 pi-->0 behavior for effective RMT models is strikingly different from the correct semiclassical limit.

  18. Critical Random Walk in Random Environment on Trees of Exponential Growth

    OpenAIRE

    Pemantle, Robin

    2004-01-01

    This paper studies the behavior of RWRE on trees in the critical case left open in previous work. For trees of exponential growth, a random perturbation of the transition probabilities can change a transient random walk into a recurrent one. This is the opposite of what occurs on trees of sub-exponential growth.

  19. Aluminum Honeycomb Characteristics in Dynamic Crush Environments

    Energy Technology Data Exchange (ETDEWEB)

    Bateman, Vesta I.; Swanson, Lloyd H.

    1999-07-01

    Fifteen aluminum honeycomb cubes (3 in.) have been crushed in the Mechanical Shock Laboratory's drop table testing machines. This report summarizes shock experiments with honeycomb densities of 22.1 pcf and 38.0 pcf and with crush weights of 45 lb, 168 lb, and 268 lb. The honeycomb samples were crushed in all three orientations, W, L, and T. Most of the experiments were conducted at an impact velocity of {approx}40 fps, but higher velocities of up to 90 fps were used for selected experiments. Where possible, multiple experiments were conducted for a specific orientation and density of the honeycomb samples. All results are for Hexcel honeycomb except for one experiment with Alcore honeycomb and have been evaluated for validity. This report contains the raw acceleration data measured on the top of the drop table carriage, pictures of the crushed samples, and normalized force-displacement curves for all fifteen experiments. These data are not strictly valid for material characteristics in L and T orientations because the cross-sectional area of the honeycomb changed (split) during the crush. However, these are the best data available at this time. These dynamic crush data do suggest a significant increase in crush strength to 8000 psi ({approximately} 25-30% increase) over quasi-static values of {approximately}6000 psi for the 38.0 pcf Hexcel Honeycomb in the T-orientation. An uncertainty analysis is included and estimates the error in these data.

  20. Dynamic Optical Networks for Future Internet Environments

    Science.gov (United States)

    Matera, Francesco

    2014-05-01

    This article reports an overview on the evolution of the optical network scenario taking into account the exponential growth of connected devices, big data, and cloud computing that is driving a concrete transformation impacting the information and communication technology world. This hyper-connected scenario is deeply affecting relationships between individuals, enterprises, citizens, and public administrations, fostering innovative use cases in practically any environment and market, and introducing new opportunities and new challenges. The successful realization of this hyper-connected scenario depends on different elements of the ecosystem. In particular, it builds on connectivity and functionalities allowed by converged next-generation networks and their capacity to support and integrate with the Internet of Things, machine-to-machine, and cloud computing. This article aims at providing some hints of this scenario to contribute to analyze impacts on optical system and network issues and requirements. In particular, the role of the software-defined network is investigated by taking into account all scenarios regarding data centers, cloud computing, and machine-to-machine and trying to illustrate all the advantages that could be introduced by advanced optical communications.

  1. The Dynamical Environment of Dawn at Vesta

    CERN Document Server

    Tricarico, Pasquale

    2010-01-01

    Dawn is the first NASA mission to operate in the vicinity of the two most massive asteroids in the main belt, Ceres and Vesta. This double-rendezvous mission is enabled by the use of low-thrust solar electric propulsion. Dawn will arrive at Vesta in 2011 and will operate in its vicinity for approximately one year. Vesta's mass and non-spherical shape, coupled with its rotational period, presents very interesting challenges to a spacecraft that depends principally upon low-thrust propulsion for trajectory-changing maneuvers. The details of Vesta's high-order gravitational terms will not be determined until after Dawn's arrival at Vesta, but it is clear that their effect on Dawn operations creates the most complex operational environment for a NASA mission to date. Gravitational perturbations give rise to oscillations in Dawn's orbital radius, and it is found that trapping of the spacecraft is possible near the 1:1 resonance between Dawn's orbital period and Vesta's rotational period, located approximately betw...

  2. THE CONSTRUCTION OF MULTITYPE CANONICAL MARKOV BRANCHING CHAINS IN RANDOM ENVIRONMENTS

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The investigation for branching processes has a long history by their strong physics background, but only a few authors have investigated the branching processes in random environments. First of all, the author introduces the concepts of the multitype canonical Markov branching chain in random environment (CMBCRE) and multitype Markov branching chain in random environment (MBCRE) and proved that CMBCRE must be MBCRE, and any MBCRE must be equivalent to another CMBCRE in distribution. The main results of this article are the construction of CMBCRE and some of its probability properties.

  3. Spatial birth-and-death processes in random environment

    OpenAIRE

    Fernandez, Roberto; Ferrari, Pablo A.; Guerberoff, Gustavo R.

    2004-01-01

    We consider birth-and-death processes of objects (animals) defined in ${\\bf Z}^d$ having unit death rates and random birth rates. For animals with uniformly bounded diameter we establish conditions on the rate distribution under which the following holds for almost all realizations of the birth rates: (i) the process is ergodic with at worst power-law time mixing; (ii) the unique invariant measure has exponential decay of (spatial) correlations; (iii) there exists a perfect-simulation algorit...

  4. Lotka-Volterra system in a random environment

    Science.gov (United States)

    Dimentberg, Mikhail F.

    2002-03-01

    Classical Lotka-Volterra (LV) model for oscillatory behavior of population sizes of two interacting species (predator-prey or parasite-host pairs) is conservative. This may imply unrealistically high sensitivity of the system's behavior to environmental variations. Thus, a generalized LV model is considered with the equation for preys' reproduction containing the following additional terms: quadratic ``damping'' term that accounts for interspecies competition, and term with white-noise random variations of the preys' reproduction factor that simulates the environmental variations. An exact solution is obtained for the corresponding Fokker-Planck-Kolmogorov equation for stationary probability densities (PDF's) of the population sizes. It shows that both population sizes are independent γ-distributed stationary random processes. Increasing level of the environmental variations does not lead to extinction of the populations. However it may lead to an intermittent behavior, whereby one or both population sizes experience very rare and violent short pulses or outbreaks while remaining on a very low level most of the time. This intermittency is described analytically by direct use of the solutions for the PDF's as well as by applying theory of excursions of random functions and by predicting PDF of peaks in the predators' population size.

  5. Lotka-Volterra system in a random environment.

    Science.gov (United States)

    Dimentberg, Mikhail F

    2002-03-01

    Classical Lotka-Volterra (LV) model for oscillatory behavior of population sizes of two interacting species (predator-prey or parasite-host pairs) is conservative. This may imply unrealistically high sensitivity of the system's behavior to environmental variations. Thus, a generalized LV model is considered with the equation for preys' reproduction containing the following additional terms: quadratic "damping" term that accounts for interspecies competition, and term with white-noise random variations of the preys' reproduction factor that simulates the environmental variations. An exact solution is obtained for the corresponding Fokker-Planck-Kolmogorov equation for stationary probability densities (PDF's) of the population sizes. It shows that both population sizes are independent gamma-distributed stationary random processes. Increasing level of the environmental variations does not lead to extinction of the populations. However it may lead to an intermittent behavior, whereby one or both population sizes experience very rare and violent short pulses or outbreaks while remaining on a very low level most of the time. This intermittency is described analytically by direct use of the solutions for the PDF's as well as by applying theory of excursions of random functions and by predicting PDF of peaks in the predators' population size.

  6. Random walkers in one-dimensional random environments: exact renormalization group analysis.

    Science.gov (United States)

    Le Doussal, P; Monthus, C; Fisher, D S

    1999-05-01

    Sinai's model of diffusion in one dimension with random local bias is studied by a real space renormalization group, which yields exact results at long times. The effects of an additional small uniform bias force are also studied. We obtain analytically the scaling form of the distribution of the position x(t) of a particle, the probability of it not returning to the origin, and the distributions of first passage times, in an infinite sample as well as in the presence of a boundary and in a finite but large sample. We compute the distribution of the meeting time of two particles in the same environment. We also obtain a detailed analytic description of the thermally averaged trajectories by computing quantities such as the joint distribution of the number of returns and of the number of jumps forward. These quantities obey multifractal scaling, characterized by generalized persistence exponents theta(g) which we compute. In the presence of a small bias, the number of returns to the origin becomes finite, characterized by a universal scaling function which we obtain. The full statistics of the distribution of successive times of return of thermally averaged trajectories is obtained, as well as detailed analytical information about correlations between directions and times of successive jumps. The two-time distribution of the positions of a particle, x(t) and x(t') with t>t', is also computed exactly. It is found to exhibit "aging" with several time regimes characterized by different behaviors. In the unbiased case, for t-t' approximately t'alpha with alpha>1, it exhibits a ln t/ln t' scaling, with a singularity at coinciding rescaled positions x(t)=x(t'). This singularity is a novel feature, and corresponds to particles that remain in a renormalized valley. For closer times alpha<1, the two-time diffusion front exhibits a quasiequilibrium regime with a ln(t-t')/ln t' behavior which we compute. The crossover to a t/t' aging form in the presence of a small bias is

  7. Using Genetic Algorithms for Navigation Planning in Dynamic Environments

    Directory of Open Access Journals (Sweden)

    Ferhat Uçan

    2012-01-01

    Full Text Available Navigation planning can be considered as a combination of searching and executing the most convenient flight path from an initial waypoint to a destination waypoint. Generally the aim is to follow the flight path, which provides minimum fuel consumption for the air vehicle. For dynamic environments, constraints change dynamically during flight. This is a special case of dynamic path planning. As the main concern of this paper is flight planning, the conditions and objectives that are most probable to be used in navigation problem are considered. In this paper, the genetic algorithm solution of the dynamic flight planning problem is explained. The evolutionary dynamic navigation planning algorithm is developed for compensating the existing deficiencies of the other approaches. The existing fully dynamic algorithms process unit changes to topology one modification at a time, but when there are several such operations occurring in the environment simultaneously, the algorithms are quite inefficient. The proposed algorithm may respond to the concurrent constraint updates in a shorter time for dynamic environment. The most secure navigation of the air vehicle is planned and executed so that the fuel consumption is minimum.

  8. Recurrence and invariant measure of Markov chains in double-infinite random environments

    Institute of Scientific and Technical Information of China (English)

    XING; Xiusan

    2001-01-01

    [1]Cogburn, R., Markov chains in random environments: The case of Markovian environments, Ann. Probab., 1980, 8(3): 908—916.[2]Cogburn, R., The ergodic theory of Markov chains in random environments, Z. W., 1984, 66(2): 109—128.[3]Orey, S., Markov chains with stochastically stationary transition probabilities, Ann. Probab., 1991, 19(3): 907—928.[4]Li Yingqiu, Some notes of Markov chains in Markov environments, Advances in Mathematics(in Chinese), 1999, 28(4): 358—360.

  9. Implementation of a Mobile Robot Platform Navigating in Dynamic Environment

    Directory of Open Access Journals (Sweden)

    Belaidi Hadjira

    2017-01-01

    Full Text Available Currently, problems of autonomous wheeled mobile robots in unknown environments are great challenge. Obstacle avoidance and path planning are the back bone of autonomous control as it makes robot able to reach its destination without collision. Dodging obstacles in dynamic and uncertain environment is the most complex part of obstacle avoidance and path planning tasks. This work deals with the implementation of an easy approach of static and dynamic obstacles avoidance. The robot starts by executing a free optimal path loaded into its controller; then, it uses its sensors to avoid the unexpected obstacles which may occur in that path during navigation.

  10. Context-aware Authorization in Highly Dynamic Environments

    CERN Document Server

    Tigli, Jean-Yves; Rey, Gaetan; Hourdin, Vincent; Riveill, Michel

    2011-01-01

    Highly dynamic computing environments, like ubiquitous and pervasive computing environments, require frequent adaptation of applications. Context is a key to adapt suiting user needs. On the other hand, standard access control trusts users once they have authenticated, despite the fact that they may reach unauthorized contexts. We analyse how taking into account dynamic information like context in the authorization subsystem can improve security, and how this new access control applies to interaction patterns, like messaging or eventing. We experiment and validate our approach using context as an authorization factor for eventing in Web service for device (like UPnP or DPWS), in smart home security.

  11. Context-aware Authorization in Highly Dynamic Environments

    Directory of Open Access Journals (Sweden)

    Vincent Hourdin

    2009-09-01

    Full Text Available Highly dynamic computing environments, like ubiquitous and pervasive computing environments, require frequent adaptation of applications. Context is a key to adapt suiting user needs. On the other hand, standard access control trusts users once they have authenticated, despite the fact that they may reach unauthorized contexts. We analyse how taking into account dynamic information like context in the authorization subsystem can improve security, and how this new access control applies to interaction patterns, like messaging or eventing. We experiment and validate our approach using context as an authorization factor for eventing in Web service for device (like UPnP or DPWS, in smart home security.

  12. Growth versus environment in dynamic models of capital accumulation

    Directory of Open Access Journals (Sweden)

    Toichiro Asada

    2002-01-01

    Full Text Available In this paper, we study the economic implications of the trade off between growth and environment in the context of dynamic models of capital accumulation. The collective solution is formulated in terms of dynamic optimization of the central planner, and the decentralized solution is formulated in terms of differential game between workers and capitalists. We compare the economic properties of two solutions.

  13. Hierarchical Architecture for Enterprise Information System under Dynamic Environment

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In a dynamic environment, it is vital for enterpris e to have flexible information system architecture to integrate ERP, Supply Chain Management (SCM) and E-Commerce (EC). The traditional systems are established o n the ERP-centered flat architecture. This architecture has some disadvantages in supporting the dynamics of enterprises. Firstly, ERP is already a very expens ive and complex system; the extension based on it can only increase the complexi ty and make the implementation more expensive and risk...

  14. Equilibrium fluctuations for gradient exclusion processes with conductances in random environments

    CERN Document Server

    Farfan, Jonathan; Valentim, Fabio J

    2009-01-01

    We study the equilibrium fluctuations for a gradient exclusion process with conductances in random environments, which can be viewed as a central limit theorem for the empirical distribution of particles when the system starts from an equilibrium measure.

  15. Dynamics of clusters and molecules in contact with an environment

    CERN Document Server

    Dinh, P M; Suraud, E

    2009-01-01

    We present recent theoretical investigations on the dynamics of metal clusters in contact with an environment, deposited of embedded. This concerns soft deposition as well as irradiation of the deposited/embedded clusters by intense laser pulses. We discuss examples of applications for two typical test cases, Na clusters deposited on MgO(001) surface and Na clusters in/on Ar substrate. Both environments are insulators with sizeable polarizability. They differ in their geometrical and mechanical properties.

  16. Understanding the Offender/Environment Dynamic for Computer Crimes

    DEFF Research Database (Denmark)

    Willison, Robert Andrew

    2005-01-01

    practices by possiblyhighlighting new areas for safeguard implementation. To help facilitate a greaterunderstanding of the offender/environment dynamic, this paper assesses the feasibilityof applying criminological theory to the IS security context. More specifically, threetheories are advanced, which focus......There is currently a paucity of literature focusing on the relationship between theactions of staff members, who perpetrate some form of computer abuse, and theorganisational environment in which such actions take place. A greater understandingof such a relationship may complement existing security...

  17. Conformation and intramolecular relaxation dynamics of semiflexible randomly hyperbranched polymers

    Science.gov (United States)

    Kumar, Amit; Rai, Gobind Ji; Biswas, Parbati

    2013-03-01

    The conformational and dynamic properties of semiflexible randomly hyperbranched polymers are investigated in dilute solutions within the framework of optimized Rouse-Zimm formalism. Semiflexibility is incorporated by restricting the directions and orientations of the respective bond vectors, while hydrodynamic interactions are modeled through the preaveraged Oseen tensor. The effect of semiflexibility is typically reflected in the intermediate frequency regime of the viscoelastic relaxation moduli where the bond orientation angle restores the characteristic power-law scaling in fractal structures, as in randomly hyperbranched polymers. Despite the absence of this power-law scaling regime in flexible randomly hyperbranched polymers and in earlier models of semiflexible randomly branched polymers due to weak disorder [C. von Ferber and A. Blumen, J. Chem. Phys. 116, 8616 (2002)], 10.1063/1.1470198, this power-law behavior may be reinstated by explicitly modeling hyperbranched polymers as a Vicsek fractals. The length of this power-law zone in the intermediate frequency region is a combined function of the number of monomers and the degree of semiflexibility. A clear conformational transition from compact to open structures is facilitated by changing the bond orientation angle, where the compressed conformations are compact, while the expanded ones are relatively non-compact. The extent of compactness in the compressed conformations are much less compared to the semiflexible dendrimers, which resemble hard spheres. The fractal dimensions of the compressed and expanded conformations calculated from the Porod's scaling law vary as a function of the bond orientation angle, spanning the entire range of three distinct scaling regimes of linear polymers in three-dimensions. The results confirm that semiflexibility exactly accounts for the excluded volume interactions which are expected to be significant for such polymers with complex topologies.

  18. 75 FR 14467 - In the Matter of: Certain Dynamic Random Access Memory Semiconductors and Products Containing...

    Science.gov (United States)

    2010-03-25

    ... COMMISSION In the Matter of: Certain Dynamic Random Access Memory Semiconductors and Products Containing Same... random access memory semiconductors and products containing same, including memory modules, by reason of... after importation of certain dynamic random access memory semiconductors or products containing the...

  19. Inflaton and dark matter in a random environment

    CERN Document Server

    Haba, Z

    2016-01-01

    We consider a Lagrangian of interacting scalar fields. We divide the Lagrangian into two parts. The first part is to describe either the dark matter (DM) or the inflaton (IN) depending on the choice of the self-interaction. The second part constitutes an environment of an infinite number of scalar fields interacting linearly with the first part. We approximate the environment by a white noise obtaining a Langevin equation. We show that the resulting Fokker-Planck equation has stationary solutions determining a relation between the diffusion constant, the cosmological constant and the temperature. As a consequence of the Langevin equation the energy-momentum tensor of the dark matter and the inflaton is not conserved. The compensating energy-momentum is interpreted as the dark energy (DE). We insert the total energy-momentum in Einstein equations. We show that under special initial conditions Einstein equations have a solution with a constant ratio of DM/DE and IN/DE density.

  20. Dynamic Lighting Concept in Danish Office Environment with Daylight Contribution

    DEFF Research Database (Denmark)

    Logadóttir, Ásta; Christoffersen, Jens

    This study explores thirty subjects' preferences for a dynamic lighting concept consisting of a general lighting system and a LED desk lamp (task lighting). The study was conducted in a daylight laboratory furnished as a typical Danish office environment with daylight access, and the subjects were...

  1. Delivering Interactive Multimedia Services in Dynamic Pervasive Computing Environments

    NARCIS (Netherlands)

    Hesselman, C.; Cesar Garcia, P.S.; Vaishnavi, I.; Boussard, M.; Kernchen, R.; Meissner, S.; Spedalieri, A.; Sinfreu, A.; Raeck, C.

    2008-01-01

    This paper introduces a distributed system for next generation multimedia support in dynamically changing pervasive computing environments. The overall goal is to enhance the experience of mobile users by intelligently adapting the way a service is presented, in particular by adapting the way the us

  2. Dynamic Lighting Concept in Danish Office Environment with Daylight Contribution

    DEFF Research Database (Denmark)

    Logadóttir, Ásta; Christoffersen, Jens

    This study explores thirty subjects' preferences for a dynamic lighting concept consisting of a general lighting system and a LED desk lamp (task lighting). The study was conducted in a daylight laboratory furnished as a typical Danish office environment with daylight access, and the subjects were...

  3. Emerging Trends in Science Education in a Dynamic Academic Environment

    Science.gov (United States)

    Avwiri, H. E.

    2016-01-01

    Emerging Trends in Science Education in a Dynamic Academic Environment highlights the changes that have occurred in science education particularly in institutions of higher learning in southern Nigeria. Impelled by the fact that most Nigerian Universities and Colleges of Education still adhere to the practices and teaching methodologies of the…

  4. Self-Avoiding Random Dynamics on Integer Complex Systems

    CERN Document Server

    Hamze, Firas; de Freitas, Nando

    2011-01-01

    This paper introduces a new specialized algorithm for equilibrium Monte Carlo sampling of binary-valued systems, which allows for large moves in the state space. This is achieved by constructing self-avoiding walks (SAWs) in the state space. As a consequence, many bits are flipped in a single MCMC step. We name the algorithm SARDONICS, an acronym for Self-Avoiding Random Dynamics on Integer Complex Systems. The algorithm has several free parameters, but we show that Bayesian optimization can be used to automatically tune them. SARDONICS performs remarkably well in a broad number of sampling tasks: toroidal ferromagnetic and frustrated Ising models, 3D Ising models, restricted Boltzmann machines and chimera graphs arising in the design of quantum computers.

  5. Scheduling in a random environment: stability and asymptotic optimality

    CERN Document Server

    Ayesta, U; Jonckheere, M; Verloop, I M

    2011-01-01

    We investigate the scheduling of a common resource between several concurrent users when the feasible transmission rate of each user varies randomly over time. Time is slotted and users arrive and depart upon service completion. This may model for example the flow-level behavior of end-users in a narrowband HDR wireless channel (CDMA 1xEV-DO). As performance criteria we consider the stability of the system and the mean delay experienced by the users. Given the complexity of the problem we investigate the fluid-scaled system, which allows to obtain important results and insights for the original system: (1) We characterize for a large class of scheduling policies the stability conditions and identify a set of maximum stable policies, giving in each time slot preference to users being in their best possible channel condition. We find in particular that many opportunistic scheduling policies like Score-Based, Proportionally Best or Potential Improvement are stable under the maximum stability conditions, whereas ...

  6. Cone Algorithm of Spinning Vehicles under Dynamic Coning Environment

    Directory of Open Access Journals (Sweden)

    Shuang-biao Zhang

    2015-01-01

    Full Text Available Due to the fact that attitude error of vehicles has an intense trend of divergence when vehicles undergo worsening coning environment, in this paper, the model of dynamic coning environment is derived firstly. Then, through investigation of the effect on Euler attitude algorithm for the equivalency of traditional attitude algorithm, it is found that attitude error is actually the roll angle error including drifting error and oscillating error, which is induced directly by dynamic coning environment and further affects the pitch angle and yaw angle through transferring. Based on definition of the cone frame and cone attitude, a cone algorithm is proposed by rotation relationship to calculate cone attitude, and the relationship between cone attitude and Euler attitude of spinning vehicle is established. Through numerical simulations with different conditions of dynamic coning environment, it is shown that the induced error of Euler attitude fluctuates by the variation of precession and nutation, especially by that of nutation, and the oscillating frequency of roll angle error is twice that of pitch angle error and yaw angle error. In addition, the rotation angle is more competent to describe the spinning process of vehicles under coning environment than Euler angle gamma, and the real pitch angle and yaw angle are calculated finally.

  7. Physical limits on bacterial navigation in dynamic environments.

    Science.gov (United States)

    Hein, Andrew M; Brumley, Douglas R; Carrara, Francesco; Stocker, Roman; Levin, Simon A

    2016-01-01

    Many chemotactic bacteria inhabit environments in which chemicals appear as localized pulses and evolve by processes such as diffusion and mixing. We show that, in such environments, physical limits on the accuracy of temporal gradient sensing govern when and where bacteria can accurately measure the cues they use to navigate. Chemical pulses are surrounded by a predictable dynamic region, outside which bacterial cells cannot resolve gradients above noise. The outer boundary of this region initially expands in proportion to the square root of time before rapidly contracting. Our analysis also reveals how chemokinesis-the increase in swimming speed many bacteria exhibit when absolute chemical concentration exceeds a threshold-may serve to enhance chemotactic accuracy and sensitivity when the chemical landscape is dynamic. More generally, our framework provides a rigorous method for partitioning bacteria into populations that are 'near' and 'far' from chemical hotspots in complex, rapidly evolving environments such as those that dominate aquatic ecosystems.

  8. Multiagent Flight Control in Dynamic Environments with Cooperative Coevolutionary Algorithms

    Science.gov (United States)

    Knudson, Matthew D.; Colby, Mitchell; Tumer, Kagan

    2014-01-01

    Dynamic flight environments in which objectives and environmental features change with respect to time pose a difficult problem with regards to planning optimal flight paths. Path planning methods are typically computationally expensive, and are often difficult to implement in real time if system objectives are changed. This computational problem is compounded when multiple agents are present in the system, as the state and action space grows exponentially. In this work, we use cooperative coevolutionary algorithms in order to develop policies which control agent motion in a dynamic multiagent unmanned aerial system environment such that goals and perceptions change, while ensuring safety constraints are not violated. Rather than replanning new paths when the environment changes, we develop a policy which can map the new environmental features to a trajectory for the agent while ensuring safe and reliable operation, while providing 92% of the theoretically optimal performance

  9. Physical Limits on Bacterial Navigation in Dynamic Environments

    CERN Document Server

    Hein, Andrew M; Carrara, Francesco; Stocker, Roman; Levin, Simon A

    2015-01-01

    Many chemotactic bacteria inhabit environments in which chemicals appear as localized pulses and evolve by processes such as diffusion and mixing. We show that, in such environments, physical limits on the accuracy of temporal gradient sensing govern when and where bacteria can accurately measure the cues they use to navigate. Chemical pulses are surrounded by a predictable dynamic region, outside which bacterial cells cannot resolve gradients above noise. The outer boundary of this region initially expands in proportion to $\\sqrt{t}$, before rapidly contracting. Our analysis also reveals how chemokinesis - the increase in swimming speed many bacteria exhibit when absolute chemical concentration exceeds a threshold - may serve to enhance chemotactic accuracy and sensitivity when the chemical landscape is dynamic. More generally, our framework provides a rigorous method for partitioning bacteria into populations that are "near" and "far" from chemical hotspots in complex, rapidly evolving environments such as ...

  10. Robot Control for Dynamic Environment Using Vision and Autocalibration

    DEFF Research Database (Denmark)

    Larsen, Thomas Dall; Lildballe, Jacob; Andersen, Nils Axel;

    1997-01-01

    To enhance flexibility and extend the area of applications for robotic systems, it is important that the systems are capable ofhandling uncertainties and respond to (random) human behaviour.A vision systemmust very often be able to work in a dynamical ``noisy'' world where theplacement ofobjects...... checkers with a human opponent using a camera to determine wherethe board and pieces are located and when the human has made his move. The paperprimarily focuses on the vision aspect of the implemented system....

  11. Conformal dynamics of fractal growth patterns without randomness

    Science.gov (United States)

    Davidovitch; Feigenbaum; Hentschel; Procaccia

    2000-08-01

    Many models of fractal growth patterns (such as diffusion limited aggregation and dielectric breakdown models) combine complex geometry with randomness; this double difficulty is a stumbling block to their elucidation. In this paper we introduce a wide class of fractal growth models with highly complex geometry but without any randomness in their growth rules. The models are defined in terms of deterministic itineraries of iterated conformal maps, generating the function Phi((n))(omega) which maps the exterior of the unit circle to the exterior of an n-particle growing aggregate. The complexity of the evolving interfaces is fully contained in the deterministic dynamics of the conformal map Phi((n))(omega). We focus attention on a class of growth models in which the itinerary is quasiperiodic. Such itineraries can be approached via a series of rational approximants. The analytic power gained is used to introduce a scaling theory of the fractal growth patterns and to identify the exponent that determines the fractal dimension.

  12. Dynamical and quenched random matrices and homolumo gap

    Science.gov (United States)

    Andrić, Ivan; Jonke, Larisa; Jurman, Danijel; Nielsen, Holger Bech

    2017-04-01

    We consider a rather general type of matrix model, where the matrix M represents a Hamiltonian of the interaction of a bosonic system with a single fermion. The fluctuations of the matrix are partly given by some fundamental randomness and partly dynamically, even quantum mechanically. We then study the homolumo-gap effect, which means that we study how the level density for the single-fermion Hamiltonian matrix M gets attenuated near the Fermi surface. In the case of the quenched randomness (the fundamental one) dominating the quantum mechanical one we show that in the first approximation the homolumo gap is characterized by the absence of single-fermion levels between two steep gap boundaries. The filled and empty level densities are in this first approximation just pushed, each to its side. In the next approximation these steep drops in the spectral density are smeared out to have an error-function shape. The studied model could be considered as a first step toward the more general case of considering a whole field of matrices — defined say on some phase space — rather than a single matrix.

  13. Dynamical and Quenched Random Matrices and Homolumo Gap

    CERN Document Server

    Andric, Ivan; Jurman, Danijel; Nielsen, Holger Bech

    2014-01-01

    We consider a rather general type of matrix model, in which the fluctuations of the matrix are partly given by some fundamental randomness and partly dynamically, even quantum mechanically. We then study the homolumo-gap effect, which means that we study how the level density gets attenuated near the Fermi surface, while considering the matrix as the Hamiltonian matrix for a single fermion interacting with this matrix. In the case of the quenched randomness (the fundamental one) dominating the quantum mechanical one and not too small coupling to the fermions we calculate the homolumo gap that in the first approximation consists of there being essentially no levels for the a single fermion between two steep gap boundaries. The filled and empty level densities are in this first approximation just pushed, each to its side. In the next approximation these steep drops in the spectral density are smeared out to have an error-function shape. The studied model could be considered as a first step towards the more gene...

  14. Low-dimensional dynamics of structured random networks

    Science.gov (United States)

    Aljadeff, Johnatan; Renfrew, David; Vegué, Marina; Sharpee, Tatyana O.

    2016-02-01

    Using a generalized random recurrent neural network model, and by extending our recently developed mean-field approach [J. Aljadeff, M. Stern, and T. Sharpee, Phys. Rev. Lett. 114, 088101 (2015), 10.1103/PhysRevLett.114.088101], we study the relationship between the network connectivity structure and its low-dimensional dynamics. Each connection in the network is a random number with mean 0 and variance that depends on pre- and postsynaptic neurons through a sufficiently smooth function g of their identities. We find that these networks undergo a phase transition from a silent to a chaotic state at a critical point we derive as a function of g . Above the critical point, although unit activation levels are chaotic, their autocorrelation functions are restricted to a low-dimensional subspace. This provides a direct link between the network's structure and some of its functional characteristics. We discuss example applications of the general results to neuroscience where we derive the support of the spectrum of connectivity matrices with heterogeneous and possibly correlated degree distributions, and to ecology where we study the stability of the cascade model for food web structure.

  15. THE ERGODICITY FOR BI-IMMIGRATION BIRTH AND DEATH PROCESSES IN RANDOM ENVIRONMENT

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The concepts of bi-immigration birth and death density matrix in random environment and bi-immigration birth and death process in random environment are introduced. For any bi-immigration birth and death matrix in random environment Q(θ)with birth rate λ< death rate μ, the following results are proved, (1) there is an unique q-process in random environment, -P(θ*(0);t) = (-p(θ*(0);t,i,j),i,j ≥ 0), which is ergodic, that is, limt→∞ -p(θ*(0);t,i,j) = -π(θ*(0);j) ≥ 0 does not depend on i ≥ 0 and Σj≥0 -π(θ*(0);j) = 1, (2) there is a bi-immigration birth and death process in random environment (X* = {Xt, t ≥ 0}, ξ* = {ξt, t ∈ (-∞, ∞)}) with random transition matrix -P(θ* (0); t) such that X* is a strictly stationary process.

  16. Adaptive randomized algorithms for analysis and design of control systems under uncertain environments

    Science.gov (United States)

    Chen, Xinjia

    2015-05-01

    We consider the general problem of analysis and design of control systems in the presence of uncertainties. We treat uncertainties that affect a control system as random variables. The performance of the system is measured by the expectation of some derived random variables, which are typically bounded. We develop adaptive sequential randomized algorithms for estimating and optimizing the expectation of such bounded random variables with guaranteed accuracy and confidence level. These algorithms can be applied to overcome the conservatism and computational complexity in the analysis and design of controllers to be used in uncertain environments. We develop methods for investigating the optimality and computational complexity of such algorithms.

  17. Markov Localization for Mobile Robots in Dynamic Environments

    CERN Document Server

    Burgard, W; Thrun, S; 10.1613/jair.616

    2011-01-01

    Localization, that is the estimation of a robot's location from sensor data, is a fundamental problem in mobile robotics. This papers presents a version of Markov localization which provides accurate position estimates and which is tailored towards dynamic environments. The key idea of Markov localization is to maintain a probability density over the space of all locations of a robot in its environment. Our approach represents this space metrically, using a fine-grained grid to approximate densities. It is able to globally localize the robot from scratch and to recover from localization failures. It is robust to approximate models of the environment (such as occupancy grid maps) and noisy sensors (such as ultrasound sensors). Our approach also includes a filtering technique which allows a mobile robot to reliably estimate its position even in densely populated environments in which crowds of people block the robot's sensors for extended periods of time. The method described here has been implemented and teste...

  18. Optimal mutation rates in dynamic environments: The eigen model

    Science.gov (United States)

    Ancliff, Mark; Park, Jeong-Man

    2011-03-01

    We consider the Eigen quasispecies model with a dynamic environment. For an environment with sharp-peak fitness in which the most-fit sequence moves by k spin-flips each period T we find an asymptotic stationary state in which the quasispecies population changes regularly according to the regular environmental change. From this stationary state we estimate the maximum and the minimum mutation rates for a quasispecies to survive under the changing environment and calculate the optimum mutation rate that maximizes the population growth. Interestingly we find that the optimum mutation rate in the Eigen model is lower than that in the Crow-Kimura model, and at their optimum mutation rates the corresponding mean fitness in the Eigen model is lower than that in the Crow-Kimura model, suggesting that the mutation process which occurs in parallel to the replication process as in the Crow-Kimura model gives an adaptive advantage under changing environment.

  19. Dynamical role of system-environment correlations in non-Markovian dynamics

    CERN Document Server

    Mazzola, Laura; Modi, Kavan; Paternostro, Mauro

    2012-01-01

    We analyse the role played by system-environment correlations in the emergence of non-Markovian dynamics. By working within the framework developed in Breuer et al., Phys. Rev. Lett. 103, 210401 (2009), we unveil a fundamental connection between non-Markovian behaviour and dynamics of system-environment correlations. We derive an upper bound to the derivative of rate of change of the distinguishability between different states of the system that explicitly depends on the development and establishment of correlations between system and environment. We illustrate our results using a fully solvable spin-chain model, which allows us to gain insight on the mechanisms triggering non-Markovian evolution.

  20. λ-PDF AND GEGENBAUER POLYNOMIAL APPROXIMATION FOR DYNAMIC RESPONSE PROBLEMS OF RANDOM STRUCTURES

    Institute of Scientific and Technical Information of China (English)

    FANG Tong; LENG Xiaolei; MA Xiaoping; MENG Guang

    2004-01-01

    A bounded, mono-peak, and symmetrically distributed probability density function,called λ-PDF, together with the Gegenbauer polynomial approximation, is used in dynamic response problems of random structures. The λ-PDF can reasonably model a variety of random parameters in engineering random structures. The Gegenbauer polynomial approximation can be viewed as a new extension of the weighted residual method into the random space. Both of them can be easily used by scientists and engineers, and applied to a variety of response problems of random structures. The numerical example shows the effectiveness of the proposed method to study dynamic phenomena in random structures.

  1. Navigation Method for Autonomous Robots in a Dynamic Indoor Environment

    Directory of Open Access Journals (Sweden)

    Stanislav Věchet

    2013-11-01

    Full Text Available The present paper considers issues related to navigation by autonomous mobile robots in overcrowded dynamic indoor environments (e.g., shopping malls, exhibition halls or convention centers. For robots moving among potentially unaware bystanders, safety is a key issue. A navigation method based on mixed potential field path planning is proposed, in cooperation with active artificial landmarks-based localization, in particular the bearing of infrared beacons placed in known coordinates processed via particle filters. Simulation experiments and tests in unmodified real-world environments with the actual robot show the proposed navigation system allows the robot to successfully navigate safely among bystanders.

  2. Sampling Based Trajectory Planning for Robots in Dynamic Human Environments

    DEFF Research Database (Denmark)

    Svenstrup, Mikael

    2010-01-01

    Open-ended human environments, such as pedestrian streets, hospital corridors, train stations etc., are places where robots start to emerge. Hence, being able to plan safe and natural trajectories in these dynamic environments is an important skill for future generations of robots. In this work...... method for selecting the best trajectory in the RRT, according to the cost of traversing a potential field. Furthermore the RRT expansion is enhanced to direct the search and account for the kinodynamic robot constraints. A model predictive control (MPC) approach is taken to accommodate...

  3. Population Dynamics of Patients with Bacterial Resistance in Hospital Environment

    Directory of Open Access Journals (Sweden)

    Leilei Qu

    2016-01-01

    Full Text Available During the past decades, the increase of antibiotic resistance has become a major concern worldwide. The researchers found that superbugs with new type of resistance genes (NDM-1 have two aspects of transmission characteristics; the first is that the antibiotic resistance genes can horizontally transfer among bacteria, and the other is that the superbugs can spread between humans through direct contact. Based on these two transmission mechanisms, we study the dynamics of population in hospital environment where superbugs exist. In this paper, we build three mathematic models to illustrate the dynamics of patients with bacterial resistance in hospital environment. The models are analyzed using stability theory of differential equations. Positive equilibrium points of the system are investigated and their stability analysis is carried out. Moreover, the numerical simulation of the proposed model is also performed which supports the theoretical findings.

  4. Generation and Application of Virtual Dynamic Learning Environments

    Directory of Open Access Journals (Sweden)

    Esther Zaretsky

    2009-04-01

    Full Text Available The generation of virtual dynamic learning environments by mental imagery improved physical education of student teachers. Up-to-date studies showed that training computerized simulations improved spatial abilities, especially visualization of the body's movements in space, and enhanced academic achievements. The main program of the research concentrated on creating teaching units focusing on a variety of physical skills through computerized dynamic presentations. The findings showed that as the student teachers practiced the creation of simulations through the PowerPoint Software, it became clear to them how the computer is related to physical activities. Consequently their presentations became highly animated, and applied to the natural environment. The student teachers applied their presentations in their practical classroom and reported about their pupils' progress in physical skills. Moreover the motivation of the student teachers and pupils to both modes of learning, manipulating virtually and physically, was enhanced.

  5. Dynamics of tripartite quantum entanglement and discord under a classical dephasing random telegraph noise

    Science.gov (United States)

    Kenfack, Lionel Tenemeza; Tchoffo, Martin; Fai, Lukong Cornelius

    2017-02-01

    We address the dynamics of quantum correlations, including entanglement and quantum discord of a three-qubit system interacting with a classical pure dephasing random telegraph noise (RTN) in three different physical environmental situations (independent, mixed and common environments). Two initial entangled states of the system are examined, namely the Greenberger-Horne-Zeilinger (GHZ)- and Werner (W)-type states. The classical noise is introduced as a stochastic process affecting the energy splitting of the qubits. With the help of suitable measures of tripartite entanglement (entanglement witnesses and lower bound of concurrence) and quantum discord (global quantum discord and quantum dissension), we show that the evolution of quantum correlations is not only affected by the type of the system-environment interaction but also by the input configuration of the qubits and the memory properties of the environmental noise. Indeed, depending on the memory properties of the environmental noise and the initial state considered, we find that independent, common and mixed environments can play opposite roles in preserving quantum correlations, and that the sudden death and revival phenomena or the survival of quantum correlations may occur. On the other hand, we also show that the W-type state has strong dynamics under this noise than the GHZ-type ones.

  6. A Dynamic Visual Simulation Environment for Internet of Things

    OpenAIRE

    Lavirotte, Stéphane; Tigli, Jean-Yves; Rocher, Gérald; El Beze, Léa; Palma, Adam

    2015-01-01

    Research report on works done on simulation framework for Internet and Web of Things; The development of living labs or smart spaces is a complex and challenging task. The choice of suitable sensors and actuators to deploy in these physical testbeds is difficult without experimentation. Moreover, several challenges still remain in improving and testing new fields of application based on Internet of Things (IoT). In this paper, we present UbiUnity, a dynamic visual simulator environment which ...

  7. Quality control of computational fluid dynamics in indoor environments

    DEFF Research Database (Denmark)

    Sørensen, Dan Nørtoft; Nielsen, P. V.

    2003-01-01

    Computational fluid dynamics (CFD) is used routinely to predict air movement and distributions of temperature and concentrations in indoor environments. Modelling and numerical errors are inherent in such studies and must be considered when the results are presented. Here, we discuss modelling as...... the quality of CFD calculations, as well as guidelines for the minimum information that should accompany all CFD-related publications to enable a scientific judgment of the quality of the study....

  8. Environmental tipping points in random dynamical systems: a quasigeostrophic case study

    Science.gov (United States)

    Pierini, S.

