WorldWideScience

Sample records for dynamic positioning systems

  1. An intelligent operator support system for dynamic positioning

    NARCIS (Netherlands)

    Diggelen, J. van; Broek, J. van den; Schraagen, J.M.C.; Waa, J.S. van der

    2018-01-01

    This paper proposes a human-centered approach to Dynamic Position-ing systems which combines multiple technologies in an intelligent operator sup-port system (IOSS). IOSS allows the operator to be roaming and do other tasks in quiet conditions. When conditions become more demanding, the IOSS calls

  2. Positive dynamical systems in discrete time theory, models, and applications

    CERN Document Server

    Krause, Ulrich

    2015-01-01

    This book provides a systematic, rigorous and self-contained treatment of positive dynamical systems. A dynamical system is positive when all relevant variables of a systemare nonnegative in a natural way. This is in biology, demography or economics, where the levels of populations or prices of goods are positive. The principle also finds application in electrical engineering, physics and computer sciences.

  3. Flat Top Barge 300 feet Using Portable Dynamic Positioning System

    Directory of Open Access Journals (Sweden)

    Agoes Santoso

    2017-03-01

    Full Text Available Portable Dynamic Positioning System has not commonly applied to the ship, especially on barge. Besides for Dynamic Positioning function, the system can be used as ship's main propulsion. By using this system, the ship able to not using anchors because the functions can be performed by the Portable Dynamic System. Therefore, research about the application of Portable Dynamic Positioning System on the ship is conducted. This research aims to design a Flat Top Barge 300feet ship, to determine the specifications of Portable Dynamic Positioning System which is used, and to find out the ship stability which is designed on the empty payload condition and maximum payload. This research designed the ships with main dimensions LWL 90.1 meters, 25 meters wide, 5.5 meters high and 4.2 meters draught. To generate the ship with a maximum speed of 8 knots, it takes four thruster supplied with power 225 kW each, so that the total generated power is 1100 kW. This study analyzes three conditions of the ship stability, there are the condition of full payload, empty payload, and maximum payload. Each payload conditions will be analyzed regarding the large payload and draught water produced. The first is full payload conditions resulting payload in the amount of 5650 ton with a draught on the LCF at 4,181 meters. The second is the large empty payload condition displacement is 2809 ton and water draught on the LCF at 1,591. And the last is maximum payload conditions, resulting payload in the amount of 7450 ton with a draught on the LCF at 4,994 meters.

  4. Dynamic tracking performance of indoor global positioning system: An experimental and theoretical study

    Directory of Open Access Journals (Sweden)

    Gang Zhao

    2015-10-01

    Full Text Available The automation level has been improved rapidly with the introduction of large-scale measurement technologies, such as indoor global positioning system, into the production process among the fields of car, ship, and aerospace due to their excellent measurement characteristics. In fact, the objects are usually in motion during the real measurement process; however, the dynamic measurement characteristics of indoor global positioning system are much limited and still in exploration. In this research, we focused on the dynamic tracking performance of indoor global positioning system and then successfully built a mathematical model based on its measurement principles. We first built single and double station system models with the consideration of measurement objects’ movement. Using MATLAB simulation, we realized the dynamic measurement characteristics of indoor global positioning system. In the real measurement process, the experimental results also support the mathematical model that we built, which proves a great success in dynamic measurement characteristics. We envision that this dynamic tracking performance of indoor global positioning system would shed light on the dynamic measurement of a motion object and therefore make contribution to the automation production.

  5. Thruster allocation for dynamical positioning

    NARCIS (Netherlands)

    Poppe, K.; van den Berg, J.B.; Blank, E.; Archer, C.; Redeker, M.; Kutter, M.; Hemker, P.

    2010-01-01

    Positioning a vessel at a fixed position in deep water is of great importance when working offshore. In recent years a Dynamical Positioning (DP) system was developed at Marin [2]. After the measurement of the current position and external forces (like waves, wind etc.), each thruster of the vessel

  6. 5th International Symposium on Positive Systems

    CERN Document Server

    Farina, Lorenzo; Setola, Roberto; Germani, Alfredo

    2017-01-01

    This book presents high-quality original contributions on positive systems, including topics such as: monotone dynamical systems in mathematical biology and game theory; mathematical developments for networked systems in biology, chemistry and the social sciences; linear and nonlinear positive operators; dynamical analysis, observation and control of positive distributed parameter systems; stochastic realization theory; biological systems with positive variables and positive controls; iterated function systems; nonnegative dynamic processes; and dimensioning problems for collaborative systems. The book comprises a selection of the best papers presented at the POSTA 2016, the 5th International Symposium on Positive Systems, which was held in Rome, Italy, in September 2016. This conference series represents a targeted response to the growing need for research that reports on and critically discusses a wide range of topics concerning the theory and applications of positive systems.

  7. A review on bridge dynamic displacement monitoring using global positioning system and accelerometer

    Science.gov (United States)

    Yunus, Mohd Zulkifli Mohd; Ibrahim, Nuremira; Ahmad, Fatimah Shafinaz

    2018-02-01

    This paper reviews previous research on bridge dynamic displacement monitoring using Global Positioning System (GPS) and an accelerometer for Structural Health Monitoring (SHM) of bridge. These include the review of the advantages and disadvantages of the measurement as well as the methodology of the measurements used in the recent research study. This review could provide a preliminary decision overview for students or researchers before initiating a research related to the bridge dynamic displacement monitoring.

  8. Design and experiments with scale model of a ship with dynamic positioning system

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Carlos Eduardo S.; Morishita, Helio M.; Moratelli Junior, Lazaro; Lago, Glenan A.; Tannuri, Eduardo A. [Universidade de Sao Paulo (USP), SP (Brazil)

    2008-07-01

    Dynamic Positioning Systems (DPS) are used to keep a floating vessel on a specific position or follow pre-defined path through the action of controlled propellers. This paper describes a facility used to experimentally analyze DPS and to validate a numerical simulator. It is composed by a scale model of a DP tanker with 3 thrusters, a measurement system based on computational vision and a control software with the same DP algorithms used in industrial systems. Simple wind and current generators were also implemented. This work shows preliminary results of experiments, which has been useful to calibrate the simulator and to validate the mathematical model. (author)

  9. A High Dynamic-Range Beam Position Measurement System for ELSA-2

    CERN Document Server

    Balleyguier, P; Guimbal, P; Borrion, H

    2003-01-01

    New beamlines are presently under construction for ELSA, a 20 MeV electron linac located at Bruyères-le-Châtel. These lines need a beam position measurement system filling the following requirements: small footprint, wide dynamic range, single-bunch/multi-bunch capability, simple design. We designed a compact 4-stripline sensor and an electronic treatment chain based on logarithmic amplifiers. This paper presents the design, cold and hot test results.

  10. Identification of Dynamically Positioned Ships

    Directory of Open Access Journals (Sweden)

    Thor I. Fossen

    1996-04-01

    Full Text Available Todays model-based dynamic positioning (DP systems require that the ship and thruster dynamics are known with some accuracy in order to use linear quadratic optical control theory. However, it is difficult to identify the mathematical model of a dynamically posititmed (DP ship since the ship is not persistently excited under DP. In addition the ship parameter estimation problem is nonlinear and multivariable with only position and thruster state measurements available for parameter estimation. The process and measurement noise must also be modeled in order to avoid parameter drift due to environmental disturbances and sensor failure. This article discusses an off-line parallel extended Kalman filter (EKF algorithm utilizing two measurement series in parallel to estimate the parameters in the DP ship model. Full-scale experiments with a supply vessel are used to demonstrate the convergence and robustness of the proposed parameter estimator.

  11. Dynamic Positioning System (DPS) Risk Analysis Using Probabilistic Risk Assessment (PRA)

    Science.gov (United States)

    Thigpen, Eric B.; Boyer, Roger L.; Stewart, Michael A.; Fougere, Pete

    2017-01-01

    The National Aeronautics and Space Administration (NASA) Safety & Mission Assurance (S&MA) directorate at the Johnson Space Center (JSC) has applied its knowledge and experience with Probabilistic Risk Assessment (PRA) to projects in industries ranging from spacecraft to nuclear power plants. PRA is a comprehensive and structured process for analyzing risk in complex engineered systems and/or processes. The PRA process enables the user to identify potential risk contributors such as, hardware and software failure, human error, and external events. Recent developments in the oil and gas industry have presented opportunities for NASA to lend their PRA expertise to both ongoing and developmental projects within the industry. This paper provides an overview of the PRA process and demonstrates how this process was applied in estimating the probability that a Mobile Offshore Drilling Unit (MODU) operating in the Gulf of Mexico and equipped with a generically configured Dynamic Positioning System (DPS) loses location and needs to initiate an emergency disconnect. The PRA described in this paper is intended to be generic such that the vessel meets the general requirements of an International Maritime Organization (IMO) Maritime Safety Committee (MSC)/Circ. 645 Class 3 dynamically positioned vessel. The results of this analysis are not intended to be applied to any specific drilling vessel, although provisions were made to allow the analysis to be configured to a specific vessel if required.

  12. SLAM - Based Approach to Dynamic Ship Positioning

    Directory of Open Access Journals (Sweden)

    Krzysztof Wrobel

    2014-03-01

    Full Text Available Dynamically positioned vessels, used by offshore industry, use not only satellite navigation but also different positioning systems, often referred to as reference' systems. Most of them use multiple technical devices located outside the vessel which creates some problems with their accessibility and performance. In this paper, a basic concept of reference system independent from any external device is presented, basing on hydroacoustics and Simultaneous Localization and Mapping (SLAM method. Theoretical analysis of its operability is also performed.

  13. Robust H∞ Control of Neutral System with Time-Delay for Dynamic Positioning Ships

    Directory of Open Access Journals (Sweden)

    Dawei Zhao

    2015-01-01

    Full Text Available Due to the input time-delay existing in most thrust systems of the ships, the robust H∞ controller is designed for the ship dynamic positioning (DP system with time-delay. The input delay system is turned to a neutral time-delay system by a state-derivative control law. The less conservative result is derived for the neutral system with state-derivative feedback by the delay-decomposition approach and linear matrix inequality (LMI. Finally, the numerical simulations demonstrate the asymptotic stability and robustness of the controller and verify that the designed DP controller is effective in the varying environment disturbances of wind, waves, and ocean currents.

  14. Design and reliability analysis of DP-3 dynamic positioning control architecture

    Science.gov (United States)

    Wang, Fang; Wan, Lei; Jiang, Da-Peng; Xu, Yu-Ru

    2011-12-01

    As the exploration and exploitation of oil and gas proliferate throughout deepwater area, the requirements on the reliability of dynamic positioning system become increasingly stringent. The control objective ensuring safety operation at deep water will not be met by a single controller for dynamic positioning. In order to increase the availability and reliability of dynamic positioning control system, the triple redundancy hardware and software control architectures were designed and developed according to the safe specifications of DP-3 classification notation for dynamically positioned ships and rigs. The hardware redundant configuration takes the form of triple-redundant hot standby configuration including three identical operator stations and three real-time control computers which connect each other through dual networks. The function of motion control and redundancy management of control computers were implemented by software on the real-time operating system VxWorks. The software realization of task loose synchronization, majority voting and fault detection were presented in details. A hierarchical software architecture was planed during the development of software, consisting of application layer, real-time layer and physical layer. The behavior of the DP-3 dynamic positioning control system was modeled by a Markov model to analyze its reliability. The effects of variation in parameters on the reliability measures were investigated. The time domain dynamic simulation was carried out on a deepwater drilling rig to prove the feasibility of the proposed control architecture.

  15. Dynamic Positioning of Ships : A nonlinear control design study

    NARCIS (Netherlands)

    Muhammad, S.

    2012-01-01

    Dynamic positioning (DP) is relatively a new technique used to maintain the position and heading of ships in various offshore operations. Due to the features like better safety and operating efficiency, DP systems are becoming more and more popular. This thesis mainly focusses on the control system

  16. Dynamics and feedback control of plasma equilibrium position in a tokamak

    International Nuclear Information System (INIS)

    Burenko, O.

    1983-01-01

    A brief history of the beginnings of nuclear fusion research involving toroidal closed-system magnetic plasma containment is presented. A tokamak machine is defined mathematically for the purposes of plasma equilibrium position perturbation analysis. The perturbation equations of a tokamak plasma equilibrium position are developed. Solution of the approximated perturbation equations is carried out. A unique, simple, and useful plasma displacement dynamics transfer function of a tokamak is developed. The dominant time constants of the dynamics transfer function are determined in a symbolic form. This symbolic form of the dynamics transfer function makes it possible to study the stability of a tokamak's plasma equilibrium position. Knowledge of the dynamics transfer function permits systematic syntheses of the required plasma displacement feedback control systems

  17. Dynamic Characteristics of Mechanical Ventilation System of Double Lungs with Bi-Level Positive Airway Pressure Model

    Directory of Open Access Journals (Sweden)

    Dongkai Shen

    2016-01-01

    Full Text Available In recent studies on the dynamic characteristics of ventilation system, it was considered that human had only one lung, and the coupling effect of double lungs on the air flow can not be illustrated, which has been in regard to be vital to life support of patients. In this article, to illustrate coupling effect of double lungs on flow dynamics of mechanical ventilation system, a mathematical model of a mechanical ventilation system, which consists of double lungs and a bi-level positive airway pressure (BIPAP controlled ventilator, was proposed. To verify the mathematical model, a prototype of BIPAP system with a double-lung simulators and a BIPAP ventilator was set up for experimental study. Lastly, the study on the influences of key parameters of BIPAP system on dynamic characteristics was carried out. The study can be referred to in the development of research on BIPAP ventilation treatment and real respiratory diagnostics.

  18. Existence of positive solutions for semipositone dynamic system on time scales

    Directory of Open Access Journals (Sweden)

    You-Wei Zhang

    2008-08-01

    Full Text Available In this paper, we study the following semipositone dynamic system on time scales $$displaylines{ -x^{DeltaDelta}(t=f(t,y+p(t, quad tin(0,T_{mathbb{T}},cr -y^{DeltaDelta}(t=g(t,x, quad tin(0,T_{mathbb{T}},cr x(0=x(sigma^{2}(T=0, cr alpha{y(0}-eta{y^{Delta}{(0}}= gamma{y(sigma(T}+delta{y^{Delta}(sigma(T}=0. }$$ Using fixed point index theory, we show the existence of at least one positive solution. The interesting point is the that nonlinear term is allowed to change sign and may tend to negative infinity.

  19. About a Class of Positive Hybrid Dynamic Linear Systems and an Associate Extended Kalman-Yakubovich-Popov Lemma

    Directory of Open Access Journals (Sweden)

    M. De la Sen

    2017-01-01

    Full Text Available This paper formulates an “ad hoc” robust version under parametrical disturbances of the discrete version of the Kalman-Yakubovich-Popov Lemma for a class of positive hybrid dynamic linear systems which consist of a continuous-time system coupled with a discrete-time or a digital one. An extended discrete system, whose state vector contains both the digital one and the discretization of the continuous-time one at sampling instants, is a key analysis element in the formulation. The hyperstability and asymptotic hyperstability properties of the studied class of positive hybrid systems under feedback from any member of a nonlinear (and, eventually, time-varying class of controllers, which satisfies a Popov’s-type inequality, are also investigated as linked to the positive realness of the associated transfer matrices.

  20. A Study of Vicon System Positioning Performance

    Directory of Open Access Journals (Sweden)

    Pierre Merriaux

    2017-07-01

    Full Text Available Motion capture setups are used in numerous fields. Studies based on motion capture data can be found in biomechanical, sport or animal science. Clinical science studies include gait analysis as well as balance, posture and motor control. Robotic applications encompass object tracking. Today’s life applications includes entertainment or augmented reality. Still, few studies investigate the positioning performance of motion capture setups. In this paper, we study the positioning performance of one player in the optoelectronic motion capture based on markers: Vicon system. Our protocol includes evaluations of static and dynamic performances. Mean error as well as positioning variabilities are studied with calibrated ground truth setups that are not based on other motion capture modalities. We introduce a new setup that enables directly estimating the absolute positioning accuracy for dynamic experiments contrary to state-of-the art works that rely on inter-marker distances. The system performs well on static experiments with a mean absolute error of 0.15 mm and a variability lower than 0.025 mm. Our dynamic experiments were carried out at speeds found in real applications. Our work suggests that the system error is less than 2 mm. We also found that marker size and Vicon sampling rate must be carefully chosen with respect to the speed encountered in the application in order to reach optimal positioning performance that can go to 0.3 mm for our dynamic study.

  1. Ancrage dynamique: principales applications Dynamic Positioning: Main Applications

    Directory of Open Access Journals (Sweden)

    Fay H.

    2006-11-01

    Full Text Available L'ancrage dynamique est la technique qui a permis à la recherche pétrolière d'étendre ses possibilités bien au-delà des plateaux continentaux, sans limitation de profondeur, pour des opérations difficiles, ou encore dans un environnement océanométéorologique sévère, comme celui de la mer du Nord et des mers froides avec la présence d'icebergs. Cet article correspond à des extraits de l'ouvrage Ancrage dynamique. Technique et applications , à paraître aux Editions Technip. Après un bref rappel historique et un exposé succinct des caractéristiques des systèmes d'ancrage dynamique, les principales réalisations de navires et de plates-formes semi-submersibles équipées d'un ancrage dynamique sont présentées. La précision du maintien en position, ainsi que les limites opérationnelles des supports considérés sont de même exposées. Enfin la conclusion retrace les avantages de ce procédé, dont l'exceptionnel développement s'applique aussi aux domaines scientifiques et militaires, ainsi qu'à d'autres secteurs industriels que celui des hydrocarbures. Dynamic positioning is the technique that has enabled oil exploration to extend its possibilities far beyond continental shelves, without any limitation of water depth, for difficult operations or else in harsh environments such as for the North Sea and arctic zones with the presence of icebergs. This paper consists of extracts from the book Dynamic Positioning. Technique and Applications , to be published by Editions Technip. After a brief historical review and a succinct survey of the characteristics of dynamic positioning systems, the principal realizations of ships and semi-submersible platforms equipped with a dynamic positioning system are described. The accuracy of position holding capability as well as the operational limits of the supports considered are also described. The conclusion reviews the advantages of this technique, whose exceptional development also

  2. Development of an Automatic Identification System Autonomous Positioning System

    Directory of Open Access Journals (Sweden)

    Qing Hu

    2015-11-01

    Full Text Available In order to overcome the vulnerability of the global navigation satellite system (GNSS and provide robust position, navigation and time (PNT information in marine navigation, the autonomous positioning system based on ranging-mode Automatic Identification System (AIS is presented in the paper. The principle of the AIS autonomous positioning system (AAPS is investigated, including the position algorithm, the signal measurement technique, the geometric dilution of precision, the time synchronization technique and the additional secondary factor correction technique. In order to validate the proposed AAPS, a verification system has been established in the Xinghai sea region of Dalian (China. Static and dynamic positioning experiments are performed. The original function of the AIS in the AAPS is not influenced. The experimental results show that the positioning precision of the AAPS is better than 10 m in the area with good geometric dilution of precision (GDOP by the additional secondary factor correction technology. This is the most economical solution for a land-based positioning system to complement the GNSS for the navigation safety of vessels sailing along coasts.

  3. Wave packet dynamics for a system with position and time-dependent effective mass in an infinite square well

    Energy Technology Data Exchange (ETDEWEB)

    Vubangsi, M.; Tchoffo, M.; Fai, L. C. [Mesoscopic and Multilayer Structures Laboratory, Physics Department, University of Dschang, P.O. Box 417 Dschang (Cameroon); Pisma’k, Yu. M. [Department of Theoretical Physics, Saint Petersburg State University, Saint Petersburg (Russian Federation)

    2015-12-15

    The problem of a particle with position and time-dependent effective mass in a one-dimensional infinite square well is treated by means of a quantum canonical formalism. The dynamics of a launched wave packet of the system reveals a peculiar revival pattern that is discussed. .

  4. Adaptive Indoor Positioning Model Based on WLAN-Fingerprinting for Dynamic and Multi-Floor Environments

    Directory of Open Access Journals (Sweden)

    Iyad Husni Alshami

    2017-08-01

    Full Text Available The Global Positioning System demonstrates the significance of Location Based Services but it cannot be used indoors due to the lack of line of sight between satellites and receivers. Indoor Positioning Systems are needed to provide indoor Location Based Services. Wireless LAN fingerprints are one of the best choices for Indoor Positioning Systems because of their low cost, and high accuracy, however they have many drawbacks: creating radio maps is time consuming, the radio maps will become outdated with any environmental change, different mobile devices read the received signal strength (RSS differently, and peoples’ presence in LOS between access points and mobile device affects the RSS. This research proposes a new Adaptive Indoor Positioning System model (called DIPS based on: a dynamic radio map generator, RSS certainty technique and peoples’ presence effect integration for dynamic and multi-floor environments. Dynamic in our context refers to the effects of people and device heterogeneity. DIPS can achieve 98% and 92% positioning accuracy for floor and room positioning, and it achieves 1.2 m for point positioning error. RSS certainty enhanced the positioning accuracy for floor and room for different mobile devices by 11% and 9%. Then by considering the peoples’ presence effect, the error is reduced by 0.2 m. In comparison with other works, DIPS achieves better positioning without extra devices.

  5. Hamiltonian Dynamics and Positive Energy in General Relativity

    Energy Technology Data Exchange (ETDEWEB)

    Deser, S. [Physics Department, Brandeis University, Waltham, MA (United States)

    1969-07-15

    A review is first given of the Hamiltonian formulation of general relativity; the gravitational field is a self-interacting massless spin-two system within the framework of ordinary Lorentz covariant field theory. The recently solved problem of positive-definiteness of the field energy is then discussed. The latter, a conserved functional of the dynamical variables, is shown to have only one extremum, a local minimum, which is the vacuum state (flat space). This implies positive energy for the field, with the vacuum as ground-state. Similar results hold when minimally coupled matter is present. (author)

  6. Dynamical black rings with a positive cosmological constant

    International Nuclear Information System (INIS)

    Kimura, Masashi

    2009-01-01

    We construct dynamical black ring solutions in the five-dimensional Einstein-Maxwell system with a positive cosmological constant and investigate the geometrical structure. The solutions describe the physical process such that a thin black ring at early time shrinks and changes into a single black hole as time increases. We also discuss the multiblack rings and the coalescence of them.

  7. Old and new technologies provide dynamic precise positioning

    International Nuclear Information System (INIS)

    Dano, P.K.

    1987-01-01

    Vehicle's coordinates are available for both reporting and operator use utilizing passive survey techniques and equipments with excellent results thus freeing up and protecting the vehicle reporting transmitters. Use of spread spectrum radiolocation offers real-time extraction and correction of system biases eliminating fixed timing errors. An unlimited number of users may receive differential signals as well as system description data in such a manner as to facilitate complete ''blind'' entry into the system while attaining full operational capability. Utilizing a proprietary technique, the passive user obtains additional lines of position as well as calibration information while using the traditional number of reference stations. A single frequency could be used world-wide since ''networks'' are identified by code. Adjacent networks can be indicated to the receiver using the system description data thus facilitating network to network operation without operator intervention. Although the system accuracy is excellent for survey, the automation of dynamic precise positioning is most advantageous in vehicle location

  8. Position-Dependent Dynamics Explain Pore-Averaged Diffusion in Strongly Attractive Adsorptive Systems.

    Science.gov (United States)

    Krekelberg, William P; Siderius, Daniel W; Shen, Vincent K; Truskett, Thomas M; Errington, Jeffrey R

    2017-12-12

    Using molecular simulations, we investigate the relationship between the pore-averaged and position-dependent self-diffusivity of a fluid adsorbed in a strongly attractive pore as a function of loading. Previous work (Krekelberg, W. P.; Siderius, D. W.; Shen, V. K.; Truskett, T. M.; Errington, J. R. Connection between thermodynamics and dynamics of simple fluids in highly attractive pores. Langmuir 2013, 29, 14527-14535, doi: 10.1021/la4037327) established that pore-averaged self-diffusivity in the multilayer adsorption regime, where the fluid exhibits a dense film at the pore surface and a lower density interior pore region, is nearly constant as a function of loading. Here we show that this puzzling behavior can be understood in terms of how loading affects the fraction of particles that reside in the film and interior pore regions as well as their distinct dynamics. Specifically, the insensitivity of pore-averaged diffusivity to loading arises from the approximate cancellation of two factors: an increase in the fraction of particles in the higher diffusivity interior pore region with loading and a corresponding decrease in the particle diffusivity in that region. We also find that the position-dependent self-diffusivities scale with the position-dependent density. We present a model for predicting the pore-average self-diffusivity based on the position-dependent self-diffusivity, which captures the unusual characteristics of pore-averaged self-diffusivity in strongly attractive pores over several orders of magnitude.

  9. 1 nA beam position monitoring system

    International Nuclear Information System (INIS)

    Ursic, R.; Flood, R.; Piller, C.

    1997-01-01

    A system has been developed at Jefferson Lab for measuring transverse position of very low current beams delivered to the Experimental Hall B of the Continuous Electron Beam Accelerator Facility (CEBAF). At the heart of the system is a position sensitive cavity operating at 1497 MHz. The cavity utilizes a unique design which achieves a high sensitivity to beam position at a relatively low cavity Q. The cavity output RF signal is processed using a down-converter and a commercial lock-in amplifier operating at 100 kHz. The system interfaces with a VME based EPICS control system using the IEEE, 488 bus. The main features of the system are simple and robust design, and wide dynamic range capable of handling beam currents from 1 nA to 1000 nA with an expected resolution better than 100 μm. This paper outlines the design of the system

  10. The AGS Booster Beam Position Monitor system

    International Nuclear Information System (INIS)

    Ciardullo, D.J.; Abola, A.; Beadle, E.R.; Smith, G.A.; Thomas, R.; Van Zwienen, W.; Warkentien, R.; Witkover, R.L.

    1991-01-01

    To accelerate both protons and heavy ions, the AGS Booster requires a broadband (multi-octave) beam position monitoring system with a dynamic range spanning several orders of magnitude (2 x 10 10 to 1.5 x 10 13 particles per pulse). System requirements include the ability to acquire single turn trajectory and average orbit information with ± 0.1 mm resolution. The design goal of ± 0.5 mm corrected accuracy requires that the detectors have repeatable linear performance after periodic bakeout at 300 degree C. The system design and capabilities of the Booster Beam Position Monitor will be described, and initial results presented. 7 refs., 5 figs

  11. An Autonomous Distributed Fault-Tolerant Local Positioning System

    Science.gov (United States)

    Malekpour, Mahyar R.

    2017-01-01

    We describe a fault-tolerant, GPS-independent (Global Positioning System) distributed autonomous positioning system for static/mobile objects and present solutions for providing highly-accurate geo-location data for the static/mobile objects in dynamic environments. The reliability and accuracy of a positioning system fundamentally depends on two factors; its timeliness in broadcasting signals and the knowledge of its geometry, i.e., locations and distances of the beacons. Existing distributed positioning systems either synchronize to a common external source like GPS or establish their own time synchrony using a scheme similar to a master-slave by designating a particular beacon as the master and other beacons synchronize to it, resulting in a single point of failure. Another drawback of existing positioning systems is their lack of addressing various fault manifestations, in particular, communication link failures, which, as in wireless networks, are increasingly dominating the process failures and are typically transient and mobile, in the sense that they typically affect different messages to/from different processes over time.

  12. A New Chaotic System with Positive Topological Entropy

    Directory of Open Access Journals (Sweden)

    Zhonglin Wang

    2015-08-01

    Full Text Available This paper introduces a new simple system with a butterfly chaotic attractor. This system has rich and complex dynamics. With some typical parameters, its Lyapunov dimension is greater than other known three dimensional chaotic systems. It exhibits chaotic behavior over a large range of parameters, and the divergence of flow of this system is not a constant. The dynamics of this new system are analyzed via Lyapunov exponent spectrum, bifurcation diagrams, phase portraits and the Poincaré map. The compound structures of this new system are also analyzed. By means of topological horseshoe theory and numerical computation, the Poincaré map defined for the system is proved to be semi-conjugate to 3-shift map, and thus the system has positive topological entropy.

  13. A New Indoor Positioning System Architecture Using GPS Signals.

    Science.gov (United States)

    Xu, Rui; Chen, Wu; Xu, Ying; Ji, Shengyue

    2015-04-29

    The pseudolite system is a good alternative for indoor positioning systems due to its large coverage area and accurate positioning solution. However, for common Global Positioning System (GPS) receivers, the pseudolite system requires some modifications of the user terminals. To solve the problem, this paper proposes a new pseudolite-based indoor positioning system architecture. The main idea is to receive real-world GPS signals, repeat each satellite signal and transmit those using indoor transmitting antennas. The transmitted GPS-like signal can be processed (signal acquisition and tracking, navigation data decoding) by the general receiver and thus no hardware-level modification on the receiver is required. In addition, all Tx can be synchronized with each other since one single clock is used in Rx/Tx. The proposed system is simulated using a software GPS receiver. The simulation results show the indoor positioning system is able to provide high accurate horizontal positioning in both static and dynamic situations.

  14. Development of a video image-based QA system for the positional accuracy of dynamic tumor tracking irradiation in the Vero4DRT system

    Energy Technology Data Exchange (ETDEWEB)

    Ebe, Kazuyu, E-mail: nrr24490@nifty.com; Tokuyama, Katsuichi; Baba, Ryuta; Ogihara, Yoshisada; Ichikawa, Kosuke; Toyama, Joji [Joetsu General Hospital, 616 Daido-Fukuda, Joetsu-shi, Niigata 943-8507 (Japan); Sugimoto, Satoru [Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421 (Japan); Utsunomiya, Satoru; Kagamu, Hiroshi; Aoyama, Hidefumi [Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510 (Japan); Court, Laurence [The University of Texas MD Anderson Cancer Center, Houston, Texas 77030-4009 (United States)

    2015-08-15

    Purpose: To develop and evaluate a new video image-based QA system, including in-house software, that can display a tracking state visually and quantify the positional accuracy of dynamic tumor tracking irradiation in the Vero4DRT system. Methods: Sixteen trajectories in six patients with pulmonary cancer were obtained with the ExacTrac in the Vero4DRT system. Motion data in the cranio–caudal direction (Y direction) were used as the input for a programmable motion table (Quasar). A target phantom was placed on the motion table, which was placed on the 2D ionization chamber array (MatriXX). Then, the 4D modeling procedure was performed on the target phantom during a reproduction of the patient’s tumor motion. A substitute target with the patient’s tumor motion was irradiated with 6-MV x-rays under the surrogate infrared system. The 2D dose images obtained from the MatriXX (33 frames/s; 40 s) were exported to in-house video-image analyzing software. The absolute differences in the Y direction between the center of the exposed target and the center of the exposed field were calculated. Positional errors were observed. The authors’ QA results were compared to 4D modeling function errors and gimbal motion errors obtained from log analyses in the ExacTrac to verify the accuracy of their QA system. The patients’ tumor motions were evaluated in the wave forms, and the peak-to-peak distances were also measured to verify their reproducibility. Results: Thirteen of sixteen trajectories (81.3%) were successfully reproduced with Quasar. The peak-to-peak distances ranged from 2.7 to 29.0 mm. Three trajectories (18.7%) were not successfully reproduced due to the limited motions of the Quasar. Thus, 13 of 16 trajectories were summarized. The mean number of video images used for analysis was 1156. The positional errors (absolute mean difference + 2 standard deviation) ranged from 0.54 to 1.55 mm. The error values differed by less than 1 mm from 4D modeling function errors

  15. Development of a video image-based QA system for the positional accuracy of dynamic tumor tracking irradiation in the Vero4DRT system

    International Nuclear Information System (INIS)

    Ebe, Kazuyu; Tokuyama, Katsuichi; Baba, Ryuta; Ogihara, Yoshisada; Ichikawa, Kosuke; Toyama, Joji; Sugimoto, Satoru; Utsunomiya, Satoru; Kagamu, Hiroshi; Aoyama, Hidefumi; Court, Laurence

    2015-01-01

    Purpose: To develop and evaluate a new video image-based QA system, including in-house software, that can display a tracking state visually and quantify the positional accuracy of dynamic tumor tracking irradiation in the Vero4DRT system. Methods: Sixteen trajectories in six patients with pulmonary cancer were obtained with the ExacTrac in the Vero4DRT system. Motion data in the cranio–caudal direction (Y direction) were used as the input for a programmable motion table (Quasar). A target phantom was placed on the motion table, which was placed on the 2D ionization chamber array (MatriXX). Then, the 4D modeling procedure was performed on the target phantom during a reproduction of the patient’s tumor motion. A substitute target with the patient’s tumor motion was irradiated with 6-MV x-rays under the surrogate infrared system. The 2D dose images obtained from the MatriXX (33 frames/s; 40 s) were exported to in-house video-image analyzing software. The absolute differences in the Y direction between the center of the exposed target and the center of the exposed field were calculated. Positional errors were observed. The authors’ QA results were compared to 4D modeling function errors and gimbal motion errors obtained from log analyses in the ExacTrac to verify the accuracy of their QA system. The patients’ tumor motions were evaluated in the wave forms, and the peak-to-peak distances were also measured to verify their reproducibility. Results: Thirteen of sixteen trajectories (81.3%) were successfully reproduced with Quasar. The peak-to-peak distances ranged from 2.7 to 29.0 mm. Three trajectories (18.7%) were not successfully reproduced due to the limited motions of the Quasar. Thus, 13 of 16 trajectories were summarized. The mean number of video images used for analysis was 1156. The positional errors (absolute mean difference + 2 standard deviation) ranged from 0.54 to 1.55 mm. The error values differed by less than 1 mm from 4D modeling function errors

  16. On the dynamics of traveling phase-oscillators with positive and negative couplings

    International Nuclear Information System (INIS)

    Choi, Jungzae; Choi, Mooyoung; Yoon, Byunggook

    2014-01-01

    We investigate numerically the dynamics of traveling clusters in systems of phase oscillators, some of which possess positive couplings and others negative couplings. The phase distribution, speed of traveling, and average separation between clusters, as well as the order parameters for positive and negative oscillators, are computed as the ratio of the two coupling constants and the fraction of positive oscillators are varied. The dependence of the traveling speed on these parameters is obtained and is observed to fit well with the numerical data of the systems. With the help of this, we describe the conditions for the traveling state to appear in the systems with and without a periodic driving field.

  17. 16 CFR 1203.16 - Dynamic strength of retention system test.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Dynamic strength of retention system test.... (2) The retention system strength test equipment shall consist of a dynamic impact apparatus that... stirrup. (2) Mark the pre-test position of the retention system, with the entire dynamic test apparatus...

  18. Precision position control of servo systems using adaptive back-stepping and recurrent fuzzy neural networks

    International Nuclear Information System (INIS)

    Kim, Han Me; Kim, Jong Shik; Han, Seong Ik

    2009-01-01

    To improve position tracking performance of servo systems, a position tracking control using adaptive back-stepping control(ABSC) scheme and recurrent fuzzy neural networks(RFNN) is proposed. An adaptive rule of the ABSC based on system dynamics and dynamic friction model is also suggested to compensate nonlinear dynamic friction characteristics. However, it is difficult to reduce the position tracking error of servo systems by using only the ABSC scheme because of the system uncertainties which cannot be exactly identified during the modeling of servo systems. Therefore, in order to overcome system uncertainties and then to improve position tracking performance of servo systems, the RFNN technique is additionally applied to the servo system. The feasibility of the proposed control scheme for a servo system is validated through experiments. Experimental results show that the servo system with ABS controller based on the dual friction observer and RFNN including the reconstruction error estimator can achieve desired tracking performance and robustness

  19. The dynamic origins of positive health and wellbeing

    Science.gov (United States)

    Cloninger, C. Robert; Salloum, Ihsan M.; Mezzich, Juan E.

    2015-01-01

    The causes of wellbeing and illbeing interact with feedback dynamics resulting in the same set of traits giving rise to a variety of health outcomes (multi-finality) and different traits giving rise to the same health outcome (equi-finality). As a result, a full understanding of health and its disorders must be in terms of a complex adaptive system of causes, rather than in terms of categorical diagnoses or sets of symptoms. The three domains of person-centered integrative diagnosis (PID) are considered here as interacting components of a complex adaptive system comprised of health status (functioning/wellness versus disability/disorder), experience of health (self-awareness/fulfillment versus misunderstanding/suffering) and contributors to health (protective versus risk factors). The PID domains thereby allow healthcare and health promotion to be understood in terms of measurable components of a complex adaptive system. Three major concepts of health are examined in detail to identify their dynamic origins: Psychological Maturity, Flourishing and Resilience. In humanistic psychology, psychological maturity (i.e. healthy personality, mental wellbeing) involves the development of high self-directedness, high co-operativeness and high self-transcendence, but self-transcendence is nevertheless devalued in individualistic and materialistic cultures except when people must face adversity and ultimate situations like suffering or the threat of death. Psychological Maturity develops through two complementary processes often labeled as Flourishing and Resilience. Flourishing is the development of one’s potential to live optimally, especially as the result of favorable circumstances, whereas Resilience is positive adaptation to life despite adverse circumstances. As a result of the complex feedback dynamics between the processes of flourishing and resilience, each person is a unique individual who has a variety of paths for achieving positive health and wellbeing open to

  20. Verification of Continuous Dynamical Systems by Timed Automata

    DEFF Research Database (Denmark)

    Sloth, Christoffer; Wisniewski, Rafael

    2011-01-01

    This paper presents a method for abstracting continuous dynamical systems by timed automata. The abstraction is based on partitioning the state space of a dynamical system using positive invariant sets, which form cells that represent locations of a timed automaton. The abstraction is intended......, which is generated utilizing sub-level sets of Lyapunov functions, as they are positive invariant sets. It is shown that this partition generates sound and complete abstractions. Furthermore, the complete abstractions can be composed of multiple timed automata, allowing parallelization...

  1. The Dynamics of Finite-Dimensional Systems Under Nonconservative Position Forces

    Science.gov (United States)

    Lobas, L. G.

    2001-01-01

    General theorems on the stability of stationary states of mechanical systems subjected to nonconservative position forces are presented. Specific mechanical problems on gyroscopic systems, a double-link pendulum with a follower force and elastically fixed upper tip, multilink pneumowheel vehicles, a monorail car, and rail-guided vehicles are analyzed. Methods for investigation of divergent bifurcations and catastrophes of stationary states are described

  2. Impulse position control algorithms for nonlinear systems

    Energy Technology Data Exchange (ETDEWEB)

    Sesekin, A. N., E-mail: sesekin@list.ru [Ural Federal University, 19 S. Mira, Ekaterinburg, 620002 (Russian Federation); Institute of Mathematics and Mechanics, Ural Division of Russian Academy of Sciences, 16 S. Kovalevskaya, Ekaterinburg, 620990 (Russian Federation); Nepp, A. N., E-mail: anepp@urfu.ru [Ural Federal University, 19 S. Mira, Ekaterinburg, 620002 (Russian Federation)

    2015-11-30

    The article is devoted to the formalization and description of impulse-sliding regime in nonlinear dynamical systems that arise in the application of impulse position controls of a special kind. The concept of trajectory impulse-sliding regime formalized as some limiting network element Euler polygons generated by a discrete approximation of the impulse position control This paper differs from the previously published papers in that it uses a definition of solutions of systems with impulse controls, it based on the closure of the set of smooth solutions in the space of functions of bounded variation. The need for the study of such regimes is the fact that they often arise when parry disturbances acting on technical or economic control system.

  3. Impulse position control algorithms for nonlinear systems

    Science.gov (United States)

    Sesekin, A. N.; Nepp, A. N.

    2015-11-01

    The article is devoted to the formalization and description of impulse-sliding regime in nonlinear dynamical systems that arise in the application of impulse position controls of a special kind. The concept of trajectory impulse-sliding regime formalized as some limiting network element Euler polygons generated by a discrete approximation of the impulse position control This paper differs from the previously published papers in that it uses a definition of solutions of systems with impulse controls, it based on the closure of the set of smooth solutions in the space of functions of bounded variation. The need for the study of such regimes is the fact that they often arise when parry disturbances acting on technical or economic control system.

  4. New method to improve dynamic stiffness of electro-hydraulic servo systems

    Science.gov (United States)

    Bai, Yanhong; Quan, Long

    2013-09-01

    Most current researches working on improving stiffness focus on the application of control theories. But controller in closed-loop hydraulic control system takes effect only after the controlled position is deviated, so the control action is lagged. Thus dynamic performance against force disturbance and dynamic load stiffness can’t be improved evidently by advanced control algorithms. In this paper, the elementary principle of maintaining piston position unchanged under sudden external force load change by charging additional oil is analyzed. On this basis, the conception of raising dynamic stiffness of electro hydraulic position servo system by flow feedforward compensation is put forward. And a scheme using double servo valves to realize flow feedforward compensation is presented, in which another fast response servo valve is added to the regular electro hydraulic servo system and specially utilized to compensate the compressed oil volume caused by load impact in time. The two valves are arranged in parallel to control the cylinder jointly. Furthermore, the model of flow compensation is derived, by which the product of the amplitude and width of the valve’s pulse command signal can be calculated. And determination rules of the amplitude and width of pulse signal are concluded by analysis and simulations. Using the proposed scheme, simulations and experiments at different positions with different force changes are conducted. The simulation and experimental results show that the system dynamic performance against load force impact is largely improved with decreased maximal dynamic position deviation and shortened settling time. That is, system dynamic load stiffness is evidently raised. This paper proposes a new method which can effectively improve the dynamic stiffness of electro-hydraulic servo systems.

  5. System dynamics

    International Nuclear Information System (INIS)

    Kim, Do Hun; Mun, Tae Hun; Kim, Dong Hwan

    1999-02-01

    This book introduces systems thinking and conceptual tool and modeling tool of dynamics system such as tragedy of single thinking, accessible way of system dynamics, feedback structure and causal loop diagram analysis, basic of system dynamics modeling, causal loop diagram and system dynamics modeling, information delay modeling, discovery and application for policy, modeling of crisis of agricultural and stock breeding products, dynamic model and lesson in ecosystem, development and decadence of cites and innovation of education forward system thinking.

  6. Dynamics of Open Systems with Affine Maps

    International Nuclear Information System (INIS)

    Zhang Da-Jian; Liu Chong-Long; Tong Dian-Min

    2015-01-01

    Many quantum systems of interest are initially correlated with their environments and the reduced dynamics of open systems are an interesting while challenging topic. Affine maps, as an extension of completely positive maps, are a useful tool to describe the reduced dynamics of open systems with initial correlations. However, it is unclear what kind of initial state shares an affine map. In this study, we give a sufficient condition of initial states, in which the reduced dynamics can always be described by an affine map. Our result shows that if the initial states of the combined system constitute a convex set, and if the correspondence between the initial states of the open system and those of the combined system, defined by taking the partial trace, is a bijection, then the reduced dynamics of the open system can be described by an affine map. (paper)

  7. Abstraction of continuous dynamical systems utilizing lyapunov functions

    DEFF Research Database (Denmark)

    Sloth, Christoffer; Wisniewski, Rafael

    2010-01-01

    This paper considers the development of a method for abstracting continuous dynamical systems by timed automata. The method is based on partitioning the state space of dynamical systems with invariant sets, which form cells representing locations of the timed automata. To enable verification...... of the dynamical system based on the abstraction, conditions for obtaining sound, complete, and refinable abstractions are set up. It is proposed to partition the state space utilizing sub-level sets of Lyapunov functions, since they are positive invariant sets. The existence of sound abstractions for Morse......-Smale systems and complete and refinable abstractions for linear systems are shown....

  8. Adaptive wave filtering for dynamic positioning of marine vessels using maximum likelihood identification: Theory and experiments

    Digital Repository Service at National Institute of Oceanography (India)

    Hassani, V.; Sorensen, A.J.; Pascoal, A.M.

    This paper addresses a filtering problem that arises in the design of dynamic positioning systems for ships and offshore rigs subjected to the influence of sea waves. The dynamic model of the vessel captures explicitly the sea state as an uncertain...

  9. NONLINEAR FILTER METHOD OF GPS DYNAMIC POSITIONING BASED ON BANCROFT ALGORITHM

    Institute of Scientific and Technical Information of China (English)

    ZHANGQin; TAOBen-zao; ZHAOChao-ying; WANGLi

    2005-01-01

    Because of the ignored items after linearization, the extended Kalman filter (EKF) becomes a form of suboptimal gradient descent algorithm. The emanative tendency exists in GPS solution when the filter equations are ill-posed. The deviation in the estimation cannot be avoided. Furthermore, the true solution may be lost in pseudorange positioning because the linearized pseudorange equations are partial solutions. To solve the above problems in GPS dynamic positioning by using EKF, a closed-form Kalman filter method called the two-stage algorithm is presented for the nonlinear algebraic solution of GPS dynamic positioning based on the global nonlinear least squares closed algorithm--Bancroft numerical algorithm of American. The method separates the spatial parts from temporal parts during processing the GPS filter problems, and solves the nonlinear GPS dynamic positioning, thus getting stable and reliable dynamic positioning solutions.

  10. Dynamics of mechanical systems with variable mass

    CERN Document Server

    Belyaev, Alexander

    2014-01-01

    The book presents up-to-date and unifying formulations for treating dynamics of different types of mechanical systems with variable mass. The starting point is overview of the continuum mechanics relations of balance and jump for open systems from which extended Lagrange and Hamiltonian formulations are derived. Corresponding approaches are stated at the level of analytical mechanics with emphasis on systems with a position-dependent mass and at the level of structural mechanics. Special emphasis is laid upon axially moving structures like belts and chains, and on pipes with an axial flow of fluid. Constitutive relations in the dynamics of systems with variable mass are studied with particular reference to modeling of multi-component mixtures. The dynamics of machines with a variable mass are treated in detail and conservation laws and the stability of motion will be analyzed. Novel finite element formulations for open systems in coupled fluid and structural dynamics are presented.

  11. The Global Positioning System: Theory and operation

    Science.gov (United States)

    Tucker, Lester Plunkett

    Scope and method of study. The purpose of this study is to document the theory, development, and training needs of the United States Global Positioning System for the United States Air Force. This subject area had very little information and to assess the United States Air Force training needs required an investigation into existing training accomplished on the Global Positioning System. The United States Air Force has only one place to obtain the data at Headquarters Air Education and Training Command. Findings and conclusion. The United States Air Force, at the time of this study, does not have a theory and operations course dealing with the newest technology advancement in world navigation. Although this new technology is being provided on aircraft in the form of new navigation hardware, no official course of study is provided by the United States Air Force to it's pilots and navigators dealing with theory and operation. Based on the latest reports dealing with the Global Positioning System, a course on the Global Positioning System was developed in the Instructional Systems Design format to provide background information and understanding of this new technology. Readers of this study must be aware that the information contained in this study is very dynamic. Technology is advancing so fast in this area that it might make this information obsolete in a short amount of time.

  12. Modulation of dynamic modes by interplay between positive and negative feedback loops in gene regulatory networks

    Science.gov (United States)

    Wang, Liu-Suo; Li, Ning-Xi; Chen, Jing-Jia; Zhang, Xiao-Peng; Liu, Feng; Wang, Wei

    2018-04-01

    A positive and a negative feedback loop can induce bistability and oscillation, respectively, in biological networks. Nevertheless, they are frequently interlinked to perform more elaborate functions in many gene regulatory networks. Coupled positive and negative feedback loops may exhibit either oscillation or bistability depending on the intensity of the stimulus in some particular networks. It is less understood how the transition between the two dynamic modes is modulated by the positive and negative feedback loops. We developed an abstract model of such systems, largely based on the core p53 pathway, to explore the mechanism for the transformation of dynamic behaviors. Our results show that enhancing the positive feedback may promote or suppress oscillations depending on the strength of both feedback loops. We found that the system oscillates with low amplitudes in response to a moderate stimulus and switches to the on state upon a strong stimulus. When the positive feedback is activated much later than the negative one in response to a strong stimulus, the system exhibits long-term oscillations before switching to the on state. We explain this intriguing phenomenon using quasistatic approximation. Moreover, early switching to the on state may occur when the system starts from a steady state in the absence of stimuli. The interplay between the positive and negative feedback plays a key role in the transitions between oscillation and bistability. Of note, our conclusions should be applicable only to some specific gene regulatory networks, especially the p53 network, in which both oscillation and bistability exist in response to a certain type of stimulus. Our work also underscores the significance of transient dynamics in determining cellular outcome.

  13. Bayesian integration of position and orientation cues in perception of biological and non-biological dynamic forms

    Directory of Open Access Journals (Sweden)

    Steven Matthew Thurman

    2014-02-01

    Full Text Available Visual form analysis is fundamental to shape perception and likely plays a central role in perception of more complex dynamic shapes, such as moving objects or biological motion. Two primary form-based cues serve to represent the overall shape of an object: the spatial position and the orientation of locations along the boundary of the object. However, it is unclear how the visual system integrates these two sources of information in dynamic form analysis, and in particular how the brain resolves ambiguities due to sensory uncertainty and/or cue conflict. In the current study, we created animations of sparsely-sampled dynamic objects (human walkers or rotating squares comprised of oriented Gabor patches in which orientation could either coincide or conflict with information provided by position cues. When the cues were incongruent, we found a characteristic trade-off between position and orientation information whereby position cues increasingly dominated perception as the relative uncertainty of orientation increased and vice versa. Furthermore, we found no evidence for differences in the visual processing of biological and non-biological objects, casting doubt on the claim that biological motion may be specialized in the human brain, at least in specific terms of form analysis. To explain these behavioral results quantitatively, we adopt a probabilistic template-matching model that uses Bayesian inference within local modules to estimate object shape separately from either spatial position or orientation signals. The outputs of the two modules are integrated with weights that reflect individual estimates of subjective cue reliability, and integrated over time to produce a decision about the perceived dynamics of the input data. Results of this model provided a close fit to the behavioral data, suggesting a mechanism in the human visual system that approximates rational Bayesian inference to integrate position and orientation signals in dynamic

  14. Asymmetric Fuzzy Control of a Positive and Negative Pneumatic Pressure Servo System

    Science.gov (United States)

    Yang, Gang; Du, Jing-Min; Fu, Xiao-Yun; Li, Bao-Ren

    2017-11-01

    The pneumatic pressure control systems have been used in some fields. However, the researches on pneumatic pressure control mainly focus on constant pressure regulation. Poor dynamic characteristics and strong nonlinearity of such systems limit its application in the field of pressure tracking control. In order to meet the demand of generating dynamic pressure signal in the application of the hardware-in-the-loop simulation of aerospace engineering, a positive and negative pneumatic pressure servo system is provided to implement dynamic adjustment of sealed chamber pressure. A mathematical model is established with simulation and experiment being implemented afterwards to discuss the characteristics of the system, which shows serious asymmetry in the process of charging and discharging. Based on the analysis of the system dynamics, a fuzzy proportional integral derivative (PID) controller with asymmetric fuzzy compensator is proposed. Different from conventional adjusting mechanisms employing the error and change in error of the controlled variable as input parameters, the current chamber pressure and charging or discharging state are chosen as inputs of the compensator, which improves adaptability. To verify the effectiveness and performance of the proposed controller, the comparison experiments tracking sinusoidal and square wave commands are conducted. Experimental results show that the proposed controller can obtain better dynamic performance and relatively consistent control performance across the scope of work (2-140 kPa). The research proposes a fuzzy control method to overcome asymmetry and enhance adaptability for the positive and negative pneumatic pressure servo system.

  15. Feedback coupling in dynamical systems

    Science.gov (United States)

    Trimper, Steffen; Zabrocki, Knud

    2003-05-01

    Different evolution models are considered with feedback-couplings. In particular, we study the Lotka-Volterra system under the influence of a cumulative term, the Ginzburg-Landau model with a convolution memory term and chemical rate equations with time delay. The memory leads to a modified dynamical behavior. In case of a positive coupling the generalized Lotka-Volterra system exhibits a maximum gain achieved after a finite time, but the population will die out in the long time limit. In the opposite case, the time evolution is terminated in a crash. Due to the nonlinear feedback coupling the two branches of a bistable model are controlled by the the strength and the sign of the memory. For a negative coupling the system is able to switch over between both branches of the stationary solution. The dynamics of the system is further controlled by the initial condition. The diffusion-limited reaction is likewise studied in case the reacting entities are not available simultaneously. Whereas for an external feedback the dynamics is altered, but the stationary solution remain unchanged, a self-organized internal feedback leads to a time persistent solution.

  16. Analysis of Dynamic Stiffness of Bridge Cap-Pile System

    Directory of Open Access Journals (Sweden)

    Jinhui Chu

    2018-01-01

    Full Text Available In order to investigate the applicability of dynamic stiffness for bridge cap-pile system, a laboratory test was performed. A numerical model was also built for this type of system. The impact load was applied on the cap top and the dynamic stiffness was analysed. Then, the effect of the effective friction area between pile and soil was also considered. Finally, the dynamic stiffness relationship between the single pile and the cap-pile system was also compared. The results show that the dynamic stiffness is a sensitive index and can well reflect the static characteristics of the pile at the elastic stage. There is a significant positive correlation between the vertical dynamic stiffness index and bearing capacity of the cap-pile system in the similar formation environment. For the cap-pile system with four piles, the dynamic stiffness is about four times as large as the single pile between 10 and 20 Hz.

  17. FIR signature verification system characterizing dynamics of handwriting features

    Science.gov (United States)

    Thumwarin, Pitak; Pernwong, Jitawat; Matsuura, Takenobu

    2013-12-01

    This paper proposes an online signature verification method based on the finite impulse response (FIR) system characterizing time-frequency characteristics of dynamic handwriting features. First, the barycenter determined from both the center point of signature and two adjacent pen-point positions in the signing process, instead of one pen-point position, is used to reduce the fluctuation of handwriting motion. In this paper, among the available dynamic handwriting features, motion pressure and area pressure are employed to investigate handwriting behavior. Thus, the stable dynamic handwriting features can be described by the relation of the time-frequency characteristics of the dynamic handwriting features. In this study, the aforesaid relation can be represented by the FIR system with the wavelet coefficients of the dynamic handwriting features as both input and output of the system. The impulse response of the FIR system is used as the individual feature for a particular signature. In short, the signature can be verified by evaluating the difference between the impulse responses of the FIR systems for a reference signature and the signature to be verified. The signature verification experiments in this paper were conducted using the SUBCORPUS MCYT-100 signature database consisting of 5,000 signatures from 100 signers. The proposed method yielded equal error rate (EER) of 3.21% on skilled forgeries.

  18. Hyperchaos of four state autonomous system with three positive Lyapunov exponents

    International Nuclear Information System (INIS)

    Ge Zhengming; Yang, C-H.

    2009-01-01

    This Letter gives the results of numerical simulations of Quantum Cellular Neural Network (Quantum-CNN) autonomous system with four state variables. Three positive Lyapunov exponents confirm hyperchaotic nature of its dynamics

  19. Dynamical systems

    CERN Document Server

    Sternberg, Shlomo

    2010-01-01

    Celebrated mathematician Shlomo Sternberg, a pioneer in the field of dynamical systems, created this modern one-semester introduction to the subject for his classes at Harvard University. Its wide-ranging treatment covers one-dimensional dynamics, differential equations, random walks, iterated function systems, symbolic dynamics, and Markov chains. Supplementary materials offer a variety of online components, including PowerPoint lecture slides for professors and MATLAB exercises.""Even though there are many dynamical systems books on the market, this book is bound to become a classic. The the

  20. Nonlinear dynamic positioning of ships with gain-scheduled wave filtering

    DEFF Research Database (Denmark)

    Torsetnes, Guttorm; Jouffroy, Jerome; Fossen, Thor I.

    This paper presents a globally contracting controller for regulation and dynamic positioning of ships, using only position measurements. For this purpose a globally contracting observer which reconstructs the unmeasured states is constructed. The observer produces accurate estimates of position...

  1. Dynamics of harmonically-confined systems: Some rigorous results

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Zhigang, E-mail: zwu@physics.queensu.ca; Zaremba, Eugene, E-mail: zaremba@sparky.phy.queensu.ca

    2014-03-15

    In this paper we consider the dynamics of harmonically-confined atomic gases. We present various general results which are independent of particle statistics, interatomic interactions and dimensionality. Of particular interest is the response of the system to external perturbations which can be either static or dynamic in nature. We prove an extended Harmonic Potential Theorem which is useful in determining the damping of the centre of mass motion when the system is prepared initially in a highly nonequilibrium state. We also study the response of the gas to a dynamic external potential whose position is made to oscillate sinusoidally in a given direction. We show in this case that either the energy absorption rate or the centre of mass dynamics can serve as a probe of the optical conductivity of the system. -- Highlights: •We derive various rigorous results on the dynamics of harmonically-confined atomic gases. •We derive an extension of the Harmonic Potential Theorem. •We demonstrate the link between the energy absorption rate in a harmonically-confined system and the optical conductivity.

  2. A qualitative numerical study of high dimensional dynamical systems

    Science.gov (United States)

    Albers, David James

    Since Poincare, the father of modern mathematical dynamical systems, much effort has been exerted to achieve a qualitative understanding of the physical world via a qualitative understanding of the functions we use to model the physical world. In this thesis, we construct a numerical framework suitable for a qualitative, statistical study of dynamical systems using the space of artificial neural networks. We analyze the dynamics along intervals in parameter space, separating the set of neural networks into roughly four regions: the fixed point to the first bifurcation; the route to chaos; the chaotic region; and a transition region between chaos and finite-state neural networks. The study is primarily with respect to high-dimensional dynamical systems. We make the following general conclusions as the dimension of the dynamical system is increased: the probability of the first bifurcation being of type Neimark-Sacker is greater than ninety-percent; the most probable route to chaos is via a cascade of bifurcations of high-period periodic orbits, quasi-periodic orbits, and 2-tori; there exists an interval of parameter space such that hyperbolicity is violated on a countable, Lebesgue measure 0, "increasingly dense" subset; chaos is much more likely to persist with respect to parameter perturbation in the chaotic region of parameter space as the dimension is increased; moreover, as the number of positive Lyapunov exponents is increased, the likelihood that any significant portion of these positive exponents can be perturbed away decreases with increasing dimension. The maximum Kaplan-Yorke dimension and the maximum number of positive Lyapunov exponents increases linearly with dimension. The probability of a dynamical system being chaotic increases exponentially with dimension. The results with respect to the first bifurcation and the route to chaos comment on previous results of Newhouse, Ruelle, Takens, Broer, Chenciner, and Iooss. Moreover, results regarding the high

  3. Positioning performance of a maglev fine positioning system

    Energy Technology Data Exchange (ETDEWEB)

    Wronosky, J.B.; Smith, T.G.; Jordan, J.D.; Darnold, J.R.

