A Dynamic Programming Approach to Constrained Portfolios
DEFF Research Database (Denmark)
Kraft, Holger; Steffensen, Mogens
2013-01-01
This paper studies constrained portfolio problems that may involve constraints on the probability or the expected size of a shortfall of wealth or consumption. Our first contribution is that we solve the problems by dynamic programming, which is in contrast to the existing literature that applies...
Dynamic programming approach to optimization of approximate decision rules
Amin, Talha M.; Chikalov, Igor; Moshkov, Mikhail; Zielosko, Beata
2013-01-01
This paper is devoted to the study of an extension of dynamic programming approach which allows sequential optimization of approximate decision rules relative to the length and coverage. We introduce an uncertainty measure R(T) which is the number
Dynamic Programming Approach for Exact Decision Rule Optimization
Amin, Talha M.; Chikalov, Igor; Moshkov, Mikhail; Zielosko, Beata
2013-01-01
This chapter is devoted to the study of an extension of dynamic programming approach that allows sequential optimization of exact decision rules relative to the length and coverage. It contains also results of experiments with decision tables from
An Improved Dynamic Programming Decomposition Approach for Network Revenue Management
Dan Zhang
2011-01-01
We consider a nonlinear nonseparable functional approximation to the value function of a dynamic programming formulation for the network revenue management (RM) problem with customer choice. We propose a simultaneous dynamic programming approach to solve the resulting problem, which is a nonlinear optimization problem with nonlinear constraints. We show that our approximation leads to a tighter upper bound on optimal expected revenue than some known bounds in the literature. Our approach can ...
Dynamic Programming Approaches for the Traveling Salesman Problem with Drone
Bouman, Paul; Agatz, Niels; Schmidt, Marie
2017-01-01
markdownabstractA promising new delivery model involves the use of a delivery truck that collaborates with a drone to make deliveries. Effectively combining a drone and a truck gives rise to a new planning problem that is known as the Traveling Salesman Problem with Drone (TSP-D). This paper presents an exact solution approach for the TSP-D based on dynamic programming and present experimental results of different dynamic programming based heuristics. Our numerical experiments show that our a...
Dynamic Programming Approach for Exact Decision Rule Optimization
Amin, Talha
2013-01-01
This chapter is devoted to the study of an extension of dynamic programming approach that allows sequential optimization of exact decision rules relative to the length and coverage. It contains also results of experiments with decision tables from UCI Machine Learning Repository. © Springer-Verlag Berlin Heidelberg 2013.
Dynamic Programming Approach for Construction of Association Rule Systems
Alsolami, Fawaz
2016-11-18
In the paper, an application of dynamic programming approach for optimization of association rules from the point of view of knowledge representation is considered. The association rule set is optimized in two stages, first for minimum cardinality and then for minimum length of rules. Experimental results present cardinality of the set of association rules constructed for information system and lower bound on minimum possible cardinality of rule set based on the information obtained during algorithm work as well as obtained results for length.
Dynamic Programming Approach for Construction of Association Rule Systems
Alsolami, Fawaz; Amin, Talha M.; Chikalov, Igor; Moshkov, Mikhail; Zielosko, Beata
2016-01-01
In the paper, an application of dynamic programming approach for optimization of association rules from the point of view of knowledge representation is considered. The association rule set is optimized in two stages, first for minimum cardinality and then for minimum length of rules. Experimental results present cardinality of the set of association rules constructed for information system and lower bound on minimum possible cardinality of rule set based on the information obtained during algorithm work as well as obtained results for length.
A mathematical programming approach for sequential clustering of dynamic networks
Silva, Jonathan C.; Bennett, Laura; Papageorgiou, Lazaros G.; Tsoka, Sophia
2016-02-01
A common analysis performed on dynamic networks is community structure detection, a challenging problem that aims to track the temporal evolution of network modules. An emerging area in this field is evolutionary clustering, where the community structure of a network snapshot is identified by taking into account both its current state as well as previous time points. Based on this concept, we have developed a mixed integer non-linear programming (MINLP) model, SeqMod, that sequentially clusters each snapshot of a dynamic network. The modularity metric is used to determine the quality of community structure of the current snapshot and the historical cost is accounted for by optimising the number of node pairs co-clustered at the previous time point that remain so in the current snapshot partition. Our method is tested on social networks of interactions among high school students, college students and members of the Brazilian Congress. We show that, for an adequate parameter setting, our algorithm detects the classes that these students belong more accurately than partitioning each time step individually or by partitioning the aggregated snapshots. Our method also detects drastic discontinuities in interaction patterns across network snapshots. Finally, we present comparative results with similar community detection methods for time-dependent networks from the literature. Overall, we illustrate the applicability of mathematical programming as a flexible, adaptable and systematic approach for these community detection problems. Contribution to the Topical Issue "Temporal Network Theory and Applications", edited by Petter Holme.
Optimization of decision rules based on dynamic programming approach
Zielosko, Beata
2014-01-14
This chapter is devoted to the study of an extension of dynamic programming approach which allows optimization of approximate decision rules relative to the length and coverage. We introduce an uncertainty measure that is the difference between number of rows in a given decision table and the number of rows labeled with the most common decision for this table divided by the number of rows in the decision table. We fix a threshold γ, such that 0 ≤ γ < 1, and study so-called γ-decision rules (approximate decision rules) that localize rows in subtables which uncertainty is at most γ. Presented algorithm constructs a directed acyclic graph Δ γ T which nodes are subtables of the decision table T given by pairs "attribute = value". The algorithm finishes the partitioning of a subtable when its uncertainty is at most γ. The chapter contains also results of experiments with decision tables from UCI Machine Learning Repository. © 2014 Springer International Publishing Switzerland.
Dynamic programming approach to optimization of approximate decision rules
Amin, Talha
2013-02-01
This paper is devoted to the study of an extension of dynamic programming approach which allows sequential optimization of approximate decision rules relative to the length and coverage. We introduce an uncertainty measure R(T) which is the number of unordered pairs of rows with different decisions in the decision table T. For a nonnegative real number β, we consider β-decision rules that localize rows in subtables of T with uncertainty at most β. Our algorithm constructs a directed acyclic graph Δβ(T) which nodes are subtables of the decision table T given by systems of equations of the kind "attribute = value". This algorithm finishes the partitioning of a subtable when its uncertainty is at most β. The graph Δβ(T) allows us to describe the whole set of so-called irredundant β-decision rules. We can describe all irredundant β-decision rules with minimum length, and after that among these rules describe all rules with maximum coverage. We can also change the order of optimization. The consideration of irredundant rules only does not change the results of optimization. This paper contains also results of experiments with decision tables from UCI Machine Learning Repository. © 2012 Elsevier Inc. All rights reserved.
Dynamic programming approach for partial decision rule optimization
Amin, Talha
2012-10-04
This paper is devoted to the study of an extension of dynamic programming approach which allows optimization of partial decision rules relative to the length or coverage. We introduce an uncertainty measure J(T) which is the difference between number of rows in a decision table T and number of rows with the most common decision for T. For a nonnegative real number γ, we consider γ-decision rules (partial decision rules) that localize rows in subtables of T with uncertainty at most γ. Presented algorithm constructs a directed acyclic graph Δ γ(T) which nodes are subtables of the decision table T given by systems of equations of the kind "attribute = value". This algorithm finishes the partitioning of a subtable when its uncertainty is at most γ. The graph Δ γ(T) allows us to describe the whole set of so-called irredundant γ-decision rules. We can optimize such set of rules according to length or coverage. This paper contains also results of experiments with decision tables from UCI Machine Learning Repository.
Dynamic programming approach for partial decision rule optimization
Amin, Talha M.; Chikalov, Igor; Moshkov, Mikhail; Zielosko, Beata
2012-01-01
This paper is devoted to the study of an extension of dynamic programming approach which allows optimization of partial decision rules relative to the length or coverage. We introduce an uncertainty measure J(T) which is the difference between number of rows in a decision table T and number of rows with the most common decision for T. For a nonnegative real number γ, we consider γ-decision rules (partial decision rules) that localize rows in subtables of T with uncertainty at most γ. Presented algorithm constructs a directed acyclic graph Δ γ(T) which nodes are subtables of the decision table T given by systems of equations of the kind "attribute = value". This algorithm finishes the partitioning of a subtable when its uncertainty is at most γ. The graph Δ γ(T) allows us to describe the whole set of so-called irredundant γ-decision rules. We can optimize such set of rules according to length or coverage. This paper contains also results of experiments with decision tables from UCI Machine Learning Repository.
Replacement model of city bus: A dynamic programming approach
Arifin, Dadang; Yusuf, Edhi
2017-06-01
This paper aims to develop a replacement model of city bus vehicles operated in Bandung City. This study is driven from real cases encountered by the Damri Company in the efforts to improve services to the public. The replacement model propounds two policy alternatives: First, to maintain or keep the vehicles, and second is to replace them with new ones taking into account operating costs, revenue, salvage value, and acquisition cost of a new vehicle. A deterministic dynamic programming approach is used to solve the model. The optimization process was heuristically executed using empirical data of Perum Damri. The output of the model is to determine the replacement schedule and the best policy if the vehicle has passed the economic life. Based on the results, the technical life of the bus is approximately 20 years old, while the economic life is an average of 9 (nine) years. It means that after the bus is operated for 9 (nine) years, managers should consider the policy of rejuvenation.
Optimum workforce-size model using dynamic programming approach
African Journals Online (AJOL)
This paper presents an optimum workforce-size model which determines the minimum number of excess workers (overstaffing) as well as the minimum total recruitment cost during a specified planning horizon. The model is an extension of other existing dynamic programming models for manpower planning in the sense ...
Approximate dynamic programming approaches for appointment scheduling with patient preferences.
Li, Xin; Wang, Jin; Fung, Richard Y K
2018-04-01
During the appointment booking process in out-patient departments, the level of patient satisfaction can be affected by whether or not their preferences can be met, including the choice of physicians and preferred time slot. In addition, because the appointments are sequential, considering future possible requests is also necessary for a successful appointment system. This paper proposes a Markov decision process model for optimizing the scheduling of sequential appointments with patient preferences. In contrast to existing models, the evaluation of a booking decision in this model focuses on the extent to which preferences are satisfied. Characteristics of the model are analysed to develop a system for formulating booking policies. Based on these characteristics, two types of approximate dynamic programming algorithms are developed to avoid the curse of dimensionality. Experimental results suggest directions for further fine-tuning of the model, as well as improving the efficiency of the two proposed algorithms. Copyright © 2018 Elsevier B.V. All rights reserved.
SPATIAL SEARCH IN COMMERCIAL FISHING: A DISCRETE CHOICE DYNAMIC PROGRAMMING APPROACH
Smith, Martin D.; Provencher, Bill
2003-01-01
We specify a discrete choice dynamic programming model of commercial fishing participation and location choices. This approach allows us to examine how fishermen collect information about resource abundance and whether their behavior is forward-looking.
Skin tumor area extraction using an improved dynamic programming approach.
Abbas, Qaisar; Celebi, M E; Fondón García, Irene
2012-05-01
Border (B) description of melanoma and other pigmented skin lesions is one of the most important tasks for the clinical diagnosis of dermoscopy images using the ABCD rule. For an accurate description of the border, there must be an effective skin tumor area extraction (STAE) method. However, this task is complicated due to uneven illumination, artifacts present in the lesions and smooth areas or fuzzy borders of the desired regions. In this paper, a novel STAE algorithm based on improved dynamic programming (IDP) is presented. The STAE technique consists of the following four steps: color space transform, pre-processing, rough tumor area detection and refinement of the segmented area. The procedure is performed in the CIE L(*) a(*) b(*) color space, which is approximately uniform and is therefore related to dermatologist's perception. After pre-processing the skin lesions to reduce artifacts, the DP algorithm is improved by introducing a local cost function, which is based on color and texture weights. The STAE method is tested on a total of 100 dermoscopic images. In order to compare the performance of STAE with other state-of-the-art algorithms, various statistical measures based on dermatologist-drawn borders are utilized as a ground truth. The proposed method outperforms the others with a sensitivity of 96.64%, a specificity of 98.14% and an error probability of 5.23%. The results demonstrate that this STAE method by IDP is an effective solution when compared with other state-of-the-art segmentation techniques. The proposed method can accurately extract tumor borders in dermoscopy images. © 2011 John Wiley & Sons A/S.
Stochastic optimization in insurance a dynamic programming approach
Azcue, Pablo
2014-01-01
The main purpose of the book is to show how a viscosity approach can be used to tackle control problems in insurance. The problems covered are the maximization of survival probability as well as the maximization of dividends in the classical collective risk model. The authors consider the possibility of controlling the risk process by reinsurance as well as by investments. They show that optimal value functions are characterized as either the unique or the smallest viscosity solution of the associated Hamilton-Jacobi-Bellman equation; they also study the structure of the optimal strategies and show how to find them. The viscosity approach was widely used in control problems related to mathematical finance but until quite recently it was not used to solve control problems related to actuarial mathematical science. This book is designed to familiarize the reader on how to use this approach. The intended audience is graduate students as well as researchers in this area.
Optimal Charging of Electric Drive Vehicles: A Dynamic Programming Approach
DEFF Research Database (Denmark)
Delikaraoglou, Stefanos; Capion, Karsten Emil; Juul, Nina
2013-01-01
, therefore, we propose an ex ante vehicle aggregation approach. We illustrate the results in a Danish case study and find that, although optimal management of the vehicles does not allow for storage and day-to-day flexibility in the electricity system, the market provides incentive for intra-day flexibility....
DEFF Research Database (Denmark)
Shuai, Hang; Ai, Xiaomeng; Wen, Jinyu
2017-01-01
This paper proposes a hybrid approximate dynamic programming (ADP) approach for the multiple time-period optimal power flow in integrated gas and power systems. ADP successively solves Bellman's equation to make decisions according to the current state of the system. So, the updated near future...
Welte, R; Kretzschmar, M; Leidl, R; Van den Hoek, A; Jager, JC; Postma, MJ
2000-01-01
Background: Models commonly used for the economic assessment of chamydial screening programs do not consider population effects. Goal: To develop a novel dynamic approach for the economic evaluation of chlamydial prevention measures and to determine the cost-effectiveness of a general
On the Dynamic Programming Approach for the 3D Navier-Stokes Equations
International Nuclear Information System (INIS)
Manca, Luigi
2008-01-01
The dynamic programming approach for the control of a 3D flow governed by the stochastic Navier-Stokes equations for incompressible fluid in a bounded domain is studied. By a compactness argument, existence of solutions for the associated Hamilton-Jacobi-Bellman equation is proved. Finally, existence of an optimal control through the feedback formula and of an optimal state is discussed
A dynamic programming approach to missing data estimation using neural networks
CSIR Research Space (South Africa)
Nelwamondo, FV
2013-01-01
Full Text Available method where dynamic programming is not used. This paper also suggests a different way of formulating a missing data problem such that the dynamic programming is applicable to estimate the missing data....
A Dynamic Programming Approach for Pricing Weather Derivatives under Issuer Default Risk
Directory of Open Access Journals (Sweden)
Wolfgang Karl Härdle
2017-10-01
Full Text Available Weather derivatives are contingent claims with payoff based on a pre-specified weather index. Firms exposed to weather risk can transfer it to financial markets via weather derivatives. We develop a utility-based model for pricing baskets of weather derivatives under default risk on the issuer side in over-the-counter markets. In our model, agents maximise the expected utility of their terminal wealth, while they dynamically rebalance their weather portfolios over a finite investment horizon. Using dynamic programming approach, we obtain semi-closed forms for the equilibrium prices of weather derivatives and for the optimal strategies of the agents. We give an example on how to price rainfall derivatives on selected stations in China in the universe of a financial investor and a weather exposed crop insurer.
Bellman, Richard
2003-01-01
An introduction to the mathematical theory of multistage decision processes, this text takes a ""functional equation"" approach to the discovery of optimum policies. Written by a leading developer of such policies, it presents a series of methods, uniqueness and existence theorems, and examples for solving the relevant equations. The text examines existence and uniqueness theorems, the optimal inventory equation, bottleneck problems in multistage production processes, a new formalism in the calculus of variation, strategies behind multistage games, and Markovian decision processes. Each chapte
DEFF Research Database (Denmark)
Haahr, Jørgen Thorlund; Pisinger, David; Sabbaghian, Mohammad
2017-01-01
This paper considers a novel solution method for generating improved train speed profiles with reduced energy consumption. The solution method makes use of a time-space graph formulation which can be solved through Dynamic Programming. Instead of using uniform discretization of time and space...
Nagy, Ivan
2017-01-01
This book provides a general theoretical background for constructing the recursive Bayesian estimation algorithms for mixture models. It collects the recursive algorithms for estimating dynamic mixtures of various distributions and brings them in the unified form, providing a scheme for constructing the estimation algorithm for a mixture of components modeled by distributions with reproducible statistics. It offers the recursive estimation of dynamic mixtures, which are free of iterative processes and close to analytical solutions as much as possible. In addition, these methods can be used online and simultaneously perform learning, which improves their efficiency during estimation. The book includes detailed program codes for solving the presented theoretical tasks. Codes are implemented in the open source platform for engineering computations. The program codes given serve to illustrate the theory and demonstrate the work of the included algorithms.
Directory of Open Access Journals (Sweden)
S. Sofana Reka
2016-09-01
Full Text Available This paper proposes a cloud computing framework in smart grid environment by creating small integrated energy hub supporting real time computing for handling huge storage of data. A stochastic programming approach model is developed with cloud computing scheme for effective demand side management (DSM in smart grid. Simulation results are obtained using GUI interface and Gurobi optimizer in Matlab in order to reduce the electricity demand by creating energy networks in a smart hub approach.
Discrete Time McKean–Vlasov Control Problem: A Dynamic Programming Approach
Energy Technology Data Exchange (ETDEWEB)
Pham, Huyên, E-mail: pham@math.univ-paris-diderot.fr; Wei, Xiaoli, E-mail: tyswxl@gmail.com [Laboratoire de Probabilités et Modèles Aléatoires, CNRS, UMR 7599, Université Paris Diderot (France)
2016-12-15
We consider the stochastic optimal control problem of nonlinear mean-field systems in discrete time. We reformulate the problem into a deterministic control problem with marginal distribution as controlled state variable, and prove that dynamic programming principle holds in its general form. We apply our method for solving explicitly the mean-variance portfolio selection and the multivariate linear-quadratic McKean–Vlasov control problem.
Discrete Time McKean–Vlasov Control Problem: A Dynamic Programming Approach
International Nuclear Information System (INIS)
Pham, Huyên; Wei, Xiaoli
2016-01-01
We consider the stochastic optimal control problem of nonlinear mean-field systems in discrete time. We reformulate the problem into a deterministic control problem with marginal distribution as controlled state variable, and prove that dynamic programming principle holds in its general form. We apply our method for solving explicitly the mean-variance portfolio selection and the multivariate linear-quadratic McKean–Vlasov control problem.
Optimization and analysis of decision trees and rules: Dynamic programming approach
Alkhalid, Abdulaziz
2013-08-01
This paper is devoted to the consideration of software system Dagger created in KAUST. This system is based on extensions of dynamic programming. It allows sequential optimization of decision trees and rules relative to different cost functions, derivation of relationships between two cost functions (in particular, between number of misclassifications and depth of decision trees), and between cost and uncertainty of decision trees. We describe features of Dagger and consider examples of this systems work on decision tables from UCI Machine Learning Repository. We also use Dagger to compare 16 different greedy algorithms for decision tree construction. © 2013 Taylor and Francis Group, LLC.
Optimization and analysis of decision trees and rules: Dynamic programming approach
Alkhalid, Abdulaziz; Amin, Talha M.; Chikalov, Igor; Hussain, Shahid; Moshkov, Mikhail; Zielosko, Beata
2013-01-01
This paper is devoted to the consideration of software system Dagger created in KAUST. This system is based on extensions of dynamic programming. It allows sequential optimization of decision trees and rules relative to different cost functions, derivation of relationships between two cost functions (in particular, between number of misclassifications and depth of decision trees), and between cost and uncertainty of decision trees. We describe features of Dagger and consider examples of this systems work on decision tables from UCI Machine Learning Repository. We also use Dagger to compare 16 different greedy algorithms for decision tree construction. © 2013 Taylor and Francis Group, LLC.
Stockpile strategy for China's emergency oil reserve: A dynamic programming approach
International Nuclear Information System (INIS)
Bai, Y.; Dahl, C.A.; Zhou, D.Q.; Zhou, P.
2014-01-01
China is currently accelerating construction of its strategic petroleum reserves. How should China fill the SPR in a cost-effective manner in the short-run? How might this affect world oil prices? Using a dynamic programming model to answer these questions, the objective of this paper is to minimize the stockpiling costs, including consumer surplus as well as crude acquisition and holding costs. The crude oil acquisition price in the model is determined by global equilibrium between supply and demand. Demand, in turn, depends on world market conditions including China's stockpile filling rate. Our empirical study under different market conditions shows that China's optimal stockpile acquisition rate varies from 9 to 19 million barrels per month, and the optimal stockpiling drives up the world oil price by 3–7%. The endogenous price increase accounts for 52% of total stockpiling costs in the base case. When the market is tighter or the demand function is more inelastic, the stockpiling affects the market more significantly and pushes prices even higher. Alternatively, in a disruption, drawdown from the stockpile can effectively dampen soaring prices, though the shortage is likely to leave the price higher than before the disruption. - Highlights: • China's SPR policies are examined by dynamic programming. • The optimal stockpile acquisition rate varies from 9 to 19 million barrels per month. • The optimal stockpiling drives up world oil price by 3–7%
DYNAMIC PROGRAMMING APPROACH TO TESTING RESOURCE ALLOCATION PROBLEM FOR MODULAR SOFTWARE
Directory of Open Access Journals (Sweden)
P.K. Kapur
2003-02-01
Full Text Available Testing phase of a software begins with module testing. During this period modules are tested independently to remove maximum possible number of faults within a specified time limit or testing resource budget. This gives rise to some interesting optimization problems, which are discussed in this paper. Two Optimization models are proposed for optimal allocation of testing resources among the modules of a Software. In the first model, we maximize the total fault removal, subject to budgetary Constraint. In the second model, additional constraint representing aspiration level for fault removals for each module of the software is added. These models are solved using dynamic programming technique. The methods have been illustrated through numerical examples.
Introduction to dynamic programming
Cooper, Leon; Rodin, E Y
1981-01-01
Introduction to Dynamic Programming provides information pertinent to the fundamental aspects of dynamic programming. This book considers problems that can be quantitatively formulated and deals with mathematical models of situations or phenomena that exists in the real world.Organized into 10 chapters, this book begins with an overview of the fundamental components of any mathematical optimization model. This text then presents the details of the application of dynamic programming to variational problems. Other chapters consider the application of dynamic programming to inventory theory, Mark
Amin, Talha
2013-01-01
In the paper, we present a comparison of dynamic programming and greedy approaches for construction and optimization of approximate decision rules relative to the number of misclassifications. We use an uncertainty measure that is a difference between the number of rows in a decision table T and the number of rows with the most common decision for T. For a nonnegative real number γ, we consider γ-decision rules that localize rows in subtables of T with uncertainty at most γ. Experimental results with decision tables from the UCI Machine Learning Repository are also presented. © 2013 Springer-Verlag.
Integer 1/0 Knapsack Problem Dynamic Programming Approach in Building Maintenance Optimization
Directory of Open Access Journals (Sweden)
Viska Dewi Fawzy
2017-12-01
Full Text Available The most common problem in urban areas is the high public demand and the limited provision of housing. In meeting the needs of affordable housing for low income communities, the Government of Indonesia implements Rusunawa Project. Object of this research is Pandanarang Rusunawa. Rusunawa Pandanarang is one of the vertical housing in Cilacap that is facing deterioration issue and needs good maintenance management. This study aims at insetting priority and optimizing maintenance plan due to limited funds (limited budget and the amount of damage that must be repaired.This study uses one of the optimization methods of Dynamic Programing on the application of Integer 1/0 Knapsack Problem, to determine an schedule the maintenance activities. The Criteria that are used such as: the level of building components damage and the level of occupants participation. In the first criterion, the benefit (p is the percentage of damage that is fixed with the cost (w. While on the second criterion, the benefit (p is the percentage of occupant participation rate on the maintenance activities with the cost (w. For the budget of Rp 125.000.000, 00, it was obtained from the simulation that the value of the optimum solution on the first criterion at the 7th stage of 71.88% with total cost Rp 106.000.000, 00. At the second criterion, the value of the optimum solution at the 7th stage of 89.29% with total cost Rp 124.000.000, 00.
A Dynamic Programming Approach for Base Station Sleeping in Cellular Networks
Gong, Jie; Zhou, Sheng; Niu, Zhisheng
The energy consumption of the information and communication technology (ICT) industry, which has become a serious problem, is mostly due to the network infrastructure rather than the mobile terminals. In this paper, we focus on reducing the energy consumption of base stations (BSs) by adjusting their working modes (active or sleep). Specifically, the objective is to minimize the energy consumption while satisfying quality of service (QoS, e.g., blocking probability) requirement and, at the same time, avoiding frequent mode switching to reduce signaling and delay overhead. The problem is modeled as a dynamic programming (DP) problem, which is NP-hard in general. Based on cooperation among neighboring BSs, a low-complexity algorithm is proposed to reduce the size of state space as well as that of action space. Simulations demonstrate that, with the proposed algorithm, the active BS pattern well meets the time variation and the non-uniform spatial distribution of system traffic. Moreover, the tradeoff between the energy saving from BS sleeping and the cost of switching is well balanced by the proposed scheme.
Dual Dynamic Programming - DDP
International Nuclear Information System (INIS)
Velasquez Bermudez, Jesus M
1998-01-01
Objections are presented to the mathematical formulation of the denominated Dual Dynamic programming-PDD that is the theoretical base of several computational model available for the optimal formulation of interconnected hydrothermal systems
A dynamic programming approach for quickly estimating large network-based MEV models
DEFF Research Database (Denmark)
Mai, Tien; Frejinger, Emma; Fosgerau, Mogens
2017-01-01
We propose a way to estimate a family of static Multivariate Extreme Value (MEV) models with large choice sets in short computational time. The resulting model is also straightforward and fast to use for prediction. Following Daly and Bierlaire (2006), the correlation structure is defined by a ro...... to converge (4.3 h on an Intel(R) 3.2 GHz machine using a non-parallelized code). We also show that our approach allows to estimate a cross-nested logit model of 111 nests with a real data set of more than 100,000 observations in 14 h....
International Nuclear Information System (INIS)
Chen, Yuche; Zhang, Yunteng; Fan, Yueyue; Hu, Kejia; Zhao, Jianyou
2017-01-01
Highlights: • Dynamic programming method is used in transportation fuel portfolio planning. • The learning effect in new fuel technology is endogenously modeled through an experience curve. • Cellulosic biofuels play critical role in de-carbonization transport sector in near term. • The initial 3–4 billion gallons production is critical to bring down cellulosic biofuels’ cost. • Large penetration of Zero Emission Vehicles will discourage development of cellulosic biofuels. - Abstract: Promoting the adoption of low-carbon technologies in the transportation fuel portfolio is an effective strategy to mitigate greenhouse gas emissions from the transportation sector worldwide. However, as one of the most promising low-carbon fuels, cellulosic biofuel has not fully entered commercial production. Governments could provide guidance in developing cellulosic biofuel technologies, but no systematic approach has been proposed yet. We establish a dynamic programming framework for investigating time-dependent and adaptive decision-making processes to develop advanced fuel technologies. The learning-by-doing effect inherited in the technology development process is included in the framework. The proposed framework is applied in a case study to explore the most economical pathway for California to develop a solid cellulosic biofuel industry under its Low Carbon Fuel Standard. Our results show that cellulosic biofuel technology is playing a critical role in guaranteeing California’s 10% greenhouse gas emission reduction by 2020. Three to four billion gallons of cumulative production are needed to ensure that cellulosic biofuel is cost-competitive with petroleum-based fuels or conventional biofuels. Zero emission vehicle promoting policies will discourage the development of cellulosic biofuel. The proposed framework, with small adjustments, can also be applied to study new technology development in other energy sectors.
Bender, Christian; Gärtner, Christian; Schweizer, Nikolaus
2017-01-01
We present a novel method for deriving tight Monte Carlo confidence intervals for solutions of stochastic dynamic programming equations. Taking some approximate solution to the equation as an input, we construct pathwise recursions with a known bias. Suitably coupling the recursions for lower and
Dynamic programming for QFD in PES optimization
Energy Technology Data Exchange (ETDEWEB)
Sorrentino, R. [Mediterranean Univ. of Reggio Calabria, Reggio Calabria (Italy). Dept. of Computer Science and Electrical Technology
2008-07-01
Quality function deployment (QFD) is a method for linking the needs of the customer with design, development, engineering, manufacturing, and service functions. In the electric power industry, QFD is used to help designers concentrate on the most important technical attributes to develop better electrical services. Most optimization approaches used in QFD analysis have been based on integer or linear programming. These approaches perform well in certain circumstances, but there are problems that hinder their practical use. This paper proposed an approach to optimize Power and Energy Systems (PES). A dynamic programming approach was used along with an extended House of Quality to gather information. Dynamic programming was used to allocate the limited resources to the technical attributes. The approach integrated dynamic programming into the electrical service design process. The dynamic programming approach did not require the full relationship curve between technical attributes and customer satisfaction, or the relationship between technical attributes and cost. It only used a group of discrete points containing information about customer satisfaction, technical attributes, and the cost to find the optimal product design. Therefore, it required less time and resources than other approaches. At the end of the optimization process, the value of each technical attribute, the related cost, and the overall customer satisfaction were obtained at the same time. It was concluded that compared with other optimization methods, the dynamic programming method requires less information and the optimal results are more relevant. 21 refs., 2 tabs., 2 figs.
Dynamic Approaches for Multichoice Solutions
Directory of Open Access Journals (Sweden)
Yu-Hsien Liao
2011-01-01
Full Text Available Based on alternative reduced games, several dynamic approaches are proposed to show how the three extended Shapley values can be reached dynamically from arbitrary efficient payoff vectors on multichoice games.
Vitharana, V. H. P.; Chinda, T.
2018-04-01
Lower back pain (LBP), prevalence is high among the heavy equipment operators leading to high compensation cost in the construction industry. It is found that proper training program assists in reducing chances of having LBP. This study, therefore aims to examine different safety related budget available to support LBP related training program for different age group workers, utilizing system dynamics modeling approach. The simulation results show that at least 2.5% of the total budget must be allocated in the safety and health budget to reduce the chances of having LBP cases.
Yu, Rong; Zhong, Weifeng; Xie, Shengli; Zhang, Yan; Zhang, Yun
2016-02-01
As the next-generation power grid, smart grid will be integrated with a variety of novel communication technologies to support the explosive data traffic and the diverse requirements of quality of service (QoS). Cognitive radio (CR), which has the favorable ability to improve the spectrum utilization, provides an efficient and reliable solution for smart grid communications networks. In this paper, we study the QoS differential scheduling problem in the CR-based smart grid communications networks. The scheduler is responsible for managing the spectrum resources and arranging the data transmissions of smart grid users (SGUs). To guarantee the differential QoS, the SGUs are assigned to have different priorities according to their roles and their current situations in the smart grid. Based on the QoS-aware priority policy, the scheduler adjusts the channels allocation to minimize the transmission delay of SGUs. The entire transmission scheduling problem is formulated as a semi-Markov decision process and solved by the methodology of adaptive dynamic programming. A heuristic dynamic programming (HDP) architecture is established for the scheduling problem. By the online network training, the HDP can learn from the activities of primary users and SGUs, and adjust the scheduling decision to achieve the purpose of transmission delay minimization. Simulation results illustrate that the proposed priority policy ensures the low transmission delay of high priority SGUs. In addition, the emergency data transmission delay is also reduced to a significantly low level, guaranteeing the differential QoS in smart grid.
Evaluating Dynamic Analysis Techniques for Program Comprehension
Cornelissen, S.G.M.
2009-01-01
Program comprehension is an essential part of software development and software maintenance, as software must be sufficiently understood before it can be properly modified. One of the common approaches in getting to understand a program is the study of its execution, also known as dynamic analysis.
International Nuclear Information System (INIS)
Hancevic, Pedro Ignacio
2017-01-01
The Acid Rain Program (ARP) was implemented in 1995. Since then, coal-fired boilers have had to choose among three main compliance alternatives: purchase pollution permits; switch to an alternative lower-sulfur coal; or adopt a scrubber. This decision problem is driven by the evolution of several economic variables and is revised when significant changes (to prices, quality of inputs, output level, technology, transport costs, regulations, among others) occur. Using a structural dynamic discrete choice model, I recover cost parameters and use them to evaluate two different counterfactual policies. The results confirm there is a trade-off between fuel switching and scrubbing costs (with the latter having a higher investment cost and a lower variable cost), and also the existence of regional heterogeneity. Finally, the ARP implied cost savings of approximately $4.7 billions if compared to a uniform emission rate standard and $14.8 billions if compared to compulsory scrubbing for the 1995–2005 period. - Highlights: • With the cap-and-trade system of the ARP boilers had three main compliance options. • Purchase allowances; retrofit the boiler to burn low-sulfur coal; adopt scrubbers. • We develop and estimate a rigorous structural dynamic discrete choice model. • Trade-off between fuel switching and scrubbing (capital versus operating costs). • Cost savings from the ARP were substantial if compared to previous regulations.
Stochastic integer programming by dynamic programming
Lageweg, B.J.; Lenstra, J.K.; Rinnooy Kan, A.H.G.; Stougie, L.; Ermoliev, Yu.; Wets, R.J.B.
1988-01-01
Stochastic integer programming is a suitable tool for modeling hierarchical decision situations with combinatorial features. In continuation of our work on the design and analysis of heuristics for such problems, we now try to find optimal solutions. Dynamic programming techniques can be used to
Introduction to stochastic dynamic programming
Ross, Sheldon M; Lukacs, E
1983-01-01
Introduction to Stochastic Dynamic Programming presents the basic theory and examines the scope of applications of stochastic dynamic programming. The book begins with a chapter on various finite-stage models, illustrating the wide range of applications of stochastic dynamic programming. Subsequent chapters study infinite-stage models: discounting future returns, minimizing nonnegative costs, maximizing nonnegative returns, and maximizing the long-run average return. Each of these chapters first considers whether an optimal policy need exist-providing counterexamples where appropriate-and the
Dynamic Programming Foundations and Principles
Sniedovich, Moshe
2010-01-01
Focusing on the modeling and solution of deterministic multistage decision problems, this book looks at dynamic programming as a problem-solving optimization method. With over 400 useful references, this edition discusses the dynamic programming analysis of a problem, illustrates the rationale behind this analysis, and clarifies the theoretical grounds that justify the rationale. It also explains the meaning and role of the concept of state in dynamic programming, examines the purpose and function of the principle of optimality, and outlines solution strategies for problems defiant of conventi
Convergence of Sample Path Optimal Policies for Stochastic Dynamic Programming
National Research Council Canada - National Science Library
Fu, Michael C; Jin, Xing
2005-01-01
.... These results have practical implications for Monte Carlo simulation-based solution approaches to stochastic dynamic programming problems where it is impractical to extract the explicit transition...
Dynamic programming models and applications
Denardo, Eric V
2003-01-01
Introduction to sequential decision processes covers use of dynamic programming in studying models of resource allocation, methods for approximating solutions of control problems in continuous time, production control, more. 1982 edition.
International Nuclear Information System (INIS)
Chen, Xin; Mu, Hailin; Li, Huanan; Gui, Shusen
2014-01-01
There has been much attention paid to oil security in China in recent years. Although China has begun to establish its own strategic petroleum reserve (SPR) to prevent potential losses caused by oil supply interruptions, the system aiming to ensure China's oil security is still incomplete. This paper describes and provides evidence for the benefits of an auxiliary strategic oil policy choice, which aims to strengthen China's oil supply security and offer a solution for strategic oil operations with different holding costs. In this paper, we develop a multi-dimension stochastic dynamic programming model to analyze the oil stockpile delegation policy, which is an intermediate policy between public and private oil stockpiles and is appropriate for the Chinese immature private oil stockpile sector. The model examines the effects of the oil stockpile delegation policy in the context of several distinct situations, including normal world oil market conditions, slight oil supply interruption, and serious oil supply interruption. Operating strategies that respond to different oil supply situations for both the SPR and the delegated oil stockpile were obtained. Different time horizons, interruption times and holding costs of delegated oil stockpiles were examined. The construction process of China's SPR was also taken into account. - Highlights: • We provided an auxiliary strategic oil policy rooted in Chinese local conditions. • The policy strengthen China's capability for preventing oil supply interruption. • We model to obtain the managing strategies for China's strategic petroleum reserve. • Both of the public and delegated oil stockpile were taken into consideration. • The three phase's construction process of China's SPR was taken into account
Software Acquisition Program Dynamics
2011-10-24
greatest capability, which requires latest technologies • Contractors prefer using latest technologies to boost staff competency for future bids Risk...mistakes Build foundation to test future mitigation/solution approaches to assess value • Qualitatively validate new approaches before applying them to...classroom training, eLearning , certification, and more—to serve the needs of customers and partners worldwide.
Hybrid Differential Dynamic Programming with Stochastic Search
Aziz, Jonathan; Parker, Jeffrey; Englander, Jacob
2016-01-01
Differential dynamic programming (DDP) has been demonstrated as a viable approach to low-thrust trajectory optimization, namely with the recent success of NASAs Dawn mission. The Dawn trajectory was designed with the DDP-based Static Dynamic Optimal Control algorithm used in the Mystic software. Another recently developed method, Hybrid Differential Dynamic Programming (HDDP) is a variant of the standard DDP formulation that leverages both first-order and second-order state transition matrices in addition to nonlinear programming (NLP) techniques. Areas of improvement over standard DDP include constraint handling, convergence properties, continuous dynamics, and multi-phase capability. DDP is a gradient based method and will converge to a solution nearby an initial guess. In this study, monotonic basin hopping (MBH) is employed as a stochastic search method to overcome this limitation, by augmenting the HDDP algorithm for a wider search of the solution space.
1978-10-01
8 Track Bushing Research, . . . . . . . . . . . * . . . 8 Advanced frack Concept Development ..... . . . . . 9 TECHNICAL DISCUSSION...machine design effort was conducted. The design which was developed has separate servocontrolled hydraulic actuators to apply radial...back bending-but, in the order and magnitude of the way the torsional stress is incurred in service. This suggests a programable, hydraulically actuated
Secure Dynamic Program Repartitioning
DEFF Research Database (Denmark)
Hansen, Rene Rydhoff; Probst, Christian
2005-01-01
Secure program partitioning has been introduced as a language-based technique to allow the distribution of data and computation across mutualy untrusted hosts, while at the same time guaranteeing the protection of confidential data. Programs that have been annotated with security types......, but the partitioning compiler becomes a part of the network and can recompile applications, thus alowing hosts to enter or leave the framework. We contend that this setting is superior to static partitioning, since it allows redistribution of data and computations. This is especialy beneficial if the new host alows...... data and computations to better fulfil the trust requirements of the users. Erasure Policies ensure that the original host of the redistributed data or computation does not store the data any longer....
Efficient dynamic optimization of logic programs
Laird, Phil
1992-01-01
A summary is given of the dynamic optimization approach to speed up learning for logic programs. The problem is to restructure a recursive program into an equivalent program whose expected performance is optimal for an unknown but fixed population of problem instances. We define the term 'optimal' relative to the source of input instances and sketch an algorithm that can come within a logarithmic factor of optimal with high probability. Finally, we show that finding high-utility unfolding operations (such as EBG) can be reduced to clause reordering.
El-Askary, H. M.; Sheta, W.; Prasad, A. K.; Ali, H.; Abdel rahman, M.; El-Desouki, A.; Kafatos, M.
2011-12-01
Water Vapor Low Mean, Atmospheric Water Vapor Mean, Mass Concentration Land Mean, Optical Depth Ratio Small Land and Ocean Mean, Small Mode Optical Depth Land and Ocean Mean, Cloud Top Pressure Day Mean, Cloud Top Pressure Mean, Cloud Top Temperature Mean. The suggested linear Genetic approach detected hidden anomalies and relationships that cannot be observed from the conventional statistical methods. A well-established model as an important contribution to show the relationships between particle size and the physical and chemical aerosols properties has been designed. Such coupling will provide insight into the micro physics of the phenomenon. The proposed research will reveal previously uncharacterized yet fundamental relations and dependencies among aerosols, cloud and meteorological related parameters. Moreover, it would aid in filling gaps of missing satellite parameters using other available ones.
Fluid dynamics computer programs for NERVA turbopump
Brunner, J. J.
1972-01-01
During the design of the NERVA turbopump, numerous computer programs were developed for the analyses of fluid dynamic problems within the machine. Program descriptions, example cases, users instructions, and listings for the majority of these programs are presented.
Dynamic programming algorithms for biological sequence comparison.
Pearson, W R; Miller, W
1992-01-01
Efficient dynamic programming algorithms are available for a broad class of protein and DNA sequence comparison problems. These algorithms require computer time proportional to the product of the lengths of the two sequences being compared [O(N2)] but require memory space proportional only to the sum of these lengths [O(N)]. Although the requirement for O(N2) time limits use of the algorithms to the largest computers when searching protein and DNA sequence databases, many other applications of these algorithms, such as calculation of distances for evolutionary trees and comparison of a new sequence to a library of sequence profiles, are well within the capabilities of desktop computers. In particular, the results of library searches with rapid searching programs, such as FASTA or BLAST, should be confirmed by performing a rigorous optimal alignment. Whereas rapid methods do not overlook significant sequence similarities, FASTA limits the number of gaps that can be inserted into an alignment, so that a rigorous alignment may extend the alignment substantially in some cases. BLAST does not allow gaps in the local regions that it reports; a calculation that allows gaps is very likely to extend the alignment substantially. Although a Monte Carlo evaluation of the statistical significance of a similarity score with a rigorous algorithm is much slower than the heuristic approach used by the RDF2 program, the dynamic programming approach should take less than 1 hr on a 386-based PC or desktop Unix workstation. For descriptive purposes, we have limited our discussion to methods for calculating similarity scores and distances that use gap penalties of the form g = rk. Nevertheless, programs for the more general case (g = q+rk) are readily available. Versions of these programs that run either on Unix workstations, IBM-PC class computers, or the Macintosh can be obtained from either of the authors.
Joint Chance-Constrained Dynamic Programming
Ono, Masahiro; Kuwata, Yoshiaki; Balaram, J. Bob
2012-01-01
This paper presents a novel dynamic programming algorithm with a joint chance constraint, which explicitly bounds the risk of failure in order to maintain the state within a specified feasible region. A joint chance constraint cannot be handled by existing constrained dynamic programming approaches since their application is limited to constraints in the same form as the cost function, that is, an expectation over a sum of one-stage costs. We overcome this challenge by reformulating the joint chance constraint into a constraint on an expectation over a sum of indicator functions, which can be incorporated into the cost function by dualizing the optimization problem. As a result, the primal variables can be optimized by a standard dynamic programming, while the dual variable is optimized by a root-finding algorithm that converges exponentially. Error bounds on the primal and dual objective values are rigorously derived. We demonstrate the algorithm on a path planning problem, as well as an optimal control problem for Mars entry, descent and landing. The simulations are conducted using a real terrain data of Mars, with four million discrete states at each time step.
A programming approach to computability
Kfoury, A J; Arbib, Michael A
1982-01-01
Computability theory is at the heart of theoretical computer science. Yet, ironically, many of its basic results were discovered by mathematical logicians prior to the development of the first stored-program computer. As a result, many texts on computability theory strike today's computer science students as far removed from their concerns. To remedy this, we base our approach to computability on the language of while-programs, a lean subset of PASCAL, and postpone consideration of such classic models as Turing machines, string-rewriting systems, and p. -recursive functions till the final chapter. Moreover, we balance the presentation of un solvability results such as the unsolvability of the Halting Problem with a presentation of the positive results of modern programming methodology, including the use of proof rules, and the denotational semantics of programs. Computer science seeks to provide a scientific basis for the study of information processing, the solution of problems by algorithms, and the design ...
Semiclassical approaches to nuclear dynamics
Energy Technology Data Exchange (ETDEWEB)
Magner, A. G., E-mail: magner@kinr.kiev.ua; Gorpinchenko, D. V. [Institute for Nuclear Research NASU (Ukraine); Bartel, J. [Université de Strasbourg, Institut Pluridisciplinaire Hubert Curien, CNRS/IN2P3 (France)
2017-01-15
The extended Gutzwiller trajectory approach is presented for the semiclassical description of nuclear collective dynamics, in line with the main topics of the fruitful activity of V.G. Solovjov. Within the Fermi-liquid droplet model, the leptodermous effective surface approximation was applied to calculations of energies, sum rules, and transition densities for the neutron–proton asymmetry of the isovector giant-dipole resonance and found to be in good agreement with the experimental data. By using the Strutinsky shell correction method, the semiclassical collective transport coefficients, such as nuclear inertia, friction, stiffness, and moments of inertia, can be derived beyond the quantum perturbation approximation of the response function theory and the cranking model. The averaged particle-number dependences of the low-lying collective vibrational states are described in good agreement with the basic experimental data, mainly due to the enhancement of the collective inertia as compared to its irrotational flow value. Shell components of the moment of inertia are derived in terms of the periodic-orbit free-energy shell corrections. A good agreement between the semiclassical extended Thomas–Fermi moments of inertia with shell corrections and the quantum results is obtained for different nuclear deformations and particle numbers. Shell effects are shown to be exponentially dampted out with increasing temperature in all the transport coefficients.
Semiclassical approaches to nuclear dynamics
International Nuclear Information System (INIS)
Magner, A. G.; Gorpinchenko, D. V.; Bartel, J.
2017-01-01
The extended Gutzwiller trajectory approach is presented for the semiclassical description of nuclear collective dynamics, in line with the main topics of the fruitful activity of V.G. Solovjov. Within the Fermi-liquid droplet model, the leptodermous effective surface approximation was applied to calculations of energies, sum rules, and transition densities for the neutron–proton asymmetry of the isovector giant-dipole resonance and found to be in good agreement with the experimental data. By using the Strutinsky shell correction method, the semiclassical collective transport coefficients, such as nuclear inertia, friction, stiffness, and moments of inertia, can be derived beyond the quantum perturbation approximation of the response function theory and the cranking model. The averaged particle-number dependences of the low-lying collective vibrational states are described in good agreement with the basic experimental data, mainly due to the enhancement of the collective inertia as compared to its irrotational flow value. Shell components of the moment of inertia are derived in terms of the periodic-orbit free-energy shell corrections. A good agreement between the semiclassical extended Thomas–Fermi moments of inertia with shell corrections and the quantum results is obtained for different nuclear deformations and particle numbers. Shell effects are shown to be exponentially dampted out with increasing temperature in all the transport coefficients.
Neutrophil programming dynamics and its disease relevance.
Ran, Taojing; Geng, Shuo; Li, Liwu
2017-11-01
Neutrophils are traditionally considered as first responders to infection and provide antimicrobial host defense. However, recent advances indicate that neutrophils are also critically involved in the modulation of host immune environments by dynamically adopting distinct functional states. Functionally diverse neutrophil subsets are increasingly recognized as critical components mediating host pathophysiology. Despite its emerging significance, molecular mechanisms as well as functional relevance of dynamically programmed neutrophils remain to be better defined. The increasing complexity of neutrophil functions may require integrative studies that address programming dynamics of neutrophils and their pathophysiological relevance. This review aims to provide an update on the emerging topics of neutrophil programming dynamics as well as their functional relevance in diseases.
Dynamical System Approaches to Combinatorial Optimization
DEFF Research Database (Denmark)
Starke, Jens
2013-01-01
of large times as an asymptotically stable point of the dynamics. The obtained solutions are often not globally optimal but good approximations of it. Dynamical system and neural network approaches are appropriate methods for distributed and parallel processing. Because of the parallelization......Several dynamical system approaches to combinatorial optimization problems are described and compared. These include dynamical systems derived from penalty methods; the approach of Hopfield and Tank; self-organizing maps, that is, Kohonen networks; coupled selection equations; and hybrid methods...... thereof can be used as models for many industrial problems like manufacturing planning and optimization of flexible manufacturing systems. This is illustrated for an example in distributed robotic systems....
A constructive approach to gene expression dynamics
International Nuclear Information System (INIS)
Ochiai, T.; Nacher, J.C.; Akutsu, T.
2004-01-01
Recently, experiments on mRNA abundance (gene expression) have revealed that gene expression shows a stationary organization described by a scale-free distribution. Here we propose a constructive approach to gene expression dynamics which restores the scale-free exponent and describes the intermediate state dynamics. This approach requires only one assumption: Markov property
Implementing corporate wellness programs: a business approach to program planning.
Helmer, D C; Dunn, L M; Eaton, K; Macedonio, C; Lubritz, L
1995-11-01
1. Support of key decision makers is critical to the successful implementation of a corporate wellness program. Therefore, the program implementation plan must be communicated in a format and language readily understood by business people. 2. A business approach to corporate wellness program planning provides a standardized way to communicate the implementation plan. 3. A business approach incorporates the program planning components in a format that ranges from general to specific. This approach allows for flexibility and responsiveness to changes in program planning. 4. Components of the business approach are the executive summary, purpose, background, ground rules, approach, requirements, scope of work, schedule, and financials.
Dynamical system approach to phyllotaxis
DEFF Research Database (Denmark)
D'ovidio, Francesco; Mosekilde, Erik
2000-01-01
and not a dynamical system, mainly because new active elements are added at each step, and thus the dimension of the "natural" phase space is not conserved. Here a construction is presented by which a well defined dynamical system can be obtained, and a bifurcation analysis can be carried out. Stable and unstable...... of the Jacobian, and thus the eigenvalues, is given. It is likely that problems of the above type often arise in biology, and especially in morphogenesis, where growing systems are modeled....
Rule of Thumb and Dynamic Programming
Lettau, M.; Uhlig, H.F.H.V.S.
1995-01-01
This paper studies the relationships between learning about rules of thumb (represented by classifier systems) and dynamic programming. Building on a result about Markovian stochastic approximation algorithms, we characterize all decision functions that can be asymptotically obtained through
Dynamic traffic assignment : genetic algorithms approach
1997-01-01
Real-time route guidance is a promising approach to alleviating congestion on the nations highways. A dynamic traffic assignment model is central to the development of guidance strategies. The artificial intelligence technique of genetic algorithm...
Quantum dynamical semigroups and approach to equilibrium
International Nuclear Information System (INIS)
Frigerio, A.
1977-01-01
For a quantum dynamical semigroup possessing a faithful normal stationary state, some conditions are discussed, which ensure the uniqueness of the equilibrium state and/or the approach to equilibrium for arbitrary initial condition. (Auth.)
Functional integral approach to classical statistical dynamics
International Nuclear Information System (INIS)
Jensen, R.V.