    2012-04-01

    Environmental tipping points (TPs) leading to abrupt state changes are usually considered in an autonomous dynamical systems framework, in which case early warnings may be identified in signals with increased autocorrelation and variance. An essential step toward a more realistic description of abrupt transitions in the environment and climate is to analyze TPs in random dynamical systems. In this context, a case study based on an operational definition of stochastic TPs and on a nonlinear low-order quasigeostrophic model is presented (Pierini, Phys. Rev. E, 2012). Let us suppose that in an autonomous dynamical system (DS), self-sustained relaxation oscillations emerge if (and only if) a control parameter Q is such that Q > Qo: Qo is therefore a (deterministic) TP. The same system perturbed by noise is said to be "excitable" if a range Q excitable random DS (a case likely to be quite common in environmental and climate dynamics) a stochastic TP is defined here as the random variable Ro whose realizations satisfy the same conditions required for Qo in the deterministic case. The low-order model (with four degrees of freedom) used in this study describes an excitable DS driven by a stationary forcing with amplitude Q (the deterministic control parameter) plus a colored noise characterized by its amplitude A and autocorrelation time scale Ta. A 10-member ensemble is constructed by performing forward time integrations of length T, and by letting A and Ta vary within a broad parametric range. The ensemble averages and (where the random variable N is the number of relaxation oscillations emerging in T) are then computed. The results suggest that in an excitable random DS coherence resonance may be the predominant transition mechanism, in which case stochastic TPs should be considered instead of their classical deterministic counterpart. Possible early warning signals (different from those of the deterministic case) are investigated: a preliminary analysis shows a variety

  9. An active vision system for multitarget surveillance in dynamic environments.

    Science.gov (United States)

    Bakhtari, Ardevan; Benhabib, Beno

    2007-02-01

    This paper presents a novel agent-based method for the dynamic coordinated selection and positioning of active-vision cameras for the simultaneous surveillance of multiple objects-of-interest as they travel through a cluttered environment with a-priori unknown trajectories. The proposed system dynamically adjusts not only the orientation but also the position of the cameras in order to maximize the system's performance by avoiding occlusions and acquiring images with preferred viewing angles. Sensor selection and positioning are accomplished through an agent-based approach. The proposed sensing-system reconfiguration strategy has been verified via simulations and implemented on an experimental prototype setup for automated facial recognition. Both simulations and experimental analyses have shown that the use of dynamic sensors along with an effective online dispatching strategy may tangibly improve the surveillance performance of a sensing system.

  10. Developing Dynamic Virtual Environments Using Hierarchical, Tree-Structured Approach

    Directory of Open Access Journals (Sweden)

    Wan Mohd Rizhan Wan Idris

    2011-05-01

    Full Text Available Virtual reality (VR has been utilized in various applications such as in architecture, medicine, advertisement, business, entertainment, and education. In the world of simulation, VR software allows users to visualize, manipulate and interact with the computers and complex data. However, developing VR environments is costly and expensive. Highly-technical persons are needed to create the virtual objects from scratch. Once a virtual system is created, managing and modifying it creates further problems. There is a need for non-technical users to be able to create and modify their own virtual environments. This paper discusses a systematic technique to develop dynamic virtual environments and to manage virtual objects in their virtual environment. The technique is called hierarchical, tree-structured approach. To implement the technique, object-oriented programming language was used such as Java, Java 3D and Java Swing. For the usability and performance of the technique, a virtual environment has been created to become as case study. The tool has been perceived as an easy tool to use, especially for an environment in education.

  11. DEVELOPING DYNAMIC VIRTUAL ENVIRONMENTS USING HIERARCHICAL, TREE-STRUCTURED APPROACH

    Directory of Open Access Journals (Sweden)

    Wan Mohd Rizhan Wan Idris

    2015-10-01

    Full Text Available Virtual reality (VR has been utilized in various applications such as in architecture, medicine, advertisement, business, entertainment, and education. In the world of simulation, VR software allows users to visualize, manipulate and interact with the computers and complex data. However, developing VR environments is costly and expensive. Highly-technical persons are needed to create the virtual objects from scratch. Once a virtual system is created, managing and modifying it creates further problems. There is a need for non-technical users to be able to create and modify their own virtual environments. This paper discusses a systematic technique to develop dynamic virtual environments and to manage virtual objects in their virtual environment. The technique is called hierarchical, tree-structured approach. To implement the technique, object-oriented programming language was used such as Java, Java 3D and Java Swing. For the usability and performance of the technique, a virtual environment has been created to become as case study. The tool has been perceived as an easy tool to use, especially for an environment in education.

  12. Contrast independence of dynamic random dot correlogram evoked VEP amplitude.

    Science.gov (United States)

    Markó, Katalin; Kiss, Huba J M; Mikó-Baráth, Eszter; Bártfai, Orsolya; Török, Béla; Kovács, Ilona; Jandó, Gábor

    2009-04-06

    Dynamic random dot correlograms (DRDCs) are binocular stimuli that evoke a percept and a visual evoked potential (VEP) only in case of a mature and functional binocular system. DRDC-VEP is a method extensively used to study cortical binocularity in human infants and nonverbal children. Although the DRDC-VEP was invented 3 decades ago, neither the fundamental parameters, including contrast, of the stimulation nor the cerebral processing mechanisms have been clarified. The objective of the present study was to investigate the variability and detectability of adults' VEPs to DRDC under different stimulus contrast conditions. DRDCs were presented on the red and green channels of a computer monitor and were viewed with red-green goggles. The steady state DRDC-VEPs were recorded in healthy adult volunteers, and response reliability was assessed by the T(circ)(2) statistic. DRDC-VEP amplitude was independent of contrast, while VEP phases showed a weak correlation with contrast. Contrast invariance of DRDC-VEP amplitude suggests a very high contrast gain and dominant magnocellular input to the binocular correlation processing system.

  13. Reactive navigation in dynamic environment using a multisensor predictor.

    Science.gov (United States)

    Song, K T; Chang, C C

    1999-01-01

    A reactive navigation system for an autonomous mobile robot in unstructured dynamic environments is presented. The motion of moving obstacles is estimated for robot motion planning and obstacle avoidance. A multisensor-based obstacle predictor is utilized to obtain obstacle-motion information. Sensory data from a CCD camera and multiple ultrasonic range finders are combined to predict obstacle positions at the next sampling instant. A neural network, which is trained off-line, provides the desired prediction on-line in real time. The predicted obstacle configuration is employed by the proposed virtual force based navigation method to prevent collision with moving obstacles. Simulation results are presented to verify the effectiveness of the proposed navigation system in an environment with multiple mobile robots or moving objects. This system was implemented and tested on an experimental mobile robot at our laboratory. Navigation results in real environment are presented and analyzed.

  14. 75 FR 55764 - Dynamic Random Access Memory Semiconductors From the Republic of Korea: Preliminary Results of...

    Science.gov (United States)

    2010-09-14

    ... International Trade Administration Dynamic Random Access Memory Semiconductors From the Republic of Korea... administrative review of the countervailing duty order on dynamic random access memory semiconductors from the... Semiconductor, Inc. received countervailable subsidies during the period of review. If these preliminary...

  15. 76 FR 2336 - Dynamic Random Access Memory Semiconductors From the Republic of Korea: Final Results of...

    Science.gov (United States)

    2011-01-13

    ... International Trade Administration Dynamic Random Access Memory Semiconductors From the Republic of Korea: Final... on dynamic random access memory semiconductors from the Republic of Korea for the period January 1... net subsidy rate for Hynix Semiconductor, Inc. is listed below in the section entitled ``Final...

  16. Dynamic shared state maintenance in distributed virtual environments

    Science.gov (United States)

    Hamza-Lup, Felix George

    Advances in computer networks and rendering systems facilitate the creation of distributed collaborative environments in which the distribution of information at remote locations allows efficient communication. Particularly challenging are distributed interactive Virtual Environments (VE) that allow knowledge sharing through 3D information. The purpose of this work is to address the problem of latency in distributed interactive VE and to develop a conceptual model for consistency maintenance in these environments based on the participant interaction model. An area that needs to be explored is the relationship between the dynamic shared state and the interaction with the virtual entities present in the shared scene. Mixed Reality (MR) and VR environments must bring the human participant interaction into the loop through a wide range of electronic motion sensors, and haptic devices. Part of the work presented here defines a novel criterion for categorization of distributed interactive VE and introduces, as well as analyzes, an adaptive synchronization algorithm for consistency maintenance in such environments. As part of the work, a distributed interactive Augmented Reality (AR) testbed and the algorithm implementation details are presented. Currently the testbed is part of several research efforts at the Optical Diagnostics and Applications Laboratory including 3D visualization applications using custom built head-mounted displays (HMDs) with optical motion tracking and a medical training prototype for endotracheal intubation and medical prognostics. An objective method using quaternion calculus is applied for the algorithm assessment. In spite of significant network latency, results show that the dynamic shared state can be maintained consistent at multiple remotely located sites. In further consideration of the latency problems and in the light of the current trends in interactive distributed VE applications, we propose a hybrid distributed system architecture for

  17. Fluid Dynamics Appearing during Simulated Microgravity Using Random Positioning Machines

    Science.gov (United States)

    Stern, Philip; Casartelli, Ernesto; Egli, Marcel

    2017-01-01

    Random Positioning Machines (RPMs) are widely used as tools to simulate microgravity on ground. They consist of two gimbal mounted frames, which constantly rotate biological samples around two perpendicular axes and thus distribute the Earth’s gravity vector in all directions over time. In recent years, the RPM is increasingly becoming appreciated as a laboratory instrument also in non-space-related research. For instance, it can be applied for the formation of scaffold-free spheroid cell clusters. The kinematic rotation of the RPM, however, does not only distribute the gravity vector in such a way that it averages to zero, but it also introduces local forces to the cell culture. These forces can be described by rigid body analysis. Although RPMs are commonly used in laboratories, the fluid motion in the cell culture flasks on the RPM and the possible effects of such on cells have not been examined until today; thus, such aspects have been widely neglected. In this study, we used a numerical approach to describe the fluid dynamic characteristic occurring inside a cell culture flask turning on an operating RPM. The simulations showed that the fluid motion within the cell culture flask never reached a steady state or neared a steady state condition. The fluid velocity depends on the rotational velocity of the RPM and is in the order of a few centimeters per second. The highest shear stresses are found along the flask walls; depending of the rotational velocity, they can reach up to a few 100 mPa. The shear stresses in the “bulk volume,” however, are always smaller, and their magnitude is in the order of 10 mPa. In conclusion, RPMs are highly appreciated as reliable tools in microgravity research. They have even started to become useful instruments in new research fields of mechanobiology. Depending on the experiment, the fluid dynamic on the RPM cannot be neglected and needs to be taken into consideration. The results presented in this study elucidate the fluid

  18. Fluid Dynamics Appearing during Simulated Microgravity Using Random Positioning Machines.

    Science.gov (United States)

    Wuest, Simon L; Stern, Philip; Casartelli, Ernesto; Egli, Marcel

    2017-01-01

    Random Positioning Machines (RPMs) are widely used as tools to simulate microgravity on ground. They consist of two gimbal mounted frames, which constantly rotate biological samples around two perpendicular axes and thus distribute the Earth's gravity vector in all directions over time. In recent years, the RPM is increasingly becoming appreciated as a laboratory instrument also in non-space-related research. For instance, it can be applied for the formation of scaffold-free spheroid cell clusters. The kinematic rotation of the RPM, however, does not only distribute the gravity vector in such a way that it averages to zero, but it also introduces local forces to the cell culture. These forces can be described by rigid body analysis. Although RPMs are commonly used in laboratories, the fluid motion in the cell culture flasks on the RPM and the possible effects of such on cells have not been examined until today; thus, such aspects have been widely neglected. In this study, we used a numerical approach to describe the fluid dynamic characteristic occurring inside a cell culture flask turning on an operating RPM. The simulations showed that the fluid motion within the cell culture flask never reached a steady state or neared a steady state condition. The fluid velocity depends on the rotational velocity of the RPM and is in the order of a few centimeters per second. The highest shear stresses are found along the flask walls; depending of the rotational velocity, they can reach up to a few 100 mPa. The shear stresses in the "bulk volume," however, are always smaller, and their magnitude is in the order of 10 mPa. In conclusion, RPMs are highly appreciated as reliable tools in microgravity research. They have even started to become useful instruments in new research fields of mechanobiology. Depending on the experiment, the fluid dynamic on the RPM cannot be neglected and needs to be taken into consideration. The results presented in this study elucidate the fluid

  19. Random matrix approach to the dynamics of stock inventory variations

    Science.gov (United States)

    Zhou, Wei-Xing; Mu, Guo-Hua; Kertész, János

    2012-09-01

    It is well accepted that investors can be classified into groups owing to distinct trading strategies, which forms the basic assumption of many agent-based models for financial markets when agents are not zero-intelligent. However, empirical tests of these assumptions are still very rare due to the lack of order flow data. Here we adopt the order flow data of Chinese stocks to tackle this problem by investigating the dynamics of inventory variations for individual and institutional investors that contain rich information about the trading behavior of investors and have a crucial influence on price fluctuations. We find that the distributions of cross-correlation coefficient Cij have power-law forms in the bulk that are followed by exponential tails, and there are more positive coefficients than negative ones. In addition, it is more likely that two individuals or two institutions have a stronger inventory variation correlation than one individual and one institution. We find that the largest and the second largest eigenvalues (λ1 and λ2) of the correlation matrix cannot be explained by random matrix theory and the projections of investors' inventory variations on the first eigenvector u(λ1) are linearly correlated with stock returns, where individual investors play a dominating role. The investors are classified into three categories based on the cross-correlation coefficients CV R between inventory variations and stock returns. A strong Granger causality is unveiled from stock returns to inventory variations, which means that a large proportion of individuals hold the reversing trading strategy and a small part of individuals hold the trending strategy. Our empirical findings have scientific significance in the understanding of investors' trading behavior and in the construction of agent-based models for emerging stock markets.

  20. Random neural Q-learning for obstacle avoidance of a mobile robot in unknown environments

    Directory of Open Access Journals (Sweden)

    Jing Yang

    2016-07-01

    Full Text Available The article presents a random neural Q-learning strategy for the obstacle avoidance problem of an autonomous mobile robot in unknown environments. In the proposed strategy, two independent modules, namely, avoidance without considering the target and goal-seeking without considering obstacles, are first trained using the proposed random neural Q-learning algorithm to obtain their best control policies. Then, the two trained modules are combined based on a switching function to realize the obstacle avoidance in unknown environments. For the proposed random neural Q-learning algorithm, a single-hidden layer feedforward network is used to approximate the Q-function to estimate the Q-value. The parameters of the single-hidden layer feedforward network are modified using the recently proposed neural algorithm named the online sequential version of extreme learning machine, where the parameters of the hidden nodes are assigned randomly and the sample data can come one by one. However, different from the original online sequential version of extreme learning machine algorithm, the initial output weights are estimated subjected to quadratic inequality constraint to improve the convergence speed. Finally, the simulation results demonstrate that the proposed random neural Q-learning strategy can successfully solve the obstacle avoidance problem. Also, the higher learning efficiency and better generalization ability are achieved by the proposed random neural Q-learning algorithm compared with the Q-learning based on the back-propagation method.

  1. Conditional limit theorems for intermediately subcritical branching processes in random environment

    CERN Document Server

    Afanasyev, Valeriy; Kersting, Götz; Vatutin, Vladimir

    2011-01-01

    For a branching process in random environment it is assumed that the offspring distribution of the individuals varies in a random fashion, independently from one generation to the other. For the subcritical regime a kind of phase transition appears. In this paper we study the intermediately subcritical case, which constitutes the borderline within this phase transition. We study the asymptotic behavior of the survival probability. Next the size of the population and the shape of the random environment conditioned on non-extinction is examined. Finally we show that conditioned on non-extinction periods of small and large population sizes alternate. This kind of 'bottleneck' behavior appears under the annealed approach only in the intermediately subcritical case.

  2. Dynamic attack zone of air-to-air missile after being launched in random wind field

    Institute of Scientific and Technical Information of China (English)

    Hui Yaoluo; Nan Ying; Chen Shaodong; Ding Quanxin; Wu Shengliang

    2015-01-01

    A new concept is presented for air-to-air missile which is dynamic attack zone after being launched in random wind field. This new concept can be used to obtain the 4-dimensional (4-D) information regarding the dynamic envelope of an air-to-air missile at any flight time aimed at different flight targets considering influences of random wind, in the situation of flight fighters coop-erated with missiles fighting against each other. Based on an air-to-air missile model, some typical cases of dynamic attack zone after being launched in random wind field were numerically simulated. Compared with the simulation results of traditional dynamic envelope, the properties of dynamic attack zone after being launched are as follows. The 4-D dynamic attack zone after being launched is inside traditional maximum dynamic envelope, but its forane boundary is usually not inside tra-ditional no-escape dynamic envelope;Traditional dynamic attack zone can just be reliably used at launch time, while dynamic envelope after being launched can be reliably and accurately used dur-ing any flight antagonism time. Traditional envelope is a special case of dynamic envelope after being launched when the dynamic envelope is calculated at the launch time;the dynamic envelope after being launched can be influenced by the random wind field.

  3. Dynamics of the Random Ising Model with Long-Range Interaction

    Institute of Scientific and Technical Information of China (English)

    CHEN Yuan; LI Zhi-Bing; FANG Hai; HE Shun-Shan; SITU Shu-Ping

    2001-01-01

    Critical dynamics of the random Ising model with long-range interaction decaying as r-(d+σ) where d is the dimensionality) is studied by the theoretic renormalization-group approach. The system is released to an evolution within a model A dynamics. Asymptotic scaling laws are studied in a frame of the expansion in = 2σ - d. In dimensions d < 2σ. the dynamic exponent z is calculated to the second order in at the random fixed point.``

  4. Monitoring the intracellular calcium response to a dynamic hypertonic environment

    Science.gov (United States)

    Huang, Xiaowen; Yue, Wanqing; Liu, Dandan; Yue, Jianbo; Li, Jiaqian; Sun, Dong; Yang, Mengsu; Wang, Zuankai

    2016-03-01

    The profiling of physiological response of cells to external stimuli at the single cell level is of importance. Traditional approaches to study cell responses are often limited by ensemble measurement, which is challenging to reveal the complex single cell behaviors under a dynamic environment. Here we report the development of a simple microfluidic device to investigate intracellular calcium response to dynamic hypertonic conditions at the single cell level in real-time. Interestingly, a dramatic elevation in the intracellular calcium signaling is found in both suspension cells (human leukemic cell line, HL-60) and adherent cells (lung cancer cell line, A549), which is ascribed to the exposure of cells to the hydrodynamic stress. We also demonstrate that the calcium response exhibits distinct single cell heterogeneity as well as cell-type-dependent responses to the same stimuli. Our study opens up a new tool for tracking cellular activity at the single cell level in real time for high throughput drug screening.

  5. Fast simulation of Brownian dynamics in a crowded environment

    CERN Document Server

    Smith, Stephen

    2016-01-01

    Brownian dynamics simulations are an increasingly popular tool for understanding spatially-distributed biochemical reaction systems. Recent improvements in our understanding of the cellular environment show that volume exclusion effects are fundamental to reaction networks inside cells. These systems are frequently studied by incorporating inert hard spheres (crowders) into three-dimensional Brownian dynamics simulations, however these methods are extremely slow owing to the sheer number of possible collisions between particles. Here we propose a rigorous "crowder-free" method to dramatically increase simulation speed for crowded biochemical reaction systems by eliminating the need to explicitly simulate the crowders. We consider both the case where the reactive particles are point particles, and where they themselves occupy a volume. We use simulations of simple chemical reaction networks to confirm that our simplification is just as accurate as the original algorithm, and that it corresponds to a large spee...

  6. Maximizing Information on the Environment by Dynamically Controlled Qubit Probes

    Science.gov (United States)

    Zwick, Analia; Álvarez, Gonzalo A.; Kurizki, Gershon

    2016-01-01

    We explore the ability of a qubit probe to characterize unknown parameters of its environment. By resorting to the quantum estimation theory, we analytically find the ultimate bound on the precision of estimating key parameters of a broad class of ubiquitous environmental noises ("baths") which the qubit may probe. These include the probe-bath coupling strength, the correlation time of generic types of bath spectra, and the power laws governing these spectra, as well as their dephasing times T2. Our central result is that by optimizing the dynamical control on the probe under realistic constraints one may attain the maximal accuracy bound on the estimation of these parameters by the least number of measurements possible. Applications of this protocol that combines dynamical control and estimation theory tools to quantum sensing are illustrated for a nitrogen-vacancy center in diamond used as a probe.

  7. Maximizing information on the environment by dynamically controlled qubit probes

    CERN Document Server

    Zwick, Analia; Kurizki, Gershon

    2015-01-01

    We explore the ability of a qubit probe to characterize unknown parameters of its environment. By resorting to quantum estimation theory, we analytically find the ultimate bound on the precision of estimating key parameters of a broad class of ubiquitous environmental noises ("baths") which the qubit may probe. These include the probe-bath coupling strength, the correlation time of generic bath spectra, the power laws governing these spectra, as well as their dephasing times T2. Our central result is that by optimizing the dynamical control on the probe under realistic constraints one may attain the maximal accuracy bound on the estimation of these parameters by the least number of measurements possible. Applications of this protocol that combines dynamical control and estimation theory tools to quantum sensing are illustrated for a nitrogen-vacancy center in diamond used as a probe.

  8. Computational Chemotaxis in Ants and Bacteria over Dynamic Environments

    CERN Document Server

    Ramos, Vitorino; Rosa, A C; Abraham, A

    2007-01-01

    Chemotaxis can be defined as an innate behavioural response by an organism to a directional stimulus, in which bacteria, and other single-cell or multicellular organisms direct their movements according to certain chemicals in their environment. This is important for bacteria to find food (e.g., glucose) by swimming towards the highest concentration of food molecules, or to flee from poisons. Based on self-organized computational approaches and similar stigmergic concepts we derive a novel swarm intelligent algorithm. What strikes from these observations is that both eusocial insects as ant colonies and bacteria have similar natural mechanisms based on stigmergy in order to emerge coherent and sophisticated patterns of global collective behaviour. Keeping in mind the above characteristics we will present a simple model to tackle the collective adaptation of a social swarm based on real ant colony behaviors (SSA algorithm) for tracking extrema in dynamic environments and highly multimodal complex functions des...

  9. Evolutionary dynamics of bacteria in a human host environment

    DEFF Research Database (Denmark)

    Yang, Lei; Jelsbak, Lars; Marvig, Rasmus Lykke;

    2011-01-01

    . In contrast to predictions based on in vitro evolution experiments, we document limited diversification of the evolving lineage despite a highly structured and complex host environment. Notably, the lineage went through an initial period of rapid adaptation caused by a small number of mutations......Laboratory evolution experiments have led to important findings relating organism adaptation and genomic evolution. However, continuous monitoring of long-term evolution has been lacking for natural systems, limiting our understanding of these processes in situ. Here we characterize...... the evolutionary dynamics of a lineage of a clinically important opportunistic bacterial pathogen, Pseudomonas aeruginosa, as it adapts to the airways of several individual cystic fibrosis patients over 200,000 bacterial generations, and provide estimates of mutation rates of bacteria in a natural environment...

  10. The Dynamics of Vehicular Networks in Urban Environments

    CERN Document Server

    Loulloudes, Nicholas; Dikaiakos, Marios D

    2010-01-01

    Vehicular Ad hoc NETworks (VANETs) have emerged as a platform to support intelligent inter-vehicle communication and improve traffic safety and performance. The road-constrained and high mobility of vehicles, their unbounded power source, and the emergence of roadside wireless infrastructures make VANETs a challenging research topic. A key to the development of protocols for intervehicle communication and services lies in the knowledge of the topological characteristics of the VANET communication graph. This paper explores the dynamics of VANETs in urban environments. Using both real and realistic mobility traces, we study the networking shape of VANETs in urban environments under different transmission and market penetration ranges. Given that a number of RSUs have to be deployed for disseminating information to vehicles in an urban area, we also study their impact on vehicular connectivity. Several latent facts about the VANET graph are revealed and implications for their exploitation in protocol design are...

  11. Maximum, minimum, and optimal mutation rates in dynamic environments

    Science.gov (United States)

    Ancliff, Mark; Park, Jeong-Man

    2009-12-01

    We analyze the dynamics of the parallel mutation-selection quasispecies model with a changing environment. For an environment with the sharp-peak fitness function in which the most fit sequence changes by k spin flips every period T , we find analytical expressions for the minimum and maximum mutation rates for which a quasispecies can survive, valid in the limit of large sequence size. We find an asymptotic solution in which the quasispecies population changes periodically according to the periodic environmental change. In this state we compute the mutation rate that gives the optimal mean fitness over a period. We find that the optimal mutation rate per genome, k/T , is independent of genome size, a relationship which is observed across broad groups of real organisms.

  12. Robot path planning in dynamic environment based on reinforcement learning

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Proposes an adaptive learning method based on reinforcement learning for robot path planning prob lem, which enables the robot to adaptively learn and perform effective path planning, to avoid the moving obsta cles and reach the target. Thereby achieving automatic construction of path planning strategy and making the system adaptive to multi-robots system dynamic environments, and concludes from computer simulation experi ment that the method is powerful to solve the problem of multi-robot path planning, and it is a meaningful try to apply reinforcement learning techniques in multi-robot systems to develop the system's intelligence degree.

  13. Dynamics of Crowd Behaviors: From Complex Plane to Quantum Random Fields

    Science.gov (United States)

    Ivancevic, Vladimir G.; Reid, Darryn J.

    2015-11-01

    The following sections are included: * Complex Plane Dynamics of Crowds and Groups * Introduction * Complex-Valued Dynamics of Crowd and Group Behaviors * Kähler Geometry of Crowd and Group Dynamics * Computer Simulations of Crowds and Croups Dynamics * Braids of Agents' Behaviors in the Complex Plane * Hilbert-Space Control of Crowds and Groups Dynamics * Quantum Random Fields: A Unique Framework for Simulation, Optimization, Control and Learning * Introduction * Adaptive Quantum Oscillator * Optimization and Learning on Banach and Hilbert Spaces * Appendix * Complex-Valued Image Processing * Linear Integral Equations * Riemann-Liouville Fractional Calculus * Rigorous Geometric Quantization * Supervised Machine-Learning Methods * First-Order Logic and Quantum Random Fields

  14. Bayesian Estimation of Random Coefficient Dynamic Factor Models

    Science.gov (United States)

    Song, Hairong; Ferrer, Emilio

    2012-01-01

    Dynamic factor models (DFMs) have typically been applied to multivariate time series data collected from a single unit of study, such as a single individual or dyad. The goal of DFMs application is to capture dynamics of multivariate systems. When multiple units are available, however, DFMs are not suited to capture variations in dynamics across…

  15. Generic Dynamic Environment Perception Using Smart Mobile Devices.

    Science.gov (United States)

    Danescu, Radu; Itu, Razvan; Petrovai, Andra

    2016-10-17

    The driving environment is complex and dynamic, and the attention of the driver is continuously challenged, therefore computer based assistance achieved by processing image and sensor data may increase traffic safety. While active sensors and stereovision have the advantage of obtaining 3D data directly, monocular vision is easy to set up, and can benefit from the increasing computational power of smart mobile devices, and from the fact that almost all of them come with an embedded camera. Several driving assistance application are available for mobile devices, but they are mostly targeted for simple scenarios and a limited range of obstacle shapes and poses. This paper presents a technique for generic, shape independent real-time obstacle detection for mobile devices, based on a dynamic, free form 3D representation of the environment: the particle based occupancy grid. Images acquired in real time from the smart mobile device's camera are processed by removing the perspective effect and segmenting the resulted bird-eye view image to identify candidate obstacle areas, which are then used to update the occupancy grid. The occupancy grid tracked cells are grouped into obstacles depicted as cuboids having position, size, orientation and speed. The easy to set up system is able to reliably detect most obstacles in urban traffic, and its measurement accuracy is comparable to a stereovision system.

  16. Automated video screening for unattended background monitoring in dynamic environments.

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Jeffrey J.

    2004-03-01

    This report addresses the development of automated video-screening technology to assist security forces in protecting our homeland against terrorist threats. A threat of specific interest to this project is the covert placement and subsequent remote detonation of bombs (e.g., briefcase bombs) inside crowded public facilities. Different from existing video motion detection systems, the video-screening technology described in this report is capable of detecting changes in the static background of an otherwise, dynamic environment - environments where motion and human activities are persistent. Our goal was to quickly detect changes in the background - even under conditions when the background is visible to the camera less than 5% of the time. Instead of subtracting the background to detect movement or changes in a scene, we subtracted the dynamic scene variations to produce an estimate of the static background. Subsequent comparisons of static background estimates are used to detect changes in the background. Detected changes can be used to alert security forces of the presence and location of potential threats. The results of this research are summarized in two MS Power-point presentations included with this report.

  17. 75 FR 44283 - In the Matter of Certain Dynamic Random Access Memory Semiconductors and Products Containing Same...

    Science.gov (United States)

    2010-07-28

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION In the Matter of Certain Dynamic Random Access Memory Semiconductors and Products Containing Same... within the United States after importation of certain dynamic random access memory semiconductors...

  18. 75 FR 20564 - Dynamic Random Access Memory Semiconductors from the Republic of Korea: Extension of Time Limit...

    Science.gov (United States)

    2010-04-20

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE International Trade Administration Dynamic Random Access Memory Semiconductors from the Republic of Korea... administrative review of the countervailing duty order on dynamic random access memory semiconductors from...

  19. Random recurrence equations and ruin in a Markov-dependent stochastic economic environment

    DEFF Research Database (Denmark)

    Collamore, Jeffrey F.

    2009-01-01

    We develop sharp large deviation asymptotics for the probability of ruin in a Markov-dependent stochastic economic environment and study the extremes for some related Markovian processes which arise in financial and insurance mathematics, related to perpetuities and the ARCH(1) and GARCH(1,1) time...... series models.  Our results build upon work of Goldie, who has developed tail asymptotics applicable for independent sequences of random variables subject to a random recurrence equation.  In contrast, we adopt a general approach based on the theory of Harris recurrent Markov chains and the associated...

  20. H1-Random Attractors and Asymptotic Smoothing Effect of Solutions for Stochastic Boussinesq Equations with Fluctuating Dynamical Boundary Conditions

    Directory of Open Access Journals (Sweden)

    Yijin Zhang

    2013-01-01

    Full Text Available This work is concerned with the random dynamics of two-dimensional stochastic Boussinesq system with dynamical boundary condition. The white noises affect the system through a dynamical boundary condition. Using a method based on the theory of omega-limit compactness of a random dynamical system, we prove that the L2-random attractor for the generated random dynamical system is exactly the H1-random attractor. This improves a recent conclusion derived by Brune et al. on the existence of the L2-random attractor for the same system.

  1. Supervisory control of multiple robots in dynamic tasking environments.

    Science.gov (United States)

    Chen, Jessie Y C; Barnes, Michael J

    2012-01-01

    A military targeting environment was simulated to examine the effects of an intelligent route-planning agent RoboLeader, which could support dynamic robot re-tasking based on battlefield developments, on the performance of robotics operators. We manipulated the level of assistance (LOAs) provided by RoboLeader as well as the presence of a visualisation tool that provided feedback to the participants on their primary task (target encapsulation) performance. Results showed that the participants' primary task benefited from RoboLeader on all LOAs conditions compared to manual performance; however, visualisation had little effect. Frequent video gamers demonstrated significantly better situation awareness of the mission environment than did infrequent gamers. Those participants with higher spatial ability performed better on a secondary target detection task than did those with lower spatial ability. Finally, participants' workload assessments were significantly lower when they were assisted by RoboLeader than when they performed the target entrapment task manually. Practitioner Summary: This study demonstrated the utility of an intelligent agent for enhancing robotics operators' supervisory control performance as well as reducing their workload during a complex urban scenario involving moving targets. The results furthered the understanding of the interplay among level-of-autonomy, multitasking performance and individual differences in military tasking environments.

  2. Dynamics and life histories of northern ungulates in changing environments

    Science.gov (United States)

    Hendrichsen, D. K.

    2011-12-01

    Regional climate and local weather conditions can profoundly influence life history parameters (growth, survival, fecundity) and population dynamics in northern ungulates (Post and Stenseth 1999, Coulson et al. 2001). The influence is both direct, for example through reduced growth or survival (Aanes et al. 2000, Tyler et al. 2008), and indirect, for example through changes in resource distribution, phenology and quality, changes which subsequently influence consumer dynamics (Post et al. 2008). By comparing and contrasting data from three spatially independent populations of ungulates, I discuss how variation in local weather parameters and vegetation growth influence spatial and temporal dynamics through changes in life history parameters and/or behavioural dynamics. The data originate from long term (11-15 years) monitoring data from three populations of ungulates in one subarctic and two high Arctic sites; semi-domesticated reindeer (Rangifer tarandus tarandus) in northern Norway, Svalbard reindeer (R. t. platyrhynchus) on Spitsbergen and muskoxen (Ovibos moschatus) in Northeast Greenland. The results show that juvenile animals can be particularly vulnerable to changes in their environment, and that this is mirrored to different degrees in the spatio-temporal dynamics of the three populations. Adverse weather conditions, acting either directly or mediated through access to and quality of vegetation, experienced by young early in life, or even by their dams during pregnancy, can lead to reduced growth, lower survival and reduced reproductive performance later in life. The influence of current climatic variation, and the predictions of how local weather conditions may change over time, differs between the three sites, resulting in potentially different responses in the three populations. Aanes R, Saether BE and Øritsland NA. 2000. Fluctuations of an introduced population of Svalbard reindeer: the effects of density dependence and climatic variation. Ecography

  3. Structural Analysis of Pressurized Small Diameter Lines in a Random Vibration Environment

    Science.gov (United States)

    Davis, Mark; Ridnour, Andrew; Brethen, Mark

    2011-01-01

    The pressurization and propellant feed lines for the Ares 1 Upper Stage Reaction and Roll Control Systems (ReCS and RoCS) were required to be in a high g-load random vibration flight environment. The lines connected the system components and were filled with both liquid hydrazine and gaseous helium. They are considered small and varied between one fourth to one inch in diameter. The random vibration of the lines was considered to be base excitation through the mating components and mounting hardware. It was found that reducing the amount of support structure for the lines added flexibility to the system and improved the line stresses from random vibration, but caused higher stresses from the static g-loads. The locations and number of brackets were optimized by analyzing the mode shapes of the lines causing high stresses. The use of brackets that only constrain motion in the direction of concern further reduced the stresses in the lines. Finite element analysis was used to perform the analysis. The lines were pre-stressed by temperature and internal pressure with fluid and insulation included as non-structural mass. Base excitation was added to the model using Power Spectral Density (PSD) data for the expected flight loads. The random vibration and static g-load cases were combined to obtain the total stress in the lines. This approach advances the state of the art in line analysis by using FEA to predict the stresses in the lines and to optimize the entire system based on the expected flight environment. Adding flexibility to lines has been used in piping system for temperature loads, but in flight environments flexibility has been limited for the static stresses. Adding flexibility to the system in a flight environment by reducing brackets has the benefit of reducing stresses and weight

  4. 77 FR 26789 - Certain Semiconductor Chips Having Synchronous Dynamic Random Access Memory Controllers and...

    Science.gov (United States)

    2012-05-07

    ... From the Federal Register Online via the Government Publishing Office ] INTERNATIONAL TRADE COMMISSION Certain Semiconductor Chips Having Synchronous Dynamic Random Access Memory Controllers and Products Containing Same; Determination Rescinding the Exclusion Order and Cease and Desist Orders...

  5. DYNAMIC STRAIN MAPPING AND REAL-TIME DAMAGE STATE ESTIMATION UNDER BIAXIAL RANDOM FATIGUE LOADING

    Data.gov (United States)

    National Aeronautics and Space Administration — DYNAMIC STRAIN MAPPING AND REAL-TIME DAMAGE STATE ESTIMATION UNDER BIAXIAL RANDOM FATIGUE LOADING SUBHASISH MOHANTY*, ADITI CHATTOPADHYAY, JOHN N. RAJADAS, AND CLYDE...

  6. Two Notes on Measure-Theoretic Entropy of Random Dynamical Systems

    Institute of Scientific and Technical Information of China (English)

    YuJun ZHU

    2009-01-01

    In this paper, Brin-Katok local entropy formula and Katok's definition of the measure theoretic entropy using spanning set are established for the random dynamical system over an invertible ergodic system.

  7. Diffusion in crowded biological environments: applications of Brownian dynamics

    Directory of Open Access Journals (Sweden)

    Długosz Maciej

    2011-03-01

    Full Text Available Abstract Biochemical reactions in living systems occur in complex, heterogeneous media with total concentrations of macromolecules in the range of 50 - 400 mgml. Molecular species occupy a significant fraction of the immersing medium, up to 40% of volume. Such complex and volume-occupied environments are generally termed 'crowded' and/or 'confined'. In crowded conditions non-specific interactions between macromolecules may hinder diffusion - a major process determining metabolism, transport, and signaling. Also, the crowded media can alter, both qualitatively and quantitatively, the reactions in vivo in comparison with their in vitro counterparts. This review focuses on recent developments in particle-based Brownian dynamics algorithms, their applications to model diffusive transport in crowded systems, and their abilities to reproduce and predict the behavior of macromolecules under in vivo conditions.

  8. Organisational learning and self-adaptation in dynamic disaster environments.

    Science.gov (United States)

    Corbacioglu, Sitki; Kapucu, Naim

    2006-06-01

    This paper examines the problems associated with inter-organisational learning and adaptation in the dynamic environments that characterise disasters. The research uses both qualitative and quantitative methods to investigate whether organisational learning took place during and in the time in between five disaster response operations in Turkey. The availability of information and its exchange and distribution within and among organisational actors determine whether self-adaptation happens in the course of a disaster response operation. Organisational flexibility supported by an appropriate information infrastructure creates conditions conducive to essential interaction and permits the flow of information. The study found that no significant organisational learning occurred within Turkish disaster management following the earthquakes in Erzincan (1992), Dinar (1995) and Ceyhan (1998). By contrast, the 'symmetry-breaking' Marmara earthquake of 1999 initiated a 'double loop' learning process that led to change in the organisational, technical and cultural aspects of Turkish disaster management, as revealed by the Duzce earthquake response operations.

  9. Designing Run-Time Environments to Have Predefined Global Dynamics

    Directory of Open Access Journals (Sweden)

    Massimo Monti

    2013-06-01

    Full Text Available The stability and the predictability of a computer network algorithm's performance are as important as themain functional purpose of networking software. However, asserting or deriving such properties from thefinite state machine implementations of protocols is hard and, except for singular cases like TCP, is notdone today. In this paper, we propose to design and study run-time environments for networking protocolswhich inherently enforce desirable, predictable global dynamics. To this end we merge two complementarydesign approaches: (i A design-time and bottom up approach that enables us to engineer algorithms basedon an analyzable (reaction flow model. (ii A run-time and top-down approach based on an autonomousstack composition framework, which switches among implementation alternatives to find optimal operationconfigurations. We demonstrate the feasibility of our self-optimizing system in both simulations and real-world Internet setups.

  10. Dynamic knowledge management from multiple sources in crowdsourcing environments

    Science.gov (United States)

    Kim, Mucheol; Rho, Seungmin

    2015-10-01

    Due to the spread of smart devices and the development of network technology, a large number of people can now easily utilize the web for acquiring information and various services. Further, collective intelligence has emerged as a core player in the evolution of technology in web 2.0 generation. It means that people who are interested in a specific domain of knowledge can not only make use of the information, but they can also participate in the knowledge production processes. Since a large volume of knowledge is produced by multiple contributors, it is important to integrate and manage knowledge efficiently. In this paper, we propose a social tagging-based dynamic knowledge management system in crowdsourcing environments. The approach here is to categorize and package knowledge from multiple sources, in such a way that it easily links to target knowledge.

  11. A Robust Ramsey Interferometer for Atomic Timekeeping in Dynamic Environments

    Science.gov (United States)

    Kotru, Krish; Brown, Justin; Butts, David; Choy, Jennifer; Galfond, Marissa; Johnson, David M.; Kinast, Joseph; Timmons, Brian; Stoner, Richard

    2014-05-01

    We present a laser-based approach to atomic timekeeping, in which atomic phase information is extracted using modified Raman pulses in a Ramsey sequence. We overcome systematic effects associated with differential AC Stark shifts by employing atom optics derived from Raman adiabatic rapid passage (ARP). ARP drives coherent transfer between two hyperfine ground states by sweeping the frequency difference of two optical fields and maintaining a large single-photon detuning. Compared to resonant, pulsed Raman transitions, ARP atom optics afford a >150x reduction in sensitivity to differential AC Stark shifts in a Ramsey interferometer. We also demonstrate that ARP preserves fringe contrast in Ramsey interferometers for cloud displacements reaching the 1/e2 intensity radius of the laser beam. ARP can thus be expected to improve the robustness of clock interferometers operating in dynamic environments. Copyright ©2014 by The Charles Stark Draper Laboratory, Inc. All rights reserved.