    1996-12-01

    A wafer positioning system was recently developed by Sandia National Laboratories for an Extreme Ultraviolet Lithography (EUVL) research tool. The system, which utilizes a magnetically levitated fine stage to provide ultra-precise positioning in all six degrees of freedom, incorporates technological improvements resulting from four years of prototype development experience. System enhancements, implemented on a second generation design for an ARPA National Center for Advanced Information Component Manufacturing (NCAICM) project, introduced active structural control for the levitated structure of the system. Magnetic levitation (maglev) is emerging as an important technology for wafer positioning systems in advanced lithography applications. The advantages of maglev stem from the absence of physical contact. The resulting lack of friction enables accurate, fast positioning. Maglev systems are mechanically simple, accomplishing full six degree-of-freedom suspension and control with a minimum of moving parts. Power-efficient designs, which reduce the possibility of thermal distortion of the platen, are achievable. Manufacturing throughput will be improved in future systems with the addition of active structural control of the positioning stages. This paper describes the design, implementation, and functional capability of the maglev fine positioning system. Specifics regarding performance design goals and test results are presented.

  4. Delay differential systems for tick population dynamics.

    Science.gov (United States)

    Fan, Guihong; Thieme, Horst R; Zhu, Huaiping

    2015-11-01

    Ticks play a critical role as vectors in the transmission and spread of Lyme disease, an emerging infectious disease which can cause severe illness in humans or animals. To understand the transmission dynamics of Lyme disease and other tick-borne diseases, it is necessary to investigate the population dynamics of ticks. Here, we formulate a system of delay differential equations which models the stage structure of the tick population. Temperature can alter the length of time delays in each developmental stage, and so the time delays can vary geographically (and seasonally which we do not consider). We define the basic reproduction number [Formula: see text] of stage structured tick populations. The tick population is uniformly persistent if [Formula: see text] and dies out if [Formula: see text]. We present sufficient conditions under which the unique positive equilibrium point is globally asymptotically stable. In general, the positive equilibrium can be unstable and the system show oscillatory behavior. These oscillations are primarily due to negative feedback within the tick system, but can be enhanced by the time delays of the different developmental stages.

  5. Innovative optical power detection array system for relative positioning of inner-formation flying system

    Science.gov (United States)

    Hou, Zhendong; Wang, Zhaokui; Zhang, Yulin

    2016-09-01

    The Inner-formation flying system (IFFS) is conceived to feature a spherical proof mass falling freely within a large cavity for space gravity detection, of which first application focuses on the Earth's gravity field recovery. For the IFFS, it is the relative position of the proof mass to its surrounding cavity that is feedback into thrusters for tracking control, even as part of data to detect gravity. Since the demonstration and verification of demanding technologies using small satellite platforms is a very sensible choice prior to detection mission, an optical power detection array system (OPDAS) is proposed to measure the relative position with advantages of low cost and high adaptability. Besides that, its large dynamic range can reduce the requirement for satellite platform and releasing mechanism, which is also an attracting trait for small satellite application. The concept of the OPDAS is firstly presented, followed by the algorithm to position the proof mass. Then the radiation pressure caused by the measuring beam is modeled, and its disturbance on the proof mass is simulated. The experimental system to test the performance of a prototype of the OPDAS is established, and the preliminary results show that a precision of less than 0.4 mm across a dynamic range of several centimeters can be reached by the prototype of the OPDAS.

  6. An online x-ray based position validation system for prostate hypofractionated radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Arumugam, Sankar, E-mail: Sankar.Arumugam@sswahs.nsw.gov.au; Xing, Aitang [Department of Medical Physics, Liverpool and Macarthur Cancer Therapy Centres and Ingham Institute, New South Wales 2170 (Australia); Sidhom, Mark [Department of Radiation Oncology, Liverpool and Macarthur Cancer Therapy Centres, New South Wales 2170 (Australia); Holloway, Lois [Department of Medical Physics, Liverpool and Macarthur Cancer Therapy Centres and Ingham Institute, New South Wales 2170 (Australia); Centre for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales 2522 (Australia); South Western Clinical School, University of New South Wales, Sydney, New South Wales 2052 (Australia); Institute of Medical Physics, School of Physics, University of Sydney, Sydney, New South Wales 2006 (Australia)

    2016-02-15

    Purpose: Accurate positioning of the target volume during treatment is paramount for stereotactic body radiation therapy (SBRT). In this work, the authors present the development of an in-house software tool to verify target position with an Elekta-Synergy linear accelerator using kV planar images acquired during treatment delivery. Methods: In-house software, SeedTracker, was developed in MATLAB to perform the following three functions: 1. predict intended seed positions in a planar view perpendicular to any gantry angle, simulating a portal imaging device, from the 3D seed co-ordinates derived from the treatment planning system; 2. autosegment seed positions in kV planar images; and 3. report the position shift based on the seed positions in the projection images. The performance of SeedTracker was verified using a CIRS humanoid phantom (CIRS, VA, USA) implanted with three Civco gold seed markers (Civco, IA, USA) in the prostate. The true positive rate of autosegmentation (TPR{sub seg}) and the accuracy of the software in alerting the user when the isocenter position was outside the tolerance (TPR{sub trig}) were studied. Two-dimensional and 3D static position offsets introduced to the humanoid phantom and 3D dynamic offsets introduced to a gel phantom containing gold seeds were used for evaluation of the system. Results: SeedTracker showed a TPR{sub seg} of 100% in the humanoid phantom for projection images acquired at all angles except in the ranges of 80°–100° and 260°–280° where seeds are obscured by anatomy. This resulted in a TPR{sub trig} of 88% over the entire treatment range for considered 3D static offsets introduced to the phantom. For 2D static offsets where the position offsets were only introduced in the anterior–posterior and lateral directions, the TPR{sub trig} of SeedTracker was limited by both seed detectability and positional offset. SeedTracker showed a false positive trigger in the projection angle range between 130°–170° and

  7. Positive Affect and the Complex Dynamics of Human Flourishing

    Science.gov (United States)

    Fredrickson, Barbara L.; Losada, Marcial F.

    2005-01-01

    Extending B. L. Fredrickson's (1998) broaden-and-build theory of positive emotions and M. Losada's (1999) nonlinear dynamics model of team performance, the authors predict that a ratio of positive to negative affect at or above 2.9 will characterize individuals in flourishing mental health. Participants (N=188) completed an initial survey to…

  8. Dynamic Positioning Capability Analysis for Marine Vessels Based on A DPCap Polar Plot Program

    Science.gov (United States)

    Wang, Lei; Yang, Jian-min; Xu, Sheng-wen

    2018-03-01

    Dynamic positioning capability (DPCap) analysis is essential in the selection of thrusters, in their configuration, and during preliminary investigation of the positioning ability of a newly designed vessel dynamic positioning system. DPCap analysis can help determine the maximum environmental forces, in which the DP system can counteract in given headings. The accuracy of the DPCap analysis is determined by the precise estimation of the environmental forces as well as the effectiveness of the thrust allocation logic. This paper is dedicated to developing an effective and efficient software program for the DPCap analysis for marine vessels. Estimation of the environmental forces can be obtained by model tests, hydrodynamic computation and empirical formulas. A quadratic programming method is adopted to allocate the total thrust on every thruster of the vessel. A detailed description of the thrust allocation logic of the software program is given. The effectiveness of the new program DPCap Polar Plot (DPCPP) was validated by a DPCap analysis for a supply vessel. The present study indicates that the developed program can be used in the DPCap analysis for marine vessels. Moreover, DPCap analysis considering the thruster failure mode might give guidance to the designers of vessels whose thrusters need to be safer.

  9. Dynamical Systems Conference

    CERN Document Server

    Gils, S; Hoveijn, I; Takens, F; Nonlinear Dynamical Systems and Chaos

    1996-01-01

    Symmetries in dynamical systems, "KAM theory and other perturbation theories", "Infinite dimensional systems", "Time series analysis" and "Numerical continuation and bifurcation analysis" were the main topics of the December 1995 Dynamical Systems Conference held in Groningen in honour of Johann Bernoulli. They now form the core of this work which seeks to present the state of the art in various branches of the theory of dynamical systems. A number of articles have a survey character whereas others deal with recent results in current research. It contains interesting material for all members of the dynamical systems community, ranging from geometric and analytic aspects from a mathematical point of view to applications in various sciences.

  10. The positive group affect spiral : a dynamic model of the emergence of positive affective similarity in work groups

    NARCIS (Netherlands)

    Walter, F.; Bruch, H.

    This conceptual paper seeks to clarify the process of the emergence of positive collective affect. Specifically, it develops a dynamic model of the emergence of positive affective similarity in work groups. It is suggested that positive group affective similarity and within-group relationship

  11. Systems approach to studying animal sociality: individual position versus group organization in dynamic social network models.

    Directory of Open Access Journals (Sweden)

    Karlo Hock

    2010-12-01

    Full Text Available Social networks can be used to represent group structure as a network of interacting components, and also to quantify both the position of each individual and the global properties of a group. In a series of simulation experiments based on dynamic social networks, we test the prediction that social behaviors that help individuals reach prominence within their social group may conflict with their potential to benefit from their social environment. In addition to cases where individuals were able to benefit from improving both their personal relative importance and group organization, using only simple rules of social affiliation we were able to obtain results in which individuals would face a trade-off between these factors. While selection would favor (or work against social behaviors that concordantly increase (or decrease, respectively fitness at both individual and group level, when these factors conflict with each other the eventual selective pressure would depend on the relative returns individuals get from their social environment and their position within it. The presented results highlight the importance of a systems approach to studying animal sociality, in which the effects of social behaviors should be viewed not only through the benefits that those provide to individuals, but also in terms of how they affect broader social environment and how in turn this is reflected back on an individual's fitness.

  12. Dynamic Systems and Control Engineering

    International Nuclear Information System (INIS)

    Kim, Jong Seok

    1994-02-01

    This book deals with introduction of dynamic system and control engineering, frequency domain modeling of dynamic system, temporal modeling of dynamic system, typical dynamic system and automatic control device, performance and stability of control system, root locus analysis, analysis of frequency domain dynamic system, design of frequency domain dynamic system, design and analysis of space, space of control system and digital control system such as control system design of direct digital and digitalization of consecutive control system.

  13. Dynamic Systems and Control Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Seok

    1994-02-15

    This book deals with introduction of dynamic system and control engineering, frequency domain modeling of dynamic system, temporal modeling of dynamic system, typical dynamic system and automatic control device, performance and stability of control system, root locus analysis, analysis of frequency domain dynamic system, design of frequency domain dynamic system, design and analysis of space, space of control system and digital control system such as control system design of direct digital and digitalization of consecutive control system.

  14. Positive Affect and the Complex Dynamics of Human Flourishing

    OpenAIRE

    Fredrickson, Barbara L.; Losada, Marcial F.

    2005-01-01

    Extending B. L. Fredrickson’s (1998) broaden-and-build theory of positive emotions and M. Losada’s (1999) nonlinear dynamics model of team performance, the authors predict that a ratio of positive to negative affect at or above 2.9 will characterize individuals in flourishing mental health. Participants (N = 188) completed an initial survey to identify flourishing mental health and then provided daily reports of experienced positive and negative emotions over 28 days. Results showed that the ...

  15. Resolution of a High Performance Cavity Beam Position Monitor System

    International Nuclear Information System (INIS)

    Walston, S.; Chung, C.; Fitsos, P.; Gronberg, J.; Ross, M.; Khainovski, O.; Kolomensky, Y.; Loscutoff, P.; Slater, M.; Thomson, M.; Ward, D.; Boogert, S.; Vogel, V.; Meller, R.; Lyapin, A.; Malton, S.; Miller, D.; Frisch, J.; Hinton, S.; May, J.; McCormick, D.; Smith, S.; Smith, T.; White, G.; Orimoto, T.; Hayano, H.; Honda, Y.; Terunuma, N.; Urakawa, J.

    2005-01-01

    International Linear Collider (ILC) interaction region beam sizes and component position stability requirements will be as small as a few nanometers. It is important to the ILC design effort to demonstrate that these tolerances can be achieved - ideally using beam-based stability measurements. It has been estimated that RF cavity beam position monitors (BPMs) could provide position measurement resolutions of less than one nanometer and could form the basis of the desired beam-based stability measurement. We have developed a high resolution RF cavity BPM system. A triplet of these BPMs has been installed in the extraction line of the KEK Accelerator Test Facility (ATF) for testing with its ultra-low emittance beam. A metrology system for the three BPMs was recently installed. This system employed optical encoders to measure each BPM's position and orientation relative to a zero-coefficient of thermal expansion carbon fiber frame and has demonstrated that the three BPMs behave as a rigid-body to less than 5 nm. To date, we have demonstrated a BPM resolution of less than 20 nm over a dynamic range of +/- 20 microns

  16. Position-Invariant Robust Features for Long-Term Recognition of Dynamic Outdoor Scenes

    Science.gov (United States)

    Kawewong, Aram; Tangruamsub, Sirinart; Hasegawa, Osamu

    A novel Position-Invariant Robust Feature, designated as PIRF, is presented to address the problem of highly dynamic scene recognition. The PIRF is obtained by identifying existing local features (i.e. SIFT) that have a wide baseline visibility within a place (one place contains more than one sequential images). These wide-baseline visible features are then represented as a single PIRF, which is computed as an average of all descriptors associated with the PIRF. Particularly, PIRFs are robust against highly dynamical changes in scene: a single PIRF can be matched correctly against many features from many dynamical images. This paper also describes an approach to using these features for scene recognition. Recognition proceeds by matching an individual PIRF to a set of features from test images, with subsequent majority voting to identify a place with the highest matched PIRF. The PIRF system is trained and tested on 2000+ outdoor omnidirectional images and on COLD datasets. Despite its simplicity, PIRF offers a markedly better rate of recognition for dynamic outdoor scenes (ca. 90%) than the use of other features. Additionally, a robot navigation system based on PIRF (PIRF-Nav) can outperform other incremental topological mapping methods in terms of time (70% less) and memory. The number of PIRFs can be reduced further to reduce the time while retaining high accuracy, which makes it suitable for long-term recognition and localization.

  17. Delay-Induced Consensus and Quasi-Consensus in Multi-Agent Dynamical Systems

    NARCIS (Netherlands)

    Yu, Wenwu; Chen, Guanrong; Cao, Ming; Ren, Wei

    2013-01-01

    This paper studies consensus and quasi-consensus in multi-agent dynamical systems. A linear consensus protocol in the second-order dynamics is designed where both the current and delayed position information is utilized. Time delay, in a common perspective, can induce periodic oscillations or even

  18. Dynamic Analysis of a Pendulum Dynamic Automatic Balancer

    Directory of Open Access Journals (Sweden)

    Jin-Seung Sohn

    2007-01-01

    Full Text Available The automatic dynamic balancer is a device to reduce the vibration from unbalanced mass of rotors. Instead of considering prevailing ball automatic dynamic balancer, pendulum automatic dynamic balancer is analyzed. For the analysis of dynamic stability and behavior, the nonlinear equations of motion for a system are derived with respect to polar coordinates by the Lagrange's equations. The perturbation method is applied to investigate the dynamic behavior of the system around the equilibrium position. Based on the linearized equations, the dynamic stability of the system around the equilibrium positions is investigated by the eigenvalue analysis.

  19. System Dynamics

    Science.gov (United States)

    Morecroft, John

    System dynamics is an approach for thinking about and simulating situations and organisations of all kinds and sizes by visualising how the elements fit together, interact and change over time. This chapter, written by John Morecroft, describes modern system dynamics which retains the fundamentals developed in the 1950s by Jay W. Forrester of the MIT Sloan School of Management. It looks at feedback loops and time delays that affect system behaviour in a non-linear way, and illustrates how dynamic behaviour depends upon feedback loop structures. It also recognises improvements as part of the ongoing process of managing a situation in order to achieve goals. Significantly it recognises the importance of context, and practitioner skills. Feedback systems thinking views problems and solutions as being intertwined. The main concepts and tools: feedback structure and behaviour, causal loop diagrams, dynamics, are practically illustrated in a wide variety of contexts from a hot water shower through to a symphony orchestra and the practical application of the approach is described through several real examples of its use for strategic planning and evaluation.

  20. Interactive Dynamic-System Simulation

    CERN Document Server

    Korn, Granino A

    2010-01-01

    Showing you how to use personal computers for modeling and simulation, Interactive Dynamic-System Simulation, Second Edition provides a practical tutorial on interactive dynamic-system modeling and simulation. It discusses how to effectively simulate dynamical systems, such as aerospace vehicles, power plants, chemical processes, control systems, and physiological systems. Written by a pioneer in simulation, the book introduces dynamic-system models and explains how software for solving differential equations works. After demonstrating real simulation programs with simple examples, the author

  1. Research of Control Strategy in the Large Electric Cylinder Position Servo System

    Directory of Open Access Journals (Sweden)

    Yongguang Liu

    2015-01-01

    Full Text Available An ideal positioning response is very difficult to realize in the large electric cylinder system that is applied in missile launcher because of the presence of many nonlinear factors such as load disturbance, parameter variations, lost motion, and friction. This paper presents a piecewise control strategy based on the optimized positioning principle. The combined application of position interpolation method and modified incremental PID with dead band is proposed and applied into control system. The experimental result confirms that this combined control strategy is not only simple to be applied into high accuracy real-time control system but also significantly improves dynamic response, steady accuracy, and anti-interference performance, which has very important significance to improve the smooth control of the large electric cylinder.

  2. On bounded and unbounded dynamics of the Hamiltonian system for unified scalar field cosmology

    International Nuclear Information System (INIS)

    Starkov, Konstantin E.

    2016-01-01

    This paper is devoted to the research of global dynamics for the Hamiltonian system formed by the unified scalar field cosmology. We prove that this system possesses only unbounded dynamics in the space of negative curvature. It is found the invariant domain filled only by unbounded dynamics for the space with positive curvature. Further, we construct a set of polytopes depending on the Hamiltonian level surface that contain all compact invariant sets. Besides, one invariant two dimensional plane is described. Finally, we establish nonchaoticity of dynamics in one special case. - Highlights: • Unbounded dynamics is stated in case of negative curvature. • Domain with unbounded dynamics is got in case of positive curvature. • Localization polytope for compact invariant sets is computed. • One two dimensional invariant plane is described. • Nonchaotic dynamics is stated in one special case.

  3. On bounded and unbounded dynamics of the Hamiltonian system for unified scalar field cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Starkov, Konstantin E., E-mail: kstarkov@ipn.mx

    2016-05-27

    This paper is devoted to the research of global dynamics for the Hamiltonian system formed by the unified scalar field cosmology. We prove that this system possesses only unbounded dynamics in the space of negative curvature. It is found the invariant domain filled only by unbounded dynamics for the space with positive curvature. Further, we construct a set of polytopes depending on the Hamiltonian level surface that contain all compact invariant sets. Besides, one invariant two dimensional plane is described. Finally, we establish nonchaoticity of dynamics in one special case. - Highlights: • Unbounded dynamics is stated in case of negative curvature. • Domain with unbounded dynamics is got in case of positive curvature. • Localization polytope for compact invariant sets is computed. • One two dimensional invariant plane is described. • Nonchaotic dynamics is stated in one special case.

  4. System dynamics with interaction discontinuity

    CERN Document Server

    Luo, Albert C J

    2015-01-01

    This book describes system dynamics with discontinuity caused by system interactions and presents the theory of flow singularity and switchability at the boundary in discontinuous dynamical systems. Based on such a theory, the authors address dynamics and motion mechanism of engineering discontinuous systems due to interaction. Stability and bifurcations of fixed points in nonlinear discrete dynamical systems are presented, and mapping dynamics are developed for analytical predictions of periodic motions in engineering discontinuous dynamical systems. Ultimately, the book provides an alternative way to discuss the periodic and chaotic behaviors in discontinuous dynamical systems.

  5. Position Control of Servo Systems Using Feed-Forward Friction Compensation

    International Nuclear Information System (INIS)

    Park, Min Gyu; Kim, Han Me; Shin, Jong Min; Kim, Jong Shik

    2009-01-01

    Friction is an important factor for precise position tracking control of servo systems. Servo systems with highly nonlinear friction are sensitive to the variation of operating condition. To overcome this problem, we use the LuGre friction model which can consider dynamic characteristics of friction. The LuGre friction model is used as a feed-forward compensator to improve tracking performance of servo systems. The parameters of the LuGre friction model are identified through experiments. The experimental result shows that the tracking performance of servo systems with higherly nonlinear friction can be improved by using feed-forward friction compensation

  6. Estimation method of finger tapping dynamics using simple magnetic detection system.

    Science.gov (United States)

    Kandori, Akihiko; Sano, Yuko; Miyashita, Tsuyoshi; Okada, Yoshihisa; Irokawa, Masataka; Shima, Keisuke; Tsuji, Toshio; Yokoe, Masaru; Sakoda, Saburo

    2010-05-01

    We have developed the simple estimation method of a finger tapping dynamics model for investigating muscle resistance and stiffness during tapping movement in normal subjects. We measured finger tapping movements of 207 normal subjects using a magnetic finger tapping detection system. Each subject tapped two fingers in time with a metronome at 1, 2, 3, 4, and 5 Hz. The velocity and acceleration values for both the closing and opening tapping data were used to estimate a finger tapping dynamics model. Using the frequency response of the ratio of acceleration to velocity of the mechanical impedance parameters, we estimated the resistance (friction coefficient) and compliance (stiffness). We found two dynamics models for the maximum open position and tap position. In the maximum open position, the extensor muscle resistance was twice as high as the flexor muscle resistance and males had a higher spring constant. In the tap position, the flexor muscle resistance was much higher than the extensor muscle resistance. This indicates that the tapping dynamics in the maximum open position are controlled by the balance of extensor and flexor muscle friction resistances and the flexor stiffness, and the flexor friction resistance is the main component in the tap position. It can be concluded that our estimation method makes it possible to understand the tapping dynamics.

  7. Estimation method of finger tapping dynamics using simple magnetic detection system

    Science.gov (United States)

    Kandori, Akihiko; Sano, Yuko; Miyashita, Tsuyoshi; Okada, Yoshihisa; Irokawa, Masataka; Shima, Keisuke; Tsuji, Toshio; Yokoe, Masaru; Sakoda, Saburo

    2010-05-01

    We have developed the simple estimation method of a finger tapping dynamics model for investigating muscle resistance and stiffness during tapping movement in normal subjects. We measured finger tapping movements of 207 normal subjects using a magnetic finger tapping detection system. Each subject tapped two fingers in time with a metronome at 1, 2, 3, 4, and 5 Hz. The velocity and acceleration values for both the closing and opening tapping data were used to estimate a finger tapping dynamics model. Using the frequency response of the ratio of acceleration to velocity of the mechanical impedance parameters, we estimated the resistance (friction coefficient) and compliance (stiffness). We found two dynamics models for the maximum open position and tap position. In the maximum open position, the extensor muscle resistance was twice as high as the flexor muscle resistance and males had a higher spring constant. In the tap position, the flexor muscle resistance was much higher than the extensor muscle resistance. This indicates that the tapping dynamics in the maximum open position are controlled by the balance of extensor and flexor muscle friction resistances and the flexor stiffness, and the flexor friction resistance is the main component in the tap position. It can be concluded that our estimation method makes it possible to understand the tapping dynamics.

  8. Quantum speed limits in open system dynamics.

    Science.gov (United States)

    del Campo, A; Egusquiza, I L; Plenio, M B; Huelga, S F

    2013-02-01

    Bounds to the speed of evolution of a quantum system are of fundamental interest in quantum metrology, quantum chemical dynamics, and quantum computation. We derive a time-energy uncertainty relation for open quantum systems undergoing a general, completely positive, and trace preserving evolution which provides a bound to the quantum speed limit. When the evolution is of the Lindblad form, the bound is analogous to the Mandelstam-Tamm relation which applies in the unitary case, with the role of the Hamiltonian being played by the adjoint of the generator of the dynamical semigroup. The utility of the new bound is exemplified in different scenarios, ranging from the estimation of the passage time to the determination of precision limits for quantum metrology in the presence of dephasing noise.

  9. Dynamics Determine Signaling in a Multicomponent System Associated with Rheumatoid Arthritis.

    Science.gov (United States)

    Lindgren, Cecilia; Tyagi, Mohit; Viljanen, Johan; Toms, Johannes; Ge, Changrong; Zhang, Naru; Holmdahl, Rikard; Kihlberg, Jan; Linusson, Anna

    2018-05-24

    Strategies that target multiple components are usually required for treatment of diseases originating from complex biological systems. The multicomponent system consisting of the DR4 major histocompatibility complex type II molecule, the glycopeptide CII259-273 from type II collagen, and a T-cell receptor is associated with development of rheumatoid arthritis (RA). We introduced non-native amino acids and amide bond isosteres into CII259-273 and investigated the effect on binding to DR4 and the subsequent T-cell response. Molecular dynamics simulations revealed that complexes between DR4 and derivatives of CII259-273 were highly dynamic. Signaling in the overall multicomponent system was found to depend on formation of an appropriate number of dynamic intramolecular hydrogen bonds between DR4 and CII259-273, together with the positioning of the galactose moiety of CII259-273 in the DR4 binding groove. Interestingly, the system tolerated modifications at several positions in CII259-273, indicating opportunities to use analogues to increase our understanding of how rheumatoid arthritis develops and for evaluation as vaccines to treat RA.

  10. Quantum speed limits in open system dynamics

    OpenAIRE

    del Campo, A.; Egusquiza, I. L.; Plenio, M. B.; Huelga, S. F.

    2012-01-01

    Bounds to the speed of evolution of a quantum system are of fundamental interest in quantum metrology, quantum chemical dynamics and quantum computation. We derive a time-energy uncertainty relation for open quantum systems undergoing a general, completely positive and trace preserving (CPT) evolution which provides a bound to the quantum speed limit. When the evolution is of the Lindblad form, the bound is analogous to the Mandelstam-Tamm relation which applies in the unitary case, with the ...

  11. An energy-saving nonlinear position control strategy for electro-hydraulic servo systems.

    Science.gov (United States)

    Baghestan, Keivan; Rezaei, Seyed Mehdi; Talebi, Heidar Ali; Zareinejad, Mohammad

    2015-11-01

    The electro-hydraulic servo system (EHSS) demonstrates numerous advantages in size and performance compared to other actuation methods. Oftentimes, its utilization in industrial and machinery settings is limited by its inferior efficiency. In this paper, a nonlinear backstepping control algorithm with an energy-saving approach is proposed for position control in the EHSS. To achieve improved efficiency, two control valves including a proportional directional valve (PDV) and a proportional relief valve (PRV) are used to achieve the control objectives. To design the control algorithm, the state space model equations of the system are transformed to their normal form and the control law through the PDV is designed using a backstepping approach for position tracking. Then, another nonlinear set of laws is derived to achieve energy-saving through the PRV input. This control design method, based on the normal form representation, imposes internal dynamics on the closed-loop system. The stability of the internal dynamics is analyzed in special cases of operation. Experimental results verify that both tracking and energy-saving objectives are satisfied for the closed-loop system. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  12. Optimization of detectors positioning with respect to flying dynamics for future formation flight missions

    Science.gov (United States)

    Civitani, Marta; Djalal, Sophie; Chipaux, Remi

    2009-08-01

    In a X-ray telescope in formation flight configuration, the optics and the focal-plane detectors reside in two different spacecraft. The dynamics of the detector spacecraft (DSC) with respect to the mirror spacecraft (MSC, carrying the mirrors of the telescope) changes continuously the arrival positions of the photons on the detectors. In this paper we analyze this issue for the case of the SIMBOL-X hard X-ray mission, extensively studied by CNES and ASI until 2009 spring. Due to the existing gaps between pixels and between detector modules, the dynamics of the system may produce a relevant photometric effect. The aim of this work is to present the optimization study of the control-law algorithm with respect to the detector's geometry. As the photometric effect may vary depending upon position of the source image on the detector, the analysis-carried out using the simuLOS (INAF, CNES, CEA) simulation tool-is extended over the entire SIMBOL-X field of view.

  13. Harsh parenting, child behavior problems, and the dynamic coupling of parents' and children's positive behaviors.

    Science.gov (United States)

    Lunkenheimer, Erika; Ram, Nilam; Skowron, Elizabeth A; Yin, Peifeng

    2017-09-01

    We examined self-reported maternal and paternal harsh parenting (HP) and its effect on the moment-to-moment dynamic coupling of maternal autonomy support and children's positive, autonomous behavior. This positive behavior coupling was measured via hidden Markov models as the likelihood of transitions into specific positive dyadic states in real time. We also examined whether positive behavior coupling, in turn, predicted later HP and child behavior problems. Children (N = 96; age = 3.5 years at Time 1) and mothers completed structured clean-up and puzzle tasks in the laboratory. Mothers' and fathers' HP was associated with children's being less likely to respond positively to maternal autonomy support; mothers' HP was also associated with mothers' being less likely to respond positively to children's autonomous behavior. When mothers responded to children's autonomous behavior with greater autonomy support, children showed fewer externalizing and internalizing problems over time and mothers showed less HP over time. These results were unique to the dynamic coupling of maternal autonomy support and children's autonomous behavior: The overall amount of these positive behaviors did not similarly predict reduced problems. Findings suggest that HP in the family system compromises the coregulation of positive behavior between mother and child and that improving mothers' and children's abilities to respond optimally to one another's autonomy-supportive behaviors may reduce HP and child behavior problems over time. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  14. On the constraints violation in forward dynamics of multibody systems

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Filipe [University of Minho, Department of Mechanical Engineering (Portugal); Souto, António P. [University of Minho, Department of Textile Engineering (Portugal); Flores, Paulo, E-mail: pflores@dem.uminho.pt [University of Minho, Department of Mechanical Engineering (Portugal)

    2017-04-15

    It is known that the dynamic equations of motion for constrained mechanical multibody systems are frequently formulated using the Newton–Euler’s approach, which is augmented with the acceleration constraint equations. This formulation results in the establishment of a mixed set of partial differential and algebraic equations, which are solved in order to predict the dynamic behavior of general multibody systems. The classical solution of the equations of motion is highly prone to constraints violation because the position and velocity constraint equations are not fulfilled. In this work, a general and comprehensive methodology to eliminate the constraints violation at the position and velocity levels is offered. The basic idea of the described approach is to add corrective terms to the position and velocity vectors with the intent to satisfy the corresponding kinematic constraint equations. These corrective terms are evaluated as a function of the Moore–Penrose generalized inverse of the Jacobian matrix and of the kinematic constraint equations. The described methodology is embedded in the standard method to solve the equations of motion based on the technique of Lagrange multipliers. Finally, the effectiveness of the described methodology is demonstrated through the dynamic modeling and simulation of different planar and spatial multibody systems. The outcomes in terms of constraints violation at the position and velocity levels, conservation of the total energy and computational efficiency are analyzed and compared with those obtained with the standard Lagrange multipliers method, the Baumgarte stabilization method, the augmented Lagrangian formulation, the index-1 augmented Lagrangian, and the coordinate partitioning method.

  15. Simulation of longitudinal dynamics of long freight trains in positioning operations

    Science.gov (United States)

    Qi, Zhaohui; Huang, Zhihao; Kong, Xianchao

    2012-09-01

    Positioning operations are performed in a railway goods yard, in which the freight train is pulled precisely at a specific point by a positioner. The positioner moves strictly according to the predesigned speed and provides all the traction and braking forces which are highly dependent on the longitudinal dynamic response. In order to improve the efficiency and protect the wagons from damage during positioning operations, the design speed of the positioner has to be optimised based on the simulation of longitudinal train dynamics. However, traditional models of longitudinal train dynamics are not accurate enough in some aspects. In this study, we make some changes in the traditional theory to make it suitable for the study of long freight trains in positioning operations. In the proposed method, instead of the traction force on the train, the motion of the positioner is assumed to be known; more importantly, the traditional draft gear model with nonlinear spring and linear damping is replaced by a more detailed model based on the achievement of contact and impact mechanics; the switching effects of the resistance and the coupler slack are also taken into consideration. Numerical examples that deal with positioning operations on the straight lines, slope lines and curving lines are given.

  16. An Explicit Formulation of Singularity-Free Dynamic Equations of Mechanical Systems in Lagrangian Form---Part Two: Multibody Systems

    Directory of Open Access Journals (Sweden)

    Pål Johan From

    2012-04-01

    Full Text Available This paper presents the explicit dynamic equations of multibody mechanical systems. This is the second paper on this topic. In the first paper the dynamics of a single rigid body from the Boltzmann--Hamel equations were derived. In this paper these results are extended to also include multibody systems. We show that when quasi-velocities are used, the part of the dynamic equations that appear from the partial derivatives of the system kinematics are identical to the single rigid body case, but in addition we get terms that come from the partial derivatives of the inertia matrix, which are not present in the single rigid body case. We present for the first time the complete and correct derivation of multibody systems based on the Boltzmann--Hamel formulation of the dynamics in Lagrangian form where local position and velocity variables are used in the derivation to obtain the singularity-free dynamic equations. The final equations are written in global variables for both position and velocity. The main motivation of these papers is to allow practitioners not familiar with differential geometry to implement the dynamic equations of rigid bodies without the presence of singularities. Presenting the explicit dynamic equations also allows for more insight into the dynamic structure of the system. Another motivation is to correct some errors commonly found in the literature. Unfortunately, the formulation of the Boltzmann-Hamel equations used here are presented incorrectly. This has been corrected by the authors, but we present here, for the first time, the detailed mathematical details on how to arrive at the correct equations. We also show through examples that using the equations presented here, the dynamics of a single rigid body is reduced to the standard equations on a Lagrangian form, for example Euler's equations for rotational motion and Euler--Lagrange equations for free motion.

  17. Truly random dynamics generated by autonomous dynamical systems

    Science.gov (United States)

    González, J. A.; Reyes, L. I.

    2001-09-01

    We investigate explicit functions that can produce truly random numbers. We use the analytical properties of the explicit functions to show that a certain class of autonomous dynamical systems can generate random dynamics. This dynamics presents fundamental differences with the known chaotic systems. We present real physical systems that can produce this kind of random time-series. Some applications are discussed.

  18. Predictive IP controller for robust position control of linear servo system.

    Science.gov (United States)

    Lu, Shaowu; Zhou, Fengxing; Ma, Yajie; Tang, Xiaoqi

    2016-07-01

    Position control is a typical application of linear servo system. In this paper, to reduce the system overshoot, an integral plus proportional (IP) controller is used in the position control implementation. To further improve the control performance, a gain-tuning IP controller based on a generalized predictive control (GPC) law is proposed. Firstly, to represent the dynamics of the position loop, a second-order linear model is used and its model parameters are estimated on-line by using a recursive least squares method. Secondly, based on the GPC law, an optimal control sequence is obtained by using receding horizon, then directly supplies the IP controller with the corresponding control parameters in the real operations. Finally, simulation and experimental results are presented to show the efficiency of proposed scheme. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Self-tuning control studies of the plasma vertical position problem

    International Nuclear Information System (INIS)

    Zheng, Guang Lin; Wellstead, P.E.; Browne, M.L.

    1993-01-01

    The plasma vertical position system in a tokamak device can be open-loop unstable with time-varying dynamics, such that the instability increases with system dynamical changes. Time-varying unstable dynamics makes the plasma vertical position a particularly difficult one to control with traditional fixed-coefficient controllers. A self-tuning technique offers a new solution of the plasma vertical position control problem by an adaptive control approach. Specifically, the self-tuning controller automatically tunes the controller parameters without an a priori knowledge of the system dynamics and continuously tracks dynamical changes within the system, thereby providing the system with auto-tuning and adaptive tuning capabilities. An overview of the self-tuning methods is given, and their applicability to a simulation of the Joint European Torus (JET) vertical plasma positions system is illustrated. Specifically, the applicability of pole-assignment and generalized predictive control self-tuning methods to the vertical plasma position system is demonstrated. 26 refs., 16 figs., 1 tab

  20. What are System Dynamics Insights?

    OpenAIRE

    Stave, K.; Zimmermann, N. S.; Kim, H.

    2016-01-01

    This paper explores the concept of system dynamics insights. In our field, the term “insight” is generally understood to mean dynamic insight, that is, a deep understanding about the relationship between structure and behavior. We argue this is only one aspect of the range of insights possible from system dynamics activities, and describe a broader range of potential system dynamics insights. We also propose an initial framework for discussion that relates different types of system dynamics a...

  1. Critical Dynamics of the Xy-Model on the One-Dimensional Superlattice by Position Space Renormalization Group

    Science.gov (United States)

    Lima, J. P. De; Gonçalves, L. L.

    The critical dynamics of the isotropic XY-model on the one-dimensional superlattice is considered in the framework of the position space renormalization group theory. The decimation transformation is introduced by considering the equations of motion of the operators associated to the excitations of the system, and it corresponds to an extension of the procedure introduced by Stinchcombe and dos Santos (J. Phys. A18, L597 (1985)) for the homogeneous lattice. The dispersion relation is obtained exactly and the static and dynamic scaling forms are explicitly determined. The dynamic critical exponent is also obtained and it is shown that it is identical to the one of the XY-model on the homogeneous chain.

  2. Research on the Hysteresis Effect on Positioning the System with Flexible Elements

    Directory of Open Access Journals (Sweden)

    Audrius Čereška

    2015-03-01

    Full Text Available The paper analyzes the hysteresis phenomenon of positioning systems with flexible elements for transmitting motion of which piezoelectric actuators are used. The article investigates the influence of hysteresis on the accuracy of positioning systems. A special test bench for conducting research and stand-up methodology for carrying out experimental researches have been used. The test bench includes a computer piezo controller, an inductive displacement sensor and a dynamic data collector used for gathering data and transmitting it to the software package. Mathematical modelling of hysteresis using Matlab/Simulink software package has been done. The performed research has shown that the hysteresis model of maximum dispersion error compared to experimental results makes less than 5%. Thus, it can be stated that the selected method for hysteresis modelling is suitable for precision positioning systems having deformable elements and controlled employing piezoelectric actuators to model hysteresis.

  3. Quantitative Assessment of the Effects of Orientational and Positional Disorder on Glassy Dynamics

    International Nuclear Information System (INIS)

    Ramos, M.; Vieira, S.; Bermejo, F.; Dawidowski, J.; Fischer, H.; Schober, H.; Gonzalez, M.; Loong, C.; Price, D.

    1997-01-01

    The microscopic dynamics of several phases of solid ethanol are studied under the same thermodynamic conditions by inelastic neutron scattering. It is found that the vibrational density of states of the orientational glass phase, where the molecules are arranged on an ordered lattice but with disordered orientations, is very similar to that of the structural glass phase, where the molecules are disordered both in position and orientation. Low-temperature specific heat measurements on the same phases strongly support the neutron measurements. We therefore find that positional disorder, even in a stoichiometrically homogeneous system such as ethanol, is not essential for the manifestation of glasslike behavior to an extent comparable with that exhibited by the structural glass. copyright 1996 The American Physical Society

  4. Mandibular position influence on pilots' postural balance analyzed under dynamic conditions.

    Science.gov (United States)

    Baldini, Alberto; Nota, Alessandro; Cioffi, Clementina; Ballanti, Fabiana; Tecco, Simona

    2017-11-01

    The aim of this study is to evaluate the influence of the mandibular position on the postural stability in a sample of civilian and military pilots. Twenty military pilots (males, mean age 35.15 ± 3.14 years) and 17 civilian pilots (males, mean 34.91 ± 2.15 years) were enrolled in this study and underwent a Sensory Organization Test (SOT) using the EquiTest® (NeuroCom International Inc., Clackamas, OR, USA) computerized dynamic posturography. The composite parameter was recorded and analyzed. The equilibrium score (ES) recorded in centric occlusion is slightly higher than the ES recorded in mandibular rest position; civilian pilots showed ESs slightly higher than military pilots. The two-way ANOVA analysis shows these differences are not statistically significant. The findings of this study seem to suggest that the composite parameter of the SOT is not sensitive in analyzing the influence of the stomatognathic system on the postural balance of civilian and military pilots.

  5. Platform Architecture for Decentralized Positioning Systems

    Directory of Open Access Journals (Sweden)

    Zakaria Kasmi

    2017-04-01

    Full Text Available A platform architecture for positioning systems is essential for the realization of a flexible localization system, which interacts with other systems and supports various positioning technologies and algorithms. The decentralized processing of a position enables pushing the application-level knowledge into a mobile station and avoids the communication with a central unit such as a server or a base station. In addition, the calculation of the position on low-cost and resource-constrained devices presents a challenge due to the limited computing, storage capacity, as well as power supply. Therefore, we propose a platform architecture that enables the design of a system with the reusability of the components, extensibility (e.g., with other positioning technologies and interoperability. Furthermore, the position is computed on a low-cost device such as a microcontroller, which simultaneously performs additional tasks such as data collecting or preprocessing based on an operating system. The platform architecture is designed, implemented and evaluated on the basis of two positioning systems: a field strength system and a time of arrival-based positioning system.

  6. Spaces of Dynamical Systems

    CERN Document Server

    Pilyugin, Sergei Yu

    2012-01-01

    Dynamical systems are abundant in theoretical physics and engineering. Their understanding, with sufficient mathematical rigor, is vital to solving many problems. This work conveys the modern theory of dynamical systems in a didactically developed fashion.In addition to topological dynamics, structural stability and chaotic dynamics, also generic properties and pseudotrajectories are covered, as well as nonlinearity. The author is an experienced book writer and his work is based on years of teaching.

  7. Stability of dynamical systems

    CERN Document Server

    Liao, Xiaoxin; Yu, P 0

    2007-01-01

    The main purpose of developing stability theory is to examine dynamic responses of a system to disturbances as the time approaches infinity. It has been and still is the object of intense investigations due to its intrinsic interest and its relevance to all practical systems in engineering, finance, natural science and social science. This monograph provides some state-of-the-art expositions of major advances in fundamental stability theories and methods for dynamic systems of ODE and DDE types and in limit cycle, normal form and Hopf bifurcation control of nonlinear dynamic systems.ʺ Presents

  8. Study of Globus-M Tokamak Poloidal System and Plasma Position Control

    Science.gov (United States)

    Dokuka, V. N.; Korenev, P. S.; Mitrishkin, Yu. V.; Pavlova, E. A.; Patrov, M. I.; Khayrutdinov, R. R.

    2017-12-01

    In order to provide efficient performance of tokamaks with vertically elongated plasma position, control systems for limited and diverted plasma configuration are required. The accuracy, stability, speed of response, and reliability of plasma position control as well as plasma shape and current control depend on the performance of the control system. Therefore, the problem of the development of such systems is an important and actual task in modern tokamaks. In this study, the measured signals from the magnetic loops and Rogowski coils are used to reconstruct the plasma equilibrium, for which linear models in small deviations are constructed. We apply methods of the H∞-optimization theory to the synthesize control system for vertical and horizontal position of plasma capable to working with structural uncertainty of the models of the plant. These systems are applied to the plasma-physical DINA code which is configured for the tokamak Globus-M plasma. The testing of the developed systems applied to the DINA code with Heaviside step functions have revealed the complex dynamics of plasma magnetic configurations. Being close to the bifurcation point in the parameter space of unstable plasma has made it possible to detect an abrupt change in the X-point position from the top to the bottom and vice versa. Development of the methods for reconstruction of plasma magnetic configurations and experience in designing plasma control systems with feedback for tokamaks provided an opportunity to synthesize new digital controllers for plasma vertical and horizontal position stabilization. It also allowed us to test the synthesized digital controllers in the closed loop of the control system with the DINA code as a nonlinear model of plasma.

  9. Nonlinear normal vibration modes in the dynamics of nonlinear elastic systems

    International Nuclear Information System (INIS)

    Mikhlin, Yu V; Perepelkin, N V; Klimenko, A A; Harutyunyan, E

    2012-01-01

    Nonlinear normal modes (NNMs) are a generalization of the linear normal vibrations. By the Kauderer-Rosenberg concept in the regime of the NNM all position coordinates are single-values functions of some selected position coordinate. By the Shaw-Pierre concept, the NNM is such a regime when all generalized coordinates and velocities are univalent functions of a couple of dominant (active) phase variables. The NNMs approach is used in some applied problems. In particular, the Kauderer-Rosenberg NNMs are analyzed in the dynamics of some pendulum systems. The NNMs of forced vibrations are investigated in a rotor system with an isotropic-elastic shaft. A combination of the Shaw-Pierre NNMs and the Rauscher method is used to construct the forced NNMs and the frequency responses in the rotor dynamics.

  10. Modeling and controller design of a 6-DOF precision positioning system

    Science.gov (United States)

    Cai, Kunhai; Tian, Yanling; Liu, Xianping; Fatikow, Sergej; Wang, Fujun; Cui, Liangyu; Zhang, Dawei; Shirinzadeh, Bijan

    2018-05-01

    A key hurdle to meet the needs of micro/nano manipulation in some complex cases is the inadequate workspace and flexibility of the operation ends. This paper presents a 6-degree of freedom (DOF) serial-parallel precision positioning system, which consists of two compact type 3-DOF parallel mechanisms. Each parallel mechanism is driven by three piezoelectric actuators (PEAs), guided by three symmetric T-shape hinges and three elliptical flexible hinges, respectively. It can extend workspace and improve flexibility of the operation ends. The proposed system can be assembled easily, which will greatly reduce the assembly errors and improve the positioning accuracy. In addition, the kinematic and dynamic model of the 6-DOF system are established, respectively. Furthermore, in order to reduce the tracking error and improve the positioning accuracy, the Discrete-time Model Predictive Controller (DMPC) is applied as an effective control method. Meanwhile, the effectiveness of the DMCP control method is verified. Finally, the tracking experiment is performed to verify the tracking performances of the 6-DOF stage.

  11. Error Analysis System for Spacecraft Navigation Using the Global Positioning System (GPS)

    Science.gov (United States)

    Truong, S. H.; Hart, R. C.; Hartman, K. R.; Tomcsik, T. L.; Searl, J. E.; Bernstein, A.

    1997-01-01

    The Flight Dynamics Division (FDD) at the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) is currently developing improved space-navigation filtering algorithms to use the Global Positioning System (GPS) for autonomous real-time onboard orbit determination. In connection with a GPS technology demonstration on the Small Satellite Technology Initiative (SSTI)/Lewis spacecraft, FDD analysts and programmers have teamed with the GSFC Guidance, Navigation, and Control Branch to develop the GPS Enhanced Orbit Determination Experiment (GEODE) system. The GEODE system consists of a Kalman filter operating as a navigation tool for estimating the position, velocity, and additional states required to accurately navigate the orbiting Lewis spacecraft by using astrodynamic modeling and GPS measurements from the receiver. A parallel effort at the FDD is the development of a GPS Error Analysis System (GEAS) that will be used to analyze and improve navigation filtering algorithms during development phases and during in-flight calibration. For GEAS, the Kalman filter theory is extended to estimate the errors in position, velocity, and other error states of interest. The estimation of errors in physical variables at regular intervals will allow the time, cause, and effect of navigation system weaknesses to be identified. In addition, by modeling a sufficient set of navigation system errors, a system failure that causes an observed error anomaly can be traced and accounted for. The GEAS software is formulated using Object Oriented Design (OOD) techniques implemented in the C++ programming language on a Sun SPARC workstation. The Phase 1 of this effort is the development of a basic system to be used to evaluate navigation algorithms implemented in the GEODE system. This paper presents the GEAS mathematical methodology, systems and operations concepts, and software design and implementation. Results from the use of the basic system to evaluate

  12. Bifurcation and complex dynamics of a discrete-time predator-prey system

    Directory of Open Access Journals (Sweden)

    S. M. Sohel Rana

    2015-06-01

    Full Text Available In this paper, we investigate the dynamics of a discrete-time predator-prey system of Holling-I type in the closed first quadrant R+2. The existence and local stability of positive fixed point of the discrete dynamical system is analyzed algebraically. It is shown that the system undergoes a flip bifurcation and a Neimark-Sacker bifurcation in the interior of R+2 by using bifurcation theory. It has been found that the dynamical behavior of the model is very sensitive to the parameter values and the initial conditions. Numerical simulation results not only show the consistence with the theoretical analysis but also display the new and interesting dynamic behaviors, including phase portraits, period-9, 10, 20-orbits, attracting invariant circle, cascade of period-doubling bifurcation from period-20 leading to chaos, quasi-periodic orbits, and sudden disappearance of the chaotic dynamics and attracting chaotic set. In particular, we observe that when the prey is in chaotic dynamic, the predator can tend to extinction or to a stable equilibrium. The Lyapunov exponents are numerically computed to characterize the complexity of the dynamical behaviors. The analysis and results in this paper are interesting in mathematics and biology.

  13. Synchronization of two chaotic systems: Dynamic compensator approach

    International Nuclear Information System (INIS)

    Chen, C.-K.; Lai, T.-W.; Yan, J.-J.; Liao, T.-L.

    2009-01-01

    This study is concerned with the identical synchronization problem for a class of chaotic systems. A dynamic compensator is proposed to achieve the synchronization between master and slave chaotic systems using only the accessible output variables. A sufficient condition is also proposed to ensure the global synchronization. Furthermore, the strictly positive real (SPR) restriction, which is normally required in most of the observer-based synchronization schemes, is released in our approach. Two numerical examples are included to illustrate the proposed scheme.

  14. Self-powered 'AND' logic circuit of dynamic type with positive safety and application of said 'AND' circuit

    International Nuclear Information System (INIS)

    Lefebvre, Claude; Therond, J.P.

    1974-01-01

    The present invention relates to a self-powered 'AND' logic circuit of dynamic type with positive safety, which delivers on duty operation an output signal equal to the logic product of the input logic signals. The invention relates also to the use of said 'AND' logic circuits in developing n/m logics also of dynamic types with positive safety, delivering on duty operation a zero valued signal when, at least n of the m input signals have the value zero. This type of logics can be inserted in nuclear reactor protection systems; when the value of the reactor operating physical characteristics go out of the safety margins, or true trouble affects 'AND' circuits the value of the output signal is zero, that triggers off the safety absorber drap, for instance [fr

  15. Maintenance grouping strategy for multi-component systems with dynamic contexts

    International Nuclear Information System (INIS)

    Vu, Hai Canh; Do, Phuc; Barros, Anne; Bérenguer, Christophe

    2014-01-01

    This paper presents a dynamic maintenance grouping strategy for multi-component systems with both “positive” and “negative” economic dependencies. Positive dependencies are commonly due to setup cost whereas negative dependencies are related to shutdown cost. Actually, grouping maintenance activities can save part of the setup cost, but can also in the same time increase the shutdown cost. Until now, both types of dependencies have been jointly taken into account only for simple system structures as pure series. The first aim of this paper is to investigate the case of systems with any combination of basic structures (series, parallel or k-out-of n structures). A cost model and a heuristic optimization scheme are proposed since the optimization of maintenance grouping strategy for such multi-component systems leads to a NP-complete problem. Then the second objective is to propose a finite horizon (dynamic) model in order to optimize online the maintenance strategy in the presence of dynamic contexts (change of the environment, the working condition, the production process, etc). A numerical example of a 16-component system is finally introduced to illustrate the use and the advantages of the proposed approach in the maintenance optimization framework. - Highlights: • A dynamic grouping maintenance strategy for complex structure systems is proposed. • Impacts of the system structure on grouping maintenance are investigated. • A grouping approach based on the rolling horizon and GA algorithm is proposed. • Different dynamic contexts and their impacts on grouping maintenance are studied. • The proposed approach can help to update the maintenance planning in dynamic contexts

  16. 77 FR 62247 - Dynamic Positioning Operations Guidance for Vessels Other Than Mobile Offshore Drilling Units...

    Science.gov (United States)

    2012-10-12

    ... Operations Guidance for Vessels Other Than Mobile Offshore Drilling Units Operating on the U.S. Outer... ``Mobile Offshore Drilling Unit Dynamic Positioning Guidance''. The notice recommended owners and operators of Mobile Offshore Drilling Units (MODUs) follow Marine Technology Society (MTS) Dynamic Positioning...

  17. Gait Dynamics Sensing Using IMU Sensor Array System

    Directory of Open Access Journals (Sweden)

    Slavomir Kardos

    2017-01-01

    Full Text Available The article deals with a progressive approach in gait sensing. It is incorporated by IMU (Inertia Measurement Unit complex sensors whose field of acting is mainly the motion sensing in medicine, automotive and other industry, self-balancing systems, etc. They allow acquiring the position and orientation of an object in 3D space. Using several IMU units the sensing array for gait dynamics was made. Based on human gait analysis the 7-sensor array was designed to build a gait motion dynamics sensing system with the possibility of graphical interpretation of data from the sensing modules in real-time graphical application interface under the LabVIEW platform. The results of analyses can serve as the information for medical diagnostic purposes. The main control part of the system is microcontroller, whose function is to control the data collection and flow, provide the communication and power management.

  18. Experimental Exploration of RSSI Model for the Vehicle Intelligent Position System

    Directory of Open Access Journals (Sweden)

    Zhichao Cao

    2015-01-01

    Full Text Available Vehicle intelligent position systems based on Received Signal Strength Indicator (RSSI in Wireless Sensor Networks (WSNs are efficiently utilized. The vehicle’s position accuracy is of great importance for transportation behaviors, such as dynamic vehicle routing problems and multiple pedestrian routing choice behaviors and so on. Therefore, a precise position and available optimization is necessary for total parameters of conventional RSSI model. In this papar, we investigate the experimental performance of translating the power measurements to corresponding distance between each pair of nodes. The priori knowledge about the environment interference could impact the accuracy of vehicles’s position and the reliability of paremeters greatly. Based on the real-world outdoor experiments, we compares different regression analysis of the RSSI model, in order to establish a calibration scheme on RSSI model. We showed that the average error of RSSI model is able to decrease throughout the rules of environmental factor n and shadowing factor ? respectively. Moreover, the calculation complexity is reduced. Since variation tendency of environmental factor n, shadowing factor ? with distance and signal strength could be simulated respectively, RSSI model fulfills the precision of the vehicle intelligent position system.

  19. Incorporating Social System Dynamics into the Food-Energy-Water System Resilience-Sustainability Modeling Process

    Science.gov (United States)

    Givens, J.; Padowski, J.; Malek, K.; Guzman, C.; Boll, J.; Adam, J. C.; Witinok-Huber, R.

    2017-12-01

    In the face of climate change and multi-scalar governance objectives, achieving resilience of food-energy-water (FEW) systems requires interdisciplinary approaches. Through coordinated modeling and management efforts, we study "Innovations in the Food-Energy-Water Nexus (INFEWS)" through a case-study in the Columbia River Basin. Previous research on FEW system management and resilience includes some attention to social dynamics (e.g., economic, governance); however, more research is needed to better address social science perspectives. Decisions ultimately taken in this river basin would occur among stakeholders encompassing various institutional power structures including multiple U.S. states, tribal lands, and sovereign nations. The social science lens draws attention to the incompatibility between the engineering definition of resilience (i.e., return to equilibrium or a singular stable state) and the ecological and social system realities, more explicit in the ecological interpretation of resilience (i.e., the ability of a system to move into a different, possibly more resilient state). Social science perspectives include but are not limited to differing views on resilience as normative, system persistence versus transformation, and system boundary issues. To expand understanding of resilience and objectives for complex and dynamic systems, concepts related to inequality, heterogeneity, power, agency, trust, values, culture, history, conflict, and system feedbacks must be more tightly integrated into FEW research. We identify gaps in knowledge and data, and the value and complexity of incorporating social components and processes into systems models. We posit that socio-biophysical system resilience modeling would address important complex, dynamic social relationships, including non-linear dynamics of social interactions, to offer an improved understanding of sustainable management in FEW systems. Conceptual modeling that is presented in our study, represents

  20. Second-Order Consensus for Multiagent Systems With Directed Topologies and Nonlinear Dynamics

    NARCIS (Netherlands)

    Yu, Wenwu; Chen, Guanrong; Cao, Ming; Kurths, Juergen; Kurths, Jürgen

    This paper considers a second-order consensus problem for multiagent systems with nonlinear dynamics and directed topologies where each agent is governed by both position and velocity consensus terms with a time-varying asymptotic velocity. To describe the system's ability for reaching consensus, a

  1. Continuous, saturation, and discontinuous tokamak plasma vertical position control systems

    Energy Technology Data Exchange (ETDEWEB)

    Mitrishkin, Yuri V., E-mail: y_mitrishkin@hotmail.com [M. V. Lomonosov Moscow State University, Faculty of Physics, Moscow 119991 (Russian Federation); Pavlova, Evgeniia A., E-mail: janerigoler@mail.ru [M. V. Lomonosov Moscow State University, Faculty of Physics, Moscow 119991 (Russian Federation); Kuznetsov, Evgenii A., E-mail: ea.kuznetsov@mail.ru [Troitsk Institute for Innovation and Fusion Research, Moscow 142190 (Russian Federation); Gaydamaka, Kirill I., E-mail: k.gaydamaka@gmail.com [V. A. Trapeznikov Institute of Control Sciences of the Russian Academy of Sciences, Moscow 117997 (Russian Federation)

    2016-10-15

    Highlights: • Robust new linear state feedback control system for tokamak plasma vertical position. • Plasma vertical position relay control system with voltage inverter in sliding mode. • Design of full models of multiphase rectifier and voltage inverter. • First-order unit approximation of full multiphase rectifier model with high accuracy. • Wider range of unstable plant parameters of stable control system with multiphase rectifier. - Abstract: This paper is devoted to the design and comparison of unstable plasma vertical position control systems in the T-15 tokamak with the application of two types of actuators: a multiphase thyristor rectifier and a transistor voltage inverter. An unstable dynamic element obtained by the identification of plasma-physical DINA code was used as the plasma model. The simplest static feedback state space control law was synthesized as a linear combination of signals accessible to physical measurements, namely the plasma vertical displacement, the current, and the voltage in a horizontal field coil, to solve the pole placement problem for a closed-loop system. Only one system distinctive parameter was used to optimize the performance of the feedback system, viz., a multiple real pole. A first-order inertial unit was used as the rectifier model in the feedback. A system with a complete rectifier model was investigated as well. A system with the voltage inverter model and static linear controller was brought into a sliding mode. As this takes place, real time delays were taken into account in the discontinuous voltage inverter model. The comparison of the linear and sliding mode systems showed that the linear system enjoyed an essentially wider range of the plant model parameters where the feedback system was stable.

  2. Continuous, saturation, and discontinuous tokamak plasma vertical position control systems

    International Nuclear Information System (INIS)

    Mitrishkin, Yuri V.; Pavlova, Evgeniia A.; Kuznetsov, Evgenii A.; Gaydamaka, Kirill I.

    2016-01-01

    Highlights: • Robust new linear state feedback control system for tokamak plasma vertical position. • Plasma vertical position relay control system with voltage inverter in sliding mode. • Design of full models of multiphase rectifier and voltage inverter. • First-order unit approximation of full multiphase rectifier model with high accuracy. • Wider range of unstable plant parameters of stable control system with multiphase rectifier. - Abstract: This paper is devoted to the design and comparison of unstable plasma vertical position control systems in the T-15 tokamak with the application of two types of actuators: a multiphase thyristor rectifier and a transistor voltage inverter. An unstable dynamic element obtained by the identification of plasma-physical DINA code was used as the plasma model. The simplest static feedback state space control law was synthesized as a linear combination of signals accessible to physical measurements, namely the plasma vertical displacement, the current, and the voltage in a horizontal field coil, to solve the pole placement problem for a closed-loop system. Only one system distinctive parameter was used to optimize the performance of the feedback system, viz., a multiple real pole. A first-order inertial unit was used as the rectifier model in the feedback. A system with a complete rectifier model was investigated as well. A system with the voltage inverter model and static linear controller was brought into a sliding mode. As this takes place, real time delays were taken into account in the discontinuous voltage inverter model. The comparison of the linear and sliding mode systems showed that the linear system enjoyed an essentially wider range of the plant model parameters where the feedback system was stable.