1980-04-01
A functional integral method is developed for the statistical solution of nonlinear stochastic differential equations which arise in classical dynamics. The functional integral approach provides a very natural and elegant derivation of the statistical dynamical equations that have been derived using the operator formalism of Martin, Siggia, and Rose
Creative-Dynamics Approach To Neural Intelligence
Zak, Michail A.
1992-01-01
Paper discusses approach to mathematical modeling of artificial neural networks exhibiting complicated behaviors reminiscent of creativity and intelligence of biological neural networks. Neural network treated as non-Lipschitzian dynamical system - as described in "Non-Lipschitzian Dynamics For Modeling Neural Networks" (NPO-17814). System serves as tool for modeling of temporal-pattern memories and recognition of complicated spatial patterns.
Dynamic Programming: An Introduction by Example
Zietz, Joachim
2007-01-01
The author introduces some basic dynamic programming techniques, using examples, with the help of the computer algebra system "Maple". The emphasis is on building confidence and intuition for the solution of dynamic problems in economics. To integrate the material better, the same examples are used to introduce different techniques. One covers the…
Guidelines for dynamic international programs
International Nuclear Information System (INIS)
Gold, M.A.
1993-01-01
Matters of global concern-deforestation, global warming, biodiversity loss, sustainable development, fuelwood crises, watershed destruction, and large-scale flooding-frequently involve forests and natural resources. In the future, university students will enter a global setting that more than ever depends on a strong knowledge of international issues. USA land-grant universities are attempting to prepare students for this challenge by improving their international programs including forestry. To improve university programs, several factors will need to be addressed and are discussed, with examples, in this article: commitment of the faculty; program specialization; geographic specialization; reward systems for international contributions; international collaboration; recycled dollars within the university; active teaching programs; research; extention and outreach; language training; international faculty; travel grants; twinning relationships with sister institutions; selective in pursuit of international development assistance; and study centers. 6 refs
A dynamic approach to vehicle scheduling
D. Huisman (Dennis); R. Freling (Richard); A.P.M. Wagelmans (Albert)
2001-01-01
textabstractThis paper presents a dynamic approach to the vehicle scheduling problem. We discuss the potential benefit of our approach compared to the traditional one, where the vehicle scheduling problem is solved only once for a whole period and the travel times are assumed to be fixed. In our
Dynamic Frames Based Verification Method for Concurrent Java Programs
Mostowski, Wojciech
2016-01-01
In this paper we discuss a verification method for concurrent Java programs based on the concept of dynamic frames. We build on our earlier work that proposes a new, symbolic permission system for concurrent reasoning and we provide the following new contributions. First, we describe our approach
A Dynamic Programming Algorithm for the k-Haplotyping Problem
Institute of Scientific and Technical Information of China (English)
Zhen-ping Li; Ling-yun Wu; Yu-ying Zhao; Xiang-sun Zhang
2006-01-01
The Minimum Fragments Removal (MFR) problem is one of the haplotyping problems: given a set of fragments, remove the minimum number of fragments so that the resulting fragments can be partitioned into k classes of non-conflicting subsets. In this paper, we formulate the k-MFR problem as an integer linear programming problem, and develop a dynamic programming approach to solve the k-MFR problem for both the gapless and gap cases.
Dynamics of Financial System: A System Dynamics Approach
Girish K. Nair; Lewlyn Lester Raj Rodrigues
2013-01-01
There are several ratios which define the financial health of an organization but the importance of Net cash flow, Gross income, Net income, Pending bills, Receivable bills, Debt, and Book value can never be undermined as they give the exact picture of the financial condition. While there are several approaches to study the dynamics of these variables, system dynamics based modelling and simulation is one of the modern techniques. The paper explores this method to simulate the before mentione...
A Unified Approach to Modeling and Programming
DEFF Research Database (Denmark)
Madsen, Ole Lehrmann; Møller-Pedersen, Birger
2010-01-01
of this paper is to go back to the future and get inspiration from SIMULA and propose a unied approach. In addition to reintroducing the contributions of SIMULA and the Scandinavian approach to object-oriented programming, we do this by discussing a number of issues in modeling and programming and argue3 why we......SIMULA was a language for modeling and programming and provided a unied approach to modeling and programming in contrast to methodologies based on structured analysis and design. The current development seems to be going in the direction of separation of modeling and programming. The goal...
Optimal Operation of Radial Distribution Systems Using Extended Dynamic Programming
DEFF Research Database (Denmark)
Lopez, Juan Camilo; Vergara, Pedro P.; Lyra, Christiano
2018-01-01
An extended dynamic programming (EDP) approach is developed to optimize the ac steady-state operation of radial electrical distribution systems (EDS). Based on the optimality principle of the recursive Hamilton-Jacobi-Bellman equations, the proposed EDP approach determines the optimal operation o...... approach is illustrated using real-scale systems and comparisons with commercial programming solvers. Finally, generalizations to consider other EDS operation problems are also discussed.......An extended dynamic programming (EDP) approach is developed to optimize the ac steady-state operation of radial electrical distribution systems (EDS). Based on the optimality principle of the recursive Hamilton-Jacobi-Bellman equations, the proposed EDP approach determines the optimal operation...... of the EDS by setting the values of the controllable variables at each time period. A suitable definition for the stages of the problem makes it possible to represent the optimal ac power flow of radial EDS as a dynamic programming problem, wherein the 'curse of dimensionality' is a minor concern, since...
Fission fragment distributions within dynamical approach
Energy Technology Data Exchange (ETDEWEB)
Mazurek, K. [Institute of Nuclear, Physics Polish Academy of Sciences, Krakow (Poland); Nadtochy, P.N. [Omsk State Technical University, Omsk (Russian Federation); Ryabov, E.G.; Adeev, G.D. [Omsk State University, Physics Department, Omsk (Russian Federation)
2017-04-15
The review covers recent developments and achievements in the dynamical description of fission process at high excitation energy. It is shown that the dynamical approach based on multidimensional Langevin equations combined with the statistical description of nuclear decay by particles evaporation is capable of fairly well describing the formation of fission fragment mass-energy, charge, and angular distributions of fission fragments in coincidence with the pre- and post-scission particle emission. The final yields of fission and evaporation residues channels products could be obtained. The detailed description of fission dynamics allows studying different stages of fission process, indicating the most important ingredients governing fission process and studying in detail such fundamental nuclear properties as nuclear viscosity and fission timescale. The tasks and perspectives of multidimensional dynamical approach are also discussed. (orig.)
Dynamic analysis program for frame structure
International Nuclear Information System (INIS)
Ando, Kozo; Chiba, Toshio
1975-01-01
A general purpose computer program named ISTRAN/FD (Isub(HI) STRucture ANalysis/Frame structure, Dynamic analysis) has been developed for dynamic analysis of three-dimensional frame structures. This program has functions of free vibration analysis, seismic response analysis, graphic display by plotter and CRT, etc. This paper introduces ISTRAN/FD; examples of its application are shown with various problems : idealization of the cantilever, dynamic analysis of the main tower of the suspension bridge, three-dimensional vibration in the plate girder bridge, seismic response in the boiler steel structure, and dynamic properties of the underground LNG tank. In this last example, solid elements, in addition to beam elements, are especially used for the analysis. (auth.)
Planar multibody dynamics formulation, programming and applications
Nikravesh, Parviz E
2007-01-01
Introduction Multibody Mechanical Systems Types of Analyses Methods of Formulation Computer Programming Application Examples Unit System Remarks Preliminaries Reference Axes Scalars and Vectors Matrices Vector, Array, and Matrix Differentiation Equations and Expressions Remarks Problems Fundamentals of Kinematics A Particle Kinematics of a Rigid Body Definitions Remarks Problems Fundamentals of Dynamics Newton's Laws of Motion Dynamics of a Body Force Elements Applied Forces Reaction Force Remarks Problems Point-Coordinates: Kinematics Multipoint
Computational neuropharmacology: dynamical approaches in drug discovery.
Aradi, Ildiko; Erdi, Péter
2006-05-01
Computational approaches that adopt dynamical models are widely accepted in basic and clinical neuroscience research as indispensable tools with which to understand normal and pathological neuronal mechanisms. Although computer-aided techniques have been used in pharmaceutical research (e.g. in structure- and ligand-based drug design), the power of dynamical models has not yet been exploited in drug discovery. We suggest that dynamical system theory and computational neuroscience--integrated with well-established, conventional molecular and electrophysiological methods--offer a broad perspective in drug discovery and in the search for novel targets and strategies for the treatment of neurological and psychiatric diseases.
Configuring Airspace Sectors with Approximate Dynamic Programming
Bloem, Michael; Gupta, Pramod
2010-01-01
In response to changing traffic and staffing conditions, supervisors dynamically configure airspace sectors by assigning them to control positions. A finite horizon airspace sector configuration problem models this supervisor decision. The problem is to select an airspace configuration at each time step while considering a workload cost, a reconfiguration cost, and a constraint on the number of control positions at each time step. Three algorithms for this problem are proposed and evaluated: a myopic heuristic, an exact dynamic programming algorithm, and a rollouts approximate dynamic programming algorithm. On problem instances from current operations with only dozens of possible configurations, an exact dynamic programming solution gives the optimal cost value. The rollouts algorithm achieves costs within 2% of optimal for these instances, on average. For larger problem instances that are representative of future operations and have thousands of possible configurations, excessive computation time prohibits the use of exact dynamic programming. On such problem instances, the rollouts algorithm reduces the cost achieved by the heuristic by more than 15% on average with an acceptable computation time.
A stochastic programming approach to manufacturing flow control
Haurie, Alain; Moresino, Francesco
2012-01-01
This paper proposes and tests an approximation of the solution of a class of piecewise deterministic control problems, typically used in the modeling of manufacturing flow processes. This approximation uses a stochastic programming approach on a suitably discretized and sampled system. The method proceeds through two stages: (i) the Hamilton-Jacobi-Bellman (HJB) dynamic programming equations for the finite horizon continuous time stochastic control problem are discretized over a set of sample...
Dynamical Systems Approaches to Emotional Development
Camras, Linda A.; Witherington, David C.
2005-01-01
Within the last 20 years, transitions in the conceptualization of emotion and its development have given rise to calls for an explanatory framework that captures emotional development in all its organizational complexity and variability. Recent attempts have been made to couch emotional development in terms of a dynamical systems approach through…
The Dynamic Geometrisation of Computer Programming
Sinclair, Nathalie; Patterson, Margaret
2018-01-01
The goal of this paper is to explore dynamic geometry environments (DGE) as a type of computer programming language. Using projects created by secondary students in one particular DGE, we analyse the extent to which the various aspects of computational thinking--including both ways of doing things and particular concepts--were evident in their…
Quantum optical device accelerating dynamic programming
Grigoriev, D.; Kazakov, A.; Vakulenko, S.
2005-01-01
In this paper we discuss analogue computers based on quantum optical systems accelerating dynamic programming for some computational problems. These computers, at least in principle, can be realized by actually existing devices. We estimate an acceleration in resolving of some NP-hard problems that can be obtained in such a way versus deterministic computers
Microsoft Dynamics NAV 7 programming cookbook
Raul, Rakesh
2013-01-01
Written in the style of a cookbook. Microsoft Dynamics NAV 7 Programming Cookbook is full of recipes to help you get the job done.If you are a junior / entry-level NAV developer then the first half of the book is designed primarily for you. You may or may not have any experience programming. It focuses on the basics of NAV programming.If you are a mid-level NAV developer, you will find these chapters explain how to think outside of the NAV box when building solutions. There are also recipes that senior developers will find useful.
Stochastic control theory dynamic programming principle
Nisio, Makiko
2015-01-01
This book offers a systematic introduction to the optimal stochastic control theory via the dynamic programming principle, which is a powerful tool to analyze control problems. First we consider completely observable control problems with finite horizons. Using a time discretization we construct a nonlinear semigroup related to the dynamic programming principle (DPP), whose generator provides the Hamilton–Jacobi–Bellman (HJB) equation, and we characterize the value function via the nonlinear semigroup, besides the viscosity solution theory. When we control not only the dynamics of a system but also the terminal time of its evolution, control-stopping problems arise. This problem is treated in the same frameworks, via the nonlinear semigroup. Its results are applicable to the American option price problem. Zero-sum two-player time-homogeneous stochastic differential games and viscosity solutions of the Isaacs equations arising from such games are studied via a nonlinear semigroup related to DPP (the min-ma...
Charting Multidisciplinary Team External Dynamics Using a Systems Thinking Approach
Barthelemy, Jean-Francois; Waszak, Martin R.; Jones, Kenneth M.; Silcox, Richard J.; Silva, Walter A.; Nowaczyk, Ronald H.
1998-01-01
Using the formalism provided by the Systems Thinking approach, the dynamics present when operating multidisciplinary teams are examined in the context of the NASA Langley Research and Technology Group, an R&D organization organized along functional lines. The paper focuses on external dynamics and examines how an organization creates and nurtures the teams and how it disseminates and retains the lessons and expertise created by the multidisciplinary activities. Key variables are selected and the causal relationships between the variables are identified. Five "stories" are told, each of which touches on a different aspect of the dynamics. The Systems Thinking Approach provides recommendations as to interventions that will facilitate the introduction of multidisciplinary teams and that therefore will increase the likelihood of performing successful multidisciplinary developments. These interventions can be carried out either by individual researchers, line management or program management.
Understanding the Entrepreneurial Process: a Dynamic Approach
Directory of Open Access Journals (Sweden)
Vânia Maria Jorge Nassif
2010-04-01
Full Text Available There is considerable predominance in the adoption of perspectives based on characteristics in research into entrepreneurship. However, most studies describe the entrepreneur from a static or snapshot approach; very few adopt a dynamic perspective. The aim of this study is to contribute to the enhancement of knowledge concerning entrepreneurial process dynamics through an understanding of the values, characteristics and actions of the entrepreneur over time. By focusing on personal attributes, we have developed a framework that shows the importance of affective and cognitive aspects of entrepreneurs and the way that they evolve during the development of their business.
Challenges in fluid dynamics a new approach
Zeytounian, R Kh
2017-01-01
This monograph presents a synopsis of fluid dynamics based on the personal scientific experience of the author who has contributed immensely to the field. The interested reader will also benefit from the general historical context in which the material is presented in the book. The book covers a wide range of relevant topics of the field, and the main tool being rational asymptotic modelling (RAM) approach. The target audience primarily comprises experts in the field of fluid dynamics, but the book may also be beneficial for graduate students.
Dynamical maximum entropy approach to flocking.
Cavagna, Andrea; Giardina, Irene; Ginelli, Francesco; Mora, Thierry; Piovani, Duccio; Tavarone, Raffaele; Walczak, Aleksandra M
2014-04-01
We derive a new method to infer from data the out-of-equilibrium alignment dynamics of collectively moving animal groups, by considering the maximum entropy model distribution consistent with temporal and spatial correlations of flight direction. When bird neighborhoods evolve rapidly, this dynamical inference correctly learns the parameters of the model, while a static one relying only on the spatial correlations fails. When neighbors change slowly and the detailed balance is satisfied, we recover the static procedure. We demonstrate the validity of the method on simulated data. The approach is applicable to other systems of active matter.
Hybrid Semantics of Stochastic Programs with Dynamic Reconfiguration
Directory of Open Access Journals (Sweden)
Alberto Policriti
2009-10-01
Full Text Available We begin by reviewing a technique to approximate the dynamics of stochastic programs --written in a stochastic process algebra-- by a hybrid system, suitable to capture a mixed discrete/continuous evolution. In a nutshell, the discrete dynamics is kept stochastic while the continuous evolution is given in terms of ODEs, and the overall technique, therefore, naturally associates a Piecewise Deterministic Markov Process with a stochastic program. The speciﬁc contribution in this work consists in an increase of the ﬂexibility of the translation scheme, obtained by allowing a dynamic reconﬁguration of the degree of discreteness/continuity of the semantics. We also discuss the relationships of this approach with other hybrid simulation strategies for biochemical systems.
An analytic approach to cyber adversarial dynamics
Sweeney, Patrick; Cybenko, George
2012-06-01
To date, cyber security investment by both the government and commercial sectors has been largely driven by the myopic best response of players to the actions of their adversaries and their perception of the adversarial environment. However, current work in applying traditional game theory to cyber operations typically assumes that games exist with prescribed moves, strategies, and payos. This paper presents an analytic approach to characterizing the more realistic cyber adversarial metagame that we believe is being played. Examples show that understanding the dynamic metagame provides opportunities to exploit an adversary's anticipated attack strategy. A dynamic version of a graph-based attack-defend game is introduced, and a simulation shows how an optimal strategy can be selected for success in the dynamic environment.
Probabilistic approach to manipulator kinematics and dynamics
International Nuclear Information System (INIS)
Rao, S.S.; Bhatti, P.K.
2001-01-01
A high performance, high speed robotic arm must be able to manipulate objects with a high degree of accuracy and repeatability. As with any other physical system, there are a number of factors causing uncertainties in the behavior of a robotic manipulator. These factors include manufacturing and assembling tolerances, and errors in the joint actuators and controllers. In order to study the effect of these uncertainties on the robotic end-effector and to obtain a better insight into the manipulator behavior, the manipulator kinematics and dynamics are modeled using a probabilistic approach. Based on the probabilistic model, kinematic and dynamic performance criteria are defined to provide measures of the behavior of the robotic end-effector. Techniques are presented to compute the kinematic and dynamic reliabilities of the manipulator. The effects of tolerances associated with the various manipulator parameters on the reliabilities are studied. Numerical examples are presented to illustrate the procedures
DYNAMIC PROGRAMMING – EFFICIENT TOOL FOR POWER SYSTEM EXPANSION PLANNING
Directory of Open Access Journals (Sweden)
SIMO A.
2015-03-01
Full Text Available The paper isfocusing on dynamic programming use for power system expansion planning (EP – transmission network (TNEP and distribution network (DNEP. The EP problem has been approached from the retrospective and prospective point of view. To achieve this goal, the authors are developing two software-tools in Matlab environment. Two techniques have been tackled: particle swarm optimization (PSO and genetic algorithms (GA. The case study refers to Test 25 buses test power system developed within the Power Systems Department.
Markdown Optimization via Approximate Dynamic Programming
Directory of Open Access Journals (Sweden)
Cos?gun
2013-02-01
Full Text Available We consider the markdown optimization problem faced by the leading apparel retail chain. Because of substitution among products the markdown policy of one product affects the sales of other products. Therefore, markdown policies for product groups having a significant crossprice elasticity among each other should be jointly determined. Since the state space of the problem is very huge, we use Approximate Dynamic Programming. Finally, we provide insights on the behavior of how each product price affects the markdown policy.
Approaches to Learning to Control Dynamic Uncertainty
Directory of Open Access Journals (Sweden)
Magda Osman
2015-10-01
Full Text Available In dynamic environments, when faced with a choice of which learning strategy to adopt, do people choose to mostly explore (maximizing their long term gains or exploit (maximizing their short term gains? More to the point, how does this choice of learning strategy influence one’s later ability to control the environment? In the present study, we explore whether people’s self-reported learning strategies and levels of arousal (i.e., surprise, stress correspond to performance measures of controlling a Highly Uncertain or Moderately Uncertain dynamic environment. Generally, self-reports suggest a preference for exploring the environment to begin with. After which, those in the Highly Uncertain environment generally indicated they exploited more than those in the Moderately Uncertain environment; this difference did not impact on performance on later tests of people’s ability to control the dynamic environment. Levels of arousal were also differentially associated with the uncertainty of the environment. Going beyond behavioral data, our model of dynamic decision-making revealed that, in actual fact, there was no difference in exploitation levels between those in the highly uncertain or moderately uncertain environments, but there were differences based on sensitivity to negative reinforcement. We consider the implications of our findings with respect to learning and strategic approaches to controlling dynamic uncertainty.
Comparing approaches to generic programming in Haskell
Hinze, R.; Jeuring, J.T.; Löh, A.
2006-01-01
The last decade has seen a number of approaches to generic programming: PolyP, Functorial ML, `Scrap Your Boilerplate', Generic Haskell, `Generics for the Masses', etc. The approaches vary in sophistication and target audience: some propose full-blown pro- gramming languages, some suggest
Comparing approaches to generic programming in Haskell
Hinze, R.; Jeuring, J.T.; Löh, A.
2006-01-01
The last decade has seen a number of approaches to data- type-generic programming: PolyP, Functorial ML, `Scrap Your Boiler- plate', Generic Haskell, `Generics for the Masses', etc. The approaches vary in sophistication and target audience: some propose full-blown pro- gramming languages, some
A Novel Approach for Solving Semidefinite Programs
Directory of Open Access Journals (Sweden)
Hong-Wei Jiao
2014-01-01
Full Text Available A novel linearizing alternating direction augmented Lagrangian approach is proposed for effectively solving semidefinite programs (SDP. For every iteration, by fixing the other variables, the proposed approach alternatively optimizes the dual variables and the dual slack variables; then the primal variables, that is, Lagrange multipliers, are updated. In addition, the proposed approach renews all the variables in closed forms without solving any system of linear equations. Global convergence of the proposed approach is proved under mild conditions, and two numerical problems are given to demonstrate the effectiveness of the presented approach.
DYNAMICS OF FINANCIAL SYSTEM: A SYSTEM DYNAMICS APPROACH
Directory of Open Access Journals (Sweden)
Girish K Nair
2013-01-01
Full Text Available There are several ratios which define the financial health of an organization but the importance of Net cash flow, Gross income, Net income, Pending bills, Receivable bills, Debt, and Book value can never be undermined as they give the exact picture of the financial condition. While there are several approaches to study the dynamics of these variables, system dynamics based modelling and simulation is one of the modern techniques. The paper explores this method to simulate the before mentioned parameters during production capacity expansion in an electronic industry. Debt and Book value have shown a non-linear pattern of variation which is discussed. The model can be used by the financial experts as a decision support tool in arriving at conclusions in connection to the expansion plans of the organization.
A reliability program approach to operational safety
International Nuclear Information System (INIS)
Mueller, C.J.; Bezella, W.A.
1985-01-01
A Reliability Program (RP) model based on proven reliability techniques is being formulated for potential application in the nuclear power industry. Methods employed under NASA and military direction, commercial airline and related FAA programs were surveyed and a review of current nuclear risk-dominant issues conducted. The need for a reliability approach to address dependent system failures, operating and emergency procedures and human performance, and develop a plant-specific performance data base for safety decision making is demonstrated. Current research has concentrated on developing a Reliability Program approach for the operating phase of a nuclear plant's lifecycle. The approach incorporates performance monitoring and evaluation activities with dedicated tasks that integrate these activities with operation, surveillance, and maintenance of the plant. The detection, root-cause evaluation and before-the-fact correction of incipient or actual systems failures as a mechanism for maintaining plant safety is a major objective of the Reliability Program. (orig./HP)
Sandia Dynamic Materials Program Strategic Plan.
Energy Technology Data Exchange (ETDEWEB)
Flicker, Dawn Gustine [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Benage, John F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Desjarlais, Michael P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Knudson, Marcus D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Leifeste, Gordon T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lemke, Raymond W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mattsson, Thomas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wise, Jack L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2017-05-01
Materials in nuclear and conventional weapons can reach multi-megabar pressures and 1000s of degree temperatures on timescales ranging from microseconds to nanoseconds. Understanding the response of complex materials under these conditions is important for designing and assessing changes to nuclear weapons. In the next few decades, a major concern will be evaluating the behavior of aging materials and remanufactured components. The science to enable the program to underwrite decisions quickly and confidently on use, remanufacturing, and replacement of these materials will be critical to NNSA’s new Stockpile Responsiveness Program. Material response is also important for assessing the risks posed by adversaries or proliferants. Dynamic materials research, which refers to the use of high-speed experiments to produce extreme conditions in matter, is an important part of NNSA’s Stockpile Stewardship Program.
Computational approach to large quantum dynamical problems
International Nuclear Information System (INIS)
Friesner, R.A.; Brunet, J.P.; Wyatt, R.E.; Leforestier, C.; Binkley, S.
1987-01-01
The organizational structure is described for a new program that permits computations on a variety of quantum mechanical problems in chemical dynamics and spectroscopy. Particular attention is devoted to developing and using algorithms that exploit the capabilities of current vector supercomputers. A key component in this procedure is the recursive transformation of the large sparse Hamiltonian matrix into a much smaller tridiagonal matrix. An application to time-dependent laser molecule energy transfer is presented. Rate of energy deposition in the multimode molecule for systematic variations in the molecular intermode coupling parameters is emphasized
A dynamic approach to technology transfer
International Nuclear Information System (INIS)
Shave, D.F.; Kent, G.F.; Giambusso, A.; Jacobs, S.B.
1987-01-01
Stone and Webster Engineering Corporation has developed a systematic program for achieving efficient, effective technology transfer. This program is based on transferring both know-why and know-how. The transfer of know-why and know-how is achieved most effectively by working in partnership with the recipient of the technology; by employing five primary transfer mechanisms, according to the type of learning required; by treating the technology transfer as a designed process rather than an isolated event; and by using a project management approach to control and direct the process. This paper describes the philosophy, process, and training mechanisms that have worked for Stone and Webster, as well as the project management approach needed for the most effective transfer of technology. (author)
A first approach to filament dynamics
International Nuclear Information System (INIS)
Silva, P E S; De Abreu, F Vistulo; Dias, R G; Simoes, R
2010-01-01
Modelling elastic filament dynamics is a topic of high interest due to the wide range of applications. However, it has reached a high level of complexity in the literature, making it unaccessible to a beginner. In this paper we explain the main steps involved in the computational modelling of the dynamics of an elastic filament. We first derive equations governing the dynamics of an elastic lament suitable for a computer simulation implementation. The derivation starts from the relation between forces and potential energy in conservative systems in order to derive the equation of motion of any bead in the filament. Only two-dimensional movements are considered, but extensions to three dimensions can follow similar lines. Suggestions for computer implementations are provided in Matlab as well as an example of application related to the generation of musical sounds. This example allows a critical analysis of the numerical results obtained using a cross-disciplinary perspective. Since derivations start from basic physics equations, use simple calculus and computational implementations are straightforward, this paper proposes a different approach to introduce simple molecular dynamics simulations or animations of real systems in undergraduate elasticity or computer modelling courses.
A dynamic approach to recognition memory.
Cox, Gregory E; Shiffrin, Richard M
2017-11-01
We present a dynamic model of memory that integrates the processes of perception, retrieval from knowledge, retrieval of events, and decision making as these evolve from 1 moment to the next. The core of the model is that recognition depends on tracking changes in familiarity over time from an initial baseline generally determined by context, with these changes depending on the availability of different kinds of information at different times. A mathematical implementation of this model leads to precise, accurate predictions of accuracy, response time, and speed-accuracy trade-off in episodic recognition at the levels of both groups and individuals across a variety of paradigms. Our approach leads to novel insights regarding word frequency, speeded responding, context reinstatement, short-term priming, similarity, source memory, and associative recognition, revealing how the same set of core dynamic principles can help unify otherwise disparate phenomena in the study of memory. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Computational fluid dynamics a practical approach
Tu, Jiyuan; Liu, Chaoqun
2018-01-01
Computational Fluid Dynamics: A Practical Approach, Third Edition, is an introduction to CFD fundamentals and commercial CFD software to solve engineering problems. The book is designed for a wide variety of engineering students new to CFD, and for practicing engineers learning CFD for the first time. Combining an appropriate level of mathematical background, worked examples, computer screen shots, and step-by-step processes, this book walks the reader through modeling and computing, as well as interpreting CFD results. This new edition has been updated throughout, with new content and improved figures, examples and problems.
Adaptive Dynamic Programming for Control Algorithms and Stability
Zhang, Huaguang; Luo, Yanhong; Wang, Ding
2013-01-01
There are many methods of stable controller design for nonlinear systems. In seeking to go beyond the minimum requirement of stability, Adaptive Dynamic Programming for Control approaches the challenging topic of optimal control for nonlinear systems using the tools of adaptive dynamic programming (ADP). The range of systems treated is extensive; affine, switched, singularly perturbed and time-delay nonlinear systems are discussed as are the uses of neural networks and techniques of value and policy iteration. The text features three main aspects of ADP in which the methods proposed for stabilization and for tracking and games benefit from the incorporation of optimal control methods: • infinite-horizon control for which the difficulty of solving partial differential Hamilton–Jacobi–Bellman equations directly is overcome, and proof provided that the iterative value function updating sequence converges to the infimum of all the value functions obtained by admissible control law sequences; • finite-...
Adaptive dynamic programming with applications in optimal control
Liu, Derong; Wang, Ding; Yang, Xiong; Li, Hongliang
2017-01-01
This book covers the most recent developments in adaptive dynamic programming (ADP). The text begins with a thorough background review of ADP making sure that readers are sufficiently familiar with the fundamentals. In the core of the book, the authors address first discrete- and then continuous-time systems. Coverage of discrete-time systems starts with a more general form of value iteration to demonstrate its convergence, optimality, and stability with complete and thorough theoretical analysis. A more realistic form of value iteration is studied where value function approximations are assumed to have finite errors. Adaptive Dynamic Programming also details another avenue of the ADP approach: policy iteration. Both basic and generalized forms of policy-iteration-based ADP are studied with complete and thorough theoretical analysis in terms of convergence, optimality, stability, and error bounds. Among continuous-time systems, the control of affine and nonaffine nonlinear systems is studied using the ADP app...
A dynamic approach to dependability studies
International Nuclear Information System (INIS)
Labeau, P.E.
2008-01-01
Dependability studies have now become an important part of the performance management of industrial plants. These last decades, several methods have been proposed and widely used for the analysis of systems of components subject to degradation and failure. These methods are based either on Boolean representations (for example, event trees/fault trees), or on discrete-state models (Markovian reliability, Petri nets, Bayesian networks...). However, the underlying, inherently continuous, physical processes have scarcely been accounted for, at least in an integrated fashion, in dependability studies. This paper first describes, through simple cases, the limitations of discrete approaches and the need of hybrid, discrete-continuous methods. It then summarizes the main concepts of dynamic reliability. Finally, some possible application domains are presented, as well as challenges that still need to be tackled to favour the diffusion of this approach among industrial circles. (author)
Decomposing the misery index: A dynamic approach
Directory of Open Access Journals (Sweden)
Ivan K. Cohen
2014-12-01
Full Text Available The misery index (the unweighted sum of unemployment and inflation rates was probably the first attempt to develop a single statistic to measure the level of a population’s economic malaise. In this letter, we develop a dynamic approach to decompose the misery index using two basic relations of modern macroeconomics: the expectations-augmented Phillips curve and Okun’s law. Our reformulation of the misery index is closer in spirit to Okun’s idea. However, we are able to offer an improved version of the index, mainly based on output and unemployment. Specifically, this new Okun’s index measures the level of economic discomfort as a function of three key factors: (1 the misery index in the previous period; (2 the output gap in growth rate terms; and (3 cyclical unemployment. This dynamic approach differs substantially from the standard one utilised to develop the misery index, and allow us to obtain an index with five main interesting features: (1 it focuses on output, unemployment and inflation; (2 it considers only objective variables; (3 it allows a distinction between short-run and long-run phenomena; (4 it places more importance on output and unemployment rather than inflation; and (5 it weights recessions more than expansions.
Testing Object-Oriented Programs using Dynamic Aspects and Non-Determinism
DEFF Research Database (Denmark)
Achenbach, Michael; Ostermann, Klaus
2010-01-01
decisions exposing private data. We present an approach that both improves the expressiveness of test cases using non-deterministic choice and reduces design modifications using dynamic aspect-oriented programming techniques. Non-deterministic choice facilitates local definitions of multiple executions...... without parameterization or generation of tests. It also eases modelling naturally non-deterministic program features like IO or multi-threading in integration tests. Dynamic AOP facilitates powerful design adaptations without exposing test features, keeping the scope of these adaptations local to each...... test. We also combine non-determinism and dynamic aspects in a new approach to testing multi-threaded programs using co-routines....
Automated Flight Routing Using Stochastic Dynamic Programming
Ng, Hok K.; Morando, Alex; Grabbe, Shon
2010-01-01
Airspace capacity reduction due to convective weather impedes air traffic flows and causes traffic congestion. This study presents an algorithm that reroutes flights in the presence of winds, enroute convective weather, and congested airspace based on stochastic dynamic programming. A stochastic disturbance model incorporates into the reroute design process the capacity uncertainty. A trajectory-based airspace demand model is employed for calculating current and future airspace demand. The optimal routes minimize the total expected traveling time, weather incursion, and induced congestion costs. They are compared to weather-avoidance routes calculated using deterministic dynamic programming. The stochastic reroutes have smaller deviation probability than the deterministic counterpart when both reroutes have similar total flight distance. The stochastic rerouting algorithm takes into account all convective weather fields with all severity levels while the deterministic algorithm only accounts for convective weather systems exceeding a specified level of severity. When the stochastic reroutes are compared to the actual flight routes, they have similar total flight time, and both have about 1% of travel time crossing congested enroute sectors on average. The actual flight routes induce slightly less traffic congestion than the stochastic reroutes but intercept more severe convective weather.
Runway Scheduling Using Generalized Dynamic Programming
Montoya, Justin; Wood, Zachary; Rathinam, Sivakumar
2011-01-01
A generalized dynamic programming method for finding a set of pareto optimal solutions for a runway scheduling problem is introduced. The algorithm generates a set of runway fight sequences that are optimal for both runway throughput and delay. Realistic time-based operational constraints are considered, including miles-in-trail separation, runway crossings, and wake vortex separation. The authors also model divergent runway takeoff operations to allow for reduced wake vortex separation. A modeled Dallas/Fort Worth International airport and three baseline heuristics are used to illustrate preliminary benefits of using the generalized dynamic programming method. Simulated traffic levels ranged from 10 aircraft to 30 aircraft with each test case spanning 15 minutes. The optimal solution shows a 40-70 percent decrease in the expected delay per aircraft over the baseline schedulers. Computational results suggest that the algorithm is promising for real-time application with an average computation time of 4.5 seconds. For even faster computation times, two heuristics are developed. As compared to the optimal, the heuristics are within 5% of the expected delay per aircraft and 1% of the expected number of runway operations per hour ad can be 100x faster.
Developmental Programming of Renal Function and Re-Programming Approaches.
Nüsken, Eva; Dötsch, Jörg; Weber, Lutz T; Nüsken, Kai-Dietrich
2018-01-01
Chronic kidney disease affects more than 10% of the population. Programming studies have examined the interrelationship between environmental factors in early life and differences in morbidity and mortality between individuals. A number of important principles has been identified, namely permanent structural modifications of organs and cells, long-lasting adjustments of endocrine regulatory circuits, as well as altered gene transcription. Risk factors include intrauterine deficiencies by disturbed placental function or maternal malnutrition, prematurity, intrauterine and postnatal stress, intrauterine and postnatal overnutrition, as well as dietary dysbalances in postnatal life. This mini-review discusses critical developmental periods and long-term sequelae of renal programming in humans and presents studies examining the underlying mechanisms as well as interventional approaches to "re-program" renal susceptibility toward disease. Clinical manifestations of programmed kidney disease include arterial hypertension, proteinuria, aggravation of inflammatory glomerular disease, and loss of kidney function. Nephron number, regulation of the renin-angiotensin-aldosterone system, renal sodium transport, vasomotor and endothelial function, myogenic response, and tubuloglomerular feedback have been identified as being vulnerable to environmental factors. Oxidative stress levels, metabolic pathways, including insulin, leptin, steroids, and arachidonic acid, DNA methylation, and histone configuration may be significantly altered by adverse environmental conditions. Studies on re-programming interventions focused on dietary or anti-oxidative approaches so far. Further studies that broaden our understanding of renal programming mechanisms are needed to ultimately develop preventive strategies. Targeted re-programming interventions in animal models focusing on known mechanisms will contribute to new concepts which finally will have to be translated to human application. Early
Heart Rate Fragmentation: A Symbolic Dynamical Approach
Directory of Open Access Journals (Sweden)
Madalena D. Costa
2017-11-01
Full Text Available Background: We recently introduced the concept of heart rate fragmentation along with a set of metrics for its quantification. The term was coined to refer to an increase in the percentage of changes in heart rate acceleration sign, a dynamical marker of a type of anomalous variability. The effort was motivated by the observation that fragmentation, which is consistent with the breakdown of the neuroautonomic-electrophysiologic control system of the sino-atrial node, could confound traditional short-term analysis of heart rate variability.Objective: The objectives of this study were to: (1 introduce a symbolic dynamical approach to the problem of quantifying heart rate fragmentation; (2 evaluate how the distribution of the different dynamical patterns (“words” varied with the participants' age in a group of healthy subjects and patients with coronary artery disease (CAD; and (3 quantify the differences in the fragmentation patterns between the two sample populations.Methods: The symbolic dynamical method employed here was based on a ternary map of the increment NN interval time series and on the analysis of the relative frequency of symbolic sequences (words with a pre-defined set of features. We analyzed annotated, open-access Holter databases of healthy subjects and patients with CAD, provided by the University of Rochester Telemetric and Holter ECG Warehouse (THEW.Results: The degree of fragmentation was significantly higher in older individuals than in their younger counterparts. However, the fragmentation patterns were different in the two sample populations. In healthy subjects, older age was significantly associated with a higher percentage of transitions from acceleration/deceleration to zero acceleration and vice versa (termed “soft” inflection points. In patients with CAD, older age was also significantly associated with higher percentages of frank reversals in heart rate acceleration (transitions from acceleration to
Developmental Programming of Renal Function and Re-Programming Approaches
Directory of Open Access Journals (Sweden)
Eva Nüsken
2018-02-01
Full Text Available Chronic kidney disease affects more than 10% of the population. Programming studies have examined the interrelationship between environmental factors in early life and differences in morbidity and mortality between individuals. A number of important principles has been identified, namely permanent structural modifications of organs and cells, long-lasting adjustments of endocrine regulatory circuits, as well as altered gene transcription. Risk factors include intrauterine deficiencies by disturbed placental function or maternal malnutrition, prematurity, intrauterine and postnatal stress, intrauterine and postnatal overnutrition, as well as dietary dysbalances in postnatal life. This mini-review discusses critical developmental periods and long-term sequelae of renal programming in humans and presents studies examining the underlying mechanisms as well as interventional approaches to “re-program” renal susceptibility toward disease. Clinical manifestations of programmed kidney disease include arterial hypertension, proteinuria, aggravation of inflammatory glomerular disease, and loss of kidney function. Nephron number, regulation of the renin–angiotensin–aldosterone system, renal sodium transport, vasomotor and endothelial function, myogenic response, and tubuloglomerular feedback have been identified as being vulnerable to environmental factors. Oxidative stress levels, metabolic pathways, including insulin, leptin, steroids, and arachidonic acid, DNA methylation, and histone configuration may be significantly altered by adverse environmental conditions. Studies on re-programming interventions focused on dietary or anti-oxidative approaches so far. Further studies that broaden our understanding of renal programming mechanisms are needed to ultimately develop preventive strategies. Targeted re-programming interventions in animal models focusing on known mechanisms will contribute to new concepts which finally will have to be translated
Developmental Programming of Renal Function and Re-Programming Approaches
Nüsken, Eva; Dötsch, Jörg; Weber, Lutz T.; Nüsken, Kai-Dietrich
2018-01-01
Chronic kidney disease affects more than 10% of the population. Programming studies have examined the interrelationship between environmental factors in early life and differences in morbidity and mortality between individuals. A number of important principles has been identified, namely permanent structural modifications of organs and cells, long-lasting adjustments of endocrine regulatory circuits, as well as altered gene transcription. Risk factors include intrauterine deficiencies by disturbed placental function or maternal malnutrition, prematurity, intrauterine and postnatal stress, intrauterine and postnatal overnutrition, as well as dietary dysbalances in postnatal life. This mini-review discusses critical developmental periods and long-term sequelae of renal programming in humans and presents studies examining the underlying mechanisms as well as interventional approaches to “re-program” renal susceptibility toward disease. Clinical manifestations of programmed kidney disease include arterial hypertension, proteinuria, aggravation of inflammatory glomerular disease, and loss of kidney function. Nephron number, regulation of the renin–angiotensin–aldosterone system, renal sodium transport, vasomotor and endothelial function, myogenic response, and tubuloglomerular feedback have been identified as being vulnerable to environmental factors. Oxidative stress levels, metabolic pathways, including insulin, leptin, steroids, and arachidonic acid, DNA methylation, and histone configuration may be significantly altered by adverse environmental conditions. Studies on re-programming interventions focused on dietary or anti-oxidative approaches so far. Further studies that broaden our understanding of renal programming mechanisms are needed to ultimately develop preventive strategies. Targeted re-programming interventions in animal models focusing on known mechanisms will contribute to new concepts which finally will have to be translated to human application
A combined stochastic programming and optimal control approach to personal finance and pensions
DEFF Research Database (Denmark)
Konicz, Agnieszka Karolina; Pisinger, David; Rasmussen, Kourosh Marjani
2015-01-01
The paper presents a model that combines a dynamic programming (stochastic optimal control) approach and a multi-stage stochastic linear programming approach (SLP), integrated into one SLP formulation. Stochastic optimal control produces an optimal policy that is easy to understand and implement....
Variational approach to nuclear fluid dynamics
International Nuclear Information System (INIS)
Da Providencia, J.P.; Holzwarth, G.
1983-01-01
A variational derivation of a fluid-dynamical formalism for finite Fermi systems is presented which is based on a single determinant as variational function and does not exclude the possibility of transverse flow. Therefore the explicit specification of the time-odd part has to go beyond the local chi-approximation, while the time-even part is taken in the generalized scaling form. The necessary boundary conditions are derived from the variation of the lagrangian. The results confirm previous simplified approaches to a remarkable degree for quadrupole modes; for other multipolarities the deviations are much less than might be expected according to a sizeable change in the transverse sound speed. (orig.)
Thermospheric dynamics - A system theory approach
Codrescu, M.; Forbes, J. M.; Roble, R. G.
1990-01-01
A system theory approach to thermospheric modeling is developed, based upon a linearization method which is capable of preserving nonlinear features of a dynamical system. The method is tested using a large, nonlinear, time-varying system, namely the thermospheric general circulation model (TGCM) of the National Center for Atmospheric Research. In the linearized version an equivalent system, defined for one of the desired TGCM output variables, is characterized by a set of response functions that is constructed from corresponding quasi-steady state and unit sample response functions. The linearized version of the system runs on a personal computer and produces an approximation of the desired TGCM output field height profile at a given geographic location.
Systems approaches to study root architecture dynamics
Directory of Open Access Journals (Sweden)
Candela eCuesta
2013-12-01
Full Text Available The plant root system is essential for providing anchorage to the soil, supplying minerals and water, and synthesizing metabolites. It is a dynamic organ modulated by external cues such as environmental signals, water and nutrients availability, salinity and others. Lateral roots are initiated from the primary root post-embryonically, after which they progress through discrete developmental stages which can be independently controlled, providing a high level of plasticity during root system formation.Within this review, main contributions are presented, from the classical forward genetic screens to the more recent high-throughput approaches, combined with computer model predictions, dissecting how lateral roots and thereby root system architecture is established and developed.
Programming Unconventional Computers: Dynamics, Development, Self-Reference
Directory of Open Access Journals (Sweden)
Susan Stepney
2012-10-01
Full Text Available Classical computing has well-established formalisms for specifying, refining, composing, proving, and otherwise reasoning about computations. These formalisms have matured over the past 70 years or so. Unconventional Computing includes the use of novel kinds of substrates–from black holes and quantum effects, through to chemicals, biomolecules, even slime moulds–to perform computations that do not conform to the classical model. Although many of these unconventional substrates can be coerced into performing classical computation, this is not how they “naturally” compute. Our ability to exploit unconventional computing is partly hampered by a lack of corresponding programming formalisms: we need models for building, composing, and reasoning about programs that execute in these substrates. What might, say, a slime mould programming language look like? Here I outline some of the issues and properties of these unconventional substrates that need to be addressed to find “natural” approaches to programming them. Important concepts include embodied real values, processes and dynamical systems, generative systems and their meta-dynamics, and embodied self-reference.
Pareto optimization in algebraic dynamic programming.
Saule, Cédric; Giegerich, Robert
2015-01-01
Pareto optimization combines independent objectives by computing the Pareto front of its search space, defined as the set of all solutions for which no other candidate solution scores better under all objectives. This gives, in a precise sense, better information than an artificial amalgamation of different scores into a single objective, but is more costly to compute. Pareto optimization naturally occurs with genetic algorithms, albeit in a heuristic fashion. Non-heuristic Pareto optimization so far has been used only with a few applications in bioinformatics. We study exact Pareto optimization for two objectives in a dynamic programming framework. We define a binary Pareto product operator [Formula: see text] on arbitrary scoring schemes. Independent of a particular algorithm, we prove that for two scoring schemes A and B used in dynamic programming, the scoring scheme [Formula: see text] correctly performs Pareto optimization over the same search space. We study different implementations of the Pareto operator with respect to their asymptotic and empirical efficiency. Without artificial amalgamation of objectives, and with no heuristics involved, Pareto optimization is faster than computing the same number of answers separately for each objective. For RNA structure prediction under the minimum free energy versus the maximum expected accuracy model, we show that the empirical size of the Pareto front remains within reasonable bounds. Pareto optimization lends itself to the comparative investigation of the behavior of two alternative scoring schemes for the same purpose. For the above scoring schemes, we observe that the Pareto front can be seen as a composition of a few macrostates, each consisting of several microstates that differ in the same limited way. We also study the relationship between abstract shape analysis and the Pareto front, and find that they extract information of a different nature from the folding space and can be meaningfully combined.
An algorithm for the solution of dynamic linear programs
Psiaki, Mark L.
1989-01-01
The algorithm's objective is to efficiently solve Dynamic Linear Programs (DLP) by taking advantage of their special staircase structure. This algorithm constitutes a stepping stone to an improved algorithm for solving Dynamic Quadratic Programs, which, in turn, would make the nonlinear programming method of Successive Quadratic Programs more practical for solving trajectory optimization problems. The ultimate goal is to being trajectory optimization solution speeds into the realm of real-time control. The algorithm exploits the staircase nature of the large constraint matrix of the equality-constrained DLPs encountered when solving inequality-constrained DLPs by an active set approach. A numerically-stable, staircase QL factorization of the staircase constraint matrix is carried out starting from its last rows and columns. The resulting recursion is like the time-varying Riccati equation from multi-stage LQR theory. The resulting factorization increases the efficiency of all of the typical LP solution operations over that of a dense matrix LP code. At the same time numerical stability is ensured. The algorithm also takes advantage of dynamic programming ideas about the cost-to-go by relaxing active pseudo constraints in a backwards sweeping process. This further decreases the cost per update of the LP rank-1 updating procedure, although it may result in more changes of the active set that if pseudo constraints were relaxed in a non-stagewise fashion. The usual stability of closed-loop Linear/Quadratic optimally-controlled systems, if it carries over to strictly linear cost functions, implies that the saving due to reduced factor update effort may outweigh the cost of an increased number of updates. An aerospace example is presented in which a ground-to-ground rocket's distance is maximized. This example demonstrates the applicability of this class of algorithms to aerospace guidance. It also sheds light on the efficacy of the proposed pseudo constraint relaxation
Implementing a Dynamic Street-Children's Program: Successes and ...
African Journals Online (AJOL)
dynamic street children's program in Mzuzu Malawi – using a developmental ... dynamics of parentchild, parent-parent and child-parent-environment; life-events; ... of child and adolescent development, and how they can influence the child's ...
Fuzzy Multi-objective Linear Programming Approach
Directory of Open Access Journals (Sweden)
Amna Rehmat
2007-07-01
Full Text Available Traveling salesman problem (TSP is one of the challenging real-life problems, attracting researchers of many fields including Artificial Intelligence, Operations Research, and Algorithm Design and Analysis. The problem has been well studied till now under different headings and has been solved with different approaches including genetic algorithms and linear programming. Conventional linear programming is designed to deal with crisp parameters, but information about real life systems is often available in the form of vague descriptions. Fuzzy methods are designed to handle vague terms, and are most suited to finding optimal solutions to problems with vague parameters. Fuzzy multi-objective linear programming, an amalgamation of fuzzy logic and multi-objective linear programming, deals with flexible aspiration levels or goals and fuzzy constraints with acceptable deviations. In this paper, a methodology, for solving a TSP with imprecise parameters, is deployed using fuzzy multi-objective linear programming. An example of TSP with multiple objectives and vague parameters is discussed.
Constraint Logic Programming approach to protein structure prediction
Directory of Open Access Journals (Sweden)
Fogolari Federico
2004-11-01
Full Text Available Abstract Background The protein structure prediction problem is one of the most challenging problems in biological sciences. Many approaches have been proposed using database information and/or simplified protein models. The protein structure prediction problem can be cast in the form of an optimization problem. Notwithstanding its importance, the problem has very seldom been tackled by Constraint Logic Programming, a declarative programming paradigm suitable for solving combinatorial optimization problems. Results Constraint Logic Programming techniques have been applied to the protein structure prediction problem on the face-centered cube lattice model. Molecular dynamics techniques, endowed with the notion of constraint, have been also exploited. Even using a very simplified model, Constraint Logic Programming on the face-centered cube lattice model allowed us to obtain acceptable results for a few small proteins. As a test implementation their (known secondary structure and the presence of disulfide bridges are used as constraints. Simplified structures obtained in this way have been converted to all atom models with plausible structure. Results have been compared with a similar approach using a well-established technique as molecular dynamics. Conclusions The results obtained on small proteins show that Constraint Logic Programming techniques can be employed for studying protein simplified models, which can be converted into realistic all atom models. The advantage of Constraint Logic Programming over other, much more explored, methodologies, resides in the rapid software prototyping, in the easy way of encoding heuristics, and in exploiting all the advances made in this research area, e.g. in constraint propagation and its use for pruning the huge search space.
Constraint Logic Programming approach to protein structure prediction.
Dal Palù, Alessandro; Dovier, Agostino; Fogolari, Federico
2004-11-30
The protein structure prediction problem is one of the most challenging problems in biological sciences. Many approaches have been proposed using database information and/or simplified protein models. The protein structure prediction problem can be cast in the form of an optimization problem. Notwithstanding its importance, the problem has very seldom been tackled by Constraint Logic Programming, a declarative programming paradigm suitable for solving combinatorial optimization problems. Constraint Logic Programming techniques have been applied to the protein structure prediction problem on the face-centered cube lattice model. Molecular dynamics techniques, endowed with the notion of constraint, have been also exploited. Even using a very simplified model, Constraint Logic Programming on the face-centered cube lattice model allowed us to obtain acceptable results for a few small proteins. As a test implementation their (known) secondary structure and the presence of disulfide bridges are used as constraints. Simplified structures obtained in this way have been converted to all atom models with plausible structure. Results have been compared with a similar approach using a well-established technique as molecular dynamics. The results obtained on small proteins show that Constraint Logic Programming techniques can be employed for studying protein simplified models, which can be converted into realistic all atom models. The advantage of Constraint Logic Programming over other, much more explored, methodologies, resides in the rapid software prototyping, in the easy way of encoding heuristics, and in exploiting all the advances made in this research area, e.g. in constraint propagation and its use for pruning the huge search space.