  12. Random operators disorder effects on quantum spectra and dynamics

    CERN Document Server

    Aizenman, Michael

    2015-01-01

    This book provides an introduction to the mathematical theory of disorder effects on quantum spectra and dynamics. Topics covered range from the basic theory of spectra and dynamics of self-adjoint operators through Anderson localization-presented here via the fractional moment method, up to recent results on resonant delocalization. The subject's multifaceted presentation is organized into seventeen chapters, each focused on either a specific mathematical topic or on a demonstration of the theory's relevance to physics, e.g., its implications for the quantum Hall effect. The mathematical chapters include general relations of quantum spectra and dynamics, ergodicity and its implications, methods for establishing spectral and dynamical localization regimes, applications and properties of the Green function, its relation to the eigenfunction correlator, fractional moments of Herglotz-Pick functions, the phase diagram for tree graph operators, resonant delocalization, the spectral statistics conjecture, and rela...

  13. Road detection in arid environments using uniformly distributed random based features

    Science.gov (United States)

    Plodpradista, P.; Keller, J. M.; Popescu, M.

    2016-05-01

    The capability of detecting an unpaved road in arid environments can greatly enhance an explosive hazard detection system. One approach is to segment out the off-road area and the area above the horizon, which is considered to be irrelevant for the task in hand. Segmenting out irrelevant areas, such as the region above the horizon, allows the explosive hazard detection system to process a smaller region in a scene, enabling a more computationally complex approach. In this paper, we propose a novel approach for speeding up the detection algorithms based on random projection and random selection. Both methods have a low computational cost and reduce the dimensionality of the data while approximately preserving, with a certain probability, the pair-wise point distances. Dimensionality reduction allows any classifier employed in our proposed algorithm to consume fewer computational resources. Furthermore, by applying the random projections directly to image intensity patches, there is no feature extraction needed. The data used in our proposed algorithms are obtained from sensors on board a U.S. Army countermine vehicle. We tested our proposed algorithms on data obtained from several runs on an arid climate road. In our experiments we compare our algorithms based on random projection and random selection to Principal Component Analysis (PCA), a popular dimensionality reduction method.

  14. Stochastic Simulation of Biomolecular Networks in Dynamic Environments.

    Directory of Open Access Journals (Sweden)

    Margaritis Voliotis

    2016-06-01

    Full Text Available Simulation of biomolecular networks is now indispensable for studying biological systems, from small reaction networks to large ensembles of cells. Here we present a novel approach for stochastic simulation of networks embedded in the dynamic environment of the cell and its surroundings. We thus sample trajectories of the stochastic process described by the chemical master equation with time-varying propensities. A comparative analysis shows that existing approaches can either fail dramatically, or else can impose impractical computational burdens due to numerical integration of reaction propensities, especially when cell ensembles are studied. Here we introduce the Extrande method which, given a simulated time course of dynamic network inputs, provides a conditionally exact and several orders-of-magnitude faster simulation solution. The new approach makes it feasible to demonstrate-using decision-making by a large population of quorum sensing bacteria-that robustness to fluctuations from upstream signaling places strong constraints on the design of networks determining cell fate. Our approach has the potential to significantly advance both understanding of molecular systems biology and design of synthetic circuits.

  15. PôDET: A Centre for Earth Dynamical Environment

    Science.gov (United States)

    Hestroffer, D.; Deleflie, F.

    2013-11-01

    The monitoring of the Earth space environment has gained some importance these last decades, in particular at the European level, partly because the phenomenon which origin come from space can have socio-economic consequences; and also because our understanding of those phenomenon - their associated prediction and risks - is still limited. For instance, the Space Situational Awareness programme (SSA) at ESA has set up in 2013 a centre and network for aspects connected to space debris (SST), to space weather (SW), and to near-Earth objects (NEO). At IMCCE, the Pôle sur la dynamique de l'environnement terrestre} (PODET, \\url{podet.imcce.fr}) for the Earth dynamical environment is studying effects and prediction for natural and artificial objects gravitating in the Earth vicinity. These studies englobe near-Earth objects, asteroids, comets, meteoroids, meteorite streams, and space debris. For all object types that are concerned, a general scheme of a functional analysis has been developed. It encompasses data acquisition with dedicated observations--essentially astrometric--or database queries, orbit determination or adjustment, prediction and ephemerides, and eventually impact probability computation and data dissemination. We develop here the general context of this action, the PôDET project, its scientific objectives, interaction with other disciplines, and the development in progress for dedicated tools.

  16. Memory Transformation Enhances Reinforcement Learning in Dynamic Environments.

    Science.gov (United States)

    Santoro, Adam; Frankland, Paul W; Richards, Blake A

    2016-11-30

    Over the course of systems consolidation, there is a switch from a reliance on detailed episodic memories to generalized schematic memories. This switch is sometimes referred to as "memory transformation." Here we demonstrate a previously unappreciated benefit of memory transformation, namely, its ability to enhance reinforcement learning in a dynamic environment. We developed a neural network that is trained to find rewards in a foraging task where reward locations are continuously changing. The network can use memories for specific locations (episodic memories) and statistical patterns of locations (schematic memories) to guide its search. We find that switching from an episodic to a schematic strategy over time leads to enhanced performance due to the tendency for the reward location to be highly correlated with itself in the short-term, but regress to a stable distribution in the long-term. We also show that the statistics of the environment determine the optimal utilization of both types of memory. Our work recasts the theoretical question of why memory transformation occurs, shifting the focus from the avoidance of memory interference toward the enhancement of reinforcement learning across multiple timescales.

  17. Proceedings of "Optical Probes of Dynamics in Complex Environments"

    Energy Technology Data Exchange (ETDEWEB)

    Sension, R; Tokmakoff, A

    2008-04-01

    This document contains the proceedings from the symposium on Optical Probes of Dynamics in Complex Environments, which organized as part of the 235th National Meeting of the American Chemical Society in New Orleans, LA from April 6 to 10, 2008. The study of molecular dynamics in chemical reaction and biological processes using time ƒresolved spectroscopy plays an important role in our understanding of energy conversion, storage, and utilization problems. Fundamental studies of chemical reactivity, molecular rearrangements, and charge transport are broadly supported by the DOE Office of Science because of their role in the development of alternative energy sources, the understanding of biological energy conversion processes, the efficient utilization of existing energy resources, and the mitigation of reactive intermediates in radiation chemistry. In addition, time resolved spectroscopy is central to all of DOEs grand challenges for fundamental energy science. This symposium brought together leaders in the field of ultrafast spectroscopy, including experimentalists, theoretical chemists, and simulators, to discuss the most recent scientific and technological advances. DOE support for this conference was used to help young US and international scientists travel to the meeting. The latest technology in ultrafast infrared, optical, and xray spectroscopy and the scientific advances that these methods enable were covered. Particular emphasis was placed on new experimental methods used to probe molecular dynamics in liquids, solids, interfaces, nanostructured materials, and biomolecules.

  18. Flight dynamics of Cory's shearwater foraging in a coastal environment.

    Science.gov (United States)

    Paiva, Vitor H; Guilford, Tim; Meade, Jessica; Geraldes, Pedro; Ramos, Jaime A; Garthe, Stefan

    2010-01-01

    Flight dynamics theories are influenced by two major topics: how birds adapt their flight to cope with heterogeneous habitats, and whether birds plan to use the wind field or simply experience it. The aim of this study was to understand the flight dynamics of free-flying Cory's shearwaters in relation to the wind characteristics on the coastal upwelling region of continental Portugal. We deployed recently miniaturised devices-global positioning system loggers to collect precise and detailed information on birds' positions and motions. Prevalent winds were blowing from the north-east and adults used those winds by adjusting their flight directions mainly towards north-west and south-west, flying with cross and tail winds, respectively, and avoiding head winds. This is confirmation that Cory's shearwaters use a shear soaring flying strategy while exploiting the environment for food: adults foraged mainly with cross winds and their ground speed was not constant during all foraging trips as it changed dynamically as a result of the ocean surface shear winds. During travelling phases, ground speed was strongly influenced by the position of the bird with regard to the wind direction, as ground speed increased significantly with increasing tail wind component (TWC) values. Adults appear to choose foraging directions to exploit ambient wind, in order to improve shear soaring efficiency (cross winding) and exploit diurnal changes in tail wind strength to maximise commuting efficiency. We report, for the first time, precise ground speed values (GPS-derived data) and computed actual flight speed values (using TWC analysis) for Cory's shearwater.

  19. 'Dicty dynamics': Dictyostelium motility as persistent random motion

    DEFF Research Database (Denmark)

    Li, Liang; Cox, Edward C; Flyvbjerg, Henrik

    2011-01-01

    to the amoeba's direction of motion. This motion propels the amoeba with a random periodic left–right waddle in a direction that has a long persistence time. The model fully accounts for the statistics of the experimental trajectories, including velocity power spectra and auto-correlations, non...

  20. Single-cluster dynamics for the random-cluster model

    NARCIS (Netherlands)

    Deng, Y.; Qian, X.; Blöte, H.W.J.

    2009-01-01

    We formulate a single-cluster Monte Carlo algorithm for the simulation of the random-cluster model. This algorithm is a generalization of the Wolff single-cluster method for the q-state Potts model to noninteger values q>1. Its results for static quantities are in a satisfactory agreement with those

  1. Single-cluster dynamics for the random-cluster model

    NARCIS (Netherlands)

    Deng, Y.; Qian, X.; Blöte, H.W.J.

    2009-01-01

    We formulate a single-cluster Monte Carlo algorithm for the simulation of the random-cluster model. This algorithm is a generalization of the Wolff single-cluster method for the q-state Potts model to noninteger values q>1. Its results for static quantities are in a satisfactory agreement with those

  2. Vision-based threat detection in dynamic environments.

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Jeffrey J.

    2007-08-01

    This report addresses the development of automated video-screening technology to assist security forces in protecting our homeland against terrorist threats. A prevailing threat is the covert placement of bombs inside crowded public facilities. Although video-surveillance systems are increasingly common, current systems cannot detect the placement of bombs. It is also unlikely that security personnel could detect a bomb or its placement by observing video from surveillance cameras. The problems lie in the large number of cameras required to monitor large areas, the limited number of security personnel employed to protect these areas, and the intense diligence required to effectively screen live video from even a single camera. Different from existing video-detection systems designed to operate in nearly static environments, we are developing technology to detect changes in the background of dynamic environments: environments where motion and human activities are persistent over long periods. Our goal is to quickly detect background changes, even if the background is visible to the camera less than 5 percent of the time and possibly never free from foreground activity. Our approach employs statistical scene models based on mixture densities. We hypothesized that the background component of the mixture has a small variance compared to foreground components. Experiments demonstrate this hypothesis is true under a wide variety of operating conditions. A major focus involved the development of robust background estimation techniques that exploit this property. We desire estimation algorithms that can rapidly produce accurate background estimates and detection algorithms that can reliably detect background changes with minimal nuisance alarms. Another goal is to recognize unusual activities or foreground conditions that could signal an attack (e.g., large numbers of running people, people falling to the floor, etc.). Detection of background changes and/or unusual

  3. Topological equivalence for discontinuous random dynamical systems and applications

    OpenAIRE

    Qiao, Huijie; Duan, Jinqiao

    2012-01-01

    After defining non-Gaussian L\\'evy processes for two-sided time, stochastic differential equations with such L\\'evy processes are considered. Solution paths for these stochastic differential equations have countable jump discontinuities in time. Topological equivalence (or conjugacy) for such an It\\^o stochastic differential equation and its transformed random differential equation is established. Consequently, a stochastic Hartman-Grobman theorem is proved for the linearization of the It\\^o ...

  4. Random polarization dynamics in a resonant optical medium

    CERN Document Server

    Newhall, Katherine A; Kramer, Peter R; Kovacic, Gregor; Gabitov, Ildar R

    2013-01-01

    Random optical-pulse polarization switching along an active optical medium in the $\\Lambda$-configuration with spatially disordered occupation numbers of its lower energy sub-level pair is described using the idealized integrable Maxwell-Bloch model. Analytical results describing the light polarization-switching statistics for the single self-induced transparency pulse are compared with statistics obtained from direct Monte-Carlo numerical simulations.

  5. Unique Measure for Time-Dependent Random Dynamical Systems

    OpenAIRE

    Varner, Gregory

    2016-01-01

    This paper proves the uniqueness of measure for the two-dimensional Navier-Stokes equations under a random kick-force and a time-dependent deterministic force. By extending a result for uniqueness of measure for time-homogeneous Markov processes to the time-inhomogeneous case, it is shown that the measures are exponentially mixing for the 2D Navier-Stokes equations on the sphere.

  6. Random walk theory and exchange rate dynamics in transition economies

    Directory of Open Access Journals (Sweden)

    Gradojević Nikola

    2010-01-01

    Full Text Available This paper investigates the validity of the random walk theory in the Euro-Serbian dinar exchange rate market. We apply Andrew Lo and Archie MacKinlay's (1988 conventional variance ratio test and Jonathan Wright's (2000 non-parametric ranks and signs based variance ratio tests to the daily Euro/Serbian dinar exchange rate returns using the data from January 2005 - December 2008. Both types of variance ratio tests overwhelmingly reject the random walk hypothesis over the data span. To assess the robustness of our findings, we examine the forecasting performance of a non-linear, nonparametric model in the spirit of Francis Diebold and James Nason (1990 and find that it is able to significantly improve upon the random walk model, thus confirming the existence of foreign exchange market imperfections in a small transition economy such as Serbia. In the last part of the paper, we conduct a comparative study on how our results relate to those of other transition economies in the region.

  7. Parametric dynamics of quantum systems and transitions between ensembles of random matrices

    Energy Technology Data Exchange (ETDEWEB)

    Zyczkowski, K. [Uniwersytet Jagiellonski, Cracow (Poland). Inst. Fizyki

    1993-05-01

    We analyze ensembles of random matrices capable of describing the transitions between orthogonal, unitary and Poisson ensembles. Scaling laws found in complex Hermitian band random matrices and in additive random matrices allow us to apply them to represent the changes of the statistical properties of quantum systems under a variation of external parameters. The properties of spectrum and eigenvectors of an illustrative dynamical system are compared with the properties of ensembles of random matrices. To describe the motion of the eigenvectors of the matrix representing a dynamical system under a change of external parameters we define the relative localization length of the eigenvectors and analyze its properties. We propose a criterion for selection of generic basis, in which statistic of eigenvector components might be described by random matrices. The properties of products of unitary matrices, representing composed quantum systems, are investigated. (author). 220 refs, 15 figs.

  8. Dynamic fair node spectrum allocation for ad hoc networks using random matrices

    Science.gov (United States)

    Rahmes, Mark; Lemieux, George; Chester, Dave; Sonnenberg, Jerry

    2015-05-01

    Dynamic Spectrum Access (DSA) is widely seen as a solution to the problem of limited spectrum, because of its ability to adapt the operating frequency of a radio. Mobile Ad Hoc Networks (MANETs) can extend high-capacity mobile communications over large areas where fixed and tethered-mobile systems are not available. In one use case with high potential impact, cognitive radio employs spectrum sensing to facilitate the identification of allocated frequencies not currently accessed by their primary users. Primary users own the rights to radiate at a specific frequency and geographic location, while secondary users opportunistically attempt to radiate at a specific frequency when the primary user is not using it. We populate a spatial radio environment map (REM) database with known information that can be leveraged in an ad hoc network to facilitate fair path use of the DSA-discovered links. Utilization of high-resolution geospatial data layers in RF propagation analysis is directly applicable. Random matrix theory (RMT) is useful in simulating network layer usage in nodes by a Wishart adjacency matrix. We use the Dijkstra algorithm for discovering ad hoc network node connection patterns. We present a method for analysts to dynamically allocate node-node path and link resources using fair division. User allocation of limited resources as a function of time must be dynamic and based on system fairness policies. The context of fair means that first available request for an asset is not envied as long as it is not yet allocated or tasked in order to prevent cycling of the system. This solution may also save money by offering a Pareto efficient repeatable process. We use a water fill queue algorithm to include Shapley value marginal contributions for allocation.

  9. Can modifications to the bedroom environment improve the sleep of new parents? Two randomized controlled trials.

    Science.gov (United States)

    Lee, Kathryn A; Gay, Caryl L

    2011-02-01

    Postpartum sleep disruption is common among new parents. In this randomized controlled trial we evaluated a modified sleep hygiene intervention for new parents (infant proximity, noise masking, and dim lighting) in anticipation of night-time infant care. Two samples of new mothers (n = 118 and 122) were randomized to the experimental intervention or attention control, and sleep was assessed in late pregnancy and first 3 months postpartum using actigraphy and the General Sleep Disturbance Scale. The sleep hygiene strategies evaluated did not benefit the more socioeconomically advantaged women or their partners in Sample 1, but did improve postpartum sleep among the less advantaged women of Sample 2. Simple changes to the bedroom environment can improve sleep for new mothers with few resources.

  10. Incorporating a Wheeled Vehicle Model in a New Monocular Visual Odometry Algorithm for Dynamic Outdoor Environments

    Directory of Open Access Journals (Sweden)

    Yanhua Jiang

    2014-09-01

    Full Text Available This paper presents a monocular visual odometry algorithm that incorporates a wheeled vehicle model for ground vehicles. The main innovation of this algorithm is to use the single-track bicycle model to interpret the relationship between the yaw rate and side slip angle, which are the two most important parameters that describe the motion of a wheeled vehicle. Additionally, the pitch angle is also considered since the planar-motion hypothesis often fails due to the dynamic characteristics of wheel suspensions and tires in real-world environments. Linearization is used to calculate a closed-form solution of the motion parameters that works as a hypothesis generator in a RAndom SAmple Consensus (RANSAC scheme to reduce the complexity in solving equations involving trigonometric. All inliers found are used to refine the winner solution through minimizing the reprojection error. Finally, the algorithm is applied to real-time on-board visual localization applications. Its performance is evaluated by comparing against the state-of-the-art monocular visual odometry methods using both synthetic data and publicly available datasets over several kilometers in dynamic outdoor environments.

  11. Navigation of autonomous vehicles for oil spill cleaning in dynamic and uncertain environments

    Science.gov (United States)

    Jin, Xin; Ray, Asok

    2014-04-01

    In the context of oil spill cleaning by autonomous vehicles in dynamic and uncertain environments, this paper presents a multi-resolution algorithm that seamlessly integrates the concepts of local navigation and global navigation based on the sensory information; the objective here is to enable adaptive decision making and online replanning of vehicle paths. The proposed algorithm provides a complete coverage of the search area for clean-up of the oil spills and does not suffer from the problem of having local minima, which is commonly encountered in potential-field-based methods. The efficacy of the algorithm is tested on a high-fidelity player/stage simulator for oil spill cleaning in a harbour, where the underlying oil weathering process is modelled as 2D random-walk particle tracking. A preliminary version of this paper was presented by X. Jin and A. Ray as 'Coverage Control of Autonomous Vehicles for Oil Spill Cleaning in Dynamic and Uncertain Environments', Proceedings of the American Control Conference, Washington, DC, June 2013, pp. 2600-2605.

  12. Return times at periodic points in random dynamics

    Science.gov (United States)

    Haydn, Nicolai; Todd, Mike

    2017-01-01

    We prove a quenched limiting law for random measures on subshifts at periodic points. We consider a family of measures {≤ft\\{{{μω}\\right\\}}ω \\in Ω } , where the ‘driving space’ Ω is equipped with a probability measure which is invariant under a transformation θ. We assume that the fibred measures {μω} satisfy a generalised invariance property and are ψ-mixing. We then show that for almost every ω the return times to cylinders A n at periodic points are in the limit compound Poisson distributed for a parameter ϑ which is given by the escape rate at the periodic point.

  13. Medical Image Dynamic Collaborative Processing on the Distributed Environment

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A new trend in the development of medical image processing systems is to enhance the sharing of medical resources and the collaborative processing of medical specialists. This paper presents an architecture of medical image dynamic collaborative processing on the distributed environment by combining the JAVA, CORBA (Common Object Request and Broker Architecture) and the MAS (Multi-Agents System) collaborative mechanism. The architecture allows medical specialists or applications to share records and communicate with each other on the web by overcoming the shortcut of traditional approach using Common Gateway Interface (CGI) and client/server architecture, and can support the remote heterogeneous systems collaboration. The new approach improves the collaborative processing of medical data and applications and is able to enhance the interoperation among heterogeneous system. Research on the system will help the collaboration and cooperation among medical application systems distributed on the web, thus supply high quality medical service such as diagnosis and therapy to practicing specialists regardless of their actual geographic location.

  14. Geometrical Constructions in Dynamic and Interactive Mathematics Learning Environment

    Directory of Open Access Journals (Sweden)

    Margo Kondratieva

    2013-07-01

    Full Text Available This paper concerns teaching Euclidean geometry at the university level. It is based on the authors’ personal experience. It describes a sequence of learning activities that combine geometrical constructions with explorations, observations, and explanations of facts related to the geometry of triangle. Within this approach, a discussion of the Euler and Nigel lines receives a unified treatment via employment of a plane transformation that maps a triangle into its medial triangle. I conclude that during this course delivery, the role of constructions in dynamic and interactive environment was significant for students’ genuine understanding of the subject. In particular, it helped them to work with concrete figures and develop their own preformal approaches before learning general theorems and proofs. At the same time it was essential to follow such strategies as gradually lead students from basic to advanced constructions, from making simple analogies to generalizations based on critical ideas and unified principles, and emphasize structural interconnectedness of the problems each of which adds a new element into a bigger picture.

  15. PAQ: Persistent Adaptive Query Middleware for Dynamic Environments

    Science.gov (United States)

    Rajamani, Vasanth; Julien, Christine; Payton, Jamie; Roman, Gruia-Catalin

    Pervasive computing applications often entail continuous monitoring tasks, issuing persistent queries that return continuously updated views of the operational environment. We present PAQ, a middleware that supports applications' needs by approximating a persistent query as a sequence of one-time queries. PAQ introduces an integration strategy abstraction that allows composition of one-time query responses into streams representing sophisticated spatio-temporal phenomena of interest. A distinguishing feature of our middleware is the realization that the suitability of a persistent query's result is a function of the application's tolerance for accuracy weighed against the associated overhead costs. In PAQ, programmers can specify an inquiry strategy that dictates how information is gathered. Since network dynamics impact the suitability of a particular inquiry strategy, PAQ associates an introspection strategy with a persistent query, that evaluates the quality of the query's results. The result of introspection can trigger application-defined adaptation strategies that alter the nature of the query. PAQ's simple API makes developing adaptive querying systems easily realizable. We present the key abstractions, describe their implementations, and demonstrate the middleware's usefulness through application examples and evaluation.

  16. Nonlinear Dynamic Analysis of Deepwater Drilling Risers Subjected to Random Loads

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Excited by ocean currents, random wave and vessel motion, deepwater drilling risers exhibit significant dynamic response. In time domain, a method is proposed to calculate the nonlinear dynamic response of deepwater drilling risers subjected to random wave and dynamic large displacement vessel motion boundary condition. Structural and functional loads, external and internal pressure, free surface effect of irregular wave, hydrodynamic forces induced by current and wave, as well as wave and low frequency (drift) motion of the drilling vessel are all accounted for. An example is presented which illustrates the application of the proposed method. The study shows that long term drift motion of the vessel has profound effect on the envelopes of bending stress and lateral displacement, as well as the range of lower flex joint angle of the deepwater riser. It can also be concluded that vessel motion is the principal dynamic loading of nonlinear dynamic response for the deepwater risers rather than wave force.

  17. Cascading dynamics on random networks: Crossover in phase transition

    Science.gov (United States)

    Liu, Run-Ran; Wang, Wen-Xu; Lai, Ying-Cheng; Wang, Bing-Hong

    2012-02-01

    In a complex network, random initial attacks or failures can trigger subsequent failures in a cascading manner, which is effectively a phase transition. Recent works have demonstrated that in networks with interdependent links so that the failure of one node causes the immediate failures of all nodes connected to it by such links, both first- and second-order phase transitions can arise. Moreover, there is a crossover between the two types of transitions at a critical system-parameter value. We demonstrate that these phenomena can occur in the more general setting where no interdependent links are present. A heuristic theory is derived to estimate the crossover and phase-transition points, and a remarkable agreement with numerics is obtained.

  18. Evolutionary dynamics of tumor progression with random fitness values

    CERN Document Server

    Durrett, Rick; Leder, Kevin; Mayberry, John; Michor, Franziska

    2010-01-01

    Most human tumors result from the accumulation of multiple genetic and epigenetic alterations in a single cell. Mutations that confer a fitness advantage to the cell are known as driver mutations and are causally related to tumorigenesis. Other mutations, however, do not change the phenotype of the cell or even decrease cellular fitness. While much experimental effort is being devoted to the identification of the different functional effects of individual mutations, mathematical modeling of tumor progression generally considers constant fitness increments as mutations are accumulated. In this paper we study a mathematical model of tumor progression with random fitness increments. We analyze a multi-type branching process in which cells accumulate mutations whose fitness effects are chosen from a distribution. We determine the effect of the fitness distribution on the growth kinetics of the tumor. This work contributes to a quantitative understanding of the accumulation of mutations leading to cancer phenotype...

  19. SIRS Dynamics on Random Networks: Simulations and Analytical Models

    Science.gov (United States)

    Rozhnova, Ganna; Nunes, Ana

    The standard pair approximation equations (PA) for the Susceptible-Infective-Recovered-Susceptible (SIRS) model of infection spread on a network of homogeneous degree k predict a thin phase of sustained oscillations for parameter values that correspond to diseases that confer long lasting immunity. Here we present a study of the dependence of this oscillatory phase on the parameter k and of its relevance to understand the behaviour of simulations on networks. For k = 4, we compare the phase diagram of the PA model with the results of simulations on regular random graphs (RRG) of the same degree. We show that for parameter values in the oscillatory phase, and even for large system sizes, the simulations either die out or exhibit damped oscillations, depending on the initial conditions. This failure of the standard PA model to capture the qualitative behaviour of the simulations on large RRGs is currently being investigated.

  20. Simulation of Dynamics in Two-Dimensional Vortex Systems in Random Media

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wei; SUN Li-Zhen; LUO Meng-Bo

    2009-01-01

    Dynamics in two-dimensional vortex systems with random pinning centres is investigated using molecular dy-namical simulations. The driving force and temperature dependences of vortex velocity are investigated. Below the critical depinning force Fc, a creep motion of vortex is found at low temperature. At forces slightly above Fc, a part of vortices flow in winding channels at zero temperature. In the vortex channel flow region, we ob-serve the abnormal behaviour of vortex dynamics: the velocity is roughly independent of temperature or even decreases with temperature at low temperatures. A phase diagram that describes different dynamics of vortices is presented.

  1. Lotka-Volterra systems in environments with randomly disordered temporal periodicity.

    Science.gov (United States)

    Naess, Arvid; Dimentberg, Michael F; Gaidai, Oleg

    2008-08-01

    A generalized Lotka-Volterra model for a pair of interacting populations of predators and prey is studied. The model accounts for the prey's interspecies competition and therefore is asymptotically stable, whereas its oscillatory behavior is induced by temporal variations in environmental conditions simulated by those in the prey's reproduction rate. Two models of the variations are considered, each of them combining randomness with "hidden" periodicity. The stationary joint probability density function (PDF) of the number of predators and prey is calculated numerically by the path integration (PI) method based on the use of characteristic functions and the fast Fourier transform. The numerical results match those for the asymptotic case of white-noise variations for which an analytical solution is available. Several examples are studied, with calculations of important characteristics of oscillations, for example the expected rate of up-crossings given the level of the predator number. The calculated PDFs may be of predominantly random (unimodal) or predominantly periodic nature (bimodal). Thus, the PI method has been demonstrated to be a powerful tool for studies of the dynamics of predator-prey pairs. The method captures the random oscillations as observed in nature, taking into account potential periodicity in the environmental conditions.

  2. Modeling microbial dynamics in heterogeneous environments: growth on soil carbon sources.

    Science.gov (United States)

    Resat, Haluk; Bailey, Vanessa; McCue, Lee Ann; Konopka, Allan

    2012-05-01

    We have developed a new kinetic model to study how microbial dynamics are affected by the heterogeneity in the physical structure of the environment and by different strategies for hydrolysis of polymeric carbon. The hybrid model represented the dynamics of substrates and enzymes using a continuum representation and the dynamics of the cells were modeled individually. Individual-based biological model allowed us to explicitly simulate microbial diversity, and to model cell physiology as regulated via optimal allocation of cellular resources to enzyme synthesis, control of growth rate by protein synthesis capacity, and shifts to dormancy. This model was developed to study how microbial community functioning is influenced by local environmental conditions in heterogeneous media such as soil and by the functional attributes of individual microbes. Microbial community dynamics were simulated at two spatial scales: micro-pores that resemble 6-20-μm size portions of the soil physical structure and in 111-μm size soil aggregates with a random pore structure. Different strategies for acquisition of carbon from polymeric cellulose were investigated. Bacteria that express membrane-associated hydrolase had different growth and survival dynamics in soil pores than bacteria that release extracellular hydrolases. The kinetic differences suggested different functional niches for these two microbe types in cellulose utilization. Our model predicted an emergent behavior in which co-existence of membrane-associated hydrolase and extracellular hydrolases releasing organisms led to higher cellulose utilization efficiency and reduced stochasticity. Our analysis indicated that their co-existence mutually benefits these organisms, where basal cellulose degradation activity by membrane-associated hydrolase-expressing cells shortened the soluble hydrolase buildup time and, when enzyme buildup allowed for cellulose degradation to be fast enough to sustain exponential growth, all the

  3. Toward an optimisation technique for dynamically monitored environment

    Science.gov (United States)

    Shurrab, Orabi M.

    2016-10-01

    The data fusion community has introduced multiple procedures of situational assessments; this is to facilitate timely responses to emerging situations. More directly, the process refinement of the Joint Directors of Laboratories (JDL) is a meta-process to assess and improve the data fusion task during real-time operation. In other wording, it is an optimisation technique to verify the overall data fusion performance, and enhance it toward the top goals of the decision-making resources. This paper discusses the theoretical concept of prioritisation. Where the analysts team is required to keep an up to date with the dynamically changing environment, concerning different domains such as air, sea, land, space and cyberspace. Furthermore, it demonstrates an illustration example of how various tracking activities are ranked, simultaneously into a predetermined order. Specifically, it presents a modelling scheme for a case study based scenario, where the real-time system is reporting different classes of prioritised events. Followed by a performance metrics for evaluating the prioritisation process of situational awareness (SWA) domain. The proposed performance metrics has been designed and evaluated using an analytical approach. The modelling scheme represents the situational awareness system outputs mathematically, in the form of a list of activities. Such methods allowed the evaluation process to conduct a rigorous analysis of the prioritisation process, despite any constrained related to a domain-specific configuration. After conducted three levels of assessments over three separates scenario, The Prioritisation Capability Score (PCS) has provided an appropriate scoring scheme for different ranking instances, Indeed, from the data fusion perspectives, the proposed metric has assessed real-time system performance adequately, and it is capable of conducting a verification process, to direct the operator's attention to any issue, concerning the prioritisation capability

  4. ARCHITECTURAL LARGE CONSTRUCTED ENVIRONMENT. MODELING AND INTERACTION USING DYNAMIC SIMULATIONS

    Directory of Open Access Journals (Sweden)

    P. Fiamma

    2012-09-01

    Full Text Available How to use for the architectural design, the simulation coming from a large size data model? The topic is related to the phase coming usually after the acquisition of the data, during the construction of the model and especially after, when designers must have an interaction with the simulation, in order to develop and verify their idea. In the case of study, the concept of interaction includes the concept of real time "flows". The work develops contents and results that can be part of the large debate about the current connection between "architecture" and "movement". The focus of the work, is to realize a collaborative and participative virtual environment on which different specialist actors, client and final users can share knowledge, targets and constraints to better gain the aimed result. The goal is to have used a dynamic micro simulation digital resource that allows all the actors to explore the model in powerful and realistic way and to have a new type of interaction in a complex architectural scenario. On the one hand, the work represents a base of knowledge that can be implemented more and more; on the other hand the work represents a dealt to understand the large constructed architecture simulation as a way of life, a way of being in time and space. The architectural design before, and the architectural fact after, both happen in a sort of "Spatial Analysis System". The way is open to offer to this "system", knowledge and theories, that can support architectural design work for every application and scale. We think that the presented work represents a dealt to understand the large constructed architecture simulation as a way of life, a way of being in time and space. Architecture like a spatial configuration, that can be reconfigurable too through designing.

  5. A Comparison of Three Random Number Generators for Aircraft Dynamic Modeling Applications

    Science.gov (United States)

    Grauer, Jared A.

    2017-01-01

    Three random number generators, which produce Gaussian white noise sequences, were compared to assess their suitability in aircraft dynamic modeling applications. The first generator considered was the MATLAB (registered) implementation of the Mersenne-Twister algorithm. The second generator was a website called Random.org, which processes atmospheric noise measured using radios to create the random numbers. The third generator was based on synthesis of the Fourier series, where the random number sequences are constructed from prescribed amplitude and phase spectra. A total of 200 sequences, each having 601 random numbers, for each generator were collected and analyzed in terms of the mean, variance, normality, autocorrelation, and power spectral density. These sequences were then applied to two problems in aircraft dynamic modeling, namely estimating stability and control derivatives from simulated onboard sensor data, and simulating flight in atmospheric turbulence. In general, each random number generator had good performance and is well-suited for aircraft dynamic modeling applications. Specific strengths and weaknesses of each generator are discussed. For Monte Carlo simulation, the Fourier synthesis method is recommended because it most accurately and consistently approximated Gaussian white noise and can be implemented with reasonable computational effort.

  6. Random Dynamics of the Stochastic Boussinesq Equations Driven by Lévy Noises

    Directory of Open Access Journals (Sweden)

    Jianhua Huang

    2013-01-01

    Full Text Available This paper is devoted to the investigation of random dynamics of the stochastic Boussinesq equations driven by Lévy noise. Some fundamental properties of a subordinator Lévy process and the stochastic integral with respect to a Lévy process are discussed, and then the existence, uniqueness, regularity, and the random dynamical system generated by the stochastic Boussinesq equations are established. Finally, some discussions on the global weak solution of the stochastic Boussinesq equations driven by general Lévy noise are also presented.

  7. Distributed computations in a dynamic, heterogeneous Grid environment

    Science.gov (United States)

    Dramlitsch, Thomas

    2003-06-01

    other reasons for low performance - develop new and advanced algorithms for parallelisation that are aware of a Grid environment in order to generelize the traditional parallelization schemes - implement and test these new methods, replace and compare with the classical ones - introduce dynamic strategies that automatically adapt the running code to the nature of the underlying Grid environment. The higher the performance one can achieve for a single application by manual tuning for a Grid environment, the lower the chance that those changes are widely applicable to other programs. In our analysis as well as in our implementation we tried to keep the balance between high performance and generality. None of our changes directly affect code on the application level which makes our algorithms applicable to a whole class of real world applications. The implementation of our work is done within the Cactus framework using the Globus toolkit, since we think that these are the most reliable and advanced programming frameworks for supporting computations in Grid environments. On the other hand, however, we tried to be as general as possible, i.e. all methods and algorithms discussed in this thesis are independent of Cactus or Globus. Die immer dichtere und schnellere Vernetzung von Rechnern und Rechenzentren über Hochgeschwindigkeitsnetzwerke ermöglicht eine neue Art des wissenschaftlich verteilten Rechnens, bei der geographisch weit auseinanderliegende Rechenkapazitäten zu einer Gesamtheit zusammengefasst werden können. Dieser so entstehende virtuelle Superrechner, der selbst aus mehreren Grossrechnern besteht, kann dazu genutzt werden Probleme zu berechnen, für die die einzelnen Grossrechner zu klein sind. Die Probleme, die numerisch mit heutigen Rechenkapazitäten nicht lösbar sind, erstrecken sich durch sämtliche Gebiete der heutigen Wissenschaft, angefangen von Astrophysik, Molekülphysik, Bioinformatik, Meteorologie, bis hin zur Zahlentheorie und Fluiddynamik um nur

  8. Far from random: dynamical groupings among the NEO population

    CERN Document Server

    Marcos, C de la Fuente

    2016-01-01

    Among the near-Earth object (NEO) population there are comets and active asteroids which are sources of fragments that initially move together; in addition, some NEOs follow orbits temporarily trapped in a web of secular resonances. These facts contribute to increasing the risk of meteoroid strikes on Earth, making its proper quantification difficult. The identification and subsequent study of groups of small NEOs that appear to move in similar trajectories are necessary steps in improving our understanding of the impact risk associated with meteoroids. Here, we present results of a search for statistically significant dynamical groupings among the NEO population. Our Monte Carlo-based methodology recovers well-documented groupings like the Taurid Complex or the one resulting from the split comet 73P/Schwassmann-Wachmann 3, and new ones that may have been the source of past impacts. Among the most conspicuous are the Mjolnir and Ptah groups, perhaps the source of recent impact events like Almahata Sitta and C...

  9. Far from random: dynamical groupings among the NEO population

    Science.gov (United States)

    de la Fuente Marcos, C.; de la Fuente Marcos, R.

    2016-03-01

    Among the near-Earth object (NEO) population, there are comets and active asteroids which are sources of fragments that initially move together; in addition, some NEOs follow orbits temporarily trapped in a web of secular resonances. These facts contribute to increasing the risk of meteoroid strikes on Earth, making its proper quantification difficult. The identification and subsequent study of groups of small NEOs that appear to move in similar trajectories are necessary steps in improving our understanding of the impact risk associated with meteoroids. Here, we present results of a search for statistically significant dynamical groupings among the NEO population. Our Monte Carlo-based methodology recovers well-documented groupings like the Taurid Complex or the one resulting from the split comet 73P/Schwassmann-Wachmann 3, and new ones that may have been the source of past impacts. Among the most conspicuous are the Mjolnir and Ptah groups, perhaps the source of recent impact events like Almahata Sitta and Chelyabinsk, respectively. Meteoroid 2014 AA, that hit the Earth on 2014 January 2, could have its origin in a marginally significant grouping associated with Bennu. We find that most of the substructure present within the orbital domain of the NEOs is of resonant nature, probably induced by secular resonances and the Kozai mechanism that confine these objects into specific paths with well-defined perihelia.

  10. Random matrix theory for mixed regular-chaotic dynamics in the super-extensive regime

    CERN Document Server

    El-Hady, A Abd

    2011-01-01

    We apply Tsallis's q-indexed nonextensive entropy to formulate a random matrix theory (RMT), which may be suitable for systems with mixed regular-chaotic dynamics. We consider the super-extensive regime of q < 1. We obtain analytical expressions for the level-spacing distributions, which are strictly valid for 2 \\times 2 random-matrix ensembles, as usually done in the standard RMT. We compare the results with spacing distributions, numerically calculated for random matrix ensembles describing a harmonic oscillator perturbed by Gaussian orthogonal and unitary ensembles.

  11. Multiformity of inherent randomicity and visitation density in n symbolic dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yagang [Department of Applied Mathematics, School of Mathematics and Physics, North China Electric Power University, Box 205, Baoding, Hebei 071003 (China) and Center for Nonlinear Complex Systems, Department of Physics, Yunnan University, Kunming, Yunnan 650091 (China)]. E-mail: ygzhg@163.com; Wang Changjiang [Center for Nonlinear Complex Systems, Department of Physics, Yunnan University, Kunming, Yunnan 650091 (China)

    2007-07-15

    The multiformity of inherent randomicity and visitation density in n symbolic dynamics will be clarified in this paper. These stochastic symbolic sequences bear three features. The distribution of frequency, inter-occurrence times and the alignment of two random sequences are amplified in detail. The features of visitation density in surjective maps presents catholicity and the catholicity in n letters randomicity has the same measure foundation. We hope to offer a symbolic platform that satisfies these stochastic properties and to attempt to study certain properties of DNA base sequences, 20 amino acids symbolic sequences of proteid structure, and the time series that can be symbolic in finance market et al.

  12. Photosynthetic rates influence the population dynamics of understory herbs in stochastic light environments.

    Science.gov (United States)

    Westerband, Andrea C; Horvitz, Carol C

    2017-02-01

    , through their effects on growth, can strongly influence the population dynamics of plants in random light environments, but the magnitude of this effect varies between species. In the species for which fitness was independent of Amax , Calathea, there would be little opportunity for selection on photosynthetic rates.

