Polymer Chain Dynamics in a Random Environment: Heterogeneous Mobilities
International Nuclear Information System (INIS)
Niedzwiedz, K.; Wischnewski, A.; Monkenbusch, M.; Richter, D.; Strauch, M.; Straube, E.; Genix, A.-C.; Arbe, A.; Colmenero, J.
2007-01-01
We present a neutron scattering investigation on a miscible blend of two polymers with greatly different glass-transition temperatures T g . Under such conditions, the nearly frozen high-T g component imposes a random environment on the mobile chain. The results demand the consideration of a distribution of heterogeneous mobilities in the material and demonstrate that the larger scale dynamics of the fast component is not determined by the average local environment alone. This distribution of mobilities can be mapped quantitatively on the spectrum of local relaxation rates measured at high momentum transfers
Avena, L.; Hollander, den W.Th.F.; Redig, F.H.J.
2010-01-01
Consider a one-dimensional shift-invariant attractive spin-flip system in equilibrium, constituting a dynamic random environment, together with a nearest-neighbor random walk that on occupied sites has a local drift to the right but on vacant sites has a local drift to the left. In previous work we
Avena, L.; Hollander, den W.Th.F.; Redig, F.H.J.
2009-01-01
Consider a one-dimensional shift-invariant attractive spin-ip system in equilibrium, constituting a dynamic random environment, together with a nearest-neighbor random walk that on occupied sites has a local drift to the right but on vacant sites has a local drift to the left. In [2] we proved a law
Emergent dynamics of Cucker-Smale flocking particles in a random environment
Ha, Seung-Yeal; Jeong, Jiin; Noh, Se Eun; Xiao, Qinghua; Zhang, Xiongtao
2017-02-01
We present a new kinetic Cucker-Smale-Fokker-Planck (CS-FP) type equation with a degenerate diffusion, which describes the dynamics for an ensemble of infinitely many Cucker-Smale particles in a random environment. The asymptotic dynamics of the CS-FP equation exhibits a threshold-like phenomenon depending on the relative strength between the coupling strength and the noise strength. In the small coupling regime, the noise effect becomes dominant, which induces the velocity variance to increase to infinity exponentially fast. In contrast, the velocity alignment effect is strong in the large coupling regime, and the velocity variance tends to zero exponentially fast. We present the global existence of classical solutions to the CS-FP equation for a sufficiently smooth initial datum without smallness in its size. For the kinetic CS-FP equation with a metric dependent communication weight, we provide a uniform-in-time mean-field limit from the stochastic CS-model to the kinetic CS-FP equation without convergence rate.
Genetic algorithms with memory- and elitism-based immigrants in dynamic environments.
Yang, Shengxiang
2008-01-01
In recent years the genetic algorithm community has shown a growing interest in studying dynamic optimization problems. Several approaches have been devised. The random immigrants and memory schemes are two major ones. The random immigrants scheme addresses dynamic environments by maintaining the population diversity while the memory scheme aims to adapt genetic algorithms quickly to new environments by reusing historical information. This paper investigates a hybrid memory and random immigrants scheme, called memory-based immigrants, and a hybrid elitism and random immigrants scheme, called elitism-based immigrants, for genetic algorithms in dynamic environments. In these schemes, the best individual from memory or the elite from the previous generation is retrieved as the base to create immigrants into the population by mutation. This way, not only can diversity be maintained but it is done more efficiently to adapt genetic algorithms to the current environment. Based on a series of systematically constructed dynamic problems, experiments are carried out to compare genetic algorithms with the memory-based and elitism-based immigrants schemes against genetic algorithms with traditional memory and random immigrants schemes and a hybrid memory and multi-population scheme. The sensitivity analysis regarding some key parameters is also carried out. Experimental results show that the memory-based and elitism-based immigrants schemes efficiently improve the performance of genetic algorithms in dynamic environments.
Mobility transition in a dynamic environment
International Nuclear Information System (INIS)
Basu, Urna; Maes, Christian
2014-01-01
Depending on how the dynamical activity of a particle in a random environment is influenced by an external field E, its differential mobility at intermediate E can turn negative. We discuss the case where for slowly changing random environment the driven particle shows negative differential mobility while that mobility turns positive for faster environment changes. We illustrate this transition using a two-dimensional-lattice Lorentz model where a particle moves in a background of simple exclusion walkers. The effective escape rate of the particle (or minus its collision frequency) which is essential for its mobility-behavior depends both on E and on the kinetic rate γ of the exclusion walkers. Large γ, i.e., fast obstacle motion, amounts to merely rescaling the particle's free motion with the obstacle density, while slow obstacle dynamics results in particle motion that is more singularly related to its free motion and preserves the negative differential mobility already seen at γ = 0. In more general terms that we also illustrate using one-dimensional random walkers, the mobility transition is between the time-scales of the quasi-stationary regime and that of the fluid limit. (paper)
System–environment correlations and non-Markovian dynamics
International Nuclear Information System (INIS)
Pernice, A; Helm, J; Strunz, W T
2012-01-01
We determine the total state dynamics of a dephasing open quantum system using the standard environment of harmonic oscillators. Of particular interest are random unitary approaches to the same reduced dynamics and system–environment correlations in the full model. Concentrating on a model with an at times negative dephasing rate, the issue of ‘non-Markovianity’ will also be addressed. Crucially, given the quantum environment, the appearance of non-Markovian dynamics turns out to be accompanied by a loss of system–environment correlations. Depending on the initial purity of the qubit state, these system–environment correlations may be purely classical over the whole relevant time scale, or there may be intervals of genuine system–environment entanglement. In the latter case, we see no obvious relation between the build-up or decay of these quantum correlations and ‘non-Markovianity’. (paper)
Genetic algorithms with memory- and elitism-based immigrants in dynamic environments
Yang, S
2008-01-01
Copyright @ 2008 by the Massachusetts Institute of Technology In recent years the genetic algorithm community has shown a growing interest in studying dynamic optimization problems. Several approaches have been devised. The random immigrants and memory schemes are two major ones. The random immigrants scheme addresses dynamic environments by maintaining the population diversity while the memory scheme aims to adapt genetic algorithms quickly to new environments by reusing historical inform...
Topics in random walks in random environment
International Nuclear Information System (INIS)
Sznitman, A.-S.
2004-01-01
Over the last twenty-five years random motions in random media have been intensively investigated and some new general methods and paradigms have by now emerged. Random walks in random environment constitute one of the canonical models of the field. However in dimension bigger than one they are still poorly understood and many of the basic issues remain to this day unresolved. The present series of lectures attempt to give an account of the progresses which have been made over the last few years, especially in the study of multi-dimensional random walks in random environment with ballistic behavior. (author)
A comparison of random walks in dependent random environments
Scheinhardt, Willem R.W.; Kroese, Dirk
We provide exact computations for the drift of random walks in dependent random environments, including $k$-dependent and moving average environments. We show how the drift can be characterized and evaluated using Perron–Frobenius theory. Comparing random walks in various dependent environments, we
Extinction transition in stochastic population dynamics in a random, convective environment
International Nuclear Information System (INIS)
Juhász, Róbert
2013-01-01
Motivated by modeling the dynamics of a population living in a flowing medium where the environmental factors are random in space, we have studied an asymmetric variant of the one-dimensional contact process, where the quenched random reproduction rates are systematically greater in one direction than in the opposite one. The spatial disorder turns out to be a relevant perturbation but, according to results of Monte Carlo simulations, the behavior of the model at the extinction transition is different from the (infinite-randomness) critical behavior of the disordered symmetric contact process. Depending on the strength a of the asymmetry, the critical population drifts either with a finite velocity or with an asymptotically vanishing velocity as x(t) ∼ t μ(a) , where μ(a) < 1. Dynamical quantities are non-self-averaging at the extinction transition; the survival probability, for instance, shows multiscaling, i.e. it is characterized by a broad spectrum of effective exponents. For a sufficiently weak asymmetry, a Griffiths phase appears below the extinction transition, where the survival probability decays as a non-universal power of the time while, above the transition, another extended phase emerges, where the front of the population advances anomalously with a diffusion exponent continuously varying with the control parameter. (paper)
Truly random dynamics generated by autonomous dynamical systems
González, J. A.; Reyes, L. I.
2001-09-01
We investigate explicit functions that can produce truly random numbers. We use the analytical properties of the explicit functions to show that a certain class of autonomous dynamical systems can generate random dynamics. This dynamics presents fundamental differences with the known chaotic systems. We present real physical systems that can produce this kind of random time-series. Some applications are discussed.
Sampling Based Trajectory Planning for Robots in Dynamic Human Environments
DEFF Research Database (Denmark)
Svenstrup, Mikael
2010-01-01
Open-ended human environments, such as pedestrian streets, hospital corridors, train stations etc., are places where robots start to emerge. Hence, being able to plan safe and natural trajectories in these dynamic environments is an important skill for future generations of robots. In this work...... the problem is formulated as planning a minimal cost trajectory through a potential field, defined from the perceived position and motion of persons in the environment. A modified Rapidlyexploring Random Tree (RRT) algorithm is proposed as a solution to the planning problem. The algorithm implements a new...... for the uncertainty in the dynamic environment. The planning algorithm is demonstrated in a simulated pedestrian street environment....
Directory of Open Access Journals (Sweden)
Kai Kang
2018-01-01
Full Text Available There is a growing concern that business enterprises focus primarily on their economic activities and ignore the impact of these activities on the environment and the society. This paper investigates a novel sustainable inventory-allocation planning model with carbon emissions and defective item disposal over multiple periods under a fuzzy random environment. In this paper, a carbon credit price and a carbon cap are proposed to demonstrate the effect of carbon emissions’ costs on the inventory-allocation network costs. The percentage of poor quality products from manufacturers that need to be rejected is assumed to be fuzzy random. Because of the complexity of the model, dynamic programming-based particle swarm optimization with multiple social learning structures, a DP-based GLNPSO, and a fuzzy random simulation are proposed to solve the model. A case is then given to demonstrate the efficiency and effectiveness of the proposed model and the DP-based GLNPSO algorithm. The results found that total costs across the inventory-allocation network varied with changes in the carbon cap and that carbon emissions’ reductions could be utilized to gain greater profits.
International Nuclear Information System (INIS)
Phillips, Carolyn L.; Anderson, Joshua A.; Glotzer, Sharon C.
2011-01-01
Highlights: → Molecular Dynamics codes implemented on GPUs have achieved two-order of magnitude computational accelerations. → Brownian Dynamics and Dissipative Particle Dynamics simulations require a large number of random numbers per time step. → We introduce a method for generating small batches of pseudorandom numbers distributed over many threads of calculations. → With this method, Dissipative Particle Dynamics is implemented on a GPU device without requiring thread-to-thread communication. - Abstract: Brownian Dynamics (BD), also known as Langevin Dynamics, and Dissipative Particle Dynamics (DPD) are implicit solvent methods commonly used in models of soft matter and biomolecular systems. The interaction of the numerous solvent particles with larger particles is coarse-grained as a Langevin thermostat is applied to individual particles or to particle pairs. The Langevin thermostat requires a pseudo-random number generator (PRNG) to generate the stochastic force applied to each particle or pair of neighboring particles during each time step in the integration of Newton's equations of motion. In a Single-Instruction-Multiple-Thread (SIMT) GPU parallel computing environment, small batches of random numbers must be generated over thousands of threads and millions of kernel calls. In this communication we introduce a one-PRNG-per-kernel-call-per-thread scheme, in which a micro-stream of pseudorandom numbers is generated in each thread and kernel call. These high quality, statistically robust micro-streams require no global memory for state storage, are more computationally efficient than other PRNG schemes in memory-bound kernels, and uniquely enable the DPD simulation method without requiring communication between threads.
Entanglement dynamics in random media
Menezes, G.; Svaiter, N. F.; Zarro, C. A. D.
2017-12-01
We study how the entanglement dynamics between two-level atoms is impacted by random fluctuations of the light cone. In our model the two-atom system is envisaged as an open system coupled with an electromagnetic field in the vacuum state. We employ the quantum master equation in the Born-Markov approximation in order to describe the completely positive time evolution of the atomic system. We restrict our investigations to the situation in which the atoms are coupled individually to two spatially separated cavities, one of which displays the emergence of light-cone fluctuations. In such a disordered cavity, we assume that the coefficients of the Klein-Gordon equation are random functions of the spatial coordinates. The disordered medium is modeled by a centered, stationary, and Gaussian process. We demonstrate that disorder has the effect of slowing down the entanglement decay. We conjecture that in a strong-disorder environment the mean life of entangled states can be enhanced in such a way as to almost completely suppress quantum nonlocal decoherence.
Bennett, D. L.; Brene, N.; Nielsen, H. B.
1987-01-01
The goal of random dynamics is the derivation of the laws of Nature as we know them (standard model) from inessential assumptions. The inessential assumptions made here are expressed as sets of general models at extremely high energies: gauge glass and spacetime foam. Both sets of models lead tentatively to the standard model.
International Nuclear Information System (INIS)
Bennett, D.L.
1987-01-01
The goal of random dynamics is the derivation of the laws of Nature as we know them (standard model) from inessential assumptions. The inessential assumptions made here are expressed as sets of general models at extremely high energies: Gauge glass and spacetime foam. Both sets of models lead tentatively to the standard model. (orig.)
International Nuclear Information System (INIS)
Bennett, D.L.; Brene, N.; Nielsen, H.B.
1986-06-01
The goal of random dynamics is the derivation of the laws of Nature as we know them (standard model) from inessential assumptions. The inessential assumptions made here are expressed as sets of general models at extremely high energies: gauge glass and spacetime foam. Both sets of models lead tentatively to the standard model. (orig.)
A comparison of random walks in dependent random environments
Scheinhardt, Willem R.W.; Kroese, Dirk
2015-01-01
Although the theoretical behavior of one-dimensional random walks in random environments is well understood, the actual evaluation of various characteristics of such processes has received relatively little attention. This paper develops new methodology for the exact computation of the drift in such
Hilário, M.; Hollander, den W.Th.F.; Sidoravicius, V.; Soares dos Santos, R.; Teixeira, A.
2014-01-01
In this paper we study a random walk in a one-dimensional dynamic random environment consisting of a collection of independent particles performing simple symmetric random walks in a Poisson equilibrium with density ¿¿(0,8). At each step the random walk performs a nearest-neighbour jump, moving to
Qubits in a random environment
International Nuclear Information System (INIS)
Akhalwaya, I; Fannes, M; Petruccione, F
2007-01-01
Decoherence phenomena in a small quantum system coupled to a complex environment can be modelled with random matrices. We propose a simple deterministic model in the limit of a high dimensional environment. The model is investigated numerically and some analytically addressable questions are singled out
Diffusion in randomly perturbed dissipative dynamics
Rodrigues, Christian S.; Chechkin, Aleksei V.; de Moura, Alessandro P. S.; Grebogi, Celso; Klages, Rainer
2014-11-01
Dynamical systems having many coexisting attractors present interesting properties from both fundamental theoretical and modelling points of view. When such dynamics is under bounded random perturbations, the basins of attraction are no longer invariant and there is the possibility of transport among them. Here we introduce a basic theoretical setting which enables us to study this hopping process from the perspective of anomalous transport using the concept of a random dynamical system with holes. We apply it to a simple model by investigating the role of hyperbolicity for the transport among basins. We show numerically that our system exhibits non-Gaussian position distributions, power-law escape times, and subdiffusion. Our simulation results are reproduced consistently from stochastic continuous time random walk theory.
Coupled continuous time-random walks in quenched random environment
Magdziarz, M.; Szczotka, W.
2018-02-01
We introduce a coupled continuous-time random walk with coupling which is characteristic for Lévy walks. Additionally we assume that the walker moves in a quenched random environment, i.e. the site disorder at each lattice point is fixed in time. We analyze the scaling limit of such a random walk. We show that for large times the behaviour of the analyzed process is exactly the same as in the case of uncoupled quenched trap model for Lévy flights.
Snake representation of a superprocess in random environment
Mytnik, Leonid; Xiong, Jie; Zeitouni, Ofer
2011-01-01
We consider (discrete time) branching particles in a random environment which is i.i.d. in time and possibly spatially correlated. We prove a representation of the limit process by means of a Brownian snake in random environment.
Phillips, Carolyn L.; Anderson, Joshua A.; Glotzer, Sharon C.
2011-08-01
Brownian Dynamics (BD), also known as Langevin Dynamics, and Dissipative Particle Dynamics (DPD) are implicit solvent methods commonly used in models of soft matter and biomolecular systems. The interaction of the numerous solvent particles with larger particles is coarse-grained as a Langevin thermostat is applied to individual particles or to particle pairs. The Langevin thermostat requires a pseudo-random number generator (PRNG) to generate the stochastic force applied to each particle or pair of neighboring particles during each time step in the integration of Newton's equations of motion. In a Single-Instruction-Multiple-Thread (SIMT) GPU parallel computing environment, small batches of random numbers must be generated over thousands of threads and millions of kernel calls. In this communication we introduce a one-PRNG-per-kernel-call-per-thread scheme, in which a micro-stream of pseudorandom numbers is generated in each thread and kernel call. These high quality, statistically robust micro-streams require no global memory for state storage, are more computationally efficient than other PRNG schemes in memory-bound kernels, and uniquely enable the DPD simulation method without requiring communication between threads.
Random complex dynamics and devil's coliseums
Sumi, Hiroki
2015-04-01
We investigate the random dynamics of polynomial maps on the Riemann sphere \\hat{\\Bbb{C}} and the dynamics of semigroups of polynomial maps on \\hat{\\Bbb{C}} . In particular, the dynamics of a semigroup G of polynomials whose planar postcritical set is bounded and the associated random dynamics are studied. In general, the Julia set of such a G may be disconnected. We show that if G is such a semigroup, then regarding the associated random dynamics, the chaos of the averaged system disappears in the C0 sense, and the function T∞ of probability of tending to ∞ \\in \\hat{\\Bbb{C}} is Hölder continuous on \\hat{\\Bbb{C}} and varies only on the Julia set of G. Moreover, the function T∞ has a kind of monotonicity. It turns out that T∞ is a complex analogue of the devil's staircase, and we call T∞ a ‘devil’s coliseum'. We investigate the details of T∞ when G is generated by two polynomials. In this case, T∞ varies precisely on the Julia set of G, which is a thin fractal set. Moreover, under this condition, we investigate the pointwise Hölder exponents of T∞.
Dynamics of a Simple Quantum System in a Complex Environment
Bulgac, A; Kusnezov, D; Bulgac, Aurel; Dang, Gui Do; Kusnezov, Dimitri
1998-01-01
We present a theory for the dynamical evolution of a quantum system coupled to a complex many-body intrinsic system/environment. By modelling the intrinsic many-body system with parametric random matrices, we study the types of effective stochastic models which emerge from random matrix theory. Using the Feynman-Vernon path integral formalism, we derive the influence functional and obtain either analytical or numerical solutions for the time evolution of the entire quantum system. We discuss thoroughly the structure of the solutions for some representative cases and make connections to well known limiting results, particularly to Brownian motion, Kramers classical limit and the Caldeira-Leggett approach.
Random walk through fractal environments
Isliker, H.; Vlahos, L.
2002-01-01
We analyze random walk through fractal environments, embedded in 3-dimensional, permeable space. Particles travel freely and are scattered off into random directions when they hit the fractal. The statistical distribution of the flight increments (i.e. of the displacements between two consecutive hittings) is analytically derived from a common, practical definition of fractal dimension, and it turns out to approximate quite well a power-law in the case where the dimension D of the fractal is ...
Long-range epidemic spreading in a random environment.
Juhász, Róbert; Kovács, István A; Iglói, Ferenc
2015-03-01
Modeling long-range epidemic spreading in a random environment, we consider a quenched, disordered, d-dimensional contact process with infection rates decaying with distance as 1/rd+σ. We study the dynamical behavior of the model at and below the epidemic threshold by a variant of the strong-disorder renormalization-group method and by Monte Carlo simulations in one and two spatial dimensions. Starting from a single infected site, the average survival probability is found to decay as P(t)∼t-d/z up to multiplicative logarithmic corrections. Below the epidemic threshold, a Griffiths phase emerges, where the dynamical exponent z varies continuously with the control parameter and tends to zc=d+σ as the threshold is approached. At the threshold, the spatial extension of the infected cluster (in surviving trials) is found to grow as R(t)∼t1/zc with a multiplicative logarithmic correction and the average number of infected sites in surviving trials is found to increase as Ns(t)∼(lnt)χ with χ=2 in one dimension.
Dynamical correlations for circular ensembles of random matrices
International Nuclear Information System (INIS)
Nagao, Taro; Forrester, Peter
2003-01-01
Circular Brownian motion models of random matrices were introduced by Dyson and describe the parametric eigenparameter correlations of unitary random matrices. For symmetric unitary, self-dual quaternion unitary and an analogue of antisymmetric Hermitian matrix initial conditions, Brownian dynamics toward the unitary symmetry is analyzed. The dynamical correlation functions of arbitrary number of Brownian particles at arbitrary number of times are shown to be written in the forms of quaternion determinants, similarly as in the case of Hermitian random matrix models
Dynamic defense and network randomization for computer systems
Chavez, Adrian R.; Stout, William M. S.; Hamlet, Jason R.; Lee, Erik James; Martin, Mitchell Tyler
2018-05-29
The various technologies presented herein relate to determining a network attack is taking place, and further to adjust one or more network parameters such that the network becomes dynamically configured. A plurality of machine learning algorithms are configured to recognize an active attack pattern. Notification of the attack can be generated, and knowledge gained from the detected attack pattern can be utilized to improve the knowledge of the algorithms to detect a subsequent attack vector(s). Further, network settings and application communications can be dynamically randomized, wherein artificial diversity converts control systems into moving targets that help mitigate the early reconnaissance stages of an attack. An attack(s) based upon a known static address(es) of a critical infrastructure network device(s) can be mitigated by the dynamic randomization. Network parameters that can be randomized include IP addresses, application port numbers, paths data packets navigate through the network, application randomization, etc.
Living with Dynamic Concepts in Dynamic Environments
DEFF Research Database (Denmark)
Rehm, Matthias
2003-01-01
a dynamic perspective, concepts depend on different factors like the learning process, the environment, i.e. the situational setting. It is indispensable for an agent to create individual concepts that adhere to restrictions imposed by the environment and the society it is living in. It is shown...... that changes in the environment lead to changes in existing concepts and to establishing new ones with only a small irritation in the use of the old ones....
Directory of Open Access Journals (Sweden)
Shuiqing Yu
2013-01-01
Full Text Available This paper investigates the dynamic output feedback control for nonlinear networked control systems with both random packet dropout and random delay. Random packet dropout and random delay are modeled as two independent random variables. An observer-based dynamic output feedback controller is designed based upon the Lyapunov theory. The quantitative relationship of the dropout rate, transition probability matrix, and nonlinear level is derived by solving a set of linear matrix inequalities. Finally, an example is presented to illustrate the effectiveness of the proposed method.
Chaotic systems are dynamically random
International Nuclear Information System (INIS)
Svozil, K.
1988-01-01
The idea is put forward that the significant route to chaos is driven by recursive iterations of suitable evolution functions. The corresponding formal notion of randomness is not based on dynamic complexity rather than on static complexity. 24 refs. (Author)
Network Randomization and Dynamic Defense for Critical Infrastructure Systems
Energy Technology Data Exchange (ETDEWEB)
Chavez, Adrian R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Martin, Mitchell Tyler [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hamlet, Jason [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stout, William M.S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lee, Erik [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2015-04-01
Critical Infrastructure control systems continue to foster predictable communication paths, static configurations, and unpatched systems that allow easy access to our nation's most critical assets. This makes them attractive targets for cyber intrusion. We seek to address these attack vectors by automatically randomizing network settings, randomizing applications on the end devices themselves, and dynamically defending these systems against active attacks. Applying these protective measures will convert control systems into moving targets that proactively defend themselves against attack. Sandia National Laboratories has led this effort by gathering operational and technical requirements from Tennessee Valley Authority (TVA) and performing research and development to create a proof-of-concept solution. Our proof-of-concept has been tested in a laboratory environment with over 300 nodes. The vision of this project is to enhance control system security by converting existing control systems into moving targets and building these security measures into future systems while meeting the unique constraints that control systems face.
Random regression models for detection of gene by environment interaction
Directory of Open Access Journals (Sweden)
Meuwissen Theo HE
2007-02-01
Full Text Available Abstract Two random regression models, where the effect of a putative QTL was regressed on an environmental gradient, are described. The first model estimates the correlation between intercept and slope of the random regression, while the other model restricts this correlation to 1 or -1, which is expected under a bi-allelic QTL model. The random regression models were compared to a model assuming no gene by environment interactions. The comparison was done with regards to the models ability to detect QTL, to position them accurately and to detect possible QTL by environment interactions. A simulation study based on a granddaughter design was conducted, and QTL were assumed, either by assigning an effect independent of the environment or as a linear function of a simulated environmental gradient. It was concluded that the random regression models were suitable for detection of QTL effects, in the presence and absence of interactions with environmental gradients. Fixing the correlation between intercept and slope of the random regression had a positive effect on power when the QTL effects re-ranked between environments.
Random walk through fractal environments
International Nuclear Information System (INIS)
Isliker, H.; Vlahos, L.
2003-01-01
We analyze random walk through fractal environments, embedded in three-dimensional, permeable space. Particles travel freely and are scattered off into random directions when they hit the fractal. The statistical distribution of the flight increments (i.e., of the displacements between two consecutive hittings) is analytically derived from a common, practical definition of fractal dimension, and it turns out to approximate quite well a power-law in the case where the dimension D F of the fractal is less than 2, there is though, always a finite rate of unaffected escape. Random walks through fractal sets with D F ≤2 can thus be considered as defective Levy walks. The distribution of jump increments for D F >2 is decaying exponentially. The diffusive behavior of the random walk is analyzed in the frame of continuous time random walk, which we generalize to include the case of defective distributions of walk increments. It is shown that the particles undergo anomalous, enhanced diffusion for D F F >2 is normal for large times, enhanced though for small and intermediate times. In particular, it follows that fractals generated by a particular class of self-organized criticality models give rise to enhanced diffusion. The analytical results are illustrated by Monte Carlo simulations
Dynamical decoupling assisted acceleration of two-spin evolution in XY spin-chain environment
Energy Technology Data Exchange (ETDEWEB)
Wei, Yong-Bo; Zou, Jian [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Wang, Zhao-Ming [Department of Physics, Ocean University of China, Qingdao 266100 (China); Shao, Bin, E-mail: sbin610@bit.edu.cn [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Li, Hai [School of Information and Electronic Engineering, Shandong Institute of Business and Technology, Yantai 264000 (China)
2016-01-28
We study the speed-up role of dynamical decoupling in an open system, which is modeled as two central spins coupled to their own XY spin-chain environment. We show that the fast bang–bang pulses can suppress the system evolution, which manifests the quantum Zeno effect. In contrast, with the increasing of the pulse interval time, the bang–bang pulses can enhance the decay of the quantum speed limit time and induce the speed-up process, which displays the quantum anti-Zeno effect. In addition, we show that the random pulses can also induce the speed-up of quantum evolution. - Highlights: • We propose a scheme to accelerate the dynamical evolution of central spins in an open system. • The quantum speed limit of central spins can be modulated by changing pulse frequency. • The random pulses can play the same role as the regular pulses do for small perturbation.
The biennial life strategy in a random environment
Roerdink, J.B.T.M.
1988-01-01
A discrete-time population model with two age classes is studied which describes the growth of biennial plants in a randomly varying environment. A fraction of the oldest age class delays its flowering each year. The solution of the model involves products of random matrices. We calculate the exact
On reflexivity of random walks in a random environment on a metric space
International Nuclear Information System (INIS)
Rozikov, U.A.
2002-11-01
In this paper, we consider random walks in random environments on a countable metric space when jumps of the walks of the fractions are finite. The transfer probabilities of the random walk from x is an element of G (where G is the considering metric space) are defined by vector p(x) is an element of R k , k>1, where {p(x), x is an element of G} is the set of independent and indentically distributed random vectors. For the random walk, a sufficient condition of nonreflexivity is obtained. Examples for metric spaces Z d free groups and free product of finite numbers cyclic groups of the second order and some other metric spaces are considered. (author)
Doppler Spectrum from Moving Scatterers in a Random Environment
DEFF Research Database (Denmark)
Andersen, Jørgen Bach; Nielsen, Jesper Ødum; Pedersen, Gert Frølund
2009-01-01
A random non-line-of-sight environment with stationary transmitter and receiver is considered. In such an environment movement of a scatterer will lead to perturbations of the otherwise static channel with a resulting Doppler spectrum. This is quite a general situation in outdoor environments wit...
Cooperation evolution in random multiplicative environments
Yaari, G.; Solomon, S.
2010-02-01
Most real life systems have a random component: the multitude of endogenous and exogenous factors influencing them result in stochastic fluctuations of the parameters determining their dynamics. These empirical systems are in many cases subject to noise of multiplicative nature. The special properties of multiplicative noise as opposed to additive noise have been noticed for a long while. Even though apparently and formally the difference between free additive vs. multiplicative random walks consists in just a move from normal to log-normal distributions, in practice the implications are much more far reaching. While in an additive context the emergence and survival of cooperation requires special conditions (especially some level of reward, punishment, reciprocity), we find that in the multiplicative random context the emergence of cooperation is much more natural and effective. We study the various implications of this observation and its applications in various contexts.
Dynamic SLA Negotiation in Autonomic Federated Environments
Rubach, Pawel; Sobolewski, Michael
Federated computing environments offer requestors the ability to dynamically invoke services offered by collaborating providers in the virtual service network. Without an efficient resource management that includes Dynamic SLA Negotiation, however, the assignment of providers to customer's requests cannot be optimized and cannot offer high reliability without relevant SLA guarantees. We propose a new SLA-based SERViceable Metacomputing Environment (SERVME) capable of matching providers based on QoS requirements and performing autonomic provisioning and deprovisioning of services according to dynamic requestor needs. This paper presents the SLA negotiation process that includes on-demand provisioning and uses an object-oriented SLA model for large-scale service-oriented systems supported by SERVME. An initial reference implementation in the SORCER environment is also described.
Conceptual Model of Dynamic Geographic Environment
Directory of Open Access Journals (Sweden)
Martínez-Rosales Miguel Alejandro
2014-04-01
Full Text Available In geographic environments, there are many and different types of geographic entities such as automobiles, trees, persons, buildings, storms, hurricanes, etc. These entities can be classified into two groups: geographic objects and geographic phenomena. By its nature, a geographic environment is dynamic, thus, it’s static modeling is not sufficient. Considering the dynamics of geographic environment, a new type of geographic entity called event is introduced. The primary target is a modeling of geographic environment as an event sequence, because in this case the semantic relations are much richer than in the case of static modeling. In this work, the conceptualization of this model is proposed. It is based on the idea to process each entity apart instead of processing the environment as a whole. After that, the so called history of each entity and its spatial relations to other entities are defined to describe the whole environment. The main goal is to model systems at a conceptual level that make use of spatial and temporal information, so that later it can serve as the semantic engine for such systems.
Performance analysis of an acoustic time reversal system in dynamic and random oceanic environments
Khosla, Sunny Rajendra
This dissertation provides a theoretical framework along with specific performance predictions for an acoustic time reversal system in shallow oceanic environments. Acoustic time-reversal is a robust means of retrofocusing acoustic energy, in both time and space, to the original sound-source location without any information about the acoustic environment in which it is deployed. The effect of three performance limiting oceanic complexities addressed, include (i)ambient noise field, (ii)reflection and volume scattering from a deterministic soliton internal wave traveling on the thermocline between two water masses, and (iii)volume scattering from a random superposition of linear internal waves convecting a gradient in the sound speed profile. The performance analysis establishes acoustic time reversal to be a promising technology for a two-way communication system in an oceanic medium. For an omni-directional noisy environment a general formulation for the probability of retrofocusing is developed that includes the effect of the medium, accounts for the system hardware and the acoustic parameters. Monte-Carlo simulations in both, a free-space environment and a shallow-ocean sound-channel environment compare well with theory. A 41 element TRA spanning a shallow water depth of 60 m is predicted to return a 70% focal probability at -15 dB SNR for a source to array range of 6 km. Preliminary research with broadband signals suggest that they should outperform narrowband response in both free space and sound channel environments. The impact of the nonlinear solitary waves is addressed using a two-path Green's function to treat the presence of a flat thermocline, and the single scattering Born approximation to address scattering from the soliton internal wave. It is predicted that a stationary soliton located along ray turning paths between the source and the TRA can lead to both enhanced and degraded focal performance. Based on extension of previous research in wave
Directory of Open Access Journals (Sweden)
Vahid Behravesh
2012-08-01
Full Text Available Presented article is studying the issue of path navigating for numerous robots. Our presented approach is based on both priority and the robust method for path finding in repetitive dynamic. Presented model can be generally implementable and useable: We do not assume any restriction regarding the quantity of levels of freedom for robots, and robots of diverse kinds can be applied at the same time. We proposed a random method and hill-climbing technique in the area based on precedence plans, which is used to determine a solution to a given trajectory planning problem and to make less the extent of total track. Our method plans trajectories for particular robots in the setting-time scope. Therefore, in order to specifying the interval of constant objects similar to other robots and the extent of the tracks which is traversed. For measuring the hazard for robots to conflict with each other it applied a method based on probability of the movements of robots. This algorithm applied to real robots with successful results. The proposed method performed and judged on both real robots and in simulation. We performed sequence of100tests with 8 robots for comparing with coordination method and current performances are effective. However, maximizing the performance is still possible. These performances estimations performed on Windows operating system and 3GHz Intel Pentium IV with and compiles with GCC 3.4. We used our PCGA robot for all experiments. For a large environment of 19×15m2where we accomplished 40tests, our model is competent to plan high-quality paths in a severely short time (less than a second. Moreover, this article utilized lookup tables to keep expenses the formerly navigated robots made, increasing the number of robots don’t expand computation time.
Entanglement dynamics in critical random quantum Ising chain with perturbations
Energy Technology Data Exchange (ETDEWEB)
Huang, Yichen, E-mail: ychuang@caltech.edu
2017-05-15
We simulate the entanglement dynamics in a critical random quantum Ising chain with generic perturbations using the time-evolving block decimation algorithm. Starting from a product state, we observe super-logarithmic growth of entanglement entropy with time. The numerical result is consistent with the analytical prediction of Vosk and Altman using a real-space renormalization group technique. - Highlights: • We study the dynamical quantum phase transition between many-body localized phases. • We simulate the dynamics of a very long random spin chain with matrix product states. • We observe numerically super-logarithmic growth of entanglement entropy with time.
Coslovich, Daniele; Kahl, Gerhard; Krakoviack, Vincent
2011-06-01
T Fischer and R L C Vink Lennard-Jones binary mixture in disordered matrices: exploring the mode coupling scenario at increasing confinement P Gallo and M Rovere Static and dynamic contributions to anomalous chain dynamics in polymer blends Marco Bernabei, Angel J Moreno and J Colmenero Anomalous transport of a tracer on percolating clusters Markus Spanner, Felix Höfling, Gerd E Schröder-Turk, Klaus Mecke and Thomas Franosch Long-wavelength anomalies in the asymptotic behavior of mode-coupling theory S K Schnyder, F Höfling, T Franosch and Th Voigtmann Dynamic arrest of colloids in porous environments: disentangling crowding and confinement Jan Kurzidim, Daniele Coslovich and Gerhard Kahl Slow dynamics, dynamic heterogeneities, and fragility of supercooled liquids confined in random media Kang Kim, Kunimasa Miyazaki and Shinji Saito
Random matrix theories and chaotic dynamics
International Nuclear Information System (INIS)
Bohigas, O.
1991-01-01
A review of some of the main ideas, assumptions and results of the Wigner-Dyson type random matrix theories (RMT) which are relevant in the general context of 'Chaos and Quantum Physics' is presented. RMT are providing interesting and unexpected clues to connect classical dynamics with quantum phenomena. It is this aspect which will be emphasised and, concerning the main body of RMT, the author will restrict himself to a minimum. However, emphasis will be put on some generalizations of the 'canonical' random matrix ensembles that increase their flexibility, rendering the incorporation of relevant physical constraints possible. (R.P.) 112 refs., 35 figs., 5 tabs
Navigation of autonomous vehicles for oil spill cleaning in dynamic and uncertain environments
Jin, Xin; Ray, Asok
2014-04-01
In the context of oil spill cleaning by autonomous vehicles in dynamic and uncertain environments, this paper presents a multi-resolution algorithm that seamlessly integrates the concepts of local navigation and global navigation based on the sensory information; the objective here is to enable adaptive decision making and online replanning of vehicle paths. The proposed algorithm provides a complete coverage of the search area for clean-up of the oil spills and does not suffer from the problem of having local minima, which is commonly encountered in potential-field-based methods. The efficacy of the algorithm is tested on a high-fidelity player/stage simulator for oil spill cleaning in a harbour, where the underlying oil weathering process is modelled as 2D random-walk particle tracking. A preliminary version of this paper was presented by X. Jin and A. Ray as 'Coverage Control of Autonomous Vehicles for Oil Spill Cleaning in Dynamic and Uncertain Environments', Proceedings of the American Control Conference, Washington, DC, June 2013, pp. 2600-2605.
Dynamical correlations for vicious random walk with a wall
International Nuclear Information System (INIS)
Nagao, Taro
2003-01-01
A one-dimensional system of nonintersecting Brownian particles is constructed as the diffusion scaling limit of Fisher's vicious random walk model. N Brownian particles start from the origin at time t=0 and undergo mutually avoiding motion until a finite time t=T. Dynamical correlation functions among the walkers are exactly evaluated in the case with a wall at the origin. Taking an asymptotic limit N→∞, we observe discontinuous transitions in the dynamical correlations. It is further shown that the vicious walk model with a wall is equivalent to a parametric random matrix model describing the crossover between the Bogoliubov-deGennes universality classes
Extremal dynamics in random replicator ecosystems
Energy Technology Data Exchange (ETDEWEB)
Kärenlampi, Petri P., E-mail: petri.karenlampi@uef.fi
2015-10-02
The seminal numerical experiment by Bak and Sneppen (BS) is repeated, along with computations with replicator models, including a greater amount of features. Both types of models do self-organize, and do obey power-law scaling for the size distribution of activity cycles. However species extinction within the replicator models interferes with the BS self-organized critical (SOC) activity. Speciation–extinction dynamics ruins any stationary state which might contain a steady size distribution of activity cycles. The BS-type activity appears as a dissimilar phenomenon in comparison to speciation–extinction dynamics in the replicator system. No criticality is found from the speciation–extinction dynamics. Neither are speciations and extinctions in real biological macroevolution known to contain any diverging distributions, or self-organization towards any critical state. Consequently, biological macroevolution probably is not a self-organized critical phenomenon. - Highlights: • Extremal Dynamics organizes random replicator ecosystems to two phases in fitness space. • Replicator systems show power-law scaling of activity. • Species extinction interferes with Bak–Sneppen type mutation activity. • Speciation–extinction dynamics does not show any critical phase transition. • Biological macroevolution probably is not a self-organized critical phenomenon.
Brownian motion, dynamical randomness and irreversibility
International Nuclear Information System (INIS)
Gaspard, Pierre
2005-01-01
A relationship giving the entropy production as the difference between a time-reversed entropy per unit time and the standard one is applied to stochastic processes of diffusion of Brownian particles between two reservoirs at different concentrations. The entropy production in the nonequilibrium steady state is interpreted in terms of a time asymmetry in the dynamical randomness between the forward and backward paths of the diffusion process
Dynamic analysis of a pumped-storage hydropower plant with random power load
Zhang, Hao; Chen, Diyi; Xu, Beibei; Patelli, Edoardo; Tolo, Silvia
2018-02-01
This paper analyzes the dynamic response of a pumped-storage hydropower plant in generating mode. Considering the elastic water column effects in the penstock, a linearized reduced order dynamic model of the pumped-storage hydropower plant is used in this paper. As the power load is always random, a set of random generator electric power output is introduced to research the dynamic behaviors of the pumped-storage hydropower plant. Then, the influences of the PI gains on the dynamic characteristics of the pumped-storage hydropower plant with the random power load are analyzed. In addition, the effects of initial power load and PI parameters on the stability of the pumped-storage hydropower plant are studied in depth. All of the above results will provide theoretical guidance for the study and analysis of the pumped-storage hydropower plant.
System-environment dynamics of X-type states in noninertial frames
International Nuclear Information System (INIS)
Wang Jieci; Jing Jiliang
2012-01-01
The system–environment dynamics of noninertial systems is investigated. It is shown that for the amplitude damping channel: (i) the biggest difference between the decoherence effect and the Unruh radiation on the dynamics of the entanglement is that the former only leads to entanglement transfer in the whole system, but the latter damages all types of entanglement; (ii) the system–environment entanglement increases and then declines, while the environment–environment entanglement always increases as the decay parameter p increases; and (iii) the thermal fields generated by the Unruh effect can promote the sudden death of entanglement between the subsystems while postponing the sudden birth of entanglement between the environments. It is also found that there are no system–environment and environment–environment entanglements when the system is coupled with the phase damping environment. - Highlights: ► The system–environment dynamics of noninertial systems is investigated. ► The roles of decoherence and Unruh effect on dynamics of entanglement are very different. ► Unruh effect promotes the sudden death of entanglement between the subsystems. ► But it postpones the sudden birth of entanglement between the environments. ► No system–reservoir and reservoir–reservoir entanglement for phase damping channel.
Using Genetic Algorithms for Navigation Planning in Dynamic Environments
Directory of Open Access Journals (Sweden)
Ferhat Uçan
2012-01-01
Full Text Available Navigation planning can be considered as a combination of searching and executing the most convenient flight path from an initial waypoint to a destination waypoint. Generally the aim is to follow the flight path, which provides minimum fuel consumption for the air vehicle. For dynamic environments, constraints change dynamically during flight. This is a special case of dynamic path planning. As the main concern of this paper is flight planning, the conditions and objectives that are most probable to be used in navigation problem are considered. In this paper, the genetic algorithm solution of the dynamic flight planning problem is explained. The evolutionary dynamic navigation planning algorithm is developed for compensating the existing deficiencies of the other approaches. The existing fully dynamic algorithms process unit changes to topology one modification at a time, but when there are several such operations occurring in the environment simultaneously, the algorithms are quite inefficient. The proposed algorithm may respond to the concurrent constraint updates in a shorter time for dynamic environment. The most secure navigation of the air vehicle is planned and executed so that the fuel consumption is minimum.
A Comparison of Three Random Number Generators for Aircraft Dynamic Modeling Applications
Grauer, Jared A.
2017-01-01
Three random number generators, which produce Gaussian white noise sequences, were compared to assess their suitability in aircraft dynamic modeling applications. The first generator considered was the MATLAB (registered) implementation of the Mersenne-Twister algorithm. The second generator was a website called Random.org, which processes atmospheric noise measured using radios to create the random numbers. The third generator was based on synthesis of the Fourier series, where the random number sequences are constructed from prescribed amplitude and phase spectra. A total of 200 sequences, each having 601 random numbers, for each generator were collected and analyzed in terms of the mean, variance, normality, autocorrelation, and power spectral density. These sequences were then applied to two problems in aircraft dynamic modeling, namely estimating stability and control derivatives from simulated onboard sensor data, and simulating flight in atmospheric turbulence. In general, each random number generator had good performance and is well-suited for aircraft dynamic modeling applications. Specific strengths and weaknesses of each generator are discussed. For Monte Carlo simulation, the Fourier synthesis method is recommended because it most accurately and consistently approximated Gaussian white noise and can be implemented with reasonable computational effort.
Dynamical continuous time random Lévy flights
Liu, Jian; Chen, Xiaosong
2016-03-01
The Lévy flights' diffusive behavior is studied within the framework of the dynamical continuous time random walk (DCTRW) method, while the nonlinear friction is introduced in each step. Through the DCTRW method, Lévy random walker in each step flies by obeying the Newton's Second Law while the nonlinear friction f(v) = - γ0v - γ2v3 being considered instead of Stokes friction. It is shown that after introducing the nonlinear friction, the superdiffusive Lévy flights converges, behaves localization phenomenon with long time limit, but for the Lévy index μ = 2 case, it is still Brownian motion.
Flexible Access Control for Dynamic Collaborative Environments
Dekker, M.A.C.
2009-01-01
Access control is used in computer systems to control access to confidential data. In this thesis we focus on access control for dynamic collaborative environments where multiple users and systems access and exchange data in an ad hoc manner. In such environments it is difficult to protect
International Nuclear Information System (INIS)
Mozeika, A; Coolen, A C C
2009-01-01
We study the Glauber dynamics of Ising spin models with random bonds, on finitely connected random graphs. We generalize a recent dynamical replica theory with which to predict the evolution of the joint spin-field distribution, to include random graphs with arbitrary degree distributions. The theory is applied to Ising ferromagnets on randomly diluted Bethe lattices, where we study the evolution of the magnetization and the internal energy. It predicts a prominent slowing down of the flow in the Griffiths phase, it suggests a further dynamical transition at lower temperatures within the Griffiths phase, and it is verified quantitatively by the results of Monte Carlo simulations
Genomic-Enabled Prediction Kernel Models with Random Intercepts for Multi-environment Trials
Cuevas, Jaime; Granato, Italo; Fritsche-Neto, Roberto; Montesinos-Lopez, Osval A.; Burgueño, Juan; Bandeira e Sousa, Massaine; Crossa, José
2018-01-01
In this study, we compared the prediction accuracy of the main genotypic effect model (MM) without G×E interactions, the multi-environment single variance G×E deviation model (MDs), and the multi-environment environment-specific variance G×E deviation model (MDe) where the random genetic effects of the lines are modeled with the markers (or pedigree). With the objective of further modeling the genetic residual of the lines, we incorporated the random intercepts of the lines (l) and generated another three models. Each of these 6 models were fitted with a linear kernel method (Genomic Best Linear Unbiased Predictor, GB) and a Gaussian Kernel (GK) method. We compared these 12 model-method combinations with another two multi-environment G×E interactions models with unstructured variance-covariances (MUC) using GB and GK kernels (4 model-method). Thus, we compared the genomic-enabled prediction accuracy of a total of 16 model-method combinations on two maize data sets with positive phenotypic correlations among environments, and on two wheat data sets with complex G×E that includes some negative and close to zero phenotypic correlations among environments. The two models (MDs and MDE with the random intercept of the lines and the GK method) were computationally efficient and gave high prediction accuracy in the two maize data sets. Regarding the more complex G×E wheat data sets, the prediction accuracy of the model-method combination with G×E, MDs and MDe, including the random intercepts of the lines with GK method had important savings in computing time as compared with the G×E interaction multi-environment models with unstructured variance-covariances but with lower genomic prediction accuracy. PMID:29476023
Optimal system size for complex dynamics in random neural networks near criticality
Energy Technology Data Exchange (ETDEWEB)
Wainrib, Gilles, E-mail: wainrib@math.univ-paris13.fr [Laboratoire Analyse Géométrie et Applications, Université Paris XIII, Villetaneuse (France); García del Molino, Luis Carlos, E-mail: garciadelmolino@ijm.univ-paris-diderot.fr [Institute Jacques Monod, Université Paris VII, Paris (France)
2013-12-15
In this article, we consider a model of dynamical agents coupled through a random connectivity matrix, as introduced by Sompolinsky et al. [Phys. Rev. Lett. 61(3), 259–262 (1988)] in the context of random neural networks. When system size is infinite, it is known that increasing the disorder parameter induces a phase transition leading to chaotic dynamics. We observe and investigate here a novel phenomenon in the sub-critical regime for finite size systems: the probability of observing complex dynamics is maximal for an intermediate system size when the disorder is close enough to criticality. We give a more general explanation of this type of system size resonance in the framework of extreme values theory for eigenvalues of random matrices.
Optimal system size for complex dynamics in random neural networks near criticality
International Nuclear Information System (INIS)
Wainrib, Gilles; García del Molino, Luis Carlos
2013-01-01
In this article, we consider a model of dynamical agents coupled through a random connectivity matrix, as introduced by Sompolinsky et al. [Phys. Rev. Lett. 61(3), 259–262 (1988)] in the context of random neural networks. When system size is infinite, it is known that increasing the disorder parameter induces a phase transition leading to chaotic dynamics. We observe and investigate here a novel phenomenon in the sub-critical regime for finite size systems: the probability of observing complex dynamics is maximal for an intermediate system size when the disorder is close enough to criticality. We give a more general explanation of this type of system size resonance in the framework of extreme values theory for eigenvalues of random matrices
Quantum Entanglement Growth under Random Unitary Dynamics
Directory of Open Access Journals (Sweden)
Adam Nahum
2017-07-01
Full Text Available Characterizing how entanglement grows with time in a many-body system, for example, after a quantum quench, is a key problem in nonequilibrium quantum physics. We study this problem for the case of random unitary dynamics, representing either Hamiltonian evolution with time-dependent noise or evolution by a random quantum circuit. Our results reveal a universal structure behind noisy entanglement growth, and also provide simple new heuristics for the “entanglement tsunami” in Hamiltonian systems without noise. In 1D, we show that noise causes the entanglement entropy across a cut to grow according to the celebrated Kardar-Parisi-Zhang (KPZ equation. The mean entanglement grows linearly in time, while fluctuations grow like (time^{1/3} and are spatially correlated over a distance ∝(time^{2/3}. We derive KPZ universal behavior in three complementary ways, by mapping random entanglement growth to (i a stochastic model of a growing surface, (ii a “minimal cut” picture, reminiscent of the Ryu-Takayanagi formula in holography, and (iii a hydrodynamic problem involving the dynamical spreading of operators. We demonstrate KPZ universality in 1D numerically using simulations of random unitary circuits. Importantly, the leading-order time dependence of the entropy is deterministic even in the presence of noise, allowing us to propose a simple coarse grained minimal cut picture for the entanglement growth of generic Hamiltonians, even without noise, in arbitrary dimensionality. We clarify the meaning of the “velocity” of entanglement growth in the 1D entanglement tsunami. We show that in higher dimensions, noisy entanglement evolution maps to the well-studied problem of pinning of a membrane or domain wall by disorder.
Quantum Entanglement Growth under Random Unitary Dynamics
Nahum, Adam; Ruhman, Jonathan; Vijay, Sagar; Haah, Jeongwan
2017-07-01
Characterizing how entanglement grows with time in a many-body system, for example, after a quantum quench, is a key problem in nonequilibrium quantum physics. We study this problem for the case of random unitary dynamics, representing either Hamiltonian evolution with time-dependent noise or evolution by a random quantum circuit. Our results reveal a universal structure behind noisy entanglement growth, and also provide simple new heuristics for the "entanglement tsunami" in Hamiltonian systems without noise. In 1D, we show that noise causes the entanglement entropy across a cut to grow according to the celebrated Kardar-Parisi-Zhang (KPZ) equation. The mean entanglement grows linearly in time, while fluctuations grow like (time )1/3 and are spatially correlated over a distance ∝(time )2/3. We derive KPZ universal behavior in three complementary ways, by mapping random entanglement growth to (i) a stochastic model of a growing surface, (ii) a "minimal cut" picture, reminiscent of the Ryu-Takayanagi formula in holography, and (iii) a hydrodynamic problem involving the dynamical spreading of operators. We demonstrate KPZ universality in 1D numerically using simulations of random unitary circuits. Importantly, the leading-order time dependence of the entropy is deterministic even in the presence of noise, allowing us to propose a simple coarse grained minimal cut picture for the entanglement growth of generic Hamiltonians, even without noise, in arbitrary dimensionality. We clarify the meaning of the "velocity" of entanglement growth in the 1D entanglement tsunami. We show that in higher dimensions, noisy entanglement evolution maps to the well-studied problem of pinning of a membrane or domain wall by disorder.
3D Multisource Full‐Waveform Inversion using Dynamic Random Phase Encoding
Boonyasiriwat, Chaiwoot; Schuster, Gerard T.
2010-01-01
We have developed a multisource full‐waveform inversion algorithm using a dynamic phase encoding strategy with dual‐randomization—both the position and polarity of simultaneous sources are randomized and changed every iteration. The dynamic dual
3D Multisource Full‐Waveform Inversion using Dynamic Random Phase Encoding
Boonyasiriwat, Chaiwoot
2010-10-17
We have developed a multisource full‐waveform inversion algorithm using a dynamic phase encoding strategy with dual‐randomization—both the position and polarity of simultaneous sources are randomized and changed every iteration. The dynamic dual‐randomization is used to promote the destructive interference of crosstalk noise resulting from blending a large number of common shot gathers into a supergather. We compare our multisource algorithm with various algorithms in a numerical experiment using the 3D SEG/EAGE overthrust model and show that our algorithm provides a higher‐quality velocity tomogram than the other methods that use only monorandomization. This suggests that increasing the degree of randomness in phase encoding should improve the quality of the inversion result.
Theory of activated glassy dynamics in randomly pinned fluids
Phan, Anh D.; Schweizer, Kenneth S.
2018-02-01
We generalize the force-level, microscopic, Nonlinear Langevin Equation (NLE) theory and its elastically collective generalization [elastically collective nonlinear Langevin equation (ECNLE) theory] of activated dynamics in bulk spherical particle liquids to address the influence of random particle pinning on structural relaxation. The simplest neutral confinement model is analyzed for hard spheres where there is no change of the equilibrium pair structure upon particle pinning. As the pinned fraction grows, cage scale dynamical constraints are intensified in a manner that increases with density. This results in the mobile particles becoming more transiently localized, with increases of the jump distance, cage scale barrier, and NLE theory mean hopping time; subtle changes of the dynamic shear modulus are predicted. The results are contrasted with recent simulations. Similarities in relaxation behavior are identified in the dynamic precursor regime, including a roughly exponential, or weakly supra-exponential, growth of the alpha time with pinning fraction and a reduction of dynamic fragility. However, the increase of the alpha time with pinning predicted by the local NLE theory is too small and severely so at very high volume fractions. The strong deviations are argued to be due to the longer range collective elasticity aspect of the problem which is expected to be modified by random pinning in a complex manner. A qualitative physical scenario is offered for how the three distinct aspects that quantify the elastic barrier may change with pinning. ECNLE theory calculations of the alpha time are then presented based on the simplest effective-medium-like treatment for how random pinning modifies the elastic barrier. The results appear to be consistent with most, but not all, trends seen in recent simulations. Key open problems are discussed with regard to both theory and simulation.
Dynamic random walks theory and applications
Guillotin-Plantard, Nadine
2006-01-01
The aim of this book is to report on the progress realized in probability theory in the field of dynamic random walks and to present applications in computer science, mathematical physics and finance. Each chapter contains didactical material as well as more advanced technical sections. Few appendices will help refreshing memories (if necessary!).· New probabilistic model, new results in probability theory· Original applications in computer science· Applications in mathematical physics· Applications in finance
A Neural Network Model to Learn Multiple Tasks under Dynamic Environments
Tsumori, Kenji; Ozawa, Seiichi
When environments are dynamically changed for agents, the knowledge acquired in an environment might be useless in future. In such dynamic environments, agents should be able to not only acquire new knowledge but also modify old knowledge in learning. However, modifying all knowledge acquired before is not efficient because the knowledge once acquired may be useful again when similar environment reappears and some knowledge can be shared among different environments. To learn efficiently in such environments, we propose a neural network model that consists of the following modules: resource allocating network, long-term & short-term memory, and environment change detector. We evaluate the model under a class of dynamic environments where multiple function approximation tasks are sequentially given. The experimental results demonstrate that the proposed model possesses stable incremental learning, accurate environmental change detection, proper association and recall of old knowledge, and efficient knowledge transfer.
Rapid Mission Design for Dynamically Complex Environments
National Aeronautics and Space Administration — Designing trajectories in dynamically complex environments is very challenging and easily becomes an intractable problem. More complex planning implies potentially...
Instanton Approach to the Langevin Motion of a Particle in a Random Potential
International Nuclear Information System (INIS)
Lopatin, A. V.; Vinokur, V. M.
2001-01-01
We develop an instanton approach to the nonequilibrium dynamics in one-dimensional random environments. The long time behavior is controlled by rare fluctuations of the disorder potential and, accordingly, by the tail of the distribution function for the time a particle needs to propagate along the system (the delay time). The proposed method allows us to find the tail of the delay time distribution function and delay time moments, providing thus an exact description of the long time dynamics. We analyze arbitrary environments covering different types of glassy dynamics: dynamics in a short-range random field, creep, and Sinai's motion
Scaling Limit of Symmetric Random Walk in High-Contrast Periodic Environment
Piatnitski, A.; Zhizhina, E.