Ostwald ripening: an approach with dynamical systems
Directory of Open Access Journals (Sweden)
F.S. Lameiras
1999-07-01
Full Text Available This approach assumes three functions independently acting on a set of microparticles. The first one, w1, concerns re-distribution of mass to decrease the surface energy. The second one, w2, concerns re-distribution of mass to increase the entropy of the microparticle set. The third one, w3, is a further re-distribution of mass that vanishes a microparticle. Once vanished, its mass is distributed among its neighbors. w1 and w3 release energy, whereas w2 absorbs energy. Part of the energy released should be available to sustain w2. The action frequency of w1, w2, and w3, the amount of mass exchanged in each iteraction, the fraction of released energy available to sustain w2, and the size of a vanishing microparticle can be varied. As the dynamical system formed by w1, w2, and w3 act on an initial microparticle set, it is observed an evolution resembling the Ostwald ripening concerning steady-state size distribution and microparticle growth.
Spatial cluster detection using dynamic programming
Directory of Open Access Journals (Sweden)
Sverchkov Yuriy
2012-03-01
Full Text Available Abstract Background The task of spatial cluster detection involves finding spatial regions where some property deviates from the norm or the expected value. In a probabilistic setting this task can be expressed as finding a region where some event is significantly more likely than usual. Spatial cluster detection is of interest in fields such as biosurveillance, mining of astronomical data, military surveillance, and analysis of fMRI images. In almost all such applications we are interested both in the question of whether a cluster exists in the data, and if it exists, we are interested in finding the most accurate characterization of the cluster. Methods We present a general dynamic programming algorithm for grid-based spatial cluster detection. The algorithm can be used for both Bayesian maximum a-posteriori (MAP estimation of the most likely spatial distribution of clusters and Bayesian model averaging over a large space of spatial cluster distributions to compute the posterior probability of an unusual spatial clustering. The algorithm is explained and evaluated in the context of a biosurveillance application, specifically the detection and identification of Influenza outbreaks based on emergency department visits. A relatively simple underlying model is constructed for the purpose of evaluating the algorithm, and the algorithm is evaluated using the model and semi-synthetic test data. Results When compared to baseline methods, tests indicate that the new algorithm can improve MAP estimates under certain conditions: the greedy algorithm we compared our method to was found to be more sensitive to smaller outbreaks, while as the size of the outbreaks increases, in terms of area affected and proportion of individuals affected, our method overtakes the greedy algorithm in spatial precision and recall. The new algorithm performs on-par with baseline methods in the task of Bayesian model averaging. Conclusions We conclude that the dynamic
Evaluation of Electric Power Procurement Strategies by Stochastic Dynamic Programming
Saisho, Yuichi; Hayashi, Taketo; Fujii, Yasumasa; Yamaji, Kenji
In deregulated electricity markets, the role of a distribution company is to purchase electricity from the wholesale electricity market at randomly fluctuating prices and to provide it to its customers at a given fixed price. Therefore the company has to take risk stemming from the uncertainties of electricity prices and/or demand fluctuation instead of the customers. The way to avoid the risk is to make a bilateral contact with generating companies or install its own power generation facility. This entails the necessity to develop a certain method to make an optimal strategy for electric power procurement. In such a circumstance, this research has the purpose for proposing a mathematical method based on stochastic dynamic programming and additionally considering the characteristics of the start-up cost of electric power generation facility to evaluate strategies of combination of the bilateral contract and power auto-generation with its own facility for procuring electric power in deregulated electricity market. In the beginning we proposed two approaches to solve the stochastic dynamic programming, and they are a Monte Carlo simulation method and a finite difference method to derive the solution of a partial differential equation of the total procurement cost of electric power. Finally we discussed the influences of the price uncertainty on optimal strategies of power procurement.
School District Program Cost Accounting: An Alternative Approach
Hentschke, Guilbert C.
1975-01-01
Discusses the value for school districts of a program cost accounting system and examines different approaches to generating program cost data, with particular emphasis on the "cost allocation to program system" (CAPS) and the traditional "transaction-based system." (JG)
Optimization of Algorithms Using Extensions of Dynamic Programming
AbouEisha, Hassan M.
2017-04-09
We study and answer questions related to the complexity of various important problems such as: multi-frontal solvers of hp-adaptive finite element method, sorting and majority. We advocate the use of dynamic programming as a viable tool to study optimal algorithms for these problems. The main approach used to attack these problems is modeling classes of algorithms that may solve this problem using a discrete model of computation then defining cost functions on this discrete structure that reflect different complexity measures of the represented algorithms. As a last step, dynamic programming algorithms are designed and used to optimize those models (algorithms) and to obtain exact results on the complexity of the studied problems. The first part of the thesis presents a novel model of computation (element partition tree) that represents a class of algorithms for multi-frontal solvers along with cost functions reflecting various complexity measures such as: time and space. It then introduces dynamic programming algorithms for multi-stage and bi-criteria optimization of element partition trees. In addition, it presents results based on optimal element partition trees for famous benchmark meshes such as: meshes with point and edge singularities. New improved heuristics for those benchmark meshes were ob- tained based on insights of the optimal results found by our algorithms. The second part of the thesis starts by introducing a general problem where different problems can be reduced to and show how to use a decision table to model such problem. We describe how decision trees and decision tests for this table correspond to adaptive and non-adaptive algorithms for the original problem. We present exact bounds on the average time complexity of adaptive algorithms for the eight elements sorting problem. Then bounds on adaptive and non-adaptive algorithms for a variant of the majority problem are introduced. Adaptive algorithms are modeled as decision trees whose depth
Dynamical Systems Approach to Endothelial Heterogeneity
Regan, Erzsébet Ravasz; Aird, William C.
2012-01-01
Rationale Objective Here we reexamine our current understanding of the molecular basis of endothelial heterogeneity. We introduce multistability as a new explanatory framework in vascular biology. Methods We draw on the field of non-linear dynamics to propose a dynamical systems framework for modeling multistability and its derivative properties, including robustness, memory, and plasticity. Conclusions Our perspective allows for both a conceptual and quantitative description of system-level features of endothelial regulation. PMID:22723222
Approximate Dynamic Programming Solving the Curses of Dimensionality
Powell, Warren B
2011-01-01
Praise for the First Edition "Finally, a book devoted to dynamic programming and written using the language of operations research (OR)! This beautiful book fills a gap in the libraries of OR specialists and practitioners."-Computing Reviews This new edition showcases a focus on modeling and computation for complex classes of approximate dynamic programming problems Understanding approximate dynamic programming (ADP) is vital in order to develop practical and high-quality solutions to complex industrial problems, particularly when those problems involve making decisions in the presence of unce
Dynamic electricity pricing for electric vehicles using stochastic programming
International Nuclear Information System (INIS)
Soares, João; Ghazvini, Mohammad Ali Fotouhi; Borges, Nuno; Vale, Zita
2017-01-01
Electric Vehicles (EVs) are an important source of uncertainty, due to their variable demand, departure time and location. In smart grids, the electricity demand can be controlled via Demand Response (DR) programs. Smart charging and vehicle-to-grid seem highly promising methods for EVs control. However, high capital costs remain a barrier to implementation. Meanwhile, incentive and price-based schemes that do not require high level of control can be implemented to influence the EVs' demand. Having effective tools to deal with the increasing level of uncertainty is increasingly important for players, such as energy aggregators. This paper formulates a stochastic model for day-ahead energy resource scheduling, integrated with the dynamic electricity pricing for EVs, to address the challenges brought by the demand and renewable sources uncertainty. The two-stage stochastic programming approach is used to obtain the optimal electricity pricing for EVs. A realistic case study projected for 2030 is presented based on Zaragoza network. The results demonstrate that it is more effective than the deterministic model and that the optimal pricing is preferable. This study indicates that adequate DR schemes like the proposed one are promising to increase the customers' satisfaction in addition to improve the profitability of the energy aggregation business. - Highlights: • A stochastic model for energy scheduling tackling several uncertainty sources. • A two-stage stochastic programming is used to tackle the developed model. • Optimal EV electricity pricing seems to improve the profits. • The propose results suggest to increase the customers' satisfaction.
Stochastic Thermodynamics: A Dynamical Systems Approach
Directory of Open Access Journals (Sweden)
Tanmay Rajpurohit
2017-12-01
Full Text Available In this paper, we develop an energy-based, large-scale dynamical system model driven by Markov diffusion processes to present a unified framework for statistical thermodynamics predicated on a stochastic dynamical systems formalism. Specifically, using a stochastic state space formulation, we develop a nonlinear stochastic compartmental dynamical system model characterized by energy conservation laws that is consistent with statistical thermodynamic principles. In particular, we show that the difference between the average supplied system energy and the average stored system energy for our stochastic thermodynamic model is a martingale with respect to the system filtration. In addition, we show that the average stored system energy is equal to the mean energy that can be extracted from the system and the mean energy that can be delivered to the system in order to transfer it from a zero energy level to an arbitrary nonempty subset in the state space over a finite stopping time.
Nonlinear PDEs a dynamical systems approach
Schneider, Guido
2017-01-01
This is an introductory textbook about nonlinear dynamics of PDEs, with a focus on problems over unbounded domains and modulation equations. The presentation is example-oriented, and new mathematical tools are developed step by step, giving insight into some important classes of nonlinear PDEs and nonlinear dynamics phenomena which may occur in PDEs. The book consists of four parts. Parts I and II are introductions to finite- and infinite-dimensional dynamics defined by ODEs and by PDEs over bounded domains, respectively, including the basics of bifurcation and attractor theory. Part III introduces PDEs on the real line, including the Korteweg-de Vries equation, the Nonlinear Schrödinger equation and the Ginzburg-Landau equation. These examples often occur as simplest possible models, namely as amplitude or modulation equations, for some real world phenomena such as nonlinear waves and pattern formation. Part IV explores in more detail the connections between such complicated physical systems and the reduced...
Granular contact dynamics using mathematical programming methods
DEFF Research Database (Denmark)
Krabbenhoft, K.; Lyamin, A. V.; Huang, J.
2012-01-01
granular contact dynamics formulation uses an implicit time discretization, thus allowing for large time steps. Moreover, in the limit of an infinite time step, the general dynamic formulation reduces to a static formulation that is useful in simulating common quasi-static problems such as triaxial tests...... is developed and it is concluded that the associated sliding rule, in the context of granular contact dynamics, may be viewed as an artifact of the time discretization and that the use of an associated flow rule at the particle scale level generally is physically acceptable. (C) 2012 Elsevier Ltd. All rights...
Nonlinear dynamical system approaches towards neural prosthesis
International Nuclear Information System (INIS)
Torikai, Hiroyuki; Hashimoto, Sho
2011-01-01
An asynchronous discrete-state spiking neurons is a wired system of shift registers that can mimic nonlinear dynamics of an ODE-based neuron model. The control parameter of the neuron is the wiring pattern among the registers and thus they are suitable for on-chip learning. In this paper an asynchronous discrete-state spiking neuron is introduced and its typical nonlinear phenomena are demonstrated. Also, a learning algorithm for a set of neurons is presented and it is demonstrated that the algorithm enables the set of neurons to reconstruct nonlinear dynamics of another set of neurons with unknown parameter values. The learning function is validated by FPGA experiments.
Stochastic dynamic programming model for optimal resource ...
Indian Academy of Sciences (India)
M Bhuvaneswari
2018-04-11
Apr 11, 2018 ... handover in VANET; because of high dynamics in net- work topology, collaboration ... containers, doctors, nurses, cash and stocks. Similarly, ... GTBA does not take the resource types and availability into consideration.
Dynamic Programming Algorithms in Speech Recognition
Directory of Open Access Journals (Sweden)
Titus Felix FURTUNA
2008-01-01
Full Text Available In a system of speech recognition containing words, the recognition requires the comparison between the entry signal of the word and the various words of the dictionary. The problem can be solved efficiently by a dynamic comparison algorithm whose goal is to put in optimal correspondence the temporal scales of the two words. An algorithm of this type is Dynamic Time Warping. This paper presents two alternatives for implementation of the algorithm designed for recognition of the isolated words.
NPV Sensitivity Analysis: A Dynamic Excel Approach
Mangiero, George A.; Kraten, Michael
2017-01-01
Financial analysts generally create static formulas for the computation of NPV. When they do so, however, it is not readily apparent how sensitive the value of NPV is to changes in multiple interdependent and interrelated variables. It is the aim of this paper to analyze this variability by employing a dynamic, visually graphic presentation using…
A shape dynamical approach to holographic renormalization
Energy Technology Data Exchange (ETDEWEB)
Gomes, Henrique [University of California at Davis, Davis, CA (United States); Gryb, Sean [Utrecht University, Institute for Theoretical Physics, Utrecht (Netherlands); Radboud University Nijmegen, Institute for Mathematics, Astrophysics and Particle Physics, Nijmegen (Netherlands); Koslowski, Tim [University of New Brunswick, Fredericton, NB (Canada); Mercati, Flavio; Smolin, Lee [Perimeter Institute for Theoretical Physics, Waterloo, ON (Canada)
2015-01-01
We provide a bottom-up argument to derive some known results from holographic renormalization using the classical bulk-bulk equivalence of General Relativity and Shape Dynamics, a theory with spatial conformal (Weyl) invariance. The purpose of this paper is twofold: (1) to advertise the simple classical mechanism, trading off gauge symmetries, that underlies the bulk-bulk equivalence of General Relativity and Shape Dynamics to readers interested in dualities of the type of AdS/conformal field theory (CFT); and (2) to highlight that this mechanism can be used to explain certain results of holographic renormalization, providing an alternative to the AdS/CFT conjecture for these cases. To make contact with the usual semiclassical AdS/CFT correspondence, we provide, in addition, a heuristic argument that makes it plausible that the classical equivalence between General Relativity and Shape Dynamics turns into a duality between radial evolution in gravity and the renormalization group flow of a CFT. We believe that Shape Dynamics provides a new perspective on gravity by giving conformal structure a primary role within the theory. It is hoped that this work provides the first steps toward understanding what this new perspective may be able to teach us about holographic dualities. (orig.)
International Nuclear Information System (INIS)
Hunter, J.A.
1984-01-01
Equipment qualification research is being conducted to investigate acceptable criteria, requirements, and methodologies for the dynamic (including seismic) and environmental qualification of mechanical equipment and for the dynamic (including seismic) qualification of electrical equipment. The program is organized into three elements: (1) General Research, (2) Environmental Research, and (3) Dynamic Research. This paper presents the highlights of the results to date in these three elements of the program
Assessing the Dynamic Behavior of Online Q&A Knowledge Markets: A System Dynamics Approach
Jafari, Mostafa; Hesamamiri, Roozbeh; Sadjadi, Jafar; Bourouni, Atieh
2012-01-01
Purpose: The objective of this paper is to propose a holistic dynamic model for understanding the behavior of a complex and internet-based kind of knowledge market by considering both social and economic interactions. Design/methodology/approach: A system dynamics (SD) model is formulated in this study to investigate the dynamic characteristics of…
Uncertain dynamical systems: A differential game approach
Gutman, S.
1976-01-01
A class of dynamical systems in a conflict situation is formulated and discussed, and the formulation is applied to the study of an important class of systems in the presence of uncertainty. The uncertainty is deterministic and the only assumption is that its value belongs to a known compact set. Asymptotic stability is fully discussed with application to variable structure and model reference control systems.
SLAM - Based Approach to Dynamic Ship Positioning
Directory of Open Access Journals (Sweden)
Krzysztof Wrobel
2014-03-01
Full Text Available Dynamically positioned vessels, used by offshore industry, use not only satellite navigation but also different positioning systems, often referred to as reference' systems. Most of them use multiple technical devices located outside the vessel which creates some problems with their accessibility and performance. In this paper, a basic concept of reference system independent from any external device is presented, basing on hydroacoustics and Simultaneous Localization and Mapping (SLAM method. Theoretical analysis of its operability is also performed.
Cosmic infinity: A dynamical system approach
Bouhmadi-López, Mariam; Marto, João; Morais, João; Silva, César M.
2016-01-01
Dynamical system techniques are extremely useful to study cosmology. It turns out that in most of the cases, we deal with finite isolated fixed points corresponding to a given cosmological epoch. However, it is equally important to analyse the asymptotic behaviour of the universe. On this paper, we show how this can be carried out for 3-forms model. In fact, we show that there are fixed points at infinity mainly by introducing appropriate compactifications and defining a new time variable tha...
Survey for service selection approaches in dynamic environments
CSIR Research Space (South Africa)
Manqele, Lindelweyizizwe S
2017-09-01
Full Text Available The usage of the service selection approaches across different dynamic service provisioning environments has increased the challenges associated with an effective method that can be used to select a relevant service. The use of service selection...
Modeling workforce demand in North Dakota: a System Dynamics approach
Muminova, Adiba
2015-01-01
This study investigates the dynamics behind the workforce demand and attempts to predict the potential effects of future changes in oil prices on workforce demand in North Dakota. The study attempts to join System Dynamics and Input-Output models in order to overcome shortcomings in both of the approaches and gain a more complete understanding of the issue of workforce demand. A system dynamics simulation of workforce demand within different economic sector...
Dynamic Performance Tuning Supported by Program Specification
Directory of Open Access Journals (Sweden)
Eduardo César
2002-01-01
Full Text Available Performance analysis and tuning of parallel/distributed applications are very difficult tasks for non-expert programmers. It is necessary to provide tools that automatically carry out these tasks. These can be static tools that carry out the analysis on a post-mortem phase or can tune the application on the fly. Both kind of tools have their target applications. Static automatic analysis tools are suitable for stable application while dynamic tuning tools are more appropriate to applications with dynamic behaviour. In this paper, we describe KappaPi as an example of a static automatic performance analysis tool, and also a general environment based on parallel patterns for developing and dynamically tuning parallel/distributed applications.
A comprehensive dynamic modeling approach for giant magnetostrictive material actuators
International Nuclear Information System (INIS)
Gu, Guo-Ying; Zhu, Li-Min; Li, Zhi; Su, Chun-Yi
2013-01-01
In this paper, a comprehensive modeling approach for a giant magnetostrictive material actuator (GMMA) is proposed based on the description of nonlinear electromagnetic behavior, the magnetostrictive effect and frequency response of the mechanical dynamics. It maps the relationships between current and magnetic flux at the electromagnetic part to force and displacement at the mechanical part in a lumped parameter form. Towards this modeling approach, the nonlinear hysteresis effect of the GMMA appearing only in the electrical part is separated from the linear dynamic plant in the mechanical part. Thus, a two-module dynamic model is developed to completely characterize the hysteresis nonlinearity and the dynamic behaviors of the GMMA. The first module is a static hysteresis model to describe the hysteresis nonlinearity, and the cascaded second module is a linear dynamic plant to represent the dynamic behavior. To validate the proposed dynamic model, an experimental platform is established. Then, the linear dynamic part and the nonlinear hysteresis part of the proposed model are identified in sequence. For the linear part, an approach based on axiomatic design theory is adopted. For the nonlinear part, a Prandtl–Ishlinskii model is introduced to describe the hysteresis nonlinearity and a constrained quadratic optimization method is utilized to identify its coefficients. Finally, experimental tests are conducted to demonstrate the effectiveness of the proposed dynamic model and the corresponding identification method. (paper)
INDDGO: Integrated Network Decomposition & Dynamic programming for Graph Optimization
Energy Technology Data Exchange (ETDEWEB)
Groer, Christopher S [ORNL; Sullivan, Blair D [ORNL; Weerapurage, Dinesh P [ORNL
2012-10-01
It is well-known that dynamic programming algorithms can utilize tree decompositions to provide a way to solve some \\emph{NP}-hard problems on graphs where the complexity is polynomial in the number of nodes and edges in the graph, but exponential in the width of the underlying tree decomposition. However, there has been relatively little computational work done to determine the practical utility of such dynamic programming algorithms. We have developed software to construct tree decompositions using various heuristics and have created a fast, memory-efficient dynamic programming implementation for solving maximum weighted independent set. We describe our software and the algorithms we have implemented, focusing on memory saving techniques for the dynamic programming. We compare the running time and memory usage of our implementation with other techniques for solving maximum weighted independent set, including a commercial integer programming solver and a semi-definite programming solver. Our results indicate that it is possible to solve some instances where the underlying decomposition has width much larger than suggested by the literature. For certain types of problems, our dynamic programming code runs several times faster than these other methods.
A dynamical systems approach to motor development.
Kamm, K; Thelen, E; Jensen, J L
1990-12-01
The study of motor development has long influenced the clinical practice of physical therapy. We first review the contributions and deficiencies of two traditional maturational and reflex-based models of motor development. Second, we describe basic principles of kinematic and kinetic analyses of movement and show how we have applied these techniques to understand infant stepping and kicking. Third, we propose a theory of motor development based on a dynamical systems perspective that is consistent with our infant studies. Finally, we explore the implications of the model for physical therapists.
Moment approach to charged particle beam dynamics
International Nuclear Information System (INIS)
Channell, P.J.
1983-01-01
We have derived the hierarchy of moment equations that describes the dynamics of charged-particle beams in linear accelerators and can truncate the hierarchy at any level either by discarding higher moments or by a cumulant expansion discarding only correlation functions. We have developed a procedure for relating the density expansion linearly to the moments to any order. The relation of space-charge fields to the density has been derived; and an accurate, systematic, and computationally convenient expansion of the resultant integrals has been developed
Chancroid transmission dynamics: a mathematical modeling approach.
Bhunu, C P; Mushayabasa, S
2011-12-01
Mathematical models have long been used to better understand disease transmission dynamics and how to effectively control them. Here, a chancroid infection model is presented and analyzed. The disease-free equilibrium is shown to be globally asymptotically stable when the reproduction number is less than unity. High levels of treatment are shown to reduce the reproduction number suggesting that treatment has the potential to control chancroid infections in any given community. This result is also supported by numerical simulations which show a decline in chancroid cases whenever the reproduction number is less than unity.
Optimal Design of Measurement Programs for the Parameter Identification of Dynamic Systems
DEFF Research Database (Denmark)
Kirkegaard, Poul Henning; Sørensen, John Dalsgaard; Brincker, Rune
The design of measurement programs devoted to parameter identification of structural dynamic systems is considered. The design problem is formulated as an optimization problem to minimize the total expected cost that is the cost of failure and the cost of the measurement program. All...... the calculations are based on a priori knowledge and engineering judgement. One of the contribution of the approach is that the optimal number of sensors can be estimated. This is shown in a numerical example where the proposed approach is demonstrated. The example is concerned with design of a measurement program...
Optimal Design of Measurement Programs for the Parameter Identification of Dynamic Systems
DEFF Research Database (Denmark)
Kirkegaard, Poul Henning; Sørensen, John Dalsgaard; Brincker, Rune
The design of a measured program devoted to parameter identification of structural dynamic systems is considered, the design problem is formulated as an optimization problem due to minimize the total expected cost of the measurement program. All the calculations are based on a priori knowledge...... and engineering judgement. One of the contribution of the approach is that the optimal nmber of sensors can be estimated. This is sown in an numerical example where the proposed approach is demonstrated. The example is concerned with design of a measurement program for estimating the modal damping parameters...
A novel approach to dynamic livelihood clustering
DEFF Research Database (Denmark)
Walelign, Solomon Zena; Pouliot, Mariéve; Larsen, Helle Overgaard
-wave panel dataset from 427 households in three locations of Nepal, we proposed an approach that combines households’ income and assets to identify different livelihood strategy clusters. Based on a Latent Markov Model we identify seven distinct livelihood strategies and analyse households’ movements between...
Dynamic Learning Objects to Teach Java Programming Language
Narasimhamurthy, Uma; Al Shawkani, Khuloud
2010-01-01
This article describes a model for teaching Java Programming Language through Dynamic Learning Objects. The design of the learning objects was based on effective learning design principles to help students learn the complex topic of Java Programming. Visualization was also used to facilitate the learning of the concepts. (Contains 1 figure and 2…
Proving deadlock freedom of logic programs with dynamic scheduling
E. Marchiori; F. Teusink (Frank)
1996-01-01
textabstractIn increasingly many logic programming systems, the Prolog left to right selection rule has been replaced with dynamic selection rules, that select an atom of a query among those satisfying suitable conditions. These conditions describe the form of the arguments of every program
A molecular dynamics approach to barrodiffusion
Cooley, James; Marciante, Mathieu; Murillo, Michael
2016-10-01
Unexpected phenomena in the reaction rates for Inertial Confinement Fusion (ICF) capsules have led to a renewed interest in the thermo-dynamically driven diffusion process for the past 10 years, often described collectively as barodiffusion. In the current context, barodiffusion would manifest as a process that separates ions of differing mass and charge ratios due to pressure and temperature gradients set-up through shock structures in the capsule core. Barrodiffusion includes additional mass transfer terms that account for the irreversible transport of species due to gradients in the system, both thermodynamic and electric e.g, i = - ρD [ ∇c +kp ∇ln(pi) +kT(i) ∇ln(Ti) +kt(e) ∇ln(Te) +eke/Ti ∇ϕ ] . Several groups have attacked this phenomena using continuum scale models and supplemented with kinetic theory to derive coefficients for the different diffusion terms based on assumptions about the collisional processes. In contrast, we have applied a molecular dynamics (MD) simulation to this system to gain a first-principle understanding of the rate kinetics and to assess the accuracy of the differin
An MDE Approach for Modular Program Analyses
Yildiz, Bugra Mehmet; Bockisch, Christoph; Aksit, Mehmet; Rensink, Arend
Program analyses are an important tool to check if a system fulfills its specification. A typical implementation strategy for program analyses is to use an imperative, general-purpose language like Java, and access the program to be analyzed through libraries that offer an API for reading, writing
Cognitive agent programming : A semantic approach
Riemsdijk, M.B. van
2006-01-01
In this thesis we are concerned with the design and investigation of dedicated programming languages for programming agents. We focus in particular on programming languages for rational agents, i.e., flexibly behaving computing entities that are able to make "good" decisions about what to do. An
Eid, Chaker; Millham, Richard
2012-01-01
In this paper, we discuss the visual programming approach to teaching introductory programming courses and then compare this approach with that of procedural programming. The involved cognitive levels of students, as beginning students are introduced to different types of programming concepts, are correlated to the learning processes of…
Nonlinear beam dynamics experimental program at SPEAR
International Nuclear Information System (INIS)
Tran, P.; Pellegrini, C.; Cornacchia, M.; Lee, M.; Corbett, W.
1995-01-01
Since nonlinear effects can impose strict performance limitations on modern colliders and storage rings, future performance improvements depend on further understanding of nonlinear beam dynamics. Experimental studies of nonlinear beam motion in three-dimensional space have begun in SPEAR using turn-by-turn transverse and longitudinal phase-space monitors. This paper presents preliminary results from an on-going experiment in SPEAR
Analysis of the dynamics of liquid aluminium: recurrent relation approach
International Nuclear Information System (INIS)
Mokshin, A V; Yulmetyev, R M; Khusnutdinoff, R M; Haenggi, P
2007-01-01
By use of the recurrent relation approach (RRA) we study the microscopic dynamics of liquid aluminium at T = 973 K and develop a theoretical model which satisfies all the corresponding sum rules. The investigation covers the inelastic features as well as the crossover of our theory into the hydrodynamical and the free-particle regimes. A comparison between our theoretical results with those following from a generalized hydrodynamical approach is also presented. In addition to this we report the results of our molecular dynamics simulations for liquid aluminium, which are also discussed and compared to experimental data. The results obtained reveal (i) that the microscopical dynamics of density fluctuations is defined mainly by the first four even frequency moments of the dynamic structure factor, and (ii) the inherent relation of the high-frequency collective excitations observed in experimental spectra of dynamic structure factor S(k,ω) with the two-, three- and four-particle correlations
Cosmic infinity: a dynamical system approach
Energy Technology Data Exchange (ETDEWEB)
Bouhmadi-López, Mariam; Marto, João [Departamento de Física, Universidade da Beira Interior, Rua Marquês D' Ávila e Bolama, 6201-001 Covilhã (Portugal); Morais, João [Department of Theoretical Physics, University of the Basque Country UPV/EHU, P.O. Box 644, 48080 Bilbao (Spain); Silva, César M., E-mail: mbl@ubi.pt, E-mail: jmarto@ubi.pt, E-mail: jviegas001@ikasle.ehu.eus, E-mail: csilva@ubi.pt [Centro de Matemática e Aplicações da Universidade da Beira Interior (CMA-UBI), Rua Marquês D' Ávila e Bolama, 6201-001 Covilhã (Portugal)
2017-03-01
Dynamical system techniques are extremely useful to study cosmology. It turns out that in most of the cases, we deal with finite isolated fixed points corresponding to a given cosmological epoch. However, it is equally important to analyse the asymptotic behaviour of the universe. On this paper, we show how this can be carried out for 3-form models. In fact, we show that there are fixed points at infinity mainly by introducing appropriate compactifications and defining a new time variable that washes away any potential divergence of the system. The richness of 3-form models allows us as well to identify normally hyperbolic non-isolated fixed points. We apply this analysis to three physically interesting situations: (i) a pre-inflationary era; (ii) an inflationary era; (iii) the late-time dark matter/dark energy epoch.
Phase space approach to quantum dynamics
International Nuclear Information System (INIS)
Leboeuf, P.
1991-03-01
The Schroedinger equation for the time propagation of states of a quantised two-dimensional spherical phase space is replaced by the dynamics of a system of N particles lying in phase space. This is done through factorization formulae of analytic function theory arising in coherent-state representation, the 'particles' being the zeros of the quantum state. For linear Hamiltonians, like a spin in a uniform magnetic field, the motion of the particles is classical. However, non-linear terms induce interactions between the particles. Their time propagation is studied and it is shown that, contrary to integrable systems, for chaotic maps they tend to fill, as their classical counterpart, the whole phase space. (author) 13 refs., 3 figs
Elastic Multibody Dynamics A Direct Ritz Approach
Bremer, H
2008-01-01
This textbook is an introduction to and exploration of a number of core topics in the field of applied mechanics: On the basis of Lagrange's Principle, a Central Equation of Dynamics is presented which yields a unified view on existing methods. From these, the Projection Equation is selected for the derivation of the motion equations of holonomic and of non-holonomic systems. The method is applied to rigid multibody systems where the rigid body is defined such that, by relaxation of the rigidity constraints, one can directly proceed to elastic bodies. A decomposition into subsystems leads to a minimal representation and to a recursive representation, respectively, of the equations of motion. Applied to elastic multibody systems one obtains, along with the use of spatial operators, a straight-on procedure for the interconnected partial and ordinary differential equations and the corresponding boundary conditions. The spatial operators are eventually applied to a RITZ series for approximation. The resulting equ...
Modelling of windmill induction generators in dynamic simulation programs
DEFF Research Database (Denmark)
Akhmatov, Vladislav; Knudsen, Hans
1999-01-01
with and without a model of the mechanical shaft. The reason for the discrepancies are explained, and it is shown that the phenomenon is due partly to the presence of DC offset currents in the induction machine stator, and partly to the mechanical shaft system of the wind turbine and the generator rotor......For AC networks with large amounts of induction generators-in case of e.g. windmills-the paper demonstrates a significant discrepancy in the simulated voltage recovery after faults in weak networks, when comparing result obtained with dynamic stability programs and transient programs, respectively....... It is shown that it is possible to include a transient model in dynamic stability programs and thus obtain correct results also in dynamic stability programs. A mechanical model of the shaft system has also been included in the generator model...
Evolutionary programming for goal-driven dynamic planning
Vaccaro, James M.; Guest, Clark C.; Ross, David O.
2002-03-01
Many complex artificial intelligence (IA) problems are goal- driven in nature and the opportunity exists to realize the benefits of a goal-oriented solution. In many cases, such as in command and control, a goal-oriented approach may be the only option. One of many appropriate applications for such an approach is War Gaming. War Gaming is an important tool for command and control because it provides a set of alternative courses of actions so that military leaders can contemplate their next move in the battlefield. For instance, when making decisions that save lives, it is necessary to completely understand the consequences of a given order. A goal-oriented approach provides a slowly evolving tractably reasoned solution that inherently follows one of the principles of war: namely concentration on the objective. Future decision-making will depend not only on the battlefield, but also on a virtual world where military leaders can wage wars and determine their options by playing computer war games much like the real world. The problem with these games is that the built-in AI does not learn nor adapt and many times cheats, because the intelligent player has access to all the information, while the user has access to limited information provided on a display. These games are written for the purpose of entertainment and actions are calculated a priori and off-line, and are made prior or during their development. With these games getting more sophisticated in structure and less domain specific in scope, there needs to be a more general intelligent player that can adapt and learn in case the battlefield situations or the rules of engagement change. One such war game that might be considered is Risk. Risk incorporates the principles of war, is a top-down scalable model, and provides a good application for testing a variety of goal- oriented AI approaches. By integrating a goal-oriented hybrid approach, one can develop a program that plays the Risk game effectively and move
Program packages for dynamics systems analysis and design
International Nuclear Information System (INIS)
Athani, V.V.
1976-01-01
The development of computer program packages for dynamic system analysis and design are reported. The purpose of developing these program packages is to take the burden of writing computer programs off the mind of the system engineer and to enable him to concentrate on his main system analysis and design work. Towards this end, four standard computer program packages have been prepared : (1) TFANA - starting from system transfer function this program computes transient response, frequency response, root locus and stability by Routh Hurwitz criterion, (2) TFSYN - classical synthesis using algebraic method of Shipley, (3) MODANA - starting from state equations of the system this program computes solution of state equations, controllability, observability and stability, (4) OPTCON - This program obtains solutions of (i) linear regulator problem, (ii) servomechanism problems and (iii) problem of pole placement. The paper describes these program packages with the help of flowcharts and illustrates their use with the help of examples. (author)
Computational fluid dynamics in ventilation: Practical approach
Fontaine, J. R.
The potential of computation fluid dynamics (CFD) for conceiving ventilation systems is shown through the simulation of five practical cases. The following examples are considered: capture of pollutants on a surface treating tank equipped with a unilateral suction slot in the presence of a disturbing air draft opposed to suction; dispersion of solid aerosols inside fume cupboards; performances comparison of two general ventilation systems in a silkscreen printing workshop; ventilation of a large open painting area; and oil fog removal inside a mechanical engineering workshop. Whereas the two first problems are analyzed through two dimensional numerical simulations, the three other cases require three dimensional modeling. For the surface treating tank case, numerical results are compared to laboratory experiment data. All simulations are carried out using EOL, a CFD software specially devised to deal with air quality problems in industrial ventilated premises. It contains many analysis tools to interpret the results in terms familiar to the industrial hygienist. Much experimental work has been engaged to validate the predictions of EOL for ventilation flows.
Macroscopic reality and the dynamical reduction program
International Nuclear Information System (INIS)
Ghirardi, G.C.
1995-10-01
With reference to recently proposed theoretical models accounting for reduction in terms of a unified dynamics governing all physical processes, we analyze the problem of working out a worldview accommodating our knowledge about natural phenomena. We stress the relevant conceptual differences between the considered models and standard quantum mechanics. In spite of the fact that both theories describe individual physical systems within a genuine Hilbert space framework, the nice features of spontaneous reduction theories drastically limit the class of states which are dynamically stable. This allows one to work out a description of the world in terms of a mass density function in ordinary configuration space. A topology based on this function and differing radically from the one characterizing the Hilbert space is introduced and in terms of it the idea of similarity of macroscopic situations is made precise. Finally it is shown how the formalism and the proposed interpretation yield a natural criterion for establishing the psychophysical parallelism. The conclusion is that, within the considered theoretical models and at the nonrelativistic level, one can satisfy all sensible requirements for a consistent, unified, and objective description of reality at the macroscopic level. (author). 16 refs
Macroscopic reality and the dynamical reduction program
Energy Technology Data Exchange (ETDEWEB)
Ghirardi, G C
1995-10-01
With reference to recently proposed theoretical models accounting for reduction in terms of a unified dynamics governing all physical processes, we analyze the problem of working out a worldview accommodating our knowledge about natural phenomena. We stress the relevant conceptual differences between the considered models and standard quantum mechanics. In spite of the fact that both theories describe individual physical systems within a genuine Hilbert space framework, the nice features of spontaneous reduction theories drastically limit the class of states which are dynamically stable. This allows one to work out a description of the world in terms of a mass density function in ordinary configuration space. A topology based on this function and differing radically from the one characterizing the Hilbert space is introduced and in terms of it the idea of similarity of macroscopic situations is made precise. Finally it is shown how the formalism and the proposed interpretation yield a natural criterion for establishing the psychophysical parallelism. The conclusion is that, within the considered theoretical models and at the nonrelativistic level, one can satisfy all sensible requirements for a consistent, unified, and objective description of reality at the macroscopic level. (author). 16 refs.
The application of dynamic programming in production planning
Wu, Run
2017-05-01
Nowadays, with the popularity of the computers, various industries and fields are widely applying computer information technology, which brings about huge demand for a variety of application software. In order to develop software meeting various needs with most economical cost and best quality, programmers must design efficient algorithms. A superior algorithm can not only soul up one thing, but also maximize the benefits and generate the smallest overhead. As one of the common algorithms, dynamic programming algorithms are used to solving problems with some sort of optimal properties. When solving problems with a large amount of sub-problems that needs repetitive calculations, the ordinary sub-recursive method requires to consume exponential time, and dynamic programming algorithm can reduce the time complexity of the algorithm to the polynomial level, according to which we can conclude that dynamic programming algorithm is a very efficient compared to other algorithms reducing the computational complexity and enriching the computational results. In this paper, we expound the concept, basic elements, properties, core, solving steps and difficulties of the dynamic programming algorithm besides, establish the dynamic programming model of the production planning problem.
A stochastic-programming approach to integrated asset and liability ...
African Journals Online (AJOL)
This increase in complexity has provided an impetus for the investigation into integrated asset- and liability-management frameworks that could realistically address dynamic portfolio allocation in a risk-controlled way. In this paper the authors propose a multi-stage dynamic stochastic-programming model for the integrated ...
Dynamic Portfolio Strategy Using Clustering Approach.
Ren, Fei; Lu, Ya-Nan; Li, Sai-Ping; Jiang, Xiong-Fei; Zhong, Li-Xin; Qiu, Tian
2017-01-01
The problem of portfolio optimization is one of the most important issues in asset management. We here propose a new dynamic portfolio strategy based on the time-varying structures of MST networks in Chinese stock markets, where the market condition is further considered when using the optimal portfolios for investment. A portfolio strategy comprises two stages: First, select the portfolios by choosing central and peripheral stocks in the selection horizon using five topological parameters, namely degree, betweenness centrality, distance on degree criterion, distance on correlation criterion and distance on distance criterion. Second, use the portfolios for investment in the investment horizon. The optimal portfolio is chosen by comparing central and peripheral portfolios under different combinations of market conditions in the selection and investment horizons. Market conditions in our paper are identified by the ratios of the number of trading days with rising index to the total number of trading days, or the sum of the amplitudes of the trading days with rising index to the sum of the amplitudes of the total trading days. We find that central portfolios outperform peripheral portfolios when the market is under a drawup condition, or when the market is stable or drawup in the selection horizon and is under a stable condition in the investment horizon. We also find that peripheral portfolios gain more than central portfolios when the market is stable in the selection horizon and is drawdown in the investment horizon. Empirical tests are carried out based on the optimal portfolio strategy. Among all possible optimal portfolio strategies based on different parameters to select portfolios and different criteria to identify market conditions, 65% of our optimal portfolio strategies outperform the random strategy for the Shanghai A-Share market while the proportion is 70% for the Shenzhen A-Share market.
Dynamic Portfolio Strategy Using Clustering Approach.
Directory of Open Access Journals (Sweden)
Fei Ren
Full Text Available The problem of portfolio optimization is one of the most important issues in asset management. We here propose a new dynamic portfolio strategy based on the time-varying structures of MST networks in Chinese stock markets, where the market condition is further considered when using the optimal portfolios for investment. A portfolio strategy comprises two stages: First, select the portfolios by choosing central and peripheral stocks in the selection horizon using five topological parameters, namely degree, betweenness centrality, distance on degree criterion, distance on correlation criterion and distance on distance criterion. Second, use the portfolios for investment in the investment horizon. The optimal portfolio is chosen by comparing central and peripheral portfolios under different combinations of market conditions in the selection and investment horizons. Market conditions in our paper are identified by the ratios of the number of trading days with rising index to the total number of trading days, or the sum of the amplitudes of the trading days with rising index to the sum of the amplitudes of the total trading days. We find that central portfolios outperform peripheral portfolios when the market is under a drawup condition, or when the market is stable or drawup in the selection horizon and is under a stable condition in the investment horizon. We also find that peripheral portfolios gain more than central portfolios when the market is stable in the selection horizon and is drawdown in the investment horizon. Empirical tests are carried out based on the optimal portfolio strategy. Among all possible optimal portfolio strategies based on different parameters to select portfolios and different criteria to identify market conditions, 65% of our optimal portfolio strategies outperform the random strategy for the Shanghai A-Share market while the proportion is 70% for the Shenzhen A-Share market.
A Novel Approach for Collaborative Pair Programming
Goel, Sanjay; Kathuria, Vanshi
2010-01-01
The majority of an engineer's time in the software industry is spent working with other programmers. Agile methods of software development like eXtreme Programming strongly rely upon practices like daily meetings and pair programming. Hence, the need to learn the skill of working collaboratively is of primary importance for software developers.…
DEFF Research Database (Denmark)
Davidsen, Claus; Liu, Suxia; Mo, Xinguo
2014-01-01
. A stochastic dynamic programming (SDP) approach is used to minimize the basin-wide total costs arising from water allocations and water curtailments. Dynamic allocation problems with inclusion of groundwater resources proved to be more complex to solve with SDP than pure surface water allocation problems due...... to head-dependent pumping costs. These dynamic pumping costs strongly affect the total costs and can lead to non-convexity of the future cost function. The water user groups (agriculture, industry, domestic) are characterized by inelastic demands and fixed water allocation and water supply curtailment...
Optimal Input Design for Aircraft Parameter Estimation using Dynamic Programming Principles
Morelli, Eugene A.; Klein, Vladislav
1990-01-01
A new technique was developed for designing optimal flight test inputs for aircraft parameter estimation experiments. The principles of dynamic programming were used for the design in the time domain. This approach made it possible to include realistic practical constraints on the input and output variables. A description of the new approach is presented, followed by an example for a multiple input linear model describing the lateral dynamics of a fighter aircraft. The optimal input designs produced by the new technique demonstrated improved quality and expanded capability relative to the conventional multiple input design method.
Cumulant approach to dynamical correlation functions at finite temperatures
International Nuclear Information System (INIS)
Tran Minhtien.
1993-11-01
A new theoretical approach, based on the introduction of cumulants, to calculate thermodynamic averages and dynamical correlation functions at finite temperatures is developed. The method is formulated in Liouville instead of Hilbert space and can be applied to operators which do not require to satisfy fermion or boson commutation relations. The application of the partitioning and projection methods for the dynamical correlation functions is discussed. The present method can be applied to weakly as well as to strongly correlated systems. (author). 9 refs
Approximate dynamic programming solving the curses of dimensionality
Powell, Warren B
2007-01-01
Warren B. Powell, PhD, is Professor of Operations Research and Financial Engineering at Princeton University, where he is founder and Director of CASTLE Laboratory, a research unit that works with industrial partners to test new ideas found in operations research. The recipient of the 2004 INFORMS Fellow Award, Dr. Powell has authored over 100 refereed publications on stochastic optimization, approximate dynamic programming, and dynamic resource management.
Dynamic electricity pricing—Which programs do consumers prefer?
International Nuclear Information System (INIS)
Dütschke, Elisabeth; Paetz, Alexandra-Gwyn
2013-01-01
Dynamic pricing is being discussed as one method of demand side management (DSM) which could be crucial for integrating more renewable energy sources into the electricity system. At the same time, there have been very few analyses of consumer preferences in this regard: Which type of pricing program are consumers most likely to choose and why? This paper sheds some light on these issues based on two empirical studies from Germany: (1) A questionnaire study including a conjoint analysis-design and (2) A field experiment with test-residents of a smart home laboratory. The results show that consumers are open to dynamic pricing, but prefer simple programs to complex and highly dynamic ones; smart home technologies including demand automation are seen as a prerequisite for DSM. The study provides some indications that consumers might be more willing to accept more dynamic pricing programs if they have the chance to experience in practice how these can be managed in everyday life. At the same time, the individual and societal advantages of such programs are not obvious to consumers. For this reason, any market roll-out will need to be accompanied by convincing communication and information campaigns to ensure that these advantages are perceived. - Highlights: • Little is known about consumer preferences on dynamic pricing. • Two studies are conducted to analyze this topic. • A survey shows that consumers without experience prefer conventional programs. • Test residents of a smart home were more open to dynamic pricing. • They also prefer well-structured programs
Engineering system dynamics a unified graph-centered approach
Brown, Forbes T
2006-01-01
For today's students, learning to model the dynamics of complex systems is increasingly important across nearly all engineering disciplines. First published in 2001, Forbes T. Brown's Engineering System Dynamics: A Unified Graph-Centered Approach introduced students to a unique and highly successful approach to modeling system dynamics using bond graphs. Updated with nearly one-third new material, this second edition expands this approach to an even broader range of topics. What's New in the Second Edition? In addition to new material, this edition was restructured to build students' competence in traditional linear mathematical methods before they have gone too far into the modeling that still plays a pivotal role. New topics include magnetic circuits and motors including simulation with magnetic hysteresis; extensive new material on the modeling, analysis, and simulation of distributed-parameter systems; kinetic energy in thermodynamic systems; and Lagrangian and Hamiltonian methods. MATLAB(R) figures promi...
Step by step parallel programming method for molecular dynamics code
International Nuclear Information System (INIS)
Orii, Shigeo; Ohta, Toshio
1996-07-01
Parallel programming for a numerical simulation program of molecular dynamics is carried out with a step-by-step programming technique using the two phase method. As a result, within the range of a certain computing parameters, it is found to obtain parallel performance by using the level of parallel programming which decomposes the calculation according to indices of do-loops into each processor on the vector parallel computer VPP500 and the scalar parallel computer Paragon. It is also found that VPP500 shows parallel performance in wider range computing parameters. The reason is that the time cost of the program parts, which can not be reduced by the do-loop level of the parallel programming, can be reduced to the negligible level by the vectorization. After that, the time consuming parts of the program are concentrated on less parts that can be accelerated by the do-loop level of the parallel programming. This report shows the step-by-step parallel programming method and the parallel performance of the molecular dynamics code on VPP500 and Paragon. (author)
Fast and Cache-Oblivious Dynamic Programming with Local Dependencies
DEFF Research Database (Denmark)
Bille, Philip; Stöckel, Morten
2012-01-01
are widely used in bioinformatics to compare DNA and protein sequences. These problems can all be solved using essentially the same dynamic programming scheme over a two-dimensional matrix, where each entry depends locally on at most 3 neighboring entries. We present a simple, fast, and cache......-oblivious algorithm for this type of local dynamic programming suitable for comparing large-scale strings. Our algorithm outperforms the previous state-of-the-art solutions. Surprisingly, our new simple algorithm is competitive with a complicated, optimized, and tuned implementation of the best cache-aware algorithm...
A short note on dynamic programming in a band.
Gibrat, Jean-François
2018-06-15
Third generation sequencing technologies generate long reads that exhibit high error rates, in particular for insertions and deletions which are usually the most difficult errors to cope with. The only exact algorithm capable of aligning sequences with insertions and deletions is a dynamic programming algorithm. In this note, for the sake of efficiency, we consider dynamic programming in a band. We show how to choose the band width in function of the long reads' error rates, thus obtaining an [Formula: see text] algorithm in space and time. We also propose a procedure to decide whether this algorithm, when applied to semi-global alignments, provides the optimal score. We suggest that dynamic programming in a band is well suited to the problem of aligning long reads between themselves and can be used as a core component of methods for obtaining a consensus sequence from the long reads alone. The function implementing the dynamic programming algorithm in a band is available, as a standalone program, at: https://forgemia.inra.fr/jean-francois.gibrat/BAND_DYN_PROG.git.
Electric generating capacity planning: A nonlinear programming approach
Energy Technology Data Exchange (ETDEWEB)
Yakin, M.Z.; McFarland, J.W.
1987-02-01
This paper presents a nonlinear programming approach for long-range generating capacity expansion planning in electrical power systems. The objective in the model is the minimization of total cost consisting of investment cost plus generation cost for a multi-year planning horizon. Reliability constraints are imposed by using standard and practical reserve margin requirements. State equations representing the dynamic aspect of the problem are included. The electricity demand (load) and plant availabilities are treated as random variables, and the method of cumulants is used to calculate the expected energy generated by each plant in each year of the planning horizon. The resulting model has a (highly) nonlinear objective function and linear constraints. The planning model is solved over the multiyear planning horizon instead of decomposing it into one-year period problems. This approach helps the utility decision maker to carry out extensive sensitivity analysis easily. A case study example is provided using EPRI test data. Relationships among the reserve margin, total cost and surplus energy generating capacity over the planning horizon are explored by analyzing the model.
Liu, Ping; Li, Guodong; Liu, Xinggao
2015-09-01
Control vector parameterization (CVP) is an important approach of the engineering optimization for the industrial dynamic processes. However, its major defect, the low optimization efficiency caused by calculating the relevant differential equations in the generated nonlinear programming (NLP) problem repeatedly, limits its wide application in the engineering optimization for the industrial dynamic processes. A novel highly effective control parameterization approach, fast-CVP, is first proposed to improve the optimization efficiency for industrial dynamic processes, where the costate gradient formulae is employed and a fast approximate scheme is presented to solve the differential equations in dynamic process simulation. Three well-known engineering optimization benchmark problems of the industrial dynamic processes are demonstrated as illustration. The research results show that the proposed fast approach achieves a fine performance that at least 90% of the computation time can be saved in contrast to the traditional CVP method, which reveals the effectiveness of the proposed fast engineering optimization approach for the industrial dynamic processes. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Optimization of control poison management by dynamic programming
International Nuclear Information System (INIS)
Ponzoni Filho, P.