  13. Performance of dynamical decoupling in bosonic environments and under pulse-timing fluctuations

    Science.gov (United States)

    Teixeira, W. S.; Kapale, K. T.; Paternostro, M.; Semião, F. L.

    2016-12-01

    We study the suppression of qubit dephasing through Uhrig dynamical decoupling (UDD) in nontrivial environments modeled within the spin-boson formalism. In particular, we address the case of (i) a qubit coupled to a bosonic bath with power-law spectral density, and (ii) a qubit coupled to a single harmonic oscillator that dissipates energy into a bosonic bath, which embodies an example of a structured bath for the qubit. We then model the influence of random time jitter in the UDD protocol by sorting pulse-application times from Gaussian distributions centered at appropriate values dictated by the optimal protocol. In case (i) we find that, when few pulses are applied and a sharp cutoff is considered, longer coherence times and robust UDD performances (against random timing errors) are achieved for a super-Ohmic bath. On the other hand, when an exponential cutoff is considered, a super-Ohmic bath is undesirable. In case (ii) the best scenario is obtained for an overdamped harmonic motion. Our study provides relevant information for the implementation of optimized schemes for the protection of quantum states from decoherence.

  14. Dynamics of comb-of-comb-network polymers in random layered flows

    Science.gov (United States)

    Katyal, Divya; Kant, Rama

    2016-12-01

    We analyze the dynamics of comb-of-comb-network polymers in the presence of external random flows. The dynamics of such structures is evaluated through relevant physical quantities, viz., average square displacement (ASD) and the velocity autocorrelation function (VACF). We focus on comparing the dynamics of the comb-of-comb network with the linear polymer. The present work displays an anomalous diffusive behavior of this flexible network in the random layered flows. The effect of the polymer topology on the dynamics is analyzed by varying the number of generations and branch lengths in these networks. In addition, we investigate the influence of external flow on the dynamics by varying flow parameters, like the flow exponent α and flow strength Wα. Our analysis highlights two anomalous power-law regimes, viz., subdiffusive (intermediate-time polymer stretching and flow-induced diffusion) and superdiffusive (long-time flow-induced diffusion). The anomalous long-time dynamics is governed by the temporal exponent ν of ASD, viz., ν =2 -α /2 . Compared to a linear polymer, the comb-of-comb network shows a shorter crossover time (from the subdiffusive to superdiffusive regime) but a reduced magnitude of ASD. Our theory displays an anomalous VACF in the random layered flows that scales as t-α /2. We show that the network with greater total mass moves faster.

  15. Dynamics of comb-of-comb-network polymers in random layered flows.

    Science.gov (United States)

    Katyal, Divya; Kant, Rama

    2016-12-01

    We analyze the dynamics of comb-of-comb-network polymers in the presence of external random flows. The dynamics of such structures is evaluated through relevant physical quantities, viz., average square displacement (ASD) and the velocity autocorrelation function (VACF). We focus on comparing the dynamics of the comb-of-comb network with the linear polymer. The present work displays an anomalous diffusive behavior of this flexible network in the random layered flows. The effect of the polymer topology on the dynamics is analyzed by varying the number of generations and branch lengths in these networks. In addition, we investigate the influence of external flow on the dynamics by varying flow parameters, like the flow exponent α and flow strength W_{α}. Our analysis highlights two anomalous power-law regimes, viz., subdiffusive (intermediate-time polymer stretching and flow-induced diffusion) and superdiffusive (long-time flow-induced diffusion). The anomalous long-time dynamics is governed by the temporal exponent ν of ASD, viz., ν=2-α/2. Compared to a linear polymer, the comb-of-comb network shows a shorter crossover time (from the subdiffusive to superdiffusive regime) but a reduced magnitude of ASD. Our theory displays an anomalous VACF in the random layered flows that scales as t^{-α/2}. We show that the network with greater total mass moves faster.

  16. Dynamics of the entanglement witness for three qubits in common environment

    Institute of Scientific and Technical Information of China (English)

    Lu Huai-Xin

    2007-01-01

    In the measurement-based model of quantum computing, a one-way quantum computer consisting of many qubits can be immersed in a common environment as a simple decoherence mechanism. This paper studies the dynamics of entanglement witness for 3-qubit cluster states in the common environment. The result shows that environment can induce an interesting feature in the time evolution of the entanglement witness: i.e., the periodical collapse and revival of the entanglement dynamics.

  17. Enhanced dynamic instability of microtubules in a ROS free inert environment.

    Science.gov (United States)

    Islam, Md Sirajul; Kabir, Arif Md Rashedul; Inoue, Daisuke; Sada, Kazuki; Kakugo, Akira

    2016-04-01

    Reactive oxygen species (ROS), one of the regulators in various biological processes, have recently been suspected to modulate microtubule (MT) dynamics in cells. However due to complicated cellular environment and unavailability of any in vitro investigation, no detail is understood yet. Here, by performing simple in vitro investigations, we have unveiled the effect of ROS on MT dynamics. By studying dynamic instability of MTs in a ROS free environment and comparing with that in the presence of ROS, we disclosed that MTs showed enhanced dynamics in the ROS free environment. All the parameters that define dynamic instability of MTs e.g., growth and shrinkage rates, rescue and catastrophe frequencies were significantly affected by the presence of ROS. This work clearly reveals the role of ROS in modulating MT dynamics in vitro, and would be a great help in understanding the role of ROS in regulation of MT dynamics in cells.

  18. Single event upset in static random access memories in atmospheric neutron environments

    CERN Document Server

    Arita, Y; Ogawa, I; Kishimoto, T

    2003-01-01

    Single-event upsets (SEUs) in a 0.4 mu m 4Mbit complementary metal oxide semiconductor (CMOS) static random access memory (SRAM) were investigated in various atmospheric neutron environments at sea level, at an altitude of 2612 m mountain, at an altitude of commercial airplane, and at an underground depth of 476m. Neutron-induced SEUs increase with the increase in altitude. For a device with a borophosphosilicate glass (BPSG) film, SEU rates induced by thermal neutrons increase with the decrease in the cell charge of a memory cell. A thermal neutron-induced SEU is significant in SRAMs with a small cell charge. With the conditions of small cell charge, thermal neutron-induced SEUs account for 60% or more of the total neutron-induced SEUs. The SEU rate induced by atmospheric thermal neutrons can be estimated by an acceleration test using sup 2 sup 5 sup 2 Cf. (author)

  19. Entanglement and the generation of random states in the quantum chaotic dynamics of kicked coupled tops.

    Science.gov (United States)

    Trail, Collin M; Madhok, Vaibhav; Deutsch, Ivan H

    2008-10-01

    We study the dynamical generation of entanglement as a signature of chaos in a system of periodically kicked coupled tops, where chaos and entanglement arise from the same physical mechanism. The long-time-averaged entanglement as a function of the position of an initially localized wave packet very closely correlates with the classical phase space surface of section--it is nearly uniform in the chaotic sea, and reproduces the detailed structure of the regular islands. The uniform value in the chaotic sea is explained by the random state conjecture. As classically chaotic dynamics take localized distributions in phase space to random distributions, quantized versions take localized coherent states to pseudorandom states in Hilbert space. Such random states are highly entangled, with an average value near that of the maximally entangled state. For a map with global chaos, we derive that value based on analytic results for the entropy of random states. For a mixed phase space, we use the Percival conjecture to identify a "chaotic subspace" of the Hilbert space. The typical entanglement, averaged over the unitarily invariant Haar measure in this subspace, agrees with the long-time-averaged entanglement for initial states in the chaotic sea. In all cases the dynamically generated entanglement is that of a random complex vector, even though the system is time-reversal invariant, and the Floquet operator is a member of the circular orthogonal ensemble.

  20. DYNAMIC CHARACTERISTIC ANALYSIS OF FUZZY- STOCHASTIC TRUSS STRUCTURES BASED ON FUZZY FACTOR METHOD AND RANDOM FACTOR METHOD

    Institute of Scientific and Technical Information of China (English)

    MA Juan; CHEN Jian-jun; XU Ya-lan; JIANG Tao

    2006-01-01

    A new fuzzy stochastic finite element method based on the fuzzy factor method and random factor method is given and the analysis of structural dynamic characteristic for fuzzy stochastic truss structures is presented. Considering the fuzzy randomness of the structural physical parameters and geometric dimensions simultaneously, the structural stiffness and mass matrices are constructed based on the fuzzy factor method and random factor method; from the Rayleigh's quotient of structural vibration, the structural fuzzy random dynamic characteristic is obtained by means of the interval arithmetic;the fuzzy numeric characteristics of dynamic characteristic are then derived by using the random variable's moment function method and algebra synthesis method. Two examples are used to illustrate the validity and rationality of the method given. The advantage of this method is that the effect of the fuzzy randomness of one of the structural parameters on the fuzzy randomness of the dynamic characteristic can be reflected expediently and objectively.

  1. A dynamic random effects multinomial logit model of household car ownership

    DEFF Research Database (Denmark)

    Bue Bjørner, Thomas; Leth-Petersen, Søren

    2007-01-01

    Using a large household panel we estimate demand for car ownership by means of a dynamic multinomial model with correlated random effects. Results suggest that the persistence in car ownership observed in the data should be attributed to both true state dependence and to unobserved heterogeneity ...

  2. Coherent electron dynamics in a two-dimensional random system with mobility edges

    NARCIS (Netherlands)

    de Moura, F. A. B. F.; Lyra, M. L.; Dominguez-Adame, F.; Malyshev, V.A.

    2007-01-01

    We study numerically the dynamics of a one-electron wavepacket in a two-dimensional random lattice with long-range correlated diagonal disorder in the presence of a uniform electric field. The time-dependent Schrodinger equation is used for this purpose. We find that the wavepacket displays Bloch-li

  3. Static and dynamic aspects of the rms local slope of growing random surfaces

    NARCIS (Netherlands)

    Palasantzas, George

    1997-01-01

    In this work, we investigated static and dynamic aspects of the rms local surface slope ‘‘ρ’’ for self-affine random surfaces. The rms local slope is expressed as a function of the rms roughness amplitude σ, the in-plane correlation length ξ, and the roughness exponent H (0 0).

  4. Absolute Continuity Theorem for Random Dynamical Systems on $R^d$

    CERN Document Server

    Biskamp, Moritz

    2012-01-01

    In this article we provide a proof of the so called absolute continuity theorem for random dynamical systems on $R^d$ which have an invariant probability measure. First we present the construction of local stable manifolds in this case. Then the absolute continuity theorem basically states that for any two transversal manifolds to the family of local stable manifolds the induced Lebesgue measures on these transversal manifolds are absolutely continuous under the map that transports every point on the first manifold along the local stable manifold to the second manifold, the so-called Poincar\\'e map or holonomy map. In contrast to known results, we have to deal with the non-compactness of the state space and the randomness of the random dynamical system.

  5. 3D Multisource Full‐Waveform Inversion using Dynamic Random Phase Encoding

    KAUST Repository

    Boonyasiriwat, Chaiwoot

    2010-10-17

    We have developed a multisource full‐waveform inversion algorithm using a dynamic phase encoding strategy with dual‐randomization—both the position and polarity of simultaneous sources are randomized and changed every iteration. The dynamic dual‐randomization is used to promote the destructive interference of crosstalk noise resulting from blending a large number of common shot gathers into a supergather. We compare our multisource algorithm with various algorithms in a numerical experiment using the 3D SEG/EAGE overthrust model and show that our algorithm provides a higher‐quality velocity tomogram than the other methods that use only monorandomization. This suggests that increasing the degree of randomness in phase encoding should improve the quality of the inversion result.

  6. Dynamic random links enhance diversity-induced coherence in strongly coupled neuronal systems

    Indian Academy of Sciences (India)

    Neeraj Kumar Kamal; Sudeshna Sinha

    2015-02-01

    We investigate the influence of diversity on the temporal regularity of spiking in a ring of coupled model neurons. We find diversity-induced coherence in the spike events, with an optimal amount of parametric heterogeneity at the nodal level yielding the greatest regularity in the spike train. Further, we investigate the system under random spatial connections, where the links are both dynamic and quenched, and in all the cases we observe marked diversity-induced coherence. We quantitatively find the effect of coupling strength and random rewiring probability, on the optimal coherence that can be achieved under diversity. Our results indicate that the largest coherence in the spike events emerge when the coupling strength is high, and when the underlying connections are mostly random and dynamically changing.

  7. A method to dynamic stochastic multicriteria decision making with log-normally distributed random variables.

    Science.gov (United States)

    Wang, Xin-Fan; Wang, Jian-Qiang; Deng, Sheng-Yue

    2013-01-01

    We investigate the dynamic stochastic multicriteria decision making (SMCDM) problems, in which the criterion values take the form of log-normally distributed random variables, and the argument information is collected from different periods. We propose two new geometric aggregation operators, such as the log-normal distribution weighted geometric (LNDWG) operator and the dynamic log-normal distribution weighted geometric (DLNDWG) operator, and develop a method for dynamic SMCDM with log-normally distributed random variables. This method uses the DLNDWG operator and the LNDWG operator to aggregate the log-normally distributed criterion values, utilizes the entropy model of Shannon to generate the time weight vector, and utilizes the expectation values and variances of log-normal distributions to rank the alternatives and select the best one. Finally, an example is given to illustrate the feasibility and effectiveness of this developed method.

  8. A Method to Dynamic Stochastic Multicriteria Decision Making with Log-Normally Distributed Random Variables

    Directory of Open Access Journals (Sweden)

    Xin-Fan Wang

    2013-01-01

    Full Text Available We investigate the dynamic stochastic multicriteria decision making (SMCDM problems, in which the criterion values take the form of log-normally distributed random variables, and the argument information is collected from different periods. We propose two new geometric aggregation operators, such as the log-normal distribution weighted geometric (LNDWG operator and the dynamic log-normal distribution weighted geometric (DLNDWG operator, and develop a method for dynamic SMCDM with log-normally distributed random variables. This method uses the DLNDWG operator and the LNDWG operator to aggregate the log-normally distributed criterion values, utilizes the entropy model of Shannon to generate the time weight vector, and utilizes the expectation values and variances of log-normal distributions to rank the alternatives and select the best one. Finally, an example is given to illustrate the feasibility and effectiveness of this developed method.

  9. Reducing the bias of estimates of genotype by environment interactions in random regression sire models.

    Science.gov (United States)

    Lillehammer, Marie; Odegård, Jørgen; Meuwissen, Theo H E

    2009-03-19

    The combination of a sire model and a random regression term describing genotype by environment interactions may lead to biased estimates of genetic variance components because of heterogeneous residual variance. In order to test different models, simulated data with genotype by environment interactions, and dairy cattle data assumed to contain such interactions, were analyzed. Two animal models were compared to four sire models. Models differed in their ability to handle heterogeneous variance from different sources. Including an individual effect with a (co)variance matrix restricted to three times the sire (co)variance matrix permitted the modeling of the additive genetic variance not covered by the sire effect. This made the ability of sire models to handle heterogeneous genetic variance approximately equivalent to that of animal models. When residual variance was heterogeneous, a different approach to account for the heterogeneity of variance was needed, for example when using dairy cattle data in order to prevent overestimation of genetic heterogeneity of variance. Including environmental classes can be used to account for heterogeneous residual variance.

  10. A mathematical model of foraging in a dynamic environment by trail-laying Argentine ants.

    Science.gov (United States)

    Ramsch, Kai; Reid, Chris R; Beekman, Madeleine; Middendorf, Martin

    2012-08-07

    Ants live in dynamically changing environments, where food sources become depleted and alternative sources appear. Yet most mathematical models of ant foraging assume that the ants' foraging environment is static. Here we describe a mathematical model of ant foraging in a dynamic environment. Our model attempts to explain recent empirical data on dynamic foraging in the Argentine ant Linepithema humile (Mayr). The ants are able to find the shortest path in a Towers of Hanoi maze, a complex network containing 32,768 alternative paths, even when the maze is altered dynamically. We modify existing models developed to explain ant foraging in static environments, to elucidate what possible mechanisms allow the ants to quickly adapt to changes in their foraging environment. Our results suggest that navigation of individual ants based on a combination of one pheromone deposited during foraging and directional information enables the ants to adapt their foraging trails and recreates the experimental results. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Molecular dynamics simulation study on zwitterionic structure to maintain the natural behavior of polyalanine13 in aqueous environment

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Molecular dynamics simulations are applied to the initial stage of polyalanine13 conformational transition from α-helix to random coil in aqueous environment and the interaction of polyalanine13 with zwitterionic and hydrophobic surfaces respectively in the same condition. The analysis of secondary structure, hydrogen bonds, RMSD, dihedral distribution, and the degree of adsorption are performed. The results show that zwitterionic structure maintains the natural behavior of polyalanine13 in water to a better extent, which should be an indirect proof of the hypothesis of "maintain of normal structure."

  12. The development of ecological environment in China based on the system dynamics method from the society, economy and environment perspective.

    Science.gov (United States)

    Guang, Yang; Ge, Song; Han, Liu

    2016-01-01

    The harmonious development in society, economy and environment are crucial to regional sustained boom. However, the society, economy and environment are not respectively independent, but both mutually promotes one which, or restrict mutually complex to have the long-enduring overall process. The present study is an attempt to investigate the relationship and interaction of society, economy and environment in China based on the data from 2004 to 2013. The principal component analysis (PCA) model was employed to identify the main factors effecting the society, economy and environment subsystems, and SD (system dynamics) method used to carry out dynamic assessment for future state of sustainability from society, economy and environment perspective with future indicator values. Sustainable development in China was divided in the study into three phase from 2004 to 2013 based competitive values of these three subsystems. According to the results of PCA model, China is in third phase, and the economy growth is faster than the environment development, while the social development still maintained a steady and rapid growth, implying that the next step for sustainable development in China should focus on society development, especially the environment development.

  13. Efficient Kinect Sensor-Based Reactive Path Planning Method for Autonomous Mobile Robots in Dynamic Environments

    Energy Technology Data Exchange (ETDEWEB)

    Tuvshinjargal, Doopalam; Lee, Deok Jin [Kunsan National University, Gunsan (Korea, Republic of)

    2015-06-15

    In this paper, an efficient dynamic reactive motion planning method for an autonomous vehicle in a dynamic environment is proposed. The purpose of the proposed method is to improve the robustness of autonomous robot motion planning capabilities within dynamic, uncertain environments by integrating a virtual plane-based reactive motion planning technique with a sensor fusion-based obstacle detection approach. The dynamic reactive motion planning method assumes a local observer in the virtual plane, which allows the effective transformation of complex dynamic planning problems into simple stationary ones proving the speed and orientation information between the robot and obstacles. In addition, the sensor fusion-based obstacle detection technique allows the pose estimation of moving obstacles using a Kinect sensor and sonar sensors, thus improving the accuracy and robustness of the reactive motion planning approach. The performance of the proposed method was demonstrated through not only simulation studies but also field experiments using multiple moving obstacles in hostile dynamic environments.

  14. Gene x environment interactions as dynamical systems: clinical implications

    National Research Council Canada - National Science Library

    Sarah S. Knox

    2015-01-01

    The etiology and progression of the chronic diseases that account for the highest rates of mortality in the US, namely, cardiovascular diseases and cancers, involve complex gene x environment interactions...

  15. Uncertain dynamic analysis for rigid-flexible mechanisms with random geometry and material properties

    Science.gov (United States)

    Wu, Jinglai; Luo, Zhen; Zhang, Nong; Zhang, Yunqing; Walker, Paul D.

    2017-02-01

    This paper proposes an uncertain modelling and computational method to analyze dynamic responses of rigid-flexible multibody systems (or mechanisms) with random geometry and material properties. Firstly, the deterministic model for the rigid-flexible multibody system is built with the absolute node coordinate formula (ANCF), in which the flexible parts are modeled by using ANCF elements, while the rigid parts are described by ANCF reference nodes (ANCF-RNs). Secondly, uncertainty for the geometry of rigid parts is expressed as uniform random variables, while the uncertainty for the material properties of flexible parts is modeled as a continuous random field, which is further discretized to Gaussian random variables using a series expansion method. Finally, a non-intrusive numerical method is developed to solve the dynamic equations of systems involving both types of random variables, which systematically integrates the deterministic generalized-α solver with Latin Hypercube sampling (LHS) and Polynomial Chaos (PC) expansion. The benchmark slider-crank mechanism is used as a numerical example to demonstrate the characteristics of the proposed method.

  16. The adaptive dynamic community detection algorithm based on the non-homogeneous random walking

    Science.gov (United States)

    Xin, Yu; Xie, Zhi-Qiang; Yang, Jing

    2016-05-01

    With the changing of the habit and custom, people's social activity tends to be changeable. It is required to have a community evolution analyzing method to mine the dynamic information in social network. For that, we design the random walking possibility function and the topology gain function to calculate the global influence matrix of the nodes. By the analysis of the global influence matrix, the clustering directions of the nodes can be obtained, thus the NRW (Non-Homogeneous Random Walk) method for detecting the static overlapping communities can be established. We design the ANRW (Adaptive Non-Homogeneous Random Walk) method via adapting the nodes impacted by the dynamic events based on the NRW. The ANRW combines the local community detection with dynamic adaptive adjustment to decrease the computational cost for ANRW. Furthermore, the ANRW treats the node as the calculating unity, thus the running manner of the ANRW is suitable to the parallel computing, which could meet the requirement of large dataset mining. Finally, by the experiment analysis, the efficiency of ANRW on dynamic community detection is verified.

  17. The Method and Key Technology of Dynamic RS-GIS Environment Monitoring

    Science.gov (United States)

    Chen, Jianping; Xiang, Jie; Tarolli, Paolo; Lai, Zili

    2016-04-01

    Demographic growth, socio-economic development and urbanization have resulted in excessive exploitation and exerted increasing pressure on limited resources and the fragile ecological environment in China. There is an urgent need for theory and technology to achieve the comprehensive evaluation of environment. Remote sensing is one of the most important technology to monitor and evaluate environment. This study summed up dynamic RS (Remote Sensing)-GIS (Geographic Information System) environment monitoring theory, and established a dynamic monitoring system, adopting comprehensive methods of multi-source, multi-scale and multi-temporal remote sensing data acquisition. A software system is developed based on RS-GIS analysis method to support the whole dynamic monitoring and evaluation theory. The main work and results obtained are as follows: 1)Summarized the evaluation theory of dynamic RS-GIS environment monitoring, using remote sensing technology as the main method to monitor environment; 2) established an advanced space-air-ground digital terrain data acquisition and processing technology (advanced satellite constellations, airborne and terrestrial laser scanner, low-cost Structure from Motion (SfM), photogrammetry, Unmanned Aerial Vehicle (UAV) and ground camera surveys); 3) Deeply study the application of quantitative digital terrain analysis in the assessment of environment, which successfully position geological disaster information and automatically extracted information; 4) Developed the RESEE software to support the whole dynamic monitoring and evaluation theory based on 4D-GIS; 5) A demonstration study of the dynamic monitoring environment is carried out in Beijing Miyun Iron Mine. Results show that the space-air-ground integrated and dynamic RS-GIS environment monitoring method and key technology can realize the positioning and quantitative monitoring the environment problem, and realize the risk assessment of the geological hazard.

  18. ON INTERIOR POINTS OF THE JULIA SET J(R) FOR RANDOM DYNAMICAL SYSTEM R

    Institute of Scientific and Technical Information of China (English)

    GONGZHIMIN; RENFUYAO

    1997-01-01

    The authors consider the random iteration of serval functions. Denote by J(R) the Julia set for the random iteration dynamical system formed by a set of complex functions R ={R1,R2,…, RM}. Some sufficient conditions axe given for J(R) to have no interior points.Also some conditions are given for J(R) to have interior points but fail to be the extendedplane. In addition, J(azn,bzn) (n ≥ 2,ab ≠ O) and J(z2+c1,x2+c2) are investigated and some interesting results are obtained.

  19. Conformation of Randomly Sulfonated Pentablock Ionomers in Dilute Solution: Molecular Dynamic Simulation Study

    Science.gov (United States)

    Aryal, Dipak; Perahia, Dvora; Grest, Gary S.

    2011-03-01

    As part of our efforts to define the factors that control the structure and dynamics of structures ionic polymers, the conformation of a pentablock copolymer that consists of randomly sulfonated polystyrene, an ionomeric block, bound to poly-ethylene-r-propylene end caped by poly-t-butylstyrene has been studied in dilute solutions using molecular dynamic simulations. Multi-block copolymers offer a means to tailor several properties into one molecule, taking advantage of their rich phase diagram together with unique properties of specific blocks. We varied the solvent quality for the different blocks and followed the changes in conformation. The spatial configuration of the pentablock as well as the dynamics of the polymer was studied. We find that, independent on the solvent, the higher the sulfonation level, the lower Rg . The static and dynamic structure factors were calculated and compared in an implicit poor solvent, water and a common solvent. These data are compared with results obtained from neutron scattering.

  20. Dynamic Reliability Analysis of Gear Transmission System of Wind Turbine in Consideration of Randomness of Loadings and Parameters

    Directory of Open Access Journals (Sweden)

    Lei Wang

    2014-01-01

    Full Text Available A dynamic model of gear transmission system of wind turbine is built with consideration of randomness of loads and parameters. The dynamic response of the system is obtained using the theory of random sampling and the Runge-Kutta method. According to rain flow counting principle, the dynamic meshing forces are converted into a series of luffing fatigue load spectra. The amplitude and frequency of the equivalent stress are obtained using equivalent method of Geber quadratic curve. Moreover, the dynamic reliability model of components and system is built according to the theory of probability of cumulative fatigue damage. The system reliability with the random variation of parameters is calculated and the influence of random parameters on dynamic reliability of components is analyzed. In the end, the results of the proposed method are compared with that of Monte Carlo method. This paper can be instrumental in the design of wind turbine gear transmission system with more advantageous dynamic reliability.

  1. Dynamics of a physiologically structured population in a time-varying environment

    DEFF Research Database (Denmark)

    Heilmann, Irene Louise Torpe; Starke, Jens; Andersen, Ken Haste

    2016-01-01

    or less regularly. In order to understand the interaction between an external environmental forcing and the internal dynamics in a population, we examine the response of a physiologically structured population model to a periodic variation in the food resource. We explore the addition of forcing in two......Physiologically structured population models have become a valuable tool to model the dynamics of populations. In a stationary environment such models can exhibit equilibrium solutions as well as periodic solutions. However, for many organisms the environment is not stationary, but varies more...... cases: (A) where the population dynamics is in equilibrium in a stationary environment, and (B) where the population dynamics exhibits a periodic solution in a stationary environment. When forcing is applied in case A, the solutions are mainly periodic. In case B the forcing signal interacts...

  2. Effects of hydrogen-bond environment on single particle and pair dynamics in liquid water

    Indian Academy of Sciences (India)

    Amalendu Chandra; Snehasis Chowdhuri

    2001-10-01

    We have performed molecular dynamics simulations of liquid water at 298 and 258 K to investigate the effects of hydrogen-bond environment on various single-particle and pair dynamical properties of water molecules at ambient and supercooled conditions. The water molecules are modelled by the extended simple point charge (SPC/E) model. We first calculate the distribution of hydrogen-bond environment in liquid water at both temperatures and then investigate how the selfdiffusion and orientational relaxation of a single water molecule and also the relative diffusion and relaxation of the hydrogen-bond of a water pair depend on the nature of the hydrogen-bond environment of the tagged molecules. We find that the various dynamical quantities depend significantly on the hydrogen-bond environment, especially at the supercooled temperature. The present study provides a molecular-level insight into the dynamics of liquid water under ambient and supercooled conditions.

  3. Intelligent Sensing in Dynamic Environments Using Markov Decision Process

    Directory of Open Access Journals (Sweden)

    Asad M. Madni

    2011-01-01

    Full Text Available In a network of low-powered wireless sensors, it is essential to capture as many environmental events as possible while still preserving the battery life of the sensor node. This paper focuses on a real-time learning algorithm to extend the lifetime of a sensor node to sense and transmit environmental events. A common method that is generally adopted in ad-hoc sensor networks is to periodically put the sensor nodes to sleep. The purpose of the learning algorithm is to couple the sensor’s sleeping behavior to the natural statistics of the environment hence that it can be in optimal harmony with changes in the environment, the sensors can sleep when steady environment and stay awake when turbulent environment. This paper presents theoretical and experimental validation of a reward based learning algorithm that can be implemented on an embedded sensor. The key contribution of the proposed approach is the design and implementation of a reward function that satisfies a trade-off between the above two mutually contradicting objectives, and a linear critic function to approximate the discounted sum of future rewards in order to perform policy learning.

  4. Intelligent sensing in dynamic environments using markov decision process.

    Science.gov (United States)

    Nanayakkara, Thrishantha; Halgamuge, Malka N; Sridhar, Prasanna; Madni, Asad M

    2011-01-01

    In a network of low-powered wireless sensors, it is essential to capture as many environmental events as possible while still preserving the battery life of the sensor node. This paper focuses on a real-time learning algorithm to extend the lifetime of a sensor node to sense and transmit environmental events. A common method that is generally adopted in ad-hoc sensor networks is to periodically put the sensor nodes to sleep. The purpose of the learning algorithm is to couple the sensor's sleeping behavior to the natural statistics of the environment hence that it can be in optimal harmony with changes in the environment, the sensors can sleep when steady environment and stay awake when turbulent environment. This paper presents theoretical and experimental validation of a reward based learning algorithm that can be implemented on an embedded sensor. The key contribution of the proposed approach is the design and implementation of a reward function that satisfies a trade-off between the above two mutually contradicting objectives, and a linear critic function to approximate the discounted sum of future rewards in order to perform policy learning.

  5. Analysis of dynamic pulmonary functions in air conditioned work environment

    Directory of Open Access Journals (Sweden)

    Anu T. E.

    2016-07-01

    Conclusions: The results of the study indicate that the subjects working in AC environment for a long duration are prone to develop restrictive lung diseases. Hence, study concludes that periodic pulmonary function assessment should be made mandatory. Further, regular maintenance of ACs is also recommended. [Int J Res Med Sci 2016; 4(7.000: 2661-2664

  6. The Dynamics of Multicultural NPD Teams in Virtual Environments

    Science.gov (United States)

    Fain, Nusa; Kline, Miro

    2013-01-01

    Changes in the business environment, responses of companies to these changes and the available information and communication technologies (ICT) pose a number of challenges to present and future product developers, as well as to educational institutions. An appropriate response to these challenges is to create a solid basis for strategies to combat…

  7. Dynamic Shared Context Processing in an E-Collaborative Learning Environment

    CERN Document Server

    Peng, Jing; Deniaud, Samuel; Ferney, Michel

    2012-01-01

    In this paper, we propose a dynamic shared context processing method based on DSC (Dynamic Shared Context) model, applied in an e-collaborative learning environment. Firstly, we present the model. This is a way to measure the relevance between events and roles in collaborative environments. With this method, we can share the most appropriate event information for each role instead of sharing all information to all roles in a collaborative work environment. Then, we apply and verify this method in our project with Google App supported e-learning collaborative environment. During this experiment, we compared DSC method measured relevance of events and roles to manual measured relevance. And we describe the favorable points from this comparison and our finding. Finally, we discuss our future research of a hybrid DSC method to make dynamical information shared more effective in a collaborative work environment.

  8. Effect of system-environment coupling on the entanglement dynamics of pure bipartite systems in structured environments

    Science.gov (United States)

    Tahira, Rabia; Ge, Guoqin; Ikram, Manzoor

    2016-12-01

    We investigate the time evolution of a general two-qubit pure entangled state in different structured environments. A general expression is obtained to evaluate the entanglement dynamics of two-qubit systems for two different dissipative environments in the non-Markovian regime. In one case it is single Lorentzian and is detuned from the system while in the other case two Lorentzians form a photonic band gap and is resonant with the system. In the first case, we show that entanglement can be generated from the initial separable state in the non-Markovian regime. Compared to our earlier work under Markov approximation (Tahira et al 2008 J. Phys. B: At. Mol. Opt. Phys. 41 205501), we show that disentanglement rates as well as sudden death times are modified in structured environments. Therefore, we can retain the entanglement for a longer time by controlling the system-environment coupling parameters.

  9. Dynamics of Random Boolean Networks under Fully Asynchronous Stochastic Update Based on Linear Representation

    Science.gov (United States)

    Luo, Chao; Wang, Xingyuan

    2013-01-01

    A novel algebraic approach is proposed to study dynamics of asynchronous random Boolean networks where a random number of nodes can be updated at each time step (ARBNs). In this article, the logical equations of ARBNs are converted into the discrete-time linear representation and dynamical behaviors of systems are investigated. We provide a general formula of network transition matrices of ARBNs as well as a necessary and sufficient algebraic criterion to determine whether a group of given states compose an attractor of length in ARBNs. Consequently, algorithms are achieved to find all of the attractors and basins in ARBNs. Examples are showed to demonstrate the feasibility of the proposed scheme. PMID:23785502

  10. Noisy scattering dynamics in the randomly driven Hénon-Heiles oscillator

    Science.gov (United States)

    Gan, Chunbiao; Yang, Shixi; Lei, Hua

    2010-12-01

    Noisy scattering dynamics in the randomly driven Hénon-Heiles oscillator is investigated when the energy is above the threshold to permit particles to escape from the scattering region. First, some basic simulation procedures are briefly introduced and the fractal exit basins appear to be robust when the bounded noisy excitation is imposed on the oscillator. Second, several key fractal characteristics of the sample basin boundaries, such as the delay-time function and the uncertainty dimension, are estimated from which this oscillator is found to be structurally unstable against the bounded noisy excitation. Moreover, the stable and unstable manifolds of some sample chaotic invariant sets are estimated and illustrated in a special two-dimensional Poincaré section. Lastly, several previous methods are developed to identify three arbitrarily chosen noisy scattering time series of the randomly driven Hénon-Heiles oscillator, from which the quasiperiodic-dominant and the chaotic-dominant dynamical behaviors are distinguished.

  11. Integrating random matrix theory predictions with short-time dynamical effects in chaotic systems.

    Science.gov (United States)

    Smith, A Matthew; Kaplan, Lev

    2010-07-01

    We discuss a modification to random matrix theory eigenstate statistics that systematically takes into account the nonuniversal short-time behavior of chaotic systems. The method avoids diagonalization of the Hamiltonian; instead it requires only knowledge of short-time dynamics for a chaotic system or ensemble of similar systems. Standard random matrix theory and semiclassical predictions are recovered in the limits of zero Ehrenfest time and infinite Heisenberg time, respectively. As examples, we discuss wave-function autocorrelations and cross correlations, and show that significant improvement in accuracy is obtained for simple chaotic systems where comparison can be made with brute-force diagonalization. The accuracy of the method persists even when the short-time dynamics of the system or ensemble is known only in a classical approximation. Further improvement in the rate of convergence is obtained when the method is combined with the correlation function bootstrapping approach introduced previously.

  12. Dynamic capability in an under-researched cultural environment

    Directory of Open Access Journals (Sweden)

    Fatemeh Rezaee

    2016-02-01

    Full Text Available During the past few years, dynamic capability (DC has been considered as an important issue in banking industry. This paper presents a survey on dynamic capability and its role on reaching sustainable competitive advantage (SCA within Mellat bank of Iran (MBI. A valid research instrument is utilized to conduct a survey among 150 managers from MBI. The study utilizes structural equation modelling to examine different hypotheses based on an integrated model of DC and SCA. According to literature studies, expert opinions and exploratory factor analysis, DC is classified into sensing, learning, reconfiguration, and coordination. Furthermore, SCA of the banking industry is classified into three dimensions: market, customer, and financial performance. The results indicate that DC had the greatest effect on the market centered, while it had the least influence on the customer centered.

  13. Service Parameter Exposure and Dynamic Service Negotiation in SDN Environments

    Institute of Scientific and Technical Information of China (English)

    M. Boucadair; C. Jacquenet

    2014-01-01

    Software-defined networking (SDN) is a generic term and one of the major interests of the telecoms industry (and beyond) over the past two years. However, defining SDN is a somewhat controversial exercise. The claimed flexibility, as well as other presumed as-sets of SDN, should be carefully investigated. In particular, the use of SDN to dynamically provision network services suggests the introduction of a certain level of automation in the overall network service delivery process, from service parameter negotiation to delivery and operation. This paper aims to clarify the SDN landscape and focuses on two main aspects of the SDN framework: net-work abstraction, and dynamic parameter exposure and negotiation.

  14. Entropy equilibrium equation and dynamic entropy production in environment liquid

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The entropy equilibrium equation is the basis of the nonequilibrium state thermodynamics. But the internal energy implies the kinetic energy of the fluid micelle relative to mass center in the classical entropy equilibrium equation at present. This internal energy is not the mean kinetic energy of molecular movement in thermodynamics. Here a modified entropy equilibrium equation is deduced, based on the concept that the internal energy is just the mean kinetic energy of the molecular movement. A dynamic entropy production is introduced into the entropy equilibrium equation to describe the dynamic process distinctly. This modified entropy equilibrium equation can describe not only the entropy variation of the irreversible processes but also the reversible processes in a thermodynamic system. It is more reasonable and suitable for wider applications.

  15. Tuning positive feedback for signal detection in noisy dynamic environments.

    Science.gov (United States)

    Johansson, Anders; Ramsch, Kai; Middendorf, Martin; Sumpter, David J T

    2012-09-21

    Learning from previous actions is a key feature of decision-making. Diverse biological systems, from neuronal assemblies to insect societies, use a combination of positive feedback and forgetting of stored memories to process and respond to input signals. Here we look how these systems deal with a dynamic two-armed bandit problem of detecting a very weak signal in the presence of a high degree of noise. We show that by tuning the form of positive feedback and the decay rate to appropriate values, a single tracking variable can effectively detect dynamic inputs even in the presence of a large degree of noise. In particular, we show that when tuned appropriately a simple positive feedback algorithm is Fisher efficient, in that it can track changes in a signal on a time of order L(h)=(|h|/σ)(-2), where |h| is the magnitude of the signal and σ the magnitude of the noise.

  16. Suboptimal Criterion Learning in Static and Dynamic Environments.

    Science.gov (United States)

    Norton, Elyse H; Fleming, Stephen M; Daw, Nathaniel D; Landy, Michael S

    2017-01-01

    Humans often make decisions based on uncertain sensory information. Signal detection theory (SDT) describes detection and discrimination decisions as a comparison of stimulus "strength" to a fixed decision criterion. However, recent research suggests that current responses depend on the recent history of stimuli and previous responses, suggesting that the decision criterion is updated trial-by-trial. The mechanisms underpinning criterion setting remain unknown. Here, we examine how observers learn to set a decision criterion in an orientation-discrimination task under both static and dynamic conditions. To investigate mechanisms underlying trial-by-trial criterion placement, we introduce a novel task in which participants explicitly set the criterion, and compare it to a more traditional discrimination task, allowing us to model this explicit indication of criterion dynamics. In each task, stimuli were ellipses with principal orientations drawn from two categories: Gaussian distributions with different means and equal variance. In the covert-criterion task, observers categorized a displayed ellipse. In the overt-criterion task, observers adjusted the orientation of a line that served as the discrimination criterion for a subsequently presented ellipse. We compared performance to the ideal Bayesian learner and several suboptimal models that varied in both computational and memory demands. Under static and dynamic conditions, we found that, in both tasks, observers used suboptimal learning rules. In most conditions, a model in which the recent history of past samples determines a belief about category means fit the data best for most observers and on average. Our results reveal dynamic adjustment of discrimination criterion, even after prolonged training, and indicate how decision criteria are updated over time.

  17. Directed polymer in random media, in two dimensions: numerical study of the aging dynamics

    OpenAIRE

    Barrat, A.

    1997-01-01

    Following a recent work by Yoshino, we study the aging dynamics of a directed polymer in random media, in 1+1 dimensions. Through temperature quench, and temperature cycling numerical experiments similar to the experiments on real spin glasses, we show that the observed behaviour is comparable to the one of a well known mean field spin glass model. The observation of various quantities (correlation function, ``clonation'' overlap function) leads to an analysis of the phase space landscape.

  18. Thunderstorms in my computer : The effect of visual dynamics and sound in a 3D environment

    NARCIS (Netherlands)

    Houtkamp, J.; Schuurink, E.L.; Toet, A.

    2008-01-01

    We assessed the effects of the addition of dynamic visual elements and sounds to a levee patroller training game on the appraisal of the environment and weather conditions, the engagement of the users and their performance. Results show that the combination of visual dynamics and sounds best conveys

  19. Entanglement dynamics of a pure bipartite system in dissipative environments

    Energy Technology Data Exchange (ETDEWEB)

    Tahira, Rabia; Ikram, Manzoor; Azim, Tasnim; Suhail Zubairy, M [Centre for Quantum Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan)

    2008-10-28

    We investigate the phenomenon of sudden death of entanglement in a bipartite system subjected to dissipative environments with arbitrary initial pure entangled state between two atoms. We find that in a vacuum reservoir the presence of the state where both atoms are in excited states is a necessary condition for the sudden death of entanglement. Otherwise entanglement remains for an infinite time and decays asymptotically with the decay of individual qubits. For pure 2-qubit entangled states in a thermal environment, we observe that the sudden death of entanglement always happens. The sudden death time of the entangled states is related to the temperature of the reservoir and the initial preparation of the entangled states.

