WorldWideScience

Sample records for dynamic pole-to-pole oscillations

  1. Simplified Analytic Approach of Pole-to-Pole Faults in MMC-HVDC for AC System Backup Protection Setting Calculation

    Directory of Open Access Journals (Sweden)

    Tongkun Lan

    2018-01-01

    Full Text Available AC (alternating current system backup protection setting calculation is an important basis for ensuring the safe operation of power grids. With the increasing integration of modular multilevel converter based high voltage direct current (MMC-HVDC into power grids, it has been a big challenge for the AC system backup protection setting calculation, as the MMC-HVDC lacks the fault self-clearance capability under pole-to-pole faults. This paper focused on the pole-to-pole faults analysis for the AC system backup protection setting calculation. The principles of pole-to-pole faults analysis were discussed first according to the standard of the AC system protection setting calculation. Then, the influence of fault resistance on the fault process was investigated. A simplified analytic approach of pole-to-pole faults in MMC-HVDC for the AC system backup protection setting calculation was proposed. In the proposed approach, the derived expressions of fundamental frequency current are applicable under arbitrary fault resistance. The accuracy of the proposed approach was demonstrated by PSCAD/EMTDC (Power Systems Computer-Aided Design/Electromagnetic Transients including DC simulations.

  2. Solar Open Flux Migration from Pole to Pole: Magnetic Field Reversal.

    Science.gov (United States)

    Huang, G-H; Lin, C-H; Lee, L C

    2017-08-25

    Coronal holes are solar regions with low soft X-ray or low extreme ultraviolet intensities. The magnetic fields from coronal holes extend far away from the Sun, and thus they are identified as regions with open magnetic field lines. Coronal holes are concentrated in the polar regions during the sunspot minimum phase, and spread to lower latitude during the rising phase of solar activity. In this work, we identify coronal holes with outward and inward open magnetic fluxes being in the opposite poles during solar quiet period. We find that during the sunspot rising phase, the outward and inward open fluxes perform pole-to-pole trans-equatorial migrations in opposite directions. The migration of the open fluxes consists of three parts: open flux areas migrating across the equator, new open flux areas generated in the low latitude and migrating poleward, and new open flux areas locally generated in the polar region. All three components contribute to the reversal of magnetic polarity. The percentage of contribution from each component is different for different solar cycle. Our results also show that the sunspot number is positively correlated with the lower-latitude open magnetic flux area, but negatively correlated with the total open flux area.

  3. Oscillation theory for second order dynamic equations

    CERN Document Server

    Agarwal, Ravi P; O''Regan, Donal

    2003-01-01

    The qualitative theory of dynamic equations is a rapidly developing area of research. In the last 50 years, the Oscillation Theory of ordinary, functional, neutral, partial and impulsive differential equations, and their discrete versions, has inspired many scholars. Hundreds of research papers have been published in every major mathematical journal. Many books deal exclusively with the oscillation of solutions of differential equations, but most of these books appeal only to researchers who already know the subject. In an effort to bring Oscillation Theory to a new and broader audience, the authors present a compact, but thorough, understanding of Oscillation Theory for second order differential equations. They include several examples throughout the text not only to illustrate the theory, but also to provide new direction.

  4. Dynamics of microcapsules in oscillating shear flow

    Science.gov (United States)

    Zhao, Mengye; Bagchi, Prosenjit

    2011-11-01

    We present a three-dimensional numerical study on the dynamics of deformable capsules in sinusoidally oscillating shear flow. We consider capsules of spherical and oblate spheroid resting shapes. For spherical resting shapes, we find an identical deformation response during positive and negative vorticities. However, the deformation response becomes unequal and shows complex behavior for nonspherical resting shapes. The average elongation is higher in the retarding phase of the shear flow than in the accelerating phase. Primarily two types of dynamics are observed for nonspherical shapes: a clockwise/counter-clockwise swinging motion in response to the altering flow direction that occurs at both high and low values of shear rate amplitudes, and a continuous/unidirectional tumbling motion that occurs at intermediate values. The unidirectional tumbling motion occurs despite the fact that the time-average vorticity is zero. Such a tumbling motion is accompanied by a continuous tank-treading motion of the membrane in the opposite direction. We obtain phase diagram that shows existence of two critical shear rates and two oscillation frequencies. The unidirectional tumbling motion occurs in the intermediate range, and the clockwise/counter-clockwise swinging motion occurs otherwise. We also find that the dynamics is highly sensitive to the initial condition. A swinging is generally observed when the capsule is released aligned with the extensional or compressional axis of the shear flow, and a tumbling is observed otherwise. These results suggest the possibility of chaotic behavior of cells in time-dependent flows. We provide explanations of such complex dynamics by analyzing the coupling between the shape and angular oscillation and the imposed flow oscillation.

  5. Internal dynamics of long Josephson junction oscillators

    DEFF Research Database (Denmark)

    Christiansen, Peter Leth; Lomdahl, P. S.; Scott, Alwyn C.

    1981-01-01

    Numerical computations on a sine-Gordon model of the Josephson junction fluxon oscillator are compared with experimental measurements. Good agreement is found for the voltage current characteristic, oscillator power output, and range of current bias over which oscillation is observed. Our numeric...... results imply a ''bunched-fluxon'' mode of oscillation at larger values of bias current. Applied Physics Letters is copyrighted by The American Institute of Physics....

  6. Oscillation of second order neutral dynamic equations with distributed delay

    Directory of Open Access Journals (Sweden)

    Qiaoshun Yang

    2016-06-01

    Full Text Available In this paper, we establish new oscillation criteria for second order neutral dynamic equations with distributed delay by employing the generalized Riccati transformation. The obtained theorems essentially improve the oscillation results in the literature. And two examples are provided to illustrate to the versatility of our main results.

  7. Collective dynamics of delay-coupled limit cycle oscillators

    Indian Academy of Sciences (India)

    We present a brief overview of the effect of time-delayed coupling on the collective dynamics of such coupled systems. Simple model equations describing two oscillators with a discrete time-delayed coupling as well as those describing linear arrays of a large number of oscillators with time-delayed global or local couplings ...

  8. Oscillation criteria for fourth-order nonlinear delay dynamic equations

    Directory of Open Access Journals (Sweden)

    Yunsong Qi

    2013-03-01

    Full Text Available We obtain criteria for the oscillation of all solutions to a fourth-order nonlinear delay dynamic equation on a time scale that is unbounded from above. The results obtained are illustrated with examples

  9. Self-Sustaining Dynamical Nuclear Polarization Oscillations in Quantum Dots

    DEFF Research Database (Denmark)

    Rudner, Mark Spencer; Levitov, Leonid

    2013-01-01

    Early experiments on spin-blockaded double quantum dots revealed robust, large-amplitude current oscillations in the presence of a static (dc) source-drain bias. Despite experimental evidence implicating dynamical nuclear polarization, the mechanism has remained a mystery. Here we introduce......) and nuclear spin diffusion, which governs dynamics of the spatial profile of nuclear polarization. The proposed framework naturally explains the differences in phenomenology between vertical and lateral quantum dot structures as well as the extremely long oscillation periods....