1974-01-01
A dynamic programming approach was used to optimize the poison distribution in the core of a nuclear power plant between reloading. This method was applied to a 500 M We PWR subject to two different fuel management policies. The beginning of a stage is marked by a fuel management decision. The state vector of the system is defined by the burnups in the three fuel zones of the core. The change of the state vector is computed in several time steps. A criticality conserving poison management pattern is chosen at the beginning of each step. The burnups at the end of a step are obtained by means of depletion calculations, assuming constant neutron distribution during the step. The violation of burnup and power peaking constraints during the step eliminates the corresponding end states. In the case of identical end states, all except that which produced the largest amount of energy, are eliminated. Among the several end states one is selected for the subsequent stage, when it is subjected to a fuel management decision. This selection is based on an optimally criterion previously chosen, such as: discharged fuel burnup maximization, energy generation cost minimization, etc. (author)
Effect of the CTL proliferation program on virus dynamics
DEFF Research Database (Denmark)
Wodarz, Dominik; Thomsen, Allan Randrup
2005-01-01
Experiments have established that CTLs do not require continuous antigenic stimulation for expansion. Instead, responses develop by a process of programmed proliferation which involves approximately 7-10 antigen-independent cell divisions, the generation of effector cells and the differentiation...... virus loads and thus acute symptoms. The reason is that the programmed divisions are independent from antigenic stimulation, and an increase in virus load does not speed up the rate of CTL expansion. We hypothesize that the 7-10 programmed divisions observed in vivo represent an optimal solution...... into memory cells. The effect of this program on the infection dynamics and the advantages gained by the program have, however, not been explored yet. We investigate this with mathematical models. We find that more programmed divisions can make virus clearance more efficient because CTL division continues...
Productive Parallel Programming: The PCN Approach
Directory of Open Access Journals (Sweden)
Ian Foster
1992-01-01
Full Text Available We describe the PCN programming system, focusing on those features designed to improve the productivity of scientists and engineers using parallel supercomputers. These features include a simple notation for the concise specification of concurrent algorithms, the ability to incorporate existing Fortran and C code into parallel applications, facilities for reusing parallel program components, a portable toolkit that allows applications to be developed on a workstation or small parallel computer and run unchanged on supercomputers, and integrated debugging and performance analysis tools. We survey representative scientific applications and identify problem classes for which PCN has proved particularly useful.
Optimal Design of Measurement Programs for the Parameter Identification of Dynamic Systems
DEFF Research Database (Denmark)
Kirkegaard, Poul Henning; Sørensen, John Dalsgaard; Brincker, Rune
1993-01-01
The design of a measurement program devoted to parameter identification of structural dynamic systems is considered. The design problem is formulated as an optimization problem to minimize the total expected cost that is the cost of failure and the cost of the measurement program. All...... the calculations are based on a priori knowledge and engineering judgement. One of the contribution of the approach is that the optimal number of sensory can be estimated. This is shown in an numerical example where the proposed approach is demonstrated. The example is concerned with design of a measurement...
Optimal Design of Measurement Programs for the Parameter Identification of Dynamic Systems
DEFF Research Database (Denmark)
Kirkegaard, Poul Henning; Sørensen, John Dalsgaard; Brincker, Rune
1991-01-01
The design of a measurement program devoted to parameter identification of structural dynamic systems is considered. The design problem is formulated as an optimization problem to minimize the total expected cost, i.e. the cost of failure and the cost of the measurement program. All...... the calculations are based on a priori knowledge and engineering judgement. One of the contributions of the approach is that the optimal number of sensors can be estimated. This is shown in a numerical example where the proposed approach is demonstrated. The example is concerned with design of a measurement...
Program participation, labor force dynamics, and accepted wage rates
DEFF Research Database (Denmark)
Munch, Jakob Roland; Skipper, Lars
2008-01-01
We apply a recently suggested econometric approach to measure the effects of active labor market programs on employment, unemployment, and wage histories among participants. We find that participation in most of these training programs produces an initial locking-in effect and for some even a lower...
Benchmarking novel approaches for modelling species range dynamics.
Zurell, Damaris; Thuiller, Wilfried; Pagel, Jörn; Cabral, Juliano S; Münkemüller, Tamara; Gravel, Dominique; Dullinger, Stefan; Normand, Signe; Schiffers, Katja H; Moore, Kara A; Zimmermann, Niklaus E
2016-08-01
Increasing biodiversity loss due to climate change is one of the most vital challenges of the 21st century. To anticipate and mitigate biodiversity loss, models are needed that reliably project species' range dynamics and extinction risks. Recently, several new approaches to model range dynamics have been developed to supplement correlative species distribution models (SDMs), but applications clearly lag behind model development. Indeed, no comparative analysis has been performed to evaluate their performance. Here, we build on process-based, simulated data for benchmarking five range (dynamic) models of varying complexity including classical SDMs, SDMs coupled with simple dispersal or more complex population dynamic models (SDM hybrids), and a hierarchical Bayesian process-based dynamic range model (DRM). We specifically test the effects of demographic and community processes on model predictive performance. Under current climate, DRMs performed best, although only marginally. Under climate change, predictive performance varied considerably, with no clear winners. Yet, all range dynamic models improved predictions under climate change substantially compared to purely correlative SDMs, and the population dynamic models also predicted reasonable extinction risks for most scenarios. When benchmarking data were simulated with more complex demographic and community processes, simple SDM hybrids including only dispersal often proved most reliable. Finally, we found that structural decisions during model building can have great impact on model accuracy, but prior system knowledge on important processes can reduce these uncertainties considerably. Our results reassure the clear merit in using dynamic approaches for modelling species' response to climate change but also emphasize several needs for further model and data improvement. We propose and discuss perspectives for improving range projections through combination of multiple models and for making these approaches
PSHED: a simplified approach to developing parallel programs
International Nuclear Information System (INIS)
Mahajan, S.M.; Ramesh, K.; Rajesh, K.; Somani, A.; Goel, M.
1992-01-01
This paper presents a simplified approach in the forms of a tree structured computational model for parallel application programs. An attempt is made to provide a standard user interface to execute programs on BARC Parallel Processing System (BPPS), a scalable distributed memory multiprocessor. The interface package called PSHED provides a basic framework for representing and executing parallel programs on different parallel architectures. The PSHED package incorporates concepts from a broad range of previous research in programming environments and parallel computations. (author). 6 refs
A Practical Approach to Program Evaluation.
Lee, Linda J.; Sampson, John F.
1990-01-01
The Research and Evaluation Support Services Unit of the New South Wales (Australia) Department of Education conducts program evaluations to provide information to senior management for decision making. The 10-step system used is described, which provides for planning, evaluation, and staff development. (TJH)
Fuzzy linear programming approach for solving transportation
Indian Academy of Sciences (India)
Transportation problem (TP) is an important network structured linear programming problem that arises in several contexts and has deservedly received a great deal of attention in the literature. The central concept in this problem is to find the least total transportation cost of a commodity in order to satisfy demands at ...
On dynamical systems approaches and methods in f ( R ) cosmology
Energy Technology Data Exchange (ETDEWEB)
Alho, Artur [Center for Mathematical Analysis, Geometry and Dynamical Systems, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Carloni, Sante [Centro Multidisciplinar de Astrofisica – CENTRA, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Uggla, Claes, E-mail: aalho@math.ist.utl.pt, E-mail: sante.carloni@tecnico.ulisboa.pt, E-mail: claes.uggla@kau.se [Department of Physics, Karlstad University, S-65188 Karlstad (Sweden)
2016-08-01
We discuss dynamical systems approaches and methods applied to flat Robertson-Walker models in f ( R )-gravity. We argue that a complete description of the solution space of a model requires a global state space analysis that motivates globally covering state space adapted variables. This is shown explicitly by an illustrative example, f ( R ) = R + α R {sup 2}, α > 0, for which we introduce new regular dynamical systems on global compactly extended state spaces for the Jordan and Einstein frames. This example also allows us to illustrate several local and global dynamical systems techniques involving, e.g., blow ups of nilpotent fixed points, center manifold analysis, averaging, and use of monotone functions. As a result of applying dynamical systems methods to globally state space adapted dynamical systems formulations, we obtain pictures of the entire solution spaces in both the Jordan and the Einstein frames. This shows, e.g., that due to the domain of the conformal transformation between the Jordan and Einstein frames, not all the solutions in the Jordan frame are completely contained in the Einstein frame. We also make comparisons with previous dynamical systems approaches to f ( R ) cosmology and discuss their advantages and disadvantages.
The DYLAM approach for the dynamic reliability analysis of systems
International Nuclear Information System (INIS)
Cojazzi, Giacomo
1996-01-01
In many real systems, failures occurring to the components, control failures and human interventions often interact with the physical system evolution in such a way that a simple reliability analysis, de-coupled from process dynamics, is very difficult or even impossible. In the last ten years many dynamic reliability approaches have been proposed to properly assess the reliability of these systems characterized by dynamic interactions. The DYLAM methodology, now implemented in its latest version, DYLAM-3, offers a powerful tool for integrating deterministic and failure events. This paper describes the main features of the DYLAM-3 code with reference to the classic fault-tree and event-tree techniques. Some aspects connected to the practical problems underlying dynamic event-trees are also discussed. A simple system, already analyzed with other dynamic methods is used as a reference for the numerical applications. The same system is also studied with a time-dependent fault-tree approach in order to show some features of dynamic methods vs classical techniques. Examples including stochastic failures, without and with repair, failures on demand and time dependent failure rates give an extensive overview of DYLAM-3 capabilities
A note on dynamic programming in accounts receivable management
Dirickx, Y.M.I.; Kistner, K.-P.
1982-01-01
The paper considers a dynamic programming formulation of the accounts receivable problem for single outstanding amounts. An optimal collection policy can be computed efficiently by invoking a “planning horizon” result that determines a time period beyond which the decision process cannot extend. The
PACE: A dynamic programming algorithm for hardware/software partitioning
DEFF Research Database (Denmark)
Knudsen, Peter Voigt; Madsen, Jan
1996-01-01
This paper presents the PACE partitioning algorithm which is used in the LYCOS co-synthesis system for partitioning control/dataflow graphs into hardware and software parts. The algorithm is a dynamic programming algorithm which solves both the problem of minimizing system execution time...
The Functional Programming Language R and the Paradigm of Dynamic Scientific Programming
Trancón y Widemann, B.; Bolz, C.F.; Grelck, C.; Loidl, H.-W.; Peña, R.
2013-01-01
R is an environment and functional programming language for statistical data analysis and visualization. Largely unknown to the functional programming community, it is popular and influential in many empirical sciences. Due to its integrated combination of dynamic and reflective scripting on one
Intensive Research Program on Advances in Nonsmooth Dynamics 2016
Jeffrey, Mike; Lázaro, J; Olm, Josep
2017-01-01
This volume contains extended abstracts outlining selected talks and other selected presentations given by participants throughout the "Intensive Research Program on Advances in Nonsmooth Dynamics 2016", held at the Centre de Recerca Matemàtica (CRM) in Barcelona from February 1st to April 29th, 2016. They include brief research articles reporting new results, descriptions of preliminary work or open problems, and outlines of prominent discussion sessions. The articles are all the result of direct collaborations initiated during the research program. The topic is the theory and applications of Nonsmooth Dynamics. This includes systems involving elements of: impacting, switching, on/off control, hybrid discrete-continuous dynamics, jumps in physical properties, and many others. Applications include: electronics, climate modeling, life sciences, mechanics, ecology, and more. Numerous new results are reported concerning the dimensionality and robustness of nonsmooth models, shadowing variables, numbers of limit...
A Dynamic Approach to School Improvement : Main Features and Impact
Creemers, Bert; Kyriakides, L.; Antoniou, P.
2013-01-01
This paper refers to the dynamic approach to school improvement (DASI) which attempts to contribute to the merging of educational effectiveness research and school improvement. The main underlying assumptions and the implementation phases of DASI are discussed. Moreover, a study aiming to compare
The Feldenkrais Method: A Dynamic Approach to Changing Motor Behavior.
Buchanan, Patricia A.; Ulrich, Beverly D.
2001-01-01
Describes the Feldenkrais Method of somatic education, noting parallels with a dynamic systems theory (DST) approach to motor behavior. Feldenkrais uses movement and perception to foster individualized improvement in function. DST explains that a human-environment system continually adapts to changing conditions and assembles behaviors…
Steady and dynamic states analysis of induction motor: FEA approach
African Journals Online (AJOL)
This paper deals with the steady and dynamic states analysis of induction motor using finite element analysis (FEA) approach. The motor has aluminum rotor bars and is designed for direct-on-line operation at 50 Hz. A study of the losses occurring in the motor performed at operating frequency of 50Hz showed that stator ...
The dynamics of alliances. A game theoretical approach
Ridder, A. de
2007-01-01
In this dissertation, Annelies de Ridder presents a game theoretical approach to strategic alliances. More specifically, the dynamics of and within alliances have been studied. To do so, four new models have been developed in the game theoretical tradition. Both coalition theory and strategic game
Sediment Analysis Using a Structured Programming Approach
Directory of Open Access Journals (Sweden)
Daniela Arias-Madrid
2012-12-01
Full Text Available This paper presents an algorithm designed for the analysis of a sedimentary sample of unconsolidated material and seeks to identify very quickly the main features that occur in a sediment and thus classify them fast and efficiently. For this purpose, it requires that the weight of each particle size to be entered in the program and using the method of Moments, which is based on four equations representing the mean, standard deviation, skewness and kurtosis, is found the attributes of the sample in few seconds. With the program these calculations are performed in an effective and more accurately way, obtaining also the explanations of the results of the features such as grain size, sorting, symmetry and origin, which helps to improve the study of sediments and in general the study of sedimentary rocks.
Extraction of Static and Dynamic Reservoir Operation Rules by Genetic Programming
Directory of Open Access Journals (Sweden)
Habib Akbari Alashti
2014-11-01
Full Text Available Considering the necessity of desirable operation of limited water resources and assuming the significant role of dams in controlling and consuming the surface waters, highlights the advantageous of suitable operation rules for optimal and sustainable operation of dams. This study investigates the hydroelectric supply of a one-reservoir system of Karoon3 using nonlinear programming (NLP, genetic algorithm (GA, genetic programming (GP and fixed length gen GP (FLGGP in real-time operation of dam considering two approaches of static and dynamic operation rules. In static operation rule, only one rule curve is extracted for all months in a year whereas in dynamic operation rule, monthly rule curves (12 rules are extracted for each month of a year. In addition, nonlinear decision rule (NLDR curves are considered, and the total deficiency function as the target (objective function have been used for evaluating the performance of each method and approach. Results show appropriate efficiency of GP and FLGGP methods in extracting operation rules in both approaches. Superiority of these methods to operation methods yielded by GA and NLP is 5%. Moreover, according to the results, it can be remarked that, FLGGP method is an alternative for GP method, whereas the GP method cannot be used due to its limitations. Comparison of two approaches of static and dynamic operation rules demonstrated the superiority of dynamic operation rule to static operation rule (about 10% and therefore this method has more capabilities in real-time operation of the reservoirs systems.
International Nuclear Information System (INIS)
Sprecher, W.M.; Katz, J.; Redmond, R.J.
1992-01-01
This paper describes the approach that the Office of Civilian Radioactive Waste Management (OCRWM) of the Department of Energy (DOE) is taking to the task of strategic planning for the civilian high-level radioactive waste management program. It highlights selected planning products and activities that have emerged over the past year. It demonstrates that this approach is an integrated one, both in the sense of being systematic on the program level but also as a component of DOE strategic planning efforts. Lastly, it indicates that OCRWM strategic planning takes place in a dynamic environment and consequently is a process that is still evolving in response to the demands placed upon it
Controller design approach based on linear programming.
Tanaka, Ryo; Shibasaki, Hiroki; Ogawa, Hiromitsu; Murakami, Takahiro; Ishida, Yoshihisa
2013-11-01
This study explains and demonstrates the design method for a control system with a load disturbance observer. Observer gains are determined by linear programming (LP) in terms of the Routh-Hurwitz stability criterion and the final-value theorem. In addition, the control model has a feedback structure, and feedback gains are determined to be the linear quadratic regulator. The simulation results confirmed that compared with the conventional method, the output estimated by our proposed method converges to a reference input faster when a load disturbance is added to a control system. In addition, we also confirmed the effectiveness of the proposed method by performing an experiment with a DC motor. © 2013 ISA. Published by ISA. All rights reserved.
Data and Dynamics Driven Approaches for Modelling and Forecasting the Red Sea Chlorophyll
Dreano, Denis
2017-01-01
concentration and have practical applications for fisheries operation and harmful algae blooms monitoring. Modelling approaches can be divided between physics- driven (dynamical) approaches, and data-driven (statistical) approaches. Dynamical models are based
An Approach for Solving Linear Fractional Programming Problems
Andrew Oyakhobo Odior
2012-01-01
Linear fractional programming problems are useful tools in production planning, financial and corporate planning, health care and hospital planning and as such have attracted considerable research interest. The paper presents a new approach for solving a fractional linear programming problem in which the objective function is a linear fractional function, while the constraint functions are in the form of linear inequalities. The approach adopted is based mainly upon solving the problem algebr...
Programming massively parallel processors a hands-on approach
Kirk, David B
2010-01-01
Programming Massively Parallel Processors discusses basic concepts about parallel programming and GPU architecture. ""Massively parallel"" refers to the use of a large number of processors to perform a set of computations in a coordinated parallel way. The book details various techniques for constructing parallel programs. It also discusses the development process, performance level, floating-point format, parallel patterns, and dynamic parallelism. The book serves as a teaching guide where parallel programming is the main topic of the course. It builds on the basics of C programming for CUDA, a parallel programming environment that is supported on NVI- DIA GPUs. Composed of 12 chapters, the book begins with basic information about the GPU as a parallel computer source. It also explains the main concepts of CUDA, data parallelism, and the importance of memory access efficiency using CUDA. The target audience of the book is graduate and undergraduate students from all science and engineering disciplines who ...
A Case Study on Air Combat Decision Using Approximated Dynamic Programming
Directory of Open Access Journals (Sweden)
Yaofei Ma
2014-01-01
Full Text Available As a continuous state space problem, air combat is difficult to be resolved by traditional dynamic programming (DP with discretized state space. The approximated dynamic programming (ADP approach is studied in this paper to build a high performance decision model for air combat in 1 versus 1 scenario, in which the iterative process for policy improvement is replaced by mass sampling from history trajectories and utility function approximating, leading to high efficiency on policy improvement eventually. A continuous reward function is also constructed to better guide the plane to find its way to “winner” state from any initial situation. According to our experiments, the plane is more offensive when following policy derived from ADP approach other than the baseline Min-Max policy, in which the “time to win” is reduced greatly but the cumulated probability of being killed by enemy is higher. The reason is analyzed in this paper.
A cutting- plane approach for semi- infinite mathematical programming
African Journals Online (AJOL)
Many situations ranging from industrial to social via economic and environmental problems may be cast into a Semi-infinite mathematical program. In this paper, the cutting-plane approach which lends itself better for standard non-linear programs is exploited with good reasons for grappling with linear, convex and ...
Neurolinguistic Programming: A Systematic Approach to Change
Steinbach, A. M.
1984-01-01
Neurolinguistic programming (NLP) integrates advances in cybernetics, psychophysiology, linguistics, and information services. It has been used in business, education, law, medicine and psychotherapy to alter people's responses to stimuli, so they are better able to regulate their environment and themselves. There are five steps to an effective NLP interaction. They include 1. establishing rapport; the therapist must match his verbal and non-verbal behaviors to the patient's, 2. gathering information about the patient's present problem and goals by noting his verbal patterns and non-verbal responses, 3. considering the impact that achieving the patient's goals will have on him, his work, family and friends, and retaining any positive aspects of his current situation, 4. helping the patient achieve his goals by using specific techniques to alter his responses to various stimuli, and 5. ensuring the altered responses achieved in therapy are integrated into the patient's daily life. NLP has been used to help patients with medical problems ranging from purely psychological to complex organic ones. PMID:21283502
Neurolinguistic programming: a systematic approach to change.
Steinbach, A M
1984-01-01
Neurolinguistic programming (NLP) integrates advances in cybernetics, psychophysiology, linguistics, and information services. It has been used in business, education, law, medicine and psychotherapy to alter people's responses to stimuli, so they are better able to regulate their environment and themselves. There are five steps to an effective NLP interaction. They include 1. establishing rapport; the therapist must match his verbal and non-verbal behaviors to the patient's, 2. gathering information about the patient's present problem and goals by noting his verbal patterns and non-verbal responses, 3. considering the impact that achieving the patient's goals will have on him, his work, family and friends, and retaining any positive aspects of his current situation, 4. helping the patient achieve his goals by using specific techniques to alter his responses to various stimuli, and 5. ensuring the altered responses achieved in therapy are integrated into the patient's daily life. NLP has been used to help patients with medical problems ranging from purely psychological to complex organic ones.
Upper atmosphere research satellite program. [to study the chemistry energetics, and dynamics
Huntress, W. T., Jr.
1978-01-01
A satellite program to conduct research on the chemistry, energetics, and dynamics of the upper atmosphere was developed. The scientific goals of the Upper Atmospheric Research Program, the program requirements, and the approach toward meeting those requirements are outlined. An initial series of two overlapping spacecraft missions is described. Both spacecraft are launched and recovered by the STS, one in the winter of 1983 at a 56 deg inclination, and the other a year later at a 70 deg inclination. The duration of each mission is 18 months, and each carries instruments to make global measurements of the temperature, winds, composition, irradation, and radiance in the stratosphere, mesosphere, and lower thermosphere between the tropopause and 120 km altitude. The program requires a dedicated ground-based data system and a science team organization that leads to a strong interaction between the experiments and theory. The program includes supportive observations from other platforms such as rockets, balloons, and the Spacelab.
A Dynamic Linear Modeling Approach to Public Policy Change
DEFF Research Database (Denmark)
Loftis, Matthew; Mortensen, Peter Bjerre
2017-01-01
Theories of public policy change, despite their differences, converge on one point of strong agreement. The relationship between policy and its causes can and does change over time. This consensus yields numerous empirical implications, but our standard analytical tools are inadequate for testing...... them. As a result, the dynamic and transformative relationships predicted by policy theories have been left largely unexplored in time-series analysis of public policy. This paper introduces dynamic linear modeling (DLM) as a useful statistical tool for exploring time-varying relationships in public...... policy. The paper offers a detailed exposition of the DLM approach and illustrates its usefulness with a time series analysis of U.S. defense policy from 1957-2010. The results point the way for a new attention to dynamics in the policy process and the paper concludes with a discussion of how...
Logical Attractors: a Boolean Approach to the Dynamics of Psychosis
Kupper, Z.; Hoffmann, H.
A Boolean modeling approach to attractors in the dynamics of psychosis is presented: Kinetic Logic, originating from R. Thomas, describes systems on an intermediate level between a purely verbal, qualitative description and a description using nonlinear differential equations. With this method we may model impact, feedback and temporal evolution, as well as analyze the resulting attractors. In our previous research the method has been applied to general and more specific questions in the dynamics of psychotic disorders. In this paper a model is introduced that describes different dynamical patterns of chronic psychosis in the context of vocational rehabilitation. It also shows to be useful in formulating and exploring possible treatment strategies. Finally, some of the limitations and benefits of Kinetic Logic as a modeling tool for psychology and psychiatry are discussed.
Spreading dynamics on complex networks: a general stochastic approach.
Noël, Pierre-André; Allard, Antoine; Hébert-Dufresne, Laurent; Marceau, Vincent; Dubé, Louis J
2014-12-01
Dynamics on networks is considered from the perspective of Markov stochastic processes. We partially describe the state of the system through network motifs and infer any missing data using the available information. This versatile approach is especially well adapted for modelling spreading processes and/or population dynamics. In particular, the generality of our framework and the fact that its assumptions are explicitly stated suggests that it could be used as a common ground for comparing existing epidemics models too complex for direct comparison, such as agent-based computer simulations. We provide many examples for the special cases of susceptible-infectious-susceptible and susceptible-infectious-removed dynamics (e.g., epidemics propagation) and we observe multiple situations where accurate results may be obtained at low computational cost. Our perspective reveals a subtle balance between the complex requirements of a realistic model and its basic assumptions.
Academic entrepreneurship in a medical university: A system dynamics approach
Directory of Open Access Journals (Sweden)
Tofighi Sharam
2017-01-01
Full Text Available Academic entrepreneurship is a dynamic field which is growing after the second academic revolution that added entrepreneurial mission as the Third Mission of universities. In this sense, dynamics of this phenomenon is a suitable field of study and provides fruitful insights for both theory and practice. Thus, in this research, system dynamics approach is used to scrutinize academic entrepreneurship. The main question of this research is 'how academic entrepreneurship might evolve in a medical university of a developing country?' Therefore, Cross Impact Analysis method is used to examine the system behavior. In this study, the main attributes are adapted from a recent study by Salamzadeh et al. (2013a. Then, some policy variables are proposed and their effects on the model were shown. Findings show that although entrepreneurial ecosystem is growing in the country, still there are problems to be taken into account in order to improve the entrepreneurship in university.
Synthesizing Dynamic Programming Algorithms from Linear Temporal Logic Formulae
Rosu, Grigore; Havelund, Klaus
2001-01-01
The problem of testing a linear temporal logic (LTL) formula on a finite execution trace of events, generated by an executing program, occurs naturally in runtime analysis of software. We present an algorithm which takes an LTL formula and generates an efficient dynamic programming algorithm. The generated algorithm tests whether the LTL formula is satisfied by a finite trace of events given as input. The generated algorithm runs in linear time, its constant depending on the size of the LTL formula. The memory needed is constant, also depending on the size of the formula.
Multifaceted Approach to Designing an Online Masters Program.
McNeil, Sara G.; Chernish, William N.; DeFranco, Agnes L.
At the Conrad N. Hilton College of Hotel and Restaurant Management at the University of Houston (Texas), the faculty and administrators made a conscious effort to take a broad, extensive approach to designing and implementing a fully online masters program. This approach was entered in a comprehensive needs assessment model and sought input from…
Mathematical-programming approaches to test item pool design
Veldkamp, Bernard P.; van der Linden, Willem J.; Ariel, A.
2002-01-01
This paper presents an approach to item pool design that has the potential to improve on the quality of current item pools in educational and psychological testing andhence to increase both measurement precision and validity. The approach consists of the application of mathematical programming
An approach for solving linear fractional programming problems ...
African Journals Online (AJOL)
The paper presents a new approach for solving a fractional linear programming problem in which the objective function is a linear fractional function, while the constraint functions are in the form of linear inequalities. The approach adopted is based mainly upon solving the problem algebraically using the concept of duality ...
Beginning Java programming the object-oriented approach
Baesens, Bart; vanden Broucke, Seppe
2015-01-01
A comprehensive Java guide, with samples, exercises, case studies, and step-by-step instruction Beginning Java Programming: The Object Oriented Approach is a straightforward resource for getting started with one of the world's most enduringly popular programming languages. Based on classes taught by the authors, the book starts with the basics and gradually builds into more advanced concepts. The approach utilizes an integrated development environment that allows readers to immediately apply what they learn, and includes step-by-step instruction with plenty of sample programs. Each chapter c
GLOBEC (Global Ocean Ecosystems Dynamics: Northwest Atlantic program
1991-01-01
The specific objective of the meeting was to plan an experiment in the Northwestern Atlantic to study the marine ecosystem and its role, together with that of climate and physical dynamics, in determining fisheries recruitment. The underlying focus of the GLOBEC initiative is to understand the marine ecosystem as it related to marine living resources and to understand how fluctuation in these resources are driven by climate change and exploitation. In this sense the goal is a solid scientific program to provide basic information concerning major fisheries stocks and the environment that sustains them. The plan is to attempt to reach this understanding through a multidisciplinary program that brings to bear new techniques as disparate as numerical fluid dynamic models of ocean circulation, molecular biology and modern acoustic imaging. The effort will also make use of the massive historical data sets on fisheries and the state of the climate in a coordinated manner.
Stability of nanofluids: Molecular dynamic approach and experimental study
International Nuclear Information System (INIS)
Farzaneh, H.; Behzadmehr, A.; Yaghoubi, M.; Samimi, A.; Sarvari, S.M.H.
2016-01-01
Highlights: • Nanofluid stability is investigated and discussed. • A molecular dynamic approach, considering different forces on the nanoparticles, is adopted. • Stability diagrams are presented for different thermo-fluid conditions. • An experimental investigation is carried out to confirm the theoretical approach. - Abstract: Nanofluids as volumetric absorbent in solar energy conversion devices or as working fluid in different heat exchangers have been proposed by various researchers. However, dispersion stability of nanofluids is an important issue that must be well addressed before any industrial applications. Conditions such as severe temperature gradient, high temperature of heat transfer fluid, nanoparticle mean diameters and types of nanoparticles and base fluid are among the most effective parameters on the stability of nanofluid. A molecular dynamic approach, considering kinetic energy of nanoparticles and DLVO potential energy between nanoparticles, is adopted to study the nanofluid stability for different nanofluids at different working conditions. Different forces such as Brownian, thermophoresis, drag and DLVO are considered to introduce the stability diagrams. The latter presents the conditions for which a nanofluid can be stable. In addition an experimental investigation is carried out to find a stable nanofluid and to show the validity of the theoretical approach. There is a good agreement between the experimental and theoretical results that confirms the validity of our theoretical approach.
Discrete Cosserat Approach for Multi-Section Soft Robots Dynamics
Renda, Federico; Boyer, Frederic; Dias, Jorge; Seneviratne, Lakmal
2017-01-01
In spite of recent progress, soft robotics still suffers from a lack of unified modeling framework. Nowadays, the most adopted model for the design and control of soft robots is the piece-wise constant curvature model, with its consolidated benefits and drawbacks. In this work, an alternative model for multisection soft robots dynamics is presented based on a discrete Cosserat approach, which, not only takes into account shear and torsional deformations, essentials to cope with out-of-plane e...
Synchronization of two chaotic systems: Dynamic compensator approach
International Nuclear Information System (INIS)
Chen, C.-K.; Lai, T.-W.; Yan, J.-J.; Liao, T.-L.
2009-01-01
This study is concerned with the identical synchronization problem for a class of chaotic systems. A dynamic compensator is proposed to achieve the synchronization between master and slave chaotic systems using only the accessible output variables. A sufficient condition is also proposed to ensure the global synchronization. Furthermore, the strictly positive real (SPR) restriction, which is normally required in most of the observer-based synchronization schemes, is released in our approach. Two numerical examples are included to illustrate the proposed scheme.
Dynamical coupled channel approach to omega meson production
Energy Technology Data Exchange (ETDEWEB)
Mark Paris
2007-09-10
The dynamical coupled channel approach of Matsuyama, Sato, and Lee is used to study the $\\omega$--meson production induced by pions and photons scattering from the proton. The parameters of the model are fixed in a two-channel (\\omega N,\\pi N) calculation for the non-resonant and resonant contributions to the $T$ matrix by fitting the available unpolarized differential cross section data. The polarized photon beam asymmetry is predicted and compared to existing data.
Optimization of a pump-pipe system by dynamic programming
DEFF Research Database (Denmark)
Vidal, Rene Victor Valqui; Ferreira, Jose S.
1984-01-01
In this paper the problem of minimizing the total cost of a pump-pipe system in series is considered. The route of the pipeline and the number of pumping stations are known. The optimization will then consist in determining the control variables, diameter and thickness of the pipe and the size of...... of the pumps. A general mathematical model is formulated and Dynamic Programming is used to find an optimal solution....
Systems and methods for interpolation-based dynamic programming
Rockwood, Alyn
2013-01-03
Embodiments of systems and methods for interpolation-based dynamic programming. In one embodiment, the method includes receiving an object function and a set of constraints associated with the objective function. The method may also include identifying a solution on the objective function corresponding to intersections of the constraints. Additionally, the method may include generating an interpolated surface that is in constant contact with the solution. The method may also include generating a vector field in response to the interpolated surface.
Systems and methods for interpolation-based dynamic programming
Rockwood, Alyn
2013-01-01
Embodiments of systems and methods for interpolation-based dynamic programming. In one embodiment, the method includes receiving an object function and a set of constraints associated with the objective function. The method may also include identifying a solution on the objective function corresponding to intersections of the constraints. Additionally, the method may include generating an interpolated surface that is in constant contact with the solution. The method may also include generating a vector field in response to the interpolated surface.
SEWER NETWORK DISCHARGE OPTIMIZATION USING THE DYNAMIC PROGRAMMING
Directory of Open Access Journals (Sweden)
Viorel MINZU
2015-12-01
Full Text Available It is necessary to adopt an optimal control that allows an efficient usage of the existing sewer networks, in order to avoid the building of new retention facilities. The main objective of the control action is to minimize the overflow volume of a sewer network. This paper proposes a method to apply a solution obtained by discrete dynamic programming through a realistic closed loop system.
An Approximate Dynamic Programming Mode for Optimal MEDEVAC Dispatching
2015-03-26
over the myopic policy. This indicates the ADP policy is efficiently managing resources by 28 not immediately sending the nearest available MEDEVAC...DISPATCHING THESIS Presented to the Faculty Department of Operational Sciences Graduate School of Engineering and Management Air Force Institute of Technology...medical evacuation (MEDEVAC) dispatch policies. To solve the MDP, we apply an ap- proximate dynamic programming (ADP) technique. The problem of deciding
Approximate Dynamic Programming Based on High Dimensional Model Representation
Czech Academy of Sciences Publication Activity Database
Pištěk, Miroslav
2013-01-01
Roč. 49, č. 5 (2013), s. 720-737 ISSN 0023-5954 R&D Projects: GA ČR(CZ) GAP102/11/0437 Institutional support: RVO:67985556 Keywords : approximate dynamic programming * Bellman equation * approximate HDMR minimization * trust region problem Subject RIV: BC - Control Systems Theory Impact factor: 0.563, year: 2013 http://library.utia.cas.cz/separaty/2013/AS/pistek-0399560.pdf
Dynamical system approach to running Λ cosmological models
International Nuclear Information System (INIS)
Stachowski, Aleksander; Szydlowski, Marek
2016-01-01
We study the dynamics of cosmological models with a time dependent cosmological term. We consider five classes of models; two with the non-covariant parametrization of the cosmological term Λ: Λ(H)CDM cosmologies, Λ(a)CDM cosmologies, and three with the covariant parametrization of Λ: Λ(R)CDM cosmologies, where R(t) is the Ricci scalar, Λ(φ)-cosmologies with diffusion, Λ(X)-cosmologies, where X = (1)/(2)g"α"β∇_α∇_βφ is a kinetic part of the density of the scalar field. We also consider the case of an emergent Λ(a) relation obtained from the behaviour of trajectories in a neighbourhood of an invariant submanifold. In the study of the dynamics we used dynamical system methods for investigating how an evolutionary scenario can depend on the choice of special initial conditions. We show that the methods of dynamical systems allow one to investigate all admissible solutions of a running Λ cosmology for all initial conditions. We interpret Alcaniz and Lima's approach as a scaling cosmology. We formulate the idea of an emergent cosmological term derived directly from an approximation of the exact dynamics. We show that some non-covariant parametrization of the cosmological term like Λ(a), Λ(H) gives rise to the non-physical behaviour of trajectories in the phase space. This behaviour disappears if the term Λ(a) is emergent from the covariant parametrization. (orig.)
Yang, Ruiduo; Sarkar, Sudeep; Loeding, Barbara
2010-03-01
We consider two crucial problems in continuous sign language recognition from unaided video sequences. At the sentence level, we consider the movement epenthesis (me) problem and at the feature level, we consider the problem of hand segmentation and grouping. We construct a framework that can handle both of these problems based on an enhanced, nested version of the dynamic programming approach. To address movement epenthesis, a dynamic programming (DP) process employs a virtual me option that does not need explicit models. We call this the enhanced level building (eLB) algorithm. This formulation also allows the incorporation of grammar models. Nested within this eLB is another DP that handles the problem of selecting among multiple hand candidates. We demonstrate our ideas on four American Sign Language data sets with simple background, with the signer wearing short sleeves, with complex background, and across signers. We compared the performance with Conditional Random Fields (CRF) and Latent Dynamic-CRF-based approaches. The experiments show more than 40 percent improvement over CRF or LDCRF approaches in terms of the frame labeling rate. We show the flexibility of our approach when handling a changing context. We also find a 70 percent improvement in sign recognition rate over the unenhanced DP matching algorithm that does not accommodate the me effect.
A statistical state dynamics approach to wall turbulence.
Farrell, B F; Gayme, D F; Ioannou, P J
2017-03-13
This paper reviews results obtained using statistical state dynamics (SSD) that demonstrate the benefits of adopting this perspective for understanding turbulence in wall-bounded shear flows. The SSD approach used in this work employs a second-order closure that retains only the interaction between the streamwise mean flow and the streamwise mean perturbation covariance. This closure restricts nonlinearity in the SSD to that explicitly retained in the streamwise constant mean flow together with nonlinear interactions between the mean flow and the perturbation covariance. This dynamical restriction, in which explicit perturbation-perturbation nonlinearity is removed from the perturbation equation, results in a simplified dynamics referred to as the restricted nonlinear (RNL) dynamics. RNL systems, in which a finite ensemble of realizations of the perturbation equation share the same mean flow, provide tractable approximations to the SSD, which is equivalent to an infinite ensemble RNL system. This infinite ensemble system, referred to as the stochastic structural stability theory system, introduces new analysis tools for studying turbulence. RNL systems provide computationally efficient means to approximate the SSD and produce self-sustaining turbulence exhibiting qualitative features similar to those observed in direct numerical simulations despite greatly simplified dynamics. The results presented show that RNL turbulence can be supported by as few as a single streamwise varying component interacting with the streamwise constant mean flow and that judicious selection of this truncated support or 'band-limiting' can be used to improve quantitative accuracy of RNL turbulence. These results suggest that the SSD approach provides new analytical and computational tools that allow new insights into wall turbulence.This article is part of the themed issue 'Toward the development of high-fidelity models of wall turbulence at large Reynolds number'. © 2017 The Author(s).
A program for dynamic noise investigations of reactor systems
International Nuclear Information System (INIS)
Antonov, N.A.; Yaneva, N.B.
1980-01-01
A stochastic process analysis in nuclear reactors is used for the state diagnosis and dynamic characteristic investigation of the reactor system. A program DENSITY adapted and tested on an IBM 360 ES type computer is developed. The program is adjusted for fast processing of long series exploiting a relatively small memory. The testing procedure is discussed and the method of the periodic sequences corresponding to characteristic reactivity perturbations of the reactor systems is considered. The program is written for calculating the auto-power spectral density and the cross-power spectral density, as well as the coherence function of stationary statistical time series using the advantages of the fast Fourier transformation. In particular, it is shown that the multi-frequency binary sequences are very useful with respect to the signal-to-noise ratio and the frequency distribution in view of the frequency reactor test
2012-03-30
... DEPARTMENT OF TRANSPORTATION Dynamic Mobility Applications and Data Capture Management Programs... stakeholders an update on the Data Capture and Management (DCM) and Dynamic Mobility Applications (DMA... critical issues designed to garner stakeholder feedback. About the Dynamic Mobility Application and Data...
Relativistic kinematics and dynamics: a new group theoretical approach
International Nuclear Information System (INIS)
Giovannini, N.
1983-01-01
The author reanalyzes the relationships between physical states and space-time symmetries with a view to describing relativistic extended and interacting systems. For this description he proposes to introduce, in space-time, an additional observable, related to a natural notion of simultaneity. The introduction of this new observable is justified on the basis of the operational meaning of the relations between state descriptions and symmetries in this case. The Poincare transformations are correspondingly split into two parts: the first one, kinematical, related to the symmetries of the description of the states, the other one, dynamical, related to the possible forms for the evolution. It is shown that the kinematical symmetries lead in a straightforward way to the expected classical and quantal state spaces for single particles of arbitrary spin and the author shows how the remaining symmetries can be related to the derivation of the possible forms for the dynamics. He finds as a particular case the usual dynamics of single particles in external fields (with some satisfactory improvements due to the corresponding new interpretation) and extends the method to the dynamics of N interacting particles. He also shows why this new approach and interpretation of relativistic states is necessary and how it allows a covariant description in the problems raised by the (recently measured) quantum correlations at-a-distance concerning the Einstein-Podolsky-Rosen paradox, something which seems quite impossible in the usual frameworks. (Auth.)
Development and demonstration program for dynamic nuclear materials control
International Nuclear Information System (INIS)
Augustson, R.H.; Baron, N.; Ford, R.F.; Ford, W.; Hagen, J.; Li, T.K.; Marshall, R.S.; Reams, V.S.; Severe, W.R.; Shirk, D.G.
1978-01-01
A significant portion of the Los Alamos Scientific Laboratory Safeguards Program is directed toward the development and demonstration of dynamic nuclear materials control. The building chosen for the demonstration system is the new Plutonium Processing Facility in Los Alamos, which houses such operations as metal-to-oxide conversion, fuel pellet fabrication, and scrap recovery. A DYnamic MAterials Control (DYMAC) system is currently being installed in the facility as an integral part of the processing operation. DYMAC is structured around interlocking unit-process accounting areas. It relies heavily on nondestructive assay measurements made in the process line to draw dynamic material balances in near real time. In conjunction with the nondestructive assay instrumentation, process operators use interactive terminals to transmit additional accounting and process information to a dedicated computer. The computer verifies and organizes the incoming data, immediately updates the inventory records, monitors material in transit using elapsed time, and alerts the Nuclear Materials Officer in the event that material balances exceed the predetermined action limits. DYMAC is part of the United States safeguards system under control of the facility operator. Because of its advanced features, the system will present a new set of inspection conditions to the IAEA, whose response is the subject of a study being sponsored by the US-IAEA Technical Assistance Program. The central issue is how the IAEA can use the increased capabilities of such a system and still maintain independent verification
Automatic programming via iterated local search for dynamic job shop scheduling.
Nguyen, Su; Zhang, Mengjie; Johnston, Mark; Tan, Kay Chen
2015-01-01
Dispatching rules have been commonly used in practice for making sequencing and scheduling decisions. Due to specific characteristics of each manufacturing system, there is no universal dispatching rule that can dominate in all situations. Therefore, it is important to design specialized dispatching rules to enhance the scheduling performance for each manufacturing environment. Evolutionary computation approaches such as tree-based genetic programming (TGP) and gene expression programming (GEP) have been proposed to facilitate the design task through automatic design of dispatching rules. However, these methods are still limited by their high computational cost and low exploitation ability. To overcome this problem, we develop a new approach to automatic programming via iterated local search (APRILS) for dynamic job shop scheduling. The key idea of APRILS is to perform multiple local searches started with programs modified from the best obtained programs so far. The experiments show that APRILS outperforms TGP and GEP in most simulation scenarios in terms of effectiveness and efficiency. The analysis also shows that programs generated by APRILS are more compact than those obtained by genetic programming. An investigation of the behavior of APRILS suggests that the good performance of APRILS comes from the balance between exploration and exploitation in its search mechanism.
IMPLICIT DUAL CONTROL BASED ON PARTICLE FILTERING AND FORWARD DYNAMIC PROGRAMMING.
Bayard, David S; Schumitzky, Alan
2010-03-01
This paper develops a sampling-based approach to implicit dual control. Implicit dual control methods synthesize stochastic control policies by systematically approximating the stochastic dynamic programming equations of Bellman, in contrast to explicit dual control methods that artificially induce probing into the control law by modifying the cost function to include a term that rewards learning. The proposed implicit dual control approach is novel in that it combines a particle filter with a policy-iteration method for forward dynamic programming. The integration of the two methods provides a complete sampling-based approach to the problem. Implementation of the approach is simplified by making use of a specific architecture denoted as an H-block. Practical suggestions are given for reducing computational loads within the H-block for real-time applications. As an example, the method is applied to the control of a stochastic pendulum model having unknown mass, length, initial position and velocity, and unknown sign of its dc gain. Simulation results indicate that active controllers based on the described method can systematically improve closed-loop performance with respect to other more common stochastic control approaches.
Concurrent object-oriented programming: The MP-Eiffel approach
Silva, Miguel Augusto Mendes Oliveira e
2004-01-01
This article evaluates several possible approaches for integrating concurrency into object-oriented programming languages, presenting afterwards, a new language named MP-Eiffel. MP-Eiffel was designed attempting to include all the essential properties of both concurrent and object-oriented programming with simplicity and safety. A special care was taken to achieve the orthogonality of all the language mechanisms, allowing their joint use without unsafe side-effects (such as inh...
Zhou, Yuan; Cheng, Xinyao; Xu, Xiangyang; Song, Enmin
2013-12-01
Segmentation of carotid artery intima-media in longitudinal ultrasound images for measuring its thickness to predict cardiovascular diseases can be simplified as detecting two nearly parallel boundaries within a certain distance range, when plaque with irregular shapes is not considered. In this paper, we improve the implementation of two dynamic programming (DP) based approaches to parallel boundary detection, dual dynamic programming (DDP) and piecewise linear dual dynamic programming (PL-DDP). Then, a novel DP based approach, dual line detection (DLD), which translates the original 2-D curve position to a 4-D parameter space representing two line segments in a local image segment, is proposed to solve the problem while maintaining efficiency and rotation invariance. To apply the DLD to ultrasound intima-media segmentation, it is imbedded in a framework that employs an edge map obtained from multiplication of the responses of two edge detectors with different scales and a coupled snake model that simultaneously deforms the two contours for maintaining parallelism. The experimental results on synthetic images and carotid arteries of clinical ultrasound images indicate improved performance of the proposed DLD compared to DDP and PL-DDP, with respect to accuracy and efficiency. Copyright © 2013 Elsevier B.V. All rights reserved.
Information-flux approach to multiple-spin dynamics
International Nuclear Information System (INIS)
Di Franco, C.; Paternostro, M.; Kim, M. S.; Palma, G. M.
2007-01-01
We introduce and formalize the concept of information flux in a many-body register as the influence that the dynamics of a specific element receive from any other element of the register. By quantifying the information flux in a protocol, we can design the most appropriate initial state of the system and, noticeably, the distribution of coupling strengths among the parts of the register itself. The intuitive nature of this tool and its flexibility, which allow for easily manageable numerical approaches when analytic expressions are not straightforward, are greatly useful in interacting many-body systems such as quantum spin chains. We illustrate the use of this concept in quantum cloning and quantum state transfer and we also sketch its extension to nonunitary dynamics
Information dynamics and open systems classical and quantum approach
Ingarden, R S; Ohya, M
1997-01-01
This book aims to present an information-theoretical approach to thermodynamics and its generalisations On the one hand, it generalises the concept of `information thermodynamics' to that of `information dynamics' in order to stress applications outside thermal phenomena On the other hand, it is a synthesis of the dynamics of state change and the theory of complexity, which provide a common framework to treat both physical and nonphysical systems together Both classical and quantum systems are discussed, and two appendices are included to explain principal definitions and some important aspects of the theory of Hilbert spaces and operator algebras The concept of higher-order temperatures is explained and applied to biological and linguistic systems The theory of open systems is presented in a new, much more general form Audience This volume is intended mainly for theoretical and mathematical physicists, but also for mathematicians, experimental physicists, physical chemists, theoretical biologists, communicat...
A spectral approach for discrete dislocation dynamics simulations of nanoindentation
Bertin, Nicolas; Glavas, Vedran; Datta, Dibakar; Cai, Wei
2018-07-01
We present a spectral approach to perform nanoindentation simulations using three-dimensional nodal discrete dislocation dynamics. The method relies on a two step approach. First, the contact problem between an indenter of arbitrary shape and an isotropic elastic half-space is solved using a spectral iterative algorithm, and the contact pressure is fully determined on the half-space surface. The contact pressure is then used as a boundary condition of the spectral solver to determine the resulting stress field produced in the simulation volume. In both stages, the mechanical fields are decomposed into Fourier modes and are efficiently computed using fast Fourier transforms. To further improve the computational efficiency, the method is coupled with a subcycling integrator and a special approach is devised to approximate the displacement field associated with surface steps. As a benchmark, the method is used to compute the response of an elastic half-space using different types of indenter. An example of a dislocation dynamics nanoindentation simulation with complex initial microstructure is presented.
A temporal interpolation approach for dynamic reconstruction in perfusion CT
International Nuclear Information System (INIS)
Montes, Pau; Lauritsch, Guenter
2007-01-01
This article presents a dynamic CT reconstruction algorithm for objects with time dependent attenuation coefficient. Projection data acquired over several rotations are interpreted as samples of a continuous signal. Based on this idea, a temporal interpolation approach is proposed which provides the maximum temporal resolution for a given rotational speed of the CT scanner. Interpolation is performed using polynomial splines. The algorithm can be adapted to slow signals, reducing the amount of data acquired and the computational cost. A theoretical analysis of the approximations made by the algorithm is provided. In simulation studies, the temporal interpolation approach is compared with three other dynamic reconstruction algorithms based on linear regression, linear interpolation, and generalized Parker weighting. The presented algorithm exhibits the highest temporal resolution for a given sampling interval. Hence, our approach needs less input data to achieve a certain quality in the reconstruction than the other algorithms discussed or, equivalently, less x-ray exposure and computational complexity. The proposed algorithm additionally allows the possibility of using slow rotating scanners for perfusion imaging purposes
Rethink, Reform, Reenter: An Entrepreneurial Approach to Prison Programming.
Keena, Linda; Simmons, Chris
2015-07-01
The purpose of this article was to present a description and first-stage evaluation of the impact of the Ice House Entrepreneurship Program on the learning experience of participating prerelease inmates at a Mississippi maximum-security prison and their perception of the transfer of skills learned in program into securing employment upon reentry. The Ice House Entrepreneurship Program is a 12-week program facilitated by volunteer university professors to inmates in a prerelease unit of a maximum-security prison in Mississippi. Participants' perspectives were examined through content analysis of inmates' answers to program Reflection and Response Assignments and interviews. The analyses were conducted according to the constant comparative method. Findings reveal the emergent of eight life-lessons and suggest that this is a promising approach to prison programming for prerelease inmates. This study discusses three approaches to better prepare inmates for a mindset change. The rethink, reform, and reenter approaches help break the traditional cycle of release, reoffend, and return. © The Author(s) 2014.
Musical structure analysis using similarity matrix and dynamic programming
Shiu, Yu; Jeong, Hong; Kuo, C.-C. Jay
2005-10-01
Automatic music segmentation and structure analysis from audio waveforms based on a three-level hierarchy is examined in this research, where the three-level hierarchy includes notes, measures and parts. The pitch class profile (PCP) feature is first extracted at the note level. Then, a similarity matrix is constructed at the measure level, where a dynamic time warping (DTW) technique is used to enhance the similarity computation by taking the temporal distortion of similar audio segments into account. By processing the similarity matrix, we can obtain a coarse-grain music segmentation result. Finally, dynamic programming is applied to the coarse-grain segments so that a song can be decomposed into several major parts such as intro, verse, chorus, bridge and outro. The performance of the proposed music structure analysis system is demonstrated for pop and rock music.
The stochastic system approach for estimating dynamic treatments effect.