  20. PLANNING INTELLIGENCE ACTIVITIES IN A DYNAMIC SECURITY ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Anca Pavel

    2016-10-01

    Full Text Available The hypothesis introduced by this article is that, in order to perform intelligence missions and to obtain valuable intelligence for the consumers it is necessary to implement processes and tools to support planning activities. Today's challenges consist rather in the ability of intelligence organizations to identify and initiate new connections, processes and communication flows with other partners operating in the security environment than to plan in their own name secret operations. From this point of view, planning activities should focus on new procedures, at a much more extensive level in order to align institutional efforts beyond the boundaries of their own organization and the national community of information. Also, in order to coordinate intelligence activities, strategic planning must be anchored into a complex analysis of the potential impact of existing and possible future global phenomena that shape the security environment and thus identify better ways of improving results.

  1. Entanglement Dynamics of Quantum Oscillators Nonlinearly Coupled to Thermal Environments

    OpenAIRE

    Voje, Aurora; Croy, Alexander; Isacsson, Andreas

    2014-01-01

    We study the asymptotic entanglement of two quantum harmonic oscillators nonlinearly coupled to an environment. Coupling to independent baths and a common bath are investigated. Numerical results obtained using the Wangsness-Bloch-Redfield method are supplemented by analytical results in the rotating wave approximation. The asymptotic negativity as function of temperature, initial squeezing and coupling strength, is compared to results for systems with linear system-reservoir coupling. We fin...

  2. Adaptive representation for dynamic environment, vehicle, and mission complexity

    Science.gov (United States)

    Collier, Jack A.; Ricard, Benoit; Digney, Bruce L.; Cheng, David; Trentini, Michael; Beckman, Blake

    2004-09-01

    In order for an Unmanned Ground Vehicle (UGV) to operate effectively it must be able to perceive its environment in an accurate, robust and effective manner. This is done by creating a world representation which encompasses all the perceptual information necessary for the UGV to understand its surroundings. These perceptual needs are a function of the robots mobility characteristics, the complexity of the environment in which it operates, and the mission with which the UGV has been tasked. Most perceptual systems are designed with predefined vehicle, environmental, and mission complexity in mind. This can lead the robot to fail when it encounters a situation which it was not designed for since its internal representation is insufficient for effective navigation. This paper presents a research framework currently being investigated by Defence R&D Canada (DRDC), which will ultimately relieve robotic vehicles of this problem by allowing the UGV to recognize representational deficiencies, and change its perceptual strategy to alleviate these deficiencies. This will allow the UGV to move in and out of a wide variety of environments, such as outdoor rural to indoor urban, at run time without reprogramming. We present sensor and perception work currently being done and outline our research in this area for the future.

  3. Students' Views about the Problem Based Collaborative Learning Environment Supported by Dynamic Web Technologies

    Science.gov (United States)

    Ünal, Erhan; Çakir, Hasan

    2017-01-01

    The purpose of this study was to design a problem based collaborative learning environment supported by dynamic web technologies and to examine students' views about this learning environment. The study was designed as a qualitative research. Some 36 students who took an Object Oriented Programming I-II course at the department of computer…

  4. Dynamic but Prosaic: A Methodology for Studying E-Learning Environments

    Science.gov (United States)

    Whitworth, Andrew

    2006-01-01

    This paper develops a critical methodology which could be applied to the study and use of e-learning environments. The foundations are, first, an ontological appreciation of environments as multiple, dynamic and interactive: this is based on the environmental theories of Vladimir Vernadsky. The next step is then into epistemology, and here use is…

  5. Phenotypic evolution by distance in fluctuating environments: The contribution of dispersal, selection and random genetic drift.

    Science.gov (United States)

    Engen, Steinar; Sæther, Bernt-Erik

    2016-06-01

    Here we analyze how dispersal, genetic drift, and adaptation to the local environment affect the geographical differentiation of a quantitative character through natural selection using a spatial dynamic model for the evolution of the distribution of mean breeding values in space and time. The variation in optimal phenotype is described by local Ornstein-Uhlenbeck processes with a given spatial autocorrelation. Selection and drift are assumed to be governed by phenotypic variation within areas with a given mean breeding value and constant additive genetic variance. Between such neighboring areas there will be white noise variation in mean breeding values, while the variation at larger distances has a spatial structure and a spatial scale that we investigate. The model is analyzed by solving balance equations for the stationary distribution of mean breeding values. We also present scaling results for the spatial autocovariance function for mean breeding values as well as that for the covariance between mean breeding value and the optimal phenotype expressing local adaption. Our results show in particular how these spatial scales depend on population density. For large densities the spatial scale of fluctuations in mean breeding values have similarities with corresponding results in population dynamics, where the effect of migration on spatial scales may be large if the local strength of density regulation is small. In our evolutionary model strength of density regulation corresponds to strength of local selection so that weak local selection may produce large spatial scales of autocovariances. Genetic drift and stochastic migration are shown to act through the population size within a characteristic area with much smaller variation in optimal phenotypes than in the whole population.

  6. Exact solution for a random walk in a time-dependent 1D random environment: the point-to-point Beta polymer

    Science.gov (United States)

    Thiery, Thimothée; Le Doussal, Pierre

    2017-01-01

    We consider the Beta polymer, an exactly solvable model of directed polymer on the square lattice, introduced by Barraquand and Corwin (BC) (2016 Probab. Theory Relat. Fields 1-16). We study the statistical properties of its point to point partition sum. The problem is equivalent to a model of a random walk in a time-dependent (and in general biased) 1D random environment. In this formulation, we study the sample to sample fluctuations of the transition probability distribution function (PDF) of the random walk. Using the Bethe ansatz we obtain exact formulas for the integer moments, and Fredholm determinant formulas for the Laplace transform of the directed polymer partition sum/random walk transition probability. The asymptotic analysis of these formulas at large time t is performed both (i) in a diffusive vicinity, x˜ {{t}1/2} , of the optimal direction (in space-time) chosen by the random walk, where the fluctuations of the PDF are found to be Gamma distributed; (ii) in the large deviations regime, x˜ t , of the random walk, where the fluctuations of the logarithm of the PDF are found to grow with time as t 1/3 and to be distributed according to the Tracy-Widom GUE distribution. Our exact results complement those of BC for the cumulative distribution function of the random walk in regime (ii), and in regime (i) they unveil a novel fluctuation behavior. We also discuss the crossover regime between (i) and (ii), identified as x˜ {{t}3/4} . Our results are confronted to extensive numerical simulations of the model.

  7. Age-dependent modulation of sensory reweighting for controlling posture in a dynamic virtual environment.

    Science.gov (United States)

    Eikema, Diderik Jan Anthony; Hatzitaki, Vassilia; Tzovaras, Dimitrios; Papaxanthis, Charalambos

    2012-12-01

    Older adults require more time to reweight sensory information for maintaining balance that could potentially lead to increased incidence of falling in rapidly changing or cognitively demanding environments. In this study, we manipulated the visual surround information during a collision avoidance task in order to investigate how young and elderly adults engage in sensory reweighting under conditions of visual anticipation. Sixteen healthy elderly (age: 71.5 ± 4.9 years; height: 159.3 ± 6.6 cm; mass: 73.3 ± 3.3 kg) and 20 young (age: 22.8 ± 3.3 years; height: 174.4 ± 10.7 cm; mass: 70.1 ± 13.9 kg) participants stood for 240 s on a force platform under two experimental conditions: quiet standing and standing while anticipating randomly approaching virtual objects to be avoided. During both tasks, the visual surround changed every 60 s from a stationary virtual scene (room) to either a moving room or darkness and then back to a stationary scene to evoke sensory reweighting processes. In quiet standing, elderly showed greater sway variability and were more severely affected by the removal or degradation of visual surround information when compared to young participants. During visual anticipation, sway variability was not different between the age groups. In addition, both young and elderly participants were similarly affected by the degradation or removal of the visual surround. These findings suggest that sensory reweighting in a dynamic virtual environment that evokes visual anticipation interacts with postural state anxiety regardless of age. Elderly show less efficient sensory reweighting in quiet standing due to greater visual field dependence possibly associated with fear of falling.

  8. Investigations Into Internal and External Aspects of Dynamic Agent-Environment Couplings

    Science.gov (United States)

    Dautenhahn, Kerstin

    This paper originates from my work on `social agents'. An issue which I consider important to this kind of research is the dynamic coupling of an agent with its social and non-social environment. I hypothesize `internal dynamics' inside an agent as a basic step towards understanding. The paper therefore focuses on the internal and external dynamics which couple an agent to its environment. The issue of embodiment in animals and artifacts and its relation to `social dynamics' is discussed first. I argue that embodiment is linked to a concept of a body and is not necessarily given when running a control program on robot hardware. I stress the individual characteristics of an embodied cognitive system, as well as its social embeddedness. I outline the framework of a physical-psychological state space which changes dynamically in a self-modifying way as a holistic approach towards embodied human and artificial cognition. This framework is meant to discuss internal and external dynamics of an embodied, natural or artificial agent. In order to stress the importance of a dynamic memory I introduce the concept of an `autobiographical agent'. The second part of the paper gives an example of the implementation of a physical agent, a robot, which is dynamically coupled to its environment by balancing on a seesaw. For the control of the robot a behavior-oriented approach using the dynamical systems metaphor is used. The problem is studied through building a complete and co-adapted robot-environment system. A seesaw which varies its orientation with one or two degrees of freedom is used as the artificial `habitat'. The problem of stabilizing the body axis by active motion on a seesaw is solved by using two inclination sensors and a parallel, behavior-oriented control architecture. Some experiments are described which demonstrate the exploitation of the dynamics of the robot-environment system.

  9. Dynamic VM Provisioning for TORQUE in a Cloud Environment

    Science.gov (United States)

    Zhang, S.; Boland, L.; Coddington, P.; Sevior, M.

    2014-06-01

    Cloud computing, also known as an Infrastructure-as-a-Service (IaaS), is attracting more interest from the commercial and educational sectors as a way to provide cost-effective computational infrastructure. It is an ideal platform for researchers who must share common resources but need to be able to scale up to massive computational requirements for specific periods of time. This paper presents the tools and techniques developed to allow the open source TORQUE distributed resource manager and Maui cluster scheduler to dynamically integrate OpenStack cloud resources into existing high throughput computing clusters.

  10. Neural network architecture for cognitive navigation in dynamic environments.

    Science.gov (United States)

    Villacorta-Atienza, José Antonio; Makarov, Valeri A

    2013-12-01

    Navigation in time-evolving environments with moving targets and obstacles requires cognitive abilities widely demonstrated by even simplest animals. However, it is a long-standing challenging problem for artificial agents. Cognitive autonomous robots coping with this problem must solve two essential tasks: 1) understand the environment in terms of what may happen and how I can deal with this and 2) learn successful experiences for their further use in an automatic subconscious way. The recently introduced concept of compact internal representation (CIR) provides the ground for both the tasks. CIR is a specific cognitive map that compacts time-evolving situations into static structures containing information necessary for navigation. It belongs to the class of global approaches, i.e., it finds trajectories to a target when they exist but also detects situations when no solution can be found. Here we extend the concept of situations with mobile targets. Then using CIR as a core, we propose a closed-loop neural network architecture consisting of conscious and subconscious pathways for efficient decision-making. The conscious pathway provides solutions to novel situations if the default subconscious pathway fails to guide the agent to a target. Employing experiments with roving robots and numerical simulations, we show that the proposed architecture provides the robot with cognitive abilities and enables reliable and flexible navigation in realistic time-evolving environments. We prove that the subconscious pathway is robust against uncertainty in the sensory information. Thus if a novel situation is similar but not identical to the previous experience (because of, e.g., noisy perception) then the subconscious pathway is able to provide an effective solution.

  11. Dynamic tracking of elementary preservice teachers' experiences with computer-based mathematics learning environments

    Science.gov (United States)

    Campbell, Stephen R.

    2003-05-01

    A challenging task in educational research today is to understand the implications of recent developments in computer-based learning environments. On the other hand, questions regarding learning and mathematical cognition have long been a central focus of research in mathematics education. Adding technology compounds an already complex problematic. Fortunately, computer-based technology also provides researchers with new ways of studying cognition and instruction. This paper introduces a new method for dynamically tracking learners' experiences in computer-based learning environments. Dynamic tracking is illustrated in both a classroom and a clinical setting by drawing on two studies with elementary preservice teachers working in computer-based mathematics learning environments.

  12. Vision-based navigation in a dynamic environment for virtual human

    Science.gov (United States)

    Liu, Yan; Sun, Ji-Zhou; Zhang, Jia-Wan; Li, Ming-Chu

    2004-06-01

    Intelligent virtual human is widely required in computer games, ergonomics software, virtual environment and so on. We present a vision-based behavior modeling method to realize smart navigation in a dynamic environment. This behavior model can be divided into three modules: vision, global planning and local planning. Vision is the only channel for smart virtual actor to get information from the outside world. Then, the global and local planning module use A* and D* algorithm to find a way for virtual human in a dynamic environment. Finally, the experiments on our test platform (Smart Human System) verify the feasibility of this behavior model.

  13. Space Shuttle Orbiter logistics - Managing in a dynamic environment

    Science.gov (United States)

    Renfroe, Michael B.; Bradshaw, Kimberly

    1990-01-01

    The importance and methods of monitoring logistics vital signs, logistics data sources and acquisition, and converting data into useful management information are presented. With the launch and landing site for the Shuttle Orbiter project at the Kennedy Space Center now totally responsible for its own supportability posture, it is imperative that logistics resource requirements and management be continually monitored and reassessed. Detailed graphs and data concerning various aspects of logistics activities including objectives, inventory operating levels, customer environment, and data sources are provided. Finally, some lessons learned from the Shuttle Orbiter project and logistics options which should be considered by other space programs are discussed.

  14. Random Vibration and Dynamic Analysis of a Planetary Gear Train in a Wind Turbine

    Directory of Open Access Journals (Sweden)

    Jianming Yang

    2016-01-01

    Full Text Available Premature failure of gearboxes is a big challenge facing the wind power industry. It highly depends on fully understanding the embedded dynamics to solve this problem. To this end, this paper investigates the random vibration and dynamics of planetary gear trains (PGTs in wind turbines under the excitation of wind turbulence. The turbulence is represented by the Von Karmon spectrum and implemented by passing white noise through a 2nd-order shaping filter. Then, extra equations are formed and added to the original governing equations of motion. With this augmented equation set, a recursive numerical algorithm based on stochastic Newmark scheme is applied to solve for the statistics of the responses starting from initial conditions. After simulation, the variances of the vibration responses and the dynamic meshing forces at gear meshes are obtained.

  15. Wheel-rail dynamic forces induced by random vertical track irregularities

    Science.gov (United States)

    Spiroiu, M. A.

    2016-08-01

    The present paper investigates the wheel-rail dynamic forces produced by railway vehicles in motion, which are an important issue especially for the high-speed rail transport from the point of view of traffic safety, ride quality and undesirable effects on vehicles, on track and on the land in the vicinity of railways. The research is carried out on a model which includes track system, vehicle unsprung mass, vehicle primary suspension and the bogie sprung mass. The wheel-rail dynamic overloads are evaluated assuming random vertical irregularities of the track. The estimation of wheel-rail dynamic forces is made for a range of vehicle speeds up to 300 km/h and the influence of track and vehicle various parameters is investigated.

  16. Existence of Random Attractors for a Class of Second-Order Lattice Dynamical Systems with Brownian Motions

    Directory of Open Access Journals (Sweden)

    Yamin Wang

    2014-01-01

    Full Text Available This paper is concerned with the random attractors for a class of second-order stochastic lattice dynamical systems. We first prove the uniqueness and existence of the solutions of second-order stochastic lattice dynamical systems in the space F=lλ2×l2. Then, by proving the asymptotic compactness of the random dynamical systems, we establish the existence of the global random attractor. The system under consideration is quite general, and many existing results can be regarded as the special case of our results.

  17. Effects of Home Visitation on Maternal Competencies, Family Environment, and Child Development: a Randomized Controlled Trial.

    Science.gov (United States)

    Sierau, Susan; Dähne, Verena; Brand, Tilman; Kurtz, Vivien; von Klitzing, Kai; Jungmann, Tanja

    2016-01-01

    Based on the US Nurse-Family Partnership (NFP) program, the German home visiting program "Pro Kind" offered support for socially and financially disadvantaged first-time mothers from pregnancy until the children's second birthday. A multi-centered, longitudinal randomized controlled trial (RCT) was conducted to assess its effectiveness on mothers and children. A total of 755 women with multiple risk factors were recruited, 394 received regular home visits (treatment group), while 361 only had access to standard community services (control group). Program influences on family environment (e.g., quality of home, social support), maternal competencies (e.g., maternal self-efficacy, empathy, parenting style), and child development (e.g., cognitive and motor development) were assessed from mothers' program intake in pregnancy to children's second birthday based on self-reports in regular interviews and developmental tests. Generalized estimating equations (GEE) models showed small, but significant positive treatment effects on parental self-efficacy, and marginally significant effects on social support, and knowledge on child rearing. Maternal stress, self-efficacy, and feelings of attachment in the TG tend to show a more positive development over time. Subgroup effects were found for high-risk mothers in the TG, who reported more social support over time and, generally, had children with higher developmental scores compared to their CG counterparts. Post hoc analyses of implementation variables revealed the quality of the helping relationship as a significant indicator of treatment effects. Results are discussed in terms of implementation and public policy differences between NFP and Pro Kind.

  18. Automated weighing by sequential inference in dynamic environments

    CERN Document Server

    Martin, A D

    2015-01-01

    We demonstrate sequential mass inference of a suspended bag of milk powder from simulated measurements of the vertical force component at the pivot while the bag is being filled. We compare the predictions of various sequential inference methods both with and without a physics model to capture the system dynamics. We find that non-augmented and augmented-state unscented Kalman filters (UKFs) in conjunction with a physics model of a pendulum of varying mass and length provide rapid and accurate predictions of the milk powder mass as a function of time. The UKFs outperform the other method tested - a particle filter. Moreover, inference methods which incorporate a physics model outperform equivalent algorithms which do not.

  19. The dynamics of accounting terms in a globalized environment

    DEFF Research Database (Denmark)

    Fuertes-Olivera, Pedro A.; Nielsen, Sandro

    2014-01-01

    European accounting terminology is dynamic as term creation occurs on national, European Union and international levels. English is the lingua franca of accounting, which influences terminologies in other languages, usually through the work of translators, e.g. the translation of existing...... international accounting standards. The combined influence of these forces is discussed in this chapter that explains the existence of a globalized trend towards a kind of cultural uniformity. This manifests itself in many ways, two of which are: the translation of English multiword accounting terms...... into Spanish; and the presence of novel metaphors in Spanish accounting. The data used in the discussion are taken from the accounting dictionaries, a collection of online dictionaries in three languages: Danish, English and Spanish....

  20. Massive Black Hole Binary Mergers in Dynamical Galactic Environments

    CERN Document Server

    Kelley, Luke Zoltan; Hernquist, Lars

    2016-01-01

    Gravitational Waves (GW) have now been detected from stellar-mass black hole binaries, and the first observations of GW from Massive Black Hole (MBH) Binaries are expected within the next decade. Pulsar Timing Arrays (PTA), which can measure the years long periods of GW from MBHB, have excluded many standard predictions for the amplitude of a stochastic GW Background (GWB). We use coevolved populations of MBH and galaxies from hydrodynamic, cosmological simulations ('Illustris') to calculate a predicted GWB. The most advanced predictions so far have included binary hardening mechanisms from individual environmental processes. We present the first calculation including all of the environmental mechanisms expected to be involved: dynamical friction, stellar 'loss-cone' scattering, and viscous drag from a circumbinary disk. We find that MBH binary lifetimes are generally multiple gigayears, and only a fraction coalesce by redshift zero. For a variety of parameters, we find all GWB amplitudes to be below the most...

  1. Dynamic Tensile Properties of Concrete under Different Environments

    Institute of Scientific and Technical Information of China (English)

    YAN Dongming; LIN Gao

    2006-01-01

    By using an MTS810 hydra-electro-servo universal machine, the effect of moisture content and temperature on the rate sensitivity of concrete was investigated, the range of strain rate was varying from 10-5 /s to 10-0.3/s. It is concluded from the tests that the water content has a significant influence on the rate sensitivity of concrete whereas the temperature has a slight one, and the effects of rate sensitivity are attributed to both the viscosity caused by free water and the transformation of fracture mode when subjected to a high strain rate. The dynamic strength, initial modulus of elasticity , critical strain, Poisson ratio and energy absorption properties were studied systematically. It is found that the strength, initial modulus of elasticity, critical strain, and energy absorption capacity of concrete all increase with the increasing strain rate, whereas Poisson ratio keeps almost unchanged.

  2. Supplier Selection in Dynamic Environment using Analytic Hierarchy Process

    Directory of Open Access Journals (Sweden)

    Prince Agarwal

    2014-08-01

    Full Text Available In today’s highly competitive business environment, the rapidly changing customer demands and with the advent of enterprise wide information systems, the managers are bound to think beyond the conventional business processes and devise new ways to squeeze out costs and improve the performance without compromising on the quality at the same time. Supplier evaluation and selection is one such area which determines the success of any manufacturing firm. Supplier selection is the problem wherein the company decides which vendor to select to have that strategic and operational advantage of meeting the customers’ varying demands and fight the fierce competition. This paper presents a simple model based on Analytic Hierarchy Process (AHP to help decision makers in supplier evaluation and selection, taking into account the firm’s requirements. The article is intended to help new scholars and researchers understand the AHP model and see different facets in first sight.

  3. Evolutionary dynamics of bacteria in a human host environment

    DEFF Research Database (Denmark)

    Yang, Lei; Jelsbak, Lars; Marvig, Rasmus Lykke

    2011-01-01

    Laboratory evolution experiments have led to important findings relating organism adaptation and genomic evolution. However, continuous monitoring of long-term evolution has been lacking for natural systems, limiting our understanding of these processes in situ. Here we characterize....... In contrast to predictions based on in vitro evolution experiments, we document limited diversification of the evolving lineage despite a highly structured and complex host environment. Notably, the lineage went through an initial period of rapid adaptation caused by a small number of mutations...... long-term in vitro evolution experiments. The evolved phenotype of the infecting bacteria further suggests that the opportunistic pathogen has transitioned to become a primary pathogen for cystic fibrosis patients....

  4. Entanglement dynamics of quantum oscillators nonlinearly coupled to thermal environments

    Science.gov (United States)

    Voje, Aurora; Croy, Alexander; Isacsson, Andreas

    2015-07-01

    We study the asymptotic entanglement of two quantum harmonic oscillators nonlinearly coupled to an environment. Coupling to independent baths and a common bath are investigated. Numerical results obtained using the Wangsness-Bloch-Redfield method are supplemented by analytical results in the rotating wave approximation. The asymptotic negativity as function of temperature, initial squeezing, and coupling strength, is compared to results for systems with linear system-reservoir coupling. We find that, due to the parity-conserving nature of the coupling, the asymptotic entanglement is considerably more robust than for the linearly damped cases. In contrast to linearly damped systems, the asymptotic behavior of entanglement is similar for the two bath configurations in the nonlinearly damped case. This is due to the two-phonon system-bath exchange causing a suppression of information exchange between the oscillators via the bath in the common-bath configuration at low temperatures.

  5. Interactive Correspondence Analysis in a Dynamic Object-Oriented Environment

    Directory of Open Access Journals (Sweden)

    Jason Bond

    1997-11-01

    Full Text Available A highly interactive, user-friendly object-oriented software package written in LispStat is introduced that performs simple and multiple correspondence analysis, and profile analysis. These three techniques are integrated into a single environment driven by a user-friendly graphical interface that takes advantage of Lisp-Stat's advanced graphical capabilities. Techniques that assess the stability of the solution are also introduced. Some of the features of the package include colored graphics, incremental graph zooming capabilities, manual point separation to determine identities of overlapping points, and stability and fit measures. The features of the package are used to show some interesting trends in a large educational dataset.

  6. Layout design optimization of dynamic environment flexible manufacturing systems

    Directory of Open Access Journals (Sweden)

    Jaber Abu Qudeiri

    2015-06-01

    Full Text Available The proper positioning of machine tools in flexible manufacturing system is one of the factors that lead to increase in production efficiency. Choosing the optimum position of machine tools curtails the total part handling cost between machine tools within the flexible manufacturing system. In this article, a two-stage approach is presented to investigate the best locations of the machine tools in flexible manufacturing system. The location of each machine tool is selected from the available specific and fixed locations in such a way that it will result in best throughput of the flexible manufacturing system. In the first stage of the two-stage approach, the throughput of randomly selected locations of the machine tool in flexible manufacturing system is computed by proposing a production simulation system. The production simulation system utilizes genetic algorithms to find the locations of the machine tools in flexible manufacturing system that achieve the maximum throughput of the flexible manufacturing system. In the second stage, the generated locations are fed into artificial neural network to find a relation between a machine tool’s location and the throughput that can be used to predict the throughput for any other set of locations. Artificial neural network will result in mitigating the computational time.

  7. Depinning and nonequilibrium dynamic phases of particle assemblies driven over random and ordered substrates: a review

    Science.gov (United States)

    Reichhardt, C.; Olson Reichhardt, C. J.

    2017-02-01

    We review the depinning and nonequilibrium phases of collectively interacting particle systems driven over random or periodic substrates. This type of system is relevant to vortices in type-II superconductors, sliding charge density waves, electron crystals, colloids, stripe and pattern forming systems, and skyrmions, and could also have connections to jamming, glassy behaviors, and active matter. These systems are also ideal for exploring the broader issues of characterizing transient and steady state nonequilibrium flow phases as well as nonequilibrium phase transitions between distinct dynamical phases, analogous to phase transitions between different equilibrium states. We discuss the differences between elastic and plastic depinning on random substrates and the different types of nonequilibrium phases which are associated with specific features in the velocity-force curves, fluctuation spectra, scaling relations, and local or global particle ordering. We describe how these quantities can change depending on the dimension, anisotropy, disorder strength, and the presence of hysteresis. Within the moving phase we discuss how there can be a transition from a liquid-like state to dynamically ordered moving crystal, smectic, or nematic states. Systems with periodic or quasiperiodic substrates can have multiple nonequilibrium second or first order transitions in the moving state between chaotic and coherent phases, and can exhibit hysteresis. We also discuss systems with competing repulsive and attractive interactions, which undergo dynamical transitions into stripes and other complex morphologies when driven over random substrates. Throughout this work we highlight open issues and future directions such as absorbing phase transitions, nonequilibrium work relations, inertia, the role of non-dissipative dynamics such as Magnus effects, and how these results could be extended to the broader issues of plasticity in crystals, amorphous solids, and jamming phenomena.

  8. Comparing cluster-level dynamic treatment regimens using sequential, multiple assignment, randomized trials: Regression estimation and sample size considerations.

    Science.gov (United States)

    NeCamp, Timothy; Kilbourne, Amy; Almirall, Daniel

    2017-08-01

    Cluster-level dynamic treatment regimens can be used to guide sequential treatment decision-making at the cluster level in order to improve outcomes at the individual or patient-level. In a cluster-level dynamic treatment regimen, the treatment is potentially adapted and re-adapted over time based on changes in the cluster that could be impacted by prior intervention, including aggregate measures of the individuals or patients that compose it. Cluster-randomized sequential multiple assignment randomized trials can be used to answer multiple open questions preventing scientists from developing high-quality cluster-level dynamic treatment regimens. In a cluster-randomized sequential multiple assignment randomized trial, sequential randomizations occur at the cluster level and outcomes are observed at the individual level. This manuscript makes two contributions to the design and analysis of cluster-randomized sequential multiple assignment randomized trials. First, a weighted least squares regression approach is proposed for comparing the mean of a patient-level outcome between the cluster-level dynamic treatment regimens embedded in a sequential multiple assignment randomized trial. The regression approach facilitates the use of baseline covariates which is often critical in the analysis of cluster-level trials. Second, sample size calculators are derived for two common cluster-randomized sequential multiple assignment randomized trial designs for use when the primary aim is a between-dynamic treatment regimen comparison of the mean of a continuous patient-level outcome. The methods are motivated by the Adaptive Implementation of Effective Programs Trial which is, to our knowledge, the first-ever cluster-randomized sequential multiple assignment randomized trial in psychiatry.

  9. Signalling and the evolution of cooperative foraging in dynamic environments.

    Directory of Open Access Journals (Sweden)

    Colin J Torney

    2011-09-01

    Full Text Available Understanding cooperation in animal social groups remains a significant challenge for evolutionary theory. Observed behaviours that benefit others but incur some cost appear incompatible with classical notions of natural selection; however, these behaviours may be explained by concepts such as inclusive fitness, reciprocity, intra-specific mutualism or manipulation. In this work, we examine a seemingly altruistic behaviour, the active recruitment of conspecifics to a food resource through signalling. Here collective, cooperative behaviour may provide highly nonlinear benefits to individuals, since group functionality has the potential to be far greater than the sum of the component parts, for example by enabling the effective tracking of a dynamic resource. We show that due to this effect, signalling to others is an evolutionarily stable strategy under certain environmental conditions, even when there is a cost associated to this behaviour. While exploitation is possible, in the limiting case of a sparse, ephemeral but locally abundant nutrient source, a given environmental profile will support a fixed number of signalling individuals. Through a quantitative analysis, this effective carrying capacity for cooperation is related to the characteristic length and time scales of the resource field.

  10. Signalling and the evolution of cooperative foraging in dynamic environments.

    Science.gov (United States)

    Torney, Colin J; Berdahl, Andrew; Couzin, Iain D

    2011-09-01

    Understanding cooperation in animal social groups remains a significant challenge for evolutionary theory. Observed behaviours that benefit others but incur some cost appear incompatible with classical notions of natural selection; however, these behaviours may be explained by concepts such as inclusive fitness, reciprocity, intra-specific mutualism or manipulation. In this work, we examine a seemingly altruistic behaviour, the active recruitment of conspecifics to a food resource through signalling. Here collective, cooperative behaviour may provide highly nonlinear benefits to individuals, since group functionality has the potential to be far greater than the sum of the component parts, for example by enabling the effective tracking of a dynamic resource. We show that due to this effect, signalling to others is an evolutionarily stable strategy under certain environmental conditions, even when there is a cost associated to this behaviour. While exploitation is possible, in the limiting case of a sparse, ephemeral but locally abundant nutrient source, a given environmental profile will support a fixed number of signalling individuals. Through a quantitative analysis, this effective carrying capacity for cooperation is related to the characteristic length and time scales of the resource field.

  11. Detecting changes in dynamic and complex acoustic environments

    Science.gov (United States)

    Boubenec, Yves; Lawlor, Jennifer; Górska, Urszula; Shamma, Shihab; Englitz, Bernhard

    2017-01-01

    Natural sounds such as wind or rain, are characterized by the statistical occurrence of their constituents. Despite their complexity, listeners readily detect changes in these contexts. We here address the neural basis of statistical decision-making using a combination of psychophysics, EEG and modelling. In a texture-based, change-detection paradigm, human performance and reaction times improved with longer pre-change exposure, consistent with improved estimation of baseline statistics. Change-locked and decision-related EEG responses were found in a centro-parietal scalp location, whose slope depended on change size, consistent with sensory evidence accumulation. The potential's amplitude scaled with the duration of pre-change exposure, suggesting a time-dependent decision threshold. Auditory cortex-related potentials showed no response to the change. A dual timescale, statistical estimation model accounted for subjects' performance. Furthermore, a decision-augmented auditory cortex model accounted for performance and reaction times, suggesting that the primary cortical representation requires little post-processing to enable change-detection in complex acoustic environments. DOI: http://dx.doi.org/10.7554/eLife.24910.001 PMID:28262095

  12. Dynamic Wave Pressures on Deeply Embedded Large Cylindrical Structures due to Random Waves

    Institute of Scientific and Technical Information of China (English)

    刘海笑; 唐云; 周锡礽

    2003-01-01

    The response of dynamic wave pressures on structures would be more complicated and bring about new phenomena under the dynamic interaction between soil and structure. In order to better understand the response characteristics on deeply embedded large cylindrical structures under random waves, and accordingly to offer valuable findings for engineering, the authors designed wave flume experiments to investigate comparatively dynamic wave pressures on a single and on continuous cylinders with two different embedment depths in response to two wave spectra.The time histories of the water surface elevation and the corresponding dynamic wave pressures exerted on the cylinder were analyzed in the frequency domain. By calculating the transfer function and spectral density for dynamic wave pressures along the height and around the circumference of the cylinder, experimental results of the single cylinder were compared with the theoretical results based on the linear diffraction theory, and detailed comparisons were also carried out between the single and continuous cylinders. Some new findings and the corresponding analysis are reported in present paper. The investigation on continuous cylinders will be used in particular for reference in engineering applications because information is scarce on studying such kind of problem both analytically and experimentally.

  13. Massive Black Hole Binary Mergers in Dynamical Galactic Environments

    Science.gov (United States)

    Kelley, Luke Zoltan; Blecha, Laura; Hernquist, Lars

    2016-10-01

    Gravitational Waves (GW) have now been detected from stellar-mass black hole binaries, and the first observations of GW from Massive Black Hole (MBH) Binaries are expected within the next decade. Pulsar Timing Arrays (PTA), which can measure the years long periods of GW from MBHB, have excluded many standard predictions for the amplitude of a stochastic GW Background (GWB). We use coevolved populations of MBH and galaxies from hydrodynamic, cosmological simulations ('Illustris') to calculate a predicted GWB. The most advanced predictions so far have included binary hardening mechanisms from individual environmental processes. We present the first calculation including all of the environmental mechanisms expected to be involved: dynamical friction, stellar `loss-cone' scattering, and viscous drag from a circumbinary disk. We find that MBH binary lifetimes are generally multiple gigayears, and only a fraction coalesce by redshift zero. For a variety of parameters, we find all GWB amplitudes to be below the most stringent PTA upper limit of A_yr^{-1} ≈ 10^{-15}. Our fairly conservative fiducial model predicts an amplitude of A_yr^{-1} ≈ 0.4× 10^{-15}. At lower frequencies, we find A_{0.1 yr^{-1} ≈ 1.5× 10^{-15} with spectral indices between -0.4 and -0.6-significantly flatter than the canonical value of -2/3 due to purely GW-driven evolution. Typical MBHB driving the GWB signal come from redshifts around 0.3, with total masses of a few times 109 M⊙, and in host galaxies with very large stellar masses. Even without GWB detections, our results can be connected to observations of dual AGN to constrain binary evolution.

  14. Massive black hole binary mergers in dynamical galactic environments

    Science.gov (United States)

    Kelley, Luke Zoltan; Blecha, Laura; Hernquist, Lars

    2017-01-01

    Gravitational waves (GWs) have now been detected from stellar-mass black hole binaries, and the first observations of GWs from massive black hole (MBH) binaries are expected within the next decade. Pulsar timing arrays (PTA), which can measure the years long periods of GWs from MBH binaries (MBHBs), have excluded many standard predictions for the amplitude of a stochastic GW background (GWB). We use coevolved populations of MBHs and galaxies from hydrodynamic, cosmological simulations (`Illustris') to calculate a predicted GWB. The most advanced predictions so far have included binary hardening mechanisms from individual environmental processes. We present the first calculation including all of the environmental mechanisms expected to be involved: dynamical friction, stellar `loss-cone' scattering, and viscous drag from a circumbinary disc. We find that MBH binary lifetimes are generally multiple gigayears, and only a fraction coalesce by redshift zero. For a variety of parameters, we find all GWB amplitudes to be below the most stringent PTA upper limit of A_{yr^{-1}} ≈ 10^{-15}. Our fairly conservative fiducial model predicts an amplitude of A_{yr^{-1}} ≈ 0.4× 10^{-15}. At lower frequencies, we find A_{0.1 yr^{-1}} ≈ 1.5× 10^{-15} with spectral indices between -0.4 and -0.6 - significantly flatter than the canonical value of -2/3 due to purely GW-driven evolution. Typical MBHBs driving the GWB signal come from redshifts around 0.3, with total masses of a few times 109 M⊙, and in host galaxies with very large stellar masses. Even without GWB detections, our results can be connected to observations of dual active galactic nuclei to constrain binary evolution.

  15. Random and systematic beam modulator errors in dynamic intensity modulated radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Parsai, Homayon [Department of Radiation Oncology, University of Washington, Box 356043, Seattle, WA 98195 (United States); Cho, Paul S [Department of Radiation Oncology, University of Washington, Box 356043, Seattle, WA 98195 (United States); Phillips, Mark H [Department of Radiation Oncology, University of Washington, Box 356043, Seattle, WA 98195 (United States); Giansiracusa, Robert S [Department of Radiation Oncology, University of Washington, Box 356043, Seattle, WA 98195 (United States); Axen, David [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada)

    2003-05-07

    This paper reports on the dosimetric effects of random and systematic modulator errors in delivery of dynamic intensity modulated beams. A sliding-widow type delivery that utilizes a combination of multileaf collimators (MLCs) and backup diaphragms was examined. Gaussian functions with standard deviations ranging from 0.5 to 1.5 mm were used to simulate random positioning errors. A clinical example involving a clival meningioma was chosen with optic chiasm and brain stem as limiting critical structures in the vicinity of the tumour. Dose calculations for different modulator fluctuations were performed, and a quantitative analysis was carried out based on cumulative and differential dose volume histograms for the gross target volume and surrounding critical structures. The study indicated that random modulator errors have a strong tendency to reduce minimum target dose and homogeneity. Furthermore, it was shown that random perturbation of both MLCs and backup diaphragms in the order of {sigma} = 1 mm can lead to 5% errors in prescribed dose. In comparison, when MLCs or backup diaphragms alone was perturbed, the system was more robust and modulator errors of at least {sigma} = 1.5 mm were required to cause dose discrepancies greater than 5%. For systematic perturbation, even errors in the order of {+-}0.5 mm were shown to result in significant dosimetric deviations.

  16. Preventing catastrophes in spatially extended systems through dynamic switching of random interactions

    Indian Academy of Sciences (India)

    Anshul Choudhary; Vivek Kohar; Sudeshna Sinha

    2015-02-01

    In this paper, we review and extend the results from our recently published work [Scientific Reports (Nature) 4, 4308] on taming explosive growth in spatially extended systems. Specifically, we consider collections of relaxation oscillators, which are relevant to modelling phenomena ranging from engineering to biology, under varying coupling topologies. We find that the system witnesses unbounded growth under regular connections on a ring, for sufficiently strong coupling strengths. However, when a fraction of the regular connections are dynamically rewired to random links, this blow-up is suppressed. We present the critical value of random links necessary for successful prevention of explosive growth in the oscillators for varying network rewiring time-scales. Further, we outline our analysis on the possible mechanisms behind the occurrence of catastrophes and how the switching of links helps to suppress them.

  17. Dynamic Average Consensus and Consensusability of General Linear Multiagent Systems with Random Packet Dropout

    Directory of Open Access Journals (Sweden)

    Wen-Min Zhou

    2013-01-01

    Full Text Available This paper is concerned with the consensus problem of general linear discrete-time multiagent systems (MASs with random packet dropout that happens during information exchange between agents. The packet dropout phenomenon is characterized as being a Bernoulli random process. A distributed consensus protocol with weighted graph is proposed to address the packet dropout phenomenon. Through introducing a new disagreement vector, a new framework is established to solve the consensus problem. Based on the control theory, the perturbation argument, and the matrix theory, the necessary and sufficient condition for MASs to reach mean-square consensus is derived in terms of stability of an array of low-dimensional matrices. Moreover, mean-square consensusable conditions with regard to network topology and agent dynamic structure are also provided. Finally, the effectiveness of the theoretical results is demonstrated through an illustrative example.

  18. A novel chaotic block image encryption algorithm based on dynamic random growth technique

    Science.gov (United States)

    Wang, Xingyuan; Liu, Lintao; Zhang, Yingqian

    2015-03-01

    This paper proposes a new block image encryption scheme based on hybrid chaotic maps and dynamic random growth technique. Since cat map is periodic and can be easily cracked by chosen plaintext attack, we use cat map in another securer way, which can completely eliminate the cyclical phenomenon and resist chosen plaintext attack. In the diffusion process, an intermediate parameter is calculated according to the image block. The intermediate parameter is used as the initial parameter of chaotic map to generate random data stream. In this way, the generated key streams are dependent on the plaintext image, which can resist the chosen plaintext attack. The experiment results prove that the proposed encryption algorithm is secure enough to be used in image transmission systems.