  10. Fractional Relativistic Yamaleev Oscillator Model and Its Dynamical Behaviors

    Science.gov (United States)

    Luo, Shao-Kai; He, Jin-Man; Xu, Yan-Li; Zhang, Xiao-Tian

    2016-07-01

    In the paper we construct a new kind of fractional dynamical model, i.e. the fractional relativistic Yamaleev oscillator model, and explore its dynamical behaviors. We will find that the fractional relativistic Yamaleev oscillator model possesses Lie algebraic structure and satisfies generalized Poisson conservation law. We will also give the Poisson conserved quantities of the model. Further, the relation between conserved quantities and integral invariants of the model is studied and it is proved that, by using the Poisson conserved quantities, we can construct integral invariants of the model. Finally, the stability of the manifold of equilibrium states of the fractional relativistic Yamaleev oscillator model is studied. The paper provides a general method, i.e. fractional generalized Hamiltonian method, for constructing a family of fractional dynamical models of an actual dynamical system.

  11. Complex dynamics of a particle in an oscillating potential field

    Indian Academy of Sciences (India)

    Barnali Pal

    2017-07-25

    Jul 25, 2017 ... Abstract. In this paper, the classical problem of the motion of a particle in one dimension with an external time- dependent field is studied from the point of view of the dynamical system. The dynamical equations of motion of the particle are formulated. Equilibrium points of the non-oscillating systems are ...

  12. Dynamics of microbubble oscillators with delay coupling

    Science.gov (United States)

    Heckman, C. R.; Sah, S. M.; Rand, R. H.

    2010-10-01

    We investigate the stability of the in-phase mode in a system of two delay-coupled bubble oscillators. The bubble oscillator model is based on a 1956 paper by Keller and Kolodner. Delay coupling is due to the time it takes for a signal to travel from one bubble to another through the liquid medium that surrounds them. Using techniques from the theory of differential-delay equations as well as perturbation theory, we show that the equilibrium of the in-phase mode can be made unstable if the delay is long enough and if the coupling strength is large enough, resulting in a Hopf bifurcation. We then employ Lindstedt's method to compute the amplitude of the limit cycle as a function of the time delay. This work is motivated by medical applications involving noninvasive localized drug delivery via microbubbles.

  13. Analysis of reactor power oscillation based on nonlinear dynamic theory

    International Nuclear Information System (INIS)

    Suzudo, Tomoaki

    1994-07-01

    Reactor power oscillations are discussed based on nonlinear dynamic theory with reference to stability problem of boiling water reactors (BWRs). The reactor noise from an actual plant is, firstly, analyzed by a method originally used for the analysis of chaotic phenomenon. The results show that this method gives better dynamic descriptor of oscillatory motion than those from previous methods, and that it is applicable to real-time monitoring system of the reactor core. Next, the low-dimensional phenomenological model of BWR power oscillation is analytically studied using bifurcation theory, a branch of nonlinear dynamic theory. From this analysis are derived explicit expressions for the steady state's linear stability and weak stability not given by numerical analyses, and the qualitative properties of the power oscillation can be better understood. (author)

  14. Quantum dynamics and breakdown of classical realism in nonlinear oscillators

    International Nuclear Information System (INIS)

    Gat, Omri

    2007-01-01

    The leading nonclassical term in the quantum dynamics of nonlinear oscillators is calculated in the Moyal quasi-trajectory representation. The irreducibility of the quantum dynamics to phase-space trajectories is quantified by the discrepancy of the canonical quasi-flow and the quasi-flow of a general observable. This discrepancy is shown to imply the breakdown of classical realism that can give rise to a dynamical violation of Bell's inequalities. (fast track communication)

  15. Bistability in Coupled Oscillators Exhibiting Synchronized Dynamics

    Science.gov (United States)

    Olusola, O. I.; Vincent, U. E.; Njah, A. N.; Olowofela, J. A.

    2010-05-01

    We report some new results associated with the synchronization behavior of two coupled double-well Duffing oscillators (DDOs). Some sufficient algebraic criteria for global chaos synchronization of the drive and response DDOs via linear state error feedback control are obtained by means of Lyapunov stability theory. The synchronization is achieved through a bistable state in which a periodic attractor co-exists with a chaotic attractor. Using the linear perturbation analysis, the prevalence of attractors in parameter space and the associated bifurcations are examined. Subcritical and supercritical Hopf bifurcations and abundance of Arnold tongues — a signature of mode locking phenomenon are found.

  16. An oscillating dynamic model of collective cells in a monolayer

    Science.gov (United States)

    Lin, Shao-Zhen; Xue, Shi-Lei; Li, Bo; Feng, Xi-Qiao

    2018-03-01

    Periodic oscillations of collective cells occur in the morphogenesis and organogenesis of various tissues and organs. In this paper, an oscillating cytodynamic model is presented by integrating the chemomechanical interplay between the RhoA effector signaling pathway and cell deformation. We show that both an isolated cell and a cell aggregate can undergo spontaneous oscillations as a result of Hopf bifurcation, upon which the system evolves into a limit cycle of chemomechanical oscillations. The dynamic characteristics are tailored by the mechanical properties of cells (e.g., elasticity, contractility, and intercellular tension) and the chemical reactions involved in the RhoA effector signaling pathway. External forces are found to modulate the oscillation intensity of collective cells in the monolayer and to polarize their oscillations along the direction of external tension. The proposed cytodynamic model can recapitulate the prominent features of cell oscillations observed in a variety of experiments, including both isolated cells (e.g., spreading mouse embryonic fibroblasts, migrating amoeboid cells, and suspending 3T3 fibroblasts) and multicellular systems (e.g., Drosophila embryogenesis and oogenesis).

  17. Complex delay dynamics of high power quantum cascade oscillators

    Science.gov (United States)

    Grillot, F.; Newell, T. C.; Gavrielides, A.; Carras, M.

    2017-08-01

    Quantum cascade lasers (QCL) have become the most suitable laser sources from the mid-infrared to the THz range. This work examines the effects of external feedback in different high power mid infrared QCL structures and shows that different conditions of the feedback wave can produce complex dynamics hence stabilization, destabilization into strong mode-competition or undamping nonlinear oscillations. As a dynamical system, reinjection of light back into the cavity also can also provoke apparition of chaotic oscillations, which must be avoided for a stable operation both at mid-infrared and THz wavelengths.

  18. Dynamics of chiral oscillations: a comparative analysis with spin flipping

    International Nuclear Information System (INIS)

    Bernardini, A E

    2006-01-01

    Chiral oscillation as well as spin flipping effects correspond to quantum phenomena of fundamental importance in the context of particle physics and, in particular, of neutrino physics. From the point of view of first quantized theories, we are specifically interested in pointing out the differences between chirality and helicity by obtaining their dynamic equations for a fermionic Dirac-type particle (neutrino). We also identify both effects when the non-minimal coupling with an external (electro)magnetic field in the neutrino interacting Lagrangian is taken into account. We demonstrate that, however, there is no constraint between chiral oscillations, when it takes place in vacuum, and the process of spin flipping related to the helicity quantum number, which does not take place in vacuum. To conclude, we show that the origin of chiral oscillations (in vacuum) can be interpreted as projections of very rapid oscillations of position onto the longitudinal direction of momentum

  19. Relaxation oscillations and transport barrier dynamics in tokamak edge plasmas

    International Nuclear Information System (INIS)

    Benkadda, Sadruddin; Beyer, Peter; Fuhr-Chaudier, Guillaume; Garbet, Xavier; Ghendrih, Philippe; Sarazin, Yanick

    2004-01-01

    Oscillations of turbulent transport of particles and energy in magnetically confined plasmas can be easily observed in simulations of a variety of turbulence models. These oscillations typically involve a mechanism of energy exchange between fluctuations and a poloidal shear flow. This kind of ''predator-prey'' mechanism is found to be not relevant for transport barrier relaxations. In RBM simulations of resistive ballooning turbulence with transport barrier, relaxation oscillations of the latter are observed even in the case of frozen poloidal shear flow. These relaxations are due to a transitory growth of a mode localized at the barrier center. A one-dimensional model for the evolution of such a mode in the presence of a shear flow describes a transitory growth of an initial perturbation. Oscillations in the case of a finite steady-state shear flow are possible due to the coupling of the mode to the dynamics of the pressure profile. (author)

  20. Entanglement dynamics of two coupled mechanical oscillators in modulated optomechanics

    Science.gov (United States)

    Chakraborty, Subhadeep; Sarma, Amarendra K.