Commenges, Daniel; Gégout-Petit, Anne
2015-10-01
The problem of assessing the effect of a treatment on a marker in observational studies raises the difficulty that attribution of the treatment may depend on the observed marker values. As an example, we focus on the analysis of the effect of a HAART on CD4 counts, where attribution of the treatment may depend on the observed marker values. This problem has been treated using marginal structural models relying on the counterfactual/potential response formalism. Another approach to causality is based on dynamical models, and causal influence has been formalized in the framework of the Doob-Meyer decomposition of stochastic processes. Causal inference however needs assumptions that we detail in this paper and we call this approach to causality the "stochastic system" approach. First we treat this problem in discrete time, then in continuous time. This approach allows incorporating biological knowledge naturally. When working in continuous time, the mechanistic approach involves distinguishing the model for the system and the model for the observations. Indeed, biological systems live in continuous time, and mechanisms can be expressed in the form of a system of differential equations, while observations are taken at discrete times. Inference in mechanistic models is challenging, particularly from a numerical point of view, but these models can yield much richer and reliable results.
A Stereo Dual-Channel Dynamic Programming Algorithm for UAV Image Stitching.
Li, Ming; Chen, Ruizhi; Zhang, Weilong; Li, Deren; Liao, Xuan; Wang, Lei; Pan, Yuanjin; Zhang, Peng
2017-09-08
Dislocation is one of the major challenges in unmanned aerial vehicle (UAV) image stitching. In this paper, we propose a new algorithm for seamlessly stitching UAV images based on a dynamic programming approach. Our solution consists of two steps: Firstly, an image matching algorithm is used to correct the images so that they are in the same coordinate system. Secondly, a new dynamic programming algorithm is developed based on the concept of a stereo dual-channel energy accumulation. A new energy aggregation and traversal strategy is adopted in our solution, which can find a more optimal seam line for image stitching. Our algorithm overcomes the theoretical limitation of the classical Duplaquet algorithm. Experiments show that the algorithm can effectively solve the dislocation problem in UAV image stitching, especially for the cases in dense urban areas. Our solution is also direction-independent, which has better adaptability and robustness for stitching images.
Direct heuristic dynamic programming for damping oscillations in a large power system.
Lu, Chao; Si, Jennie; Xie, Xiaorong
2008-08-01
This paper applies a neural-network-based approximate dynamic programming method, namely, the direct heuristic dynamic programming (direct HDP), to a large power system stability control problem. The direct HDP is a learning- and approximation-based approach to addressing nonlinear coordinated control under uncertainty. One of the major design parameters, the controller learning objective function, is formulated to directly account for network-wide low-frequency oscillation with the presence of nonlinearity, uncertainty, and coupling effect among system components. Results include a novel learning control structure based on the direct HDP with applications to two power system problems. The first case involves static var compensator supplementary damping control, which is used to provide a comprehensive evaluation of the learning control performance. The second case aims at addressing a difficult complex system challenge by providing a new solution to a large interconnected power network oscillation damping control problem that frequently occurs in the China Southern Power Grid.
A linear programming approach for placement of applicants to academic programs
Kassa, Biniyam Asmare
2013-01-01
This paper reports a linear programming approach for placement of applicants to study programs developed and implemented at the college of Business & Economics, Bahir Dar University, Bahir Dar, Ethiopia. The approach is estimated to significantly streamline the placement decision process at the college by reducing required man hour as well as the time it takes to announce placement decisions. Compared to the previous manual system where only one or two placement criteria were considered, the ...
Approaching multiphase flows from the perspective of computational fluid dynamics
International Nuclear Information System (INIS)
Banas, A.O.
1992-01-01
Thermalhydraulic simulation methodologies based on subchannel and porous-medium concepts are briefly reviewed and contrasted with the general approach of Computational Fluid Dynamics (CFD). An outline of the advanced CFD methods for single-phase turbulent flows is followed by a short discussion of the unified formulation of averaged equations for turbulent and multiphase flows. Some of the recent applications of CFD at Chalk River Laboratories are discussed, and the complementary role of CFD with regard to the established thermalhydraulic methods of analysis is indicated. (author). 8 refs
Interactions of heavy ions with biomolecules: a dynamical microscopic approach
International Nuclear Information System (INIS)
Zhang Fengshou; Beijing Radiation Center, Beijing; National Laboratory of Heavy Ion Accelerator of Lanzhou, Lanzhou
2006-01-01
The status of studying biology system therapy with X-rays, γ-rays, neutron, proton, and heavy ions is reviewed. The depth dose profile, called Bragg profile, makes heavy ion an ideal tool for radiotherapy. The physical process of therapy with heavy ions is analyzed and a 3-step interaction processes of heavy ions with biomolecules is proposed, that is, nuclear fragmentation in nuclear interaction, electron excitation in Coulomb interaction, and the biomolecules relaxation in surroundings, finally leads to a new structure of biomolecule. Since this physical process is the base of the following chemical process and biological process, a dynamical microscopic approach is strongly demanded to be built. (authors)
Vibrational mechanics nonlinear dynamic effects, general approach, applications
Blekhman, Iliya I
2000-01-01
This important book deals with vibrational mechanics - the new, intensively developing section of nonlinear dynamics and the theory of nonlinear oscillations. It offers a general approach to the study of the effect of vibration on nonlinear mechanical systems.The book presents the mathematical apparatus of vibrational mechanics which is used to describe such nonlinear effects as the disappearance and appearance under vibration of stable positions of equilibrium and motions (i.e. attractors), the change of the rheological properties of the media, self-synchronization, self-balancing, the vibrat
A fluid dynamic approach to the dust-acoustic soliton
International Nuclear Information System (INIS)
McKenzie, J.F.; Doyle, T.B.
2002-01-01
The properties of dust-acoustic solitons are derived from a fluid dynamic viewpoint in which conservation of total momentum, combined with the Bernoulli-like energy equations for each species, yields the structure equation for the heavy (or dust) speed in the stationary wave. This fully nonlinear approach reveals the crucial role played by the heavy sonic point in limiting the collective dust-acoustic Mach number, above which solitons cannot exist. An exact solution illustrates that the cold heavy species is compressed and this implies concomitant contraints on the potential and on the flow speed of the electrons and protons in the wave
A Fluid Dynamic Approach to the Dust-Acoustic Soliton
McKenzie, J. F.; Doyle, T. B.
2002-12-01
The properties of dust-acoustic solitons are derived from a fluid dynamic viewpoint in which conservation of total momentum, combined with the Bernoulli-like energy equations for each species, yields the structure equation for the heavy (or dust) speed in the stationary wave. This fully nonlinear approach reveals the crucial role played by the heavy sonic point in limiting the collective dust-acoustic Mach number, above which solitons cannot exist. An exact solution illustrates that the cold heavy species is compressed and this implies concomitant contraints on the potential and on the flow speed of the electrons and protons in the wave.
Dynamical renormalization group approach to relaxation in quantum field theory
International Nuclear Information System (INIS)
Boyanovsky, D.; Vega, H.J. de
2003-01-01
The real time evolution and relaxation of expectation values of quantum fields and of quantum states are computed as initial value problems by implementing the dynamical renormalization group (DRG). Linear response is invoked to set up the renormalized initial value problem to study the dynamics of the expectation value of quantum fields. The perturbative solution of the equations of motion for the field expectation values of quantum fields as well as the evolution of quantum states features secular terms, namely terms that grow in time and invalidate the perturbative expansion for late times. The DRG provides a consistent framework to resum these secular terms and yields a uniform asymptotic expansion at long times. Several relevant cases are studied in detail, including those of threshold infrared divergences which appear in gauge theories at finite temperature and lead to anomalous relaxation. In these cases the DRG is shown to provide a resummation akin to Bloch-Nordsieck but directly in real time and that goes beyond the scope of Bloch-Nordsieck and Dyson resummations. The nature of the resummation program is discussed in several examples. The DRG provides a framework that is consistent, systematic, and easy to implement to study the non-equilibrium relaxational dynamics directly in real time that does not rely on the concept of quasiparticle widths
Dynamic Programming and Graph Algorithms in Computer Vision*
Felzenszwalb, Pedro F.; Zabih, Ramin
2013-01-01
Optimization is a powerful paradigm for expressing and solving problems in a wide range of areas, and has been successfully applied to many vision problems. Discrete optimization techniques are especially interesting, since by carefully exploiting problem structure they often provide non-trivial guarantees concerning solution quality. In this paper we briefly review dynamic programming and graph algorithms, and discuss representative examples of how these discrete optimization techniques have been applied to some classical vision problems. We focus on the low-level vision problem of stereo; the mid-level problem of interactive object segmentation; and the high-level problem of model-based recognition. PMID:20660950
AbouEisha, Hassan M.
2017-07-13
We consider a class of two-and three-dimensional h-refined meshes generated by an adaptive finite element method. We introduce an element partition tree, which controls the execution of the multi-frontal solver algorithm over these refined grids. We propose and study algorithms with polynomial computational cost for the optimization of these element partition trees. The trees provide an ordering for the elimination of unknowns. The algorithms automatically optimize the element partition trees using extensions of dynamic programming. The construction of the trees by the dynamic programming approach is expensive. These generated trees cannot be used in practice, but rather utilized as a learning tool to propose fast heuristic algorithms. In this first part of our paper we focus on the dynamic programming approach, and draw a sketch of the heuristic algorithm. The second part will be devoted to a more detailed analysis of the heuristic algorithm extended for the case of hp-adaptive
AbouEisha, Hassan M.; Calo, Victor Manuel; Jopek, Konrad; Moshkov, Mikhail; Paszyńka, Anna; Paszyński, Maciej; Skotniczny, Marcin
2017-01-01
We consider a class of two-and three-dimensional h-refined meshes generated by an adaptive finite element method. We introduce an element partition tree, which controls the execution of the multi-frontal solver algorithm over these refined grids. We propose and study algorithms with polynomial computational cost for the optimization of these element partition trees. The trees provide an ordering for the elimination of unknowns. The algorithms automatically optimize the element partition trees using extensions of dynamic programming. The construction of the trees by the dynamic programming approach is expensive. These generated trees cannot be used in practice, but rather utilized as a learning tool to propose fast heuristic algorithms. In this first part of our paper we focus on the dynamic programming approach, and draw a sketch of the heuristic algorithm. The second part will be devoted to a more detailed analysis of the heuristic algorithm extended for the case of hp-adaptive
DEGAS: Dynamic Exascale Global Address Space Programming Environments
Energy Technology Data Exchange (ETDEWEB)
Demmel, James [Univ. of California, Berkeley, CA (United States)
2018-02-23
The Dynamic, Exascale Global Address Space programming environment (DEGAS) project will develop the next generation of programming models and runtime systems to meet the challenges of Exascale computing. The Berkeley part of the project concentrated on communication-optimal code generation to optimize speed and energy efficiency by reducing data movement. Our work developed communication lower bounds, and/or communication avoiding algorithms (that either meet the lower bound, or do much less communication than their conventional counterparts) for a variety of algorithms, including linear algebra, machine learning and genomics. The Berkeley part of the project concentrated on communication-optimal code generation to optimize speed and energy efficiency by reducing data movement. Our work developed communication lower bounds, and/or communication avoiding algorithms (that either meet the lower bound, or do much less communication than their conventional counterparts) for a variety of algorithms, including linear algebra, machine learning and genomics.
Dynamics of the public concern and risk communication program implementation.
Zaryabova, Victoria; Israel, Michel
2015-09-01
The public concern about electromagnetic field (EMF) exposure varies due to different reasons. A part of them are connected with the better and higher quality of information that people receive from science, media, Internet, social networks, industry, but others are based on good communication programs performed by the responsible institutions, administration and persons. Especially, in Bulgaria, public concern follows interesting changes, some of them in correlation with the European processes of concern, but others following the economic and political processes in the country. Here, we analyze the dynamics of the public concern over the last 10 years. Our explanation of the decrease of the people's complaints against EMF exposure from base stations for mobile communication is as a result of our risk communication program that is in implementation for >10 years.
A Dynamic Bayesian Approach to Computational Laban Shape Quality Analysis
Directory of Open Access Journals (Sweden)
Dilip Swaminathan
2009-01-01
kinesiology. LMA (especially Effort/Shape emphasizes how internal feelings and intentions govern the patterning of movement throughout the whole body. As we argue, a complex understanding of intention via LMA is necessary for human-computer interaction to become embodied in ways that resemble interaction in the physical world. We thus introduce a novel, flexible Bayesian fusion approach for identifying LMA Shape qualities from raw motion capture data in real time. The method uses a dynamic Bayesian network (DBN to fuse movement features across the body and across time and as we discuss can be readily adapted for low-cost video. It has delivered excellent performance in preliminary studies comprising improvisatory movements. Our approach has been incorporated in Response, a mixed-reality environment where users interact via natural, full-body human movement and enhance their bodily-kinesthetic awareness through immersive sound and light feedback, with applications to kinesiology training, Parkinson's patient rehabilitation, interactive dance, and many other areas.
Training Program Handbook: A systematic approach to training
Energy Technology Data Exchange (ETDEWEB)
1994-08-01
This DOE handbook describes a systematic method for establishing and maintaining training programs that meet the requirements and expectations of DOE Orders 5480.18B and 5480.20. The systematic approach to training includes 5 phases: Analysis, design, development, implementation, and evaluation.
International Nuclear Information System (INIS)
Collins, J.D.; Hudson, J.M.; Chrostowski, J.D.
1979-02-01
A computational methodology is presented for the prediction of core melt probabilities in a nuclear power plant due to earthquake events. The proposed model has four modules: seismic hazard, structural dynamic (including soil-structure interaction), component failure and core melt sequence. The proposed modules would operate in series and would not have to be operated at the same time. The basic statistical approach uses a Monte Carlo simulation to treat random and systematic error but alternate statistical approaches are permitted by the program design
Development of nonlinear dynamic analysis program for nuclear piping systems
International Nuclear Information System (INIS)
Kamichika, Ryoichi; Izawa, Masahiro; Yamadera, Masao
1980-01-01
In the design for nuclear power piping, pipe-whip protection shall be considered in order to keep the function of safety related system even when postulated piping rupture occurs. This guideline was shown in U.S. Regulatory Guide 1.46 for the first time and has been applied in Japanese nuclear power plants. In order to analyze the dynamic behavior followed by pipe rupture, nonlinear analysis is required for the piping system including restraints which play the role of an energy absorber. REAPPS (Rupture Effective Analysis of Piping Systems) has been developed for this purpose. This program can be applied to general piping systems having branches etc. Pre- and post- processors are prepared in this program in order to easily input the data for the piping engineer and show the results optically by use of a graphic display respectively. The piping designer can easily solve many problems in his daily work by use of this program. This paper describes about the theoretical background and functions of this program and shows some examples. (author)
Dynamical resource nexus assessments: from accounting to sustainability approaches
Salmoral, Gloria; Yan, Xiaoyu
2017-04-01
Continued economic development and population growth result in increasing pressures on natural resources, from local to international levels, for meeting societal demands on water, energy and food. To date there are a few tools that link models to identify the relationships and to account for flows of water, energy and food. However, these tools in general can offer only a static view often at national level and with annual temporal resolution. Moreover, they can only account flows but cannot consider the required amounts and conditions of the natural capital that supplies and maintains these flows. With the emerging nexus thinking, our research is currently focused on promoting dynamical environmental analyses beyond the conventional silo mentalities. Our study aims to show new advancements in existing tools (e.g., dynamical life cycle assessment) and develop novel environmental indicators relevant for the resource nexus assessment. We aim to provide a step forward when sustainability conditions and resilience thresholds are aligned with flows under production (e.g., food, water and energy), process level under analysis (e.g., local production, transport, manufacturing, final consumption, reuse, disposal) and existing biophysical local conditions. This approach would help to embrace and better characterise the spatiotemporal dynamics, complexity and existing links between and within the natural and societal systems, which are crucial to evaluate and promote more environmentally sustainable economic activities.
Experimental oligopolies modeling: A dynamic approach based on heterogeneous behaviors
Cerboni Baiardi, Lorenzo; Naimzada, Ahmad K.
2018-05-01
In the rank of behavioral rules, imitation-based heuristics has received special attention in economics (see [14] and [12]). In particular, imitative behavior is considered in order to understand the evidences arising in experimental oligopolies which reveal that the Cournot-Nash equilibrium does not emerge as unique outcome and show that an important component of the production at the competitive level is observed (see e.g.[1,3,9] or [7,10]). By considering the pioneering groundbreaking approach of [2], we build a dynamical model of linear oligopolies where heterogeneous decision mechanisms of players are made explicit. In particular, we consider two different types of quantity setting players characterized by different decision mechanisms that coexist and operate simultaneously: agents that adaptively adjust their choices towards the direction that increases their profit are embedded with imitator agents. The latter ones use a particular form of proportional imitation rule that considers the awareness about the presence of strategic interactions. It is noteworthy that the Cournot-Nash outcome is a stationary state of our models. Our thesis is that the chaotic dynamics arousing from a dynamical model, where heterogeneous players are considered, are capable to qualitatively reproduce the outcomes of experimental oligopolies.
Dynamic risk analysis using bow-tie approach
International Nuclear Information System (INIS)
Khakzad, Nima; Khan, Faisal; Amyotte, Paul
2012-01-01
Accident probability estimation is a common and central step to all quantitative risk assessment methods. Among many techniques available, bow-tie model (BT) is very popular because it represent the accident scenario altogether including causes and consequences. However, it suffers a static structure limiting its application in real-time monitoring and probability updating which are key factors in dynamic risk analysis. The present work is focused on using BT approach in a dynamic environment in which the occurrence probability of accident consequences changes. In this method, on one hand, failure probability of primary events of BT, leading to the top event, are developed using physical reliability models, and constantly revised as physical parameters (e.g., pressure, velocity, dimension, etc) change. And, on the other hand, the failure probability of safety barriers of the BT are periodically updated using Bayes’ theorem as new information becomes available over time. Finally, the resulting, updated BT is used to estimate the posterior probability of the consequences which in turn results in an updated risk profile. - Highlights: ► A methodology is proposed to make bow-tie method adapted for dynamic risk analysis. ► Physical reliability models are used to revise the top event. ► Bayes’ theorem is used to update the probability of safety barriers. ► The number of accidents in sequential time intervals is used to form likelihood function. ► The risk profile is updated for varying physical parameters and for different times.
Finite temperature dynamics of a Holstein polaron: The thermo-field dynamics approach
Chen, Lipeng; Zhao, Yang
2017-12-01
Combining the multiple Davydov D2 Ansatz with the method of thermo-field dynamics, we study finite temperature dynamics of a Holstein polaron on a lattice. It has been demonstrated, using the hierarchy equations of motion method as a benchmark, that our approach provides an efficient, robust description of finite temperature dynamics of the Holstein polaron in the simultaneous presence of diagonal and off-diagonal exciton-phonon coupling. The method of thermo-field dynamics handles temperature effects in the Hilbert space with key numerical advantages over other treatments of finite-temperature dynamics based on quantum master equations in the Liouville space or wave function propagation with Monte Carlo importance sampling. While for weak to moderate diagonal coupling temperature increases inhibit polaron mobility, it is found that off-diagonal coupling induces phonon-assisted transport that dominates at high temperatures. Results on the mean square displacements show that band-like transport features dominate the diagonal coupling cases, and there exists a crossover from band-like to hopping transport with increasing temperature when including off-diagonal coupling. As a proof of concept, our theory provides a unified treatment of coherent and incoherent transport in molecular crystals and is applicable to any temperature.
Linear decomposition approach for a class of nonconvex programming problems.
Shen, Peiping; Wang, Chunfeng
2017-01-01
This paper presents a linear decomposition approach for a class of nonconvex programming problems by dividing the input space into polynomially many grids. It shows that under certain assumptions the original problem can be transformed and decomposed into a polynomial number of equivalent linear programming subproblems. Based on solving a series of liner programming subproblems corresponding to those grid points we can obtain the near-optimal solution of the original problem. Compared to existing results in the literature, the proposed algorithm does not require the assumptions of quasi-concavity and differentiability of the objective function, and it differs significantly giving an interesting approach to solving the problem with a reduced running time.
General Dynamics Convair Division approach to structural analysis of large superconducting coils
International Nuclear Information System (INIS)
Baldi, R.W.
1979-01-01
This paper describes the overall integrated analysis approach and highlights the results obtained. Most of the procedures and techniques described were developed over the past three years. Starting in late 1976, development began on high-accuracy computer codes for electromagnetic field and force analysis. This effort resulted in completion of a family of computer programs called MAGIC (MAGnetic Integration Calculation). Included in this group of programs is a post-processor called POSTMAGIC that links MAGIC to GDSAP (General Dynamics Structural Analysis Program) by automatically transferring force data. Integrating these computer programs afforded us the capability to readily analyze several different conditions that are anticipated to occur during tokamak operation. During 1977 we initiated the development of the CONVERT program that effectively links our THERMAL ANALYZER program to GDSAP by automatically transferring temperature data. The CONVERT program allowed us the capability to readily predict thermal stresses at several different time phases during the computer-simulated cooldown and warmup cycle. This feature aided us in determining the most crucial time phases and to adjust recommended operating procedure to minimize risk. (orig.)
Approximate Dynamic Programming in Tracking Control of a Robotic Manipulator
Directory of Open Access Journals (Sweden)
Marcin Szuster
2016-02-01
Full Text Available This article focuses on the implementation of an approximate dynamic programming algorithm in the discrete tracking control system of the three-degrees of freedom Scorbot-ER 4pc robotic manipulator. The controlled system is included in an articulated robots group which uses rotary joints to access their work space. The main part of the control system is a dual heuristic dynamic programming algorithm that consists of two structures designed in the form of neural networks: an actor and a critic. The actor generates the suboptimal control law while the critic approximates the difference of the value function from Bellman's equation with respect to the state. The residual elements of the control system are the PD controller, the supervisory term and an additional control signal. The structure of the supervisory term derives from the stability analysis performed using the Lyapunov stability theorem. The control system works online, the neural networks' weights-adaptation procedure is performed in every iteration step, and the neural networks' preliminary learning process is not required. The performance of the control system was verified by a series of computer simulations and experiments performed using the Scorbot-ER 4pc robotic manipulator.
1991-01-01
A Science Definition Team was established in December 1990 by the Space Physics Division, NASA, to develop a satellite program to conduct research on the energetics, dynamics, and chemistry of the mesosphere and lower thermosphere/ionosphere. This two-volume publication describes the TIMED (Thermosphere-Ionosphere-Mesosphere, Energetics and Dynamics) mission and associated science program. The report outlines the scientific objectives of the mission, the program requirements, and the approach towards meeting these requirements.
Patriarca, M.; Kuronen, A.; Robles, M.; Kaski, K.
2007-01-01
The study of crystal defects and the complex processes underlying their formation and time evolution has motivated the development of the program ALINE for interactive molecular dynamics experiments. This program couples a molecular dynamics code to a Graphical User Interface and runs on a UNIX-X11 Window System platform with the MOTIF library, which is contained in many standard Linux releases. ALINE is written in C, thus giving the user the possibility to modify the source code, and, at the same time, provides an effective and user-friendly framework for numerical experiments, in which the main parameters can be interactively varied and the system visualized in various ways. We illustrate the main features of the program through some examples of detection and dynamical tracking of point-defects, linear defects, and planar defects, such as stacking faults in lattice-mismatched heterostructures. Program summaryTitle of program:ALINE Catalogue identifier:ADYJ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADYJ_v1_0 Program obtainable from: CPC Program Library, Queen University of Belfast, N. Ireland Computer for which the program is designed and others on which it has been tested: Computers:DEC ALPHA 300, Intel i386 compatible computers, G4 Apple Computers Installations:Laboratory of Computational Engineering, Helsinki University of Technology, Helsinki, Finland Operating systems under which the program has been tested:True64 UNIX, Linux-i386, Mac OS X 10.3 and 10.4 Programming language used:Standard C and MOTIF libraries Memory required to execute with typical data:6 Mbytes but may be larger depending on the system size No. of lines in distributed program, including test data, etc.:16 901 No. of bytes in distributed program, including test data, etc.:449 559 Distribution format:tar.gz Nature of physical problem:Some phenomena involving defects take place inside three-dimensional crystals at times which can be hardly predicted. For this reason they are
Nuclear Fermi Dynamics: physical content versus theoretical approach
International Nuclear Information System (INIS)
Griffin, J.J.
1977-01-01
Those qualitative properties of nuclei, and of their energetic collisions, which seem of most importance for the flow of nuclear matter are listed and briefly discussed. It is suggested that nuclear matter flow is novel among fluid dynamical problems. The name, Nuclear Fermi Dynamics, is proposed as an appropriate unambiguous label. The Principle of Commensurability, which suggests the measurement of the theoretical content of an approach against its expected predictive range is set forth and discussed. Several of the current approaches to the nuclear matter flow problem are listed and subjected to such a test. It is found that the Time-Dependent Hartree-Fock (TDHF) description, alone of all the major theoretical approaches currently in vogue, incorporates each of the major qualitative features within its very concise single mathematical assumption. Some limitations of the conventional TDHF method are noted, and one particular defect is discussed in detail: the Spurious Cross Channel Correlations which arise whenever several asymptotic reaction channels must be simultaneously described by a single determinant. A reformulated Time-Dependent-S-Matrix Hartree-Fock Theory is proposed, which obviates this difficulty. It is noted that the structure of TD-S-HF can be applied to a more general class of non-linear wave mechanical problems than simple TDHF. Physical requirements minimal to assure that TD-S-HF represents a sensible reaction theory are utilized to prescribe the definition of acceptable asymptotic channels. That definition, in turn, defines the physical range of the TD-S-HF theory as the description of collisions of certain mathematically well-defined objects of mixed quantal and classical character, the ''TDHF droplets.''
A dynamic approach for the optimal electricity dispatch in the deregulated market
International Nuclear Information System (INIS)
Carraretto, Cristian; Lazzaretto, Andrea
2004-01-01
The electricity market has been experiencing the deregulation process in many countries. Effective approaches to the management of single power plants or groups of plants are therefore becoming crucial for the competitiveness of energy utilities. A dynamic programming approach is presented in this paper for the optimal plant management in the new Italian deregulated market. A thorough description of the method is given in cases of free or fixed production over time (e.g. when the overall production is limited by bilateral contracts or cogeneration). Analysis of market characteristics, detailed thermodynamic models of plant operation and reliable price forecasts over the time period of interest are required. The suggested approach is useful for both long-term scheduling and planning daily offers in the market
Energy Technology Data Exchange (ETDEWEB)
Kim, Jong Woo; Choi, Go Bong; Lee, Jong Min [Seoul National University, Seoul (Korea, Republic of); Suh, Jung Chul [Samchully Corporation, Seoul (Korea, Republic of)
2016-01-15
This paper proposes a Markov decision process (MDP) based approach to derive an optimal schedule of maintenance, rehabilitation and replacement of the water main system. The scheduling problem utilizes auxiliary information of a pipe such as the current state, cost, and deterioration model. The objective function and detailed algorithm of dynamic programming are modified to solve the periodic replacement problem. The optimal policy evaluated by the proposed algorithm is compared to several existing policies via Monte Carlo simulations. The proposed decision framework provides a systematic way to obtain an optimal policy.
General background and approach to multibody dynamics for space applications
Santini, Paolo; Gasbarri, Paolo
2009-06-01
Multibody dynamics for space applications is dictated by space environment such as space-varying gravity forces, orbital and attitude perturbations, control forces if any. Several methods and formulations devoted to the modeling of flexible bodies undergoing large overall motions were developed in recent years. Most of these different formulations were aimed to face one of the main problems concerning the analysis of spacecraft dynamics namely the reduction of computer simulation time. By virtue of this, the use of symbolic manipulation, recursive formulation and parallel processing algorithms were proposed. All these approaches fall into two categories, the one based on Newton/Euler methods and the one based on Lagrangian methods; both of them have their advantages and disadvantages although in general, Newtonian approaches lend to a better understanding of the physics of problems and in particular of the magnitude of the reactions and of the corresponding structural stresses. Another important issue which must be addressed carefully in multibody space dynamics is relevant to a correct choice of kinematics variables. In fact, when dealing with flexible multibody system the resulting equations include two different types of state variables, the ones associated with large (rigid) displacements and the ones associated with elastic deformations. These two sets of variables have generally two different time scales if we think of the attitude motion of a satellite whose period of oscillation, due to the gravity gradient effects, is of the same order of magnitude as the orbital period, which is much bigger than the one associated with the structural vibration of the satellite itself. Therefore, the numerical integration of the equations of the system represents a challenging problem. This was the abstract and some of the arguments that Professor Paolo Santini intended to present for the Breakwell Lecture; unfortunately a deadly disease attacked him and shortly took him
Evaluating a physician leadership development program - a mixed methods approach.
Throgmorton, Cheryl; Mitchell, Trey; Morley, Tom; Snyder, Marijo
2016-05-16
Purpose - With the extent of change in healthcare today, organizations need strong physician leaders. To compensate for the lack of physician leadership education, many organizations are sending physicians to external leadership programs or developing in-house leadership programs targeted specifically to physicians. The purpose of this paper is to outline the evaluation strategy and outcomes of the inaugural year of a Physician Leadership Academy (PLA) developed and implemented at a Michigan-based regional healthcare system. Design/methodology/approach - The authors applied the theoretical framework of Kirkpatrick's four levels of evaluation and used surveys, observations, activity tracking, and interviews to evaluate the program outcomes. The authors applied grounded theory techniques to the interview data. Findings - The program met targeted outcomes across all four levels of evaluation. Interview themes focused on the significance of increasing self-awareness, building relationships, applying new skills, and building confidence. Research limitations/implications - While only one example, this study illustrates the importance of developing the evaluation strategy as part of the program design. Qualitative research methods, often lacking from learning evaluation design, uncover rich themes of impact. The study supports how a PLA program can enhance physician learning, engagement, and relationship building throughout and after the program. Physician leaders' partnership with organization development and learning professionals yield results with impact to individuals, groups, and the organization. Originality/value - Few studies provide an in-depth review of evaluation methods and outcomes of physician leadership development programs. Healthcare organizations seeking to develop similar in-house programs may benefit applying the evaluation strategy outlined in this study.
Air-Breathing Hypersonic Vehicle Tracking Control Based on Adaptive Dynamic Programming.
Mu, Chaoxu; Ni, Zhen; Sun, Changyin; He, Haibo
2017-03-01
In this paper, we propose a data-driven supplementary control approach with adaptive learning capability for air-breathing hypersonic vehicle tracking control based on action-dependent heuristic dynamic programming (ADHDP). The control action is generated by the combination of sliding mode control (SMC) and the ADHDP controller to track the desired velocity and the desired altitude. In particular, the ADHDP controller observes the differences between the actual velocity/altitude and the desired velocity/altitude, and then provides a supplementary control action accordingly. The ADHDP controller does not rely on the accurate mathematical model function and is data driven. Meanwhile, it is capable to adjust its parameters online over time under various working conditions, which is very suitable for hypersonic vehicle system with parameter uncertainties and disturbances. We verify the adaptive supplementary control approach versus the traditional SMC in the cruising flight, and provide three simulation studies to illustrate the improved performance with the proposed approach.
Noninvasive fetal QRS detection using an echo state network and dynamic programming.
Lukoševičius, Mantas; Marozas, Vaidotas
2014-08-01
We address a classical fetal QRS detection problem from abdominal ECG recordings with a data-driven statistical machine learning approach. Our goal is to have a powerful, yet conceptually clean, solution. There are two novel key components at the heart of our approach: an echo state recurrent neural network that is trained to indicate fetal QRS complexes, and several increasingly sophisticated versions of statistics-based dynamic programming algorithms, which are derived from and rooted in probability theory. We also employ a standard technique for preprocessing and removing maternal ECG complexes from the signals, but do not take this as the main focus of this work. The proposed approach is quite generic and can be extended to other types of signals and annotations. Open-source code is provided.
Noninvasive fetal QRS detection using an echo state network and dynamic programming
International Nuclear Information System (INIS)
Lukoševičius, Mantas; Marozas, Vaidotas
2014-01-01
We address a classical fetal QRS detection problem from abdominal ECG recordings with a data-driven statistical machine learning approach. Our goal is to have a powerful, yet conceptually clean, solution. There are two novel key components at the heart of our approach: an echo state recurrent neural network that is trained to indicate fetal QRS complexes, and several increasingly sophisticated versions of statistics-based dynamic programming algorithms, which are derived from and rooted in probability theory. We also employ a standard technique for preprocessing and removing maternal ECG complexes from the signals, but do not take this as the main focus of this work. The proposed approach is quite generic and can be extended to other types of signals and annotations. Open-source code is provided. (paper)
Lewis, F L; Vamvoudakis, Kyriakos G
2011-02-01
Approximate dynamic programming (ADP) is a class of reinforcement learning methods that have shown their importance in a variety of applications, including feedback control of dynamical systems. ADP generally requires full information about the system internal states, which is usually not available in practical situations. In this paper, we show how to implement ADP methods using only measured input/output data from the system. Linear dynamical systems with deterministic behavior are considered herein, which are systems of great interest in the control system community. In control system theory, these types of methods are referred to as output feedback (OPFB). The stochastic equivalent of the systems dealt with in this paper is a class of partially observable Markov decision processes. We develop both policy iteration and value iteration algorithms that converge to an optimal controller that requires only OPFB. It is shown that, similar to Q -learning, the new methods have the important advantage that knowledge of the system dynamics is not needed for the implementation of these learning algorithms or for the OPFB control. Only the order of the system, as well as an upper bound on its "observability index," must be known. The learned OPFB controller is in the form of a polynomial autoregressive moving-average controller that has equivalent performance with the optimal state variable feedback gain.
Directory of Open Access Journals (Sweden)
Jooyoung Park
2015-05-01
Full Text Available Recently, the optimization of power flows in portable hybrid power-supply systems (HPSSs has become an important issue with the advent of a variety of mobile systems and hybrid energy technologies. In this paper, a control strategy is considered for dynamically managing power flows in portable HPSSs employing batteries and supercapacitors. Our dynamic power management strategy utilizes the concept of approximate dynamic programming (ADP. ADP methods are important tools in the fields of stochastic control and machine learning, and the utilization of these tools for practical engineering problems is now an active and promising research field. We propose an ADP-based procedure based on optimization under constraints including the iterated Bellman inequalities, which can be solved by convex optimization carried out offline, to find the optimal power management rules for portable HPSSs. The effectiveness of the proposed procedure is tested through dynamic simulations for smartphone workload scenarios, and simulation results show that the proposed strategy can successfully cope with uncertain workload demands.
Bellucci, Michael A; Coker, David F
2011-07-28
We describe a new method for constructing empirical valence bond potential energy surfaces using a parallel multilevel genetic program (PMLGP). Genetic programs can be used to perform an efficient search through function space and parameter space to find the best functions and sets of parameters that fit energies obtained by ab initio electronic structure calculations. Building on the traditional genetic program approach, the PMLGP utilizes a hierarchy of genetic programming on two different levels. The lower level genetic programs are used to optimize coevolving populations in parallel while the higher level genetic program (HLGP) is used to optimize the genetic operator probabilities of the lower level genetic programs. The HLGP allows the algorithm to dynamically learn the mutation or combination of mutations that most effectively increase the fitness of the populations, causing a significant increase in the algorithm's accuracy and efficiency. The algorithm's accuracy and efficiency is tested against a standard parallel genetic program with a variety of one-dimensional test cases. Subsequently, the PMLGP is utilized to obtain an accurate empirical valence bond model for proton transfer in 3-hydroxy-gamma-pyrone in gas phase and protic solvent. © 2011 American Institute of Physics
Risk-Constrained Dynamic Programming for Optimal Mars Entry, Descent, and Landing
Ono, Masahiro; Kuwata, Yoshiaki
2013-01-01
A chance-constrained dynamic programming algorithm was developed that is capable of making optimal sequential decisions within a user-specified risk bound. This work handles stochastic uncertainties over multiple stages in the CEMAT (Combined EDL-Mobility Analyses Tool) framework. It was demonstrated by a simulation of Mars entry, descent, and landing (EDL) using real landscape data obtained from the Mars Reconnaissance Orbiter. Although standard dynamic programming (DP) provides a general framework for optimal sequential decisionmaking under uncertainty, it typically achieves risk aversion by imposing an arbitrary penalty on failure states. Such a penalty-based approach cannot explicitly bound the probability of mission failure. A key idea behind the new approach is called risk allocation, which decomposes a joint chance constraint into a set of individual chance constraints and distributes risk over them. The joint chance constraint was reformulated into a constraint on an expectation over a sum of an indicator function, which can be incorporated into the cost function by dualizing the optimization problem. As a result, the chance-constraint optimization problem can be turned into an unconstrained optimization over a Lagrangian, which can be solved efficiently using a standard DP approach.
Fast reactor safety and computational thermo-fluid dynamics approaches
International Nuclear Information System (INIS)
Ninokata, Hisashi; Shimizu, Takeshi
1993-01-01
This article provides a brief description of the safety principle on which liquid metal cooled fast breeder reactors (LMFBRs) is based and the roles of computations in the safety practices. A number of thermohydraulics models have been developed to date that successfully describe several of the important types of fluids and materials motion encountered in the analysis of postulated accidents in LMFBRs. Most of these models use a mixture of implicit and explicit numerical solution techniques in solving a set of conservation equations formulated in Eulerian coordinates, with special techniques included to specific situations. Typical computational thermo-fluid dynamics approaches are discussed in particular areas of analyses of the physical phenomena relevant to the fuel subassembly thermohydraulics design and that involve describing the motion of molten materials in the core over a large scale. (orig.)
Differential equations a dynamical systems approach ordinary differential equations
Hubbard, John H
1991-01-01
This is a corrected third printing of the first part of the text Differential Equations: A Dynamical Systems Approach written by John Hubbard and Beverly West. The authors' main emphasis in this book is on ordinary differential equations. The book is most appropriate for upper level undergraduate and graduate students in the fields of mathematics, engineering, and applied mathematics, as well as the life sciences, physics and economics. Traditional courses on differential equations focus on techniques leading to solutions. Yet most differential equations do not admit solutions which can be written in elementary terms. The authors have taken the view that a differential equations defines functions; the object of the theory is to understand the behavior of these functions. The tools the authors use include qualitative and numerical methods besides the traditional analytic methods. The companion software, MacMath, is designed to bring these notions to life.
Analytic and probabilistic approaches to dynamics in negative curvature
Peigné, Marc; Sambusetti, Andrea
2014-01-01
The work of E. Hopf and G.A. Hedlund, in the 1930s, on transitivity and ergodicity of the geodesic flow for hyperbolic surfaces, marked the beginning of the investigation of the statistical properties and stochastic behavior of the flow. The first central limit theorem for the geodesic flow was proved in the 1960s by Y. Sinai for compact hyperbolic manifolds. Since then, strong relationships have been found between the fields of ergodic theory, analysis, and geometry. Different approaches and new tools have been developed to study the geodesic flow, including measure theory, thermodynamic formalism, transfer operators, Laplace operators, and Brownian motion. All these different points of view have led to a deep understanding of more general dynamical systems, in particular the so-called Anosov systems, with applications to geometric problems such as counting, equirepartition, mixing, and recurrence properties of the orbits. This book comprises two independent texts that provide a self-contained introduction t...
Environmental Radiation Effects on Mammals A Dynamical Modeling Approach
Smirnova, Olga A
2010-01-01
This text is devoted to the theoretical studies of radiation effects on mammals. It uses the framework of developed deterministic mathematical models to investigate the effects of both acute and chronic irradiation in a wide range of doses and dose rates on vital body systems including hematopoiesis, small intestine and humoral immunity, as well as on the development of autoimmune diseases. Thus, these models can contribute to the development of the system and quantitative approaches in radiation biology and ecology. This text is also of practical use. Its modeling studies of the dynamics of granulocytopoiesis and thrombocytopoiesis in humans testify to the efficiency of employment of the developed models in the investigation and prediction of radiation effects on these hematopoietic lines. These models, as well as the properly identified models of other vital body systems, could provide a better understanding of the radiation risks to health. The modeling predictions will enable the implementation of more ef...
Numerical Optimization Design of Dynamic Quantizer via Matrix Uncertainty Approach
Directory of Open Access Journals (Sweden)
Kenji Sawada
2013-01-01
Full Text Available In networked control systems, continuous-valued signals are compressed to discrete-valued signals via quantizers and then transmitted/received through communication channels. Such quantization often degrades the control performance; a quantizer must be designed that minimizes the output difference between before and after the quantizer is inserted. In terms of the broadbandization and the robustness of the networked control systems, we consider the continuous-time quantizer design problem. In particular, this paper describes a numerical optimization method for a continuous-time dynamic quantizer considering the switching speed. Using a matrix uncertainty approach of sampled-data control, we clarify that both the temporal and spatial resolution constraints can be considered in analysis and synthesis, simultaneously. Finally, for the slow switching, we compare the proposed and the existing methods through numerical examples. From the examples, a new insight is presented for the two-step design of the existing continuous-time optimal quantizer.
Directory of Open Access Journals (Sweden)
Helene Lie
2016-08-01
Full Text Available In Nicaragua, the production of dairy and beef is the most important source of household income for many smallholder producers. However, erratic volumes and quality of milk limit the participation of small- and medium-scale cattle farmers into higher-value dairy value chains. This research uses a system dynamics (SD approach to analyze the Matiguás dairy value chain in Nicaragua. The paper presents the conceptual framework of the model and highlights the dynamic processes in the value chain, with a focus on improving feeding systems to achieve higher milk productivity and increased income for producers. The model was developed using a participatory group model building (GMB technique to jointly conceptualize and validate the model with stakeholders.
International Nuclear Information System (INIS)
Porteus, E.
1982-01-01
The study of infinite-horizon nonstationary dynamic programs using the operator approach is continued. The point of view here differs slightly from that taken by others, in that Denardo's local income function is not used as a starting point. Infinite-horizon values are defined as limits of finite-horizon values, as the horizons get long. Two important conditions of an earlier paper are weakened, yet the optimality equations, the optimality criterion, and the existence of optimal ''structured'' strategies are still obtained
Flow Equation Approach to the Statistics of Nonlinear Dynamical Systems
Marston, J. B.; Hastings, M. B.
2005-03-01
The probability distribution function of non-linear dynamical systems is governed by a linear framework that resembles quantum many-body theory, in which stochastic forcing and/or averaging over initial conditions play the role of non-zero . Besides the well-known Fokker-Planck approach, there is a related Hopf functional methodootnotetextUriel Frisch, Turbulence: The Legacy of A. N. Kolmogorov (Cambridge University Press, 1995) chapter 9.5.; in both formalisms, zero modes of linear operators describe the stationary non-equilibrium statistics. To access the statistics, we investigate the method of continuous unitary transformationsootnotetextS. D. Glazek and K. G. Wilson, Phys. Rev. D 48, 5863 (1993); Phys. Rev. D 49, 4214 (1994). (also known as the flow equation approachootnotetextF. Wegner, Ann. Phys. 3, 77 (1994).), suitably generalized to the diagonalization of non-Hermitian matrices. Comparison to the more traditional cumulant expansion method is illustrated with low-dimensional attractors. The treatment of high-dimensional dynamical systems is also discussed.
Molecular Dynamics Approach in Designing Thermostable Aspergillus niger Xylanase
Malau, N. D.; Sianturi, M.
2017-03-01
Molecular dynamics methods we have applied as a tool in designing thermostable Aspergillus niger Xylanase, by examining Root Mean Square Deviation (RMSD) and The Stability of the Secondary Structure of enzymes structure at its optimum temperature and compare with its high temperature behavior. As RMSD represents structural fluctuation at a particular temperature, a better understanding of this factor will suggest approaches to bioengineer these enzymes to enhance their thermostability. In this work molecular dynamic simulations of Aspergillus niger xylanase (ANX) have been carried at 400K (optimum catalytic temperature) for 2.5 ns and 500K (ANX reported inactive temperature) for 2.5 ns. Analysis have shown that the Root Mean Square Deviation (RMSD) significant increase at higher temperatures compared at optimum temperature and some of the secondary structures of ANX that have been damaged at high temperature. Structural analysis revealed that the fluctuations of the α-helix and β-sheet regions are larger at higher temperatures compared to the fluctuations at optimum temperature.
Nuclear structure calculations in the dynamic-interaction propagator approach
International Nuclear Information System (INIS)
Engelbrecht, C.A.; Hahne, F.J.W.; Heiss, W.D.
1978-01-01
The dynamic-interaction propagator approach provides a natural method for the handling of energy-dependent effective two-body interactions induced by collective excitations of a many-body system. In this work this technique is applied to the calculation of energy spectra and two-particle strengths in mass-18 nuclei. The energy dependence is induced by the dynamic exchange of the lowest 3 - octupole phonon in O 16 , which is described within a normal static particle-hole RPA. This leads to poles in the two-body self-energy, which can be calculated if other fermion lines are restricted to particle states. The two-body interaction parameters are chosen to provide the correct phonon energy and reasonable negative-parity mass-17 and positive-parity mass-18 spectra. The fermion lines must be dressed consistently with the same exchange phonon to avoid redundant solutions or ghosts. The negative-parity states are then calculated in a parameter-free way which gives good agreement with the observed spectra [af
A Dynamic Approach to Modeling Dependence Between Human Failure Events
Energy Technology Data Exchange (ETDEWEB)
Boring, Ronald Laurids [Idaho National Laboratory
2015-09-01
In practice, most HRA methods use direct dependence from THERP—the notion that error be- gets error, and one human failure event (HFE) may increase the likelihood of subsequent HFEs. In this paper, we approach dependence from a simulation perspective in which the effects of human errors are dynamically modeled. There are three key concepts that play into this modeling: (1) Errors are driven by performance shaping factors (PSFs). In this context, the error propagation is not a result of the presence of an HFE yielding overall increases in subsequent HFEs. Rather, it is shared PSFs that cause dependence. (2) PSFs have qualities of lag and latency. These two qualities are not currently considered in HRA methods that use PSFs. Yet, to model the effects of PSFs, it is not simply a matter of identifying the discrete effects of a particular PSF on performance. The effects of PSFs must be considered temporally, as the PSFs will have a range of effects across the event sequence. (3) Finally, there is the concept of error spilling. When PSFs are activated, they not only have temporal effects but also lateral effects on other PSFs, leading to emergent errors. This paper presents the framework for tying together these dynamic dependence concepts.
A nonlinear optimal control approach for chaotic finance dynamics
Rigatos, G.; Siano, P.; Loia, V.; Tommasetti, A.; Troisi, O.
2017-11-01
A new nonlinear optimal control approach is proposed for stabilization of the dynamics of a chaotic finance model. The dynamic model of the financial system, which expresses interaction between the interest rate, the investment demand, the price exponent and the profit margin, undergoes approximate linearization round local operating points. These local equilibria are defined at each iteration of the control algorithm and consist of the present value of the systems state vector and the last value of the control inputs vector that was exerted on it. The approximate linearization makes use of Taylor series expansion and of the computation of the associated Jacobian matrices. The truncation of higher order terms in the Taylor series expansion is considered to be a modelling error that is compensated by the robustness of the control loop. As the control algorithm runs, the temporary equilibrium is shifted towards the reference trajectory and finally converges to it. The control method needs to compute an H-infinity feedback control law at each iteration, and requires the repetitive solution of an algebraic Riccati equation. Through Lyapunov stability analysis it is shown that an H-infinity tracking performance criterion holds for the control loop. This implies elevated robustness against model approximations and external perturbations. Moreover, under moderate conditions the global asymptotic stability of the control loop is proven.
Hamiltonian-Driven Adaptive Dynamic Programming for Continuous Nonlinear Dynamical Systems.
Yang, Yongliang; Wunsch, Donald; Yin, Yixin
2017-08-01
This paper presents a Hamiltonian-driven framework of adaptive dynamic programming (ADP) for continuous time nonlinear systems, which consists of evaluation of an admissible control, comparison between two different admissible policies with respect to the corresponding the performance function, and the performance improvement of an admissible control. It is showed that the Hamiltonian can serve as the temporal difference for continuous-time systems. In the Hamiltonian-driven ADP, the critic network is trained to output the value gradient. Then, the inner product between the critic and the system dynamics produces the value derivative. Under some conditions, the minimization of the Hamiltonian functional is equivalent to the value function approximation. An iterative algorithm starting from an arbitrary admissible control is presented for the optimal control approximation with its convergence proof. The implementation is accomplished by a neural network approximation. Two simulation studies demonstrate the effectiveness of Hamiltonian-driven ADP.
Minimax terminal approach problem in two-level hierarchical nonlinear discrete-time dynamical system
Energy Technology Data Exchange (ETDEWEB)
Shorikov, A. F., E-mail: afshorikov@mail.ru [Ural Federal University, 19 S. Mira, Ekaterinburg, 620002, Russia Institute of Mathematics and Mechanics, Ural Branch of Russian Academy of Sciences, 16 S. Kovalevskaya, Ekaterinburg, 620990 (Russian Federation)
2015-11-30
We consider a discrete–time dynamical system consisting of three controllable objects. The motions of all objects are given by the corresponding vector nonlinear or linear discrete–time recurrent vector relations, and control system for its has two levels: basic (first or I level) that is dominating and subordinate level (second or II level) and both have different criterions of functioning and united a priori by determined informational and control connections defined in advance. For the dynamical system in question, we propose a mathematical formalization in the form of solving a multistep problem of two-level hierarchical minimax program control over the terminal approach process with incomplete information and give a general scheme for its solving.
A dynamical-systems approach for computing ice-affected streamflow
Holtschlag, David J.
1996-01-01
A dynamical-systems approach was developed and evaluated for computing ice-affected streamflow. The approach provides for dynamic simulation and parameter estimation of site-specific equations relating ice effects to routinely measured environmental variables. Comparison indicates that results from the dynamical-systems approach ranked higher than results from 11 analytical methods previously investigated on the basis of accuracy and feasibility criteria. Additional research will likely lead to further improvements in the approach.
Program Management Approach to the Territorial Development of Small Business
Directory of Open Access Journals (Sweden)
Natalia Aleksandrovna Knysh
2016-06-01
Full Text Available This article presents the results of the research of the application on a state level of the program management approach to the territorial development of small business. Studying the main mechanism of the state policy implementation in the sphere of small business on a regional level, the authors have revealed the necessity to take into account the territorial specificity while the government programs of small business development are being formed. The analysis of the national practice of utilizing the program management mechanism in the regional system of the government support of small entrepreneurship was conducted on the example of Omsk region. The results of the analysis have shown the inefficiency of the current support system for small business and have determined the need to create an integrated model of territorial programming, which would not only contribute to the qualitative development of small business, but also provide the functioning efficiency of program management mechanism. As a result, the authors have created the two-level model of the programming of the territorial development of small business, which allows to satisfy purposefully the needs of entrepreneurship taking into account the specificity of the internal and external environment of the region. The first level of the model is methodological one and it is based on the marketing approach (the concepts of place marketing and relationship marketing to the operation of the program management mechanism. The second level of the model is methodical one. It offers the combination of the flexible methods of management of programming procedure (benchmarking, foresight, crowdsourcing and outsourcing. The given model raises the efficiency of the management decisions of the state structures in the sphere of small business. Therefore, it is interesting for the government authorities, which are responsible for the regional and municipal support programs of small business, as well
Estimating Arrhenius parameters using temperature programmed molecular dynamics
International Nuclear Information System (INIS)
Imandi, Venkataramana; Chatterjee, Abhijit
2016-01-01
Kinetic rates at different temperatures and the associated Arrhenius parameters, whenever Arrhenius law is obeyed, are efficiently estimated by applying maximum likelihood analysis to waiting times collected using the temperature programmed molecular dynamics method. When transitions involving many activated pathways are available in the dataset, their rates may be calculated using the same collection of waiting times. Arrhenius behaviour is ascertained by comparing rates at the sampled temperatures with ones from the Arrhenius expression. Three prototype systems with corrugated energy landscapes, namely, solvated alanine dipeptide, diffusion at the metal-solvent interphase, and lithium diffusion in silicon, are studied to highlight various aspects of the method. The method becomes particularly appealing when the Arrhenius parameters can be used to find rates at low temperatures where transitions are rare. Systematic coarse-graining of states can further extend the time scales accessible to the method. Good estimates for the rate parameters are obtained with 500-1000 waiting times.