  19. Sufficient and Necessary Criteria for Existence of Pullback Attractors for Non-compact Random Dynamical Systems

    CERN Document Server

    Wang, Bixiang

    2012-01-01

    We study pullback attractors of non-autonomous non-compact dynamical systems generated by differential equations with non-autonomous deterministic as well as stochastic forcing terms. We first introduce the concepts of pullback attractors and asymptotic compactness for such systems. We then prove a sufficient and necessary condition for existence of pullback attractors. We also introduce the concept of complete orbits for this sort of systems and use these special solutions to characterize the structures of pullback attractors. For random systems containing periodic deterministic forcing terms, we show the pullback attractors are also periodic. As an application of the abstract theory, we prove the existence of a unique pullback attractor for Reaction-Diffusion equations on $\\R^n$ with both deterministic and random external terms. Since Sobolev embeddings are not compact on unbounded domains, the uniform estimates on the tails of solutions are employed to establish the asymptotic compactness of solutions.

  20. Realistic Many-Body Quantum Systems vs. Full Random Matrices: Static and Dynamical Properties

    Science.gov (United States)

    Torres-Herrera, Eduardo; Karp, Jonathan; Távora, Marco; Santos, Lea

    2016-10-01

    We study the static and dynamical properties of isolated many-body quantum systems and compare them with the results for full random matrices. In doing so, we link concepts from quantum information theory with those from quantum chaos. In particular, we relate the von Neumann entanglement entropy with the Shannon information entropy and discuss their relevance for the analysis of the degree of complexity of the eigenstates, the behavior of the system at different time scales and the conditions for thermalization. A main advantage of full random matrices is that they enable the derivation of analytical expressions that agree extremely well with the numerics and provide bounds for realistic many-body quantum systems.

  1. Connectivity and Coverage in Hybrid Wireless Sensor Networks using Dynamic Random Geometric Graph Model

    Directory of Open Access Journals (Sweden)

    Jasmine Norman

    2011-10-01

    Full Text Available Random Geometric Graphs have been a very influential and well-studied model of large networks, such assensor networks, where the network nodes are represented by the vertices of the RGG, and the direct connectivity between nodes is represented by the edges. This assumes homogeneous wireless nodes with uniform transmission ranges. In real life, there exist heterogeneous wireless networks in which devices have dramatically different capabilities. The connectivity of a WSN is related to the positions of nodes, and those positions are heavily affected by the method of sensor deployment. As sensors may be spread in an arbitrary manner, one of the fundamental issues in a wireless sensor network is the coverage problem. In this paper, I study connectivity and coverage in hybrid WSN based on dynamic random geometric graph.

  2. Realistic Many-Body Quantum Systems vs. Full Random Matrices: Static and Dynamical Properties

    Directory of Open Access Journals (Sweden)

    Eduardo Jonathan Torres-Herrera

    2016-10-01

    Full Text Available We study the static and dynamical properties of isolated many-body quantum systems and compare them with the results for full random matrices. In doing so, we link concepts from quantum information theory with those from quantum chaos. In particular, we relate the von Neumann entanglement entropy with the Shannon information entropy and discuss their relevance for the analysis of the degree of complexity of the eigenstates, the behavior of the system at different time scales and the conditions for thermalization. A main advantage of full random matrices is that they enable the derivation of analytical expressions that agree extremely well with the numerics and provide bounds for realistic many-body quantum systems.

  3. Random Matrix Theory Analysis of Cross Correlations in Molecular Dynamics Simulations of Macro-Biomolecules

    Science.gov (United States)

    Yamanaka, Masanori

    2013-08-01

    We apply the random matrix theory to analyze the molecular dynamics simulation of macromolecules, such as proteins. The eigensystem of the cross-correlation matrix for the time series of the atomic coordinates is analyzed. We study a data set with seven different sampling intervals to observe the characteristic motion at each time scale. In all cases, the unfolded eigenvalue spacings are in agreement with the predictions of random matrix theory. In the short-time scale, the cross-correlation matrix has the universal properties of the Gaussian orthogonal ensemble. The eigenvalue distribution and inverse participation ratio have a crossover behavior between the universal and nonuniversal classes, which is distinct from the known results such as the financial time series. Analyzing the inverse participation ratio, we extract the correlated cluster of atoms and decompose it to subclusters.

  4. A new logistic dynamic particle swarm optimization algorithm based on random topology.

    Science.gov (United States)

    Ni, Qingjian; Deng, Jianming

    2013-01-01

    Population topology of particle swarm optimization (PSO) will directly affect the dissemination of optimal information during the evolutionary process and will have a significant impact on the performance of PSO. Classic static population topologies are usually used in PSO, such as fully connected topology, ring topology, star topology, and square topology. In this paper, the performance of PSO with the proposed random topologies is analyzed, and the relationship between population topology and the performance of PSO is also explored from the perspective of graph theory characteristics in population topologies. Further, in a relatively new PSO variant which named logistic dynamic particle optimization, an extensive simulation study is presented to discuss the effectiveness of the random topology and the design strategies of population topology. Finally, the experimental data are analyzed and discussed. And about the design and use of population topology on PSO, some useful conclusions are proposed which can provide a basis for further discussion and research.

  5. Dynamic Response of an Optomechanical System to a Stationary Random Excitation in the Time Domain

    Directory of Open Access Journals (Sweden)

    Jeremy A. Palmer

    2011-01-01

    Full Text Available Modern electro-optical instruments are typically designed with assemblies of optomechanical members that support optics such that alignment is maintained in service environments that include random vibration loads. This paper presents a nonlinear numerical analysis that calculates statistics for the peak lateral response of optics in an optomechanical sub-assembly subject to random excitation of the housing. The work is unique in that the prior art does not address peak response probability distribution for stationary random vibration in the time domain for a common lens-retainer-housing system with Coulomb damping. Analytical results are validated by using displacement response data from random vibration testing of representative prototype sub-assemblies. A comparison of predictions to experimental results yields reasonable agreement. The Type I Asymptotic form provides the cumulative distribution function for peak response probabilities. Probabilities are calculated for actual lens centration tolerances. The probability that peak response will not exceed the centration tolerance is greater than 80% for prototype configurations where the tolerance is high (on the order of 30 micrometers. Conversely, the probability is low for those where the tolerance is less than 20 micrometers. The analysis suggests a design paradigm based on the influence of lateral stiffness on the magnitude of the response.

  6. Research on framework for formation control of multiple underwater robots in a dynamic environment

    Institute of Scientific and Technical Information of China (English)

    MENG Xian-song; XU Hong-gen; ZHANG Ming-jun

    2004-01-01

    In this paper a practical framework is proposed to keep formation control of multiple underwater robots in a dynamic environment. The approach is a viable solution to solve formation problem. The approach allows online planning of the formation paths using a Dijkstra's search algorithm based on the current sensor data. The formation is allowed to be dynamically changed in order to avoid obstacles in the environment. A controller is designed to keep the robots in their planned trajectories. It is shown that the approach is effec In this paper a practical framework is proposed to keep formation control of multiple underwater robots in a dynamic environment. The approach is a viable solution to solve formation problem.

  7. An Improved VFF Approach for Robot Path Planning in Unknown and Dynamic Environments

    Directory of Open Access Journals (Sweden)

    Jianjun Ni

    2014-01-01

    Full Text Available Robot path planning in unknown and dynamic environments is one of the hot topics in the field of robot control. The virtual force field (VFF is an efficient path planning method for robot. However, there are some shortcomings of the traditional VFF based methods, such as the local minimum problem and the higher computational complexity, in dealing with the dynamic obstacle avoidance. In this paper, an improved VFF approach is proposed for the real-time robot path planning, where the environment is unknown and changing. An area ratio parameter is introduced into the proposed VFF based approach, where the size of the robot and obstacles are considered. Furthermore, a fuzzy control module is added, to deal with the problem of obstacle avoidance in dynamic environments, by adjusting the rotation angle of the robot. Finally, some simulation experiments are carried out to validate and demonstrate the efficiency of the proposed approach.

  8. Wave packet dynamics in energy space, random matrix theory, and the quantum-classical correspondence

    Science.gov (United States)

    Cohen; Izrailev; Kottos

    2000-03-06

    We apply random-matrix-theory (RMT) to the analysis of evolution of wave packets in energy space. We study the crossover from ballistic behavior to saturation, the possibility of having an intermediate diffusive behavior, and the feasibility of strong localization effect. Both theoretical considerations and numerical results are presented. Using quantal-classical correspondence considerations we question the validity of the emerging dynamical picture. In particular, we claim that the appearance of the intermediate diffusive behavior is possibly an artifact of the RMT strategy.

  9. Temperature effects on failure and annealing behavior in dynamic random access memories

    Science.gov (United States)

    Wilkin, N. D.; Self, C. T.

    1982-12-01

    Total dose failure levels and long time anneal characteristics of dynamic random access memories are measured while the devices are exercised under actual use conditions. These measurements were performed over the temperature range of -60 C to +70 C. The total dose failure levels are shown to decrease with increasing temperature. The anneal characteristics are shown to result in both an increase and decrease in the measured number of errors as a function of time. Finally a description of the test instrumentation and irradiation procedures are given.

  10. Quantum dynamics of electronic excitations in biomolecular chromophores: role of the protein environment and solvent

    CERN Document Server

    Gilmore, J; Gilmore, Joel; Kenzie, Ross H. Mc

    2006-01-01

    We consider continuum dielectric models as minimal models to understand the effect of the surrounding protein and solvent on the quantum dynamics of electronic excitations in a biological chromophore. For these models we describe expressions for the frequency dependent spectral density which describes the coupling of the electronic levels in the chromophore to its environment. We find the contributions to the spectral density from each component of the chromophore environment: the bulk solvent, protein, and water bound to the protein. The relative importance of each component is determined by the time scale on which one is considering the quantum dynamics of the chromophore. Our results provide a natural explanation and model for the different time scales observed in the spectral density extracted from the solvation dynamics probed by ultra-fast laser spectroscopy techniques such as the dynamic Stokes shift and three pulse photon echo spectroscopy. Our results can be used to define under what conditions the d...

  11. Environment and initial state engineered dynamics of quantum and classical correlations

    Science.gov (United States)

    Wang, Cheng-Zhi; Li, Chun-Xian; Guo, Yu; Lu, Geng-Biao; Ding, Kai-He

    2016-11-01

    Based on an open exactly solvable system coupled to an environment with nontrivial spectral density, we connect the features of quantum and classical correlations with some features of the environment, initial states of the system, and the presence of initial system-environment correlations. Some interesting features not revealed before are observed by changing the structure of environment, the initial states of system, and the presence of initial system-environment correlations. The main results are as follows. (1) Quantum correlations exhibit temporary freezing and permanent freezing even at high temperature of the environment, for which the necessary and sufficient conditions are given by three propositions. (2) Quantum correlations display a transition from temporary freezing to permanent freezing by changing the structure of environment. (3) Quantum correlations can be enhanced all the time, for which the condition is put forward. (4) The one-to-one dependency relationship between all kinds of dynamic behaviors of quantum correlations and the initial states of the system as well as environment structure is established. (5) In the presence of initial system-environment correlations, quantum correlations under local environment exhibit temporary multi-freezing phenomenon. While under global environment they oscillate, revive, and damp, an explanation for which is given.

  12. A New Class of Particle Filters for Random Dynamic Systems with Unknown Statistics

    Directory of Open Access Journals (Sweden)

    Joaquín Míguez

    2004-11-01

    Full Text Available In recent years, particle filtering has become a powerful tool for tracking signals and time-varying parameters of random dynamic systems. These methods require a mathematical representation of the dynamics of the system evolution, together with assumptions of probabilistic models. In this paper, we present a new class of particle filtering methods that do not assume explicit mathematical forms of the probability distributions of the noise in the system. As a consequence, the proposed techniques are simpler, more robust, and more flexible than standard particle filters. Apart from the theoretical development of specific methods in the new class, we provide computer simulation results that demonstrate the performance of the algorithms in the problem of autonomous positioning of a vehicle in a 2-dimensional space.

  13. Diffusion in a soft confining environment: Dynamic effects of thermal fluctuations

    Science.gov (United States)

    Palmieri, Benoit; Safran, Samuel

    2013-03-01

    A dynamical model of a soft, thermally fluctuating two-dimensional tube is used to study the effect of thermal fluctuations of a confining environment on diffusive transport. The tube fluctuations in both space and time are driven by Brownian motion and suppressed by surface tension and the rigidity of the surrounding environment. The dynamical fluctuations modify the concentration profile boundary condition at the tube surface. They decrease the diffusive transport rate through the tube for two important cases: uniform tube fluctuations (wave vector, q = 0 mode) for finite tube lengths and fluctuations of any wave vector for infinitely long tubes.

  14. A novel algorithm for SLAM in dynamic environments using landscape theory of aggregation

    Institute of Scientific and Technical Information of China (English)

    华承昊; 窦丽华; 方浩; 付浩

    2016-01-01

    To tackle the problem of simultaneous localization and mapping (SLAM) in dynamic environments, a novel algorithm using landscape theory of aggregation is presented. By exploiting the coherent explanation how actors form alignments in a game provided by the landscape theory of aggregation, the algorithm is able to explicitly deal with the ever-changing relationship between the static objects and the moving objects without any prior models of the moving objects. The effectiveness of the method has been validated by experiments in two representative dynamic environments: the campus road and the urban road.

  15. Dynamics and decoherence of a single spin-qubit in a tunable environment

    CERN Document Server

    Ratschbacher, L; Carcagni, L; Silver, J M; Zipkes, C; Köhl, M

    2013-01-01

    We report on the immersion of a spin-qubit encoded in a single trapped ion into a spin-polarized neutral atom environment, which possesses both continuous (motional) and discrete (spin) degrees of freedom. The environment is widely tunable and offers the possibility of a precise microscopic description, both of which allows us to understand dynamics and decoherence from first principles. We observe the spin dynamics of the qubit and measure the decoherence times (T1 and T2), which are determined by the spin-exchange interaction as well as by an unexpectedly strong spin-nonconserving coupling mechanism.

  16. A Novel Machine Learning Based Method of Combined Dynamic Environment Prediction

    Directory of Open Access Journals (Sweden)

    Wentao Mao

    2013-01-01

    Full Text Available In practical engineerings, structures are often excited by different kinds of loads at the same time. How to effectively analyze and simulate this kind of dynamic environment of structure, named combined dynamic environment, is one of the key issues. In this paper, a novel prediction method of combined dynamic environment is proposed from the perspective of data analysis. First, the existence of dynamic similarity between vibration responses of the same structure under different boundary conditions is theoretically proven. It is further proven that this similarity can be established by a multiple-input multiple-output regression model. Second, two machine learning algorithms, multiple-dimensional support vector machine and extreme learning machine, are introduced to establish this model. To test the effectiveness of this method, shock and stochastic white noise excitations are acted on a cylindrical shell with two clamps to simulate different dynamic environments. The prediction errors on various measuring points are all less than ±3 dB, which shows that the proposed method can predict the structural vibration response under one boundary condition by means of the response under another condition in terms of precision and numerical stability.

  17. Impacts of flexible obstructive working environment on dynamic performances of inspection robot for power transmission line

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The rigid-flexible coupling dynamic modeling and simulation of an inspection robot were conducted to study the influences of the flexible obstructive working environment i.e.overhead transmission line on the robot's dynamic performance.First,considering the structure of the obstacles and symmetrical mechanism of the robot prototype,four basic subaetions were abstracted to fulfill full-path kinematic tasks.Then,a multi-rigid-body dynamic model of the robot was built with Lagrange equation,while a multi-flexible-body dynamic model of a span of line was obtained by combining finite element method (FEM),modal synthesis method and Lagrange equation.The two subsystem models were coupled under rolling along no-obstacle segment and overcoming obstacle poses,and these simulations of three subactions along different spans of line were performed in ADMAS.The simulation results,including the coupling vibration parameters and driving moment of joint motors,show the dynamic performances of the robot along flexibile obstructive working path:in flexible obstructive working environment,the robot can fulfill the preset motion goals;it responses slower in more flexible path;the fluctuation of robot as well as driving moment of the corresponding joint in startup and brake region is greater than that in rigid environment;the fluctuation amplitude increases with increasing working environment flexibility.

  18. Blob-Spring Model for the Dynamics of Ring Polymer in Obstacle Environment

    Science.gov (United States)

    Lele, Ashish K.; Iyer, Balaji V. S.; Juvekar, Vinay A.

    2008-07-01

    The dynamical behavior of cyclic macromolecules in a fixed obstacle (FO) environment is very different than the behavior of linear chains in the same topological environment; while the latter relax by a snake-like reptational motion from their chain ends the former can relax only by contour length fluctuations since they are endless. Duke, Obukhov and Rubinstein proposed a scaling model (the DOR model) to interpret the dynamical scaling exponents shown by Monte Carlo simulations of rings in a FO environment. We present a model (blob-spring model) to describe the dynamics of flexible and non-concatenated ring polymer in FO environment based on a theoretical formulation developed for the dynamics of an unentangled fractal polymer. We argue that the perpetual evolution of ring perimeter by the motion of contour segments results in an extra frictional load. Our model predicts self-similar dynamics with scaling exponents for the molecular weight dependence of diffusion coefficient and relaxation times that are in agreement with the scaling model proposed by Obukhov et al.

  19. Analysis on Dynamic Decision-Making Model of the Enterprise Technological Innovation Investment under Uncertain Environment

    Directory of Open Access Journals (Sweden)

    Yong Long

    2012-01-01

    Full Text Available Under the environment of fuzzy factors including the return of market, performance of product, and the demanding level of market, we use the method of dynamic programming and establish the model of investment decision, in technology innovation project of enterprise, based on the dynamic programming. Analysis of the influence caused by the changes of fuzzy uncertainty factors to technological innovation project investment of enterprise.

  20. Dynamics of entanglement among the environment oscillators of a many-body system

    Science.gov (United States)

    de Paula, A. L.; Freitas, Dagoberto S.

    2016-06-01

    In this work, we extend the discussion that began in Ref. 16 [A. L. de Paula, Jr., J. G. G. de Oliveira, Jr., J. G. P. de Faria, D. S. Freitas and M. C. Nemes, Phys. Rev. A 89 (2014) 022303] to deal with the dynamics of the concurrence of a many-body system. In that previous paper, the discussion was focused on the residual entanglement between the partitions of the system. The purpose of the present contribution is to shed some light on the dynamical properties of entanglement among the environment oscillators. We consider a system consisting of a harmonic oscillator linearly coupled to N others and solve the corresponding dynamical problem analytically. We divide the environment into two arbitrary partitions and the entanglement dynamics between any of these partitions is quantified and it shows that in the case when excitations in each partition are equal, the concurrence reaches the value 1 and the two partitions of the environment are maximally entangled. For long times, the excitations of the main oscillator are completely transferred to environment and the environment oscillators are found entangled.

  1. Dynamic Resource Management for Parallel Tasks in an Oversubscribed Energy-Constrained Heterogeneous Environment

    Energy Technology Data Exchange (ETDEWEB)

    Imam, Neena [ORNL; Koenig, Gregory A [ORNL; Machovec, Dylan [Colorado State University, Fort Collins; Khemka, Bhavesh [Colorado State University, Fort Collins; Pasricha, Sudeep [Colorado State University; Maciejewski, Anthony A [Colorado State University, Fort Collins; Siegel, Howard [Colorado State University, Fort Collins; Wright, Michael [Department of Defense; Hilton, Marcia [Department of Defense; Rambharos, Rejendra [Department of Defense

    2016-01-01

    Abstract: The worth of completing parallel tasks is modeled using utility functions, which monotonically-decrease with time and represent the importance and urgency of a task. These functions define the utility earned by a task at the time of its completion. The performance of such a system is measured as the total utility earned by all completed tasks over some interval of time (e.g., 24 hours). To maximize system performance when scheduling dynamically arriving parallel tasks onto a high performance computing (HPC) system that is oversubscribed and energy-constrained, we have designed, analyzed, and compared different heuristic techniques. Four utility-aware heuristics (i.e., Max Utility, Max Utility-per-Time, Max Utility-per-Resource, and Max Utility-per-Energy), three FCFS-based heuristics (Conservative Backfilling, EASY Backfilling, and FCFS with Multiple Queues), and a Random heuristic were examined in this study. A technique that is often used with the FCFS-based heuristics is the concept of a permanent reservation. We compare the performance of permanent reservations with temporary place-holders to demonstrate the advantages that place-holders can provide. We also present a novel energy filtering technique that constrains the maximum energy-per-resource used by each task. We conducted a simulation study to evaluate the performance of these heuristics and techniques in an energy-constrained oversubscribed HPC environment. With place-holders, energy filtering, and dropping tasks with low potential utility, our utility-aware heuristics are able to significantly outperform the existing FCFS-based techniques.

  2. Can Modifications to the Bedroom Environment Improve the Sleep of New Parents? Two Randomized Controlled Trials

    OpenAIRE

    Lee, Kathryn A.; Gay, Caryl L.

    2010-01-01

    Postpartum sleep disruption is common among new parents. In this randomized controlled trial we evaluated a modified sleep hygiene intervention for new parents (infant proximity, noise masking, and dim lighting) in anticipation of night-time infant care. Two samples of new mothers (n = 118 and 122) were randomized to the experimental intervention or attention control, and sleep was assessed in late pregnancy and first 3 months postpartum using actigraphy and the General Sleep Disturbance Scal...

  3. Towards the Verification of Safety-critical Autonomous Systems in Dynamic Environments

    Directory of Open Access Journals (Sweden)

    Adina Aniculaesei

    2016-12-01

    Full Text Available There is an increasing necessity to deploy autonomous systems in highly heterogeneous, dynamic environments, e.g. service robots in hospitals or autonomous cars on highways. Due to the uncertainty in these environments, the verification results obtained with respect to the system and environment models at design-time might not be transferable to the system behavior at run time. For autonomous systems operating in dynamic environments, safety of motion and collision avoidance are critical requirements. With regard to these requirements, Macek et al. [6] define the passive safety property, which requires that no collision can occur while the autonomous system is moving. To verify this property, we adopt a two phase process which combines static verification methods, used at design time, with dynamic ones, used at run time. In the design phase, we exploit UPPAAL to formalize the autonomous system and its environment as timed automata and the safety property as TCTL formula and to verify the correctness of these models with respect to this property. For the runtime phase, we build a monitor to check whether the assumptions made at design time are also correct at run time. If the current system observations of the environment do not correspond to the initial system assumptions, the monitor sends feedback to the system and the system enters a passive safe state.

  4. DYNAMIC ITELLECTUAL SYSTEM OF PROCESS MANAGEMENT IN INFORMATION AND EDUCATION ENVIRONMENT OF HIGHER EDUCATIONAL INSTITUTIONS

    Directory of Open Access Journals (Sweden)

    Yuriy F. Telnov

    2013-01-01

    Full Text Available The paper represents the technology of application of dynamic intelligent process management system for integrated information-educational environment of university and providing the access for community in order to develop flexible education programs and teaching manuals based on multi-agent and service-oriented architecture. The article depicts the prototype of dynamic intelligent process management system using for forming of educational-methodic body. Efficiency of creation and usage of dynamic intelligent process management system is evaluated. 

  5. Small-world topology of functional connectivity in randomly connected dynamical systems.

    Science.gov (United States)

    Hlinka, J; Hartman, D; Paluš, M

    2012-09-01

    Characterization of real-world complex systems increasingly involves the study of their topological structure using graph theory. Among global network properties, small-world property, consisting in existence of relatively short paths together with high clustering of the network, is one of the most discussed and studied. When dealing with coupled dynamical systems, links among units of the system are commonly quantified by a measure of pairwise statistical dependence of observed time series (functional connectivity). We argue that the functional connectivity approach leads to upwardly biased estimates of small-world characteristics (with respect to commonly used random graph models) due to partial transitivity of the accepted functional connectivity measures such as the correlation coefficient. In particular, this may lead to observation of small-world characteristics in connectivity graphs estimated from generic randomly connected dynamical systems. The ubiquity and robustness of the phenomenon are documented by an extensive parameter study of its manifestation in a multivariate linear autoregressive process, with discussion of the potential relevance for nonlinear processes and measures.

  6. Reduced short term adaptation to robot generated dynamic environment in children affected by Cerebral Palsy

    Directory of Open Access Journals (Sweden)

    Di Rosa Giuseppe

    2011-05-01

    Full Text Available Abstract Background It is known that healthy adults can quickly adapt to a novel dynamic environment, generated by a robotic manipulandum as a structured disturbing force field. We suggest that it may be of clinical interest to evaluate to which extent this kind of motor learning capability is impaired in children affected by cerebal palsy. Methods We adapted the protocol already used with adults, which employs a velocity dependant viscous field, and compared the performance of a group of subjects affected by Cerebral Palsy (CP group, 7 subjects with a Control group of unimpaired age-matched children. The protocol included a familiarization phase (FA, during which no force was applied, a force field adaptation phase (CF, and a wash-out phase (WO in which the field was removed. During the CF phase the field was shut down in a number of randomly selected "catch" trials, which were used in order to evaluate the "learning index" for each single subject and the two groups. Lateral deviation, speed and acceleration peaks and average speed were evaluated for each trajectory; a directional analysis was performed in order to inspect the role of the limb's inertial anisotropy in the different experimental phases. Results During the FA phase the movements of the CP subjects were more curved, displaying greater and variable directional error; over the course of the CF phase both groups showed a decreasing trend in the lateral error and an after-effect at the beginning of the wash-out, but the CP group had a non significant adaptation rate and a lower learning index, suggesting that CP subjects have reduced ability to learn to compensate external force. Moreover, a directional analysis of trajectories confirms that the control group is able to better predict the force field by tuning the kinematic features of the movements along different directions in order to account for the inertial anisotropy of arm. Conclusions Spatial abnormalities in children affected

  7. Reduced short term adaptation to robot generated dynamic environment in children affected by Cerebral Palsy

    Science.gov (United States)

    2011-01-01

    Background It is known that healthy adults can quickly adapt to a novel dynamic environment, generated by a robotic manipulandum as a structured disturbing force field. We suggest that it may be of clinical interest to evaluate to which extent this kind of motor learning capability is impaired in children affected by cerebal palsy. Methods We adapted the protocol already used with adults, which employs a velocity dependant viscous field, and compared the performance of a group of subjects affected by Cerebral Palsy (CP group, 7 subjects) with a Control group of unimpaired age-matched children. The protocol included a familiarization phase (FA), during which no force was applied, a force field adaptation phase (CF), and a wash-out phase (WO) in which the field was removed. During the CF phase the field was shut down in a number of randomly selected "catch" trials, which were used in order to evaluate the "learning index" for each single subject and the two groups. Lateral deviation, speed and acceleration peaks and average speed were evaluated for each trajectory; a directional analysis was performed in order to inspect the role of the limb's inertial anisotropy in the different experimental phases. Results During the FA phase the movements of the CP subjects were more curved, displaying greater and variable directional error; over the course of the CF phase both groups showed a decreasing trend in the lateral error and an after-effect at the beginning of the wash-out, but the CP group had a non significant adaptation rate and a lower learning index, suggesting that CP subjects have reduced ability to learn to compensate external force. Moreover, a directional analysis of trajectories confirms that the control group is able to better predict the force field by tuning the kinematic features of the movements along different directions in order to account for the inertial anisotropy of arm. Conclusions Spatial abnormalities in children affected by cerebral palsy may be

  8. Reduced short term adaptation to robot generated dynamic environment in children affected by Cerebral Palsy.

    Science.gov (United States)

    Masia, Lorenzo; Frascarelli, Flaminia; Morasso, Pietro; Di Rosa, Giuseppe; Petrarca, Maurizio; Castelli, Enrico; Cappa, Paolo

    2011-05-21

    It is known that healthy adults can quickly adapt to a novel dynamic environment, generated by a robotic manipulandum as a structured disturbing force field. We suggest that it may be of clinical interest to evaluate to which extent this kind of motor learning capability is impaired in children affected by cerebal palsy. We adapted the protocol already used with adults, which employs a velocity dependant viscous field, and compared the performance of a group of subjects affected by Cerebral Palsy (CP group, 7 subjects) with a Control group of unimpaired age-matched children. The protocol included a familiarization phase (FA), during which no force was applied, a force field adaptation phase (CF), and a wash-out phase (WO) in which the field was removed. During the CF phase the field was shut down in a number of randomly selected "catch" trials, which were used in order to evaluate the "learning index" for each single subject and the two groups. Lateral deviation, speed and acceleration peaks and average speed were evaluated for each trajectory; a directional analysis was performed in order to inspect the role of the limb's inertial anisotropy in the different experimental phases. During the FA phase the movements of the CP subjects were more curved, displaying greater and variable directional error; over the course of the CF phase both groups showed a decreasing trend in the lateral error and an after-effect at the beginning of the wash-out, but the CP group had a non significant adaptation rate and a lower learning index, suggesting that CP subjects have reduced ability to learn to compensate external force. Moreover, a directional analysis of trajectories confirms that the control group is able to better predict the force field by tuning the kinematic features of the movements along different directions in order to account for the inertial anisotropy of arm. Spatial abnormalities in children affected by cerebral palsy may be related not only to disturbance in

  9. Stochastic optimal foraging: tuning intensive and extensive dynamics in random searches.

    Directory of Open Access Journals (Sweden)

    Frederic Bartumeus

    Full Text Available Recent theoretical developments had laid down the proper mathematical means to understand how the structural complexity of search patterns may improve foraging efficiency. Under information-deprived scenarios and specific landscape configurations, Lévy walks and flights are known to lead to high search efficiencies. Based on a one-dimensional comparative analysis we show a mechanism by which, at random, a searcher can optimize the encounter with close and distant targets. The mechanism consists of combining an optimal diffusivity (optimally enhanced diffusion with a minimal diffusion constant. In such a way the search dynamics adequately balances the tension between finding close and distant targets, while, at the same time, shifts the optimal balance towards relatively larger close-to-distant target encounter ratios. We find that introducing a multiscale set of reorientations ensures both a thorough local space exploration without oversampling and a fast spreading dynamics at the large scale. Lévy reorientation patterns account for these properties but other reorientation strategies providing similar statistical signatures can mimic or achieve comparable efficiencies. Hence, the present work unveils general mechanisms underlying efficient random search, beyond the Lévy model. Our results suggest that animals could tune key statistical movement properties (e.g. enhanced diffusivity, minimal diffusion constant to cope with the very general problem of balancing out intensive and extensive random searching. We believe that theoretical developments to mechanistically understand stochastic search strategies, such as the one here proposed, are crucial to develop an empirically verifiable and comprehensive animal foraging theory.

  10. The Living, Dynamic and Complex Environment Care in Intensive Care Unit

    Directory of Open Access Journals (Sweden)

    Marli Terezinha Stein Backes

    2015-06-01

    Full Text Available OBJECTIVE: to understand the meaning of the Adult Intensive Care Unit environment of care, experienced by professionals working in this unit, managers, patients, families and professional support services, as well as build a theoretical model about the Adult Intensive Care Unit environment of care.METHOD: Grounded Theory, both for the collection and for data analysis. Based on theoretical sampling, we carried out 39 in-depth interviews semi-structured from three different Adult Intensive Care Units.RESULTS: built up the so-called substantive theory "Sustaining life in the complex environment of care in the Intensive Care Unit". It was bounded by eight categories: "caring and continuously monitoring the patient" and "using appropriate and differentiated technology" (causal conditions; "Providing a suitable environment" and "having relatives with concern" (context; "Mediating facilities and difficulties" (intervenienting conditions; "Organizing the environment and managing the dynamics of the unit" (strategy and "finding it difficult to accept and deal with death" (consequences.CONCLUSION: confirmed the thesis that "the care environment in the Intensive Care Unit is a living environment, dynamic and complex that sustains the life of her hospitalized patients".

  11. Dynamic fluorescence quenching of quinine sulfate dication by chloride ion in ionic and neutral micellar environments

    Science.gov (United States)

    Joshi, Sunita; Varma Y, Tej Varma; Pant, Debi D.

    2014-04-01

    Fluorescence quenching of Quinine sulfate dication (QSD) by chloride-ion (Cl-) in micellar environments of anionic, sodium dodecyl sulfate (SDS), cationic, cetyltrimethylammonium bromide (CTAB) and neutral, triton X-100 (TX-100) in aqueous phase has been investigated by time-resolved and steady- state fluorescence measurements. The quenching follows linear Stern-Volmer relation in micellar solutions and is dynamic in nature.

  12. Formation Control of Mobile Agents with Second-order Nonlinear Dynamics in Unknown Environments Containing Obstacles

    NARCIS (Netherlands)

    Huang, Jie; Cao, Ming; Zhou, Ning

    2016-01-01

    This paper investigates the formation control problem of multiple mobile agents with second-order nonlinear dynamics in complex environments containing multiple obstacles. By employing the null-space-based behavioral (NSB) control architecture, a novel fast terminal sliding mode based adaptive contr

  13. Autonomous Collision-Free Navigation of Microvehicles in Complex and Dynamically Changing Environments.

    Science.gov (United States)

    Li, Tianlong; Chang, Xiaocong; Wu, Zhiguang; Li, Jinxing; Shao, Guangbin; Deng, Xinghong; Qiu, Jianbin; Guo, Bin; Zhang, Guangyu; He, Qiang; Li, Longqiu; Wang, Joseph

    2017-08-18

    Self-propelled micro- and nanoscale robots represent a rapidly emerging and fascinating robotics research area. However, designing autonomous and adaptive control systems for operating micro/nanorobotics in complex and dynamically changing environments, which is a highly demanding feature, is still an unmet challenge. Here we describe a smart microvehicle for precise autonomous navigation in complicated environments and traffic scenarios. The fully autonomous navigation system of the smart microvehicle is composed of a microscope-coupled CCD camera, an artificial intelligence planner, and a magnetic field generator. The microscope-coupled CCD camera provides real-time localization of the chemically powered Janus microsphere vehicle and environmental detection for path planning to generate optimal collision-free routes, while the moving direction of the microrobot toward a reference position is determined by the external electromagnetic torque. Real-time object detection offers adaptive path planning in response to dynamically changing environments. We demonstrate that the autonomous navigation system can guide the vehicle movement in complex patterns, in the presence of dynamically changing obstacles, and in complex biological environments. Such a navigation system for micro/nanoscale vehicles, relying on vision-based close-loop control and path planning, is highly promising for their autonomous operation in complex dynamic settings and unpredictable scenarios expected in a variety of realistic nanoscale scenarios.

  14. Advancement of vision-based SLAM from static to dynamic environments

    CSIR Research Space (South Africa)

    Pancham, A

    2012-11-01

    Full Text Available be not be included in the SLAM map as they may lead to localization errors and reduce map quality. Recent years, have seen the advancement of vision-based SLAM from static to dynamic environments, where SLAM coupled with Detection And Tracking of Moving Objects...

  15. Who's in Control? Teachers from Five Countries Share Perspectives on Power Dynamics in the Learning Environment

    Science.gov (United States)

    Lovorn, Michael; Sunal, Cynthia Szymanski; Christensen, Lois McFadyen; Sunal, Dennis W.; Shwery, Craig

    2012-01-01

    This article explores perspectives and strands of thought among teachers from five countries about power dynamics in learning environments, perspectives on power of dominant cultures and impacts of power on concepts of citizenship and social justice. Discourses revealed teachers have some understanding of how power impacts teaching and learning,…

  16. A Dynamic Process Model for Optimizing the Hospital Environment Cash-Flow

    Science.gov (United States)

    Pater, Flavius; Rosu, Serban

    2011-09-01

    In this article is presented a new approach to some fundamental techniques of solving dynamic programming problems with the use of functional equations. We will analyze the problem of minimizing the cost of treatment in a hospital environment. Mathematical modeling of this process leads to an optimal control problem with a finite horizon.

  17. An Approach for Dynamic Optimization of Prevention Program Implementation in Stochastic Environments

    Science.gov (United States)

    Kang, Yuncheol; Prabhu, Vittal

    The science of preventing youth problems has significantly advanced in developing evidence-based prevention program (EBP) by using randomized clinical trials. Effective EBP can reduce delinquency, aggression, violence, bullying and substance abuse among youth. Unfortunately the outcomes of EBP implemented in natural settings usually tend to be lower than in clinical trials, which has motivated the need to study EBP implementations. In this paper we propose to model EBP implementations in natural settings as stochastic dynamic processes. Specifically, we propose Markov Decision Process (MDP) for modeling and dynamic optimization of such EBP implementations. We illustrate these concepts using simple numerical examples and discuss potential challenges in using such approaches in practice.

  18. Transients drive the demographic dynamics of plant populations in variable environments

    DEFF Research Database (Denmark)

    McDonald, Jenni L; Stott, Iain; Townley, Stuart;

    2016-01-01

    clear patterns related to growth form. We find a surprising tendency for plant populations to boom rather than bust in response to temporal changes in vital rates and that stochastic growth rates increase with increasing tendency to boom. Synthesis. Transient dynamics contribute significantly......The dynamics of structured plant populations in variable environments can be decomposed into the ‘asymptotic’ growth contributed by vital rates, and ‘transient’ growth caused by deviation from stable stage structure. We apply this framework to a large, global data base of longitudinal studies...... of projection matrix models for plant populations. We ask, what is the relative contribution of transient boom and bust to the dynamic trajectories of plant populations in stochastic environments? Is this contribution patterned by phylogeny, growth form or the number of life stages per population and per...

  19. Fuzzy Logic Navigation and Obstacle Avoidance by a Mobile Robot in an Unknown Dynamic Environment

    Directory of Open Access Journals (Sweden)

    Mohammed Faisal

    2013-01-01

    Full Text Available Mobile robot navigation has remained an open problem over the last two decades. Mobile robots are required to navigate in unknown and dynamic environments, and in recent years the use of mobile robots in material handling has considerably increased. Usually workers push carts around warehouses and manually handle orders which is not very cost‐effective. To this end, a potential method to control a swarm of mobile robots in a warehouse with static and dynamic obstacles is to use the wireless control approach. Further, to be able to control different types of mobile robots in the warehouse, the fuzzy logic control approach has been chosen. Therefore, in this paper, an on‐line navigation technique for a wheeled mobile robot (WMR in an unknown dynamic environment using fuzzy logic techniques is investigated. In this paper, we aim to use the robot in application in a warehouse. Experimental results show the effectiveness of the proposed algorithm.

  20. Tracking fluid-borne odors in diverse and dynamic environments using multiple sensory mechanisms

    Science.gov (United States)

    Taylor, Brian Kyle

    The ability to locate odor sources in different types of environments (i.e. diverse) and environments that change radically during the mission (i.e., dynamic) is essential. While many engineered odor tracking systems have been developed, they appear to be designed for a particular environment (e.g., strong or low flow). In field conditions, agents may encounter both. Insect olfactory orientation studies show that several animals can locate odor sources in both high and low flow environments, and environments where the wind vanishes during tracking behavior. Furthermore, animals use multi-modal sensing, including olfaction, vision and touch to localize a source. This work uses simulated and hardware environments to explore how engineered systems can maintain wind-driven tracking behavior in diverse and dynamic environments. The simulation uses olfaction, vision and tactile attributes to track and localize a source in the following environments: high flow, low flow, and transition from high to low flow (i.e., Wind Stop). The hardware platform tests two disparate tracking strategies (including the simulated strategy) in an environment that transitions from strong to low flow. Results indicate that using a remembered wind direction post wind-shutoff is a viable way to maintain wind-driven tracking behavior in a wind stop environment, which can help bridge the gap between high flow and low flow strategies. Also, multi-modal sensing with tactile attributes, vision and olfaction helps a vehicle to localize a source. In addition to engineered systems, the moth Manduca sexta is challenged to track in the following environments: Wind and Odor, Wind Stop, Odor and No Wind, No Odor and No Wind to gain a better understanding of animal behavior in these environments. Results show that contrary to previous studies of different moth species, M. sexta does not generally maintain its wind-driven tracking behavior post-wind shutoff, but instead executes a stereotyped sequence of

  1. Modeling of stochastic dynamics of time-dependent flows under high-dimensional random forcing

    Science.gov (United States)

    Babaee, Hessam; Karniadakis, George

    2016-11-01

    In this numerical study the effect of high-dimensional stochastic forcing in time-dependent flows is investigated. To efficiently quantify the evolution of stochasticity in such a system, the dynamically orthogonal method is used. In this methodology, the solution is approximated by a generalized Karhunen-Loeve (KL) expansion in the form of u (x , t ω) = u ̲ (x , t) + ∑ i = 1 N yi (t ω)ui (x , t) , in which u ̲ (x , t) is the stochastic mean, the set of ui (x , t) 's is a deterministic orthogonal basis and yi (t ω) 's are the stochastic coefficients. Explicit evolution equations for u ̲ , ui and yi are formulated. The elements of the basis ui (x , t) 's remain orthogonal for all times and they evolve according to the system dynamics to capture the energetically dominant stochastic subspace. We consider two classical fluid dynamics problems: (1) flow over a cylinder, and (2) flow over an airfoil under up to one-hundred dimensional random forcing. We explore the interaction of intrinsic with extrinsic stochasticity in these flows. DARPA N66001-15-2-4055, Office of Naval Research N00014-14-1-0166.