2017-11-01
The paper deals with the asymptotic properties of a symmetric random walk in a high contrast periodic medium in Z^d, d≥1. From the existing homogenization results it follows that under diffusive scaling the limit behaviour of this random walk need not be Markovian. The goal of this work is to show that if in addition to the coordinate of the random walk in Z^d we introduce an extra variable that characterizes the position of the random walk inside the period then the limit dynamics of this two-component process is Markov. We describe the limit process and observe that the components of the limit process are coupled. We also prove the convergence in the path space for the said random walk.
Dynamics of a physiologically structured population in a time-varying environment
DEFF Research Database (Denmark)
Heilmann, Irene Louise Torpe; Starke, Jens; Andersen, Ken Haste
2016-01-01
Physiologically structured population models have become a valuable tool to model the dynamics of populations. In a stationary environment such models can exhibit equilibrium solutions as well as periodic solutions. However, for many organisms the environment is not stationary, but varies more...... or less regularly. In order to understand the interaction between an external environmental forcing and the internal dynamics in a population, we examine the response of a physiologically structured population model to a periodic variation in the food resource. We explore the addition of forcing in two...... cases: (A) where the population dynamics is in equilibrium in a stationary environment, and (B) where the population dynamics exhibits a periodic solution in a stationary environment. When forcing is applied in case A, the solutions are mainly periodic. In case B the forcing signal interacts...
Directory of Open Access Journals (Sweden)
Frank Pennekamp
Full Text Available The development of video-based monitoring methods allows for rapid, dynamic and accurate monitoring of individuals or communities, compared to slower traditional methods, with far reaching ecological and evolutionary applications. Large amounts of data are generated using video-based methods, which can be effectively processed using machine learning (ML algorithms into meaningful ecological information. ML uses user defined classes (e.g. species, derived from a subset (i.e. training data of video-observed quantitative features (e.g. phenotypic variation, to infer classes in subsequent observations. However, phenotypic variation often changes due to environmental conditions, which may lead to poor classification, if environmentally induced variation in phenotypes is not accounted for. Here we describe a framework for classifying species under changing environmental conditions based on the random forest classification. A sliding window approach was developed that restricts temporal and environmentally conditions to improve the classification. We tested our approach by applying the classification framework to experimental data. The experiment used a set of six ciliate species to monitor changes in community structure and behavior over hundreds of generations, in dozens of species combinations and across a temperature gradient. Differences in biotic and abiotic conditions caused simplistic classification approaches to be unsuccessful. In contrast, the sliding window approach allowed classification to be highly successful, as phenotypic differences driven by environmental change, could be captured by the classifier. Importantly, classification using the random forest algorithm showed comparable success when validated against traditional, slower, manual identification. Our framework allows for reliable classification in dynamic environments, and may help to improve strategies for long-term monitoring of species in changing environments. Our
A design method of bilateral control system with uncertain dynamics of environments
International Nuclear Information System (INIS)
Yamada, Kou; Iida, Noriyuki; Kudou, Naoki
2002-01-01
In the present paper, we examine a design method for master-slave systems of bilateral control systems. In master-slave systems, human operator works to achieve tasks via the master and the salve system. The salve system contacts the environment and works the tasks. According to past studies, when the dynamics of environment is treated as uncertainties, the number of unstable poles of the slave system is required to be equivalent to that of the slave system with the dynamics of the environment. In some cases, the number of unstable poles of the slave system with the dynamics of environment is different from that of the slave system. We propose a simple design method of bilateral control systems such that the number of unstable poles of the slave system with the dynamics of environmental is different from that of the slave system without the dynamics of the environment. (author)
Kobayashi, Tetsuya J.; Sughiyama, Yuki
2017-07-01
Adaptation in a fluctuating environment is a process of fueling environmental information to gain fitness. Living systems have gradually developed strategies for adaptation from random and passive diversification of the phenotype to more proactive decision making, in which environmental information is sensed and exploited more actively and effectively. Understanding the fundamental relation between fitness and information is therefore crucial to clarify the limits and universal properties of adaptation. In this work, we elucidate the underlying stochastic and information-thermodynamic structure in this process, by deriving causal fluctuation relations (FRs) of fitness and information. Combined with a duality between phenotypic and environmental dynamics, the FRs reveal the limit of fitness gain, the relation of time reversibility with the achievability of the limit, and the possibility and condition for gaining excess fitness due to environmental fluctuation. The loss of fitness due to causal constraints and the limited capacity of real organisms is shown to be the difference between time-forward and time-backward path probabilities of phenotypic and environmental dynamics. Furthermore, the FRs generalize the concept of the evolutionary stable state (ESS) for fluctuating environment by giving the probability that the optimal strategy on average can be invaded by a suboptimal one owing to rare environmental fluctuation. These results clarify the information-thermodynamic structures in adaptation and evolution.
Investigations Into Internal and External Aspects of Dynamic Agent-Environment Couplings
Dautenhahn, Kerstin
This paper originates from my work on `social agents'. An issue which I consider important to this kind of research is the dynamic coupling of an agent with its social and non-social environment. I hypothesize `internal dynamics' inside an agent as a basic step towards understanding. The paper therefore focuses on the internal and external dynamics which couple an agent to its environment. The issue of embodiment in animals and artifacts and its relation to `social dynamics' is discussed first. I argue that embodiment is linked to a concept of a body and is not necessarily given when running a control program on robot hardware. I stress the individual characteristics of an embodied cognitive system, as well as its social embeddedness. I outline the framework of a physical-psychological state space which changes dynamically in a self-modifying way as a holistic approach towards embodied human and artificial cognition. This framework is meant to discuss internal and external dynamics of an embodied, natural or artificial agent. In order to stress the importance of a dynamic memory I introduce the concept of an `autobiographical agent'. The second part of the paper gives an example of the implementation of a physical agent, a robot, which is dynamically coupled to its environment by balancing on a seesaw. For the control of the robot a behavior-oriented approach using the dynamical systems metaphor is used. The problem is studied through building a complete and co-adapted robot-environment system. A seesaw which varies its orientation with one or two degrees of freedom is used as the artificial `habitat'. The problem of stabilizing the body axis by active motion on a seesaw is solved by using two inclination sensors and a parallel, behavior-oriented control architecture. Some experiments are described which demonstrate the exploitation of the dynamics of the robot-environment system.
Effects of random noise in a dynamical model of love
Energy Technology Data Exchange (ETDEWEB)
Xu Yong, E-mail: hsux3@nwpu.edu.cn [Department of Applied Mathematics, Northwestern Polytechnical University, Xi' an 710072 (China); Gu Rencai; Zhang Huiqing [Department of Applied Mathematics, Northwestern Polytechnical University, Xi' an 710072 (China)
2011-07-15
Highlights: > We model the complexity and unpredictability of psychology as Gaussian white noise. > The stochastic system of love is considered including bifurcation and chaos. > We show that noise can both suppress and induce chaos in dynamical models of love. - Abstract: This paper aims to investigate the stochastic model of love and the effects of random noise. We first revisit the deterministic model of love and some basic properties are presented such as: symmetry, dissipation, fixed points (equilibrium), chaotic behaviors and chaotic attractors. Then we construct a stochastic love-triangle model with parametric random excitation due to the complexity and unpredictability of the psychological system, where the randomness is modeled as the standard Gaussian noise. Stochastic dynamics under different three cases of 'Romeo's romantic style', are examined and two kinds of bifurcations versus the noise intensity parameter are observed by the criteria of changes of top Lyapunov exponent and shape of stationary probability density function (PDF) respectively. The phase portraits and time history are carried out to verify the proposed results, and the good agreement can be found. And also the dual roles of the random noise, namely suppressing and inducing chaos are revealed.
Effects of random noise in a dynamical model of love
International Nuclear Information System (INIS)
Xu Yong; Gu Rencai; Zhang Huiqing
2011-01-01
Highlights: → We model the complexity and unpredictability of psychology as Gaussian white noise. → The stochastic system of love is considered including bifurcation and chaos. → We show that noise can both suppress and induce chaos in dynamical models of love. - Abstract: This paper aims to investigate the stochastic model of love and the effects of random noise. We first revisit the deterministic model of love and some basic properties are presented such as: symmetry, dissipation, fixed points (equilibrium), chaotic behaviors and chaotic attractors. Then we construct a stochastic love-triangle model with parametric random excitation due to the complexity and unpredictability of the psychological system, where the randomness is modeled as the standard Gaussian noise. Stochastic dynamics under different three cases of 'Romeo's romantic style', are examined and two kinds of bifurcations versus the noise intensity parameter are observed by the criteria of changes of top Lyapunov exponent and shape of stationary probability density function (PDF) respectively. The phase portraits and time history are carried out to verify the proposed results, and the good agreement can be found. And also the dual roles of the random noise, namely suppressing and inducing chaos are revealed.
Zhang, Chengwei; Li, Xiaohong; Li, Shuxin; Feng, Zhiyong
2017-09-20
Biological environment is uncertain and its dynamic is similar to the multiagent environment, thus the research results of the multiagent system area can provide valuable insights to the understanding of biology and are of great significance for the study of biology. Learning in a multiagent environment is highly dynamic since the environment is not stationary anymore and each agent's behavior changes adaptively in response to other coexisting learners, and vice versa. The dynamics becomes more unpredictable when we move from fixed-agent interaction environments to multiagent social learning framework. Analytical understanding of the underlying dynamics is important and challenging. In this work, we present a social learning framework with homogeneous learners (e.g., Policy Hill Climbing (PHC) learners), and model the behavior of players in the social learning framework as a hybrid dynamical system. By analyzing the dynamical system, we obtain some conditions about convergence or non-convergence. We experimentally verify the predictive power of our model using a number of representative games. Experimental results confirm the theoretical analysis. Under multiagent social learning framework, we modeled the behavior of agent in biologic environment, and theoretically analyzed the dynamics of the model. We present some sufficient conditions about convergence or non-convergence and prove them theoretically. It can be used to predict the convergence of the system.
The ising model on the dynamical triangulated random surface
International Nuclear Information System (INIS)
Aleinov, I.D.; Migelal, A.A.; Zmushkow, U.V.
1990-01-01
The critical properties of Ising model on the dynamical triangulated random surface embedded in D-dimensional Euclidean space are investigated. The strong coupling expansion method is used. The transition to thermodynamical limit is performed by means of continuous fractions
Cone Algorithm of Spinning Vehicles under Dynamic Coning Environment
Directory of Open Access Journals (Sweden)
Shuang-biao Zhang
2015-01-01
Full Text Available Due to the fact that attitude error of vehicles has an intense trend of divergence when vehicles undergo worsening coning environment, in this paper, the model of dynamic coning environment is derived firstly. Then, through investigation of the effect on Euler attitude algorithm for the equivalency of traditional attitude algorithm, it is found that attitude error is actually the roll angle error including drifting error and oscillating error, which is induced directly by dynamic coning environment and further affects the pitch angle and yaw angle through transferring. Based on definition of the cone frame and cone attitude, a cone algorithm is proposed by rotation relationship to calculate cone attitude, and the relationship between cone attitude and Euler attitude of spinning vehicle is established. Through numerical simulations with different conditions of dynamic coning environment, it is shown that the induced error of Euler attitude fluctuates by the variation of precession and nutation, especially by that of nutation, and the oscillating frequency of roll angle error is twice that of pitch angle error and yaw angle error. In addition, the rotation angle is more competent to describe the spinning process of vehicles under coning environment than Euler angle gamma, and the real pitch angle and yaw angle are calculated finally.
Population dynamics in variable environments
Tuljapurkar, Shripad
1990-01-01
Demography relates observable facts about individuals to the dynamics of populations. If the dynamics are linear and do not change over time, the classical theory of Lotka (1907) and Leslie (1945) is the central tool of demography. This book addresses the situation when the assumption of constancy is dropped. In many practical situations, a population will display unpredictable variation over time in its vital rates, which must then be described in statistical terms. Most of this book is concerned with the theory of populations which are subject to random temporal changes in their vital rates, although other kinds of variation (e. g. , cyclical) are also dealt with. The central questions are: how does temporal variation work its way into a population's future, and how does it affect our interpretation of a population's past. The results here are directed at demographers of humans and at popula tion biologists. The uneven mathematical level is dictated by the material, but the book should be accessible to re...
Jiang, Yanhua; Xiong, Guangming; Chen, Huiyan; Lee, Dah-Jye
2014-01-01
This paper presents a monocular visual odometry algorithm that incorporates a wheeled vehicle model for ground vehicles. The main innovation of this algorithm is to use the single-track bicycle model to interpret the relationship between the yaw rate and side slip angle, which are the two most important parameters that describe the motion of a wheeled vehicle. Additionally, the pitch angle is also considered since the planar-motion hypothesis often fails due to the dynamic characteristics of wheel suspensions and tires in real-world environments. Linearization is used to calculate a closed-form solution of the motion parameters that works as a hypothesis generator in a RAndom SAmple Consensus (RANSAC) scheme to reduce the complexity in solving equations involving trigonometric. All inliers found are used to refine the winner solution through minimizing the reprojection error. Finally, the algorithm is applied to real-time on-board visual localization applications. Its performance is evaluated by comparing against the state-of-the-art monocular visual odometry methods using both synthetic data and publicly available datasets over several kilometers in dynamic outdoor environments. PMID:25256109
Directory of Open Access Journals (Sweden)
Yanhua Jiang
2014-09-01
Full Text Available This paper presents a monocular visual odometry algorithm that incorporates a wheeled vehicle model for ground vehicles. The main innovation of this algorithm is to use the single-track bicycle model to interpret the relationship between the yaw rate and side slip angle, which are the two most important parameters that describe the motion of a wheeled vehicle. Additionally, the pitch angle is also considered since the planar-motion hypothesis often fails due to the dynamic characteristics of wheel suspensions and tires in real-world environments. Linearization is used to calculate a closed-form solution of the motion parameters that works as a hypothesis generator in a RAndom SAmple Consensus (RANSAC scheme to reduce the complexity in solving equations involving trigonometric. All inliers found are used to refine the winner solution through minimizing the reprojection error. Finally, the algorithm is applied to real-time on-board visual localization applications. Its performance is evaluated by comparing against the state-of-the-art monocular visual odometry methods using both synthetic data and publicly available datasets over several kilometers in dynamic outdoor environments.
On the pertinence to Physics of random walks induced by random dynamical systems: a survey
International Nuclear Information System (INIS)
Petritis, Dimitri
2016-01-01
Let be an abstract space and a denumerable (finite or infinite) alphabet. Suppose that is a family of functions such that for all we have and a family of transformations . The pair (( S_a)_a , ( p_a)_a ) is termed an iterated function system with place dependent probabilities. Such systems can be thought as generalisations of random dynamical systems. As a matter of fact, suppose we start from a given ; we pick then randomly, with probability p_a (x) , the transformation S_a and evolve to S_a (x) . We are interested in the behaviour of the system when the iteration continues indefinitely. Random walks of the above type are omnipresent in both classical and quantum Physics. To give a small sample of occurrences we mention: random walks on the affine group, random walks on Penrose lattices, random walks on partially directed lattices, evolution of density matrices induced by repeated quantum measurements, quantum channels, quantum random walks, etc. In this article, we review some basic properties of such systems and provide with a pathfinder in the extensive bibliography (both on mathematical and physical sides) where the main results have been originally published. (paper)
Two Notes on Measure-Theoretic Entropy of Random Dynamical Systems
Institute of Scientific and Technical Information of China (English)
YuJun ZHU
2009-01-01
In this paper, Brin-Katok local entropy formula and Katok's definition of the measure theoretic entropy using spanning set are established for the random dynamical system over an invertible ergodic system.
Random walk in dynamically disordered chains: Poisson white noise disorder
International Nuclear Information System (INIS)
Hernandez-Garcia, E.; Pesquera, L.; Rodriguez, M.A.; San Miguel, M.
1989-01-01
Exact solutions are given for a variety of models of random walks in a chain with time-dependent disorder. Dynamic disorder is modeled by white Poisson noise. Models with site-independent (global) and site-dependent (local) disorder are considered. Results are described in terms of an affective random walk in a nondisordered medium. In the cases of global disorder the effective random walk contains multistep transitions, so that the continuous limit is not a diffusion process. In the cases of local disorder the effective process is equivalent to usual random walk in the absence of disorder but with slower diffusion. Difficulties associated with the continuous-limit representation of random walk in a disordered chain are discussed. In particular, the authors consider explicit cases in which taking the continuous limit and averaging over disorder sources do not commute
Mapping and tracking of moving objects in dynamic environments
CSIR Research Space (South Africa)
Pancham, A
2012-10-01
Full Text Available In order for mobile robots to operate in dynamic or real world environments they must be able to localise themselves while building a map of the environment, and detect and track moving objects. This work involves the research and implementation...
Gossips and prejudices: ergodic randomized dynamics in social networks
Frasca, Paolo; Ravazzi, Chiara; Tempo, Roberto; Ishii, Hideaki
In this paper we study a new model of opinion dynamics in social networks, which has two main features. First, agents asynchronously interact in pairs, and these pairs are chosen according to a random process: following recent literature, we refer to this communication model as “gossiping‿. Second,
Quantum Coherent Dynamics Enhanced by Synchronization with Nonequilibrium Environments
Ishikawa, Akira; Okada, Ryo; Uchiyama, Kazuharu; Hori, Hirokazu; Kobayashi, Kiyoshi
2018-05-01
We report the discovery of the anomalous enhancement of quantum coherent dynamics (CD) due to a non-Markovian mechanism originating from not thermal-equilibrium phonon baths but nonequilibrium coherent phonons. CD is an elementary process for quantum phenomena in nanosystems, such as excitation transfer (ET) in semiconductor nanostructures and light-harvesting systems. CD occurs in homogeneous nanosystems because system inhomogeneity typically destroys coherence. In real systems, however, nanosystems behave as open systems surrounded by environments such as phonon systems. Typically, CD in inhomogeneous nanosystems is enhanced by the absorption and emission of thermal-equilibrium phonons, and the enhancement is described by the conventional master equation. On the other hand, CD is also enhanced by synchronization between population dynamics in nanosystems and coherent phonons; namely, coherent phonons, which are self-consistently induced by phase matching with Rabi oscillation, are fed back to enhance CD. This anomalous enhancement of CD essentially originates from the nonequilibrium and dynamical non-Markovian nature of coherent phonon environments, and the enhancement is firstly predicted by applying time-dependent projection operators to nonequilibrium and dynamical environments. Moreover, CD is discussed by considering ET from a donor to an acceptor. It is found that the enhancement of ET by synchronization with coherent phonons depends on the competition between the output time from a system to an acceptor and the formation time of coherent phonons. These findings in this study will stimulate the design and manipulation of CD via structured environments from the viewpoint of application to nano-photoelectronic devices.
Evolution of a Fluctuating Population in a Randomly Switching Environment.
Wienand, Karl; Frey, Erwin; Mobilia, Mauro
2017-10-13
Environment plays a fundamental role in the competition for resources, and hence in the evolution of populations. Here, we study a well-mixed, finite population consisting of two strains competing for the limited resources provided by an environment that randomly switches between states of abundance and scarcity. Assuming that one strain grows slightly faster than the other, we consider two scenarios-one of pure resource competition, and one in which one strain provides a public good-and investigate how environmental randomness (external noise) coupled to demographic (internal) noise determines the population's fixation properties and size distribution. By analytical means and simulations, we show that these coupled sources of noise can significantly enhance the fixation probability of the slower-growing species. We also show that the population size distribution can be unimodal, bimodal, or multimodal and undergoes noise-induced transitions between these regimes when the rate of switching matches the population's growth rate.
NeCamp, Timothy; Kilbourne, Amy; Almirall, Daniel
2017-08-01
Cluster-level dynamic treatment regimens can be used to guide sequential treatment decision-making at the cluster level in order to improve outcomes at the individual or patient-level. In a cluster-level dynamic treatment regimen, the treatment is potentially adapted and re-adapted over time based on changes in the cluster that could be impacted by prior intervention, including aggregate measures of the individuals or patients that compose it. Cluster-randomized sequential multiple assignment randomized trials can be used to answer multiple open questions preventing scientists from developing high-quality cluster-level dynamic treatment regimens. In a cluster-randomized sequential multiple assignment randomized trial, sequential randomizations occur at the cluster level and outcomes are observed at the individual level. This manuscript makes two contributions to the design and analysis of cluster-randomized sequential multiple assignment randomized trials. First, a weighted least squares regression approach is proposed for comparing the mean of a patient-level outcome between the cluster-level dynamic treatment regimens embedded in a sequential multiple assignment randomized trial. The regression approach facilitates the use of baseline covariates which is often critical in the analysis of cluster-level trials. Second, sample size calculators are derived for two common cluster-randomized sequential multiple assignment randomized trial designs for use when the primary aim is a between-dynamic treatment regimen comparison of the mean of a continuous patient-level outcome. The methods are motivated by the Adaptive Implementation of Effective Programs Trial which is, to our knowledge, the first-ever cluster-randomized sequential multiple assignment randomized trial in psychiatry.
A dynamic random effects multinomial logit model of household car ownership
DEFF Research Database (Denmark)
Bue Bjørner, Thomas; Leth-Petersen, Søren
2007-01-01
Using a large household panel we estimate demand for car ownership by means of a dynamic multinomial model with correlated random effects. Results suggest that the persistence in car ownership observed in the data should be attributed to both true state dependence and to unobserved heterogeneity...... (random effects). It also appears that random effects related to single and multiple car ownership are correlated, suggesting that the IIA assumption employed in simple multinomial models of car ownership is invalid. Relatively small elasticities with respect to income and car costs are estimated...
Measuring competitive fitness in dynamic environments.
Razinkov, Ivan A; Baumgartner, Bridget L; Bennett, Matthew R; Tsimring, Lev S; Hasty, Jeff
2013-10-24
Most yeast genes are dispensable for optimal growth in laboratory cultures. However, this apparent lack of fitness contribution is difficult to reconcile with the theory of natural selection. Here we use stochastic modeling to show that environmental fluctuations can select for a genetic mechanism that does not affect growth in static laboratory environments. We then present a novel experimental platform for measuring the fitness levels of specific genotypes in fluctuating environments. We test this platform by monitoring a mixed culture of two yeast strains that differ in their ability to respond to changes in carbon source yet exhibit the same fitness level in static conditions. When the sugar in the growth medium was switched between galactose and glucose, the wild-type strain gained a growth advantage over the mutant strain. Interestingly, both our computational and experimental results show that the strength of the adaptive advantage conveyed by the wild-type genotype depends on the total number of carbon source switches, not on the frequency of these fluctuations. Our results illustrate the selective power of environmental fluctuations on seemingly slight phenotypic differences in cellular response dynamics and underscore the importance of dynamic processes in the evolution of species.
Dynamics of quantum discord in a quantum critical environment
International Nuclear Information System (INIS)
Xi Zhengjun; Li Yongming; Lu Xiaoming; Sun Zhe
2011-01-01
We study the dynamics of quantum discord (QD) of two qubits independently coupled to an Ising spin chain in a transverse field, which exhibits a quantum phase transition. For this model, we drive the corresponding Kraus operators, obtain the analytic results of QD and compare the dynamics of QD with the dynamics of relative entropy of entanglement nearby the critical point. It is shown that the impact of the quantum criticality environment on QD can be concentrated in a very narrow region nearby the critical point, so it supplies an efficient way to detect the critical points. In the vicinity of the critical point, the evolution of QD is shown to be more complicated than that of entanglement. Furthermore, we find that separable states can also be used to reflect the quantum criticality of the environment.
Slam estimation in dynamic outdoor environments
Lu, Zheyuan; Hu, Zhencheng; Uchimura, Keiichi; コ, シンテイ; ウチムラ, ケイイチ; 胡, 振程; 内村, 圭一
2010-01-01
This paper describes and compares three different approaches to estimate simultaneous localization and mapping (SLAM) in dynamic outdoor environments. SLAM has been intensively researched in recent years in the field of robotics and intelligent vehicles, many approaches have been proposed including occupancy grid mapping method (Bayesian, Dempster-Shafer and Fuzzy Logic), Localization estimation method (edge or point features based direct scan matching techniques, probabilistic likelihood, EK...
Directory of Open Access Journals (Sweden)
Lei Wang
2014-01-01
Full Text Available A dynamic model of gear transmission system of wind turbine is built with consideration of randomness of loads and parameters. The dynamic response of the system is obtained using the theory of random sampling and the Runge-Kutta method. According to rain flow counting principle, the dynamic meshing forces are converted into a series of luffing fatigue load spectra. The amplitude and frequency of the equivalent stress are obtained using equivalent method of Geber quadratic curve. Moreover, the dynamic reliability model of components and system is built according to the theory of probability of cumulative fatigue damage. The system reliability with the random variation of parameters is calculated and the influence of random parameters on dynamic reliability of components is analyzed. In the end, the results of the proposed method are compared with that of Monte Carlo method. This paper can be instrumental in the design of wind turbine gear transmission system with more advantageous dynamic reliability.
Adaptation and inertia in dynamic environments
DEFF Research Database (Denmark)
Stieglitz, Nils; Knudsen, Thorbjørn; Becker, Markus C.
2016-01-01
responses to these dimensions. Our results show how frequent directional changes undermine the value of exploration and decisively shift performance advantages to inert organizations that restrict exploration. In contrast, increased environmental variance rewards exploration. Our results also show that......Research summary: We address conflicting claims and mixed empirical findings about adaptation as a response to increased environmental dynamism. We disentangle distinct dimensions of environmental dynamism—the direction, magnitude, and frequency of change—and identify how selection shapes adaptive...... business environments characterized by persistent trends and by large, infrequently occurring structural shocks reward strategic pursuit of temporary advantage. Thus, exploration and strategic flexibility are preferred strategies. In contrast, the challenge in frequently changing environments with fleeting...
Advancement of vision-based SLAM from static to dynamic environments
CSIR Research Space (South Africa)
Pancham, A
2012-11-01
Full Text Available Simultaneous Localization And Mapping (SLAM) allows a mobile robot to construct a map of an unknown, static environment and simultaneously localize itself. Real world environments, however, have dynamic objects such as people, doors that open...
2010-07-28
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-707] In the Matter of Certain Dynamic Random Access Memory Semiconductors and Products Containing Same, Including Memory Modules; Notice of a... importation of certain dynamic random access memory semiconductors and products containing same, including...
Opinion dynamics on an adaptive random network
Benczik, I. J.; Benczik, S. Z.; Schmittmann, B.; Zia, R. K. P.
2009-04-01
We revisit the classical model for voter dynamics in a two-party system with two basic modifications. In contrast to the original voter model studied in regular lattices, we implement the opinion formation process in a random network of agents in which interactions are no longer restricted by geographical distance. In addition, we incorporate the rapidly changing nature of the interpersonal relations in the model. At each time step, agents can update their relationships. This update is determined by their own opinion, and by their preference to make connections with individuals sharing the same opinion, or rather with opponents. In this way, the network is built in an adaptive manner, in the sense that its structure is correlated and evolves with the dynamics of the agents. The simplicity of the model allows us to examine several issues analytically. We establish criteria to determine whether consensus or polarization will be the outcome of the dynamics and on what time scales these states will be reached. In finite systems consensus is typical, while in infinite systems a disordered metastable state can emerge and persist for infinitely long time before consensus is reached.
On a randomly imperfect spherical cap pressurized by a random ...
African Journals Online (AJOL)
On a randomly imperfect spherical cap pressurized by a random dynamic load. ... In this paper, we investigate a dynamical system in a random setting of dual ... characterization of the random process for determining the dynamic buckling load ...
Dynamic thermal environment and thermal comfort.
Zhu, Y; Ouyang, Q; Cao, B; Zhou, X; Yu, J
2016-02-01
Research has shown that a stable thermal environment with tight temperature control cannot bring occupants more thermal comfort. Instead, such an environment will incur higher energy costs and produce greater CO2 emissions. Furthermore, this may lead to the degeneration of occupants' inherent ability to combat thermal stress, thereby weakening thermal adaptability. Measured data from many field investigations have shown that the human body has a higher acceptance to the thermal environment in free-running buildings than to that in air-conditioned buildings with similar average parameters. In naturally ventilated environments, occupants have reported superior thermal comfort votes and much greater thermal comfort temperature ranges compared to air-conditioned environments. This phenomenon is an integral part of the adaptive thermal comfort model. In addition, climate chamber experiments have proven that people prefer natural wind to mechanical wind in warm conditions; in other words, dynamic airflow can provide a superior cooling effect. However, these findings also indicate that significant questions related to thermal comfort remain unanswered. For example, what is the cause of these phenomena? How we can build a comfortable and healthy indoor environment for human beings? This article summarizes a series of research achievements in recent decades, tries to address some of these unanswered questions, and attempts to summarize certain problems for future research. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
International Nuclear Information System (INIS)
Gustavsson, K; Mehlig, B; Meneguz, E; Reeks, M
2012-01-01
We have performed numerical simulations of inertial particles in random model flows in the white-noise limit (at zero Kubo number, Ku = 0) and at finite Kubo numbers. Our results for the moments of relative inertial-particle velocities are in good agreement with recent theoretical results (Gustavsson and Mehlig 2011a) based on the formation of phase-space singularities in the inertial-particle dynamics (caustics). We discuss the relation between three recent approaches describing the dynamics and spatial distribution of inertial particles suspended in turbulent flows: caustic formation, real-space singularities of the deformation tensor and random uncorrelated motion. We discuss how the phase- and real-space singularities are related. Their formation is well understood in terms of a local theory. We summarise the implications for random uncorrelated motion. (paper)
Survey for service selection approaches in dynamic environments
CSIR Research Space (South Africa)
Manqele, Lindelweyizizwe S
2017-09-01
Full Text Available The usage of the service selection approaches across different dynamic service provisioning environments has increased the challenges associated with an effective method that can be used to select a relevant service. The use of service selection...
Multiformity of inherent randomicity and visitation density in n symbolic dynamics
International Nuclear Information System (INIS)
Zhang Yagang; Wang Changjiang
2007-01-01
The multiformity of inherent randomicity and visitation density in n symbolic dynamics will be clarified in this paper. These stochastic symbolic sequences bear three features. The distribution of frequency, inter-occurrence times and the alignment of two random sequences are amplified in detail. The features of visitation density in surjective maps presents catholicity and the catholicity in n letters randomicity has the same measure foundation. We hope to offer a symbolic platform that satisfies these stochastic properties and to attempt to study certain properties of DNA base sequences, 20 amino acids symbolic sequences of proteid structure, and the time series that can be symbolic in finance market et al
Neutron detection using soft errors in dynamic Random Access Memories
International Nuclear Information System (INIS)
Darambara, D.G.; Spyrou, N.M.
1994-01-01
The purpose of this paper is to present results from experiments that have been performed to show the memory cycle time dependence of the soft errors produced by the interaction of alpha particles with dynamic random access memory devices, with a view to using these as position sensitive detectors. Furthermore, a preliminary feasibility study being carried out indicates the use of dynamic RAMs as neutron detectors by the utilization of (n, α) capture reactions in a Li converter placed on the top of the active area of the memory chip. ((orig.))
Quantum dynamics in nanoscale magnets in dissipative environments
Miyashita, S; Saito, K; Kobayashi, H.; de Raedt, H.A.
2000-01-01
In discrete energy structure of nanoscale magnets, nonadiabatic transitions at avoided level crossings lead to fundamental processes of dynamics of magnetizations. The thermal environment causes dissipative effects on these processes. In this paper we review the features of the nonadiabatic
Towards the Verification of Safety-critical Autonomous Systems in Dynamic Environments
Directory of Open Access Journals (Sweden)
Adina Aniculaesei
2016-12-01
Full Text Available There is an increasing necessity to deploy autonomous systems in highly heterogeneous, dynamic environments, e.g. service robots in hospitals or autonomous cars on highways. Due to the uncertainty in these environments, the verification results obtained with respect to the system and environment models at design-time might not be transferable to the system behavior at run time. For autonomous systems operating in dynamic environments, safety of motion and collision avoidance are critical requirements. With regard to these requirements, Macek et al. [6] define the passive safety property, which requires that no collision can occur while the autonomous system is moving. To verify this property, we adopt a two phase process which combines static verification methods, used at design time, with dynamic ones, used at run time. In the design phase, we exploit UPPAAL to formalize the autonomous system and its environment as timed automata and the safety property as TCTL formula and to verify the correctness of these models with respect to this property. For the runtime phase, we build a monitor to check whether the assumptions made at design time are also correct at run time. If the current system observations of the environment do not correspond to the initial system assumptions, the monitor sends feedback to the system and the system enters a passive safe state.
The Living, Dynamic and Complex Environment Care in Intensive Care Unit.
Backes, Marli Terezinha Stein; Erdmann, Alacoque Lorenzini; Büscher, Andreas
2015-01-01
to understand the meaning of the Adult Intensive Care Unit environment of care, experienced by professionals working in this unit, managers, patients, families and professional support services, as well as build a theoretical model about the Adult Intensive Care Unit environment of care. Grounded Theory, both for the collection and for data analysis. Based on theoretical sampling, we carried out 39 in-depth interviews semi-structured from three different Adult Intensive Care Units. built up the so-called substantive theory "Sustaining life in the complex environment of care in the Intensive Care Unit". It was bounded by eight categories: "caring and continuously monitoring the patient" and "using appropriate and differentiated technology" (causal conditions); "Providing a suitable environment" and "having relatives with concern" (context); "Mediating facilities and difficulties" (intervenienting conditions); "Organizing the environment and managing the dynamics of the unit" (strategy) and "finding it difficult to accept and deal with death" (consequences). confirmed the thesis that "the care environment in the Intensive Care Unit is a living environment, dynamic and complex that sustains the life of her hospitalized patients".
Generation and Application of Virtual Dynamic Learning Environments
Directory of Open Access Journals (Sweden)
Esther Zaretsky
2009-04-01
Full Text Available The generation of virtual dynamic learning environments by mental imagery improved physical education of student teachers. Up-to-date studies showed that training computerized simulations improved spatial abilities, especially visualization of the body's movements in space, and enhanced academic achievements. The main program of the research concentrated on creating teaching units focusing on a variety of physical skills through computerized dynamic presentations. The findings showed that as the student teachers practiced the creation of simulations through the PowerPoint Software, it became clear to them how the computer is related to physical activities. Consequently their presentations became highly animated, and applied to the natural environment. The student teachers applied their presentations in their practical classroom and reported about their pupils' progress in physical skills. Moreover the motivation of the student teachers and pupils to both modes of learning, manipulating virtually and physically, was enhanced.
Directory of Open Access Journals (Sweden)
Erhan ÜNAL
2017-04-01
Full Text Available The purpose of this study is to design a problem based collaborative learning environment supported by dynamic web technologies and examine students’ views about this learning environment. The study was designed as a qualitative research. 36 students who took Object Oriented Programming I-II course from a public university at the department of computer programming participated in the study. During the research process, the Object Oriented Programming I-II course was designed with incorporating different dynamic web technologies (Edmodo, Google Services, and Mind42 and Nelson (1999’s collaborative problem solving method. At the end of the course, there were focus group interviews in regards to the students’ views on a learning environment supported by dynamic web technologies and collaborative problem solving method. At the end of the focus group interviews, 4 themes were obtained from the students’ views, including positive aspects of the learning environment, difficulties faced in the learning environment, advantages of the learning environment, and skills gained as a result of the project. The results suggest that problem based collaborative learning methods and dynamic web technologies can be used in learning environments in community colleges.
Biophysical dynamics in disorderly environments.
Nelson, David R
2012-01-01
Three areas where time-independent disorder plays a key role in biological dynamics far from equilibrium are reviewed. We first discuss the anomalous localization dynamics that arises when a single species spreads in space and time via diffusion and fluid advection in the presence of frozen heterogeneities in the growth rate. Next we treat the unzipping of double-stranded DNA as a function of force and temperature, a challenge that must be surmounted every time a cell divides. Heterogeneity in the DNA sequence dominates the physics of single-molecule force-extension curves for a broad range of forces upon approaching a sharp unzipping transition. The dynamics of the unzipping fork exhibits anomalous drift and diffusion in a similar range above this transition, with energy barriers that scale as the square root of the genome size. Finally, we describe how activated peptidoglycan strand extension sites, called dislocations in materials science, can mediate the growth of bacterial cell walls. Enzymatically driven circumferential motions of a few dozen of these defects are sufficient to describe the exponential elongation rates observed in experiments on Escherichia coli in a nutrient-rich environment. However, long-range elastic forces transmitted by the peptidoglycan meshwork cause the moving dislocations to interact not only with each other, but also with a disorderly array of frozen, inactivated strand ends.
A study of dynamical behavior of space environment
Wu, S. T.
1974-01-01
Studies have covered a wide range of problems in the space environment, such as the problems of the dynamical behavior of the thermosphere, hydromagnetic wave propagation in the ionosphere, and interplanetary space environment. The theories used to analyze these problems range from a continuum theory of magnetohydrodynamics to the kinetic theory of free molecular flow. This is because the problems encountered covered the entire range of the Knudsen number (i.e., the ratio of mean free path to the characteristic length). Significant results are summarized.
Exact wave packet decoherence dynamics in a discrete spectrum environment
International Nuclear Information System (INIS)
Tu, Matisse W Y; Zhang Weimin
2008-01-01
We find an exact analytical solution of the reduced density matrix from the Feynman-Vernon influence functional theory for a wave packet in an environment containing a few discrete modes. We obtain two intrinsic energy scales relating to the time scales of the system and the environment. The different relationship between these two scales alters the overall form of the solution of the system. We also introduce a decoherence measure for a single wave packet which is defined as the ratio of Schroedinger uncertainty over the delocalization extension of the wave packet and characterizes the time-evolution behaviour of the off-diagonal reduced density matrix element. We utilize the exact solution and the decoherence measure to study the wave packet decoherence dynamics. We further demonstrate how the dynamical diffusion of the wave packet leads to non-Markovian decoherence in such a microscopic environment.
Geometrical Similarity Transformations in Dynamic Geometry Environment Geogebra
Andraphanova, Natalia V.
2015-01-01
The subject of the article is usage of modern computer technologies through the example of interactive geometry environment Geogebra as an innovative technology of representing and studying of geometrical material which involves such didactical opportunities as vizualisation, simulation and dynamics. There is shown a classification of geometric…
Phenotypic switching of populations of cells in a stochastic environment
Hufton, Peter G.; Lin, Yen Ting; Galla, Tobias
2018-02-01
In biology phenotypic switching is a common bet-hedging strategy in the face of uncertain environmental conditions. Existing mathematical models often focus on periodically changing environments to determine the optimal phenotypic response. We focus on the case in which the environment switches randomly between discrete states. Starting from an individual-based model we derive stochastic differential equations to describe the dynamics, and obtain analytical expressions for the mean instantaneous growth rates based on the theory of piecewise-deterministic Markov processes. We show that optimal phenotypic responses are non-trivial for slow and intermediate environmental processes, and systematically compare the cases of periodic and random environments. The best response to random switching is more likely to be heterogeneity than in the case of deterministic periodic environments, net growth rates tend to be higher under stochastic environmental dynamics. The combined system of environment and population of cells can be interpreted as host-pathogen interaction, in which the host tries to choose environmental switching so as to minimise growth of the pathogen, and in which the pathogen employs a phenotypic switching optimised to increase its growth rate. We discuss the existence of Nash-like mutual best-response scenarios for such host-pathogen games.
Implementation of a Mobile Robot Platform Navigating in Dynamic Environment
Directory of Open Access Journals (Sweden)
Belaidi Hadjira
2017-01-01
Full Text Available Currently, problems of autonomous wheeled mobile robots in unknown environments are great challenge. Obstacle avoidance and path planning are the back bone of autonomous control as it makes robot able to reach its destination without collision. Dodging obstacles in dynamic and uncertain environment is the most complex part of obstacle avoidance and path planning tasks. This work deals with the implementation of an easy approach of static and dynamic obstacles avoidance. The robot starts by executing a free optimal path loaded into its controller; then, it uses its sensors to avoid the unexpected obstacles which may occur in that path during navigation.
Random neural Q-learning for obstacle avoidance of a mobile robot in unknown environments
Directory of Open Access Journals (Sweden)
Jing Yang
2016-07-01
Full Text Available The article presents a random neural Q-learning strategy for the obstacle avoidance problem of an autonomous mobile robot in unknown environments. In the proposed strategy, two independent modules, namely, avoidance without considering the target and goal-seeking without considering obstacles, are first trained using the proposed random neural Q-learning algorithm to obtain their best control policies. Then, the two trained modules are combined based on a switching function to realize the obstacle avoidance in unknown environments. For the proposed random neural Q-learning algorithm, a single-hidden layer feedforward network is used to approximate the Q-function to estimate the Q-value. The parameters of the single-hidden layer feedforward network are modified using the recently proposed neural algorithm named the online sequential version of extreme learning machine, where the parameters of the hidden nodes are assigned randomly and the sample data can come one by one. However, different from the original online sequential version of extreme learning machine algorithm, the initial output weights are estimated subjected to quadratic inequality constraint to improve the convergence speed. Finally, the simulation results demonstrate that the proposed random neural Q-learning strategy can successfully solve the obstacle avoidance problem. Also, the higher learning efficiency and better generalization ability are achieved by the proposed random neural Q-learning algorithm compared with the Q-learning based on the back-propagation method.
The Living, Dynamic and Complex Environment Care in Intensive Care Unit
Directory of Open Access Journals (Sweden)
Marli Terezinha Stein Backes
2015-06-01
Full Text Available OBJECTIVE: to understand the meaning of the Adult Intensive Care Unit environment of care, experienced by professionals working in this unit, managers, patients, families and professional support services, as well as build a theoretical model about the Adult Intensive Care Unit environment of care.METHOD: Grounded Theory, both for the collection and for data analysis. Based on theoretical sampling, we carried out 39 in-depth interviews semi-structured from three different Adult Intensive Care Units.RESULTS: built up the so-called substantive theory "Sustaining life in the complex environment of care in the Intensive Care Unit". It was bounded by eight categories: "caring and continuously monitoring the patient" and "using appropriate and differentiated technology" (causal conditions; "Providing a suitable environment" and "having relatives with concern" (context; "Mediating facilities and difficulties" (intervenienting conditions; "Organizing the environment and managing the dynamics of the unit" (strategy and "finding it difficult to accept and deal with death" (consequences.CONCLUSION: confirmed the thesis that "the care environment in the Intensive Care Unit is a living environment, dynamic and complex that sustains the life of her hospitalized patients".
Trajectory Planning for Robots in Dynamic Human Environments
DEFF Research Database (Denmark)
Svenstrup, Mikael; Bak, Thomas; Andersen, Hans Jørgen
2010-01-01
This paper present a trajectory planning algorithm for a robot operating in dynamic human environments. Environments such as pedestrian streets, hospital corridors and train stations. We formulate the problem as planning a minimal cost trajectory through a potential field, defined from...... is enhanced to direct the search and account for the kinodynamic robot constraints. Compared to standard RRT, the algorithm proposed here find the robot control input that will drive the robot towards a new sampled point in the configuration space. The effect of the input is simulated, to add a reachable...
Li, Tianlong; Chang, Xiaocong; Wu, Zhiguang; Li, Jinxing; Shao, Guangbin; Deng, Xinghong; Qiu, Jianbin; Guo, Bin; Zhang, Guangyu; He, Qiang; Li, Longqiu; Wang, Joseph
2017-09-26
Self-propelled micro- and nanoscale robots represent a rapidly emerging and fascinating robotics research area. However, designing autonomous and adaptive control systems for operating micro/nanorobotics in complex and dynamically changing environments, which is a highly demanding feature, is still an unmet challenge. Here we describe a smart microvehicle for precise autonomous navigation in complicated environments and traffic scenarios. The fully autonomous navigation system of the smart microvehicle is composed of a microscope-coupled CCD camera, an artificial intelligence planner, and a magnetic field generator. The microscope-coupled CCD camera provides real-time localization of the chemically powered Janus microsphere vehicle and environmental detection for path planning to generate optimal collision-free routes, while the moving direction of the microrobot toward a reference position is determined by the external electromagnetic torque. Real-time object detection offers adaptive path planning in response to dynamically changing environments. We demonstrate that the autonomous navigation system can guide the vehicle movement in complex patterns, in the presence of dynamically changing obstacles, and in complex biological environments. Such a navigation system for micro/nanoscale vehicles, relying on vision-based close-loop control and path planning, is highly promising for their autonomous operation in complex dynamic settings and unpredictable scenarios expected in a variety of realistic nanoscale scenarios.
A symbolic dynamics approach for the complexity analysis of chaotic pseudo-random sequences
International Nuclear Information System (INIS)
Xiao Fanghong
2004-01-01
By considering a chaotic pseudo-random sequence as a symbolic sequence, authors present a symbolic dynamics approach for the complexity analysis of chaotic pseudo-random sequences. The method is applied to the cases of Logistic map and one-way coupled map lattice to demonstrate how it works, and a comparison is made between it and the approximate entropy method. The results show that this method is applicable to distinguish the complexities of different chaotic pseudo-random sequences, and it is superior to the approximate entropy method
Dynamic Simulation of Random Packing of Polydispersive Fine Particles
Ferraz, Carlos Handrey Araujo; Marques, Samuel Apolinário
2018-02-01
In this paper, we perform molecular dynamic (MD) simulations to study the two-dimensional packing process of both monosized and random size particles with radii ranging from 1.0 to 7.0 μm. The initial positions as well as the radii of five thousand fine particles were defined inside a rectangular box by using a random number generator. Both the translational and rotational movements of each particle were considered in the simulations. In order to deal with interacting fine particles, we take into account both the contact forces and the long-range dispersive forces. We account for normal and static/sliding tangential friction forces between particles and between particle and wall by means of a linear model approach, while the long-range dispersive forces are computed by using a Lennard-Jones-like potential. The packing processes were studied assuming different long-range interaction strengths. We carry out statistical calculations of the different quantities studied such as packing density, mean coordination number, kinetic energy, and radial distribution function as the system evolves over time. We find that the long-range dispersive forces can strongly influence the packing process dynamics as they might form large particle clusters, depending on the intensity of the long-range interaction strength.
Dynamics of backlight luminance for using smartphone in dark environment
Na, Nooree; Jang, Jiho; Suk, Hyeon-Jeong
2014-02-01
This study developed dynamic backlight luminance, which gradually changes as time passes for comfortable use of a smartphone display in a dark environment. The study was carried out in two stages. In the first stage, a user test was conducted to identify the optimal luminance by assessing the facial squint level, subjective glare evaluation, eye blink frequency and users' subjective preferences. Based on the results of the user test, the dynamics of backlight luminance was designed. It has two levels of luminance: the optimal level for initial viewing to avoid sudden glare or fatigue to users' eyes, and the optimal level for constant viewing, which is comfortable, but also bright enough for constant reading of the displayed material. The luminance for initial viewing starts from 10 cd/m2, and it gradually increases to 40 cd/m2 for users' visual comfort at constant viewing for 20 seconds; In the second stage, a validation test on dynamics of backlight luminance was conducted to verify the effectiveness of the developed dynamics. It involving users' subjective preferences, eye blink frequency, and brainwave analysis using the electroencephalogram (EEG) to confirm that the proposed dynamic backlighting enhances users' visual comfort and visual cognition, particularly for using smartphones in a dark environment.
Effect of random microstructure on crack propagation in cortical bone tissue under dynamic loading
International Nuclear Information System (INIS)
Gao, X; Li, S; Adel-Wahab, A; Silberschmidt, V
2013-01-01
A fracture process in a cortical bone tissue depends on various factors, such as bone loss, heterogeneous microstructure, variation of its material properties and accumulation of microcracks. Therefore, it is crucial to comprehend and describe the effect of microstructure and material properties of the components of cortical bone on crack propagation in a dynamic loading regime. At the microscale level, osteonal bone demonstrates a random distribution of osteons imbedded in an interstitial matrix and surrounded by a thin layer known as cement line. Such a distribution of osteons can lead to localization of deformation processes. The global mechanical behavior of bone and the crack-propagation process are affected by such localization under external loads. Hence, the random distribution of microstructural features plays a key role in the fracture process of cortical bone. The purpose of this study is two-fold: firstly, to develop two-dimensional microstructured numerical models of cortical bone tissue in order to examine the interaction between the propagating crack and bone microstructure using an extended finite-element method under both quasi-static and dynamic loading conditions; secondly, to investigate the effect of randomly distributed microstructural constituents on the crack propagation processes and crack paths. The obtained results of numerical simulations showed the influence of random microstructure on the global response of bone tissue at macroscale and on the crack-propagation process for quasi-static and dynamic loading conditions
Dynamic shared state maintenance in distributed virtual environments
Hamza-Lup, Felix George
Advances in computer networks and rendering systems facilitate the creation of distributed collaborative environments in which the distribution of information at remote locations allows efficient communication. Particularly challenging are distributed interactive Virtual Environments (VE) that allow knowledge sharing through 3D information. The purpose of this work is to address the problem of latency in distributed interactive VE and to develop a conceptual model for consistency maintenance in these environments based on the participant interaction model. An area that needs to be explored is the relationship between the dynamic shared state and the interaction with the virtual entities present in the shared scene. Mixed Reality (MR) and VR environments must bring the human participant interaction into the loop through a wide range of electronic motion sensors, and haptic devices. Part of the work presented here defines a novel criterion for categorization of distributed interactive VE and introduces, as well as analyzes, an adaptive synchronization algorithm for consistency maintenance in such environments. As part of the work, a distributed interactive Augmented Reality (AR) testbed and the algorithm implementation details are presented. Currently the testbed is part of several research efforts at the Optical Diagnostics and Applications Laboratory including 3D visualization applications using custom built head-mounted displays (HMDs) with optical motion tracking and a medical training prototype for endotracheal intubation and medical prognostics. An objective method using quaternion calculus is applied for the algorithm assessment. In spite of significant network latency, results show that the dynamic shared state can be maintained consistent at multiple remotely located sites. In further consideration of the latency problems and in the light of the current trends in interactive distributed VE applications, we propose a hybrid distributed system architecture for
Continuous state branching processes in random environment: The Brownian case
Palau, Sandra; Pardo, Juan Carlos
2015-01-01
We consider continuous state branching processes that are perturbed by a Brownian motion. These processes are constructed as the unique strong solution of a stochastic differential equation. The long-term extinction and explosion behaviours are studied. In the stable case, the extinction and explosion probabilities are given explicitly. We find three regimes for the asymptotic behaviour of the explosion probability and, as in the case of branching processes in random environment, we find five...
Quantum dynamics simulation of a small quantum system embedded in a classical environment
International Nuclear Information System (INIS)
Berendsen, H.J.C.; Mavri, J.; Mavri, J.
1996-01-01
The authors wish to consider quantum-dynamical processes that are not restricted to motion on a ground state Born-Oppenheimer surface, but may involve transitions between states. The authors interest is in such processes occurring in a complex environment that modulates the quantum process and interacts with it. In a system containing thousands degrees of freedom, the essential quantum behaviour is generally restricted to a small subsystem containing only a few degrees of freedom, while the environment can be treated classically. The challenge is threefold: 1) to treat the quantum subsystem correctly in a quantum-dynamical sense, 2) to treat the environment correctly in a classical dynamical sense, 3) to couple both systems in such a way that errors in the average or long-term behaviour are minimized. After an exposition of the theory, an insight into quantum-dynamical behaviour by using pictorial analogue, valid for a simple two-level system is given. Then, the authors give a short survey of applications related to collision processes involving quantum levels of one particle, and to proton transfer processes along hydrogen bonds in complex environments. Finally, they conclude with some general remarks on the validity of their approach. (N.T.)
International Nuclear Information System (INIS)
Cheng, J-C; Rahmim, Arman; Blinder, Stephan; Camborde, Marie-Laure; Raywood, Kelvin; Sossi, Vesna
2007-01-01
We describe an ordinary Poisson list-mode expectation maximization (OP-LMEM) algorithm with a sinogram-based scatter correction method based on the single scatter simulation (SSS) technique and a random correction method based on the variance-reduced delayed-coincidence technique. We also describe a practical approximate scatter and random-estimation approach for dynamic PET studies based on a time-averaged scatter and random estimate followed by scaling according to the global numbers of true coincidences and randoms for each temporal frame. The quantitative accuracy achieved using OP-LMEM was compared to that obtained using the histogram-mode 3D ordinary Poisson ordered subset expectation maximization (3D-OP) algorithm with similar scatter and random correction methods, and they showed excellent agreement. The accuracy of the approximated scatter and random estimates was tested by comparing time activity curves (TACs) as well as the spatial scatter distribution from dynamic non-human primate studies obtained from the conventional (frame-based) approach and those obtained from the approximate approach. An excellent agreement was found, and the time required for the calculation of scatter and random estimates in the dynamic studies became much less dependent on the number of frames (we achieved a nearly four times faster performance on the scatter and random estimates by applying the proposed method). The precision of the scatter fraction was also demonstrated for the conventional and the approximate approach using phantom studies
Complex networks: when random walk dynamics equals synchronization
International Nuclear Information System (INIS)
Kriener, Birgit; Anand, Lishma; Timme, Marc
2012-01-01
Synchrony prevalently emerges from the interactions of coupled dynamical units. For simple systems such as networks of phase oscillators, the asymptotic synchronization process is assumed to be equivalent to a Markov process that models standard diffusion or random walks on the same network topology. In this paper, we analytically derive the conditions for such equivalence for networks of pulse-coupled oscillators, which serve as models for neurons and pacemaker cells interacting by exchanging electric pulses or fireflies interacting via light flashes. We find that the pulse synchronization process is less simple, but there are classes of, e.g., network topologies that ensure equivalence. In particular, local dynamical operators are required to be doubly stochastic. These results provide a natural link between stochastic processes and deterministic synchronization on networks. Tools for analyzing diffusion (or, more generally, Markov processes) may now be transferred to pin down features of synchronization in networks of pulse-coupled units such as neural circuits. (paper)
Automated planning through abstractions in dynamic and stochastic environments
Martínez Muñoz, Moisés
2016-01-01
Mención Internacional en el título de doctor Generating sequences of actions - plans - for an automatic system, like a robot, using Automated Planning is particularly diflicult in stochastic and/or dynamic environments. These plans are composed of actions whose execution, in certain scenarios, might fail, which in tum prevents the execution of the rest of the actions in the plan. Also, in some environments, plans must he generated fast, hoth at the start of the execution and after every ex...
Dynamic fair node spectrum allocation for ad hoc networks using random matrices
Rahmes, Mark; Lemieux, George; Chester, Dave; Sonnenberg, Jerry
2015-05-01
Dynamic Spectrum Access (DSA) is widely seen as a solution to the problem of limited spectrum, because of its ability to adapt the operating frequency of a radio. Mobile Ad Hoc Networks (MANETs) can extend high-capacity mobile communications over large areas where fixed and tethered-mobile systems are not available. In one use case with high potential impact, cognitive radio employs spectrum sensing to facilitate the identification of allocated frequencies not currently accessed by their primary users. Primary users own the rights to radiate at a specific frequency and geographic location, while secondary users opportunistically attempt to radiate at a specific frequency when the primary user is not using it. We populate a spatial radio environment map (REM) database with known information that can be leveraged in an ad hoc network to facilitate fair path use of the DSA-discovered links. Utilization of high-resolution geospatial data layers in RF propagation analysis is directly applicable. Random matrix theory (RMT) is useful in simulating network layer usage in nodes by a Wishart adjacency matrix. We use the Dijkstra algorithm for discovering ad hoc network node connection patterns. We present a method for analysts to dynamically allocate node-node path and link resources using fair division. User allocation of limited resources as a function of time must be dynamic and based on system fairness policies. The context of fair means that first available request for an asset is not envied as long as it is not yet allocated or tasked in order to prevent cycling of the system. This solution may also save money by offering a Pareto efficient repeatable process. We use a water fill queue algorithm to include Shapley value marginal contributions for allocation.
Nonlinear complexity behaviors of agent-based 3D Potts financial dynamics with random environments
Xing, Yani; Wang, Jun
2018-02-01
A new microscopic 3D Potts interaction financial price model is established in this work, to investigate the nonlinear complexity behaviors of stock markets. 3D Potts model, which extends the 2D Potts model to three-dimensional, is a cubic lattice model to explain the interaction behavior among the agents. In order to explore the complexity of real financial markets and the 3D Potts financial model, a new random coarse-grained Lempel-Ziv complexity is proposed to certain series, such as the price returns, the price volatilities, and the random time d-returns. Then the composite multiscale entropy (CMSE) method is applied to the intrinsic mode functions (IMFs) and the corresponding shuffled data to study the complexity behaviors. The empirical results indicate that the 3D financial model is feasible.