Estimating Arrhenius parameters using temperature programmed molecular dynamics
Energy Technology Data Exchange (ETDEWEB)
Imandi, Venkataramana; Chatterjee, Abhijit, E-mail: abhijit@che.iitb.ac.in [Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076 (India)
2016-07-21
Kinetic rates at different temperatures and the associated Arrhenius parameters, whenever Arrhenius law is obeyed, are efficiently estimated by applying maximum likelihood analysis to waiting times collected using the temperature programmed molecular dynamics method. When transitions involving many activated pathways are available in the dataset, their rates may be calculated using the same collection of waiting times. Arrhenius behaviour is ascertained by comparing rates at the sampled temperatures with ones from the Arrhenius expression. Three prototype systems with corrugated energy landscapes, namely, solvated alanine dipeptide, diffusion at the metal-solvent interphase, and lithium diffusion in silicon, are studied to highlight various aspects of the method. The method becomes particularly appealing when the Arrhenius parameters can be used to find rates at low temperatures where transitions are rare. Systematic coarse-graining of states can further extend the time scales accessible to the method. Good estimates for the rate parameters are obtained with 500-1000 waiting times.
The sequence relay selection strategy based on stochastic dynamic programming
Zhu, Rui; Chen, Xihao; Huang, Yangchao
2017-07-01
Relay-assisted (RA) network with relay node selection is a kind of effective method to improve the channel capacity and convergence performance. However, most of the existing researches about the relay selection did not consider the statically channel state information and the selection cost. This shortage limited the performance and application of RA network in practical scenarios. In order to overcome this drawback, a sequence relay selection strategy (SRSS) was proposed. And the performance upper bound of SRSS was also analyzed in this paper. Furthermore, in order to make SRSS more practical, a novel threshold determination algorithm based on the stochastic dynamic program (SDP) was given to work with SRSS. Numerical results are also presented to exhibit the performance of SRSS with SDP.
Mogo, César; Brandão, João
2014-06-30
READY (REActive DYnamics) is a program for studying reactive dynamic systems using a global potential energy surface (PES) built from previously existing PESs corresponding to each of the most important elementary reactions present in the system. We present an application to the combustion dynamics of a mixture of hydrogen and oxygen using accurate PESs for all the systems involving up to four oxygen and hydrogen atoms. Results at the temperature of 4000 K and pressure of 2 atm are presented and compared with model based on rate constants. Drawbacks and advantages of this approach are discussed and future directions of research are pointed out. Copyright © 2014 Wiley Periodicals, Inc.
The integrated approach to teaching programming in secondary school
Directory of Open Access Journals (Sweden)
Martynyuk A.A.
2018-02-01
Full Text Available the article considers an integrated approach to teaching programming with the use of technologies of computer modeling and 3D-graphics, allowing to improve the quality of education. It is shown that this method will allow you to systematize knowledge, improve the level of motivation through the inclusion of relevant technologies, to develop skills of project activities, to strengthen interdisciplinary connections, and promotes professional and personal self-determination of students of secondary school.
Design and Analysis of Decision Rules via Dynamic Programming
Amin, Talha M.
2017-04-24
The areas of machine learning, data mining, and knowledge representation have many different formats used to represent information. Decision rules, amongst these formats, are the most expressive and easily-understood by humans. In this thesis, we use dynamic programming to design decision rules and analyze them. The use of dynamic programming allows us to work with decision rules in ways that were previously only possible for brute force methods. Our algorithms allow us to describe the set of all rules for a given decision table. Further, we can perform multi-stage optimization by repeatedly reducing this set to only contain rules that are optimal with respect to selected criteria. One way that we apply this study is to generate small systems with short rules by simulating a greedy algorithm for the set cover problem. We also compare maximum path lengths (depth) of deterministic and non-deterministic decision trees (a non-deterministic decision tree is effectively a complete system of decision rules) with regards to Boolean functions. Another area of advancement is the presentation of algorithms for constructing Pareto optimal points for rules and rule systems. This allows us to study the existence of “totally optimal” decision rules (rules that are simultaneously optimal with regards to multiple criteria). We also utilize Pareto optimal points to compare and rate greedy heuristics with regards to two criteria at once. Another application of Pareto optimal points is the study of trade-offs between cost and uncertainty which allows us to find reasonable systems of decision rules that strike a balance between length and accuracy.
Practical approaches to implementing facility wide equipment strengthening programs
International Nuclear Information System (INIS)
Kincaid, R.H.; Smietana, E.A.
1989-01-01
Equipment strengthening programs typically focus on components required to ensure operability of safety related equipment or to prevent the release of toxic substances. Survival of non-safety related equipment may also be crucial to ensure rapid recovery and minimize business interruption losses. Implementing a strengthening program for non-safety related equipment can be difficult due to the large amounts of equipment involved and limited budget availability. EQE has successfully implemented comprehensive equipment strengthening programs for a number of California corporations. Many of the lessons learned from these projects are applicable to DOE facilities. These include techniques for prioritizing equipment and three general methodologies for anchoring equipment. Pros and cons of each anchorage approach are presented along with typical equipment strengthening costs
Enhanced dynamic data-driven fault detection approach: Application to a two-tank heater system
Harrou, Fouzi; Madakyaru, Muddu; Sun, Ying; Kammammettu, Sanjula
2018-01-01
on PCA approach a challenging task. Accounting for the dynamic nature of data can also reflect the performance of the designed fault detection approaches. In PCA-based methods, this dynamic characteristic of the data can be accounted for by using dynamic
Approximate Dynamic Programming: Combining Regional and Local State Following Approximations.
Deptula, Patryk; Rosenfeld, Joel A; Kamalapurkar, Rushikesh; Dixon, Warren E
2018-06-01
An infinite-horizon optimal regulation problem for a control-affine deterministic system is solved online using a local state following (StaF) kernel and a regional model-based reinforcement learning (R-MBRL) method to approximate the value function. Unlike traditional methods such as R-MBRL that aim to approximate the value function over a large compact set, the StaF kernel approach aims to approximate the value function in a local neighborhood of the state that travels within a compact set. In this paper, the value function is approximated using a state-dependent convex combination of the StaF-based and the R-MBRL-based approximations. As the state enters a neighborhood containing the origin, the value function transitions from being approximated by the StaF approach to the R-MBRL approach. Semiglobal uniformly ultimately bounded (SGUUB) convergence of the system states to the origin is established using a Lyapunov-based analysis. Simulation results are provided for two, three, six, and ten-state dynamical systems to demonstrate the scalability and performance of the developed method.
International Nuclear Information System (INIS)
Yang, H.T.; Chen, S.L.
1989-01-01
A multi-objective optimization approach to generation expansion planning is presented. The approach is designed by adding a new multi-criteria decision (MCD) procedure to the conventional algorithm which combines dynamic programming with production simulation method. The MCD procedure can help decision makers weight the relative importance of multiple attributes associated with the decision alternatives, and find the near-best compromise solution efficiently at each optimization step of the conventional algorithm. Practical application of proposed approach to feasibility evaluation of the fourth nuclear power plant of Tawian is also presented, demonstrating the effectiveness and limitations of the approach
Two stage approach to dynamic soil structure interaction
International Nuclear Information System (INIS)
Nelson, I.
1981-01-01
A two stage approach is used to reduce the effective size of soil island required to solve dynamic soil structure interaction problems. The ficticious boundaries of the conventional soil island are chosen sufficiently far from the structure so that the presence of the structure causes only a slight perturbation on the soil response near the boundaries. While the resulting finite element model of the soil structure system can be solved, it requires a formidable computational effort. Currently, a two stage approach is used to reduce this effort. The combined soil structure system has many frequencies and wavelengths. For a stiff structure, the lowest frequencies are those associated with the motion of the structure as a rigid body. In the soil, these modes have the longest wavelengths and attenuate most slowly. The higher frequency deformational modes of the structure have shorter wavelengths and their effect attenuates more rapidly with distance from the structure. The difference in soil response between a computation with a refined structural model, and one with a crude model, tends towards zero a very short distance from the structure. In the current work, the 'crude model' is a rigid structure with the same geometry and inertial properties as the refined model. Preliminary calculations indicated that a rigid structure would be a good low frequency approximation to the actual structure, provided the structure was much stiffer than the native soil. (orig./RW)
Generalized Ford-Vilenkin approach for the dynamical Casimir effect
International Nuclear Information System (INIS)
Rego, Andreson L.C.; Alves, Danilo Teixeira; Alves, Joao Paulo da Silva
2012-01-01
Full text: In the 70s decade the first works investigating the quantum problem of the radiation emitted by moving mirrors in vacuum were published by Moore, DeWitt, Fulling and Davies. This effect, usually named dynamical Casimir effect (DCE). The DCE is also related to several other problems like particle creation in cosmological models and radiation emitted by collapsing black holes, decoherence, entanglement the Unruh effect. The DCE has been subject to experimental investigations: few months ago, Wilson and collaborators have announced the first experimental observation of the DCE. The theory of the DCE has been investigated by many authors, among them Ford and Vilenkin [L.H. Ford and A. Vilenkin, Phys. Rev. D 25, 2569 (1982)] who developed a perturbative method, which can be applied to moving mirrors in small displacements δq(t) = εF (t) and with nonrelativistic velocities. The usual application of the Ford-Vilenkin approach to the calculation of the spectrum of the created particles, results in the spectral distribution proportional to ε 2 . In the present paper, we consider a real massless scalar field and a moving mirror in a two-dimensional spacetime, satisfying Dirichlet boundary condition at the instantaneous position of the mirror, for large displacements and relativistic velocities. We generalize the Ford-Vilenkin approach to the calculation of the spectral density of the created particles, obtaining formulas for the spectrum up to order ε n . (author)
Czech Academy of Sciences Publication Activity Database
Outrata, Jiří; Červinka, Michal
2009-01-01
Roč. 38, 4B (2009), s. 1557-1574 ISSN 0324-8569 R&D Projects: GA ČR GA201/09/1957 Institutional research plan: CEZ:AV0Z10750506 Keywords : mathematical problem with equilibrium constraint * state constraints * implicit programming * calmness * exact penalization Subject RIV: BA - General Mathematics Impact factor: 0.378, year: 2009 http://library.utia.cas.cz/separaty/2010/MTR/outrata-on the implicit programming approach in a class of mathematical programs with equilibrium constraints.pdf
A COMPARATIVE ANALYSIS OF ASEAN CURRENCIES USING A COPULA APPROACH AND A DYNAMIC COPULA APPROACH
Directory of Open Access Journals (Sweden)
CHUKIAT CHAIBOONSRI
2012-12-01
Full Text Available The ASEAN Economic Community (AEC will be shaped developing to be a single market and production base in 2015, moving towards regional Economic Integration, 2009. These developments in international financial markets do lead to some adverse cost for AEC country borrowers. The specific objective aims to investigate the dependent measures and the co-movement among selected ASEAN currencies. A Copula Approach was used to examine dependent measures of Thai Baht exchange rate among selected ASEAN currencies during the period of 2008-2011. Also, a Dynamic Copula Approach was tested to investigate the co-movement of Thai Baht exchange rate among selected ASEAN currencies during the period of 2008-2011. The results of the study based on a Pearson linear correlation coefficient confirmed that Thai Baht exchange rate and each of selected ASEAN currencies have a linear correlation during the specific period excluding Vietnam exchange rate. Furthermore, based on empirical Copula Approach, Thai Baht exchange rate had a dependent structure with each of the selected in ASEAN currencies including Brunei exchange rate, Singapore exchange rate, Malaysia exchange rate, Indonesia exchange rate, Philippine exchange rate, and Vietnam exchange rate respectively. The results of Dynamic Copula estimation indicated that Thai Baht exchange rate had a co-movement with selected ASEAN currencies. The research results provide an informative and interactive ASEAN financial market to all users, including Global financial market.
Dynamic Line Rating Oncor Electric Delivery Smart Grid Program
Energy Technology Data Exchange (ETDEWEB)
Johnson, Justin; Smith, Cale; Young, Mike; Donohoo, Ken; Owen, Ross; Clark, Eddit; Espejo, Raul; Aivaliotis, Sandy; Stelmak, Ron; Mohr, Ron; Barba, Cristian; Gonzalez, Guillermo; Malkin, Stuart; Dimitrova, Vessela; Ragsdale, Gary; Mitchem, Sean; Jeirath, Nakul; Loomis, Joe; Trevino, Gerardo; Syracuse, Steve; Hurst, Neil; Mereness, Matt; Johnson, Chad; Bivens, Carrie
2013-05-04
Electric transmission lines are the lifeline of the electric utility industry, delivering its product from source to consumer. This critical infrastructure is often constrained such that there is inadequate capacity on existing transmission lines to efficiently deliver the power to meet demand in certain areas or to transport energy from high-generation areas to high-consumption regions. When this happens, the cost of the energy rises; more costly sources of power are used to meet the demand or the system operates less reliably. These economic impacts are known as congestion, and they can amount to substantial dollars for any time frame of reference: hour, day or year. There are several solutions to the transmission constraint problem, including: construction of new generation, construction of new transmission facilities, rebuilding and reconductoring of existing transmission assets, and Dynamic Line Rating (DLR). All of these options except DLR are capital intensive, have long lead times and often experience strong public and regulatory opposition. The Smart Grid Demonstration Program (SGDP) project co-funded by the Department of Energy (DOE) and Oncor Electric Delivery Company developed and deployed the most extensive and advanced DLR installation to demonstrate that DLR technology is capable of resolving many transmission capacity constraint problems with a system that is reliable, safe and very cost competitive. The SGDP DLR deployment is the first application of DLR technology to feed transmission line real-time dynamic ratings directly into the system operation’s State Estimator and load dispatch program, which optimizes the matching of generation with load demand on a security, reliability and economic basis. The integrated Dynamic Line Rating (iDLR)1 collects transmission line parameters at remote locations on the lines, calculates the real-time line rating based on the equivalent conductor temperature, ambient temperature and influence of wind and solar
Effects of Maternal Obesity on Fetal Programming: Molecular Approaches
Neri, Caterina; Edlow, Andrea G.
2016-01-01
Maternal obesity has become a worldwide epidemic. Obesity and a high-fat diet have been shown to have deleterious effects on fetal programming, predisposing offspring to adverse cardiometabolic and neurodevelopmental outcomes. Although large epidemiological studies have shown an association between maternal obesity and adverse outcomes for offspring, the underlying mechanisms remain unclear. Molecular approaches have played a key role in elucidating the mechanistic underpinnings of fetal malprogramming in the setting of maternal obesity. These approaches include, among others, characterization of epigenetic modifications, microRNA expression, the gut microbiome, the transcriptome, and evaluation of specific mRNA expression via quantitative reverse transcription polmerase chain reaction (RT-qPCR) in fetuses and offspring of obese females. This work will review the data from animal models and human fluids/cells regarding the effects of maternal obesity on fetal and offspring neurodevelopment and cardiometabolic outcomes, with a particular focus on molecular approaches. PMID:26337113
Marketing the dental hygiene program. A public relations approach.
Nielsen, C
1989-09-01
Since 1980 there has been a decline in dental hygiene enrollment and graduates. Marketing dental hygiene programs, a recognized component of organizational survival, is necessary to meet societal demands for dental hygiene care now and in the future. The purpose of this article is to examine theories on the marketing of education and to describe a systematic approach to marketing dental hygiene education. Upon examination of these theories, the importance of analysis, planning, implementation, and evaluation/control of a marketing program is found to be essential. Application of the four p's of marketing--product/service, price, place, and promotion--is necessary to achieve marketing's goals and objectives and ultimately the program's mission and goals. Moreover, projecting a quality image of the dental hygiene program and the profession of dental hygiene must be included in the overall marketing plan. Results of an effective marketing plan should increase the number of quality students graduating from the dental hygiene program, ultimately contributing to the quality of oral health care in the community.
The INEL approach: Environmental Restoration Program management and implementation methodology
International Nuclear Information System (INIS)
1996-01-01
The overall objectives of the INEL Environmental Restoration (ER) Program management approach are to facilitate meeting mission needs through the successful implementation of a sound, and effective project management philosophy. This paper outlines the steps taken to develop the ER program, and explains further the implementing tools and processes used to achieve what can be viewed as fundamental to a successful program. The various examples provided will demonstrate how the strategies for implementing these operating philosophies are actually present and at work throughout the program, in spite of budget drills and organizational changes within DOE and the implementing contractor. A few of the challenges and successes of the INEL Environmental Restoration Program have included: a) completion of all enforceable milestones to date, b) acceleration of enforceable milestones, c) managing funds to reduce uncosted obligations at year end by utilizing greater than 99% of FY-95 budget, d) an exemplary safety record, e) developing a strategy for partial Delisting of the INEL by the year 2000, f) actively dealing with Natural Resource Damages Assessment issues, g) the achievement of significant project cost reductions, h) and implementation of a partnering charter and application of front end quality principles
Field theoretic approach to dynamical orbital localization in ab initio molecular dynamics
International Nuclear Information System (INIS)
Thomas, Jordan W.; Iftimie, Radu; Tuckerman, Mark E.
2004-01-01
Techniques from gauge-field theory are employed to derive an alternative formulation of the Car-Parrinello ab initio molecular-dynamics method that allows maximally localized Wannier orbitals to be generated dynamically as the calculation proceeds. In particular, the Car-Parrinello Lagrangian is mapped onto an SU(n) non-Abelian gauge-field theory and the fictitious kinetic energy in the Car-Parrinello Lagrangian is modified to yield a fully gauge-invariant form. The Dirac gauge-fixing method is then employed to derive a set of equations of motion that automatically maintain orbital locality by restricting the orbitals to remain in the 'Wannier gauge'. An approximate algorithm for integrating the equations of motion that is stable and maintains orbital locality is then developed based on the exact equations of motion. It is shown in a realistic application (64 water molecules plus one hydrogen-chloride molecule in a periodic box) that orbital locality can be maintained with only a modest increase in CPU time. The ability to keep orbitals localized in an ab initio molecular-dynamics calculation is a crucial ingredient in the development of emerging linear scaling approaches
Quantum Dynamical Behaviour in Complex Systems - A Semiclassical Approach
Energy Technology Data Exchange (ETDEWEB)
Ananth, Nandini [Univ. of California, Berkeley, CA (United States)
2008-01-01
systems is described. We proposed the use of a semiclassical correction term to a preliminary quantum calculation using, for instance, a variational approach. This allows us to increase the accuracy significantly. Modeling Nonadiabatic dynamics has always been a challenge to classical simulations because the multi-state nature of the dynamics cannot be described accurately by the time evolution on a single average surface, as is the classical approach. We show that using the Meyer-Miller-Stock-Thoss (MMST) representation of the exact vibronic Hamiltonian in combination with the IVR allows us to accurately describe dynamics where the non Born-Oppenheimer regime. One final problem that we address is that of extending this method to the long time regime. We propose the use of a time independent sampling function in the Monte Carlo integration over the phase space of initial trajectory conditions. This allows us to better choose the regions of importance at the various points in time; by using more trajectories in the important regions, we show that the integration can be converged much easier. An algorithm based loosely on the methods of Diffusion Monte Carlo is developed that allows us to carry out this time dependent sampling in a most efficient manner.
Directory of Open Access Journals (Sweden)
Yang Song
2015-05-01
Full Text Available Purpose: The exactly and precisely supply of carrying spare parts has a crucial impact on support and could improve the performance of equipment. Spare parts support is the crux work which will be limited by spare parts allocation and support cost input. Reasonable support strategy can help in making good use of available resources and support the equipment in normal operational status. The purpose of this paper is to propose a dynamics model of spare parts support process based on considering the interaction of multiple factors, and explores the regulation of dynamics behavior in the system. In order to achieve the optimization strategy to improve the effect of support so that will enhance the relevant support parameters of equipment. Design/methodology/approach: Meditate the feedback relationship among some important factors of support that involve support cost, support time and maintenance ability. System dynamics theory is adopted to propose a dynamics model of spare parts support process, on the analysis of multiple factors and casual relationship to find some major ones which have crucial impact on spare parts support. Spare parts support cost and availability was regarded as the control objective, moreover, adjust the control paramours and improve the effect of cannibalization and lateral supply scheduling strategy for spares support. Findings: The factors of spare parts supply, demand and maintenance have relationship of control feedback, and adjust the value of some crucial factors can reduce the support cost and improve the availability value. The main finding is that adopting cannibalization strategy under condition of available materials can relieve the mission and operational availability decline caused by shortage of spare parts. Combining the lateral supply and cannibalization strategy can reduce the inventory of warship carrying spare parts. Practical implications: By controlling the value of key factors regarding aspect of spare
A parameter-adaptive dynamic programming approach for inferring cophylogenies
DEFF Research Database (Denmark)
Merkle, Daniel; Middendorf, Martin; Wieseke, Nicolas
2010-01-01
Background: Coevolutionary systems like hosts and their parasites are commonly used model systems for evolutionary studies. Inferring the coevolutionary history based on given phylogenies of both groups is often done by employing a set of possible types of events that happened during coevolution....
Dynamic Programming Approaches for the Traveling Salesman Problem with Drone
P. Bouman (Paul); N.A.H. Agatz (Niels); M.E. Schmidt (Marie)
2017-01-01
markdownabstractA promising new delivery model involves the use of a delivery truck that collaborates with a drone to make deliveries. Effectively combining a drone and a truck gives rise to a new planning problem that is known as the Traveling Salesman Problem with Drone (TSP-D). This paper
Dynamic Programming Approaches for the Traveling Salesman Problem with Drone
P. Bouman (Paul); N.A.H. Agatz (Niels); M.E. Schmidt (Marie)
2017-01-01
markdownabstractA promising new delivery model involves the use of a delivery truck that collaborates with a drone to make deliveries. Effectively combining a truck and a drone gives rise to a new planning problem that is known as the Traveling Salesman Problem with Drone (TSP-D). This paper
1975-12-01
Frequency domain computer programs developed or acquired by TSC for the analysis of rail vehicle dynamics are described in two volumes. Volume I defines the general analytical capabilities required for computer programs applicable to single rail vehi...
Lachhwani, Kailash; Poonia, Mahaveer Prasad
2012-08-01
In this paper, we show a procedure for solving multilevel fractional programming problems in a large hierarchical decentralized organization using fuzzy goal programming approach. In the proposed method, the tolerance membership functions for the fuzzily described numerator and denominator part of the objective functions of all levels as well as the control vectors of the higher level decision makers are respectively defined by determining individual optimal solutions of each of the level decision makers. A possible relaxation of the higher level decision is considered for avoiding decision deadlock due to the conflicting nature of objective functions. Then, fuzzy goal programming approach is used for achieving the highest degree of each of the membership goal by minimizing negative deviational variables. We also provide sensitivity analysis with variation of tolerance values on decision vectors to show how the solution is sensitive to the change of tolerance values with the help of a numerical example.
An Approach Toward Synthesis of Bridgmanite in Dynamic Compression Experiments
Reppart, J. J.
2015-12-01
Bridgmanite occurs in heavily shocked meteorites and provides a useful constraint on pressure-temperature conditions during shock-metamorphism. Its occurrence also provides constraints on the shock release path. Shock-release and shock duration are important parameters in estimating the size of impactors that generate the observed shock metamorphic record. Thus, it is timely to examine if bridgmanite can be synthesized in dynamic compression experiments with the goal of establishing a correlation between shock duration and grainsize. Up to now only one high pressure polymorph of an Mg-silicate has been synthesized AND recovered in a shock experiment (wadsleyite). Therefore, it is not given that shock synthesis of bridgmanite is possible. This project started recently, so we present an outline of shock experiment designs and potentially results from the first experiments. FUNDING ACKNOWLEDGMENT UNLV HiPSEC: This research was sponsored (or sponsored in part) by the National Nuclear Security Administration under the Stewardship Science Academic Alliances program through DOE Cooperative Agreement #DE-NA0001982. HPCAT: "[Portions of this work were]/[This work was] performed at HPCAT (Sector 16), Advanced Photon Source (APS), Argonne National Laboratory. HPCAT operations are supported by DOE-NNSA under Award No. DE-NA0001974 and DOE-BES under Award No. DE-FG02-99ER45775, with partial instrumentation funding by NSF. APS is supported by DOE-BES, under Contract No. DE-AC02-06CH11357."
Portfolio optimization in enhanced index tracking with goal programming approach
Siew, Lam Weng; Jaaman, Saiful Hafizah Hj.; Ismail, Hamizun bin
2014-09-01
Enhanced index tracking is a popular form of passive fund management in stock market. Enhanced index tracking aims to generate excess return over the return achieved by the market index without purchasing all of the stocks that make up the index. This can be done by establishing an optimal portfolio to maximize the mean return and minimize the risk. The objective of this paper is to determine the portfolio composition and performance using goal programming approach in enhanced index tracking and comparing it to the market index. Goal programming is a branch of multi-objective optimization which can handle decision problems that involve two different goals in enhanced index tracking, a trade-off between maximizing the mean return and minimizing the risk. The results of this study show that the optimal portfolio with goal programming approach is able to outperform the Malaysia market index which is FTSE Bursa Malaysia Kuala Lumpur Composite Index because of higher mean return and lower risk without purchasing all the stocks in the market index.
A Proposal for the Common Safety Approach of Space Programs
Grimard, Max
2002-01-01
For all applications, business and systems related to Space programs, Quality is mandatory and is a key factor for the technical as well as the economical performances. Up to now the differences of applications (launchers, manned space-flight, sciences, telecommunications, Earth observation, planetary exploration, etc.) and the difference of technical culture and background of the leading countries (USA, Russia, Europe) have generally led to different approaches in terms of standards and processes for Quality. At a time where international cooperation is quite usual for the institutional programs and globalization is the key word for the commercial business, it is considered of prime importance to aim at common standards and approaches for Quality in Space Programs. For that reason, the International Academy of Astronautics has set up a Study Group which mandate is to "Make recommendations to improve the Quality, Reliability, Efficiency, and Safety of space programmes, taking into account the overall environment in which they operate : economical constraints, harsh environments, space weather, long life, no maintenance, autonomy, international co-operation, norms and standards, certification." The paper will introduce the activities of this Study Group, describing a first list of topics which should be addressed : Through this paper it is expected to open the discussion to update/enlarge this list of topics and to call for contributors to this Study Group.
Between Oais and Agile a Dynamic Data Management Approach
Bennett, V. L.; Conway, E. A.; Waterfall, A. M.; Pepler, S.
2015-12-01
In this paper we decribe an approach to the integration of existing archival activities which lies between compliance with the more rigid OAIS/TRAC standards and a more flexible "Agile" approach to the curation and preservation of Earth Observation data. We provide a high level overview of existing practice and discuss how these procedures can be extended and supported through the description of preservation state. The aim of which is to facilitate the dynamic controlled management of scientific data through its lifecycle. While processes are considered they are not statically defined but rather driven by human interactions in the form of risk management/review procedure that produce actionable plans, which are responsive to change. We then proceed by describing the feasibility testing of extended risk management and planning procedures which integrate current practices. This was done through the CEDA Archival Format Audit which inspected British Atmospheric Data Centre and NERC Earth Observation Data Centre Archival holdings. These holdings are extensive, comprising of around 2 Petabytes of data and 137 million individual files, which were analysed and characterised in terms of format, based risk. We are then able to present an overview of the format based risk burden faced by a large scale archive attempting to maintain the usability of heterogeneous environmental data sets We continue by presenting a dynamic data management information model and provide discussion of the following core model entities and their relationships: Aspirational entities, which include Data Entity definitions and their associated Preservation Objectives. Risk entities, which act as drivers for change within the data lifecycle. These include Acquisitional Risks, Technical Risks, Strategic Risks and External Risks Plan entities, which detail the actions to bring about change within an archive. These include Acquisition Plans, Preservation Plans and Monitoring plans which support
A linear programming approach for placement of applicants to academic programs.
Kassa, Biniyam Asmare
2013-01-01
This paper reports a linear programming approach for placement of applicants to study programs developed and implemented at the college of Business & Economics, Bahir Dar University, Bahir Dar, Ethiopia. The approach is estimated to significantly streamline the placement decision process at the college by reducing required man hour as well as the time it takes to announce placement decisions. Compared to the previous manual system where only one or two placement criteria were considered, the new approach allows the college's management to easily incorporate additional placement criteria, if needed. Comparison of our approach against manually constructed placement decisions based on actual data for the 2012/13 academic year suggested that about 93 percent of the placements from our model concur with the actual placement decisions. For the remaining 7 percent of placements, however, the actual placements made by the manual system display inconsistencies of decisions judged against the very criteria intended to guide placement decisions by the college's program management office. Overall, the new approach proves to be a significant improvement over the manual system in terms of efficiency of the placement process and the quality of placement decisions.
Toward a global space exploration program: A stepping stone approach
Ehrenfreund, Pascale; McKay, Chris; Rummel, John D.; Foing, Bernard H.; Neal, Clive R.; Masson-Zwaan, Tanja; Ansdell, Megan; Peter, Nicolas; Zarnecki, John; Mackwell, Steve; Perino, Maria Antionetta; Billings, Linda; Mankins, John; Race, Margaret
2012-01-01
In response to the growing importance of space exploration in future planning, the Committee on Space Research (COSPAR) Panel on Exploration (PEX) was chartered to provide independent scientific advice to support the development of exploration programs and to safeguard the potential scientific assets of solar system objects. In this report, PEX elaborates a stepwise approach to achieve a new level of space cooperation that can help develop world-wide capabilities in space science and exploration and support a transition that will lead to a global space exploration program. The proposed stepping stones are intended to transcend cross-cultural barriers, leading to the development of technical interfaces and shared legal frameworks and fostering coordination and cooperation on a broad front. Input for this report was drawn from expertise provided by COSPAR Associates within the international community and via the contacts they maintain in various scientific entities. The report provides a summary and synthesis of science roadmaps and recommendations for planetary exploration produced by many national and international working groups, aiming to encourage and exploit synergies among similar programs. While science and technology represent the core and, often, the drivers for space exploration, several other disciplines and their stakeholders (Earth science, space law, and others) should be more robustly interlinked and involved than they have been to date. The report argues that a shared vision is crucial to this linkage, and to providing a direction that enables new countries and stakeholders to join and engage in the overall space exploration effort. Building a basic space technology capacity within a wider range of countries, ensuring new actors in space act responsibly, and increasing public awareness and engagement are concrete steps that can provide a broader interest in space exploration, worldwide, and build a solid basis for program sustainability. By engaging
Trombetti, Tomaso
This thesis presents an Experimental/Analytical approach to modeling and calibrating shaking tables for structural dynamic applications. This approach was successfully applied to the shaking table recently built in the structural laboratory of the Civil Engineering Department at Rice University. This shaking table is capable of reproducing model earthquake ground motions with a peak acceleration of 6 g's, a peak velocity of 40 inches per second, and a peak displacement of 3 inches, for a maximum payload of 1500 pounds. It has a frequency bandwidth of approximately 70 Hz and is designed to test structural specimens up to 1/5 scale. The rail/table system is mounted on a reaction mass of about 70,000 pounds consisting of three 12 ft x 12 ft x 1 ft reinforced concrete slabs, post-tensioned together and connected to the strong laboratory floor. The slip table is driven by a hydraulic actuator governed by a 407 MTS controller which employs a proportional-integral-derivative-feedforward-differential pressure algorithm to control the actuator displacement. Feedback signals are provided by two LVDT's (monitoring the slip table relative displacement and the servovalve main stage spool position) and by one differential pressure transducer (monitoring the actuator force). The dynamic actuator-foundation-specimen system is modeled and analyzed by combining linear control theory and linear structural dynamics. The analytical model developed accounts for the effects of actuator oil compressibility, oil leakage in the actuator, time delay in the response of the servovalve spool to a given electrical signal, foundation flexibility, and dynamic characteristics of multi-degree-of-freedom specimens. In order to study the actual dynamic behavior of the shaking table, the transfer function between target and actual table accelerations were identified using experimental results and spectral estimation techniques. The power spectral density of the system input and the cross power spectral
A program approach for site safety at oil spills
International Nuclear Information System (INIS)
Whipple, F.L.; Glenn, S.P.; Ocken, J.J.; Ott, G.L.
1993-01-01
When OSHA developed the hazardous waste operations (Hazwoper) regulations (29 CFR 1910.120) members of the response community envisioned a separation of oil and open-quotes hazmatclose quotes response operations. Organizations that deal with oil spills have had difficulty applying Hazwoper regulations to oil spill operations. This hinders meaningful implementation of the standard for their personnel. We should approach oil spills with the same degree of caution that is applied to hazmat response. Training frequently does not address the safety of oil spill response operations. Site-specific safety and health plans often are neglected or omitted. Certain oils expose workers to carcinogens, as well as chronic and acute hazards. Significant physical hazards are most important. In responding to oil spills, the hazards must be addressed. It is the authors' contention that a need exists for safety program at oil spill sites. Gone are the days of labor pool hires cleaning up spills in jeans and sneakers. The key to meaningful programs for oil spills requires application of controls focused on relevant safety risks rather than minimal chemical exposure hazards. Working with concerned reviewers from other agencies and organizations, the authors have developed a general safety and health program for oil spill response. It is intended to serve as the basis for organizations to customize their own written safety and health program (required by OSHA). It also provides a separate generic site safety plan for emergency phase oil spill operations (check-list) and long term post-emergency phase operations
Generalized Models from Beta(p, 2) Densities with Strong Allee Effect: Dynamical Approach
Aleixo, Sandra M.; Rocha, J. Leonel
2012-01-01
A dynamical approach to study the behaviour of generalized populational growth models from Beta(p, 2) densities, with strong Allee effect, is presented. The dynamical analysis of the respective unimodal maps is performed using symbolic dynamics techniques. The complexity of the correspondent discrete dynamical systems is measured in terms of topological entropy. Different populational dynamics regimes are obtained when the intrinsic growth rates are modified: extinction, bistability, chaotic ...
An Integer Programming Approach to Solving Tantrix on Fixed Boards
Directory of Open Access Journals (Sweden)
Yushi Uno
2012-03-01
Full Text Available Tantrix (Tantrix R ⃝ is a registered trademark of Colour of Strategy Ltd. in New Zealand, and of TANTRIX JAPAN in Japan, respectively, under the license of M. McManaway, the inventor. is a puzzle to make a loop by connecting lines drawn on hexagonal tiles, and the objective of this research is to solve it by a computer. For this purpose, we first give a problem setting of solving Tantrix as making a loop on a given fixed board. We then formulate it as an integer program by describing the rules of Tantrix as its constraints, and solve it by a mathematical programming solver to have a solution. As a result, we establish a formulation that can solve Tantrix of moderate size, and even when the solutions are invalid only by elementary constraints, we achieved it by introducing additional constraints and re-solve it. By this approach we succeeded to solve Tantrix of size up to 60.
A Dynamic Systems Approach to Internationalization of Higher Education
Zhou, Jiangyuan
2016-01-01
Research shows that internationalization of higher education is a process rather than an end product. This paper applies the Dynamic Systems Theory to examine the nature and development of internationalization of higher education, and proposes that internationalization of higher education is a dynamic system. A dynamic framework of…
A network dynamics approach to chemical reaction networks
van der Schaft, Abraham; Rao, S.; Jayawardhana, B.
2016-01-01
A treatment of chemical reaction network theory is given from the perspective of nonlinear network dynamics, in particular of consensus dynamics. By starting from the complex-balanced assumption the reaction dynamics governed by mass action kinetics can be rewritten into a form which allows for a
Dynamic Programming and Error Estimates for Stochastic Control Problems with Maximum Cost
International Nuclear Information System (INIS)
Bokanowski, Olivier; Picarelli, Athena; Zidani, Hasnaa
2015-01-01
This work is concerned with stochastic optimal control for a running maximum cost. A direct approach based on dynamic programming techniques is studied leading to the characterization of the value function as the unique viscosity solution of a second order Hamilton–Jacobi–Bellman (HJB) equation with an oblique derivative boundary condition. A general numerical scheme is proposed and a convergence result is provided. Error estimates are obtained for the semi-Lagrangian scheme. These results can apply to the case of lookback options in finance. Moreover, optimal control problems with maximum cost arise in the characterization of the reachable sets for a system of controlled stochastic differential equations. Some numerical simulations on examples of reachable analysis are included to illustrate our approach
Dynamic Programming and Error Estimates for Stochastic Control Problems with Maximum Cost
Energy Technology Data Exchange (ETDEWEB)
Bokanowski, Olivier, E-mail: boka@math.jussieu.fr [Laboratoire Jacques-Louis Lions, Université Paris-Diderot (Paris 7) UFR de Mathématiques - Bât. Sophie Germain (France); Picarelli, Athena, E-mail: athena.picarelli@inria.fr [Projet Commands, INRIA Saclay & ENSTA ParisTech (France); Zidani, Hasnaa, E-mail: hasnaa.zidani@ensta.fr [Unité de Mathématiques appliquées (UMA), ENSTA ParisTech (France)
2015-02-15
This work is concerned with stochastic optimal control for a running maximum cost. A direct approach based on dynamic programming techniques is studied leading to the characterization of the value function as the unique viscosity solution of a second order Hamilton–Jacobi–Bellman (HJB) equation with an oblique derivative boundary condition. A general numerical scheme is proposed and a convergence result is provided. Error estimates are obtained for the semi-Lagrangian scheme. These results can apply to the case of lookback options in finance. Moreover, optimal control problems with maximum cost arise in the characterization of the reachable sets for a system of controlled stochastic differential equations. Some numerical simulations on examples of reachable analysis are included to illustrate our approach.
Directory of Open Access Journals (Sweden)
Zhi-Jun Fu
2017-01-01
Full Text Available In view of the performance requirements (e.g., ride comfort, road holding, and suspension space limitation for vehicle suspension systems, this paper proposes an adaptive optimal control method for quarter-car active suspension system by using the approximate dynamic programming approach (ADP. Online optimal control law is obtained by using a single adaptive critic NN to approximate the solution of the Hamilton-Jacobi-Bellman (HJB equation. Stability of the closed-loop system is proved by Lyapunov theory. Compared with the classic linear quadratic regulator (LQR approach, the proposed ADP-based adaptive optimal control method demonstrates improved performance in the presence of parametric uncertainties (e.g., sprung mass and unknown road displacement. Numerical simulation results of a sedan suspension system are presented to verify the effectiveness of the proposed control strategy.
Remotely Sensed Monitoring of Small Reservoir Dynamics: A Bayesian Approach
Directory of Open Access Journals (Sweden)
Dirk Eilander
2014-01-01
Full Text Available Multipurpose small reservoirs are important for livelihoods in rural semi-arid regions. To manage and plan these reservoirs and to assess their hydrological impact at a river basin scale, it is important to monitor their water storage dynamics. This paper introduces a Bayesian approach for monitoring small reservoirs with radar satellite images. The newly developed growing Bayesian classifier has a high degree of automation, can readily be extended with auxiliary information and reduces the confusion error to the land-water boundary pixels. A case study has been performed in the Upper East Region of Ghana, based on Radarsat-2 data from November 2012 until April 2013. Results show that the growing Bayesian classifier can deal with the spatial and temporal variability in synthetic aperture radar (SAR backscatter intensities from small reservoirs. Due to its ability to incorporate auxiliary information, the algorithm is able to delineate open water from SAR imagery with a low land-water contrast in the case of wind-induced Bragg scattering or limited vegetation on the land surrounding a small reservoir.
Navigating towards Decoupled Aquaponic Systems: A System Dynamics Design Approach
Directory of Open Access Journals (Sweden)
Simon Goddek
2016-07-01
Full Text Available The classical working principle of aquaponics is to provide nutrient-rich aquacultural water to a hydroponic plant culture unit, which in turn depurates the water that is returned to the aquaculture tanks. A known drawback is that a compromise away from optimal growing conditions for plants and fish must be achieved to produce both crops and fish in the same environmental conditions. The objective of this study was to develop a theoretical concept of a decoupled aquaponic system (DAPS, and predict water, nutrient (N and P, fish, sludge, and plant levels. This has been approached by developing a dynamic aquaponic system model, using inputs from data found in literature covering the fields of aquaculture, hydroponics, and sludge treatment. The outputs from the model showed the dependency of aquacultural water quality on the hydroponic evapotranspiration rate. This result can be explained by the fact that DAPS is based on one-way flows. These one-way flows results in accumulations of remineralized nutrients in the hydroponic component ensuring optimal conditions for the plants. The study also suggests to size the cultivation area based on P availability in the hydroponic component as P is an exhaustible resource and has been identified one of the main limiting factors for plant growth.
A DYNAMICAL SYSTEM APPROACH IN MODELING TECHNOLOGY TRANSFER
Directory of Open Access Journals (Sweden)
Hennie Husniah
2016-05-01
Full Text Available In this paper we discuss a mathematical model of two parties technology transfer from a leader to a follower. The model is reconstructed via dynamical system approach from a known standard Raz and Assa model and we found some important conclusion which have not been discussed in the original model. The model assumes that in the absence of technology transfer from a leader to a follower, both the leader and the follower have a capability to grow independently with a known upper limit of the development. We obtain a rich mathematical structure of the steady state solution of the model. We discuss a special situation in which the upper limit of the technological development of the follower is higher than that of the leader, but the leader has started earlier than the follower in implementing the technology. In this case we show a paradox stating that the follower is unable to reach its original upper limit of the technological development could appear whenever the transfer rate is sufficiently high. We propose a new model to increase realism so that any technological transfer rate could only has a positive effect in accelerating the rate of growth of the follower in reaching its original upper limit of the development.
Predictive microbiology in a dynamic environment: a system theory approach.
Van Impe, J F; Nicolaï, B M; Schellekens, M; Martens, T; De Baerdemaeker, J
1995-05-01
The main factors influencing the microbial stability of chilled prepared food products for which there is an increased consumer interest-are temperature, pH, and water activity. Unlike the pH and the water activity, the temperature may vary extensively throughout the complete production and distribution chain. The shelf life of this kind of foods is usually limited due to spoilage by common microorganisms, and the increased risk for food pathogens. In predicting the shelf life, mathematical models are a powerful tool to increase the insight in the different subprocesses and their interactions. However, the predictive value of the sigmoidal functions reported in the literature to describe a bacterial growth curve as an explicit function of time is only guaranteed at a constant temperature within the temperature range of microbial growth. As a result, they are less appropriate in optimization studies of a whole production and distribution chain. In this paper a more general modeling approach, inspired by system theory concepts, is presented if for instance time varying temperature profiles are to be taken into account. As a case study, we discuss a recently proposed dynamic model to predict microbial growth and inactivation under time varying temperature conditions from a system theory point of view. Further, the validity of this methodology is illustrated with experimental data of Brochothrix thermosphacta and Lactobacillus plantarum. Finally, we propose some possible refinements of this model inspired by experimental results.
Geometrical approach to the dynamics of the relativistic string
International Nuclear Information System (INIS)
Barbashov, B.M.; Koshkarov, A.L.
1979-01-01
The dynamics of the relativistic string is considered from the point of view of the gaussian theory of two-dimensional surfaces in the three-dimensional pseudoeuclidean space-epsilon 3 1 according to which the surface is characterized by its first and second quadratic forms. The geometrical approach possesses an advantage which gives the possibility to solve manifestly additional conditions on the vector describing the coordinates of the string world surface. The equations of motion and boundary conditions are written out for the cases of a string with massive ends and a closed string. The basic equations are formulated for the coefficients of the first and second quadratic forms of the string world surface, which represent the known geometric conditions of integration of Gauss and Weingarten derivation formulas. By means of integration of the derivation formulas the representation is obtained for the form of the string world surface in a certain basis, which satisfies the equations of motion as well as additional conditions. A new relativistic invariant gauge is suggested which fixes the second quadratic form of the surface. This representation can be extended to the case of arbitrary dimensional space
Substrate channel in nitrogenase revealed by a molecular dynamics approach.
Smith, Dayle; Danyal, Karamatullah; Raugei, Simone; Seefeldt, Lance C
2014-04-15
Mo-dependent nitrogenase catalyzes the biological reduction of N2 to two NH3 molecules at FeMo-cofactor buried deep inside the MoFe protein. Access of substrates, such as N2, to the active site is likely restricted by the surrounding protein, requiring substrate channels that lead from the surface to the active site. Earlier studies on crystallographic structures of the MoFe protein have suggested three putative substrate channels. Here, we have utilized submicrosecond atomistic molecular dynamics simulations to allow the nitrogenase MoFe protein to explore its conformational space in an aqueous solution at physiological ionic strength, revealing a putative substrate channel. The viability of this observed channel was tested by examining the free energy of passage of N2 from the surface through the channel to FeMo-cofactor, resulting in the discovery of a very low energy barrier. These studies point to a viable substrate channel in nitrogenase that appears during thermal motions of the protein in an aqueous environment and that approaches a face of FeMo-cofactor earlier implicated in substrate binding.
Community Collectivism: A social dynamic approach to conceptualizing culture
Postmes, Tom; Stroebe, Katherine
2017-01-01
Culture shapes individuals, but the measurement of cultural differences has proven a challenge. Traditional measures of cultural values focus on individual perceptions. We suggest that values are established and maintained within social communities of proximate others, such as the family and its social environment. Within such communities, values serve to maintain collective harmony whilst preserving individual agency. From a social-dynamic analysis of communities, we infer that community values of loyalty regulate individual commitment, values of honor regulate norm compliance, and values of group hierarchy maintain a division of labor. In addition, communities may regulate the ways in which individuals have independent agency. A new scale to measure these values was validated in four studies (N = 398, 112, 465 and 111) among Dutch (religious and non-religious), Turkish-Dutch, Surinamese and Turkish groups. Values and practices were measured at the level of the individual (‘What do you value?’) and at the level of the perceived community (‘What does your community value?’). Results show that, unlike individual-level measures of individualism/collectivism, this scale has excellent reliability, differentiates between cultural groups, and has predictive validity for future (voting) behavior. This approach provides a new way of conceptualizing culture, a new measure of collectivism and new insights into the role of proximate others in shaping culture. PMID:28957447
Investigations on Actuator Dynamics through Theoretical and Finite Element Approach
Directory of Open Access Journals (Sweden)
Somashekhar S. Hiremath
2010-01-01
Full Text Available This paper gives a new approach for modeling the fluid-structure interaction of servovalve component-actuator. The analyzed valve is a precision flow control valve-jet pipe electrohydraulic servovalve. The positioning of an actuator depends upon the flow rate from control ports, in turn depends on the spool position. Theoretical investigation is made for No-load condition and Load condition for an actuator. These are used in finite element modeling of an actuator. The fluid-structure-interaction (FSI is established between the piston and the fluid cavities at the piston end. The fluid cavities were modeled with special purpose hydrostatic fluid elements while the piston is modeled with brick elements. The finite element method is used to simulate the variation of cavity pressure, cavity volume, mass flow rate, and the actuator velocity. The finite element analysis is extended to study the system's linearized response to harmonic excitation using direct solution steady-state dynamics. It was observed from the analysis that the natural frequency of the actuator depends upon the position of the piston in the cylinder. This is a close match with theoretical and simulation results. The effect of bulk modulus is also presented in the paper.
Community Collectivism: A social dynamic approach to conceptualizing culture.
Directory of Open Access Journals (Sweden)
Birol Akkuş
Full Text Available Culture shapes individuals, but the measurement of cultural differences has proven a challenge. Traditional measures of cultural values focus on individual perceptions. We suggest that values are established and maintained within social communities of proximate others, such as the family and its social environment. Within such communities, values serve to maintain collective harmony whilst preserving individual agency. From a social-dynamic analysis of communities, we infer that community values of loyalty regulate individual commitment, values of honor regulate norm compliance, and values of group hierarchy maintain a division of labor. In addition, communities may regulate the ways in which individuals have independent agency. A new scale to measure these values was validated in four studies (N = 398, 112, 465 and 111 among Dutch (religious and non-religious, Turkish-Dutch, Surinamese and Turkish groups. Values and practices were measured at the level of the individual ('What do you value?' and at the level of the perceived community ('What does your community value?'. Results show that, unlike individual-level measures of individualism/collectivism, this scale has excellent reliability, differentiates between cultural groups, and has predictive validity for future (voting behavior. This approach provides a new way of conceptualizing culture, a new measure of collectivism and new insights into the role of proximate others in shaping culture.
Community Collectivism: A social dynamic approach to conceptualizing culture.
Akkuş, Birol; Postmes, Tom; Stroebe, Katherine
2017-01-01
Culture shapes individuals, but the measurement of cultural differences has proven a challenge. Traditional measures of cultural values focus on individual perceptions. We suggest that values are established and maintained within social communities of proximate others, such as the family and its social environment. Within such communities, values serve to maintain collective harmony whilst preserving individual agency. From a social-dynamic analysis of communities, we infer that community values of loyalty regulate individual commitment, values of honor regulate norm compliance, and values of group hierarchy maintain a division of labor. In addition, communities may regulate the ways in which individuals have independent agency. A new scale to measure these values was validated in four studies (N = 398, 112, 465 and 111) among Dutch (religious and non-religious), Turkish-Dutch, Surinamese and Turkish groups. Values and practices were measured at the level of the individual ('What do you value?') and at the level of the perceived community ('What does your community value?'). Results show that, unlike individual-level measures of individualism/collectivism, this scale has excellent reliability, differentiates between cultural groups, and has predictive validity for future (voting) behavior. This approach provides a new way of conceptualizing culture, a new measure of collectivism and new insights into the role of proximate others in shaping culture.
Using Balanced Scorecard (BSC) approach to improve ergonomics programs.
Fernandes, Marcelo Vicente Forestieri
2012-01-01
The purpose of this paper is to propose foundations for a theory of using the Balanced Scorecard (BSC) methodology to improve the strategic view of ergonomics inside the organizations. This approach may help to promote a better understanding of investing on an ergonomic program to obtain good results in quality and production, as well as health maintenance. It is explained the basics of balanced scorecard, and how ergonomists could use this to work with strategic enterprises demand. Implications of this viewpoint for the development of a new methodology for ergonomics strategy views are offered.