    2018-02-01

    We study the entanglement dynamics of two coupled mechanical oscillators, within a modulated optomechanical system. We find that, depending on the strength of the mechanical coupling, one could observe either a stationary or a dynamical behavior of the mechanical entanglement, which is extremely robust against the oscillator temperature. Moreover, we have shown that this entanglement dynamics is strongly related to the stability of the normal modes. Taking mechanical damping effects into account, an analytical expression corresponding to the critical mechanical coupling strength, where the transition from stationary to dynamical entanglement occurs, is also reported. The proposed scheme is analyzed with experimentally realistic parameters, making it a promising means to realize macroscopic quantum entanglement within current state-of-the-art experimental setups.

  1. Dynamics of nonlinear oscillators with time-varying conjugate coupling

    Indian Academy of Sciences (India)

    We explore the dynamical consequences of time-varying conjugate coupling in a system of nonlinear oscillators. We analyze the behavior of coupled ... Conjugate coupling; time varying coupling. PACS Nos 05.45.Xt. 1. Introduction ..... MDS acknowledges the financial support from DST,. New Delhi. References. [1] L Glass ...

  2. The dynamics of two linearly coupled Goodwin oscillators

    Science.gov (United States)

    Antonova, A. O.; Reznik, S. N.; Todorov, M. D.

    2017-10-01

    In this paper the Puu model of the interaction of Goodwin's business cycles for two regions is reconsidered. We investigated the effect of the accelerator coefficients and the Hicksian 'ceiling' and 'floor' parameters on the time dynamics of incomes for different values of marginal propensity to import. The cases when the periods of isolated Goodwin's cycles are close, and when they differ approximately twice are considered. By perturbation theory we obtained the formulas for slowly varying amplitudes and phase difference of weakly nonlinear coupled Goodwin oscillations. The coupled oscillations of two Goodwin's cycles with piecewise linear accelerators with only 'floor' are considered.

  3. The SUSY oscillator from local geometry: Dynamics and coherent states

    International Nuclear Information System (INIS)

    Thienel, H.P.

    1994-01-01

    The choice of a coordinate chart on an analytical R n (R a n ) provides a representation of the n-dimensional SUSY oscillator. The corresponding Hilbert space is Cartan's exterior algebra endowed with a suitable scalar product. The exterior derivative gives rise to the algebra of the n-dimensional SUSY oscillator. Its euclidean dynamics is an inherent consequence of the geometry imposed by the Lie derivative generating the dilations, i.e. evolution of the quantum system corresponds to parametrization of a sequence of charts by euclidean time. Coherent states emerge as a natural structure related to the Lie derivative generating the translations. (orig.)

  4. Pseudochaotic kicked oscillators renormalization, symbolic dynamics, and transport

    CERN Document Server

    Lowenstein, John H

    2012-01-01

    "Pseudochaotic Kicked Oscillators: Renormalization, Symbolic Dynamics, and Transport" presents recent developments in pseudochaos, which is concerned with complex branching behaviors of dynamical systems at the interface between orderly and chaotic motion. Pseudochaos is characterized by the trapping of orbits in the vicinity of self-similar hierarchies of islands of stability, producing phase-space displacements which increase asymptotically as a power of time. This monograph is a thorough, self-contained investigation of a simple one-dimensional model (a kicked harmonic oscillator) which exhibits pseudochaos in its purest form. It is intended for graduate students and researchers in physics and applied mathematics, as well as specialists in nonlinear dynamics.   Dr. John H. Lowenstein is a Professor Emeritus in the Department of Physics at New York University, USA.

  5. Pilot-Induced Oscillations and Human Dynamic Behavior

    Science.gov (United States)

    McRuer, Duane T.

    1995-01-01

    This is an in-depth survey and study of pilot-induced oscillations (PIO's) as interactions between human pilot and vehicle dynamics; it includes a broad and comprehensive theory of PIO's. A historical perspective provides examples of the diversity of PIO's in terms of control axes and oscillation frequencies. The constituents involved in PIO phenomena, including effective aircraft dynamics, human pilot dynamic behavior patterns, and triggering precursor events, are examined in detail as the structural elements interacting to produce severe pilot-induced oscillations. The great diversity of human pilot response patterns, excessive lags and/or inappropriate gain in effective aircraft dynamics, and transitions in either the human or effective aircraft dynamics are among the key sources implicated as factors in severe PIO's. The great variety of interactions which may result in severe PIO's is illustrated by examples drawn from famous PIO's. These are generalized under a pilot-behavior-theory-based set of categories proposed as a classification scheme pertinent to a theory of PIO's. Finally, a series of interim prescriptions to avoid PIO is provided.

  6. Synchronization of networks of chaotic oscillators: Structural and dynamical datasets

    Directory of Open Access Journals (Sweden)

    Ricardo Sevilla-Escoboza

    2016-06-01

    Full Text Available We provide the topological structure of a series of N=28 Rössler chaotic oscillators diffusively coupled through one of its variables. The dynamics of the y variable describing the evolution of the individual nodes of the network are given for a wide range of coupling strengths. Datasets capture the transition from the unsynchronized behavior to the synchronized one, as a function of the coupling strength between oscillators. The fact that both the underlying topology of the system and the dynamics of the nodes are given together makes this dataset a suitable candidate to evaluate the interplay between functional and structural networks and serve as a benchmark to quantify the ability of a given algorithm to extract the structural network of connections from the observation of the dynamics of the nodes. At the same time, it is possible to use the dataset to analyze the different dynamical properties (randomness, complexity, reproducibility, etc. of an ensemble of oscillators as a function of the coupling strength.

  7. Oscillation of Two-Dimensional Neutral Delay Dynamic Systems

    Directory of Open Access Journals (Sweden)

    Xinli Zhang

    2013-01-01

    Full Text Available We consider a class of nonlinear two-dimensional dynamic systems of the neutral type (x(t-a(tx(τ1(tΔ=p(tf1(y(t, yΔ(t=-q(tf2(x(τ2(t. We obtain sufficient conditions for all solutions of the system to be oscillatory. Our oscillation results when a(t=0 improve the oscillation results for dynamic systems on time scales that have been established by Fu and Lin (2010, since our results do not restrict to the case where f(u=u. Also, as a special case when =ℝ, our results do not require an to be a positive real sequence. Some examples are given to illustrate the main results.

  8. Chaotic Dynamics and Application of LCR Oscillators Sharing Common Nonlinearity

    Science.gov (United States)

    Jeevarekha, A.; Paul Asir, M.; Philominathan, P.

    2016-06-01

    This paper addresses the problem of sharing common nonlinearity among nonautonomous and autonomous oscillators. By choosing a suitable common nonlinear element with the driving point characteristics capable of bringing out chaotic motion in a combined system, we obtain identical chaotic states. The dynamics of the coupled system is explored through numerical and experimental studies. Employing the concept of common nonlinearity, a simple chaotic communication system is modeled and its performance is verified through Multisim simulation.