Evolution of the concentration PDF in random environments modeled by global random walk
Suciu, Nicolae; Vamos, Calin; Attinger, Sabine; Knabner, Peter
2013-04-01
The evolution of the probability density function (PDF) of concentrations of chemical species transported in random environments is often modeled by ensembles of notional particles. The particles move in physical space along stochastic-Lagrangian trajectories governed by Ito equations, with drift coefficients given by the local values of the resolved velocity field and diffusion coefficients obtained by stochastic or space-filtering upscaling procedures. A general model for the sub-grid mixing also can be formulated as a system of Ito equations solving for trajectories in the composition space. The PDF is finally estimated by the number of particles in space-concentration control volumes. In spite of their efficiency, Lagrangian approaches suffer from two severe limitations. Since the particle trajectories are constructed sequentially, the demanded computing resources increase linearly with the number of particles. Moreover, the need to gather particles at the center of computational cells to perform the mixing step and to estimate statistical parameters, as well as the interpolation of various terms to particle positions, inevitably produce numerical diffusion in either particle-mesh or grid-free particle methods. To overcome these limitations, we introduce a global random walk method to solve the system of Ito equations in physical and composition spaces, which models the evolution of the random concentration's PDF. The algorithm consists of a superposition on a regular lattice of many weak Euler schemes for the set of Ito equations. Since all particles starting from a site of the space-concentration lattice are spread in a single numerical procedure, one obtains PDF estimates at the lattice sites at computational costs comparable with those for solving the system of Ito equations associated to a single particle. The new method avoids the limitations concerning the number of particles in Lagrangian approaches, completely removes the numerical diffusion, and
Short-time dynamics of random-bond Potts ferromagnet with continuous self-dual quenched disorders
Pan, Z. Q.; Ying, H. P.; Gu, D. W.
2001-01-01
We present Monte Carlo simulation results of random-bond Potts ferromagnet with the Olson-Young self-dual distribution of quenched disorders in two-dimensions. By exploring the short-time scaling dynamics, we find universal power-law critical behavior of the magnetization and Binder cumulant at the critical point, and thus obtain estimates of the dynamic exponent $z$ and magnetic exponent $\\eta$, as well as the exponent $\\theta$. Our special attention is paid to the dynamic process for the $q...
Dynamic supplier selection problem considering full truck load in probabilistic environment
Sutrisno, Wicaksono, Purnawan Adi
2017-11-01
In this paper, we propose a mathematical model in a probabilistic dynamic optimization to solve a dynamic supplier selection problem considering full truck load in probabilistic environment where some parameters are uncertain. We determine the optimal strategy for this problem by using stochastic dynamic programming. We give some numerical experiments to evaluate and analyze the model. From the results, the optimal supplier and the optimal product volume from the optimal supplier were determined for each time period.
Energy Technology Data Exchange (ETDEWEB)
Tuvshinjargal, Doopalam; Lee, Deok Jin [Kunsan National University, Gunsan (Korea, Republic of)
2015-06-15
In this paper, an efficient dynamic reactive motion planning method for an autonomous vehicle in a dynamic environment is proposed. The purpose of the proposed method is to improve the robustness of autonomous robot motion planning capabilities within dynamic, uncertain environments by integrating a virtual plane-based reactive motion planning technique with a sensor fusion-based obstacle detection approach. The dynamic reactive motion planning method assumes a local observer in the virtual plane, which allows the effective transformation of complex dynamic planning problems into simple stationary ones proving the speed and orientation information between the robot and obstacles. In addition, the sensor fusion-based obstacle detection technique allows the pose estimation of moving obstacles using a Kinect sensor and sonar sensors, thus improving the accuracy and robustness of the reactive motion planning approach. The performance of the proposed method was demonstrated through not only simulation studies but also field experiments using multiple moving obstacles in hostile dynamic environments.
International Nuclear Information System (INIS)
Tuvshinjargal, Doopalam; Lee, Deok Jin
2015-01-01
In this paper, an efficient dynamic reactive motion planning method for an autonomous vehicle in a dynamic environment is proposed. The purpose of the proposed method is to improve the robustness of autonomous robot motion planning capabilities within dynamic, uncertain environments by integrating a virtual plane-based reactive motion planning technique with a sensor fusion-based obstacle detection approach. The dynamic reactive motion planning method assumes a local observer in the virtual plane, which allows the effective transformation of complex dynamic planning problems into simple stationary ones proving the speed and orientation information between the robot and obstacles. In addition, the sensor fusion-based obstacle detection technique allows the pose estimation of moving obstacles using a Kinect sensor and sonar sensors, thus improving the accuracy and robustness of the reactive motion planning approach. The performance of the proposed method was demonstrated through not only simulation studies but also field experiments using multiple moving obstacles in hostile dynamic environments
Directory of Open Access Journals (Sweden)
Chao Luo
Full Text Available A novel algebraic approach is proposed to study dynamics of asynchronous random Boolean networks where a random number of nodes can be updated at each time step (ARBNs. In this article, the logical equations of ARBNs are converted into the discrete-time linear representation and dynamical behaviors of systems are investigated. We provide a general formula of network transition matrices of ARBNs as well as a necessary and sufficient algebraic criterion to determine whether a group of given states compose an attractor of length[Formula: see text] in ARBNs. Consequently, algorithms are achieved to find all of the attractors and basins in ARBNs. Examples are showed to demonstrate the feasibility of the proposed scheme.
The dynamic radiation environment assimilation model (DREAM)
International Nuclear Information System (INIS)
Reeves, Geoffrey D.; Koller, Josef; Tokar, Robert L.; Chen, Yue; Henderson, Michael G.; Friedel, Reiner H.
2010-01-01
The Dynamic Radiation Environment Assimilation Model (DREAM) is a 3-year effort sponsored by the US Department of Energy to provide global, retrospective, or real-time specification of the natural and potential nuclear radiation environments. The DREAM model uses Kalman filtering techniques that combine the strengths of new physical models of the radiation belts with electron observations from long-term satellite systems such as GPS and geosynchronous systems. DREAM includes a physics model for the production and long-term evolution of artificial radiation belts from high altitude nuclear explosions. DREAM has been validated against satellites in arbitrary orbits and consistently produces more accurate results than existing models. Tools for user-specific applications and graphical displays are in beta testing and a real-time version of DREAM has been in continuous operation since November 2009.
Lotka-Volterra systems in environments with randomly disordered temporal periodicity
Naess, Arvid; Dimentberg, Michael F.; Gaidai, Oleg
2008-08-01
A generalized Lotka-Volterra model for a pair of interacting populations of predators and prey is studied. The model accounts for the prey’s interspecies competition and therefore is asymptotically stable, whereas its oscillatory behavior is induced by temporal variations in environmental conditions simulated by those in the prey’s reproduction rate. Two models of the variations are considered, each of them combining randomness with “hidden” periodicity. The stationary joint probability density function (PDF) of the number of predators and prey is calculated numerically by the path integration (PI) method based on the use of characteristic functions and the fast Fourier transform. The numerical results match those for the asymptotic case of white-noise variations for which an analytical solution is available. Several examples are studied, with calculations of important characteristics of oscillations, for example the expected rate of up-crossings given the level of the predator number. The calculated PDFs may be of predominantly random (unimodal) or predominantly periodic nature (bimodal). Thus, the PI method has been demonstrated to be a powerful tool for studies of the dynamics of predator-prey pairs. The method captures the random oscillations as observed in nature, taking into account potential periodicity in the environmental conditions.
Environment and initial state engineered dynamics of quantum and classical correlations
Energy Technology Data Exchange (ETDEWEB)
Wang, Cheng-Zhi, E-mail: czczwang@outlook.com; Li, Chun-Xian; Guo, Yu; Lu, Geng-Biao; Ding, Kai-He
2016-11-15
Based on an open exactly solvable system coupled to an environment with nontrivial spectral density, we connect the features of quantum and classical correlations with some features of the environment, initial states of the system, and the presence of initial system–environment correlations. Some interesting features not revealed before are observed by changing the structure of environment, the initial states of system, and the presence of initial system–environment correlations. The main results are as follows. (1) Quantum correlations exhibit temporary freezing and permanent freezing even at high temperature of the environment, for which the necessary and sufficient conditions are given by three propositions. (2) Quantum correlations display a transition from temporary freezing to permanent freezing by changing the structure of environment. (3) Quantum correlations can be enhanced all the time, for which the condition is put forward. (4) The one-to-one dependency relationship between all kinds of dynamic behaviors of quantum correlations and the initial states of the system as well as environment structure is established. (5) In the presence of initial system–environment correlations, quantum correlations under local environment exhibit temporary multi-freezing phenomenon. While under global environment they oscillate, revive, and damp, an explanation for which is given. - Highlights: • Various interesting behaviors of quantum and classical correlations are observed in an open exactly solvable model. • The important effects of the bath structure on quantum and classical correlations are revealed. • The one-to-one correspondence between the type of dynamical behavior of quantum discord and the initial state is given. • Quantum correlations are given in the presence of initial qubits–bath correlations.
Environment and initial state engineered dynamics of quantum and classical correlations
International Nuclear Information System (INIS)
Wang, Cheng-Zhi; Li, Chun-Xian; Guo, Yu; Lu, Geng-Biao; Ding, Kai-He
2016-01-01
Based on an open exactly solvable system coupled to an environment with nontrivial spectral density, we connect the features of quantum and classical correlations with some features of the environment, initial states of the system, and the presence of initial system–environment correlations. Some interesting features not revealed before are observed by changing the structure of environment, the initial states of system, and the presence of initial system–environment correlations. The main results are as follows. (1) Quantum correlations exhibit temporary freezing and permanent freezing even at high temperature of the environment, for which the necessary and sufficient conditions are given by three propositions. (2) Quantum correlations display a transition from temporary freezing to permanent freezing by changing the structure of environment. (3) Quantum correlations can be enhanced all the time, for which the condition is put forward. (4) The one-to-one dependency relationship between all kinds of dynamic behaviors of quantum correlations and the initial states of the system as well as environment structure is established. (5) In the presence of initial system–environment correlations, quantum correlations under local environment exhibit temporary multi-freezing phenomenon. While under global environment they oscillate, revive, and damp, an explanation for which is given. - Highlights: • Various interesting behaviors of quantum and classical correlations are observed in an open exactly solvable model. • The important effects of the bath structure on quantum and classical correlations are revealed. • The one-to-one correspondence between the type of dynamical behavior of quantum discord and the initial state is given. • Quantum correlations are given in the presence of initial qubits–bath correlations.
Value of the future: Discounting in random environments
Farmer, J. Doyne; Geanakoplos, John; Masoliver, Jaume; Montero, Miquel; Perelló, Josep
2015-05-01
We analyze how to value future costs and benefits when they must be discounted relative to the present. We introduce the subject for the nonspecialist and take into account the randomness of the economic evolution by studying the discount function of three widely used processes for the dynamics of interest rates: Ornstein-Uhlenbeck, Feller, and log-normal. Besides obtaining exact expressions for the discount function and simple asymptotic approximations, we show that historical average interest rates overestimate long-run discount rates and that this effect can be large. In other words, long-run discount rates should be substantially less than the average rate observed in the past, otherwise any cost-benefit calculation would be biased in favor of the present and against interventions that may protect the future.
Directory of Open Access Journals (Sweden)
ChunPing Ren
2017-01-01
Full Text Available We propose a novel mathematical algorithm to offer a solution for the inverse random dynamic force identification in practical engineering. Dealing with the random dynamic force identification problem using the proposed algorithm, an improved maximum entropy (IME regularization technique is transformed into an unconstrained optimization problem, and a novel conjugate gradient (NCG method was applied to solve the objective function, which was abbreviated as IME-NCG algorithm. The result of IME-NCG algorithm is compared with that of ME, ME-CG, ME-NCG, and IME-CG algorithm; it is found that IME-NCG algorithm is available for identifying the random dynamic force due to smaller root mean-square-error (RMSE, lower restoration time, and fewer iterative steps. Example of engineering application shows that L-curve method is introduced which is better than Generalized Cross Validation (GCV method and is applied to select regularization parameter; thus the proposed algorithm can be helpful to alleviate the ill-conditioned problem in identification of dynamic force and to acquire an optimal solution of inverse problem in practical engineering.
Random and non-random mating populations: Evolutionary dynamics in meiotic drive.
Sarkar, Bijan
2016-01-01
Game theoretic tools are utilized to analyze a one-locus continuous selection model of sex-specific meiotic drive by considering nonequivalence of the viabilities of reciprocal heterozygotes that might be noticed at an imprinted locus. The model draws attention to the role of viability selections of different types to examine the stable nature of polymorphic equilibrium. A bridge between population genetics and evolutionary game theory has been built up by applying the concept of the Fundamental Theorem of Natural Selection. In addition to pointing out the influences of male and female segregation ratios on selection, configuration structure reveals some noted results, e.g., Hardy-Weinberg frequencies hold in replicator dynamics, occurrence of faster evolution at the maximized variance fitness, existence of mixed Evolutionarily Stable Strategy (ESS) in asymmetric games, the tending evolution to follow not only a 1:1 sex ratio but also a 1:1 different alleles ratio at particular gene locus. Through construction of replicator dynamics in the group selection framework, our selection model introduces a redefining bases of game theory to incorporate non-random mating where a mating parameter associated with population structure is dependent on the social structure. Also, the model exposes the fact that the number of polymorphic equilibria will depend on the algebraic expression of population structure. Copyright © 2015 Elsevier Inc. All rights reserved.
Heyl, Markus; Vojta, Matthias
2015-09-01
In this work we formulate the nonequilibrium dynamical renormalization group (ndRG). The ndRG represents a general renormalization-group scheme for the analytical description of the real-time dynamics of complex quantum many-body systems. In particular, the ndRG incorporates time as an additional scale which turns out to be important for the description of the long-time dynamics. It can be applied to both translational-invariant and disordered systems. As a concrete application, we study the real-time dynamics after a quench between two quantum critical points of different universality classes. We achieve this by switching on weak disorder in a one-dimensional transverse-field Ising model initially prepared at its clean quantum critical point. By comparing to numerically exact simulations for large systems, we show that the ndRG is capable of analytically capturing the full crossover from weak to infinite randomness. We analytically study signatures of localization in both real space and Fock space.
DYNAMIC STRAIN MAPPING AND REAL-TIME DAMAGE STATE ESTIMATION UNDER BIAXIAL RANDOM FATIGUE LOADING
National Aeronautics and Space Administration — DYNAMIC STRAIN MAPPING AND REAL-TIME DAMAGE STATE ESTIMATION UNDER BIAXIAL RANDOM FATIGUE LOADING SUBHASISH MOHANTY*, ADITI CHATTOPADHYAY, JOHN N. RAJADAS, AND CLYDE...
Magnetic field line random walk in two-dimensional dynamical turbulence
Wang, J. F.; Qin, G.; Ma, Q. M.; Song, T.; Yuan, S. B.
2017-08-01
The field line random walk (FLRW) of magnetic turbulence is one of the important topics in plasma physics and astrophysics. In this article, by using the field line tracing method, the mean square displacement (MSD) of FLRW is calculated on all possible length scales for pure two-dimensional turbulence with the damping dynamical model. We demonstrate that in order to describe FLRW with the damping dynamical model, a new dimensionless quantity R is needed to be introduced. On different length scales, dimensionless MSD shows different relationships with the dimensionless quantity R. Although the temporal effect affects the MSD of FLRW and even changes regimes of FLRW, it does not affect the relationship between the dimensionless MSD and dimensionless quantity R on all possible length scales.
Dynamical properties of the S =1/2 random Heisenberg chain
Shu, Yu-Rong; Dupont, Maxime; Yao, Dao-Xin; Capponi, Sylvain; Sandvik, Anders W.
2018-03-01
We study dynamical properties at finite temperature (T ) of Heisenberg spin chains with random antiferromagnetic exchange couplings, which realize the random singlet phase in the low-energy limit, using three complementary numerical methods: exact diagonalization, matrix-product-state algorithms, and stochastic analytic continuation of quantum Monte Carlo results in imaginary time. Specifically, we investigate the dynamic spin structure factor S (q ,ω ) and its ω →0 limit, which are closely related to inelastic neutron scattering and nuclear magnetic resonance (NMR) experiments (through the spin-lattice relaxation rate 1 /T1 ). Our study reveals a continuous narrow band of low-energy excitations in S (q ,ω ) , extending throughout the q space, instead of being restricted to q ≈0 and q ≈π as found in the uniform system. Close to q =π , the scaling properties of these excitations are well captured by the random-singlet theory, but disagreements also exist with some aspects of the predicted q dependence further away from q =π . Furthermore we also find spin diffusion effects close to q =0 that are not contained within the random-singlet theory but give non-negligible contributions to the mean 1 /T1 . To compare with NMR experiments, we consider the distribution of the local relaxation rates 1 /T1 . We show that the local 1 /T1 values are broadly distributed, approximately according to a stretched exponential. The mean 1 /T1 first decreases with T , but below a crossover temperature it starts to increase and likely diverges in the limit of a small nuclear resonance frequency ω0. Although a similar divergent behavior has been predicted and experimentally observed for the static uniform susceptibility, this divergent behavior of the mean 1 /T1 has never been experimentally observed. Indeed, we show that the divergence of the mean 1 /T1 is due to rare events in the disordered chains and is concealed in experiments, where the typical 1 /T1 value is accessed.
Guang, Yang; Ge, Song; Han, Liu
2016-01-01
The harmonious development in society, economy and environment are crucial to regional sustained boom. However, the society, economy and environment are not respectively independent, but both mutually promotes one which, or restrict mutually complex to have the long-enduring overall process. The present study is an attempt to investigate the relationship and interaction of society, economy and environment in China based on the data from 2004 to 2013. The principal component analysis (PCA) model was employed to identify the main factors effecting the society, economy and environment subsystems, and SD (system dynamics) method used to carry out dynamic assessment for future state of sustainability from society, economy and environment perspective with future indicator values. Sustainable development in China was divided in the study into three phase from 2004 to 2013 based competitive values of these three subsystems. According to the results of PCA model, China is in third phase, and the economy growth is faster than the environment development, while the social development still maintained a steady and rapid growth, implying that the next step for sustainable development in China should focus on society development, especially the environment development.
Dynamic lighting system for the learning environment: performance of elementary students.
Choi, Kyungah; Suk, Hyeon-Jeong
2016-05-16
This study aims to investigate the effects of lighting color temperatures on elementary students' performance, and thereby propose a dynamic lighting system for a smart learning environment. Three empirical studies were conducted: First, physiological responses were measured as a potential mediator of performance. Second, cognitive and behavioral responses were observed during academic and recess activities. Lastly, the experiment was carried out in a real-life setting with prolonged exposure. With a comprehensive analysis of the three studies, three lighting presets-3500 K, 5000 K, and 6500 K-are suggested for easy, standard, and intensive activity, respectively. The study is expected to act as a good stepping stone for developing dynamic lighting systems to support students' performance in learning environments.
Pricing the Services in Dynamic Environment: Agent Pricing Model
Žagar, Drago; Rupčić, Slavko; Rimac-Drlje, Snježana
New Internet applications and services as well as new user demands open many new issues concerning dynamic management of quality of service and price for received service, respectively. The main goals of Internet service providers are to maximize profit and maintain a negotiated quality of service. From the users' perspective the main goal is to maximize ratio of received QoS and costs of service. However, achieving these objectives could become very complex if we know that Internet service users might during the session become highly dynamic and proactive. This connotes changes in user profile or network provider/s profile caused by high level of user mobility or variable level of user demands. This paper proposes a new agent based pricing architecture for serving the highly dynamic customers in context of dynamic user/network environment. The proposed architecture comprises main aspects and basic parameters that will enable objective and transparent assessment of the costs for the service those Internet users receive while dynamically change QoS demands and cost profile.
Population Dynamics of Patients with Bacterial Resistance in Hospital Environment
Directory of Open Access Journals (Sweden)
Leilei Qu
2016-01-01
Full Text Available During the past decades, the increase of antibiotic resistance has become a major concern worldwide. The researchers found that superbugs with new type of resistance genes (NDM-1 have two aspects of transmission characteristics; the first is that the antibiotic resistance genes can horizontally transfer among bacteria, and the other is that the superbugs can spread between humans through direct contact. Based on these two transmission mechanisms, we study the dynamics of population in hospital environment where superbugs exist. In this paper, we build three mathematic models to illustrate the dynamics of patients with bacterial resistance in hospital environment. The models are analyzed using stability theory of differential equations. Positive equilibrium points of the system are investigated and their stability analysis is carried out. Moreover, the numerical simulation of the proposed model is also performed which supports the theoretical findings.
Dynamic occupational risk model for offshore operations in harsh environments
International Nuclear Information System (INIS)
Song, Guozheng; Khan, Faisal; Wang, Hangzhou; Leighton, Shelly; Yuan, Zhi; Liu, Hanwen
2016-01-01
The expansion of offshore oil exploitation into remote areas (e.g., Arctic) with harsh environments has significantly increased occupational risks. Among occupational accidents, slips, trips and falls from height (STFs) account for a significant portion. Thus, a dynamic risk assessment of the three main occupational accidents is meaningful to decrease offshore occupational risks. Bow-tie Models (BTs) were established in this study for the risk analysis of STFs considering extreme environmental factors. To relax the limitations of BTs, Bayesian networks (BNs) were developed based on BTs to dynamically assess risks of STFs. The occurrence and consequence probabilities of STFs were respectively calculated using BTs and BNs, and the obtained probabilities verified BNs' rationality and advantage. Furthermore, the probability adaptation for STFs was accomplished in a specific scenario with BNs. Finally, posterior probabilities of basic events were achieved through diagnostic analysis, and critical basic events were analyzed based on their posterior likelihood to cause occupational accidents. The highlight is systematically analyzing STF accidents for offshore operations and dynamically assessing their risks considering the harsh environmental factors. This study can guide the allocation of prevention resources and benefit the safety management of offshore operations. - Highlights: • A novel dynamic risk model for occupational accidents. • First time consideration of harsh environment in occupational accident modeling. • A Bayesian network based model for risk management strategies.
Dynamic computing random access memory
International Nuclear Information System (INIS)
Traversa, F L; Bonani, F; Pershin, Y V; Di Ventra, M
2014-01-01
The present von Neumann computing paradigm involves a significant amount of information transfer between a central processing unit and memory, with concomitant limitations in the actual execution speed. However, it has been recently argued that a different form of computation, dubbed memcomputing (Di Ventra and Pershin 2013 Nat. Phys. 9 200–2) and inspired by the operation of our brain, can resolve the intrinsic limitations of present day architectures by allowing for computing and storing of information on the same physical platform. Here we show a simple and practical realization of memcomputing that utilizes easy-to-build memcapacitive systems. We name this architecture dynamic computing random access memory (DCRAM). We show that DCRAM provides massively-parallel and polymorphic digital logic, namely it allows for different logic operations with the same architecture, by varying only the control signals. In addition, by taking into account realistic parameters, its energy expenditures can be as low as a few fJ per operation. DCRAM is fully compatible with CMOS technology, can be realized with current fabrication facilities, and therefore can really serve as an alternative to the present computing technology. (paper)
Quantum diffusion in two-dimensional random systems with particle–hole symmetry
International Nuclear Information System (INIS)
Ziegler, K
2012-01-01
We study the scattering dynamics of an n-component spinor wavefunction in a random environment on a two-dimensional lattice. If the particle–hole symmetry of the Hamiltonian is spontaneously broken the dynamics of the quantum particles becomes diffusive on large scales. The latter is described by a non-interacting Grassmann field, indicating a special kind of asymptotic freedom on large scales in d = 2. (paper)
Tannenbaum, Emmanuel; Sherley, James L; Shakhnovich, Eugene I
2005-04-01
This paper develops a point-mutation model describing the evolutionary dynamics of a population of adult stem cells. Such a model may prove useful for quantitative studies of tissue aging and the emergence of cancer. We consider two modes of chromosome segregation: (1) random segregation, where the daughter chromosomes of a given parent chromosome segregate randomly into the stem cell and its differentiating sister cell and (2) "immortal DNA strand" co-segregation, for which the stem cell retains the daughter chromosomes with the oldest parent strands. Immortal strand co-segregation is a mechanism, originally proposed by [Cairns Nature (London) 255, 197 (1975)], by which stem cells preserve the integrity of their genomes. For random segregation, we develop an ordered strand pair formulation of the dynamics, analogous to the ordered strand pair formalism developed for quasispecies dynamics involving semiconservative replication with imperfect lesion repair (in this context, lesion repair is taken to mean repair of postreplication base-pair mismatches). Interestingly, a similar formulation is possible with immortal strand co-segregation, despite the fact that this segregation mechanism is age dependent. From our model we are able to mathematically show that, when lesion repair is imperfect, then immortal strand co-segregation leads to better preservation of the stem cell lineage than random chromosome segregation. Furthermore, our model allows us to estimate the optimal lesion repair efficiency for preserving an adult stem cell population for a given period of time. For human stem cells, we obtain that mispaired bases still present after replication and cell division should be left untouched, to avoid potentially fixing a mutation in both DNA strands.
Zi, Bin; Zhou, Bin
2016-07-01
For the prediction of dynamic response field of the luffing system of an automobile crane (LSOAAC) with random and interval parameters, a hybrid uncertain model is introduced. In the hybrid uncertain model, the parameters with certain probability distribution are modeled as random variables, whereas, the parameters with lower and upper bounds are modeled as interval variables instead of given precise values. Based on the hybrid uncertain model, the hybrid uncertain dynamic response equilibrium equation, in which different random and interval parameters are simultaneously included in input and output terms, is constructed. Then a modified hybrid uncertain analysis method (MHUAM) is proposed. In the MHUAM, based on random interval perturbation method, the first-order Taylor series expansion and the first-order Neumann series, the dynamic response expression of the LSOAAC is developed. Moreover, the mathematical characteristics of extrema of bounds of dynamic response are determined by random interval moment method and monotonic analysis technique. Compared with the hybrid Monte Carlo method (HMCM) and interval perturbation method (IPM), numerical results show the feasibility and efficiency of the MHUAM for solving the hybrid LSOAAC problems. The effects of different uncertain models and parameters on the LSOAAC response field are also investigated deeply, and numerical results indicate that the impact made by the randomness in the thrust of the luffing cylinder F is larger than that made by the gravity of the weight in suspension Q . In addition, the impact made by the uncertainty in the displacement between the lower end of the lifting arm and the luffing cylinder a is larger than that made by the length of the lifting arm L .
Random heteropolymers preserve protein function in foreign environments
Panganiban, Brian; Qiao, Baofu; Jiang, Tao; DelRe, Christopher; Obadia, Mona M.; Nguyen, Trung Dac; Smith, Anton A. A.; Hall, Aaron; Sit, Izaac; Crosby, Marquise G.; Dennis, Patrick B.; Drockenmuller, Eric; Olvera de la Cruz, Monica; Xu, Ting
2018-03-01
The successful incorporation of active proteins into synthetic polymers could lead to a new class of materials with functions found only in living systems. However, proteins rarely function under the conditions suitable for polymer processing. On the basis of an analysis of trends in protein sequences and characteristic chemical patterns on protein surfaces, we designed four-monomer random heteropolymers to mimic intrinsically disordered proteins for protein solubilization and stabilization in non-native environments. The heteropolymers, with optimized composition and statistical monomer distribution, enable cell-free synthesis of membrane proteins with proper protein folding for transport and enzyme-containing plastics for toxin bioremediation. Controlling the statistical monomer distribution in a heteropolymer, rather than the specific monomer sequence, affords a new strategy to interface with biological systems for protein-based biomaterials.
Antoneli, Fernando; Ferreira, Renata C; Briones, Marcelo R S
2016-06-01
Here we propose a new approach to modeling gene expression based on the theory of random dynamical systems (RDS) that provides a general coupling prescription between the nodes of any given regulatory network given the dynamics of each node is modeled by a RDS. The main virtues of this approach are the following: (i) it provides a natural way to obtain arbitrarily large networks by coupling together simple basic pieces, thus revealing the modularity of regulatory networks; (ii) the assumptions about the stochastic processes used in the modeling are fairly general, in the sense that the only requirement is stationarity; (iii) there is a well developed mathematical theory, which is a blend of smooth dynamical systems theory, ergodic theory and stochastic analysis that allows one to extract relevant dynamical and statistical information without solving the system; (iv) one may obtain the classical rate equations form the corresponding stochastic version by averaging the dynamic random variables (small noise limit). It is important to emphasize that unlike the deterministic case, where coupling two equations is a trivial matter, coupling two RDS is non-trivial, specially in our case, where the coupling is performed between a state variable of one gene and the switching stochastic process of another gene and, hence, it is not a priori true that the resulting coupled system will satisfy the definition of a random dynamical system. We shall provide the necessary arguments that ensure that our coupling prescription does indeed furnish a coupled regulatory network of random dynamical systems. Finally, the fact that classical rate equations are the small noise limit of our stochastic model ensures that any validation or prediction made on the basis of the classical theory is also a validation or prediction of our model. We illustrate our framework with some simple examples of single-gene system and network motifs. Copyright © 2016 Elsevier Inc. All rights reserved.
Local random configuration-tree theory for string repetition and facilitated dynamics of glass
Lam, Chi-Hang
2018-02-01
We derive a microscopic theory of glassy dynamics based on the transport of voids by micro-string motions, each of which involves particles arranged in a line hopping simultaneously displacing one another. Disorder is modeled by a random energy landscape quenched in the configuration space of distinguishable particles, but transient in the physical space as expected for glassy fluids. We study the evolution of local regions with m coupled voids. At a low temperature, energetically accessible local particle configurations can be organized into a random tree with nodes and edges denoting configurations and micro-string propagations respectively. Such trees defined in the configuration space naturally describe systems defined in two- or three-dimensional physical space. A micro-string propagation initiated by a void can facilitate similar motions by other voids via perturbing the random energy landscape, realizing path interactions between voids or equivalently string interactions. We obtain explicit expressions of the particle diffusion coefficient and a particle return probability. Under our approximation, as temperature decreases, random trees of energetically accessible configurations exhibit a sequence of percolation transitions in the configuration space, with local regions containing fewer coupled voids entering the non-percolating immobile phase first. Dynamics is dominated by coupled voids of an optimal group size, which increases as temperature decreases. Comparison with a distinguishable-particle lattice model (DPLM) of glass shows very good quantitative agreements using only two adjustable parameters related to typical energy fluctuations and the interaction range of the micro-strings.
Generalized Dynamic Panel Data Models with Random Effects for Cross-Section and Time
Mesters, G.; Koopman, S.J.
2014-01-01
An exact maximum likelihood method is developed for the estimation of parameters in a nonlinear non-Gaussian dynamic panel data model with unobserved random individual-specific and time-varying effects. We propose an estimation procedure based on the importance sampling technique. In particular, a
Stochastic optimal foraging: tuning intensive and extensive dynamics in random searches.
Directory of Open Access Journals (Sweden)
Frederic Bartumeus
Full Text Available Recent theoretical developments had laid down the proper mathematical means to understand how the structural complexity of search patterns may improve foraging efficiency. Under information-deprived scenarios and specific landscape configurations, Lévy walks and flights are known to lead to high search efficiencies. Based on a one-dimensional comparative analysis we show a mechanism by which, at random, a searcher can optimize the encounter with close and distant targets. The mechanism consists of combining an optimal diffusivity (optimally enhanced diffusion with a minimal diffusion constant. In such a way the search dynamics adequately balances the tension between finding close and distant targets, while, at the same time, shifts the optimal balance towards relatively larger close-to-distant target encounter ratios. We find that introducing a multiscale set of reorientations ensures both a thorough local space exploration without oversampling and a fast spreading dynamics at the large scale. Lévy reorientation patterns account for these properties but other reorientation strategies providing similar statistical signatures can mimic or achieve comparable efficiencies. Hence, the present work unveils general mechanisms underlying efficient random search, beyond the Lévy model. Our results suggest that animals could tune key statistical movement properties (e.g. enhanced diffusivity, minimal diffusion constant to cope with the very general problem of balancing out intensive and extensive random searching. We believe that theoretical developments to mechanistically understand stochastic search strategies, such as the one here proposed, are crucial to develop an empirically verifiable and comprehensive animal foraging theory.
Energy Technology Data Exchange (ETDEWEB)
Cross, T.A.; Lee, K.C.; Ketchem, R.R.; Hu, W.; Lazo, N.D.; Huo, S. [Florida State Univ., Tallahassee, FL (United States)
1994-12-01
To understand the details of macromolecular function, high-resolution structural and dynamic detail is essential. The polypeptide fold of the gramicidin channel has been effectively modeled for the past 20 years, yet the functional changes in conductance and channel lifetime associated with amino acid substitutions cannot be predicted. To accomplish this goal, high-resolution electrostatic modeling and the precise orientation of all dipoles are required. Furthermore, an enhanced knowledge of the complex molecular environment of this membrane-bound peptide is needed. An aqueous environment is relatively uniform and achiral. The membrane environment is very heterogenous and chiral. A knowledge of the interactions, specific and nonspecific, between peptide and lipid will aid in developing a better understanding of this environment. To accomplish this goal, it is necessary to study the peptide in an extended lipid bilayer, rather than in a vesicular or micellar form. These latter environments are likely to possess increased dynamics, increased water penetration, and distorted interactions between the polypeptide and membrane surface. To perform NMR studies on bilayer bound peptides, solid state NMR methods are required, and for specific site information, isotopic labels are incorporated using solid phase peptide synthesis.
Multi-person tracking with overlapping cameras in complex, dynamic environments
Liem, M.; Gavrila, D.M.
2009-01-01
This paper presents a multi-camera system to track multiple persons in complex, dynamic environments. Position measurements are obtained by carving out the space defined by foreground regions in the overlapping camera views and projecting these onto blobs on the ground plane. Person appearance is
Activated aging dynamics and effective trap model description in the random energy model
Baity-Jesi, M.; Biroli, G.; Cammarota, C.
2018-01-01
We study the out-of-equilibrium aging dynamics of the random energy model (REM) ruled by a single spin-flip Metropolis dynamics. We focus on the dynamical evolution taking place on time-scales diverging with the system size. Our aim is to show to what extent the activated dynamics displayed by the REM can be described in terms of an effective trap model. We identify two time regimes: the first one corresponds to the process of escaping from a basin in the energy landscape and to the subsequent exploration of high energy configurations, whereas the second one corresponds to the evolution from a deep basin to the other. By combining numerical simulations with analytical arguments we show why the trap model description does not hold in the former but becomes exact in the second.
[On the extinction of populations with several types in a random environment].
Bacaër, Nicolas
2018-03-01
This study focuses on the extinction rate of a population that follows a continuous-time multi-type branching process in a random environment. Numerical computations in a particular example inspired by an epidemic model suggest an explicit formula for this extinction rate, but only for certain parameter values. Copyright © 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
Tannenbaum, Emmanuel; Sherley, James L.; Shakhnovich, Eugene I.
2004-01-01
This paper develops a point-mutation model describing the evolutionary dynamics of a population of adult stem cells. Such a model may prove useful for quantitative studies of tissue aging and the emergence of cancer. We consider two modes of chromosome segregation: (1) Random segregation, where the daughter chromosomes of a given parent chromosome segregate randomly into the stem cell and its differentiating sister cell. (2) ``Immortal DNA strand'' co-segregation, for which the stem cell reta...
Cosmic and terrestrial single-event radiation effects in dynamic random access memories
International Nuclear Information System (INIS)
Massengill, L.W.
1996-01-01
A review of the literature on single-event radiation effects (SEE) on MOS integrated-circuit dynamic random access memories (DRAM's) is presented. The sources of single-event (SE) radiation particles, causes of circuit information loss, experimental observations of SE information upset, technological developments for error mitigation, and relationships of developmental trends to SE vulnerability are discussed
Motion Planning in Dynamic Environments with Application to Self-Driving Vehicles
Schwesinger, Ulrich
2017-01-01
This thesis is concerned with the development of trajectory planning approaches targeting autonomous driving applications in dynamic environments shared with other traffic participants. The goal is to enable mobile robots to operate in challenging environments, characterized by narrow spaces and close proximity of other agents. With their broad range of private and commercial applications reaching from logistics to valet parking to name a few, driverless vehicles have gained increasing at...
Simulating The Dynamical Evolution Of Galaxies In Group And Cluster Environments
Vijayaraghavan, Rukmani
2015-07-01
Galaxy clusters are harsh environments for their constituent galaxies. A variety of physical processes effective in these dense environments transform gas-rich, spiral, star-forming galaxies to elliptical or spheroidal galaxies with very little gas and therefore minimal star formation. The consequences of these processes are well understood observationally. Galaxies in progressively denser environments have systematically declining star formation rates and gas content. However, a theoretical understanding of of where, when, and how these processes act, and the interplay between the various galaxy transformation mechanisms in clusters remains elusive. In this dissertation, I use numerical simulations of cluster mergers as well as galaxies evolving in quiescent environments to develop a theoretical framework to understand some of the physics of galaxy transformation in cluster environments. Galaxies can be transformed in smaller groups before they are accreted by their eventual massive cluster environments, an effect termed `pre-processing'. Galaxy cluster mergers themselves can accelerate many galaxy transformation mechanisms, including tidal and ram pressure stripping of galaxies and galaxy-galaxy collisions and mergers that result in reassemblies of galaxies' stars and gas. Observationally, cluster mergers have distinct velocity and phase-space signatures depending on the observer's line of sight with respect to the merger direction. Using dark matter only as well as hydrodynamic simulations of cluster mergers with random ensembles of particles tagged with galaxy models, I quantify the effects of cluster mergers on galaxy evolution before, during, and after the mergers. Based on my theoretical predictions of the dynamical signatures of these mergers in combination with galaxy transformation signatures, one can observationally identify remnants of mergers and quantify the effect of the environment on galaxies in dense group and cluster environments. The presence of
Dynamic probability of reinforcement for cooperation: Random game termination in the centipede game.
Krockow, Eva M; Colman, Andrew M; Pulford, Briony D
2018-03-01
Experimental games have previously been used to study principles of human interaction. Many such games are characterized by iterated or repeated designs that model dynamic relationships, including reciprocal cooperation. To enable the study of infinite game repetitions and to avoid endgame effects of lower cooperation toward the final game round, investigators have introduced random termination rules. This study extends previous research that has focused narrowly on repeated Prisoner's Dilemma games by conducting a controlled experiment of two-player, random termination Centipede games involving probabilistic reinforcement and characterized by the longest decision sequences reported in the empirical literature to date (24 decision nodes). Specifically, we assessed mean exit points and cooperation rates, and compared the effects of four different termination rules: no random game termination, random game termination with constant termination probability, random game termination with increasing termination probability, and random game termination with decreasing termination probability. We found that although mean exit points were lower for games with shorter expected game lengths, the subjects' cooperativeness was significantly reduced only in the most extreme condition with decreasing computer termination probability and an expected game length of two decision nodes. © 2018 Society for the Experimental Analysis of Behavior.
Robot Control for Dynamic Environment Using Vision and Autocalibration
DEFF Research Database (Denmark)
Larsen, Thomas Dall; Lildballe, Jacob; Andersen, Nils Axel
1997-01-01
To enhance flexibility and extend the area of applications for robotic systems, it is important that the systems are capable ofhandling uncertainties and respond to (random) human behaviour.A vision systemmust very often be able to work in a dynamical ``noisy'' world where theplacement ofobjects...... can vary within certain restrictions. Furthermore it would be useful ifthe system is able to recover automatically after serious changes have beenapplied, for instance if the camera has been moved.In this paper an implementationof such a system is described. The system is a robotcapable of playing...
Implementation of random set-up errors in Monte Carlo calculated dynamic IMRT treatment plans
International Nuclear Information System (INIS)
Stapleton, S; Zavgorodni, S; Popescu, I A; Beckham, W A
2005-01-01
The fluence-convolution method for incorporating random set-up errors (RSE) into the Monte Carlo treatment planning dose calculations was previously proposed by Beckham et al, and it was validated for open field radiotherapy treatments. This study confirms the applicability of the fluence-convolution method for dynamic intensity modulated radiotherapy (IMRT) dose calculations and evaluates the impact of set-up uncertainties on a clinical IMRT dose distribution. BEAMnrc and DOSXYZnrc codes were used for Monte Carlo calculations. A sliding window IMRT delivery was simulated using a dynamic multi-leaf collimator (DMLC) transport model developed by Keall et al. The dose distributions were benchmarked for dynamic IMRT fields using extended dose range (EDR) film, accumulating the dose from 16 subsequent fractions shifted randomly. Agreement of calculated and measured relative dose values was well within statistical uncertainty. A clinical seven field sliding window IMRT head and neck treatment was then simulated and the effects of random set-up errors (standard deviation of 2 mm) were evaluated. The dose-volume histograms calculated in the PTV with and without corrections for RSE showed only small differences indicating a reduction of the volume of high dose region due to set-up errors. As well, it showed that adequate coverage of the PTV was maintained when RSE was incorporated. Slice-by-slice comparison of the dose distributions revealed differences of up to 5.6%. The incorporation of set-up errors altered the position of the hot spot in the plan. This work demonstrated validity of implementation of the fluence-convolution method to dynamic IMRT Monte Carlo dose calculations. It also showed that accounting for the set-up errors could be essential for correct identification of the value and position of the hot spot
Implementation of random set-up errors in Monte Carlo calculated dynamic IMRT treatment plans
Stapleton, S.; Zavgorodni, S.; Popescu, I. A.; Beckham, W. A.
2005-02-01
The fluence-convolution method for incorporating random set-up errors (RSE) into the Monte Carlo treatment planning dose calculations was previously proposed by Beckham et al, and it was validated for open field radiotherapy treatments. This study confirms the applicability of the fluence-convolution method for dynamic intensity modulated radiotherapy (IMRT) dose calculations and evaluates the impact of set-up uncertainties on a clinical IMRT dose distribution. BEAMnrc and DOSXYZnrc codes were used for Monte Carlo calculations. A sliding window IMRT delivery was simulated using a dynamic multi-leaf collimator (DMLC) transport model developed by Keall et al. The dose distributions were benchmarked for dynamic IMRT fields using extended dose range (EDR) film, accumulating the dose from 16 subsequent fractions shifted randomly. Agreement of calculated and measured relative dose values was well within statistical uncertainty. A clinical seven field sliding window IMRT head and neck treatment was then simulated and the effects of random set-up errors (standard deviation of 2 mm) were evaluated. The dose-volume histograms calculated in the PTV with and without corrections for RSE showed only small differences indicating a reduction of the volume of high dose region due to set-up errors. As well, it showed that adequate coverage of the PTV was maintained when RSE was incorporated. Slice-by-slice comparison of the dose distributions revealed differences of up to 5.6%. The incorporation of set-up errors altered the position of the hot spot in the plan. This work demonstrated validity of implementation of the fluence-convolution method to dynamic IMRT Monte Carlo dose calculations. It also showed that accounting for the set-up errors could be essential for correct identification of the value and position of the hot spot.
Dynamic parallel ROOT facility clusters on the Alice Environment
International Nuclear Information System (INIS)
Luzzi, C; Betev, L; Carminati, F; Grigoras, C; Saiz, P; Manafov, A
2012-01-01
The ALICE collaboration has developed a production environment (AliEn) that implements the full set of the Grid tools enabling the full offline computational work-flow of the experiment, simulation, reconstruction and data analysis, in a distributed and heterogeneous computing environment. In addition to the analysis on the Grid, ALICE uses a set of local interactive analysis facilities installed with the Parallel ROOT Facility (PROOF). PROOF enables physicists to analyze medium-sized (order of 200-300 TB) data sets on a short time scale. The default installation of PROOF is on a static dedicated cluster, typically 200-300 cores. This well-proven approach, has its limitations, more specifically for analysis of larger datasets or when the installation of a dedicated cluster is not possible. Using a new framework called PoD (Proof on Demand), PROOF can be used directly on Grid-enabled clusters, by dynamically assigning interactive nodes on user request. The integration of Proof on Demand in the AliEn framework provides private dynamic PROOF clusters as a Grid service. This functionality is transparent to the user who will submit interactive jobs to the AliEn system.
Dynamics of extracellular DNA in the marine environment
International Nuclear Information System (INIS)
Paul, J.H.; Jeffrey, W.H.; DeFlaun, M.F.
1987-01-01
The production and turnover of dissolved DNA in subtropical estuarine and oligotrophic oceanic environments were investigated. Actively growing heterotrophic bacterioplankton (i.e., those capable of [ 3 H]thymidine incorporation) were found to produce dissolved DNA, presumably through the processes of death and lysis, grazing by bacteriovores, and excretion. Production of dissolved DNA as determined by [ 3 H]thymidine incorporation was ≤4% of the ambient dissolved DNA concentration per day. In turnover studies, the addition of [ 3 H]DNA (Escherichia coli chromosomal) to seawater resulted in rapid hydrolysis and uptake of radioactivity by microbial populations. DNA was hydrolyzed by both cell-associated and extracellular nucleases, in both estuarine and offshore environments. Kinetic analysis performed for a eutrophic estuary indicated a turnover time for dissolved DNA as short as 6.5 h. Microautoradiographic studies of bacterial populations in Tampa Bay indicated that filamentous and attached bacteria took up most of the radioactivity from [ 3 H]DNA. Dissolved DNA is therefore a dynamic component of the dissolved organic matter in the marine environment, and bacterioplankton play a key role in the cycling of this material
Generic Dynamic Environment Perception Using Smart Mobile Devices.
Danescu, Radu; Itu, Razvan; Petrovai, Andra
2016-10-17
The driving environment is complex and dynamic, and the attention of the driver is continuously challenged, therefore computer based assistance achieved by processing image and sensor data may increase traffic safety. While active sensors and stereovision have the advantage of obtaining 3D data directly, monocular vision is easy to set up, and can benefit from the increasing computational power of smart mobile devices, and from the fact that almost all of them come with an embedded camera. Several driving assistance application are available for mobile devices, but they are mostly targeted for simple scenarios and a limited range of obstacle shapes and poses. This paper presents a technique for generic, shape independent real-time obstacle detection for mobile devices, based on a dynamic, free form 3D representation of the environment: the particle based occupancy grid. Images acquired in real time from the smart mobile device's camera are processed by removing the perspective effect and segmenting the resulted bird-eye view image to identify candidate obstacle areas, which are then used to update the occupancy grid. The occupancy grid tracked cells are grouped into obstacles depicted as cuboids having position, size, orientation and speed. The easy to set up system is able to reliably detect most obstacles in urban traffic, and its measurement accuracy is comparable to a stereovision system.
2010-09-14
... Kuhbach, Director, Office 1, ``Sixth Countervailing Duty Administrative Review: Dynamic Random Access... ``Purchases at Prices that Constitute `More than Adequate Remuneration,' '' (``Uranium from France'') (citing...
Investigating the Problem Solving Competency of Pre Service Teachers in Dynamic Geometry Environment
Haja, Shajahan
2005-01-01
This study investigated the problem-solving competency of four secondary pre service teachers (PSTs) of University of London as they explored geometry problems in dynamic geometry environment (DGE) in 2004. A constructivist experiment was designed in which dynamic software Cabri-Geometre II (hereafter Cabri) was used as an interactive medium.…
Integrating Dynamic Mathematics Software into Cooperative Learning Environments in Mathematics
Zengin, Yilmaz; Tatar, Enver
2017-01-01
The aim of this study was to evaluate the implementation of the cooperative learning model supported with dynamic mathematics software (DMS), that is a reflection of constructivist learning theory in the classroom environment, in the teaching of mathematics. For this purpose, a workshop was conducted with the volunteer teachers on the…
Evolutionary stability concepts in a stochastic environment
Zheng, Xiu-Deng; Li, Cong; Lessard, Sabin; Tao, Yi
2017-09-01
Over the past 30 years, evolutionary game theory and the concept of an evolutionarily stable strategy have been not only extensively developed and successfully applied to explain the evolution of animal behaviors, but also widely used in economics and social sciences. Nonetheless, the stochastic dynamical properties of evolutionary games in randomly fluctuating environments are still unclear. In this study, we investigate conditions for stochastic local stability of fixation states and constant interior equilibria in a two-phenotype model with random payoffs following pairwise interactions. Based on this model, we develop the concepts of stochastic evolutionary stability (SES) and stochastic convergence stability (SCS). We show that the condition for a pure strategy to be SES and SCS is more stringent than in a constant environment, while the condition for a constant mixed strategy to be SES is less stringent than the condition to be SCS, which is less stringent than the condition in a constant environment.
EDEN: evolutionary dynamics within environments
Münch, Philipp C.; Stecher, Bärbel; McHardy, Alice C.
2017-01-01
Abstract Summary Metagenomics revolutionized the field of microbial ecology, giving access to Gb-sized datasets of microbial communities under natural conditions. This enables fine-grained analyses of the functions of community members, studies of their association with phenotypes and environments, as well as of their microevolution and adaptation to changing environmental conditions. However, phylogenetic methods for studying adaptation and evolutionary dynamics are not able to cope with big data. EDEN is the first software for the rapid detection of protein families and regions under positive selection, as well as their associated biological processes, from meta- and pangenome data. It provides an interactive result visualization for detailed comparative analyses. Availability and implementation EDEN is available as a Docker installation under the GPL 3.0 license, allowing its use on common operating systems, at http://www.github.com/hzi-bifo/eden. Contact alice.mchardy@helmholtz-hzi.de Supplementary information Supplementary data are available at Bioinformatics online. PMID:28637301
VEDA: a web-based virtual environment for dynamic atomic force microscopy.
Melcher, John; Hu, Shuiqing; Raman, Arvind
2008-06-01
We describe here the theory and applications of virtual environment dynamic atomic force microscopy (VEDA), a suite of state-of-the-art simulation tools deployed on nanoHUB (www.nanohub.org) for the accurate simulation of tip motion in dynamic atomic force microscopy (dAFM) over organic and inorganic samples. VEDA takes advantage of nanoHUB's cyberinfrastructure to run high-fidelity dAFM tip dynamics computations on local clusters and the teragrid. Consequently, these tools are freely accessible and the dAFM simulations are run using standard web-based browsers without requiring additional software. A wide range of issues in dAFM ranging from optimal probe choice, probe stability, and tip-sample interaction forces, power dissipation, to material property extraction and scanning dynamics over hetereogeneous samples can be addressed.
Wu, Desheng; Ning, Shuang
2018-07-01
Economic development, accompanying with environmental damage and energy depletion, becomes essential nowadays. There is a complicated and comprehensive interaction between economics, environment and energy. Understanding the operating mechanism of Energy-Environment-Economy model (3E) and its key factors is the inherent part in dealing with the issue. In this paper, we combine System Dynamics model and Geographic Information System to analyze the energy-environment-economy (3E) system both temporally and spatially, which explicitly explore the interaction of economics, energy, and environment and effects of the key influencing factors. Beijing is selected as a case study to verify our SD-GIS model. Alternative scenarios, e.g., current, technology, energy and environment scenarios are explored and compared. Simulation results shows that, current scenario is not sustainable; technology scenario is applicable to economic growth; environment scenario maintains a balanced path of development for long term stability. Policy-making insights are given based on our results and analysis. Copyright © 2018 Elsevier Inc. All rights reserved.
Dynamics of the Random Field Ising Model
Xu, Jian
The Random Field Ising Model (RFIM) is a general tool to study disordered systems. Crackling noise is generated when disordered systems are driven by external forces, spanning a broad range of sizes. Systems with different microscopic structures such as disordered mag- nets and Earth's crust have been studied under the RFIM. In this thesis, we investigated the domain dynamics and critical behavior in two dipole-coupled Ising ferromagnets Nd2Fe14B and LiHoxY 1-xF4. With Tc well above room temperature, Nd2Fe14B has shown reversible disorder when exposed to an external transverse field and crosses between two universality classes in the strong and weak disorder limits. Besides tunable disorder, LiHoxY1-xF4 has shown quantum tunneling effects arising from quantum fluctuations, providing another mechanism for domain reversal. Universality within and beyond power law dependence on avalanche size and energy were studied in LiHo0.65Y0.35 F4.
Directory of Open Access Journals (Sweden)
Shizue Matsubara
2016-11-01
Full Text Available Changes in light intensity directly affect the performance of the photosynthetic apparatus. Light energy absorbed in excess of cells’ needs leads to production of reactive oxygen species and photo-oxidative damage. Excess light in both constant and dynamic environments induces photoprotective acclimation in plants. Distinct sets of signals and regulatory mechanisms are involved in acclimatory adjustment of photoprotection and photosynthesis under constant and dynamic (fluctuating light conditions. We are still far away from drawing a comprehensive picture of acclimatory signal transduction pathways, particularly in dynamic environments. In this perspective article, we propose the use of Arabidopsis plants that produce H2O2 in chloroplasts (GO plants under atmospheric CO2 levels as a tool to study the mechanisms of long-term acclimation to photo-oxidative stress. In our opinion there are new avenues to future investigations on acclimatory adjustments and signal transduction occurring in plants under dynamic light environments.
A Markov model for the temporal dynamics of balanced random networks of finite size
Lagzi, Fereshteh; Rotter, Stefan
2014-01-01
The balanced state of recurrent networks of excitatory and inhibitory spiking neurons is characterized by fluctuations of population activity about an attractive fixed point. Numerical simulations show that these dynamics are essentially nonlinear, and the intrinsic noise (self-generated fluctuations) in networks of finite size is state-dependent. Therefore, stochastic differential equations with additive noise of fixed amplitude cannot provide an adequate description of the stochastic dynamics. The noise model should, rather, result from a self-consistent description of the network dynamics. Here, we consider a two-state Markovian neuron model, where spikes correspond to transitions from the active state to the refractory state. Excitatory and inhibitory input to this neuron affects the transition rates between the two states. The corresponding nonlinear dependencies can be identified directly from numerical simulations of networks of leaky integrate-and-fire neurons, discretized at a time resolution in the sub-millisecond range. Deterministic mean-field equations, and a noise component that depends on the dynamic state of the network, are obtained from this model. The resulting stochastic model reflects the behavior observed in numerical simulations quite well, irrespective of the size of the network. In particular, a strong temporal correlation between the two populations, a hallmark of the balanced state in random recurrent networks, are well represented by our model. Numerical simulations of such networks show that a log-normal distribution of short-term spike counts is a property of balanced random networks with fixed in-degree that has not been considered before, and our model shares this statistical property. Furthermore, the reconstruction of the flow from simulated time series suggests that the mean-field dynamics of finite-size networks are essentially of Wilson-Cowan type. We expect that this novel nonlinear stochastic model of the interaction between
Polarization dynamics and polarization time of random three-dimensional electromagnetic fields
International Nuclear Information System (INIS)
Voipio, Timo; Setaelae, Tero; Shevchenko, Andriy; Friberg, Ari T.
2010-01-01
We investigate the polarization dynamics of random, stationary three-dimensional (3D) electromagnetic fields. For analyzing the time evolution of the instantaneous polarization state, two intensity-normalized polarization autocorrelation functions are introduced, one based on a geometric approach with the Poincare vectors and the other on energy considerations with the Jones vectors. Both approaches lead to the same conclusions on the rate and strength of the polarization dynamics and enable the definition of a polarization time over which the state of polarization remains essentially unchanged. For fields obeying Gaussian statistics, the two correlation functions are shown to be expressible in terms of quantities characterizing partial 3D polarization and electromagnetic coherence. The 3D degree of polarization is found to have the same meaning in the 3D polarization dynamics as the usual two-dimensional (2D) degree of polarization does with planar fields. The formalism is demonstrated with several examples, and it is expected to be useful in applications dealing with polarization fluctuations of 3D light.
Random and systematic beam modulator errors in dynamic intensity modulated radiotherapy
International Nuclear Information System (INIS)
Parsai, Homayon; Cho, Paul S; Phillips, Mark H; Giansiracusa, Robert S; Axen, David
2003-01-01
This paper reports on the dosimetric effects of random and systematic modulator errors in delivery of dynamic intensity modulated beams. A sliding-widow type delivery that utilizes a combination of multileaf collimators (MLCs) and backup diaphragms was examined. Gaussian functions with standard deviations ranging from 0.5 to 1.5 mm were used to simulate random positioning errors. A clinical example involving a clival meningioma was chosen with optic chiasm and brain stem as limiting critical structures in the vicinity of the tumour. Dose calculations for different modulator fluctuations were performed, and a quantitative analysis was carried out based on cumulative and differential dose volume histograms for the gross target volume and surrounding critical structures. The study indicated that random modulator errors have a strong tendency to reduce minimum target dose and homogeneity. Furthermore, it was shown that random perturbation of both MLCs and backup diaphragms in the order of σ = 1 mm can lead to 5% errors in prescribed dose. In comparison, when MLCs or backup diaphragms alone was perturbed, the system was more robust and modulator errors of at least σ = 1.5 mm were required to cause dose discrepancies greater than 5%. For systematic perturbation, even errors in the order of ±0.5 mm were shown to result in significant dosimetric deviations
A Strategic Analysis in Dynamic Random Access Memory Industry in Taiwan
Chen, Yen-Chun
2009-01-01
The credit crisis and global economic recession have severely impacted on Integrated Circuit (IC) industry particularly in Dynamic Random Access Memory (DRAM) industry. The average selling price declined below the cost of chip and almost all memory producers are lack of cash flow. One of the global three 3 producers has been driven out of this industry and all Taiwanese DRAM vendors are facing to a dilemma on how they can survive through the economic recession and oversupply circumstance. Thi...