  2. Noise improves collective decision-making by ants in dynamic environments.

    Science.gov (United States)

    Dussutour, A; Beekman, M; Nicolis, S C; Meyer, B

    2009-12-22

    Recruitment via pheromone trails by ants is arguably one of the best-studied examples of self-organization in animal societies. Yet it is still unclear if and how trail recruitment allows a colony to adapt to changes in its foraging environment. We study foraging decisions by colonies of the ant Pheidole megacephala under dynamic conditions. Our experiments show that P. megacephala, unlike many other mass recruiting species, can make a collective decision for the better of two food sources even when the environment changes dynamically. We developed a stochastic differential equation model that explains our data qualitatively and quantitatively. Analysing this model reveals that both deterministic and stochastic effects (noise) work together to allow colonies to efficiently track changes in the environment. Our study thus suggests that a certain level of noise is not a disturbance in self-organized decision-making but rather serves an important functional role.

  3. Optimal Strategy for Integrated Dynamic Inventory Control and Supplier Selection in Unknown Environment via Stochastic Dynamic Programming

    Science.gov (United States)

    Sutrisno; Widowati; Solikhin

    2016-06-01

    In this paper, we propose a mathematical model in stochastic dynamic optimization form to determine the optimal strategy for an integrated single product inventory control problem and supplier selection problem where the demand and purchasing cost parameters are random. For each time period, by using the proposed model, we decide the optimal supplier and calculate the optimal product volume purchased from the optimal supplier so that the inventory level will be located at some point as close as possible to the reference point with minimal cost. We use stochastic dynamic programming to solve this problem and give several numerical experiments to evaluate the model. From the results, for each time period, the proposed model was generated the optimal supplier and the inventory level was tracked the reference point well.

  4. Real-Time Path Planning for Multi-DoF Manipulators in Dynamic Environment

    Directory of Open Access Journals (Sweden)

    Lotfi Romdhane

    2008-11-01

    Full Text Available An efficient path planning algorithm, for multi degrees of freedom manipulator robots in dynamic environments, is presented in this paper. The proposed method is based on a local planner and a boundary following method for rapid solution finding. The local planner is replaced by the boundary following method whenever the robot gets stuck in a local minimum. This method was limited to 2-DoF mobile robots and in this work we showed how it can be applicable for a robot with n degrees of freedom in a dynamic environment. The path planning task is performed in the configuration space and we used a hyperplane in the n dimensional space to find the way out of the deadlock situation when it occurs. This method is, therefore, able to find a path, when it exists, no matter how cluttered is the environment, and it avoids deadlocking inherent to the use of the local method. Moreover, this method is fast, which makes it suitable for on-line path planning in dynamic environment. The algorithm has been implemented into a robotic CAD system for testing. Some examples are presented to demonstrate the ability of this algorithm to find a path no matter how complex is the environment. These examples involve a 5-DoF robot in a cluttered environment, then two 5-DoF robots, and finally three 5-DoF robots. In all cases, the proposed method was able to find a path to reach the goal and to avoid the dynamic obstacles.

  5. Randomized dynamical decoupling strategies and improved one-way key rates for quantum cryptography

    Energy Technology Data Exchange (ETDEWEB)

    Kern, Oliver

    2009-05-25

    The present thesis deals with various methods of quantum error correction. It is divided into two parts. In the first part, dynamical decoupling methods are considered which have the task of suppressing the influence of residual imperfections in a quantum memory. Such imperfections might be given by couplings between the finite dimensional quantum systems (qudits) constituting the quantum memory, for instance. The suppression is achieved by altering the dynamics of an imperfect quantum memory with the help of a sequence of local unitary operations applied to the qudits. Whereas up to now the operations of such decoupling sequences have been constructed in a deterministic fashion, strategies are developed in this thesis which construct the operations by random selection from a suitable set. Formulas are derived which estimate the average performance of such strategies. As it turns out, randomized decoupling strategies offer advantages and disadvantages over deterministic ones. It is possible to benefit from the advantages of both kind of strategies by designing combined strategies. Furthermore, it is investigated if and how the discussed decoupling strategies can be employed to protect a quantum computation running on the quantum memory. It is shown that a purely randomized decoupling strategy may be used by applying the decoupling operations and adjusted gates of the quantum algorithm in an alternating fashion. Again this method can be enhanced by the means of deterministic methods in order to obtain a combined decoupling method for quantum computations analogously to the combining strategies for quantum memories. The second part of the thesis deals with quantum error-correcting codes and protocols for quantum key distribution. The focus is on the BB84 and the 6-state protocol making use of only one-way communication during the error correction and privacy amplification steps. It is shown that by adding additional errors to the preliminary key (a process called

  6. Reduced quantum dynamics with initial system-environment correlations characterized by pure Markov states

    Science.gov (United States)

    Türkmen, A.; Verçin, A.; Yılmaz, S.

    2016-09-01

    Any tripartite state which saturates the strong subadditivity relation for the quantum entropy is defined as the Markov state. A tripartite pure state describing an open system, its environment, and their purifying system is a pure Markov state if and only if the bipartite marginal state of the purifying system and environment is a product state. It has been shown that as long as the purification of the input system-environment state is a pure Markov state, the reduced dynamics of the open system can be described, on the support of the initial system state, by a quantum channel for every joint unitary evolution of the system-environment composite even in the presence of initial correlations. Entanglement, discord, and classical correlations of the initial system-environment states implied by the pure Markov states are analyzed and it has been shown that all these correlations are entirely specified by the entropy of environment. Some implications concerning perfect quantum error correction procedure and quantum Markovian dynamics are presented.

  7. The Los Alamos dynamic radiation environment assimilation model (DREAM) for space weather specification and forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Reeves, Geoffrey D [Los Alamos National Laboratory; Friedel, Reiner H W [Los Alamos National Laboratory; Chen, Yue [Los Alamos National Laboratory; Koller, Josef [Los Alamos National Laboratory; Henderson, Michael G [Los Alamos National Laboratory

    2008-01-01

    The Dynamic Radiation Environment Assimilation Model (DREAM) was developed at Los Alamos National Laboratory to assess, quantify, and predict the hazards from the natural space environment and the anthropogenic environment produced by high altitude nuclear explosions (HANE). DREAM was initially developed as a basic research activity to understand and predict the dynamics of the Earth's Van Allen radiation belts. It uses Kalman filter techniques to assimilate data from space environment instruments with a physics-based model of the radiation belts. DREAM can assimilate data from a variety of types of instruments and data with various levels of resolution and fidelity by assigning appropriate uncertainties to the observations. Data from any spacecraft orbit can be assimilated but DREAM was designed to function with as few as two spacecraft inputs: one from geosynchronous orbit and one from GPS orbit. With those inputs, DREAM can be used to predict the environment at any satellite in any orbit whether space environment data are available in those orbits or not. Even with very limited data input and relatively simple physics models, DREAM specifies the space environment in the radiation belts to a high level of accuracy. DREAM has been extensively tested and evaluated as we transition from research to operations. We report here on one set of test results in which we predict the environment in a highly-elliptical polar orbit. We also discuss long-duration reanalysis for spacecraft design, using DREAM for real-time operations, and prospects for 1-week forecasts of the radiation belt environment.

  8. DyNAMiC Workbench: an integrated development environment for dynamic DNA nanotechnology

    OpenAIRE

    Grun, Casey; Werfel, Justin; Zhang, David Yu; Yin, Peng

    2015-01-01

    Dynamic DNA nanotechnology provides a promising avenue for implementing sophisticated assembly processes, mechanical behaviours, sensing and computation at the nanoscale. However, design of these systems is complex and error-prone, because the need to control the kinetic pathway of a system greatly increases the number of design constraints and possible failure modes for the system. Previous tools have automated some parts of the design workflow, but an integrated solution is lacking. Here, w...

  9. An efficient method for calculating RMS von Mises stress in a random vibration environment

    Energy Technology Data Exchange (ETDEWEB)

    Segalman, D.J.; Fulcher, C.W.G.; Reese, G.M.; Field, R.V. Jr. [Sandia National Labs., Albuquerque, NM (United States). Structural Dynamics and Vibration Control Dept.

    1998-02-01

    An efficient method is presented for calculation of RMS von Mises stresses from stress component transfer functions and the Fourier representation of random input forces. An efficient implementation of the method calculates the RMS stresses directly from the linear stress and displacement modes. The key relation presented is one suggested in past literature, but does not appear to have been previously exploited in this manner.

  10. An efficient method for calculating RMS von Mises stress in a random vibration environment

    Energy Technology Data Exchange (ETDEWEB)

    Segalman, D.J.; Fulcher, C.W.G.; Reese, G.M.; Field, R.V. Jr. [Sandia National Labs., Albuquerque, NM (United States). Structural Dynamics and Vibration Control Dept.

    1997-12-01

    An efficient method is presented for calculation of RMS von Mises stresses from stress component transfer functions and the Fourier representation of random input forces. An efficient implementation of the method calculates the RMS stresses directly from the linear stress and displacement modes. The key relation presented is one suggested in past literature, but does not appear to have been previously exploited in this manner.

  11. Random Matrix Theoretic Approaches to Sensor Fusion for Sensing and Surveillance in Highly Cluttered Environments

    Science.gov (United States)

    2015-08-24

    exploits the PI’s results from random matrix theory to improve denoising performance relative to the truncated SVD in the moderate to low SNR regime...model and includes missing data settings. These insights have led to the development of new data-driven algorithms for low-rank matrix denoising that...provably outperform PCA (or truncated SVD ) based techniques and other convex relaxation based schemes. Motivation: The truncated singular value

  12. Markerless human motion capture by Markov random field and dynamic graph cuts with color constraints

    Institute of Scientific and Technical Information of China (English)

    LI Jia; WAN ChengKai; ZHANG DianYong; MIAO ZhenJiang; YUAN BaoZong

    2009-01-01

    Currently, many vision-based motion capture systems require passive markers attached to key lca-tions on the human body. However, such systems are intrusive with limited application. The algorithm that we use for human motion capture in this paper is based on Markov random field (MRF) and dynamic graph cuts. It takes full account of the impact of 3D reconstruction error and integrates human motion capture and 3D reconstruction into MRF-MAP framework. For more accurate and robust performance, we extend our algorithm by incorporating color constraints Into the pose estimation process. The ad-vantages of incorporating color constraints are demonstrated by experimental results on several video sequences.

  13. Equilibrium Model of Discrete Dynamic Supply Chain Network with Random Demand and Advertisement Strategy

    Directory of Open Access Journals (Sweden)

    Guitao Zhang

    2014-01-01

    Full Text Available The advertisement can increase the consumers demand; therefore it is one of the most important marketing strategies in the operations management of enterprises. This paper aims to analyze the impact of advertising investment on a discrete dynamic supply chain network which consists of suppliers, manufactures, retailers, and demand markets associated at different tiers under random demand. The impact of advertising investment will last several planning periods besides the current period due to delay effect. Based on noncooperative game theory, variational inequality, and Lagrange dual theory, the optimal economic behaviors of the suppliers, the manufactures, the retailers, and the consumers in the demand markets are modeled. In turn, the supply chain network equilibrium model is proposed and computed by modified project contraction algorithm with fixed step. The effectiveness of the model is illustrated by numerical examples, and managerial insights are obtained through the analysis of advertising investment in multiple periods and advertising delay effect among different periods.

  14. A unified approach to equilibrium statistics in closed systems with random dynamics

    CERN Document Server

    Biró, Tamás S

    2016-01-01

    In a balanced version of decay and growth processes a simple master equation arrives at a final state including the Poisson, Bernoulli, negative binomial and P\\'olya distribution. Such decay and growth rates incorporate a symmetry between the observed subsystem and the rest of a total system with fixed total number of states, K, and occupation numbers N. We give both a complex network and a particle production dynamics interpretation. For networks we follow the evolution of the degree distribution, P(n), in a directed network where a node can activate k fixed connections from K possible partnerships among all nodes while n is a random variable counting the links per node, and N is the total number of connections, which is also fixed. For particle physics problems P(n) is the probability of having n particles (or other quanta) distributed among k states (phase space cells) while altogether a fixed number of N particles reside on K states.

  15. Implementation of unused production factors in agriculture by means of dynamic optimization models with random constraints

    Directory of Open Access Journals (Sweden)

    Jadwiga Zaród

    2011-01-01

    Full Text Available The farms of Western Pomerania province possess a large surplus of manpower. The dynamic optimization models with random constraints served the investigation of the possibilities of implementation of the unused man-hours. Those models regarded four successive years 2003-2006. The solution proceeded in two steps. The first step let us construct the assumption of the surplus or the deficiency of production factors. In the next step additional variables regarding the lease of arable grounds were introduced while the unused man-hours were implemented with various probability. The optimal solutions indicated the area of particular crops, the quantity of livestock and the farm income dependent on the use of the existing employment. This study aims at the presentation of the possibility of implementation of unused man-hours in farms dealing solely with the crop production and also the production of crop and livestock.

  16. Time-resolved dynamics of granular matter by random laser emission

    CERN Document Server

    Folli, Viola; Puglisi, Andrea; Leuzzi, Luca; Conti, Claudio

    2013-01-01

    Because of the huge commercial importance of granular systems, the second-most used material in industry after water, intersecting the industry in multiple trades, like pharmacy and agriculture, fundamental research on grain-like materials has received an increasing amount of attention in the last decades. In photonics, the applications of granular materials have been only marginally investigated. We report the first phase-diagram of a granular as obtained by laser emission. The dynamics of vertically-oscillated granular in a liquid solution in a three-dimensional container is investigated by employing its random laser emission. The granular motion is function of the frequency and amplitude of the mechanical solicitation, we show how the laser emission allows to distinguish two phases in the granular and analyze its spectral distribution. This constitutes a fundamental step in the field of granulars and gives a clear evidence of the possible control on light-matter interaction achievable in grain-like system.

  17. Thermal dynamic simulation of wall for building energy efficiency under varied climate environment

    Science.gov (United States)

    Wang, Xuejin; Zhang, Yujin; Hong, Jing

    2017-08-01

    Aiming at different kind of walls in five cities of different zoning for thermal design, using thermal instantaneous response factors method, the author develops software to calculation air conditioning cooling load temperature, thermal response factors, and periodic response factors. On the basis of the data, the author gives the net work analysis about the influence of dynamic thermal of wall on air-conditioning load and thermal environment in building of different zoning for thermal design regional, and put forward the strategy how to design thermal insulation and heat preservation wall base on dynamic thermal characteristic of wall under different zoning for thermal design regional. And then provide the theory basis and the technical references for the further study on the heat preservation with the insulation are in the service of energy saving wall design. All-year thermal dynamic load simulating and energy consumption analysis for new energy-saving building is very important in building environment. This software will provide the referable scientific foundation for all-year new thermal dynamic load simulation, energy consumption analysis, building environment systems control, carrying through farther research on thermal particularity and general particularity evaluation for new energy -saving walls building. Based on which, we will not only expediently design system of building energy, but also analyze building energy consumption and carry through scientific energy management. The study will provide the referable scientific foundation for carrying through farther research on thermal particularity and general particularity evaluation for new energy saving walls building.

  18. Hippocampal network dynamics constrain the time lag between pyramidal cells across modified environments

    Science.gov (United States)

    Diba, Kamran; Buzsáki, György

    2008-01-01

    The hippocampus provides a spatial map of the environment. Changes in the environment alter the firing patterns of hippocampal neurons, but are presumably constrained by elements of the network dynamics. We compared the neural activity in CA1 and CA3 regions of the hippocampus in rats running for water reward on a linear track, before and after the track length was shortened. A fraction of cells lost their place-fields and new sets of cells with fields emerged, indicating distinct representation of the two tracks. Cells active in both environments shifted their place-fields in a location dependent manner, most notably at the beginning and the end of the track. Furthermore, peak firing rates and place-field sizes decreased, while place-field overlap and co-activity increased. Power in the theta-frequency band of the local field potentials also decreased in both CA1 and CA3, along with the coherence between the two structures. In contrast, the theta-scale (0–150 ms) time lags between cell pairs, representing distances on the tracks, were conserved, and the activity of the inhibitory neuron population was maintained across environments. We interpret these observations as reflecting the freedoms and constraints of the hippocampal network dynamics. The freedoms permit the necessary flexibility for the network to distinctly represent unique patterns, while the dynamics constrain the speed at which activity propagates between the cell assemblies representing the patterns. PMID:19074018

  19. Crop Type Mapping from a Sequence of Terrasar-X Images with Dynamic Conditional Random Fields

    Science.gov (United States)

    Kenduiywo, B. K.; Bargiel, D.; Soergel, U.

    2016-06-01

    Crop phenology is dynamic as it changes with times of the year. Such biophysical processes also look spectrally different to remote sensing satellites. Some crops may depict similar spectral properties if their phenology coincide, but differ later when their phenology diverge. Thus, conventional approaches that select only images from phenological stages where crops are distinguishable for classification, have low discrimination. In contrast, stacking images within a cropping season limits discrimination to a single feature space that can suffer from overlapping classes. Since crop backscatter varies with time, it can aid discrimination. Therefore, our main objective is to develop a crop sequence classification method using multitemporal TerraSAR-X images. We adopt first order markov assumption in undirected temporal graph sequence. This property is exploited to implement Dynamic Conditional Random Fields (DCRFs). Our DCRFs model has a repeated structure of temporally connected Conditional Random Fields (CRFs). Each node in the sequence is connected to its predecessor via conditional probability matrix. The matrix is computed using posterior class probabilities from association potential. This way, there is a mutual temporal exchange of phenological information observed in TerraSAR-X images. When compared to independent epoch classification, the designed DCRF model improved crop discrimination at each epoch in the sequence. However, government, insurers, agricultural market traders and other stakeholders are interested in the quantity of a certain crop in a season. Therefore, we further develop a DCRF ensemble classifier. The ensemble produces an optimal crop map by maximizing over posterior class probabilities selected from the sequence based on maximum F1-score and weighted by correctness. Our ensemble technique is compared to standard approach of stacking all images as bands for classification using Maximum Likelihood Classifier (MLC) and standard CRFs. It

  20. Nonequilibrium dynamics of random field Ising spin chains: exact results via real space renormalization group.

    Science.gov (United States)

    Fisher, D S; Le Doussal, P; Monthus, C

    2001-12-01

    The nonequilibrium dynamics of classical random Ising spin chains with nonconserved magnetization are studied using an asymptotically exact real space renormalization group (RSRG). We focus on random field Ising model (RFIM) spin chains with and without a uniform applied field, as well as on Ising spin glass chains in an applied field. For the RFIM we consider a universal regime where the random field and the temperature are both much smaller than the exchange coupling. In this regime, the Imry-Ma length that sets the scale of the equilibrium correlations is large and the coarsening of domains from random initial conditions (e.g., a quench from high temperature) occurs over a wide range of length scales. The two types of domain walls that occur diffuse in opposite random potentials, of the form studied by Sinai, and domain walls annihilate when they meet. Using the RSRG we compute many universal asymptotic properties of both the nonequilibrium dynamics and the equilibrium limit. We find that the configurations of the domain walls converge rapidly toward a set of system-specific time-dependent positions that are independent of the initial conditions. Thus the behavior of this nonequilibrium system is pseudodeterministic at long times because of the broad distributions of barriers that occur on the long length scales involved. Specifically, we obtain the time dependence of the energy, the magnetization, and the distribution of domain sizes (found to be statistically independent). The equilibrium limits agree with known exact results. We obtain the exact scaling form of the two-point equal time correlation function and the two-time autocorrelations . We also compute the persistence properties of a single spin, of local magnetization, and of domains. The analogous quantities for the +/-J Ising spin glass in an applied field are obtained from the RFIM via a gauge transformation. In addition to these we compute the two-point two-time correlation function which can in

  1. Environment

    DEFF Research Database (Denmark)

    Valentini, Chiara

    2017-01-01

    The term environment refers to the internal and external context in which organizations operate. For some scholars, environment is defined as an arrangement of political, economic, social and cultural factors existing in a given context that have an impact on organizational processes and structures....... For others, environment is a generic term describing a large variety of stakeholders and how these interact and act upon organizations. Organizations and their environment are mutually interdependent and organizational communications are highly affected by the environment. This entry examines the origin...... and development of organization-environment interdependence, the nature of the concept of environment and its relevance for communication scholarships and activities....

  2. Water-oil drainage dynamics in oil-wet random microfluidic porous media analogs

    CERN Document Server

    Xu, Wei; Neeves, Keith; Yin, Xiaolong

    2012-01-01

    Displacement experiments carried out in microfluidic porous media analogs show that reduced surface tension leads to a more stable displacement, opposite to the process in Hele-Shaw cells where surface tension stabilizes the displacement of a more viscous fluid by a less viscous fluid. In addition, geometry of porous media is observed to play an important role. Three random microfluidic porous media analogs were made to study water-oil drainage dynamics, featuring a pattern of randomly connected channels with a uniform width, a pattern with Gaussian channel width distribution, and a pattern with large isolated pores. The microfluidic chips fabricated using Polydimenthylsiloxane with glass covers have the internal surface treated by Trichlorosilane to achieve a uniform oil-wet condition. The aqueous phase displaces the oil phase, with a viscosity ratio of about 1:40 and a density ratio of 1:0.85. Videos 1-3 show water flooding processes. It is observed that both channel size distribution (Video 2) and heteroge...

  3. Modeling Urban Dynamics Using Random Forest: Implementing Roc and Toc for Model Evaluation

    Science.gov (United States)

    Ahmadlou, M.; Delavar, M. R.; Shafizadeh-Moghadam, H.; Tayyebi, A.

    2016-06-01

    The importance of spatial accuracy of land use/cover change maps necessitates the use of high performance models. To reach this goal, calibrating machine learning (ML) approaches to model land use/cover conversions have received increasing interest among the scholars. This originates from the strength of these techniques as they powerfully account for the complex relationships underlying urban dynamics. Compared to other ML techniques, random forest has rarely been used for modeling urban growth. This paper, drawing on information from the multi-temporal Landsat satellite images of 1985, 2000 and 2015, calibrates a random forest regression (RFR) model to quantify the variable importance and simulation of urban change spatial patterns. The results and performance of RFR model were evaluated using two complementary tools, relative operating characteristics (ROC) and total operating characteristics (TOC), by overlaying the map of observed change and the modeled suitability map for land use change (error map). The suitability map produced by RFR model showed 82.48% area under curve for the ROC model which indicates a very good performance and highlights its appropriateness for simulating urban growth.

  4. Nonextensive random matrix theory approach to mixed regular-chaotic dynamics.

    Science.gov (United States)

    Abul-Magd, A Y

    2005-06-01

    We apply Tsallis' q -indexed entropy to formulate a nonextensive random matrix theory, which may be suitable for systems with mixed regular-chaotic dynamics. The joint distribution of the matrix elements is given by folding the corresponding quantity in the conventional random matrix theory by a distribution of the inverse matrix-element variance. It keeps the basis invariance of the standard theory but violates the independence of the matrix elements. We consider the subextensive regime of q more than unity in which the transition from the Wigner to the Poisson statistics is expected to start. We calculate the level density for different values of the entropic index. Our results are consistent with an analogous calculation by Tsallis and collaborators. We calculate the spacing distribution for mixed systems with and without time-reversal symmetry. Comparing the result of calculation to a numerical experiment shows that the proposed nonextensive model provides a satisfactory description for the initial stage of the transition from chaos towards the Poisson statistics.

  5. Dynamical analysis and performance evaluation of a biped robot under multi-source random disturbances

    Science.gov (United States)

    Gan, Chun-Biao; Ding, Chang-Tao; Yang, Shi-Xi

    2014-12-01

    During bipedal walking, it is critical to detect and adjust the robot postures by feedback control to maintain its normal state amidst multi-source random disturbances arising from some unavoidable uncertain factors. The radical basis function (RBF) neural network model of a five-link biped robot is established, and two certain disturbances and a randomly uncertain disturbance are then mixed with the optimal torques in the network model to study the performance of the biped robot by several evaluation indices and a specific Poincaré map. In contrast with the simulations, the response varies as desired under optimal inputting while the output is fluctuating in the situation of disturbance driving. Simulation results from noise inputting also show that the dynamics of the robot is less sensitive to the disturbance of knee joint input of the swing leg than those of the other three joints, the response errors of the biped will be increasing with higher disturbance levels, and especially there are larger output fluctuations in the knee and hip joints of the swing leg.

  6. Effectiveness of lab-work learning environments in and out of school : A cluster randomized study

    NARCIS (Netherlands)

    Itzek-Greulich, Heike; Flunger, Barbara; Vollmer, Christian; Nagengast, Benjamin; Rehm, Markus; Trautwein, Ulrich

    2017-01-01

    The issue of how to increase student motivation and achievement in science subjects is considered to be a major challenge in modern school systems. Lab-work learning environments in which students get direct (hands-on) experience with science content that is related to their everyday lives are

  7. Random recurrence equations and ruin in a Markov-dependent stochastic economic environment

    DEFF Research Database (Denmark)

    Collamore, Jeffrey F.

    2009-01-01

    We develop sharp large deviation asymptotics for the probability of ruin in a Markov-dependent stochastic economic environment and study the extremes for some related Markovian processes which arise in financial and insurance mathematics, related to perpetuities and the ARCH(1) and GARCH(1,1) time...

  8. High-resolution polypeptide structure and dynamics in anisotropic environments: The gramicidin channel

    Energy Technology Data Exchange (ETDEWEB)

    Cross, T.A.; Lee, K.C.; Ketchem, R.R.; Hu, W.; Lazo, N.D.; Huo, S. [Florida State Univ., Tallahassee, FL (United States)

    1994-12-01

    To understand the details of macromolecular function, high-resolution structural and dynamic detail is essential. The polypeptide fold of the gramicidin channel has been effectively modeled for the past 20 years, yet the functional changes in conductance and channel lifetime associated with amino acid substitutions cannot be predicted. To accomplish this goal, high-resolution electrostatic modeling and the precise orientation of all dipoles are required. Furthermore, an enhanced knowledge of the complex molecular environment of this membrane-bound peptide is needed. An aqueous environment is relatively uniform and achiral. The membrane environment is very heterogenous and chiral. A knowledge of the interactions, specific and nonspecific, between peptide and lipid will aid in developing a better understanding of this environment. To accomplish this goal, it is necessary to study the peptide in an extended lipid bilayer, rather than in a vesicular or micellar form. These latter environments are likely to possess increased dynamics, increased water penetration, and distorted interactions between the polypeptide and membrane surface. To perform NMR studies on bilayer bound peptides, solid state NMR methods are required, and for specific site information, isotopic labels are incorporated using solid phase peptide synthesis.

  9. On-line real-time path planning of mobile robots in dynamic uncertain environment

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A new path planning method for mobile robots in globally unknown environment with moving obstacles is presented. With an autoregressive (AR) model to predict the future positions of moving obstacles, and the predicted position taken as the next position of moving obstacles, a motion path in dynamic uncertain environment is planned by means of an on-line real-time path planning technique based on polar coordinates in which the desirable direction angle is taken into consideration as an optimization index. The effectiveness, feasibility, high stability, perfect performance of obstacle avoidance, real-time and optimization capability are demonstrated by simulation examples.

  10. Conditional Random Field-Based Offline Map Matching for Indoor Environments

    Directory of Open Access Journals (Sweden)

    Safaa Bataineh

    2016-08-01

    Full Text Available In this paper, we present an offline map matching technique designed for indoor localization systems based on conditional random fields (CRF. The proposed algorithm can refine the results of existing indoor localization systems and match them with the map, using loose coupling between the existing localization system and the proposed map matching technique. The purpose of this research is to investigate the efficiency of using the CRF technique in offline map matching problems for different scenarios and parameters. The algorithm was applied to several real and simulated trajectories of different lengths. The results were then refined and matched with the map using the CRF algorithm.

  11. Conditional Random Field-Based Offline Map Matching for Indoor Environments.

    Science.gov (United States)

    Bataineh, Safaa; Bahillo, Alfonso; Díez, Luis Enrique; Onieva, Enrique; Bataineh, Ikram

    2016-08-16

    In this paper, we present an offline map matching technique designed for indoor localization systems based on conditional random fields (CRF). The proposed algorithm can refine the results of existing indoor localization systems and match them with the map, using loose coupling between the existing localization system and the proposed map matching technique. The purpose of this research is to investigate the efficiency of using the CRF technique in offline map matching problems for different scenarios and parameters. The algorithm was applied to several real and simulated trajectories of different lengths. The results were then refined and matched with the map using the CRF algorithm.

  12. Modern sedimentary environments and dynamic depositional systems in the southern Yellow Sea

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Based on analyses of more than 600 surface sediment samples together with large amounts of previous sedimentologic and hydrologic data, the characteristics of modern sedimentary environments and dynamic depositional systems in the southern Yellow Sea (SYS) are expounded, and the controversial formation mechanism of muddy sediments is also discussed. The southern Yellow Sea shelf can be divided into low-energy sedimentary environment and high-energy sedimentary environment; the low- energy sedimentary environment can be further divided into cyclonic and anticyclonic ones, and the high-energy environment is subdivided into high-energy depositional and eroded environments. In the shelf low-energy environments, there developed muddy depositional system. In the central part of the southern Yellow Sea, there deposited the cold eddy sediments under the actions of a meso-scale cyclonic eddy (cold eddy), and in the southeast of the southern Yellow Sea, an anticyclonic eddy muddy depositional system (warm eddy sediment) was formed. These two types of sediments showed evident differences in grain size, sedimentation rate, sediment thickness and mineralogical characteristics. The high-energy environments were covered with sandy sediments on seabed; they appeared mainly in the west, south and northeast of the southern Yellow Sea. In the high-energy eroded environment, large amounts of sandstone gravels were distributed on seabed. In the high-energy depositional environment, the originally deposited fine materials (including clay and fine silt) were gradually re-suspended and then transported to a low-energy area to deposit again. In this paper, the sedimentation model of cyclonic and anticyclonic types of muddy sediments is established, and a systematic interpretation for the formation cause of muddy depositional systems in the southern Yellow Sea is given.

  13. Randomness in the Dark Sector: Emergent Mass Spectra and Dynamical Dark Matter Ensembles

    CERN Document Server

    Dienes, Keith R; Kumar, Jason; Thomas, Brooks

    2016-01-01

    In general, non-minimal models of the dark sector such as Dynamical Dark Matter posit the existence of an ensemble of individual dark components with differing masses, cosmological abundances, and couplings to the Standard Model. Perhaps the most critical among these features is the spectrum of masses, as this goes a long way towards determining the cosmological abundances and lifetimes of the corresponding states. Many different underlying theoretical structures can be imagined for the dark sector, each giving rise to its own mass spectrum and corresponding density of states. In this paper, by contrast, we investigate the spectrum of masses that emerges statistically from underlying processes which are essentially random. We find a density of states $n(m)$ which decreases as a function of mass and actually has an upper limit $m_{\\rm max}$ beyond which $n(m)=0$. We also demonstrate that this "emergent" density of states is particularly auspicious from the perspective of the Dynamical Dark Matter framework, le...

  14. Language Recognition Using Latent Dynamic Conditional Random Field Model with Phonological Features

    Directory of Open Access Journals (Sweden)

    Sirinoot Boonsuk

    2014-01-01

    Full Text Available Spoken language recognition (SLR has been of increasing interest in multilingual speech recognition for identifying the languages of speech utterances. Most existing SLR approaches apply statistical modeling techniques with acoustic and phonotactic features. Among the popular approaches, the acoustic approach has become of greater interest than others because it does not require any prior language-specific knowledge. Previous research on the acoustic approach has shown less interest in applying linguistic knowledge; it was only used as supplementary features, while the current state-of-the-art system assumes independency among features. This paper proposes an SLR system based on the latent-dynamic conditional random field (LDCRF model using phonological features (PFs. We use PFs to represent acoustic characteristics and linguistic knowledge. The LDCRF model was employed to capture the dynamics of the PFs sequences for language classification. Baseline systems were conducted to evaluate the features and methods including Gaussian mixture model (GMM based systems using PFs, GMM using cepstral features, and the CRF model using PFs. Evaluated on the NIST LRE 2007 corpus, the proposed method showed an improvement over the baseline systems. Additionally, it showed comparable result with the acoustic system based on i-vector. This research demonstrates that utilizing PFs can enhance the performance.

  15. Spinodals with Disorder: From Avalanches in Random Magnets to Glassy Dynamics

    Science.gov (United States)

    Nandi, Saroj Kumar; Biroli, Giulio; Tarjus, Gilles

    2016-04-01

    We revisit the phenomenon of spinodals in the presence of quenched disorder and develop a complete theory for it. We focus on the spinodal of an Ising model in a quenched random field (RFIM), which has applications in many areas from materials to social science. By working at zero temperature in the quasistatically driven RFIM, thermal fluctuations are eliminated and one can give a rigorous content to the notion of spinodal. We show that the latter is due to the depinning and the subsequent expansion of rare droplets. We work out the associated critical behavior, which, in any finite dimension, is very different from the mean-field one: the characteristic length diverges exponentially and the thermodynamic quantities display very mild nonanalyticities much like in a Griffith phenomenon. From the recently established connection between the spinodal of the RFIM and glassy dynamics, our results also allow us to conclusively assess the physical content and the status of the dynamical transition predicted by the mean-field theory of glass-forming liquids.

  16. Randomized controlled trial of the effect of environment on patient embarrassment and anxiety with urodynamics.

    Science.gov (United States)

    Rezvan, Azadeh; Amaya, Stephanie; Betson, Lance; Yazdany, Tajnoos

    2017-06-17

    In previous survey studies, women undergoing urodynamic testing (UDT) have reported bother and embarrassment and have provided suggestions for improving the experience. The suggestions include audio distraction and increased privacy, neither of which have been prospectively examined. We report a prospective randomized controlled trial to evaluate the hypothesis that an improved ambience can decrease UDT-related embarrassment and anxiety. A total of 60 participants were recruited to achieve an 80% power to detect a conservative 20-point difference with a significance level of 0.05. Eligible participants were randomized to one of two conditions: dim lighting with light instrumental music (modified group, 30 patients), or no music and standard lighting (standard group, 30 patients). The aim of the dim lighting and music was to provide an increased sense of privacy and audio distraction based on participant feedback in previous studies. The study was complete with 60 participants. Patients in both groups reported less embarrassment after UDT. However, patients in the modified group showed a greater decrease in embarrassment scores (9.72 mm) than patients in the standard group (1.3 mm; p = 0.33). Although the study was under-powered, the difference found approached clinical significance. Simply dimming the lights and providing music during UDT resulted in a decrease in embarrassment scores of almost ten points. This low-cost and simple measure improved patient experience.

  17. The Unreliable M/M/1 Retrial Queue in a Random Environment

    Science.gov (United States)

    2012-01-01

    quasi-toeplitz markov chains and their application in queueing theory. Queueing Systems: Theory and Applications, 54:245– 259, 2006. [26] V. G. Kulkarni...assume the environment is an ergodic continuous-time Markov chain (CTMC) on a finite state space. We analyze this system using classical matrix...process can be viewed as an asymptotically quasi-Toeplitz Markov chain . Using results from [25], they determine the stability condition and devise an

  18. Non-Markovian Quantum Error Deterrence by Dynamical Decoupling in a General Environment

    CERN Document Server

    Shiokawa, K

    2005-01-01

    A dynamical decoupling scheme for the deterrence of errors in the non-Markovian (usually corresponding to low temperature, short time, and strong coupling) regimes suitable for qubits constructed out of a multilevel structure is studied. We use the effective spin-boson model (ESBM) introduced recently [K. Shiokawa and B. L. Hu, Phys. Rev. A70, 062106 (2004)] as a low temperature limit of the quantum Brownian oscillator model, where one can obtain exact solutions for a general environment with colored noises. In our decoupling scheme a train of pairs of strong pulses are used to evolve the interaction Hamiltonian instantaneously. Using this scheme we show that the dynamical decoupling method can suppress $1/f$ noise with slower and hence more accessible pulses than previously studied, but it still fails to decouple super-Ohmic types of environments.

  19. A Neural Network Approach to Fluid Quantity Measurement in Dynamic Environments

    CERN Document Server

    Terzic, Edin; Nagarajah, Romesh; Alamgir, Muhammad

    2012-01-01

    Sloshing causes liquid to fluctuate, making accurate level readings difficult to obtain in dynamic environments. The measurement system described uses a single-tube capacitive sensor to obtain an instantaneous level reading of the fluid surface, thereby accurately determining the fluid quantity in the presence of slosh. A neural network based classification technique has been applied to predict the actual quantity of the fluid contained in a tank under sloshing conditions.   In A neural network approach to fluid quantity measurement in dynamic environments, effects of temperature variations and contamination on the capacitive sensor are discussed, and the authors propose that these effects can also be eliminated with the proposed neural network based classification system. To examine the performance of the classification system, many field trials were carried out on a running vehicle at various tank volume levels that range from 5 L to 50 L. The effectiveness of signal enhancement on the neural network base...

  20. Tracking and Following Algorithms of Mobile Robots for Service Activities in Dynamic Environments

    Directory of Open Access Journals (Sweden)

    Feng-Li Lian

    2015-02-01

    Full Text Available By providing the capability of following a human target in an appropriate manner, the robot can assist people in various ways under different environments. One of the main difficulties when performing human tracking and following is the occlusion problem caused by static as well as dynamic obstacles. The aim of the paper is to tackle the occlusion problem by planning a robotic trajectory of maximizing target visibility and following the moving target. Initially, a laser range finder is used to detect the human target and then robustly track the target using the Kalman filter. Afterward, a human following algorithm based on a look-ahead algorithm, DWA*, is implemented to pursue the target while avoiding any static or dynamic obstacles. Fundamental experiments have been extensively tested to evaluate robot maneuvers and several field tests are conducted in more complex environments such as student cafeteria, computer center, and university library.

  1. Diabetes Learning in Virtual Environments: Testing the Efficacy of Self-Management Training and Support in Virtual Environments (Randomized Controlled Trial Protocol).

    Science.gov (United States)

    Vorderstrasse, Allison A; Melkus, Gail D; Pan, Wei; Lewinski, Allison A; Johnson, Constance M

    2015-01-01

    Ongoing self-management improves outcomes for those with Type 2 diabetes (T2D); however, there are many barriers to patients receiving assistance in this from the healthcare system and peers. Findings from our pilot study showed that a virtual diabetes community on the Internet with real-time interaction among peers with T2D-and with healthcare professionals-is feasible and has the potential to influence clinical and psychosocial outcomes. The purpose of this article is to present the protocol for the Diabetes Learning in Virtual Environments (LIVE) trial. Diabetes LIVE is a two-group, randomized controlled trial to compare effects of a virtual environment and traditional Web site on diet and physical activity. Our secondary aims will determine the effects on metabolic outcomes; effects of level of engagement and social network formation in LIVE on behavioral outcomes; potential mediating effects of changes in self-efficacy; and diabetes knowledge, diabetes-related distress, and social support on behavior change and metabolic outcomes. We will enroll 300 subjects at two sites (Duke University/Raleigh-Durham, NC and New York University/New York, NY) who have T2D and do not have serious complications or comorbidities. Those randomly assigned to the intervention group have access to the LIVE site where they can find information, synchronous classes with diabetes educators, and peer support to enhance self-management. Those in the control group have access to the same informational and educational content in a traditional asynchronous Web format. Measures of self-management, clinical outcomes, and psychosocial outcomes are assessed at baseline and 3, 6, 12, and 18 months. Should LIVE prove effective in improved self-management of diabetes, similar interventions could be applied to other prevalent chronic diseases. Innovative programs such as LIVE have potential for improving healthcare access in an easily disseminated alternative model of care that potentially improves

  2. Asymptotic Behavior for Random Walks in Time-Random Environment on Z1%直线上时间随机环境下随机游动的渐近性质

    Institute of Scientific and Technical Information of China (English)

    胡学平; 祝东进

    2008-01-01

    In this paper,we give a general model of random walks in time-random environment in any countable space.Moreover,when the environment is independently identically distributed,a recurrence-transience criterion and the law of large numbers are derived in the nearest-neighbor case on Z1.At last,under regularity conditions,we prove that the RWIRE {Xn} on Z1 satisfies a central limit theorem,which is similar to the corresponding results in the case of classical random walks.