  9. Dynamics of order parameters for globally coupled oscillators

    DEFF Research Database (Denmark)

    De Monte, Silvia; D'ovidio, Francesco

    2002-01-01

    The equation of motion for the centroid of globally coupled oscillators with natural frequency mismatch is obtained through a series expansion in order parameters, valid for any population size. In the case of strong coupling and narrow-frequency distribution the first-order expansion (correspond......The equation of motion for the centroid of globally coupled oscillators with natural frequency mismatch is obtained through a series expansion in order parameters, valid for any population size. In the case of strong coupling and narrow-frequency distribution the first-order expansion...... (corresponding to a system where the centroid is coupled to a second macroscopic variable), predicts transient and asymptotic properties of the dynamics of the centroid. Phase transitions appear as macroscopic bifurcations. Collective properties arising in the transient, and particularly critical perturbations...

  10. Solar atmosphere wave dynamics generated by solar global oscillating eigenmodes

    Science.gov (United States)

    Griffiths, M. K.; Fedun, V.; Erdélyi, R.; Zheng, R.

    2018-01-01

    The solar atmosphere exhibits a diverse range of wave phenomena, where one of the earliest discovered was the five-minute global acoustic oscillation, also referred to as the p-mode. The analysis of wave propagation in the solar atmosphere may be used as a diagnostic tool to estimate accurately the physical characteristics of the Sun's atmospheric layers. In this paper, we investigate the dynamics and upward propagation of waves which are generated by the solar global eigenmodes. We report on a series of hydrodynamic simulations of a realistically stratified model of the solar atmosphere representing its lower region from the photosphere to low corona. With the objective of modelling atmospheric perturbations, propagating from the photosphere into the chromosphere, transition region and low corona, generated by the photospheric global oscillations the simulations use photospheric drivers mimicking the solar p-modes. The drivers are spatially structured harmonics across the computational box parallel to the solar surface. The drivers perturb the atmosphere at 0.5 Mm above the bottom boundary of the model and are placed coincident with the location of the temperature minimum. A combination of the VALIIIC and McWhirter solar atmospheres are used as the background equilibrium model. We report how synthetic photospheric oscillations may manifest in a magnetic field free model of the quiet Sun. To carry out the simulations, we employed the magnetohydrodynamics code, SMAUG (Sheffield MHD Accelerated Using GPUs). Our results show that the amount of energy propagating into the solar atmosphere is consistent with a model of solar global oscillations described by Taroyan and Erdélyi (2008) using the Klein-Gordon equation. The computed results indicate a power law which is compared to observations reported by Ireland et al. (2015) using data from the Solar Dynamics Observatory/Atmospheric Imaging Assembly.

  11. Tearing mode dynamics and sawtooth oscillation in Hall-MHD

    Science.gov (United States)

    Ma, Zhiwei; Zhang, Wei; Wang, Sheng

    2017-10-01

    Tearing mode instability is one of the most important dynamic processes in space and laboratory plasmas. Hall effects, resulted from the decoupling of electron and ion motions, could cause the fast development and perturbation structure rotation of the tearing mode and become non-negligible. We independently developed high accuracy nonlinear MHD code (CLT) to study Hall effects on the dynamic evolution of tearing modes with Tokamak geometries. It is found that the rotation frequency of the mode in the electron diamagnetic direction is in a good agreement with analytical prediction. The linear growth rate increases with increase of the ion inertial length, which is contradictory to analytical solution in the slab geometry. We further find that the self-consistently generated rotation largely alters the dynamic behavior of the double tearing mode and the sawtooth oscillation. National Magnetic Confinement Fusion Science Program of China under Grant No. 2013GB104004 and 2013GB111004.

  12. Nonlinear Dynamics of Memristor Based 2nd and 3rd Order Oscillators

    KAUST Repository

    Talukdar, Abdul Hafiz

    2011-05-01

    Exceptional behaviours of Memristor are illustrated in Memristor based second order (Wien oscillator) and third order (phase shift oscillator) oscillator systems in this Thesis. Conventional concepts about sustained oscillation have been argued by demonstrating the possibility of sustained oscillation with oscillating resistance and dynamic poles. Mathematical models are also proposed for analysis and simulations have been presented to support the surprising characteristics of the Memristor based oscillator systems. This thesis also describes a comparative study among the Wien family oscillators with one Memristor. In case of phase shift oscillator, one Memristor and three Memristors systems are illustrated and compared to generalize the nonlinear dynamics observed for both 2nd order and 3rd order system. Detail explanations are provided with analytical models to simplify the unconventional properties of Memristor based oscillatory systems.

  13. Quasi-relativistic fermions and dynamical flavour oscillations

    CERN Document Server

    Alexandre, Jean; Mavromatos, Nick E.

    2014-01-01

    We introduce new Lorentz-symmetry violating kinematics for a four-fermion interaction model, where dynamical mass generation is allowed, irrespectively of the strength of the coupling. In addition, these kinematics lead to a quasi-relativistic dispersion relation, in the sense that it is relativistic in both the infrared and the ultraviolet, but not in an intermediate regime, characterized by the mass $M$. For two fermions, we show that a flavour-mixing mass matrix is generated dynamically, and the Lorentz symmetric limit $M\\to\\infty$ leads to two free relativistic fermions, with flavour oscillations. This model, valid for either Dirac or Majorana fermions, can describe any set of phenomenological values for the eigen masses and the mixing angle.

  14. Information money fields of cyclic oscillations in nonlinear dynamic economic system

    OpenAIRE

    Ledenyov, Dimitri O.; Ledenyov, Viktor O.

    2015-01-01

    Article introduces the notion of information money fields of the cyclic oscillations of the economic variables in the nonlinear dynamic economic system for the first time, and presents an original research on the Ledenyov theory on the information money fields of the cyclic oscillations of the economic variables in the nonlinear dynamic economic system. The Ledenyov theory on the information money fields of the cyclic oscillations of economic variables in the nonlinear dynamic economic system...

  15. Slackline dynamics and the Helmholtz–Duffing oscillator

    Science.gov (United States)

    Athanasiadis, Panos J.

    2018-01-01

    Slacklining is a new, rapidly expanding sport, and understanding its physics is paramount for maximizing fun and safety. Yet, compared to other sports, very little has been published so far on slackline dynamics. The equations of motion describing a slackline are fundamentally nonlinear, and assuming linear elasticity, they lead to a form of the Duffing equation. Following this approach, characteristic examples of slackline motion are simulated, including trickline bouncing, leash falls and longline surfing. The time-dependent solutions of the differential equations describing the system are acquired by numerical integration. A simple form of energy dissipation (linear drag) is added in some cases. It is recognized in this study that geometric nonlinearity is a fundamental aspect characterizing the dynamics of slacklines. Sports, and particularly slackline, is an excellent way of engaging young people with physics. A slackline is a simple yet insightful example of a nonlinear oscillator. It is very easy to model in the laboratory, as well as to rig and try on a university campus. For instructive purposes, its behaviour can be explored by numerically integrating the respective equations of motion. A form of the Duffing equation emerges naturally in the analysis and provides a powerful introduction to nonlinear dynamics. The material is suitable for graduate students and undergraduates with a background in classical mechanics and differential equations.