  3. Nonlinear dynamics non-integrable systems and chaotic dynamics

    CERN Document Server

    Borisov, Alexander

    2017-01-01

    This monograph reviews advanced topics in the area of nonlinear dynamics. Starting with theory of integrable systems – including methods to find and verify integrability – the remainder of the book is devoted to non-integrable systems with an emphasis on dynamical chaos. Topics include structural stability, mechanisms of emergence of irreversible behaviour in deterministic systems as well as chaotisation occurring in dissipative systems.

  4. Synchronisation and general dynamic symmetry of a vibrating system with two exciters rotating in opposite directions

    International Nuclear Information System (INIS)

    Chun-Yu, Zhao; Yi-Min, Zhang; Bang-Chun, Wen

    2010-01-01

    We derive the non-dimensional coupling equation of two exciters, including inertia coupling, stiffness coupling and load coupling. The concept of general dynamic symmetry is proposed to physically explain the synchronisation of the two exciters, which stems from the load coupling that produces the torque of general dynamic symmetry to force the phase difference between the two exciters close to the angle of general dynamic symmetry. The condition of implementing synchronisation is that the torque of general dynamic symmetry is greater than the asymmetric torque of the two motors. A general Lyapunov function is constructed to derive the stability condition of synchronisation that the non-dimensional inertia coupling matrix is positive definite and all its elements are positive. Numeric results show that the structure of the vibrating system can guarantee the stability of synchronisation of the two exciters, and that the greater the distances between the installation positions of the two exciters and the mass centre of the vibrating system are, the stronger the ability of general dynamic symmetry is

  5. Design of a dynamic transcranial magnetic stimulation coil system.

    Science.gov (United States)

    Ge, Sheng; Jiang, Ruoli; Wang, Ruimin; Chen, Ji

    2014-08-01

    To study the brain activity at the whole-head range, transcranial magnetic stimulation (TMS) researchers need to investigate brain activity over the whole head at multiple locations. In the past, this has been accomplished with multiple single TMS coils that achieve quasi whole-head array stimulation. However, these designs have low resolution and are difficult to position and control over the skull. In this study, we propose a new dynamic whole-head TMS mesh coil system. This system was constructed using several sagittal and coronal directional wires. Using both simulation and real experimental data, we show that by varying the current direction and strength of each wire, this new coil system can form both circular coils or figure-eight coils that have the same features as traditional TMS coils. Further, our new system is superior to current coil systems because stimulation parameters such as size, type, location, and timing of stimulation can be dynamically controlled within a single experiment.

  6. The complex dynamics of wishful thinking: the critical positivity ratio.

    Science.gov (United States)

    Brown, Nicholas J L; Sokal, Alan D; Friedman, Harris L

    2013-12-01

    We examine critically the claims made by Fredrickson and Losada (2005) concerning the construct known as the "positivity ratio." We find no theoretical or empirical justification for the use of differential equations drawn from fluid dynamics, a subfield of physics, to describe changes in human emotions over time; furthermore, we demonstrate that the purported application of these equations contains numerous fundamental conceptual and mathematical errors. The lack of relevance of these equations and their incorrect application lead us to conclude that Fredrickson and Losada's claim to have demonstrated the existence of a critical minimum positivity ratio of 2.9013 is entirely unfounded. More generally, we urge future researchers to exercise caution in the use of advanced mathematical tools, such as nonlinear dynamics, and in particular to verify that the elementary conditions for their valid application have been met. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  7. Dynamics of Financial System: A System Dynamics Approach

    OpenAIRE

    Girish K. Nair; Lewlyn Lester Raj Rodrigues

    2013-01-01

    There are several ratios which define the financial health of an organization but the importance of Net cash flow, Gross income, Net income, Pending bills, Receivable bills, Debt, and Book value can never be undermined as they give the exact picture of the financial condition. While there are several approaches to study the dynamics of these variables, system dynamics based modelling and simulation is one of the modern techniques. The paper explores this method to simulate the before mentione...

  8. Ion dynamics in cationic lipid bilayer systems in saline solutions

    DEFF Research Database (Denmark)

    Miettinen, Markus S; Gurtovenko, Andrey A; Vattulainen, Ilpo

    2009-01-01

    Positively charged lipid bilayer systems are a promising class of nonviral vectors for safe and efficient gene and drug delivery. Detailed understanding of these systems is therefore not only of fundamental but also of practical biomedical interest. Here, we study bilayers comprising a binary...... are concluded to be interesting for the physics of the whole membrane, especially considering its interaction dynamics with charged macromolecular surfaces....

  9. Self-Supervised Dynamical Systems

    Science.gov (United States)

    Zak, Michail

    2003-01-01

    Some progress has been made in a continuing effort to develop mathematical models of the behaviors of multi-agent systems known in biology, economics, and sociology (e.g., systems ranging from single or a few biomolecules to many interacting higher organisms). Living systems can be characterized by nonlinear evolution of probability distributions over different possible choices of the next steps in their motions. One of the main challenges in mathematical modeling of living systems is to distinguish between random walks of purely physical origin (for instance, Brownian motions) and those of biological origin. Following a line of reasoning from prior research, it has been assumed, in the present development, that a biological random walk can be represented by a nonlinear mathematical model that represents coupled mental and motor dynamics incorporating the psychological concept of reflection or self-image. The nonlinear dynamics impart the lifelike ability to behave in ways and to exhibit patterns that depart from thermodynamic equilibrium. Reflection or self-image has traditionally been recognized as a basic element of intelligence. The nonlinear mathematical models of the present development are denoted self-supervised dynamical systems. They include (1) equations of classical dynamics, including random components caused by uncertainties in initial conditions and by Langevin forces, coupled with (2) the corresponding Liouville or Fokker-Planck equations that describe the evolutions of probability densities that represent the uncertainties. The coupling is effected by fictitious information-based forces, denoted supervising forces, composed of probability densities and functionals thereof. The equations of classical mechanics represent motor dynamics that is, dynamics in the traditional sense, signifying Newton s equations of motion. The evolution of the probability densities represents mental dynamics or self-image. Then the interaction between the physical and

  10. Positional reference system for ultraprecision machining

    International Nuclear Information System (INIS)

    Arnold, J.B.; Burleson, R.R.; Pardue, R.M.

    1982-01-01

    A stable positional reference system for use in improving the cutting tool-to-part contour position in numerical controlledmultiaxis metal turning machines is provided. The reference system employs a plurality of interferometers referenced to orthogonally disposed metering bars which are substantially isolated from machine strain induced position errors for monitoring the part and tool positions relative to the metering bars. A microprocessor-based control system is employed in conjunction with the plurality of position interferometers and part contour description data inputs to calculate error components for each axis of movement and output them to corresponding axis drives with appropriate scaling and error compensation. Real-time position control, operating in combination with the reference system, makes possible the positioning of the cutting points of a tool along a part locus with a substantially greater degree of accuracy than has been attained previously in the art by referencing and then monitoring only the tool motion relative to a reference position located on the machine base

  11. Positional reference system for ultraprecision machining

    Science.gov (United States)

    Arnold, J.B.; Burleson, R.R.; Pardue, R.M.

    1980-09-12

    A stable positional reference system for use in improving the cutting tool-to-part contour position in numerical controlled-multiaxis metal turning machines is provided. The reference system employs a plurality of interferometers referenced to orthogonally disposed metering bars which are substantially isolated from machine strain induced position errors for monitoring the part and tool positions relative to the metering bars. A microprocessor-based control system is employed in conjunction with the plurality of positions interferometers and part contour description data input to calculate error components for each axis of movement and output them to corresponding axis driven with appropriate scaling and error compensation. Real-time position control, operating in combination with the reference system, makes possible the positioning of the cutting points of a tool along a part locus with a substantially greater degree of accuracy than has been attained previously in the art by referencing and then monitoring only the tool motion relative to a reference position located on the machine base.

  12. a Continuous-Time Positive Linear System

    Directory of Open Access Journals (Sweden)

    Kyungsup Kim

    2013-01-01

    Full Text Available This paper discusses a computational method to construct positive realizations with sparse matrices for continuous-time positive linear systems with multiple complex poles. To construct a positive realization of a continuous-time system, we use a Markov sequence similar to the impulse response sequence that is used in the discrete-time case. The existence of the proposed positive realization can be analyzed with the concept of a polyhedral convex cone. We provide a constructive algorithm to compute positive realizations with sparse matrices of some positive systems under certain conditions. A sufficient condition for the existence of a positive realization, under which the proposed constructive algorithm works well, is analyzed.

  13. Shadowing in dynamical systems

    CERN Document Server

    Pilyugin, Sergei Yu

    1999-01-01

    This book is an introduction to the theory of shadowing of approximate trajectories in dynamical systems by exact ones. This is the first book completely devoted to the theory of shadowing. It shows the importance of shadowing theory for both the qualitative theory of dynamical systems and the theory of numerical methods. Shadowing Methods allow us to estimate differences between exact and approximate solutions on infinite time intervals and to understand the influence of error terms. The book is intended for specialists in dynamical systems, for researchers and graduate students in the theory of numerical methods.

  14. Bifurcation and complex dynamics of a discrete-time predator-prey system involving group defense

    Directory of Open Access Journals (Sweden)

    S. M. Sohel Rana

    2015-09-01

    Full Text Available In this paper, we investigate the dynamics of a discrete-time predator-prey system involving group defense. The existence and local stability of positive fixed point of the discrete dynamical system is analyzed algebraically. It is shown that the system undergoes a flip bifurcation and a Neimark-Sacker bifurcation in the interior of R+2 by using bifurcation theory. Numerical simulation results not only show the consistence with the theoretical analysis but also display the new and interesting dynamical behaviors, including phase portraits, period-7, 20-orbits, attracting invariant circle, cascade of period-doubling bifurcation from period-20 leading to chaos, quasi-periodic orbits, and sudden disappearance of the chaotic dynamics and attracting chaotic set. The Lyapunov exponents are numerically computed to characterize the complexity of the dynamical behaviors.

  15. Synchronization dynamics of two different dynamical systems

    International Nuclear Information System (INIS)

    Luo, Albert C.J.; Min Fuhong

    2011-01-01

    Highlights: → Synchronization dynamics of two distinct dynamical systems. → Synchronization, de-synchronization and instantaneous synchronization. → A controlled pendulum synchronizing with the Duffing oscillator. → Synchronization invariant set. → Synchronization parameter map. - Abstract: In this paper, synchronization dynamics of two different dynamical systems is investigated through the theory of discontinuous dynamical systems. The necessary and sufficient conditions for the synchronization, de-synchronization and instantaneous synchronization (penetration or grazing) are presented. Using such a synchronization theory, the synchronization of a controlled pendulum with the Duffing oscillator is systematically discussed as a sampled problem, and the corresponding analytical conditions for the synchronization are presented. The synchronization parameter study is carried out for a better understanding of synchronization characteristics of the controlled pendulum and the Duffing oscillator. Finally, the partial and full synchronizations of the controlled pendulum with periodic and chaotic motions are presented to illustrate the analytical conditions. The synchronization of the Duffing oscillator and pendulum are investigated in order to show the usefulness and efficiency of the methodology in this paper. The synchronization invariant domain is obtained. The technique presented in this paper should have a wide spectrum of applications in engineering. For example, this technique can be applied to the maneuvering target tracking, and the others.

  16. Hybrid extended particle filter (HEPF) for integrated inertial navigation and global positioning systems

    International Nuclear Information System (INIS)

    Aggarwal, Priyanka; Syed, Zainab; El-Sheimy, Naser

    2009-01-01

    Navigation includes the integration of methodologies and systems for estimating time-varying position, velocity and attitude of moving objects. Navigation incorporating the integrated inertial navigation system (INS) and global positioning system (GPS) generally requires extensive evaluations of nonlinear equations involving double integration. Currently, integrated navigation systems are commonly implemented using the extended Kalman filter (EKF). The EKF assumes a linearized process, measurement models and Gaussian noise distributions. These assumptions are unrealistic for highly nonlinear systems like land vehicle navigation and may cause filter divergence. A particle filter (PF) is developed to enhance integrated INS/GPS system performance as it can easily deal with nonlinearity and non-Gaussian noises. In this paper, a hybrid extended particle filter (HEPF) is developed as an alternative to the well-known EKF to achieve better navigation data accuracy for low-cost microelectromechanical system sensors. The results show that the HEPF performs better than the EKF during GPS outages, especially when simulated outages are located in periods with high vehicle dynamics

  17. Complexity in Dynamical Systems

    Science.gov (United States)

    Moore, Cristopher David

    The study of chaos has shown us that deterministic systems can have a kind of unpredictability, based on a limited knowledge of their initial conditions; after a finite time, the motion appears essentially random. This observation has inspired a general interest in the subject of unpredictability, and more generally, complexity; how can we characterize how "complex" a dynamical system is?. In this thesis, we attempt to answer this question with a paradigm of complexity that comes from computer science, we extract sets of symbol sequences, or languages, from a dynamical system using standard methods of symbolic dynamics; we then ask what kinds of grammars or automata are needed a generate these languages. This places them in the Chomsky heirarchy, which in turn tells us something about how subtle and complex the dynamical system's behavior is. This gives us insight into the question of unpredictability, since these automata can also be thought of as computers attempting to predict the system. In the culmination of the thesis, we find a class of smooth, two-dimensional maps which are equivalent to the highest class in the Chomsky heirarchy, the turning machine; they are capable of universal computation. Therefore, these systems possess a kind of unpredictability qualitatively different from the usual "chaos": even if the initial conditions are known exactly, questions about the system's long-term dynamics are undecidable. No algorithm exists to answer them. Although this kind of unpredictability has been discussed in the context of distributed, many-degree-of -freedom systems (for instance, cellular automata) we believe this is the first example of such phenomena in a smooth, finite-degree-of-freedom system.

  18. Management of complex dynamical systems

    Science.gov (United States)

    MacKay, R. S.

    2018-02-01

    Complex dynamical systems are systems with many interdependent components which evolve in time. One might wish to control their trajectories, but a more practical alternative is to control just their statistical behaviour. In many contexts this would be both sufficient and a more realistic goal, e.g. climate and socio-economic systems. I refer to it as ‘management’ of complex dynamical systems. In this paper, some mathematics for management of complex dynamical systems is developed in the weakly dependent regime, and questions are posed for the strongly dependent regime.

  19. Dynamics of the stochastic low concentration trimolecular oscillatory chemical system with jumps

    Science.gov (United States)

    Wei, Yongchang; Yang, Qigui

    2018-06-01

    This paper is devoted to discern long time dynamics through the stochastic low concentration trimolecular oscillatory chemical system with jumps. By Lyapunov technique, this system is proved to have a unique global positive solution, and the asymptotic stability in mean square of such model is further established. Moreover, the existence of random attractor and Lyapunov exponents are obtained for the stochastic homeomorphism flow generated by the corresponding global positive solution. And some numerical simulations are given to illustrate the presented results.

  20. A switched energy saving position controller for variable-pressure electro-hydraulic servo systems.

    Science.gov (United States)

    Tivay, Ali; Zareinejad, Mohammad; Rezaei, S Mehdi; Baghestan, Keivan

    2014-07-01

    The electro-hydraulic servo system (EHSS) demonstrates a relatively low level of efficiency compared to other available actuation methods. The objective of this paper is to increase this efficiency by introducing a variable supply pressure into the system and controlling this pressure during the task of position tracking. For this purpose, an EHSS structure with controllable supply pressure is proposed and its dynamic model is derived from the basic laws of physics. A switching control structure is then proposed to control both the supply pressure and the cylinder position at the same time, in a way that reduces the overall energy consumption of the system. The stability of the proposed switching control system is guaranteed by proof, and its performance is verified by experimental testing. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Vehicle systems: coupled and interactive dynamics analysis

    Science.gov (United States)

    Vantsevich, Vladimir V.

    2014-11-01

    This article formulates a new direction in vehicle dynamics, described as coupled and interactive vehicle system dynamics. Formalised procedures and analysis of case studies are presented. An analytical consideration, which explains the physics of coupled system dynamics and its consequences for dynamics of a vehicle, is given for several sets of systems including: (i) driveline and suspension of a 6×6 truck, (ii) a brake mechanism and a limited slip differential of a drive axle and (iii) a 4×4 vehicle steering system and driveline system. The article introduces a formal procedure to turn coupled system dynamics into interactive dynamics of systems. A new research direction in interactive dynamics of an active steering and a hybrid-electric power transmitting unit is presented and analysed to control power distribution between the drive axles of a 4×4 vehicle. A control strategy integrates energy efficiency and lateral dynamics by decoupling dynamics of the two systems thus forming their interactive dynamics.

  2. Dynamic berth and quay crane allocation for multiple berth positions and quay cranes

    NARCIS (Netherlands)

    Tri Cahyono, Rully; Flonk, E.J.; Jayawardhana, Bayu

    2015-01-01

    We study in this paper a dynamic berth and quay cranes allocation strategy in general seaport container terminals. We develop a dynamical model that describes the operation of berthing process with multiple discrete berthing positions and multiple quay cranes. Based on the proposed model, we develop

  3. Mapping how local perturbations influence systems-level brain dynamics.

    Science.gov (United States)

    Gollo, Leonardo L; Roberts, James A; Cocchi, Luca

    2017-10-15

    The human brain exhibits a distinct spatiotemporal organization that supports brain function and can be manipulated via local brain stimulation. Such perturbations to local cortical dynamics are globally integrated by distinct neural systems. However, it remains unclear how local changes in neural activity affect large-scale system dynamics. Here, we briefly review empirical and computational studies addressing how localized perturbations affect brain activity. We then systematically analyze a model of large-scale brain dynamics, assessing how localized changes in brain activity at the different sites affect whole-brain dynamics. We find that local stimulation induces changes in brain activity that can be summarized by relatively smooth tuning curves, which relate a region's effectiveness as a stimulation site to its position within the cortical hierarchy. Our results also support the notion that brain hubs, operating in a slower regime, are more resilient to focal perturbations and critically contribute to maintain stability in global brain dynamics. In contrast, perturbations of peripheral regions, characterized by faster activity, have greater impact on functional connectivity. As a parallel with this region-level result, we also find that peripheral systems such as the visual and sensorimotor networks were more affected by local perturbations than high-level systems such as the cingulo-opercular network. Our findings highlight the importance of a periphery-to-core hierarchy to determine the effect of local stimulation on the brain network. This study also provides novel resources to orient empirical work aiming at manipulating functional connectivity using non-invasive brain stimulation. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Indoor Positioning System using Bluetooth

    OpenAIRE

    Sahil Puri

    2015-01-01

    This Paper on Bluetooth Indoor Positioning System is the intersection of Bluetooth Technology and Indoor Positioning Systems. Almost every smartphone today is Bluetooth enabled, making the use of the technology more flexible. We aim at using the RSSI value of Bluetooth signals to track the location of a device.

  5. Complexified dynamical systems

    International Nuclear Information System (INIS)

    Bender, Carl M; Holm, Darryl D; Hook, Daniel W

    2007-01-01

    Many dynamical systems, such as the Lotka-Volterra predator-prey model and the Euler equations for the free rotation of a rigid body, are PT symmetric. The standard and well-known real solutions to such dynamical systems constitute an infinitessimal subclass of the full set of complex solutions. This paper examines a subset of the complex solutions that contains the real solutions, namely those having PT symmetry. The condition of PT symmetry selects out complex solutions that are periodic. (fast track communication)

  6. Nonautonomous dynamical systems

    CERN Document Server

    Kloeden, Peter E

    2011-01-01

    The theory of nonautonomous dynamical systems in both of its formulations as processes and skew product flows is developed systematically in this book. The focus is on dissipative systems and nonautonomous attractors, in particular the recently introduced concept of pullback attractors. Linearization theory, invariant manifolds, Lyapunov functions, Morse decompositions and bifurcations for nonautonomous systems and set-valued generalizations are also considered as well as applications to numerical approximations, switching systems and synchronization. Parallels with corresponding theories of control and random dynamical systems are briefly sketched. With its clear and systematic exposition, many examples and exercises, as well as its interesting applications, this book can serve as a text at the beginning graduate level. It is also useful for those who wish to begin their own independent research in this rapidly developing area.

  7. Robust Hinfinity position control synthesis of an electro-hydraulic servo system.

    Science.gov (United States)

    Milić, Vladimir; Situm, Zeljko; Essert, Mario

    2010-10-01

    This paper focuses on the use of the techniques based on linear matrix inequalities for robust H(infinity) position control synthesis of an electro-hydraulic servo system. A nonlinear dynamic model of the hydraulic cylindrical actuator with a proportional valve has been developed. For the purpose of the feedback control an uncertain linearized mathematical model of the system has been derived. The structured (parametric) perturbations in the electro-hydraulic coefficients are taken into account. H(infinity) controller extended with an integral action is proposed. To estimate internal states of the electro-hydraulic servo system an observer is designed. Developed control algorithms have been tested experimentally in the laboratory model of an electro-hydraulic servo system. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Interaction of feel system and flight control system dynamics on lateral flying qualities

    Science.gov (United States)

    Bailey, R. E.; Knotts, L. H.

    1990-01-01

    An experimental investigation of the influence of lateral feel system characteristics on fighter aircraft roll flying qualities was conducted using the variable stability USAF NT-33. Forty-two evaluation flights were flown by three engineering test pilots. The investigation utilized the power approach, visual landing task and up-and-away tasks including formation, gun tracking, and computer-generated compensatory attitude tracking tasks displayed on the Head-Up Display. Experimental variations included the feel system frequency, force-deflection gradient, control system command type (force or position input command), aircraft roll mode time constant, control system prefilter frequency, and control system time delay. The primary data were task performance records and evaluation pilot comments and ratings using the Cooper-Harper scale. The data highlight the unique and powerful effect of the feel system of flying qualities. The data show that the feel system is not 'equivalent' in flying qualities influence to analogous control system elements. A lower limit of allowable feel system frequency appears warranted to ensure good lateral flying qualities. Flying qualities criteria should most properly treat the feel system dynamic influence separately from the control system, since the input and output of this dynamic element is apparent to the pilot and thus, does not produce a 'hidden' effect.

  9. Chaos for Discrete Dynamical System

    Directory of Open Access Journals (Sweden)

    Lidong Wang

    2013-01-01

    Full Text Available We prove that a dynamical system is chaotic in the sense of Martelli and Wiggins, when it is a transitive distributively chaotic in a sequence. Then, we give a sufficient condition for the dynamical system to be chaotic in the strong sense of Li-Yorke. We also prove that a dynamical system is distributively chaotic in a sequence, when it is chaotic in the strong sense of Li-Yorke.

  10. Adaptive Control Based Harvesting Strategy for a Predator-Prey Dynamical System.

    Science.gov (United States)

    Sen, Moitri; Simha, Ashutosh; Raha, Soumyendu

    2018-04-23

    This paper deals with designing a harvesting control strategy for a predator-prey dynamical system, with parametric uncertainties and exogenous disturbances. A feedback control law for the harvesting rate of the predator is formulated such that the population dynamics is asymptotically stabilized at a positive operating point, while maintaining a positive, steady state harvesting rate. The hierarchical block strict feedback structure of the dynamics is exploited in designing a backstepping control law, based on Lyapunov theory. In order to account for unknown parameters, an adaptive control strategy has been proposed in which the control law depends on an adaptive variable which tracks the unknown parameter. Further, a switching component has been incorporated to robustify the control performance against bounded disturbances. Proofs have been provided to show that the proposed adaptive control strategy ensures asymptotic stability of the dynamics at a desired operating point, as well as exact parameter learning in the disturbance-free case and learning with bounded error in the disturbance prone case. The dynamics, with uncertainty in the death rate of the predator, subjected to a bounded disturbance has been simulated with the proposed control strategy.

  11. Rapid Evaluation for Position-Dependent Dynamics of a 3-DOF PKM Module

    Directory of Open Access Journals (Sweden)

    Hai-wei Luo

    2014-08-01

    Full Text Available Based on the substructure synthesis and modal reduction technique, a computationally efficient elastodynamic model for a fully flexible 3-RPS parallel kinematic machine (PKM tool is proposed, in which the frequency response function (FRF at the end of the tool can be obtained at any given position throughout its workspace. In the proposed elastodynamic model, the whole system is divided into a moving platform subsystem and three identical RPS limb subsystems, in which all joint compliances are included. The spherical joint and the revolute joint are treated as lumped virtual springs with equal stiffness; the platform is treated as a rigid body and the RPS limbs are modelled with modal reduction techniques. With the compatibility conditions at interfaces between the limbs and the platform, an analytical system governing differential equation is derived. Based on the derived model, the position-dependent dynamic characteristics such as natural frequencies, mode shapes, and FRFs of the 3-RPS PKM are simulated. The simulation results indicate that the distributions of natural frequencies throughout the workspace are strongly dependant on mechanism's configurations and demonstrate an axial-symmetric tendency. The following finite element analysis and modal tests both validate the analytical results of natural frequencies, mode shapes, and the FRFs.

  12. Ergodic theory and dynamical systems

    CERN Document Server

    Coudène, Yves

    2016-01-01

    This textbook is a self-contained and easy-to-read introduction to ergodic theory and the theory of dynamical systems, with a particular emphasis on chaotic dynamics. This book contains a broad selection of topics and explores the fundamental ideas of the subject. Starting with basic notions such as ergodicity, mixing, and isomorphisms of dynamical systems, the book then focuses on several chaotic transformations with hyperbolic dynamics, before moving on to topics such as entropy, information theory, ergodic decomposition and measurable partitions. Detailed explanations are accompanied by numerous examples, including interval maps, Bernoulli shifts, toral endomorphisms, geodesic flow on negatively curved manifolds, Morse-Smale systems, rational maps on the Riemann sphere and strange attractors. Ergodic Theory and Dynamical Systems will appeal to graduate students as well as researchers looking for an introduction to the subject. While gentle on the beginning student, the book also contains a number of commen...

  13. Dynamic Measurement of Extra Long Stroke Cylinder in the Pneumatic System

    International Nuclear Information System (INIS)

    Chang Ho; Lan Chouwei; Chen, L-C

    2006-01-01

    This paper sets up the measure and control system of the dynamic characteristics of the extra long stroke cylinder. In the different types of the control conditions (e.g. different control law, operating pressure and direct control valves), using the measure and control system to measure the relation between the pressure and the velocity of the motion of the long stroke cylinder and to observe the stick slip phenomenon of the motion of the long stroke cylinder. In the innovate measurement system, two pressure sensors are set on the long stroke cylinder to measure the difference of the pressure between the inlet and the exhaust of the long stroke cylinder. In additions, a draw line encoder is set on the system to measure the position and the velocity of the motion of the long stroke cylinder. The measuring data of the measure system is transferred to the computer via A/D interface card and counter card, and Home-made program of Haptic Interface Device is used to control the system, saving the data of the motion of the long stroke cylinder. The system uses different types of direction control valve to control the motion of the long stroke cylinder and compares the difference of the motion of the long stroke cylinder. The results show that the motion of the cylinder that pauses in the middle of the cylinder stroke and causes the stick slip phenomenon is more violent than the stick slip phenomenon in other position. When the length of the pause time reaches the some range, the acceleration of the motion of the cylinder will be rised substantially. This paper not only focuses on the testing method of the dynamic characteristics of the motion of the long stroke cylinder, but also includes the analysis of the dynamic characteristics of the motion of the long stroke cylinder. It provides the data of the dynamic characteristics of the motion of the long stroke cylinder to improve and design the pneumatic system of the long stroke cylinder

  14. Dynamical Systems for Creative Technology

    NARCIS (Netherlands)

    van Amerongen, J.

    2010-01-01

    Dynamical Systems for Creative Technology gives a concise description of the physical properties of electrical, mechanical and hydraulic systems. Emphasis is placed on modelling the dynamical properties of these systems. By using a system’s approach it is shown that a limited number of mathematical

  15. Positioning navigation and timing service applications in cyber physical systems

    Science.gov (United States)

    Qu, Yi; Wu, Xiaojing; Zeng, Lingchuan

    2017-10-01

    The positioning navigation and timing (PNT) architecture was discussed in detail, whose history, evolvement, current status and future plan were presented, main technologies were listed, advantages and limitations of most technologies were compared, novel approaches were introduced, and future capacities were sketched. The concept of cyber-physical system (CPS) was described and their primary features were interpreted. Then the three-layer architecture of CPS was illustrated. Next CPS requirements on PNT services were analyzed, including requirements on position reference and time reference, requirements on temporal-spatial error monitor, requirements on dynamic services, real-time services, autonomous services, security services and standard services. Finally challenges faced by PNT applications in CPS were concluded. The conclusion was expected to facilitate PNT applications in CPS, and furthermore to provide references to the design and implementation of both architectures.

  16. Dynamics robustness of cascading systems.

    Directory of Open Access Journals (Sweden)

    Jonathan T Young

    2017-03-01

    Full Text Available A most important property of biochemical systems is robustness. Static robustness, e.g., homeostasis, is the insensitivity of a state against perturbations, whereas dynamics robustness, e.g., homeorhesis, is the insensitivity of a dynamic process. In contrast to the extensively studied static robustness, dynamics robustness, i.e., how a system creates an invariant temporal profile against perturbations, is little explored despite transient dynamics being crucial for cellular fates and are reported to be robust experimentally. For example, the duration of a stimulus elicits different phenotypic responses, and signaling networks process and encode temporal information. Hence, robustness in time courses will be necessary for functional biochemical networks. Based on dynamical systems theory, we uncovered a general mechanism to achieve dynamics robustness. Using a three-stage linear signaling cascade as an example, we found that the temporal profiles and response duration post-stimulus is robust to perturbations against certain parameters. Then analyzing the linearized model, we elucidated the criteria of when signaling cascades will display dynamics robustness. We found that changes in the upstream modules are masked in the cascade, and that the response duration is mainly controlled by the rate-limiting module and organization of the cascade's kinetics. Specifically, we found two necessary conditions for dynamics robustness in signaling cascades: 1 Constraint on the rate-limiting process: The phosphatase activity in the perturbed module is not the slowest. 2 Constraints on the initial conditions: The kinase activity needs to be fast enough such that each module is saturated even with fast phosphatase activity and upstream changes are attenuated. We discussed the relevance of such robustness to several biological examples and the validity of the above conditions therein. Given the applicability of dynamics robustness to a variety of systems, it

  17. Joining the pack or going solo? A dynamic theory of new firm positioning

    NARCIS (Netherlands)

    Boone, Chr.; Wezel, F.C.; van Witteloostuijn, A.

    2013-01-01

    The question of new firm positioning in the marketplace and entrant's subsequent long-term performance lies at the heart of strategic entrepreneurship. We suggest a dynamic theory of new firm positioning that hinges on an important feature of the competitive environment: industry-level product

  18. The Dynamical Invariant of Open Quantum System

    OpenAIRE

    Wu, S. L.; Zhang, X. Y.; Yi, X. X.

    2015-01-01

    The dynamical invariant, whose expectation value is constant, is generalized to open quantum system. The evolution equation of dynamical invariant (the dynamical invariant condition) is presented for Markovian dynamics. Different with the dynamical invariant for the closed quantum system, the evolution of the dynamical invariant for the open quantum system is no longer unitary, and the eigenvalues of it are time-dependent. Since any hermitian operator fulfilling dynamical invariant condition ...

  19. Offshore pipelaying dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Gullik Anthon

    2010-02-15

    This thesis considers three issues regarding modeling of of offshore pipe laying dynamics. These are: (i) the formulation of an offshore pipeline installation operation as a control problem, (ii) the development and passivity analysis of a robotic pipe model for a submerged pipe string, suitable for real-time applications in closed- loop control systems, and (iii) the development and validation of a nonlinear FEM model for simulation and control of the elastic pipeline dynamics, including FEM dynamics of a pipeline combined with vessel dynamics, for simulation and control of pipe lay operations under dynamic positioning Pipeline installation is defined as the operation of positioning a pipeline along a reference path on the seabed from a surface vessel. In control terms, this can be stated as a path-following control problem, where the pipe touchdown point tracks the reference path. However, the only controllers for the touchdown point are the pay-out of pipe into the water, and the motion of the surface vessel. Considering that the pipe is an elastic body, and that both the pipe and the vessel are subject to environmental loads, the control problem that must be considered is a dynamic target-tracking problem, where the surface vessel must track a moving target position on the surface in order to control the position of the touchdown point. A target-tracking controller may be implemented as a guidance system, by extending the dynamic positioning system that is common for pipe lay vessels. An important component in the guidance system is the dynamic pipe model mapping touchdown and surface vessel position. Motivated by robotics, a compact system formulation is derived for the suspended pipeline by considering it as a hyper-redundant manipulator with an arbitrary number of links. This model captures the main dynamics of the pipe, including its geometric configuration and top tension. The model is in the state- space, and on a vectorial form using minimal coordinates

  20. Functional System Dynamics

    NARCIS (Netherlands)

    Ligterink, N.E.

    2007-01-01

    Functional system dynamics is the analysis, modelling, and simulation of continuous systems usually described by partial differential equations. From the infinite degrees of freedom of such systems only a finite number of relevant variables have to be chosen for a practical model description. The

  1. [Mes differ by positioning: empirical testing of decentralized dynamics of the self].

    Science.gov (United States)

    Mizokami, Shinichi

    2013-10-01

    The present study empirically tested the conceptualization of the decentralized dynamics of the self proposed by Hermans & Kempen (1993), which they developed theoretically and from clinical cases, not from large samples of empirical data. They posited that worldviews and images of the self could vary by positioning even in the same individual, and denied that the ego was an omniscient entity that knew and controlled all aspects of the self (centralized ego). Study 1 tested their conceptualization empirically with 47 university students in an experimental group and 17 as a control group. The results showed that the scores on the Rosenberg's self-esteem scale and images of the Mes in the experimental group significantly varied by positioning, but those in the control group did not. Similar results were found in Study 2 with a sample of 120 university students. These results empirically supported the conceptualization of the decentralized dynamics of the self.

  2. International Conference on Dynamical Systems : Theory and Applications

    CERN Document Server

    2016-01-01

    The book is a collection of contributions devoted to analytical, numerical and experimental techniques of dynamical systems, presented at the international conference "Dynamical Systems: Theory and Applications," held in Lódz, Poland on December 7-10, 2015. The studies give deep insight into new perspectives in analysis, simulation, and optimization of dynamical systems, emphasizing directions for future research. Broadly outlined topics covered include: bifurcation and chaos in dynamical systems, asymptotic methods in nonlinear dynamics, dynamics in life sciences and bioengineering, original numerical methods of vibration analysis, control in dynamical systems, stability of dynamical systems, vibrations of lumped and continuous sytems, non-smooth systems, engineering systems and differential equations, mathematical approaches to dynamical systems, and mechatronics.

  3. International Conference on Dynamical Systems : Theory and Applications

    CERN Document Server

    2016-01-01

    The book is the second volume of a collection of contributions devoted to analytical, numerical and experimental techniques of dynamical systems, presented at the international conference "Dynamical Systems: Theory and Applications," held in Lódz, Poland on December 7-10, 2015. The studies give deep insight into new perspectives in analysis, simulation, and optimization of dynamical systems, emphasizing directions for future research. Broadly outlined topics covered include: bifurcation and chaos in dynamical systems, asymptotic methods in nonlinear dynamics, dynamics in life sciences and bioengineering, original numerical methods of vibration analysis, control in dynamical systems, stability of dynamical systems, vibrations of lumped and continuous sytems, non-smooth systems, engineering systems and differential equations, mathematical approaches to dynamical systems, and mechatronics.

  4. Navigation and Positioning System Using High Altitude Platforms Systems (HAPS)

    Science.gov (United States)

    Tsujii, Toshiaki; Harigae, Masatoshi; Harada, Masashi

    Recently, some countries have begun conducting feasibility studies and R&D projects on High Altitude Platform Systems (HAPS). Japan has been investigating the use of an airship system that will function as a stratospheric platform for applications such as environmental monitoring, communications and broadcasting. If pseudolites were mounted on the airships, their GPS-like signals would be stable augmentations that would improve the accuracy, availability, and integrity of GPS-based positioning systems. Also, the sufficient number of HAPS can function as a positioning system independent of GPS. In this paper, a system design of the HAPS-based positioning system and its positioning error analyses are described.

  5. Self-supervised dynamical systems

    International Nuclear Information System (INIS)

    Zak, Michail

    2004-01-01

    A new type of dynamical systems which capture the interactions via information flows typical for active multi-agent systems is introduced. The mathematical formalism is based upon coupling the classical dynamical system (with random components caused by uncertainties in initial conditions as well as by Langevin forces) with the corresponding Liouville or the Fokker-Planck equations describing evolution of these uncertainties in terms of probability density. The coupling is implemented by information-based supervising forces which fundamentally change the patterns of probability evolution. It is demonstrated that the probability density can approach prescribed attractors while exhibiting such patterns as shock waves, solitons and chaos in probability space. Applications of these phenomena to information-based neural nets, expectation-based cooperation, self-programmed systems, control chaos using terminal attractors as well as to games with incomplete information, are addressed. A formal similarity between the mathematical structure of the introduced dynamical systems and quantum mechanics is discussed

  6. Information model of trainee characteristics with definition of stochastic behavior of dynamic system

    Science.gov (United States)

    Sumin, V. I.; Smolentseva, T. E.; Belokurov, S. V.; Lankin, O. V.

    2018-03-01

    In the work the process of formation of trainee characteristics with their subsequent change is analyzed and analyzed. Characteristics of trainees were obtained as a result of testing for each section of information on the chosen discipline. The results obtained during testing were input to the dynamic system. The area of control actions consisting of elements of the dynamic system is formed. The limit of deterministic predictability of element trajectories in dynamical systems based on local or global attractors is revealed. The dimension of the phase space of the dynamic system is determined, which allows estimating the parameters of the initial system. On the basis of time series of observations, it is possible to determine the predictability interval of all parameters, which make it possible to determine the behavior of the system discretely in time. Then the measure of predictability will be the sum of Lyapunov’s positive indicators, which are a quantitative measure for all elements of the system. The components for the formation of an algorithm allowing to determine the correlation dimension of the attractor for known initial experimental values of the variables are revealed. The generated algorithm makes it possible to carry out an experimental study of the dynamics of changes in the trainee’s parameters with initial uncertainty.

  7. Dynamics of Large Systems of Nonlinearly Evolving Units

    Science.gov (United States)

    Lu, Zhixin

    The dynamics of large systems of many nonlinearly evolving units is a general research area that has great importance for many areas in science and technology, including biology, computation by artificial neural networks, statistical mechanics, flocking in animal groups, the dynamics of coupled neurons in the brain, and many others. While universal principles and techniques are largely lacking in this broad area of research, there is still one particular phenomenon that seems to be broadly applicable. In particular, this is the idea of emergence, by which is meant macroscopic behaviors that "emerge" from a large system of many "smaller or simpler entities such that...large entities" [i.e., macroscopic behaviors] arise which "exhibit properties the smaller/simpler entities do not exhibit." In this thesis we investigate mechanisms and manifestations of emergence in four dynamical systems consisting many nonlinearly evolving units. These four systems are as follows. (a) We first study the motion of a large ensemble of many noninteracting particles in a slowly changing Hamiltonian system that undergoes a separatrix crossing. In such systems, we find that separatrix-crossing induces a counterintuitive effect. Specifically, numerical simulation of two sets of densely sprinkled initial conditions on two energy curves appears to suggest that the two energy curves, one originally enclosing the other, seemingly interchange their positions. This, however, is topologically forbidden. We resolve this paradox by introducing a numerical simulation method we call "robust" and study its consequences. (b) We next study the collective dynamics of oscillatory pacemaker neurons in Suprachiasmatic Nucleus (SCN), which, through synchrony, govern the circadian rhythm of mammals. We start from a high-dimensional description of the many coupled oscillatory neuronal units within the SCN. This description is based on a forced Kuramoto model. We then reduce the system dimensionality by using

  8. Two-dimensional approach to relativistic positioning systems

    International Nuclear Information System (INIS)

    Coll, Bartolome; Ferrando, Joan Josep; Morales, Juan Antonio

    2006-01-01

    A relativistic positioning system is a physical realization of a coordinate system consisting in four clocks in arbitrary motion broadcasting their proper times. The basic elements of the relativistic positioning systems are presented in the two-dimensional case. This simplified approach allows to explain and to analyze the properties and interest of these new systems. The positioning system defined by geodesic emitters in flat metric is developed in detail. The information that the data generated by a relativistic positioning system give on the space-time metric interval is analyzed, and the interest of these results in gravimetry is pointed out

  9. Static and dynamic stability of pneumatic vibration isolators and systems of isolators

    Science.gov (United States)

    Ryaboy, Vyacheslav M.

    2014-01-01

    Pneumatic vibration isolation is the most widespread effective method for creating vibration-free environments that are vital for precise experiments and manufacturing operations in optoelectronics, life sciences, microelectronics, nanotechnology and other areas. The modeling and design principles of a dual-chamber pneumatic vibration isolator, basically established a few decades ago, continue to attract attention of researchers. On the other hand, behavior of systems of such isolators was never explained in the literature in sufficient detail. This paper covers a range of questions essential for understanding the mechanics of pneumatic isolation systems from both design and application perspectives. The theory and a model of a single standalone isolator are presented in concise form necessary for subsequent analysis. Then the dynamics of a system of isolators supporting a payload is considered with main attention directed to two aspects of their behavior: first, the static stability of payloads with high positions of the center of gravity; second, dynamic stability of the feedback system formed by mechanical leveling valves. The direct method of calculating the maximum stable position of the center of gravity is presented and illustrated by three-dimensional stability domains; analytic formulas are given that delineate these domains. A numerical method for feedback stability analysis of self-leveling valve systems is given, and the results are compared with the analytical estimates for a single isolator. The relation between the static and dynamic phenomena is discussed.

  10. A novel wireless local positioning system for airport (indoor) security

    Science.gov (United States)

    Zekavat, Seyed A.; Tong, Hui; Tan, Jindong

    2004-09-01

    A novel wireless local positioning system (WLPS) for airport (or indoor) security is introduced. This system is used by airport (indoor) security guards to locate all of, or a group of airport employees or passengers within the airport area. WLPS consists of two main parts: (1) a base station that is carried by security personnel; hence, introducing dynamic base station (DBS), and (2) a transponder (TRX) that is mounted on all people (including security personnel) present at the airport; thus, introducing them as active targets. In this paper, we (a) draw a futuristic view of the airport security systems, and the flow of information at the airports, (b) investigate the techniques of extending WLPS coverage area beyond the line-of-sight (LoS), and (c) study the performance of this system via standard transceivers, and direct sequence code division multiple access (DS-CDMA) systems with and without antenna arrays and conventional beamforming (BF).

  11. Dynamical System Approaches to Combinatorial Optimization

    DEFF Research Database (Denmark)

    Starke, Jens

    2013-01-01

    of large times as an asymptotically stable point of the dynamics. The obtained solutions are often not globally optimal but good approximations of it. Dynamical system and neural network approaches are appropriate methods for distributed and parallel processing. Because of the parallelization......Several dynamical system approaches to combinatorial optimization problems are described and compared. These include dynamical systems derived from penalty methods; the approach of Hopfield and Tank; self-organizing maps, that is, Kohonen networks; coupled selection equations; and hybrid methods...... thereof can be used as models for many industrial problems like manufacturing planning and optimization of flexible manufacturing systems. This is illustrated for an example in distributed robotic systems....

  12. Interconnection and Damping Assignment Passivity-Based Control for Port-Hamiltonian mechanical systems with only position measurements

    NARCIS (Netherlands)

    Dirksz, D. A.; Scherpen, J. M. A.; Ortega, R.

    2008-01-01

    A dynamic extension for position feedback of port-Hamiltonian mechanical systems is studied. First we look at the consequences for the matching equations when applying Interconnection and Damping Assignment Passivity-Based Control (IDA-PBC). Then we look at the possibilities of asymptotically

  13. Dynamical systems examples of complex behaviour

    CERN Document Server

    Jost, Jürgen

    2005-01-01

    Our aim is to introduce, explain, and discuss the fundamental problems, ideas, concepts, results, and methods of the theory of dynamical systems and to show how they can be used in speci?c examples. We do not intend to give a comprehensive overview of the present state of research in the theory of dynamical systems, nor a detailed historical account of its development. We try to explain the important results, often neglecting technical re?nements 1 and, usually, we do not provide proofs. One of the basic questions in studying dynamical systems, i.e. systems that evolve in time, is the construction of invariants that allow us to classify qualitative types of dynamical evolution, to distinguish between qualitatively di?erent dynamics, and to studytransitions between di?erent types. Itis also important to ?nd out when a certain dynamic behavior is stable under small perturbations, as well as to understand the various scenarios of instability. Finally, an essential aspect of a dynamic evolution is the transformat...

  14. Functional System Dynamics

    OpenAIRE

    Ligterink, N.E.

    2007-01-01

    Functional system dynamics is the analysis, modelling, and simulation of continuous systems usually described by partial differential equations. From the infinite degrees of freedom of such systems only a finite number of relevant variables have to be chosen for a practical model description. The proper input and output of the system are an important part of the relevant variables.

  15. Robust fault detection of wind energy conversion systems based on dynamic neural networks.

    Science.gov (United States)

    Talebi, Nasser; Sadrnia, Mohammad Ali; Darabi, Ahmad

    2014-01-01

    Occurrence of faults in wind energy conversion systems (WECSs) is inevitable. In order to detect the occurred faults at the appropriate time, avoid heavy economic losses, ensure safe system operation, prevent damage to adjacent relevant systems, and facilitate timely repair of failed components; a fault detection system (FDS) is required. Recurrent neural networks (RNNs) have gained a noticeable position in FDSs and they have been widely used for modeling of complex dynamical systems. One method for designing an FDS is to prepare a dynamic neural model emulating the normal system behavior. By comparing the outputs of the real system and neural model, incidence of the faults can be identified. In this paper, by utilizing a comprehensive dynamic model which contains both mechanical and electrical components of the WECS, an FDS is suggested using dynamic RNNs. The presented FDS detects faults of the generator's angular velocity sensor, pitch angle sensors, and pitch actuators. Robustness of the FDS is achieved by employing an adaptive threshold. Simulation results show that the proposed scheme is capable to detect the faults shortly and it has very low false and missed alarms rate.

  16. Adaptive Integration of Nonsmooth Dynamical Systems

    Science.gov (United States)

    2017-10-11

    2017 W911NF-12-R-0012-03: Adaptive Integration of Nonsmooth Dynamical Systems The views, opinions and/or findings contained in this report are those of...Integration of Nonsmooth Dynamical Systems Report Term: 0-Other Email: drum@gwu.edu Distribution Statement: 1-Approved for public release; distribution is...classdrake_1_1systems_1_1_integrator_base.html ; 3) a solver for dynamical systems with arbitrary unilateral and bilateral constraints (the key component of the time stepping systems )- see

  17. Butschli Dynamic Droplet System

    DEFF Research Database (Denmark)

    Armstrong, R.; Hanczyc, M.

    2013-01-01

    Dynamical oil-water systems such as droplets display lifelike properties and may lend themselves to chemical programming to perform useful work, specifically with respect to the built environment. We present Butschli water-in-oil droplets as a model for further investigation into the development...... reconstructed the Butschli system and observed its life span under a light microscope, observing chemical patterns and droplet behaviors in nearly three hundred replicate experiments. Self-organizing patterns were observed, and during this dynamic, embodied phase the droplets provided a means of introducing...... temporal and spatial order in the system with the potential for chemical programmability. The authors propose that the discrete formation of dynamic droplets, characterized by their lifelike behavior patterns, during a variable window of time (from 30 s to 30 min after the addition of alkaline water...

  18. Antiproton source beam position system

    International Nuclear Information System (INIS)

    Bagwell, T.; Holmes, S.; McCarthy, J.; Webber, R.

    1984-05-01

    The TeV I Beam Position Monitor (BPM) system is designed to provide a useful diagnostic tool during the commissioning and operational phases of the antiproton source. Simply stated the design goal is to provide single turn position information for intensities of > 1x10 9 particles, and multi-turn (clocked orbit) information for beam intensities of > 1x10 7 particles, both with sub-millimeter resolution. It is anticipated that the system will be used during commissioning for establishing the first turn through the Debuncher and Accumulator, for aligning injection orbits, for providing information necessary to correct closed orbits, and for measuring various machine parameters (e.g. tunes, dispersion, aperture, chromaticity). During normal antiproton operation the system will be used to monitor the beam position throughout the accumulation process

  19. Quantum dynamics in open quantum-classical systems.

    Science.gov (United States)

    Kapral, Raymond

    2015-02-25

    Often quantum systems are not isolated and interactions with their environments must be taken into account. In such open quantum systems these environmental interactions can lead to decoherence and dissipation, which have a marked influence on the properties of the quantum system. In many instances the environment is well-approximated by classical mechanics, so that one is led to consider the dynamics of open quantum-classical systems. Since a full quantum dynamical description of large many-body systems is not currently feasible, mixed quantum-classical methods can provide accurate and computationally tractable ways to follow the dynamics of both the system and its environment. This review focuses on quantum-classical Liouville dynamics, one of several quantum-classical descriptions, and discusses the problems that arise when one attempts to combine quantum and classical mechanics, coherence and decoherence in quantum-classical systems, nonadiabatic dynamics, surface-hopping and mean-field theories and their relation to quantum-classical Liouville dynamics, as well as methods for simulating the dynamics.

  20. Human amygdala response to dynamic facial expressions of positive and negative surprise.

    Science.gov (United States)

    Vrticka, Pascal; Lordier, Lara; Bediou, Benoît; Sander, David

    2014-02-01

    Although brain imaging evidence accumulates to suggest that the amygdala plays a key role in the processing of novel stimuli, only little is known about its role in processing expressed novelty conveyed by surprised faces, and even less about possible interactive encoding of novelty and valence. Those investigations that have already probed human amygdala involvement in the processing of surprised facial expressions either used static pictures displaying negative surprise (as contained in fear) or "neutral" surprise, and manipulated valence by contextually priming or subjectively associating static surprise with either negative or positive information. Therefore, it still remains unresolved how the human amygdala differentially processes dynamic surprised facial expressions displaying either positive or negative surprise. Here, we created new artificial dynamic 3-dimensional facial expressions conveying surprise with an intrinsic positive (wonderment) or negative (fear) connotation, but also intrinsic positive (joy) or negative (anxiety) emotions not containing any surprise, in addition to neutral facial displays either containing ("typical surprise" expression) or not containing ("neutral") surprise. Results showed heightened amygdala activity to faces containing positive (vs. negative) surprise, which may either correspond to a specific wonderment effect as such, or to the computation of a negative expected value prediction error. Findings are discussed in the light of data obtained from a closely matched nonsocial lottery task, which revealed overlapping activity within the left amygdala to unexpected positive outcomes. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  1. Dynamics of glassy systems

    International Nuclear Information System (INIS)

    Cugliandolo, Leticia F.

    2003-09-01

    These lecture notes can be read in two ways. The first two Sections contain a review of the phenomenology of several physical systems with slow nonequilibrium dynamics. In the Conclusions we summarize the scenario for this temporal evolution derived from the solution to some solvable models (p spin and the like) that are intimately connected to the mode coupling approach (and similar ones) to super-cooled liquids. At the end we list a number of open problems of great relevance in this context. These Sections can be read independently of the body of the paper where we present some of the basic analytic techniques used to study the out of equilibrium dynamics of classical and quantum models with and without disorder. We start the technical part by briefly discussing the role played by the environment and by introducing and comparing its representation in the equilibrium and dynamic treatment of classical and quantum systems. We next explain the role played by explicit quenched disorder in both approaches. Later on we focus on analytical techniques; we expand on the dynamic functional methods, and the diagrammatic expansions and resummations used to derive macroscopic equations from the microscopic dynamics. We show why the macroscopic dynamic equations for disordered models and those resulting from self-consistent approximations to non-disordered ones coincide. We review some generic properties of dynamic systems evolving out of equilibrium like the modifications of the fluctuation-dissipation theorem, generic scaling forms of the correlation functions, etc. Finally we solve a family of mean-field models. The connection between the dynamic treatment and the analysis of the free-energy landscape of these models is also presented. We use pedagogical examples all along these lectures to illustrate the properties and results. (author)

  2. Modification of the process dynamics in micro-EDM by means of an additional piezo-control system

    Science.gov (United States)

    Herzig, M.; Berger, T.; Schulze, H.-P.; Hackert-Oschätzchen, M.; Kröning, O.; Schubert, A.

    2017-10-01

    For the application of spark erosion in micro- and precision manufacturing, it is particularly important that small structures with small spark gaps can be machined in the range of a few micrometers. Due to the application of an additional high- dynamic piezo positioning system, smaller feed steps can be implemented which ensure a higher process stability. This additional feed system can be adapted to existing feed systems, whereby the process variable to be influenced is the spark gap. The primary feed system does not have to be directly influenced. The article shows how the structures of parallel regulation circuits for such operating piezo positioning systems are constructed and how they can improve the productivity, the machining accuracy and the surface quality. A selected example shows how the structural design of the highly dynamic system can be designed for different process parameters of industrial basic systems.

  3. Relativistic positioning systems: perspectives and prospects

    Science.gov (United States)

    Coll Bartolomé

    2013-11-01

    Relativistic positioning systems are interesting technical objects for applications around the Earth and in the Solar system. But above all else, they are basic scientific objects allowing developing relativity from its own concepts. Some past and future features of relativistic positioning sys- tems, with special attention to the developments that they suggest for an epistemic relativity (relativistic experimental approach to physics), are analyzed. This includes relativistic stereometry, which, together with relativistic positioning systems, allows to introduce the general relativistic notion of (finite) laboratory (space-time region able to perform experiments of finite size).

  4. Dynamic loop gain increases upon adopting the supine body position during sleep in patients with obstructive sleep apnoea.

    Science.gov (United States)

    Joosten, Simon A; Landry, Shane A; Sands, Scott A; Terrill, Philip I; Mann, Dwayne; Andara, Christopher; Skuza, Elizabeth; Turton, Anthony; Berger, Philip; Hamilton, Garun S; Edwards, Bradley A

    2017-11-01

    Obstructive sleep apnoea (OSA) is typically worse in the supine versus lateral sleeping position. One potential factor driving this observation is a decrease in lung volume in the supine position which is expected by theory to increase a key OSA pathogenic factor: dynamic ventilatory control instability (i.e. loop gain). We aimed to quantify dynamic loop gain in OSA patients in the lateral and supine positions, and to explore the relationship between change in dynamic loop gain and change in lung volume with position. Data from 20 patients enrolled in previous studies on the effect of body position on OSA pathogenesis were retrospectively analysed. Dynamic loop gain was calculated from routinely collected polysomnographic signals using a previously validated mathematical model. Lung volumes were measured in the awake state with a nitrogen washout technique. Dynamic loop gain was significantly higher in the supine than in the lateral position (0.77 ± 0.15 vs 0.68 ± 0.14, P = 0.012). Supine functional residual capacity (FRC) was significantly lower than lateral FRC (81.0 ± 15.4% vs 87.3 ± 18.4% of the seated FRC, P = 0.021). The reduced FRC we observed on moving to the supine position was predicted by theory to increase loop gain by 10.2 (0.6, 17.1)%, a value similar to the observed increase of 8.4 (-1.5, 31.0)%. Dynamic loop gain increased by a small but statistically significant amount when moving from the lateral to supine position and this may, in part, contribute to the worsening of OSA in the supine sleeping position. © 2017 Asian Pacific Society of Respirology.

  5. Dynamical systems, attractors, and neural circuits.

    Science.gov (United States)

    Miller, Paul

    2016-01-01

    Biology is the study of dynamical systems. Yet most of us working in biology have limited pedagogical training in the theory of dynamical systems, an unfortunate historical fact that can be remedied for future generations of life scientists. In my particular field of systems neuroscience, neural circuits are rife with nonlinearities at all levels of description, rendering simple methodologies and our own intuition unreliable. Therefore, our ideas are likely to be wrong unless informed by good models. These models should be based on the mathematical theories of dynamical systems since functioning neurons are dynamic-they change their membrane potential and firing rates with time. Thus, selecting the appropriate type of dynamical system upon which to base a model is an important first step in the modeling process. This step all too easily goes awry, in part because there are many frameworks to choose from, in part because the sparsely sampled data can be consistent with a variety of dynamical processes, and in part because each modeler has a preferred modeling approach that is difficult to move away from. This brief review summarizes some of the main dynamical paradigms that can arise in neural circuits, with comments on what they can achieve computationally and what signatures might reveal their presence within empirical data. I provide examples of different dynamical systems using simple circuits of two or three cells, emphasizing that any one connectivity pattern is compatible with multiple, diverse functions.

  6. X-ray beam-position feedback system with easy-to-use beam-position monitor.

    Science.gov (United States)

    Park, Jae Yeon; Kim, Yesul; Lee, Sangsul; Lim, Jun

    2018-05-01

    X-ray beam-position stability is indispensable in cutting-edge experiments using synchrotron radiation. Here, for the first time, a beam-position feedback system is presented that utilizes an easy-to-use X-ray beam-position monitor incorporating a diamond-fluorescence screen. The acceptable range of the monitor is above 500 µm and the feedback system maintains the beam position within 3 µm. In addition to being inexpensive, the system has two key advantages: it works without a scale factor for position calibration, and it has no dependence on X-ray energy, X-ray intensity, beam size or beam shape.

  7. Launch vehicle tracking enhancement through Global Positioning System Metric Tracking

    Science.gov (United States)

    Moore, T. C.; Li, Hanchu; Gray, T.; Doran, A.