Gas contract portfolio management: a stochastic programming approach
International Nuclear Information System (INIS)
Haurie, A.; Smeers, Y.; Zaccour, G.
1991-01-01
This paper deals with a stochastic programming model which complements long range market simulation models generating scenarios concerning the evolution of demand and prices for gas in different market segments. Agas company has to negociate contracts with lengths going from one to twenty years. This stochastic model is designed to assess the risk associated with committing the gas production capacity of the company to these market segments. Different approaches are presented to overcome the difficulties associated with the very large size of the resulting optimization problem
Stochastic Control of Energy Efficient Buildings: A Semidefinite Programming Approach
Energy Technology Data Exchange (ETDEWEB)
Ma, Xiao [ORNL; Dong, Jin [ORNL; Djouadi, Seddik M [ORNL; Nutaro, James J [ORNL; Kuruganti, Teja [ORNL
2015-01-01
The key goal in energy efficient buildings is to reduce energy consumption of Heating, Ventilation, and Air- Conditioning (HVAC) systems while maintaining a comfortable temperature and humidity in the building. This paper proposes a novel stochastic control approach for achieving joint performance and power control of HVAC. We employ a constrained Stochastic Linear Quadratic Control (cSLQC) by minimizing a quadratic cost function with a disturbance assumed to be Gaussian. The problem is formulated to minimize the expected cost subject to a linear constraint and a probabilistic constraint. By using cSLQC, the problem is reduced to a semidefinite optimization problem, where the optimal control can be computed efficiently by Semidefinite programming (SDP). Simulation results are provided to demonstrate the effectiveness and power efficiency by utilizing the proposed control approach.
Approaches to Education and Training for Kenya's Nuclear Power Program
International Nuclear Information System (INIS)
Kalambuka, H.A.
2014-01-01
1. Review of status and development of E and T for the nuclear power program in Kenya; 2. Review of challenges in nuclear E and T, and the initiatives being undertaken to mitigate them: • Recommendations for strategic action; 3. State of nuclear skills in the context of key drivers of the global revival in nuclear energy; 4. Point of view: Education in Applied Nuclear and Radiation physics at Nairobi: • Its growth has helped identify the gaps, and relevant practical approaches for realizing the broad spectrum of technical capacity to conduct a national NPP; 5. Proposed approach to support the E and T infrastructure necessary to allow the country to plan, construct, operate, regulate, and safely and securely handle nuclear facilities sustainably; 6. Specified E and T initiatives in the context of the national industrial development strategy and nuclear energy policy and funding for the complete life cycle and technology localization. (author)
Ostrowski, M; Paulevé, L; Schaub, T; Siegel, A; Guziolowski, C
2016-11-01
Boolean networks (and more general logic models) are useful frameworks to study signal transduction across multiple pathways. Logic models can be learned from a prior knowledge network structure and multiplex phosphoproteomics data. However, most efficient and scalable training methods focus on the comparison of two time-points and assume that the system has reached an early steady state. In this paper, we generalize such a learning procedure to take into account the time series traces of phosphoproteomics data in order to discriminate Boolean networks according to their transient dynamics. To that end, we identify a necessary condition that must be satisfied by the dynamics of a Boolean network to be consistent with a discretized time series trace. Based on this condition, we use Answer Set Programming to compute an over-approximation of the set of Boolean networks which fit best with experimental data and provide the corresponding encodings. Combined with model-checking approaches, we end up with a global learning algorithm. Our approach is able to learn logic models with a true positive rate higher than 78% in two case studies of mammalian signaling networks; for a larger case study, our method provides optimal answers after 7min of computation. We quantified the gain in our method predictions precision compared to learning approaches based on static data. Finally, as an application, our method proposes erroneous time-points in the time series data with respect to the optimal learned logic models. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Lymph node segmentation by dynamic programming and active contours.
Tan, Yongqiang; Lu, Lin; Bonde, Apurva; Wang, Deling; Qi, Jing; Schwartz, Lawrence H; Zhao, Binsheng
2018-03-03
Enlarged lymph nodes are indicators of cancer staging, and the change in their size is a reflection of treatment response. Automatic lymph node segmentation is challenging, as the boundary can be unclear and the surrounding structures complex. This work communicates a new three-dimensional algorithm for the segmentation of enlarged lymph nodes. The algorithm requires a user to draw a region of interest (ROI) enclosing the lymph node. Rays are cast from the center of the ROI, and the intersections of the rays and the boundary of the lymph node form a triangle mesh. The intersection points are determined by dynamic programming. The triangle mesh initializes an active contour which evolves to low-energy boundary. Three radiologists independently delineated the contours of 54 lesions from 48 patients. Dice coefficient was used to evaluate the algorithm's performance. The mean Dice coefficient between computer and the majority vote results was 83.2%. The mean Dice coefficients between the three radiologists' manual segmentations were 84.6%, 86.2%, and 88.3%. The performance of this segmentation algorithm suggests its potential clinical value for quantifying enlarged lymph nodes. © 2018 American Association of Physicists in Medicine.
Multiscale molecular dynamics simulation approaches to the structure and dynamics of viruses.
Huber, Roland G; Marzinek, Jan K; Holdbrook, Daniel A; Bond, Peter J
2017-09-01
Viral pathogens are a significant source of human morbidity and mortality, and have a major impact on societies and economies around the world. One of the challenges inherent in targeting these pathogens with drugs is the tight integration of the viral life cycle with the host's cellular machinery. However, the reliance of the virus on the host cell replication machinery is also an opportunity for therapeutic targeting, as successful entry- and exit-inhibitors have demonstrated. An understanding of the extracellular and intracellular structure and dynamics of the virion - as well as of the entry and exit pathways in host and vector cells - is therefore crucial to the advancement of novel antivirals. In recent years, advances in computing architecture and algorithms have begun to allow us to use simulations to study the structure and dynamics of viral ultrastructures at various stages of their life cycle in atomistic or near-atomistic detail. In this review, we outline specific challenges and solutions that have emerged to allow for structurally detailed modelling of viruses in silico. We focus on the history and state of the art of atomistic and coarse-grained approaches to simulate the dynamics of the large, macromolecular structures associated with viral infection, and on their usefulness in explaining and expanding upon experimental data. We discuss the types of interactions that need to be modeled to describe major components of the virus particle and advances in modelling techniques that allow for the treatment of these systems, highlighting recent key simulation studies. Copyright © 2016 Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Jila Naeini
2015-03-01
Full Text Available The aim of this study was to examine and compare the impact of two Dynamic Assessment (DA approaches, that is, Feuerstein’s Mediated Learning Experience (MLE and Brown’s Graduated Prompt (GP on Iranian EFL learners’ reading comprehension. Therefore, a mixed methods approach consisting of a semi-structured interview, a pretest, an intervention program, a posttest, and a transfer test was applied to assess and compare the efficacy of two DA approaches. One hundred and two EFL learners taking a General English course at Islamic Azad University were assigned to two experimental groups (MLEG and GPG and one comparison group (CG. The participants in the MLEG took part in the MLE, and the participants in the GPG participated in the GP intervention program. The results of the qualitative as well as the aggregate and disaggregated quantitative data analyses indicated that both intervention approaches of DA were effective in enhancing the learners’ reading comprehension.
The Nuclear program of Navy: an approach from the budget
International Nuclear Information System (INIS)
Alves, Marco Antonio
2014-01-01
government agenda, as were the decision-making processes that defined the allocation of its budget resources and what the prospects facing the current challenges. The analyzes are referenced by three theoretical models adapted to the case: (1) incremental, (2) Multiple Streams and (3) the Punctuated Equilibrium. The theory (1) incremental, adapted from Davis, Dempster and Wildavsky (1966), better known in Brazil (OLLAIK et al, 2011), assumes that every budget is prepared based on the previous; while explaining the aggregate budget process, is insufficient when the analysis lies more detailed, as the program levels. The (2) Multiple Streams model, presented by Kingdon (2003), aims to show how an idea turns into public policy, being adequate to explain how programs amount to the government agenda. Finally, (3) the Punctuated Equilibrium model, developed from studies True, Jones and Baumgartner (2006), aims to analyze the dynamics of political processes, which occasionally produce major changes in the government agenda, proves appropriate to answer the why the budget oscillations, present throughout the history of the PNM. Thus, models of Multiple Streams and Punctuated Equilibrium complement the incremental theory that guides the empirical case study. The research covered since the previous events, leading up to the institutionalization of the program in 1979 up to subsequent events associated with it occurring after 2012. At the end, in conclusion, institutional suggestions are presented in order to mitigate budgetary problems and improving the management of the program, taking advantage of new ideas and specific regulations that are appearing in the field of public administration. (author)
A uniform approach for programming distributed heterogeneous computing systems.
Grasso, Ivan; Pellegrini, Simone; Cosenza, Biagio; Fahringer, Thomas
2014-12-01
Large-scale compute clusters of heterogeneous nodes equipped with multi-core CPUs and GPUs are getting increasingly popular in the scientific community. However, such systems require a combination of different programming paradigms making application development very challenging. In this article we introduce libWater, a library-based extension of the OpenCL programming model that simplifies the development of heterogeneous distributed applications. libWater consists of a simple interface, which is a transparent abstraction of the underlying distributed architecture, offering advanced features such as inter-context and inter-node device synchronization. It provides a runtime system which tracks dependency information enforced by event synchronization to dynamically build a DAG of commands, on which we automatically apply two optimizations: collective communication pattern detection and device-host-device copy removal. We assess libWater's performance in three compute clusters available from the Vienna Scientific Cluster, the Barcelona Supercomputing Center and the University of Innsbruck, demonstrating improved performance and scaling with different test applications and configurations.
International Nuclear Information System (INIS)
Choi, Kwang Sik; Choi, Young Sung; Han, Kyu Hyun; Kim, Do Hyoung
2007-01-01
The methodology being used today for assuring nuclear safety is based on analytic approaches. In the 21st century, holistic approaches are increasingly used over traditional analytic method that is based on reductionism. Presently, it leads to interest in complexity theory or system dynamics. In this paper, we review global academic trends, social environments, concept of nuclear safety and regulatory frameworks for nuclear safety. We propose a new safety paradigm and also regulatory approach using holistic approach and system dynamics now in fashion
MyDTW - Dynamic Time Warping program for stratigraphical time series
Kotov, Sergey; Paelike, Heiko
2017-04-01
One of the general tasks in many geological disciplines is matching of one time or space signal to another. It can be classical correlation between two cores or cross-sections in sedimentology or marine geology. For example, tuning a paleoclimatic signal to a target curve, driven by variations in the astronomical parameters, is a powerful technique to construct accurate time scales. However, these methods can be rather time-consuming and can take ours of routine work even with the help of special semi-automatic software. Therefore, different approaches to automate the processes have been developed during last decades. Some of them are based on classical statistical cross-correlations such as the 'Correlator' after Olea [1]. Another ones use modern ideas of dynamic programming. A good example is as an algorithm developed by Lisiecki and Lisiecki [2] or dynamic time warping based algorithm after Pälike [3]. We introduce here an algorithm and computer program, which are also stemmed from the Dynamic Time Warping algorithm class. Unlike the algorithm of Lisiecki and Lisiecki, MyDTW does not lean on a set of penalties to follow geological logics, but on a special internal structure and specific constrains. It differs also from [3] in basic ideas of implementation and constrains design. The algorithm is implemented as a computer program with a graphical user interface using Free Pascal and Lazarus IDE and available for Windows, Mac OS, and Linux. Examples with synthetic and real data are demonstrated. Program is available for free download at http://www.marum.de/Sergey_Kotov.html . References: 1. Olea, R.A. Expert systems for automated correlation and interpretation of wireline logs // Math Geol (1994) 26: 879. doi:10.1007/BF02083420 2. Lisiecki L. and Lisiecki P. Application of dynamic programming to the correlation of paleoclimate records // Paleoceanography (2002), Volume 17, Issue 4, pp. 1-1, CiteID 1049, doi: 10.1029/2001PA000733 3. Pälike, H. Extending the
Invariant molecular-dynamics approach to structural phase transitions
International Nuclear Information System (INIS)
Wentzcovitch, R.M.
1991-01-01
Two fictitious Lagrangians to be used in molecular-dynamics simulations with variable cell shape and suitable to study problems like structural phase transitions are introduced. Because they are invariant with respect to the choice of the simulation cell edges and eliminate symmetry breaking associated with the fictitious part of the dynamics, they improve the physical content of numerical simulations that up to now have been done by using Parrinello-Rahman dynamics
A non-traditional multinational approach to construction inspection program
International Nuclear Information System (INIS)
Ram, Srinivasan; Smith, M.E.; Walker, T.F.
2007-01-01
The next generation of nuclear plants would be fabricated, constructed and licensed in markedly different ways than the present light water reactors. Non-traditional commercial nuclear industry suppliers, shipyards in Usa and international fabricators, would be a source to supply major components and subsystems. The codes of construction may vary depending upon the prevailing codes and standards used by the respective supplier. Such codes and standards need to be reconciled with the applicable regulations (e.g., 10 CFR 52). A Construction Inspection Program is an integral part of the Quality Assurance Measures required during the Construction Phase of the power plant. In order to achieve the stated cost and schedule goals of the new build plants, a nontraditional multi-national approach would be required. In lieu of the traditional approach of individual utility inspecting the quality of fabrication and construction, a multi-utility team approach is a method that will be discussed. Likewise, a multinational cooperative licensing approach is suggested taking advantage of inspectors of the regulatory authority where the component would be built. The multi-national approach proposed here is based on the principle of forming teaming agreements between the utilities, vendors and the regulators. For instance, rather than sending Country A's inspectors all over the world, inspectors of the regulator in Country B where a particular component is being fabricated would in fact be performing the required inspections for Country A's regulator. Similarly teaming arrangements could be set up between utilities and vendors in different countries. The required oversight for the utility or the vendor could be performed by their counterparts in the country where a particular item is being fabricated
Energy Technology Data Exchange (ETDEWEB)
Tanabe, R.; Yasuda, K.; Yokoyama, R. (Tokyo Metropolitan Univ., Tokyo (Japan))
1992-05-20
To supply cheap, high-reliable and a planty of the electricity is an important task of the electric supply system because the requirement for the electricity is rapidly increased in Japan. In order to solve this problem, the authors of the paper are developing a most suitable practical method based on algorithm, according to which the generation expansion planning is divided into two problems: the optimal generation mix and the optimal generation construction process and the two problems are solved respectively. But there are some bad points in the method, for example, there are only approximative practical restriction of the capacity of single machine and the existing electric supply etc., because the optimal generation mix is determined on the basis of non-linear planning. So, in the present paper, the electric supply support system is practically constructed while proposing an unified generation expansion planning based on the dynamic programming that is possible to consider these restrictions strictly and the usefullness of the method is inspected. 12 refs., 7 figs., 5 tabs.
An Adaptive Learning Based Network Selection Approach for 5G Dynamic Environments
Directory of Open Access Journals (Sweden)
Xiaohong Li
2018-03-01
Full Text Available Networks will continue to become increasingly heterogeneous as we move toward 5G. Meanwhile, the intelligent programming of the core network makes the available radio resource be more changeable rather than static. In such a dynamic and heterogeneous network environment, how to help terminal users select optimal networks to access is challenging. Prior implementations of network selection are usually applicable for the environment with static radio resources, while they cannot handle the unpredictable dynamics in 5G network environments. To this end, this paper considers both the fluctuation of radio resources and the variation of user demand. We model the access network selection scenario as a multiagent coordination problem, in which a bunch of rationally terminal users compete to maximize their benefits with incomplete information about the environment (no prior knowledge of network resource and other users’ choices. Then, an adaptive learning based strategy is proposed, which enables users to adaptively adjust their selections in response to the gradually or abruptly changing environment. The system is experimentally shown to converge to Nash equilibrium, which also turns out to be both Pareto optimal and socially optimal. Extensive simulation results show that our approach achieves significantly better performance compared with two learning and non-learning based approaches in terms of load balancing, user payoff and the overall bandwidth utilization efficiency. In addition, the system has a good robustness performance under the condition with non-compliant terminal users.
A dynamic appearance descriptor approach to facial actions temporal modeling
Jiang, Bihan; Valstar, Michel; Martinez, Brais; Pantic, Maja
Both the configuration and the dynamics of facial expressions are crucial for the interpretation of human facial behavior. Yet to date, the vast majority of reported efforts in the field either do not take the dynamics of facial expressions into account, or focus only on prototypic facial
Non-Lipschitz Dynamics Approach to Discrete Event Systems
Zak, M.; Meyers, R.
1995-01-01
This paper presents and discusses a mathematical formalism for simulation of discrete event dynamics (DED) - a special type of 'man- made' system designed to aid specific areas of information processing. A main objective is to demonstrate that the mathematical formalism for DED can be based upon the terminal model of Newtonian dynamics which allows one to relax Lipschitz conditions at some discrete points.
The dynamics of a usage-based approach
Verspoor, Marjolijn; Daems, Jocelyn; Zenner, Eline; Heylen, Kris; Speelman, Dirk; Cuyckens, Hubert
2015-01-01
This contribution seeks to connect usage based linguistics with dynamic systems theory, in particular as applied by Edelman (1989) and Thelen and Smith (1994). Edelman’s dynamic biological system starts off with a few simple sub-systems (perception, action, value), all of which interacting with each
Measure theoretical approach to recurrent properties for quantum dynamics
International Nuclear Information System (INIS)
Otobe, Yoshiki; Sasaki, Itaru
2011-01-01
Poincaré's recurrence theorem, which states that every Hamiltonian dynamics enclosed in a finite volume returns to its initial position as close as one wishes, is a mathematical basis of statistical mechanics. It is Liouville's theorem that guarantees that the dynamics preserves the volume on the state space. A quantum version of Poincaré's theorem was obtained in the middle of the 20th century without any volume structures of the state space (Hilbert space). One of our aims in this paper is to establish such properties of quantum dynamics from an analog of Liouville's theorem, namely, we will construct a natural probability measure on the Hilbert space from a Hamiltonian defined on the space. Then we will show that the measure is invariant under the corresponding Schrödinger flow. Moreover, we show that the dynamics naturally causes an infinite-dimensional Weyl transformation. It also enables us to discuss the ergodic properties of such dynamics. (paper)
Polynomial f (R ) Palatini cosmology: Dynamical system approach
Szydłowski, Marek; Stachowski, Aleksander
2018-05-01
We investigate cosmological dynamics based on f (R ) gravity in the Palatini formulation. In this study, we use the dynamical system methods. We show that the evolution of the Friedmann equation reduces to the form of the piecewise smooth dynamical system. This system is reduced to a 2D dynamical system of the Newtonian type. We demonstrate how the trajectories can be sewn to guarantee C0 extendibility of the metric similarly as "Milne-like" Friedmann-Lemaître-Robertson-Walker spacetimes are C0-extendible. We point out that importance of the dynamical system of the Newtonian type with nonsmooth right-hand sides in the context of Palatini cosmology. In this framework, we can investigate singularities which appear in the past and future of the cosmic evolution. We consider cosmological systems in both Einstein and Jordan frames. We show that at each frame the topological structures of phase space are different.
Molecular Approaches to Understanding C & N Dynamics in MArine Sediments
Energy Technology Data Exchange (ETDEWEB)
Arturo Massol; James Tiedje; Jizhong Zhou; Allan Devol
2007-05-16
Continental margin sediments constitute only about 10% of the total sediment surface area in the world’s oceans, nevertheless they are the dominant sites of nitrogen (N) cycling. Recent studies suggest that the oceanic nitrogen budget is unbalanced, primarily due to a higher nitrogen removal rate in contrast to the fixation rate, and it has been suggested that denitrification activity contributes significantly to this imbalance. Although denitrification in marine environments has been studied intensively at the process level, little is known about the species abundance, composition, distribution, and functional differences of the denitrifying population. Understanding the diversity of microbial populations in marine environments, their responses to various environmental factors such as NO3-, and how this impact the rate of denitrification is critical to predict global N dynamics. Environmental Microbiology has the prompt to study the influence of each microbial population on a biogeochemical process within a given ecosystem. Culture-dependent and –independent techniques using nucleic acid probes can access the identity and activity of cultured and uncultured microorganisms. Nucleic acid probes can target distintict genes which set phylogenetic relationships, such as rDNA 16S, DNA gyrase (gyrB) and RNA polymerase sigma 70 factor (rpoD). In the other hand, the genetic capabilities and their expression could be tracked using probes that target several functional genes, such as nirS, nirK, nosZ, and nifH, which are genes involved in denitrification. Selective detection of cells actively expressing functional genes within a community using In Situ Reverse Transcription-PCR (ISRT-PCR) could become a powerful culture-independent technique in microbial ecology. Here we describe an approach to study the expression of nirS genes in denitrifying bacteria. Pure cultures of Pseudomonas stutzeri and Paracoccus denitrificans, as well as co-cultures with non
The NASA Computational Fluid Dynamics (CFD) program - Building technology to solve future challenges
Richardson, Pamela F.; Dwoyer, Douglas L.; Kutler, Paul; Povinelli, Louis A.
1993-01-01
This paper presents the NASA Computational Fluid Dynamics program in terms of a strategic vision and goals as well as NASA's financial commitment and personnel levels. The paper also identifies the CFD program customers and the support to those customers. In addition, the paper discusses technical emphasis and direction of the program and some recent achievements. NASA's Ames, Langley, and Lewis Research Centers are the research hubs of the CFD program while the NASA Headquarters Office of Aeronautics represents and advocates the program.
A user's guide to the Flexible Spacecraft Dynamics and Control Program
Fedor, J. V.
1984-01-01
A guide to the use of the Flexible Spacecraft Dynamics Program (FSD) is presented covering input requirements, control words, orbit generation, spacecraft description and simulation options, and output definition. The program can be used in dynamics and control analysis as well as in orbit support of deployment and control of spacecraft. The program is applicable to inertially oriented spinning, Earth oriented or gravity gradient stabilized spacecraft. Internal and external environmental effects can be simulated.
Energy Technology Data Exchange (ETDEWEB)
Dall' Anese, Emiliano; Dhople, Sairaj V.; Giannakis, Georgios B.
2015-07-01
This paper considers a collection of networked nonlinear dynamical systems, and addresses the synthesis of feedback controllers that seek optimal operating points corresponding to the solution of pertinent network-wide optimization problems. Particular emphasis is placed on the solution of semidefinite programs (SDPs). The design of the feedback controller is grounded on a dual e-subgradient approach, with the dual iterates utilized to dynamically update the dynamical-system reference signals. Global convergence is guaranteed for diminishing stepsize rules, even when the reference inputs are updated at a faster rate than the dynamical-system settling time. The application of the proposed framework to the control of power-electronic inverters in AC distribution systems is discussed. The objective is to bridge the time-scale separation between real-time inverter control and network-wide optimization. Optimization objectives assume the form of SDP relaxations of prototypical AC optimal power flow problems.
An Online Energy Management Control for Hybrid Electric Vehicles Based on Neuro-Dynamic Programming
Directory of Open Access Journals (Sweden)
Feiyan Qin
2018-03-01
Full Text Available Hybrid electric vehicles are a compromise between traditional vehicles and pure electric vehicles and can be part of the solution to the energy shortage problem. Energy management strategies (EMSs are highly related to energy utilization in HEVs’ fuel economy. In this research, we have employed a neuro-dynamic programming (NDP method to simultaneously optimize fuel economy and battery state of charge (SOC. In this NDP method, the critic network is a multi-resolution wavelet neural network based on the Meyer wavelet function, and the action network is a conventional wavelet neural network based on the Morlet function. The weights and parameters of both networks are obtained by an algorithm of backpropagation type. The NDP-based EMS has been applied to a parallel HEV and compared with a previously reported NDP EMS and a stochastic dynamic programing-based method. Simulation results under ADVISOR2002 have shown that the proposed NDP approach achieves better performance than both the methods. These indicate that the proposed NDP EMS, and the CWNN and MRWNN, are effective in approximating a nonlinear system.
A genetic programming approach for Burkholderia Pseudomallei diagnostic pattern discovery
Yang, Zheng Rong; Lertmemongkolchai, Ganjana; Tan, Gladys; Felgner, Philip L.; Titball, Richard
2009-01-01
Motivation: Finding diagnostic patterns for fighting diseases like Burkholderia pseudomallei using biomarkers involves two key issues. First, exhausting all subsets of testable biomarkers (antigens in this context) to find a best one is computationally infeasible. Therefore, a proper optimization approach like evolutionary computation should be investigated. Second, a properly selected function of the antigens as the diagnostic pattern which is commonly unknown is a key to the diagnostic accuracy and the diagnostic effectiveness in clinical use. Results: A conversion function is proposed to convert serum tests of antigens on patients to binary values based on which Boolean functions as the diagnostic patterns are developed. A genetic programming approach is designed for optimizing the diagnostic patterns in terms of their accuracy and effectiveness. During optimization, it is aimed to maximize the coverage (the rate of positive response to antigens) in the infected patients and minimize the coverage in the non-infected patients while maintaining the fewest number of testable antigens used in the Boolean functions as possible. The final coverage in the infected patients is 96.55% using 17 of 215 (7.4%) antigens with zero coverage in the non-infected patients. Among these 17 antigens, BPSL2697 is the most frequently selected one for the diagnosis of Burkholderia Pseudomallei. The approach has been evaluated using both the cross-validation and the Jack–knife simulation methods with the prediction accuracy as 93% and 92%, respectively. A novel approach is also proposed in this study to evaluate a model with binary data using ROC analysis. Contact: z.r.yang@ex.ac.uk PMID:19561021
Dynamics based alignment of proteins: an alternative approach to quantify dynamic similarity
Directory of Open Access Journals (Sweden)
Lyngsø Rune
2010-04-01
Full Text Available Abstract Background The dynamic motions of many proteins are central to their function. It therefore follows that the dynamic requirements of a protein are evolutionary constrained. In order to assess and quantify this, one needs to compare the dynamic motions of different proteins. Comparing the dynamics of distinct proteins may also provide insight into how protein motions are modified by variations in sequence and, consequently, by structure. The optimal way of comparing complex molecular motions is, however, far from trivial. The majority of comparative molecular dynamics studies performed to date relied upon prior sequence or structural alignment to define which residues were equivalent in 3-dimensional space. Results Here we discuss an alternative methodology for comparative molecular dynamics that does not require any prior alignment information. We show it is possible to align proteins based solely on their dynamics and that we can use these dynamics-based alignments to quantify the dynamic similarity of proteins. Our method was tested on 10 representative members of the PDZ domain family. Conclusions As a result of creating pair-wise dynamics-based alignments of PDZ domains, we have found evolutionarily conserved patterns in their backbone dynamics. The dynamic similarity of PDZ domains is highly correlated with their structural similarity as calculated with Dali. However, significant differences in their dynamics can be detected indicating that sequence has a more refined role to play in protein dynamics than just dictating the overall fold. We suggest that the method should be generally applicable.
Identification of time-varying structural dynamic systems - An artificial intelligence approach
Glass, B. J.; Hanagud, S.
1992-01-01
An application of the artificial intelligence-derived methodologies of heuristic search and object-oriented programming to the problem of identifying the form of the model and the associated parameters of a time-varying structural dynamic system is presented in this paper. Possible model variations due to changes in boundary conditions or configurations of a structure are organized into a taxonomy of models, and a variant of best-first search is used to identify the model whose simulated response best matches that of the current physical structure. Simulated model responses are verified experimentally. An output-error approach is used in a discontinuous model space, and an equation-error approach is used in the parameter space. The advantages of the AI methods used, compared with conventional programming techniques for implementing knowledge structuring and inheritance, are discussed. Convergence conditions and example problems have been discussed. In the example problem, both the time-varying model and its new parameters have been identified when changes occur.
Owens, Alec; Yachmenev, Andrey
2018-03-01
In this paper, a general variational approach for computing the rovibrational dynamics of polyatomic molecules in the presence of external electric fields is presented. Highly accurate, full-dimensional variational calculations provide a basis of field-free rovibrational states for evaluating the rovibrational matrix elements of high-rank Cartesian tensor operators and for solving the time-dependent Schrödinger equation. The effect of the external electric field is treated as a multipole moment expansion truncated at the second hyperpolarizability interaction term. Our fully numerical and computationally efficient method has been implemented in a new program, RichMol, which can simulate the effects of multiple external fields of arbitrary strength, polarization, pulse shape, and duration. Illustrative calculations of two-color orientation and rotational excitation with an optical centrifuge of NH3 are discussed.
Zhu, Yuanheng; Zhao, Dongbin; Li, Xiangjun
2017-03-01
H ∞ control is a powerful method to solve the disturbance attenuation problems that occur in some control systems. The design of such controllers relies on solving the zero-sum game (ZSG). But in practical applications, the exact dynamics is mostly unknown. Identification of dynamics also produces errors that are detrimental to the control performance. To overcome this problem, an iterative adaptive dynamic programming algorithm is proposed in this paper to solve the continuous-time, unknown nonlinear ZSG with only online data. A model-free approach to the Hamilton-Jacobi-Isaacs equation is developed based on the policy iteration method. Control and disturbance policies and value are approximated by neural networks (NNs) under the critic-actor-disturber structure. The NN weights are solved by the least-squares method. According to the theoretical analysis, our algorithm is equivalent to a Gauss-Newton method solving an optimization problem, and it converges uniformly to the optimal solution. The online data can also be used repeatedly, which is highly efficient. Simulation results demonstrate its feasibility to solve the unknown nonlinear ZSG. When compared with other algorithms, it saves a significant amount of online measurement time.
Productivity and Regional Employment in Spain: A Dynamic Approach
Directory of Open Access Journals (Sweden)
F. Javier Escribá Pérez
2013-01-01
Full Text Available This paper analyses the impact of sectorial and territorial factors on the dynamics of employment in regional industries in Spain over the period 1980-2006. A dynamic panel data model is estimated using panel data techniques (System-GMM, which provide an alternative methodology for addressing the problem of variable endogeneity. The results confirm the robustness of the contemporary effects: diversification, market size and dynamics in the sector affect employment in the short term. However, effects in the long term are more uncertain.
Specific Cell (Re-)Programming: Approaches and Perspectives.
Hausburg, Frauke; Jung, Julia Jeannine; David, Robert
2018-01-01
Many disorders are manifested by dysfunction of key cell types or their disturbed integration in complex organs. Thereby, adult organ systems often bear restricted self-renewal potential and are incapable of achieving functional regeneration. This underlies the need for novel strategies in the field of cell (re-)programming-based regenerative medicine as well as for drug development in vitro. The regenerative field has been hampered by restricted availability of adult stem cells and the potentially hazardous features of pluripotent embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). Moreover, ethical concerns and legal restrictions regarding the generation and use of ESCs still exist. The establishment of direct reprogramming protocols for various therapeutically valuable somatic cell types has overcome some of these limitations. Meanwhile, new perspectives for safe and efficient generation of different specified somatic cell types have emerged from numerous approaches relying on exogenous expression of lineage-specific transcription factors, coding and noncoding RNAs, and chemical compounds.It should be of highest priority to develop protocols for the production of mature and physiologically functional cells with properties ideally matching those of their endogenous counterparts. Their availability can bring together basic research, drug screening, safety testing, and ultimately clinical trials. Here, we highlight the remarkable successes in cellular (re-)programming, which have greatly advanced the field of regenerative medicine in recent years. In particular, we review recent progress on the generation of cardiomyocyte subtypes, with a focus on cardiac pacemaker cells. Graphical Abstract.
Impacts of the proposed program approach on waste stream characteristics
International Nuclear Information System (INIS)
King, J.F.; Fleming, M.E.
1995-01-01
The evolution of the U.S. Department of Energy's Civilian Radioactive Waste Management System (CRWMS) over the past few years has led to significant changes in key system scenario assumption. This paper describes the effects of two recent changes on waste stream characteristics focusing primarily on repository impacts. First, the multi-purpose canister (MPC) concept has been included in the Program baseline. The change from a bare fuel system to one including an MPC-based system forces the fuel assemblies initially loaded together in MPCs to remain together throughout the system. Second, current system analyses also assume a system without a monitored retrievable storage (MRS), with the understanding that an MRS would be reincorporated if a site becomes available. Together these two changes have significant impacts on waste stream characteristics. Those two changes create a class of scenarios referred to generally as Program Approach (PA) scenarios. Scenarios based on the previously assumed system, bare fuel with an MRS, are referred to here as the Previous Reference (PR) system scenarios. The analysis compares scenarios with otherwise consistent assumptions and presents summary comparisons. The number of disposal containers and the waste heat output are determined for eight PA and PR scenarios
Dynamical mechanism of atrial fibrillation: A topological approach
Marcotte, Christopher D.; Grigoriev, Roman O.
2017-09-01
While spiral wave breakup has been implicated in the emergence of atrial fibrillation, its role in maintaining this complex type of cardiac arrhythmia is less clear. We used the Karma model of cardiac excitation to investigate the dynamical mechanisms that sustain atrial fibrillation once it has been established. The results of our numerical study show that spatiotemporally chaotic dynamics in this regime can be described as a dynamical equilibrium between topologically distinct types of transitions that increase or decrease the number of wavelets, in general agreement with the multiple wavelets' hypothesis. Surprisingly, we found that the process of continuous excitation waves breaking up into discontinuous pieces plays no role whatsoever in maintaining spatiotemporal complexity. Instead, this complexity is maintained as a dynamical balance between wave coalescence—a unique, previously unidentified, topological process that increases the number of wavelets—and wave collapse—a different topological process that decreases their number.
Dynamic capabilities and innovation management: a conceptual approach
Directory of Open Access Journals (Sweden)
Jose Javier Aguilar Zambrano
2006-07-01
Full Text Available Organizational capabilities are those behavioral routines oriented to develop a specific task (NELSON; WINTER, 1982. These capabilities define what the company knows to do and how must to do it. Nevertheless, the repetitive character of these capabilities could be producing stopped processes (METCALFE, 1995 which both limit the generation of new capabilities and diminishing the dynamism in the production, reproduction and reconfiguration of new capabilities (TEECE; PISANO, 1997. This article compares and analyzes different theoretical-conceptual perspectives for generation and reconfiguration of technological capabilities within an organization. Additionally this article suggests that dynamic capabilities to make feasible innovation processes within an organization. The general concept of dynamic capacities will be used like driver of changes to produce and reconfigurate capabilities in the organization. The glance of the dynamic capabilities allows understanding the complexity of the creation, development and use of capabilities. This understanding could constitute material fundamental to manage learning processes and organizational change oriented to innovation.
Complex approach of beam dynamic investigation in SC LINAC
International Nuclear Information System (INIS)
Samoshin, A.V.
2012-01-01
Beam dynamic investigation is difficult for superconducting linac consisting from periodic sequences of independently phased accelerating cavities and focusing solenoids. The matrix calculation was preferably used for previous estimate of accelerating structure parameters. The matrix calculation does not allow properly investigate the longitudinal motion. The smooth approximation can be used to investigate the nonlinear ion beam dynamics in such accelerating structure and to calculate the longitudinal and transverse acceptances. The potential function and equation of motion in the Hamiltonian form are devised by the smooth approximation. The advantages and disadvantages of each method will describe, the results of investigation will compare. Application package for ion beam dynamic analysis will create. A numerical simulation of beam dynamics in the full field will carry out for the different variants of the accelerator structure based on analytically obtained results.
Sumner, Isaiah; Iyengar, Srinivasan S
2007-10-18
We have introduced a computational methodology to study vibrational spectroscopy in clusters inclusive of critical nuclear quantum effects. This approach is based on the recently developed quantum wavepacket ab initio molecular dynamics method that combines quantum wavepacket dynamics with ab initio molecular dynamics. The computational efficiency of the dynamical procedure is drastically improved (by several orders of magnitude) through the utilization of wavelet-based techniques combined with the previously introduced time-dependent deterministic sampling procedure measure to achieve stable, picosecond length, quantum-classical dynamics of electrons and nuclei in clusters. The dynamical information is employed to construct a novel cumulative flux/velocity correlation function, where the wavepacket flux from the quantized particle is combined with classical nuclear velocities to obtain the vibrational density of states. The approach is demonstrated by computing the vibrational density of states of [Cl-H-Cl]-, inclusive of critical quantum nuclear effects, and our results are in good agreement with experiment. A general hierarchical procedure is also provided, based on electronic structure harmonic frequencies, classical ab initio molecular dynamics, computation of nuclear quantum-mechanical eigenstates, and employing quantum wavepacket ab initio dynamics to understand vibrational spectroscopy in hydrogen-bonded clusters that display large degrees of anharmonicities.
An online learning approach to dynamic pricing for demand response
Jia, Liyan; Tong, Lang; Zhao, Qing
2014-01-01
In this paper, the problem of optimal dynamic pricing for retail electricity with an unknown demand model is considered. Under the day-ahead dynamic pricing (a.k.a. real time pricing) mechanism, a retailer obtains electricity in a twosettlement wholesale market and serves its customers in real time. Without knowledge on the aggregated demand function of its customers, the retailer aims to maximize its retail surplus by sequentially adjusting its price based on the behavior of its customers in...
A type-driven approach to concrete meta programming.
J.J. Vinju (Jurgen)
2005-01-01
textabstractApplications that manipulate programs as data are called meta programs. Examples of meta programs are compilers, source-to-source translators and code generators. Meta programming can be supported by the ability to represent program fragments in concrete syntax instead of abstract
Rethinking the logistic approach for population dynamics of mutualistic interactions.
García-Algarra, Javier; Galeano, Javier; Pastor, Juan Manuel; Iriondo, José María; Ramasco, José J
2014-12-21
Mutualistic communities have an internal structure that makes them resilient to external perturbations. Late research has focused on their stability and the topology of the relations between the different organisms to explain the reasons of the system robustness. Much less attention has been invested in analyzing the systems dynamics. The main population models in use are modifications of the r-K formulation of logistic equation with additional terms to account for the benefits produced by the interspecific interactions. These models have shortcomings as the so-called r-K formulation diverges under some conditions. In this work, we introduce a model for population dynamics under mutualism that preserves the original logistic formulation. It is mathematically simpler than the widely used type II models, although it shows similar complexity in terms of fixed points and stability of the dynamics. We perform an analytical stability analysis and numerical simulations to study the model behavior in general interaction scenarios including tests of the resilience of its dynamics under external perturbations. Despite its simplicity, our results indicate that the model dynamics shows an important richness that can be used to gain further insights in the dynamics of mutualistic communities. Copyright © 2014 Elsevier Ltd. All rights reserved.
Training programs for the systems approach to nuclear security
International Nuclear Information System (INIS)
Ellis, D.
2005-01-01
Full text: In support of United States Government (USG) and International Atomic Energy Agency (IAEA) nuclear security programs, Sandia National Laboratories (SNL) has advocated and practiced a risk-based, systematic approach to nuclear security. The risk equation has been developed and implemented as the basis for a performance-based methodology for the design and evaluation of physical protection systems against a design basis threat (DBT) for theft and sabotage of nuclear and/or radiological materials. Integrated systems must include technology, people, and the man-machine interface. A critical aspect of the human element is training on the systems-approach for all the stakeholders in nuclear security. Current training courses and workshops have been very beneficial but are still rather limited in scope. SNL has developed two primary international classes - the international training course on the physical protection of nuclear facilities and materials, and the design basis threat methodology workshop. SNL is also completing the development of three new courses that will be offered and presented in the near term. They are vital area identification methodology focused on nuclear power plants to aid in their protection against radiological sabotage, insider threat analysis methodology and protection schemes, and security foundations for competent authority and facility operator stakeholders who are not security professionals. In the long term, we envision a comprehensive nuclear security curriculum that spans policy and technology, regulators and operators, introductory and expert levels, classroom and laboratory/field, and local and offsite training options. This training curriculum will be developed in concert with a nuclear security series of guidance documents that is expected to be forthcoming from the IAEA. It is important to note that while appropriate implementation of systems based on such training and documentation can improve the risk reduction, such a
Detection and Extraction of Roads from High Resolution Satellites Images with Dynamic Programming
Benzouai, Siham; Smara, Youcef
2010-12-01
The advent of satellite images allows now a regular and a fast digitizing and update of geographic data, especially roads which are very useful for Geographic Information Systems (GIS) applications such as transportation, urban pollution, geomarketing, etc. For this, several studies have been conducted to automate roads extraction in order to minimize the manual processes [4]. In this work, we are interested in roads extraction from satellite imagery with high spatial resolution (at best equal to 10 m). The method is semi automatic and follows a linear approach where road is considered as a linear object. As roads extraction is a pattern recognition problem, it is useful, above all, to characterize roads. After, we realize a pre-processing by applying an Infinite Size Edge Filter -ISEF- and processing method based on dynamic programming concept, in particular, Fishler algorithm designed by F*.
Scherer, Klaus R; Ellgring, Heiner
2007-02-01
The different assumptions made by discrete and componential emotion theories about the nature of the facial expression of emotion and the underlying mechanisms are reviewed. Explicit and implicit predictions are derived from each model. It is argued that experimental expression-production paradigms rather than recognition studies are required to critically test these differential predictions. Data from a large-scale actor portrayal study are reported to demonstrate the utility of this approach. The frequencies with which 12 professional actors use major facial muscle actions individually and in combination to express 14 major emotions show little evidence for emotion-specific prototypical affect programs. Rather, the results encourage empirical investigation of componential emotion model predictions of dynamic configurations of appraisal-driven adaptive facial actions. (c) 2007 APA, all rights reserved.
Memory-efficient dynamic programming backtrace and pairwise local sequence alignment.
Newberg, Lee A
2008-08-15
A backtrace through a dynamic programming algorithm's intermediate results in search of an optimal path, or to sample paths according to an implied probability distribution, or as the second stage of a forward-backward algorithm, is a task of fundamental importance in computational biology. When there is insufficient space to store all intermediate results in high-speed memory (e.g. cache) existing approaches store selected stages of the computation, and recompute missing values from these checkpoints on an as-needed basis. Here we present an optimal checkpointing strategy, and demonstrate its utility with pairwise local sequence alignment of sequences of length 10,000. Sample C++-code for optimal backtrace is available in the Supplementary Materials. Supplementary data is available at Bioinformatics online.
An energy management for series hybrid electric vehicle using improved dynamic programming
Peng, Hao; Yang, Yaoquan; Liu, Chunyu
2018-02-01
With the increasing numbers of hybrid electric vehicle (HEV), management for two energy sources, engine and battery, is more and more important to achieve the minimum fuel consumption. This paper introduces several working modes of series hybrid electric vehicle (SHEV) firstly and then describes the mathematical model of main relative components in SHEV. On the foundation of this model, dynamic programming is applied to distribute energy of engine and battery on the platform of matlab and acquires less fuel consumption compared with traditional control strategy. Besides, control rule recovering energy in brake profiles is added into dynamic programming, so shorter computing time is realized by improved dynamic programming and optimization on algorithm.
A network dynamics approach to chemical reaction networks
van der Schaft, A. J.; Rao, S.; Jayawardhana, B.
2016-04-01
A treatment of a chemical reaction network theory is given from the perspective of nonlinear network dynamics, in particular of consensus dynamics. By starting from the complex-balanced assumption, the reaction dynamics governed by mass action kinetics can be rewritten into a form which allows for a very simple derivation of a number of key results in the chemical reaction network theory, and which directly relates to the thermodynamics and port-Hamiltonian formulation of the system. Central in this formulation is the definition of a balanced Laplacian matrix on the graph of chemical complexes together with a resulting fundamental inequality. This immediately leads to the characterisation of the set of equilibria and their stability. Furthermore, the assumption of complex balancedness is revisited from the point of view of Kirchhoff's matrix tree theorem. Both the form of the dynamics and the deduced behaviour are very similar to consensus dynamics, and provide additional perspectives to the latter. Finally, using the classical idea of extending the graph of chemical complexes by a 'zero' complex, a complete steady-state stability analysis of mass action kinetics reaction networks with constant inflows and mass action kinetics outflows is given, and a unified framework is provided for structure-preserving model reduction of this important class of open reaction networks.
Measure theoretical approach to recurrent properties for quantum dynamics
Energy Technology Data Exchange (ETDEWEB)
Otobe, Yoshiki [Department of Mathematical Sciences, Shinshu University, Asahi 3-1-1, Matsumoto 390-8621 (Japan); Sasaki, Itaru, E-mail: otobe@math.shinshu-u.ac.jp, E-mail: isasaki@shinshu-u.ac.jp [Fiber-Nanotech Young Researcher Empowerment Center, Shinshu University, Asahi 3-1-1, Matsumoto 390-8621 (Japan)
2011-11-18
Poincare's recurrence theorem, which states that every Hamiltonian dynamics enclosed in a finite volume returns to its initial position as close as one wishes, is a mathematical basis of statistical mechanics. It is Liouville's theorem that guarantees that the dynamics preserves the volume on the state space. A quantum version of Poincare's theorem was obtained in the middle of the 20th century without any volume structures of the state space (Hilbert space). One of our aims in this paper is to establish such properties of quantum dynamics from an analog of Liouville's theorem, namely, we will construct a natural probability measure on the Hilbert space from a Hamiltonian defined on the space. Then we will show that the measure is invariant under the corresponding Schroedinger flow. Moreover, we show that the dynamics naturally causes an infinite-dimensional Weyl transformation. It also enables us to discuss the ergodic properties of such dynamics. (paper)
DEFF Research Database (Denmark)
Rong, Aiying; Hakonen, Henri; Lahdelma, Risto
2009-01-01
efficiency of the plants. We introduce in this paper the DRDP-RSC algorithm, which is a dynamic regrouping based dynamic programming (DP) algorithm based on linear relaxation of the ON/OFF states of the units, sequential commitment of units in small groups. Relaxed states of the plants are used to reduce...... the dimension of the UC problem and dynamic regrouping is used to improve the solution quality. Numerical results based on real-life data sets show that this algorithm is efficient and optimal or near-optimal solutions with very small optimality gap are obtained....
Mediman: Object oriented programming approach for medical image analysis
International Nuclear Information System (INIS)
Coppens, A.; Sibomana, M.; Bol, A.; Michel, C.
1993-01-01
Mediman is a new image analysis package which has been developed to analyze quantitatively Positron Emission Tomography (PET) data. It is object-oriented, written in C++ and its user interface is based on InterViews on top of which new classes have been added. Mediman accesses data using external data representation or import/export mechanism which avoids data duplication. Multimodality studies are organized in a simple database which includes images, headers, color tables, lists and objects of interest (OOI's) and history files. Stored color table parameters allow to focus directly on the interesting portion of the dynamic range. Lists allow to organize the study according to modality, acquisition protocol, time and spatial properties. OOI's (points, lines and regions) are stored in absolute 3-D coordinates allowing correlation with other co-registered imaging modalities such as MRI or SPECT. OOI's have visualization properties and are organized into groups. Quantitative ROI analysis of anatomic images consists of position, distance, volume calculation on selected OOI's. An image calculator is connected to mediman. Quantitation of metabolic images is performed via profiles, sectorization, time activity curves and kinetic modeling. Mediman is menu and mouse driven, macro-commands can be registered and replayed. Its interface is customizable through a configuration file. The benefit of the object-oriented approach are discussed from a development point of view
International Nuclear Information System (INIS)
Zhang Chi; Wu Guo-Zhen; Fang Chao
2010-01-01
This paper studies the vibrational nonlinear dynamics of nitrous oxide with Fermi coupling between the symmetric stretching and bending coordinates by classical dynamical potential approach. This is a global approach in the sense that the overall dynamics is evidenced by the classical nonlinear variables such as the fixed points and the focus are on a set of levels instead of individual ones. The dynamics of nitrous oxide is demonstrated to be not so much dependent on the excitation energy. Moreover, the localized bending mode is shown to be ubiquitous in all the energy range studied
Langevin approach to synchronization of hyperchaotic time-delay dynamics
Energy Technology Data Exchange (ETDEWEB)
Budini, Adrian A [Consejo Nacional de Investigaciones CientIficas y Tecnicas, Centro Atomico Bariloche, Av. E Bustillo Km 9.5, (8400) Bariloche (Argentina); Consortium of the Americas for Interdisciplinary Science and Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131 (United States)
2008-11-07
In this paper, we characterize the synchronization phenomenon of hyperchaotic scalar nonlinear delay dynamics in a fully-developed chaos regime. Our results rely on the observation that, in that regime, the stationary statistical properties of a class of hyperchaotic attractors can be reproduced with a linear Langevin equation, defined by replacing the nonlinear delay force by a delta-correlated noise. Therefore, the synchronization phenomenon can be analytically characterized by a set of coupled Langevin equations. We apply this formalism to study anticipated synchronization dynamics subject to external noise fluctuations as well as for characterizing the effects of parameter mismatch in a hyperchaotic communication scheme. The same procedure is applied to second-order differential delay equations associated with synchronization in electro-optical devices. In all cases, the departure with respect to perfect synchronization is measured through a similarity function. Numerical simulations in discrete maps associated with the hyperchaotic dynamics support the formalism.
New experimental approaches to investigate the fission dynamics
Energy Technology Data Exchange (ETDEWEB)
Benlliure, J., E-mail: j.benlliure@usc.es; Rodríguez-Sánchez, J. L.; Alvarez-Pol, H.; Ayyad, Y.; Cortina-Gil, D.; Paradela, C.; Pietras, B.; Ramos, D.; Vargas, J. [Universidade de Santiago de Compostela, 15782 Santiago de Compostela (Spain); Audouin, L.; Boutoux, G. [Institut de Physique Nucléaire d’Orsay, F-91406 Orsay (France); Bélier, G.; Chatillon, A.; Gorbinet, T.; Laurent, B.; Martin, J.-F.; Pellereau, E.; Taïeb, J. [CEA, DAM, DIF, F-91297 Arpajon (France); Casarejos, E. [Universidad de Vigo, E-36200 Vigo (Spain); Heinz, A. [Chalmers University of Technology, SE-412 96 Gothenburg (Sweden); and others
2016-07-07
The first ever achieved full identification of both fission fragments, in atomic and mass number, made it possible to define new observables sensitive to the fission dynamics along the fission path up to the scission point. Moreover, proton-induced fission of {sup 208}Pb at high energies offers optimal conditions for the investigation of dissipative, and transient effects, because of the high-excitation energy of the fissioning nuclei, its low angular momentum, and limited shape distortion by the reaction. In this work we show that the charge distribution of the final fission fragments can constrain the ground-to-saddle dynamics while the mass distribution is sensitive to the dynamics until the scission point.
International Nuclear Information System (INIS)
More, Ameya; Dutta, B.K.; Durgaprasad, P.V.; Arya, A.K.