  16. Subharmonic Oscillations and Chaos in Dynamic Atomic Force Microscopy

    Science.gov (United States)

    Cantrell, John H.; Cantrell, Sean A.

    2015-01-01

    The increasing use of dynamic atomic force microscopy (d-AFM) for nanoscale materials characterization calls for a deeper understanding of the cantilever dynamics influencing scan stability, predictability, and image quality. Model development is critical to such understanding. Renormalization of the equations governing d- AFM provides a simple interpretation of cantilever dynamics as a single spring and mass system with frequency dependent cantilever stiffness and damping parameters. The renormalized model is sufficiently robust to predict the experimentally observed splitting of the free-space cantilever resonance into multiple resonances upon cantilever-sample contact. Central to the model is the representation of the cantilever sample interaction force as a polynomial expansion with coefficients F(sub ij) (i,j = 0, 1, 2) that account for the effective interaction stiffness parameter, the cantilever-to-sample energy transfer, and the amplitude of cantilever oscillation. Application of the Melnikov method to the model equation is shown to predict a homoclinic bifurcation of the Smale horseshoe type leading to a cascade of period doublings with increasing drive displacement amplitude culminating in chaos and loss of image quality. The threshold value of the drive displacement amplitude necessary to initiate subharmonic generation depends on the acoustic drive frequency, the effective damping coefficient, and the nonlinearity of the cantilever-sample interaction force. For parameter values leading to displacement amplitudes below threshold for homoclinic bifurcation other bifurcation scenarios can occur, some of which lead to chaos.

  17. Nonlinear dynamics in micromechanical and nanomechanical resonators and oscillators

    Science.gov (United States)

    Dunn, Tyler

    dynamics in passive resonators, self-sustained MEMS are becoming increasingly prevalent in both research and technology for crucial objectives, such as measurement of time. Despite some effort, much work remains in order to understand phase noise and stability for an oscillator based upon a nonlinear resonator. With the eventual goal of making comprehensive measurements of such a nonlinear oscillator with controlled amplitude and phase, this work describes the realization of a micromechanical phase feedback oscillator.

  18. Nonlinear dynamics of spin transfer nano-oscillators

    Indian Academy of Sciences (India)

    oscillations, is termed as spin transfer torque nano-oscillator or simply spin transfer nano- oscillator (STNO). However, the above nanoscale level microwave source lacks efficiency on two counts: (1) low output power (∼ nW), (2) high signal-to-noise ratio. Both the issues can be handled by phase locking a large array of ...

  19. Damping of Rabi oscillations in quantum dots due to lattice dynamics

    OpenAIRE

    Machnikowski, Pawel; Jacak, Lucjan

    2003-01-01

    We show that the interaction between carriers confined in a quantum dot and the surrounding lattice under external driving of carrier dynamics has a dynamical, resonant character. The quality of Rabi oscillations in such a system depends on the relation between nonlinear spectral characteristics of the driven dynamics and the spectral density of effectively coupled lattice modes (phonon frequencies and density of states). For a large number of Rabi oscillations within a fixed time (allowed by...

  20. Building better oscillators using nonlinear dynamics and pattern ...

    Indian Academy of Sciences (India)

    2015-02-18

    Feb 18, 2015 ... Keywords. Oscillator; clock; nonlinear; noise; nanomechanics; synchronization. Abstract. Frequency and time references play an essential role in modern technology and in living systems. The precision of self-sustained oscillations is limited by the effects of noise, which becomes evermore important as the ...

  1. Building better oscillators using nonlinear dynamics and pattern ...

    Indian Academy of Sciences (India)

    work aimed to mitigate the bad effects of resonator nonlinearity on oscillator performance and to exploit the nonlinearity in novel ways to improve the performance. Our focus is on oscillators built from nanomechanical devices, but the ideas apply generally. This paper is a summary of work published in a number of papers ...

  2. How optimal synchronization of oscillators depends on the network structure and the individual dynamical properties of the oscillators

    International Nuclear Information System (INIS)

    Markovic, R; Gosak, M; Marhl, M

    2013-01-01

    The problem of making a network of dynamical systems synchronize onto a common evolution is the subject of much ongoing research in several scientific disciplines. It is nowadays a well-known fact that the synchronization processes are gradually influenced by the interaction topology between the dynamically interacting units. A complex coupling configuration can significantly affect the synchronization abilities of a networked system. However, the question arises what is the optimal network topology that provides enhancement of the synchronization features under given circumstances. In order to address this issue we make use of a network model in which we can smoothly tune the topology from a highly heterogeneous and efficient scale-free network to a homogeneous and less efficient network. The network is then populated with Poincaré oscillators, a paradigmatic model for limit-cycle oscillations. This oscillator model exhibits a parameter that enables changes of the limit cycle attraction and is thus immediately related to flexibility/rigidity properties of the oscillator. Our results reveal that for weak attractions of the limit cycle, intermediate homogeneous topology ensures maximal synchronization, whereas highly heterogeneous scale-free topology ensures maximal synchronization for strong attractions of the limit cycle. We argue that the flexibility/rigidity of individual nodes of the networks defines the topology, where maximal global coherence is achieved.

  3. Detection of fast oscillating magnetic fields using dynamic multiple TR imaging and Fourier analysis.

    Directory of Open Access Journals (Sweden)

    Ki Hwan Kim

    Full Text Available Neuronal oscillations produce oscillating magnetic fields. There have been trials to detect neuronal oscillations using MRI, but the detectability in in vivo is still in debate. Major obstacles to detecting neuronal oscillations are (i weak amplitudes, (ii fast oscillations, which are faster than MRI temporal resolution, and (iii random frequencies and on/off intervals. In this study, we proposed a new approach for direct detection of weak and fast oscillating magnetic fields. The approach consists of (i dynamic acquisitions using multiple times to repeats (TRs and (ii an expanded frequency spectral analysis. Gradient echo echo-planar imaging was used to test the feasibility of the proposed approach with a phantom generating oscillating magnetic fields with various frequencies and amplitudes and random on/off intervals. The results showed that the proposed approach could precisely detect the weak and fast oscillating magnetic fields with random frequencies and on/off intervals. Complex and phase spectra showed reliable signals, while no meaningful signals were observed in magnitude spectra. A two-TR approach provided an absolute frequency spectrum above Nyquist sampling frequency pixel by pixel with no a priori target frequency information. The proposed dynamic multiple-TR imaging and Fourier analysis are promising for direct detection of neuronal oscillations and potentially applicable to any pulse sequences.

  4. Detection of fast oscillating magnetic fields using dynamic multiple TR imaging and Fourier analysis.

    Science.gov (United States)

    Kim, Ki Hwan; Heo, Hyo-Im; Park, Sung-Hong

    2018-01-01

    Neuronal oscillations produce oscillating magnetic fields. There have been trials to detect neuronal oscillations using MRI, but the detectability in in vivo is still in debate. Major obstacles to detecting neuronal oscillations are (i) weak amplitudes, (ii) fast oscillations, which are faster than MRI temporal resolution, and (iii) random frequencies and on/off intervals. In this study, we proposed a new approach for direct detection of weak and fast oscillating magnetic fields. The approach consists of (i) dynamic acquisitions using multiple times to repeats (TRs) and (ii) an expanded frequency spectral analysis. Gradient echo echo-planar imaging was used to test the feasibility of the proposed approach with a phantom generating oscillating magnetic fields with various frequencies and amplitudes and random on/off intervals. The results showed that the proposed approach could precisely detect the weak and fast oscillating magnetic fields with random frequencies and on/off intervals. Complex and phase spectra showed reliable signals, while no meaningful signals were observed in magnitude spectra. A two-TR approach provided an absolute frequency spectrum above Nyquist sampling frequency pixel by pixel with no a priori target frequency information. The proposed dynamic multiple-TR imaging and Fourier analysis are promising for direct detection of neuronal oscillations and potentially applicable to any pulse sequences.