    United Launch Alliance (ULA) initiated operational flights of both the Atlas V and Delta IV launch vehicle families in 2002. The Atlas V and Delta IV launch vehicles were developed jointly with the US Air Force (USAF) as part of the Evolved Expendable Launch Vehicle (EELV) program. Both Launch Vehicle (LV) families have provided 100% mission success since their respective inaugural launches and demonstrated launch capability from both Vandenberg Air Force Base (VAFB) on the Western Test Range and Cape Canaveral Air Force Station (CCAFS) on the Eastern Test Range. However, the current EELV fleet communications, tracking, & control architecture & technology, which date back to the origins of the space launch business, require support by a large and high cost ground footprint. The USAF has embarked on an initiative known as Future Flight Safety System (FFSS) that will significantly reduce Test Range Operations and Maintenance (O& M) cost by closing facilities and decommissioning ground assets. In support of the FFSS, a Global Positioning System Metric Tracking (GPS MT) System based on the Global Positioning System (GPS) satellite constellation has been developed for EELV which will allow both Ranges to divest some of their radar assets. The Air Force, ULA and Space Vector have flown the first 2 Atlas Certification vehicles demonstrating the successful operation of the GPS MT System. The first Atlas V certification flight was completed in February 2012 from CCAFS, the second Atlas V certification flight from VAFB was completed in September 2012 and the third certification flight on a Delta IV was completed October 2012 from CCAFS. The GPS MT System will provide precise LV position, velocity and timing information that can replace ground radar tracking resource functionality. The GPS MT system will provide an independent position/velocity S-Band telemetry downlink to support the current man-in-the-loop ground-based commanded destruct of an anomalous flight- The system

  8. Dynamic Stability Experiment of Maglev Systems,

    Science.gov (United States)

    1995-04-01

    This report summarizes the research performed on maglev vehicle dynamic stability at Argonne National Laboratory during the past few years. It also... maglev system, it is important to consider this phenomenon in the development of all maglev systems. This report presents dynamic stability experiments...on maglev systems and compares their numerical simulation with predictions calculated by a nonlinear dynamic computer code. Instabilities of an

  9. Dynamical systems

    CERN Document Server

    Birkhoff, George D

    1927-01-01

    His research in dynamics constitutes the middle period of Birkhoff's scientific career, that of maturity and greatest power. -Yearbook of the American Philosophical Society The author's great book€¦is well known to all, and the diverse active modern developments in mathematics which have been inspired by this volume bear the most eloquent testimony to its quality and influence. -Zentralblatt MATH In 1927, G. D. Birkhoff wrote a remarkable treatise on the theory of dynamical systems that would inspire many later mathematicians to do great work. To a large extent, Birkhoff was writing about his o

  10. Modular Software for Spacecraft Navigation Using the Global Positioning System (GPS)

    Science.gov (United States)

    Truong, S. H.; Hartman, K. R.; Weidow, D. A.; Berry, D. L.; Oza, D. H.; Long, A. C.; Joyce, E.; Steger, W. L.

    1996-01-01

    The Goddard Space Flight Center Flight Dynamics and Mission Operations Divisions have jointly investigated the feasibility of engineering modular Global Positioning SYSTEM (GPS) navigation software to support both real time flight and ground postprocessing configurations. The goals of this effort are to define standard GPS data interfaces and to engineer standard, reusable navigation software components that can be used to build a broad range of GPS navigation support applications. The paper discusses the GPS modular software (GMOD) system and operations concepts, major requirements, candidate software architecture, feasibility assessment and recommended software interface standards. In additon, ongoing efforts to broaden the scope of the initial study and to develop modular software to support autonomous navigation using GPS are addressed,

  11. Novel electro-hydraulic position control system for primary mirror supporting system

    Directory of Open Access Journals (Sweden)

    Xiongbin Peng

    2016-05-01

    Full Text Available In the field of modern large-scale telescope, primary mirror supporting system technology faces the difficulties of theoretically uniform output force request and bias compensation. Therefore, a novel position control system combining hydraulic system with servo motor system is introduced. The novel system ensures uniform output force on supporting points without complicating the mechanical structure. The structures of both primary mirror supporting system and novel position system are described. Then, the mathematical model of novel position control system is derived for controller selection. A proportional–derivative controller is adopted for simulations and experiments of step response and triangle path tracking. The results show that proportional–derivative controller guarantees the system with micrometer-level positioning ability. A modified proportional–derivative controller is utilized to promote system behavior with faster response overshoot. The novel position control system is then applied on primary mirror supporting system. Coupling effect is observed among actuator partitions, and relocation of virtual pivot supporting point is chosen as the decoupling measurement. The position keeping ability of the primary mirror supporting system is verified by rotating the mirror cell at a considerably high rate. The experiment results show that the decoupled system performs better with smaller bias and shorter recovery time.

  12. An autonomous dynamical system captures all LCSs in three-dimensional unsteady flows.

    Science.gov (United States)

    Oettinger, David; Haller, George

    2016-10-01

    Lagrangian coherent structures (LCSs) are material surfaces that shape the finite-time tracer patterns in flows with arbitrary time dependence. Depending on their deformation properties, elliptic and hyperbolic LCSs have been identified from different variational principles, solving different equations. Here we observe that, in three dimensions, initial positions of all variational LCSs are invariant manifolds of the same autonomous dynamical system, generated by the intermediate eigenvector field, ξ 2 (x 0 ), of the Cauchy-Green strain tensor. This ξ 2 -system allows for the detection of LCSs in any unsteady flow by classical methods, such as Poincaré maps, developed for autonomous dynamical systems. As examples, we consider both steady and time-aperiodic flows, and use their dual ξ 2 -system to uncover both hyperbolic and elliptic LCSs from a single computation.

  13. Ad-Coop Positioning System (ACPS)

    DEFF Research Database (Denmark)

    Frattasi, Simone; Monti, Marco

    2008-01-01

    In this paper, we propose an innovative solution for positioning determination in 4G wireless networks by introducing the Ad-Coop Positioning System (ACPS). The ACPS is supported by a hybrid cellular ad-hoc architecture, where the cellular network has a centralized control over the ad-hoc connect......In this paper, we propose an innovative solution for positioning determination in 4G wireless networks by introducing the Ad-Coop Positioning System (ACPS). The ACPS is supported by a hybrid cellular ad-hoc architecture, where the cellular network has a centralized control over the ad...... method for the ACPS, which appropriately combines and weights the long- and short-range location information in a non-linear least square (NLLS) minimization procedure. The numerical results shown in the paper demonstrate that the ACPS enhances the location estimation accuracy with respect...

  14. Dynamics and Collapse in a Power System Model with Voltage Variation: The Damping Effect.

    Science.gov (United States)

    Ma, Jinpeng; Sun, Yong; Yuan, Xiaoming; Kurths, Jürgen; Zhan, Meng

    2016-01-01

    Complex nonlinear phenomena are investigated in a basic power system model of the single-machine-infinite-bus (SMIB) with a synchronous generator modeled by a classical third-order differential equation including both angle dynamics and voltage dynamics, the so-called flux decay equation. In contrast, for the second-order differential equation considering the angle dynamics only, it is the classical swing equation. Similarities and differences of the dynamics generated between the third-order model and the second-order one are studied. We mainly find that, for positive damping, these two models show quite similar behavior, namely, stable fixed point, stable limit cycle, and their coexistence for different parameters. However, for negative damping, the second-order system can only collapse, whereas for the third-order model, more complicated behavior may happen, such as stable fixed point, limit cycle, quasi-periodicity, and chaos. Interesting partial collapse phenomena for angle instability only and not for voltage instability are also found here, including collapse from quasi-periodicity and from chaos etc. These findings not only provide a basic physical picture for power system dynamics in the third-order model incorporating voltage dynamics, but also enable us a deeper understanding of the complex dynamical behavior and even leading to a design of oscillation damping in electric power systems.

  15. Dynamics of unstable systems

    International Nuclear Information System (INIS)

    Posch, H.A.; Narnhofer, H.; Thirring, W.

    1990-01-01

    We study the dynamics of classical particles interacting with attractive Gaussian potentials. This system is thermodynamically not stable and exhibits negative specific heat. The results of the computer simulation of the dynamics are discussed in comparison with various theories. In particular, we find that the condensed phase is a stationary solution of the Vlasov equation, but the Vlasov dynamics cannot describe the collapse. 14 refs., 1 tab., 11 figs. (Authors)

  16. Stochastic dynamics of a delayed bistable system with multiplicative noise

    Energy Technology Data Exchange (ETDEWEB)

    Dung, Nguyen Tien, E-mail: dung-nguyentien10@yahoo.com, E-mail: dungnt@fpt.edu.vn [Department of Mathematics, FPT University, No 8 Ton That Thuyet, My Dinh, Tu Liem, Hanoi (Viet Nam)

    2014-05-15

    In this paper we investigate the properties of a delayed bistable system under the effect of multiplicative noise. We first prove the existence and uniqueness of the positive solution and show that its moments are uniformly bounded. Then, we study stochastic dynamics of the solution in long time, the lower and upper bounds for the paths and an estimate for the average value are provided.

  17. Nonlinear Dynamic Analysis on the Rain-Wind-Induced Vibration of Cable Considering the Equilibrium Position of Rivulet

    Directory of Open Access Journals (Sweden)

    Xijun Liu

    2013-01-01

    Full Text Available The nonlinear dynamic behavior of rain-wind-induced vibration of inclined cable is investigated with the consideration of the equilibrium position of the moving rivulet. The partial differential governing equations of three-degree-of-freedom on the model of rain-wind-induced cable vibration are established, which are proposed for describing the nonlinear interactions among the in-plane, out-of-plane vibration of the cable and the oscillation of the moving rivulet. The Galerkin method is applied to discretize the partial differential governing equations. The approximately analytic solution is obtained by using the method of averaging. The unique correspondence between the wind and the equilibrium position of the rivulet is ascertained. The presence of rivulet at certain positions on the surface of cable is then proved to be one of the trigger for wind-rain-induced cable vibration. The nonlinear dynamic phenomena of the inclined cable subjected to wind and rain turbulence are then studied by varying the parameters including mean wind velocity, Coulomb damping force, damping ratio, the span length, and the initial tension of the inclined cable on the model. The jump phenomenon is also observed which occurs when there are multiple solutions in the system.

  18. Multibody system dynamics, robotics and control

    CERN Document Server

    Gerstmayr, Johannes

    2013-01-01

    The volume contains 19 contributions by international experts in the field of multibody system dynamics, robotics and control. The book aims to bridge the gap between the modeling of mechanical systems by means of multibody dynamics formulations and robotics. In the classical approach, a multibody dynamics model contains a very high level of detail, however, the application of such models to robotics or control is usually limited. The papers aim to connect the different scientific communities in multibody dynamics, robotics and control. Main topics are flexible multibody systems, humanoid robots, elastic robots, nonlinear control, optimal path planning, and identification.

  19. Modular interdependency in complex dynamical systems.

    Science.gov (United States)

    Watson, Richard A; Pollack, Jordan B

    2005-01-01

    Herbert A. Simon's characterization of modularity in dynamical systems describes subsystems as having dynamics that are approximately independent of those of other subsystems (in the short term). This fits with the general intuition that modules must, by definition, be approximately independent. In the evolution of complex systems, such modularity may enable subsystems to be modified and adapted independently of other subsystems, whereas in a nonmodular system, modifications to one part of the system may result in deleterious side effects elsewhere in the system. But this notion of modularity and its effect on evolvability is not well quantified and is rather simplistic. In particular, modularity need not imply that intermodule dependences are weak or unimportant. In dynamical systems this is acknowledged by Simon's suggestion that, in the long term, the dynamical behaviors of subsystems do interact with one another, albeit in an "aggregate" manner--but this kind of intermodule interaction is omitted in models of modularity for evolvability. In this brief discussion we seek to unify notions of modularity in dynamical systems with notions of how modularity affects evolvability. This leads to a quantifiable measure of modularity and a different understanding of its effect on evolvability.

  20. Linguistic positivity in historical texts reflects dynamic environmental and psychological factors.

    Science.gov (United States)

    Iliev, Rumen; Hoover, Joe; Dehghani, Morteza; Axelrod, Robert

    2016-12-06

    People use more positive words than negative words. Referred to as "linguistic positivity bias" (LPB), this effect has been found across cultures and languages, prompting the conclusion that it is a panhuman tendency. However, although multiple competing explanations of LPB have been proposed, there is still no consensus on what mechanism(s) generate LPB or even on whether it is driven primarily by universal cognitive features or by environmental factors. In this work we propose that LPB has remained unresolved because previous research has neglected an essential dimension of language: time. In four studies conducted with two independent, time-stamped text corpora (Google books Ngrams and the New York Times), we found that LPB in American English has decreased during the last two centuries. We also observed dynamic fluctuations in LPB that were predicted by changes in objective environment, i.e., war and economic hardships, and by changes in national subjective happiness. In addition to providing evidence that LPB is a dynamic phenomenon, these results suggest that cognitive mechanisms alone cannot account for the observed dynamic fluctuations in LPB. At the least, LPB likely arises from multiple interacting mechanisms involving subjective, objective, and societal factors. In addition to having theoretical significance, our results demonstrate the value of newly available data sources in addressing long-standing scientific questions.

  1. A Prototype Wire Position Monitoring System

    International Nuclear Information System (INIS)

    Wang, Wei

    2010-01-01

    The Wire Position Monitoring System (WPM) will track changes in the transverse position of LCLS Beam Position Monitors (BPMs) to 1(micro)m over several weeks. This position information will be used between applications of beam based alignment to correct for changes in component alignment. The WPM system has several requirements. The sensor range must be large enough so that precision sensor positioning is not required. The resolution needs to be small enough so that the signal can be used to monitor motion to 1(micro)m. The system must be stable enough so that system drift does not mimic motion of the component being monitored. The WPM sensor assembly consists of two parts, the magnetic sensor and an integrated lock-in amplifier. The magnetic sensor picks up a signal from the alternating current in a stretched wire. The voltage v induced in the sensor is proportional to the wire displacement from the center of the sensor. The integrated lock-in amplifier provides a DC output whose magnitude is proportional to the AC signal from the magnetic sensor. The DC output is either read on a digital voltmeter or digitized locally and communicated over a computer interface.

  2. Quasi-periodic motions in families of dynamical systems order amidst chaos

    CERN Document Server

    Broer, Hendrik W; Sevryuk, Mikhail B

    1996-01-01

    This book is on Kolmogorov-Arnol'd-Moser theory for quasi-periodic tori in dynamical systems. It gives an up-to-date report on the role parameters play for persis- tence of such tori, typically occuring on Cantor sets of positive Hausdorff measure inside phase and parameter space. The cases with preservation of symplectic or volume forms or time-reversal symmetries are included. The concepts of Whitney-smoothness and Diophantine approximation of Cantor sets on submanifolds of Euclidean space are treated, as well as Bruno's theory on analytic continuation of tori. Partly this material is new to Western mathematicians. The reader should be familiar with dynamical systems theory, differen- tial equations and some analysis. The book is directed to researchers, but its entrance level is introductory.

  3. Measurement and inference of profile soil-water dynamics at different hillslope positions in a semiarid agricultural watershed

    Science.gov (United States)

    Green, Timothy R.; Erskine, Robert H.

    2011-12-01

    Dynamics of profile soil water vary with terrain, soil, and plant characteristics. The objectives addressed here are to quantify dynamic soil water content over a range of slope positions, infer soil profile water fluxes, and identify locations most likely influenced by multidimensional flow. The instrumented 56 ha watershed lies mostly within a dryland (rainfed) wheat field in semiarid eastern Colorado. Dielectric capacitance sensors were used to infer hourly soil water content for approximately 8 years (minus missing data) at 18 hillslope positions and four or more depths. Based on previous research and a new algorithm, sensor measurements (resonant frequency) were rescaled to estimate soil permittivity, then corrected for temperature effects on bulk electrical conductivity before inferring soil water content. Using a mass-conservation method, we analyzed multitemporal changes in soil water content at each sensor to infer the dynamics of water flux at different depths and landscape positions. At summit positions vertical processes appear to control profile soil water dynamics. At downslope positions infrequent overland flow and unsaturated subsurface lateral flow appear to influence soil water dynamics. Crop water use accounts for much of the variability in soil water between transects that are either cropped or fallow in alternating years, while soil hydraulic properties and near-surface hydrology affect soil water variability across landscape positions within each management zone. The observed spatiotemporal patterns exhibit the joint effects of short-term hydrology and long-term soil development. Quantitative methods of analyzing soil water patterns in space and time improve our understanding of dominant soil hydrological processes and provide alternative measures of model performance.

  4. Constraint Embedding for Multibody System Dynamics

    Science.gov (United States)

    Jain, Abhinandan

    2009-01-01

    This paper describes a constraint embedding approach for the handling of local closure constraints in multibody system dynamics. The approach uses spatial operator techniques to eliminate local-loop constraints from the system and effectively convert the system into tree-topology systems. This approach allows the direct derivation of recursive O(N) techniques for solving the system dynamics and avoiding the expensive steps that would otherwise be required for handling the closedchain dynamics. The approach is very effective for systems where the constraints are confined to small-subgraphs within the system topology. The paper provides background on the spatial operator O(N) algorithms, the extensions for handling embedded constraints, and concludes with some examples of such constraints.

  5. Operationalizing sustainability in urban coastal systems: a system dynamics analysis.

    Science.gov (United States)

    Mavrommati, Georgia; Bithas, Kostas; Panayiotidis, Panayiotis

    2013-12-15

    We propose a system dynamics approach for Ecologically Sustainable Development (ESD) in urban coastal systems. A systematic analysis based on theoretical considerations, policy analysis and experts' knowledge is followed in order to define the concept of ESD. The principles underlying ESD feed the development of a System Dynamics Model (SDM) that connects the pollutant loads produced by urban systems' socioeconomic activities with the ecological condition of the coastal ecosystem that it is delineated in operational terms through key biological elements defined by the EU Water Framework Directive. The receiving waters of the Athens Metropolitan area, which bears the elements of typical high population density Mediterranean coastal city but which currently has also new dynamics induced by the ongoing financial crisis, are used as an experimental system for testing a system dynamics approach to apply the concept of ESD. Systems' thinking is employed to represent the complex relationships among the components of the system. Interconnections and dependencies that determine the potentials for achieving ESD are revealed. The proposed system dynamics analysis can facilitate decision makers to define paths of development that comply with the principles of ESD. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. System Dynamics Approach for Critical Infrastructure and Decision Support. A Model for a Potable Water System.

    Science.gov (United States)

    Pasqualini, D.; Witkowski, M.

    2005-12-01

    The Critical Infrastructure Protection / Decision Support System (CIP/DSS) project, supported by the Science and Technology Office, has been developing a risk-informed Decision Support System that provides insights for making critical infrastructure protection decisions. The system considers seventeen different Department of Homeland Security defined Critical Infrastructures (potable water system, telecommunications, public health, economics, etc.) and their primary interdependencies. These infrastructures have been modeling in one model called CIP/DSS Metropolitan Model. The modeling approach used is a system dynamics modeling approach. System dynamics modeling combines control theory and the nonlinear dynamics theory, which is defined by a set of coupled differential equations, which seeks to explain how the structure of a given system determines its behavior. In this poster we present a system dynamics model for one of the seventeen critical infrastructures, a generic metropolitan potable water system (MPWS). Three are the goals: 1) to gain a better understanding of the MPWS infrastructure; 2) to identify improvements that would help protect MPWS; and 3) to understand the consequences, interdependencies, and impacts, when perturbations occur to the system. The model represents raw water sources, the metropolitan water treatment process, storage of treated water, damage and repair to the MPWS, distribution of water, and end user demand, but does not explicitly represent the detailed network topology of an actual MPWS. The MPWS model is dependent upon inputs from the metropolitan population, energy, telecommunication, public health, and transportation models as well as the national water and transportation models. We present modeling results and sensitivity analysis indicating critical choke points, negative and positive feedback loops in the system. A general scenario is also analyzed where the potable water system responds to a generic disruption.

  7. The Aharonov-Anandan phase of a classical dynamical system seen mathematically as a quantum dynamical system

    OpenAIRE

    Segre, Gavriel

    2005-01-01

    It is shown that the non-adiabatic Hannay's angle of an integrable non-degenerate classical hamiltonian dynamical system may be related to the Aharonov-Anandan phase it develops when it is looked mathematically as a quantum dynamical system.

  8. PID position regulation in one-degree-of-freedom Euler-Lagrange systems actuated by a PMSM

    Science.gov (United States)

    Verastegui-Galván, J.; Hernández-Guzmán, V. M.; Orrante-Sakanassi, J.

    2018-02-01

    This paper is concerned with position regulation in one-degree-of-freedom Euler-Lagrange Systems. We consider that the mechanical subsystem is actuated by a permanent magnet synchronous motor (PMSM). Our proposal consists of a Proportional-Integral-Derivative (PID) controller for the mechanical subsystem and a slight variation of field oriented control for the PMSM. We take into account the motor electric dynamics during the stability analysis. We present, for the first time, a global asymptotic stability proof for such a control scheme without requiring the mechanical subsystem to naturally possess viscous friction. Finally, as a corollary of our main result we prove global asymptotic stability for output feedback PID regulation of one-degree-of-freedom Euler-Lagrange systems when generated torque is considered as the system input, i.e. when the electric dynamics of PMSM's is not taken into account.

  9. Aging and emotional expressions: is there a positivity bias during dynamic emotion recognition?

    Directory of Open Access Journals (Sweden)

    Alberto eDi Domenico

    2015-08-01

    Full Text Available In this study, we investigated whether age-related differences in emotion regulation priorities influence online dynamic emotional facial discrimination. A group of 40 younger and a group of 40 older adults were invited to recognize a positive or negative expression as soon as the expression slowly emerged and subsequently rate it in terms of intensity. Our findings show that older adults recognized happy expressions faster than angry ones, while the direction of emotional expression does not seem to affect younger adults’ performance. Furthermore, older adults rated both negative and positive emotional faces as more intense compared to younger controls. This study detects age-related differences with a dynamic online paradigm and suggests that different regulation strategies may shape emotional face recognition.

  10. Airborne relay-based regional positioning system.

    Science.gov (United States)

    Lee, Kyuman; Noh, Hongjun; Lim, Jaesung

    2015-05-28

    Ground-based pseudolite systems have some limitations, such as low vertical accuracy, multipath effects and near-far problems. These problems are not significant in airborne-based pseudolite systems. However, the monitoring of pseudolite positions is required because of the mobility of the platforms on which the pseudolites are mounted, and this causes performance degradation. To address these pseudolite system limitations, we propose an airborne relay-based regional positioning system that consists of a master station, reference stations, airborne relays and a user. In the proposed system, navigation signals are generated from the reference stations located on the ground and are relayed via the airborne relays. Unlike in conventional airborne-based systems, the user in the proposed system sequentially estimates both the locations of airborne relays and his/her own position. Therefore, a delay due to monitoring does not occur, and the accuracy is not affected by the movement of airborne relays. We conducted several simulations to evaluate the performance of the proposed system. Based on the simulation results, we demonstrated that the proposed system guarantees a higher accuracy than airborne-based pseudolite systems, and it is feasible despite the existence of clock offsets among reference stations.

  11. Autonomous Navigation of the SSTI/Lewis Spacecraft Using the Global Positioning System (GPS)

    Science.gov (United States)

    Hart, R. C.; Long, A. C.; Lee, T.

    1997-01-01

    The National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD) is pursuing the application of Global Positioning System (GPS) technology to improve the accuracy and economy of spacecraft navigation. High-accuracy autonomous navigation algorithms are being flight qualified in conjunction with GSFC's GPS Attitude Determination Flyer (GADFLY) experiment on the Small Satellite Technology Initiative (SSTI) Lewis spacecraft, which is scheduled for launch in 1997. Preflight performance assessments indicate that these algorithms can provide a real-time total position accuracy of better than 10 meters (1 sigma) and velocity accuracy of better than 0.01 meter per second (1 sigma), with selective availability at typical levels. This accuracy is projected to improve to the 2-meter level if corrections to be provided by the GPS Wide Area Augmentation System (WAAS) are included.

  12. Relativistic positioning systems: Numerical simulations

    Science.gov (United States)

    Puchades Colmenero, Neus

    The position of users located on the Earth's surface or near it may be found with the classic positioning systems (CPS). Certain information broadcast by satellites of global navigation systems, as GPS and GALILEO, may be used for positioning. The CPS are based on the Newtonian formalism, although relativistic post-Newtonian corrections are done when they are necessary. This thesis contributes to the development of a different positioning approach, which is fully relativistic from the beginning. In the relativistic positioning systems (RPS), the space-time position of any user (ship, spacecraft, and so on) can be calculated with the help of four satellites, which broadcast their proper times by means of codified electromagnetic signals. In this thesis, we have simulated satellite 4-tuples of the GPS and GALILEO constellations. If a user receives the signals from four satellites simultaneously, the emission proper times read -after decoding- are the user "emission coordinates". In order to find the user "positioning coordinates", in an appropriate almost inertial reference system, there are two possibilities: (a) the explicit relation between positioning and emission coordinates (broadcast by the satellites) is analytically found or (b) numerical codes are designed to calculate the positioning coordinates from the emission ones. Method (a) is only viable in simple ideal cases, whereas (b) allows us to consider realistic situations. In this thesis, we have designed numerical codes with the essential aim of studying two appropriate RPS, which may be generalized. Sometimes, there are two real users placed in different positions, which receive the same proper times from the same satellites; then, we say that there is bifurcation, and additional data are needed to choose the real user position. In this thesis, bifurcation is studied in detail. We have analyzed in depth two RPS models; in both, it is considered that the satellites move in the Schwarzschild's space

  13. Dynamical systems in population biology

    CERN Document Server

    Zhao, Xiao-Qiang

    2017-01-01

    This research monograph provides an introduction to the theory of nonautonomous semiflows with applications to population dynamics. It develops dynamical system approaches to various evolutionary equations such as difference, ordinary, functional, and partial differential equations, and pays more attention to periodic and almost periodic phenomena. The presentation includes persistence theory, monotone dynamics, periodic and almost periodic semiflows, basic reproduction ratios, traveling waves, and global analysis of prototypical population models in ecology and epidemiology. Research mathematicians working with nonlinear dynamics, particularly those interested in applications to biology, will find this book useful. It may also be used as a textbook or as supplementary reading for a graduate special topics course on the theory and applications of dynamical systems. Dr. Xiao-Qiang Zhao is a University Research Professor at Memorial University of Newfoundland, Canada. His main research interests involve applied...

  14. Dynamism in Electronic Performance Support Systems.

    Science.gov (United States)

    Laffey, James

    1995-01-01

    Describes a model for dynamic electronic performance support systems based on NNAble, a system developed by the training group at Apple Computer. Principles for designing dynamic performance support are discussed, including a systems approach, performer-centered design, awareness of situated cognition, organizational memory, and technology use.…

  15. Accurate radiotherapy positioning system investigation based on video

    International Nuclear Information System (INIS)

    Tao Shengxiang; Wu Yican

    2006-01-01

    This paper introduces the newest research production on patient positioning method in accurate radiotherapy brought by Accurate Radiotherapy Treating System (ARTS) research team of Institute of Plasma Physics of Chinese Academy of Sciences, such as the positioning system based on binocular vision, the position-measuring system based on contour matching and the breath gate controlling system for positioning. Their basic principle, the application occasion and the prospects are briefly depicted. (authors)

  16. Applying dual-laser spot positions measurement technology on a two-dimensional tracking measurement system

    International Nuclear Information System (INIS)

    Lee, Hau-Wei; Chen, Chieh-Li

    2009-01-01

    This paper presents a two-dimensional tracking measurement system with a tracking module, which consists of two stepping motors, two laser diodes and a four separated active areas segmented position sensitive detector (PSD). The PSD was placed on a two-dimensional moving stage and used as a tracking target. The two laser diodes in the tracking module were directly rotated to keep the laser spots on the origin of the PSD. The two-dimensional position of the target PSD on the moving stage is determined from the distance between the two motors and the tracking angles of the two laser diodes, which are rotated by the two stepping motors, respectively. In order to separate the four positional values of the two laser spots on one PSD, the laser diodes were modulated by two distinct frequencies. Multiple-laser spot position measurement technology was used to separate the four positional values of the two laser spots on the PSD. The experimental results show that the steady-state voltage shift rate is about 0.2% and dynamic cross-talk rate is smaller than 2% when the two laser spots are projected on one PSD at the same time. The measurement errors of the x and y axial positions of the two-dimensional tracking system were less than 1% in the measuring range of 20 mm. The results demonstrate that multiple-laser spot position measurement technology can be employed in a two-dimensional tracking measurement system

  17. Position Control of Linear Synchronous Motor Drives with Exploitation of Forced Dynamics Control Principles

    Directory of Open Access Journals (Sweden)

    Jan Vittek

    2004-01-01

    Full Text Available Closed-loop position control of mechanisms directly driven by linear synchronous motors with permanent magnets is presented. The control strategy is based on forced dynamic control, which is a form of feedback linearisation, yielding a non-liner multivariable control law to obtain a prescribed linear speed dynamics together with the vector control condition of mutal orthogonality between the stator current and magnetic flux vectors (assuming perfect estimates of the plant parameters. Outer position control loop is closed via simple feedback with proportional gain. Simulations of the design control sysstem, including the drive with power electronic switching, predict the intended drive performance.

  18. q-entropy for symbolic dynamical systems

    International Nuclear Information System (INIS)

    Zhao, Yun; Pesin, Yakov

    2015-01-01

    For symbolic dynamical systems we use the Carathéodory construction as described in (Pesin 1997 Dimension Theory in Dynamical Systems, ConTemporary Views and Applications (Chicago: University of Chicago Press)) to introduce the notions of q-topological and q-metric entropies. We describe some basic properties of these entropies and in particular, discuss relations between q-metric entropy and local metric entropy. Both q-topological and q-metric entropies are new invariants respectively under homeomorphisms and metric isomorphisms of dynamical systems. (paper)

  19. The fractional dynamics of quantum systems

    Science.gov (United States)

    Lu, Longzhao; Yu, Xiangyang

    2018-05-01

    The fractional dynamic process of a quantum system is a novel and complicated problem. The establishment of a fractional dynamic model is a significant attempt that is expected to reveal the mechanism of fractional quantum system. In this paper, a generalized time fractional Schrödinger equation is proposed. To study the fractional dynamics of quantum systems, we take the two-level system as an example and derive the time fractional equations of motion. The basic properties of the system are investigated by solving this set of equations in the absence of light field analytically. Then, when the system is subject to the light field, the equations are solved numerically. It shows that the two-level system described by the time fractional Schrödinger equation we proposed is a confirmable system.

  20. The SSRL injector beam position monitoring systems

    International Nuclear Information System (INIS)

    Lavender, W.; Baird, S.; Brennan, S.; Borland, M.; Hettel, R.; Nuhn, H.D.; Ortiz, R.; Safranek, J.; Sebek, J.; Wermelskirchen, C.; Yang, J.

    1991-01-01

    The beam position monitoring system of the SSRL injector forms a vital component of its operation. Several different types of instrumentation are used to measure the position or intensity of the electron beam in the injector. These include current toroids, fluorescent screens, Faraday cups, the 'Q' meter, a synchrotron light monitor, and electron beam position monitors. This paper focuses on the use of the electron beam position monitors to measure electron trajectories in the injector transport lines and the booster ring. The design of the beam position monitors is described in another paper to be presented at this conference. There are three different beam position monitor systems in the injector. One system consists of a set of five BPMs located on the injection transport line from the linac to the booster (known as the LTB line). There is a second system of six BPMs located on the ejection transport line (known as the BTS line). Finally, there is an array of 40 BPMs installed on the main booster ring itself. This article describes the software and processing electronics of the systems used to measure electron beam trajectories for the new SSRL injector for SPEAR

  1. Dynamics of vehicle-road coupled system

    CERN Document Server

    Yang, Shaopu; Li, Shaohua

    2015-01-01

    Vehicle dynamics and road dynamics are usually considered to be two largely independent subjects. In vehicle dynamics, road surface roughness is generally regarded as random excitation of the vehicle, while in road dynamics, the vehicle is generally regarded as a moving load acting on the pavement. This book suggests a new research concept to integrate the vehicle and the road system with the help of a tire model, and establishes a cross-subject research framework dubbed vehicle-pavement coupled system dynamics. In this context, the dynamics of the vehicle, road and the vehicle-road coupled system are investigated by means of theoretical analysis, numerical simulations and field tests. This book will be a valuable resource for university professors, graduate students and engineers majoring in automotive design, mechanical engineering, highway engineering and other related areas. Shaopu Yang is a professor and deputy president of Shijiazhuang Tiedao University, China; Liqun Chen is a professor at Shanghai Univ...

  2. Session 6: Dynamic Modeling and Systems Analysis

    Science.gov (United States)

    Csank, Jeffrey; Chapman, Jeffryes; May, Ryan

    2013-01-01

    These presentations cover some of the ongoing work in dynamic modeling and dynamic systems analysis. The first presentation discusses dynamic systems analysis and how to integrate dynamic performance information into the systems analysis. The ability to evaluate the dynamic performance of an engine design may allow tradeoffs between the dynamic performance and operability of a design resulting in a more efficient engine design. The second presentation discusses the Toolbox for Modeling and Analysis of Thermodynamic Systems (T-MATS). T-MATS is a Simulation system with a library containing the basic building blocks that can be used to create dynamic Thermodynamic Systems. Some of the key features include Turbo machinery components, such as turbines, compressors, etc., and basic control system blocks. T-MAT is written in the Matlab-Simulink environment and is open source software. The third presentation focuses on getting additional performance from the engine by allowing the limit regulators only to be active when a limit is danger of being violated. Typical aircraft engine control architecture is based on MINMAX scheme, which is designed to keep engine operating within prescribed mechanical/operational safety limits. Using a conditionally active min-max limit regulator scheme, additional performance can be gained by disabling non-relevant limit regulators

  3. Nonlinear transport of dynamic system phase space

    International Nuclear Information System (INIS)

    Xie Xi; Xia Jiawen

    1993-01-01

    The inverse transform of any order solution of the differential equation of general nonlinear dynamic systems is derived, realizing theoretically the nonlinear transport for the phase space of nonlinear dynamic systems. The result is applicable to general nonlinear dynamic systems, with the transport of accelerator beam phase space as a typical example

  4. An investigation of factors affecting elementary school students' BMI values based on the system dynamics modeling.

    Science.gov (United States)

    Lan, Tian-Syung; Chen, Kai-Ling; Chen, Pin-Chang; Ku, Chao-Tai; Chiu, Pei-Hsuan; Wang, Meng-Hsiang

    2014-01-01

    This study used system dynamics method to investigate the factors affecting elementary school students' BMI values. The construction of the dynamic model is divided into the qualitative causal loop and the quantitative system dynamics modeling. According to the system dynamics modeling, this study consisted of research on the four dimensions: student's personal life style, diet-relevant parenting behaviors, advocacy and implementation of school nutrition education, and students' peer interaction. The results of this study showed that students with more adequate health concepts usually have better eating behaviors and consequently have less chance of becoming obese. In addition, this study also verified that educational attainment and socioeconomic status of parents have a positive correlation with students' amounts of physical activity, and nutrition education has a prominent influence on changing students' high-calorie diets.

  5. Stochastic runaway of dynamical systems

    International Nuclear Information System (INIS)

    Pfirsch, D.; Graeff, P.

    1984-10-01

    One-dimensional, stochastic, dynamical systems are well studied with respect to their stability properties. Less is known for the higher dimensional case. This paper derives sufficient and necessary criteria for the asymptotic divergence of the entropy (runaway) and sufficient ones for the moments of n-dimensional, stochastic, dynamical systems. The crucial implication is the incompressibility of their flow defined by the equations of motion in configuration space. Two possible extensions to compressible flow systems are outlined. (orig.)

  6. The brain as a dynamic physical system.

    Science.gov (United States)

    McKenna, T M; McMullen, T A; Shlesinger, M F

    1994-06-01

    The brain is a dynamic system that is non-linear at multiple levels of analysis. Characterization of its non-linear dynamics is fundamental to our understanding of brain function. Identifying families of attractors in phase space analysis, an approach which has proven valuable in describing non-linear mechanical and electrical systems, can prove valuable in describing a range of behaviors and associated neural activity including sensory and motor repertoires. Additionally, transitions between attractors may serve as useful descriptors for analysing state changes in neurons and neural ensembles. Recent observations of synchronous neural activity, and the emerging capability to record the spatiotemporal dynamics of neural activity by voltage-sensitive dyes and electrode arrays, provide opportunities for observing the population dynamics of neural ensembles within a dynamic systems context. New developments in the experimental physics of complex systems, such as the control of chaotic systems, selection of attractors, attractor switching and transient states, can be a source of powerful new analytical tools and insights into the dynamics of neural systems.

  7. Measurement of the dynamics in ski jumping using a wearable inertial sensor-based system.

    Science.gov (United States)

    Chardonnens, Julien; Favre, Julien; Cuendet, Florian; Gremion, Gérald; Aminian, Kamiar

    2014-01-01

    Dynamics is a central aspect of ski jumping, particularly during take-off and stable flight. Currently, measurement systems able to measure ski jumping dynamics (e.g. 3D cameras, force plates) are complex and only available in few research centres worldwide. This study proposes a method to determine dynamics using a wearable inertial sensor-based system which can be used routinely on any ski jumping hill. The system automatically calculates characteristic dynamic parameters during take-off (position and velocity of the centre of mass perpendicular to the table, force acting on the centre of mass perpendicular to the table and somersault angular velocity) and stable flight (total aerodynamic force). Furthermore, the acceleration of the ski perpendicular to the table was quantified to characterise the skis lift at take-off. The system was tested with two groups of 11 athletes with different jump distances. The force acting on the centre of mass, acceleration of the ski perpendicular to the table, somersault angular velocity and total aerodynamic force were different between groups and correlated with the jump distances. Furthermore, all dynamic parameters were within the range of prior studies based on stationary measurement systems, except for the centre of mass mean force which was slightly lower.

  8. System dynamics and control with bond graph modeling

    CERN Document Server

    Kypuros, Javier

    2013-01-01

    Part I Dynamic System ModelingIntroduction to System DynamicsIntroductionSystem Decomposition and Model ComplexityMathematical Modeling of Dynamic SystemsAnalysis and Design of Dynamic SystemsControl of Dynamic SystemsDiagrams of Dynamic SystemsA Graph-Centered Approach to ModelingSummaryPracticeExercisesBasic Bond Graph ElementsIntroductionPower and Energy VariablesBasic 1-Port ElementsBasic 2-Ports ElementsJunction ElementsSimple Bond Graph ExamplesSummaryPracticeExercisesBond Graph Synthesis and Equation DerivationIntroductionGeneral GuidelinesMechanical TranslationMechanical RotationElectrical CircuitsHydraulic CircuitsMixed SystemsState Equation DerivationState-Space RepresentationsAlgebraic Loops and Derivative CausalitySummaryPracticeExercisesImpedance Bond GraphsIntroductionLaplace Transform of the State-Space EquationBasic 1-Port ImpedancesImpedance Bond Graph SynthesisJunctions, Transformers, and GyratorsEffort and Flow DividersSign ChangesTransfer Function DerivationAlternative Derivation of Transf...

  9. DYNAMICS OF FINANCIAL SYSTEM: A SYSTEM DYNAMICS APPROACH

    Directory of Open Access Journals (Sweden)

    Girish K Nair

    2013-01-01

    Full Text Available There are several ratios which define the financial health of an organization but the importance of Net cash flow, Gross income, Net income, Pending bills, Receivable bills, Debt, and Book value can never be undermined as they give the exact picture of the financial condition. While there are several approaches to study the dynamics of these variables, system dynamics based modelling and simulation is one of the modern techniques. The paper explores this method to simulate the before mentioned parameters during production capacity expansion in an electronic industry. Debt and Book value have shown a non-linear pattern of variation which is discussed. The model can be used by the financial experts as a decision support tool in arriving at conclusions in connection to the expansion plans of the organization.

  10. An Axiomatic Representation of System Dynamics

    CERN Document Server

    Baianu, I

    2004-01-01

    An axiomatic representation of system dynamics is introduced in terms of categories, functors, organismal supercategories, limits and colimits of diagrams. Specific examples are considered in Complex Systems Biology, such as ribosome biogenesis and Hormonal Control in human subjects. "Fuzzy" Relational Structures are also proposed for flexible representations of biological system dynamics and organization.

  11. Controlling chaos in discontinuous dynamical systems

    International Nuclear Information System (INIS)

    Danca, Marius-F.

    2004-01-01

    In this paper we consider the possibility to implement the technique of changes in the system variables to control the chaos introduced by Gueemez and Matias for continuous dynamical systems to a class of discontinuous dynamical systems. The approach is realized via differential inclusions following the Filippov theory. Three practical examples are considered

  12. A motion-based integer ambiguity resolution method for attitude determination using the global positioning system (GPS)

    International Nuclear Information System (INIS)

    Wang, Bo; Deng, Zhihong; Wang, Shunting; Fu, Mengyin

    2010-01-01

    Loss of the satellite signal and noise disturbance will cause cycle slips to occur in the carrier phase observation of the attitude determination system using the global positioning system (GPS), especially in the dynamic situation. Therefore, in order to reject the error by cycle slips, the integer ambiguity should be re-computed. A motion model-based Kalman predictor is used for the ambiguity re-computation in dynamic applications. This method utilizes the correct observation of the last step to predict the current ambiguities. With the baseline length as a constraint to reject invalid values, we can solve the current integer ambiguity and the attitude angles, by substituting the obtained ambiguities into the constrained LAMBDA method. Experimental results demonstrate that the proposed method is more efficient in the dynamic situation, which takes less time to obtain new fixed ambiguities with a higher mean success rate

  13. Position control of an electro-pneumatic system based on PWM technique and FLC.

    Science.gov (United States)

    Najjari, Behrouz; Barakati, S Masoud; Mohammadi, Ali; Futohi, Muhammad J; Bostanian, Muhammad

    2014-03-01

    In this paper, modeling and PWM based control of an electro-pneumatic system, including the four 2-2 valves and a double acting cylinder are studied. Dynamic nonlinear behavior of the system, containing fast switching solenoid valves and a pneumatic cylinder, as well as electrical, magnetic, mechanical, and fluid subsystems are modeled. A DC-DC power converter is employed to improve solenoid valve performance and suppress system delay. Among different position control methods, a proportional integrator derivative (PID) controller and fuzzy logic controller (FLC) are evaluated. An experimental setup, using an AVR microcontroller is implemented. Simulation and experimental results verify the effectiveness of the proposed control strategies. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Difference in diaphragmatic motion during tidal breathing in a standing position between COPD patients and normal subjects: Time-resolved quantitative evaluation using dynamic chest radiography with flat panel detector system (“dynamic X-ray phrenicography”)

    International Nuclear Information System (INIS)

    Yamada, Yoshitake; Ueyama, Masako; Abe, Takehiko; Araki, Tetsuro; Abe, Takayuki; Nishino, Mizuki; Jinzaki, Masahiro; Hatabu, Hiroto

    2017-01-01

    Highlights: • Dynamic X-ray phrenicography is a useful method for the evaluation of the diaphragms. • Its radiation dose is comparable to conventional two projection chest radiography. • Diaphragm motion during tidal breathing is larger in COPD than in normal subjects. • Higher BMI is also associated with increased excursions of the bilateral diaphragm. - Abstract: Objectives: To quantitatively compare diaphragmatic motion during tidal breathing in a standing position between chronic obstructive pulmonary disease (COPD) patients and normal subjects using dynamic chest radiography. Materials and methods: Thirty-nine COPD patients (35 males; age, 71.3 ± 8.4 years) and 47 normal subjects (non-smoker healthy volunteers) (20 males; age, 54.8 ± 9.8 years) underwent sequential chest radiographs during tidal breathing using dynamic chest radiography with a flat panel detector system. We evaluated the excursions and peak motion speeds of the diaphragms. The results were analyzed using an unpaired t-test and a multiple linear regression model. Results: The excursions of the diaphragms in COPD patients were significantly larger than those in normal subjects (right, 14.7 ± 5.5 mm vs. 10.2 ± 3.7 mm, respectively, P < 0.001; left, 17.2 ± 4.9 mm vs. 14.9 ± 4.2 mm, respectively, P = 0.022). Peak motion speeds in inspiratory phase were significantly faster in COPD patients compared to normal subjects (right, 16.3 ± 5.0 mm/s vs. 11.8 ± 4.2 mm/s, respectively, P < 0.001; left, 18.9 ± 4.9 mm/s vs. 16.7 ± 4.0 mm/s, respectively, P = 0.022). The multivariate analysis demonstrated that having COPD and higher body mass index were independently associated with increased excursions of the bilateral diaphragm (all P < 0.05), after adjusting for other clinical variables. Conclusions: Time-resolved quantitative evaluation of the diaphragm using dynamic chest radiography demonstrated that the diaphragmatic motion during tidal breathing in a standing position is larger and

  15. Difference in diaphragmatic motion during tidal breathing in a standing position between COPD patients and normal subjects: Time-resolved quantitative evaluation using dynamic chest radiography with flat panel detector system (“dynamic X-ray phrenicography”)

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Yoshitake, E-mail: yamada@rad.med.keio.ac.jp [Department of Radiology, Center for Pulmonary Functional Imaging, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02215 (United States); Department of Diagnostic Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan); Ueyama, Masako, E-mail: ueyamam@fukujuji.org [Department of Health Care, Fukujuji Hospital, Japan Anti-Tuberculosis Association, 3-1-24 Matsuyama, Kiyose, Tokyo 204-8522 (Japan); Abe, Takehiko, E-mail: takehikoabe@hotmail.com [Department of Radiology, Fukujuji Hospital, Japan Anti-Tuberculosis Association, 3-1-24 Matsuyama, Kiyose, Tokyo 204-8522 (Japan); Araki, Tetsuro, E-mail: TARAKI@partners.org [Department of Radiology, Center for Pulmonary Functional Imaging, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02215 (United States); Abe, Takayuki, E-mail: abe.t@keio.jp [Department of Preventive Medicine and Public Health, Biostatistics Unit at Clinical and Translational Research Center, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan); Nishino, Mizuki, E-mail: Mizuki_Nishino11@dfci.harvard.edu [Department of Radiology, Center for Pulmonary Functional Imaging, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02215 (United States); Jinzaki, Masahiro, E-mail: jinzaki@rad.med.keio.ac.jp [Department of Diagnostic Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan); Hatabu, Hiroto, E-mail: hhatabu@partners.org [Department of Radiology, Center for Pulmonary Functional Imaging, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02215 (United States); and others

    2017-02-15

    Highlights: • Dynamic X-ray phrenicography is a useful method for the evaluation of the diaphragms. • Its radiation dose is comparable to conventional two projection chest radiography. • Diaphragm motion during tidal breathing is larger in COPD than in normal subjects. • Higher BMI is also associated with increased excursions of the bilateral diaphragm. - Abstract: Objectives: To quantitatively compare diaphragmatic motion during tidal breathing in a standing position between chronic obstructive pulmonary disease (COPD) patients and normal subjects using dynamic chest radiography. Materials and methods: Thirty-nine COPD patients (35 males; age, 71.3 ± 8.4 years) and 47 normal subjects (non-smoker healthy volunteers) (20 males; age, 54.8 ± 9.8 years) underwent sequential chest radiographs during tidal breathing using dynamic chest radiography with a flat panel detector system. We evaluated the excursions and peak motion speeds of the diaphragms. The results were analyzed using an unpaired t-test and a multiple linear regression model. Results: The excursions of the diaphragms in COPD patients were significantly larger than those in normal subjects (right, 14.7 ± 5.5 mm vs. 10.2 ± 3.7 mm, respectively, P < 0.001; left, 17.2 ± 4.9 mm vs. 14.9 ± 4.2 mm, respectively, P = 0.022). Peak motion speeds in inspiratory phase were significantly faster in COPD patients compared to normal subjects (right, 16.3 ± 5.0 mm/s vs. 11.8 ± 4.2 mm/s, respectively, P < 0.001; left, 18.9 ± 4.9 mm/s vs. 16.7 ± 4.0 mm/s, respectively, P = 0.022). The multivariate analysis demonstrated that having COPD and higher body mass index were independently associated with increased excursions of the bilateral diaphragm (all P < 0.05), after adjusting for other clinical variables. Conclusions: Time-resolved quantitative evaluation of the diaphragm using dynamic chest radiography demonstrated that the diaphragmatic motion during tidal breathing in a standing position is larger and

  16. Solar System Dynamics

    Science.gov (United States)

    Wisdom, Jack

    2002-01-01

    In these 18 years, the research has touched every major dynamical problem in the solar system, including: the effect of chaotic zones on the distribution of asteroids, the delivery of meteorites along chaotic pathways, the chaotic motion of Pluto, the chaotic motion of the outer planets and that of the whole solar system, the delivery of short period comets from the Kuiper belt, the tidal evolution of the Uranian arid Galilean satellites, the chaotic tumbling of Hyperion and other irregular satellites, the large chaotic variations of the obliquity of Mars, the evolution of the Earth-Moon system, and the resonant core- mantle dynamics of Earth and Venus. It has introduced new analytical and numerical tools that are in widespread use. Today, nearly every long-term integration of our solar system, its subsystems, and other solar systems uses algorithms that was invented. This research has all been primarily Supported by this sequence of PGG NASA grants. During this period published major investigations of tidal evolution of the Earth-Moon system and of the passage of the Earth and Venus through non-linear core-mantle resonances were completed. It has published a major innovation in symplectic algorithms: the symplectic corrector. A paper was completed on non-perturbative hydrostatic equilibrium.

  17. Design and performance analysis of position-based impedance control for an electrohydrostatic actuation system

    Directory of Open Access Journals (Sweden)

    Yongling FU

    2018-03-01

    Full Text Available Electrohydrostatic actuator (EHA is a type of power-by-wire actuator that is widely implemented in the aerospace industry for flight control, landing gears, thrust reversers, thrust vector control, and space robots. This paper presents the development and evaluation of position-based impedance control (PBIC for an EHA. Impedance control provides the actuator with compliance and facilitates the interaction with the environment. Most impedance control applications utilize electrical or valve-controlled hydraulic actuators, whereas this work realizes impedance control via a compact and efficient EHA. The structures of the EHA and PBIC are firstly introduced. A mathematical model of the actuation system is established, and values of its coefficients are identified by particle swarm optimization. This model facilitates the development of a position controller and the selection of target impedance parameters. A nonlinear proportional-integral position controller is developed for the EHA to achieve the accurate positioning requirement of PBIC. The controller compensates for the adverse effect of stiction, and a position accuracy of 0.08 mm is attained. Various experimental results are presented to verify the applicability of PBIC to the EHA. The compliance of the actuator is demonstrated in an impact test. Keywords: Actuation system, Aerospace, Electrohydrostatic actuator, Force control, Nonlinear dynamics, Particle swarm optimization, Position control

  18. Dynamical systems in classical mechanics

    CERN Document Server

    Kozlov, V V

    1995-01-01

    This book shows that the phenomenon of integrability is related not only to Hamiltonian systems, but also to a wider variety of systems having invariant measures that often arise in nonholonomic mechanics. Each paper presents unique ideas and original approaches to various mathematical problems related to integrability, stability, and chaos in classical dynamics. Topics include… the inverse Lyapunov theorem on stability of equilibria geometrical aspects of Hamiltonian mechanics from a hydrodynamic perspective current unsolved problems in the dynamical systems approach to classical mechanics

  19. In vivo dynamics of GFRα1-positive spermatogonia stimulated by GDNF signals using a bead transplantation assay

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, Aya; Kishi, Kasane; Aiyama, Yoshimi; Miura, Kento [Department of Veterinary Anatomy, The University of Tokyo, Yayoi, Tokyo, 113-8657 (Japan); Takase, Hinako M.; Suzuki, Hitomi; Kanai-Azuma, Masami [Department of Experimental Animal Model for Human Disease, Tokyo Medical and Dental University, Tokyo, 113-8510 (Japan); Iwamori, Tokuko [Center of Biomedical Research, Kyusyu University, Fukuoka, 812-8582 (Japan); Kurohmaru, Masamichi; Tsunekawa, Naoki [Department of Veterinary Anatomy, The University of Tokyo, Yayoi, Tokyo, 113-8657 (Japan); Kanai, Yoshiakira, E-mail: aykanai@mail.ecc.u-tokyo.ac.jp [Department of Veterinary Anatomy, The University of Tokyo, Yayoi, Tokyo, 113-8657 (Japan)

    2016-08-05

    In mouse testes, spermatogonial stem cells (SSCs), a subpopulation of GFRα1 (GDNF family receptor-α1)-positive spermatogonia, are widely distributed along the convoluted seminiferous tubules. The proliferation and differentiation of the SSCs are regulated in part by local expression of GDNF (glial cell-derived neurotorphic factor), one of major niche factors for SSCs. However, the in vivo dynamics of the GDNF-stimulated GFRα1-positive spermatogonia remains unclear. Here, we developed a simple method for transplanting DiI-labeled and GDNF-soaked beads into the mouse testicular interstitium. By using this method, we examined the dynamics of GFRα1-positive spermatogonia in the tubular walls close to the transplanted GDNF-soaked beads. The bead-derived GDNF signals were able to induce the stratified aggregate formation of GFRα1-positive undifferentiated spermatogonia by day 3 post-transplantation. Each aggregate consisted of tightly compacted A{sub single} and marginal A{sub paired}–A{sub aligned} GFRα1-positive spermatogonia and was surrounded by A{sub aligned} GFRα1-negative spermatogonia at more advanced stages. These data not only provide in vivo evidence for the inductive roles of GDNF in forming a rapid aggregation of GFRα1-positive spermatogonia but also indicate the usefulness of this in vivo assay system of various growth factors for the stem/progenitor spermatogonia in mammalian spermatogenesis. - Highlights: • A novel bead transplantation assay was developed to examine the in vivo effects of growth factors on spermatogonia. • A rapid aggregation of GFRα1-positive spermatogonia was induced by the transplanted GDNF-soaked beads. • Tightly-compacted A{sub single} and marginal A{sub paired}–A{sub aligned} spermatogonia were formed in each GFRα1-positive aggregate.

  20. Planar dynamical systems selected classical problems

    CERN Document Server

    Liu, Yirong; Huang, Wentao

    2014-01-01

    This book presents in an elementary way the recent significant developments in the qualitative theory of planar dynamical systems. The subjects are covered as follows: the studies of center and isochronous center problems, multiple Hopf bifurcations and local and global bifurcations of the equivariant planar vector fields which concern with Hilbert's 16th problem. This book is intended for graduate students, post-doctors and researchers in the area of theories and applications of dynamical systems. For all engineers who are interested the theory of dynamical systems, it is also a reasona

  1. Fault diagnosis for dynamic power system

    International Nuclear Information System (INIS)

    Thabet, A.; Abdelkrim, M.N.; Boutayeb, M.; Didier, G.; Chniba, S.

    2011-01-01

    The fault diagnosis problem for dynamic power systems is treated, the nonlinear dynamic model based on a differential algebraic equations is transformed with reduced index to a simple dynamic model. Two nonlinear observers are used for generating the fault signals for comparison purposes, one of them being an extended Kalman estimator and the other a new extended kalman filter with moving horizon with a study of convergence based on the choice of matrix of covariance of the noises of system and measurements. The paper illustrates a simulation study applied on IEEE 3 buses test system.

  2. Systems-Dynamic Analysis for Neighborhood Study

    Science.gov (United States)

    Systems-dynamic analysis (or system dynamics (SD)) helps planners identify interrelated impacts of transportation and land-use policies on neighborhood-scale economic outcomes for households and businesses, among other applications. This form of analysis can show benefits and tr...

  3. A New Class of Particle Filters for Random Dynamic Systems with Unknown Statistics

    Directory of Open Access Journals (Sweden)

    Joaquín Míguez

    2004-11-01

    Full Text Available In recent years, particle filtering has become a powerful tool for tracking signals and time-varying parameters of random dynamic systems. These methods require a mathematical representation of the dynamics of the system evolution, together with assumptions of probabilistic models. In this paper, we present a new class of particle filtering methods that do not assume explicit mathematical forms of the probability distributions of the noise in the system. As a consequence, the proposed techniques are simpler, more robust, and more flexible than standard particle filters. Apart from the theoretical development of specific methods in the new class, we provide computer simulation results that demonstrate the performance of the algorithms in the problem of autonomous positioning of a vehicle in a 2-dimensional space.

  4. Vibratory response of a mirror support/positioning system for the Advanced Photon Source project at Argonne National Laboratory

    International Nuclear Information System (INIS)

    Basdogan, I.; Shu, Deming; Kuzay, T.M.; Royston, T.J.; Shabana, A.A.

    1996-01-01

    The vibratory response of a typical mirror support/positioning system used at the experimental station of the Advanced Photon Source (APS) project at Argonne National Laboratory is investigated. Positioning precision and stability are especially critical when the supported mirror directs a high-intensity beam aimed at a distant target. Stability may be compromised by low level, low frequency seismic and facility-originated vibrations traveling through the ground and/or vibrations caused by flow-structure interactions in the mirror cooling system. The example case system has five positioning degrees of freedom through the use of precision actuators and rotary and linear bearings. These linkage devices result in complex, multi-dimensional vibratory behavior that is a function of the range of positioning configurations. A rigorous multibody dynamical approach is used for the development of the system equations. Initial results of the study, including estimates of natural frequencies and mode shapes, as well as limited parametric design studies, are presented. While the results reported here are for a particular system, the developed vibratory analysis approach is applicable to the wide range of high-precision optical positioning systems encountered at the APS and at other comparable facilities

  5. Information Processing Capacity of Dynamical Systems

    Science.gov (United States)

    Dambre, Joni; Verstraeten, David; Schrauwen, Benjamin; Massar, Serge

    2012-07-01

    Many dynamical systems, both natural and artificial, are stimulated by time dependent external signals, somehow processing the information contained therein. We demonstrate how to quantify the different modes in which information can be processed by such systems and combine them to define the computational capacity of a dynamical system. This is bounded by the number of linearly independent state variables of the dynamical system, equaling it if the system obeys the fading memory condition. It can be interpreted as the total number of linearly independent functions of its stimuli the system can compute. Our theory combines concepts from machine learning (reservoir computing), system modeling, stochastic processes, and functional analysis. We illustrate our theory by numerical simulations for the logistic map, a recurrent neural network, and a two-dimensional reaction diffusion system, uncovering universal trade-offs between the non-linearity of the computation and the system's short-term memory.

  6. Information Processing Capacity of Dynamical Systems

    Science.gov (United States)

    Dambre, Joni; Verstraeten, David; Schrauwen, Benjamin; Massar, Serge

    2012-01-01

    Many dynamical systems, both natural and artificial, are stimulated by time dependent external signals, somehow processing the information contained therein. We demonstrate how to quantify the different modes in which information can be processed by such systems and combine them to define the computational capacity of a dynamical system. This is bounded by the number of linearly independent state variables of the dynamical system, equaling it if the system obeys the fading memory condition. It can be interpreted as the total number of linearly independent functions of its stimuli the system can compute. Our theory combines concepts from machine learning (reservoir computing), system modeling, stochastic processes, and functional analysis. We illustrate our theory by numerical simulations for the logistic map, a recurrent neural network, and a two-dimensional reaction diffusion system, uncovering universal trade-offs between the non-linearity of the computation and the system's short-term memory. PMID:22816038

  7. Attractors for discrete periodic dynamical systems

    Science.gov (United States)

    John E. Franke; James F. Selgrade

    2003-01-01

    A mathematical framework is introduced to study attractors of discrete, nonautonomous dynamical systems which depend periodically on time. A structure theorem for such attractors is established which says that the attractor of a time-periodic dynamical system is the unin of attractors of appropriate autonomous maps. If the nonautonomous system is a perturbation of an...

  8. Performance metric optimization advocates CPFR in supply chains: A system dynamics model based study

    OpenAIRE

    Balaji Janamanchi; James R. Burns

    2016-01-01

    Background: Supply Chain partners often find themselves in rather helpless positions, unable to improve their firm’s performance and profitability because their partners although willing to share production information do not fully collaborate in tackling customer order variations as they don’t seem to appreciate the benefits of such collaboration. Methods: We use a two-player (supplier-manufacturer) System Dynamics model to study the dynamics to assess the impact and usefulness of supply cha...