2012-01-01
Fe-Cr based Ferritic/Martensitic (F/M) steels are the candidate structural materials for future fusion reactors. In this work, a multi-scale approach comprising atomistic Molecular Dynamics (MD) simulations and Discrete Dislocation Dynamics (DDD) simulations are used to model the effect of irradiation dose on the flow stress of F/M steels. At the atomic scale, molecular dynamics simulations are used to study the dislocation interaction with irradiation induced defects, i.e. voids and He bubbles. Whereas, the DDD simulations are used to estimate the change in flow stress of the material as a result of irradiation hardening. (author)
The Configuration Of Supply Chain Agritourism To Improve The Performance With Dynamic Programming
Directory of Open Access Journals (Sweden)
Sahnaz Ubud
2015-09-01
Full Text Available The purposes of this research is to implementation about the configuration of Supply Chain Agritourism in Mekarsari Tours Garden and result a decision making which must be done by top level management about their supply chain configuration. Because now Mekarsari, the biggest fruit garden in the world, have a lot of type of fruit which must be supply for the customer depend on the season with on time. So Mekarsari must know about their configuration from supplier to customer to improve their performance. The Respondents for this research is selected based on the results of supply chain maping from the worker in the garden, the top level management until the end customer. Supply chian network is formed consisting of farm workers to the end customers, especially those located in the tourist are of green land zone. The type of data is displayed in a supply chain modeling approach is to use the dynamic system. It’s consists of numeric data, the written data and mental models. That data is collected and processed into a design model. The design model is using system dynamics methodology. In compiling the system dynamics model has been used software Vensim Professional Academic Ventana 5.7. The result of this research is a configuration of Supply Chain Agritourism which is developed from the supplier until the end customer in Mekarsari tours Garden. From the Dynamic Programming, the result is a decision making which must be done by the top level management to improve the supply chain performance, especially in the green land zone.
Fictive impurity approach to dynamical mean field theory
Energy Technology Data Exchange (ETDEWEB)
Fuhrmann, A.
2006-10-15
A new extension of the dynamical mean-field theory was investigated in the regime of large Coulomb repulsion. A number of physical quantities such as single-particle density of states, spin-spin correlation, internal energy and Neel temperature, were computed for a two-dimensional Hubbard model at half-filling. The numerical data were compared to our analytical results as well as to the results computed using the dynamical cluster approximation. In the second part of this work we consider a two-plane Hubbard model. The transport properties of the bilayer were investigated and the phase diagram was obtained. (orig.)
Fictive impurity approach to dynamical mean field theory
International Nuclear Information System (INIS)
Fuhrmann, A.
2006-10-01
A new extension of the dynamical mean-field theory was investigated in the regime of large Coulomb repulsion. A number of physical quantities such as single-particle density of states, spin-spin correlation, internal energy and Neel temperature, were computed for a two-dimensional Hubbard model at half-filling. The numerical data were compared to our analytical results as well as to the results computed using the dynamical cluster approximation. In the second part of this work we consider a two-plane Hubbard model. The transport properties of the bilayer were investigated and the phase diagram was obtained. (orig.)
Optimization of Algorithms Using Extensions of Dynamic Programming
AbouEisha, Hassan M.
2017-01-01
of the thesis presents a novel model of computation (element partition tree) that represents a class of algorithms for multi-frontal solvers along with cost functions reflecting various complexity measures such as: time and space. It then introduces dynamic
A New Approach to Programming Language Education for Beginners with Top-Down Learning
Directory of Open Access Journals (Sweden)
Daisuke Saito
2013-12-01
Full Text Available There are two basic approaches in learning new programming language: a bottom-up approach and a top-down approach. It has been said that if a learner has already acquired one language, the top-down approach is more efficient to learn another while, for a person who has absolutely no knowledge of any programming languages; the bottom-up approach is preferable. The major problem of the bottom-up approach is that it requires longer period to acquire the language. For quicker learning, this paper applies a top-down approach for a beginners who has not yet acquired any programming languages.
International Nuclear Information System (INIS)
Ito, Yuki; Jung, Changho; Luo, Yi; Koyama, Michihisa; Endou, Akira; Kubo, Momoji; Imamura, Akira; Miyamoto, Akira
2006-01-01
Recently, we have developed a new tight-binding quantum chemical molecular dynamics program 'Colors' for combinatorial computational chemistry approach. This methodology is based on our original tight-binding approximation and realized over 5000 times acceleration compared to the conventional first-principles molecular dynamics method. In the present study, we applied our new program to the simulations on various realistic large-scale models of the automotive three-way catalysts, ultrafine Pt particle/CeO 2 (111) support. Significant electron transfer from the Pt particle to the CeO 2 (111) surface was observed and it was found to strongly depend on the size of the Pt particle. Furthermore, our simulation results suggest that the reduction of the Ce atom due to the electron transfer from the Pt particle to the CeO 2 surface is a main reason for the strong interaction of the Pt particle and CeO 2 (111) support
GrDHP: a general utility function representation for dual heuristic dynamic programming.
Ni, Zhen; He, Haibo; Zhao, Dongbin; Xu, Xin; Prokhorov, Danil V
2015-03-01
A general utility function representation is proposed to provide the required derivable and adjustable utility function for the dual heuristic dynamic programming (DHP) design. Goal representation DHP (GrDHP) is presented with a goal network being on top of the traditional DHP design. This goal network provides a general mapping between the system states and the derivatives of the utility function. With this proposed architecture, we can obtain the required derivatives of the utility function directly from the goal network. In addition, instead of a fixed predefined utility function in literature, we conduct an online learning process for the goal network so that the derivatives of the utility function can be adaptively tuned over time. We provide the control performance of both the proposed GrDHP and the traditional DHP approaches under the same environment and parameter settings. The statistical simulation results and the snapshot of the system variables are presented to demonstrate the improved learning and controlling performance. We also apply both approaches to a power system example to further demonstrate the control capabilities of the GrDHP approach.
An Optimization Approach to the Dynamic Allocation of Economic Capital
Laeven, R.J.A.; Goovaerts, M.J.
2004-01-01
We propose an optimization approach to allocating economic capital, distinguishing between an allocation or raising principle and a measure for the risk residual. The approach is applied both at the aggregate (conglomerate) level and at the individual (subsidiary) level and yields an integrated
Merrill, J.
2017-12-01
Multidisciplinary undergraduate climate change education is critical for students entering any sector of the workforce. The University of Delaware has developed a new interdisciplinary affinity program—UD Climate Program for Undergraduates (CPUG)—open to undergraduate students of all majors to provide a comprehensive educational experience designed to educate skilled climate change problem-solvers for a wide range of professional careers. The program is designed to fulfill all General Education requirements, and includes a residential community commitment and experiential learning in community outreach and problem solving. Seminars will introduce current popular press and research materials and provide practice in confirming source credibility, communications training, and psychological support, as well as team building. As undergraduates, members of the UD CPUG team will define, describe, and develop a solution or solutions for a pressing local climate challenge that has the potential for global impact. The choice of a challenge and approach to addressing it will be guided by the student's advisor. Students are expected to develop a practical, multidisciplinary solution to address the challenge as defined, using their educational and experiential training. Solutions will be presented to the UD community during the spring semester of their senior year, as a collaborative team solution, with enhancement through individual portfolios from each team member. The logic model, structure, curricular and co-curricular supports for the CPUG will be provided. Mechanisms of support available through University administration will also be discussed.
A sigma-model approach to glassy dynamics
Indian Academy of Sciences (India)
reparametrizations are analogous to uniform spin rotations while local time re- parametrizations describe the spin waves (fluctuations on the uniform solution). An important feature of this scenario is that a critical-like dynamical two-time dependent correlation length develops. This framework allowed us to predict several ...
Vehicle routing with dynamic travel times : a queueing approach
Woensel, van T.; Kerbache, L.; Peremans, H.; Vandaele, N.J.
2008-01-01
Transportation is an important component of supply chain competitiveness since it plays a major role in the inbound, inter-facility, and outbound logistics. In this context, assigning and scheduling vehicle routes is a crucial management problem. In this paper, a vehicle routing problem with dynamic
Nonlinear chaos-dynamical approach to analysis of atmospheric ...
Indian Academy of Sciences (India)
false nearest neighbors, Lyapunov's exponents, surrogate data, nonlinear prediction ... Chaotic dynamics; time series of the 222Rn concentration; universal complex ... tems is due to a number of applications, including the ..... Computer Engineering. ... Ternovsky,Quantum Systems in Physics, Chemistry, and. Biology, pp.
A new approach to analyze the dynamic strength of eggs
Czech Academy of Sciences Publication Activity Database
Trnka, Jan; Nedomová, Š.; Kumbár, V.; Šustr, M.; Buchar, J.
2016-01-01
Roč. 42, č. 4 (2016), s. 525-537 ISSN 0092-0606 Institutional support: RVO:61388998 Keywords : eggs * compression * dynamic loading * HSPB technique * rupture force Subject RIV: BO - Biophysics Impact factor: 1.241, year: 2016 http://link.springer.com/journal/10867
Understanding ecohydrological connectivity in savannas: A system dynamics modeling approach
Ecohydrological connectivity is a system-level property that results from the linkages in the networks of water transport through ecosystems, by which feedback effects and other emergent system behaviors may be generated. We created a systems dynamic model that represents primary ecohydrological net...
Modular and Spatially Explicit: A Novel Approach to System Dynamics
The Open Modeling Environment (OME) is an open-source System Dynamics (SD) simulation engine which has been created as a joint project between Oregon State University and the US Environmental Protection Agency. It is designed around a modular implementation, and provides a standa...
Gauge-invariant cosmic structures---A dynamic systems approach
International Nuclear Information System (INIS)
Woszczyna, A.
1992-01-01
Gravitational instability is expressed in terms of the dynamic systems theory. The gauge-invariant Ellis-Bruni equation and Bardeen's equation are discussed in detail. It is shown that in an open universe filled with matter of constant sound velocity the Jeans criterion does not adequately define the length scale of the gravitational structure
Monetary dynamics in the euro area : a disaggregate panel approach
Liu, J.; Kool, C.J.M.
In this paper, we use panel cointegration estimation to analyze the determinants of heterogeneous monetary dynamics in ten euro area member countries over the period 1999-2013. In particular, we investigate the role of real house prices, real equity prices and cross border bank credit. For the
Construction of time-dependent dynamical invariants: A new approach
International Nuclear Information System (INIS)
Bertin, M. C.; Pimentel, B. M.; Ramirez, J. A.
2012-01-01
We propose a new way to obtain polynomial dynamical invariants of the classical and quantum time-dependent harmonic oscillator from the equations of motion. We also establish relations between linear and quadratic invariants, and discuss how the quadratic invariant can be related to the Ermakov invariant.
steady and dynamic states analysis of induction motor: fea approach
African Journals Online (AJOL)
HOD
The flux levels at these loading conditions were also monitored. Key words: Three phase Induction Motor, Steady state and Dynamic Response, Flux Levels, FEA, Loading conditions. 1. INTRODUCTION ..... Boston: Computational Mechanics Publications;. New York: ... for Electrical Engineers, Cambridge University. Press ...
Statistical physics approaches to subnetwork dynamics in biochemical systems
Bravi, B.; Sollich, P.
2017-08-01
We apply a Gaussian variational approximation to model reduction in large biochemical networks of unary and binary reactions. We focus on a small subset of variables (subnetwork) of interest, e.g. because they are accessible experimentally, embedded in a larger network (bulk). The key goal is to write dynamical equations reduced to the subnetwork but still retaining the effects of the bulk. As a result, the subnetwork-reduced dynamics contains a memory term and an extrinsic noise term with non-trivial temporal correlations. We first derive expressions for this memory and noise in the linearized (Gaussian) dynamics and then use a perturbative power expansion to obtain first order nonlinear corrections. For the case of vanishing intrinsic noise, our description is explicitly shown to be equivalent to projection methods up to quadratic terms, but it is applicable also in the presence of stochastic fluctuations in the original dynamics. An example from the epidermal growth factor receptor signalling pathway is provided to probe the increased prediction accuracy and computational efficiency of our method.
A dynamical approach to time dilation and length contraction
Vries, de D.K.; Muynck, de W.M.
1996-01-01
Simple models of length and time measuring instruments are studied in order to see under what conditions a relativistic description of the dynamics of accelerated motion can be consistent with the kinematic prescriptions of Lorentz contraction and time dilation. The outcomes obtained for the
RAVEN. Dynamic Event Tree Approach Level III Milestone
Energy Technology Data Exchange (ETDEWEB)
Alfonsi, Andrea [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rabiti, Cristian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mandelli, Diego [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cogliati, Joshua [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kinoshita, Robert [Idaho National Lab. (INL), Idaho Falls, ID (United States)
2014-07-01
Conventional Event-Tree (ET) based methodologies are extensively used as tools to perform reliability and safety assessment of complex and critical engineering systems. One of the disadvantages of these methods is that timing/sequencing of events and system dynamics are not explicitly accounted for in the analysis. In order to overcome these limitations several techniques, also know as Dynamic Probabilistic Risk Assessment (DPRA), have been developed. Monte-Carlo (MC) and Dynamic Event Tree (DET) are two of the most widely used D-PRA methodologies to perform safety assessment of Nuclear Power Plants (NPP). In the past two years, the Idaho National Laboratory (INL) has developed its own tool to perform Dynamic PRA: RAVEN (Reactor Analysis and Virtual control ENvironment). RAVEN has been designed to perform two main tasks: 1) control logic driver for the new Thermo-Hydraulic code RELAP-7 and 2) post-processing tool. In the first task, RAVEN acts as a deterministic controller in which the set of control logic laws (user defined) monitors the RELAP-7 simulation and controls the activation of specific systems. Moreover, the control logic infrastructure is used to model stochastic events, such as components failures, and perform uncertainty propagation. Such stochastic modeling is deployed using both MC and DET algorithms. In the second task, RAVEN processes the large amount of data generated by RELAP-7 using data-mining based algorithms. This report focuses on the analysis of dynamic stochastic systems using the newly developed RAVEN DET capability. As an example, a DPRA analysis, using DET, of a simplified pressurized water reactor for a Station Black-Out (SBO) scenario is presented.
RAVEN: Dynamic Event Tree Approach Level III Milestone
Energy Technology Data Exchange (ETDEWEB)
Andrea Alfonsi; Cristian Rabiti; Diego Mandelli; Joshua Cogliati; Robert Kinoshita
2013-07-01
Conventional Event-Tree (ET) based methodologies are extensively used as tools to perform reliability and safety assessment of complex and critical engineering systems. One of the disadvantages of these methods is that timing/sequencing of events and system dynamics are not explicitly accounted for in the analysis. In order to overcome these limitations several techniques, also know as Dynamic Probabilistic Risk Assessment (DPRA), have been developed. Monte-Carlo (MC) and Dynamic Event Tree (DET) are two of the most widely used D-PRA methodologies to perform safety assessment of Nuclear Power Plants (NPP). In the past two years, the Idaho National Laboratory (INL) has developed its own tool to perform Dynamic PRA: RAVEN (Reactor Analysis and Virtual control ENvironment). RAVEN has been designed to perform two main tasks: 1) control logic driver for the new Thermo-Hydraulic code RELAP-7 and 2) post-processing tool. In the first task, RAVEN acts as a deterministic controller in which the set of control logic laws (user defined) monitors the RELAP-7 simulation and controls the activation of specific systems. Moreover, the control logic infrastructure is used to model stochastic events, such as components failures, and perform uncertainty propagation. Such stochastic modeling is deployed using both MC and DET algorithms. In the second task, RAVEN processes the large amount of data generated by RELAP-7 using data-mining based algorithms. This report focuses on the analysis of dynamic stochastic systems using the newly developed RAVEN DET capability. As an example, a DPRA analysis, using DET, of a simplified pressurized water reactor for a Station Black-Out (SBO) scenario is presented.
WHAMSE: a program for three-dimensional nonlinear structural dynamics
International Nuclear Information System (INIS)
Belytschko, T.; Tsay, C.S.
1982-02-01
WHAMSE is a computer program for the nonlinear, transient analysis of structures. The formulation includes both geometric and material nonlinearities, so problems with large displacements and elastic-plastic behavior can be treated. Explicit time integration is used, so the program is most suitable for implusive loads. Energy balance calculations are provided to check numerical stability. The mass matrix is lumped. A finite element format is used for the description of the problem geometry, so the program is quite versatile in treating complex engineering structures. The following elements are included: a triangular element for thin plates and shells, a beam element, a spring element and a rigid body. Mesh generation features are provided to simplify program input. Other features of the program are: (1) a restart capability; (2) a variety of output options, such as printer plots or CALCOMP plots of selected time histories, picture (snapshot) output, and CALCOMP plots of the undeformed and deformed structure
An optimal maintenance policy for machine replacement problem using dynamic programming
Mohsen Sadegh Amalnik; Morteza Pourgharibshahi
2017-01-01
In this article, we present an acceptance sampling plan for machine replacement problem based on the backward dynamic programming model. Discount dynamic programming is used to solve a two-state machine replacement problem. We plan to design a model for maintenance by consid-ering the quality of the item produced. The purpose of the proposed model is to determine the optimal threshold policy for maintenance in a finite time horizon. We create a decision tree based on a sequential sampling inc...
James Mabli; Thomas Godfrey; Nancy Wemmerus; Joshua Leftin; Stephen Tordella
2014-01-01
Mathematica nutrition experts recently conducted research on the dynamics and determinants of Supplemental Nutrition Assistance Program (SNAP) participation. A study examines SNAP participation dynamics between October 2008 and December 2012. In particular, it describes patterns of SNAP entry, length of time on the program, and re-entry for policy-relevant subgroups, and discusses how these patterns have changed over time. This work was conducted in conjunction with an analysis presented on t...
Discrete Globalised Dual Heuristic Dynamic Programming in Control of the Two-Wheeled Mobile Robot
Marcin Szuster; Zenon Hendzel
2014-01-01
Network-based control systems have been emerging technologies in the control of nonlinear systems over the past few years. This paper focuses on the implementation of the approximate dynamic programming algorithm in the network-based tracking control system of the two-wheeled mobile robot, Pioneer 2-DX. The proposed discrete tracking control system consists of the globalised dual heuristic dynamic programming algorithm, the PD controller, the supervisory term, and an additional control signal...
Discovery of Boolean metabolic networks: integer linear programming based approach.
Qiu, Yushan; Jiang, Hao; Ching, Wai-Ki; Cheng, Xiaoqing
2018-04-11
Traditional drug discovery methods focused on the efficacy of drugs rather than their toxicity. However, toxicity and/or lack of efficacy are produced when unintended targets are affected in metabolic networks. Thus, identification of biological targets which can be manipulated to produce the desired effect with minimum side-effects has become an important and challenging topic. Efficient computational methods are required to identify the drug targets while incurring minimal side-effects. In this paper, we propose a graph-based computational damage model that summarizes the impact of enzymes on compounds in metabolic networks. An efficient method based on Integer Linear Programming formalism is then developed to identify the optimal enzyme-combination so as to minimize the side-effects. The identified target enzymes for known successful drugs are then verified by comparing the results with those in the existing literature. Side-effects reduction plays a crucial role in the study of drug development. A graph-based computational damage model is proposed and the theoretical analysis states the captured problem is NP-completeness. The proposed approaches can therefore contribute to the discovery of drug targets. Our developed software is available at " http://hkumath.hku.hk/~wkc/APBC2018-metabolic-network.zip ".
Directory of Open Access Journals (Sweden)
Maurer Till
2005-04-01
Full Text Available Abstract Background We have developed the program PERMOL for semi-automated homology modeling of proteins. It is based on restrained molecular dynamics using a simulated annealing protocol in torsion angle space. As main restraints defining the optimal local geometry of the structure weighted mean dihedral angles and their standard deviations are used which are calculated with an algorithm described earlier by Döker et al. (1999, BBRC, 257, 348–350. The overall long-range contacts are established via a small number of distance restraints between atoms involved in hydrogen bonds and backbone atoms of conserved residues. Employing the restraints generated by PERMOL three-dimensional structures are obtained using standard molecular dynamics programs such as DYANA or CNS. Results To test this modeling approach it has been used for predicting the structure of the histidine-containing phosphocarrier protein HPr from E. coli and the structure of the human peroxisome proliferator activated receptor γ (Ppar γ. The divergence between the modeled HPr and the previously determined X-ray structure was comparable to the divergence between the X-ray structure and the published NMR structure. The modeled structure of Ppar γ was also very close to the previously solved X-ray structure with an RMSD of 0.262 nm for the backbone atoms. Conclusion In summary, we present a new method for homology modeling capable of producing high-quality structure models. An advantage of the method is that it can be used in combination with incomplete NMR data to obtain reasonable structure models in accordance with the experimental data.
Dynamic partnership: A new approach to EM technology commercialization and deployment
International Nuclear Information System (INIS)
Daly, D.J.; Erickson, T.A.; Groenewold, G.H.
1996-01-01
The task of restoring nuclear defense complex sites under the U.S. Department of Energy (DOE) Environmental Management (EM) Program presents an unprecedented challenge to the environmental restoration community. Effective and efficient cleanup requires the timely development or modification of novel cleanup technologies applicable to radioactive wastes. Fostering the commercialization of these innovative technologies is the mission of EM-50, the EM Program Office of Science and Technology. However, efforts are often arrested at the open-quotes valley of death,close quotes the general term for barriers to demonstration, commercialization, and deployment. The Energy ampersand Environmental Research Center (EERC), a not-for-profit, contract-supported organization focused on research, development, demonstration, and commercialization (RDD ampersand C) of energy and environmental technologies, is in the second year of a cooperative agreement with the U.S. Department of Energy (DOE) Morgantown Energy Technology Center (METC) designed to deliver EM technologies into the commercial marketplace through a unique combination of technical support, real-world demonstration, and brokering. This paper profiles this novel approach, termed open-quotes Dynamic Partnership,close quotes and reviews the application of this concept to the ongoing commercialization and deployment of four innovative cleanup technologies. 2 tabs
Dynamic partnership: A new approach to EM technology commercialization and deployment
International Nuclear Information System (INIS)
Daly, D.J.; Erickson, T.A.; Groenewold, G.H.
1996-01-01
The cleanup of nuclear defense complex sites under the U.S. Department of Energy (DOE) Environmental Management (EM) Program presents an unprecedented challenge to the environmental sector. Effective and efficient cleanup of EM sites requires the timely development or modification of cleanup technologies. Facilitating the development of technologies to meet DOE goals for site cleanup is the responsibility of EM-50, the EM Program Office of Science and Technology. However, efforts are often arrested at the open-quotes valley of death,close quotes the general term for barriers to demonstration, commercialization, and deployment. The Energy ampersand Environmental Research Center (EERC), a not-for-profit, contract-supported organization focused on research, development, demonstration, and commercialization (RDD ampersand C) of energy and environmental technologies, is in the second year of a Cooperative Agreement with DOE's Morgantown Energy Technology Center (METC) designed to deliver EM technologies into the commercial marketplace through a unique combination of technical support, real-world demonstration, and brokering. This paper profiles this novel approach, termed open-quotes Dynamic Partnership,close quotes and reviews the application of this concept to the ongoing commercialization and deployment of four innovative cleanup technologies
EDISON-WMW: Exact Dynamic Programing Solution of the Wilcoxon–Mann–Whitney Test
Directory of Open Access Journals (Sweden)
Alexander Marx
2016-02-01
Full Text Available In many research disciplines, hypothesis tests are applied to evaluate whether findings are statistically significant or could be explained by chance. The Wilcoxon–Mann–Whitney (WMW test is among the most popular hypothesis tests in medicine and life science to analyze if two groups of samples are equally distributed. This nonparametric statistical homogeneity test is commonly applied in molecular diagnosis. Generally, the solution of the WMW test takes a high combinatorial effort for large sample cohorts containing a significant number of ties. Hence, P value is frequently approximated by a normal distribution. We developed EDISON-WMW, a new approach to calculate the exact permutation of the two-tailed unpaired WMW test without any corrections required and allowing for ties. The method relies on dynamic programing to solve the combinatorial problem of the WMW test efficiently. Beyond a straightforward implementation of the algorithm, we presented different optimization strategies and developed a parallel solution. Using our program, the exact P value for large cohorts containing more than 1000 samples with ties can be calculated within minutes. We demonstrate the performance of this novel approach on randomly-generated data, benchmark it against 13 other commonly-applied approaches and moreover evaluate molecular biomarkers for lung carcinoma and chronic obstructive pulmonary disease (COPD. We found that approximated P values were generally higher than the exact solution provided by EDISON-WMW. Importantly, the algorithm can also be applied to high-throughput omics datasets, where hundreds or thousands of features are included. To provide easy access to the multi-threaded version of EDISON-WMW, a web-based solution of our algorithm is freely available at http://www.ccb.uni-saarland.de/software/wtest/.
Renewable Energy Innovations in Europe: A Dynamic Panel Data Approach
Nadia Ayari; Szabolcs Blazsek; Pedro Mendi
2009-01-01
Abstract We investigate the determinants of renewable energy R&D intensity and the impact of renewable energy innovations on firm performance, using several dynamic panel data models. We estimate these models using a large data set of European firms from 19 different countries, with some patenting activity in areas related with renewable energies during the 1987-2007 period. Our results confirm our priors on the determinants of the rapid development of renewable energy R&D intensit...
Dynamic Portfolio Selection on Croatian Financial Markets: MGARCH Approach
Škrinjarić, Tihana; Šego, Boško
2016-01-01
Background: Investors on financial markets are interested in finding trading strategies which could enable them to beat the market. They always look for best possibilities to achieve above-average returns and manage risks successfully. MGARCH methodology (Multivariate Generalized Autoregressive Conditional Heteroskedasticity) makes it possible to model changing risks and return dynamics on financial markets on a daily basis. The results could be used in order to enhance portfolio formation an...
Dynamic Portfolio Selection on Croatian Financial Markets: MGARCH Approach
Directory of Open Access Journals (Sweden)
Škrinjarić Tihana
2016-09-01
Full Text Available Background: Investors on financial markets are interested in finding trading strategies which could enable them to beat the market. They always look for best possibilities to achieve above-average returns and manage risks successfully. MGARCH methodology (Multivariate Generalized Autoregressive Conditional Heteroskedasticity makes it possible to model changing risks and return dynamics on financial markets on a daily basis. The results could be used in order to enhance portfolio formation and restructuring over time.
Fuel demand in Brazil in a dynamic panel data approach
International Nuclear Information System (INIS)
Santos, Gervásio F.
2013-01-01
The purpose of this paper is to evaluate the sensitivity of fuel consumers regarding price and income, taking recent changes in the Brazilian fuel market into account. In this market, new market rules, energy policy towards fuel diversification and introduction of flex-fuel engines have determined fuel competition among gasoline, ethanol and compressed natural gas. Using a dynamic panel data model, demand equations for these three fuels are econometrically estimated to obtain consumer adjustment coefficients, price, cross-price and income elasticities in the short and long-run. In addition, the effect of the introduction of flex-fuel engines in the market and the rationality of consumers towards efficiency constraints of the engines were tested. Apart from considerable competition, results show that the dynamics of the Brazilian fuel market revolves around ethanol instead of gasoline. While demands for gasoline and natural gas are inelastic to price, demand for ethanol is elastic in Brazil. Furthermore, after the introduction of the flex-fuel technology the sensitivity of consumers to fuel prices changed, and ethanol consumers take efficiency constrains into account when ethanol prices reach the threshold of 70% of gasoline prices. - Highlights: ► Fuel demand in Brazil is evaluated, considering the changes in the fuel market. ► A dynamic panel data model is used to fit demand equations for fuels. ► Adjustment coefficients, price, cross-price and income elasticities are estimated. ► The impact of flex-fuel technology on the consumer behavior is tested. ► The results showed that the dynamic of the fuel market revolves around ethanol. ► The flex-fuel technology increased the competition among fuels
An intelligent dynamic simulation environment: An object-oriented approach
International Nuclear Information System (INIS)
Robinson, J.T.; Kisner, R.A.
1988-01-01
This paper presents a prototype simulation environment for nuclear power plants which illustrates the application of object-oriented programming to process simulation. Systems are modeled using this technique as a collection of objects which communicate via message passing. The environment allows users to build simulation models by selecting iconic representations of plant components from a menu and connecting them with the aid of a mouse. Models can be modified graphically at any time, even as the simulation is running, and the results observed immediately via real-time graphics. This prototype illustrates the use of object-oriented programming to create a highly interactive and automated simulation environment. 9 refs., 4 figs
Modeling Misbehavior in Cooperative Diversity: A Dynamic Game Approach
Dehnie, Sintayehu; Memon, Nasir
2009-12-01
Cooperative diversity protocols are designed with the assumption that terminals always help each other in a socially efficient manner. This assumption may not be valid in commercial wireless networks where terminals may misbehave for selfish or malicious intentions. The presence of misbehaving terminals creates a social-dilemma where terminals exhibit uncertainty about the cooperative behavior of other terminals in the network. Cooperation in social-dilemma is characterized by a suboptimal Nash equilibrium where wireless terminals opt out of cooperation. Hence, without establishing a mechanism to detect and mitigate effects of misbehavior, it is difficult to maintain a socially optimal cooperation. In this paper, we first examine effects of misbehavior assuming static game model and show that cooperation under existing cooperative protocols is characterized by a noncooperative Nash equilibrium. Using evolutionary game dynamics we show that a small number of mutants can successfully invade a population of cooperators, which indicates that misbehavior is an evolutionary stable strategy (ESS). Our main goal is to design a mechanism that would enable wireless terminals to select reliable partners in the presence of uncertainty. To this end, we formulate cooperative diversity as a dynamic game with incomplete information. We show that the proposed dynamic game formulation satisfied the conditions for the existence of perfect Bayesian equilibrium.
Modeling Misbehavior in Cooperative Diversity: A Dynamic Game Approach
Directory of Open Access Journals (Sweden)
Sintayehu Dehnie
2009-01-01
Full Text Available Cooperative diversity protocols are designed with the assumption that terminals always help each other in a socially efficient manner. This assumption may not be valid in commercial wireless networks where terminals may misbehave for selfish or malicious intentions. The presence of misbehaving terminals creates a social-dilemma where terminals exhibit uncertainty about the cooperative behavior of other terminals in the network. Cooperation in social-dilemma is characterized by a suboptimal Nash equilibrium where wireless terminals opt out of cooperation. Hence, without establishing a mechanism to detect and mitigate effects of misbehavior, it is difficult to maintain a socially optimal cooperation. In this paper, we first examine effects of misbehavior assuming static game model and show that cooperation under existing cooperative protocols is characterized by a noncooperative Nash equilibrium. Using evolutionary game dynamics we show that a small number of mutants can successfully invade a population of cooperators, which indicates that misbehavior is an evolutionary stable strategy (ESS. Our main goal is to design a mechanism that would enable wireless terminals to select reliable partners in the presence of uncertainty. To this end, we formulate cooperative diversity as a dynamic game with incomplete information. We show that the proposed dynamic game formulation satisfied the conditions for the existence of perfect Bayesian equilibrium.
A new approach to solve elastoplastic dynamic piping problems
International Nuclear Information System (INIS)
Leite de Andrade, J.E.; Guerreiro Ribeiro, S.V.
1981-01-01
A new method to perform the elastoplastic dynamic analysis of pipes is presented here, in which the pipe is analysed as a beam, and a bilinear eleastic-plastic behavior for the material is assumed. Pipe whip restraints are simulated as spring of bilinear elastic-plastic behavior with the provision for considering viscous damping. A numerical method was implemented in which plastic strain is treated as equivalent applied (force or moment) excitations, reducing the elastoplastic analysis of the structure to an elastic analysis of the same structure with a set of additional applied excitations. So the stiffness matrix and the eigenvectors do not vary with time. This procedure allows the response of the system to be computed by using dynamic influence coefficients, which are calculated from the elastic solution. For those structures whose dynamic elastic solutions are known in closed form, the present scheme seems to be very attractive, e.g., simple supported and cantilever beams. For those structures with unknown analytical elastic solutions, the finite element method will provide them. (orig./GL)
A dynamic Bayesian network based approach to safety decision support in tunnel construction
International Nuclear Information System (INIS)
Wu, Xianguo; Liu, Huitao; Zhang, Limao; Skibniewski, Miroslaw J.; Deng, Qianli; Teng, Jiaying
2015-01-01
This paper presents a systemic decision approach with step-by-step procedures based on dynamic Bayesian network (DBN), aiming to provide guidelines for dynamic safety analysis of the tunnel-induced road surface damage over time. The proposed DBN-based approach can accurately illustrate the dynamic and updated feature of geological, design and mechanical variables as the construction progress evolves, in order to overcome deficiencies of traditional fault analysis methods. Adopting the predictive, sensitivity and diagnostic analysis techniques in the DBN inference, this approach is able to perform feed-forward, concurrent and back-forward control respectively on a quantitative basis, and provide real-time support before and after an accident. A case study in relating to dynamic safety analysis in the construction of Wuhan Yangtze Metro Tunnel in China is used to verify the feasibility of the proposed approach, as well as its application potential. The relationships between the DBN-based and BN-based approaches are further discussed according to analysis results. The proposed approach can be used as a decision tool to provide support for safety analysis in tunnel construction, and thus increase the likelihood of a successful project in a dynamic project environment. - Highlights: • A dynamic Bayesian network (DBN) based approach for safety decision support is developed. • This approach is able to perform feed-forward, concurrent and back-forward analysis and control. • A case concerning dynamic safety analysis in Wuhan Yangtze Metro Tunnel in China is presented. • DBN-based approach can perform a higher accuracy than traditional static BN-based approach
Novel Approaches to Cellular Transplantation from the US Space Program
Pellis, Neal R.; Homick, Jerry L. (Technical Monitor)
1999-01-01
Research in the treatment of type I diabetes is entering a new era that takes advantage of our knowledge in an ever increasing variety of scientific disciplines. Some may originate from very diverse sources, one of which is the Space Program at National Aeronautics and Space Administration (NASA). The Space Program contributes to diabetes-related research in several treatment modalities. As an ongoing effort for medical monitoring of personnel involved in space exploration activities NASA and the extramural scientific community investigate strategies for noninvasive estimation of blood glucose levels. Part of the effort in the space protein crystal growth program is high-resolution structural analysis insulin as a means to better understand the interaction with its receptor and with host immune components and as a basis for rational design of a "better" insulin molecule. The Space Program is also developing laser technology for potential early cataract detection as well as a noninvasive analyses for addressing preclinical diabetic retinopathy. Finally, NASA developed an exciting cell culture system that affords some unique advantages in the propagation and maintenance of mammalian cells in vitro. The cell culture system was originally designed to maintain cell suspensions with a minimum of hydrodynamic and mechanical sheer while awaiting launch into microgravity. Currently the commercially available NASA bioreactor (Synthecon, Inc., Houston, TX) is used as a research tool in basic and applied cell biology. In recent years there is continued strong interest in cellular transplantation as treatment for type I diabetes. The advantages are the potential for successful long-term amelioration and a minimum risk for morbidity in the event of rejection of the transplanted cells. The pathway to successful application of this strategy is accompanied by several substantial hurdles: (1) isolation and propagation of a suitable uniform donor cell population; (2) management of
Semi-analytical approach to modelling the dynamic behaviour of soil excited by embedded foundations
DEFF Research Database (Denmark)
Bucinskas, Paulius; Andersen, Lars Vabbersgaard
2017-01-01
The underlying soil has a significant effect on the dynamic behaviour of structures. The paper proposes a semi-analytical approach based on a Green’s function solution in frequency–wavenumber domain. The procedure allows calculating the dynamic stiffness for points on the soil surface as well...... are analysed. It is determined how simplification of the numerical model affects the overall dynamic behaviour. © 2017 The Authors. Published by Elsevier Ltd....
Bellman’s GAP—a language and compiler for dynamic programming in sequence analysis
Sauthoff, Georg; Möhl, Mathias; Janssen, Stefan; Giegerich, Robert
2013-01-01
Motivation: Dynamic programming is ubiquitous in bioinformatics. Developing and implementing non-trivial dynamic programming algorithms is often error prone and tedious. Bellman’s GAP is a new programming system, designed to ease the development of bioinformatics tools based on the dynamic programming technique. Results: In Bellman’s GAP, dynamic programming algorithms are described in a declarative style by tree grammars, evaluation algebras and products formed thereof. This bypasses the design of explicit dynamic programming recurrences and yields programs that are free of subscript errors, modular and easy to modify. The declarative modules are compiled into C++ code that is competitive to carefully hand-crafted implementations. This article introduces the Bellman’s GAP system and its language, GAP-L. It then demonstrates the ease of development and the degree of re-use by creating variants of two common bioinformatics algorithms. Finally, it evaluates Bellman’s GAP as an implementation platform of ‘real-world’ bioinformatics tools. Availability: Bellman’s GAP is available under GPL license from http://bibiserv.cebitec.uni-bielefeld.de/bellmansgap. This Web site includes a repository of re-usable modules for RNA folding based on thermodynamics. Contact: robert@techfak.uni-bielefeld.de Supplementary information: Supplementary data are available at Bioinformatics online PMID:23355290
Bellman's GAP--a language and compiler for dynamic programming in sequence analysis.
Sauthoff, Georg; Möhl, Mathias; Janssen, Stefan; Giegerich, Robert
2013-03-01
Dynamic programming is ubiquitous in bioinformatics. Developing and implementing non-trivial dynamic programming algorithms is often error prone and tedious. Bellman's GAP is a new programming system, designed to ease the development of bioinformatics tools based on the dynamic programming technique. In Bellman's GAP, dynamic programming algorithms are described in a declarative style by tree grammars, evaluation algebras and products formed thereof. This bypasses the design of explicit dynamic programming recurrences and yields programs that are free of subscript errors, modular and easy to modify. The declarative modules are compiled into C++ code that is competitive to carefully hand-crafted implementations. This article introduces the Bellman's GAP system and its language, GAP-L. It then demonstrates the ease of development and the degree of re-use by creating variants of two common bioinformatics algorithms. Finally, it evaluates Bellman's GAP as an implementation platform of 'real-world' bioinformatics tools. Bellman's GAP is available under GPL license from http://bibiserv.cebitec.uni-bielefeld.de/bellmansgap. This Web site includes a repository of re-usable modules for RNA folding based on thermodynamics.
A Multi-Agent Modelling Approach to Simulate Dynamic Activity-Travel Patterns
Han, Q.; Arentze, T.A.; Timmermans, H.J.P.; Janssens, D.; Wets, G.; Bazzan, A.L.C.; Klügl, F.
2009-01-01
Contributing to the recent interest in the dynamics of activity-travel patterns, this chapter discusses a framework of an agent-based modeling approach focusing on the dynamic formation of (location) choice sets. Individual travelers are represented as agents, each with their cognition of the
A unifying energy-based approach to stability of power grids with market dynamics
Stegink, Tjerk; De Persis, Claudio; van der Schaft, Arjan
2017-01-01
In this paper a unifying energy-based approach is provided to the modeling and stability analysis of power systems coupled with market dynamics. We consider a standard model of the power network with a third-order model for the synchronous generators involving voltage dynamics. By applying the
A port-Hamiltonian approach to image-based visual servo control for dynamic systems
Mahony, R.; Stramigioli, Stefano
2012-01-01
This paper introduces a port-Hamiltonian framework for the design of image-based visual servo control for dynamic mechanical systems. The approach taken introduces the concept of an image effort and provides an interpretation of energy exchange between the dynamics of the physical system and virtual
Erlang Programming A Concurrent Approach to Software Development
Cesarini, Francesco
2009-01-01
This book offers you an in-depth explanation of Erlang, a programming language ideal for any situation where concurrency, fault-tolerance, and fast response is essential. You'll learn how to write complex concurrent programs in this language, regardless of your programming background or experience. Erlang Programming focuses on the language's syntax and semantics, and explains pattern matching, proper lists, recursion, debugging, networking, and concurrency, with exercises at the end of each chapter.
Turtle Graphics implementation using a graphical dataflow programming approach
Lovejoy, Robert Steven
1992-01-01
Approved for public release; distribution is unlimited This thesis expands the concepts of object-oriented programming to implement a visual dataflow programming language. The main thrust of this research is to develop a functional prototype language, based upon the Turtle Graphics tool provided by LOGO programming language, for children to develop both their problem solving skills as well as their general programming skills. The language developed for this thesis was implemented in the...
Dynamic Protocol Reverse Engineering: A Grammatical Inference Approach
2008-03-01
domain-specific languages”. OOPSLA ’05: Companion to the 20th annual ACM SIGPLAN conference on Object-oriented programming, systems, languages, and...Representation to k-TSS Lan- guage Models”. Computación y Sistemas , 3(4):273–244, 2000. ISSN 1405-5546. 256. Trakhtenbrot, B.A. and Y.M. Barzdin. Finite
Creativity--A Dynamic Approach to Industrial Education
Markowitz, John, Jr.
1974-01-01
The author presents a number of unique programs and projects which have proved successful in one high school's woodworking and graphic arts classes in terms of motivating high student interest, growth in skills, good community relations--and a financial profit. The chief objective is self-discovery, the model is Outward Bound. (AJ)
A Fuzzy Linear Programming Approach for Aggregate Production Planning
DEFF Research Database (Denmark)
Iris, Cagatay; Cevikcan, Emre
2014-01-01
a mathematical programming framework for aggregate production planning problem under imprecise data environment. After providing background information about APP problem, together with fuzzy linear programming, the fuzzy linear programming model of APP is solved on an illustrative example for different a...
A fixed recourse integer programming approach towards a ...
African Journals Online (AJOL)
Regardless of the success that linear programming and integer linear programming has had in applications in engineering, business and economics, one has to challenge the assumed reality that these optimization models represent. In this paper the certainty assumptions of an integer linear program application is ...
Airline loyalty (programs) across borders : A geographic discontinuity approach
de Jong, Gerben; Behrens, Christiaan; van Ommeren, Jos
2018-01-01
We analyze brand loyalty advantages of national airlines in their domestic countries using geocoded data from a major international frequent flier program. We employ a geographic discontinuity design that estimates discontinuities in program activity at the national borders of the program's
A logic programming approach to medical errors in imaging.
Rodrigues, Susana; Brandão, Paulo; Nelas, Luís; Neves, José; Alves, Victor
2011-09-01
In 2000, the Institute of Medicine reported disturbing numbers on the scope it covers and the impact of medical error in the process of health delivery. Nevertheless, a solution to this problem may lie on the adoption of adverse event reporting and learning systems that can help to identify hazards and risks. It is crucial to apply models to identify the adverse events root causes, enhance the sharing of knowledge and experience. The efficiency of the efforts to improve patient safety has been frustratingly slow. Some of this insufficiency of progress may be assigned to the lack of systems that take into account the characteristic of the information about the real world. In our daily lives, we formulate most of our decisions normally based on incomplete, uncertain and even forbidden or contradictory information. One's knowledge is less based on exact facts and more on hypothesis, perceptions or indications. From the data collected on our adverse event treatment and learning system on medical imaging, and through the use of Extended Logic Programming to knowledge representation and reasoning, and the exploitation of new methodologies for problem solving, namely those based on the perception of what is an agent and/or multi-agent systems, we intend to generate reports that identify the most relevant causes of error and define improvement strategies, concluding about the impact, place of occurrence, form or type of event recorded in the healthcare institutions. The Eindhoven Classification Model was extended and adapted to the medical imaging field and used to classify adverse events root causes. Extended Logic Programming was used for knowledge representation with defective information, allowing for the modelling of the universe of discourse in terms of data and knowledge default. A systematization of the evolution of the body of knowledge about Quality of Information embedded in the Root Cause Analysis was accomplished. An adverse event reporting and learning system
A New Approach to Commercialization of NASA's Human Research Program Technologies, Phase I
National Aeronautics and Space Administration — This Phase I SBIR proposal describes, "A New Approach to Commercialization of NASA's Human Research Program Technologies." NASA has a powerful research program that...
Optimal blood glucose level control using dynamic programming based on minimal Bergman model
Rettian Anggita Sari, Maria; Hartono
2018-03-01
The purpose of this article is to simulate the glucose dynamic and the insulin kinetic of diabetic patient. The model used in this research is a non-linear Minimal Bergman model. Optimal control theory is then applied to formulate the problem in order to determine the optimal dose of insulin in the treatment of diabetes mellitus such that the glucose level is in the normal range for some specific time range. The optimization problem is solved using dynamic programming. The result shows that dynamic programming is quite reliable to represent the interaction between glucose and insulin levels in diabetes mellitus patient.
A modelling approach for exploring muscle dynamics during cyclic contractions.
Directory of Open Access Journals (Sweden)
Stephanie A Ross
2018-04-01
Full Text Available Hill-type muscle models are widely used within the field of biomechanics to predict and understand muscle behaviour, and are often essential where muscle forces cannot be directly measured. However, these models have limited accuracy, particularly during cyclic contractions at the submaximal levels of activation that typically occur during locomotion. To address this issue, recent studies have incorporated effects into Hill-type models that are oftentimes neglected, such as size-dependent, history-dependent, and activation-dependent effects. However, the contribution of these effects on muscle performance has yet to be evaluated under common contractile conditions that reflect the range of activations, strains, and strain rates that occur in vivo. The purpose of this study was to develop a modelling framework to evaluate modifications to Hill-type muscle models when they contract in cyclic loops that are typical of locomotor muscle function. Here we present a modelling framework composed of a damped harmonic oscillator in series with a Hill-type muscle actuator that consists of a contractile element and parallel elastic element. The intrinsic force-length and force-velocity properties are described using Bézier curves where we present a system to relate physiological parameters to the control points for these curves. The muscle-oscillator system can be geometrically scaled while preserving dynamic and kinematic similarity to investigate the muscle size effects while controlling for the dynamics of the harmonic oscillator. The model is driven by time-varying muscle activations that cause the muscle to cyclically contract and drive the dynamics of the harmonic oscillator. Thus, this framework provides a platform to test current and future Hill-type model formulations and explore factors affecting muscle performance in muscles of different sizes under a range of cyclic contractile conditions.
The Asian crisis contagion: A dynamic correlation approach analysis
Directory of Open Access Journals (Sweden)
Essaadi Essahbi
2009-01-01
Full Text Available In this paper we are testing for contagion caused by the Thai baht collapse of July 1997. In line with earlier work, shift-contagion is defined as a structural change within the international propagation mechanisms of financial shocks. We adopt Bai and Perron's (1998 structural break approach in order to detect the endogenous break points of the pair-wise time-varying correlations between Thailand and seven Asian stock market returns. Our approach enables us to solve the misspecification problem of the crisis window. Our results illustrate the existence of shift-contagion in the Asian crisis caused by the crisis in Thailand.
Dynamics of WIC Program Participation by Infants and Children, 2001 to 2003. Final Report
Castner, Laura; Mabli, James; Sykes, Julie
2009-01-01
The Special Supplemental Nutrition Program for Women, Infants, and Children (WIC) provides nutritious foods that promote the health of low-income pregnant women, new mothers, infants, and preschool children. This study examines WIC participation dynamics of infants and children from 2001 to 2003 using the Survey of Income and Program Participation…
Molecular hydrodynamic approach to dynamical correlations in quantum liquids
International Nuclear Information System (INIS)
Rabani, Eran; Reichman, David R.
2002-01-01
A quantum molecular hydrodynamic formalism is developed for the study of dynamics in quantum liquids. The method combines exact static input, generated by path-integral Monte Carlo, and an approximate form of the quantum memory function for the solution of the exact quantum generalized Langevin equation under consideration. This methodology is applied to the study of the spectrum of density fluctuations in liquid para-H 2 . Using a physically motivated approximation for the memory function, semiquantitative agreement is obtained for S(k,ω) in comparison to the recent experiments of Bermejo et al. [Phys. Rev. Lett. 84, 5359 (2000)]. Improvement of the methodology and future applications are discussed
Complex systems approach to fire dynamics and climate change impacts
Pueyo, S.
2012-04-01
I present some recent advances in complex systems theory as a contribution to understanding fire regimes and forecasting their response to a changing climate, qualitatively and quantitatively. In many regions of the world, fire sizes have been found to follow, approximately, a power-law frequency distribution. As noted by several authors, this distribution also arises in the "forest fire" model used by physicists to study mechanisms that give rise to scale invariance (the power law is a scale-invariant distribution). However, this model does not give and does not pretend to give a realistic description of fire dynamics. For example, it gives no role to weather and climate. Pueyo (2007) developed a variant of the "forest fire" model that is also simple but attempts to be more realistic. It also results into a power law, but the parameters of this distribution change through time as a function of weather and climate. Pueyo (2007) observed similar patterns of response to weather in data from boreal forest fires, and used the fitted response functions to forecast fire size distributions in a possible climate change scenario, including the upper extreme of the distribution. For some parameter values, the model in Pueyo (2007) displays a qualitatively different behavior, consisting of simple percolation. In this case, fire is virtually absent, but megafires sweep through the ecosystem a soon as environmental forcings exceed a critical threshold. Evidence gathered by Pueyo et al. (2010) suggests that this is realistic for tropical rainforests (specifically, well-conserved upland rainforests). Some climate models suggest that major tropical rainforest regions are going to become hotter and drier if climate change goes ahead unchecked, which could cause such abrupt shifts. Not all fire regimes are well described by this model. Using data from a tropical savanna region, Pueyo et al. (2010) found that the dynamics in this area do not match its assumptions, even though fire
Game-theoretic interference coordination approaches for dynamic spectrum access
Xu, Yuhua
2016-01-01
Written by experts in the field, this book is based on recent research findings in dynamic spectrum access for cognitive radio networks. It establishes a game-theoretic framework and presents cutting-edge technologies for distributed interference coordination. With game-theoretic formulation and the designed distributed learning algorithms, it provides insights into the interactions between multiple decision-makers and the converging stable states. Researchers, scientists and engineers in the field of cognitive radio networks will benefit from the book, which provides valuable information, useful methods and practical algorithms for use in emerging 5G wireless communication.
H∞ synchronization of chaotic systems via dynamic feedback approach
International Nuclear Information System (INIS)
Lee, S.M.; Ji, D.H.; Park, Ju H.; Won, S.C.
2008-01-01
This Letter considers H ∞ synchronization of a general class of chaotic systems with external disturbance. Based on Lyapunov theory and linear matrix inequality (LMI) formulation, the novel feedback controller is established to not only guarantee stable synchronization of both master and slave systems but also reduce the effect of external disturbance to an H ∞ norm constraint. A dynamic feedback control scheme is proposed for H ∞ synchronization in chaotic systems for the first time. Then, a criterion for existence of the controller is given in terms of LMIs. Finally, a numerical simulation is presented to show the effectiveness of the proposed chaos synchronization scheme
Drobnes, Emilie; Littleton, A.; Pesnell, William D.; Beck, K.; Buhr, S.; Durscher, R.; Hill, S.; McCaffrey, M.; McKenzie, D. E.; Myers, D.;
2013-01-01
We outline the context and overall philosophy for the combined Solar Dynamics Observatory (SDO) Education and Public Outreach (E/PO) program, present a brief overview of all SDO E/PO programs along with more detailed highlights of a few key programs, followed by a review of our results to date, conclude a summary of the successes, failures, and lessons learned, which future missions can use as a guide, while incorporating their own content to enhance the public's knowledge and appreciation of science and technology as well as its benefit to society.