  5. Border Figure Detection Using a Phase Oscillator Network with Dynamical Coupling

    Directory of Open Access Journals (Sweden)

    L. H. A. Monteiro

    2008-01-01

    Full Text Available Oscillator networks have been developed in order to perform specific tasks related to image processing. Here we analytically investigate the existence of synchronism in a pair of phase oscillators that are short-range dynamically coupled. Then, we use these analytical results to design a network able of detecting border of black-and-white figures. Each unit composing this network is a pair of such phase oscillators and is assigned to a pixel in the image. The couplings among the units forming the network are also dynamical. Border detection emerges from the network activity.

  6. Nonlinear dynamics of spin transfer nano-oscillators

    Indian Academy of Sciences (India)

    integration with CMOS circuits, we establish suitable electrical connections between the oscilla- tors. Although the electrical connection makes the system more complex, the applied microwave magnetic field drives the ..... is shown in figure 3. (2) Out-of-plane oscillation (as shown in figure 4) – the magnetization vector (m).

  7. Morse oscillator propagator in the high temperature limit II: Quantum dynamics and spectroscopy

    Science.gov (United States)

    Toutounji, Mohamad

    2018-04-01

    This paper is a continuation of Paper I (Toutounji, 2017) of which motivation was testing the applicability of Morse oscillator propagator whose analytical form was derived by Duru (1983). This is because the Morse oscillator propagator was reported (Duru, 1983) in a triple-integral form of a functional of modified Bessel function of the first kind, which considerably limits its applicability. For this reason, I was prompted to find a regime under which Morse oscillator propagator may be simplified and hence be expressed in a closed-form. This was well accomplished in Paper I. Because Morse oscillator is of central importance and widely used in modelling vibrations, its propagator applicability will be extended to applications in quantum dynamics and spectroscopy as will be reported in this paper using the off-diagonal propagator of Morse oscillator whose analytical form is derived.

  8. Dynamic analysis of the conditional oscillator underlying slow waves in thalamocortical neurons

    Directory of Open Access Journals (Sweden)

    Francois eDavid

    2016-02-01

    Full Text Available During non-REM sleep the EEG shows characteristics waves that are generated by the dynamic interactions between cortical and thalamic oscillators. In thalamic neurons, low-threshold T-type Ca2+ channels play a pivotal role in almost every type of neuronal oscillations, including slow (<1 Hz waves, sleep spindles and delta waves. The transient opening of T channels gives rise to the low threshold spikes (LTSs, and associated high frequency bursts of action potentials, that are characteristically present during sleep spindles and delta waves, whereas the persistent opening of a small fraction of T channels, (i.e. ITwindow is responsible for the membrane potential bistability underlying sleep slow oscillations. Surprisingly thalamocortical (TC neurons express a very high density of T channels that largely exceed the amount required to generate LTSs and therefore, to support certain, if not all, sleep oscillations. Here, to clarify the relationship between T current density and sleep oscillations, we systematically investigated the impact of the T conductance level on the intrinsic rhythmic activities generated in TC neurons, combining in vitro experiments and TC neuron simulation. Using bifurcation analysis, we provide insights into the dynamical processes taking place at the transition between slow and delta oscillations. Our results show that although stable delta oscillations can be evoked with minimal T conductance, the full range of slow oscillation patterns, including groups of delta oscillations separated by Up states (grouped-delta slow waves requires a high density of T channels. Moreover, high levels of T conductance ensure the robustness of different types of slow oscillations.

  9. Dynamical Symmetries of Two-Dimensional Dirac Equation with Screened Coulomb and Isotropic Harmonic Oscillator Potentials

    International Nuclear Information System (INIS)

    Wang Qing; Hou Yu-Long; Jing Jian; Long Zheng-Wen

    2014-01-01

    In this paper, we study symmetrical properties of two-dimensional (2D) screened Dirac Hydrogen atom and isotropic harmonic oscillator with scalar and vector potentials of equal magnitude (SVPEM). We find that it is possible for both cases to preserve so(3) and su(2) dynamical symmetries provided certain conditions are satisfied. Interestingly, the conditions for preserving these dynamical symmetries are exactly the same as non-relativistic screened Hydrogen atom and screened isotropic oscillator preserving their dynamical symmetries. Some intuitive explanations are proposed. (general)

  10. Dynamical Fano-Like Interference between Rabi Oscillations and Coherent Phonons in a Semiconductor Microcavity System.

    Science.gov (United States)

    Yoshino, S; Oohata, G; Mizoguchi, K

    2015-10-09

    We report on dynamical interference between short-lived Rabi oscillations and long-lived coherent phonons in CuCl semiconductor microcavities resulting from the coupling between the two oscillations. The Fourier-transformed spectra of the time-domain signals obtained from semiconductor microcavities by using a pump-probe technique show that the intensity of the coherent longitudinal optical phonon of CuCl is enhanced by increasing that of the Rabi oscillation, which indicates that the coherent phonon is driven by the Rabi oscillation through the Fröhlich interaction. Moreover, as the Rabi oscillation frequency decreases upon crossing the phonon frequency, the spectral profile of the coherent phonon changes from a peak to a dip with an asymmetric structure. The continuous wavelet transformation reveals that these peak and dip structures originate from constructive and destructive interference between Rabi oscillations and coherent phonons, respectively. We demonstrate that the asymmetric spectral structures in relation to the frequency detuning are well reproduced by using a classical coupled oscillator model on the basis of dynamical Fano-like interference.

  11. Overview of Solar Seismology: Oscillations as Probes of Internal Structure and Dynamics in the Sun

    Science.gov (United States)

    Toomre, J.

    1984-01-01

    The physical nature of solar oscillations is reviewed. The nomenclature of the subject and the techniques used to interpret the oscillations are discussed. Many of the acoustic and gravity waves that can be observed in the atmosphere of the Sun are actually resonant or standing modes of the interior; precise measurements of the frequencies of such modes allow deductions of the internal structure and dynamics of this star. The scientific objectives of such studies of solar seismic disturbances, or of solar seismology, are outlined. The reasons why it would be very beneficial to carry out further observations of solar oscillations both from ground based networks and from space will be discussed.

  12. On the dynamics of traveling phase-oscillators with positive and negative couplings

    International Nuclear Information System (INIS)

    Choi, Jungzae; Choi, Mooyoung; Yoon, Byunggook

    2014-01-01

    We investigate numerically the dynamics of traveling clusters in systems of phase oscillators, some of which possess positive couplings and others negative couplings. The phase distribution, speed of traveling, and average separation between clusters, as well as the order parameters for positive and negative oscillators, are computed as the ratio of the two coupling constants and the fraction of positive oscillators are varied. The dependence of the traveling speed on these parameters is obtained and is observed to fit well with the numerical data of the systems. With the help of this, we describe the conditions for the traveling state to appear in the systems with and without a periodic driving field.

  13. The dynamics of a thermal non-equilibrium anharmonic oscillator

    OpenAIRE

    Nachbagauer, Herbert

    1995-01-01

    We propose an non-standard method to calculate non-equilibrium physical observables. Considering the generic example of an anharmonic quantum oscillator, we take advantage of the fact that the commutator algebra of second order polynomials in creation/annihilation operators closes. We solve the von~Neumann equation for the density-operator exactly in the mean field approximation and study the time evolution of the particle number and the expectation value .