  9. Soft tissue deformation for surgical simulation: a position-based dynamics approach.

    Science.gov (United States)

    Camara, Mafalda; Mayer, Erik; Darzi, Ara; Pratt, Philip

    2016-06-01

    To assist the rehearsal and planning of robot-assisted partial nephrectomy, a real-time simulation platform is presented that allows surgeons to visualise and interact with rapidly constructed patient-specific biomechanical models of the anatomical regions of interest. Coupled to a framework for volumetric deformation, the platform furthermore simulates intracorporeal 2D ultrasound image acquisition, using preoperative imaging as the data source. This not only facilitates the planning of optimal transducer trajectories and viewpoints, but can also act as a validation context for manually operated freehand 3D acquisitions and reconstructions. The simulation platform was implemented within the GPU-accelerated NVIDIA FleX position-based dynamics framework. In order to validate the model and determine material properties and other simulation parameter values, a porcine kidney with embedded fiducial beads was CT-scanned and segmented. Acquisitions for the rest position and three different levels of probe-induced deformation were collected. Optimal values of the cluster stiffness coefficients were determined for a range of different particle radii, where the objective function comprised the mean distance error between real and simulated fiducial positions over the sequence of deformations. The mean fiducial error at each deformation stage was found to be compatible with the level of ultrasound probe calibration error typically observed in clinical practice. Furthermore, the simulation exhibited unconditional stability on account of its use of clustered shape-matching constraints. A novel position-based dynamics implementation of soft tissue deformation has been shown to facilitate several desirable simulation characteristics: real-time performance, unconditional stability, rapid model construction enabling patient-specific behaviour and accuracy with respect to reference CT images.

  10. Stability and periodicity of solutions for delay dynamic systems on time scales

    Directory of Open Access Journals (Sweden)

    Zhi-Qiang Zhu

    2014-04-01

    Full Text Available This article concerns the stability and periodicity of solutions to the delay dynamic system $$ x^{\\triangle}(t=A(t x(t + F(t, x(t, x(g(t+C(t $$ on a time scale. By the inequality technique for vectors, we obtain some stability criteria for the above system. Then, by using the Horn fixed point theorem, we present some conditions under which our system is asymptotically periodic and its periodic solution is unique. In particular, the periodic solution is positive under proper assumptions.

  11. Dynamical system approach to phyllotaxis

    DEFF Research Database (Denmark)

    D'ovidio, Francesco; Mosekilde, Erik

    2000-01-01

    and not a dynamical system, mainly because new active elements are added at each step, and thus the dimension of the "natural" phase space is not conserved. Here a construction is presented by which a well defined dynamical system can be obtained, and a bifurcation analysis can be carried out. Stable and unstable...... of the Jacobian, and thus the eigenvalues, is given. It is likely that problems of the above type often arise in biology, and especially in morphogenesis, where growing systems are modeled....

  12. System dynamics modelling of situation awareness

    CSIR Research Space (South Africa)

    Oosthuizen, R

    2015-11-01

    Full Text Available . The feedback loops and delays in the Command and Control system also contribute to the complex dynamic behavior. This paper will build on existing situation awareness models to develop a System Dynamics model to support a qualitative investigation through...

  13. Reliability-based dynamic positioning of floating vessels with riser and mooring system

    DEFF Research Database (Denmark)

    Fang, Shaoji; Leira, Bernt J.; Blanke, Mogens

    2011-01-01

    To maintain safety of a floating vessel with associated slender components such as risers and mooring line, the vessel is normally kept within a limited region. To specify a safe position in that region, this paper suggests a new position chasing algorithm with the consideration of both riser ang...... to their criticality. An optimal position set-point is produced by minimization of the value of the cost function. Numerical simulations show the effectiveness of the proposed algorithm....

  14. Pluripotency gene network dynamics: System views from parametric analysis.

    Science.gov (United States)

    Akberdin, Ilya R; Omelyanchuk, Nadezda A; Fadeev, Stanislav I; Leskova, Natalya E; Oschepkova, Evgeniya A; Kazantsev, Fedor V; Matushkin, Yury G; Afonnikov, Dmitry A; Kolchanov, Nikolay A

    2018-01-01

    Multiple experimental data demonstrated that the core gene network orchestrating self-renewal and differentiation of mouse embryonic stem cells involves activity of Oct4, Sox2 and Nanog genes by means of a number of positive feedback loops among them. However, recent studies indicated that the architecture of the core gene network should also incorporate negative Nanog autoregulation and might not include positive feedbacks from Nanog to Oct4 and Sox2. Thorough parametric analysis of the mathematical model based on this revisited core regulatory circuit identified that there are substantial changes in model dynamics occurred depending on the strength of Oct4 and Sox2 activation and molecular complexity of Nanog autorepression. The analysis showed the existence of four dynamical domains with different numbers of stable and unstable steady states. We hypothesize that these domains can constitute the checkpoints in a developmental progression from naïve to primed pluripotency and vice versa. During this transition, parametric conditions exist, which generate an oscillatory behavior of the system explaining heterogeneity in expression of pluripotent and differentiation factors in serum ESC cultures. Eventually, simulations showed that addition of positive feedbacks from Nanog to Oct4 and Sox2 leads mainly to increase of the parametric space for the naïve ESC state, in which pluripotency factors are strongly expressed while differentiation ones are repressed.

  15. Time-dependent density functional theory for open systems with a positivity-preserving decomposition scheme for environment spectral functions

    International Nuclear Information System (INIS)

    Wang, RuLin; Zheng, Xiao; Kwok, YanHo; Xie, Hang; Chen, GuanHua; Yam, ChiYung

    2015-01-01

    Understanding electronic dynamics on material surfaces is fundamentally important for applications including nanoelectronics, inhomogeneous catalysis, and photovoltaics. Practical approaches based on time-dependent density functional theory for open systems have been developed to characterize the dissipative dynamics of electrons in bulk materials. The accuracy and reliability of such approaches depend critically on how the electronic structure and memory effects of surrounding material environment are accounted for. In this work, we develop a novel squared-Lorentzian decomposition scheme, which preserves the positive semi-definiteness of the environment spectral matrix. The resulting electronic dynamics is guaranteed to be both accurate and convergent even in the long-time limit. The long-time stability of electronic dynamics simulation is thus greatly improved within the current decomposition scheme. The validity and usefulness of our new approach are exemplified via two prototypical model systems: quasi-one-dimensional atomic chains and two-dimensional bilayer graphene

  16. Time-dependent density functional theory for open systems with a positivity-preserving decomposition scheme for environment spectral functions.

    Science.gov (United States)

    Wang, RuLin; Zheng, Xiao; Kwok, YanHo; Xie, Hang; Chen, GuanHua; Yam, ChiYung

    2015-04-14

    Understanding electronic dynamics on material surfaces is fundamentally important for applications including nanoelectronics, inhomogeneous catalysis, and photovoltaics. Practical approaches based on time-dependent density functional theory for open systems have been developed to characterize the dissipative dynamics of electrons in bulk materials. The accuracy and reliability of such approaches depend critically on how the electronic structure and memory effects of surrounding material environment are accounted for. In this work, we develop a novel squared-Lorentzian decomposition scheme, which preserves the positive semi-definiteness of the environment spectral matrix. The resulting electronic dynamics is guaranteed to be both accurate and convergent even in the long-time limit. The long-time stability of electronic dynamics simulation is thus greatly improved within the current decomposition scheme. The validity and usefulness of our new approach are exemplified via two prototypical model systems: quasi-one-dimensional atomic chains and two-dimensional bilayer graphene.

  17. A study on dynamically reconfigurable robotic systems, 3

    International Nuclear Information System (INIS)

    Fukuda, Toshio; Kawauchi, Yoshio; Buss, M.; Asama, Hajime.

    1990-01-01

    The dynamically reconfigurable robotic system (DRRS) is a new kind of robotic system which is able to reconfigurate itself to an optimal structure depending on the purpose and exvironment. To realize this concept, we proposed the CEBOT (cell-structured robot). Communication is needed in the CEBOT system as follows. When cells are separated, a communication master cell needs to know the other cell's function and position and determine the target cell for docking. Mobile cells should be able to coordinate with other mobile cell. When cells are docked, forming a cell structure/module, a master cell should control the bending joint cell and know which cells the construction is composed of. In this paper, we propose a communication protocol for both cases with optical sensor applicable to CEBOT. Some experimental results are shown by realizing the proposed communication method between cells. (author)

  18. An Investigation of Factors Affecting Elementary School Students’ BMI Values Based on the System Dynamics Modeling

    Directory of Open Access Journals (Sweden)

    Tian-Syung Lan

    2014-01-01

    Full Text Available This study used system dynamics method to investigate the factors affecting elementary school students’ BMI values. The construction of the dynamic model is divided into the qualitative causal loop and the quantitative system dynamics modeling. According to the system dynamics modeling, this study consisted of research on the four dimensions: student’s personal life style, diet-relevant parenting behaviors, advocacy and implementation of school nutrition education, and students’ peer interaction. The results of this study showed that students with more adequate health concepts usually have better eating behaviors and consequently have less chance of becoming obese. In addition, this study also verified that educational attainment and socioeconomic status of parents have a positive correlation with students’ amounts of physical activity, and nutrition education has a prominent influence on changing students’ high-calorie diets.

  19. Dynamical critical phenomena in driven-dissipative systems.

    Science.gov (United States)

    Sieberer, L M; Huber, S D; Altman, E; Diehl, S

    2013-05-10

    We explore the nature of the Bose condensation transition in driven open quantum systems, such as exciton-polariton condensates. Using a functional renormalization group approach formulated in the Keldysh framework, we characterize the dynamical critical behavior that governs decoherence and an effective thermalization of the low frequency dynamics. We identify a critical exponent special to the driven system, showing that it defines a new dynamical universality class. Hence critical points in driven systems lie beyond the standard classification of equilibrium dynamical phase transitions. We show how the new critical exponent can be probed in experiments with driven cold atomic systems and exciton-polariton condensates.

  20. Observations of geographically correlated orbit errors for TOPEX/Poseidon using the global positioning system

    Science.gov (United States)

    Christensen, E. J.; Haines, B. J.; Mccoll, K. C.; Nerem, R. S.

    1994-01-01

    We have compared Global Positioning System (GPS)-based dynamic and reduced-dynamic TOPEX/Poseidon orbits over three 10-day repeat cycles of the ground-track. The results suggest that the prelaunch joint gravity model (JGM-1) introduces geographically correlated errors (GCEs) which have a strong meridional dependence. The global distribution and magnitude of these GCEs are consistent with a prelaunch covariance analysis, with estimated and predicted global rms error statistics of 2.3 and 2.4 cm rms, respectively. Repeating the analysis with the post-launch joint gravity model (JGM-2) suggests that a portion of the meridional dependence observed in JGM-1 still remains, with global rms error of 1.2 cm.

  1. Parameterizing Coefficients of a POD-Based Dynamical System

    Science.gov (United States)

    Kalb, Virginia L.

    2010-01-01

    A method of parameterizing the coefficients of a dynamical system based of a proper orthogonal decomposition (POD) representing the flow dynamics of a viscous fluid has been introduced. (A brief description of POD is presented in the immediately preceding article.) The present parameterization method is intended to enable construction of the dynamical system to accurately represent the temporal evolution of the flow dynamics over a range of Reynolds numbers. The need for this or a similar method arises as follows: A procedure that includes direct numerical simulation followed by POD, followed by Galerkin projection to a dynamical system has been proven to enable representation of flow dynamics by a low-dimensional model at the Reynolds number of the simulation. However, a more difficult task is to obtain models that are valid over a range of Reynolds numbers. Extrapolation of low-dimensional models by use of straightforward Reynolds-number-based parameter continuation has proven to be inadequate for successful prediction of flows. A key part of the problem of constructing a dynamical system to accurately represent the temporal evolution of the flow dynamics over a range of Reynolds numbers is the problem of understanding and providing for the variation of the coefficients of the dynamical system with the Reynolds number. Prior methods do not enable capture of temporal dynamics over ranges of Reynolds numbers in low-dimensional models, and are not even satisfactory when large numbers of modes are used. The basic idea of the present method is to solve the problem through a suitable parameterization of the coefficients of the dynamical system. The parameterization computations involve utilization of the transfer of kinetic energy between modes as a function of Reynolds number. The thus-parameterized dynamical system accurately predicts the flow dynamics and is applicable to a range of flow problems in the dynamical regime around the Hopf bifurcation. Parameter

  2. Triangulation positioning system network

    Directory of Open Access Journals (Sweden)

    Sfendourakis Marios

    2017-01-01

    Full Text Available This paper presents ongoing work on localization and positioning through triangulation procedure for a Fixed Sensors Network - FSN.The FSN has to work as a system.As the triangulation problem becomes high complicated in a case with large numbers of sensors and transmitters, an adequate grid topology is needed in order to tackle the detection complexity.For that reason a Network grid topology is presented and areas that are problematic and need further analysis are analyzed.The Network System in order to deal with problems of saturation and False Triangulations - FTRNs will have to find adequate methods in every sub-area of the Area Of Interest - AOI.Also, concepts like Sensor blindness and overall Network blindness, are presented. All these concepts affect the Network detection rate and its performance and ought to be considered in a way that the network overall performance won’t be degraded.Network performance should be monitored contentiously, with right algorithms and methods.It is also shown that as the number of TRNs and FTRNs is increased Detection Complexity - DC is increased.It is hoped that with further research all the characteristics of a triangulation system network for positioning will be gained and the system will be able to perform autonomously with a high detection rate.

  3. Stochastic Thermodynamics: A Dynamical Systems Approach

    Directory of Open Access Journals (Sweden)

    Tanmay Rajpurohit

    2017-12-01

    Full Text Available In this paper, we develop an energy-based, large-scale dynamical system model driven by Markov diffusion processes to present a unified framework for statistical thermodynamics predicated on a stochastic dynamical systems formalism. Specifically, using a stochastic state space formulation, we develop a nonlinear stochastic compartmental dynamical system model characterized by energy conservation laws that is consistent with statistical thermodynamic principles. In particular, we show that the difference between the average supplied system energy and the average stored system energy for our stochastic thermodynamic model is a martingale with respect to the system filtration. In addition, we show that the average stored system energy is equal to the mean energy that can be extracted from the system and the mean energy that can be delivered to the system in order to transfer it from a zero energy level to an arbitrary nonempty subset in the state space over a finite stopping time.

  4. Dynamics of the diffusive DM-DE interaction – Dynamical system approach

    Energy Technology Data Exchange (ETDEWEB)

    Haba, Zbigniew [Institute of Theoretical Physics, University of Wroclaw, Plac Maxa Borna 9, 50-204 Wrocław (Poland); Stachowski, Aleksander; Szydłowski, Marek, E-mail: zhab@ift.uni.wroc.pl, E-mail: aleksander.stachowski@uj.edu.pl, E-mail: marek.szydlowski@uj.edu.pl [Astronomical Observatory, Jagiellonian University, Orla 171, 30-244 Krakow (Poland)

    2016-07-01

    We discuss dynamics of a model of an energy transfer between dark energy (DE) and dark matter (DM) . The energy transfer is determined by a non-conservation law resulting from a diffusion of dark matter in an environment of dark energy. The relativistic invariance defines the diffusion in a unique way. The system can contain baryonic matter and radiation which do not interact with the dark sector. We treat the Friedman equation and the conservation laws as a closed dynamical system. The dynamics of the model is examined using the dynamical systems methods for demonstration how solutions depend on initial conditions. We also fit the model parameters using astronomical observation: SNIa, H ( z ), BAO and Alcock-Paczynski test. We show that the model with diffuse DM-DE is consistent with the data.

  5. Augmentation of Quasi-Zenith Satellite Positioning System Using High Altitude Platforms Systems (HAPS)

    Science.gov (United States)

    Tsujii, Toshiaki; Harigae, Masatoshi

    Recently, some feasibility studies on a regional positioning system using the quasi-zenith satellites and the geostationary satellites have been conducted in Japan. However, the geometry of this system seems to be unsatisfactory in terms of the positioning accuracy in north-south direction. In this paper, an augmented satellite positioning system by the High Altitude Platform Systems (HAPS) is proposed since the flexibility of the HAPS location is effective to improve the geometry of satellite positioning system. The improved positioning performance of the augmented system is also demonstrated.

  6. Reconceptualizing Learning as a Dynamical System.

    Science.gov (United States)

    Ennis, Catherine D.

    1992-01-01

    Dynamical systems theory can increase our understanding of the constantly evolving learning process. Current research using experimental and interpretive paradigms focuses on describing the attractors and constraints stabilizing the educational process. Dynamical systems theory focuses attention on critical junctures in the learning process as…

  7. Regularized forecasting of chaotic dynamical systems

    International Nuclear Information System (INIS)

    Bollt, Erik M.

    2017-01-01

    While local models of dynamical systems have been highly successful in terms of using extensive data sets observing even a chaotic dynamical system to produce useful forecasts, there is a typical problem as follows. Specifically, with k-near neighbors, kNN method, local observations occur due to recurrences in a chaotic system, and this allows for local models to be built by regression to low dimensional polynomial approximations of the underlying system estimating a Taylor series. This has been a popular approach, particularly in context of scalar data observations which have been represented by time-delay embedding methods. However such local models can generally allow for spatial discontinuities of forecasts when considered globally, meaning jumps in predictions because the collected near neighbors vary from point to point. The source of these discontinuities is generally that the set of near neighbors varies discontinuously with respect to the position of the sample point, and so therefore does the model built from the near neighbors. It is possible to utilize local information inferred from near neighbors as usual but at the same time to impose a degree of regularity on a global scale. We present here a new global perspective extending the general local modeling concept. In so doing, then we proceed to show how this perspective allows us to impose prior presumed regularity into the model, by involving the Tikhonov regularity theory, since this classic perspective of optimization in ill-posed problems naturally balances fitting an objective with some prior assumed form of the result, such as continuity or derivative regularity for example. This all reduces to matrix manipulations which we demonstrate on a simple data set, with the implication that it may find much broader context.

  8. Introduction to turbulent dynamical systems in complex systems

    CERN Document Server

    Majda, Andrew J

    2016-01-01

    This volume is a research expository article on the applied mathematics of turbulent dynamical systems through the paradigm of modern applied mathematics. It involves the blending of rigorous mathematical theory, qualitative and quantitative modeling, and novel numerical procedures driven by the goal of understanding physical phenomena which are of central importance to the field. The contents cover general framework, concrete examples, and instructive qualitative models. Accessible open problems are mentioned throughout. Topics covered include: · Geophysical flows with rotation, topography, deterministic and random forcing · New statistical energy principles for general turbulent dynamical systems, with applications · Linear statistical response theory combined with information theory to cope with model errors · Reduced low order models · Recent mathematical strategies for online data assimilation of turbulent dynamical systems as well as rigorous results for finite ensemble Kalman filters The volume wi...

  9. Some problems of dynamical systems on three dimensional manifolds

    International Nuclear Information System (INIS)

    Dong Zhenxie.

    1985-08-01

    It is important to study the dynamical systems on 3-dimensional manifolds, its importance is showing up in its close relation with our life. Because of the complication of topological structure of Dynamical systems on 3-dimensional manifolds, generally speaking, the search for 3-dynamical systems is not easier than 2-dynamical systems. This paper is a summary of the partial result of dynamical systems on 3-dimensional manifolds. (author)

  10. Dynamic Reconfiguration in Mobile Systems

    NARCIS (Netherlands)

    Smit, Gerardus Johannes Maria; Glesner, Manfred; Zipf, Peter; Smit, L.T.; Havinga, Paul J.M.; Heysters, P.M.; Renovell, Michel; Rosien, M.A.J.

    Dynamically reconfigurable systems have the potential of realising efficient systems as well as providing adaptability to changing system requirements. Such systems are suitable for future mobile multimedia systems that have limited battery resources, must handle diverse data types, and must operate

  11. Understanding and Modeling Teams As Dynamical Systems

    Science.gov (United States)

    Gorman, Jamie C.; Dunbar, Terri A.; Grimm, David; Gipson, Christina L.

    2017-01-01

    By its very nature, much of teamwork is distributed across, and not stored within, interdependent people working toward a common goal. In this light, we advocate a systems perspective on teamwork that is based on general coordination principles that are not limited to cognitive, motor, and physiological levels of explanation within the individual. In this article, we present a framework for understanding and modeling teams as dynamical systems and review our empirical findings on teams as dynamical systems. We proceed by (a) considering the question of why study teams as dynamical systems, (b) considering the meaning of dynamical systems concepts (attractors; perturbation; synchronization; fractals) in the context of teams, (c) describe empirical studies of team coordination dynamics at the perceptual-motor, cognitive-behavioral, and cognitive-neurophysiological levels of analysis, and (d) consider the theoretical and practical implications of this approach, including new kinds of explanations of human performance and real-time analysis and performance modeling. Throughout our discussion of the topics we consider how to describe teamwork using equations and/or modeling techniques that describe the dynamics. Finally, we consider what dynamical equations and models do and do not tell us about human performance in teams and suggest future research directions in this area. PMID:28744231

  12. Dynamic MR imaging of the musculoskeletal system

    International Nuclear Information System (INIS)

    Shah, A.S.; Hylton, H.; Hentz, V.R.; Schattner, P.

    1991-01-01

    This paper reports on dynamic MR imaging which is an MR technique that allows imaging of the musculoskeletal system in motion. Current methods for observing the articulation of muscles and joints are limited to acquisition of stationary images at different spatial orientations. These images are then replayed from computer memory to simulate motion. Unlike stationary acquisition, dynamic MR imaging allows the volume of interest to be subjected to motion and dynamic stress, which is important for detecting stress-induced pathology. To demonstrate the utility of dynamic MR imaging, a system for imaging a moving wrist has been developed. The system consists of apparatus capable of providing simultaneous radialulnar deviation and flexion-extension, and hardware for system control and acquisition gating. The apparatus is mounted on the patient bed and is transferable to a variety of standard clinical MR imaging systems. Images were obtained during motion, and the ability of dynamic MR imaging to accurately image the moving wrist with very little motion artifact was demonstrated

  13. Partial dynamical systems, fell bundles and applications

    CERN Document Server

    Exel, Ruy

    2017-01-01

    Partial dynamical systems, originally developed as a tool to study algebras of operators in Hilbert spaces, has recently become an important branch of algebra. Its most powerful results allow for understanding structural properties of algebras, both in the purely algebraic and in the C*-contexts, in terms of the dynamical properties of certain systems which are often hiding behind algebraic structures. The first indication that the study of an algebra using partial dynamical systems may be helpful is the presence of a grading. While the usual theory of graded algebras often requires gradings to be saturated, the theory of partial dynamical systems is especially well suited to treat nonsaturated graded algebras which are in fact the source of the notion of "partiality". One of the main results of the book states that every graded algebra satisfying suitable conditions may be reconstructed from a partial dynamical system via a process called the partial crossed product. Running in parallel with partial dynamica...

  14. Dynamical systems on 2- and 3-manifolds

    CERN Document Server

    Grines, Viacheslav Z; Pochinka, Olga V

    2016-01-01

    This book provides an introduction to the topological classification of smooth structurally stable diffeomorphisms on closed orientable 2- and 3-manifolds.The topological classification is one of the main problems of the theory of dynamical systems and the results presented in this book are mostly for dynamical systems satisfying Smale's Axiom A. The main results on the topological classification of discrete dynamical systems are widely scattered among many papers and surveys. This book presents these results fluidly, systematically, and for the first time in one publication. Additionally, this book discusses the recent results on the topological classification of Axiom A diffeomorphisms focusing on the nontrivial effects of the dynamical systems on 2- and 3-manifolds. The classical methods and approaches which are considered to be promising for the further research are also discussed. < The reader needs to be familiar with the basic concepts of the qualitative theory of dynamical systems which are present...

  15. Narcissistic group dynamics of multiparty systems

    NARCIS (Netherlands)

    Schruijer, S.G.L.

    2015-01-01

    Purpose – This paper aims to introduce and illustrate the notion of narcissistic group dynamics. It is claimed that narcissism does not simply reside within individuals but can be characteristic of groups and social systems. In this case, the focus is on narcissistic dynamics in multiparty systems.

  16. Dynamics of entanglement and uncertainty relation in coupled harmonic oscillator system: exact results

    Science.gov (United States)

    Park, DaeKil

    2018-06-01

    The dynamics of entanglement and uncertainty relation is explored by solving the time-dependent Schrödinger equation for coupled harmonic oscillator system analytically when the angular frequencies and coupling constant are arbitrarily time dependent. We derive the spectral and Schmidt decompositions for vacuum solution. Using the decompositions, we derive the analytical expressions for von Neumann and Rényi entropies. Making use of Wigner distribution function defined in phase space, we derive the time dependence of position-momentum uncertainty relations. To show the dynamics of entanglement and uncertainty relation graphically, we introduce two toy models and one realistic quenched model. While the dynamics can be conjectured by simple consideration in the toy models, the dynamics in the realistic quenched model is somewhat different from that in the toy models. In particular, the dynamics of entanglement exhibits similar pattern to dynamics of uncertainty parameter in the realistic quenched model.

  17. Chaos as the hub of systems dynamics. The part I-The attitude control of spacecraft by involving in the heteroclinic chaos

    Science.gov (United States)

    Doroshin, Anton V.

    2018-06-01

    In this work the chaos in dynamical systems is considered as a positive aspect of dynamical behavior which can be applied to change systems dynamical parameters and, moreover, to change systems qualitative properties. From this point of view, the chaos can be characterized as a hub for the system dynamical regimes, because it allows to interconnect separated zones of the phase space of the system, and to fulfill the jump into the desirable phase space zone. The concretized aim of this part of the research is to focus on developing the attitude control method for magnetized gyrostat-satellites, which uses the passage through the intentionally generated heteroclinic chaos. The attitude dynamics of the satellite/spacecraft in this case represents the series of transitions from the initial dynamical regime into the chaotic heteroclinic regime with the subsequent exit to the final target dynamical regime with desirable parameters of the attitude dynamics.

  18. Nonlinear dynamics of fractional order Duffing system

    International Nuclear Information System (INIS)

    Li, Zengshan; Chen, Diyi; Zhu, Jianwei; Liu, Yongjian

    2015-01-01

    In this paper, we analyze the nonlinear dynamics of fractional order Duffing system. First, we present the fractional order Duffing system and the numerical algorithm. Second, nonlinear dynamic behaviors of Duffing system with a fixed fractional order is studied by using bifurcation diagrams, phase portraits, Poincare maps and time domain waveforms. The fractional order Duffing system shows some interesting dynamical behaviors. Third, a series of Duffing systems with different fractional orders are analyzed by using bifurcation diagrams. The impacts of fractional orders on the tendency of dynamical motion, the periodic windows in chaos, the bifurcation points and the distance between the first and the last bifurcation points are respectively studied, in which some basic laws are discovered and summarized. This paper reflects that the integer order system and the fractional order one have close relationship and an integer order system is a special case of fractional order ones.

  19. Application of the NAVSTAR/GLOBAL positioning system on instrumented ranges

    OpenAIRE

    Reinhart, William L.

    1981-01-01

    Approved for public release; distribution is unlimited This report treats the application of the NAVSTAR/Global Positioning System as the Position/Location System in Real Time Casualty Assessment experiments. The desirable characteristics of a position/location system are listed. A current position/location system, the Range Measuring System, is used as a comparison reference for the Global Positioning System. Operation and parameters of the Global Positioning System are presented. A d...

  20. Algorithm of dynamic regulation of a system of duct, for a high accuracy climatic system

    Science.gov (United States)

    Arbatskiy, A. A.; Afonina, G. N.; Glazov, V. S.

    2017-11-01

    Currently, major part of climatic system, are stationary in projected mode only. At the same time, many modern industrial sites, require constant or periodical changes in technological process. That is 80% of the time, the industrial site is not require ventilation system in projected mode and high precision of climatic parameters must maintain. While that not constantly is in use for climatic systems, which use in parallel for different rooms, we will be have a problem for balance of duct system. For this problem, was created the algorithm for quantity regulation, with minimal changes. Dynamic duct system: Developed of parallel control system of air balance, with high precision of climatic parameters. The Algorithm provide a permanent pressure in main duct, in different a flow of air. Therefore, the ending devises air flow have only one parameter for regulation - flaps open area. Precision of regulation increase and the climatic system provide high precision for temperature and humidity (0,5C for temperature, 5% for relative humidity). Result: The research has been made in CFD-system - PHOENICS. Results for velocity of air in duct, for pressure of air in duct for different operation mode, has been obtained. Equation for air valves positions, with different parameters for climate in room’s, has been obtained. Energy saving potential for dynamic duct system, for different types of a rooms, has been calculated.

  1. Context Aware Handover Algorithms For Mobile Positioning Systems

    Directory of Open Access Journals (Sweden)

    Sazid Z. Khan

    2014-01-01

    Full Text Available Abstract: This work proposes context aware handover algorithms for mobile positioning systems. The algorithms perform handover among positioning systems based on important contextual factors related to position determination with efficient use of battery. The proposed solution which consists of the algorithms is implemented in the form of an Android application named Locate@nav6. The performance of the proposed solution was tested in selected experimental areas. The handover performance was compared with other existing location applications. The proposed solution performed correct handover among positioning systems in 95% of cases studied while two other applications performed correct handover in only 50% of cases studied. Battery usage of the proposed solution is less than one third of the battery usage of two other applications. The analysis of the positioning error of the applications demonstrated that, the proposed solution is able to reduce positioning error indirectly by handing over the task of positioning to an appropriate positioning system. This kept the average error of positioning below 42.1 meters for Locate@nav6 while the average error for two other applications namely Google Latitude and Malaysia maps was between 92.7 and 171.13 meters.

  2. Dynamics of Variable Mass Systems

    Science.gov (United States)

    Eke, Fidelis O.

    1998-01-01

    This report presents the results of an investigation of the effects of mass loss on the attitude behavior of spinning bodies in flight. The principal goal is to determine whether there are circumstances under which the motion of variable mass systems can become unstable in the sense that their transverse angular velocities become unbounded. Obviously, results from a study of this kind would find immediate application in the aerospace field. The first part of this study features a complete and mathematically rigorous derivation of a set of equations that govern both the translational and rotational motions of general variable mass systems. The remainder of the study is then devoted to the application of the equations obtained to a systematic investigation of the effect of various mass loss scenarios on the dynamics of increasingly complex models of variable mass systems. It is found that mass loss can have a major impact on the dynamics of mechanical systems, including a possible change in the systems stability picture. Factors such as nozzle geometry, combustion chamber geometry, propellant's initial shape, size and relative mass, and propellant location can all have important influences on the system's dynamic behavior. The relative importance of these parameters on-system motion are quantified in a way that is useful for design purposes.

  3. Visual-based simultaneous localization and mapping and global positioning system correction for geo-localization of a mobile robot

    International Nuclear Information System (INIS)

    Berrabah, Sid Ahmed; Baudoin, Yvan; Sahli, Hichem

    2011-01-01

    This paper introduces an approach combining visual-based simultaneous localization and mapping (V-SLAM) and global positioning system (GPS) correction for accurate multi-sensor localization of an outdoor mobile robot in geo-referenced maps. The proposed framework combines two extended Kalman filters (EKF); the first one, referred to as the integration filter, is dedicated to the improvement of the GPS localization based on data from an inertial navigation system and wheels' encoders. The second EKF implements the V-SLAM process. The linear and angular velocities in the dynamic model of the V-SLAM EKF filter are given by the GPS/INS/Encoders integration filter. On the other hand, the output of the V-SLAM EKF filter is used to update the dynamics estimation in the integration filter and therefore the geo-referenced localization. This solution increases the accuracy and the robustness of the positioning during GPS outage and allows SLAM in less featured environments

  4. A technique for improving readability of Forrester diagram in system dynamics

    Directory of Open Access Journals (Sweden)

    Yang Wei-Tzen

    2003-01-01

    Full Text Available We describe a three-pass algorithm for improving the readability of Forrester Diagram in system dynamics. The first pass converts Forrester Diagram to recurrent hierarchy. The second pass sorts the vertices on each level, with the goal of minimizing crossings. The third pass is a finite tuning of the layout that determines the horizontal positions of vertices. An illustrative example is given to verify the result. .

  5. Real-time precision pedestrian navigation solution using Inertial Navigation System and Global Positioning System

    OpenAIRE

    Yong-Jin Yoon; King Ho Holden Li; Jiahe Steven Lee; Woo-Tae Park

    2015-01-01

    Global Positioning System and Inertial Navigation System can be used to determine position and velocity. A Global Positioning System module is able to accurately determine position without sensor drift, but its usage is limited in heavily urbanized environments and heavy vegetation. While high-cost tactical-grade Inertial Navigation System can determine position accurately, low-cost micro-electro-mechanical system Inertial Navigation System sensors are plagued by significant errors. Global Po...

  6. Dynamic simulation of LMFBR systems

    International Nuclear Information System (INIS)

    Agrawal, A.K.; Khatib-Rahbar, M.

    1980-01-01

    This review article focuses on the dynamic analysis of liquid-metal-cooled fast breeder reactor systems in the context of protected transients. Following a brief discussion on various design and simulation approaches, a critical review of various models for in-reactor components, intermediate heat exchangers, heat transport systems and the steam generating system is presented. A brief discussion on choice of fuels as well as core and blanket system designs is also included. Numerical considerations for obtaining system-wide steady-state and transient solutions are discussed, and examples of various system transients are presented. Another area of major interest is verification of phenomenological models. Various steps involved in the code and model verification are briefly outlined. The review concludes by posing some further areas of interest in fast reactor dynamics and safety. (author)

  7. Constraint Embedding Technique for Multibody System Dynamics

    Science.gov (United States)

    Woo, Simon S.; Cheng, Michael K.

    2011-01-01

    Multibody dynamics play a critical role in simulation testbeds for space missions. There has been a considerable interest in the development of efficient computational algorithms for solving the dynamics of multibody systems. Mass matrix factorization and inversion techniques and the O(N) class of forward dynamics algorithms developed using a spatial operator algebra stand out as important breakthrough on this front. Techniques such as these provide the efficient algorithms and methods for the application and implementation of such multibody dynamics models. However, these methods are limited only to tree-topology multibody systems. Closed-chain topology systems require different techniques that are not as efficient or as broad as those for tree-topology systems. The closed-chain forward dynamics approach consists of treating the closed-chain topology as a tree-topology system subject to additional closure constraints. The resulting forward dynamics solution consists of: (a) ignoring the closure constraints and using the O(N) algorithm to solve for the free unconstrained accelerations for the system; (b) using the tree-topology solution to compute a correction force to enforce the closure constraints; and (c) correcting the unconstrained accelerations with correction accelerations resulting from the correction forces. This constraint-embedding technique shows how to use direct embedding to eliminate local closure-loops in the system and effectively convert the system back to a tree-topology system. At this point, standard tree-topology techniques can be brought to bear on the problem. The approach uses a spatial operator algebra approach to formulating the equations of motion. The operators are block-partitioned around the local body subgroups to convert them into aggregate bodies. Mass matrix operator factorization and inversion techniques are applied to the reformulated tree-topology system. Thus in essence, the new technique allows conversion of a system with

  8. Dynamics of Shape Memory Alloy Systems, Phase 2

    Science.gov (United States)

    2015-12-22

    Nonlinear Dynamics and Chaos in Systems with Discontinuous Support Using a Switch Model”, DINAME 2005 - XI International Conference on Dynamic Problems in...AFRL-AFOSR-CL-TR-2016-0003 Dynamics of Shape Memory Alloy Systems , Phase 2 Marcelo Savi FUNDACAO COORDENACAO DE PROJETOS PESQUISAS E EEUDOS TECNOL...release. 2 AFOSR FINAL REPORT Grant Title: Nonlinear Dynamics of Shape Memory Alloy Systems , Phase 2 Grant #: FA9550-11-1-0284 Reporting Period

  9. Positive Analysis of Invasive Species Control as a Dynamic Spatial Process

    OpenAIRE

    Buyuktahtakin, Esra; Feng, Zhuo; Olsson, Aaryn; Frisvold, George B.; Szidarovszky, Ferenc

    2010-01-01

    This paper models control of invasive buffelgrass (Pennisetum ciliare), a fire-prone African bunchgrass spreading rapidly across the southern Arizona desert as a spatial dynamic process. Buffelgrass spreads over a gridded landscape. Weed carrying capacity, treatment costs, and damages vary over grid cells. Damage from buffelgrass depends on its spatial distribution in relation to valued resources. We conduct positive analysis of recommended heuristic strategies for buffelgrass control, evalua...

  10. Parametric Resonance in Dynamical Systems

    CERN Document Server

    Nijmeijer, Henk

    2012-01-01

    Parametric Resonance in Dynamical Systems discusses the phenomenon of parametric resonance and its occurrence in mechanical systems,vehicles, motorcycles, aircraft and marine craft, and micro-electro-mechanical systems. The contributors provide an introduction to the root causes of this phenomenon and its mathematical equivalent, the Mathieu-Hill equation. Also included is a discussion of how parametric resonance occurs on ships and offshore systems and its frequency in mechanical and electrical systems. This book also: Presents the theory and principles behind parametric resonance Provides a unique collection of the different fields where parametric resonance appears including ships and offshore structures, automotive vehicles and mechanical systems Discusses ways to combat, cope with and prevent parametric resonance including passive design measures and active control methods Parametric Resonance in Dynamical Systems is ideal for researchers and mechanical engineers working in application fields such as MEM...

  11. Time-Resolved Quantitative Analysis of the Diaphragms During Tidal Breathing in a Standing Position Using Dynamic Chest Radiography with a Flat Panel Detector System ("Dynamic X-Ray Phrenicography"): Initial Experience in 172 Volunteers.

    Science.gov (United States)

    Yamada, Yoshitake; Ueyama, Masako; Abe, Takehiko; Araki, Tetsuro; Abe, Takayuki; Nishino, Mizuki; Jinzaki, Masahiro; Hatabu, Hiroto; Kudoh, Shoji

    2017-04-01

    Diaphragmatic motion in a standing position during tidal breathing remains unclear. The purpose of this observational study was to evaluate diaphragmatic motion during tidal breathing in a standing position in a health screening center cohort using dynamic chest radiography in association with participants' demographic characteristics. One hundred seventy-two subjects (103 men; aged 56.3 ± 9.8 years) underwent sequential chest radiographs during tidal breathing using dynamic chest radiography with a flat panel detector system. We evaluated the excursions of and peak motion speeds of the diaphragms. Associations between the excursions and participants' demographics (gender, height, weight, body mass index [BMI], smoking history, tidal volume, vital capacity, and forced expiratory volume) were investigated. The average excursion of the left diaphragm (14.9 ± 4.6 mm, 95% CI 14.2-15.5 mm) was significantly larger than that of the right (11.0 ± 4.0 mm, 95% CI 10.4-11.6 mm) (P <0.001). The peak motion speed of the left diaphragm (inspiratory, 16.6 ± 4.2 mm/s; expiratory, 13.7 ± 4.2 mm/s) was significantly faster than that of the right (inspiratory, 12.4 ± 4.4 mm/s; expiratory, 9.4 ± 3.8 mm/s) (both P <0.001). Both simple and multiple regression models demonstrated that higher BMI and higher tidal volume were associated with increased excursions of the bilateral diaphragm (all P <0.05). The average excursions of the diaphragms are 11.0 mm (right) and 14.9 mm (left) during tidal breathing in a standing position. The diaphragmatic motion of the left is significantly larger and faster than that of the right. Higher BMI and tidal volume are associated with increased excursions of the bilateral diaphragm. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  12. Finding Positive Feedback Loops in Environmental Models: A Mathematical Investigation

    Science.gov (United States)

    Sheikholeslami, R.; Razavi, S.

    2016-12-01

    Dynamics of most earth and environmental systems are generally governed by interactions between several hydrological (e.g., soil moisture and precipitation), geological (e.g., and erosion), geochemical (e.g., nutrient loading), and atmospheric (e.g., temperature) processes which operate on a range of spatio-temporal scales. These interactions create numerous feedback mechanisms with complex behaviours, and their understanding and representation can vary depending on the scale in space and/or time at which the system is analyzed. One of the most crucial characteristics of such complex systems is the existence of positive feedback loops. The presence of positive feedbacks may increase complexity, accelerate change, or trigger multiple stable states in the underlying dynamical system. Furthermore, because of the inherent non-linearity, it is often very difficult to obtain a general idea of their complex dynamics. Feedback loops in environmental systems have been well recognized and qualitatively discussed. With a quantitative/mathematical view, in this presentation, we address the question of how the positive feedback loops can be identified/implemented in environmental models. We investigate the nature of different feedback mechanisms and dynamics of simple example case studies that underlie fundamental processes such as vegetation, precipitation and soil moisture. To do this, we apply the concept of "interaction graph" from mathematics which is built from the Jacobian matrix of the dynamical system. The Jacobian matrix contains information on how variations of one state variable depends on variations of other variables, and thus can be used to understand the dynamical possibilities of feedback mechanisms in the underlying system. Moreover, this study highlights that there are some situations where the existence of positive feedback loops can cause multiple stable states, and thereby regime shifts in environmental systems. Systems with multiple stable states are

  13. Beam Position and Phase Monitor - Wire Mapping System

    International Nuclear Information System (INIS)

    Watkins, Heath A.; Shurter, Robert B.; Gilpatrick, John D.; Kutac, Vincent G.; Martinez, Derwin

    2012-01-01

    The Los Alamos Neutron Science Center (LANSCE) deploys many cylindrical beam position and phase monitors (BPPM) throughout the linac to measure the beam central position, phase and bunched-beam current. Each monitor is calibrated and qualified prior to installation to insure it meets LANSCE requirements. The BPPM wire mapping system is used to map the BPPM electrode offset, sensitivity and higher order coefficients. This system uses a three-axis motion table to position the wire antenna structure within the cavity, simulating the beam excitation of a BPPM at a fundamental frequency of 201.25 MHz. RF signal strength is measured and recorded for the four electrodes as the antenna position is updated. An effort is underway to extend the systems service to the LANSCE facility by replacing obsolete electronic hardware and taking advantage of software enhancements. This paper describes the upgraded wire positioning system's new hardware and software capabilities including its revised antenna structure, motion control interface, RF measurement equipment and Labview software upgrades. The main purpose of the wire mapping system at LANSCE is to characterize the amplitude response versus beam central position of BPPMs before they are installed in the beam line. The wire mapping system is able to simulate a beam using a thin wire and measure the signal response as the wire position is varied within the BPPM aperture.

  14. Communication-based positioning systems: past, present and prospects

    International Nuclear Information System (INIS)

    Ma Guanyi; Wan Qingtao; Gan Tong

    2012-01-01

    This paper reviews positioning systems in the context of communication systems. First, the basic positioning technique is described for location based service (LBS) in mobile communication systems. Then the high integrity global positioning system (iGPS) is introduced in terms of aspects of what it is and how the low Earth orbit (LEO) Iridium telecommunication satellites enhance the global positioning system (GPS). Emphasis is on the Chinese Area Positioning System (CAPS) which is mainly based on commercial geostationary (GEO) communication satellites, including decommissioned GEO and inclined geosynchronous communication satellites. Characterized by its low cost, high flexibility, wide-area coverage and ample frequency resources, a distinctive feature of CAPS is that its navigation messages are generated on the ground, then uploaded to and forwarded by the communication satellites. Fundamental principles and key technologies applied in the construction of CAPS are presented in detail from the CAPS validation phase to its experimental system setup. A prospective view of CAPS has concluded it to be a seamless, high accuracy, large capacity navigation and communication system which can be achieved by expanding it world wide and enhancing it with LEO satellites and mobile base stations. Hence, this system is a potential candidate for the next generation of radio navigation after GPS. (invited reviews)

  15. Leading-process actomyosin coordinates organelle positioning and adhesion receptor dynamics in radially migrating cerebellar granule neurons.

    Science.gov (United States)

    Trivedi, Niraj; Ramahi, Joseph S; Karakaya, Mahmut; Howell, Danielle; Kerekes, Ryan A; Solecki, David J

    2014-12-02

    During brain development, neurons migrate from germinal zones to their final positions to assemble neural circuits. A unique saltatory cadence involving cyclical organelle movement (e.g., centrosome motility) and leading-process actomyosin enrichment prior to nucleokinesis organizes neuronal migration. While functional evidence suggests that leading-process actomyosin is essential for centrosome motility, the role of the actin-enriched leading process in globally organizing organelle transport or traction forces remains unexplored. We show that myosin ii motors and F-actin dynamics are required for Golgi apparatus positioning before nucleokinesis in cerebellar granule neurons (CGNs) migrating along glial fibers. Moreover, we show that primary cilia are motile organelles, localized to the leading-process F-actin-rich domain and immobilized by pharmacological inhibition of myosin ii and F-actin dynamics. Finally, leading process adhesion dynamics are dependent on myosin ii and F-actin. We propose that actomyosin coordinates the overall polarity of migrating CGNs by controlling asymmetric organelle positioning and cell-cell contacts as these cells move along their glial guides.

  16. On the Interplay between Order Parameter Dynamics and System Parameter Dynamics in Human Perceptual-Cognitive-Behavioral Systems.

    Science.gov (United States)

    Frank, T D

    2015-04-01

    Previous research has demonstrated that perceiving, thinking, and acting are human activities that correspond to self-organized patterns. The emergence of such patterns can be completely described in terms of the dynamics of the pattern amplitudes, which are referred to as order parameters. The patterns emerge at bifurcations points when certain system parameters internal and external to a human agent exceed critical values. At issue is how one might study the order parameter dynamics for sequences of consecutive, emergent perceptual, cognitive, or behavioral activities. In particular, these activities may in turn impact the system parameters that have led to the emergence of the activities in the first place. This interplay between order parameter dynamics and system parameter dynamics is discussed in general and formulated in mathematical terms. Previous work that has made use of this two-tiered framework of order parameter and system parameter dynamics are briefly addressed. As an application, a model for perception under functional fixedness is presented. Finally, it is argued that the phenomena that emerge in this framework and can be observed when human agents perceive, think, and act are just as likely to occur in pattern formation systems of the inanimate world. Consequently, these phenomena do not necessarily have a neurophysiological basis but should instead be understood from the perspective of the theory of self-organization.

  17. Nonlinear Dynamics, Chaotic and Complex Systems

    Science.gov (United States)

    Infeld, E.; Zelazny, R.; Galkowski, A.

    2011-04-01

    Part I. Dynamic Systems Bifurcation Theory and Chaos: 1. Chaos in random dynamical systems V. M. Gunldach; 2. Controlling chaos using embedded unstable periodic orbits: the problem of optimal periodic orbits B. R. Hunt and E. Ott; 3. Chaotic tracer dynamics in open hydrodynamical flows G. Karolyi, A. Pentek, T. Tel and Z. Toroczkai; 4. Homoclinic chaos L. P. Shilnikov; Part II. Spatially Extended Systems: 5. Hydrodynamics of relativistic probability flows I. Bialynicki-Birula; 6. Waves in ionic reaction-diffusion-migration systems P. Hasal, V. Nevoral, I. Schreiber, H. Sevcikova, D. Snita, and M. Marek; 7. Anomalous scaling in turbulence: a field theoretical approach V. Lvov and I. Procaccia; 8. Abelian sandpile cellular automata M. Markosova; 9. Transport in an incompletely chaotic magnetic field F. Spineanu; Part III. Dynamical Chaos Quantum Physics and Foundations Of Statistical Mechanics: 10. Non-equilibrium statistical mechanics and ergodic theory L. A. Bunimovich; 11. Pseudochaos in statistical physics B. Chirikov; 12. Foundations of non-equilibrium statistical mechanics J. P. Dougherty; 13. Thermomechanical particle simulations W. G. Hoover, H. A. Posch, C. H. Dellago, O. Kum, C. G. Hoover, A. J. De Groot and B. L. Holian; 14. Quantum dynamics on a Markov background and irreversibility B. Pavlov; 15. Time chaos and the laws of nature I. Prigogine and D. J. Driebe; 16. Evolutionary Q and cognitive systems: dynamic entropies and predictability of evolutionary processes W. Ebeling; 17. Spatiotemporal chaos information processing in neural networks H. Szu; 18. Phase transitions and learning in neural networks C. Van den Broeck; 19. Synthesis of chaos A. Vanecek and S. Celikovsky; 20. Computational complexity of continuous problems H. Wozniakowski; Part IV. Complex Systems As An Interface Between Natural Sciences and Environmental Social and Economic Sciences: 21. Stochastic differential geometry in finance studies V. G. Makhankov; Part V. Conference Banquet

  18. PREFACE: Dynamics of low-dimensional systems Dynamics of low-dimensional systems

    Science.gov (United States)

    Bernasconi, M.; Miret-Artés, S.; Toennies, J. P.

    2012-03-01

    With the development of techniques for high-resolution inelastic helium atom scattering (HAS), electron scattering (EELS) and neutron spin echo spectroscopy, it has become possible, within approximately the last thirty years, to measure the dispersion curves of surface phonons in insulators, semiconductors and metals. In recent years, the advent of new experimental techniques such as 3He spin-echo spectroscopy, scanning inelastic electron tunnel spectroscopy, inelastic x-ray scattering spectroscopy and inelastic photoemission have extended surface phonon spectroscopy to a variety of systems. These include ultra-thin metal films, adsorbates at surface and elementary processes where surface phonons play an important role. Other important directions have been actively pursued in the past decade: the dynamics of stepped surfaces and clusters grown on metal surfaces, due to their relevance in many dynamical and chemical processes at surfaces, including heterogeneous catalysis; clusters; diffusion etc. The role of surface effects in these processes has been conjectured since the early days of surface dynamics, although only now is the availability of ab initio approaches providing those conjectures with a microscopic basis. Last but not least, the investigation of non-adiabatic effects, originating for instance from the hybridization (avoided crossing) of the surface phonons branches with the quasi 1D electron-hole excitation branch, is also a challenging new direction. Furthermore, other elementary oscillations such as surface plasmons are being actively investigated. The aforementioned experimental breakthroughs have been accompanied by advances in the theoretical study of atom-surface interaction. In particular, in the past decade first principles calculations based on density functional perturbation theory have boosted the theoretical study of the dynamics of low-dimensional systems. Phonon dispersion relations of clean surfaces, the dynamics of adsorbates, and the

  19. Dynamic memory management for embedded systems

    CERN Document Server

    Atienza Alonso, David; Poucet, Christophe; Peón-Quirós, Miguel; Bartzas, Alexandros; Catthoor, Francky; Soudris, Dimitrios

    2015-01-01

    This book provides a systematic and unified methodology, including basic principles and reusable processes, for dynamic memory management (DMM) in embedded systems.  The authors describe in detail how to design and optimize the use of dynamic memory in modern, multimedia and network applications, targeting the latest generation of portable embedded systems, such as smartphones. Coverage includes a variety of design and optimization topics in electronic design automation of DMM, from high-level software optimization to microarchitecture-level hardware support. The authors describe the design of multi-layer dynamic data structures for the final memory hierarchy layers of the target portable embedded systems and how to create a low-fragmentation, cost-efficient, dynamic memory management subsystem out of configurable components for the particular memory allocation and de-allocation patterns for each type of application.  The design methodology described in this book is based on propagating constraints among de...

  20. Robust Position Control of Electro-mechanical Systems

    OpenAIRE

    Rong Mei; Mou Chen

    2013-01-01

    In this work, the robust position control scheme is proposed for the electro-mechanical system using the disturbance observer and backstepping control method. To the external unknown load of the electro-mechanical system, the nonlinear disturbance observer is given to estimate the external unknown load. Combining the output of the developed nonlinear disturbance observer with backstepping technology, the robust position control scheme is proposed for the electro-mechanical system. The stabili...

  1. Nonautonomous dynamical systems in the life sciences

    CERN Document Server

    Pötzsche, Christian

    2013-01-01

    Nonautonomous dynamics describes the qualitative behavior of evolutionary differential and difference equations, whose right-hand side is explicitly time dependent. Over recent years, the theory of such systems has developed into a highly active field related to, yet recognizably distinct from that of classical autonomous dynamical systems. This development was motivated by problems of applied mathematics, in particular in the life sciences where genuinely nonautonomous systems abound. The purpose of this monograph is to indicate through selected, representative examples how often nonautonomous systems occur in the life sciences and to outline the new concepts and tools from the theory of nonautonomous dynamical systems that are now available for their investigation.

  2. LOCAL ENTROPY FUNCTION OF DYNAMICAL SYSTEM

    Directory of Open Access Journals (Sweden)

    İsmail TOK

    2013-05-01

    Full Text Available In this work, we first,define the entropy function of the topological dynamical system and investigate basic properties of this function without going into details. Let (X,A,T be a probability measure space and consider P = { pl5p2,...,pn} a finite measurable partition of all sub-sets of topological dynamical system (X,T.Then,the quantity H (P = ^ zpt is called the i=1 entropy function of finite measurable partition P.Where f-1 log t if 0 0.If diam(P < s,then the quantity L^ (T = h^ (T - h^ (T,P is called a local entropy function of topological dynamical system (X,T . In conclusion, Let (X,T and (Y,S be two topological dynamical system. If TxS is a transformation defined on the product space (XxY,TxS with (TxS(x , y = (Tx,Sy for all (x,y X x Y.Then L ^^ (TxS = L^d(T + L (S .and, we prove some fundamental properties of this function.

  3. Modeling the Dynamic Digestive System Microbiome†

    OpenAIRE

    Estes, Anne M.

    2015-01-01

    “Modeling the Dynamic Digestive System Microbiome” is a hands-on activity designed to demonstrate the dynamics of microbiome ecology using dried pasta and beans to model disturbance events in the human digestive system microbiome. This exercise demonstrates how microbiome diversity is influenced by: 1) niche availability and habitat space and 2) a major disturbance event, such as antibiotic use. Students use a pictorial key to examine prepared models of digestive system microbiomes to determi...

  4. Optimal reduction of flexible dynamic system

    International Nuclear Information System (INIS)

    Jankovic, J.

    1994-01-01

    Dynamic system reduction is basic procedure in various problems of active control synthesis of flexible structures. In this paper is presented direct method for system reduction by explicit extraction of modes included in reduced model form. Criterion for optimal system discrete approximation in synthesis reduced dynamic model is also presented. Subjected method of system decomposition is discussed in relation to the Schur method of solving matrix algebraic Riccati equation as condition for system reduction. By using exposed method procedure of flexible system reduction in addition with corresponding example is presented. Shown procedure is powerful in problems of active control synthesis of flexible system vibrations

  5. Local difference measures between complex networks for dynamical system model evaluation.

    Science.gov (United States)

    Lange, Stefan; Donges, Jonathan F; Volkholz, Jan; Kurths, Jürgen

    2015-01-01

    A faithful modeling of real-world dynamical systems necessitates model evaluation. A recent promising methodological approach to this problem has been based on complex networks, which in turn have proven useful for the characterization of dynamical systems. In this context, we introduce three local network difference measures and demonstrate their capabilities in the field of climate modeling, where these measures facilitate a spatially explicit model evaluation.Building on a recent study by Feldhoff et al. [8] we comparatively analyze statistical and dynamical regional climate simulations of the South American monsoon system [corrected]. types of climate networks representing different aspects of rainfall dynamics are constructed from the modeled precipitation space-time series. Specifically, we define simple graphs based on positive as well as negative rank correlations between rainfall anomaly time series at different locations, and such based on spatial synchronizations of extreme rain events. An evaluation against respective networks built from daily satellite data provided by the Tropical Rainfall Measuring Mission 3B42 V7 reveals far greater differences in model performance between network types for a fixed but arbitrary climate model than between climate models for a fixed but arbitrary network type. We identify two sources of uncertainty in this respect. Firstly, climate variability limits fidelity, particularly in the case of the extreme event network; and secondly, larger geographical link lengths render link misplacements more likely, most notably in the case of the anticorrelation network; both contributions are quantified using suitable ensembles of surrogate networks. Our model evaluation approach is applicable to any multidimensional dynamical system and especially our simple graph difference measures are highly versatile as the graphs to be compared may be constructed in whatever way required. Generalizations to directed as well as edge- and node

  6. Scenario development, qualitative causal analysis and system dynamics

    Directory of Open Access Journals (Sweden)

    Michael H. Ruge

    2009-02-01

    Full Text Available The aim of this article is to demonstrate that technology assessments can be supported by methods such as scenario modeling and qualitative causal analysis. At Siemens, these techniques are used to develop preliminary purely qualitative models. These or parts of these comprehensive models may be extended to system dynamics models. While it is currently not possible to automatically generate a system dynamics models (or vice versa, obtain a qualitative simulation model from a system dynamics model, the two thechniques scenario development and qualitative causal analysis provide valuable indications on how to proceed towards a system dynamics model. For the qualitative analysis phase, the Siemens – proprietary prototype Computer – Aided Technology Assessment Software (CATS supportes complete cycle and submodel analysis. Keywords: Health care, telecommucations, qualitative model, sensitivity analysis, system dynamics.

  7. Dynamics and control of technical systems

    CERN Document Server

    Balthazar, José M; Kaczmarczyk, Stefan

    2014-01-01

    The main topics of this Special Issue are linear and, mainly, nonlinear dynamics, chaos and control of systems and structures and their applications in different field of science and engineering. According to the goal of the Special Issue, the selected contributions are divided into three major parts: ""Vibration Problems in Vertical Transportation Systems"", ""Nonlinear Dynamics, Chaos and Control of Elastic Structures"" and ""New Strategies and Challenges for Aerospace and Ocean Structures Dynamics and Control"". The discussion of real problems in aerospace and how these problems can be unde

  8. Dynamics of Information Systems

    CERN Document Server

    Hirsch, Michael J; Murphey, Robert

    2010-01-01

    Our understanding of information and information dynamics has outgrown classical information theory. This book presents the research explaining the importance of information in the evolution of a distributed or networked system. It presents techniques for measuring the value or significance of information within the context of a system

  9. Semiautomatic imputation of activity travel diaries : use of global positioning system traces, prompted recall, and context-sensitive learning algorithms

    NARCIS (Netherlands)

    Moiseeva, A.; Jessurun, J.; Timmermans, H.J.P.

    2010-01-01

    The new generation of dynamic activity-based models requires multiday or multiweek activity-travel data. Global Positioning System (GPS) tracers may be a powerful technology to collect such data, but previous applications of this technology to collect data of full activity travel patterns (not just

  10. Impact of anticipation in dynamical systems

    Science.gov (United States)

    Gerlee, P.; Tunstrøm, K.; Lundh, T.; Wennberg, B.

    2017-12-01

    Many animals, including humans, have predictive capabilities and, presumably, base their behavioral decisions—at least partially—upon an anticipated state of their environment. We explore a minimal version of this idea in the context of particles that interact according to a pairwise potential. Anticipation enters the picture by calculating the interparticle forces from linear extrapolations of the particle positions some time τ in the future. Simulations show that for intermediate values of τ , compared to a transient time scale defined by the potential and the initial conditions, the particles form rotating clusters in which the particles are arranged in a hexagonal pattern. Analysis of the system shows that anticipation induces energy dissipation and we show that the kinetic energy asymptotically decays as 1 /t . Furthermore, we show that the angular momentum is not necessarily conserved for τ >0 , and that asymmetries in the initial condition therefore can cause rotational movement. These results suggest that anticipation could play an important role in collective behavior, since it may induce pattern formation and stabilizes the dynamics of the system.