Thermal dynamic simulation of wall for building energy efficiency under varied climate environment
Wang, Xuejin; Zhang, Yujin; Hong, Jing
2017-08-01
Aiming at different kind of walls in five cities of different zoning for thermal design, using thermal instantaneous response factors method, the author develops software to calculation air conditioning cooling load temperature, thermal response factors, and periodic response factors. On the basis of the data, the author gives the net work analysis about the influence of dynamic thermal of wall on air-conditioning load and thermal environment in building of different zoning for thermal design regional, and put forward the strategy how to design thermal insulation and heat preservation wall base on dynamic thermal characteristic of wall under different zoning for thermal design regional. And then provide the theory basis and the technical references for the further study on the heat preservation with the insulation are in the service of energy saving wall design. All-year thermal dynamic load simulating and energy consumption analysis for new energy-saving building is very important in building environment. This software will provide the referable scientific foundation for all-year new thermal dynamic load simulation, energy consumption analysis, building environment systems control, carrying through farther research on thermal particularity and general particularity evaluation for new energy -saving walls building. Based on which, we will not only expediently design system of building energy, but also analyze building energy consumption and carry through scientific energy management. The study will provide the referable scientific foundation for carrying through farther research on thermal particularity and general particularity evaluation for new energy saving walls building.
Understanding the Offender/Environment Dynamic for Computer Crimes
DEFF Research Database (Denmark)
Willison, Robert Andrew
2005-01-01
practices by possiblyhighlighting new areas for safeguard implementation. To help facilitate a greaterunderstanding of the offender/environment dynamic, this paper assesses the feasibilityof applying criminological theory to the IS security context. More specifically, threetheories are advanced, which focus...... on the offender's behaviour in a criminal setting. Drawing on an account of the Barings Bank collapse, events highlighted in the casestudy are used to assess whether concepts central to the theories are supported by thedata. It is noted that while one of the theories is to be found wanting in terms ofconceptual...
Pseudo-random number generator based on asymptotic deterministic randomness
Wang, Kai; Pei, Wenjiang; Xia, Haishan; Cheung, Yiu-ming
2008-06-01
A novel approach to generate the pseudorandom-bit sequence from the asymptotic deterministic randomness system is proposed in this Letter. We study the characteristic of multi-value correspondence of the asymptotic deterministic randomness constructed by the piecewise linear map and the noninvertible nonlinearity transform, and then give the discretized systems in the finite digitized state space. The statistic characteristics of the asymptotic deterministic randomness are investigated numerically, such as stationary probability density function and random-like behavior. Furthermore, we analyze the dynamics of the symbolic sequence. Both theoretical and experimental results show that the symbolic sequence of the asymptotic deterministic randomness possesses very good cryptographic properties, which improve the security of chaos based PRBGs and increase the resistance against entropy attacks and symbolic dynamics attacks.
Pseudo-random number generator based on asymptotic deterministic randomness
International Nuclear Information System (INIS)
Wang Kai; Pei Wenjiang; Xia Haishan; Cheung Yiuming
2008-01-01
A novel approach to generate the pseudorandom-bit sequence from the asymptotic deterministic randomness system is proposed in this Letter. We study the characteristic of multi-value correspondence of the asymptotic deterministic randomness constructed by the piecewise linear map and the noninvertible nonlinearity transform, and then give the discretized systems in the finite digitized state space. The statistic characteristics of the asymptotic deterministic randomness are investigated numerically, such as stationary probability density function and random-like behavior. Furthermore, we analyze the dynamics of the symbolic sequence. Both theoretical and experimental results show that the symbolic sequence of the asymptotic deterministic randomness possesses very good cryptographic properties, which improve the security of chaos based PRBGs and increase the resistance against entropy attacks and symbolic dynamics attacks
Quality control of computational fluid dynamics in indoor environments
DEFF Research Database (Denmark)
Sørensen, Dan Nørtoft; Nielsen, P. V.
2003-01-01
Computational fluid dynamics (CFD) is used routinely to predict air movement and distributions of temperature and concentrations in indoor environments. Modelling and numerical errors are inherent in such studies and must be considered when the results are presented. Here, we discuss modelling as...... the quality of CFD calculations, as well as guidelines for the minimum information that should accompany all CFD-related publications to enable a scientific judgment of the quality of the study....
International Nuclear Information System (INIS)
Laperashvili, L.V.
1994-01-01
An overview of papers by Nielson, Bennet, Brene, and Picek, forming the basis of the model called random dynamics, is given in the first part of this work. The fine structure constant is calculated in the second part of this work by using the technique of path integration in the U(1) lattice gauge theory. It is shown that α U(1),crit -1 ∼ 19.8. This value is in agreement with the prediction of random dynamics. The obtained results are compared with the results of Monte Carlo simulations. 20 refs., 3 figs., 1 tab
Environment-assisted error correction of single-qubit phase damping
International Nuclear Information System (INIS)
Trendelkamp-Schroer, Benjamin; Helm, Julius; Strunz, Walter T.
2011-01-01
Open quantum system dynamics of random unitary type may in principle be fully undone. Closely following the scheme of environment-assisted error correction proposed by Gregoratti and Werner [J. Mod. Opt. 50, 915 (2003)], we explicitly carry out all steps needed to invert a phase-damping error on a single qubit. Furthermore, we extend the scheme to a mixed-state environment. Surprisingly, we find cases for which the uncorrected state is closer to the desired state than any of the corrected ones.
A Neural Network Approach to Fluid Quantity Measurement in Dynamic Environments
Terzic, Edin; Nagarajah, Romesh; Alamgir, Muhammad
2012-01-01
Sloshing causes liquid to fluctuate, making accurate level readings difficult to obtain in dynamic environments. The measurement system described uses a single-tube capacitive sensor to obtain an instantaneous level reading of the fluid surface, thereby accurately determining the fluid quantity in the presence of slosh. A neural network based classification technique has been applied to predict the actual quantity of the fluid contained in a tank under sloshing conditions. In A neural network approach to fluid quantity measurement in dynamic environments, effects of temperature variations and contamination on the capacitive sensor are discussed, and the authors propose that these effects can also be eliminated with the proposed neural network based classification system. To examine the performance of the classification system, many field trials were carried out on a running vehicle at various tank volume levels that range from 5 L to 50 L. The effectiveness of signal enhancement on the neural network base...
Creating Dynamic Learning Environment to Enhance Students’ Engagement in Learning Geometry
Sariyasa
2017-04-01
Learning geometry gives many benefits to students. It strengthens the development of deductive thinking and reasoning; it also provides an opportunity to improve visualisation and spatial ability. Some studies, however, have pointed out the difficulties that students encountered when learning geometry. A preliminary study by the author in Bali revealed that one of the main problems was teachers’ difficulties in delivering geometry instruction. It was partly due to the lack of appropriate instructional media. Coupling with dynamic geometry software, dynamic learning environments is a promising solution to this problem. Employing GeoGebra software supported by the well-designed instructional process may result in more meaningful learning, and consequently, students are motivated to engage in the learning process more deeply and actively. In this paper, we provide some examples of GeoGebra-aided learning activities that allow students to interactively explore and investigate geometry concepts and the properties of geometry objects. Thus, it is expected that such learning environment will enhance students’ internalisation process of geometry concepts.
Dragone, Mauro; O'Donoghue, Ruadhan; Leonard, John J.; O'Hare, Gregory; Duffy, Brian; Patrikalakis, Andrew; Leederkerken, Jacques
2005-06-01
The paper describes an ongoing effort to enable autonomous mobile robots to play soccer in unstructured, everyday environments. Unlike conventional robot soccer competitions that are usually held on purpose-built robot soccer "fields", in our work we seek to develop the capability for robots to demonstrate aspects of soccer-playing in more diverse environments, such as schools, hospitals, or shopping malls, with static obstacles (furniture) and dynamic natural obstacles (people). This problem of "Soccer Anywhere" presents numerous research challenges including: (1) Simultaneous Localization and Mapping (SLAM) in dynamic, unstructured environments, (2) software control architectures for decentralized, distributed control of mobile agents, (3) integration of vision-based object tracking with dynamic control, and (4) social interaction with human participants. In addition to the intrinsic research merit of these topics, we believe that this capability would prove useful for outreach activities, in demonstrating robotics technology to primary and secondary school students, to motivate them to pursue careers in science and engineering.
Qudrat-Ullah, Hassan
2010-01-01
The use of simulations in general and of system dynamics simulation based interactive learning environments (SDILEs) in particular is well recognized as an effective way of improving users' decision making and learning in complex, dynamic tasks. However, the effectiveness of SDILEs in classrooms has rarely been evaluated. This article describes…
Controlling Uncertainty: A Review of Human Behavior in Complex Dynamic Environments
Osman, Magda
2010-01-01
Complex dynamic control (CDC) tasks are a type of problem-solving environment used for examining many cognitive activities (e.g., attention, control, decision making, hypothesis testing, implicit learning, memory, monitoring, planning, and problem solving). Because of their popularity, there have been many findings from diverse domains of research…
An Adaptive Learning Based Network Selection Approach for 5G Dynamic Environments
Directory of Open Access Journals (Sweden)
Xiaohong Li
2018-03-01
Full Text Available Networks will continue to become increasingly heterogeneous as we move toward 5G. Meanwhile, the intelligent programming of the core network makes the available radio resource be more changeable rather than static. In such a dynamic and heterogeneous network environment, how to help terminal users select optimal networks to access is challenging. Prior implementations of network selection are usually applicable for the environment with static radio resources, while they cannot handle the unpredictable dynamics in 5G network environments. To this end, this paper considers both the fluctuation of radio resources and the variation of user demand. We model the access network selection scenario as a multiagent coordination problem, in which a bunch of rationally terminal users compete to maximize their benefits with incomplete information about the environment (no prior knowledge of network resource and other users’ choices. Then, an adaptive learning based strategy is proposed, which enables users to adaptively adjust their selections in response to the gradually or abruptly changing environment. The system is experimentally shown to converge to Nash equilibrium, which also turns out to be both Pareto optimal and socially optimal. Extensive simulation results show that our approach achieves significantly better performance compared with two learning and non-learning based approaches in terms of load balancing, user payoff and the overall bandwidth utilization efficiency. In addition, the system has a good robustness performance under the condition with non-compliant terminal users.
Directory of Open Access Journals (Sweden)
K. Mohaideen Pitchai
2017-07-01
Full Text Available Wireless Sensor Network (WSN consists of a large number of small sensors with restricted energy. Prolonged network lifespan, scalability, node mobility and load balancing are important needs for several WSN applications. Clustering the sensor nodes is an efficient technique to reach these goals. WSN have the characteristics of topology dynamics because of factors like energy conservation and node movement that leads to Dynamic Load Balanced Clustering Problem (DLBCP. In this paper, Elitism based Random Immigrant Genetic Approach (ERIGA is proposed to solve DLBCP which adapts to topology dynamics. ERIGA uses the dynamic Genetic Algorithm (GA components for solving the DLBCP. The performance of load balanced clustering process is enhanced with the help of this dynamic GA. As a result, the ERIGA achieves to elect suitable cluster heads which balances the network load and increases the lifespan of the network.
r-process nucleosynthesis in dynamic helium-burning environments
International Nuclear Information System (INIS)
Cowan, J.J.; Cameron, A.G.W.; Truran, J.W.
1985-01-01
The results of an extended examination of r-process nucleosynthesis in helium-burning environments are presented. Using newly calculated nuclear rates, dynamical r-process calculations have been made of thermal runaways in helium cores typical of low-mass stars and in the helium zones of stars undergoing supernova explosions. These calculations show that, for a sufficient flux of neutrons produced by the 13 C neutron source, r-process nuclei in solar proportions can be produced. The conditions required for r-process production are found to be: 10 20 --10 21 neutrons cm -3 for times of 0.01--0.1 s and neutron number densities in excess of 10 19 cm -3 for times of approx.1 s. The amount of 13 C required is found to be exceedingly high: larger than is found to occur in any current stellar evolutionary model. It is thus unlikely that these helium-burning environments are responsible for producing the bulk of the r-process elements seen in the solar system
A Spectral Approach for Quenched Limit Theorems for Random Expanding Dynamical Systems
Dragičević, D.; Froyland, G.; González-Tokman, C.; Vaienti, S.
2018-01-01
We prove quenched versions of (i) a large deviations principle (LDP), (ii) a central limit theorem (CLT), and (iii) a local central limit theorem for non-autonomous dynamical systems. A key advance is the extension of the spectral method, commonly used in limit laws for deterministic maps, to the general random setting. We achieve this via multiplicative ergodic theory and the development of a general framework to control the regularity of Lyapunov exponents of twisted transfer operator cocycles with respect to a twist parameter. While some versions of the LDP and CLT have previously been proved with other techniques, the local central limit theorem is, to our knowledge, a completely new result, and one that demonstrates the strength of our method. Applications include non-autonomous (piecewise) expanding maps, defined by random compositions of the form {T_{σ^{n-1} ω} circ\\cdotscirc T_{σω}circ T_ω} . An important aspect of our results is that we only assume ergodicity and invertibility of the random driving {σ:Ω\\toΩ} ; in particular no expansivity or mixing properties are required.
Human Activity Recognition in AAL Environments Using Random Projections
Directory of Open Access Journals (Sweden)
Robertas Damaševičius
2016-01-01
Full Text Available Automatic human activity recognition systems aim to capture the state of the user and its environment by exploiting heterogeneous sensors attached to the subject’s body and permit continuous monitoring of numerous physiological signals reflecting the state of human actions. Successful identification of human activities can be immensely useful in healthcare applications for Ambient Assisted Living (AAL, for automatic and intelligent activity monitoring systems developed for elderly and disabled people. In this paper, we propose the method for activity recognition and subject identification based on random projections from high-dimensional feature space to low-dimensional projection space, where the classes are separated using the Jaccard distance between probability density functions of projected data. Two HAR domain tasks are considered: activity identification and subject identification. The experimental results using the proposed method with Human Activity Dataset (HAD data are presented.
Human Activity Recognition in AAL Environments Using Random Projections.
Damaševičius, Robertas; Vasiljevas, Mindaugas; Šalkevičius, Justas; Woźniak, Marcin
2016-01-01
Automatic human activity recognition systems aim to capture the state of the user and its environment by exploiting heterogeneous sensors attached to the subject's body and permit continuous monitoring of numerous physiological signals reflecting the state of human actions. Successful identification of human activities can be immensely useful in healthcare applications for Ambient Assisted Living (AAL), for automatic and intelligent activity monitoring systems developed for elderly and disabled people. In this paper, we propose the method for activity recognition and subject identification based on random projections from high-dimensional feature space to low-dimensional projection space, where the classes are separated using the Jaccard distance between probability density functions of projected data. Two HAR domain tasks are considered: activity identification and subject identification. The experimental results using the proposed method with Human Activity Dataset (HAD) data are presented.
International Nuclear Information System (INIS)
Sutrisno; Widowati; Solikhin
2016-01-01
In this paper, we propose a mathematical model in stochastic dynamic optimization form to determine the optimal strategy for an integrated single product inventory control problem and supplier selection problem where the demand and purchasing cost parameters are random. For each time period, by using the proposed model, we decide the optimal supplier and calculate the optimal product volume purchased from the optimal supplier so that the inventory level will be located at some point as close as possible to the reference point with minimal cost. We use stochastic dynamic programming to solve this problem and give several numerical experiments to evaluate the model. From the results, for each time period, the proposed model was generated the optimal supplier and the inventory level was tracked the reference point well. (paper)
LEADSTO: a Language and Environment for Analysis of Dynamics by SimulaTiOn (extended abstract)
Bosse, T.; Jonker, C.M.; van der Meij, L.; Treur, J.
2005-01-01
This paper presents the language and software environment LEADSTO that has been developed to model and simulate dynamic processes in terms of both qualitative and quantitative concepts. The LEADSTO language is a declarative order-sorted temporal language, extended with quantitative means. Dynamic
Modeling the Gas Dynamics Environment in a Subscale Solid Rocket Test Motor
Eaton, Andrew M.; Ewing, Mark E.; Bailey, Kirk M.; McCool, Alex (Technical Monitor)
2001-01-01
Subscale test motors are often used for the evaluation of solid rocket motor component materials such as internal insulation. These motors are useful for characterizing insulation performance behavior, screening insulation material candidates and obtaining material thermal and ablative property design data. One of the primary challenges associated with using subscale motors however, is the uncertainty involved when extrapolating the results to full-scale motor conditions. These uncertainties are related to differences in such phenomena as turbulent flow behavior and boundary layer development, propellant particle interactions with the wall, insulation off-gas mixing and thermochemical reactions with the bulk flow, radiation levels, material response to the local environment, and other anomalous flow conditions. In addition to the need for better understanding of physical mechanisms, there is also a need to better understand how to best simulate these phenomena using numerical modeling approaches such as computational fluid dynamics (CFD). To better understand and model interactions between major phenomena in a subscale test motor, a numerical study of the internal flow environment of a representative motor was performed. Simulation of the environment included not only gas dynamics, but two-phase flow modeling of entrained alumina particles like those found in an aluminized propellant, and offgassing from wall surfaces similar to an ablating insulation material. This work represents a starting point for establishing the internal environment of a subscale test motor using comprehensive modeling techniques, and lays the groundwork for improving the understanding of the applicability of subscale test data to full-scale motors. It was found that grid resolution, and inclusion of phenomena in addition to gas dynamics, such as two-phase and multi-component gas composition are all important factors that can effect the overall flow field predictions.
Using a Feedback Environment to Improve Creative Performance: A Dynamic Affect Perspective
Gong, Zhenxing; Zhang, Na
2017-01-01
Prior research on feedback and creative performance has neglected the dynamic nature of affect and has focused only on the influence of positive affect. We argue that creative performance is the result of a dynamic process in which a person experiences a phase of negative affect and subsequently enters a state of high positive affect that is influenced by the feedback environment. Hierarchical regression was used to analyze a sample of 264 employees from seven industry firms. The results indi...
Ünal, Erhan; Çakir, Hasan
2017-01-01
The purpose of this study was to design a problem based collaborative learning environment supported by dynamic web technologies and to examine students' views about this learning environment. The study was designed as a qualitative research. Some 36 students who took an Object Oriented Programming I-II course at the department of computer…
Using a Feedback Environment to Improve Creative Performance: A Dynamic Affect Perspective.
Gong, Zhenxing; Zhang, Na
2017-01-01
Prior research on feedback and creative performance has neglected the dynamic nature of affect and has focused only on the influence of positive affect. We argue that creative performance is the result of a dynamic process in which a person experiences a phase of negative affect and subsequently enters a state of high positive affect that is influenced by the feedback environment. Hierarchical regression was used to analyze a sample of 264 employees from seven industry firms. The results indicate that employees' perceptions of a supportive supervisor feedback environment indirectly influence their level of creative performance through positive affect (t2); the negative affect (t1) moderates the relationship between positive affect (t2) and creative performance (t2), rendering the relationship more positive if negative affect (t1) is high. The change in positive affect mediates the relationship between the supervisor feedback environment and creative performance; a decrease in negative affect moderates the relationship between increased positive affect and creative performance, rendering the relationship more positive if the decrease in negative affect is large. The implications for improving the creative performances of employees are further discussed.
Using a Feedback Environment to Improve Creative Performance: A Dynamic Affect Perspective
Directory of Open Access Journals (Sweden)
Zhenxing Gong
2017-08-01
Full Text Available Prior research on feedback and creative performance has neglected the dynamic nature of affect and has focused only on the influence of positive affect. We argue that creative performance is the result of a dynamic process in which a person experiences a phase of negative affect and subsequently enters a state of high positive affect that is influenced by the feedback environment. Hierarchical regression was used to analyze a sample of 264 employees from seven industry firms. The results indicate that employees’ perceptions of a supportive supervisor feedback environment indirectly influence their level of creative performance through positive affect (t2; the negative affect (t1 moderates the relationship between positive affect (t2 and creative performance (t2, rendering the relationship more positive if negative affect (t1 is high. The change in positive affect mediates the relationship between the supervisor feedback environment and creative performance; a decrease in negative affect moderates the relationship between increased positive affect and creative performance, rendering the relationship more positive if the decrease in negative affect is large. The implications for improving the creative performances of employees are further discussed.
A Language and Environment for Analysis of Dynamics by SimulaTiOn
Bosse, T.; Jonker, C.M.; van der Meij, L.; Treur, J.
2007-01-01
This article presents the language and software environment LEADSTO that has been developed to model and simulate dynamic processes in terms of both qualitative and quantitative concepts. The LEADSTO language is a declarative order-sorted temporal language, extended with quantitative notions like
Hung, R. J.; Tsao, Y. D.; Hong, B. B.; Leslie, F. W.
1988-01-01
Time dependent evolutions of the profile of free surface (bubble shapes) for a cylindrical container partially filled with a Newtonian fluid of constant density, rotating about its axis of symmetry, have been studied. Numerical computations of the dynamics of bubble shapes have been carried out with the following situations: (1) linear functions of spin-up and spin-down in low and microgravity environments, (2) step functions of spin-up and spin-down in a low gravity environment, and (3) sinusoidal function oscillation of gravity environment in high and low rotating cylinder speeds.
International Nuclear Information System (INIS)
Duan Ya-Fan; Xu Zhen; Qian Jun; Sun Jian-Fang; Jiang Bo-Nan; Hong Tao
2011-01-01
We numerically analyze the dynamic behavior of Bose—Einstein condensate (BEC) in a one-dimensional disordered potential before it completely loses spatial quantum coherence. We find that both the disorder statistics and the atom interactions produce remarkable effects on localization. We also find that the single phase of the initial condensate is broken into many small pieces while the system approaches localization, showing a counter-intuitive step-wise phase but not a thoroughly randomized phase. Although the condensates as a whole show less flow and expansion, the currents between adjacent phase steps retain strong time dependence. Thus we show explicitly that the localization of a finite size Bose—Einstein condensate is a dynamic equilibrium state. (general)
Energy Technology Data Exchange (ETDEWEB)
Sun, Ke-Wei [School of Science, Hangzhou Dianzi University, Hangzhou 310018 (China); Division of Materials Science, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Fujihashi, Yuta; Ishizaki, Akihito [Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8585 (Japan); Zhao, Yang, E-mail: YZhao@ntu.edu.sg [Division of Materials Science, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)
2016-05-28
A master equation approach based on an optimized polaron transformation is adopted for dynamics simulation with simultaneous diagonal and off-diagonal spin-boson coupling. Two types of bath spectral density functions are considered, the Ohmic and the sub-Ohmic. The off-diagonal coupling leads asymptotically to a thermal equilibrium with a nonzero population difference P{sub z}(t → ∞) ≠ 0, which implies localization of the system, and it also plays a role in restraining coherent dynamics for the sub-Ohmic case. Since the new method can extend to the stronger coupling regime, we can investigate the coherent-incoherent transition in the sub-Ohmic environment. Relevant phase diagrams are obtained for different temperatures. It is found that the sub-Ohmic environment allows coherent dynamics at a higher temperature than the Ohmic environment.
RSMDP-based Robust Q-learning for Optimal Path Planning in a Dynamic Environment
Directory of Open Access Journals (Sweden)
Yunfei Zhang
2014-07-01
Full Text Available This paper presents arobust Q-learning method for path planningin a dynamic environment. The method consists of three steps: first, a regime-switching Markov decision process (RSMDP is formed to present the dynamic environment; second a probabilistic roadmap (PRM is constructed, integrated with the RSMDP and stored as a graph whose nodes correspond to a collision-free world state for the robot; and third, an onlineQ-learning method with dynamic stepsize, which facilitates robust convergence of the Q-value iteration, is integrated with the PRM to determine an optimal path for reaching the goal. In this manner, the robot is able to use past experience for improving its performance in avoiding not only static obstacles but also moving obstacles, without knowing the nature of the obstacle motion. The use ofregime switching in the avoidance of obstacles with unknown motion is particularly innovative. The developed approach is applied to a homecare robot in computer simulation. The results show that the online path planner with Q-learning is able torapidly and successfully converge to the correct path.
Security Flaws in an Efficient Pseudo-Random Number Generator for Low-Power Environments
Peris-Lopez, Pedro; Hernandez-Castro, Julio C.; Tapiador, Juan M. E.; Millán, Enrique San; van der Lubbe, Jan C. A.
In 2004, Settharam and Rhee tackled the design of a lightweight Pseudo-Random Number Generator (PRNG) suitable for low-power environments (e.g. sensor networks, low-cost RFID tags). First, they explicitly fixed a set of requirements for this primitive. Then, they proposed a PRNG conforming to these requirements and using a free-running timer [9]. We analyze this primitive discovering important security faults. The proposed algorithm fails to pass even relatively non-stringent batteries of randomness such as ENT (i.e. a pseudorandom number sequence test program). We prove that their recommended PRNG has a very short period due to the flawed design of its core. The internal state can be easily revealed, compromising its backward and forward security. Additionally, the rekeying algorithm is defectively designed mainly related to the unpractical value proposed for this purpose.
On the equilibrium state of a small system with random matrix coupling to its environment
Lebowitz, J. L.; Pastur, L.
2015-07-01
We consider a random matrix model of interaction between a small n-level system, S, and its environment, a N-level heat reservoir, R. The interaction between S and R is modeled by a tensor product of a fixed n× n matrix and a N× N Hermitian random matrix. We show that under certain ‘macroscopicity’ conditions on R, the reduced density matrix of the system {{ρ }S}=T{{r}R}ρ S\\cup R(eq), is given by ρ S(c)˜ exp \\{-β {{H}S}\\}, where HS is the Hamiltonian of the isolated system. This holds for all strengths of the interaction and thus gives some justification for using ρ S(c) to describe some nano-systems, like biopolymers, in equilibrium with their environment (Seifert 2012 Rep. Prog. Phys. 75 126001). Our results extend those obtained previously in (Lebowitz and Pastur 2004 J. Phys. A: Math. Gen. 37 1517-34) (Lebowitz et al 2007 Contemporary Mathematics (Providence RI: American Mathematical Society) pp 199-218) for a special two-level system.
2010-03-25
... Access Memory Semiconductors and Products Containing Same, Including Memory Modules; Notice of... semiconductors and products containing same, including memory modules, by reason of infringement of certain... importation of certain dynamic random access memory semiconductors or products containing the same, including...
Zhou, Mingming; Chan, Kan Kan; Teo, Timothy
2016-01-01
Dynamic geometry environments (DGEs) provide computer-based environments to construct and manipulate geometric figures with great ease. Research has shown that DGEs has positive impact on student motivation, engagement, and achievement in mathematics learning. However, the adoption of DGEs by mathematics teachers varies substantially worldwide.…
Random access dynamic memory device with capacity of 4Kx16 bytes
International Nuclear Information System (INIS)
Damatov, Ya.M.; Nikityuk, N.M.; Nomokonova, A.I.
1980-01-01
Random access dynamic memory devjce with capacity of 4Kx16 bytes is described. A block diagram, time diagrams and a general view of a unit are presented. Regimes os unit operation and ways of data regeneration are described. The analyser regime and a possibility of recording data from ''R'' buses of CAMAC dataway permit to use the unit efficiency in spectrometrical channels with a high intensity of experimental events arrival. The unit is developed on the basis of using large integral circuits
Disordered and Multiple Destinations Path Planning Methods for Mobile Robot in Dynamic Environment
Directory of Open Access Journals (Sweden)
Yong-feng Dong
2016-01-01
Full Text Available In the smart home environment, aiming at the disordered and multiple destinations path planning, the sequencing rule is proposed to determine the order of destinations. Within each branching process, the initial feasible path set is generated according to the law of attractive destination. A sinusoidal adaptive genetic algorithm is adopted. It can calculate the crossover probability and mutation probability adaptively changing with environment at any time. According to the cultural-genetic algorithm, it introduces the concept of reducing turns by parallelogram and reducing length by triangle in the belief space, which can improve the quality of population. And the fallback strategy can help to jump out of the “U” trap effectively. The algorithm analyses the virtual collision in dynamic environment with obstacles. According to the different collision types, different strategies are executed to avoid obstacles. The experimental results show that cultural-genetic algorithm can overcome the problems of premature and convergence of original algorithm effectively. It can avoid getting into the local optimum. And it is more effective for mobile robot path planning. Even in complex environment with static and dynamic obstacles, it can avoid collision safely and plan an optimal path rapidly at the same time.
Operational computer graphics in the flight dynamics environment
Jeletic, James F.
1989-01-01
Over the past five years, the Flight Dynamics Division of the National Aeronautics and Space Administration's (NASA's) Goddard Space Flight Center has incorporated computer graphics technology into its operational environment. In an attempt to increase the effectiveness and productivity of the Division, computer graphics software systems have been developed that display spacecraft tracking and telemetry data in 2-d and 3-d graphic formats that are more comprehensible than the alphanumeric tables of the past. These systems vary in functionality from real-time mission monitoring system, to mission planning utilities, to system development tools. Here, the capabilities and architecture of these systems are discussed.
Dynamic Scaffolding of Socially Regulated Learning in a Computer-Based Learning Environment
Molenaar, I.; Roda, Claudia; van Boxtel, Carla A.M.; Sleegers, P.J.C.
2012-01-01
The aim of this study is to test the effects of dynamically scaffolding social regulation of middle school students working in a computer-based learning environment. Dyads in the scaffolding condition (N = 56) are supported with computer-generated scaffolds and students in the control condition (N =
Conwill, Arolyn; Yurtsev, Eugene; Gore, Jeff
2014-03-01
A common mechanism of antibiotic resistance in bacteria involves the production of an enzyme that inactivates the antibiotic. By inactivating the antibiotic, resistant cells can protect other cells in the population that would otherwise be sensitive to the drug. In a multidrug environment, an obligatory mutualism arises because populations of different strains rely on each other to breakdown antibiotics in the environment. Here, we experimentally track the population dynamics of two E. coli strains in the presence of two different antibiotics: ampicillin and chloramphenicol. Together the strains are able to grow in antibiotic concentrations that inhibit growth of either one of the strains alone. Although mutualisms are often thought to stabilize population dynamics, we observe strong oscillatory dynamics even when there is long-term coexistence between the two strains. We expect that our results will provide insight into the evolution of antibiotic resistance and, more generally, the evolutionary origin of phenotypic diversity, cooperation, and ecological stability.
Uchiyama, Ayako; Odagiri, Yuko; Ohya, Yumiko; Takamiya, Tomoko; Inoue, Shigeru; Shimomitsu, Teruichi
2013-01-01
Improvement of psychosocial work environment has proved to be valuable for workers' mental health. However, limited evidence is available for the effectiveness of participatory interventions. The purpose of this study was to investigate the effect on mental health among nurses of a participatory intervention to improve the psychosocial work environment. A cluster randomized controlled trial was conducted in hospital settings. A total of 434 nurses in 24 units were randomly allocated to 11 intervention units (n=183) and 13 control units (n=218). A participatory program was provided to the intervention units for 6 months. Depressive symptoms as mental health status and psychosocial work environment, assessed by the Job Content Questionnaire, the Effort-Reward Imbalance Questionnaire, and the Quality Work Competence questionnaire, were measured before and immediately after the 6-month intervention by a self-administered questionnaire. No significant intervention effect was observed for mental health status. However, significant intervention effects were observed in psychosocial work environment aspects, such as Coworker Support (pwork environment, but not mental health, among Japanese nurses.
Kinematic/Dynamic Characteristics for Visual and Kinesthetic Virtual Environments
Bortolussi, Michael R. (Compiler); Adelstein, B. D.; Gold, Miriam
1996-01-01
Work was carried out on two topics of principal importance to current progress in virtual environment research at NASA Ames and elsewhere. The first topic was directed at maximizing the temporal dynamic response of visually presented Virtual Environments (VEs) through reorganization and optimization of system hardware and software. The final results of this portion of the work was a VE system in the Advanced Display and Spatial Perception Laboratory at NASA Ames capable of updating at 60 Hz (the maximum hardware refresh rate) with latencies approaching 30 msec. In the course of achieving this system performance, specialized hardware and software tools for measurement of VE latency and analytic models correlating update rate and latency for different system configurations were developed. The second area of activity was the preliminary development and analysis of a novel kinematic architecture for three Degree Of Freedom (DOF) haptic interfaces--devices that provide force feedback for manipulative interaction with virtual and remote environments. An invention disclosure was filed on this work and a patent application is being pursued by NASA Ames. Activities in these two areas are expanded upon below.
Avendaño-Valencia, Luis David; Fassois, Spilios D.
2017-12-01
The problem of vibration-based damage diagnosis in structures characterized by time-dependent dynamics under significant environmental and/or operational uncertainty is considered. A stochastic framework consisting of a Gaussian Mixture Random Coefficient model of the uncertain time-dependent dynamics under each structural health state, proper estimation methods, and Bayesian or minimum distance type decision making, is postulated. The Random Coefficient (RC) time-dependent stochastic model with coefficients following a multivariate Gaussian Mixture Model (GMM) allows for significant flexibility in uncertainty representation. Certain of the model parameters are estimated via a simple procedure which is founded on the related Multiple Model (MM) concept, while the GMM weights are explicitly estimated for optimizing damage diagnostic performance. The postulated framework is demonstrated via damage detection in a simple simulated model of a quarter-car active suspension with time-dependent dynamics and considerable uncertainty on the payload. Comparisons with a simpler Gaussian RC model based method are also presented, with the postulated framework shown to be capable of offering considerable improvement in diagnostic performance.
A New Class of Particle Filters for Random Dynamic Systems with Unknown Statistics
Directory of Open Access Journals (Sweden)
Joaquín Míguez
2004-11-01
Full Text Available In recent years, particle filtering has become a powerful tool for tracking signals and time-varying parameters of random dynamic systems. These methods require a mathematical representation of the dynamics of the system evolution, together with assumptions of probabilistic models. In this paper, we present a new class of particle filtering methods that do not assume explicit mathematical forms of the probability distributions of the noise in the system. As a consequence, the proposed techniques are simpler, more robust, and more flexible than standard particle filters. Apart from the theoretical development of specific methods in the new class, we provide computer simulation results that demonstrate the performance of the algorithms in the problem of autonomous positioning of a vehicle in a 2-dimensional space.
Random Vibration and Dynamic Analysis of a Planetary Gear Train in a Wind Turbine
Directory of Open Access Journals (Sweden)
Jianming Yang
2016-01-01
Full Text Available Premature failure of gearboxes is a big challenge facing the wind power industry. It highly depends on fully understanding the embedded dynamics to solve this problem. To this end, this paper investigates the random vibration and dynamics of planetary gear trains (PGTs in wind turbines under the excitation of wind turbulence. The turbulence is represented by the Von Karmon spectrum and implemented by passing white noise through a 2nd-order shaping filter. Then, extra equations are formed and added to the original governing equations of motion. With this augmented equation set, a recursive numerical algorithm based on stochastic Newmark scheme is applied to solve for the statistics of the responses starting from initial conditions. After simulation, the variances of the vibration responses and the dynamic meshing forces at gear meshes are obtained.
Learning to Manage Intergroup Dynamics in Changing Task Environments: An Experiential Exercise
Hunsaker, Phillip L.
2004-01-01
This article describes an exercise that allows participants to experience the challenges of managing intergroup behavior as an organization's task environment grows and becomes more complex. The article begins with a brief review of models and concepts relating to intergroup dynamics, intergroup conflict, and interventions for effectively managing…
Wei, Kun; Ren, Bingyin
2018-02-13
In a future intelligent factory, a robotic manipulator must work efficiently and safely in a Human-Robot collaborative and dynamic unstructured environment. Autonomous path planning is the most important issue which must be resolved first in the process of improving robotic manipulator intelligence. Among the path-planning methods, the Rapidly Exploring Random Tree (RRT) algorithm based on random sampling has been widely applied in dynamic path planning for a high-dimensional robotic manipulator, especially in a complex environment because of its probability completeness, perfect expansion, and fast exploring speed over other planning methods. However, the existing RRT algorithm has a limitation in path planning for a robotic manipulator in a dynamic unstructured environment. Therefore, an autonomous obstacle avoidance dynamic path-planning method for a robotic manipulator based on an improved RRT algorithm, called Smoothly RRT (S-RRT), is proposed. This method that targets a directional node extends and can increase the sampling speed and efficiency of RRT dramatically. A path optimization strategy based on the maximum curvature constraint is presented to generate a smooth and curved continuous executable path for a robotic manipulator. Finally, the correctness, effectiveness, and practicability of the proposed method are demonstrated and validated via a MATLAB static simulation and a Robot Operating System (ROS) dynamic simulation environment as well as a real autonomous obstacle avoidance experiment in a dynamic unstructured environment for a robotic manipulator. The proposed method not only provides great practical engineering significance for a robotic manipulator's obstacle avoidance in an intelligent factory, but also theoretical reference value for other type of robots' path planning.
Dynamics and bifurcations of random circle diffeomorphisms
Zmarrou, H.; Homburg, A.J.
2008-01-01
We discuss iterates of random circle diffeomorphisms with identically distributed noise, where the noise is bounded and absolutely continuous. Using arguments of B. Deroin, V.A. Kleptsyn and A. Navas, we provide precise conditions under which random attracting fixed points or random attracting
Directory of Open Access Journals (Sweden)
Yuriy F. Telnov
2013-01-01
Full Text Available The paper represents the technology of application of dynamic intelligent process management system for integrated information-educational environment of university and providing the access for community in order to develop flexible education programs and teaching manuals based on multi-agent and service-oriented architecture. The article depicts the prototype of dynamic intelligent process management system using for forming of educational-methodic body. Efficiency of creation and usage of dynamic intelligent process management system is evaluated.
Invited Article: VEDA: A web-based virtual environment for dynamic atomic force microscopy
Melcher, John; Hu, Shuiqing; Raman, Arvind
2008-06-01
We describe here the theory and applications of virtual environment dynamic atomic force microscopy (VEDA), a suite of state-of-the-art simulation tools deployed on nanoHUB (www.nanohub.org) for the accurate simulation of tip motion in dynamic atomic force microscopy (dAFM) over organic and inorganic samples. VEDA takes advantage of nanoHUB's cyberinfrastructure to run high-fidelity dAFM tip dynamics computations on local clusters and the teragrid. Consequently, these tools are freely accessible and the dAFM simulations are run using standard web-based browsers without requiring additional software. A wide range of issues in dAFM ranging from optimal probe choice, probe stability, and tip-sample interaction forces, power dissipation, to material property extraction and scanning dynamics over hetereogeneous samples can be addressed.
On the molecular dynamics in the hurricane interactions with its environment
Meyer, Gabriel; Vitiello, Giuseppe
2018-06-01
By resorting to the Burgers model for hurricanes, we study the molecular motion involved in the hurricane dynamics. We show that the Lagrangian canonical formalism requires the inclusion of the environment degrees of freedom. This also allows the description of the motion of charged particles. In view of the role played by moist convection, cumulus and cloud water droplets in the hurricane dynamics, we discuss on the basis of symmetry considerations the role played by the molecular electrical dipoles and the formation of topologically non-trivial structures. The mechanism of energy storage and dissipation, the non-stationary time dependent Ginzburg-Landau equation and the vortex equation are studied. Finally, we discuss the fractal self-similarity properties of hurricanes.
Options of system integrated environment modelling in the predicated dynamic cyberspace
International Nuclear Information System (INIS)
Janková, Martina; Dvořák, Jiří
2015-01-01
In this article there are briefly mentioned some selected options of contemporary conception of cybernetic system models in the corresponding and possible integratable environment with modern system dynamics thinking and all this in the cyberspace of possible projecting of predicted system characteristics. The key to new capabilities of system integration modelling in the considered cyberspace is mainly the ability to improve the environment and the system integration options, all this with the aim of modern control in the hierarchically arranged dynamic cyberspace, e.g. in the currently desired electronic business with information. The aim of this article is to assess generally the trends in the use of modern modelling methods considering the cybernetics applications verified in practice, modern concept of project management and also the potential integration of artificial intelligence in the new projecting and project management of integratable and intelligent models, e.g. with the optimal structures and adaptable behaviour.The article results from the solution of a specific research partial task at the faculty; especially the moments proving that the new economics will be based more and more on information, knowledge system defined cyberspace of modern management, are stressed in the text
Options of system integrated environment modelling in the predicated dynamic cyberspace
Energy Technology Data Exchange (ETDEWEB)
Janková, Martina; Dvořák, Jiří [Institute of Informatics, Faculty of Business and Management, Brno University of Technology, Brno (Czech Republic)
2015-03-10
In this article there are briefly mentioned some selected options of contemporary conception of cybernetic system models in the corresponding and possible integratable environment with modern system dynamics thinking and all this in the cyberspace of possible projecting of predicted system characteristics. The key to new capabilities of system integration modelling in the considered cyberspace is mainly the ability to improve the environment and the system integration options, all this with the aim of modern control in the hierarchically arranged dynamic cyberspace, e.g. in the currently desired electronic business with information. The aim of this article is to assess generally the trends in the use of modern modelling methods considering the cybernetics applications verified in practice, modern concept of project management and also the potential integration of artificial intelligence in the new projecting and project management of integratable and intelligent models, e.g. with the optimal structures and adaptable behaviour.The article results from the solution of a specific research partial task at the faculty; especially the moments proving that the new economics will be based more and more on information, knowledge system defined cyberspace of modern management, are stressed in the text.
2011-01-13
... Semiconductors From the Republic of Korea: Final Results of Countervailing Duty Administrative Review AGENCY... administrative review of the countervailing duty order on dynamic random access memory semiconductors from the... to a change in the net subsidy rate. The final net subsidy rate for Hynix Semiconductor, Inc. is...
International Nuclear Information System (INIS)
De Santis, Emilio; Marinelli, Carlo
2007-01-01
We introduce and study a class of infinite-horizon non-zero-sum non-cooperative stochastic games with infinitely many interacting agents using ideas of statistical mechanics. First we show, in the general case of asymmetric interactions, the existence of a strategy that allows any player to eliminate losses after a finite random time. In the special case of symmetric interactions, we also prove that, as time goes to infinity, the game converges to a Nash equilibrium. Moreover, assuming that all agents adopt the same strategy, using arguments related to those leading to perfect simulation algorithms, spatial mixing and ergodicity are proved. In turn, ergodicity allows us to prove 'fixation', i.e. players will adopt a constant strategy after a finite time. The resulting dynamics is related to zero-temperature Glauber dynamics on random graphs of possibly infinite volume
A quantitative evolutionary theory of adaptive behavior dynamics.
McDowell, J J
2013-10-01
The idea that behavior is selected by its consequences in a process analogous to organic evolution has been discussed for over 100 years. A recently proposed theory instantiates this idea by means of a genetic algorithm that operates on a population of potential behaviors. Behaviors in the population are represented by numbers in decimal integer (phenotypic) and binary bit string (genotypic) forms. One behavior from the population is emitted at random each time tick, after which a new population of potential behaviors is constructed by recombining parent behavior bit strings. If the emitted behavior produced a benefit to the organism, then parents are chosen on the basis of their phenotypic similarity to the emitted behavior; otherwise, they are chosen at random. After parent behavior recombination, the population is subjected to a small amount of mutation by flipping random bits in the population's bit strings. The behavior generated by this process of selection, reproduction, and mutation reaches equilibrium states that conform to every empirically valid equation of matching theory, exactly and without systematic error. These equations are known to describe the behavior of many vertebrate species, including humans, in a variety of experimental, naturalistic, natural, and social environments. The evolutionary theory also generates instantaneous dynamics and patterns of preference change in constantly changing environments that are consistent with the dynamics of live-organism behavior. These findings support the assertion that the world of behavior we observe and measure is generated by evolutionary dynamics. PsycINFO Database Record (c) 2013 APA, all rights reserved
Evolution of regulatory networks towards adaptability and stability in a changing environment
Lee, Deok-Sun
2014-11-01
Diverse biological networks exhibit universal features distinguished from those of random networks, calling much attention to their origins and implications. Here we propose a minimal evolution model of Boolean regulatory networks, which evolve by selectively rewiring links towards enhancing adaptability to a changing environment and stability against dynamical perturbations. We find that sparse and heterogeneous connectivity patterns emerge, which show qualitative agreement with real transcriptional regulatory networks and metabolic networks. The characteristic scaling behavior of stability reflects the balance between robustness and flexibility. The scaling of fluctuation in the perturbation spread shows a dynamic crossover, which is analyzed by investigating separately the stochasticity of internal dynamics and the network structure differences depending on the evolution pathways. Our study delineates how the ambivalent pressure of evolution shapes biological networks, which can be helpful for studying general complex systems interacting with environments.
A new logistic dynamic particle swarm optimization algorithm based on random topology.
Ni, Qingjian; Deng, Jianming
2013-01-01
Population topology of particle swarm optimization (PSO) will directly affect the dissemination of optimal information during the evolutionary process and will have a significant impact on the performance of PSO. Classic static population topologies are usually used in PSO, such as fully connected topology, ring topology, star topology, and square topology. In this paper, the performance of PSO with the proposed random topologies is analyzed, and the relationship between population topology and the performance of PSO is also explored from the perspective of graph theory characteristics in population topologies. Further, in a relatively new PSO variant which named logistic dynamic particle optimization, an extensive simulation study is presented to discuss the effectiveness of the random topology and the design strategies of population topology. Finally, the experimental data are analyzed and discussed. And about the design and use of population topology on PSO, some useful conclusions are proposed which can provide a basis for further discussion and research.
Random unitary operations and quantum Darwinism
International Nuclear Information System (INIS)
Balaneskovic, Nenad
2016-01-01
We study the behavior of Quantum Darwinism (Zurek, Nature Physics 5, 181-188 (2009)) within the iterative, random unitary operations qubit-model of pure decoherence (Novotn'y et al, New Jour. Phys. 13, 053052 (2011)). We conclude that Quantum Darwinism, which describes the quantum mechanical evolution of an open system from the point of view of its environment, is not a generic phenomenon, but depends on the specific form of initial states and on the type of system-environment interactions. Furthermore, we show that within the random unitary model the concept of Quantum Darwinism enables one to explicitly construct and specify artificial initial states of environment that allow to store information about an open system of interest and its pointer-basis with maximal efficiency. Furthermore, we investigate the behavior of Quantum Darwinism after introducing dissipation into the iterative random unitary qubit model with pure decoherence in accord with V. Scarani et al (Phys. Rev. Lett. 88, 097905 (2002)) and reconstruct the corresponding dissipative attractor space. We conclude that in Zurek's qubit model Quantum Darwinism depends on the order in which pure decoherence and dissipation act upon an initial state of the entire system. We show explicitly that introducing dissipation into the random unitary evolution model in general suppresses Quantum Darwinism (regardless of the order in which decoherence and dissipation are applied) for all positive non-zero values of the dissipation strength parameter, even for those initial state configurations which, in Zurek's qubit model and in the random unitary model with pure decoherence, would lead to Quantum Darwinism. Finally, we discuss what happens with Quantum Darwinism after introducing into the iterative random unitary qubit model with pure decoherence (asymmetric) dissipation and dephasing, again in accord with V. Scarani et al (Phys. Rev. Lett. 88, 097905 (2002)), and reconstruct the corresponding
National Research Council Canada - National Science Library
Doane, Stephanie
2004-01-01
The specific goal of this research was to examine the role of individual differences in cognitive and non-cognitive abilities on individual and team performance in a real-time dynamic team-task environment...
Random Walk on a Perturbation of the Infinitely-Fast Mixing Interchange Process
Salvi, Michele; Simenhaus, François
2018-03-01
We consider a random walk in dimension d≥1 in a dynamic random environment evolving as an interchange process with rate γ >0 . We prove that, if we choose γ large enough, almost surely the empirical velocity of the walker X_t/t eventually lies in an arbitrary small ball around the annealed drift. This statement is thus a perturbation of the case γ =+∞ where the environment is refreshed between each step of the walker. We extend three-way part of the results of Huveneers and Simenhaus (Electron J Probab 20(105):42, 2015), where the environment was given by the 1-dimensional exclusion process: (i) We deal with any dimension d≥1 ; (ii) We treat the much more general interchange process, where each particle carries a transition vector chosen according to an arbitrary law μ ; (iii) We show that X_t/t is not only in the same direction of the annealed drift, but that it is also close to it.
Random Walk on a Perturbation of the Infinitely-Fast Mixing Interchange Process
Salvi, Michele; Simenhaus, François
2018-05-01
We consider a random walk in dimension d≥ 1 in a dynamic random environment evolving as an interchange process with rate γ >0. We prove that, if we choose γ large enough, almost surely the empirical velocity of the walker X_t/t eventually lies in an arbitrary small ball around the annealed drift. This statement is thus a perturbation of the case γ =+∞ where the environment is refreshed between each step of the walker. We extend three-way part of the results of Huveneers and Simenhaus (Electron J Probab 20(105):42, 2015), where the environment was given by the 1-dimensional exclusion process: (i) We deal with any dimension d≥1; (ii) We treat the much more general interchange process, where each particle carries a transition vector chosen according to an arbitrary law μ ; (iii) We show that X_t/t is not only in the same direction of the annealed drift, but that it is also close to it.
Thunderstorms in my computer : The effect of visual dynamics and sound in a 3D environment
Houtkamp, J.; Schuurink, E.L.; Toet, A.
2008-01-01
We assessed the effects of the addition of dynamic visual elements and sounds to a levee patroller training game on the appraisal of the environment and weather conditions, the engagement of the users and their performance. Results show that the combination of visual dynamics and sounds best conveys
Strongly Deterministic Population Dynamics in Closed Microbial Communities
Directory of Open Access Journals (Sweden)
Zak Frentz
2015-10-01
Full Text Available Biological systems are influenced by random processes at all scales, including molecular, demographic, and behavioral fluctuations, as well as by their interactions with a fluctuating environment. We previously established microbial closed ecosystems (CES as model systems for studying the role of random events and the emergent statistical laws governing population dynamics. Here, we present long-term measurements of population dynamics using replicate digital holographic microscopes that maintain CES under precisely controlled external conditions while automatically measuring abundances of three microbial species via single-cell imaging. With this system, we measure spatiotemporal population dynamics in more than 60 replicate CES over periods of months. In contrast to previous studies, we observe strongly deterministic population dynamics in replicate systems. Furthermore, we show that previously discovered statistical structure in abundance fluctuations across replicate CES is driven by variation in external conditions, such as illumination. In particular, we confirm the existence of stable ecomodes governing the correlations in population abundances of three species. The observation of strongly deterministic dynamics, together with stable structure of correlations in response to external perturbations, points towards a possibility of simple macroscopic laws governing microbial systems despite numerous stochastic events present on microscopic levels.
Dynamic Scaffolding of Socially Regulated Learning in a Computer-Based Learning Environment
Molenaar, Inge; Roda, Claudia; van Boxtel, Carla; Sleegers, Peter
2012-01-01
The aim of this study is to test the effects of dynamically scaffolding social regulation of middle school students working in a computer-based learning environment. Dyads in the scaffolding condition (N=56) are supported with computer-generated scaffolds and students in the control condition (N=54) do not receive scaffolds. The scaffolds are…
Adaptive typography for dynamic mapping environments
Bardon, Didier
1991-08-01
When typography moves across a map, it passes over areas of different colors, densities, and textures. In such a dynamic environment, the aspect of typography must be constantly adapted to provide disernibility for every new background. Adaptive typography undergoes two adaptive operations: background control and contrast control. The background control prevents the features of the map (edges, lines, abrupt changes of densities) from destroying the integrity of the letterform. This is achieved by smoothing the features of the map in the area where a text label is displayed. The modified area is limited to the space covered by the characters of the label. Dispositions are taken to insure that the smoothing operation does not introduce any new visual noise. The contrast control assures that there are sufficient lightness differences between the typography and its ever-changing background. For every new situation, background color and foreground color are compared and the foreground color lightness is adjusted according to a chosen contrast value. Criteria and methods of choosing the appropriate contrast value are presented as well as the experiments that led to them.
On a randomly imperfect spherical cap pressurized by a random ...
African Journals Online (AJOL)
In this paper, we investigate a dynamical system in a random setting of dual randomness in space and time variables in which both the imperfection of the structure and the load function are considered random , each with a statistical zero-mean .The auto- covariance of the load is correlated as an exponentially decaying ...
LEADSTO: a Language and Environment for Analysis of Dynamics by SimulaTiOn
Bosse, T.; Jonker, C.M.; van der Meij, L.; Treur, J.
2005-01-01
This paper presents the language and software environment LEADSTO that has been developed to model and simulate the dynamics of Multi-Agent Systems (MAS) in terms of both qualitative and quantitative concepts. The LEADSTO language is a declarative order-sorted temporal language, extended with
Memory Transformation Enhances Reinforcement Learning in Dynamic Environments.
Santoro, Adam; Frankland, Paul W; Richards, Blake A
2016-11-30
Over the course of systems consolidation, there is a switch from a reliance on detailed episodic memories to generalized schematic memories. This switch is sometimes referred to as "memory transformation." Here we demonstrate a previously unappreciated benefit of memory transformation, namely, its ability to enhance reinforcement learning in a dynamic environment. We developed a neural network that is trained to find rewards in a foraging task where reward locations are continuously changing. The network can use memories for specific locations (episodic memories) and statistical patterns of locations (schematic memories) to guide its search. We find that switching from an episodic to a schematic strategy over time leads to enhanced performance due to the tendency for the reward location to be highly correlated with itself in the short-term, but regress to a stable distribution in the long-term. We also show that the statistics of the environment determine the optimal utilization of both types of memory. Our work recasts the theoretical question of why memory transformation occurs, shifting the focus from the avoidance of memory interference toward the enhancement of reinforcement learning across multiple timescales. As time passes, memories transform from a highly detailed state to a more gist-like state, in a process called "memory transformation." Theories of memory transformation speak to its advantages in terms of reducing memory interference, increasing memory robustness, and building models of the environment. However, the role of memory transformation from the perspective of an agent that continuously acts and receives reward in its environment is not well explored. In this work, we demonstrate a view of memory transformation that defines it as a way of optimizing behavior across multiple timescales. Copyright © 2016 the authors 0270-6474/16/3612228-15$15.00/0.
International Nuclear Information System (INIS)
Alvarez, Gonzalo A.; Levstein, Patricia R.; Pastawski, Horacio M.
2007-01-01
We have observed an environmentally induced quantum dynamical phase transition in the dynamics of a two-spin experimental swapping gate [G.A. Alvarez, E.P. Danieli, P.R. Levstein, H.M. Pastawski, J. Chem. Phys. 124 (2006) 194507]. There, the exchange of the coupled states vertical bar ↑,↓> and vertical bar ↓,↑> gives an oscillation with a Rabi frequency b/ℎ (the spin-spin coupling). The interaction, ℎ/τ SE with a spin-bath degrades the oscillation with a characteristic decoherence time. We showed that the swapping regime is restricted only to bτ SE > or approx. ℎ. However, beyond a critical interaction with the environment the swapping freezes and the system enters to a Quantum Zeno dynamical phase where relaxation decreases as coupling with the environment increases. Here, we solve the quantum dynamics of a two-spin system coupled to a spin-bath within a Liouville-von Neumann quantum master equation and we compare the results with our previous work within the Keldysh formalism. Then, we extend the model to a three interacting spin system where only one is coupled to the environment. Beyond a critical interaction the two spins not coupled to the environment oscillate with the bare Rabi frequency and relax more slowly. This effect is more pronounced when the anisotropy of the system-environment (SE) interaction goes from a purely XY to an Ising interaction form
Li, Dachuan; Li, Qing; Cheng, Nong; Song, Jingyan
2014-11-18
This paper presents a real-time motion planning approach for autonomous vehicles with complex dynamics and state uncertainty. The approach is motivated by the motion planning problem for autonomous vehicles navigating in GPS-denied dynamic environments, which involves non-linear and/or non-holonomic vehicle dynamics, incomplete state estimates, and constraints imposed by uncertain and cluttered environments. To address the above motion planning problem, we propose an extension of the closed-loop rapid belief trees, the closed-loop random belief trees (CL-RBT), which incorporates predictions of the position estimation uncertainty, using a factored form of the covariance provided by the Kalman filter-based estimator. The proposed motion planner operates by incrementally constructing a tree of dynamically feasible trajectories using the closed-loop prediction, while selecting candidate paths with low uncertainty using efficient covariance update and propagation. The algorithm can operate in real-time, continuously providing the controller with feasible paths for execution, enabling the vehicle to account for dynamic and uncertain environments. Simulation results demonstrate that the proposed approach can generate feasible trajectories that reduce the state estimation uncertainty, while handling complex vehicle dynamics and environment constraints.