  14. Statistical macrodynamics of large dynamical systems. Case of a phase transition in oscillator communities

    International Nuclear Information System (INIS)

    Kuramoto, Y.; Nishikawa, I.

    1987-01-01

    A model dynamical system with a great many degrees of freedom is proposed for which the critical condition for the onset of collective oscillations, the evolution of a suitably defined order parameter, and its fluctuations around steady states can be studied analytically. This is a rotator model appropriate for a large population of limit cycle oscillators. It is assumed that the natural frequencies of the oscillators are distributed and that each oscillator interacts with all the others uniformly. An exact self-consistent equation for the stationary amplitude of the collective oscillation is derived and is extended to a dynamical form. This dynamical extension is carried out near the transition point where the characteristic time scales of the order parameter and of the individual oscillators become well separated from each other. The macroscopic evolution equation thus obtained generally involves a fluctuating term whose irregular temporal variation comes from a deterministic torus motion of a subpopulation. The analysis of this equation reveals order parameter behavior qualitatively different from that in thermodynamic phase transitions, especially in that the critical fluctuations in the present system are extremely small

  15. Tight Coupling of Metabolic Oscillations and Intracellular Water Dynamics in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Thoke, Henrik Seir; Tobiesen, Asger; Brewer, Jonathan R.

    2015-01-01

    conditions, ii) water dipolar relaxation oscillates with glycolysis and in phase with ATP concentration, iii) this phenomenon is scale-invariant from the subcellular to the ensemble of synchronized cells and, iv) the periodicity of both glycolytic oscillations and dipolar relaxation are equally affected by D......We detected very strong coupling between the oscillating concentration of ATP and the dynamics of intracellular water during glycolysis in Saccharomyces cerevisiae. Our results indicate that: i) dipolar relaxation of intracellular water is heterogeneous within the cell and different from dilute......2O in a dose-dependent manner. These results offer a new insight into the coupling of an emergent intensive physicochemical property of the cell, i.e. cell-wide water dipolar relaxation, and a central metabolite (ATP) produced by a robustly oscillating metabolic process....

  16. Dynamical and gravitational instability of an oscillating-field dark energy and dark matter

    International Nuclear Information System (INIS)

    Johnson, Matthew C.; Kamionkowski, Marc

    2008-01-01

    Coherent oscillations of a scalar field can mimic the behavior of a perfect fluid with an equation-of-state parameter determined by the properties of the potential, possibly driving accelerated expansion in the early Universe (inflation) and/or in the Universe today (dark energy) or behaving as dark matter. We consider the growth of inhomogeneities in such a field, mapping the problem to that of two coupled anharmonic oscillators. We provide a simple physical argument that oscillating fields with a negative equation-of-state parameter possess a large-scale dynamical instability to growth of inhomogeneities. This instability renders these models unsuitable for explaining cosmic acceleration. We then consider the gravitational instability of oscillating fields in potentials that are close to, but not precisely, harmonic. We use these results to show that if axions make up the dark matter, then the small-scale cutoff in the matter power spectrum is around 10 -15 M + .

  17. Analysis of thermally induced magnetization dynamics in spin-transfer nano-oscillators

    Energy Technology Data Exchange (ETDEWEB)

    D' Aquino, M., E-mail: daquino@uniparthenope.it [Department of Technology, University of Naples ' Parthenope' , 80143 Naples (Italy); Serpico, C. [Department of Engineering, University of Naples Federico II, 80125 Naples (Italy); Bertotti, G. [Istituto Nazionale di Ricerca Metrologica 10135 Torino (Italy); Bonin, R. [Politecnico di Torino - Sede di Verres, 11029 Verres (Aosta) (Italy); Mayergoyz, I.D. [ECE Department and UMIACS, University of Maryland, College Park, MD 20742 (United States)

    2012-05-01

    The thermally induced magnetization dynamics in the presence of spin-polarized currents injected into a spin-valve-like structure used as microwave spin-transfer nano-oscillator (STNO) is considered. Magnetization dynamics is described by the stochastic Landau-Lifshitz-Slonczewski (LLS) equation. First, it is shown that, in the presence of thermal fluctuations, the spectrum of the output signal of the STNO exhibits multiple peaks at low and high frequencies. This circumstance is associated with the occurrence of thermally induced transitions between stationary states and magnetization self-oscillations. Then, a theoretical approach based on the separation of time-scales is developed to obtain a stochastic dynamics only in the slow state variable, namely the energy. The stationary distribution of the energy and the aforementioned transition rates are analytically computed and compared with the results of direct integration of the LLS dynamics, showing very good agreement.

  18. Decay of Rabi Oscillations by Dipolar-Coupled Dynamical Spin Environments

    NARCIS (Netherlands)

    Dobrovitski, V.V.; Feiguin, A.E.; Hanson, R.; Awschalom, D.D.

    2009-01-01

    We study the Rabi oscillations decay of a spin decohered by a spin bath whose internal dynamics is caused by dipolar coupling between the bath spins. The form and rate of decay as a function of the intrabath coupling is obtained analytically, and confirmed numerically. The complex form of decay

  19. Hyperbolic chaotic attractor in amplitude dynamics of coupled self-oscillators with periodic parameter modulation

    DEFF Research Database (Denmark)

    Isaeva, Olga B.; Kuznetsov, Sergey P.; Mosekilde, Erik

    2011-01-01

    The paper proposes an approach to constructing feasible examples of dynamical systems with hyperbolic chaotic attractors based on the successive transfer of excitation between two pairs of self-oscillators that are alternately active. An angular variable that measures the relations of the current...

  20. Dynamics of fast ions during sawtooth oscillations in the TEXTOR tokamak measured by collective Thomson scattering

    DEFF Research Database (Denmark)

    Nielsen, Stefan Kragh; Salewski, Mirko; Bindslev, Henrik

    2011-01-01

    Experimental investigations of sawteeth interaction with fast ions measured by collective Thomson scattering on TEXTOR are presented. Time-resolved measurements of localized 1D fast-ion distribution functions allow us to study fast-ion dynamics during several sawtooth cycles. Sawtooth oscillation...

  1. Power-continuous Synchronisation of Oscillators: a novel, energy-free way to synchronise dynamical systems

    NARCIS (Netherlands)

    Folkertsma, Gerrit Adriaan; Stramigioli, Stefano; van der Schaft, Arjan

    Synchronisation is an essential part of many controlled dynamical systems, in particular in the limb motion of legged robots. In this paper we introduce a novel control strategy that allows synchronisation of two oscillators without using any external power, but by modulating the power flow between

  2. Jupiter's interior and deep atmosphere: The initial pole-to-pole passes with the Juno spacecraft

    Science.gov (United States)

    Bolton, S. J.; Adriani, A.; Adumitroaie, V.; Allison, M.; Anderson, J.; Atreya, S.; Bloxham, J.; Brown, S.; Connerney, J. E. P.; DeJong, E.; Folkner, W.; Gautier, D.; Grassi, D.; Gulkis, S.; Guillot, T.; Hansen, C.; Hubbard, W. B.; Iess, L.; Ingersoll, A.; Janssen, M.; Jorgensen, J.; Kaspi, Y.; Levin, S. M.; Li, C.; Lunine, J.; Miguel, Y.; Mura, A.; Orton, G.; Owen, T.; Ravine, M.; Smith, E.; Steffes, P.; Stone, E.; Stevenson, D.; Thorne, R.; Waite, J.; Durante, D.; Ebert, R. W.; Greathouse, T. K.; Hue, V.; Parisi, M.; Szalay, J. R.; Wilson, R.