  11. Dynamic characteristics of a novel damped outrigger system

    Science.gov (United States)

    Tan, Ping; Fang, Chuangjie; Zhou, Fulin

    2014-06-01

    This paper presents exact analytical solutions for a novel damped outrigger system, in which viscous dampers are vertically installed between perimeter columns and the core of a high-rise building. An improved analytical model is developed by modeling the effect of the damped outrigger as a general rotational spring acting on a Bernoulli-Euler beam. The equivalent rotational spring stiffness incorporating the combined effects of dampers and axial stiffness of perimeter columns is derived. The dynamic stiffness method (DSM) is applied to formulate the governing equation of the damped outrigger system. The accuracy and efficiency are verified in comparison with those obtained from compatibility equations and boundary equations. Parametric analysis of three non-dimensional factors is conducted to evaluate the influences of various factors, such as the stiffness ratio of the core to the beam, position of the damped outrigger, and the installed damping coefficient. Results show that the modal damping ratio is significantly influenced by the stiffness ratio of the core to the column, and is more sensitive to damping than the position of the damped outrigger. The proposed analytical model in combination with DSM can be extended to the study of structures with more outriggers.

  12. Advanced Pedestrian Positioning System to Smartphones and Smartwatches

    Directory of Open Access Journals (Sweden)

    Alejandro Correa

    2016-11-01

    Full Text Available In recent years, there has been an increasing interest in the development of pedestrian navigation systems for satellite-denied scenarios. The popularization of smartphones and smartwatches is an interesting opportunity for reducing the infrastructure cost of the positioning systems. Nowadays, smartphones include inertial sensors that can be used in pedestrian dead-reckoning (PDR algorithms for the estimation of the user’s position. Both smartphones and smartwatches include WiFi capabilities allowing the computation of the received signal strength (RSS. We develop a new method for the combination of RSS measurements from two different receivers using a Gaussian mixture model. We also analyze the implication of using a WiFi network designed for communication purposes in an indoor positioning system when the designer cannot control the network configuration. In this work, we design a hybrid positioning system that combines inertial measurements, from low-cost inertial sensors embedded in a smartphone, with RSS measurements through an extended Kalman filter. The system has been validated in a real scenario, and results show that our system improves the positioning accuracy of the PDR system thanks to the use of two WiFi receivers. The designed system obtains an accuracy up to 1.4 m in a scenario of 6000 m 2 .

  13. Tensor calculus and analytical dynamics a classical introduction to holonomic and nonholonomic tensor calculus ; and its principal applications to the Lagrangean dynamics of constrained mechanical systems : for engineers, physicists, and mathematicians

    CERN Document Server

    Papastavridis, John G

    1999-01-01

    Tensor Calculus and Analytical Dynamics provides a concise, comprehensive, and readable introduction to classical tensor calculus - in both holonomic and nonholonomic coordinates - as well as to its principal applications to the Lagrangean dynamics of discrete systems under positional or velocity constraints. The thrust of the book focuses on formal structure and basic geometrical/physical ideas underlying most general equations of motion of mechanical systems under linear velocity constraints.

  14. Automatic multi-camera calibration for deployable positioning systems

    Science.gov (United States)

    Axelsson, Maria; Karlsson, Mikael; Rudner, Staffan

    2012-06-01

    Surveillance with automated positioning and tracking of subjects and vehicles in 3D is desired in many defence and security applications. Camera systems with stereo or multiple cameras are often used for 3D positioning. In such systems, accurate camera calibration is needed to obtain a reliable 3D position estimate. There is also a need for automated camera calibration to facilitate fast deployment of semi-mobile multi-camera 3D positioning systems. In this paper we investigate a method for automatic calibration of the extrinsic camera parameters (relative camera pose and orientation) of a multi-camera positioning system. It is based on estimation of the essential matrix between each camera pair using the 5-point method for intrinsically calibrated cameras. The method is compared to a manual calibration method using real HD video data from a field trial with a multicamera positioning system. The method is also evaluated on simulated data from a stereo camera model. The results show that the reprojection error of the automated camera calibration method is close to or smaller than the error for the manual calibration method and that the automated calibration method can replace the manual calibration.

  15. Lectures on chaotic dynamical systems

    CERN Document Server

    Afraimovich, Valentin

    2002-01-01

    This book is devoted to chaotic nonlinear dynamics. It presents a consistent, up-to-date introduction to the field of strange attractors, hyperbolic repellers, and nonlocal bifurcations. The authors keep the highest possible level of "physical" intuition while staying mathematically rigorous. In addition, they explain a variety of important nonstandard algorithms and problems involving the computation of chaotic dynamics. The book will help readers who are not familiar with nonlinear dynamics to understand and appreciate sophisticated modern dynamical systems and chaos. Intended for courses in either mathematics, physics, or engineering, prerequisites are calculus, differential equations, and functional analysis.

  16. OBSERVING LYAPUNOV EXPONENTS OF INFINITE-DIMENSIONAL DYNAMICAL SYSTEMS.

    Science.gov (United States)

    Ott, William; Rivas, Mauricio A; West, James

    2015-12-01

    Can Lyapunov exponents of infinite-dimensional dynamical systems be observed by projecting the dynamics into ℝ N using a 'typical' nonlinear projection map? We answer this question affirmatively by developing embedding theorems for compact invariant sets associated with C 1 maps on Hilbert spaces. Examples of such discrete-time dynamical systems include time- T maps and Poincaré return maps generated by the solution semigroups of evolution partial differential equations. We make every effort to place hypotheses on the projected dynamics rather than on the underlying infinite-dimensional dynamical system. In so doing, we adopt an empirical approach and formulate checkable conditions under which a Lyapunov exponent computed from experimental data will be a Lyapunov exponent of the infinite-dimensional dynamical system under study (provided the nonlinear projection map producing the data is typical in the sense of prevalence).

  17. Dynamic screening and electron dynamics in low-dimensional metal systems

    International Nuclear Information System (INIS)

    Silkin, V.M.; Quijada, M.; Vergniory, M.G.; Alducin, M.; Borisov, A.G.; Diez Muino, R.; Juaristi, J.I.; Sanchez-Portal, D.; Chulkov, E.V.; Echenique, P.M.

    2007-01-01

    Recent advances in the theoretical description of dynamic screening and electron dynamics in metallic media are reviewed. The time-dependent building-up of screening in different situations is addressed. Perturbative and non-perturbative theories are used to study electron dynamics in low-dimensional systems, such as metal clusters, image states, surface states and quantum wells. Modification of the electronic lifetimes due to confinement effects is analyzed as well

  18. Dynamic interaction of monowheel inclined vehicle-vibration platform coupled system with quadratic and cubic nonlinearities

    Science.gov (United States)

    Zhou, Shihua; Song, Guiqiu; Sun, Maojun; Ren, Zhaohui; Wen, Bangchun

    2018-01-01

    In order to analyze the nonlinear dynamics and stability of a novel design for the monowheel inclined vehicle-vibration platform coupled system (MIV-VPCS) with intermediate nonlinearity support subjected to a harmonic excitation, a multi-degree of freedom lumped parameter dynamic model taking into account the dynamic interaction of the MIV-VPCS with quadratic and cubic nonlinearities is presented. The dynamical equations of the coupled system are derived by applying the displacement relationship, interaction force relationship at the contact position and Lagrange's equation, which are further discretized into a set of nonlinear ordinary differential equations with coupled terms by Galerkin's truncation. Based on the mathematical model, the coupled multi-body nonlinear dynamics of the vibration system is investigated by numerical method, and the parameters influences of excitation amplitude, mass ratio and inclined angle on the dynamic characteristics are precisely analyzed and discussed by bifurcation diagram, Largest Lyapunov exponent and 3-D frequency spectrum. Depending on different ranges of system parameters, the results show that the different motions and jump discontinuity appear, and the coupled system enters into chaotic behavior through different routes (period-doubling bifurcation, inverse period-doubling bifurcation, saddle-node bifurcation and Hopf bifurcation), which are strongly attributed to the dynamic interaction of the MIV-VPCS. The decreasing excitation amplitude and inclined angle could reduce the higher order bifurcations, and effectively control the complicated nonlinear dynamic behaviors under the perturbation of low rotational speed. The first bifurcation and chaotic motion occur at lower value of inclined angle, and the chaotic behavior lasts for larger intervals with higher rotational speed. The investigation results could provide a better understanding of the nonlinear dynamic behaviors for the dynamic interaction of the MIV-VPCS.

  19. Reliability and reference values of two clinical measurements of dynamic and static knee position in healthy children

    DEFF Research Database (Denmark)

    Ortqvist, Maria; Moström, Eva B; Roos, Ewa M.

    2011-01-01

    PURPOSE: The purposes of this study were to evaluate reliability of the Single-limb mini squat test (a dynamic measure of medio-lateral knee position) and the Quadriceps-angle (Q-angle) (a static measure of medio-lateral knee position), present paediatric reference values of the Q......-angle measurements was found. Reference values for the Q-angle (mean 13.5° (1.9)-15.3° (2.8)) varies with age and gender. No associations were found between dynamic and static measures. CONCLUSIONS: The Single-limb mini squat test showed a moderate reliability and the Q-angle showed a fair to moderate reliability......-angle, and evaluate the association between the tests. METHODS: Two hundred and forty-six healthy children (9-16 years) were included (intra/inter-rater reliability for Q-angle (n = 37/85) and for Single-limb mini squat test (n = 33/28)). Dynamic medio-lateral knee position was assessed by the Single-limb mini squat...

  20. Positive real balancing for nonlinear systems

    NARCIS (Netherlands)

    Ionescu, Tudor C.; Scherpen, Jacquelien M.A.; Ciuprina, G; Ioan, D

    2007-01-01

    We extend the positive real balancing procedure for passive linear systems to the nonlinear systems case. We show that, just like in the linear case, model reduction based on this technique preserves passivity.

  1. Dynamic analysis of floating wave energy generation system with mooring system

    International Nuclear Information System (INIS)

    Choi, Gyu Seok; Sohn, Jeong Hyun

    2013-01-01

    In this study, dynamic behaviors of a wave energy generation system (WEGS) that converts wave energy into electric energy are analyzed using multibody dynamics techniques. Many studies have focused on reducing the effects of a mooring system on the motion of a WEGS. Several kinematic constraints and force elements are employed in the modeling stage. Three dimensional wave load equations are used to implement wave loads. The dynamic behaviors of a WEGS are analyzed under several wave conditions by using MSC/ADAMS, and the rotating speed of the generating shaft is investigated for predicting the electricity capacity. The dynamic behaviors of a WEGS with a mooring system are compared with those of a WEGS without a mooring system. Stability evaluation of a WEGS is carried out through simulation under extreme wave load

  2. Open-loop position tracking control of a piezoceramic flexible beam using a dynamic hysteresis compensator

    International Nuclear Information System (INIS)

    Nguyen, Phuong-Bac; Choi, Seung-Bok

    2010-01-01

    This paper proposes a novel hysteresis compensator to enhance control accuracy in open-loop position tracking control of a piezoceramic flexible beam. The proposed hysteresis compensator consists of two components: a rate-independent hysteresis compensator and a nonlinear filter. The compensator is formulated based on the inverse Preisach model, while the weight coefficients of the filter are identified adaptively using a recursive least square (RLS) algorithm. In this work, two dynamic hysteresis compensators (or rate-independent hysteresis compensators) are developed by adopting two different nonlinear filters: Volterra and bilinear filters. In order to demonstrate the improved control accuracy of the proposed dynamic compensators, a flexible beam associated with the piezoceramic actuator is modeled using the finite element method (FEM) and Euler–Bernoulli beam theory. The beam model is then integrated with the proposed hysteresis model to achieve accurate position tracking control at the tip of the beam. An experimental investigation on the tip position tracking control is undertaken by realizing three different hysteresis compensators: a rate-independent hysteresis compensator, a rate-dependent hysteresis compensator with a Volterra nonlinear filter and a rate-independent hysteresis compensator with a bilinear nonlinear filter. It is shown that the proposed dynamic hysteresis compensators can provide much better tracking control accuracy than conventional rate-independent hysteresis compensators

  3. On the Theory of Nonlinear Dynamics and its Applications in Vehicle Systems Dynamics

    DEFF Research Database (Denmark)

    True, Hans

    1999-01-01

    We present a brief outline of nonlinear dynamics and its applications to vehicle systems dynamics problems. The concept of a phase space is introduced in order to illustrate the dynamics of nonlinear systems in a way that is easy to perceive. Various equilibrium states are defined...... of nonlinear dynamics in vehicle simulations is discussed, and it is argued that it is necessary to know the equilibrium states of the full nonlinear system before the simulation calculations are performed......., and the important case of multiple equilibrium states and their dependence on a parameter is discussed. It is argued that the analysis of nonlinear dynamic problems always should start with an analysis of the equilibrium states of the full nonlinear problem whereby great care must be taken in the choice...

  4. Dynamic Systems Modeling in Educational System Design & Policy

    Science.gov (United States)

    Groff, Jennifer Sterling

    2013-01-01

    Over the last several hundred years, local and national educational systems have evolved from relatively simple systems to incredibly complex, interdependent, policy-laden structures, to which many question their value, effectiveness, and direction they are headed. System Dynamics is a field of analysis used to guide policy and system design in…

  5. Logical entropy of quantum dynamical systems

    Directory of Open Access Journals (Sweden)

    Ebrahimzadeh Abolfazl

    2016-01-01

    Full Text Available This paper introduces the concepts of logical entropy and conditional logical entropy of hnite partitions on a quantum logic. Some of their ergodic properties are presented. Also logical entropy of a quantum dynamical system is dehned and ergodic properties of dynamical systems on a quantum logic are investigated. Finally, the version of Kolmogorov-Sinai theorem is proved.

  6. Dynamical entropy for infinite quantum systems

    International Nuclear Information System (INIS)

    Hudetz, T.

    1990-01-01

    We review the recent physical application of the so-called Connes-Narnhofer-Thirring entropy, which is the successful quantum mechanical generalization of the classical Kolmogorov-Sinai entropy and, by its very conception, is a dynamical entropy for infinite quantum systems. We thus comparingly review also the physical applications of the classical dynamical entropy for infinite classical systems. 41 refs. (Author)

  7. Stabilization of discrete-time LTI positive systems

    Directory of Open Access Journals (Sweden)

    Krokavec Dušan

    2017-12-01

    Full Text Available The paper mitigates the existing conditions reported in the previous literature for control design of discrete-time linear positive systems. Incorporating an associated structure of linear matrix inequalities, combined with the Lyapunov inequality guaranteing asymptotic stability of discrete-time positive system structures, new conditions are presented with which the state-feedback controllers and the system state observers can be designed. Associated solutions of the proposed design conditions are illustrated by numerical illustrative examples.

  8. Coupled dynamic systems and Le Chatelier's principle in noise control

    Science.gov (United States)

    Maidanik, G.; Becker, K. J.

    2004-05-01

    Investigation of coupling an externally driven dynamic system-a master dynamic system-to a passive one-an adjunct dynamic system-reveals that the response of the adjunct dynamic system affects the precoupled response of the master dynamic system. The responses, in the two dynamic systems when coupled, are estimated by the stored energies (Es) and (E0), respectively. Since the adjunct dynamic system, prior to coupling, was with zero (0) stored energy, E0s=0, the precoupled stored energy (E00) in the master dynamic system is expected to be reduced to (E0) when coupling is instituted; i.e., one expects E0dynamic system would result from the coupling. It is argued that the change in the disposition of the stored energies as just described may not be the only change. The coupling may influence the external input power into the master dynamic system which may interfere with the expected noise control. Indeed, the coupling may influence the external input power such that the expected beneficial noise control may not materialize. Examples of these kinds of noise control reversals are cited.

  9. Solar dynamic power system definition study

    Science.gov (United States)

    Wallin, Wayne E.; Friefeld, Jerry M.

    1988-01-01

    The solar dynamic power system design and analysis study compared Brayton, alkali-metal Rankine, and free-piston Stirling cycles with silicon planar and GaAs concentrator photovoltaic power systems for application to missions beyond the Phase 2 Space Station level of technology for all power systems. Conceptual designs for Brayton and Stirling power systems were developed for 35 kWe and 7 kWe power levels. All power systems were designed for 7-year end-of-life conditions in low Earth orbit. LiF was selected for thermal energy storage for the solar dynamic systems. Results indicate that the Stirling cycle systems have the highest performance (lowest weight and area) followed by the Brayton cycle, with photovoltaic systems considerably lower in performance. For example, based on the performance assumptions used, the planar silicon power system weight was 55 to 75 percent higher than for the Stirling system. A technology program was developed to address areas wherein significant performance improvements could be realized relative to the current state-of-the-art as represented by Space Station. In addition, a preliminary evaluation of hardenability potential found that solar dynamic systems can be hardened beyond the hardness inherent in the conceptual designs of this study.

  10. Polynomial f (R ) Palatini cosmology: Dynamical system approach

    Science.gov (United States)

    Szydłowski, Marek; Stachowski, Aleksander

    2018-05-01

    We investigate cosmological dynamics based on f (R ) gravity in the Palatini formulation. In this study, we use the dynamical system methods. We show that the evolution of the Friedmann equation reduces to the form of the piecewise smooth dynamical system. This system is reduced to a 2D dynamical system of the Newtonian type. We demonstrate how the trajectories can be sewn to guarantee C0 extendibility of the metric similarly as "Milne-like" Friedmann-Lemaître-Robertson-Walker spacetimes are C0-extendible. We point out that importance of the dynamical system of the Newtonian type with nonsmooth right-hand sides in the context of Palatini cosmology. In this framework, we can investigate singularities which appear in the past and future of the cosmic evolution. We consider cosmological systems in both Einstein and Jordan frames. We show that at each frame the topological structures of phase space are different.

  11. Indoor Positioning System Using Depth Maps and Wireless Networks

    Directory of Open Access Journals (Sweden)

    Jaime Duque Domingo

    2016-01-01

    Full Text Available This work presents a new Indoor Positioning System (IPS based on the combination of WiFi Positioning System (WPS and depth maps, for estimating the location of people. The combination of both technologies improves the efficiency of existing methods, based uniquely on wireless positioning techniques. While other positioning systems force users to wear special devices, the system proposed in this paper just requires the use of smartphones, besides the installation of RGB-D sensors in the sensing area. Furthermore, the system is not intrusive, being not necessary to know people’s identity. The paper exposes the method developed for putting together and exploiting both types of sensory information with positioning purposes: the measurements of the level of the signal received from different access points (APs of the wireless network and the depth maps provided by the RGB-D cameras. The obtained results show a significant improvement in terms of positioning with respect to common WiFi-based systems.

  12. Testing of dynamic multileaf collimator by dynamic log file

    International Nuclear Information System (INIS)

    Ono, Kaoru; Nakamura, Tetsuji; Yamato, Shinichirou; Miyazawa, Masanori

    2007-01-01

    Intensity-modulated radiation therapy (IMRT) represents one of the most significant technical advances in radiation therapy. In the dynamic multileaf collimator (MLC) method of IMRT delivery, because of the relatively small gaps between opposed leaves and because most regions are shielded by leaves most of the time, the delivered dose is very sensitive to MLC leaf positional accuracy. A variation of ±0.2 mm in the gap width can result in a dose variation of ±3% for each clinical dynamic MLC field. Most often the effects of leaf motion are inferred from dose deviations on film or from variations in ionization measurements. These techniques provide dosimetric information but do not provide detailed information for diagnosing delivery problems. Therefore, a dynamic log file (Dynalog file) was used to verify dynamic MLC leaf positional accuracy. Measuring for narrow gaps using the thickness gauge could detect a log file accuracy of approximately 0.1 mm. The accuracy of dynamic MLC delivery depends on the accuracy with which the velocity of each leaf is controlled. We studied the relationship between leaf positional accuracy and leaf velocity. Leaf velocity of 0.7 cm/sec caused approximately 0.2 mm leaf positional variation. We then analyzed leaf positional accuracy for the clinical dynamic MLC field using Dynalog File Viewer (Varian Medical Systems, Inc., Palo Alto, California (CA)), and developed a new program that can analyze more detailed leaf motions. Using this program, we can obtain more detailed information, and therefore can determine the source of dose uncertainties for the dynamic MLC field. (author)

  13. Dynamic Systems Analysis for Turbine Based Aero Propulsion Systems

    Science.gov (United States)

    Csank, Jeffrey T.

    2016-01-01

    The aircraft engine design process seeks to optimize the overall system-level performance, weight, and cost for a given concept. Steady-state simulations and data are used to identify trade-offs that should be balanced to optimize the system in a process known as systems analysis. These systems analysis simulations and data may not adequately capture the true performance trade-offs that exist during transient operation. Dynamic systems analysis provides the capability for assessing the dynamic tradeoffs at an earlier stage of the engine design process. The dynamic systems analysis concept, developed tools, and potential benefit are presented in this paper. To provide this capability, the Tool for Turbine Engine Closed-loop Transient Analysis (TTECTrA) was developed to provide the user with an estimate of the closed-loop performance (response time) and operability (high pressure compressor surge margin) for a given engine design and set of control design requirements. TTECTrA along with engine deterioration information, can be used to develop a more generic relationship between performance and operability that can impact the engine design constraints and potentially lead to a more efficient engine.

  14. Combinations of complex dynamical systems

    CERN Document Server

    Pilgrim, Kevin M

    2003-01-01

    This work is a research-level monograph whose goal is to develop a general combination, decomposition, and structure theory for branched coverings of the two-sphere to itself, regarded as the combinatorial and topological objects which arise in the classification of certain holomorphic dynamical systems on the Riemann sphere. It is intended for researchers interested in the classification of those complex one-dimensional dynamical systems which are in some loose sense tame. The program is motivated by the dictionary between the theories of iterated rational maps and Kleinian groups.

  15. The Mathlet Toolkit: Creating Dynamic Applets for Differential Equations and Dynamical Systems

    Science.gov (United States)

    Decker, Robert

    2011-01-01

    Dynamic/interactive graphing applets can be used to supplement standard computer algebra systems such as Maple, Mathematica, Derive, or TI calculators, in courses such as Calculus, Differential Equations, and Dynamical Systems. The addition of this type of software can lead to discovery learning, with students developing their own conjectures, and…

  16. On the Existence and Robustness of Steady Position-Momentum Correlations for Time-Dependent Quadratic Systems

    Directory of Open Access Journals (Sweden)

    M. Gianfreda

    2012-01-01

    Full Text Available We discuss conditions giving rise to stationary position-momentum correlations among quantum states in the Fock and coherent basis associated with the natural invariant for the one-dimensional time-dependent quadratic Hamiltonian operators such as the Kanai-Caldirola Hamiltonian. We also discuss some basic features such as quantum decoherence of the wave functions resulting from the corresponding quantum dynamics of these systems that exhibit no timedependence in their quantum correlations. In particular, steady statistical momentum averages are seen over well-defined time intervals in the evolution of a linear superposition of the basis states of modified exponentially damped mass systems.

  17. Dynamics and Control of a Disordered System in Space

    Science.gov (United States)

    Quadrelli, Marco B.

    2013-01-01

    In this paper, we present some ideas regarding the modeling, dynamics and control aspects of granular spacecraft. Granular spacecraft are complex multibody systems composed of a spatially disordered distribution of a large number of elements, for instance a cloud of N grains in orbit, with N greater than 10(exp 3). These grains can be large (Cubesat-size) or small (mm-size), and can be active, i.e., a fully equipped vehicle capable sensing their own position and attitude, and enabled with propulsion means, or entirely passive. The ultimate objective would be to study the behavior of the single grains and of large ensembles of grains in orbit and to identify ways to guide and control the shape of a cloud composed of these grains so that it can perform a useful function in space, for instance, as an element of an optical imaging system for astrophysical applications. This concept, in which the aperture does not need to be continuous and monolithic, would increase the aperture size several times compared to large NASA observatories such as ATLAST, allowing for a true Terrestrial Planet Imager that would be able to resolve exo-planet details and do meaningful spectroscopy on distant world. In the paper, we address the modeling and autonomous operation of a distributed assembly (the cloud) of large numbers of highly miniaturized space-borne elements (the grains). A multi-scale, multi-physics model is proposed of the dynamics of the cloud in orbit, as well as a control law for cloud shape maintenance, and preliminary simulation studies yield an estimate of the computational effort, indicating a scale factor of approximately N(exp 1.4) as a function of the number of grains. A granular spacecraft can be defined as a collection of a large number of space-borne elements (in the 1000s) designed and controlled such that a desirable collective behavior emerges, either from the interactions among neighboring grains, and/or between the grains and the environment. In this paper

  18. Combined analytical and numerical approaches in Dynamic Stability analyses of engineering systems

    Science.gov (United States)

    Náprstek, Jiří

    2015-03-01

    Dynamic Stability is a widely studied area that has attracted many researchers from various disciplines. Although Dynamic Stability is usually associated with mechanics, theoretical physics or other natural and technical disciplines, it is also relevant to social, economic, and philosophical areas of our lives. Therefore, it is useful to occasionally highlight the general aspects of this amazing area, to present some relevant examples and to evaluate its position among the various branches of Rational Mechanics. From this perspective, the aim of this study is to present a brief review concerning the Dynamic Stability problem, its basic definitions and principles, important phenomena, research motivations and applications in engineering. The relationships with relevant systems that are prone to stability loss (encountered in other areas such as physics, other natural sciences and engineering) are also noted. The theoretical background, which is applicable to many disciplines, is presented. In this paper, the most frequently used Dynamic Stability analysis methods are presented in relation to individual dynamic systems that are widely discussed in various engineering branches. In particular, the Lyapunov function and exponent procedures, Routh-Hurwitz, Liénard, and other theorems are outlined together with demonstrations. The possibilities for analytical and numerical procedures are mentioned together with possible feedback from experimental research and testing. The strengths and shortcomings of these approaches are evaluated together with examples of their effective complementing of each other. The systems that are widely encountered in engineering are presented in the form of mathematical models. The analyses of their Dynamic Stability and post-critical behaviour are also presented. The stability limits, bifurcation points, quasi-periodic response processes and chaotic regimes are discussed. The limit cycle existence and stability are examined together with their

  19. Blended particle filters for large-dimensional chaotic dynamical systems

    Science.gov (United States)

    Majda, Andrew J.; Qi, Di; Sapsis, Themistoklis P.

    2014-01-01

    A major challenge in contemporary data science is the development of statistically accurate particle filters to capture non-Gaussian features in large-dimensional chaotic dynamical systems. Blended particle filters that capture non-Gaussian features in an adaptively evolving low-dimensional subspace through particles interacting with evolving Gaussian statistics on the remaining portion of phase space are introduced here. These blended particle filters are constructed in this paper through a mathematical formalism involving conditional Gaussian mixtures combined with statistically nonlinear forecast models compatible with this structure developed recently with high skill for uncertainty quantification. Stringent test cases for filtering involving the 40-dimensional Lorenz 96 model with a 5-dimensional adaptive subspace for nonlinear blended filtering in various turbulent regimes with at least nine positive Lyapunov exponents are used here. These cases demonstrate the high skill of the blended particle filter algorithms in capturing both highly non-Gaussian dynamical features as well as crucial nonlinear statistics for accurate filtering in extreme filtering regimes with sparse infrequent high-quality observations. The formalism developed here is also useful for multiscale filtering of turbulent systems and a simple application is sketched below. PMID:24825886

  20. Chaos in integrate-and-fire dynamical systems

    International Nuclear Information System (INIS)

    Coombes, S.

    2000-01-01

    Integrate-and-fire (IF) mechanisms are often studied within the context of neural dynamics. From a mathematical perspective they represent a minimal yet biologically realistic model of a spiking neuron. The non-smooth nature of the dynamics leads to extremely rich spike train behavior capable of explaining a variety of biological phenomenon including phase-locked states, mode-locking, bursting and pattern formation. The conditions under which chaotic spike trains may be generated in synaptically interacting networks of neural oscillators is an important open question. Using techniques originally introduced for the study of impact oscillators we develop the notion of a Liapunov exponent for IF systems. In the strong coupling regime a network may undergo a discrete Turing-Hopf bifurcation of the firing times from a synchronous state to a state with periodic or quasiperiodic variations of the interspike intervals on closed orbits. Away from the bifurcation point these invariant circles may break up. We establish numerically that in this case the largest IF Liapunov exponent becomes positive. Hence, one route to chaos in networks of synaptically coupled IF neurons is via the breakup of invariant circles

  1. Towards a Decentralized Magnetic Indoor Positioning System

    Science.gov (United States)

    Kasmi, Zakaria; Norrdine, Abdelmoumen; Blankenbach, Jörg

    2015-01-01

    Decentralized magnetic indoor localization is a sophisticated method for processing sampled magnetic data directly on a mobile station (MS), thereby decreasing or even avoiding the need for communication with the base station. In contrast to central-oriented positioning systems, which transmit raw data to a base station, decentralized indoor localization pushes application-level knowledge into the MS. A decentralized position solution has thus a strong feasibility to increase energy efficiency and to prolong the lifetime of the MS. In this article, we present a complete architecture and an implementation for a decentralized positioning system. Furthermore, we introduce a technique for the synchronization of the observed magnetic field on the MS with the artificially-generated magnetic field from the coils. Based on real-time clocks (RTCs) and a preemptive operating system, this method allows a stand-alone control of the coils and a proper assignment of the measured magnetic fields on the MS. A stand-alone control and synchronization of the coils and the MS have an exceptional potential to implement a positioning system without the need for wired or wireless communication and enable a deployment of applications for rescue scenarios, like localization of miners or firefighters. PMID:26690145

  2. Towards a Decentralized Magnetic Indoor Positioning System

    Directory of Open Access Journals (Sweden)

    Zakaria Kasmi

    2015-12-01

    Full Text Available Decentralized magnetic indoor localization is a sophisticated method for processing sampled magnetic data directly on a mobile station (MS, thereby decreasing or even avoiding the need for communication with the base station. In contrast to central-oriented positioning systems, which transmit raw data to a base station, decentralized indoor localization pushes application-level knowledge into the MS. A decentralized position solution has thus a strong feasibility to increase energy efficiency and to prolong the lifetime of the MS. In this article, we present a complete architecture and an implementation for a decentralized positioning system. Furthermore, we introduce a technique for the synchronization of the observed magnetic field on the MS with the artificially-generated magnetic field from the coils. Based on real-time clocks (RTCs and a preemptive operating system, this method allows a stand-alone control of the coils and a proper assignment of the measured magnetic fields on the MS. A stand-alone control and synchronization of the coils and the MS have an exceptional potential to implement a positioning system without the need for wired or wireless communication and enable a deployment of applications for rescue scenarios, like localization of miners or firefighters.

  3. On non-stationarity of dynamic systems

    DEFF Research Database (Denmark)

    Høskuldsson, Agnar

    2004-01-01

    . Covariance structure of dynamic systems tends to vary over time. Here some procedures to find stable solutions to linear dynamic systems with low rank are presented. Subsets of variables and samples to be included in a model are considered. The procedures are based on the H-principle of mathematical...... that are based on exact solutions. With in few seconds the algorithms can provide with solutions of models having hundreds or thousands of variables. The procedure is described mathematically and demonstrated for a dynamic industrial case. It is shown how the algorithms can provide solutions involving NIR data...... for process control. The method is simple to apply and the motivation of the procedure is obvious for industrial applications. It can be used, e.g., when modelling on-line systems....

  4. Dynamics of gene expression with positive feedback to histone modifications at bivalent domains

    Science.gov (United States)

    Huang, Rongsheng; Lei, Jinzhi

    2018-03-01

    Experiments have shown that in embryonic stem cells, the promoters of many lineage-control genes contain “bivalent domains”, within which the nucleosomes possess both active (H3K4me3) and repressive (H3K27me3) marks. Such bivalent modifications play important roles in maintaining pluripotency in embryonic stem cells. Here, to investigate gene expression dynamics when there are regulations in bivalent histone modifications and random partition in cell divisions, we study how positive feedback to histone methylation/demethylation controls the transition dynamics of the histone modification patterns along with cell cycles. We constructed a computational model that includes dynamics of histone marks, three-stage chromatin state transitions, transcription and translation, feedbacks from protein product to enzymes to regulate the addition and removal of histone marks, and the inheritance of nucleosome state between cell cycles. The model reveals how dynamics of both nucleosome state transition and gene expression are dependent on the enzyme activities and feedback regulations. Results show that the combination of stochastic histone modification at each cell division and the deterministic feedback regulation work together to adjust the dynamics of chromatin state transition in stem cell regenerations.

  5. Analysis and control of complex dynamical systems robust bifurcation, dynamic attractors, and network complexity

    CERN Document Server

    Imura, Jun-ichi; Ueta, Tetsushi

    2015-01-01

    This book is the first to report on theoretical breakthroughs on control of complex dynamical systems developed by collaborative researchers in the two fields of dynamical systems theory and control theory. As well, its basic point of view is of three kinds of complexity: bifurcation phenomena subject to model uncertainty, complex behavior including periodic/quasi-periodic orbits as well as chaotic orbits, and network complexity emerging from dynamical interactions between subsystems. Analysis and Control of Complex Dynamical Systems offers a valuable resource for mathematicians, physicists, and biophysicists, as well as for researchers in nonlinear science and control engineering, allowing them to develop a better fundamental understanding of the analysis and control synthesis of such complex systems.

  6. A dynamical systems analysis of the kinematics of time-periodic vortex shedding past a circular cylinder

    Science.gov (United States)

    Ottino, Julio M.

    1991-01-01

    Computer flow simulation aided by dynamical systems analysis is used to investigate the kinematics of time-periodic vortex shedding past a two-dimensional circular cylinder in the context of the following general questions: (1) Is a dynamical systems viewpoint useful in the understanding of this and similar problems involving time-periodic shedding behind bluff bodies; and (2) Is it indeed possible, by adopting such a point of view, to complement previous analyses or to understand kinematical aspects of the vortex shedding process that somehow remained hidden in previous approaches. We argue that the answers to these questions are positive. Results are described.

  7. Dynamic performance of the beam position monitor support at the SSRF.

    Science.gov (United States)

    Wang, Xiao; Cao, Yun; Du, Hanwen; Yin, Lixin

    2009-01-01

    Electron beam stability is very important for third-generation light sources, especially for the Shanghai Synchrotron Radiation Facility whose ground vibrations are much larger than those for other light sources. Beam position monitors (BPMs), used to monitor the position of the electron beam, require a greater stability than other mechanical structures. This paper concentrates on an investigation of the dynamic performance of the BPM support prototype. Modal and response analyses have been carried out by finite-element (FE) calculations and vibration measurements. Inconsistent results between calculation and measurement have motivated a change in the soft connections between the support and the ground from a ground bolt in the initial design to full grout. As a result the mechanical stability of the BPM support is greatly improved, showing an increase in the first eigenfrequency from 20.2 Hz to 50.2 Hz and a decrease in the ratio of the root-mean-square displacement (4-50 Hz) between the ground and the top of the support from 4.36 to 1.23 in the lateral direction. An example is given to show how FE analysis can guide the mechanical design and dynamic measurements (i.e. it is not just used as a verification method). Similar ideas can be applied to improve the stability of other mechanical structures.

  8. Transcribing the balanced scorecard into system dynamics

    DEFF Research Database (Denmark)

    Nielsen, Steen; Nielsen, Erland Hejn

    2013-01-01

    The purpose of this paper is to show how a System Dynamics Modelling approach can be integrated into the Balanced Scorecard (BSC) for a case company with special focus on the handling of causality in a dynamic perspective. The BSC model includes five perspectives and a number of financial and non...... the cause-and-effect relationships of an integrated BSC model. Including dynamic aspects of BSCs into the discussion is only in its infancy, so the aim of our work is also to contribute to both scholars’ and practitioners’ general understanding of how such delayed dynamic effects propagate through system...

  9. SIAM conference on applications of dynamical systems

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    A conference (Oct.15--19, 1992, Snowbird, Utah; sponsored by SIAM (Society for Industrial and Applied Mathematics) Activity Group on Dynamical Systems) was held that highlighted recent developments in applied dynamical systems. The main lectures and minisymposia covered theory about chaotic motion, applications in high energy physics and heart fibrillations, turbulent motion, Henon map and attractor, integrable problems in classical physics, pattern formation in chemical reactions, etc. The conference fostered an exchange between mathematicians working on theoretical issues of modern dynamical systems and applied scientists. This two-part document contains abstracts, conference program, and an author index.

  10. Modal and Dynamic Analysis of a Vehicle with Kinetic Dynamic Suspension System

    Directory of Open Access Journals (Sweden)

    Bangji Zhang

    2016-01-01

    Full Text Available A novel kinetic dynamic suspension (KDS system is presented for the cooperative control of the roll and warp motion modes of off-road vehicles. The proposed KDS system consists of two hydraulic cylinders acting on the antiroll bars. Hence, the antiroll bars are not completely replaced by the hydraulic system, but both systems are installed. In this paper, the vibration analysis in terms of natural frequencies of different motion modes in frequency domain for an off-road vehicle equipped with different configurable suspension systems is studied by using the modal analysis method. The dynamic responses of the vehicle with different configurable suspension systems are investigated under different road excitations and maneuvers. The results of the modal and dynamic analysis prove that the KDS system can reduce the roll and articulation motions of the off-road vehicle without adding extra bounce stiffness and deteriorating the ride comfort. Furthermore, the roll stiffness is increased and the warp stiffness is decreased by the KDS system, which could significantly enhance handing performance and off-road capability.

  11. Data based identification and prediction of nonlinear and complex dynamical systems

    Science.gov (United States)

    Wang, Wen-Xu; Lai, Ying-Cheng; Grebogi, Celso

    2016-07-01

    systems theories with tools from statistical physics, optimization, engineering control, applied mathematics, and scientific computing enables the development of a number of paradigms to address the problem of nonlinear and complex systems reconstruction. In this Review, we describe the recent advances in this forefront and rapidly evolving field, with a focus on compressive sensing based methods. In particular, compressive sensing is a paradigm developed in recent years in applied mathematics, electrical engineering, and nonlinear physics to reconstruct sparse signals using only limited data. It has broad applications ranging from image compression/reconstruction to the analysis of large-scale sensor networks, and it has become a powerful technique to obtain high-fidelity signals for applications where sufficient observations are not available. We will describe in detail how compressive sensing can be exploited to address a diverse array of problems in data based reconstruction of nonlinear and complex networked systems. The problems include identification of chaotic systems and prediction of catastrophic bifurcations, forecasting future attractors of time-varying nonlinear systems, reconstruction of complex networks with oscillatory and evolutionary game dynamics, detection of hidden nodes, identification of chaotic elements in neuronal networks, reconstruction of complex geospatial networks and nodal positioning, and reconstruction of complex spreading networks with binary data.. A number of alternative methods, such as those based on system response to external driving, synchronization, and noise-induced dynamical correlation, will also be discussed. Due to the high relevance of network reconstruction to biological sciences, a special section is devoted to a brief survey of the current methods to infer biological networks. Finally, a number of open problems including control and controllability of complex nonlinear dynamical networks are discussed. The methods

  12. Data based identification and prediction of nonlinear and complex dynamical systems

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wen-Xu [School of Systems Science, Beijing Normal University, Beijing, 100875 (China); Business School, University of Shanghai for Science and Technology, Shanghai 200093 (China); Lai, Ying-Cheng, E-mail: Ying-Cheng.Lai@asu.edu [School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287 (United States); Department of Physics, Arizona State University, Tempe, AZ 85287 (United States); Institute for Complex Systems and Mathematical Biology, King’s College, University of Aberdeen, Aberdeen AB24 3UE (United Kingdom); Grebogi, Celso [Institute for Complex Systems and Mathematical Biology, King’s College, University of Aberdeen, Aberdeen AB24 3UE (United Kingdom)

    2016-07-12

    dynamical systems theories with tools from statistical physics, optimization, engineering control, applied mathematics, and scientific computing enables the development of a number of paradigms to address the problem of nonlinear and complex systems reconstruction. In this Review, we describe the recent advances in this forefront and rapidly evolving field, with a focus on compressive sensing based methods. In particular, compressive sensing is a paradigm developed in recent years in applied mathematics, electrical engineering, and nonlinear physics to reconstruct sparse signals using only limited data. It has broad applications ranging from image compression/reconstruction to the analysis of large-scale sensor networks, and it has become a powerful technique to obtain high-fidelity signals for applications where sufficient observations are not available. We will describe in detail how compressive sensing can be exploited to address a diverse array of problems in data based reconstruction of nonlinear and complex networked systems. The problems include identification of chaotic systems and prediction of catastrophic bifurcations, forecasting future attractors of time-varying nonlinear systems, reconstruction of complex networks with oscillatory and evolutionary game dynamics, detection of hidden nodes, identification of chaotic elements in neuronal networks, reconstruction of complex geospatial networks and nodal positioning, and reconstruction of complex spreading networks with binary data.. A number of alternative methods, such as those based on system response to external driving, synchronization, and noise-induced dynamical correlation, will also be discussed. Due to the high relevance of network reconstruction to biological sciences, a special section is devoted to a brief survey of the current methods to infer biological networks. Finally, a number of open problems including control and controllability of complex nonlinear dynamical networks are discussed. The methods

  13. Data based identification and prediction of nonlinear and complex dynamical systems

    International Nuclear Information System (INIS)

    Wang, Wen-Xu; Lai, Ying-Cheng; Grebogi, Celso

    2016-01-01

    dynamical systems theories with tools from statistical physics, optimization, engineering control, applied mathematics, and scientific computing enables the development of a number of paradigms to address the problem of nonlinear and complex systems reconstruction. In this Review, we describe the recent advances in this forefront and rapidly evolving field, with a focus on compressive sensing based methods. In particular, compressive sensing is a paradigm developed in recent years in applied mathematics, electrical engineering, and nonlinear physics to reconstruct sparse signals using only limited data. It has broad applications ranging from image compression/reconstruction to the analysis of large-scale sensor networks, and it has become a powerful technique to obtain high-fidelity signals for applications where sufficient observations are not available. We will describe in detail how compressive sensing can be exploited to address a diverse array of problems in data based reconstruction of nonlinear and complex networked systems. The problems include identification of chaotic systems and prediction of catastrophic bifurcations, forecasting future attractors of time-varying nonlinear systems, reconstruction of complex networks with oscillatory and evolutionary game dynamics, detection of hidden nodes, identification of chaotic elements in neuronal networks, reconstruction of complex geospatial networks and nodal positioning, and reconstruction of complex spreading networks with binary data.. A number of alternative methods, such as those based on system response to external driving, synchronization, and noise-induced dynamical correlation, will also be discussed. Due to the high relevance of network reconstruction to biological sciences, a special section is devoted to a brief survey of the current methods to infer biological networks. Finally, a number of open problems including control and controllability of complex nonlinear dynamical networks are discussed. The methods

  14. Dynamical systems with applications using Maple

    CERN Document Server

    Lynch, Stephen

    2001-01-01

    "The text treats a remarkable spectrum of topics and has a little for everyone. It can serve as an introduction to many of the topics of dynamical systems, and will help even the most jaded reader, such as this reviewer, enjoy some of the interactive aspects of studying dynamics using Maple." —UK Nonlinear News (Review of First Edition) "The book will be useful for all kinds of dynamical systems courses…. [It] shows the power of using a computer algebra program to study dynamical systems, and, by giving so many worked examples, provides ample opportunity for experiments. … [It] is well written and a pleasure to read, which is helped by its attention to historical background." —Mathematical Reviews (Review of First Edition) Since the first edition of this book was published in 2001, Maple™ has evolved from Maple V into Maple 13. Accordingly, this new edition has been thoroughly updated and expanded to include more applications, examples, and exercises, all with solutions; two new chapters on neural n...

  15. Dynamical systems probabilistic risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Denman, Matthew R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ames, Arlo Leroy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-03-01

    Probabilistic Risk Assessment (PRA) is the primary tool used to risk-inform nuclear power regulatory and licensing activities. Risk-informed regulations are intended to reduce inherent conservatism in regulatory metrics (e.g., allowable operating conditions and technical specifications) which are built into the regulatory framework by quantifying both the total risk profile as well as the change in the risk profile caused by an event or action (e.g., in-service inspection procedures or power uprates). Dynamical Systems (DS) analysis has been used to understand unintended time-dependent feedbacks in both industrial and organizational settings. In dynamical systems analysis, feedback loops can be characterized and studied as a function of time to describe the changes to the reliability of plant Structures, Systems and Components (SSCs). While DS has been used in many subject areas, some even within the PRA community, it has not been applied toward creating long-time horizon, dynamic PRAs (with time scales ranging between days and decades depending upon the analysis). Understanding slowly developing dynamic effects, such as wear-out, on SSC reliabilities may be instrumental in ensuring a safely and reliably operating nuclear fleet. Improving the estimation of a plant's continuously changing risk profile will allow for more meaningful risk insights, greater stakeholder confidence in risk insights, and increased operational flexibility.

  16. The analysis on dynamic range of industrial CT system

    International Nuclear Information System (INIS)

    Wang Huiqian; Wang Jue; Tan Hui

    2011-01-01

    Concerning the limitations of the definition of the dynamic range of industrial computed tomography (ICT) system, it researches the definition, measuring method and influencing factors of the dynamic range of industrial computed tomography (ICT) system from the concept of quantization and system. First, the character of the input-output curve was analyzed, and the method of obtaining the dynamic range of industrial computed tomography (ICT) system was proposed. Then, an experiment model was designed to gain dynamic range, based on 6 MeV high-energy industrial computed tomography (ICT) system. The results show that the larger the photosurface is, the smaller the dynamic range is, when the other parameters are unchanged. (authors)

  17. An interactive beam position monitor system simulator

    International Nuclear Information System (INIS)

    Ryan, W.A.; Shea, T.J.

    1993-03-01

    A system simulator has been implemented to aid the development of the RHIC position monitor system. Based on the LabVIEW software package by National Instruments, this simulator allows engineers and technicians to interactively explore the parameter space of a system during the design phase. Adjustable parameters are divided into three categories: beam, pickup, and electronics. The simulator uses these parameters in simple formulas to produce results in both time-domain and frequencydomain. During the prototyping phase, these simulated results can be compared to test data acquired with the same software package. The RHIC position monitor system is presented as an example, but the software is applicable to several other systems as well

  18. Incorporating Dynamical Systems into the Traditional Curriculum.

    Science.gov (United States)

    Natov, Jonathan

    2001-01-01

    Presents a brief overview of dynamical systems. Gives examples from dynamical systems and where they fit into the current curriculum. Points out that these examples are accessible to undergraduate freshmen and sophomore students, add continuity to the standard curriculum, and are worth including in classes. (MM)

  19. Micro-Level Affect Dynamics in Psychopathology Viewed From Complex Dynamical System Theory

    NARCIS (Netherlands)

    Wichers, M.; Wigman, J. T. W.; Myin-Germeys, I.

    2015-01-01

    This article discusses the role of moment-to-moment affect dynamics in mental disorder and aims to integrate recent literature on this topic in the context of complex dynamical system theory. First, we will review the relevance of temporal and contextual aspects of affect dynamics in relation to

  20. Cosmological dynamical systems

    CERN Document Server

    Leon, Genly

    2011-01-01

    In this book are studied, from the perspective of the dynamical systems, several Universe models. In chapter 1 we give a bird's eye view on cosmology and cosmological problems. Chapter 2 is devoted to a brief review on some results and useful tools from the qualitative theory of dynamical systems. They provide the theoretical basis for the qualitative study of concrete cosmological models. Chapters 1 and 2 are a review of well-known results. Chapters 3, 4, 5 and 6 are devoted to our main results. In these chapters are extended and settled in a substantially different, more strict mathematical language, several results obtained by one of us in arXiv:0812.1013 [gr-qc]; arXiv:1009.0689 [gr-qc]; arXiv:0904.1577[gr-qc]; and arXiv:0909.3571 [hep-th]. In chapter 6, we provide a different approach to the subject discussed in astro-ph/0503478. Additionally, we perform a Poincar\\'e compactification process allowing to construct a global phase space containing all the cosmological information in both finite and infinite...

  1. Modular Track System For Positioning Mobile Robots

    Science.gov (United States)

    Miller, Jeff

    1995-01-01

    Conceptual system for positioning mobile robotic manipulators on large main structure includes modular tracks and ancillary structures assembled easily along with main structure. System, called "tracked robotic location system" (TROLS), originally intended for application to platforms in outer space, but TROLS concept might also prove useful on Earth; for example, to position robots in factories and warehouses. T-cross-section rail keeps mobile robot on track. Bar codes mark locations along track. Each robot equipped with bar-code-recognizing circuitry so it quickly finds way to assigned location.

  2. Review of various dynamic modeling methods and development of an intuitive modeling method for dynamic systems

    International Nuclear Information System (INIS)

    Shin, Seung Ki; Seong, Poong Hyun

    2008-01-01

    Conventional static reliability analysis methods are inadequate for modeling dynamic interactions between components of a system. Various techniques such as dynamic fault tree, dynamic Bayesian networks, and dynamic reliability block diagrams have been proposed for modeling dynamic systems based on improvement of the conventional modeling methods. In this paper, we review these methods briefly and introduce dynamic nodes to the existing Reliability Graph with General Gates (RGGG) as an intuitive modeling method to model dynamic systems. For a quantitative analysis, we use a discrete-time method to convert an RGGG to an equivalent Bayesian network and develop a software tool for generation of probability tables

  3. Automated design of complex dynamic systems.

    Directory of Open Access Journals (Sweden)

    Michiel Hermans

    Full Text Available Several fields of study are concerned with uniting the concept of computation with that of the design of physical systems. For example, a recent trend in robotics is to design robots in such a way that they require a minimal control effort. Another example is found in the domain of photonics, where recent efforts try to benefit directly from the complex nonlinear dynamics to achieve more efficient signal processing. The underlying goal of these and similar research efforts is to internalize a large part of the necessary computations within the physical system itself by exploiting its inherent non-linear dynamics. This, however, often requires the optimization of large numbers of system parameters, related to both the system's structure as well as its material properties. In addition, many of these parameters are subject to fabrication variability or to variations through time. In this paper we apply a machine learning algorithm to optimize physical dynamic systems. We show that such algorithms, which are normally applied on abstract computational entities, can be extended to the field of differential equations and used to optimize an associated set of parameters which determine their behavior. We show that machine learning training methodologies are highly useful in designing robust systems, and we provide a set of both simple and complex examples using models of physical dynamical systems. Interestingly, the derived optimization method is intimately related to direct collocation a method known in the field of optimal control. Our work suggests that the application domains of both machine learning and optimal control have a largely unexplored overlapping area which envelopes a novel design methodology of smart and highly complex physical systems.

  4. Phonon response of some heavy Fermion systems in dynamic limit

    Science.gov (United States)

    Sahoo, Jitendra; Shadangi, Namita; Nayak, Pratibindhya

    2017-05-01

    The phonon excitation spectrum of some Heavy Fermion (HF) systems in the presence of electron-phonon interaction is studied in the dynamic limit (ω≠0). The renormalized excitation phonon frequencies (ω˜ = ω/ω0) are evaluated through Periodic Anderson Model (PAM) in the presence of electron-phonon interaction using Zubarev-type double time temperature-dependent Green function. The calculated renormalized phonon energy is analyzed through the plots of (ω˜ = ω/ω0) against temperature for different system parameters like effective coupling strength ‘g’ and the position of f-level ‘d’. The observed behavior is analyzed and found to agree with the general features of HF systems found in experiments. Further, it is observed that in finite but small q-values the propagating phonons harden and change to localized peaks.

  5. Exponential Stability of Switched Positive Homogeneous Systems

    Directory of Open Access Journals (Sweden)

    Dadong Tian

    2017-01-01

    Full Text Available This paper studies the exponential stability of switched positive nonlinear systems defined by cooperative and homogeneous vector fields. In order to capture the decay rate of such systems, we first consider the subsystems. A sufficient condition for exponential stability of subsystems with time-varying delays is derived. In particular, for the corresponding delay-free systems, we prove that this sufficient condition is also necessary. Then, we present a sufficient condition of exponential stability under minimum dwell time switching for the switched positive nonlinear systems. Some results in the previous literature are extended. Finally, a numerical example is given to demonstrate the effectiveness of the obtained results.

  6. Controlling chaos in dynamical systems described by maps

    International Nuclear Information System (INIS)

    Crispin, Y.; Marduel, C.

    1994-01-01

    The problem of suppressing chaotic behavior in dynamical systems is treated using a feedback control method with limited control effort. The proposed method is validated on archetypal systems described by maps, i.e. discrete-time difference equations. The method is also applicable to dynamical systems described by flows, i.e. by systems of ordinary differential equations. Results are presented for the one-dimensional logistic map and for a two-dimensional Lotka-Volterra map describing predator-prey population dynamics. It is shown that chaos can be suppressed and the system stabilized about a period-1 fixed point of the maps

  7. Dynamics and control of hybrid mechanical systems

    NARCIS (Netherlands)

    Leonov, G.A.; Nijmeijer, H.; Pogromski, A.Y.; Fradkov, A.L.

    2010-01-01

    The papers in this edited volume aim to provide a better understanding of the dynamics and control of a large class of hybrid dynamical systems that are described by different models in different state space domains. They not only cover important aspects and tools for hybrid systems analysis and

  8. Dynamics of sustained use and abandonment of clean cooking systems: study protocol for community-based system dynamics modeling.

    Science.gov (United States)

    Kumar, Praveen; Chalise, Nishesh; Yadama, Gautam N

    2016-04-26

    More than 3 billion of the world's population are affected by household air pollution from relying on unprocessed solid fuels for heating and cooking. Household air pollution is harmful to human health, climate, and environment. Sustained uptake and use of cleaner cooking technologies and fuels are proposed as solutions to this problem. In this paper, we present our study protocol aimed at understanding multiple interacting feedback mechanisms involved in the dynamic behavior between social, ecological, and technological systems driving sustained use or abandonment of cleaner cooking technologies among the rural poor in India. This study uses a comparative case study design to understand the dynamics of sustained use or abandonment of cleaner cooking technologies and fuels in four rural communities of Rajasthan, India. The study adopts a community based system dynamics modeling approach. We describe our approach of using community based system dynamics with rural communities to delineate the feedback mechanisms involved in the uptake and sustainment of clean cooking technologies. We develop a reference mode with communities showing the trend over time of use or abandonment of cleaner cooking technologies and fuels in these communities. Subsequently, the study develops a system dynamics model with communities to understand the complex sub-systems driving the behavior in these communities as reflected in the reference mode. We use group model building techniques to facilitate participation of relevant stakeholders in the four communities and elicit a narrative describing the feedback mechanisms underlying sustained adoption or abandonment of cleaner cooking technologies. In understanding the dynamics of feedback mechanisms in the uptake and exclusive use of cleaner cooking systems, we increase the likelihood of dissemination and implementation of efficacious interventions into everyday settings to improve the health and wellbeing of women and children most affected

  9. Further support for association between GWAS variant for positive emotion and reward systems.

    Science.gov (United States)

    Lancaster, T M; Ihssen, N; Brindley, L M; Linden, D E J

    2017-01-31

    A recent genome-wide association study (GWAS) identified a significant single-nucleotide polymorphism (SNP) for trait-positive emotion at rs322931 on chromosome 1, which was also associated with brain activation in the reward system of healthy individuals when observing positive stimuli in a functional magnetic resonance imaging (fMRI) study. In the current study, we aimed to further validate the role of variation at rs322931 in reward processing. Using a similar fMRI approach, we use two paradigms that elicit a strong ventral striatum (VS) blood oxygen-level dependency (BOLD) response in a sample of young, healthy individuals (N=82). In the first study we use a similar picture-viewing task to the discovery sample (positive>neutral stimuli) to replicate an effect of the variant on emotion processing. In the second study we use a probabilistic reversal learning procedure to identify reward processing during decision-making under uncertainly (reward>punishment). In a region of interest (ROI) analysis of the bilateral VS, we show that the rs322931 genotype was associated with BOLD in the left VS during the positive>neutral contrast (P ROI-CORRECTED =0.045) and during the reward>punishment contrast (P ROI-CORRECTED =0.018), although the effect of passive picture viewing was in the opposite direction from that reported in the discovery sample. These findings suggest that the recently identified GWAS hit may influence positive emotion via individual differences in activity in the key hubs of the brain's reward system. Furthermore, these effects may not be limited to the passive viewing of positive emotional scenes, but may also be observed during dynamic decision-making. This study suggests that future studies of this GWAS locus may yield further insight into the biological mechanisms of psychopathologies characterised by deficits in reward processing and positive emotion.

  10. Invitation to dynamical systems

    CERN Document Server

    Scheinerman, Edward R

    2012-01-01

    This text is designed for those who wish to study mathematics beyond linear algebra but are unready for abstract material. Rather than a theorem-proof-corollary exposition, it stresses geometry, intuition, and dynamical systems. 1996 edition.

  11. Dynamical Systems Approach to Endothelial Heterogeneity

    Science.gov (United States)

    Regan, Erzsébet Ravasz; Aird, William C.