  3. Dynamic Geometry Environments as a Tool for Computer Modeling in the System of Modern Mathematics Education

    Directory of Open Access Journals (Sweden)

    Rushan Ziatdinov

    2012-01-01

    Full Text Available This paper discusses a number of issues and problems associated with the use of computer models in the study of geometry in university, as well as school mathematics in order to improve its efficiency. We show that one of the efficient ways to solve a number of problems in nowadays mathematics education is to use dynamic geometry environment GeoGebra. We also provide some examples of computer models created with GeoGebra.

  4. Analysis of pilot as a dynamic link in the system "aircraft-pilot-environment-special situation"

    Directory of Open Access Journals (Sweden)

    П.В. Попов

    2006-01-01

    Full Text Available  The analysis of dynamic behavior of pilot as section of system “аircraft – flight pilot – environment – abnormal situation” has been carried out. Moreover the expediency of elaboration of the mathematical model of pilot that enables to forecast pilot response under abnormal situation during flight and to develop recommendations for personnel of flight simulator centers concerning acquisition by pilots of skill required to make decision in abnormal situation during flight has been proved.

  5. Comparison of Standard Issue and ANCRA International MILVAN Restraint Beams in Static and Dynamic Environments

    Science.gov (United States)

    1990-04-01

    BEAMS IN STATIC AND DYNAMIC ENVIRONMENTS 93-10168 Prepared fo r: 1 8Distribution unlimited U.S. Army Troop Support Command ATTN: AMSTR-PLBM St. Louis ...ACCESSION NO St. Louis , MO 63120-1798 N 11 TITLE (Include Security Classification) Comparison of Standard Issue and ANCRA International MILVAN Restraint Beams...j * .** 4 ...*.**.*.* ... .* ***.***..***..*** 4-q14 drax @TO 31 aDlu \\t-I ur ne 4-1 r! S.......... .. •o

  6. Learning Effects on Strategy Selection in a Dynamic Task Environment as a Function of Time Pressure

    Science.gov (United States)

    1994-06-01

    MANAGEMENT UI1TREKSEL Previous research on strategy selection in dynamic task environments indicated that subjects preferred to request information first...I febwari 1994 is de naam Instituut voor Zintuigfysiologie TNO gewijzigd in TNO Technische Menskunde. 2 CONTENTS Page SUMMARY 3 SAMENVAITING 4 I...waarin men gebruik maakt van de continue feedback over de toestand van het systeem . Proefpersonen moesten het veranderende conditieniveau van een atleet

  7. Random walk in nonhomogeneous environments: A possible approach to human and animal mobility

    Science.gov (United States)

    Srokowski, Tomasz

    2017-03-01

    The random walk process in a nonhomogeneous medium, characterized by a Lévy stable distribution of jump length, is discussed. The width depends on a position: either before the jump or after that. In the latter case, the density slope is affected by the variable width and the variance may be finite; then all kinds of the anomalous diffusion are predicted. In the former case, only the time characteristics are sensitive to the variable width. The corresponding Langevin equation with different interpretations of the multiplicative noise is discussed. The dependence of the distribution width on position after jump is interpreted in terms of cognitive abilities and related to such problems as migration in a human population and foraging habits of animals.

  8. A Novel Approach for Resource Discovery using Random Projection on Cloud Computing Environments

    Directory of Open Access Journals (Sweden)

    M.N.Faruk

    2013-04-01

    Full Text Available Cloud computing offers different type’s utilities to the IT industries. Generally the resources are scattered throughout the clouds. It has to enable the ability to find different resources are available at clouds, This again an important criteria of distributed systems. This paper investigates the problem of locating resources which is multi variant in nature. It also used to locate the relevant dimensions of resources which is avail at the same cloud. It is also addresses the random projection on each cloud and discover the possible resources at each iteration, the outcome of each iteration updated on collision matrix. All the discovered elements are updated at the Management fabric. This paper also describes the feasibility on discovering different types of resources available each cloud.

  9. DyNAMiC Workbench: an integrated development environment for dynamic DNA nanotechnology.

    Science.gov (United States)

    Grun, Casey; Werfel, Justin; Zhang, David Yu; Yin, Peng

    2015-10-06

    Dynamic DNA nanotechnology provides a promising avenue for implementing sophisticated assembly processes, mechanical behaviours, sensing and computation at the nanoscale. However, design of these systems is complex and error-prone, because the need to control the kinetic pathway of a system greatly increases the number of design constraints and possible failure modes for the system. Previous tools have automated some parts of the design workflow, but an integrated solution is lacking. Here, we present software implementing a three 'tier' design process: a high-level visual programming language is used to describe systems, a molecular compiler builds a DNA implementation and nucleotide sequences are generated and optimized. Additionally, our software includes tools for analysing and 'debugging' the designs in silico, and for importing/exporting designs to other commonly used software systems. The software we present is built on many existing pieces of software, but is integrated into a single package—accessible using a Web-based interface at http://molecular-systems.net/workbench. We hope that the deep integration between tools and the flexibility of this design process will lead to better experimental results, fewer experimental design iterations and the development of more complex DNA nanosystems.

  10. Framing of task performance strategies: effects on performance in a multiattribute dynamic decision making environment.

    Science.gov (United States)

    Nygren, T E

    1997-09-01

    It is well documented that the way a static choice task is "framed" can dramatically alter choice behavior, often leading to observable preference reversals. This framing effect appears to result from perceived changes in the nature or location of a person's initial reference point, but it is not clear how framing effects might generalize to performance on dynamic decision making tasks that are characterized by high workload, time constraints, risk, or stress. A study was conducted to examine the hypothesis that framing can introduce affective components to the decision making process and can influence, either favorably (positive frame) or adversely (negative frame), the implementation and use of decision making strategies in dynamic high-workload environments. Results indicated that negative frame participants were significantly impaired in developing and employing a simple optimal decision strategy relative to a positive frame group. Discussion focuses on implications of these results for models of dynamic decision making.

  11. Anomalous dynamics of intruders in a crowded environment of mobile obstacles

    Science.gov (United States)

    Sentjabrskaja, Tatjana; Zaccarelli, Emanuela; de Michele, Cristiano; Sciortino, Francesco; Tartaglia, Piero; Voigtmann, Thomas; Egelhaaf, Stefan U.; Laurati, Marco

    2016-04-01

    Many natural and industrial processes rely on constrained transport, such as proteins moving through cells, particles confined in nanocomposite materials or gels, individuals in highly dense collectives and vehicular traffic conditions. These are examples of motion through crowded environments, in which the host matrix may retain some glass-like dynamics. Here we investigate constrained transport in a colloidal model system, in which dilute small spheres move in a slowly rearranging, glassy matrix of large spheres. Using confocal differential dynamic microscopy and simulations, here we discover a critical size asymmetry, at which anomalous collective transport of the small particles appears, manifested as a logarithmic decay of the density autocorrelation functions. We demonstrate that the matrix mobility is central for the observed anomalous behaviour. These results, crucially depending on size-induced dynamic asymmetry, are of relevance for a wide range of phenomena ranging from glassy systems to cell biology.

  12. Evolvable Block-Based Neural Network Design for Applications in Dynamic Environments

    Directory of Open Access Journals (Sweden)

    Saumil G. Merchant

    2010-01-01

    Full Text Available Dedicated hardware implementations of artificial neural networks promise to provide faster, lower-power operation when compared to software implementations executing on microprocessors, but rarely do these implementations have the flexibility to adapt and train online under dynamic conditions. A typical design process for artificial neural networks involves offline training using software simulations and synthesis and hardware implementation of the obtained network offline. This paper presents a design of block-based neural networks (BbNNs on FPGAs capable of dynamic adaptation and online training. Specifically the network structure and the internal parameters, the two pieces of the multiparametric evolution of the BbNNs, can be adapted intrinsically, in-field under the control of the training algorithm. This ability enables deployment of the platform in dynamic environments, thereby significantly expanding the range of target applications, deployment lifetimes, and system reliability. The potential and functionality of the platform are demonstrated using several case studies.

  13. Better decision making in complex, dynamic tasks training with human-facilitated interactive learning environments

    CERN Document Server

    Qudrat-Ullah, Hassan

    2015-01-01

    This book describes interactive learning environments (ILEs) and their underlying concepts. It explains how ILEs can be used to improve the decision-making process and how these improvements can be empirically verified. The objective of this book is to enhance our understanding of and to gain insights into the process by which human facilitated ILEs are effectively designed and used in improving users’ decision making in complex, dynamic tasks. This book is divided into four major parts. Part I serves as an introduction to the importance and complexity of decision making in dynamic tasks. Part II provides background material, drawing upon relevant literature, for the development of an integrated process model on the effectiveness of human facilitated ILEs in improving decision making in dynamic tasks. Part III focuses on the design, development, and application of FishBankILE in laboratory experiments to gather empirical evidence for the validity of the process model. Finally, part IV presents a comprehensi...

  14. Disordered and Multiple Destinations Path Planning Methods for Mobile Robot in Dynamic Environment

    Directory of Open Access Journals (Sweden)

    Yong-feng Dong

    2016-01-01

    Full Text Available In the smart home environment, aiming at the disordered and multiple destinations path planning, the sequencing rule is proposed to determine the order of destinations. Within each branching process, the initial feasible path set is generated according to the law of attractive destination. A sinusoidal adaptive genetic algorithm is adopted. It can calculate the crossover probability and mutation probability adaptively changing with environment at any time. According to the cultural-genetic algorithm, it introduces the concept of reducing turns by parallelogram and reducing length by triangle in the belief space, which can improve the quality of population. And the fallback strategy can help to jump out of the “U” trap effectively. The algorithm analyses the virtual collision in dynamic environment with obstacles. According to the different collision types, different strategies are executed to avoid obstacles. The experimental results show that cultural-genetic algorithm can overcome the problems of premature and convergence of original algorithm effectively. It can avoid getting into the local optimum. And it is more effective for mobile robot path planning. Even in complex environment with static and dynamic obstacles, it can avoid collision safely and plan an optimal path rapidly at the same time.

  15. Coherent exciton dynamics in a dissipative environment maintained by an off-resonant vibrational mode

    Science.gov (United States)

    Levi, E. K.; Irish, E. K.; Lovett, B. W.

    2016-04-01

    The interplay between an open quantum system and its environment can lead to both coherent and incoherent behavior. We explore the extent to which strong coupling to a single bosonic mode can alter the coherence properties of a two-level system in a structured environment. This mode is treated exactly, with the rest of the environment comprising a Markovian bath of bosonic modes. The strength of the coupling between the two-level system and the single mode is varied for a variety of forms for the bath spectral density in order to assess whether the coherent dynamics of the two-level system are modified. We find a clear renormalization of the site population oscillation frequency that causes an altered interaction with the bath. This leads to enhanced or reduced coherent behavior of the two-level system, depending on the form of the spectral density function. We present an intuitive interpretation, based on an analytical model, to explain the behavior.

  16. Dynamics and protection of entanglement in n -qubit systems within Markovian and non-Markovian environments

    Science.gov (United States)

    Nourmandipour, A.; Tavassoly, M. K.; Rafiee, M.

    2016-02-01

    We provide an analytical investigation of the pairwise entanglement dynamics for a system, consisting of an arbitrary number of qubits dissipating into a common and non-Markovian environment for both weak- and strong-coupling regimes. In the latter case, a revival of pairwise entanglement due to the memory depth of the environment is observed. The leakage of photons into a continuum state is assumed to be the source of dissipation. We show that for an initially Werner state, the environment washes out the pairwise entanglement, but a series of nonselective measurements can protect the relevant entanglement. On the other hand, by limiting the number of qubits initially in the superposition of single excitation, a stationary entanglement can be created between qubits initially in the excited and ground states. Finally, we determine the stationary distribution of the entanglement versus the total number of qubits in the system.

  17. Deviations from reversible dynamics in a qubit-oscillator system coupled to a very small environment

    CERN Document Server

    Vidiella-Barranco, A

    2015-01-01

    In this contribution it is considered a simple and solvable model consisting of a qubit in interaction with an oscillator exposed to a very small "environment" (a second qubit). An isolated qubit-oscillator system having the oscillator initially in one of its energy eigenstates exhibits Rabi oscillations, an evidence of coherent quantum behaviour. It is shown here in which way the coupling to a small "environment" disrupts such regular behaviour, leading to a quasi-periodic dynamics for the qubit linear entropy. In particular, it is found that the linear entropy is very sensitive to the amount of mixedness of the "environment". For completeness, fluctuations in the oscillator energy are also taken into account.

  18. Priority and Random Selection for Dynamic Window Secured Implicit Geographic Routing in Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Zurina M. Hanapi

    2009-01-01

    Full Text Available Problem statement: Sensor nodes are easily exposed to many attacks since it were deployed in unattended adversarial environment with no global addressing and used for critical applications such as battlefield surveillance and emergency response. While the sensor also needs to act as a router to relay a message to a required recipient, then this increased the vulnerabilities to a network layer. However, existing security mechanisms are not permissible to be fitted directly into any sensor network due to constraints on energy and computational capabilities of sensor node itself that require on the modification on the protocols that associated with the sensor node itself in order to provide the security. Approach: In this study, a Dynamic Window Secured Implicit Geographic Forwarding (DWIGF routing protocol was presented which based on an approach of lazy binding technique and dynamic time on collection window and inherits a geographical routing techniques. Results: The DWIGF was intelligent to minimize a Clear To Send (CTS rushing attack and robust against black hole and selective forwarding attacks with high packet delivery ratios because of selection of a failed node and an attacker was minimized respectively. Moreover, few routing attacks were eliminated since the routing technique used was classified as geographic routing. Conclusion: This novel routing protocol was promising a secured routing without inserting any existing security mechanism inside.

  19. The healthy options for nutrition environments in schools (Healthy ONES group randomized trial: using implementation models to change nutrition policy and environments in low income schools

    Directory of Open Access Journals (Sweden)

    Coleman Karen J

    2012-06-01

    Full Text Available Abstract Background The Healthy Options for Nutrition Environments in Schools (Healthy ONES study was an evidence-based public health (EBPH randomized group trial that adapted the Institute for Healthcare Improvement’s (IHI rapid improvement process model to implement school nutrition policy and environmental change. Methods A low-income school district volunteered for participation in the study. All schools in the district agreed to participate (elementary = 6, middle school = 2 and were randomly assigned within school type to intervention (n = 4 and control (n =4 conditions following a baseline environmental audit year. Intervention goals were to 1 eliminate unhealthy foods and beverages on campus, 2 develop nutrition services as the main source on campus for healthful eating (HE, and 3 promote school staff modeling of HE. Schools were followed across a baseline year and two intervention years. Longitudinal assessment of height and weight was conducted with second, third, and sixth grade children. Behavioral observation of the nutrition environment was used to index the amount of outside foods and beverages on campuses. Observations were made monthly in each targeted school environment and findings were presented as items per child per week. Results From an eligible 827 second, third, and sixth grade students, baseline height and weight were collected for 444 second and third grade and 135 sixth grade students (51% reach. Data were available for 73% of these enrolled students at the end of three years. Intervention school outside food and beverage items per child per week decreased over time and control school outside food and beverage items increased over time. The effects were especially pronounced for unhealthy foods and beverage items. Changes in rates of obesity for intervention school (28% baseline, 27% year 1, 30% year 2 were similar to those seen for control school (22% baseline, 22% year 1, 25% year 2 children

  20. A model of gene expression based on random dynamical systems reveals modularity properties of gene regulatory networks.

    Science.gov (United States)

    Antoneli, Fernando; Ferreira, Renata C; Briones, Marcelo R S

    2016-06-01

    Here we propose a new approach to modeling gene expression based on the theory of random dynamical systems (RDS) that provides a general coupling prescription between the nodes of any given regulatory network given the dynamics of each node is modeled by a RDS. The main virtues of this approach are the following: (i) it provides a natural way to obtain arbitrarily large networks by coupling together simple basic pieces, thus revealing the modularity of regulatory networks; (ii) the assumptions about the stochastic processes used in the modeling are fairly general, in the sense that the only requirement is stationarity; (iii) there is a well developed mathematical theory, which is a blend of smooth dynamical systems theory, ergodic theory and stochastic analysis that allows one to extract relevant dynamical and statistical information without solving the system; (iv) one may obtain the classical rate equations form the corresponding stochastic version by averaging the dynamic random variables (small noise limit). It is important to emphasize that unlike the deterministic case, where coupling two equations is a trivial matter, coupling two RDS is non-trivial, specially in our case, where the coupling is performed between a state variable of one gene and the switching stochastic process of another gene and, hence, it is not a priori true that the resulting coupled system will satisfy the definition of a random dynamical system. We shall provide the necessary arguments that ensure that our coupling prescription does indeed furnish a coupled regulatory network of random dynamical systems. Finally, the fact that classical rate equations are the small noise limit of our stochastic model ensures that any validation or prediction made on the basis of the classical theory is also a validation or prediction of our model. We illustrate our framework with some simple examples of single-gene system and network motifs.

  1. Effects of correlations and fees in random multiplicative environments: Implications for portfolio management

    Science.gov (United States)

    Alper, Ofer; Somekh-Baruch, Anelia; Pirvandy, Oz; Schaps, Malka; Yaari, Gur

    2017-08-01

    Geometric Brownian motion (GBM) is frequently used to model price dynamics of financial assets, and a weighted average of multiple GBMs is commonly used to model a financial portfolio. Diversified portfolios can lead to an increased exponential growth compared to a single asset by effectively reducing the effective noise. The sum of GBM processes is no longer a log-normal process and has a complex statistical properties. The nonergodicity of the weighted average process results in constant degradation of the exponential growth from the ensemble average toward the time average. One way to stay closer to the ensemble average is to maintain a balanced portfolio: keep the relative weights of the different assets constant over time. To keep these proportions constant, whenever assets values change, it is necessary to rebalance their relative weights, exposing this strategy to fees (transaction costs). Two strategies that were suggested in the past for cases that involve fees are rebalance the portfolio periodically and rebalance it in a partial way. In this paper, we study these two strategies in the presence of correlations and fees. We show that using periodic and partial rebalance strategies, it is possible to maintain a steady exponential growth while minimizing the losses due to fees. We also demonstrate how these redistribution strategies perform in a phenomenal way on real-world market data, despite the fact that not all assumptions of the model hold in these real-world systems. Our results have important implications for stochastic dynamics in general and to portfolio management in particular, as we show that there is a superior alternative to the common buy-and-hold strategy, even in the presence of correlations and fees.

  2. Short-Time Dynamics of Random-Bond Potts Ferromagnet with Continuous Self-Dual Quenched Disorders

    Institute of Scientific and Technical Information of China (English)

    PAN ZhengQuan; YING HePing; CHEN MeL; GU DeWei

    2002-01-01

    We present our Monte Carlo results of the random-bond Potts ferromagnet with the Olson-Young self-dual distribution of quenched disorders in two dimensions. By exploring the short-time scaling dynamics, we find the universal power-law critical behavior of the magnetization and Binder cumulant at the critical point, and thus obtain estimates of the dynamic exponent z and magnetic exponent η, as well as the exponent θ. Our special attention is paid to the dynamic process for the q = 8 Potts model.

  3. Pure random search for ambient sensor distribution optimisation in a smart home environment.

    Science.gov (United States)

    Poland, Michael P; Nugent, Chris D; Wang, Hui; Chen, Liming

    2011-01-01

    Smart homes are living spaces facilitated with technology to allow individuals to remain in their own homes for longer, rather than be institutionalised. Sensors are the fundamental physical layer with any smart home, as the data they generate is used to inform decision support systems, facilitating appropriate actuator actions. Positioning of sensors is therefore a fundamental characteristic of a smart home. Contemporary smart home sensor distribution is aligned to either a) a total coverage approach; b) a human assessment approach. These methods for sensor arrangement are not data driven strategies, are unempirical and frequently irrational. This Study hypothesised that sensor deployment directed by an optimisation method that utilises inhabitants' spatial frequency data as the search space, would produce more optimal sensor distributions vs. the current method of sensor deployment by engineers. Seven human engineers were tasked to create sensor distributions based on perceived utility for 9 deployment scenarios. A Pure Random Search (PRS) algorithm was then tasked to create matched sensor distributions. The PRS method produced superior distributions in 98.4% of test cases (n=64) against human engineer instructed deployments when the engineers had no access to the spatial frequency data, and in 92.0% of test cases (n=64) when engineers had full access to these data. These results thus confirmed the hypothesis.

  4. Distributed Resource Exploitation for Autonomous Mobile Sensor Agents in Dynamic Environments

    Science.gov (United States)

    Doumit, Sarjoun; Minai, Ali

    This paper studies the distributed resource exploitation problem (DREP) where many resources are distributed across an unknown environment, and several agents move around in it with the goal to exploit/visit the resources. A resource may be anything that can be harvested/sensed/acted upon by an agent when the agent visits that resource's physical location. A sensory agent (SA) is a mobile and autonomous sensory entity that has the capability of sensing a resource's attribute and therefore determining the exploitatory gain factor or profitability when this resource is visited. This type of problem can be seen as a combination of two well-known problems: the Dynamic Traveling Salesman Problem (DTSP) [8] and the Vehicle Routing Problem (VRP) [1]. But the DREP differs significantly from these two. In the DTSP we have a single agent that needs to visit many fixed cities that have costs associated to their pairwise links, so it is an optimization of paths on a static graph with time-varying costs. In VRP on the other hand, we have a number of vehicles with uniform capacity, a common depot, and several stationary customers scattered around an environment, so the goal is to find the set of routes with overall minimum route cost to service all the customers. In our problem, we have multiple SAs deployed in an unknown environment with multiple dynamic resources each with a dynamically varying value. The goal of the SAs is to adapt their paths collaboratively to the dynamics of the resources in order to maximize the general profitability of the system.

  5. A New Metamodeling Approach for Time-dependent Reliability of Dynamic Systems with Random Parameters Excited by Input Random Processes

    Science.gov (United States)

    2014-04-09

    Simulation-based Time-dependent Reliability Analysis for Composite Hydrokinetic Turbine Blades,” Structural and Multidisciplinary Optimization...Genetic Algorithm,” ASME Journal of Mechanical Design, 131(7). 13. Hu, Z., and Du, X., 2012, “Reliability Analysis for Hydrokinetic Turbine Blades...to Seismic Risk Based on Dynamic Analysis,” Journal of Engineering Mechanics, 129, 901- 917. 19. Beck, J. L., and Au, S. K., 2002, “Bayesian Updating

  6. Effect of the environment on the protein dynamical transition: a neutron scattering study.

    Science.gov (United States)

    Paciaroni, Alessandro; Cinelli, Stefania; Onori, Giuseppe

    2002-08-01

    We performed an elastic neutron scattering investigation of the molecular dynamics of lysozyme solvated in glycerol, at different water contents h (grams of water/grams of lysozyme). The marked non-Gaussian behavior of the elastic intensity was studied in a wide experimental momentum transfer range, as a function of the temperature. The internal dynamics is well described in terms of the double-well jump model. At low temperature, the protein total mean square displacements exhibit an almost linear harmonic trend irrespective of the hydration level, whereas at the temperature T(d) a clear changeover toward an anharmonic regime marks a protein dynamical transition. The decrease of T(d) from approximately 238 K to approximately 195 K as a function of h is reminiscent of that found in the glass transition temperature of aqueous solutions of glycerol, thus suggesting that the protein internal dynamics as a whole is slave to the environment properties. Both T(d) and the total mean square displacements indicate that the protein flexibility strongly rises between 0.1 and 0.2h. This hydration-dependent dynamical activation, which is similar to that of hydrated lysozyme powders, is related to the specific interplay of the protein with the surrounding water and glycerol molecules.

  7. A modified hybrid uncertain analysis method for dynamic response field of the LSOAAC with random and interval parameters

    Science.gov (United States)

    Zi, Bin; Zhou, Bin

    2016-07-01

    For the prediction of dynamic response field of the luffing system of an automobile crane (LSOAAC) with random and interval parameters, a hybrid uncertain model is introduced. In the hybrid uncertain model, the parameters with certain probability distribution are modeled as random variables, whereas, the parameters with lower and upper bounds are modeled as interval variables instead of given precise values. Based on the hybrid uncertain model, the hybrid uncertain dynamic response equilibrium equation, in which different random and interval parameters are simultaneously included in input and output terms, is constructed. Then a modified hybrid uncertain analysis method (MHUAM) is proposed. In the MHUAM, based on random interval perturbation method, the first-order Taylor series expansion and the first-order Neumann series, the dynamic response expression of the LSOAAC is developed. Moreover, the mathematical characteristics of extrema of bounds of dynamic response are determined by random interval moment method and monotonic analysis technique. Compared with the hybrid Monte Carlo method (HMCM) and interval perturbation method (IPM), numerical results show the feasibility and efficiency of the MHUAM for solving the hybrid LSOAAC problems. The effects of different uncertain models and parameters on the LSOAAC response field are also investigated deeply, and numerical results indicate that the impact made by the randomness in the thrust of the luffing cylinder F is larger than that made by the gravity of the weight in suspension Q . In addition, the impact made by the uncertainty in the displacement between the lower end of the lifting arm and the luffing cylinder a is larger than that made by the length of the lifting arm L .

  8. Dynamic stability of superior vs. inferior body segments in individuals with transtibial amputation walking in destabilizing environments.

    Science.gov (United States)

    Beurskens, Rainer; Wilken, Jason M; Dingwell, Jonathan B

    2014-09-22

    Interestingly, young and highly active people with lower limb amputation appear to maintain a similar trunk and upper body stability during walking as able-bodied individuals. Understanding the mechanisms underlying how this stability is achieved after lower-leg amputation is important to improve training regimens for improving walking function in these patients. This study quantified how superior (i.e., head, trunk, and pelvis) and inferior (i.e., thigh, shank, and feet) segments of the body respond to continuous visual or mechanical perturbations during walking. Nine persons with transtibial amputation (TTA) and 12 able-bodied controls (AB) walked on a 2 m × 3 m treadmill in a Computer Assisted Rehabilitation Environment (CAREN). Subjects were perturbed by continuous pseudo-random mediolateral movements of either the treadmill platform or the visual scene. TTA maintained a similar local and orbital stability in their superior body segments as AB throughout both perturbation types. However, for their inferior body segments, TTA subjects exhibited greater dynamic instability during perturbed walking. In TTA subjects, these increases in instability were even more pronounced in their prosthetic limb compared to their intact leg. These findings demonstrate that persons with unilateral lower leg amputation maintain upper body stability in spite of increased dynamic instability in their impaired lower leg. Thus, transtibial amputation does significantly impair sensorimotor function, leading to substantially altered dynamic movements of their lower limb segments. However, otherwise relatively healthy patients with unilateral transtibial amputation appear to retain sufficient remaining sensorimotor function in their proximal and contralateral limbs to adequately compensate for their impairment.

  9. Review and Perspective of Architecture Development for Dynamic Random Access Memory

    Institute of Scientific and Technical Information of China (English)

    WANG Yu-xing; WU Jin

    2008-01-01

    Discussed is a review and perspective of architecture, materials and process technology for dynamic random access memory(DRAM) applications. Key challenges of the transistor and capacitor scaling from DRAM will be reviewed. To continue scaling down, multi-gate devices with very thin silicon channels are most promising. Several architectures like Fin-field effect transistor(Fin-FET), Wafer bonded double gate and silicon on nothing(SON) gate-all-around have been demonstrated with good electrical characteristics. An overview of the evolution of capacitor technology is also presented from the early days of planar poly/insulator/silicon(PIS) capacitors to the metal/insulator/metal(MIM) capacitors used for today 50 nm technology node and below. In comparing Ta2O5, HfO2 and Al2O3 as high-k dielectric for use in DRAM technology, Al2O3 is found to give a good compromise between capacitor performance and manufacturability used in MIM architecture.

  10. The influence of socioeconomic environment on the effectiveness of alcohol prevention among European students: a cluster randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Faggiano Fabrizio

    2011-05-01

    Full Text Available Abstract Background Although social environments may influence alcohol-related behaviours in youth, the relationship between neighbourhood socioeconomic context and effectiveness of school-based prevention against underage drinking has been insufficiently investigated. We study whether the social environment affects the impact of a new school-based prevention programme on alcohol use among European students. Methods During the school year 2004-2005, 7079 students 12-14 years of age from 143 schools in nine European centres participated in this cluster randomised controlled trial. Schools were randomly assigned to either control or a 12-session standardised curriculum based on the comprehensive social influence model. Randomisation was blocked within socioeconomic levels of the school environment. Alcohol use and alcohol-related problem behaviours were investigated through a self-completed anonymous questionnaire at baseline and 18 months thereafter. Data were analysed using multilevel models, separately by socioeconomic level. Results At baseline, adolescents in schools of low socioeconomic level were more likely to report problem drinking than other students. Participation in the programme was associated in this group with a decreased odds of reporting episodes of drunkenness (OR = 0.60, 95% CI = 0.44-0.83, intention to get drunk (OR = 0.60, 95% CI = 0.45-0.79, and marginally alcohol-related problem behaviours (OR = 0.70, 95% CI = 0.46-1.06. No significant programme's effects emerged for students in schools of medium or high socioeconomic level. Effects on frequency of alcohol consumption were also stronger among students in disadvantaged schools, although the estimates did not attain statistical significance in any subgroup. Conclusions It is plausible that comprehensive social influence programmes have a more favourable effect on problematic drinking among students in underprivileged social environments. Trial registration ISRCTN: ISRCTN

  11. Strategic analysis for sustainable urban river aquatic environment using the system dynamic approach.

    Science.gov (United States)

    Lee, M T; Chang, Y C

    2006-01-01

    A sustainable aquatic environment, which relates to the issues of pollution mitigation and ecological restoration, is one of the important indicators of the vitality and prosperity of a city. Traditionally, resort to engineering efforts is always the first priority in dealing with such problems. Nevertheless, treated as an integrated system, the nature of the problem should involve many aspects including economic, ecological, environmental, and engineering factors. Meanwhile, the special feature of the time-dependent state has also made such a system a dynamic and complex problem. The current research has employed the concepts of integrated assessment trying to aggregate related studies and tackling the problem as a complete system. With the aid of the system dynamic modeling tool, which is capable of dealing with dynamic and complex problems, the simulation model was formulated following the macrostructure of system behavior. Various strategies for improving the sustainability of the aquatic environment in Love River, Kaohsiung, Taiwan have been evaluated. The decision makers are therefore allowed to choose more effective strategies based on the integrated perspectives.

  12. RSMDP-based Robust Q-learning for Optimal Path Planning in a Dynamic Environment

    Directory of Open Access Journals (Sweden)

    Yunfei Zhang

    2014-07-01

    Full Text Available This paper presents arobust Q-learning method for path planningin a dynamic environment. The method consists of three steps: first, a regime-switching Markov decision process (RSMDP is formed to present the dynamic environment; second a probabilistic roadmap (PRM is constructed, integrated with the RSMDP and stored as a graph whose nodes correspond to a collision-free world state for the robot; and third, an onlineQ-learning method with dynamic stepsize, which facilitates robust convergence of the Q-value iteration, is integrated with the PRM to determine an optimal path for reaching the goal. In this manner, the robot is able to use past experience for improving its performance in avoiding not only static obstacles but also moving obstacles, without knowing the nature of the obstacle motion. The use ofregime switching in the avoidance of obstacles with unknown motion is particularly innovative.  The developed approach is applied to a homecare robot in computer simulation. The results show that the online path planner with Q-learning is able torapidly and successfully converge to the correct path.

  13. Dust environment and dynamical history of a sample of short period comets

    CERN Document Server

    Pozuelos, F J; Aceituno, F; Casanova, V; Sota, A; López-Moreno, J J; Castellano, J; Reina, E; Diepvens, A; Betoret, A; Häusler, B; González, C; Rodríguez, D; Bryssinck, E; Cortés, E; García, F; García, F; Limón, F; Grau, F; Fratev, F; Baldrís, F; Rodriguez, F A; Montalbán, F; Soldán, F; Muler, G; Almendros, I; Temprano, J; Bel, J; Sánchez, J; Lopesino, J; Báez, J; Hernández, J F; Martín, J L; Ruiz, J M; Vidal, J R; Gaitán, J; Salto, J L; Aymamí, J M; Bosch, J M; Henríquez, J A; Martín, J J; Lacruz, J; Tremosa, L; Lahuerta, L; Reszelsky, M; Rodríguez, M; Camarasa, M; Campas, M; Canales, O; Dekelver, P J; Moreno, Q; Benavides, R; Naves, R; Dymoc, R; García, R; Lahuerta, S; Climent, T

    2014-01-01

    Aims. In this work, we present an extended study of the dust environment of a sample of short period comets and their dynamical history. With this aim, we characterized the dust tails when the comets are active, and we made a statistical study to determine their dynamical evolution. The targets selected were 22P/Kopff, 30P/Reinmuth 1, 78P/Gehrels 2, 115P/Maury, 118P/Shoemaker-Levy 4, 123P/West-Hartley, 157P/Tritton, 185/Petriew, and P/2011 W2 (Rinner). Methods. We use two different observational data: a set of images taken at the Observatorio de Sierra Nevada and the Afrho curves provided by the amateur astronomical association Cometas-Obs. To model these observations, we use our Monte Carlo dust tail code. From this analysis, we derive the dust parameters, which best describe the dust environment: dust loss rates, ejection velocities, and size distribution of particles. On the other hand, we use a numerical integrator to study the dynamical history of the comets, which allows us to determine with a 90% of co...

  14. Tripartite entanglement dynamics in the presence of Markovian or non-Markovian environment

    Science.gov (United States)

    Park, DaeKil

    2016-08-01

    We study on the tripartite entanglement dynamics when each party is initially entangled with other parties, but they locally interact with their own Markovian or non-Markovian environment. First we consider three GHZ-type initial states, all of which have GHZ-symmetry provided that the parameters are chosen appropriately. However, this symmetry is broken due to the effect of environment. The corresponding π -tangles, one of the tripartite entanglement measures, are analytically computed at arbitrary time. For Markovian case while the tripartite entanglement for type I exhibits an entanglement sudden death, the dynamics for the remaining cases decays normally in time with the half-life rule. For non-Markovian case the revival phenomenon of entanglement occurs after complete disappearance of entanglement. We also consider two W-type initial states. For both cases the π -tangles are analytically derived. The revival phenomenon also occurs in this case. On the analytical ground the robustness or fragility issue against the effect of environment is examined for both GHZ-type and W-type initial states.

  15. Artificial coordinating field and its application to motion planning of robots in uncertain dynamic environments

    Institute of Scientific and Technical Information of China (English)

    JING; Xingjian; WANG; Yuechao; TAN; Dalong

    2004-01-01

    Artificial coordinating fields (ACF) are proposed to deal with the motion planning problems of mobile robots in uncertain dynamic environments. An ACF around an obstacle can generate two orthogonal force vectors to a robot: one is called the coordinating force vector which is purposively designed in this paper, and the other is the repulsive force vector which is the same as that in a conventional artificial potential field.The ACF is designed according to the updated motion purpose and the relative states of the robot with respect to its local environment, and it also satisfies the robot's dynamic constraints. The direction of the coordinating force can be determined on line according to an optimal evaluation function. The ACF can effectively remove the local minima, and reduce the oscillation of the planned trajectory between multiple obstacles. Only local knowledge of the environments is needed in the ACF-based motion planning. The properties of the ACF such as controllability, adaptability, safety and reachability are studied and discussed in detail in this paper. Theoretical analysis and simulations are given to illustrate our main results.

  16. Modelling influenza A(H1N1) 2009 epidemics using a random network in a distributed computing environment.

    Science.gov (United States)

    González-Parra, Gilberto; Villanueva, Rafael-J; Ruiz-Baragaño, Javier; Moraño, Jose-A

    2015-03-01

    In this paper we propose the use of a random network model for simulating and understanding the epidemics of influenza A(H1N1). The proposed model is used to simulate the transmission process of influenza A(H1N1) in a community region of Venezuela using distributed computing in order to accomplish many realizations of the underlying random process. These large scale epidemic simulations have recently become an important application of high-performance computing. The network model proposed performs better than the traditional epidemic model based on ordinary differential equations since it adjusts better to the irregularity of the real world data. In addition, the network model allows the consideration of many possibilities regarding the spread of influenza at the population level. The results presented here show how well the SEIR model fits the data for the AH1N1 time series despite the irregularity of the data and returns parameter values that are in good agreement with the medical data regarding AH1N1 influenza virus. This versatile network model approach may be applied to the simulation of the transmission dynamics of several epidemics in human networks. In addition, the simulation can provide useful information for the understanding, prediction and control of the transmission of influenza A(H1N1) epidemics.

  17. Reinforced Feedback in Virtual Environment for Rehabilitation of Upper Extremity Dysfunction after Stroke: Preliminary Data from a Randomized Controlled Trial

    Directory of Open Access Journals (Sweden)

    Paweł Kiper

    2014-01-01

    Full Text Available Objectives. To study whether the reinforced feedback in virtual environment (RFVE is more effective than traditional rehabilitation (TR for the treatment of upper limb motor function after stroke, regardless of stroke etiology (i.e., ischemic, hemorrhagic. Design. Randomized controlled trial. Participants. Forty-four patients affected by stroke. Intervention. The patients were randomized into two groups: RFVE (N=23 and TR (N=21, and stratified according to stroke etiology. The RFVE treatment consisted of multidirectional exercises providing augmented feedback provided by virtual reality, while in the TR treatment the same exercises were provided without augmented feedbacks. Outcome Measures. Fugl-Meyer upper extremity scale (F-M UE, Functional Independence Measure scale (FIM, and kinematics parameters (speed, time, and peak. Results. The F-M UE (P=0.030, FIM (P=0.021, time (P=0.008, and peak (P=0.018, were significantly higher in the RFVE group after treatment, but not speed (P=0.140. The patients affected by hemorrhagic stroke significantly improved FIM (P=0.031, time (P=0.011, and peak (P=0.020 after treatment, whereas the patients affected by ischemic stroke improved significantly only speed (P=0.005 when treated by RFVE. Conclusion. These results indicated that some poststroke patients may benefit from RFVE program for the recovery of upper limb motor function. This trial is registered with NCT01955291.

  18. Adaptation Algorithm of Geometric Graphs for Robot Motion Planning in Dynamic Environments

    Directory of Open Access Journals (Sweden)

    Jae-Han Park

    2016-01-01

    Full Text Available This study proposes an adaptive graph algorithm for collision-free motion planning of articulated robots in dynamic environments. For this purpose, deformations of the configuration space were analyzed according to the changes of the workspace using various simulations. Subsequently, we adopted the principles of gas motion dynamics in our adaptation algorithm to address the issue of the deformation of the configuration space. The proposed algorithm has an adaptation mechanism based on expansive repulsion and sensory repulsion, and it can be performed to provide the entire adaptation using distributed processing. The simulation results confirmed that the proposed method allows the adaptation of the roadmap graph to changes of the configuration space.

  19. Formation and dynamics of "waterproof" photoluminescent complexes of rare earth ions in crowded environment.

    Science.gov (United States)

    Ignatova, Tetyana; Blades, Michael; Duque, Juan G; Doorn, Stephen K; Biaggio, Ivan; Rotkin, Slava V

    2014-12-28

    Understanding behavior of rare-earth ions (REI) in crowded environments is crucial for several nano- and bio-technological applications. Evolution of REI photoluminescence (PL) in small compartments inside a silica hydrogel, mimic to a soft matter bio-environment, has been studied and explained within a solvation model. The model uncovered the origin of high PL efficiency to be the formation of REI complexes, surrounded by bile salt (DOC) molecules. Comparative study of these REI-DOC complexes in bulk water solution and those enclosed inside the hydrogel revealed a strong correlation between an up to 5×-longer lifetime of REIs and appearance of the DOC ordered phase, further confirmed by dynamics of REI solvation shells, REI diffusion experiments and morphological characterization of microstructure of the hydrogel.

  20. Cardea: Providing Support for Dynamic Resource Access in a Distributed Computing Environment

    Science.gov (United States)

    Lepro, Rebekah

    2003-01-01

    The environment framing the modem authorization process span domains of administration, relies on many different authentication sources, and manages complex attributes as part of the authorization process. Cardea facilitates dynamic access control within this environment as a central function of an inter-operable authorization framework. The system departs from the traditional authorization model by separating the authentication and authorization processes, distributing the responsibility for authorization data and allowing collaborating domains to retain control over their implementation mechanisms. Critical features of the system architecture and its handling of the authorization process differentiate the system from existing authorization components by addressing common needs not adequately addressed by existing systems. Continuing system research seeks to enhance the implementation of the current authorization model employed in Cardea, increase the robustness of current features, further the framework for establishing trust and promote interoperability with existing security mechanisms.