Fulkerson, Jayne A; Friend, Sarah; Horning, Melissa; Flattum, Colleen; Draxten, Michelle; Neumark-Sztainer, Dianne; Gurvich, Olga; Garwick, Ann; Story, Mary; Kubik, Martha Y
2018-02-01
Research has demonstrated a significant positive association between frequent family meals and children's dietary intake; however, the promotion of healthful family meals has not been rigorously tested for key food environment and nutrition-related behavioral outcomes in a randomized trial. To describe family home food environment and nutrition-related parent and child personal and behavioral outcomes of the Healthy Home Offerings via the Mealtime Environment Plus program, the first rigorously tested family meals intervention targeting childhood obesity prevention. Randomized controlled trial. Baseline, postintervention (12 months, 93% retention), and follow-up (21 months, 89% retention) data (surveys and dietary recalls) were collected. Children aged 8 to 12 years (N=160) and their parents were randomized to intervention (n=81) or control (n=79) groups. The intervention included five parent goal-setting calls and 10 monthly sessions delivered to families in community settings that focused on experiential nutrition activities and education, meal planning, cooking skill development, and reducing screen time. Family home food environment outcomes and nutrition-related child and parent personal and behavioral outcomes. Analyses used generalized linear mixed models. Primary comparisons were contrasts between intervention and control groups at postintervention and follow-up, with adjustments for child age and parent education. Compared with control parents, intervention parents showed greater improvement over time in scores of self-efficacy for identifying appropriate portion sizes, with significant differences in adjusted means at both post-intervention (P=0.002) and follow-up (P=0.01). Intervention children were less likely to consume at least one sugar-sweetened beverage daily at post-intervention than control children (P=0.04). The Healthy Home Offerings via the Mealtime Environment Plus program involved the entire family and targeted personal, behavioral, and
International Nuclear Information System (INIS)
Häggström, I; Karlsson, M; Larsson, A; Schmidtlein, C
2014-01-01
Purpose: To investigate the effects of corrections for random and scattered coincidences on kinetic parameters in brain tumors, by using ten Monte Carlo (MC) simulated dynamic FLT-PET brain scans. Methods: The GATE MC software was used to simulate ten repetitions of a 1 hour dynamic FLT-PET scan of a voxelized head phantom. The phantom comprised six normal head tissues, plus inserted regions for blood and tumor tissue. Different time-activity-curves (TACs) for all eight tissue types were used in the simulation and were generated in Matlab using a 2-tissue model with preset parameter values (K1,k2,k3,k4,Va,Ki). The PET data was reconstructed into 28 frames by both ordered-subset expectation maximization (OSEM) and 3D filtered back-projection (3DFBP). Five image sets were reconstructed, all with normalization and different additional corrections C (A=attenuation, R=random, S=scatter): Trues (AC), trues+randoms (ARC), trues+scatters (ASC), total counts (ARSC) and total counts (AC). Corrections for randoms and scatters were based on real random and scatter sinograms that were back-projected, blurred and then forward projected and scaled to match the real counts. Weighted non-linearleast- squares fitting of TACs from the blood and tumor regions was used to obtain parameter estimates. Results: The bias was not significantly different for trues (AC), trues+randoms (ARC), trues+scatters (ASC) and total counts (ARSC) for either 3DFBP or OSEM (p<0.05). Total counts with only AC stood out however, with an up to 160% larger bias. In general, there was no difference in bias found between 3DFBP and OSEM, except in parameter Va and Ki. Conclusion: According to our results, the methodology of correcting the PET data for randoms and scatters performed well for the dynamic images where frames have much lower counts compared to static images. Generally, no bias was introduced by the corrections and their importance was emphasized since omitting them increased bias extensively
The random continued fraction transformation
Kalle, Charlene; Kempton, Tom; Verbitskiy, Evgeny
2017-03-01
We introduce a random dynamical system related to continued fraction expansions. It uses random combinations of the Gauss map and the Rényi (or backwards) continued fraction map. We explore the continued fraction expansions that this system produces, as well as the dynamical properties of the system.
Homeostatic Agent for General Environment
Yoshida, Naoto
2018-03-01
One of the essential aspect in biological agents is dynamic stability. This aspect, called homeostasis, is widely discussed in ethology, neuroscience and during the early stages of artificial intelligence. Ashby's homeostats are general-purpose learning machines for stabilizing essential variables of the agent in the face of general environments. However, despite their generality, the original homeostats couldn't be scaled because they searched their parameters randomly. In this paper, first we re-define the objective of homeostats as the maximization of a multi-step survival probability from the view point of sequential decision theory and probabilistic theory. Then we show that this optimization problem can be treated by using reinforcement learning algorithms with special agent architectures and theoretically-derived intrinsic reward functions. Finally we empirically demonstrate that agents with our architecture automatically learn to survive in a given environment, including environments with visual stimuli. Our survival agents can learn to eat food, avoid poison and stabilize essential variables through theoretically-derived single intrinsic reward formulations.
Rosenthal, Malcolm F; Wilkins, Matthew R; Shizuka, Daizaburo; Hebets, Eileen A
2018-02-20
Animal communication is often structurally complex and dynamic, with signaler and receiver behavior varying in response to multiple environmental factors. To date, studies assessing signal dynamics have mostly focused on the relationships between select signaling traits and receiver responses in a single environment. We use the wolf spider Schizocosa floridana to explore the relationships between courtship display form and function across two social contexts (female presence vs absence) and two light environments (light vs dark). We use traditional analytical methods to determine predictors of copulation success (i.e., signal function) and examine these predictors in a structural context by overlaying them on signal phenotype networks (Wilkins et al. 2015). This allows us to explore system design principles (degeneracy, redundancy, pluripotentiality), providing insight into hypotheses regarding complex signal evolution. We found that both social context and light environment affect courtship structure, although the predictors of mating success remain similar across light environments, suggesting system degeneracy. Contrastingly, the same display traits may serve different functions across social environments, suggesting pluripotentiality. Ultimately, our network approach uncovers a complexity in display structure and function that is missed by functional analyses alone, highlighting the importance of systems-based methodologies for understanding the dynamic nature of complex signals. © 2018 The Author(s). Evolution © 2018 The Society for the Study of Evolution.
Kiracofe, Daniel; Melcher, John; Raman, Arvind
2012-01-01
Dynamic atomic force microscopy (dAFM) continues to grow in popularity among scientists in many different fields, and research on new methods and operating modes continues to expand the resolution, capabilities, and types of samples that can be studied. But many promising increases in capability are accompanied by increases in complexity. Indeed, interpreting modern dAFM data can be challenging, especially on complicated material systems, or in liquid environments where the behavior is often contrary to what is known in air or vacuum environments. Mathematical simulations have proven to be an effective tool in providing physical insight into these non-intuitive systems. In this article we describe recent developments in the VEDA (virtual environment for dynamic AFM) simulator, which is a suite of freely available, open-source simulation tools that are delivered through the cloud computing cyber-infrastructure of nanoHUB (www.nanohub.org). Here we describe three major developments. First, simulations in liquid environments are improved by enhancements in the modeling of cantilever dynamics, excitation methods, and solvation shell forces. Second, VEDA is now able to simulate many new advanced modes of operation (bimodal, phase-modulation, frequency-modulation, etc.). Finally, nineteen different tip-sample models are available to simulate the surface physics of a wide variety different material systems including capillary, specific adhesion, van der Waals, electrostatic, viscoelasticity, and hydration forces. These features are demonstrated through example simulations and validated against experimental data, in order to provide insight into practical problems in dynamic AFM.
National Research Council Canada - National Science Library
Fischer, William
2001-01-01
.... Specifically, it describes design of the NPS Dynamic-Behavior-Protocol (DBP) protocols, which are multicast / unicast capable and can be added at runtime to the distributed operating environment...
2010-04-20
... DEPARTMENT OF COMMERCE International Trade Administration [C-580-851] Dynamic Random Access Memory Semiconductors from the Republic of Korea: Extension of Time Limit for Preliminary Results of Countervailing Duty... access memory semiconductors from the Republic of Korea, covering the period January 1, 2008 through...
Directory of Open Access Journals (Sweden)
Yong Long
2012-01-01
Full Text Available Under the environment of fuzzy factors including the return of market, performance of product, and the demanding level of market, we use the method of dynamic programming and establish the model of investment decision, in technology innovation project of enterprise, based on the dynamic programming. Analysis of the influence caused by the changes of fuzzy uncertainty factors to technological innovation project investment of enterprise.
Dynamic evolution of Rayleigh-Taylor bubbles from sinusoidal, W-shaped, and random perturbations
Zhou, Zhi-Rui; Zhang, You-Sheng; Tian, Bao-Lin
2018-03-01
Implicit large eddy simulations of two-dimensional Rayleigh-Taylor instability at different density ratios (i.e., Atwood number A =0.05 , 0.5, and 0.9) are conducted to investigate the late-time dynamics of bubbles. To produce a flow field full of bounded, semibounded, and chaotic bubbles, three problems with distinct perturbations are simulated: (I) periodic sinusoidal perturbation, (II) isolated W-shaped perturbation, and (III) random short-wave perturbations. The evolution of height h , velocity v , and diameter D of the (dominant) bubble with time t are formulated and analyzed. In problem I, during the quasisteady stage, the simulations confirm Goncharov's prediction of the terminal speed v∞=Fr√{A g λ /(1 +A ) } , where Fr=1 /√{3 π } . Moreover, the diameter D at this stage is found to be proportional to the initial perturbation wavelength λ as D ≈λ . This differed from Daly's simulation result of D =λ (1 +A )/2 . In problem II, a W-shaped perturbation is designed to produce a bubble environment similar to that of chaotic bubbles in problem III. We obtain a similar terminal speed relationship as above, but Fr is replaced by Frw≈0.63 . In problem III, the simulations show that h grows quadratically with the bubble acceleration constant α ≡h /(A g t2)≈0.05 , and D expands self-similarly with a steady aspect ratio β ≡D /h ≈(1 +A )/2 , which differs from existing theories. Therefore, following the mechanism of self-similar growth, we derive a relationship of β =4 α (1 +A ) /Frw2 to relate the evolution of chaotic bubbles in problem III to that of semibounded bubbles in problem II. The validity of this relationship highlights the fact that the dynamics of chaotic bubbles in problem III are similar to the semibounded isolated bubbles in problem II, but not to that of bounded periodic bubbles in problem I.
Energy harvester for rotating environments using offset pendulum and nonlinear dynamics
International Nuclear Information System (INIS)
Roundy, Shad; Tola, Jeffry
2014-01-01
We present an energy harvester for environments that rotate through the Earth’s gravitational field. Example applications include shafts connected to motors, axles, propellers, fans, and wheels or tires. Our approach uses the unique dynamics of an offset pendulum along with a nonlinear bistable restoring spring to improve the operational bandwidth of the system. Depending on the speed of the rotating environment, the system can act as a bistable oscillator, monostable stiffening oscillator, or linear oscillator. We apply our approach to a tire pressure monitoring system mounted on a car rim. Simulation and experimental test results show that the prototype generator is capable of directly powering an RF transmission every 60 s or less over a speed range of 10 to 155 kph. (paper)
Energy harvester for rotating environments using offset pendulum and nonlinear dynamics
Roundy, Shad; Tola, Jeffry
2014-10-01
We present an energy harvester for environments that rotate through the Earth’s gravitational field. Example applications include shafts connected to motors, axles, propellers, fans, and wheels or tires. Our approach uses the unique dynamics of an offset pendulum along with a nonlinear bistable restoring spring to improve the operational bandwidth of the system. Depending on the speed of the rotating environment, the system can act as a bistable oscillator, monostable stiffening oscillator, or linear oscillator. We apply our approach to a tire pressure monitoring system mounted on a car rim. Simulation and experimental test results show that the prototype generator is capable of directly powering an RF transmission every 60 s or less over a speed range of 10 to 155 kph.
Zhang, Dongwen; Zhu, Qingsong; Xiong, Jing; Wang, Lei
2014-04-27
In a deforming anatomic environment, the motion of an instrument suffers from complex geometrical and dynamic constraints, robot assisted minimally invasive surgery therefore requires more sophisticated skills for surgeons. This paper proposes a novel dynamic virtual fixture (DVF) to enhance the surgical operation accuracy of admittance-type medical robotics in the deforming environment. A framework for DVF on the Euclidean Group SE(3) is presented, which unites rotation and translation in a compact form. First, we constructed the holonomic/non-holonomic constraints, and then searched for the corresponded reference to make a distinction between preferred and non-preferred directions. Second, different control strategies are employed to deal with the tasks along the distinguished directions. The desired spatial compliance matrix is synthesized from an allowable motion screw set to filter out the task unrelated components from manual input, the operator has complete control over the preferred directions; while the relative motion between the surgical instrument and the anatomy structures is actively tracked and cancelled, the deviation relative to the reference is compensated jointly by the operator and DVF controllers. The operator, haptic device, admittance-type proxy and virtual deforming environment are involved in a hardware-in-the-loop experiment, human-robot cooperation with the assistance of DVF controller is carried out on a deforming sphere to simulate beating heart surgery, performance of the proposed DVF on admittance-type proxy is evaluated, and both human factors and control parameters are analyzed. The DVF can improve the dynamic properties of human-robot cooperation in a low-frequency (0 ~ 40 rad/sec) deforming environment, and maintain synergy of orientation and translation during the operation. Statistical analysis reveals that the operator has intuitive control over the preferred directions, human and the DVF controller jointly control the
Water Cycle Dynamics in a Changing Environment: Advancing Hydrologic Science through Synthesis
Sivapalan, M.; Kumar, P.; Rhoads, B. L.; Wuebbles, D.
2007-12-01
As one ponders a changing environment -- climate, hydrology, land use, biogeochemical cycles, human dynamics -- there is an increasing need to understand the long term evolution of the linked component systems (e.g., climatic, hydrologic and ecological) through conceptual and quantitative models. The most challenging problem toward this goal is to understand and incorporate the rich dynamics of multiple linked systems with weak and strong coupling, and with many internal variables that exhibit multi-scale interactions. The richness of these interactions leads to fluctuations in one variable that in turn drive the dynamics of other related variables. The key question then becomes: Do these complexities lend an inherently stochastic character to the system, rendering deterministic prediction and modeling of limited value, or do they translate into constrained self- organization through which emerges order, and a limited group of "active" processes (that may change from time to time) that determine the general evolution of the system through a series of structured states with a distinct signature? This is a grand challenge for predictability and therefore requires community effort. The interconnectivity and hence synthesis of knowledge across the fields should be natural for hydrologists since the global water cycle and its regional manifestations directly correspond to the information flows for mass and energy transformations across the media, and across the disciplines. Further, the rich history of numerical, conceptual and stochastic modeling in hydrology provides the training and breadth for addressing the multi- scale, complex system dynamics challenges posed by the evolution question. Theory and observational analyses that necessitate stepping back from the existing knowledge paradigms and looking at the integrated system are needed. In this talk we will present the outlines of a new NSF-funded community effort that attempts to forge inter- disciplinary
International Nuclear Information System (INIS)
Liu Meng; Wang Ke
2012-01-01
Highlights: ► Random population model with pulse toxicant input in polluted environments. ► Threshold between persistence and extinction is obtained. ► Different random noises have different effects on the persistence of the population. ► Impulsive period plays a key role in determining persistence of the population. ► Simulation figures support the analytical findings. - Abstract: Taking both white noises and colored noises into account, a stochastic single-species model with Markov switching and impulsive toxicant input in a polluted environment is proposed and investigated. Sufficient conditions for extinction, non-persistence in the mean, weak persistence and stochastic permanence are established. The threshold between weak persistence and extinction is obtained. Some simulation figures are introduced to illustrate the main results.
Autonomous Byte Stream Randomizer
Paloulian, George K.; Woo, Simon S.; Chow, Edward T.
2013-01-01
Net-centric networking environments are often faced with limited resources and must utilize bandwidth as efficiently as possible. In networking environments that span wide areas, the data transmission has to be efficient without any redundant or exuberant metadata. The Autonomous Byte Stream Randomizer software provides an extra level of security on top of existing data encryption methods. Randomizing the data s byte stream adds an extra layer to existing data protection methods, thus making it harder for an attacker to decrypt protected data. Based on a generated crypto-graphically secure random seed, a random sequence of numbers is used to intelligently and efficiently swap the organization of bytes in data using the unbiased and memory-efficient in-place Fisher-Yates shuffle method. Swapping bytes and reorganizing the crucial structure of the byte data renders the data file unreadable and leaves the data in a deconstructed state. This deconstruction adds an extra level of security requiring the byte stream to be reconstructed with the random seed in order to be readable. Once the data byte stream has been randomized, the software enables the data to be distributed to N nodes in an environment. Each piece of the data in randomized and distributed form is a separate entity unreadable on its own right, but when combined with all N pieces, is able to be reconstructed back to one. Reconstruction requires possession of the key used for randomizing the bytes, leading to the generation of the same cryptographically secure random sequence of numbers used to randomize the data. This software is a cornerstone capability possessing the ability to generate the same cryptographically secure sequence on different machines and time intervals, thus allowing this software to be used more heavily in net-centric environments where data transfer bandwidth is limited.
Concurrent variable-interval variable-ratio schedules in a dynamic choice environment.
Bell, Matthew C; Baum, William M
2017-11-01
Most studies of operant choice have focused on presenting subjects with a fixed pair of schedules across many experimental sessions. Using these methods, studies of concurrent variable- interval variable-ratio schedules helped to evaluate theories of choice. More recently, a growing literature has focused on dynamic choice behavior. Those dynamic choice studies have analyzed behavior on a number of different time scales using concurrent variable-interval schedules. Following the dynamic choice approach, the present experiment examined performance on concurrent variable-interval variable-ratio schedules in a rapidly changing environment. Our objectives were to compare performance on concurrent variable-interval variable-ratio schedules with extant data on concurrent variable-interval variable-interval schedules using a dynamic choice procedure and to extend earlier work on concurrent variable-interval variable-ratio schedules. We analyzed performances at different time scales, finding strong similarities between concurrent variable-interval variable-interval and concurrent variable-interval variable- ratio performance within dynamic choice procedures. Time-based measures revealed almost identical performance in the two procedures compared with response-based measures, supporting the view that choice is best understood as time allocation. Performance at the smaller time scale of visits accorded with the tendency seen in earlier research toward developing a pattern of strong preference for and long visits to the richer alternative paired with brief "samples" at the leaner alternative ("fix and sample"). © 2017 Society for the Experimental Analysis of Behavior.
Unfair and Anomalous Evolutionary Dynamics from Fluctuating Payoffs
Stollmeier, Frank; Nagler, Jan
2018-02-01
Evolution occurs in populations of reproducing individuals. Reproduction depends on the payoff a strategy receives. The payoff depends on the environment that may change over time, on intrinsic uncertainties, and on other sources of randomness. These temporal variations in the payoffs can affect which traits evolve. Understanding evolutionary game dynamics that are affected by varying payoffs remains difficult. Here we study the impact of arbitrary amplitudes and covariances of temporally varying payoffs on the dynamics. The evolutionary dynamics may be "unfair," meaning that, on average, two coexisting strategies may persistently receive different payoffs. This mechanism can induce an anomalous coexistence of cooperators and defectors in the prisoner's dilemma, and an unexpected selection reversal in the hawk-dove game.
Heterogeneous continuous-time random walks
Grebenkov, Denis S.; Tupikina, Liubov
2018-01-01
We introduce a heterogeneous continuous-time random walk (HCTRW) model as a versatile analytical formalism for studying and modeling diffusion processes in heterogeneous structures, such as porous or disordered media, multiscale or crowded environments, weighted graphs or networks. We derive the exact form of the propagator and investigate the effects of spatiotemporal heterogeneities onto the diffusive dynamics via the spectral properties of the generalized transition matrix. In particular, we show how the distribution of first-passage times changes due to local and global heterogeneities of the medium. The HCTRW formalism offers a unified mathematical language to address various diffusion-reaction problems, with numerous applications in material sciences, physics, chemistry, biology, and social sciences.
Directory of Open Access Journals (Sweden)
Wen-Min Zhou
2013-01-01
Full Text Available This paper is concerned with the consensus problem of general linear discrete-time multiagent systems (MASs with random packet dropout that happens during information exchange between agents. The packet dropout phenomenon is characterized as being a Bernoulli random process. A distributed consensus protocol with weighted graph is proposed to address the packet dropout phenomenon. Through introducing a new disagreement vector, a new framework is established to solve the consensus problem. Based on the control theory, the perturbation argument, and the matrix theory, the necessary and sufficient condition for MASs to reach mean-square consensus is derived in terms of stability of an array of low-dimensional matrices. Moreover, mean-square consensusable conditions with regard to network topology and agent dynamic structure are also provided. Finally, the effectiveness of the theoretical results is demonstrated through an illustrative example.
Vision-based threat detection in dynamic environments.
Energy Technology Data Exchange (ETDEWEB)
Carlson, Jeffrey J.
2007-08-01
This report addresses the development of automated video-screening technology to assist security forces in protecting our homeland against terrorist threats. A prevailing threat is the covert placement of bombs inside crowded public facilities. Although video-surveillance systems are increasingly common, current systems cannot detect the placement of bombs. It is also unlikely that security personnel could detect a bomb or its placement by observing video from surveillance cameras. The problems lie in the large number of cameras required to monitor large areas, the limited number of security personnel employed to protect these areas, and the intense diligence required to effectively screen live video from even a single camera. Different from existing video-detection systems designed to operate in nearly static environments, we are developing technology to detect changes in the background of dynamic environments: environments where motion and human activities are persistent over long periods. Our goal is to quickly detect background changes, even if the background is visible to the camera less than 5 percent of the time and possibly never free from foreground activity. Our approach employs statistical scene models based on mixture densities. We hypothesized that the background component of the mixture has a small variance compared to foreground components. Experiments demonstrate this hypothesis is true under a wide variety of operating conditions. A major focus involved the development of robust background estimation techniques that exploit this property. We desire estimation algorithms that can rapidly produce accurate background estimates and detection algorithms that can reliably detect background changes with minimal nuisance alarms. Another goal is to recognize unusual activities or foreground conditions that could signal an attack (e.g., large numbers of running people, people falling to the floor, etc.). Detection of background changes and/or unusual
Control of the dynamic environment produced by underground nuclear explosives
Energy Technology Data Exchange (ETDEWEB)
Bernreuter, D L; Jackson, E C; Miller, A B [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)
1970-05-15
One important aspect of any underground nuclear explosion is recording, retrieval and analysis of experiment and/or device performance. Most of the information is recorded or conditioned on sensitive electronic equipment and often transmitted via antennas that must remain in alignment. Sometimes diagnostic packages are located in towers near surface ground zero (SGZ). Also, some equipment is needed for timing and firing as well as safety requirements. Generally it is desirable to locate this equipment as close to SGZ as possible. This paper is a summary of LRL's method of controlling the dynamic environment in order to get good quality data and protect equipment while optimizing the cost. The overall problem blends together: (1) definition of input, i.e. ground shock parameters; (2) shock sensitivity or fragility level of equipment to the input and purpose (i.e. does it record or transmit through shock arrival time?); and (3) design of a fail-safe shock mount (SM) system to modify the shock environment when required. Before any SM system can be designed, items I and 2 must be answered as the ground shock can vary over a wide range and the sensitivity/fragility of the equipment can vary from less than 1/2 g to more than 100 g's, particularly if recording is done through shock arrival time. Keeping antennas in alignment is a somewhat different problem. Whenever possible the design of the SM system is based only on peak input parameters of the ground motion since detailed time histories of the ground motions are very difficult to predict. For towers and other systems which require detailed time histories, computer codes have been developed which allow a parametric study of the input ground motion's effect on the response of the system. This paper deals mainly with the close-in region where the dynamic environment is quite severe. In this region, non-standard methods and analysis are required. Out of this region, more standard methods can be used. (author)
Control of the dynamic environment produced by underground nuclear explosives
International Nuclear Information System (INIS)
Bernreuter, D.L.; Jackson, E.C.; Miller, A.B.
1970-01-01
One important aspect of any underground nuclear explosion is recording, retrieval and analysis of experiment and/or device performance. Most of the information is recorded or conditioned on sensitive electronic equipment and often transmitted via antennas that must remain in alignment. Sometimes diagnostic packages are located in towers near surface ground zero (SGZ). Also, some equipment is needed for timing and firing as well as safety requirements. Generally it is desirable to locate this equipment as close to SGZ as possible. This paper is a summary of LRL's method of controlling the dynamic environment in order to get good quality data and protect equipment while optimizing the cost. The overall problem blends together: (1) definition of input, i.e. ground shock parameters; (2) shock sensitivity or fragility level of equipment to the input and purpose (i.e. does it record or transmit through shock arrival time?); and (3) design of a fail-safe shock mount (SM) system to modify the shock environment when required. Before any SM system can be designed, items I and 2 must be answered as the ground shock can vary over a wide range and the sensitivity/fragility of the equipment can vary from less than 1/2 g to more than 100 g's, particularly if recording is done through shock arrival time. Keeping antennas in alignment is a somewhat different problem. Whenever possible the design of the SM system is based only on peak input parameters of the ground motion since detailed time histories of the ground motions are very difficult to predict. For towers and other systems which require detailed time histories, computer codes have been developed which allow a parametric study of the input ground motion's effect on the response of the system. This paper deals mainly with the close-in region where the dynamic environment is quite severe. In this region, non-standard methods and analysis are required. Out of this region, more standard methods can be used. (author)
Young children’s understanding of angles in a dynamic geometry environment
Kaur, Harpreet
2017-01-01
Angle is an important topic in geometry. It is a concept that children find challenging to learn, in part because of its multifaceted nature. The purpose of this study is to understand how children’s thinking about angles evolves as they participate in a classroom setting featuring the use of a dynamic geometry environment (DGE) in which the concept of angle as turn was privileged, a concept that does not require a quantitative dimension. Three research questions were proposed for the study, ...
International Nuclear Information System (INIS)
Laperashvili, L.V.
1994-01-01
The first part of the present paper contains a review of papers by Nielsen, Bennett, Brene and Picek which underly the model called random dynamics. The second part of the paper is devoted to calculating the fine structure constant by means of the path integration in the U(1)-lattice gauge theory
The Dynamics of the Atmospheric Radiation Environment at Aviation Altitudes
Stassinopoulos, Epaminondas G.
2004-01-01
Single Event Effects vulnerability of on-board computers that regulate the: navigational, flight control, communication, and life support systems has become an issue in advanced modern aircraft, especially those that may be equipped with new technology devices in terabit memory banks (low voltage, nanometer feature size, gigabit integration). To address this concern, radiation spectrometers need to fly continually on a multitude of carriers over long periods of time so as to accumulate sufficient information that will broaden our understanding of the very dynamic and complex nature of the atmospheric radiation environment regarding: composition, spectral distribution, intensity, temporal variation, and spatial variation.
Mulligan, Anthony C.; Rigali, Mark J.; Sutaria, Manish P.; Popovich, Dragan; Halloran, Joseph P.; Fulcher, Michael L.; Cook, Randy C.
2009-04-14
Fibrous monolith composites having architectures that provide increased flaw insensitivity, improved hardness, wear resistance and damage tolerance and methods of manufacture thereof are provided for use in dynamic environments to mitigate impact damage and increase wear resistance.
Lotka-Volterra system in a random environment
Dimentberg, Mikhail F.
2002-03-01
Classical Lotka-Volterra (LV) model for oscillatory behavior of population sizes of two interacting species (predator-prey or parasite-host pairs) is conservative. This may imply unrealistically high sensitivity of the system's behavior to environmental variations. Thus, a generalized LV model is considered with the equation for preys' reproduction containing the following additional terms: quadratic ``damping'' term that accounts for interspecies competition, and term with white-noise random variations of the preys' reproduction factor that simulates the environmental variations. An exact solution is obtained for the corresponding Fokker-Planck-Kolmogorov equation for stationary probability densities (PDF's) of the population sizes. It shows that both population sizes are independent γ-distributed stationary random processes. Increasing level of the environmental variations does not lead to extinction of the populations. However it may lead to an intermittent behavior, whereby one or both population sizes experience very rare and violent short pulses or outbreaks while remaining on a very low level most of the time. This intermittency is described analytically by direct use of the solutions for the PDF's as well as by applying theory of excursions of random functions and by predicting PDF of peaks in the predators' population size.
International Nuclear Information System (INIS)
Kannan, R.; Ganesan, V.; Mariappan, K.; Sukumaran, G.; Sandhya, R.; Mathew, M.D.; Bhanu Sankara Rao, K.
2011-01-01
Highlights: → The effects of dynamic sodium on the CFI behaviour of Mod. 9Cr-1Mo steel has investigated. → The cyclic stress response of Mod. 9Cr-1Mo steel under flowing sodium environment is similar to that of air environment. → The creep-fatigue endurance of the alloy is found to decrease with introduction of hold time and with increase in the duration of hold time and the factor of life increase in sodium compared to air environment is reduced with increase in hold time. → In contrast to air environment, tensile holds were found to be more damaging than compression hold in sodium environment. → Design rules based on air environment can be safely applied for the components operating in sodium environment. - Abstract: The use of liquid sodium as a heat transfer medium for sodium-cooled fast reactors (SFRs) necessitates a clear understanding of the effects of dynamic sodium on low cycle fatigue (LCF), creep and creep-fatigue interaction (CFI) behaviour of reactor structural materials. Mod. 9Cr-1Mo ferritic steel is the material of current interest for the steam generator components of sodium cooled fast reactors. The steam generator has a design life of 30-40 years. The effects of dynamic sodium on the LCF and CFI behaviour of Mod. 9Cr-1Mo steel have been investigated at 823 and 873 K. The CFI life of the steel showed marginal increase under flowing sodium environment when compared to air environment. Hence, the design rules for creep-fatigue interaction based on air tests can be safely applied for components operating in sodium environment. This paper attempts to explain the observed LCF and CFI results based on the detailed metallography and fractography conducted on the failed samples.
Proceedings of "Optical Probes of Dynamics in Complex Environments"
Energy Technology Data Exchange (ETDEWEB)
Sension, R; Tokmakoff, A
2008-04-01
This document contains the proceedings from the symposium on Optical Probes of Dynamics in Complex Environments, which organized as part of the 235th National Meeting of the American Chemical Society in New Orleans, LA from April 6 to 10, 2008. The study of molecular dynamics in chemical reaction and biological processes using time ÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂresolved spectroscopy plays an important role in our understanding of energy conversion, storage, and utilization problems. Fundamental studies of chemical reactivity, molecular rearrangements, and charge transport are broadly supported by the DOE Office of Science because of their role in the development of alternative energy sources, the understanding of biological energy conversion processes, the efficient utilization of existing energy resources, and the mitigation of reactive intermediates in radiation chemistry. In addition, time resolved spectroscopy is central to all of DOEs grand challenges for fundamental energy science. This symposium brought together leaders in the field of ultrafast spectroscopy, including experimentalists, theoretical chemists, and simulators, to discuss the most recent scientific and technological advances. DOE support for this conference was used to help young US and international scientists travel to the meeting. The latest technology in ultrafast infrared, optical, and xray spectroscopy and the scientific advances that these methods enable were covered. Particular emphasis was placed on new experimental methods used to probe molecular dynamics in liquids, solids, interfaces, nanostructured materials, and biomolecules.
Optimal Control of a Surge-Mode WEC in Random Waves
Energy Technology Data Exchange (ETDEWEB)
Chertok, Allan [Resolute Marine Energy, Inc., Boston, MA (United States); Ceberio, Olivier [Resolute Marine Energy, Inc., Boston, MA (United States); Staby, Bill [Resolute Marine Energy, Inc., Boston, MA (United States); Previsic, Mirko [Re Vision Consulting, Sacramento, CA (United States); Scruggs, Jeffrey [Univ. of Michigan, Ann Arbor, MI (United States); Van de Ven, James [Univ. of Minnesota, Minneapolis, MN (United States)
2016-08-30
The objective of this project was to develop one or more real-time feedback and feed-forward (MPC) control algorithms for an Oscillating Surge Wave Converter (OSWC) developed by RME called SurgeWEC™ that leverages recent innovations in wave energy converter (WEC) control theory to maximize power production in random wave environments. The control algorithms synthesized innovations in dynamic programming and nonlinear wave dynamics using anticipatory wave sensors and localized sensor measurements; e.g. position and velocity of the WEC Power Take Off (PTO), with predictive wave forecasting data. The result was an advanced control system that uses feedback or feed-forward data from an array of sensor channels comprised of both localized and deployed sensors fused into a single decision process that optimally compensates for uncertainties in the system dynamics, wave forecasts, and sensor measurement errors.
Joint Conditional Random Field Filter for Multi-Object Tracking
Directory of Open Access Journals (Sweden)
Luo Ronghua
2011-03-01
Full Text Available Object tracking can improve the performance of mobile robot especially in populated dynamic environments. A novel joint conditional random field Filter (JCRFF based on conditional random field with hierarchical structure is proposed for multi-object tracking by abstracting the data associations between objects and measurements to be a sequence of labels. Since the conditional random field makes no assumptions about the dependency structure between the observations and it allows non-local dependencies between the state and the observations, the proposed method can not only fuse multiple cues including shape information and motion information to improve the stability of tracking, but also integrate moving object detection and object tracking quite well. At the same time, implementation of multi-object tracking based on JCRFF with measurements from the laser range finder on a mobile robot is studied. Experimental results with the mobile robot developed in our lab show that the proposed method has higher precision and better stability than joint probabilities data association filter (JPDAF.
Comparison of different models of motion in a crowded environment: a Monte Carlo study.
Polanowski, P; Sikorski, A
2017-02-22
In this paper we investigate the motion of molecules in crowded environments for two dramatically different types of molecular transport. The first type is realized by the dynamic lattice liquid model, which is based on a cooperative movement concept and thus, the motion of molecules is highly correlated. The second one corresponds to a so-called motion of a single agent where the motion of molecules is considered as a random walk without any correlation with other moving elements. The crowded environments are modeled as a two-dimensional triangular lattice with fixed impenetrable obstacles. Our simulation results indicate that the type of transport has an impact on the dynamics of the system, the percolation threshold, critical exponents, and on molecules' trajectories.
DEFF Research Database (Denmark)
Fosgerau, Mogens
2010-01-01
This paper investigates the distribution of delays during a repeatedly occurring demand peak in a congested facility with random capacity and demand, such as an airport or an urban road. Congestion is described in the form of a dynamic queue using the Vickrey bottleneck model and assuming Nash...
Spires, Hiller A.; Oliver, Kevin; Corn, Jenifer
2012-01-01
Despite growing research and evaluation results on one-to-one computing environments, how these environments affect learning in schools remains underexamined. The purpose of this article is twofold: (a) to use a theoretical lens, namely a new learning ecology, to frame the dynamic changes as well as challenges that are introduced by a one-to-one…
Dynamic connectivity algorithms for Monte Carlo simulations of the random-cluster model
International Nuclear Information System (INIS)
Elçi, Eren Metin; Weigel, Martin
2014-01-01
We review Sweeny's algorithm for Monte Carlo simulations of the random cluster model. Straightforward implementations suffer from the problem of computational critical slowing down, where the computational effort per edge operation scales with a power of the system size. By using a tailored dynamic connectivity algorithm we are able to perform all operations with a poly-logarithmic computational effort. This approach is shown to be efficient in keeping online connectivity information and is of use for a number of applications also beyond cluster-update simulations, for instance in monitoring droplet shape transitions. As the handling of the relevant data structures is non-trivial, we provide a Python module with a full implementation for future reference.
DEGAS: Dynamic Exascale Global Address Space Programming Environments
Energy Technology Data Exchange (ETDEWEB)
Demmel, James [Univ. of California, Berkeley, CA (United States)
2018-02-23
The Dynamic, Exascale Global Address Space programming environment (DEGAS) project will develop the next generation of programming models and runtime systems to meet the challenges of Exascale computing. The Berkeley part of the project concentrated on communication-optimal code generation to optimize speed and energy efficiency by reducing data movement. Our work developed communication lower bounds, and/or communication avoiding algorithms (that either meet the lower bound, or do much less communication than their conventional counterparts) for a variety of algorithms, including linear algebra, machine learning and genomics. The Berkeley part of the project concentrated on communication-optimal code generation to optimize speed and energy efficiency by reducing data movement. Our work developed communication lower bounds, and/or communication avoiding algorithms (that either meet the lower bound, or do much less communication than their conventional counterparts) for a variety of algorithms, including linear algebra, machine learning and genomics.
Theory of quantum dynamics in fermionic environment: an influence functional approach
International Nuclear Information System (INIS)
Chen, Y.
1987-01-01
Quantum dynamics of a particle coupled to a fermionic environment is considered, with particular emphasis on the formulation of macroscopic quantum phenomena. The framework is based on a path integral formalism for the real-time density matrix. After integrating out of the fermion variables of the environment, they embed the whole environmental effects on the particle into the so-called influence functional in analogy to Feynman and Vernon's initial work. They then show that to the second order of the coupling constant, the exponent of the influence functional is in exact agreement with that due to a linear dissipative environment (boson bath). Having obtained this, they turn to a specific model in which the influence functional can be exactly evaluated in a long-term limit (long compared to the inverse of the cutoff frequency of the environmental spectrum). In this circumstance, they mainly address their attention to the quantum mechanical representation of the system-plus-environment from the known classical properties of the particle. It is shown that, in particular, the equivalence between the fermion bath and the boson bath is generally correct for a single-channel coupling provided they make a simple mapping between the nonlinear interaction functions of the baths. Finally, generalizations of the model to more complicated situations are discussed and significant applications and connections to certain practically interesting problems are mentioned
Search strategy in a complex and dynamic environment (the Indian Ocean case)
Loire, Sophie; Arbabi, Hassan; Clary, Patrick; Ivic, Stefan; Crnjaric-Zic, Nelida; Macesic, Senka; Crnkovic, Bojan; Mezic, Igor; UCSB Team; Rijeka Team
2014-11-01
The disappearance of Malaysia Airlines Flight 370 (MH370) in the early morning hours of 8 March 2014 has exposed the disconcerting lack of efficient methods for identifying where to look and how to look for missing objects in a complex and dynamic environment. The search area for plane debris is a remote part of the Indian Ocean. Searches, of the lawnmower type, have been unsuccessful so far. Lagrangian kinematics of mesoscale features are visible in hypergraph maps of the Indian Ocean surface currents. Without a precise knowledge of the crash site, these maps give an estimate of the time evolution of any initial distribution of plane debris and permits the design of a search strategy. The Dynamic Spectral Multiscale Coverage search algorithm is modified to search a spatial distribution of targets that is evolving with time following the dynamic of ocean surface currents. Trajectories are generated for multiple search agents such that their spatial coverage converges to the target distribution. Central to this DSMC algorithm is a metric for the ergodicity.
de La Sierra, Ruben Ulises
The present study introduces entropy mapping as a comprehensive method to analyze and describe complex interactive systems; and to assess the effect that entropy has in paradigm changes as described by transition theory. Dynamics of interactions among environmental, economic and demographic conditions affect a number of fast growing locations throughout the world. One of the regions especially affected by accelerated growth in terms of demographic and economic development is the border region between Mexico and the US. As the contrast between these countries provides a significant economic and cultural differential, the dynamics of capital, goods, services and people and the rates at which they interact are rather unique. To illustrate the most fundamental economic and political changes affecting the region, a background addressing the causes for these changes leading to the North America Free Trade Agreement (NAFTA) is presented. Although the concept of thermodynamic entropy was first observed in physical sciences, a relevant homology exists in biological, social and economic sciences as the universal tendency towards disorder, dissipation and equilibrium is present in these disciplines when energy or resources become deficient. Furthermore, information theory is expressed as uncertainty and randomness in terms of efficiency in transmission of information. Although entropy in closed systems is unavoidable, its increase in open systems, can be arrested by a flux of energy, resources and/or information. A critical component of all systems is the boundary. If a boundary is impermeable, it will prevent energy flow from the environment into the system; likewise, if the boundary is too porous, it will not be able to prevent the dissipation of energy and resources into the environment, and will not prevent entropy from entering. Therefore, two expressions of entropy--thermodynamic and information--are identified and related to systems in transition and to spatial
Reza Barati, Mohammad
2017-10-01
Based on the generalized nonlocal strain gradient theory (NSGT), dynamic modeling and analysis of nanoporous inhomogeneous nanoplates is presented. Therefore, it is possible to capture both stiffness-softening and stiffness-hardening effects for a more accurate dynamic analysis of nanoplates. The nanoplate is in hygro-thermal environments and is subjected to an in-plane harmonic load. Porosities are incorporated to the model based on a modified rule of mixture. Modeling of the porous nanoplate is conducted according to a refined four-variable plate theory with fewer field variables than in the first-order plate theory. The governing equations and related classical and nonclassical boundary conditions are derived based on Hamilton's principle. These equations are solved for hinged nanoplates via Galerkin's method. It is shown that porosities, moisture rise, temperature rise, nonlocal parameter, strain gradient parameter, material gradation, elastic foundation and uniform dynamic load have a remarkable influence on the dynamic behavior of nanoscale plates.
International Nuclear Information System (INIS)
Mascalchi, Patrice; Lamort, Anne Sophie; Salomé, Laurence; Dumas, Fabrice
2012-01-01
Highlights: ► We studied the diffusion of single CD4 receptors on living lymphocytes. ► This study reveals that CD4 receptors have either a random or confined diffusion. ► The dynamics of unconfined CD4 receptors was accelerated by a temperature raise. ► The dynamics of confined CD4 receptors was unchanged by a temperature raise. ► Our results suggest the existence of two different environments for CD4 receptors. -- Abstract: We investigated the lateral diffusion of the HIV receptor CD4 at the surface of T lymphocytes at 20 °C and 37 °C by Single Particle Tracking using Quantum Dots. We found that the receptors presented two major distinct behaviors that were not equally affected by temperature changes. About half of the receptors showed a random diffusion with a diffusion coefficient increasing upon raising the temperature. The other half of the receptors was permanently or transiently confined with unchanged dynamics on raising the temperature. These observations suggest that two distinct subpopulations of CD4 receptors with different environments are present at the surface of living T lymphocytes.
A simplified method for random vibration analysis of structures with random parameters
International Nuclear Information System (INIS)
Ghienne, Martin; Blanzé, Claude
2016-01-01
Piezoelectric patches with adapted electrical circuits or viscoelastic dissipative materials are two solutions particularly adapted to reduce vibration of light structures. To accurately design these solutions, it is necessary to describe precisely the dynamical behaviour of the structure. It may quickly become computationally intensive to describe robustly this behaviour for a structure with nonlinear phenomena, such as contact or friction for bolted structures, and uncertain variations of its parameters. The aim of this work is to propose a non-intrusive reduced stochastic method to characterize robustly the vibrational response of a structure with random parameters. Our goal is to characterize the eigenspace of linear systems with dynamic properties considered as random variables. This method is based on a separation of random aspects from deterministic aspects and allows us to estimate the first central moments of each random eigenfrequency with a single deterministic finite elements computation. The method is applied to a frame with several Young's moduli modeled as random variables. This example could be expanded to a bolted structure including piezoelectric devices. The method needs to be enhanced when random eigenvalues are closely spaced. An indicator with no additional computational cost is proposed to characterize the ’’proximity” of two random eigenvalues. (paper)
Dynamic Matching Markets and the Deferred Acceptance Mechanism
DEFF Research Database (Denmark)
Kennes, John; Monte, Daniel; Tumennasan, Norovsambuu
In many dynamic matching markets, priorities depend on previous allocations. In such environments, agents on the proposing side can manipulate the period-by-period deferred acceptance (DA) mechanism. We show that the fraction of agents with incentives to manipulate the DA mechanism approaches zero...... as the market size increases. In addition, we provide a novel al- gorithm to calculate the percentage of markets that can be manipulated. Based on randomly generated data, we find that the DA becomes approximately non-manipulable when the schools capacity reaches 20. Our theoretical and simulation results...... together justify the implementation of the period-by-period DA mechanism in dynamic markets....
Application of dynamic model to predict some inside environment variables in a semi-solar greenhouse
Directory of Open Access Journals (Sweden)
Behzad Mohammadi
2018-06-01
Full Text Available Greenhouses are one of the most effective cultivation methods with a yield per cultivated area up to 10 times more than free land cultivation but the use of fossil fuels in this production field is very high. The greenhouse environment is an uncertain nonlinear system which classical modeling methods have some problems to solve it. There are many control methods, such as adaptive, feedback and intelligent control and they require a precise model. Therefore, many modeling methods have been proposed for this purpose; including physical, transfer function and black-box modeling. The objective of this paper is to modeling and experimental validation of some inside environment variables in an innovative greenhouse structure (semi-solar greenhouse. For this propose, a semi-solar greenhouse was designed and constructed at the North-West of Iran in Azerbaijan Province (38°10′N and 46°18′E with elevation of 1364 m above the sea level. The main inside environment factors include inside air temperature (Ta and inside soil temperature (Ts were collected as the experimental data samples. The dynamic heat transfer model used to estimate the temperature in two different points of semi-solar greenhouse with initial values. The results showed that dynamic model can predict the inside temperatures in two different points (Ta and Ts with RMSE, MAPE and EF about 5.3 °C, 10.2% and 0.78% and 3.45 °C, 7.7% and 0.86%, respectively. Keywords: Semi-solar greenhouse, Dynamic model, Commercial greenhouse
Directory of Open Access Journals (Sweden)
Jincheng Jiang
2017-05-01
Full Text Available Emergency material vehicle dispatching and routing (EMVDR is an important task in emergency relief after large-scale earthquake disasters. However, EMVDR is subject to dynamic disaster environment, with uncertainty surrounding elements such as the transportation network and relief materials. Accurate and dynamic emergency material dispatching and routing is difficult. This paper proposes an effective and efficient multi-objective multi-dynamic-constraint emergency material vehicle dispatching and routing model. Considering travel time, road capacity, and material supply and demand, the proposed EMVDR model is to deliver emergency materials from multiple emergency material depositories to multiple disaster points while satisfying the objectives of maximizing transport efficiency and minimizing the difference of material urgency degrees among multiple disaster points at any one time. Furthermore, a continuous-time dynamic network flow method is developed to solve this complicated model. The collected data from Ludian earthquake were used to conduct our experiments in the post-quake and the results demonstrate that: (1 the EMVDR model adapts to the dynamic disaster environment very well; (2 considering the difference of material urgency degree, the material loss ratio is −10.7%, but the variance of urgency degree decreases from 2.39 to 0.37; (3 the EMVDR model shows good performance in time and space, which allows for decisions to be made nearly in real time. This paper can provide spatial decision-making support for emergency material relief in large-scale earthquake disasters.
Lee, Kyoung O; Holmes, Thomas W; Calderon, Adan F; Gardner, Robin P
2012-05-01
Using a Monte Carlo (MC) simulation, random walks were used for pebble tracking in a two-dimensional geometry in the presence of a biased gravity field. We investigated the effect of viscosity damping in the presence of random Gaussian fluctuations. The particle tracks were generated by Molecular Dynamics (MD) simulation for a Pebble Bed Reactor. The MD simulations were conducted in the interaction of noncohesive Hertz-Mindlin theory where the random walk MC simulation has a correlation with the MD simulation. This treatment can easily be extended to include the generation of transient gamma-ray spectra from a single pebble that contains a radioactive tracer. Then the inverse analysis thereof could be made to determine the uncertainty of the realistic measurement of transient positions of that pebble by any given radiation detection system designed for that purpose. Copyright Â© 2011 Elsevier Ltd. All rights reserved.
Reactor dynamics experiment of N.S. Mutsu using pseudo random signal. 1
International Nuclear Information System (INIS)
Hayashi, Koji; Nabeshima, Kunihiko; Shinohara, Yoshikuni; Shimazaki, Junya; Inoue, Kimihiko; Ochiai, Masaaki.
1993-10-01
In order to investigate dynamics of the reactor plant of the nuclear ship Mutsu, reactor noise experiments using pseudo random binary sequences (PRBS) have been planned, and a preliminary experiment was performed on March 4, 1991 in the first experimental navigation with the aim of checking the experimental procedures and conditions. The experiments using both reactivity and load disturbances were performed at 70 % of reactor power and under a quiet sea condition. Each PRBS was applied by manual operation of the control rod or the main steam valve. Various signals of the plant responses and of the acceleration of ship motion were measured. From the results obtained, we confirmed that (1) the procedures and experimental conditions determined prior to the experiment were suitable for performing the PRBS experiments, (2) when the PRBS disturbances were applied, the plant state remained quite stable, and (3) the quality of the measured data is adequate for the purpose of dynamics analysis. This paper summarizes the planning and preparation of the experiment, the instruction for the experiment and logs, the data recording conditions, recorded signal wave forms and the results of power spectral analysis. (author)
International Nuclear Information System (INIS)
2017-02-01
After a synthesis which notably proposes a SWOT analysis of the Technip group, this report proposes a presentation of the Technip Group (general overview, presentation of activities per department, human resources, stock market data, and competitive environment). It gives an overview of the Technip group dynamics and of its activities through a presentation of an environment analysis (world oil demand and production, hydrocarbon prices), a presentation of the group activity (turnover, order takings, performance per activity pole, turnover per geographical area, operational income). It addresses important events and development axes: strategic axes, group restructuring, widening of service provision, R and D investments. Financial data are presented along with the main economic and financial indicators. Important statistical data are provided
Nassar, Matthew R.; Wilson, Robert C.; Heasly, Benjamin; Gold, Joshua I.
2010-01-01
Maintaining appropriate beliefs about variables needed for effective decision-making can be difficult in a dynamic environment. One key issue is the amount of influence that unexpected outcomes should have on existing beliefs. In general, outcomes that are unexpected because of a fundamental change in the environment should carry more influence than outcomes that are unexpected because of persistent environmental stochasticity. Here we use a novel task to characterize how well human subjects ...
Generating random numbers by means of nonlinear dynamic systems
Zang, Jiaqi; Hu, Haojie; Zhong, Juhua; Luo, Duanbin; Fang, Yi
2018-07-01
To introduce the randomness of a physical process to students, a chaotic pendulum experiment was opened in East China University of Science and Technology (ECUST) on the undergraduate level in the physics department. It was shown chaotic motion could be initiated through adjusting the operation of a chaotic pendulum. By using the data of the angular displacements of chaotic motion, random binary numerical arrays can be generated. To check the randomness of generated numerical arrays, the NIST Special Publication 800-20 method was adopted. As a result, it was found that all the random arrays which were generated by the chaotic motion could pass the validity criteria and some of them were even better than the quality of pseudo-random numbers generated by a computer. Through the experiments, it is demonstrated that chaotic pendulum can be used as an efficient mechanical facility in generating random numbers, and can be applied in teaching random motion to the students.
Energy Technology Data Exchange (ETDEWEB)
Capiez-Lernout, E.; Soize, Ch. [Universite de Marne la Vallee, Lab. de Mecanique, 77 (France)
2003-10-01
The mis-tuning of blades is frequently the cause of spatial localizations for the dynamic forced response in turbomachinery industry. The random character of mis-tuning requires the construction of probabilistic models of random uncertainties. A usual parametric probabilistic description considers the mis-tuning through the Young modulus of each blade. This model consists in mis-tuning blade eigenfrequencies, assuming the blade modal shapes unchanged. Recently a new approach known as a non-parametric model of random uncertainties has been introduced for modelling random uncertainties in elasto-dynamics. This paper proposes the construction of a non-parametric model which is coherent with all the uncertainties which characterize mis-tuning. As mis-tuning is a phenomenon which is independent from one blade to another one, the structure is considered as an assemblage of substructures. The mean reduced matrix model required by the non-parametric approach is thus constructed by dynamic sub-structuring. A comparative approach is also needed to study the influence of the non-parametric approach for a usual parametric model adapted to mis-tuning. A numerical example is presented. (authors)
Randomized dynamical decoupling strategies and improved one-way key rates for quantum cryptography
Energy Technology Data Exchange (ETDEWEB)
Kern, Oliver
2009-05-25
The present thesis deals with various methods of quantum error correction. It is divided into two parts. In the first part, dynamical decoupling methods are considered which have the task of suppressing the influence of residual imperfections in a quantum memory. Such imperfections might be given by couplings between the finite dimensional quantum systems (qudits) constituting the quantum memory, for instance. The suppression is achieved by altering the dynamics of an imperfect quantum memory with the help of a sequence of local unitary operations applied to the qudits. Whereas up to now the operations of such decoupling sequences have been constructed in a deterministic fashion, strategies are developed in this thesis which construct the operations by random selection from a suitable set. Formulas are derived which estimate the average performance of such strategies. As it turns out, randomized decoupling strategies offer advantages and disadvantages over deterministic ones. It is possible to benefit from the advantages of both kind of strategies by designing combined strategies. Furthermore, it is investigated if and how the discussed decoupling strategies can be employed to protect a quantum computation running on the quantum memory. It is shown that a purely randomized decoupling strategy may be used by applying the decoupling operations and adjusted gates of the quantum algorithm in an alternating fashion. Again this method can be enhanced by the means of deterministic methods in order to obtain a combined decoupling method for quantum computations analogously to the combining strategies for quantum memories. The second part of the thesis deals with quantum error-correcting codes and protocols for quantum key distribution. The focus is on the BB84 and the 6-state protocol making use of only one-way communication during the error correction and privacy amplification steps. It is shown that by adding additional errors to the preliminary key (a process called
Randomized dynamical decoupling strategies and improved one-way key rates for quantum cryptography
International Nuclear Information System (INIS)
Kern, Oliver
2009-01-01
The present thesis deals with various methods of quantum error correction. It is divided into two parts. In the first part, dynamical decoupling methods are considered which have the task of suppressing the influence of residual imperfections in a quantum memory. Such imperfections might be given by couplings between the finite dimensional quantum systems (qudits) constituting the quantum memory, for instance. The suppression is achieved by altering the dynamics of an imperfect quantum memory with the help of a sequence of local unitary operations applied to the qudits. Whereas up to now the operations of such decoupling sequences have been constructed in a deterministic fashion, strategies are developed in this thesis which construct the operations by random selection from a suitable set. Formulas are derived which estimate the average performance of such strategies. As it turns out, randomized decoupling strategies offer advantages and disadvantages over deterministic ones. It is possible to benefit from the advantages of both kind of strategies by designing combined strategies. Furthermore, it is investigated if and how the discussed decoupling strategies can be employed to protect a quantum computation running on the quantum memory. It is shown that a purely randomized decoupling strategy may be used by applying the decoupling operations and adjusted gates of the quantum algorithm in an alternating fashion. Again this method can be enhanced by the means of deterministic methods in order to obtain a combined decoupling method for quantum computations analogously to the combining strategies for quantum memories. The second part of the thesis deals with quantum error-correcting codes and protocols for quantum key distribution. The focus is on the BB84 and the 6-state protocol making use of only one-way communication during the error correction and privacy amplification steps. It is shown that by adding additional errors to the preliminary key (a process called
Directory of Open Access Journals (Sweden)
Sharko Margarita V.
2017-12-01
Full Text Available The aim of the article is to analyze the content interpretation of categorical concepts of economic development of production functioning under conditions of dynamic changes in the exploitation of the external environment. The article presents the author’s interpretation of the concepts of economic development and economic growth under conditions of dynamic changes in the external environment. The urgency of unification and systematization of the main interpretations of economic growth as a means of choosing and using certain management solutions under specific production conditions is substantiated. Based on the construction of the Ishikawa diagram, the reasons and difficulties of the economic growth of enterprises are graded. The conditions and factors of the conceptual apparatus of innovation activity under uncertainty are structured. It is shown that the complex application of iterative methods and methods of factor analysis provides a holistic perception of the dominant tendencies of economic development under conditions of dynamic changes in the external environment.
International Nuclear Information System (INIS)
Ren Xiaoan; Wu Wenquan; Xanthis, Leonidas S.