    2012-01-01

    Rationale Objective Here we reexamine our current understanding of the molecular basis of endothelial heterogeneity. We introduce multistability as a new explanatory framework in vascular biology. Methods We draw on the field of non-linear dynamics to propose a dynamical systems framework for modeling multistability and its derivative properties, including robustness, memory, and plasticity. Conclusions Our perspective allows for both a conceptual and quantitative description of system-level features of endothelial regulation. PMID:22723222

  12. Colloquium: Non-Markovian dynamics in open quantum systems

    Science.gov (United States)

    Breuer, Heinz-Peter; Laine, Elsi-Mari; Piilo, Jyrki; Vacchini, Bassano

    2016-04-01

    The dynamical behavior of open quantum systems plays a key role in many applications of quantum mechanics, examples ranging from fundamental problems, such as the environment-induced decay of quantum coherence and relaxation in many-body systems, to applications in condensed matter theory, quantum transport, quantum chemistry, and quantum information. In close analogy to a classical Markovian stochastic process, the interaction of an open quantum system with a noisy environment is often modeled phenomenologically by means of a dynamical semigroup with a corresponding time-independent generator in Lindblad form, which describes a memoryless dynamics of the open system typically leading to an irreversible loss of characteristic quantum features. However, in many applications open systems exhibit pronounced memory effects and a revival of genuine quantum properties such as quantum coherence, correlations, and entanglement. Here recent theoretical results on the rich non-Markovian quantum dynamics of open systems are discussed, paying particular attention to the rigorous mathematical definition, to the physical interpretation and classification, as well as to the quantification of quantum memory effects. The general theory is illustrated by a series of physical examples. The analysis reveals that memory effects of the open system dynamics reflect characteristic features of the environment which opens a new perspective for applications, namely, to exploit a small open system as a quantum probe signifying nontrivial features of the environment it is interacting with. This Colloquium further explores the various physical sources of non-Markovian quantum dynamics, such as structured environmental spectral densities, nonlocal correlations between environmental degrees of freedom, and correlations in the initial system-environment state, in addition to developing schemes for their local detection. Recent experiments addressing the detection, quantification, and control of

  13. The application in detection the position accuracy of the multi-leaf collimator of Varian linear accelerator with dynamic therapy log files

    International Nuclear Information System (INIS)

    Li Changhu; Xu Liming; Teng Jianjian; Ge Wei; Zhang Jun; Ma Guangdong

    2010-01-01

    Objective: To explorer the application in detection the position accuracy of the multileaf collimator of Varian accelerator with dynamic therapy log files. Methods: A pre-designed MLC format files named PMLC for two Varian accelerators, the dynamic treatment log files were recorded 10 times on a different date, and be converted into the MLC format files named DMLC, compared with the original plan PMLC, so we can analysis two files for each leaf position deviation. In addition, we analysis the repeatability of MLC leaves position accuracy between 10 dynalog files of two accelerators. Results: No statistically significant difference between the average position of the 10 times leaf position of the two accelerators,their were 0.29 -0.29 and 0.29 -0.30 (z = -0.77, P=0.442). About 40%, 30%, 20% and 10% of the leaf position deviation was at ≤0.2 mm, 0.3 mm, 0.5 mm and 0.4 mm, respectively. the maximum value was 0.5 mm. More than 86% of the leaf position are completely coincident between 10 dynamic treatment files of two accelerators. The rate of position deviation no more 0. 05 mm was 96. 6% and 97.3%, respectively. And the maximum value was 0.09 mm. Conclusions: Dynamic treatment log file is a splendid tool in testing the actual position of multi-leaf collimator. The multi-leaf collimator of two accelerators be detected are precise and stabilized. (authors)

  14. Collective Dynamics of Nonlinear and Disordered Systems

    CERN Document Server

    Radons, G; Just, W

    2005-01-01

    Phase transitions in disordered systems and related dynamical phenomena are a topic of intrinsically high interest in theoretical and experimental physics. This book presents a unified view, adopting concepts from each of the disjoint fields of disordered systems and nonlinear dynamics. Special attention is paid to the glass transition, from both experimental and theoretical viewpoints, to modern concepts of pattern formation, and to the application of the concepts of dynamical systems for understanding equilibrium and nonequilibrium properties of fluids and solids. The content is accessible to graduate students, but will also be of benefit to specialists, since the presentation extends as far as the topics of ongoing research work.

  15. Dynamics of Multibody Systems Near Lagrangian Points

    Science.gov (United States)

    Wong, Brian

    This thesis examines the dynamics of a physically connected multi-spacecraft system in the vicinity of the Lagrangian points of a Circular Restricted Three-Body System. The spacecraft system is arranged in a wheel-spoke configuration with smaller and less massive satellites connected to a central hub using truss/beams or tether connectors. The kinematics of the system is first defined, and the kinetic, gravitational potential energy and elastic potential energy of the system are derived. The Assumed Modes Method is used to discretize the continuous variables of the system, and a general set of ordinary differential equations describing the dynamics of the connectors and the central hub are obtained using the Lagrangian method. The flexible body dynamics of the tethered and truss connected systems are examined using numerical simulations. The results show that these systems experienced only small elastic deflections when they are naturally librating or rotating at moderate angular velocities, and these deflections have relatively small effect on the attitude dynamics of the systems. Based on these results, it is determined that the connectors can be modeled as rigid when only the attitude dynamics of the system is of interest. The equations of motion of rigid satellites stationed at the Lagrangian points are linearized, and the stability conditions of the satellite are obtained from the linear equations. The required conditions are shown to be similar to those of geocentric satellites. Study of the linear equations also revealed the resonant conditions of rigid Lagrangian point satellites, when a librational natural frequency of the satellite matches the frequency of its station-keeping orbit leading to large attitude motions. For tethered satellites, the linear analysis shows that the tethers are in stable equilibrium when they lie along a line joining the two primary celestial bodies of the Three-Body System. Numerical simulations are used to study the long term

  16. System dynamics an introduction for mechanical engineers

    CERN Document Server

    Seeler, Karl A

    2014-01-01

    This essential textbook takes the student from the initial steps in modeling a dynamic system through development of the mathematical models needed for feedback control.  The generously-illustrated, student-friendly text focuses on fundamental theoretical development rather than the application of commercial software.  Practical details of machine design are included to motivate the non-mathematically inclined student. This book also: Emphasizes the linear graph method for modeling dynamic systems Offers a systematic approach for creating an engineering model, extracting information, and formulating mathematical analyses Adopts a unifying theme of power flow as the dynamic agent that eases analysis of hybrid systems, such as machinery Presents differential equations as dynamic operators and stresses input/output relationships Introduces Mathcad and programming in MATLAB Allows for use of Open Source Computational Software (R or C) Features over 1000 illustrations

  17. Position and orientation determination system and method

    Science.gov (United States)

    Harpring, Lawrence J.; Farfan, Eduardo B.; Gordon, John R.; Jannik, Gerald T.; Foley, Trevor Q.

    2017-06-14

    A position determination system and method is provided that may be used for obtaining position and orientation information of a detector in a contaminated room. The system includes a detector, a sensor operably coupled to the detector, and a motor coupled to the sensor to move the sensor around the detector. A CPU controls the operation of the motor to move the sensor around the detector and determines distance and angle data from the sensor to an object. The method includes moving a sensor around the detector and measuring distance and angle data from the sensor to an object at incremental positions around the detector.

  18. System Dynamics Modelling for a Balanced Scorecard

    DEFF Research Database (Denmark)

    Nielsen, Steen; Nielsen, Erland Hejn

    2008-01-01

    /methodology/approach - We use a case study model to develop time or dynamic dimensions by using a System Dynamics modelling (SDM) approach. The model includes five perspectives and a number of financial and non-financial measures. All indicators are defined and related to a coherent number of different cause...... have a major influence on other indicators and profit and may be impossible to predict without using a dynamic model. Practical implications - The model may be used as the first step in quantifying the cause-and-effect relationships of an integrated BSC model. Using the System Dynamics model provides......Purpose - To construct a dynamic model/framework inspired by a case study based on an international company. As described by the theory, one of the main difficulties of BSC is to foresee the time lag dimension of different types of indicators and their combined dynamic effects. Design...

  19. Solar Dynamic Power System Stability Analysis and Control

    Science.gov (United States)

    Momoh, James A.; Wang, Yanchun

    1996-01-01

    The objective of this research is to conduct dynamic analysis, control design, and control performance test of solar power system. Solar power system consists of generation system and distribution network system. A bench mark system is used in this research, which includes a generator with excitation system and governor, an ac/dc converter, six DDCU's and forty-eight loads. A detailed model is used for modeling generator. Excitation system is represented by a third order model. DDCU is represented by a seventh order system. The load is modeled by the combination of constant power and constant impedance. Eigen-analysis and eigen-sensitivity analysis are used for system dynamic analysis. The effects of excitation system, governor, ac/dc converter control, and the type of load on system stability are discussed. In order to improve system transient stability, nonlinear ac/dc converter control is introduced. The direct linearization method is used for control design. The dynamic analysis results show that these controls affect system stability in different ways. The parameter coordination of controllers are recommended based on the dynamic analysis. It is concluded from the present studies that system stability is improved by the coordination of control parameters and the nonlinear ac/dc converter control stabilize system oscillation caused by the load change and system fault efficiently.

  20. Dynamic Stability of Maglev Systems,

    Science.gov (United States)

    1992-04-01

    AD-A259 178 ANL-92/21 Materials and Components Dynamic Stability of Technology Division Materials and Components Maglev Systems Technology Division...of Maglev Systems Y. Cai, S. S. Chen, and T. M. Mulcahy Materials and Components Technology Division D. M. Rote Center for Transportation Research...of Maglev System with L-Shaped Guideway ......................................... 6 3 Stability of M aglev System s

  1. System and method for acquisition management of subject position information

    Science.gov (United States)

    Carrender, Curt

    2005-12-13

    A system and method for acquisition management of subject position information that utilizes radio frequency identification (RF ID) to store position information in position tags. Tag programmers receive position information from external positioning systems, such as the Global Positioning System (GPS), from manual inputs, such as keypads, or other tag programmers. The tag programmers program each position tag with the received position information. Both the tag programmers and the position tags can be portable or fixed. Implementations include portable tag programmers and fixed position tags for subject position guidance, and portable tag programmers for collection sample labeling. Other implementations include fixed tag programmers and portable position tags for subject route recordation. Position tags can contain other associated information such as destination address of an affixed subject for subject routing.

  2. System and method for acquisition management of subject position information

    Energy Technology Data Exchange (ETDEWEB)

    Carrender, Curt [Morgan Hill, CA

    2007-01-23

    A system and method for acquisition management of subject position information that utilizes radio frequency identification (RF ID) to store position information in position tags. Tag programmers receive position information from external positioning systems, such as the Global Positioning System (GPS), from manual inputs, such as keypads, or other tag programmers. The tag programmers program each position tag with the received position information. Both the tag programmers and the position tags can be portable or fixed. Implementations include portable tag programmers and fixed position tags for subject position guidance, and portable tag programmers for collection sample labeling. Other implementations include fixed tag programmers and portable position tags for subject route recordation. Position tags can contain other associated information such as destination address of an affixed subject for subject routing.

  3. How complex a dynamical network can be?

    International Nuclear Information System (INIS)

    Baptista, M.S.; Kakmeni, F. Moukam; Del Magno, Gianluigi; Hussein, M.S.

    2011-01-01

    Positive Lyapunov exponents measure the asymptotic exponential divergence of nearby trajectories of a dynamical system. Not only they quantify how chaotic a dynamical system is, but since their sum is an upper bound for the rate of information production, they also provide a convenient way to quantify the complexity of a dynamical network. We conjecture based on numerical evidences that for a large class of dynamical networks composed by equal nodes, the sum of the positive Lyapunov exponents is bounded by the sum of all the positive Lyapunov exponents of both the synchronization manifold and its transversal directions, the last quantity being in principle easier to compute than the latter. As applications of our conjecture we: (i) show that a dynamical network composed of equal nodes and whose nodes are fully linearly connected produces more information than similar networks but whose nodes are connected with any other possible connecting topology; (ii) show how one can calculate upper bounds for the information production of realistic networks whose nodes have parameter mismatches, randomly chosen; (iii) discuss how to predict the behavior of a large dynamical network by knowing the information provided by a system composed of only two coupled nodes.

  4. Position indicating systems and reed contact unit assemblies for such systems

    International Nuclear Information System (INIS)

    Foxworthy, M.K.

    1980-01-01

    Specifications are given for a position indicating system for determining the position of a movable member inside a sealed container such as the position of a control rod in a nuclear reactor. The system comprises a magnetic flux producing member mounted to the movable member so as to move with it, a series of magnetic reed contact units mounted along the outside of the sealed container to be individually actuated by the flux producer as the movable member moves within the sealed container to indicate the position of this member. Each of the reed contact units is connected to a source of alternating electric current to produce a magnetic flux field to minimize the flux differential between the actuated and unactuated reed contact positions. A second aspect of the invention provides for a low operating flux differential reed contact unit assembly for a position indicating system such that it is actuated by the magnetic member at one magnetic flux level and deactivated at a second level. There is a source of alternating current connected to a coil surrounding the reed contact unit so as to produce an alternating magnetic flux with amplitude less than the difference between the two levels. Variations are given, also diagrams and benefits. (U.K.)

  5. Experimental Modeling of Dynamic Systems

    DEFF Research Database (Denmark)

    Knudsen, Morten Haack

    2006-01-01

    An engineering course, Simulation and Experimental Modeling, has been developed that is based on a method for direct estimation of physical parameters in dynamic systems. Compared with classical system identification, the method appears to be easier to understand, apply, and combine with physical...

  6. Dynamic positional fate map of the primary heart-forming region.

    Science.gov (United States)

    Cui, Cheng; Cheuvront, Tracey J; Lansford, Rusty D; Moreno-Rodriguez, Ricardo A; Schultheiss, Thomas M; Rongish, Brenda J

    2009-08-15

    Here we show the temporal-spatial orchestration of early heart morphogenesis at cellular level resolution, in vivo, and reconcile conflicting positional fate mapping data regarding the primary heart-forming field(s). We determined the positional fates of precardiac cells using a precision electroporation approach in combination with wide-field time-lapse microscopy in the quail embryo, a warm-blooded vertebrate (HH Stages 4 through 10). Contrary to previous studies, the results demonstrate the existence of a "continuous" circle-shaped heart field that spans the midline, appearing at HH Stage 4, which then expands to form a wide arc of progenitors at HH Stages 5-7. Our time-resolved image data show that a subset of these cardiac progenitor cells do not overlap with the expression of common cardiogenic factors, Nkx-2.5 and Bmp-2, until HH Stage 10, when a tubular heart has formed, calling into question when cardiac fate is specified and by which key factors. Sub-groups and anatomical bands (cohorts) of heart precursor cells dramatically change their relative positions in a process largely driven by endodermal folding and other large-scale tissue deformations. Thus, our novel dynamic positional fate maps resolve the origin of cardiac progenitor cells in amniotes. The data also establish the concept that tissue motion contributes significantly to cellular position fate - i.e., much of the cellular displacement that occurs during assembly of a midline heart tube (HH Stage 9) is NOT due to "migration" (autonomous motility), a commonly held belief. Computational analysis of our time-resolved data lays the foundation for more precise analyses of how cardiac gene regulatory networks correlate with early heart tissue morphogenesis in birds and mammals.

  7. Forecasting the shortage of neurosurgeons in Iran using a system dynamics model approach.

    Science.gov (United States)

    Rafiei, Sima; Daneshvaran, Arman; Abdollahzade, Sina

    2018-01-01

    Shortage of physicians particularly in specialty levels is considered as an important issue in Iran health system. Thus, in an uncertain environment, long-term planning is required for health professionals as a basic priority on a national scale. This study aimed to estimate the number of required neurosurgeons using system dynamic modeling. System dynamic modeling was applied to predict the gap between stock and number of required neurosurgeons in Iran up to 2020. A supply and demand simulation model was constructed for neurosurgeons using system dynamic approach. The demand model included epidemiological, demographic, and utilization variables along with supply model-incorporated current stock of neurosurgeons and flow variables such as attrition, migration, and retirement rate. Data were obtained from various governmental databases and were analyzed by Vensim PLE Version 3.0 to address the flow of health professionals, clinical infrastructure, population demographics, and disease prevalence during the time. It was forecasted that shortage in number of neurosurgeons would disappear at 2020. The most dominant determinants on predicted number of neurosurgeons were the prevalence of neurosurgical diseases, the rate for service utilization, and medical capacity of the region. Shortage of neurosurgeons in some areas of the country relates to maldistribution of the specialists. Accordingly, there is a need to reconsider the allocation system for health professionals within the country instead of increasing the overall number of acceptance quota in training positions.

  8. Dynamics of Brokerage Positions in Clusters: Evidence from the Spanish Foodstuffs Industry

    Directory of Open Access Journals (Sweden)

    José Antonio Belso-Martínez

    2017-02-01

    Full Text Available Shifting away from traditional approaches orientated towards the analysis of the benefits associated with brokerage, this paper provides valuable insights into the dynamics of this network position and the opportunities to innovate that it provides. Using fine grain micro data collected in a foodstuff Spanish cluster, the evolution of different brokerage profiles is analyzed in depth. It was particularly evident how firm-level characteristics (status, former mediating experience and external openness and their interactions may generate changes in the different brokerage roles over a period of time. The findings of this work partially validate expectations based on the network dynamics approaches. Status and previous mediating experience facilitate the creation of partnerships, fostering brokerage. Conversely, interaction effects demote brokerage activity at the intra-cluster level, suggesting the selective nature of brokers’ relational behavior.

  9. Parameter and Structure Inference for Nonlinear Dynamical Systems

    Science.gov (United States)

    Morris, Robin D.; Smelyanskiy, Vadim N.; Millonas, Mark

    2006-01-01

    A great many systems can be modeled in the non-linear dynamical systems framework, as x = f(x) + xi(t), where f() is the potential function for the system, and xi is the excitation noise. Modeling the potential using a set of basis functions, we derive the posterior for the basis coefficients. A more challenging problem is to determine the set of basis functions that are required to model a particular system. We show that using the Bayesian Information Criteria (BIC) to rank models, and the beam search technique, that we can accurately determine the structure of simple non-linear dynamical system models, and the structure of the coupling between non-linear dynamical systems where the individual systems are known. This last case has important ecological applications.

  10. Optimal Control Method of Robot End Position and Orientation Based on Dynamic Tracking Measurement

    Science.gov (United States)

    Liu, Dalong; Xu, Lijuan

    2018-01-01

    In order to improve the accuracy of robot pose positioning and control, this paper proposed a dynamic tracking measurement robot pose optimization control method based on the actual measurement of D-H parameters of the robot, the parameters is taken with feedback compensation of the robot, according to the geometrical parameters obtained by robot pose tracking measurement, improved multi sensor information fusion the extended Kalan filter method, with continuous self-optimal regression, using the geometric relationship between joint axes for kinematic parameters in the model, link model parameters obtained can timely feedback to the robot, the implementation of parameter correction and compensation, finally we can get the optimal attitude angle, realize the robot pose optimization control experiments were performed. 6R dynamic tracking control of robot joint robot with independent research and development is taken as experimental subject, the simulation results show that the control method improves robot positioning accuracy, and it has the advantages of versatility, simplicity, ease of operation and so on.

  11. Development of Precise Point Positioning Method Using Global Positioning System Measurements

    Directory of Open Access Journals (Sweden)

    Byung-Kyu Choi

    2011-09-01

    Full Text Available Precise point positioning (PPP is increasingly used in several parts such as monitoring of crustal movement and maintaining an international terrestrial reference frame using global positioning system (GPS measurements. An accuracy of PPP data processing has been increased due to the use of the more precise satellite orbit/clock products. In this study we developed PPP algorithm that utilizes data collected by a GPS receiver. The measurement error modelling including the tropospheric error and the tidal model in data processing was considered to improve the positioning accuracy. The extended Kalman filter has been also employed to estimate the state parameters such as positioning information and float ambiguities. For the verification, we compared our results to other of International GNSS Service analysis center. As a result, the mean errors of the estimated position on the East-West, North-South and Up-Down direction for the five days were 0.9 cm, 0.32 cm, and 1.14 cm in 95% confidence level.

  12. Coherent structures and dynamical systems

    Science.gov (United States)

    Jimenez, Javier

    1987-01-01

    Any flow of a viscous fluid has a finite number of degrees of freedom, and can therefore be seen as a dynamical system. A coherent structure can be thought of as a lower dimensional manifold in whose neighborhood the dynamical system spends a substantial fraction of its time. If such a manifold exists, and if its dimensionality is substantially lower that that of the full flow, it is conceivable that the flow could be described in terms of the reduced set of degrees of freedom, and that such a description would be simpler than one in which the existence of structure was not recognized. Several examples are briefly summarized.

  13. Solar dynamic power systems for space station

    Science.gov (United States)

    Irvine, Thomas B.; Nall, Marsha M.; Seidel, Robert C.

    1986-01-01

    The Parabolic Offset Linearly Actuated Reflector (POLAR) solar dynamic module was selected as the baseline design for a solar dynamic power system aboard the space station. The POLAR concept was chosen over other candidate designs after extensive trade studies. The primary advantages of the POLAR concept are the low mass moment of inertia of the module about the transverse boom and the compactness of the stowed module which enables packaging of two complete modules in the Shuttle orbiter payload bay. The fine pointing control system required for the solar dynamic module has been studied and initial results indicate that if disturbances from the station are allowed to back drive the rotary alpha joint, pointing errors caused by transient loads on the space station can be minimized. This would allow pointing controls to operate in bandwidths near system structural frequencies. The incorporation of the fine pointing control system into the solar dynamic module is fairly straightforward for the three strut concentrator support structure. However, results of structural analyses indicate that this three strut support is not optimum. Incorporation of a vernier pointing system into the proposed six strut support structure is being studied.

  14. Nonlinear dynamics in biological systems

    CERN Document Server

    Carballido-Landeira, Jorge

    2016-01-01

    This book presents recent research results relating to applications of nonlinear dynamics, focusing specifically on four topics of wide interest: heart dynamics, DNA/RNA, cell mobility, and proteins. The book derives from the First BCAM Workshop on Nonlinear Dynamics in Biological Systems, held in June 2014 at the Basque Center of Applied Mathematics (BCAM). At this international meeting, researchers from different but complementary backgrounds, including molecular dynamics, physical chemistry, bio-informatics and biophysics, presented their most recent results and discussed the future direction of their studies using theoretical, mathematical modeling and experimental approaches. Such was the level of interest stimulated that the decision was taken to produce this publication, with the organizers of the event acting as editors. All of the contributing authors are researchers working on diverse biological problems that can be approached using nonlinear dynamics. The book will appeal especially to applied math...

  15. Dynamics and control of a solar collector system for near Earth object deflection

    International Nuclear Information System (INIS)

    Gong Shenping; Li Junfeng; Gao Yunfeng

    2011-01-01

    A solar collector system is a possible method using solar energy to deflect Earth-threatening near-Earth objects. We investigate the dynamics and control of a solar collector system including a main collector (MC) and secondary collector (SC). The MC is used to collect the sunlight to its focal point, where the SC is placed and directs the collected light to an asteroid. Both the relative position and attitude of the two collectors should be accurately controlled to achieve the desired optical path. First, the dynamical equation of the relative motion of the two collectors in the vicinity of the asteroid is modeled. Secondly, the nonlinear sliding-mode method is employed to design a control law to achieve the desired configuration of the two collectors. Finally, the deflection capability of this solar collector system is compared with those of the gravitational tractor and solar sail gravitational tractor. The results show that the solar collector is much more efficient with respect to deflection capability.

  16. PLS beam position measurement and feedback system

    International Nuclear Information System (INIS)

    Huang, J.Y.; Lee, J.; Park, M.K.; Kim, J.H.; Won, S.C.

    1992-01-01

    A real-time orbit correction system is proposed for the stabilization of beam orbit and photon beam positions in Pohang Light Source. PLS beam position monitoring system is designed to be VMEbus compatible to fit the real-time digital orbit feedback system. A VMEbus based subsystem control computer, Mil-1553B communication network and 12 BPM/PS machine interface units constitute digital part of the feedback system. With the super-stable PLS correction magnet power supply, power line frequency noise is almost filtered out and the dominant spectra of beam obtit fluctuations are expected to appear below 15 Hz. Using DSP board in SCC for the computation and using an appropriate compensation circuit for the phase delay by the vacuum chamber, PLS real-time orbit correction system is realizable without changing the basic structure of PLS computer control system. (author)

  17. Research on Dynamic Parameters and Position Accuracy of Pneumatics Muscles

    Directory of Open Access Journals (Sweden)

    Edvard Sadovskij

    2012-12-01

    Full Text Available The article deals with pneumatic muscle MAS-20-200N-AA-MC-O, its dynamic properties and positioning accuracy as well as overviews experimental and theoretical works. The paper introduces the diagrams of vibration acceleration, discusses displacement dependence on pressure and load and presents a diagram of speed dependence on operating pressure. Vibroacceleration has been measured employing two accelerometers. Measurements have been carried out in three mutually perpendicular directions: x, y and z. The most important one is direction z, because this way the muscle performs a valuable displacement along the axis of the muscle, since this direction is the movement of the working muscle.Article in Lithuanian

  18. Research on Dynamic Parameters and Position Accuracy of Pneumatics Muscles

    Directory of Open Access Journals (Sweden)

    Edvard Sadovskij

    2013-02-01

    Full Text Available The article deals with pneumatic muscle MAS-20-200N-AA-MC-O, its dynamic properties and positioning accuracy as well as overviews experimental and theoretical works. The paper introduces the diagrams of vibration acceleration, discusses displacement dependence on pressure and load and presents a diagram of speed dependence on operating pressure. Vibroacceleration has been measured employing two accelerometers. Measurements have been carried out in three mutually perpendicular directions: x, y and z. The most important one is direction z, because this way the muscle performs a valuable displacement along the axis of the muscle, since this direction is the movement of the working muscle.Article in Lithuanian

  19. Simulation of noisy dynamical system by Deep Learning

    Science.gov (United States)

    Yeo, Kyongmin

    2017-11-01

    Deep learning has attracted huge attention due to its powerful representation capability. However, most of the studies on deep learning have been focused on visual analytics or language modeling and the capability of the deep learning in modeling dynamical systems is not well understood. In this study, we use a recurrent neural network to model noisy nonlinear dynamical systems. In particular, we use a long short-term memory (LSTM) network, which constructs internal nonlinear dynamics systems. We propose a cross-entropy loss with spatial ridge regularization to learn a non-stationary conditional probability distribution from a noisy nonlinear dynamical system. A Monte Carlo procedure to perform time-marching simulations by using the LSTM is presented. The behavior of the LSTM is studied by using noisy, forced Van der Pol oscillator and Ikeda equation.

  20. The Mathematics of the Global Positioning System.

    Science.gov (United States)

    Nord, Gail D.; Jabon, David; Nord, John

    1997-01-01

    Presents an activity that illustrates the application of mathematics to modern navigation and utilizes the Global Positioning System (GPS). GPS is a constellation of 24 satellites that enables receivers to compute their position anywhere on the earth with great accuracy. (DDR)

  1. Hybrid dynamical systems observation and control

    CERN Document Server

    Defoort, Michael

    2015-01-01

    This book is a collection of contributions defining the state of current knowledge and new trends in hybrid systemssystems involving both continuous dynamics and discrete events – as described by the work of several well-known groups of researchers. Hybrid Dynamical Systems presents theoretical advances in such areas as diagnosability, observability and stabilization for various classes of system. Continuous and discrete state estimation and self-triggering control of nonlinear systems are advanced. The text employs various methods, among them, high-order sliding modes, Takagi–Sugeno representation and sampled-data switching to achieve its ends. The many applications of hybrid systems from power converters to computer science are not forgotten; studies of flexible-joint robotic arms and – as representative biological systems – the behaviour of the human heart and vasculature, demonstrate the wide-ranging practical significance of control in hybrid systems. The cross-disciplinary origins of study ...

  2. DYNAMIC SYSTEM APPROACH IN PSYCHOLOGY: PROPOSITION AND APPLICATION IN THE STUDY OF EMOTION, APPRAISAL AND COGNITIVE ACHIEVEMENT

    Directory of Open Access Journals (Sweden)

    Cristiano M. A. Gomes

    2013-07-01

    Full Text Available Psychological processes are difficult to be studied due to their complexity. The dynamic system approach shows itself as a good tool for psychology to deal with this complexity issue. We propose two fundamental contributions of the dynamic system approach to psychology and apply it in the study of achievement emotions, appraisal and cognitive achievement. Two hypotheses were investigated: 1 More than one correlation pattern between test achievement, appraisal and emotion will be found; 2 Test achievement, appraisal and emotion form a dynamic system which will be explained by a latent variable that is dependent on the previous state of the system. A sample of thirteen students from seventh to ninth grades performed an inductive reasoning test, appraised their achievement, and declared their emotional valences (from extreme positive to extreme negative. Each variable was measured in 20 different occasions. One correlation matrix of each individual was generated and seven qualitative profiles were identified. Then four different states of relations between the variables were identified through a hidden Markov model. The two hypotheses were not refuted. It’s concluded that the dynamic system approach brings new possibilities to the study of psychological processes.

  3. Beam position monitor system for storage rings

    International Nuclear Information System (INIS)

    Nakamura, M.; Hinkson, J.A.

    1985-05-01

    Beam position monitors (BPM) for synchrotron light storage rings usually consist of beam pickup electrodes, coaxial relays and a narrowband receiver. While accurate, these systems are slow and of limited use in the commissioning of an accelerator. A beam position monitor is described which is intended to be a principal diagnostic during debug and routine running of a storage ring. It is capable of measuring the position of a single bunch on the first or nth orbit to an accuracy of a few percent. Stored beam position is more accurately measured with averaging techniques. Beam position changes can be studied in a bandwidth from DC to a few MHz. The beam monitor electronics consist of a separate amplification, detection, and sampling channel for each beam pickup electrode. Fast switches in each channel permit selection of the nth turn for measurement (single bunch mode). A calibration pulse is injected into each channel after beam measurement to permit gain offsets to be measured and removed from the final data. While initially more costly than the usual beam position monitor system, this sytem will pay for itself in reduced storage ring debug and trouble shooting time. 5 refs., 5 figs

  4. PHYSICS UPDATE: The global positioning system

    Science.gov (United States)

    Walton, Alan J.; Black, Richard J.

    1999-01-01

    A hand-held global positioning system receiver displays the operator's latitude, longitude and velocity. Knowledge of GCSE-level physics will allow the basic principles of the system to be understood; knowledge of A-level physics will allow many important aspects of their implementation to be comprehended. A discussion of the system provides many simple numerical calculations relevant to school and first-year undergraduate syllabuses.

  5. Periodic dynamics of delayed Lotka–Volterra competition systems with discontinuous harvesting policies via differential inclusions

    International Nuclear Information System (INIS)

    Cai, Zuowei; Huang, Lihong

    2013-01-01

    Highlights: • A more practical form of harvesting management policy (DHP) has been proposed. • We analyze the periodic dynamics of a class of discontinuous and delayed Lotka–Volterra competition systems. • We present a new method to obtain the existence of positive periodic solutions via differential inclusions. • The global convergence in measure of harvesting solution is discussed. -- Abstract: This paper considers a general class of delayed Lotka–Volterra competition systems where the harvesting policies are modeled by discontinuous functions or by non-Lipschitz functions. By means of differential inclusions theory, cone expansion and compression fixed point theorem of multi-valued maps and nonsmooth analysis theory with generalized Lyapunov approach, a series of useful criteria on existence, uniqueness and global asymptotic stability of the positive periodic solution is established for the delayed Lotka–Volterra competition systems with discontinuous right-hand sides. Moreover, the global convergence in measure of harvesting solution is discussed. Our results improve and extend previous works on periodic dynamics of delayed Lotka–Volterra competition systems with not only continuous or even Lipschitz continuous but also discontinuous harvesting functions. Finally, we give some corollaries and numerical examples to show the applicability and effectiveness of the proposed criteria

  6. Statistical inference for noisy nonlinear ecological dynamic systems.

    Science.gov (United States)

    Wood, Simon N

    2010-08-26

    Chaotic ecological dynamic systems defy conventional statistical analysis. Systems with near-chaotic dynamics are little better. Such systems are almost invariably driven by endogenous dynamic processes plus demographic and environmental process noise, and are only observable with error. Their sensitivity to history means that minute changes in the driving noise realization, or the system parameters, will cause drastic changes in the system trajectory. This sensitivity is inherited and amplified by the joint probability density of the observable data and the process noise, rendering it useless as the basis for obtaining measures of statistical fit. Because the joint density is the basis for the fit measures used by all conventional statistical methods, this is a major theoretical shortcoming. The inability to make well-founded statistical inferences about biological dynamic models in the chaotic and near-chaotic regimes, other than on an ad hoc basis, leaves dynamic theory without the methods of quantitative validation that are essential tools in the rest of biological science. Here I show that this impasse can be resolved in a simple and general manner, using a method that requires only the ability to simulate the observed data on a system from the dynamic model about which inferences are required. The raw data series are reduced to phase-insensitive summary statistics, quantifying local dynamic structure and the distribution of observations. Simulation is used to obtain the mean and the covariance matrix of the statistics, given model parameters, allowing the construction of a 'synthetic likelihood' that assesses model fit. This likelihood can be explored using a straightforward Markov chain Monte Carlo sampler, but one further post-processing step returns pure likelihood-based inference. I apply the method to establish the dynamic nature of the fluctuations in Nicholson's classic blowfly experiments.

  7. Range use and dynamics in the agropastoral system of ...

    African Journals Online (AJOL)

    Occurrence of equilibrium and non equilibrium system dynamics in semiarid environments present serious management challenges. In these areas, resource management strategies are increasingly based on equilibrium rather than non equilibrium dynamics that assume simple system dynamics and strong coupling of ...

  8. Studying the dynamical characteristics of pumps in NPP unit auxiliary water system under operational conditions

    International Nuclear Information System (INIS)

    Belyaev, S.G.; Puzanov, A.I.; Belikov, V.P.; Dizik, B.S.

    1990-01-01

    Hydrodynamic loads appearing in the flow-through part of pump aggregates of the system of auxiliary water supply in NPP with variations in the operation modes are investigated. It is shown that during operation of centrifugal pumps the position of the mode on the pump characteristic plot must be controlled. When the mode point exceeds the limits of the working zone it results in a considerable increase of dynamic loads: pressure pulsation and vibration. As the flow rate increase the decrease in dynamic loads is recorded at low frequencies of about 2-4 Hz

  9. Dynamics of one-dimensional self-gravitating systems using Hermite-Legendre polynomials

    Science.gov (United States)

    Barnes, Eric I.; Ragan, Robert J.

    2014-01-01

    The current paradigm for understanding galaxy formation in the Universe depends on the existence of self-gravitating collisionless dark matter. Modelling such dark matter systems has been a major focus of astrophysicists, with much of that effort directed at computational techniques. Not surprisingly, a comprehensive understanding of the evolution of these self-gravitating systems still eludes us, since it involves the collective non-linear dynamics of many particle systems interacting via long-range forces described by the Vlasov equation. As a step towards developing a clearer picture of collisionless self-gravitating relaxation, we analyse the linearized dynamics of isolated one-dimensional systems near thermal equilibrium by expanding their phase-space distribution functions f(x, v) in terms of Hermite functions in the velocity variable, and Legendre functions involving the position variable. This approach produces a picture of phase-space evolution in terms of expansion coefficients, rather than spatial and velocity variables. We obtain equations of motion for the expansion coefficients for both test-particle distributions and self-gravitating linear perturbations of thermal equilibrium. N-body simulations of perturbed equilibria are performed and found to be in excellent agreement with the expansion coefficient approach over a time duration that depends on the size of the expansion series used.

  10. Generalized reconfigurable memristive dynamical system (MDS) for neuromorphic applications.

    Science.gov (United States)

    Bavandpour, Mohammad; Soleimani, Hamid; Linares-Barranco, Bernabé; Abbott, Derek; Chua, Leon O

    2015-01-01

    This study firstly presents (i) a novel general cellular mapping scheme for two dimensional neuromorphic dynamical systems such as bio-inspired neuron models, and (ii) an efficient mixed analog-digital circuit, which can be conveniently implemented on a hybrid memristor-crossbar/CMOS platform, for hardware implementation of the scheme. This approach employs 4n memristors and no switch for implementing an n-cell system in comparison with 2n (2) memristors and 2n switches of a Cellular Memristive Dynamical System (CMDS). Moreover, this approach allows for dynamical variables with both analog and one-hot digital values opening a wide range of choices for interconnections and networking schemes. Dynamical response analyses show that this circuit exhibits various responses based on the underlying bifurcation scenarios which determine the main characteristics of the neuromorphic dynamical systems. Due to high programmability of the circuit, it can be applied to a variety of learning systems, real-time applications, and analytically indescribable dynamical systems. We simulate the FitzHugh-Nagumo (FHN), Adaptive Exponential (AdEx) integrate and fire, and Izhikevich neuron models on our platform, and investigate the dynamical behaviors of these circuits as case studies. Moreover, error analysis shows that our approach is suitably accurate. We also develop a simple hardware prototype for experimental demonstration of our approach.

  11. ŽAMPA’S SYSTEMS THEORY: A COMPREHENSIVE THEORY OF MEASUREMENT IN DYNAMIC SYSTEMS

    Directory of Open Access Journals (Sweden)

    Renata Rychtáriková

    2018-04-01

    Full Text Available The article outlines in memoriam Prof. Pavel Žampa’s concepts of system theory which enable us to devise a measurement in dynamic systems independently of the particular system behaviour. From the point of view of Žampa’s theory, terms like system time, system attributes, system link, system element, input, output, sub-systems, and state variables are defined. In Conclusions, Žampa’s theory is discussed together with another mathematical approaches of qualitative dynamics known since the 19th century. In Appendices, we present applications of Žampa’s technical approach to measurement of complex dynamical (chemical and biological systems at the Institute of Complex Systems, University of South Bohemia in České Budějovice.

  12. Efficient control of mechatronic systems in dynamic motion tasks

    Directory of Open Access Journals (Sweden)

    Despotova Desislava

    2018-01-01

    Full Text Available Robots and powered exoskeletons have often complex and non-linear dynamics due to friction, elasticity, and changing load. The proposed study addresses various-type robots that have to perform dynamic point-to-point motion tasks (PTPMT. The performance demands are for faster motion, higher positioning accuracy, and lower energy consumption. With given motion task, it is of primary importance to study the structure and controllability of the corresponding controlled system. The following natural decentralized controllability condition is assumed: the signs of any control input and the corresponding output (the acceleration are the same, at least when the control input is at its maximum absolute value. Then we find explicit necessary and sufficient conditions on the control transfer matrix that can guarantee robust controllability in the face of arbitrary, but bounded disturbances. Further on, we propose a generic optimisation approach for control learning synthesis of various type robotic systems in PTPMT. Our procedure for iterative learning control (LC has the following main steps: (1 choose a set of appropriate test control functions; (2 define the most relevant input-output pairs; and (3 solve shooting equations and perform control parameter optimisation. We will give several examples to explain our controllability and optimisation concepts.

  13. LGBTQ relationally based positive psychology: An inclusive and systemic framework.

    Science.gov (United States)

    Domínguez, Daniela G; Bobele, Monte; Coppock, Jacqueline; Peña, Ezequiel

    2015-05-01

    Positive psychologists have contributed to our understandings of how positive emotions and flexible cognition enhance resiliency. However, positive psychologists' research has been slow to address the relational resources and interactions that help nonheterosexual families overcome adversity. Addressing overlooked lesbian, gay, bisexual, transgender, or queer (LGBTQ) and systemic factors in positive psychology, this article draws on family resilience literature and LGBTQ literature to theorize a systemic positive psychology framework for working with nonheterosexual families. We developed the LGBTQ relationally based positive psychology framework that integrates positive psychology's strengths-based perspective with the systemic orientation of Walsh's (1996) family resilience framework along with the cultural considerations proposed by LGBTQ family literature. We theorize that the LGBTQ relationally based positive psychology framework takes into consideration the sociopolitical adversities impacting nonheterosexual families and sensitizes positive psychologists, including those working in organized care settings, to the systemic interactions of same-sex loving relationships. (c) 2015 APA, all rights reserved).

  14. Linear quadratic optimization for positive LTI system

    Science.gov (United States)

    Muhafzan, Yenti, Syafrida Wirma; Zulakmal

    2017-05-01

    Nowaday the linear quadratic optimization subject to positive linear time invariant (LTI) system constitute an interesting study considering it can become a mathematical model of variety of real problem whose variables have to nonnegative and trajectories generated by these variables must be nonnegative. In this paper we propose a method to generate an optimal control of linear quadratic optimization subject to positive linear time invariant (LTI) system. A sufficient condition that guarantee the existence of such optimal control is discussed.

  15. Self-treatment of benign paroxysmal positional vertigo with DizzyFix, a new dynamic visual device.

    Science.gov (United States)

    Brehmer, Detlef

    2010-09-01

    Benign paroxysmal positional vertigo is one of the most common disorders of the vestibular system. It is characterized by episodes of recurrent vertigo triggered by head movements or position changes associated with nystagmus. There is scientific evidence that in the majority of cases this condition responds well to the particle repositioning maneuver (PRM) correctly performed by the physician. However, the PRM needs to be repeated in approximately 30% of the cases. Although the maneuver is simple, patients often find it difficult to perform correctly as self-treatment, with the result that it fails to bring about an improvement in the symptoms. DizzyFix (Clearwater Clinical Limited, Canada) is the name given to a new dynamic visual device designed to provide a visual representation of the PRM based on the canalith theory. The DizzyFiX consists of a specially curved acrylic tube containing a nontoxic viscous fluid and a bead, the purpose of which is to help the patient and the inexperienced physician to perform the PRM correctly. A randomized clinical trial has shown that it reliably enables the maneuver to be performed correctly, and a study investigating the effectiveness of patient self-treatment of benign paroxysmal positional vertigo with the device in comparison with standard office treatment revealed both techniques to be equally effective. The device has now been approved by the US FDA.

  16. Do dynamical systems follow Benford's law?

    International Nuclear Information System (INIS)

    Tolle, Charles R.; Budzien, Joanne L.; LaViolette, Randall A.

    2000-01-01

    Data compiled from a variety of sources follow Benford's law, which gives a monotonically decreasing distribution of the first digit (1 through 9). We examine the frequency of the first digit of the coordinates of the trajectories generated by some common dynamical systems. One-dimensional cellular automata fulfill the expectation that the frequency of the first digit is uniform. The molecular dynamics of fluids, on the other hand, provides trajectories that follow Benford's law. Finally, three chaotic systems are considered: Lorenz, Henon, and Roessler. The Lorenz system generates trajectories that follow Benford's law. The Henon system generates trajectories that resemble neither the uniform distribution nor Benford's law. Finally, the Roessler system generates trajectories that follow the uniform distribution for some parameters choices, and Benford's law for others. (c) 2000 American Institute of Physics

  17. Supervised Learning for Dynamical System Learning.

    Science.gov (United States)

    Hefny, Ahmed; Downey, Carlton; Gordon, Geoffrey J

    2015-01-01

    Recently there has been substantial interest in spectral methods for learning dynamical systems. These methods are popular since they often offer a good tradeoff between computational and statistical efficiency. Unfortunately, they can be difficult to use and extend in practice: e.g., they can make it difficult to incorporate prior information such as sparsity or structure. To address this problem, we present a new view of dynamical system learning: we show how to learn dynamical systems by solving a sequence of ordinary supervised learning problems, thereby allowing users to incorporate prior knowledge via standard techniques such as L 1 regularization. Many existing spectral methods are special cases of this new framework, using linear regression as the supervised learner. We demonstrate the effectiveness of our framework by showing examples where nonlinear regression or lasso let us learn better state representations than plain linear regression does; the correctness of these instances follows directly from our general analysis.

  18. Dimensionless study on dynamics of pressure controlled mechanical ventilation system

    International Nuclear Information System (INIS)

    Shi, Yan; Niu, Jinglong; Cai, Maolin; Xu, Weiqing

    2015-01-01

    Dynamics of mechanical ventilation system can be referred in pulmonary diagnostics and treatments. In this paper, to conveniently grasp the essential characteristics of mechanical ventilation system, a dimensionless model of mechanical ventilation system is presented. For the validation of the mathematical model, a prototype mechanical ventilation system of a lung simulator is proposed. Through the simulation and experimental studies on the dimensionless dynamics of the mechanical ventilation system, firstly, the mathematical model is proved to be authentic and reliable. Secondly, the dimensionless dynamics of the mechanical ventilation system are obtained. Last, the influences of key parameters on the dimensionless dynamics of the mechanical ventilation system are illustrated. The study provides a novel method to study the dynamic of mechanical ventilation system, which can be referred in the respiratory diagnostics and treatment.

  19. Dimensionless study on dynamics of pressure controlled mechanical ventilation system

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Yan; Niu, Jinglong; Cai, Maolin; Xu, Weiqing [Beihang University, Beijing (Korea, Republic of)

    2015-02-15

    Dynamics of mechanical ventilation system can be referred in pulmonary diagnostics and treatments. In this paper, to conveniently grasp the essential characteristics of mechanical ventilation system, a dimensionless model of mechanical ventilation system is presented. For the validation of the mathematical model, a prototype mechanical ventilation system of a lung simulator is proposed. Through the simulation and experimental studies on the dimensionless dynamics of the mechanical ventilation system, firstly, the mathematical model is proved to be authentic and reliable. Secondly, the dimensionless dynamics of the mechanical ventilation system are obtained. Last, the influences of key parameters on the dimensionless dynamics of the mechanical ventilation system are illustrated. The study provides a novel method to study the dynamic of mechanical ventilation system, which can be referred in the respiratory diagnostics and treatment.

  20. The PTFE-nanocomposites mechanical properties for transport systems dynamic sealing devices elements

    Science.gov (United States)

    Mashkov, Y. K.; Egorova, V. A.; Chemisenko, O. V.; Maliy, O. V.

    2017-06-01

    The mechanical properties study results of polymer nanocomposites based on polytetrafluoroethylene with modifiers in the form of micro- and nanoscale cryptocrystalline graphite and silicon dioxide powders are determined. The nanocomposites mechanical properties determined values provide high sealing degree of transport systems dynamic sealing devices elements. When the temperature changes from cryogenic to high positive then the elastic modulus, tensile strength decrease significantly and nonlinearly, the latter limits the composite usage in heavily loaded tribosystems operating at elevated temperatures.

  1. Lectures on fractal geometry and dynamical systems

    CERN Document Server

    Pesin, Yakov

    2009-01-01

    Both fractal geometry and dynamical systems have a long history of development and have provided fertile ground for many great mathematicians and much deep and important mathematics. These two areas interact with each other and with the theory of chaos in a fundamental way: many dynamical systems (even some very simple ones) produce fractal sets, which are in turn a source of irregular "chaotic" motions in the system. This book is an introduction to these two fields, with an emphasis on the relationship between them. The first half of the book introduces some of the key ideas in fractal geometry and dimension theory--Cantor sets, Hausdorff dimension, box dimension--using dynamical notions whenever possible, particularly one-dimensional Markov maps and symbolic dynamics. Various techniques for computing Hausdorff dimension are shown, leading to a discussion of Bernoulli and Markov measures and of the relationship between dimension, entropy, and Lyapunov exponents. In the second half of the book some examples o...

  2. Development of GPS Receiver Kalman Filter Algorithms for Stationary, Low-Dynamics, and High-Dynamics Applications

    Science.gov (United States)

    2016-06-01

    Filter Algorithms for Stationary, Low-Dynamics, and High-Dynamics Applications Executive Summary The Global Positioning system ( GPS ) is the primary...software that may need to be developed for performance prediction of current or future systems that incorporate GPS . The ultimate aim is to help inform...Defence Science and Technology Organisation in 1986. His major areas of work were adaptive tracking , sig- nal processing, and radar systems engineering

  3. System Dynamics Modeling for Supply Chain Information Sharing

    Science.gov (United States)

    Feng, Yang

    In this paper, we try to use the method of system dynamics to model supply chain information sharing. Firstly, we determine the model boundaries, establish system dynamics model of supply chain before information sharing, analyze the model's simulation results under different changed parameters and suggest improvement proposal. Then, we establish system dynamics model of supply chain information sharing and make comparison and analysis on the two model's simulation results, to show the importance of information sharing in supply chain management. We wish that all these simulations would provide scientific supports for enterprise decision-making.

  4. Crossed product algebras associated with topological dynamical systems

    NARCIS (Netherlands)

    Svensson, Pär Christian

    2009-01-01

    We study connections between topological dynamical systems and associated algebras of crossed product type. We derive equivalences between structural properties of a crossed product and dynamical properties of the associated system and furthermore derive qualitative results concerning the crossed

  5. Computable Types for Dynamic Systems

    NARCIS (Netherlands)

    P.J. Collins (Pieter); K. Ambos-Spies; B. Loewe; W. Merkle

    2009-01-01

    textabstractIn this paper, we develop a theory of computable types suitable for the study of dynamic systems in discrete and continuous time. The theory uses type-two effectivity as the underlying computational model, but we quickly develop a type system which can be manipulated abstractly, but for

  6. Superlinearly scalable noise robustness of redundant coupled dynamical systems.

    Science.gov (United States)

    Kohar, Vivek; Kia, Behnam; Lindner, John F; Ditto, William L

    2016-03-01

    We illustrate through theory and numerical simulations that redundant coupled dynamical systems can be extremely robust against local noise in comparison to uncoupled dynamical systems evolving in the same noisy environment. Previous studies have shown that the noise robustness of redundant coupled dynamical systems is linearly scalable and deviations due to noise can be minimized by increasing the number of coupled units. Here, we demonstrate that the noise robustness can actually be scaled superlinearly if some conditions are met and very high noise robustness can be realized with very few coupled units. We discuss these conditions and show that this superlinear scalability depends on the nonlinearity of the individual dynamical units. The phenomenon is demonstrated in discrete as well as continuous dynamical systems. This superlinear scalability not only provides us an opportunity to exploit the nonlinearity of physical systems without being bogged down by noise but may also help us in understanding the functional role of coupled redundancy found in many biological systems. Moreover, engineers can exploit superlinear noise suppression by starting a coupled system near (not necessarily at) the appropriate initial condition.

  7. "COUPLED PROCESSES" AS DYNAMIC CAPABILITIES IN SYSTEMS INTEGRATION

    OpenAIRE

    Chagas Jr, Milton de Freitas; Leite, Dinah Eluze Sales; Jesus, Gabriel Torres de

    2017-01-01

    ABSTRACT The dynamics of innovation in complex systems industries is becoming an independent research stream. Apart from conventional uncertainties related to commerce and technology, complex-system industries must cope with systemic uncertainty. This paper's objective is to analyze evolving technological paths from one product generation to the next through two case studies in the Brazilian aerospace industry, considering systems integration as an empirical instantiation of dynamic capabilit...

  8. The dynamics of general developmental mechanisms : From Piaget and Vygotsky to dynamic systems models

    NARCIS (Netherlands)

    van Geert, P

    Dynamic systems theory conceives of development as a self-organizational process. Both complexity and order emerge as a product of elementary principles of interaction between components involved in the developmental process. This article presents a dynamic systems model based on a general dual

  9. Bifurcation Control of Chaotic Dynamical Systems

    National Research Council Canada - National Science Library

    Wang, Hua O; Abed, Eyad H

    1992-01-01

    A nonlinear system which exhibits bifurcations, transient chaos, and fully developed chaos is considered, with the goal of illustrating the role of two ideas in the control of chaotic dynamical systems...

  10. A diagnostic expert system for a boiling water reactor using a dynamic model

    International Nuclear Information System (INIS)

    Sonoda, Y.; Kanemoto, S.; Imaruoka, H.

    1990-01-01

    A diagnostic expert system for abnormal disturbances in a BWR (Boiling Water Reactor) plant has been developed. The peculiar feature of this system is a diagnostic method which combines artificial intelligence technique with numerical analysis technique. The system has three diagnostic functions, 1) identification of anomaly position (device or sensor), 2) identification of anomaly mode and 3) identification of anomaly cause. Function 1) is implemented as follows. First, a hypothesis about anomaly propagation paths is built up by qualitative reasoning, using knowledge of causal relations among observed signals. Next, the abnormal device or sensor is found by applying model reference method and fuzzy set theory to test the hypothesis, using knowledge of plant structure and function, heuristic strategy of diagnosis and module type dynamic simulator. This simulator is composed of basic transfer function modules. The simulation model for the testing region is built up automatically, according to the requirement from the diagnostic task. Function 2) means identification of dynamic characteristics for an anomaly. It is realized by tuning model parameters so as to reproduce the abnormal signal behavior using the non-linear programing method. Function 3) derives probable anomaly causes from heuristic rules between anomaly mode and cause. A basic plant dynamic model was built up and adjusted to dynamic characteristics for one BWR plant (1100MWe). In order to verify the diagnostic functions of this system, data for several abnormal events was compiled by modifying this model. The diagnostic functions were proved useful, through the simulated abnormal data

  11. On Rank Driven Dynamical Systems

    Science.gov (United States)

    Veerman, J. J. P.; Prieto, F. J.

    2014-08-01

    We investigate a class of models related to the Bak-Sneppen (BS) model, initially proposed to study evolution. The BS model is extremely simple and yet captures some forms of "complex behavior" such as self-organized criticality that is often observed in physical and biological systems. In this model, random fitnesses in are associated to agents located at the vertices of a graph . Their fitnesses are ranked from worst (0) to best (1). At every time-step the agent with the worst fitness and some others with a priori given rank probabilities are replaced by new agents with random fitnesses. We consider two cases: The exogenous case where the new fitnesses are taken from an a priori fixed distribution, and the endogenous case where the new fitnesses are taken from the current distribution as it evolves. We approximate the dynamics by making a simplifying independence assumption. We use Order Statistics and Dynamical Systems to define a rank-driven dynamical system that approximates the evolution of the distribution of the fitnesses in these rank-driven models, as well as in the BS model. For this simplified model we can find the limiting marginal distribution as a function of the initial conditions. Agreement with experimental results of the BS model is excellent.

  12. Dynamic heat transfer modeling and parametric study of thermoelectric radiant cooling and heating panel system

    International Nuclear Information System (INIS)

    Luo, Yongqiang; Zhang, Ling; Liu, Zhongbing; Wang, Yingzi; Wu, Jing; Wang, Xiliang

    2016-01-01

    Highlights: • Dynamic model of thermoelectric radiant panel system is established. • The internal parameters of thermoelectric module are dynamically calculated in simulation. • Both artificial neural networks model and system model are verified through experiment data. • Optimized system structure is obtained through parametric study. - Abstract: Radiant panel system can optimize indoor thermal comfort with lower energy consumption. The thermoelectric radiant panel (TERP) system is a new and effective prototype of radiant system using thermoelectric module (TEM) instead of conventional water pipes, as heat source. The TERP can realize more stable and easier system control as well as lower initial and operative cost. In this study, an improved system dynamic model was established by combining analytical system model and artificial neural networks (ANN) as well as the dynamic calculation functions of internal parameters of TEM. The double integral was used for the calculation of surface average temperature of TERP. The ANN model and system model were in good agreement with experiment data in both cooling and heating mode. In order to optimize the system design structure, parametric study was conducted in terms of the thickness of aluminum panel and insulation, as well as the arrangement of TEMs on the surface of radiant panel. It was found through simulation results that the optimum thickness of aluminum panel and insulation are respectively around 1–2 mm and 40–50 mm. In addition, TEMs should be uniformly installed on the surface of radiant panel and each TEM should stand at the central position of a square-shaped typical region with length around 0.387–0.548 m.

  13. Entanglement dynamics in itinerant fermionic and bosonic systems

    Science.gov (United States)

    Pillarishetty, Durganandini

    2017-04-01

    The concept of quantum entanglement of identical particles is fundamental in a wide variety of quantum information contexts involving composite quantum systems. However, the role played by particle indistinguishabilty in entanglement determination is being still debated. In this work, we study, theoretically, the entanglement dynamics in some itinerant bosonic and fermionic systems. We show that the dynamical behaviour of particle entanglement and spatial or mode entanglement are in general different. We also discuss the effect of fermionic and bosonic statistics on the dynamical behaviour. We suggest that the different dynamical behaviour can be used to distinguish between particle and mode entanglement in identical particle systems and discuss possible experimental realizations for such studies. I acknowledge financial support from DST, India through research Grant.

  14. Geometric phases in discrete dynamical systems

    Energy Technology Data Exchange (ETDEWEB)

    Cartwright, Julyan H.E., E-mail: julyan.cartwright@csic.es [Instituto Andaluz de Ciencias de la Tierra, CSIC–Universidad de Granada, E-18100 Armilla, Granada (Spain); Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, E-18071 Granada (Spain); Piro, Nicolas, E-mail: nicolas.piro@epfl.ch [École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne (Switzerland); Piro, Oreste, E-mail: piro@imedea.uib-csic.es [Departamento de Física, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Tuval, Idan, E-mail: ituval@imedea.uib-csic.es [Mediterranean Institute for Advanced Studies, CSIC–Universitat de les Illes Balears, E-07190 Mallorca (Spain)

    2016-10-14

    In order to study the behaviour of discrete dynamical systems under adiabatic cyclic variations of their parameters, we consider discrete versions of adiabatically-rotated rotators. Parallelling the studies in continuous systems, we generalize the concept of geometric phase to discrete dynamics and investigate its presence in these rotators. For the rotated sine circle map, we demonstrate an analytical relationship between the geometric phase and the rotation number of the system. For the discrete version of the rotated rotator considered by Berry, the rotated standard map, we further explore this connection as well as the role of the geometric phase at the onset of chaos. Further into the chaotic regime, we show that the geometric phase is also related to the diffusive behaviour of the dynamical variables and the Lyapunov exponent. - Highlights: • We extend the concept of geometric phase to maps. • For the rotated sine circle map, we demonstrate an analytical relationship between the geometric phase and the rotation number. • For the rotated standard map, we explore the role of the geometric phase at the onset of chaos. • We show that the geometric phase is related to the diffusive behaviour of the dynamical variables and the Lyapunov exponent.

  15. Dynamic characteristic of electromechanical coupling effects in motor-gear system

    Science.gov (United States)

    Bai, Wenyu; Qin, Datong; Wang, Yawen; Lim, Teik C.

    2018-06-01

    Dynamic characteristics of an electromechanical model which combines a nonlinear permeance network model (PNM) of a squirrel-cage induction motor and a coupled lateral-torsional dynamic model of a planetary geared rotor system is analyzed in this study. The simulations reveal the effects of internal excitations or parameters like machine slotting, magnetic saturation, time-varying mesh stiffness and shaft stiffness on the system dynamics. The responses of the electromechanical system with PNM motor model are compared with those responses of the system with dynamic motor model. The electromechanical coupling due to the interactions between the motor and gear system are studied. Furthermore, the frequency analysis of the electromechanical system dynamic characteristics predicts an efficient way to detect work condition of unsymmetrical voltage sag.

  16. A metrology system for a high resolution cavity beam position monitor system

    Science.gov (United States)

    Walston, Sean; Boogert, Stewart; Chung, Carl; Fitsos, Pete; Frisch, Joe; Gronberg, Jeff; Hayano, Hitoshi; Hinton, Shantell; Honda, Yosuke; Khainovski, Oleg; Kolomensky, Yury; Loscutoff, Peter; Lyapin, Alexey; Malton, Stephen; May, Justin; McCormick, Douglas; Meller, Robert; Miller, David; Orimoto, Toyoko; Ross, Marc; Slater, Mark; Smith, Steve; Smith, Tonee; Terunuma, Nobuhiro; Thomson, Mark; Urakawa, Junji; Vogel, Vladimir; Ward, David; White, Glen

    2013-11-01

    International Linear Collider (ILC) interaction region beam sizes and component position stability requirements will likely be as small as a few nanometers. It is important to the ILC design effort to demonstrate that these tolerances can be achieved-ideally using a beam-based stability measurement. We developed a high resolution RF cavity Beam Position Monitor (BPM) system. A triplet of these BPMs, installed in the extraction line of the KEK Accelerator Test Facility (ATF) and tested with its ultra-low emittance beam, achieved a position measurement resolution of 15 nm. A metrology system for the three BPMs was subsequently installed. This system employed optical encoders to measure each BPM's position and orientation relative to a zero-coefficient of thermal expansion carbon fiber frame. We have demonstrated that the three BPMs behave as a rigid-body at the level of less than 5 nm.

  17. Dynamic reasoning in a knowledge-based system

    Science.gov (United States)

    Rao, Anand S.; Foo, Norman Y.

    1988-01-01

    Any space based system, whether it is a robot arm assembling parts in space or an onboard system monitoring the space station, has to react to changes which cannot be foreseen. As a result, apart from having domain-specific knowledge as in current expert systems, a space based AI system should also have general principles of change. This paper presents a modal logic which can not only represent change but also reason with it. Three primitive operations, expansion, contraction and revision are introduced and axioms which specify how the knowledge base should change when the external world changes are also specified. Accordingly the notion of dynamic reasoning is introduced, which unlike the existing forms of reasoning, provide general principles of change. Dynamic reasoning is based on two main principles, namely minimize change and maximize coherence. A possible-world semantics which incorporates the above two principles is also discussed. The paper concludes by discussing how the dynamic reasoning system can be used to specify actions and hence form an integral part of an autonomous reasoning and planning system.

  18. Advances in analysis and control of timedelayed dynamical systems

    CERN Document Server

    Sun, Jianqiao

    2013-01-01

    Analysis and control of timedelayed systems have been applied in a wide range of applications, ranging from mechanical, control, economic, to biological systems. Over the years, there has been a steady stream of interest in timedelayed dynamic systems, this book takes a snap shot of recent research from the world leading experts in analysis and control of dynamic systems with time delay to provide a bird's eye view of its development. The topics covered in this book include solution methods, stability analysis and control of periodic dynamic systems with time delay, bifurcations, stochastic dy

  19. Coordinated joint motion control system with position error correction

    Science.gov (United States)

    Danko, George L.

    2016-04-05

    Disclosed are an articulated hydraulic machine supporting, control system and control method for same. The articulated hydraulic machine has an end effector for performing useful work. The control system is capable of controlling the end effector for automated movement along a preselected trajectory. The control system has a position error correction system to correct discrepancies between an actual end effector trajectory and a desired end effector trajectory. The correction system can employ one or more absolute position signals provided by one or more acceleration sensors supported by one or more movable machine elements. Good trajectory positioning and repeatability can be obtained. A two joystick controller system is enabled, which can in some cases facilitate the operator's task and enhance their work quality and productivity.

  20. Dynamic analysis of a new chaotic system with fractional order and its generalized projective synchronization

    International Nuclear Information System (INIS)

    Niu Yu-Jun; Wang Xing-Yuan; Nian Fu-Zhong; Wang Ming-Jun

    2010-01-01

    Based on the stability theory of the fractional order system, the dynamic behaviours of a new fractional order system are investigated theoretically. The lowest order we found to have chaos in the new three-dimensional system is 2.46, and the period routes to chaos in the new fractional order system are also found. The effectiveness of our analysis results is further verified by numerical simulations and positive largest Lyapunov exponent. Furthermore, a nonlinear feedback controller is designed to achieve the generalized projective synchronization of the fractional order chaotic system, and its validity is proved by Laplace transformation theory. (general)

  1. Time step rescaling recovers continuous-time dynamical properties for discrete-time Langevin integration of nonequilibrium systems.

    Science.gov (United States)

    Sivak, David A; Chodera, John D; Crooks, Gavin E

    2014-06-19

    When simulating molecular systems using deterministic equations of motion (e.g., Newtonian dynamics), such equations are generally numerically integrated according to a well-developed set of algorithms that share commonly agreed-upon desirable properties. However, for stochastic equations of motion (e.g., Langevin dynamics), there is still broad disagreement over which integration algorithms are most appropriate. While multiple desiderata have been proposed throughout the literature, consensus on which criteria are important is absent, and no published integration scheme satisfies all desiderata simultaneously. Additional nontrivial complications stem from simulating systems driven out of equilibrium using existing stochastic integration schemes in conjunction with recently developed nonequilibrium fluctuation theorems. Here, we examine a family of discrete time integration schemes for Langevin dynamics, assessing how each member satisfies a variety of desiderata that have been enumerated in prior efforts to construct suitable Langevin integrators. We show that the incorporation of a novel time step rescaling in the deterministic updates of position and velocity can correct a number of dynamical defects in these integrators. Finally, we identify a particular splitting (related to the velocity Verlet discretization) that has essentially universally appropriate properties for the simulation of Langevin dynamics for molecular systems in equilibrium, nonequilibrium, and path sampling contexts.

  2. Dynamics of Nonlinear Time-Delay Systems

    CERN Document Server

    Lakshmanan, Muthusamy

    2010-01-01

    Synchronization of chaotic systems, a patently nonlinear phenomenon, has emerged as a highly active interdisciplinary research topic at the interface of physics, biology, applied mathematics and engineering sciences. In this connection, time-delay systems described by delay differential equations have developed as particularly suitable tools for modeling specific dynamical systems. Indeed, time-delay is ubiquitous in many physical systems, for example due to finite switching speeds of amplifiers in electronic circuits, finite lengths of vehicles in traffic flows, finite signal propagation times in biological networks and circuits, and quite generally whenever memory effects are relevant. This monograph presents the basics of chaotic time-delay systems and their synchronization with an emphasis on the effects of time-delay feedback which give rise to new collective dynamics. Special attention is devoted to scalar chaotic/hyperchaotic time-delay systems, and some higher order models, occurring in different bran...

  3. A Dynamic Systems Approach to Internationalization of Higher Education

    Science.gov (United States)

    Zhou, Jiangyuan

    2016-01-01

    Research shows that internationalization of higher education is a process rather than an end product. This paper applies the Dynamic Systems Theory to examine the nature and development of internationalization of higher education, and proposes that internationalization of higher education is a dynamic system. A dynamic framework of…

  4. Local Positioning Systems in (Game) Sports

    Science.gov (United States)

    Leser, Roland; Baca, Arnold; Ogris, Georg

    2011-01-01

    Position data of players and athletes are widely used in sports performance analysis for measuring the amounts of physical activities as well as for tactical assessments in game sports. However, positioning sensing systems are applied in sports as tools to gain objective information of sports behavior rather than as components of intelligent spaces (IS). The paper outlines the idea of IS for the sports context with special focus to game sports and how intelligent sports feedback systems can benefit from IS. Henceforth, the most common location sensing techniques used in sports and their practical application are reviewed, as location is among the most important enabling techniques for IS. Furthermore, the article exemplifies the idea of IS in sports on two applications. PMID:22163725

  5. Position paper - primary ventilation system configuration

    International Nuclear Information System (INIS)

    Dalpiaz, E.L.

    1994-06-01

    The purpose of this paper is to develop and document a position on the configuration of the primary ventilation system. This configuration will be used on the waste storage tanks currently being designed for the Multi-Function Waste Tank Facility. The primary ventilation system provides a single treatment train and exhaust fan for each waste storage tank. The ventilation systems from each of two tanks are grouped with an additional treatment train and exhaust fan that function as backup to either of the two systems

  6. Modeling And Position Control Of Scara Type 3D Printer

    Directory of Open Access Journals (Sweden)

    Ahmet Saygamp305n Ogulmuamp351

    2015-08-01

    Full Text Available In this work a scara robot type 3D printer system is dynamically modeled and position control of the system is realized. For this aim computer aided design model of three degrees of freedom robotic system is created using SolidWorks program then obtained model is exported to MATLABSimMechanics software for position control. Also mathematical model of servo motors used in robotic 3D printer system is included in control methodology to design proportional controllers. Uncontrolled and controlled position results are simulated and given in the form of the graphics.

  7. Non-smooth dynamical systems

    CERN Document Server

    2000-01-01

    The book provides a self-contained introduction to the mathematical theory of non-smooth dynamical problems, as they frequently arise from mechanical systems with friction and/or impacts. It is aimed at applied mathematicians, engineers, and applied scientists in general who wish to learn the subject.

  8. Dynamical analysis of an orbiting three-rigid-body system

    Energy Technology Data Exchange (ETDEWEB)

    Pagnozzi, Daniele, E-mail: daniele.pagnozzi@strath.ac.uk, E-mail: james.biggs@strath.ac.uk; Biggs, James D., E-mail: daniele.pagnozzi@strath.ac.uk, E-mail: james.biggs@strath.ac.uk [Department of Mechanical and Aerospace Engineering, University of Strathclyde, Glasgow, Scotland (United Kingdom)

    2014-12-10

    The development of multi-joint-spacecraft mission concepts calls for a deeper understanding of their nonlinear dynamics to inform and enhance system design. This paper presents a study of a three-finite-shape rigid-body system under the action of an ideal central gravitational field. The aim of this paper is to gain an insight into the natural dynamics of this system. The Hamiltonian dynamics is derived and used to identify relative attitude equilibria of the system with respect to the orbital reference frame. Then a numerical investigation of the behaviour far from the equilibria is provided using tools from modern dynamical systems theory such as energy methods, phase portraits and Poincarè maps. Results reveal a complex structure of the dynamics as well as the existence of connections between some of the equilibria. Stable equilibrium configurations appear to be surrounded by very narrow regions of regular and quasi-regular motions. Trajectories evolve on chaotic motions in the rest of the domain.

  9. Dynamic Control Based Photovoltaic Illuminating System

    Directory of Open Access Journals (Sweden)

    Zhang Chengkai

    2016-01-01

    Full Text Available Smart LED illumination system can use the power from whether the photovoltaic cell or the power grid automatically based on the SOC (State Of Charge of the photovoltaic cell. This paper proposes a feedback control of the photovoltaic cells and a dynamic control strategy for the Energy system. The dynamic control strategy is used to determine the switching state of the photovoltaic cell based on the illumination load in the past one hour and the battery capacity. These controls are manifested by experimental prototype that the control scheme is correct and effective.

  10. Dynamic Calibration and Verification Device of Measurement System for Dynamic Characteristic Coefficients of Sliding Bearing

    Science.gov (United States)

    Chen, Runlin; Wei, Yangyang; Shi, Zhaoyang; Yuan, Xiaoyang

    2016-01-01

    The identification accuracy of dynamic characteristics coefficients is difficult to guarantee because of the errors of the measurement system itself. A novel dynamic calibration method of measurement system for dynamic characteristics coefficients is proposed in this paper to eliminate the errors of the measurement system itself. Compared with the calibration method of suspension quality, this novel calibration method is different because the verification device is a spring-mass system, which can simulate the dynamic characteristics of sliding bearing. The verification device is built, and the calibration experiment is implemented in a wide frequency range, in which the bearing stiffness is simulated by the disc springs. The experimental results show that the amplitude errors of this measurement system are small in the frequency range of 10 Hz–100 Hz, and the phase errors increase along with the increasing of frequency. It is preliminarily verified by the simulated experiment of dynamic characteristics coefficients identification in the frequency range of 10 Hz–30 Hz that the calibration data in this frequency range can support the dynamic characteristics test of sliding bearing in this frequency range well. The bearing experiments in greater frequency ranges need higher manufacturing and installation precision of calibration device. Besides, the processes of calibration experiments should be improved. PMID:27483283

  11. Handbook of electrical power system dynamics modeling, stability, and control

    CERN Document Server

    Eremia, Mircea

    2013-01-01

    Complete guidance for understanding electrical power system dynamics and blackouts This handbook offers a comprehensive and up-to-date treatment of power system dynamics. Addressing the full range of topics, from the fundamentals to the latest technologies in modeling, stability, and control, Handbook of Electrical Power System Dynamics provides engineers with hands-on guidance for understanding the phenomena leading to blackouts so they can design the most appropriate solutions for a cost-effective and reliable operation. Focusing on system dynamics, the book details

  12. Position sensitive regions in a generic radiation sensor based on single event upsets in dynamic RAMs

    International Nuclear Information System (INIS)

    Darambara, D.G.; Spyrou, N.M.

    1997-01-01

    Modern integrated circuits are highly complex systems and, as such, are susceptible to occasional failures. Semiconductor memory devices, particularly dynamic random access memories (dRAMs), are subject to random, transient single event upsets (SEUs) created by energetic ionizing radiation. These radiation-induced soft failures in the stored data of silicon based memory chips provide the foundation for a new, highly efficient, low cost generic radiation sensor. The susceptibility and the detection efficiency of a given dRAM device to SEUs is a complicated function of the circuit design and geometry, the operating conditions and the physics of the charge collection mechanisms involved. Typically, soft error rates measure the cumulative response of all sensitive regions of the memory by broad area chip exposure in ionizing radiation environments. However, this study shows that many regions of a dynamic memory are competing charge collection centres having different upset thresholds. The contribution to soft fails from discrete regions or individual circuit elements of the memory device is unambiguously separated. Hence the use of the dRAM as a position sensitive radiation detector, with high spatial resolution, is assessed and demonstrated. (orig.)

  13. Dynamic State Estimation for Multi-Machine Power System by Unscented Kalman Filter With Enhanced Numerical Stability

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Junjian; Sun, Kai; Wang, Jianhui; Liu, Hui

    2018-03-01

    In this paper, in order to enhance the numerical stability of the unscented Kalman filter (UKF) used for power system dynamic state estimation, a new UKF with guaranteed positive semidifinite estimation error covariance (UKFGPS) is proposed and compared with five existing approaches, including UKFschol, UKF-kappa, UKFmodified, UKF-Delta Q, and the squareroot UKF (SRUKF). These methods and the extended Kalman filter (EKF) are tested by performing dynamic state estimation on WSCC 3-machine 9-bus system and NPCC 48-machine 140-bus system. For WSCC system, all methods obtain good estimates. However, for NPCC system, both EKF and the classic UKF fail. It is found that UKFschol, UKF-kappa, and UKF-Delta Q do not work well in some estimations while UKFGPS works well in most cases. UKFmodified and SRUKF can always work well, indicating their better scalability mainly due to the enhanced numerical stability.

  14. Environmental radiation monitoring system with GPS (global positioning system)

    International Nuclear Information System (INIS)

    Komoto, Itsuro

    2000-01-01

    This system combines a radiation monitoring car with GPS and a data processor (personal computer). It distributes the position information acquired through GPS to the data such as measured environmental radiation dose rate and energy spectrum. It also displays and edits the data for each measuring position on a map. Transmitting the data to the power station through mobile phone enables plan managers to easily monitor the environmental radiation dose rate nearby and proper emergency monitoring. (author)

  15. Dynamical systems and algebra associated with seperated graphs

    DEFF Research Database (Denmark)

    Lolk, Matias

    In this thesis, we study partial dynamical systems and graph algebras arising from nitely separated graphs. The thesis consists of an introduction followed by three papers, the rst of which is joint work with Pere Ara. In Article [A], we introduce convex subshifts, an abstract generalisation...... of the partial dynamical systems associated with nite separated graphs. We dene notions of a nite and innite type convex subshift and show that all such dynamical systems arise from a nite bipartite separated graph up to a suitable type of equivalence. We then study various aspects of the ideal structure...

  16. Emergence in Dynamical Systems

    Directory of Open Access Journals (Sweden)

    John Collier

    2013-12-01

    Full Text Available Emergence is a term used in many contexts in current science; it has become fashionable. It has a traditional usage in philosophy that started in 1875 and was expanded by J. S. Mill (earlier, under a different term and C. D. Broad. It is this form of emergence that I am concerned with here. I distinguish it from uses like ‘computational emergence,’ which can be reduced to combinations of program steps, or its application to merely surprising new features that appear in complex combinations of parts. I will be concerned specifically with ontological emergence that has the logical properties required by Mill and Broad (though there might be some quibbling about the details of their views. I restrict myself to dynamical systems that are embodied in processes. Everything that we can interact with through sensation or action is either dynamical or can be understood in dynamical terms, so this covers all comprehensible forms of emergence in the strong (nonreducible sense I use. I will give general dynamical conditions that underlie the logical conditions traditionally assigned to emergence in nature.The advantage of this is that, though we cannot test logical conditions directly, we can test dynamical conditions. This gives us an empirical and realistic form of emergence, contrary those who say it is a matter of perspective.

  17. Brayton dynamic isotope power systems update

    International Nuclear Information System (INIS)

    Davis, K.A.; Pietsch, A.; Casagrande, R.D.

    1986-01-01

    Brayton dynamic power systems are uniquely suited for space applications. They are compact and highly efficient, offer inherent reliability due to only one moving part, and utilize a single phase and inert working fluid. Additional features include gas bearings, constant speed, and operation at essentially constant temperature. The design, utilizing an inert gas working fluid and gas bearing, is unaffected by zero gravity and can be easily started and restarted in space at low temperatures. This paper describes the salient features of the BIPS as a Dynamic Isotope Power System (DIPS), summarizes the development work to date, establishes the maturity of the design, provides an update on materials technology, and reviews systems integration considerations

  18. System Dynamics Modeling of Multipurpose Reservoir Operation

    Directory of Open Access Journals (Sweden)

    Ebrahim Momeni

    2006-03-01

    Full Text Available System dynamics, a feedback – based object – oriented simulation approach, not only represents complex dynamic systemic systems in a realistic way but also allows the involvement of end users in model development to increase their confidence in modeling process. The increased speed of model development, the possibility of group model development, the effective communication of model results, and the trust developed in the model due to user participation are the main strengths of this approach. The ease of model modification in response to changes in the system and the ability to perform sensitivity analysis make this approach more attractive compared with systems analysis techniques for modeling water management systems. In this study, a system dynamics model was developed for the Zayandehrud basin in central Iran. This model contains river basin, dam reservoir, plains, irrigation systems, and groundwater. Current operation rule is conjunctive use of ground and surface water. Allocation factor for each irrigation system is computed based on the feedback from groundwater storage in its zone. Deficit water is extracted from groundwater.The results show that applying better rules can not only satisfy all demands such as Gawkhuni swamp environmental demand, but it can also  prevent groundwater level drawdown in future.

  19. Controllable Subspaces of Open Quantum Dynamical Systems

    International Nuclear Information System (INIS)

    Zhang Ming; Gong Erling; Xie Hongwei; Hu Dewen; Dai Hongyi

    2008-01-01

    This paper discusses the concept of controllable subspace for open quantum dynamical systems. It is constructively demonstrated that combining structural features of decoherence-free subspaces with the ability to perform open-loop coherent control on open quantum systems will allow decoherence-free subspaces to be controllable. This is in contrast to the observation that open quantum dynamical systems are not open-loop controllable. To a certain extent, this paper gives an alternative control theoretical interpretation on why decoherence-free subspaces can be useful for quantum computation.

  20. On Hamiltonians with position-dependent mass from Kaluza–Klein compactifications

    Energy Technology Data Exchange (ETDEWEB)

    Ballesteros, Ángel, E-mail: angelb@ubu.es; Gutiérrez-Sagredo, Iván, E-mail: igsagredo@ubu.es; Naranjo, Pedro, E-mail: pnaranjo@ubu.es

    2017-02-19

    In a recent paper (Morris (2015) ), an inhomogeneous compactification of the extra dimension of a five-dimensional Kaluza–Klein metric has been shown to generate a position-dependent mass (PDM) in the corresponding four-dimensional system. As an application of this dimensional reduction mechanism, a specific static dilatonic scalar field has been connected with a PDM Lagrangian describing a well-known nonlinear PDM oscillator. Here we present more instances of this construction that lead to PDM systems with radial symmetry, and the properties of their corresponding inhomogeneous extra dimensions are compared with the ones in the nonlinear oscillator model. Moreover, it is also shown how the compactification introduced in this type of models can alternatively be interpreted as a novel mechanism for the dynamical generation of curvature. - Highlights: • New position-dependent mass systems arising from inhomogeneous Kaluza–Klein compactifications are presented. • Connections with known integrable position-dependent mass systems are established. • A novel mechanism for the dynamical generation of curvature is proposed.

  1. Digitized video subject positioning and surveillance system for PET

    International Nuclear Information System (INIS)

    Picard, Y.; Thompson, C.J.

    1995-01-01

    Head motion is a significant contribution to the degradation of image quality of Positron Emission Tomography (PET) studies. Images from different studies must also be realigned digitally to be correlated when the subject position has changed. These constraints could be eliminated if the subject's head position could be monitored accurately. The authors have developed a video camera-based surveillance system to monitor the head position and motion of subjects undergoing PET studies. The system consists of two CCD (charge-coupled device) cameras placed orthogonally such that both face and profile views of the subject's head are displayed side by side on an RGB video monitor. Digitized images overlay the live images in contrasting colors on the monitor. Such a system can be used to (1) position the subject in the field of view (FOV) by displaying the position of the scanner's slices on the monitor along with the current subject position, (2) monitor head motion and alert the operator of any motion during the study and (3) reposition the subject accurately for subsequent studies by displaying the previous position along with the current position in a contrasting color

  2. Dynamics of quasi-stable dissipative systems

    CERN Document Server

    Chueshov, Igor

    2015-01-01

    This book is  devoted to background material and recently developed mathematical methods in the study of infinite-dimensional dissipative systems. The theory of such systems is motivated by the long-term goal to establish rigorous mathematical models for turbulent and chaotic phenomena. The aim here is to offer general methods and abstract results pertaining to fundamental dynamical systems properties related to dissipative long-time behavior. The book systematically presents, develops and uses the quasi-stability method while substantially extending it by including for consideration new classes of models and PDE systems arising in Continuum Mechanics. The book can be used as a textbook in dissipative dynamics at the graduate level.   Igor Chueshov is a Professor of Mathematics at Karazin Kharkov National University in Kharkov, Ukraine.

  3. A metrology system for a high resolution cavity beam position monitor system

    Energy Technology Data Exchange (ETDEWEB)

    Walston, Sean, E-mail: walston2@llnl.gov [Lawrence Livermore National Laboratory, 7000 East Ave., L-181, Livermore, CA 94550 (United States); Boogert, Stewart [Royal Holloway, University of London, Egham (United Kingdom); Chung, Carl; Fitsos, Pete [Lawrence Livermore National Laboratory, 7000 East Ave., L-181, Livermore, CA 94550 (United States); Frisch, Joe [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Gronberg, Jeff [Lawrence Livermore National Laboratory, 7000 East Ave., L-181, Livermore, CA 94550 (United States); Hayano, Hitoshi [High Energy Accelerator Research Organization (KEK), Tsukuba-shi, Ibaraki-ken (Japan); Hinton, Shantell [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Honda, Yosuke [High Energy Accelerator Research Organization (KEK), Tsukuba-shi, Ibaraki-ken (Japan); Khainovski, Oleg; Kolomensky, Yury; Loscutoff, Peter [University of California and Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Lyapin, Alexey; Malton, Stephen [University College London, London (United Kingdom); May, Justin; McCormick, Douglas [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Meller, Robert [Cornell University, Ithaca, NY (United States); Miller, David [University College London, London (United Kingdom); Orimoto, Toyoko [University of California and Lawrence Berkeley National Laboratory, Berkeley, CA (United States); California Institute of Technology, Pasadena, CA (United States); Ross, Marc [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Fermi National Accelerator Laboratory, Batavia, IL (United States); and others

    2013-11-11

    International Linear Collider (ILC) interaction region beam sizes and component position stability requirements will likely be as small as a few nanometers. It is important to the ILC design effort to demonstrate that these tolerances can be achieved–ideally using a beam-based stability measurement. We developed a high resolution RF cavity Beam Position Monitor (BPM) system. A triplet of these BPMs, installed in the extraction line of the KEK Accelerator Test Facility (ATF) and tested with its ultra-low emittance beam, achieved a position measurement resolution of 15 nm. A metrology system for the three BPMs was subsequently installed. This system employed optical encoders to measure each BPM's position and orientation relative to a zero-coefficient of thermal expansion carbon fiber frame. We have demonstrated that the three BPMs behave as a rigid-body at the level of less than 5 nm.

  4. A Method for The Assessing of Reliability Characteristics Relevant to an Assumed Position-Fixing Accuracy in Navigational Positioning Systems

    Directory of Open Access Journals (Sweden)

    Specht Cezary

    2016-09-01

    Full Text Available This paper presents a method which makes it possible to determine reliability characteristics of navigational positioning systems, relevant to an assumed value of permissible error in position fixing. The method allows to calculate: availability , reliability as well as operation continuity of position fixing system for an assumed, determined on the basis of formal requirements - both worldwide and national, position-fixing accuracy. The proposed mathematical model allows to satisfy, by any navigational positioning system, not only requirements as to position-fixing accuracy of a given navigational application (for air , sea or land traffic but also the remaining characteristics associated with technical serviceability of a system.

  5. Modeling and Positioning of a PZT Precision Drive System

    Directory of Open Access Journals (Sweden)

    Che Liu

    2017-11-01

    Full Text Available The fact that piezoelectric ceramic transducer (PZT precision drive systems in 3D printing are faced with nonlinear problems with respect to positioning, such as hysteresis and creep, has had an extremely negative impact on the precision of laser focusing systems. To eliminate the impact of PZT nonlinearity during precision drive movement, mathematical modeling and theoretical analyses of each module comprising the system were carried out in this study, a micro-displacement measurement circuit based on Position Sensitive Detector (PSD is constructed, followed by the establishment of system closed-loop control and creep control models. An XL-80 laser interferometer (Renishaw, Wotton-under-Edge, UK was used to measure the performance of the precision drive system, showing that system modeling and control algorithms were correct, with the requirements for precision positioning of the drive system satisfied.

  6. Modeling and Positioning of a PZT Precision Drive System.

    Science.gov (United States)

    Liu, Che; Guo, Yanling

    2017-11-08

    The fact that piezoelectric ceramic transducer (PZT) precision drive systems in 3D printing are faced with nonlinear problems with respect to positioning, such as hysteresis and creep, has had an extremely negative impact on the precision of laser focusing systems. To eliminate the impact of PZT nonlinearity during precision drive movement, mathematical modeling and theoretical analyses of each module comprising the system were carried out in this study, a micro-displacement measurement circuit based on Position Sensitive Detector (PSD) is constructed, followed by the establishment of system closed-loop control and creep control models. An XL-80 laser interferometer (Renishaw, Wotton-under-Edge, UK) was used to measure the performance of the precision drive system, showing that system modeling and control algorithms were correct, with the requirements for precision positioning of the drive system satisfied.

  7. Positive operator semigroups from finite to infinite dimensions

    CERN Document Server

    Bátkai, András; Rhandi, Abdelaziz

    2017-01-01

    This book gives a gentle but up-to-date introduction into the theory of operator semigroups (or linear dynamical systems), which can be used with great success to describe the dynamics of complicated phenomena arising in many applications. Positivity is a property which naturally appears in physical, chemical, biological or economic processes. It adds a beautiful and far reaching mathematical structure to the dynamical systems and operators describing these processes. In the first part, the finite dimensional theory in a coordinate-free way is developed, which is difficult to find in literature. This is a good opportunity to present the main ideas of the Perron-Frobenius theory in a way which can be used in the infinite dimensional situation. Applications to graph matrices, age structured population models and economic models are discussed. The infinite dimensional theory of positive operator semigroups with their spectral and asymptotic theory is developed in the second part. Recent applications illustrate t...

  8. Structure Learning in Stochastic Non-linear Dynamical Systems

    Science.gov (United States)

    Morris, R. D.; Smelyanskiy, V. N.; Luchinsky, D. G.

    2005-12-01

    A great many systems can be modeled in the non-linear dynamical systems framework, as x˙ = f(x) + ξ(t), where f(x) is the potential function for the system, and ξ(t) is the driving noise. Modeling the potential using a set of basis functions, we derive the posterior for the basis coefficients. A more challenging problem is to determine the set of basis functions that are required to model a particular system. We show that using the Bayesian Information Criteria (BIC) to rank models, and the beam search technique, that we can accurately determine the structure of simple non-linear dynamical system models, and the structure of the coupling between non-linear dynamical systems where the individual systems are known. This last case has important ecological applications, for example in predator-prey systems, where the very structure of the coupling between predator-prey pairs can have great ecological significance.

  9. Evaluating system behavior through Dynamic Master Logic Diagram (DMLD) modeling

    International Nuclear Information System (INIS)

    Hu, Y.-S.; Modarres, Mohammad

    1999-01-01

    In this paper, the Dynamic Master Logic Diagram (DMLD) is introduced for representing full-scale time-dependent behavior and uncertain behavior of complex physical systems. Conceptually, the DMLD allows one to decompose a complex system hierarchically to model and to represent: (1) partial success/failure of the system, (2) full-scale logical, physical and fuzzy connectivity relations, (3) probabilistic, resolutional or linguistic uncertainty, (4) multiple-state system dynamics, and (5) floating threshold and transition effects. To demonstrate the technique, examples of using DMLD to model, to diagnose and to control dynamic behavior of a system are presented. A DMLD-based expert system building tool, called Dynamic Reliability Expert System (DREXs), is introduced to automate the DMLD modeling process

  10. Chaos of discrete dynamical systems in complete metric spaces

    International Nuclear Information System (INIS)

    Shi Yuming; Chen Guanrong

    2004-01-01

    This paper is concerned with chaos of discrete dynamical systems in complete metric spaces. Discrete dynamical systems governed by continuous maps in general complete metric spaces are first discussed, and two criteria of chaos are then established. As a special case, two corresponding criteria of chaos for discrete dynamical systems in compact subsets of metric spaces are obtained. These results have extended and improved the existing relevant results of chaos in finite-dimensional Euclidean spaces

  11. Performance of a high resolution cavity beam position monitor system

    Science.gov (United States)

    Walston, Sean; Boogert, Stewart; Chung, Carl; Fitsos, Pete; Frisch, Joe; Gronberg, Jeff; Hayano, Hitoshi; Honda, Yosuke; Kolomensky, Yury; Lyapin, Alexey; Malton, Stephen; May, Justin; McCormick, Douglas; Meller, Robert; Miller, David; Orimoto, Toyoko; Ross, Marc; Slater, Mark; Smith, Steve; Smith, Tonee; Terunuma, Nobuhiro; Thomson, Mark; Urakawa, Junji; Vogel, Vladimir; Ward, David; White, Glen

    2007-07-01

    It has been estimated that an RF cavity Beam Position Monitor (BPM) could provide a position measurement resolution of less than 1 nm. We have developed a high resolution cavity BPM and associated electronics. A triplet comprised of these BPMs was installed in the extraction line of the Accelerator Test Facility (ATF) at the High Energy Accelerator Research Organization (KEK) for testing with its ultra-low emittance beam. The three BPMs were each rigidly mounted inside an alignment frame on six variable-length struts which could be used to move the BPMs in position and angle. We have developed novel methods for extracting the position and tilt information from the BPM signals including a robust calibration algorithm which is immune to beam jitter. To date, we have demonstrated a position resolution of 15.6 nm and a tilt resolution of 2.1 μrad over a dynamic range of approximately ±20 μm.

  12. Dynamic simulation of a circulating fluidized bed boiler system part I: Description of the dynamic system and transient behavior of sub-models

    International Nuclear Information System (INIS)

    Kim, Seong Il; Choi, Sang Min; Yang, Jong In

    2016-01-01

    Dynamic performance simulation of a CFB boiler in a commercial-scale power plant is reported. The boiler system was modeled by a finite number of heat exchanger units, which are sub-grouped into the gas-solid circulation loop, the water-steam circulation loop, and the inter-connected heat exchangers blocks of the boiler. This dynamic model is an extension from the previously reported performance simulation model, which was designed to simulate static performance of the same power plant, where heat and mass for each of the heat exchanger units were balanced for the inter-connected heat exchanger network among the fuel combustion system and the water-steam system. Dynamic performance simulation was achieved by calculating the incremental difference from the previous time step, and progressing for the next time step. Additional discretization of the heat exchanger blocks was necessary to accommodate the dynamic response of the water evaporation and natural circulation as well as the transient response of the metal temperature of the heat exchanger elements. Presentation of the simulation modeling is organized into two parts; system configuration of the model plant and the general approach of the simulation are presented along with the transient behavior of the sub-models in Part I. Dynamic sub-models were integrated in terms of the mass flow and the heat transfer for simulating the CFB boiler system. Dynamic simulation for the open loop response was performed to check the integrated system of the water-steam loop and the solid-gas loop of the total boiler system. Simulation of the total boiler system which includes the closed-loop control system blocks is presented in the following Part II

  13. Dynamic simulation of a circulating fluidized bed boiler system part I: Description of the dynamic system and transient behavior of sub-models

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seong Il; Choi, Sang Min; Yang, Jong In [Dept. of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2016-12-15

    Dynamic performance simulation of a CFB boiler in a commercial-scale power plant is reported. The boiler system was modeled by a finite number of heat exchanger units, which are sub-grouped into the gas-solid circulation loop, the water-steam circulation loop, and the inter-connected heat exchangers blocks of the boiler. This dynamic model is an extension from the previously reported performance simulation model, which was designed to simulate static performance of the same power plant, where heat and mass for each of the heat exchanger units were balanced for the inter-connected heat exchanger network among the fuel combustion system and the water-steam system. Dynamic performance simulation was achieved by calculating the incremental difference from the previous time step, and progressing for the next time step. Additional discretization of the heat exchanger blocks was necessary to accommodate the dynamic response of the water evaporation and natural circulation as well as the transient response of the metal temperature of the heat exchanger elements. Presentation of the simulation modeling is organized into two parts; system configuration of the model plant and the general approach of the simulation are presented along with the transient behavior of the sub-models in Part I. Dynamic sub-models were integrated in terms of the mass flow and the heat transfer for simulating the CFB boiler system. Dynamic simulation for the open loop response was performed to check the integrated system of the water-steam loop and the solid-gas loop of the total boiler system. Simulation of the total boiler system which includes the closed-loop control system blocks is presented in the following Part II.

  14. A digital position-indication system for control rods

    International Nuclear Information System (INIS)

    Nishizawa, Yukio; Hayakawa, Toshifumi

    1979-01-01

    Systems that detect and indicate the position of the control rods that regulate the thermal output of a nuclear reactor play a particularly important role in monitoring its operational status. Conventionally, control rod position indication in pressurized water reactors has been of the analog type, utilizing the principle of the differential transformer. The present digital system was developed with the objective of achieving greater stability, greater accuracy, and higher reliability. The article gives a general description of the system and describes its advantages. (author)

  15. Women's Status and World-System Position: An Exploratory Analysis

    Directory of Open Access Journals (Sweden)

    Richard York

    2015-08-01

    Full Text Available Our aim here is to strengthen the links between the world-systems perspective and research ongender inequality. Grounding our analysis in theories assessing the connections between genderrelationships and world-system processes, we empirically explore (] the extent to whichwomen's status in nations overlaps with the world-system position of those nations and (2 theinfluence of women's status within nations on a variety of national characteristics. We find thatwomen's status has a moderately strong association with world-system position, which suggeststhat macro-comparative research may confound the respective effects on a variety of socialcharacteristics of women's status and world-system position if indicators of both factors are notincluded in analyses. We also find that, controlling for world-system position, GDP per capita,and urbanization, in nations where women have higher status (variously measured, total fertilityrates, infant mortality rates, military expenditures, and inflows of foreign direct investinent arelower, and public health care expenditures and per capita meat consumption are higher. Theseresults suggest that women's status likely has social effects that can be seen on the macro-level,and that world-systems analysts should pay more attention to theories of gender in their research.

  16. SU-E-P-36: Evaluation of MLC Positioning Errors in Dynamic IMRT Treatments by Analyzing Dynalog Files

    International Nuclear Information System (INIS)

    Olasolo, J; Pellejero, S; Gracia, M; Gallardo, N; Martin, M; Lozares, S; Maneru, F; Bragado, L; Miquelez, S; Rubio, A

    2015-01-01

    Purpose: To assess the accuracy of MLC positioning in Varian linear accelerator, in dynamic IMRT technique, from the analysis of dynalog files generated by the MLC controller. Methods: In Clinac accelerators (pre-TrueBeam technology), control system has an approximately 50ms delay (one control cycle time). Then, the system compares the measured position to the planned position corresponding to the next control cycle. As it has been confirmed by Varian technical support, this effect causes that measured positions appear in dynalogs one cycle out of phase with respect to the planned positions. Around 9000 dynalogs have been analyzed, coming from the three linear accelerators of our center (one Trilogy and two Clinac 21EX) equipped with a Millennium 120 MLC. In order to compare our results to recent publications, leaf positioning errors (RMS and 95th percentile) are calculated with and without delay effect. Dynalogs have been analyzed using a in-house Matlab software. Results: The RMS errors were 0.341, 0.339 and 0.348mm for each Linac; being the average error 0.343 mm. The 95th percentiles of the error were 0.617, 0.607 and 0.625; with an average of 0.617mm. A recent multi-institution study carried out by Kerns et al. found a mean leaf RMS error of 0.32mm and a 95th percentile error value of 0.64mm.Without delay effect, mean leaf RMS errors obtained were 0.040, 0.042 and 0.038mm for each treatment machine; being the average 0.040mm. The 95th percentile error values obtained were 0.057, 0.058 and 0.054 mm, with an average of 0.056mm. Conclusion: Results obtained for the mean leaf RMS error and the mean 95th percentile were consistent with the multi-institution study. Calculated error statistics with delay effect are significantly larger due to the speed proportional and systematic leaf offset. Consequently it is proposed to correct this effect in dynalogs analysis to determine the MLC performance

  17. 12th International Conference of Dynamical Systems-Theory and Applications

    CERN Document Server

    Applied Non-Linear Dynamical Systems

    2014-01-01

    The book is a collection of contributions devoted to analytical, numerical and experimental techniques of dynamical systems, presented at the International Conference on Dynamical Systems: Theory and Applications, held in Łódź, Poland on December 2-5, 2013. The studies give deep insight into both the theory and applications of non-linear dynamical systems, emphasizing directions for future research. Topics covered include: constrained motion of mechanical systems and tracking control; diversities in the inverse dynamics; singularly perturbed ODEs with periodic coefficients; asymptotic solutions to the problem of vortex structure around a cylinder; investigation of the regular and chaotic dynamics; rare phenomena and chaos in power converters; non-holonomic constraints in wheeled robots; exotic bifurcations in non-smooth systems; micro-chaos; energy exchange of coupled oscillators; HIV dynamics; homogenous transformations with applications to off-shore slender structures; novel approaches to a qualitative s...

  18. Dynamic Infrared Thermography Study of Blood Flow Relative to Lower Limp Position

    Science.gov (United States)

    Stathopoulos, I.; Skouroliakou, K.; Michail, C.; Valais, I.

    2015-09-01

    Thermography is an established method for studying skin temperature distribution. Temperature distribution on body surface is influenced by a variety of physiological mechanisms and has been proven a reliable indicator of various physiological disorders. Blood flow is an important factor that influences body heat diffusion and skin temperature. In an attempt to validate and further elucidate thermal models characterizing the human skin, dynamic thermography of the lower limp in horizontal and vertical position was performed, using a FLIR T460 thermographic camera. Temporal variation of temperature was recorded on five distinct points of the limp. Specific points were initially cooled by the means of an ice cube and measurements of the skin temperature were obtained every 30 seconds as the skin temperature was locally reduced and afterwards restored at its initial value. The return to thermal balance followed roughly the same pattern for all points of measurement, although the heating rate was faster when the foot was in horizontal position. Thermal balance was achieved faster at the spots that were positioned on a vein passage. Our results confirm the influence of blood flow on the thermal regulation of the skin. Spots located over veins exhibit different thermal behaviour due to thermal convection through blood flow. Changing the position of the foot from vertical to horizontal, effectively affects blood perfusion as in the vertical position blood circulation is opposed by gravity.

  19. A Numerical Study on Hydrodynamic Interactions between Dynamic Positioning Thrusters

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Doo Hwa; Lee, Sang Wook [University of Ulsan, Ulsan (Korea, Republic of)

    2017-06-15

    In this study, we conducted computational fluid dynamics (CFD) simulations for the unsteady hydrodynamic interaction of multiple thrusters by solving Reynolds averaged Navier-Stokes equations. A commercial CFD software, STAR-CCM+ was used for all simulations by employing a ducted thruster model with combination of a propeller and No. 19a duct. A sliding mesh technique was used to treat dynamic motion of propeller rotation and non-conformal hexahedral grid system was considered. Four different combinations in tilting and azimuth angles of the thrusters were considered to investigate the effects on the propulsion performance. We could find that thruster-hull and thruster-thruster interactions has significant effect on propulsion performance and further study will be required for the optimal configurations with the best tilting and relative azimuth angle between thrusters.

  20. Dynamic Ocean Track System Plus -

    Data.gov (United States)

    Department of Transportation — Dynamic Ocean Track System Plus (DOTS Plus) is a planning tool implemented at the ZOA, ZAN, and ZNY ARTCCs. It is utilized by Traffic Management Unit (TMU) personnel...

  1. Constraint elimination in dynamical systems

    Science.gov (United States)

    Singh, R. P.; Likins, P. W.

    1989-01-01

    Large space structures (LSSs) and other dynamical systems of current interest are often extremely complex assemblies of rigid and flexible bodies subjected to kinematical constraints. A formulation is presented for the governing equations of constrained multibody systems via the application of singular value decomposition (SVD). The resulting equations of motion are shown to be of minimum dimension.

  2. A theory of electron baths: One-electron system dynamics

    International Nuclear Information System (INIS)

    McDowell, H.K.

    1992-01-01

    The second-quantized, many-electron, atomic, and molecular Hamiltonian is partitioned both by the identity or labeling of the spin orbitals and by the dynamics of the spin orbitals into a system coupled to a bath. The electron bath is treated by a molecular time scale generalized Langevin equation approach designed to include one-electron dynamics in the system dynamics. The bath is formulated as an equivalent chain of spin orbitals through the introduction of equivalent-chain annihilation and creation operators. Both the dynamics and the quantum grand canonical statistical properties of the electron bath are examined. Two versions for the statistical properties of the bath are pursued. Using a weak bath assumption, a bath statistical average is defined which allows one to achieve a reduced dynamics description of the electron system which is coupled to the electron bath. In a strong bath assumption effective Hamiltonians are obtained which reproduce the dynamics of the bath and which lead to the same results as found in the weak bath assumption. The effective (but exact) Hamiltonian is found to be a one-electron Hamiltonian. A reduced dynamics equation of motion for the system population matrix is derived and found to agree with a previous version. This equation of motion is useful for studying electron transfer in the system when coupled to an electron bath

  3. Aggregated Wind Park Models for Analysing Power System Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Poeller, Markus; Achilles, Sebastian [DIgSILENT GmbH, Gomaringen (Germany)

    2003-11-01

    The increasing amount of wind power generation in European power systems requires stability analysis considering interaction between wind-farms and transmission systems. Dynamics introduced by dispersed wind generators at the distribution level can usually be neglected. However, large on- and offshore wind farms have a considerable influence to power system dynamics and must definitely be considered for analyzing power system dynamics. Compared to conventional power stations, wind power plants consist of a large number of generators of small size. Therefore, representing every wind generator individually increases the calculation time of dynamic simulations considerably. Therefore, model aggregation techniques should be applied for reducing calculation times. This paper presents aggregated models for wind parks consisting of fixed or variable speed wind generators.

  4. Autonomous learning by simple dynamical systems with delayed feedback.

    Science.gov (United States)

    Kaluza, Pablo; Mikhailov, Alexander S

    2014-09-01

    A general scheme for the construction of dynamical systems able to learn generation of the desired kinds of dynamics through adjustment of their internal structure is proposed. The scheme involves intrinsic time-delayed feedback to steer the dynamics towards the target performance. As an example, a system of coupled phase oscillators, which can, by changing the weights of connections between its elements, evolve to a dynamical state with the prescribed (low or high) synchronization level, is considered and investigated.

  5. System crash as dynamics of complex networks.

    Science.gov (United States)

    Yu, Yi; Xiao, Gaoxi; Zhou, Jie; Wang, Yubo; Wang, Zhen; Kurths, Jürgen; Schellnhuber, Hans Joachim

    2016-10-18

    Complex systems, from animal herds to human nations, sometimes crash drastically. Although the growth and evolution of systems have been extensively studied, our understanding of how systems crash is still limited. It remains rather puzzling why some systems, appearing to be doomed to fail, manage to survive for a long time whereas some other systems, which seem to be too big or too strong to fail, crash rapidly. In this contribution, we propose a network-based system dynamics model, where individual actions based on the local information accessible in their respective system structures may lead to the "peculiar" dynamics of system crash mentioned above. Extensive simulations are carried out on synthetic and real-life networks, which further reveal the interesting system evolution leading to the final crash. Applications and possible extensions of the proposed model are discussed.

  6. Stability Tests of Positive Fractional Continuous-time Linear Systems with Delays

    Directory of Open Access Journals (Sweden)

    Tadeusz Kaczorek

    2013-06-01

    Full Text Available Necessary and sufficient conditions for the asymptotic stability of positive fractional continuous-time linear systems with many delays are established. It is shown that: 1 the asymptotic stability of the positive fractional system is independent of their delays, 2 the checking of the asymptotic stability of the positive fractional systems with delays can be reduced to checking of the asymptotic stability of positive standard linear systems without delays.

  7. Hamiltonian-Driven Adaptive Dynamic Programming for Continuous Nonlinear Dynamical Systems.

    Science.gov (United States)

    Yang, Yongliang; Wunsch, Donald; Yin, Yixin

    2017-08-01

    This paper presents a Hamiltonian-driven framework of adaptive dynamic programming (ADP) for continuous time nonlinear systems, which consists of evaluation of an admissible control, comparison between two different admissible policies with respect to the corresponding the performance function, and the performance improvement of an admissible control. It is showed that the Hamiltonian can serve as the temporal difference for continuous-time systems. In the Hamiltonian-driven ADP, the critic network is trained to output the value gradient. Then, the inner product between the critic and the system dynamics produces the value derivative. Under some conditions, the minimization of the Hamiltonian functional is equivalent to the value function approximation. An iterative algorithm starting from an arbitrary admissible control is presented for the optimal control approximation with its convergence proof. The implementation is accomplished by a neural network approximation. Two simulation studies demonstrate the effectiveness of Hamiltonian-driven ADP.

  8. An efficient fluorescent single-particle position tracking system for long-term pulsed measurements of nitrogen-vacancy centers in diamond

    Science.gov (United States)

    Kim, Kiho; Yun, Jiwon; Lee, Donghyuck; Kim, Dohun

    2018-02-01

    A simple and convenient design enables real-time three-dimensional position tracking of nitrogen-vacancy (NV) centers in diamond. The system consists entirely of commercially available components (a single-photon counter, a high-speed digital-to-analog converter, a phase-sensitive detector-based feedback device, and a piezo stage), eliminating the need for custom programming or rigorous optimization processes. With a large input range of counters and trackers combined with high sensitivity of single-photon counting, high-speed position tracking (upper bound recovery time of 0.9 s upon 250 nm of step-like positional shift) not only of bright ensembles, but also of low-photon-collection-efficiency single to few NV centers (down to 103 s-1) is possible. The tracking requires position modulation of only 10 nm, which allows simultaneous position tracking and pulsed measurements in the long term. Therefore, this tracking system enables measuring a single-spin magnetic resonance and Rabi oscillations at a very high resolution even without photon collection optimization. The system is widely applicable to various fields related to NV center quantum manipulation research such as NV optical trapping, NV tracking in fluid dynamics, and biological sensing using NV centers inside a biological cell.

  9. Robust uniform persistence in discrete and continuous dynamical systems using Lyapunov exponents.

    Science.gov (United States)

    Salceanu, Paul L

    2011-07-01

    This paper extends the work of Salceanu and Smith [12, 13] where Lyapunov exponents were used to obtain conditions for uniform persistence ina class of dissipative discrete-time dynamical systems on the positive orthant of R(m), generated by maps. Here a united approach is taken, for both discrete and continuous time, and the dissipativity assumption is relaxed. Sufficient conditions are given for compact subsets of an invariant part of the boundary of R(m+) to be robust uniform weak repellers. These conditions require Lyapunov exponents be positive on such sets. It is shown how this leads to robust uniform persistence. The results apply to the investigation of robust uniform persistence of the disease in host populations, as shown in an application.

  10. The dynamical evolution of the Orion Trapezium

    Science.gov (United States)

    Allen, C.; Costero, R.; Ruelas-Mayorga, A.; Sánchez, L.

    2018-01-01

    Using recent observational data on transverse and radial velocities of the bright Orion Trapezium stars we study the dynamical evolution of ensembles of systems mimicking the Trapezium. To this end we perform numerical N-body integrations using the observed planar positions and velocities, the radial velocities, and random z-positions for all components. We include perturbations in these quantities compatible with the observational errors. We discuss the dynamical outcome of the evolution of such systems and the properties of the resulting binaries.

  11. A review of dynamic characteristics of magnetically levitated vehicle systems

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Y.; Chen, S.S.

    1995-11-01

    The dynamic response of magnetically levitated (maglev) ground transportation systems has important consequences for safety and ride quality, guideway design, and system costs. Ride quality is determined by vehicle response and by environmental factors such as humidity and noise. The dynamic response of the vehicles is the key element in determining ride quality, while vehicle stability is an important safety-related element. To design a guideway that provides acceptable ride quality in the stable region, vehicle dynamics must be understood. Furthermore, the trade-off between guideway smoothness and levitation and control systems must be considered if maglev systems are to be economically feasible. The link between the guideway and the other maglev components is vehicle dynamics. For a commercial maglev system, vehicle dynamics must be analyzed and tested in detail. This report, which reviews various aspects of the dynamic characteristics, experiments and analysis, and design guidelines for maglev systems, discusses vehicle stability, motion dependent magnetic force components, guideway characteristics, vehicle/ guideway interaction, ride quality, suspension control laws, aerodynamic loads and other excitations, and research needs.

  12. Dynamic Intelligent Feedback Scheduling in Networked Control Systems

    Directory of Open Access Journals (Sweden)

    Hui-ying Chen

    2013-01-01

    Full Text Available For the networked control system with limited bandwidth and flexible workload, a dynamic intelligent feedback scheduling strategy is proposed. Firstly, a monitor is used to acquire the current available network bandwidth. Then, the new available bandwidth in the next interval is predicted by using LS_SVM approach. At the same time, the dynamic performance indices of all control loops are obtained with a two-dimensional fuzzy logic modulator. Finally, the predicted network bandwidth is dynamically allocated by the bandwidth manager and the priority allocator in terms of the loops' dynamic performance indices. Simulation results show that the sampling periods and priorities of control loops are adjusted timely according to the network workload condition and the dynamic performance of control loops, which make the system running in the optimal state all the time.

  13. Dynamical systems and linear algebra

    OpenAIRE

    Colonius, Fritz (Prof.)

    2007-01-01

    Dynamical systems and linear algebra / F. Colonius, W. Kliemann. - In: Handbook of linear algebra / ed. by Leslie Hogben. - Boca Raton : Chapman & Hall/CRC, 2007. - S. 56,1-56,22. - (Discrete mathematics and its applications)

  14. Dynamic Characteristics of Positive Pulsed Dielectric Barrier Discharge for Ozone Generation in Air

    International Nuclear Information System (INIS)

    Wei Linsheng; Peng Bangfa; Li Ming; Zhang Yafang; Hu Zhaoji

    2016-01-01

    A comprehensive dynamic model consisting of 66 reactions and 24 species is developed to investigate the dynamic characteristics of ozone generation by positive pulsed dielectric barrier discharge (DBD) using parallel-plate reactor in air. The electron energy conservation equation is coupled to the electron continuity equation, the heavy species continuity equation, and Poisson's equation for a better description. The reliability of the model is experimentally confirmed. The model can be used to predict the temporal and spatial evolution of species, as well as streamer propagation. The simulation results show that electron density increases nearly exponentially in the direction to the anode at the electron avalanche. Streamer propagation velocity is about 5.26 × 10 4 m/s from anode to cathode in the simulated condition. The primary positive ion, negative ion, and excited species are O 2 + , O 3 − and O 2 ( 1 Δg) in pulsed DBD in air, respectively. N 2 O has the largest density among nitrogen oxides. e and N 2 + densities in the streamer head increase gradually to maximum values with the development of the streamer. Meanwhile, the O 2 + , O, O 3 , N 2 (A 3 Σ) and N 2 O densities reach maximum values in the vicinity of the anode. (paper)

  15. Pod systems: an equivariant ordinary differential equation approach to dynamical systems on a spatial domain

    International Nuclear Information System (INIS)

    Elmhirst, Toby; Stewart, Ian; Doebeli, Michael

    2008-01-01

    We present a class of systems of ordinary differential equations (ODEs), which we call 'pod systems', that offers a new perspective on dynamical systems defined on a spatial domain. Such systems are typically studied as partial differential equations, but pod systems bring the analytic techniques of ODE theory to bear on the problems, and are thus able to study behaviours and bifurcations that are not easily accessible to the standard methods. In particular, pod systems are specifically designed to study spatial dynamical systems that exhibit multi-modal solutions. A pod system is essentially a linear combination of parametrized functions in which the coefficients and parameters are variables whose dynamics are specified by a system of ODEs. That is, pod systems are concerned with the dynamics of functions of the form Ψ(s, t) = y 1 (t) φ(s; x 1 (t)) + ··· + y N (t) φ(s; x N (t)), where s in R n is the spatial variable and φ: R n × R d → R. The parameters x i in R d and coefficients y i in R are dynamic variables which evolve according to some system of ODEs, x-dot i = G i (x, y) and y-dot i = H i (x, y), for i = 1, ..., N. The dynamics of Ψ in function space can then be studied through the dynamics of the x and y in finite dimensions. A vital feature of pod systems is that the ODEs that specify the dynamics of the x and y variables are not arbitrary; restrictions on G i and H i are required to guarantee that the dynamics of Ψ in function space are well defined (that is, that trajectories are unique). One important restriction is symmetry in the ODEs which arises because Ψ is invariant under permutations of the indices of the (x i , y i ) pairs. However, this is not the whole story, and the primary goal of this paper is to determine the necessary structure of the ODEs explicitly to guarantee that the dynamics of Ψ are well defined

  16. “Coupled processes” as dynamic capabilities in systems integration

    Directory of Open Access Journals (Sweden)

    Milton de Freitas Chagas Jr.

    2017-05-01

    Full Text Available The dynamics of innovation in complex systems industries is becoming an independent research stream. Apart from conventional uncertainties related to commerce and technology, complex-system industries must cope with systemic uncertainty. This paper’s objective is to analyze evolving technological paths from one product generation to the next through two case studies in the Brazilian aerospace indus­try, considering systems integration as an empirical instantiation of dynamic capabilities. A proposed “coupled processes” model intertwines two organizational processes regarded as two levels of dynamic capabilities: new product and technological developments. The model addresses the role of emergent properties in shaping a firm’s technological base. Moreover, it uses a technology readiness level to unveil systems integration business tricks and as a decision-making yardstick. The “coupled processes” model is revealed as a set of dynamic capabilities presenting ambidexterity in complex systems indus­tries, a finding that may be relevant for newly industrialized economies.

  17. Multiscale simulations of patchy particle systems combining Molecular Dynamics, Path Sampling and Green's Function Reaction Dynamics

    Science.gov (United States)

    Bolhuis, Peter

    Important reaction-diffusion processes, such as biochemical networks in living cells, or self-assembling soft matter, span many orders in length and time scales. In these systems, the reactants' spatial dynamics at mesoscopic length and time scales of microns and seconds is coupled to the reactions between the molecules at microscopic length and time scales of nanometers and milliseconds. This wide range of length and time scales makes these systems notoriously difficult to simulate. While mean-field rate equations cannot describe such processes, the mesoscopic Green's Function Reaction Dynamics (GFRD) method enables efficient simulation at the particle level provided the microscopic dynamics can be integrated out. Yet, many processes exhibit non-trivial microscopic dynamics that can qualitatively change the macroscopic behavior, calling for an atomistic, microscopic description. The recently developed multiscale Molecular Dynamics Green's Function Reaction Dynamics (MD-GFRD) approach combines GFRD for simulating the system at the mesocopic scale where particles are far apart, with microscopic Molecular (or Brownian) Dynamics, for simulating the system at the microscopic scale where reactants are in close proximity. The association and dissociation of particles are treated with rare event path sampling techniques. I will illustrate the efficiency of this method for patchy particle systems. Replacing the microscopic regime with a Markov State Model avoids the microscopic regime completely. The MSM is then pre-computed using advanced path-sampling techniques such as multistate transition interface sampling. I illustrate this approach on patchy particle systems that show multiple modes of binding. MD-GFRD is generic, and can be used to efficiently simulate reaction-diffusion systems at the particle level, including the orientational dynamics, opening up the possibility for large-scale simulations of e.g. protein signaling networks.

  18. Positioning with stationary emitters in a two-dimensional space-time

    International Nuclear Information System (INIS)

    Coll, Bartolome; Ferrando, Joan Josep; Morales, Juan Antonio

    2006-01-01

    The basic elements of the relativistic positioning systems in a two-dimensional space-time have been introduced in a previous work [Phys. Rev. D 73, 084017 (2006)] where geodesic positioning systems, constituted by two geodesic emitters, have been considered in a flat space-time. Here, we want to show in what precise senses positioning systems allow to make relativistic gravimetry. For this purpose, we consider stationary positioning systems, constituted by two uniformly accelerated emitters separated by a constant distance, in two different situations: absence of gravitational field (Minkowski plane) and presence of a gravitational mass (Schwarzschild plane). The physical coordinate system constituted by the electromagnetic signals broadcasting the proper time of the emitters are the so called emission coordinates, and we show that, in such emission coordinates, the trajectories of the emitters in both situations, the absence and presence of a gravitational field, are identical. The interesting point is that, in spite of this fact, particular additional information on the system or on the user allows us not only to distinguish both space-times, but also to complete the dynamical description of emitters and user and even to measure the mass of the gravitational field. The precise information under which these dynamical and gravimetric results may be obtained is carefully pointed out

  19. A nuclear fuel cycle system dynamic model for spent fuel storage options

    International Nuclear Information System (INIS)

    Brinton, Samuel; Kazimi, Mujid

    2013-01-01

    Highlights: • Used nuclear fuel management requires a dynamic system analysis study due to its socio-technical complexity. • Economic comparison of local, regional, and national storage options is limited due to the public financial information. • Local and regional options of used nuclear fuel management are found to be the most economic means of storage. - Abstract: The options for used nuclear fuel storage location and affected parameters such as economic liabilities are currently a focus of several high level studies. A variety of nuclear fuel cycle system analysis models are available for such a task. The application of nuclear fuel cycle system dynamics models for waste management options is important to life-cycle impact assessment. The recommendations of the Blue Ribbon Committee on America’s Nuclear Future led to increased focus on long periods of spent fuel storage [1]. This motivated further investigation of the location dependency of used nuclear fuel in the parameters of economics, environmental impact, and proliferation risk. Through a review of available literature and interactions with each of the programs available, comparisons of post-reactor fuel storage and handling options will be evaluated based on the aforementioned parameters and a consensus of preferred system metrics and boundary conditions will be provided. Specifically, three options of local, regional, and national storage were studied. The preliminary product of this research is the creation of a system dynamics tool known as the Waste Management Module (WMM) which provides an easy to use interface for education on fuel cycle waste management economic impacts. Initial results of baseline cases point to positive benefits of regional storage locations with local regional storage options continuing to offer the lowest cost

  20. Synthesis of recurrent neural networks for dynamical system simulation.

    Science.gov (United States)

    Trischler, Adam P; D'Eleuterio, Gabriele M T

    2016-08-01

    We review several of the most widely used techniques for training recurrent neural networks to approximate dynamical systems, then describe a novel algorithm for this task. The algorithm is based on an earlier theoretical result that guarantees the quality of the network approximation. We show that a feedforward neural network can be trained on the vector-field representation of a given dynamical system using backpropagation, then recast it as a recurrent network that replicates the original system's dynamics. After detailing this algorithm and its relation to earlier approaches, we present numerical examples that demonstrate its capabilities. One of the distinguishing features of our approach is that both the original dynamical systems and the recurrent networks that simulate them operate in continuous time. Copyright © 2016 Elsevier Ltd. All rights reserved.