2011-01-01
Highlights: → New approach for stochastic computations based on polynomial chaos. → Development of dynamically adaptive wavelet multiscale solver using space refinement. → Accurate capture of steep gradients and multiscale features in stochastic problems. → All scales of each random mode are captured on independent grids. → Numerical examples demonstrate the need for different space resolutions per mode. - Abstract: In stochastic computations, or uncertainty quantification methods, the spectral approach based on the polynomial chaos expansion in random space leads to a coupled system of deterministic equations for the coefficients of the expansion. The size of this system increases drastically when the number of independent random variables and/or order of polynomial chaos expansions increases. This is invariably the case for large scale simulations and/or problems involving steep gradients and other multiscale features; such features are variously reflected on each solution component or random/uncertainty mode requiring the development of adaptive methods for their accurate resolution. In this paper we propose a new approach for treating such problems based on a dynamically adaptive wavelet methodology involving space-refinement on physical space that allows all scales of each solution component to be refined independently of the rest. We exemplify this using the convection-diffusion model with random input data and present three numerical examples demonstrating the salient features of the proposed method. Thus we establish a new, elegant and flexible approach for stochastic problems with steep gradients and multiscale features based on polynomial chaos expansions.
Wang, Jun; Pei, Jian; Cui, Xiao; Sun, Kexing; Ni, Huanhuan; Zhou, Cuixia; Wu, Ji; Huang, Mei; Ji, Li
2015-10-01
To compare the clinical efficacy on upper limb motor impairment in stroke between the interactive dynamic scalp acupuncture therapy and the traditional scalp acupuncture therapy. The randomized controlled trial and MINIMIZE layering randomization software were adopted. Seventy patients of upper limb with III to V grade in Brunnstrom scale after stroke were randomized into an interactive dynamic scalp acupuncture group and a traditional scalp acupuncture group, 35 cases in each one. In the interactive dynamic scalp acupuncture group, the middle 2/5 of Dingnieqianxiexian (anterior oblique line of vertex-temporal), the middle 2/5 of Dingniehouxiexian (posterior oblique line of vertex-temporal) and Dingpangerxian (lateral line 2 of vertex) on the affected side were selected as the stimulation areas. Additionally, the rehabilitation training was applied during scalp acupuncture treatment. In the traditional scalp acupuncture group, the scalp stimulation areas were same as the interactive dynamic scalp acupuncture group. But the rehabilitation training was applied separately. The rehabilitation training was applied in the morning and the scalp acupuncture was done in the afternoon. The results in Fugl-Meyer for the upper limb motor function (U-FMA), the Wolf motor function measure scale (WM- FT) and the modified Barthel index in the two groups were compared between the two groups before treatment and in 1 and 2 months of treatment, respectively. After treatment, the U-FMA score, WMFT score and the score of the modified Barthel index were all apparently improved as compared with those before treatment (all P acupuncture group was better than that in the traditional scalp acupuncture group (P acupuncture group were improved apparently as compared with those in the traditional scalp acupuncture group (P acupuncture group were not different significantly as compared with those in the traditional scalp acupuncture group (both P > 0.05). For the patients of IV to V grade in
Single Event Upset in Static Random Access Memories in Atmospheric Neutron Environments
Arita, Yutaka; Takai, Mikio; Ogawa, Izumi; Kishimoto, Tadafumi
2003-07-01
Single-event upsets (SEUs) in a 0.4 μm 4 Mbit complementary metal oxide semiconductor (CMOS) static random access memory (SRAM) were investigated in various atmospheric neutron environments at sea level, at an altitude of 2612 m mountain, at an altitude of commercial airplane, and at an underground depth of 476 m. Neutron-induced SEUs increase with the increase in altitude. For a device with a borophosphosilicate glass (BPSG) film, SEU rates induced by thermal neutrons increase with the decrease in the cell charge of a memory cell. A thermal neutron-induced SEU is significant in SRAMs with a small cell charge. With the conditions of small cell charge, thermal neutron-induced SEUs account for 60% or more of the total neutron-induced SEUs. The SEU rate induced by atmospheric thermal neutrons can be estimated by an acceleration test using 252Cf.
System dynamics model for environment - human systems interaction in the mining industry
International Nuclear Information System (INIS)
Pal, B.K.
1994-01-01
Use of advanced technology in the mining activities are polluting the natural environment, interfering with the normal life of the miners/residents. In this paper, health hazards due to underground workings and effect of environmental conditions on men are discussed. A composite system inter-relationship of the mining industries with the Government, society and environmental sectors is established. Allowing certain level of pollution, a system dynamics model is developed considering the parameters like more revenues from the mining industries, degradation of quality of life index - environmental index on long-term and short-term basis, new diseases due to pollution, social awareness, health care facilities, tax exemption etc. This model will help us to understand the optimisation of the parameters to establish the better interaction in the environment-human systems in the mining industries. 14 refs., 4 figs., 2 tabs
Directory of Open Access Journals (Sweden)
Hendri Harmoko
2009-01-01
Full Text Available An effective vibration isolation system is important for hard disk drives (HDD used in a harsh mechanical environment. This paper describes how to design, simulate, test and evaluate vibration isolation systems for operating HDD subjected to severe shock and random vibrations based on military specifications MIL-STD-810E. The well-defined evaluation criteria proposed in this paper can be used to effectively assess the performance of HDD vibration isolation system. Design concepts on how to achieve satisfactory shock and vibration isolation for HDD are described. The concepts are tested and further enhanced by the two design case studies presented here. It is shown that an effective vibration isolation system, that will allow a HDD to operate well when subjected to severe shock and random vibration, is feasible.
Nature versus nurture: Predictability in low-temperature Ising dynamics
Ye, J.; Machta, J.; Newman, C. M.; Stein, D. L.
2013-10-01
Consider a dynamical many-body system with a random initial state subsequently evolving through stochastic dynamics. What is the relative importance of the initial state (“nature”) versus the realization of the stochastic dynamics (“nurture”) in predicting the final state? We examined this question for the two-dimensional Ising ferromagnet following an initial deep quench from T=∞ to T=0. We performed Monte Carlo studies on the overlap between “identical twins” raised in independent dynamical environments, up to size L=500. Our results suggest an overlap decaying with time as t-θh with θh=0.22±0.02; the same exponent holds for a quench to low but nonzero temperature. This “heritability exponent” may equal the persistence exponent for the two-dimensional Ising ferromagnet, but the two differ more generally.
Yao, Yao; Marchal, Kathleen; Van de Peer, Yves
2014-01-01
One of the important challenges in the field of evolutionary robotics is the development of systems that can adapt to a changing environment. However, the ability to adapt to unknown and fluctuating environments is not straightforward. Here, we explore the adaptive potential of simulated swarm robots that contain a genomic encoding of a bio-inspired gene regulatory network (GRN). An artificial genome is combined with a flexible agent-based system, representing the activated part of the regulatory network that transduces environmental cues into phenotypic behaviour. Using an artificial life simulation framework that mimics a dynamically changing environment, we show that separating the static from the conditionally active part of the network contributes to a better adaptive behaviour. Furthermore, in contrast with most hitherto developed ANN-based systems that need to re-optimize their complete controller network from scratch each time they are subjected to novel conditions, our system uses its genome to store GRNs whose performance was optimized under a particular environmental condition for a sufficiently long time. When subjected to a new environment, the previous condition-specific GRN might become inactivated, but remains present. This ability to store ‘good behaviour’ and to disconnect it from the novel rewiring that is essential under a new condition allows faster re-adaptation if any of the previously observed environmental conditions is reencountered. As we show here, applying these evolutionary-based principles leads to accelerated and improved adaptive evolution in a non-stable environment. PMID:24599485
Directory of Open Access Journals (Sweden)
Yao Yao
Full Text Available One of the important challenges in the field of evolutionary robotics is the development of systems that can adapt to a changing environment. However, the ability to adapt to unknown and fluctuating environments is not straightforward. Here, we explore the adaptive potential of simulated swarm robots that contain a genomic encoding of a bio-inspired gene regulatory network (GRN. An artificial genome is combined with a flexible agent-based system, representing the activated part of the regulatory network that transduces environmental cues into phenotypic behaviour. Using an artificial life simulation framework that mimics a dynamically changing environment, we show that separating the static from the conditionally active part of the network contributes to a better adaptive behaviour. Furthermore, in contrast with most hitherto developed ANN-based systems that need to re-optimize their complete controller network from scratch each time they are subjected to novel conditions, our system uses its genome to store GRNs whose performance was optimized under a particular environmental condition for a sufficiently long time. When subjected to a new environment, the previous condition-specific GRN might become inactivated, but remains present. This ability to store 'good behaviour' and to disconnect it from the novel rewiring that is essential under a new condition allows faster re-adaptation if any of the previously observed environmental conditions is reencountered. As we show here, applying these evolutionary-based principles leads to accelerated and improved adaptive evolution in a non-stable environment.
Bang, Soonam; Heo, Joon; Han, Soohee; Sohn, Hong-Gyoo
2010-01-01
Infiltration-route analysis is a military application of geospatial information system (GIS) technology. In order to find susceptible routes, optimal-path-searching algorithms are applied to minimize the cost function, which is the summed result of detection probability. The cost function was determined according to the thermal observation device (TOD) detection probability, the viewshed analysis results, and two feature layers extracted from the vector product interim terrain data. The detection probability is computed and recorded for an individual cell (50 m × 50 m), and the optimal infiltration routes are determined with A* algorithm by minimizing the summed costs on the routes from a start point to an end point. In the present study, in order to simulate the dynamic nature of a real-world problem, one thousand cost surfaces in the GIS environment were generated with randomly located TODs and randomly selected infiltration start points. Accordingly, one thousand sets of vulnerable routes for infiltration purposes could be found, which could be accumulated and presented as an infiltration vulnerability map. This application can be further utilized for both optimal infiltration routing and surveillance network design. Indeed, dynamic simulation in the GIS environment is considered to be a powerful and practical solution for optimization problems. A similar approach can be applied to the dynamic optimal routing for civil infrastructure, which requires consideration of terrain-related constraints and cost functions.
Guignard, Brice; Rouard, Annie; Chollet, Didier; Hart, John; Davids, Keith; Seifert, Ludovic
2017-08-01
Displacement in competitive swimming is highly dependent on fluid characteristics, since athletes use these properties to propel themselves. It is essential for sport scientists and practitioners to clearly identify the interactions that emerge between each individual swimmer and properties of an aquatic environment. Traditionally, the two protagonists in these interactions have been studied separately. Determining the impact of each swimmer's movements on fluid flow, and vice versa, is a major challenge. Classic biomechanical research approaches have focused on swimmers' actions, decomposing stroke characteristics for analysis, without exploring perturbations to fluid flows. Conversely, fluid mechanics research has sought to record fluid behaviours, isolated from the constraints of competitive swimming environments (e.g. analyses in two-dimensions, fluid flows passively studied on mannequins or robot effectors). With improvements in technology, however, recent investigations have focused on the emergent circular couplings between swimmers' movements and fluid dynamics. Here, we provide insights into concepts and tools that can explain these on-going dynamic interactions in competitive swimming within the theoretical framework of ecological dynamics.
MODELING URBAN DYNAMICS USING RANDOM FOREST: IMPLEMENTING ROC AND TOC FOR MODEL EVALUATION
Directory of Open Access Journals (Sweden)
M. Ahmadlou
2016-06-01
Full Text Available The importance of spatial accuracy of land use/cover change maps necessitates the use of high performance models. To reach this goal, calibrating machine learning (ML approaches to model land use/cover conversions have received increasing interest among the scholars. This originates from the strength of these techniques as they powerfully account for the complex relationships underlying urban dynamics. Compared to other ML techniques, random forest has rarely been used for modeling urban growth. This paper, drawing on information from the multi-temporal Landsat satellite images of 1985, 2000 and 2015, calibrates a random forest regression (RFR model to quantify the variable importance and simulation of urban change spatial patterns. The results and performance of RFR model were evaluated using two complementary tools, relative operating characteristics (ROC and total operating characteristics (TOC, by overlaying the map of observed change and the modeled suitability map for land use change (error map. The suitability map produced by RFR model showed 82.48% area under curve for the ROC model which indicates a very good performance and highlights its appropriateness for simulating urban growth.
A Dynamic Resource Scheduling Method Based on Fuzzy Control Theory in Cloud Environment
Chen, Zhijia; Zhu, Yuanchang; Di, Yanqiang; Feng, Shaochong
2015-01-01
The resources in cloud environment have features such as large-scale, diversity, and heterogeneity. Moreover, the user requirements for cloud computing resources are commonly characterized by uncertainty and imprecision. Hereby, to improve the quality of cloud computing service, not merely should the traditional standards such as cost and bandwidth be satisfied, but also particular emphasis should be laid on some extended standards such as system friendliness. This paper proposes a dynamic re...
Dynamics and life histories of northern ungulates in changing environments
Hendrichsen, D. K.
2011-12-01
Regional climate and local weather conditions can profoundly influence life history parameters (growth, survival, fecundity) and population dynamics in northern ungulates (Post and Stenseth 1999, Coulson et al. 2001). The influence is both direct, for example through reduced growth or survival (Aanes et al. 2000, Tyler et al. 2008), and indirect, for example through changes in resource distribution, phenology and quality, changes which subsequently influence consumer dynamics (Post et al. 2008). By comparing and contrasting data from three spatially independent populations of ungulates, I discuss how variation in local weather parameters and vegetation growth influence spatial and temporal dynamics through changes in life history parameters and/or behavioural dynamics. The data originate from long term (11-15 years) monitoring data from three populations of ungulates in one subarctic and two high Arctic sites; semi-domesticated reindeer (Rangifer tarandus tarandus) in northern Norway, Svalbard reindeer (R. t. platyrhynchus) on Spitsbergen and muskoxen (Ovibos moschatus) in Northeast Greenland. The results show that juvenile animals can be particularly vulnerable to changes in their environment, and that this is mirrored to different degrees in the spatio-temporal dynamics of the three populations. Adverse weather conditions, acting either directly or mediated through access to and quality of vegetation, experienced by young early in life, or even by their dams during pregnancy, can lead to reduced growth, lower survival and reduced reproductive performance later in life. The influence of current climatic variation, and the predictions of how local weather conditions may change over time, differs between the three sites, resulting in potentially different responses in the three populations. Aanes R, Saether BE and Øritsland NA. 2000. Fluctuations of an introduced population of Svalbard reindeer: the effects of density dependence and climatic variation. Ecography
A Multiagent Cooperation Model Based on Trust Rating in Dynamic Infinite Interaction Environment
Directory of Open Access Journals (Sweden)
Sixia Fan
2018-01-01
Full Text Available To improve the liveness of agents and enhance trust and collaboration in multiagent system, a new cooperation model based on trust rating in dynamic infinite interaction environment (TR-DII is proposed. TR-DII model is used to control agent’s autonomy and selfishness and to make agent do the rational decision. TR-DII model is based on two important components. One is dynamic repeated interaction structure, and the other is trust rating. The dynamic repeated interaction structure is formed with multistage inviting and evaluating actions. It transforms agents’ interactions into an infinity task allocation environment, where controlled and renewable cycle is a component most agent models ignored. Additionally, it influences the expectations and behaviors of agents which may not appear in one-shot time but may appear in long-time cooperation. Moreover, with rewards and punishments mechanism (RPM, the trust rating (TR is proposed to control agent blindness in selection phase. However, RPM is the factor that directly influences decisions, not the reputation as other models have suggested. Meanwhile, TR could monitor agent’s statuses in which they could be trustworthy or untrustworthy. Also, it refines agent’s disrepute in a new way which is ignored by the others. Finally, grids puzzle experiment has been used to test TR-DII model and other five models are used as comparisons. The results show that TR-DII model can effectively adjust the trust level between agents and makes the solvers be more trustworthy and do choices that are more rational. Moreover, through interaction result feedback, TR-DII model could adjust the income function, to control cooperation reputation, and could achieve a closed-loop control.
Language Recognition Using Latent Dynamic Conditional Random Field Model with Phonological Features
Directory of Open Access Journals (Sweden)
Sirinoot Boonsuk
2014-01-01
Full Text Available Spoken language recognition (SLR has been of increasing interest in multilingual speech recognition for identifying the languages of speech utterances. Most existing SLR approaches apply statistical modeling techniques with acoustic and phonotactic features. Among the popular approaches, the acoustic approach has become of greater interest than others because it does not require any prior language-specific knowledge. Previous research on the acoustic approach has shown less interest in applying linguistic knowledge; it was only used as supplementary features, while the current state-of-the-art system assumes independency among features. This paper proposes an SLR system based on the latent-dynamic conditional random field (LDCRF model using phonological features (PFs. We use PFs to represent acoustic characteristics and linguistic knowledge. The LDCRF model was employed to capture the dynamics of the PFs sequences for language classification. Baseline systems were conducted to evaluate the features and methods including Gaussian mixture model (GMM based systems using PFs, GMM using cepstral features, and the CRF model using PFs. Evaluated on the NIST LRE 2007 corpus, the proposed method showed an improvement over the baseline systems. Additionally, it showed comparable result with the acoustic system based on i-vector. This research demonstrates that utilizing PFs can enhance the performance.
Chaos and the (un)predictability of evolution in a changing environment.
Rego-Costa, Artur; Débarre, Florence; Chevin, Luis-Miguel
2018-02-01
Among the factors that may reduce the predictability of evolution, chaos, characterized by a strong dependence on initial conditions, has received much less attention than randomness due to genetic drift or environmental stochasticity. It was recently shown that chaos in phenotypic evolution arises commonly under frequency-dependent selection caused by competitive interactions mediated by many traits. This result has been used to argue that chaos should often make evolutionary dynamics unpredictable. However, populations also evolve largely in response to external changing environments, and such environmental forcing is likely to influence the outcome of evolution in systems prone to chaos. We investigate how a changing environment causing oscillations of an optimal phenotype interacts with the internal dynamics of an eco-evolutionary system that would be chaotic in a constant environment. We show that strong environmental forcing can improve the predictability of evolution by reducing the probability of chaos arising, and by dampening the magnitude of chaotic oscillations. In contrast, weak forcing can increase the probability of chaos, but it also causes evolutionary trajectories to track the environment more closely. Overall, our results indicate that, although chaos may occur in evolution, it does not necessarily undermine its predictability. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.
Single event upset in static random access memories in atmospheric neutron environments
Arita, Y; Ogawa, I; Kishimoto, T
2003-01-01
Single-event upsets (SEUs) in a 0.4 mu m 4Mbit complementary metal oxide semiconductor (CMOS) static random access memory (SRAM) were investigated in various atmospheric neutron environments at sea level, at an altitude of 2612 m mountain, at an altitude of commercial airplane, and at an underground depth of 476m. Neutron-induced SEUs increase with the increase in altitude. For a device with a borophosphosilicate glass (BPSG) film, SEU rates induced by thermal neutrons increase with the decrease in the cell charge of a memory cell. A thermal neutron-induced SEU is significant in SRAMs with a small cell charge. With the conditions of small cell charge, thermal neutron-induced SEUs account for 60% or more of the total neutron-induced SEUs. The SEU rate induced by atmospheric thermal neutrons can be estimated by an acceleration test using sup 2 sup 5 sup 2 Cf. (author)
Chaos, complexity, and random matrices
Cotler, Jordan; Hunter-Jones, Nicholas; Liu, Junyu; Yoshida, Beni
2017-11-01
Chaos and complexity entail an entropic and computational obstruction to describing a system, and thus are intrinsically difficult to characterize. In this paper, we consider time evolution by Gaussian Unitary Ensemble (GUE) Hamiltonians and analytically compute out-of-time-ordered correlation functions (OTOCs) and frame potentials to quantify scrambling, Haar-randomness, and circuit complexity. While our random matrix analysis gives a qualitatively correct prediction of the late-time behavior of chaotic systems, we find unphysical behavior at early times including an O(1) scrambling time and the apparent breakdown of spatial and temporal locality. The salient feature of GUE Hamiltonians which gives us computational traction is the Haar-invariance of the ensemble, meaning that the ensemble-averaged dynamics look the same in any basis. Motivated by this property of the GUE, we introduce k-invariance as a precise definition of what it means for the dynamics of a quantum system to be described by random matrix theory. We envision that the dynamical onset of approximate k-invariance will be a useful tool for capturing the transition from early-time chaos, as seen by OTOCs, to late-time chaos, as seen by random matrix theory.
Summing Feynman graphs by Monte Carlo: Planar φ3-theory and dynamically triangulated random surfaces
International Nuclear Information System (INIS)
Boulatov, D.V.
1988-01-01
New combinatorial identities are suggested relating the ratio of (n-1)th and nth orders of (planar) perturbation expansion for any quantity to some average over the ensemble of all planar graphs of the nth order. These identities are used for Monte Carlo calculation of critical exponents γ str (string susceptibility) in planar φ 3 -theory and in the dynamically triangulated random surface (DTRS) model near the convergence circle for various dimensions. In the solvable case D=1 the exact critical properties of the theory are reproduced numerically. (orig.)
Secure physical layer using dynamic permutations in cognitive OFDMA systems
DEFF Research Database (Denmark)
Meucci, F.; Wardana, Satya Ardhy; Prasad, Neeli R.
2009-01-01
This paper proposes a novel lightweight mechanism for a secure Physical (PHY) layer in Cognitive Radio Network (CRN) using Orthogonal Frequency Division Multiplexing (OFDM). User's data symbols are mapped over the physical subcarriers with a permutation formula. The PHY layer is secured...... with a random and dynamic subcarrier permutation which is based on a single pre-shared information and depends on Dynamic Spectrum Access (DSA). The dynamic subcarrier permutation is varying over time, geographical location and environment status, resulting in a very robust protection that ensures...... confidentiality. The method is shown to be effective also for existing non-cognitive systems. The proposed mechanism is effective against eavesdropping even if the eavesdropper adopts a long-time patterns analysis, thus protecting cryptography techniques of higher layers. The correlation properties...
Ha, Seung-Yeal; Xiao, Qinghua; Zhang, Xiongtao
2018-04-01
We study the dynamics of infinitely many Cucker-Smale (C-S) flocking particles under the interplay of random communication and incompressible fluids. For the dynamics of an ensemble of flocking particles, we use the kinetic Cucker-Smale-Fokker-Planck (CS-FP) equation with a degenerate diffusion, whereas for the fluid component, we use the incompressible Navier-Stokes (N-S) equations. These two subsystems are coupled via the drag force. For this coupled model, we present the global existence of weak and strong solutions in Rd (d = 2 , 3). Under the extra regularity assumptions of the initial data, the unique solvability of strong solutions is also established in R2. In a large coupling regime and periodic spatial domain T2 : =R2 /Z2, we show that the velocities of C-S particles and fluids are asymptotically aligned to two constant velocities which may be different.
FAST - A multiprocessed environment for visualization of computational fluid dynamics
International Nuclear Information System (INIS)
Bancroft, G.V.; Merritt, F.J.; Plessel, T.C.; Kelaita, P.G.; Mccabe, R.K.
1991-01-01
The paper presents the Flow Analysis Software Toolset (FAST) to be used for fluid-mechanics analysis. The design criteria for FAST including the minimization of the data path in the computational fluid-dynamics (CFD) process, consistent user interface, extensible software architecture, modularization, and the isolation of three-dimensional tasks from the application programmer are outlined. Each separate process communicates through the FAST Hub, while other modules such as FAST Central, NAS file input, CFD calculator, surface extractor and renderer, titler, tracer, and isolev might work together to generate the scene. An interprocess communication package making it possible for FAST to operate as a modular environment where resources could be shared among different machines as well as a single host is discussed. 20 refs
Probalistic Finite Elements (PFEM) structural dynamics and fracture mechanics
Liu, Wing-Kam; Belytschko, Ted; Mani, A.; Besterfield, G.
1989-01-01
The purpose of this work is to develop computationally efficient methodologies for assessing the effects of randomness in loads, material properties, and other aspects of a problem by a finite element analysis. The resulting group of methods is called probabilistic finite elements (PFEM). The overall objective of this work is to develop methodologies whereby the lifetime of a component can be predicted, accounting for the variability in the material and geometry of the component, the loads, and other aspects of the environment; and the range of response expected in a particular scenario can be presented to the analyst in addition to the response itself. Emphasis has been placed on methods which are not statistical in character; that is, they do not involve Monte Carlo simulations. The reason for this choice of direction is that Monte Carlo simulations of complex nonlinear response require a tremendous amount of computation. The focus of efforts so far has been on nonlinear structural dynamics. However, in the continuation of this project, emphasis will be shifted to probabilistic fracture mechanics so that the effect of randomness in crack geometry and material properties can be studied interactively with the effect of random load and environment.
A simple interface to computational fluid dynamics programs for building environment simulations
Energy Technology Data Exchange (ETDEWEB)
Broderick, III, C R; Chen, Q [Massachusetts Institute of Technology, Cambridge, MA (United States)
2000-07-01
It is becoming a popular practice for architects and HVAC engineers to simulate airflow in and around buildings by computational fluid dynamics (CFD) methods in order to predict indoor and outdoor environment. However, many CFD programs are crippled by a historically poor and inefficient user interface system, particularly for users with little training in numerical simulation. This investigation endeavors to create a simplified CFD interface (SCI) that allows architects and buildings engineers to use CFD without excessive training. The SCI can be easily integrated into new CFD programs. (author)
Physical Principle for Generation of Randomness
Zak, Michail
2009-01-01
A physical principle (more precisely, a principle that incorporates mathematical models used in physics) has been conceived as the basis of a method of generating randomness in Monte Carlo simulations. The principle eliminates the need for conventional random-number generators. The Monte Carlo simulation method is among the most powerful computational methods for solving high-dimensional problems in physics, chemistry, economics, and information processing. The Monte Carlo simulation method is especially effective for solving problems in which computational complexity increases exponentially with dimensionality. The main advantage of the Monte Carlo simulation method over other methods is that the demand on computational resources becomes independent of dimensionality. As augmented by the present principle, the Monte Carlo simulation method becomes an even more powerful computational method that is especially useful for solving problems associated with dynamics of fluids, planning, scheduling, and combinatorial optimization. The present principle is based on coupling of dynamical equations with the corresponding Liouville equation. The randomness is generated by non-Lipschitz instability of dynamics triggered and controlled by feedback from the Liouville equation. (In non-Lipschitz dynamics, the derivatives of solutions of the dynamical equations are not required to be bounded.)
Development of an environment for 3D visualization of riser dynamics
Energy Technology Data Exchange (ETDEWEB)
Bernardes Junior, Joao Luiz; Martins, Clovis de Arruda [Universidade de Sao Paulo (USP), SP (Brazil). Escola Politecnica]. E-mails: joao.bernardes@poli.usp.br; cmartins@usp.br
2006-07-01
This paper describes the merging of Virtual Reality and Scientific Visualization techniques in the development of Riser View, a multi platform 3D environment for real time, interactive visualization of riser dynamics. Its features, architecture, unusual collision detection algorithm and how up was customized for the project are discussed. Using Open GL through VRK, the software is able to make use of the resources available in most modern Graphics. Acceleration Hardware to improve performance. IUP/LED allows for native loo-and-feel in MS-Windows or Linux platform. The paper discusses conflicts that arise between scientific visualization and aspects such as realism and immersion, and how the visualization is prioritized. (author)
Automatic, Global and Dynamic Student Modeling in a Ubiquitous Learning Environment
Directory of Open Access Journals (Sweden)
Sabine Graf
2009-03-01
Full Text Available Ubiquitous learning allows students to learn at any time and any place. Adaptivity plays an important role in ubiquitous learning, aiming at providing students with adaptive and personalized learning material, activities, and information at the right place and the right time. However, for providing rich adaptivity, the student model needs to be able to gather a variety of information about the students. In this paper, an automatic, global, and dynamic student modeling approach is introduced, which aims at identifying and frequently updating information about students’ progress, learning styles, interests and knowledge level, problem solving abilities, preferences for using the system, social connectivity, and current location. This information is gathered in an automatic way, using students’ behavior and actions in different learning situations provided by different components/services of the ubiquitous learning environment. By providing a comprehensive student model, students can be supported by rich adaptivity in every component/service of the learning environment. Furthermore, the information in the student model can help in giving teachers a better understanding about the students’ learning process.
Qudrat-Ullah, Hassan
2015-01-01
This book describes interactive learning environments (ILEs) and their underlying concepts. It explains how ILEs can be used to improve the decision-making process and how these improvements can be empirically verified. The objective of this book is to enhance our understanding of and to gain insights into the process by which human facilitated ILEs are effectively designed and used in improving users’ decision making in complex, dynamic tasks. This book is divided into four major parts. Part I serves as an introduction to the importance and complexity of decision making in dynamic tasks. Part II provides background material, drawing upon relevant literature, for the development of an integrated process model on the effectiveness of human facilitated ILEs in improving decision making in dynamic tasks. Part III focuses on the design, development, and application of FishBankILE in laboratory experiments to gather empirical evidence for the validity of the process model. Finally, part IV presents a comprehensi...
International Nuclear Information System (INIS)
2017-07-01
After a synthesis which notably proposes a SWOT analysis of the Total group, this report proposes a presentation of the Total Group (general overview, presentation of activities, human resources, shareholder structure and stock market data, competitive environment). It gives an overview of the Total group dynamics and of its activities through a presentation of an environment analysis (world oil demand, refining-chemistry activity, hydrocarbon prices), a presentation of the group activity (turnover, turnover per segment, operational income and financial results of competitors). It comments important events and development axes: four strategic orientations, strengthening of the upstream pole, restructuring of refining and chemical activities, widening of the energy provision, consolidation of positions in the marketing and services sector. Financial data are presented along with the main economic and financial indicators. Important statistical data are provided
Directory of Open Access Journals (Sweden)
Deniz Özen
2013-03-01
Full Text Available The aim of this study is to investigate pre-service elementary mathematics teachers’ open geometric problem solving process in a Dynamic Geometry Environment. With its qualitative inquiry based research design employed, the participants of the study are three pre-service teachers from 4th graders of the Department of Elementary Mathematics Teaching. In this study, clinical interviews, screencaptures of the problem solving process in the Cabri Geomery Environment, and worksheets included 2 open geometry problems have been used to collect the data. It has been investigated that all the participants passed through similar recursive phases as construction, exploration, conjecture, validate, and justification in the problem solving process. It has been thought that this study provide a new point of view to curriculum developers, teachers and researchers
International Nuclear Information System (INIS)
2016-10-01
After a synthesis which notably proposes a SWOT analysis of the Areva group, this report proposes a presentation of the Areva Group (general overview, mining, upstream and downstream poles, shareholder structure and stock market data, competitive environment). It gives an overview of the Areva group dynamics and of its activities through a presentation of an environment analysis (world electric power production, uranium production and consumption, operated nuclear plants in the world), a presentation of the group activity (turnover and order backlog, turnover per segment and per geographical area, operational and net income). It indicates important events and comments development axes: strategic orientations, new partnership with EDF, stronger presence in China, asset disposal, and organisation optimisation. Financial data are presented along with the main economic and financial indicators. Important statistical data are provided
The influence of the physical environment on simulations of complex aquatic ecosystem dynamics
DEFF Research Database (Denmark)
Hu, Fenjuan
hydrodynamics. To test the hypothesis that the physical environment may induce strong influence on ecosystem processes, we applied and compared PCLake applications, with the same standard ecosystem model parameterization, for three different physical environment representations of the same volume of water body......The field of aquatic ecosystem modelling has been active since the late 1970s, and in recent decades the models have grown in complexity in terms of ecosystem components and included processes. However, the complexity in ecosystem conceptualizations generally comes at the expense of simple...... or no hydrodynamic representation, in particular for ecosystem models where higher trophic levels, such as fish, are included. On the other hand, physically resolved hydrodynamic models often include none or only simple representations of ecosystem dynamics. To overcome this discrepancy in complexity between...
PAQ: Persistent Adaptive Query Middleware for Dynamic Environments
Rajamani, Vasanth; Julien, Christine; Payton, Jamie; Roman, Gruia-Catalin
Pervasive computing applications often entail continuous monitoring tasks, issuing persistent queries that return continuously updated views of the operational environment. We present PAQ, a middleware that supports applications' needs by approximating a persistent query as a sequence of one-time queries. PAQ introduces an integration strategy abstraction that allows composition of one-time query responses into streams representing sophisticated spatio-temporal phenomena of interest. A distinguishing feature of our middleware is the realization that the suitability of a persistent query's result is a function of the application's tolerance for accuracy weighed against the associated overhead costs. In PAQ, programmers can specify an inquiry strategy that dictates how information is gathered. Since network dynamics impact the suitability of a particular inquiry strategy, PAQ associates an introspection strategy with a persistent query, that evaluates the quality of the query's results. The result of introspection can trigger application-defined adaptation strategies that alter the nature of the query. PAQ's simple API makes developing adaptive querying systems easily realizable. We present the key abstractions, describe their implementations, and demonstrate the middleware's usefulness through application examples and evaluation.
r-process nucleosynthesis in dynamic helium-burning environments
Cowan, J. J.; Cameron, A. G. W.; Truran, J. W.
1985-01-01
The results of an extended examination of r-process nucleosynthesis in helium-burning enviroments are presented. Using newly calculated nuclear rates, dynamical r-process calculations have been made of thermal runaways in helium cores typical of low-mass stars and in the helium zones of stars undergoing supernova explosions. These calculations show that, for a sufficient flux of neutrons produced by the C-13 neutron source, r-process nuclei in solar proportions can be produced. The conditions required for r-process production are found to be 10 to the 20th-10 to the 21st neutrons per cubic centimeter for times of 0.01-0.1 s and neutron number densities in excess of 10 to the 19th per cubic centimeter for times of about 1 s. The amount of C-13 required is found to be exceedingly high - larger than is found to occur in any current stellar evolutionary model. It is thus unlikely that these helium-burning environments are responsible for producing the bulk of the r-process elements seen in the solar system.
International Nuclear Information System (INIS)
Lorenzana, J.; Grynberg, M.D.; Yu, L.; Yonemitsu, K.; Bishop, A.R.
1992-11-01
The ground state energy, and static and dynamic correlation functions are investigated in the inhomogeneous Hartree-Fock (HF) plus random phase approximation (RPA) approach applied to a one-dimensional spinless fermion model showing self-trapped doping states at the mean field level. Results are compared with homogeneous HF and exact diagonalization. RPA fluctuations added to the generally inhomogeneous HF ground state allows the computation of dynamical correlation functions that compare well with exact diagonalization results. The RPA correction to the ground state energy agrees well with the exact results at strong and weak coupling limits. We also compare it with a related quasi-boson approach. The instability towards self-trapped behaviour is signaled by a RPA mode with frequency approaching zero. (author). 21 refs, 10 figs
Kim, Seungjoo
2014-01-01
There has been an explosive increase in the population of the OSN (online social network) in recent years. The OSN provides users with many opportunities to communicate among friends and family. Further, it facilitates developing new relationships with previously unknown people having similar beliefs or interests. However, the OSN can expose users to adverse effects such as privacy breaches, the disclosing of uncontrolled material, and the disseminating of false information. Traditional access control models such as MAC, DAC, and RBAC are applied to the OSN to address these problems. However, these models are not suitable for the dynamic OSN environment because user behavior in the OSN is unpredictable and static access control imposes a burden on the users to change the access control rules individually. We propose a dynamic trust-based access control for the OSN to address the problems of the traditional static access control. Moreover, we provide novel criteria to evaluate trust factors such as sociological approach and evaluate a method to calculate the dynamic trust values. The proposed method can monitor negative behavior and modify access permission levels dynamically to prevent the indiscriminate disclosure of information. PMID:25374943
Directory of Open Access Journals (Sweden)
Seungsoo Baek
2014-01-01
Full Text Available There has been an explosive increase in the population of the OSN (online social network in recent years. The OSN provides users with many opportunities to communicate among friends and family. Further, it facilitates developing new relationships with previously unknown people having similar beliefs or interests. However, the OSN can expose users to adverse effects such as privacy breaches, the disclosing of uncontrolled material, and the disseminating of false information. Traditional access control models such as MAC, DAC, and RBAC are applied to the OSN to address these problems. However, these models are not suitable for the dynamic OSN environment because user behavior in the OSN is unpredictable and static access control imposes a burden on the users to change the access control rules individually. We propose a dynamic trust-based access control for the OSN to address the problems of the traditional static access control. Moreover, we provide novel criteria to evaluate trust factors such as sociological approach and evaluate a method to calculate the dynamic trust values. The proposed method can monitor negative behavior and modify access permission levels dynamically to prevent the indiscriminate disclosure of information.
Popov, S. M.; Butov, O. V.; Chamorovski, Y. K.; Isaev, V. A.; Mégret, P.; Korobko, D. A.; Zolotovskii, I. O.; Fotiadi, A. A.
2018-06-01
We report on random lasing observed with 100-m-long fiber comprising an array of weak FBGs inscribed in the fiber core and uniformly distributed over the fiber length. Extended fluctuation-free oscilloscope traces highlight power dynamics typical for lasing. An additional piece of Er-doped fiber included into the laser cavity enables a stable laser generation with a linewidth narrower than 10 kHz.
Nuclear Regulator Knowledge Management in a Dynamic Nuclear Industry Environment
International Nuclear Information System (INIS)
Turner, J.
2016-01-01
Full text: The paper outlines the experiences to date in developing mature knowledge management within the UK’s nuclear regulatory body The Office for Nuclear Regulation (ONR). In 2010 concerns over the loss of knowledge due to the age profile within the organization instigated a review of knowledge management and the development of a knowledge management initiative. Initially activities focused on knowledge capture but in order to move to through life knowledge transfer, knowledge management was then aligned with organizational resilience initiatives. A review of progress highlighted the need to better engage the whole organization to achieve the desired level of maturity for knowledge management. Knowledge management activities now cover organizational culture and environment and all aspects of organizational resilience. Benefits to date include clear understanding of core knowledge requirements, better specifications for recruitment and training and the ability to deploy new regulatory approaches. During the period of implementing the knowledge management programme ONR undertook several organizational changes in moving to become a separate statutory body. The UK nuclear industry was in a period of increased activity including the planning of new nuclear reactors. This dynamic environment caused challenges for embedding knowledge management within ONR which are discussed in the paper. (author
Oxidation behavior of TD-NiCr in a dynamic high temperature environment
Tenney, D. R.; Young, C. T.; Herring, H. W.
1974-01-01
The oxidation behavior of TD-NiCr has been studied in static and high-speed flowing air environments at 1100 and 1200 C. It has been found that the stable oxide morphologies formed on the specimens exposed to the static and dynamic environments were markedly different. The faceted crystal morphology characteristic of static oxidation was found to be unstable under high-temperature, high-speed flow conditions and was quickly replaced by a porous NiO 'mushroom' type structure. Also, it was found that the rate of formation of CrO3 from Cr2O3 was greatly enhanced by high gas velocity conditions. The stability of Cr2-O3 was found to be greatly improved by the presence of an outer NiO layer, even though the NiO layer was very porous. An oxidation model is proposed to explain the observed microstructures and overall oxidation behavior of TD-NiCr alloys.
Modelling quality dynamics on business value and firm performance in big data analytics environment
Ji-fan Ren, S; Fosso Wamba, S; Akter, S; Dubey, R; Childe, SJ
2017-01-01
Big data analytics have become an increasingly important component for firms across advanced economies. This paper examines the quality dynamics in big data environment that are linked with enhancing business value and firm performance. The study identifies that system quality (i.e., system reliability, accessibility, adaptability, integration, response time and privacy) and information quality (i.e., completeness, accuracy, format and currency) are key to enhance business value and firm perf...
Fritz, Melanie; Hausen, Tobias
2006-01-01
Agrifood supply networks are dynamic structures where firms regularly face the need to search for new market partners. A decision for a transaction with a new partner requires the existence of appropriate control and safeguard mechanisms as well as trust to overcome perceived risk and uncertainties. Electronic transaction environments offer new potentials for the identification of new transaction partners. However, trust and control need to be communicated appropriately in electronic transact...
Brownian motion in short range random potentials
International Nuclear Information System (INIS)
Romero, A.H.; Romero, A.H.; Sancho, J.M.
1998-01-01
A numerical study of Brownian motion of noninteracting particles in random potentials is presented. The dynamics are modeled by Langevin equations in the high friction limit. The random potentials are Gaussian distributed and short ranged. The simulations are performed in one and two dimensions. Different dynamical regimes are found and explained. Effective subdiffusive exponents are obtained and commented on. copyright 1998 The American Physical Society
Pricing for a basket of LCDS under fuzzy environments.
Wu, Liang; Liu, Jie-Fang; Wang, Jun-Tao; Zhuang, Ya-Ming
2016-01-01
This paper looks at both the prepayment risks of housing mortgage loan credit default swaps (LCDS) as well as the fuzziness and hesitation of investors as regards prepayments by borrowers. It further discusses the first default pricing of a basket of LCDS in a fuzzy environment by using stochastic analysis and triangular intuition-based fuzzy set theory. Through the 'fuzzification' of the sensitivity coefficient in the prepayment intensity, this paper describes the dynamic features of mortgage housing values using the One-factor copula function and concludes with a formula for 'fuzzy' pricing the first default of a basket of LCDS. Using analog simulation to analyze the sensitivity of hesitation, we derive a model that considers what the LCDS fair premium is in a fuzzy environment, including a pure random environment. In addition, the model also shows that a suitable pricing range will give investors more flexible choices and make the predictions of the model closer to real market values.
Hari, Riitta
2017-06-07
Experimental data about brain function accumulate faster than does our understanding of how the brain works. To tackle some general principles at the grain level of behavior, I start from the omnipresent brain-environment connection that forces regularities of the physical world to shape the brain. Based on top-down processing, added by sparse sensory information, people are able to form individual "caricature worlds," which are similar enough to be shared among other people and which allow quick and purposeful reactions to abrupt changes. Temporal dynamics and social interaction in natural environments serve as further essential organizing principles of human brain function. Copyright © 2017 Elsevier Inc. All rights reserved.
Directory of Open Access Journals (Sweden)
Vimal J. Savsani
2017-04-01
The static and dynamic responses to the TTO problems are challenging due to its search space, which is implicit, non-convex, non-linear, and often leading to divergence. Modified meta-heuristics are effective optimization methods to handle such problems in actual fact. In this paper, modified versions of Teaching–Learning-Based Optimization (TLBO, Heat Transfer Search (HTS, Water Wave Optimization (WWO, and Passing Vehicle Search (PVS are proposed by integrating the random mutation-based search technique with them. This paper compares the performance of four modified and four basic meta-heuristics to solve discrete TTO problems.
Dynamical behavior of surface tension on rotating fluids in low and microgravity environments
Hung, R. J.; Tsao, Y. D.; Hong, B. B.; Leslie, F. W.
1989-01-01
Consideration is given to the time-dependent evolutions of the free surface profile (bubble shapes) of a cylindrical container, partially filled with a Newtonian fluid of constant density, rotating about its axis of symmetry in low and microgravity environments. The dynamics of the bubble shapes are calculated for four cases: linear time-dependent functions of spin-up and spin-down in low and microgravity, linear time-dependent functions of increasing and decreasing gravity at high and low rotating cylinder speeds, time-dependent step functions of spin-up and spin-down in low gravity, and sinusoidal function oscillation of the gravity environment in high and low rotating cylinder speeds. It is shown that the computer algorithms developed by Hung et al. (1988) may be used to simulate the profile of time-dependent bubble shapes under variations of centrifugal, capillary, and gravity forces.
Continuous-time quantum random walks require discrete space
International Nuclear Information System (INIS)
Manouchehri, K; Wang, J B
2007-01-01
Quantum random walks are shown to have non-intuitive dynamics which makes them an attractive area of study for devising quantum algorithms for long-standing open problems as well as those arising in the field of quantum computing. In the case of continuous-time quantum random walks, such peculiar dynamics can arise from simple evolution operators closely resembling the quantum free-wave propagator. We investigate the divergence of quantum walk dynamics from the free-wave evolution and show that, in order for continuous-time quantum walks to display their characteristic propagation, the state space must be discrete. This behavior rules out many continuous quantum systems as possible candidates for implementing continuous-time quantum random walks
Continuous-time quantum random walks require discrete space
Manouchehri, K.; Wang, J. B.
2007-11-01
Quantum random walks are shown to have non-intuitive dynamics which makes them an attractive area of study for devising quantum algorithms for long-standing open problems as well as those arising in the field of quantum computing. In the case of continuous-time quantum random walks, such peculiar dynamics can arise from simple evolution operators closely resembling the quantum free-wave propagator. We investigate the divergence of quantum walk dynamics from the free-wave evolution and show that, in order for continuous-time quantum walks to display their characteristic propagation, the state space must be discrete. This behavior rules out many continuous quantum systems as possible candidates for implementing continuous-time quantum random walks.
Breather Rogue Waves in Random Seas
Wang, J.; Ma, Q. W.; Yan, S.; Chabchoub, A.
2018-01-01
Rogue or freak waves are extreme wave events that have heights exceeding 8 times the standard deviation of surrounding waves and emerge, for instance, in the ocean as well as in other physical dispersive wave guides, such as in optical fibers. One effective and convenient way to model such an extreme dynamics in laboratory environments within a controlled framework as well as for short process time and length scales is provided through the breather formalism. Breathers are pulsating localized structures known to model extreme waves in several nonlinear dispersive media in which the initial underlying process is assumed to be narrow banded. On the other hand, several recent studies suggest that breathers can also persist in more complex environments, such as in random seas, beyond the attributed physical limitations. In this work, we study the robustness of the Peregrine breather (PB) embedded in Joint North Sea Wave Project (JONSWAP) configurations using fully nonlinear hydrodynamic numerical simulations in order to validate its practicalness for ocean engineering applications. We provide a specific range for both the spectral bandwidth of the dynamical process as well as the background wave steepness and, thus, quantify the applicability of the PB in modeling rogue waves in realistic oceanic conditions. Our results may motivate analogous studies in fields of physics such as optics and plasma to quantify the limitations of exact weakly nonlinear models, such as solitons and breathers, within the framework of the fully nonlinear governing equations of the corresponding medium.
Evolutionary dynamics of bacteria in a human host environment
DEFF Research Database (Denmark)
Yang, Lei; Jelsbak, Lars; Marvig, Rasmus Lykke
2011-01-01
Laboratory evolution experiments have led to important findings relating organism adaptation and genomic evolution. However, continuous monitoring of long-term evolution has been lacking for natural systems, limiting our understanding of these processes in situ. Here we characterize the evolution...... long-term in vitro evolution experiments. The evolved phenotype of the infecting bacteria further suggests that the opportunistic pathogen has transitioned to become a primary pathogen for cystic fibrosis patients.......Laboratory evolution experiments have led to important findings relating organism adaptation and genomic evolution. However, continuous monitoring of long-term evolution has been lacking for natural systems, limiting our understanding of these processes in situ. Here we characterize...... the evolutionary dynamics of a lineage of a clinically important opportunistic bacterial pathogen, Pseudomonas aeruginosa, as it adapts to the airways of several individual cystic fibrosis patients over 200,000 bacterial generations, and provide estimates of mutation rates of bacteria in a natural environment...
Lu, Zhixiang; Wei, Yongping; Feng, Qi; Xie, Jiali; Xiao, Honglang; Cheng, Guodong
2018-09-01
There is limited quantitative understanding of interactions between human and environmental systems over the millennial scale. We aim to reveal the co-evolutionary dynamics of the human-environment system in a river basin by simulating the water use and net primary production (NPP) allocation for human and environmental systems over the last 2000years in Heihe River basin (HRB) in northwest China. We partition the catchment total evapotranspiration (ET) into ET for human and environmental systems with a social-hydrological framework and estimate the NPP for human and environmental systems using the Box-Lieth model, then classify the co-evolutionary processes of the human-environment system into distinct phases using the rate of changes of NPP over time, and discover the trade-offs or synergies relationships between them based on the elasticity of change of the NPP for humans to the change of NPP for environment. The co-evolutionary dynamics of human-environment system in the HRB can be divided into four periods, including: Phase I (Han Dynasty-Yuan Dynasty): predevelopment characterized by nearly no trade-offs between human and environment; Phase II (Yuan Dynasty-RC): slow agricultural development: characterized by a small human win due to small trade-offs between human and environment; Phase III (RC-2000): rapid agricultural development: characterized by a large human win due to large trade-offs between human and environment, and Phase IV (2000-2010): a rebalance characterized by large human wins with a small-environment win due to synergies, although these occurred very occasionally. This study provides a quantitative approach to describe the co-evolution of the human-environment system from the perspective of trade-offs and synergies in the millennial scale for the first time. The relationships between humans and environment changed from trade-off to synergy with the implementation of the water reallocation scheme in 2000. These findings improve the
Czech Academy of Sciences Publication Activity Database
Klvana, M.; Pavlová, M.; Koudeláková, T.; Chaloupková, R.; Dvořák, P.; Prokop, Z.; Stsiapanava, A.; Kutý, Michal; Kutá-Smatanová, Ivana; Dohnálek, Jan; Kulhánek, P.; Damborský, J.
2009-01-01
Roč. 392, č. 5 (2009), s. 1339-1356 ISSN 0022-2836 R&D Projects: GA MŠk(CZ) LC06010 Institutional research plan: CEZ:AV0Z40500505; CEZ:AV0Z60870520 Keywords : haloalkane dehalogenase * product release * random acceleration molecular dynamics Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.871, year: 2009
An Analytical Measuring Rectification Algorithm of Monocular Systems in Dynamic Environment
Directory of Open Access Journals (Sweden)
Deshi Li
2016-01-01
Full Text Available Range estimation is crucial for maintaining a safe distance, in particular for vision navigation and localization. Monocular autonomous vehicles are appropriate for outdoor environment due to their mobility and operability. However, accurate range estimation using vision system is challenging because of the nonholonomic dynamics and susceptibility of vehicles. In this paper, a measuring rectification algorithm for range estimation under shaking conditions is designed. The proposed method focuses on how to estimate range using monocular vision when a shake occurs and the algorithm only requires the pose variations of the camera to be acquired. Simultaneously, it solves the problem of how to assimilate results from different kinds of sensors. To eliminate measuring errors by shakes, we establish a pose-range variation model. Afterwards, the algebraic relation between distance increment and a camera’s poses variation is formulated. The pose variations are presented in the form of roll, pitch, and yaw angle changes to evaluate the pixel coordinate incensement. To demonstrate the superiority of our proposed algorithm, the approach is validated in a laboratory environment using Pioneer 3-DX robots. The experimental results demonstrate that the proposed approach improves in the range accuracy significantly.
Zhang, Yali; Wang, Jun
2017-09-01
In an attempt to investigate the nonlinear complex evolution of financial dynamics, a new financial price model - the multitype range-intensity contact (MRIC) financial model, is developed based on the multitype range-intensity interacting contact system, in which the interaction and transmission of different types of investment attitudes in a stock market are simulated by viruses spreading. Two new random visibility graph (VG) based analyses and Lempel-Ziv complexity (LZC) are applied to study the complex behaviors of return time series and the corresponding random sorted series. The VG method is the complex network theory, and the LZC is a non-parametric measure of complexity reflecting the rate of new pattern generation of a series. In this work, the real stock market indices are considered to be comparatively studied with the simulation data of the proposed model. Further, the numerical empirical study shows the similar complexity behaviors between the model and the real markets, the research confirms that the financial model is reasonable to some extent.
Nygren, T E
1997-09-01
It is well documented that the way a static choice task is "framed" can dramatically alter choice behavior, often leading to observable preference reversals. This framing effect appears to result from perceived changes in the nature or location of a person's initial reference point, but it is not clear how framing effects might generalize to performance on dynamic decision making tasks that are characterized by high workload, time constraints, risk, or stress. A study was conducted to examine the hypothesis that framing can introduce affective components to the decision making process and can influence, either favorably (positive frame) or adversely (negative frame), the implementation and use of decision making strategies in dynamic high-workload environments. Results indicated that negative frame participants were significantly impaired in developing and employing a simple optimal decision strategy relative to a positive frame group. Discussion focuses on implications of these results for models of dynamic decision making.
A new look at the FDI–income–energy–environment nexus: Dynamic panel data analysis of ASEAN
International Nuclear Information System (INIS)
Baek, Jungho
2016-01-01
The main focus of this paper is to estimate the effects of foreign direct investment (FDI) inflows, income and energy consumption on CO_2 emissions using panel data of five ASEAN countries over 1981–2010. The results based on the pooled mean group (PMG) estimator of dynamic panels show that FDI tends to increase CO_2 emissions, supporting evidence of the pollution haven hypothesis. We also find that income and energy consumption have a detrimental impact on reducing CO_2 emissions. - Highlights: • This study examines the FDI–income–energy–environment nexus. • The pooled mean group (PMG) estimator is applied to panel data of 5 ASEAN countries. • FDI deteriorates the environment, supporting the pollution haven hypothesis. • Growth and energy consumption have a detrimental effect on the environment.
Institute of Scientific and Technical Information of China (English)
田鹏伟
2015-01-01
The paper illustrates the reasons for the random observation errors in water environment,analyzes definitions,features and regulation of the random observation errors,and explores precautions in the random observation errors in water environment evaluation,so as to provide some reference for the treatment of water pollution.%阐述了水环境评价中产生随机观测误差的原因，分析了随机观测误差的定义、特点及其规律性，并对随机观测误差需注意的事项进行了研究探讨，为水污染的治理提供了一定的参考依据。
Population dynamics of excited atoms in non-Markovian environments at zero and finite temperature
International Nuclear Information System (INIS)
Zou Hong-Mei; Fang Mao-Fa
2015-01-01
The population dynamics of a two-atom system, which is in two independent Lorentzian reservoirs or in two independent Ohmic reservoirs respectively, where the reservoirs are at zero temperature or finite temperature, is studied by using the time-convolutionless master-equation method. The influences of the characteristics and temperature of a non-Markovian environment on the population of the excited atoms are analyzed. We find that the population trapping of the excited atoms is related to the characteristics and the temperature of the non-Markovian environment. The results show that, at zero temperature, the two atoms can be effectively trapped in the excited state both in the Lorentzian reservoirs and in the Ohmic reservoirs. At finite temperature, the population of the excited atoms will quickly decay to a nonzero value. (paper)
Directory of Open Access Journals (Sweden)
Brian J Gow
Full Text Available To determine if Tai Chi (TC has an impact on long-range correlations and fractal-like scaling in gait stride time dynamics, previously shown to be associated with aging, neurodegenerative disease, and fall risk.Using Detrended Fluctuation Analysis (DFA, this study evaluated the impact of TC mind-body exercise training on stride time dynamics assessed during 10 minute bouts of overground walking. A hybrid study design investigated long-term effects of TC via a cross-sectional comparison of 27 TC experts (24.5 ± 11.8 yrs experience and 60 age- and gender matched TC-naïve older adults (50-70 yrs. Shorter-term effects of TC were assessed by randomly allocating TC-naïve participants to either 6 months of TC training or to a waitlist control. The alpha (α long-range scaling coefficient derived from DFA and gait speed were evaluated as outcomes.Cross-sectional comparisons using confounder adjusted linear models suggest that TC experts exhibited significantly greater long-range scaling of gait stride time dynamics compared with TC-naïve adults. Longitudinal random-slopes with shared baseline models accounting for multiple confounders suggest that the effects of shorter-term TC training on gait dynamics were not statistically significant, but trended in the same direction as longer-term effects although effect sizes were very small. In contrast, gait speed was unaffected in both cross-sectional and longitudinal comparisons.These preliminary findings suggest that fractal-like measures of gait health may be sufficiently precise to capture the positive effects of exercise in the form of Tai Chi, thus warranting further investigation. These results motivate larger and longer-duration trials, in both healthy and health-challenged populations, to further evaluate the potential of Tai Chi to restore age-related declines in gait dynamics.The randomized trial component of this study was registered at ClinicalTrials.gov (NCT01340365.
DEFF Research Database (Denmark)
Nielsen, Peter Vilhelm
2003-01-01
An interconnection between a building energy performance simulation program and a Computational Fluid Dynamics program (CFD) for room air distribution is introduced for improvement of the predictions of both the energy consumption and the indoor environment.The article describes a calculation...
Dynamic approach to space and habitat use based on biased random bridges.
Directory of Open Access Journals (Sweden)
Simon Benhamou
Full Text Available BACKGROUND: Although habitat use reflects a dynamic process, most studies assess habitat use statically as if an animal's successively recorded locations reflected a point rather than a movement process. By relying on the activity time between successive locations instead of the local density of individual locations, movement-based methods can substantially improve the biological relevance of utilization distribution (UD estimates (i.e. the relative frequencies with which an animal uses the various areas of its home range, HR. One such method rests on Brownian bridges (BBs. Its theoretical foundation (purely and constantly diffusive movements is paradoxically inconsistent with both HR settlement and habitat selection. An alternative involves movement-based kernel density estimation (MKDE through location interpolation, which may be applied to various movement behaviours but lacks a sound theoretical basis. METHODOLOGY/PRINCIPAL FINDINGS: I introduce the concept of a biased random (advective-diffusive bridge (BRB and show that the MKDE method is a practical means to estimate UDs based on simplified (isotropically diffusive BRBs. The equation governing BRBs is constrained by the maximum delay between successive relocations warranting constant within-bridge advection (allowed to vary between bridges but remains otherwise similar to the BB equation. Despite its theoretical inconsistencies, the BB method can therefore be applied to animals that regularly reorientate within their HRs and adapt their movements to the habitats crossed, provided that they were relocated with a high enough frequency. CONCLUSIONS/SIGNIFICANCE: Biased random walks can approximate various movement types at short times from a given relocation. Their simplified form constitutes an effective trade-off between too simple, unrealistic movement models, such as Brownian motion, and more sophisticated and realistic ones, such as biased correlated random walks (BCRWs, which are too
Funaki, Tadahisa
2016-01-01
Interfaces are created to separate two distinct phases in a situation in which phase coexistence occurs. This book discusses randomly fluctuating interfaces in several different settings and from several points of view: discrete/continuum, microscopic/macroscopic, and static/dynamic theories. The following four topics in particular are dealt with in the book. Assuming that the interface is represented as a height function measured from a fixed-reference discretized hyperplane, the system is governed by the Hamiltonian of gradient of the height functions. This is a kind of effective interface model called ∇φ-interface model. The scaling limits are studied for Gaussian (or non-Gaussian) random fields with a pinning effect under a situation in which the rate functional of the corresponding large deviation principle has non-unique minimizers. Young diagrams determine decreasing interfaces, and their dynamics are introduced. The large-scale behavior of such dynamics is studied from the points of view of the hyd...
Directory of Open Access Journals (Sweden)
Hongzhe Jin
2017-01-01
Full Text Available This paper presents a synthetic algorithm for tracking a moving object in a multiple-dynamic obstacles environment based on kinematically planar manipulators. By observing the motions of the object and obstacles, Spline filter associated with polynomial fitting is utilized to predict their moving paths for a period of time in the future. Several feasible paths for the manipulator in Cartesian space can be planned according to the predicted moving paths and the defined feasibility criterion. The shortest one among these feasible paths is selected as the optimized path. Then the real-time path along the optimized path is planned for the manipulator to track the moving object in real-time. To improve the convergence rate of tracking, a virtual controller based on PD controller is designed to adaptively adjust the real-time path. In the process of tracking, the null space of inverse kinematic and the local rotation coordinate method (LRCM are utilized for the arms and the end-effector to avoid obstacles, respectively. Finally, the moving object in a multiple-dynamic obstacles environment is thus tracked via real-time updating the joint angles of manipulator according to the iterative method. Simulation results show that the proposed algorithm is feasible to track a moving object in a multiple-dynamic obstacles environment.
Steady state gamma testing of a 4K NMOS dynamic RAM
International Nuclear Information System (INIS)
Coleman, D.W.; Temkin, B.M.
1976-01-01
Samples of the Texas Instruments TMS4060JL, 4096 bit dynamic random-access memory (4K RAM) were tested in the ionizing environment of a 137 Ce source. Irradiated in an active condition, the devices were observed to fail at 1 x 10 3 rads (Si). Twenty-four hours after irradiation, 4 of the 5 devices tested were again functional. The devices were not powered and were at room temperature during the 24 hour anneal period
Stochastic equilibria of an asset pricing model with heterogeneous beliefs and random dividends
Zhu, M.; Wang, D.; Guo, M.
2011-01-01
We investigate dynamical properties of a heterogeneous agent model with random dividends and further study the relationship between dynamical properties of the random model and those of the corresponding deterministic skeleton, which is obtained by setting the random dividends as their constant mean
Dynamics of Nano-Chain Diffusing in Porous Media
International Nuclear Information System (INIS)
Chen Jiang-Xing; Zheng Qiang; Huang Chun-Yun; Xu Jiang-Rong; Ying He-Ping
2015-01-01
A coarse-grained model is proposed to study the dynamics of a nano-chain diffusing in porous media. The simulation utilizes a hybrid method which combines stochastic rotation dynamics with molecular dynamics. Solvent molecules are explicitly taken into account to represent the hydrodynamic interactions and random fluctuations. The conformation, relaxation, and diffusion properties of a polymer chain are investigated by changing the density degree of the obstacle matrix. It is found that the average size of the chain is a nonmonotonic function of the obstacle volume fraction ϕ. A dense environment may contribute to extending a linear chain, which can be characterized by larger exponents in the corresponding power law. The relaxation behavior of a stretched chain to a steady state shows dramatic crossover from exponent to power-law relaxation when the values of φ are increased. The dependence of the diffusion coefficient on the chain size is also studied. Various kinds of scaling properties are presented and discussed. The results can give additional insight into the density effect of porous media on polymer structure and dynamics. (paper)
Random walk of passive tracers among randomly moving obstacles.
Gori, Matteo; Donato, Irene; Floriani, Elena; Nardecchia, Ilaria; Pettini, Marco
2016-04-14
This study is mainly motivated by the need of understanding how the diffusion behavior of a biomolecule (or even of a larger object) is affected by other moving macromolecules, organelles, and so on, inside a living cell, whence the possibility of understanding whether or not a randomly walking biomolecule is also subject to a long-range force field driving it to its target. By means of the Continuous Time Random Walk (CTRW) technique the topic of random walk in random environment is here considered in the case of a passively diffusing particle among randomly moving and interacting obstacles. The relevant physical quantity which is worked out is the diffusion coefficient of the passive tracer which is computed as a function of the average inter-obstacles distance. The results reported here suggest that if a biomolecule, let us call it a test molecule, moves towards its target in the presence of other independently interacting molecules, its motion can be considerably slowed down.
Berry, D.P.; Buckley, F.; Dillon, P.; Evans, R.D.; Rath, M.; Veerkamp, R.F.
2003-01-01
(Co)variance components for milk yield, body condition score (BCS), body weight (BW), BCS change and BW change over different herd-year mean milk yields (HMY) and nutritional environments (concentrate feeding level, grazing severity and silage quality) were estimated using a random regression model.
Tadić, Bosiljka
2018-03-01
We study dynamics of a built-in domain wall (DW) in 2-dimensional disordered ferromagnets with different sample shapes using random-field Ising model on a square lattice rotated by 45 degrees. The saw-tooth DW of the length Lx is created along one side and swept through the sample by slow ramping of the external field until the complete magnetisation reversal and the wall annihilation at the open top boundary at a distance Ly. By fixing the number of spins N =Lx ×Ly = 106 and the random-field distribution at a value above the critical disorder, we vary the ratio of the DW length to the annihilation distance in the range Lx /Ly ∈ [ 1 / 16 , 16 ] . The periodic boundary conditions are applied in the y-direction so that these ratios comprise different samples, i.e., surfaces of cylinders with the changing perimeter Lx and height Ly. We analyse the avalanches of the DW slips between following field updates, and the multifractal structure of the magnetisation fluctuation time series. Our main findings are that the domain-wall lengths materialised in different sample shapes have an impact on the dynamics at all scales. Moreover, the domain-wall motion at the beginning of the hysteresis loop (HLB) probes the disorder effects resulting in the fluctuations that are significantly different from the large avalanches in the central part of the loop (HLC), where the strong fields dominate. Specifically, the fluctuations in HLB exhibit a wide multi-fractal spectrum, which shifts towards higher values of the exponents when the DW length is reduced. The distributions of the avalanches in this segments of the loops obey power-law decay and the exponential cutoffs with the exponents firmly in the mean-field universality class for long DW. In contrast, the avalanches in the HLC obey Tsallis density distribution with the power-law tails which indicate the new categories of the scale invariant behaviour for different ratios Lx /Ly. The large fluctuations in the HLC, on the other
International Nuclear Information System (INIS)
2017-09-01
After a synthesis, this report proposes a presentation of the Engie Group (general overview, activities in the different parts of the world, evolution of human resources, share-holding structure, stock market data, high management, competitive environment). It gives an overview of the Engie group dynamics and of its activities through a presentation of an environment analysis (world energy market, European gas and electricity market, gas consumption in France, regulated tariffs and spot prices, temperatures in France, regulatory evolutions), a presentation of the group activity (turnover in France, gas and electricity sales, turnover per area and market segment), a performance analysis (operating income), and a competitive analysis (comparison with the main European energy companies). It analyses the different development axes and discusses main events regarding Engie's strategy, the implementation of a large asset disposal, how Engie gets on the path of renewable energies, and the development of energy services. Financial data are presented along with the main economic and financial indicators. Important statistical data are provided
The social dynamics of healthy food shopping and store choice in an urban environment.
Cannuscio, Carolyn C; Hillier, Amy; Karpyn, Allison; Glanz, Karen
2014-12-01
To respond to the high prevalence of obesity and its associated health consequences, recent food research and policy have focused on neighborhood food environments, especially the links between health and retail mix, proximity of food outlets, and types of foods available. In addition, the social environment exerts important influences on food-related behaviors, through mechanisms like role-modeling, social support, and social norms. This study examined the social dynamics of residents' health-related food-shopping behaviors in 2010-11 in urban Philadelphia, where we conducted 25 semi-structured resident interviews-the foundation for this paper-in addition to 514 structured interviews and a food environment audit. In interviews, participants demonstrated adaptability and resourcefulness in their food shopping; they chose to shop at stores that met a range of social needs. Those needs ranged from practical financial considerations, to fundamental issues of safety, to mundane concerns about convenience, and juggling multiple work and family responsibilities. The majority of participants were highly motivated to adapt their shopping patterns to accommodate personal financial constraints. In addition, they selectively shopped at stores frequented by people who shared their race/ethnicity, income and education, and they sought stores where they had positive interactions with personnel and proprietors. In deciding where to shop in this urban context, participants adapted their routines to avoid unsafe places and the threat of violence. Participants also discussed the importance of convenient stores that allowed for easy parking, accommodation of physical disabilities or special needs, and integration of food shopping into other daily activities like meeting children at school. Food research and policies should explicitly attend to the social dynamics that influence food-shopping behavior. In our social relationships, interactions, and responsibilities, there are
Levy Foraging in a Dynamic Environment – Extending the Levy Search
Directory of Open Access Journals (Sweden)
Vincenzo Fioriti
2015-07-01
Full Text Available A common task for robots is the patrolling of an unknown area with inadequate information about target locations. Under these circumstances it has been suggested that animal foraging could provide an optimal or at least sub-optimal search methodology, namely the Levy flight search. Although still in debate, it seems that predators somehow follow this search pattern when foraging, because it avoids being trapped in a local search if the food is beyond the sensory range. A Levy flight is a particular case of the random walk. Its displacements on a 2-D surface are drawn from the Pareto-Levy probability distribution, characterized by power law tails. The Levy flight search has many applications in optical material, ladars, optics, large database search, earthquake data analysis, location of DNA sites, human mobility, stock return analysis, online auctions, astronomy, ecology and biology. Almost all studies and simulations concerning the Levy flight foraging examine static or slowly moving (with respect to the forager uniformly distributed resources. Moreover, in recent works a small swarm of underwater autonomous vehicles has been used to test the standard Levy search in the underwater environment, with good results. In this paper we extend the classical Levy foraging framework taking into consideration a moving target allocated on a 2-D surface according to a radial probability distribution and comparing its performance with the random walk search. The metric used in the numerical simulations is the detection rate. Simulations include the sensor resolution, intended as the maximum detection distance of the forager from the target. Furthermore, contrarily to the usual Levy foraging framework, we use only one target. Results show that Levy flight outperforms the random walk if the sensor detection radius is not too small or too large. We also find the Levy flight in the velocity of the center of mass model of a fish school according the Kuramoto
Hamiltonian dynamics of preferential attachment
International Nuclear Information System (INIS)
Zuev, Konstantin; Papadopoulos, Fragkiskos; Krioukov, Dmitri
2016-01-01
Prediction and control of network dynamics are grand-challenge problems in network science. The lack of understanding of fundamental laws driving the dynamics of networks is among the reasons why many practical problems of great significance remain unsolved for decades. Here we study the dynamics of networks evolving according to preferential attachment (PA), known to approximate well the large-scale growth dynamics of a variety of real networks. We show that this dynamics is Hamiltonian, thus casting the study of complex networks dynamics to the powerful canonical formalism, in which the time evolution of a dynamical system is described by Hamilton’s equations. We derive the explicit form of the Hamiltonian that governs network growth in PA. This Hamiltonian turns out to be nearly identical to graph energy in the configuration model, which shows that the ensemble of random graphs generated by PA is nearly identical to the ensemble of random graphs with scale-free degree distributions. In other words, PA generates nothing but random graphs with power-law degree distribution. The extension of the developed canonical formalism for network analysis to richer geometric network models with non-degenerate groups of symmetries may eventually lead to a system of equations describing network dynamics at small scales. (paper)
International Nuclear Information System (INIS)
Fu Chuanji; Zhu Qinsheng; Wu Shaoyi
2010-01-01
Based on algebraic dynamics and the concept of the concurrence of the entanglement, we investigate the evolutive properties of the two-qubit entanglement that formed by Heisenberg XXX models under a time-depending external held. For this system, the property of the concurrence that is only dependent on the coupling constant J and total values of the external field is proved. Furthermore, we found that the thermal concurrence of the system under a static random external field is a function of the coupling constant J, temperature T, and the magnitude of external held. (general)
Bhadauria, Esha A; Gurudut, Peeyoosha
2017-08-01
The aim of the present study was to compare three different forms of exercises namely lumbar stabilization, dynamic strengthening, and Pilates on chronic low back pain (LBP) in terms of pain, range of motion, core strength and function. In this study, 44 subjects suffering from non-specific LBP for more than 3 months were randomly allocated into the lumbar stabilization group, the dynamic strengthening group, and the Pilates group. Ten sessions of exercises for 3 weeks were prescribed along with interferential current and hot moist pack. Pain was assessed by visual analog scale, functional affection by modified Oswestry Disability Questionnaire, range of motion by assessing lumbar flexion and extension by modified Schober test and core strength was assessed by pressure biofeedback on day 1 and day 10 of the treatment. There was reduction of pain, improvement in range of motion, functional ability and core strength in all the 3 exercise groups. The improvement was significantly greater in the lumbar stabilization group for all the outcome measures, when compared the posttreatment after 10th session. Pairwise comparison showed that there was greater reduction of disability in the Pilates group than the dynamic strengthening group. It was concluded that the lumbar stabilization is more superior compared to the dynamic strengthening and Pilates in chronic nonspecific LBP. However, long-term benefits need to be assessed and compared with prospective follow-up studies.
Integration of domain and resource-based reasoning for real-time control in dynamic environments
Morgan, Keith; Whitebread, Kenneth R.; Kendus, Michael; Cromarty, Andrew S.
1993-01-01
A real-time software controller that successfully integrates domain-based and resource-based control reasoning to perform task execution in a dynamically changing environment is described. The design of the controller is based on the concept of partitioning the process to be controlled into a set of tasks, each of which achieves some process goal. It is assumed that, in general, there are multiple ways (tasks) to achieve a goal. The controller dynamically determines current goals and their current criticality, choosing and scheduling tasks to achieve those goals in the time available. It incorporates rule-based goal reasoning, a TMS-based criticality propagation mechanism, and a real-time scheduler. The controller has been used to build a knowledge-based situation assessment system that formed a major component of a real-time, distributed, cooperative problem solving system built under DARPA contract. It is also being employed in other applications now in progress.
Liu, D.; Wei, X.; Li, H. Y.; Lin, M.; Tian, F.; Huang, Q.
2017-12-01
In the socio-hydrological system, the ecological functions and environmental services, which are chosen to maintain, are determined by the preference of the society, which is making the trade-off among the values of riparian vegetation, fish, river landscape, water supply, hydropower, navigation and so on. As the society develops, the preference of the value will change and the ecological functions and environmental services which are chosen to maintain will change. The aim of the study is to focus on revealing the feedback relationship of water supply, hydropower and environment and the dynamical feedback mechanism at macro-scale, and to establish socio-hydrological evolution model of the watershed based on the modeling of multiple socio-natural processes. The study will aim at the Han River in China, analyze the impact of the water supply and hydropower on the ecology, hydrology and other environment elements, and study the effect on the water supply and hydropower to ensure the ecological and environmental water of the different level. Water supply and ecology are usually competitive. In some reservoirs, hydropower and ecology are synergic relationship while they are competitive in some reservoirs. The study will analyze the multiple mechanisms to implement the dynamical feedbacks of environment to hydropower, set up the quantitative relationship description of the feedback mechanisms, recognize the dominant processes in the feedback relationships of hydropower and environment and then analyze the positive and negative feedbacks in the feedback networks. The socio-hydrological evolution model at the watershed scale will be built and applied to simulate the long-term evolution processes of the watershed of the current situation. Dynamical nexus of water supply, hydropower and environment will be investigated.
Starr, Francis W.; Douglas, Jack F.; Sastry, Srikanth
2013-01-01
We carefully examine common measures of dynamical heterogeneity for a model polymer melt and test how these scales compare with those hypothesized by the Adam and Gibbs (AG) and random first-order transition (RFOT) theories of relaxation in glass-forming liquids. To this end, we first analyze clusters of highly mobile particles, the string-like collective motion of these mobile particles, and clusters of relative low mobility. We show that the time scale of the high-mobility clusters and stri...
Effects of randomness on chaos and order of coupled logistic maps
International Nuclear Information System (INIS)
Savi, Marcelo A.
2007-01-01
Natural systems are essentially nonlinear being neither completely ordered nor completely random. These nonlinearities are responsible for a great variety of possibilities that includes chaos. On this basis, the effect of randomness on chaos and order of nonlinear dynamical systems is an important feature to be understood. This Letter considers randomness as fluctuations and uncertainties due to noise and investigates its influence in the nonlinear dynamical behavior of coupled logistic maps. The noise effect is included by adding random variations either to parameters or to state variables. Besides, the coupling uncertainty is investigated by assuming tinny values for the connection parameters, representing the idea that all Nature is, in some sense, weakly connected. Results from numerical simulations show situations where noise alters the system nonlinear dynamics
Directory of Open Access Journals (Sweden)
Nisha
2015-03-01
Full Text Available BACKGROUND: Balance is highly integrative dynamic process involving coordination of multiple neurological pathways that allows for the maintenance of the COG over BOS . Football players often perform lower extremity passing , shooting , twisting , cutting and dribbling skills while wearing shoes , these actions require body to be in the equilibrium position to perform the task . This leads to t he conclusion of the great importance of the ability of balance in football . AIMS: 1 . To study the effect of 4 week multidirectional balance board training on dynamic balance in football players . 2 . To study the effect of 4 week Both Sides Up ball training on dynamic balance in football players . 3 . To compare the effect of multidirectional balance board training program and BOSU ball training program on dynamic balance in football players . STUDY DESIGN: Randomized Clinical trial . METHODS: Total of 60 competitive badminton players with age group between18 - 25 were recruited in this study . The participants were allocated into 2 groups viz ., Group A (multidirectional balance board training and Group B (BOSU ball Training for a period of 4 we eks . Participants were test for SEBT and vertical jump test on first day and after 4 weeks of balance training . STATISTICAL ANALYSIS: Student t test , Chi - Square Test . RESULTS: The data analysis and statistical inference showed that , after 4 weeks of balanc e training there was improvement in dynamic balance in both the groups but there was no significant difference in dynamic balance between two groups . As seen by difference in the SEBT and VJT scores pre and post training with p<0 . 001 . CONCLUSION: 4 weeks balance training using BOSU and multidirectional balance board is effective in improving dynamic balance and vertical jump performance in football players and also can be used as a component of multifaceted training to improve dynamic balance and game skills
Psychological biases affecting human cognitive performance in dynamic operational environments
International Nuclear Information System (INIS)
Takano, Kenichi; Reason, J.
1999-01-01
In order to identify cognitive error mechanisms observed in the dynamic operational environment, the following materials were analyzed giving special attention to psychological biases, together with possible cognitive tasks and these location, and internal and external performance shaping factors: (a) 13 human factors analyses of US nuclear power plant accidents, (b) 14 cases of Japanese nuclear power plant incidents, and (c) 23 cases collected in simulator experiments. In the resulting analysis, the most frequently identified cognitive process associated with error productions was situation assessment, and following varieties were KB processes and response planning, all of that were the higher cognitive activities. Over 70% of human error cases, psychological bias was affecting to cognitive errors, especially those to higher cognitive activities. In addition, several error occurrence patterns, including relations between cognitive process, biases, and PSFs were identified by the multivariate analysis. According to the identified error patterns, functions that an operator support system have to equip were discussed and specified for design base considerations. (author)
Reliability of dynamic systems under limited information.
Energy Technology Data Exchange (ETDEWEB)
Field, Richard V., Jr. (.,; .); Grigoriu, Mircea
2006-09-01
A method is developed for reliability analysis of dynamic systems under limited information. The available information includes one or more samples of the system output; any known information on features of the output can be used if available. The method is based on the theory of non-Gaussian translation processes and is shown to be particularly suitable for problems of practical interest. For illustration, we apply the proposed method to a series of simple example problems and compare with results given by traditional statistical estimators in order to establish the accuracy of the method. It is demonstrated that the method delivers accurate results for the case of linear and nonlinear dynamic systems, and can be applied to analyze experimental data and/or mathematical model outputs. Two complex applications of direct interest to Sandia are also considered. First, we apply the proposed method to assess design reliability of a MEMS inertial switch. Second, we consider re-entry body (RB) component vibration response during normal re-entry, where the objective is to estimate the time-dependent probability of component failure. This last application is directly relevant to re-entry random vibration analysis at Sandia, and may provide insights on test-based and/or model-based qualification of weapon components for random vibration environments.
Grugel, Richard N.; Brush, Lucien N.; Anilkumar, Amrutur V.
2012-01-01
The quiescent Microgravity environment can be quite dynamic. Thermocapillary flow about "large" static bubbles on the order of 1mm in diameter was easily observed by following smaller tracer bubbles. The bubble induced flow was seen to disrupt a large dendritic array, effectively distributing free branches about the solid-liquid interface. "Small" dynamic bubbles were observed to travel at fast velocities through the mushy zone with the implication of bringing/detaching/redistributing dendrite arm fragments at the solid-liquid interface. Large and small bubbles effectively re-orient/re-distribute dendrite branches/arms/fragments at the solid liquid interface. Subsequent initiation of controlled directional solidification results in growth of dendrites having random orientations which significantly compromises the desired science.
Random Linear Network Coding is Key to Data Survival in Highly Dynamic Distributed Storage
DEFF Research Database (Denmark)
Sipos, Marton A.; Fitzek, Frank; Roetter, Daniel Enrique Lucani
2015-01-01
Distributed storage solutions have become widespread due to their ability to store large amounts of data reliably across a network of unreliable nodes, by employing repair mechanisms to prevent data loss. Conventional systems rely on static designs with a central control entity to oversee...... and control the repair process. Given the large costs for maintaining and cooling large data centers, our work proposes and studies the feasibility of a fully decentralized systems that can store data even on unreliable and, sometimes, unavailable mobile devices. This imposes new challenges on the design...... as the number of available nodes varies greatly over time and keeping track of the system's state becomes unfeasible. As a consequence, conventional erasure correction approaches are ill-suited for maintaining data integrity. In this highly dynamic context, random linear network coding (RLNC) provides...
Static and dynamic properties of frictional phenomena in a one-dimensional system with randomness
International Nuclear Information System (INIS)
Kawaguchi, T.; Matsukawa, H.
1997-01-01
Static and dynamic frictional phenomena at the interface with random impurities are investigated in a two-chain model with incommensurate structure. Static frictional force is caused by the impurity pinning and/or by the pinning due to the regular potential, which is responsible for the breaking of analyticity transition for impurity-free cases. It is confirmed that the static frictional force is always finite in the presence of impurities, in contrast to the impurity-free system. The nature of impurity pinning is discussed in connection with that in density waves. The kinetic frictional force of a steady sliding state is also investigated numerically. The relationship between the sliding velocity dependence of the kinetic frictional force and the strength of impurity potential is discussed. copyright 1997 The American Physical Society
Black holes and random matrices
Energy Technology Data Exchange (ETDEWEB)
Cotler, Jordan S.; Gur-Ari, Guy [Stanford Institute for Theoretical Physics, Stanford University,Stanford, CA 94305 (United States); Hanada, Masanori [Stanford Institute for Theoretical Physics, Stanford University,Stanford, CA 94305 (United States); Yukawa Institute for Theoretical Physics, Kyoto University,Kyoto 606-8502 (Japan); The Hakubi Center for Advanced Research, Kyoto University,Kyoto 606-8502 (Japan); Polchinski, Joseph [Department of Physics, University of California,Santa Barbara, CA 93106 (United States); Kavli Institute for Theoretical Physics, University of California,Santa Barbara, CA 93106 (United States); Saad, Phil; Shenker, Stephen H. [Stanford Institute for Theoretical Physics, Stanford University,Stanford, CA 94305 (United States); Stanford, Douglas [Institute for Advanced Study,Princeton, NJ 08540 (United States); Streicher, Alexandre [Stanford Institute for Theoretical Physics, Stanford University,Stanford, CA 94305 (United States); Department of Physics, University of California,Santa Barbara, CA 93106 (United States); Tezuka, Masaki [Department of Physics, Kyoto University,Kyoto 606-8501 (Japan)
2017-05-22
We argue that the late time behavior of horizon fluctuations in large anti-de Sitter (AdS) black holes is governed by the random matrix dynamics characteristic of quantum chaotic systems. Our main tool is the Sachdev-Ye-Kitaev (SYK) model, which we use as a simple model of a black hole. We use an analytically continued partition function |Z(β+it)|{sup 2} as well as correlation functions as diagnostics. Using numerical techniques we establish random matrix behavior at late times. We determine the early time behavior exactly in a double scaling limit, giving us a plausible estimate for the crossover time to random matrix behavior. We use these ideas to formulate a conjecture about general large AdS black holes, like those dual to 4D super-Yang-Mills theory, giving a provisional estimate of the crossover time. We make some preliminary comments about challenges to understanding the late time dynamics from a bulk point of view.
Bodala, Indu P; Abbasi, Nida I; Yu Sun; Bezerianos, Anastasios; Al-Nashash, Hasan; Thakor, Nitish V
2017-07-01
Eye tracking offers a practical solution for monitoring cognitive performance in real world tasks. However, eye tracking in dynamic environments is difficult due to high spatial and temporal variation of stimuli, needing further and thorough investigation. In this paper, we study the possibility of developing a novel computer vision assisted eye tracking analysis by using fixations. Eye movement data is obtained from a long duration naturalistic driving experiment. Source invariant feature transform (SIFT) algorithm was implemented using VLFeat toolbox to identify multiple areas of interest (AOIs). A new measure called `fixation score' was defined to understand the dynamics of fixation position between the target AOI and the non target AOIs. Fixation score is maximum when the subjects focus on the target AOI and diminishes when they gaze at the non-target AOIs. Statistically significant negative correlation was found between fixation score and reaction time data (r =-0.2253 and pdecrement, the fixation score decreases due to visual attention shifting away from the target objects resulting in an increase in the reaction time.
International Nuclear Information System (INIS)
Tsallis, C.
1980-03-01
The 'ingredients' which control a phase transition in well defined system as well as in random ones (e.g. random magnetic systems) are listed and discussed within a somehow unifying perspective. Among these 'ingredients' we find the couplings and elements responsible for the cooperative phenomenon, the topological connectivity as well as possible topological incompatibilities, the influence of new degrees of freedom, the order parameter dimensionality, the ground state degeneracy and finally the 'quanticity' of the system. The general trends, though illustrated in magnetic systems, essentially hold for all phase transitions, and give a basis for connection of this area with Field theory, Theory of dynamical systems, etc. (Author) [pt
International Nuclear Information System (INIS)
Tsallis, C.
1981-01-01
The 'ingredients' which control a phase transition in well defined systems as well as in random ones (e.q. random magnetic systems) are listed and discussed within a somehow unifying perspective. Among these 'ingredients' the couplings and elements responsible for the cooperative phenomenon, the topological connectivity as well as possible topological incompatibilities, the influence of new degrees of freedom, the order parameter dimensionality, the ground state degeneracy and finally the 'quanticity' of the system are found. The general trends, though illustrated in magnetic systems, essentially hold for all phase transitions, and give a basis for connection of this area with Field theory, Theory of dynamical systems, etc. (Author) [pt
On stochastic differential equations with random delay
International Nuclear Information System (INIS)
Krapivsky, P L; Luck, J M; Mallick, K
2011-01-01
We consider stochastic dynamical systems defined by differential equations with a uniform random time delay. The latter equations are shown to be equivalent to deterministic higher-order differential equations: for an nth-order equation with random delay, the corresponding deterministic equation has order n + 1. We analyze various examples of dynamical systems of this kind, and find a number of unusual behaviors. For instance, for the harmonic oscillator with random delay, the energy grows as exp((3/2) t 2/3 ) in reduced units. We then investigate the effect of introducing a discrete time step ε. At variance with the continuous situation, the discrete random recursion relations thus obtained have intrinsic fluctuations. The crossover between the fluctuating discrete problem and the deterministic continuous one as ε goes to zero is studied in detail on the example of a first-order linear differential equation
Sternberg, Shlomo
2010-01-01
Celebrated mathematician Shlomo Sternberg, a pioneer in the field of dynamical systems, created this modern one-semester introduction to the subject for his classes at Harvard University. Its wide-ranging treatment covers one-dimensional dynamics, differential equations, random walks, iterated function systems, symbolic dynamics, and Markov chains. Supplementary materials offer a variety of online components, including PowerPoint lecture slides for professors and MATLAB exercises.""Even though there are many dynamical systems books on the market, this book is bound to become a classic. The the
Adaptive Algorithm For Identification Of The Environment Parameters In Contact Tasks
Energy Technology Data Exchange (ETDEWEB)
Tuneski, Atanasko; Babunski, Darko [Faculty of Mechanical Engineering, ' St. Cyril and Methodius' University, Skopje (Macedonia, The Former Yugoslav Republic of)
2003-07-01
An adaptive algorithm for identification of the unknown parameters of the dynamic environment in contact tasks is proposed in this paper using the augmented least square estimation method. An approximate environment digital simulator for the continuous environment dynamics is derived, i.e. a discrete transfer function which has the approximately the same characteristics as the continuous environment dynamics is found. For solving this task a method named hold equivalence is used. The general model of the environment dynamics is given and the case when the environment dynamics is represented by second order models with parameter uncertainties is considered. (Author)
Adaptive Algorithm For Identification Of The Environment Parameters In Contact Tasks
International Nuclear Information System (INIS)
Tuneski, Atanasko; Babunski, Darko
2003-01-01
An adaptive algorithm for identification of the unknown parameters of the dynamic environment in contact tasks is proposed in this paper using the augmented least square estimation method. An approximate environment digital simulator for the continuous environment dynamics is derived, i.e. a discrete transfer function which has the approximately the same characteristics as the continuous environment dynamics is found. For solving this task a method named hold equivalence is used. The general model of the environment dynamics is given and the case when the environment dynamics is represented by second order models with parameter uncertainties is considered. (Author)
Pataky, T C; Lamb, P F
2018-06-01
External randomness exists in all sports but is perhaps most obvious in golf putting where robotic putters sink only 80% of 5 m putts due to unpredictable ball-green dynamics. The purpose of this study was to test whether physical randomness training can improve putting performance in novices. A virtual random-physics golf-putting game was developed based on controlled ball-roll data. Thirty-two subjects were assigned a unique randomness gain (RG) ranging from 0.1 to 2.0-times real-world randomness. Putter face kinematics were measured in 5 m laboratory putts before and after five days of virtual training. Performance was quantified using putt success rate and "miss-adjustment correlation" (MAC), the correlation between left-right miss magnitude and subsequent right-left kinematic adjustments. Results showed no RG-success correlation (r = -0.066, p = 0.719) but mildly stronger correlations with MAC for face angle (r = -0.168, p = 0.358) and clubhead path (r = -0.302, p = 0.093). The strongest RG-MAC correlation was observed during virtual training (r = -0.692, p golf putting kinematics. Adaptation to external physical randomness during virtual training may therefore help golfers adapt to external randomness in real-world environments.
Yavorska, Olena O; Burgess, Stephen
2017-12-01
MendelianRandomization is a software package for the R open-source software environment that performs Mendelian randomization analyses using summarized data. The core functionality is to implement the inverse-variance weighted, MR-Egger and weighted median methods for multiple genetic variants. Several options are available to the user, such as the use of robust regression, fixed- or random-effects models and the penalization of weights for genetic variants with heterogeneous causal estimates. Extensions to these methods, such as allowing for variants to be correlated, can be chosen if appropriate. Graphical commands allow summarized data to be displayed in an interactive graph, or the plotting of causal estimates from multiple methods, for comparison. Although the main method of data entry is directly by the user, there is also an option for allowing summarized data to be incorporated from the PhenoScanner database of genotype-phenotype associations. We hope to develop this feature in future versions of the package. The R software environment is available for download from [https://www.r-project.org/]. The MendelianRandomization package can be downloaded from the Comprehensive R Archive Network (CRAN) within R, or directly from [https://cran.r-project.org/web/packages/MendelianRandomization/]. Both R and the MendelianRandomization package are released under GNU General Public Licenses (GPL-2|GPL-3). © The Author 2017. Published by Oxford University Press on behalf of the International Epidemiological Association.
Random Scenario Generation for a Multiple Target Tracking Environment Evaluation
DEFF Research Database (Denmark)
Hussain, Dil Muhammad Akbar
2006-01-01
, which were normally crossing targets, was to test the efficiency of the track splitting algorithm for different situations. However this approach only gives a measure of performance for a specific, possibly unrealistic, scenario and it was felt appropriate to develop procedures that would enable a more...... general performance assessment. Therefore, a random target motion scenario is adopted. Its implementation in particular for testing the track splitting algorithm using Kalman filters is used and a couple of tracking performance parameters are computed to investigate such random scenarios....
Push Recovery for Humanoid Robot in Dynamic Environment and Classifying the Data Using K-Mean
Directory of Open Access Journals (Sweden)
Anubha Parashar
2016-12-01
Full Text Available Push recovery is prime ability that is essential to be incorporated in the process of developing a robust humanoid robot to support bipedalism. In real environment it is very essential for humanoid robot to maintain balance. In this paper we are generating a control system and push recovery controller for humanoid robot walking. We apply different kind of pushes to humanoid robot and the algorithm that can bring a change in the walking stage to sustain walking. The simulation is done in 3D environment using Webots. This paper describes techniques for feature selection to foreshow push recovery for hip, ankle and knee joint. We train the system by K-Mean algorithm and testing is done on crouch data and tested results are reported. Random push data of humanoid robot is collected and classified to see whether push lie in safer region and then tested on given proposed system.
Katariya, Lakshya; Ramesh, Priya B; Borges, Renee M
2018-03-01
This study investigated for the first time the impact of the internal mound environment of fungus-growing termites on the growth of fungal crop parasites. Mounds of the termite Odontotermes obesus acted as (i) temperature and relative humidity (RH) 'stabilisers' showing dampened daily variation and (ii) 'extreme environments' exhibiting elevated RH and CO 2 levels, compared to the outside. Yet, internal temperatures exhibited seasonal dynamics as did daily and seasonal CO 2 levels. During in situ experiments under termite-excluded conditions within the mound, the growth of the crop parasite Pseudoxylaria was greater inside than outside the mound, i.e., Pseudoxylaria is 'termitariophilic'. Also, ex situ experiments on parasite isolates differing in growth rates and examined under controlled conditions in the absence of termites revealed a variable effect with fungal growth decreasing only under high CO 2 and low temperature conditions, reflecting the in situ parasite growth fluctuations. In essence, the parasite appears to be adapted to survive in the termite mound. Thus the mound microclimate does not inhibit the parasite but the dynamic environmental conditions of the mound affect its growth to varying extents. These results shed light on the impact of animal-engineered structures on parasite ecology, independent of any direct role of animal engineers. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.
The dynamic interaction of personal norms and environment-friendly buying behavior: A panel study
DEFF Research Database (Denmark)
Thøgersen, John; Ølander, Folke
2006-01-01
A deeper understanding of the attitude-norm-behavior relationship in the environmental field can be obtained by analyzing the dynamic interaction over time between relevant attitudinal variables and specific behaviors of interest. This article is based on a panel survey with a random sample...... of about 1,500 Danes interviewed up to 3 times in 1998 to 2000, regarding their purchase of organic food products. The panel analysis reveals that the stronger are consumers' personal norms about buying organic food products and the less they perceive organic products as expensive, the greater...... the likelihood that they change their purchase patterns in favor of organic products. Furthermore, one can observe significant cross-lagged paths from past behavior to belief and norm variables....
Dynamics of unvisited sites in the presence of mutually repulsive random walkers
International Nuclear Information System (INIS)
Das, Pratap Kumar; Dasgupta, Subinay; Sen, Parongama
2007-01-01
We have considered the persistence of unvisited sites of a lattice, i.e., the probability S(t) that a site remains unvisited till time t in the presence of mutually repulsive random walkers in one dimension. The dynamics of this system has direct correspondence to that of the domain walls in a certain system of Ising spins where the number of domain walls becomes fixed following a zero-temperature quench. Here we get the result that S(t) ∼ exp(-αt β ) where β is close to 0.5 and α a function of the density of the walkers ρ. The fraction of persistent sites in the presence of independent walkers of density ρ' is known to be S'(t) = exp(-2√(2/π ρ't 1/2 ). We show that a mapping of the interacting walkers' problem to the independent walkers' problem is possible with ρ' = ρ/(1 - ρ) provided ρ' and ρ are small. We also discuss some other intricate results obtained in the interacting walkers' case
Hung, R. J.; Tsao, Y. D.; Leslie, Fred W.; Hong, B. B.
1988-01-01
Time dependent evolutions of the profile of free surface (bubble shapes) for a cylindrical container partially filled with a Newtonian fluid of constant density, rotating about its axis of symmetry, have been studied. Numerical computations of the dynamics of bubble shapes have been carried out with the following situations: (1) linear functions of spin-up and spin-down in low and microgravity environments, (2) linear functions of increasing and decreasing gravity enviroment in high and low rotating cylidner speeds, (3) step functions of spin-up and spin-down in a low gravity environment, and (4) sinusoidal function oscillation of gravity environment in high and low rotating cylinder speeds. The initial condition of bubble profiles was adopted from the steady-state formulations in which the computer algorithms have been developed by Hung and Leslie (1988), and Hung et al. (1988).
Dynamical effects and the critical behavior of random-field systems
International Nuclear Information System (INIS)
Shapir, Y.
1985-01-01
A variety of phenomena is observed experimentally in random-field (RF) systems realized by the application of an external field to diluted antiferromagnets. At low temperatures, infinitely long hysteretic effects are manifested by the history dependence of the final states: long-range order is observed if the field is applied after cooling, while domain states are reached when field cooled. While no indications for critical fluctuations are detected in 2-D systems, scaling behavior, for both the correlation length and the specific heat, is observed in 3-D systems over an intermediate range of temperatures. The related critical properties seem to be well described by the corresponding ones in the 2-D pure Ising model. The renormalization-group approach, which yields for the equilibrium critical exponents their values of the pure model in d-2 dimensions, is reviewed. A generalization of the dimensional-reduction approach, which accounts self-consistently for renormalized responses of the RF system, is presented. The dynamical effects are implicitly incorporated through the variation in the critical response between the local and the global regimes, associated with short- and long-time scales, respectively. In both regimes the lower critical dimension is found to be d = 2 in accordance with stability arguments. The short-time critical behavior indicates a dimensional reduction by one for the 3-D thermal exponents, in agreement with the experimental results. 37 references
Occurrence, dynamics and reactions of organic pollutants in the indoor environment
Energy Technology Data Exchange (ETDEWEB)
Salthammer, Tunga [Material Analysis and Indoor Chemistry, Fraunhofer Wilhelm-Klauditz Institut (WKI), Braunschweig (Germany); Bahadir, Muefit [Institut fuer Oekologische Chemie und Abfallanalytik, Technische Universitaet Braunschweig, Braunschweig (Germany)
2009-06-15
The indoor environment is a multidisciplinary scientific field involving chemistry, physics, biology, health sciences, architecture, building sciences and civil engineering. The need for reliable assessment of human exposure to indoor pollutants is attracting increasing attention. This, however, requires a detailed understanding of the relevant compounds, their sources, physical and chemical properties, dynamics, reactions, their distribution among the gas phase, airborne particles and settled dust as well as the availability of modern measurement techniques. Building products, furnishings and other indoor materials often emit volatile and semi-volatile organic compounds. With respect to a healthy indoor environment, only low emitting products, which do not influence indoor air quality in a negative way, should be used in a building. Therefore, materials and products for indoor use need to be evaluated for their chemical emissions. This is routinely done in test chambers and cells. Many studies have shown that the types of sources in occupational and residential indoor environments, the spectrum of emitting compounds and the duration of emission cover a wide range. The demand for standardized test methods under laboratory conditions has resulted in several guidelines for determination of emission rates. Furthermore, it has now been recognized that both primary and secondary emissions may affect indoor air quality. The problem may become more dominant when components of different materials can react with each other or when catalytic materials are applied. Such products derived from indoor related reactions may have a negative impact on indoor air quality due to their low odor threshold, health related properties or the formation of ultrafine particles. Several factors can influence the emission characteristics and numerous investigations have shown that indoor chemistry is of particular importance for the indoor related characterization of building product emissions
Siri, Benoît; Berry, Hugues; Cessac, Bruno; Delord, Bruno; Quoy, Mathias
2008-12-01
We present a mathematical analysis of the effects of Hebbian learning in random recurrent neural networks, with a generic Hebbian learning rule, including passive forgetting and different timescales, for neuronal activity and learning dynamics. Previous numerical work has reported that Hebbian learning drives the system from chaos to a steady state through a sequence of bifurcations. Here, we interpret these results mathematically and show that these effects, involving a complex coupling between neuronal dynamics and synaptic graph structure, can be analyzed using Jacobian matrices, which introduce both a structural and a dynamical point of view on neural network evolution. Furthermore, we show that sensitivity to a learned pattern is maximal when the largest Lyapunov exponent is close to 0. We discuss how neural networks may take advantage of this regime of high functional interest.
Directory of Open Access Journals (Sweden)
Atta Badii
2014-12-01
Full Text Available Awareness of emerging situations in a dynamic operational environment of a robotic assistive device is an essential capability of such a cognitive system, based on its effective and efficient assessment of the prevailing situation. This allows the system to interact with the environment in a sensible (semiautonomous / pro-active manner without the need for frequent interventions from a supervisor. In this paper, we report a novel generic Situation Assessment Architecture for robotic systems directly assisting humans as developed in the CORBYS project. This paper presents the overall architecture for situation assessment and its application in proof-of-concept Demonstrators as developed and validated within the CORBYS project. These include a robotic human follower and a mobile gait rehabilitation robotic system. We present an overview of the structure and functionality of the Situation Assessment Architecture for robotic systems with results and observations as collected from initial validation on the two CORBYS Demonstrators.
Directory of Open Access Journals (Sweden)
Flávia de Andrade e Souza Mazuchi
2018-03-01
Full Text Available Abstract AIMS (Stroke patients often present sensory-motor alterations and less aerobic capacity. Joint position sense, which is crucial for balance and gait control, is also affected in stroke patients. To compare the effect of two exercise training protocols (walking in deep water and on a treadmill on the knee position sense of stroke patients. METHODS This study was designed as a randomized controlled clinical trial. Twelve adults, who suffered a stroke at least one year prior to the start of the study, were randomly assigned to one of two groups: 1 pool group submitted to aerobic deep water walking training; and 2 the treadmill group which was submitted to aerobic walk on a treadmill. Measurements: The position sense, absolute error and variable error, of the knee joint was evaluated prior to and after nine weeks of aerobic training. RESULTS The pool group presented smaller absolute (13.9o versus 6.1o; p < 0.05 and variable (9.2o versus 3.9o; p < 0.05 errors after nine-weeks gait training than the treadmill group. CONCLUSIONS Nine-week aerobic exercise intervention in aquatic environment improved precision in the position sense of the knee joint of stroke patients, suggesting a possible application in a rehabilitation program.
Melnikov processes and chaos in randomly perturbed dynamical systems
Yagasaki, Kazuyuki
2018-07-01
We consider a wide class of randomly perturbed systems subjected to stationary Gaussian processes and show that chaotic orbits exist almost surely under some nondegenerate condition, no matter how small the random forcing terms are. This result is very contrasting to the deterministic forcing case, in which chaotic orbits exist only if the influence of the forcing terms overcomes that of the other terms in the perturbations. To obtain the result, we extend Melnikov’s method and prove that the corresponding Melnikov functions, which we call the Melnikov processes, have infinitely many zeros, so that infinitely many transverse homoclinic orbits exist. In addition, a theorem on the existence and smoothness of stable and unstable manifolds is given and the Smale–Birkhoff homoclinic theorem is extended in an appropriate form for randomly perturbed systems. We illustrate our theory for the Duffing oscillator subjected to the Ornstein–Uhlenbeck process parametrically.
Urban Thermal Environment Dynamics: A Case Study in Hangzhou During 2005-2015
Sun, W.; Li, F.; Yang, G.
2017-12-01
Hangzhou, as the Capital of Zhejiang Province in East China, has experienced the rapid urbanization process and associated urban heat island effect in the past twenty decades. In this study, we implemented Landsat satellite remote sensing images to investigate the relationship between landscape changes and thermal environment dynamics during 2005-2015 in Hangzhou City. A total of 48 Landsat TM/ETM+/OLR/TIRS images spanning four different seasons were downloaded from the USGS website and utilized in the study. Preprocessing works, i.e., radiometric correction and removing cloud- and fog -contaminated pixels, were conducted, and the land surface temperature (LST) was derived using the radiative transfer equation. Meanwhile, the land use and land cover (LULC) classification was accomplished by using the Support Vector Machine (SVM) classifier, and four main landscape indexes (i.e., Shannon Diversity Index, Landscape Division Index, Shannon Evenness Index, and Aggregation Index) were estimated from the LULC map. Our preliminary results show that: 1) the magnitude of urban thermal environment has obviously increased from 2005 to 2015, and the summer season shows more significant heat island effect than other three seasons; 2) the general landscape pattern of Hangzhou becomes more diversified and fragmentized from 2005 to 2015, and different landscape patterns bring that four different function zones (i.e., urban core zone, tourism function zone, industrial development zone and ecological reservation zone) of Hangzhou have different characteristics in urban thermal environment; 3) significant hot spots of LST point to the construction land while cold spots of LST coincides with the vegetation land.
Ergodicity for the Randomly Forced 2D Navier-Stokes Equations
International Nuclear Information System (INIS)
Kuksin, Sergei; Shirikyan, Armen
2001-01-01
We study space-periodic 2D Navier-Stokes equations perturbed by an unbounded random kick-force. It is assumed that Fourier coefficients of the kicks are independent random variables all of whose moments are bounded and that the distributions of the first N 0 coefficients (where N 0 is a sufficiently large integer) have positive densities against the Lebesgue measure. We treat the equation as a random dynamical system in the space of square integrable divergence-free vector fields. We prove that this dynamical system has a unique stationary measure and study its ergodic properties
Murase, Yohsuke
2010-06-01
Community assembly is studied using individual-based multispecies models. The models have stochastic population dynamics with mutation, migration, and extinction of species. Mutants appear as a result of mutation of the resident species, while migrants have no correlation with the resident species. It is found that the dynamics of community assembly with mutations are quite different from the case with migrations. In contrast to mutation models, which show intermittent dynamics of quasi-steady states interrupted by sudden reorganizations of the community, migration models show smooth and gradual renewal of the community. As a consequence, instead of the 1/f diversity fluctuations found for the mutation models, 1/f2, random-walk like fluctuations are observed for the migration models. In addition, a characteristic species-lifetime distribution is found: a power law that is cut off by a "skewed" distribution in the long-lifetime regime. The latter has a longer tail than a simple exponential function, which indicates an age-dependent species-mortality function. Since this characteristic profile has been observed, both in fossil data and in several other mathematical models, we conclude that it is a universal feature of macroevolution. © 2010 Elsevier Ltd.
Murase, Yohsuke; Shimada, Takashi; Ito, Nobuyasu; Rikvold, Per Arne
2010-01-01
Community assembly is studied using individual-based multispecies models. The models have stochastic population dynamics with mutation, migration, and extinction of species. Mutants appear as a result of mutation of the resident species, while migrants have no correlation with the resident species. It is found that the dynamics of community assembly with mutations are quite different from the case with migrations. In contrast to mutation models, which show intermittent dynamics of quasi-steady states interrupted by sudden reorganizations of the community, migration models show smooth and gradual renewal of the community. As a consequence, instead of the 1/f diversity fluctuations found for the mutation models, 1/f2, random-walk like fluctuations are observed for the migration models. In addition, a characteristic species-lifetime distribution is found: a power law that is cut off by a "skewed" distribution in the long-lifetime regime. The latter has a longer tail than a simple exponential function, which indicates an age-dependent species-mortality function. Since this characteristic profile has been observed, both in fossil data and in several other mathematical models, we conclude that it is a universal feature of macroevolution. © 2010 Elsevier Ltd.
Arellano, Patrick; Patton, Marc; Schwartz, Alan; Stanton, David
2006-01-01
The Low Pressure Oxidizer Turbopump (LPOTP) inducer on the Block II configuration Space Shuttle Main Engine (SSME) experienced blade leading edge ripples during hot firing. This undesirable condition led to a minor redesign of the inducer blades. This resulted in the need to evaluate the performance and the dynamic environment of the redesign, relative to the current configuration, as part of the design acceptance process. Sub-scale water model tests of the two inducer configurations were performed, with emphasis on the dynamic environment due to cavitation induced vibrations. Water model tests were performed over a wide range of inlet flow coefficient and pressure conditions, representative of the scaled operating envelope of the Block II SSME, both in flight and in ground hot-fire tests, including all power levels. The water test hardware, facility set-up, type and placement of instrumentation, the scope of the test program, specific test objectives, data evaluation process and water test results that characterize and compare the two SSME LPOTP inducers are discussed. In addition, dynamic characteristics of the two water models were compared to hot fire data from specially instrumented ground tests. In general, good agreement between the water model and hot fire data was found, which confirms the value of water model testing for dynamic characterization of rocket engine turbomachinery.
Quantum random walks and their convergence to Evans–Hudson ...
Indian Academy of Sciences (India)
Quantum dynamical semigroup; Evans–Hudson flow; quantum random walk. 1. Introduction. The aim of this article is to investigate convergence of random walks on von Neumann algebra to Evans–Hudson flows. Here the random walks and Evans–Hudson flows are gene- ralizations of classical Markov chains and Markov ...
Directory of Open Access Journals (Sweden)
Coleman Karen J
2012-06-01
Full Text Available Abstract Background The Healthy Options for Nutrition Environments in Schools (Healthy ONES study was an evidence-based public health (EBPH randomized group trial that adapted the Institute for Healthcare Improvement’s (IHI rapid improvement process model to implement school nutrition policy and environmental change. Methods A low-income school district volunteered for participation in the study. All schools in the district agreed to participate (elementary = 6, middle school = 2 and were randomly assigned within school type to intervention (n = 4 and control (n =4 conditions following a baseline environmental audit year. Intervention goals were to 1 eliminate unhealthy foods and beverages on campus, 2 develop nutrition services as the main source on campus for healthful eating (HE, and 3 promote school staff modeling of HE. Schools were followed across a baseline year and two intervention years. Longitudinal assessment of height and weight was conducted with second, third, and sixth grade children. Behavioral observation of the nutrition environment was used to index the amount of outside foods and beverages on campuses. Observations were made monthly in each targeted school environment and findings were presented as items per child per week. Results From an eligible 827 second, third, and sixth grade students, baseline height and weight were collected for 444 second and third grade and 135 sixth grade students (51% reach. Data were available for 73% of these enrolled students at the end of three years. Intervention school outside food and beverage items per child per week decreased over time and control school outside food and beverage items increased over time. The effects were especially pronounced for unhealthy foods and beverage items. Changes in rates of obesity for intervention school (28% baseline, 27% year 1, 30% year 2 were similar to those seen for control school (22% baseline, 22% year 1, 25% year 2 children
Random walks of oriented particles on fractals
International Nuclear Information System (INIS)
Haber, René; Prehl, Janett; Hoffmann, Karl Heinz; Herrmann, Heiko
2014-01-01
Random walks of point particles on fractals exhibit subdiffusive behavior, where the anomalous diffusion exponent is smaller than one, and the corresponding random walk dimension is larger than two. This is due to the limited space available in fractal structures. Here, we endow the particles with an orientation and analyze their dynamics on fractal structures. In particular, we focus on the dynamical consequences of the interactions between the local surrounding fractal structure and the particle orientation, which are modeled using an appropriate move class. These interactions can lead to particles becoming temporarily or permanently stuck in parts of the structure. A surprising finding is that the random walk dimension is not affected by the orientation while the diffusion constant shows a variety of interesting and surprising features. (paper)
Tenney, D. R.
1974-01-01
The oxidation behavior of TD-NiCr and TD-NiCrAlY alloys have been studied at 2000 and 2200 F in static and high speed flowing air environments. The TD-NiCrAlY alloys preoxidized to produce an Al2O3 scale on the surface showed good oxidation resistance in both types of environments. The TD-NiCr alloy which had a Cr2O3 oxide scale after preoxidation was found to oxidize more than an order of magnitude faster under the dynamic test conditions than at comparable static test conditions. Although Cr2O3 normally provides good oxidation protection, it was rapidly lost due to formation of volatile CrO3 when exposed to the high speed air stream. The preferred oxide arrangement for the dynamic test consisted of an external layer of NiO with a porous mushroom type morphology, an intermediate duplex layer of NiO and Cr2O3, and a continuous inner layer of Cr2O3 in contact with the alloy substrate. An oxidation model has been developed to explain the observed microstructure and overall oxidation behavior of all alloys.
Erbas, Ayhan Kursat; Yenmez, Arzu Aydogan
2011-01-01
The purpose of this study was to investigate the effects of using a dynamic geometry environment (DGE) together with inquiry-based explorations on the sixth grade students' achievements in polygons and congruency and similarity of polygons. Two groups of sixth grade students were selected for this study: an experimental group composed of 66…
Energy Technology Data Exchange (ETDEWEB)
Jung, Youngmee; Kim, Sang-Heon; Kim, Soo Hyun [Biomaterials Research Center, Korea Institute of Science and Technology, PO Box 131, Cheonryang, Seoul, 130-650 (Korea, Republic of); Kim, Young Ha, E-mail: soohkim@kist.re.k [Department of Materials Science and Engineering, Gwangju Institute of Science and Technology, 261 Cheomdan-gwagiro, Buk-gu, Gwangju 500-712 (Korea, Republic of)
2009-10-15
Articular cartilage is subjected to complex loading, which plays a major role in its growth, development and maintenance. Previously, we found that mechanical stimuli enhanced the development and function of engineered cartilage tissues in elastic mechano-active poly(lactide-co-caprolactone) (PLCL) scaffolds. In addition, it is well known that the three-dimensional spatial organization of cells and extracellular matrices in hydrogels is crucial to chondrogenesis. This study was conducted to enhance the chondrogenic differentiation of bone marrow stromal cells (BMSCs) in the hybrid scaffolds of fibrin gels and PLCL scaffolds in dynamic environments by compression. A highly elastic scaffold was fabricated from very elastic PLCL with 85% porosity and a 300-500{mu}m pore size using a gel-pressing method. A mixture of rabbit BMSCs and fibrin gels was then seeded onto the PLCL scaffolds and subjected to continuous compressive deformation of 5% strain at 0.1 Hz for 10 days in a chondrogenic medium containing 10 ng ml{sup -1} TGF-beta{sub 1}. The BMSCs-seeded scaffold constructs were then implanted subcutaneously into nude mice. As a control, the cell-PLCL scaffold constructs were cultured under dynamic conditions or the cell-PLCL/fibrin hybrid scaffold constructs and the cell-PLCL scaffold constructs were cultured under static conditions for 10 days in vitro. The results revealed that cells adhered onto the hybrid scaffolds of fibrin gels and PLCL scaffolds cultured under dynamic conditions. In addition, the accumulation of the extracellular matrix of cell-scaffold constructs, which was increased through mechanical stimulation, showed that chondrogenic differentiation was sustained and enhanced significantly in the stimulated hybrid scaffold constructs. Overall, the results of this study indicate that the proper periodic application of dynamic compression and the three-dimensional environments of the hybrid scaffolds composed of fibrin gels and elastic PLCL can encourage
Energy Technology Data Exchange (ETDEWEB)
Kenfack, Lionel Tenemeza, E-mail: kenfacklionel300@gmail.com [Mesoscopic and Multilayer Structure Laboratory, Department of Physics, Faculty of Science, University of Dschang, PO Box: 67 Dschang (Cameroon); Tchoffo, Martin; Fai, Lukong Cornelius [Mesoscopic and Multilayer Structure Laboratory, Department of Physics, Faculty of Science, University of Dschang, PO Box: 67 Dschang (Cameroon); Fouokeng, Georges Collince [Mesoscopic and Multilayer Structure Laboratory, Department of Physics, Faculty of Science, University of Dschang, PO Box: 67 Dschang (Cameroon); Laboratoire de Génie des Matériaux, Pôle Recherche-Innovation-Entrepreneuriat (PRIE), Institut Universitaire de la Côte, BP 3001 Douala (Cameroon)
2017-04-15
We address the entanglement dynamics of a three-qubit system interacting with a classical fluctuating environment described either by a Gaussian or non-Gaussian noise in three different configurations namely: common, independent and mixed environments. Specifically, we focus on the Ornstein-Uhlenbeck (OU) noise and the random telegraph noise (RTN). The qubits are prepared in a state composed of a Greenberger-Horne-Zeilinger (GHZ) and a W state. With the help of the tripartite negativity, we show that the entanglement evolution is not only affected by the type of system-environment coupling but also by the kind and the memory properties of the considered noise. We also compared the dynamics induced by the two kinds of noise and we find that even if both noises have a Lorentzian spectrum, the effects of the OU noise cannot be in a simple way deduced from those of the RTN and vice-versa. In addition, we show that the entanglement can be indefinitely preserved when the qubits are coupled to the environmental noise in a common environment (CE). Finally, the presence or absence of peculiar phenomena such as entanglement revivals (ER) and entanglement sudden death (ESD) is observed.
International Nuclear Information System (INIS)
Kenfack, Lionel Tenemeza; Tchoffo, Martin; Fai, Lukong Cornelius; Fouokeng, Georges Collince
2017-01-01
We address the entanglement dynamics of a three-qubit system interacting with a classical fluctuating environment described either by a Gaussian or non-Gaussian noise in three different configurations namely: common, independent and mixed environments. Specifically, we focus on the Ornstein-Uhlenbeck (OU) noise and the random telegraph noise (RTN). The qubits are prepared in a state composed of a Greenberger-Horne-Zeilinger (GHZ) and a W state. With the help of the tripartite negativity, we show that the entanglement evolution is not only affected by the type of system-environment coupling but also by the kind and the memory properties of the considered noise. We also compared the dynamics induced by the two kinds of noise and we find that even if both noises have a Lorentzian spectrum, the effects of the OU noise cannot be in a simple way deduced from those of the RTN and vice-versa. In addition, we show that the entanglement can be indefinitely preserved when the qubits are coupled to the environmental noise in a common environment (CE). Finally, the presence or absence of peculiar phenomena such as entanglement revivals (ER) and entanglement sudden death (ESD) is observed.
Dust in cosmic plasma environments
International Nuclear Information System (INIS)
Mendis, D.A.
1979-01-01
Cosmic dust is invariably immersed in a plasma and a radiative environment. Consequently, it is charged to some electrostatic potential which depends on the properties of the environment as well as the nature of the dust. This charging affects the physical and dynamical properties of the dust. In this paper the basic aspects of this dust-plasma interaction in several cosmic environments - including planetary magnetospheres, the heliosphere and the interstellar medium - are discussed. The physical and dynamical consequences of the interaction, as well as the pertinent observational evidence, are reviewed. Finally, the importance of the surface charge during the condensation process in plasma environments is stressed. (Auth.)
Arthur, Tsamouo Tsokeng; Martin, Tchoffo; Fai, Lukong Cornelius
2018-06-01
We investigate the dynamics of entanglement, decoherence and quantum discord in a system of three non-interacting superconducting flux qubits (fqubits) initially prepared in a Greenberger-Horne-Zeilinger (GHZ) state and subject to static noise in different, bipartite and common environments, since it is recognized that different noise configurations generally lead to completely different dynamical behavior of physical systems. The noise is modeled by randomizing the single fqubit transition amplitude. Decoherence and quantum correlations dynamics are strongly affected by the purity of the initial state, type of system-environment interaction and the system-environment coupling strength. Specifically, quantum correlations can persist when the fqubits are commonly coupled to a noise source, and reaches a saturation value respective to the purity of the initial state. As the number of decoherence channels increases (bipartite and different environments), decoherence becomes stronger against quantum correlations that decay faster, exhibiting sudden death and revival phenomena. The residual entanglement can be successfully detected by means of suitable entanglement witness, and we derive a necessary condition for entanglement detection related to the tunable and non-degenerated energy levels of fqubits. In accordance with the current literature, our results further suggest the efficiency of fqubits over ordinary ones, as far as the preservation of quantum correlations needed for quantum processing purposes is concerned.
Klok, C.; Goedhart, P.W.; Vandecasteele, B.
2007-01-01
In industrialized countries river floodplains can be strongly polluted with heavy metals. Published studies on effects of heavy metal pollution on soil invertebrates in floodplains, however, are inconclusive. This is unexpected since studies in other less dynamic environments reported clear effects
Chaos and random matrices in supersymmetric SYK
Hunter-Jones, Nicholas; Liu, Junyu
2018-05-01
We use random matrix theory to explore late-time chaos in supersymmetric quantum mechanical systems. Motivated by the recent study of supersymmetric SYK models and their random matrix classification, we consider the Wishart-Laguerre unitary ensemble and compute the spectral form factors and frame potentials to quantify chaos and randomness. Compared to the Gaussian ensembles, we observe the absence of a dip regime in the form factor and a slower approach to Haar-random dynamics. We find agreement between our random matrix analysis and predictions from the supersymmetric SYK model, and discuss the implications for supersymmetric chaotic systems.
Random vibrations theory and practice
Wirsching, Paul H; Ortiz, Keith
1995-01-01
Random Vibrations: Theory and Practice covers the theory and analysis of mechanical and structural systems undergoing random oscillations due to any number of phenomena— from engine noise, turbulent flow, and acoustic noise to wind, ocean waves, earthquakes, and rough pavement. For systems operating in such environments, a random vibration analysis is essential to the safety and reliability of the system. By far the most comprehensive text available on random vibrations, Random Vibrations: Theory and Practice is designed for readers who are new to the subject as well as those who are familiar with the fundamentals and wish to study a particular topic or use the text as an authoritative reference. It is divided into three major sections: fundamental background, random vibration development and applications to design, and random signal analysis. Introductory chapters cover topics in probability, statistics, and random processes that prepare the reader for the development of the theory of random vibrations a...
QUASI-RANDOM TESTING OF COMPUTER SYSTEMS
Directory of Open Access Journals (Sweden)
S. V. Yarmolik
2013-01-01
Full Text Available Various modified random testing approaches have been proposed for computer system testing in the black box environment. Their effectiveness has been evaluated on the typical failure patterns by employing three measures, namely, P-measure, E-measure and F-measure. A quasi-random testing, being a modified version of the random testing, has been proposed and analyzed. The quasi-random Sobol sequences and modified Sobol sequences are used as the test patterns. Some new methods for Sobol sequence generation have been proposed and analyzed.
Changing the Environment Based on Empowerment as Intrinsic Motivation
Directory of Open Access Journals (Sweden)
Christoph Salge
2014-05-01
Full Text Available One aspect of intelligence is the ability to restructure your own environment so that the world you live in becomes more beneficial to you. In this paper we investigate how the information-theoretic measure of agent empowerment can provide a task-independent, intrinsic motivation to restructure the world. We show how changes in embodiment and in the environment change the resulting behaviour of the agent and the artefacts left in the world. For this purpose, we introduce an approximation of the established empowerment formalism based on sparse sampling, which is simpler and significantly faster to compute for deterministic dynamics. Sparse sampling also introduces a degree of randomness into the decision making process, which turns out to beneficial for some cases. We then utilize the measure to generate agent behaviour for different agent embodiments in a Minecraft-inspired three dimensional block world. The paradigmatic results demonstrate that empowerment can be used as a suitable generic intrinsic motivation to not only generate actions in given static environments, as shown in the past, but also to modify existing environmental conditions. In doing so, the emerging strategies to modify an agent’s environment turn out to be meaningful to the specific agent capabilities, i.e., de facto to its embodiment.
Raju, Leo; Milton, R. S.; Mahadevan, Senthilkumaran
2016-01-01
The objective of this paper is implementation of multiagent system (MAS) for the advanced distributed energy management and demand side management of a solar microgrid. Initially, Java agent development environment (JADE) frame work is used to implement MAS based dynamic energy management of solar microgrid. Due to unstable nature of MATLAB, when dealing with multithreading environment, MAS operating in JADE is linked with the MATLAB using a middle ware called Multiagent Control Using Simulink with Jade Extension (MACSimJX). MACSimJX allows the solar microgrid components designed with MATLAB to be controlled by the corresponding agents of MAS. The microgrid environment variables are captured through sensors and given to agents through MATLAB/Simulink and after the agent operations in JADE, the results are given to the actuators through MATLAB for the implementation of dynamic operation in solar microgrid. MAS operating in JADE maximizes operational efficiency of solar microgrid by decentralized approach and increase in runtime efficiency due to JADE. Autonomous demand side management is implemented for optimizing the power exchange between main grid and microgrid with intermittent nature of solar power, randomness of load, and variation of noncritical load and grid price. These dynamics are considered for every time step and complex environment simulation is designed to emulate the distributed microgrid operations and evaluate the impact of agent operations. PMID:27127802
Raju, Leo; Milton, R S; Mahadevan, Senthilkumaran
The objective of this paper is implementation of multiagent system (MAS) for the advanced distributed energy management and demand side management of a solar microgrid. Initially, Java agent development environment (JADE) frame work is used to implement MAS based dynamic energy management of solar microgrid. Due to unstable nature of MATLAB, when dealing with multithreading environment, MAS operating in JADE is linked with the MATLAB using a middle ware called Multiagent Control Using Simulink with Jade Extension (MACSimJX). MACSimJX allows the solar microgrid components designed with MATLAB to be controlled by the corresponding agents of MAS. The microgrid environment variables are captured through sensors and given to agents through MATLAB/Simulink and after the agent operations in JADE, the results are given to the actuators through MATLAB for the implementation of dynamic operation in solar microgrid. MAS operating in JADE maximizes operational efficiency of solar microgrid by decentralized approach and increase in runtime efficiency due to JADE. Autonomous demand side management is implemented for optimizing the power exchange between main grid and microgrid with intermittent nature of solar power, randomness of load, and variation of noncritical load and grid price. These dynamics are considered for every time step and complex environment simulation is designed to emulate the distributed microgrid operations and evaluate the impact of agent operations.
A scaling law for random walks on networks
Perkins, Theodore J.; Foxall, Eric; Glass, Leon; Edwards, Roderick
2014-10-01
The dynamics of many natural and artificial systems are well described as random walks on a network: the stochastic behaviour of molecules, traffic patterns on the internet, fluctuations in stock prices and so on. The vast literature on random walks provides many tools for computing properties such as steady-state probabilities or expected hitting times. Previously, however, there has been no general theory describing the distribution of possible paths followed by a random walk. Here, we show that for any random walk on a finite network, there are precisely three mutually exclusive possibilities for the form of the path distribution: finite, stretched exponential and power law. The form of the distribution depends only on the structure of the network, while the stepping probabilities control the parameters of the distribution. We use our theory to explain path distributions in domains such as sports, music, nonlinear dynamics and stochastic chemical kinetics.
Suppressing decoherence by preparing the environment
International Nuclear Information System (INIS)
Landon-Cardinal, Olivier; MacKenzie, Richard
2013-01-01
To protect a quantum system from decoherence due to interaction with its environment, we investigate the existence of initial states of the environment allowing for decoherence-free evolution of the system. For a class of models in which a two-state system and a dynamical environment interact through a Hamiltonian restricted to be a tensor product, we prove that such states exist if and only if the interaction and self-evolution Hamiltonians of the environment share an eigenstate. If decoherence by state preparation is not possible, we show that initial states minimizing decoherence result from a delicate compromise between the environment and interaction dynamics
Random operators disorder effects on quantum spectra and dynamics
Aizenman, Michael
2015-01-01
This book provides an introduction to the mathematical theory of disorder effects on quantum spectra and dynamics. Topics covered range from the basic theory of spectra and dynamics of self-adjoint operators through Anderson localization-presented here via the fractional moment method, up to recent results on resonant delocalization. The subject's multifaceted presentation is organized into seventeen chapters, each focused on either a specific mathematical topic or on a demonstration of the theory's relevance to physics, e.g., its implications for the quantum Hall effect. The mathematical chapters include general relations of quantum spectra and dynamics, ergodicity and its implications, methods for establishing spectral and dynamical localization regimes, applications and properties of the Green function, its relation to the eigenfunction correlator, fractional moments of Herglotz-Pick functions, the phase diagram for tree graph operators, resonant delocalization, the spectral statistics conjecture, and rela...
Liu, Bing; Xu, Ling; Kang, Baolin
2013-01-01
By using pollution model and impulsive delay differential equation, we formulate a pest control model with stage structure for natural enemy in a polluted environment by introducing a constant periodic pollutant input and killing pest at different fixed moments and investigate the dynamics of such a system. We assume only that the natural enemies are affected by pollution, and we choose the method to kill the pest without harming natural enemies. Sufficient conditions for global attractivity ...
A Scheme for Verification on Data Integrity in Mobile Multicloud Computing Environment
Directory of Open Access Journals (Sweden)
Laicheng Cao
2016-01-01
Full Text Available In order to verify the data integrity in mobile multicloud computing environment, a MMCDIV (mobile multicloud data integrity verification scheme is proposed. First, the computability and nondegeneracy of verification can be obtained by adopting BLS (Boneh-Lynn-Shacham short signature scheme. Second, communication overhead is reduced based on HVR (Homomorphic Verifiable Response with random masking and sMHT (sequence-enforced Merkle hash tree construction. Finally, considering the resource constraints of mobile devices, data integrity is verified by lightweight computing and low data transmission. The scheme improves shortage that mobile device communication and computing power are limited, it supports dynamic data operation in mobile multicloud environment, and data integrity can be verified without using direct source file block. Experimental results also demonstrate that this scheme can achieve a lower cost of computing and communications.
Directory of Open Access Journals (Sweden)
Iyad Husni Alshami
2017-08-01
Full Text Available The Global Positioning System demonstrates the significance of Location Based Services but it cannot be used indoors due to the lack of line of sight between satellites and receivers. Indoor Positioning Systems are needed to provide indoor Location Based Services. Wireless LAN fingerprints are one of the best choices for Indoor Positioning Systems because of their low cost, and high accuracy, however they have many drawbacks: creating radio maps is time consuming, the radio maps will become outdated with any environmental change, different mobile devices read the received signal strength (RSS differently, and peoples’ presence in LOS between access points and mobile device affects the RSS. This research proposes a new Adaptive Indoor Positioning System model (called DIPS based on: a dynamic radio map generator, RSS certainty technique and peoples’ presence effect integration for dynamic and multi-floor environments. Dynamic in our context refers to the effects of people and device heterogeneity. DIPS can achieve 98% and 92% positioning accuracy for floor and room positioning, and it achieves 1.2 m for point positioning error. RSS certainty enhanced the positioning accuracy for floor and room for different mobile devices by 11% and 9%. Then by considering the peoples’ presence effect, the error is reduced by 0.2 m. In comparison with other works, DIPS achieves better positioning without extra devices.
Evolutionary formalism from random Leslie matrices in biology
International Nuclear Information System (INIS)
Caceres, M.O.; Caceres-Saez, I.
2008-07-01
We present a perturbative formalism to deal with linear random matrix difference equations. We generalize the concept of the population growth rate when a Leslie matrix has random elements (i.e., characterizing the disorder in the vital parameters). The dominant eigenvalue of which defines the asymptotic dynamics of the mean value population vector state, is presented as the effective growth rate of a random Leslie model. This eigenvalue is calculated from the largest positive root of a secular polynomial. Analytical (exact and perturbative calculations) results are presented for several models of disorder. A 3 x 3 numerical example is applied to study the effective growth rate characterizing the long-time dynamics of a population biological case: the Tursiops sp. (author)
Masia, Lorenzo; Frascarelli, Flaminia; Morasso, Pietro; Di Rosa, Giuseppe; Petrarca, Maurizio; Castelli, Enrico; Cappa, Paolo
2011-05-21
It is known that healthy adults can quickly adapt to a novel dynamic environment, generated by a robotic manipulandum as a structured disturbing force field. We suggest that it may be of clinical interest to evaluate to which extent this kind of motor learning capability is impaired in children affected by cerebal palsy. We adapted the protocol already used with adults, which employs a velocity dependant viscous field, and compared the performance of a group of subjects affected by Cerebral Palsy (CP group, 7 subjects) with a Control group of unimpaired age-matched children. The protocol included a familiarization phase (FA), during which no force was applied, a force field adaptation phase (CF), and a wash-out phase (WO) in which the field was removed. During the CF phase the field was shut down in a number of randomly selected "catch" trials, which were used in order to evaluate the "learning index" for each single subject and the two groups. Lateral deviation, speed and acceleration peaks and average speed were evaluated for each trajectory; a directional analysis was performed in order to inspect the role of the limb's inertial anisotropy in the different experimental phases. During the FA phase the movements of the CP subjects were more curved, displaying greater and variable directional error; over the course of the CF phase both groups showed a decreasing trend in the lateral error and an after-effect at the beginning of the wash-out, but the CP group had a non significant adaptation rate and a lower learning index, suggesting that CP subjects have reduced ability to learn to compensate external force. Moreover, a directional analysis of trajectories confirms that the control group is able to better predict the force field by tuning the kinematic features of the movements along different directions in order to account for the inertial anisotropy of arm. Spatial abnormalities in children affected by cerebral palsy may be related not only to disturbance in
Directory of Open Access Journals (Sweden)
Di Rosa Giuseppe
2011-05-01
Full Text Available Abstract Background It is known that healthy adults can quickly adapt to a novel dynamic environment, generated by a robotic manipulandum as a structured disturbing force field. We suggest that it may be of clinical interest to evaluate to which extent this kind of motor learning capability is impaired in children affected by cerebal palsy. Methods We adapted the protocol already used with adults, which employs a velocity dependant viscous field, and compared the performance of a group of subjects affected by Cerebral Palsy (CP group, 7 subjects with a Control group of unimpaired age-matched children. The protocol included a familiarization phase (FA, during which no force was applied, a force field adaptation phase (CF, and a wash-out phase (WO in which the field was removed. During the CF phase the field was shut down in a number of randomly selected "catch" trials, which were used in order to evaluate the "learning index" for each single subject and the two groups. Lateral deviation, speed and acceleration peaks and average speed were evaluated for each trajectory; a directional analysis was performed in order to inspect the role of the limb's inertial anisotropy in the different experimental phases. Results During the FA phase the movements of the CP subjects were more curved, displaying greater and variable directional error; over the course of the CF phase both groups showed a decreasing trend in the lateral error and an after-effect at the beginning of the wash-out, but the CP group had a non significant adaptation rate and a lower learning index, suggesting that CP subjects have reduced ability to learn to compensate external force. Moreover, a directional analysis of trajectories confirms that the control group is able to better predict the force field by tuning the kinematic features of the movements along different directions in order to account for the inertial anisotropy of arm. Conclusions Spatial abnormalities in children affected
Dynamic process management for engineering environments
Mentink, R.J.; van Houten, Frederikus J.A.M.; Kals, H.J.J.
2003-01-01
The research presented in this paper proposes a concept for dynamic process management as part of an integrated approach to engineering process support. The theory of information management is the starting point for the development of a process management system based on evolution of information
Atomic-scale dislocation dynamics in radiation damage environment
International Nuclear Information System (INIS)
Osetsky, Y.; Stoller, R.; Bacon, D.J.
2007-01-01
Full text of publication follows: The dynamics behavior of dislocations determines mechanical properties of crystalline materials. Long-range interactions between a moving dislocation and other defects can be treated within a continuum approach via interaction of their stress and strain fields. However, a vast contribution to mechanical properties depends on the direct interaction between dislocations and other defects and depends very much on the particular atomic scale structure of the both moving dislocation core and the obstacle. In this work we review recent progress in large-scale modeling of dislocation dynamics in metals at the atomic level by molecular dynamics and statics. We review the modem techniques used to simulate dynamics of dislocations in different lattice structures, the dependence on temperature, strain rate and obstacle size. Examples are given for bcc, fcc and hcp metals where edge and screw dislocations interact with vacancy (loops, voids, stacking fault tetrahedra, etc), self-interstitial clusters and secondary phase precipitates. Attention is paid to interpretation of atomistic results from the point of view of parameterization of continuum models. The latter is vitally necessary for further application in 3-dimensional dislocation dynamics within the multi-scale materials modeling approach. Research sponsored by the Division of Materials Sciences and Engineering and the Office of Fusion Energy Sciences, U.S. Department of Energy, under contract DE-AC0S-00OR22725 with UT-Battelle, LLC. (authors)
Random surfaces: A non-perturbative regularization of strings?
International Nuclear Information System (INIS)
Ambjoern, J.
1989-12-01
I review the basic properties of the theory of randum surfaces. While it is by now well known that the theory of (discretized) random surfaces correctly describes the (perturbative) aspects of non-critical strings in d 1. In these lectures I intend to show that the theory of dynamical triangulated random surfaces provides us with a lot of information about the dynamics of both the bosonic string and the superstring even for d>1. I also briefly review recent attempts to define a string field theory (sum over all genus) in this approach. (orig.)
Understanding void fraction in steady state and dynamic environments
International Nuclear Information System (INIS)
Chexal, B.; Maulbetsch, J.; Harrison, J.; Petersen, C.; Jensen, P.; Horowitz, J.
1997-01-01
Understanding void fraction behavior in steady-state and dynamic environments is important to accurately predict the thermal-hydraulic behavior of two-phase or two-component systems. The Chexal-Lellouche (C-L) void fraction mode described herein covers the full range of pressures, flows, void fractions, and fluid types (steam-water, air-water, and refrigerants). A drift flux model formulation is used which covers the complete range of concurrent and countercurrent flows. The (1996) model revises the earlier C-L void fraction correlation, improves the capability of the model in countercurrent flow based on the incorporation of additional data, and improves the characteristics of the correlation that are important in transient programs. The model has been qualified with data from a number of steady state two-phase and two-component tests, and has been incorporated into the transient analysis code RELAP5 and RETRAN-3D and evaluated with a variety of transient and steady state tests. A 'plug-in' module for the void fraction correlation has been developed and implemented in RELAP5 and RETRAN-3D. The module is available as source code for inclusion into other thermal-hydraulic programs and can be used in any program that utilizes the same interface variables
Understanding the physical dynamics and ecological interactions in tidal stream energy environments
Fraser, Shaun; Williamson, Benjamin J.; Nikora, Vladimir; Scott, Beth E.
2017-04-01
Tidal stream energy devices are intended to operate in energetic physical environments characterised by high flows and extreme turbulence. These environments are often of ecological importance to a range of marine species. Understanding the physical dynamics and ecological interactions at fine scales in such sites is essential for device/array design and to understand environmental impacts. However, investigating fine scale characteristics requires high resolution field measurements which are difficult to attain and interpret, with data often confounded by interference related to turbulence. Consequently, field observations in tidal stream energy environments are limited and require the development of specialised analysis methods and so significant knowledge gaps are still present. The seabed mounted FLOWBEC platform is addressing these knowledge gaps using upward facing instruments to collect information from around marine energy infrastructure. Multifrequency and multibeam echosounder data provide detailed information on the distribution and interactions of biological targets, such as fish and diving seabirds, while simultaneously recording the scales and intensity of turbulence. Novel processing methodologies and instrument integration techniques have been developed which combine different data types and successfully separates signal from noise to reveal new evidence about the behaviour of mobile species and the structure of turbulence at all speeds of the tide and throughout the water column. Multiple platform deployments in the presence and absence of marine energy infrastructure reveal the natural characteristics of high energy sites, and enable the interpretation of the physical and biological impacts of tidal stream devices. These methods and results are relevant to the design and consenting of marine renewable energy technologies, and provide novel information on the use of turbulence for foraging opportunities in high energy sites by mobile species.
Spatial birth-and-death processes in random environment
Fernandez, Roberto; Ferrari, Pablo A.; Guerberoff, Gustavo R.
2004-01-01
We consider birth-and-death processes of objects (animals) defined in ${\\bf Z}^d$ having unit death rates and random birth rates. For animals with uniformly bounded diameter we establish conditions on the rate distribution under which the following holds for almost all realizations of the birth rates: (i) the process is ergodic with at worst power-law time mixing; (ii) the unique invariant measure has exponential decay of (spatial) correlations; (iii) there exists a perfect-simulation algorit...
Dynamical Scheduling and Robust Control in Uncertain Environments with Petri Nets for DESs
Directory of Open Access Journals (Sweden)
Dimitri Lefebvre
2017-10-01
Full Text Available This paper is about the incremental computation of control sequences for discrete event systems in uncertain environments where uncontrollable events may occur. Timed Petri nets are used for this purpose. The aim is to drive the marking of the net from an initial value to a reference one, in minimal or near-minimal time, by avoiding forbidden markings, deadlocks, and dead branches. The approach is similar to model predictive control with a finite set of control actions. At each step only a small area of the reachability graph is explored: this leads to a reasonable computational complexity. The robustness of the resulting trajectory is also evaluated according to a risk probability. A sufficient condition is provided to compute robust trajectories. The proposed results are applicable to a large class of discrete event systems, in particular in the domains of flexible manufacturing. However, they are also applicable to other domains as communication, computer science, transportation, and traffic as long as the considered systems admit Petri Nets (PNs models. They are suitable for dynamical deadlock-free scheduling and reconfiguration problems in uncertain environments.
Neutron detection using soft errors in dynamic random access memories
International Nuclear Information System (INIS)
Darambara, D.G.; Spyrou, N.M.
1992-01-01
The fact that energetic alpha particles have been observed to be capable of inducing single-event upsets in integrated circuit memories has become a topic of considerable interest in the past few years. One recognized difficulty with dynamic random access memory devices (dRAMs) is that the alpha-particle 'contamination' present within the dRAM encapsulating material interact sufficiently as to corrupt stored data. The authors essentially utilized the fact that these corruptions may be induced in dRAMs by the interaction of charged particles with the chip of the dRAM itself as a basis of a hardware system for neutron detection with a view to applications in neutron imaging and elemental analysis. The design incorporates a bank of dRAMs on which the particles are incident. Initially, these particles were alpha particles from an appropriate alpha-emitting source employed to assess system parameters. The sensitivity of the device to logic state upsets by ionizing radiation is a function of design and technology parameters, inducing storage node area, node capacitance, operating voltage, minority carrier lifetime, electric fields pattern in the bulk silicon, and specific device geometry. The soft error rate of the device in a given package depends on the flux of alphas, the energy spectrum, the distribution of incident angles, the target area, the total stored charge, the collection efficiency, the cell geometry, the supply voltage, the cycle and refreshing time, and the noise margin
Savolainen-Kopra, Carita; Haapakoski, Jaason; Peltola, Piia A; Ziegler, Thedi; Korpela, Terttu; Anttila, Pirjo; Amiryousefi, Ali; Huovinen, Pentti; Huvinen, Markku; Noronen, Heikki; Riikkala, Pia; Roivainen, Merja; Ruutu, Petri; Teirilä, Juha; Vartiainen, Erkki; Hovi, Tapani
2012-01-16
Hand hygiene is considered as an important means of infection control. We explored whether guided hand hygiene together with transmission-limiting behaviour reduces infection episodes and lost days of work in a common work environment in an open cluster-randomized 3-arm intervention trial. A total of 21 clusters (683 persons) were randomized to implement hand hygiene with soap and water (257 persons), with alcohol-based hand rub (202 persons), or to serve as a control (224 persons). Participants in both intervention arms also received standardized instructions on how to limit the transmission of infections. The intervention period (16 months) included the emergence of the 2009 influenza pandemic and the subsequent national hand hygiene campaign influencing also the control arm. In the total follow-up period there was a 6.7% reduction of infection episodes in the soap-and water arm (p = 0.04). Before the onset of the anti-pandemic campaign, a statistically significant (p = 0.002) difference in the mean occurrence of infection episodes was observed between the control (6.0 per year) and the soap-and-water arm (5.0 per year) but not between the control and the alcohol-rub arm (5.6 per year). Neither intervention had a decreasing effect on absence from work. We conclude that intensified hand hygiene using water and soap together with behavioural recommendations can reduce the occurrence of self-reported acute illnesses in common work environment. Surprisingly, the occurrence of reported sick leaves also increased in the soap-and water-arm. ClinicalTrials.gov: NCT00981877 The Finnish Work Environment Fund and the National Institute for Health and Welfare.
Denker, Manfred
2017-01-01
Introductory Statistics and Random Phenomena integrates traditional statistical data analysis with new computational experimentation capabilities and concepts of algorithmic complexity and chaotic behavior in nonlinear dynamic systems. This was the first advanced text/reference to bring together such a comprehensive variety of tools for the study of random phenomena occurring in engineering and the natural, life, and social sciences. The crucial computer experiments are conducted using the readily available computer program Mathematica® Uncertain Virtual Worlds™ software packages which optimize and facilitate the simulation environment. Brief tutorials are included that explain how to use theMathematica® programs for effective simulation and computer experiments. Large and original real-life data sets are introduced and analyzed as a model for independent study. This is an excellent classroom tool and self-study guide. The material is presented in a clear and accessible style providing numerous...
Ben-Romdhane, Hajer; Krichen, Saoussen; Alba, Enrique
2017-05-01
Optimisation in changing environments is a challenging research topic since many real-world problems are inherently dynamic. Inspired by the natural evolution process, evolutionary algorithms (EAs) are among the most successful and promising approaches that have addressed dynamic optimisation problems. However, managing the exploration/exploitation trade-off in EAs is still a prevalent issue, and this is due to the difficulties associated with the control and measurement of such a behaviour. The proposal of this paper is to achieve a balance between exploration and exploitation in an explicit manner. The idea is to use two equally sized populations: the first one performs exploration while the second one is responsible for exploitation. These tasks are alternated from one generation to the next one in a regular pattern, so as to obtain a balanced search engine. Besides, we reinforce the ability of our algorithm to quickly adapt after cnhanges by means of a memory of past solutions. Such a combination aims to restrain the premature convergence, to broaden the search area, and to speed up the optimisation. We show through computational experiments, and based on a series of dynamic problems and many performance measures, that our approach improves the performance of EAs and outperforms competing algorithms.
Random recurrence equations and ruin in a Markov-dependent stochastic economic environment
DEFF Research Database (Denmark)
Collamore, Jeffrey F.
2009-01-01
series models. Our results build upon work of Goldie, who has developed tail asymptotics applicable for independent sequences of random variables subject to a random recurrence equation. In contrast, we adopt a general approach based on the theory of Harris recurrent Markov chains and the associated...
Darekar, Anuja; Lamontagne, Anouk; Fung, Joyce
2015-04-01
Circumvention around an obstacle entails a dynamic interaction with the obstacle to maintain a safe clearance. We used a novel mathematical interpolation method based on the modified Shepard's method of Inverse Distance Weighting to compute dynamic clearance that reflected this interaction as well as minimal clearance. This proof-of-principle study included seven young healthy, four post-stroke and four healthy age-matched individuals. A virtual environment designed to assess obstacle circumvention was used to administer a locomotor (walking) and a perceptuo-motor (navigation with a joystick) task. In both tasks, participants were asked to navigate towards a target while avoiding collision with a moving obstacle that approached from either head-on, or 30° left or right. Among young individuals, dynamic clearance did not differ significantly between obstacle approach directions in both tasks. Post-stroke individuals maintained larger and smaller dynamic clearance during the locomotor and the perceptuo-motor task respectively as compared to age-matched controls. Dynamic clearance was larger than minimal distance from the obstacle irrespective of the group, task and obstacle approach direction. Also, in contrast to minimal distance, dynamic clearance can respond differently to different avoidance behaviors. Such a measure can be beneficial in contrasting obstacle avoidance behaviors in different populations with mobility problems. Copyright © 2015 Elsevier B.V. All rights reserved.
Dynamic analysis of CHASNUPP steam generator structure during shipping
International Nuclear Information System (INIS)
Han Liangbi; Xu Jinkang; Zhou Meiwu; He Yinbiao
1998-07-01
The dynamic analysis of CHASNUPP steam generator during shipping is described, including the simplified mathematical model, acceleration power spectrum of ocean wave induced random vibration, the dynamic analysis of steam generator structure under random loading, the applied computer code and calculated results
Random catalytic reaction networks
Stadler, Peter F.; Fontana, Walter; Miller, John H.
1993-03-01
We study networks that are a generalization of replicator (or Lotka-Volterra) equations. They model the dynamics of a population of object types whose binary interactions determine the specific type of interaction product. Such a system always reduces its dimension to a subset that contains production pathways for all of its members. The network equation can be rewritten at a level of collectives in terms of two basic interaction patterns: replicator sets and cyclic transformation pathways among sets. Although the system contains well-known cases that exhibit very complicated dynamics, the generic behavior of randomly generated systems is found (numerically) to be extremely robust: convergence to a globally stable rest point. It is easy to tailor networks that display replicator interactions where the replicators are entire self-sustaining subsystems, rather than structureless units. A numerical scan of random systems highlights the special properties of elementary replicators: they reduce the effective interconnectedness of the system, resulting in enhanced competition, and strong correlations between the concentrations.
Enhancing Security of Double Random Phase Encoding Based on Random S-Box
Girija, R.; Singh, Hukum
2018-06-01
In this paper, we propose a novel asymmetric cryptosystem for double random phase encoding (DRPE) using random S-Box. While utilising S-Box separately is not reliable and DRPE does not support non-linearity, so, our system unites the effectiveness of S-Box with an asymmetric system of DRPE (through Fourier transform). The uniqueness of proposed cryptosystem lies on employing high sensitivity dynamic S-Box for our DRPE system. The randomness and scalability achieved due to applied technique is an additional feature of the proposed solution. The firmness of random S-Box is investigated in terms of performance parameters such as non-linearity, strict avalanche criterion, bit independence criterion, linear and differential approximation probabilities etc. S-Boxes convey nonlinearity to cryptosystems which is a significant parameter and very essential for DRPE. The strength of proposed cryptosystem has been analysed using various parameters such as MSE, PSNR, correlation coefficient analysis, noise analysis, SVD analysis, etc. Experimental results are conferred in detail to exhibit proposed cryptosystem is highly secure.
Lim, Hee Sung; Kim, You Lim; Lee, Suk Min
2016-01-01
[Purpose] The purpose of this study was to analyze the effects of Pilates exercise on static and dynamic balance in chronic stroke patients. [Subjects and Methods] Nineteen individuals with unilateral chronic hemiparetic stroke (age, 64.7 ± 6.9 years; height, 161.7 ± 7.9 cm; weight, 67.0 ± 11.1 kg) were randomly allocated to either a Pilates exercise group (PG, n=10) or a control group (CG, n=9). The PG attended 24 exercise sessions conducted over an 8-week period (3 sessions/week). Center of pressure (COP) sway and COP velocity were measured one week before and after the exercise program and compared to assess training effects. [Results] Pilates exercise positively affected both static and dynamic balance in patients with chronic stroke. For static balance, COP sway and velocity in the medial-lateral (M-L) and anterior-posterior (A-P) directions were significantly decreased in the PG after training while no significant differences were found in the CG. For dynamic balance, measured during treadmill walking, the PG showed significantly reduced COP sway and velocity in the M-L and A-P directions for both the paretic and non-paretic leg. [Conclusions] The findings provide initial evidence that Pilates exercise can enhance static and dynamic balance in patients with chronic stroke. PMID:27390424
Dynamic CDM strategies in an EHR environment.
Bieker, Michael; Bailey, Spencer
2012-02-01
A dynamic charge description master (CDM) integrates information from clinical ancillary systems into the charge-capture process, so an organization can reduce its reliance on the patient accounting system as the sole source of billing information. By leveraging the information from electronic ancillary systems, providers can eliminate the need for paper charge-capture forms and see increased accuracy and efficiency in the maintenance of billing information. Before embarking on a dynamic CDM strategy, organizations should first determine their goals for implementing an EHR system, include revenue cycle leaders on the EHR implementation team, and carefully weigh the pros and cons of CDM design decisions.
Electromagnetic scattering from random media
Field, Timothy R
2009-01-01
- ;The book develops the dynamical theory of scattering from random media from first principles. Its key findings are to characterize the time evolution of the scattered field in terms of stochastic differential equations, and to illustrate this framework
International Nuclear Information System (INIS)
2017-10-01
After a synthesis, this report proposes a presentation of the EDF Group (general overview, activities, human resources, share-holding structure, stock market data). It gives an overview of the EDF Group dynamics and of its activities: environment analysis (world electric power production, power consumption in France, regulated and spot prices, turnover in France and per area and market segment), performance analysis, and competitive analysis (comparison with the main European energy companies). It analyses the different development axes and discusses main events regarding the consolidation of nuclear activities, investments in renewable energies, withdrawal from coal and fuel, diversification in energy services, and financial consolidation. Financial data are presented along with the main economic and financial indicators. Important statistical data are provided
Cerjan, Ch J.; Bernstein, L.; Berzak Hopkins, L.; Bionta, R. M.; Bleuel, D. L.; Caggiano, J. A.; Cassata, W. S.; Brune, C. R.; Frenje, J.; Gatu-Johnson, M.; Gharibyan, N.; Grim, G.; Hagmann, Chr; Hamza, A.; Hatarik, R.; Hartouni, E. P.; Henry, E. A.; Herrmann, H.; Izumi, N.; Kalantar, D. H.; Khater, H. Y.; Kim, Y.; Kritcher, A.; Litvinov, Yu A.; Merrill, F.; Moody, K.; Neumayer, P.; Ratkiewicz, A.; Rinderknecht, H. G.; Sayre, D.; Shaughnessy, D.; Spears, B.; Stoeffl, W.; Tommasini, R.; Yeamans, Ch; Velsko, C.; Wiescher, M.; Couder, M.; Zylstra, A.; Schneider, D.
2018-03-01
The generation of dynamic high energy density plasmas in the pico- to nano-second time domain at high-energy laser facilities affords unprecedented nuclear science research possibilities. At the National Ignition Facility (NIF), the primary goal of inertial confinement fusion research has led to the synergistic development of a unique high brightness neutron source, sophisticated nuclear diagnostic instrumentation, and versatile experimental platforms. These novel experimental capabilities provide a new path to investigate nuclear processes and structural effects in the time, mass and energy density domains relevant to astrophysical phenomena in a unique terrestrial environment. Some immediate applications include neutron capture cross-section evaluation, fission fragment production, and ion energy loss measurement in electron-degenerate plasmas. More generally, the NIF conditions provide a singular environment to investigate the interplay of atomic and nuclear processes such as plasma screening effects upon thermonuclear reactivity. Achieving enhanced understanding of many of these effects will also significantly advance fusion energy research and challenge existing theoretical models.
Chaotic Traversal (CHAT): Very Large Graphs Traversal Using Chaotic Dynamics
Changaival, Boonyarit; Rosalie, Martin; Danoy, Grégoire; Lavangnananda, Kittichai; Bouvry, Pascal
2017-12-01
Graph Traversal algorithms can find their applications in various fields such as routing problems, natural language processing or even database querying. The exploration can be considered as a first stepping stone into knowledge extraction from the graph which is now a popular topic. Classical solutions such as Breadth First Search (BFS) and Depth First Search (DFS) require huge amounts of memory for exploring very large graphs. In this research, we present a novel memoryless graph traversal algorithm, Chaotic Traversal (CHAT) which integrates chaotic dynamics to traverse large unknown graphs via the Lozi map and the Rössler system. To compare various dynamics effects on our algorithm, we present an original way to perform the exploration of a parameter space using a bifurcation diagram with respect to the topological structure of attractors. The resulting algorithm is an efficient and nonresource demanding algorithm, and is therefore very suitable for partial traversal of very large and/or unknown environment graphs. CHAT performance using Lozi map is proven superior than the, commonly known, Random Walk, in terms of number of nodes visited (coverage percentage) and computation time where the environment is unknown and memory usage is restricted.
Approaches to Learning to Control Dynamic Uncertainty
Directory of Open Access Journals (Sweden)
Magda Osman
2015-10-01
Full Text Available In dynamic environments, when faced with a choice of which learning strategy to adopt, do people choose to mostly explore (maximizing their long term gains or exploit (maximizing their short term gains? More to the point, how does this choice of learning strategy influence one’s later ability to control the environment? In the present study, we explore whether people’s self-reported learning strategies and levels of arousal (i.e., surprise, stress correspond to performance measures of controlling a Highly Uncertain or Moderately Uncertain dynamic environment. Generally, self-reports suggest a preference for exploring the environment to begin with. After which, those in the Highly Uncertain environment generally indicated they exploited more than those in the Moderately Uncertain environment; this difference did not impact on performance on later tests of people’s ability to control the dynamic environment. Levels of arousal were also differentially associated with the uncertainty of the environment. Going beyond behavioral data, our model of dynamic decision-making revealed that, in actual fact, there was no difference in exploitation levels between those in the highly uncertain or moderately uncertain environments, but there were differences based on sensitivity to negative reinforcement. We consider the implications of our findings with respect to learning and strategic approaches to controlling dynamic uncertainty.
International Nuclear Information System (INIS)
Hayashi, Koji; Shimazaki, Junya; Nabeshima, Kunihiko; Ochiai, Masaaki; Shinohara, Yoshikuni; Inoue, Kimihiko.
1995-01-01
In order to investigate dynamics of the reactor plant of the nuclear ship Mutsu, the second reactor noise experiment using pseudo random binary sequences (PRBS) was performed on August 30, 1991 in the third experimental navigation. The experiments using both reactivity and load disturbances were performed at 50% of reactor power and under a quiet sea condition. Each PRBS was applied by manual operation of the control rod or the main steam valve. Various signals of the plant responses and of the acceleration of ship motion were measured. Furthermore, natural reactor noise signals were measured after each PRBS experiment in order to evaluate the effects of the PRBS disturbances. This paper summarizes the planning of the experiment, the instruction for the experiment and logs, the data recording conditions, recorded signal wave forms and the results of power spectral analysis. (author)
International Nuclear Information System (INIS)
Hayashi, Koji; Shimazaki, Junya; Nabeshima, Kunihiko; Ochiai, Masaaki; Shinohara, Yoshikuni; Inoue, Kimihiko.
1995-03-01
In order to investigate dynamics of the reactor plant of the nuclear ship Mutsu, the third reactor noise experiment using pseudo random binary sequences (PRBS) was performed on September 16, 1991 in the third experimental navigation. The experiments using both reactivity and load disturbances were performed at 70% of reactor power and under a normal sea condition. Each PRBS was applied by manual operation of the control rod or the main steam valve. Various signals of the plant responses and of the acceleration of ship motion were measured. Furthermore, natural reactor noise signals were measured after each PRBS experiment in order to evaluate the effects of the PRBS disturbances. This paper summarizes the planning of the experiment, the instruction for the experiment and logs, the data recording conditions, recorded signal wave forms and the results of power spectral analysis. (author)
Solitons in a random force field
International Nuclear Information System (INIS)
Bass, F.G.; Konotop, V.V.; Sinitsyn, Y.A.
1985-01-01
We study the dynamics of a soliton of the sine-Gordon equation in a random force field in the adiabatic approximation. We obtain an Einstein-Fokker equation and find the distribution function for the soliton parameters which we use to evaluate its statistical characteristics. We derive an equation for the averaged functions of the soliton parameters. We determine the limits of applicability of the delta-correlated in time random field approximation
Directory of Open Access Journals (Sweden)
Guitao Zhang
2014-01-01
Full Text Available The advertisement can increase the consumers demand; therefore it is one of the most important marketing strategies in the operations management of enterprises. This paper aims to analyze the impact of advertising investment on a discrete dynamic supply chain network which consists of suppliers, manufactures, retailers, and demand markets associated at different tiers under random demand. The impact of advertising investment will last several planning periods besides the current period due to delay effect. Based on noncooperative game theory, variational inequality, and Lagrange dual theory, the optimal economic behaviors of the suppliers, the manufactures, the retailers, and the consumers in the demand markets are modeled. In turn, the supply chain network equilibrium model is proposed and computed by modified project contraction algorithm with fixed step. The effectiveness of the model is illustrated by numerical examples, and managerial insights are obtained through the analysis of advertising investment in multiple periods and advertising delay effect among different periods.
Chamitoff, Gregory E.; Saenz-Otero, Alvar; Katz, Jacob G.; Ulrich, Steve; Morrell, Benjamin J.; Gibbens, Peter W.
2018-01-01
This paper presents the development of a real-time path-planning optimization approach to controlling the motion of space-based robots. The algorithm is capable of planning three dimensional trajectories for a robot to navigate within complex surroundings that include numerous static and dynamic obstacles, path constraints and performance limitations. The methodology employs a unique transformation that enables rapid generation of feasible solutions for complex geometries, making it suitable for application to real-time operations and dynamic environments. This strategy was implemented on the Synchronized Position Hold Engage Reorient Experimental Satellite (SPHERES) test-bed on the International Space Station (ISS), and experimental testing was conducted onboard the ISS during Expedition 17 by the first author. Lessons learned from the on-orbit tests were used to further refine the algorithm for future implementations.
Persistent Factors Facilitating Excellence in Research Environments
Kalpazidou Schmidt, Evanthia; Graversen, Ebbe Krogh
2018-01-01
The study presented here identifies robust and time-invariant features that characterise dynamic and innovative research environments. It takes as its point of departure the results of an empirical study conducted in 2002 which identified the common characteristics of 15 dynamic and innovative public research environments, and focusses on their…
Directory of Open Access Journals (Sweden)
Nunes Guilherme S.
2017-12-01
Full Text Available Purpose. To verify the influence of neural mobilization (NM applied to the lower limbs on functional performance and dynamic balance in asymptomatic individuals. Methods. The total of 30 asymptomatic participants (15 women and 15 men; age, 30.1 ± 6.7 years; height, 1.70 ± 0.1 m; body mass, 73.1 ± 13.4 kg were enrolled in this cross-over randomized controlled trial. The participants received NM of the femoral, sciatic, and tibial nerves, as well as static stretching (SS of the following muscles: hamstring, lumbar, piriformis, hip adductors, hip flexors, quadriceps, and triceps surae. The order of applying NM and SS was randomly decided and the interventions were performed at least 48 hours apart. Functional performance was measured by performance in vertical jump (VJ and dynamic balance was measured with the Star Excursion Balance Test (SEBT. Results. There were no differences between NM and SS for height (cm in VJ (p = 0.16 or in the distance reached (% in the SEBT, normalized by lower limb length (dominant limb: anterior, p = 0.35; posterolateral, p = 0.69; posteromedial, p = 0.50 / non-dominant limb: anterior, p = 0.68; posterolateral, p = 1.00; posteromedial, p = 0.77. Conclusions. NM did not exert any influence on functional performance or dynamic balance. Thereby, having no positive or negative impact on performance, NM can be used at any time of treatment.
DEFF Research Database (Denmark)
Köyluoglu, H.U.; Nielsen, Søren R.K.; Cakmak, A.S.
1994-01-01
perturbation method using stochastic differential equations. The joint statistical moments entering the perturbation solution are determined by considering an augmented dynamic system with state variables made up of the displacement and velocity vector and their first and second derivatives with respect......The paper deals with the first and second order statistical moments of the response of linear systems with random parameters subject to random excitation modelled as white-noise multiplied by an envelope function with random parameters. The method of analysis is basically a second order...... to the random parameters of the problem. Equations for partial derivatives are obtained from the partial differentiation of the equations of motion. The zero time-lag joint statistical moment equations for the augmented state vector are derived from the Itô differential formula. General formulation is given...
Dynamical effects and the critical behavior of random-field systems (invited)
International Nuclear Information System (INIS)
Shapir, Y.
1985-01-01
A variety of phenomena is observed experimentally in random-field (RF) systems realized by the application of an external field to diluted antiferromagnets. At low temperatures, infinitely long hysteretic effects are manifested by the history dependence of the final states: long-range order is observed if the field is applied after cooling, while domain states are reached when field cooled. While no indications for critical fluctuations are detected in 2-D systems, scaling behavior, for both the correlation length and the specific heat, is observed in 3-D systems over an intermediate range of temperatures. The related critical properties seem to be well described by the corresponding ones in the 2-D pure Ising model. The renormalization-group approach, which yields for the equilibrium critical exponents their values of the pure model in d-2 dimensions, is reviewed. A generalization of the dimensional-reduction approach, which accounts self-consistently for renormalized responses of the RF system, is presented. The dynamical effects are implicitly incorporated through the variation in the critical response between the local and the global regimes, associated with short- and long-time scales, respectively. In both regimes the lower critical dimension is found to be d = 2 in accordance with stability arguments. The short-time critical behavior indicates a dimensional reduction by one for the 3-D thermal exponents, in agreement with the experimental results
A hybrid search algorithm for swarm robots searching in an unknown environment.
Li, Shoutao; Li, Lina; Lee, Gordon; Zhang, Hao
2014-01-01
This paper proposes a novel method to improve the efficiency of a swarm of robots searching in an unknown environment. The approach focuses on the process of feeding and individual coordination characteristics inspired by the foraging behavior in nature. A predatory strategy was used for searching; hence, this hybrid approach integrated a random search technique with a dynamic particle swarm optimization (DPSO) search algorithm. If a search robot could not find any target information, it used a random search algorithm for a global search. If the robot found any target information in a region, the DPSO search algorithm was used for a local search. This particle swarm optimization search algorithm is dynamic as all the parameters in the algorithm are refreshed synchronously through a communication mechanism until the robots find the target position, after which, the robots fall back to a random searching mode. Thus, in this searching strategy, the robots alternated between two searching algorithms until the whole area was covered. During the searching process, the robots used a local communication mechanism to share map information and DPSO parameters to reduce the communication burden and overcome hardware limitations. If the search area is very large, search efficiency may be greatly reduced if only one robot searches an entire region given the limited resources available and time constraints. In this research we divided the entire search area into several subregions, selected a target utility function to determine which subregion should be initially searched and thereby reduced the residence time of the target to improve search efficiency.
Directory of Open Access Journals (Sweden)
Savolainen-Kopra Carita
2012-01-01
Full Text Available Abstract Background Hand hygiene is considered as an important means of infection control. We explored whether guided hand hygiene together with transmission-limiting behaviour reduces infection episodes and lost days of work in a common work environment in an open cluster-randomized 3-arm intervention trial. Methods A total of 21 clusters (683 persons were randomized to implement hand hygiene with soap and water (257 persons, with alcohol-based hand rub (202 persons, or to serve as a control (224 persons. Participants in both intervention arms also received standardized instructions on how to limit the transmission of infections. The intervention period (16 months included the emergence of the 2009 influenza pandemic and the subsequent national hand hygiene campaign influencing also the control arm. Results In the total follow-up period there was a 6.7% reduction of infection episodes in the soap-and water arm (p = 0.04. Before the onset of the anti-pandemic campaign, a statistically significant (p = 0.002 difference in the mean occurrence of infection episodes was observed between the control (6.0 per year and the soap-and-water arm (5.0 per year but not between the control and the alcohol-rub arm (5.6 per year. Neither intervention had a decreasing effect on absence from work. Conclusions We conclude that intensified hand hygiene using water and soap together with behavioural recommendations can reduce the occurrence of self-reported acute illnesses in common work environment. Surprisingly, the occurrence of reported sick leaves also increased in the soap-and water-arm. Trial Registration ClinicalTrials.gov: NCT00981877 Source of funding The Finnish Work Environment Fund and the National Institute for Health and Welfare.
Chuang, Wei-Liang; Chang, Kuang-An; Mercier, Richard
2018-06-01
Green water kinematics and dynamics due to wave impingements on a simplified geometry, fixed platform were experimentally investigated in a large, deep-water wave basin. Both plane focusing waves and random waves were employed in the generation of green water. The focusing wave condition was designed to create two consecutive plunging breaking waves with one impinging on the frontal vertical wall of the fixed platform, referred as wall impingement, and the other directly impinging on the deck surface, referred as deck impingement. The random wave condition was generated using the JONSWAP spectrum with a significant wave height approximately equal to the freeboard. A total of 179 green water events were collected in the random wave condition. By examining the green water events in random waves, three different flow types are categorized: collapse of overtopping wave, fall of bulk water, and breaking wave crest. The aerated flow velocity was measured using bubble image velocimetry, while the void fraction was measured using fiber optic reflectometry. For the plane focusing wave condition, measurements of impact pressure were synchronized with the flow velocity and void fraction measurements. The relationship between the peak pressures and the pressure rise times is examined. For the high-intensity impact in the deck impingement events, the peak pressures are observed to be proportional to the aeration levels. The maximum horizontal velocities in the green water events in random waves are well represented by the lognormal distribution. Ritter's solution is shown to quantitatively describe the green water velocity distributions under both the focusing wave condition and the random wave condition. A prediction equation for green water velocity distribution under random waves is proposed.
Disentangling Complexity from Randomness and Chaos
Directory of Open Access Journals (Sweden)
Lena C. Zuchowski
2012-02-01
Full Text Available This study aims to disentangle complexity from randomness and chaos, and to present a definition of complexity that emphasizes its epistemically distinct qualities. I will review existing attempts at defining complexity and argue that these suffer from two major faults: a tendency to neglect the underlying dynamics and to focus exclusively on the phenomenology of complex systems; and linguistic imprecisions in describing these phenomenologies. I will argue that the tendency to discuss phenomenology removed from the underlying dynamics is the main root of the difficulties in distinguishing complex from chaotic or random systems. In my own definition, I will explicitly try to avoid these pitfalls. The theoretical contemplations in this paper will be tested on a sample of five models: the random Kac ring, the chaotic CA30, the regular CA90, the complex CA110 and the complex Bak-Sneppen model. Although these modelling studies are restricted in scope and can only be seen as preliminary, they still constitute on of the first attempts to investigate complex systems comparatively.
Elements of random walk and diffusion processes
Ibe, Oliver C
2013-01-01
Presents an important and unique introduction to random walk theory Random walk is a stochastic process that has proven to be a useful model in understanding discrete-state discrete-time processes across a wide spectrum of scientific disciplines. Elements of Random Walk and Diffusion Processes provides an interdisciplinary approach by including numerous practical examples and exercises with real-world applications in operations research, economics, engineering, and physics. Featuring an introduction to powerful and general techniques that are used in the application of physical and dynamic
Single-cluster dynamics for the random-cluster model
Deng, Y.; Qian, X.; Blöte, H.W.J.
2009-01-01
We formulate a single-cluster Monte Carlo algorithm for the simulation of the random-cluster model. This algorithm is a generalization of the Wolff single-cluster method for the q-state Potts model to noninteger values q>1. Its results for static quantities are in a satisfactory agreement with those
PROTOSTELLAR OUTFLOW EVOLUTION IN TURBULENT ENVIRONMENTS
International Nuclear Information System (INIS)
Cunningham, Andrew J.; Frank, Adam; Carroll, Jonathan; Blackman, Eric G.; Quillen, Alice C.
2009-01-01
The link between turbulence in star-forming environments and protostellar jets remains controversial. To explore issues of turbulence and fossil cavities driven by young stellar outflows, we present a series of numerical simulations tracking the evolution of transient protostellar jets driven into a turbulent medium. Our simulations show both the effect of turbulence on outflow structures and, conversely, the effect of outflows on the ambient turbulence. We demonstrate how turbulence will lead to strong modifications in jet morphology. More importantly, we demonstrate that individual transient outflows have the capacity to re-energize decaying turbulence. Our simulations support a scenario in which the directed energy/momentum associated with cavities is randomized as the cavities are disrupted by dynamical instabilities seeded by the ambient turbulence. Consideration of the energy power spectra of the simulations reveals that the disruption of the cavities powers an energy cascade consistent with Burgers'-type turbulence and produces a driving scale length associated with the cavity propagation length. We conclude that fossil cavities interacting either with a turbulent medium or with other cavities have the capacity to sustain or create turbulent flows in star-forming environments. In the last section, we contrast our work and its conclusions with previous studies which claim that jets cannot be the source of turbulence.
International Nuclear Information System (INIS)
Bachschmid-Romano, Ludovica; Opper, Manfred
2015-01-01
We study analytically the performance of a recently proposed algorithm for learning the couplings of a random asymmetric kinetic Ising model from finite length trajectories of the spin dynamics. Our analysis shows the importance of the nontrivial equal time correlations between spins induced by the dynamics for the speed of learning. These correlations become more important as the spin’s stochasticity is decreased. We also analyse the deviation of the estimation error (paper)