    2017-05-01

    On 27 August 2016, the Juno spacecraft acquired science observations of Jupiter, passing less than 5000 kilometers above the equatorial cloud tops. Images of Jupiter's poles show a chaotic scene, unlike Saturn's poles. Microwave sounding reveals weather features at pressures deeper than 100 bars, dominated by an ammonia-rich, narrow low-latitude plume resembling a deeper, wider version of Earth's Hadley cell. Near-infrared mapping reveals the relative humidity within prominent downwelling regions. Juno's measured gravity field differs substantially from the last available estimate and is one order of magnitude more precise. This has implications for the distribution of heavy elements in the interior, including the existence and mass of Jupiter's core. The observed magnetic field exhibits smaller spatial variations than expected, indicative of a rich harmonic content.

  3. Pole-to-Pole Distribution of Stratospheric Black Carbon (Soot) Aerosol from Aircraft

    Science.gov (United States)

    Pueschel, R. F.; Ferry, G. V.; Verma, S.; Howard, S. D.; Strawa, Anthony W. (Technical Monitor)

    1995-01-01

    The distribution of black carbon (soot) aerosol (BCA) in the atmosphere is of interest for several reasons: (1) Because BCA has the highest absorption cross section of any compound known, it can absorb solar radiation to cause atmospheric warming. (2) Because it is a strong adsorber of gases, it can catalyze heterogeneous reactions to change the chemical composition of the atmosphere.(3) If aircraft are a major source of BCA, it is an important tracer of aircraft emissions. Analysis for BCA of impactor samples from Arctic and Antarctic deployments, utilizing particle morphology of scanning electron microscopy images, permits the following conclusions: (1) The BCA concentration in the northern stratosphere varies between 0 and 2.6 ng m-3 averaging 0.6 ng/cu m. (2) This BCA loading is commensurate with estimated fuel consumptions in the stratosphere by the current commercial fleet and an emission index E=0.03 g BCA per kg fuel burnt which was measured in jet exhaust at al titude.Thus, most stratospheric BCA in the northern stratosphere results from aircraft emissions. The background BCA concentration in the southern stratosphere varies between 0 and 0.6 ng cu m averaging 0.1 ng/cu m. This strong meridional gradient implies that stratospheric BCA residence time- is shorter than are mixing times between hemispheres. Projected annual fuel consumption of a future supersonic commercial fleet is 7E13 g. This fleet would increase stratospheric BCA loadings by a factor of 2-3, because almost all fuel would be burnt above the tropopause. An improved EI(BCA) by a factor of ten would result in an increase of stratospheric BCA loadings by approximately 50 %.

  4. Pole to Pole Intraocular Transit of Tarantula Hairs—An Intriguing Cause of Red Eye

    Directory of Open Access Journals (Sweden)

    Hiten G. Sheth

    2009-01-01

    Full Text Available This intriguing case report provides novel images and a description of the anterior and rarer posterior segment findings seen in ocular inflammation associated with tarantula spider hair exposure. We present an interventional case report of a 9-year-old boy who presented with a red, sore eye. Slit lamp examination revealed right eye injection, multiple small hairs at differing levels of the cornea with associated opacities and inflammation within the anterior and posterior segments of the eye. Only after detailed and repeated questioning did the aetiology become apparent. Conservative management in the form of topical steroid and antibiotics was commenced and he did well with no obvious sequelae in the medium term. Healthcare personnel (and indeed pet shop owners, arachnid enthusiasts and even parents should be aware of the potential ocular complications of tarantula hair exposure and clinicians should perhaps specifically ask about pet-keeping when presented with an unusual red eye.

  5. Pole-to-pole validation of GOME WFDOAS total ozone with groundbased data

    Directory of Open Access Journals (Sweden)

    M. Weber

    2005-01-01

    Full Text Available This paper summarises the validation of GOME total ozone retrieved using the Weighting Function Differential Optical Absorption Spectroscopy (WFDOAS algorithm Version 1.0. This algorithm has been described in detail in a companion paper by Coldewey-Egbers et al. (2005. Compared to the operational GDP (GOME Data Processor V3, several improvements to the total ozone retrieval have been introduced that account for the varying ozone dependent contribution to rotational Raman scattering, includes a new cloud scheme, and uses the GOME measured effective albedo in the retrieval. In this paper the WFDOAS results have been compared with selected ground-based measurements from the WOUDC (World Ozone and UV Radiation Data Centre that collects total ozone measurements from a global network of stations covering all seasons. From the global validation excellent agreement between WFDOAS and ground data was observed. The agreement lies within ±1%, and very little seasonal variations in the differences are found. In the polar regions and at high solar zenith angles, however, a positive bias varying between 5 and 8% is found near the polar night period. As a function of solar zenith angle as well as of the retrieved total ozone, the WFDOAS differences to ground polar data, however, show a much weaker dependence as compared to the operational GOME Data Processor Version 3 of GOME that represents a significant improvement. Very few stations carry out simultaneous measurements by Brewer and Dobson spectrometers over an extended period (three years or more. Simultaneous Brewer and Dobson measurements from Hradec Kralove, Czech Republic (50.2N, 15.8E and Hohenpeissenberg, Germany (47.8N, 11.0E covering the period 1996-1999 have been compared with our GOME results. Agreement with Brewers are generally better than with the simultaneous Dobson measurements and this may be explained by the neglect of stratospheric (ozone temperature correction in the standard ozone retrieval from the ground.

  6. Jupiter's interior and deep atmosphere: The initial pole-to-pole passes with the Juno spacecraft

    DEFF Research Database (Denmark)

    Bolton, S. J.; Adriani, Alberto; Adumitroaie, V.

    2017-01-01

    On 27 August 2016, the Juno spacecraft acquired science observations of Jupiter, passing less than 5000 kilometers above the equatorial cloud tops. Images of Jupiter's poles show a chaotic scene, unlike Saturn's poles. Microwave sounding reveals weather features at pressures deeper than 100 bars,...

  7. Gl(2/2)-oscillators and Gl(2/2)-dynamical symmetry

    International Nuclear Information System (INIS)

    Kamupingene, A.H.; Nguyen Anh Ky.

    1991-07-01

    Extending the concept of the dynamical symmetry, we identify the Lie superalgebra Gl(2/2) as a dynamical (super-)algebra of a class of non-canonical quantum systems, whose dynamical variables and quantities can be realized in terms of the Gl(2/2)-generators. In this way, a new class of harmonic oscillators is established. As a consequence of the choice of the dynamical variables the Heisenberg algebra and the Hermitian condition for the Gl(2/2)-representations are also given. (author). 12 refs

  8. Dynamic mode decomposition of turbulent cavity flows for self-sustained oscillations

    International Nuclear Information System (INIS)

    Seena, Abu; Sung, Hyung Jin

    2011-01-01

    Highlights: ► DMD modes were extracted from two cavity flow data set at Re D = 12,000 and 3000. ► At Re D = 3000, frequencies of boundary layer and shear layer structures coincides. ► Boundary layer structures exceed in size with shear layer structures. ► At Re D = 12,000, structure showed coherence leading to self-sustained oscillations. ► Hydrodynamic resonance occurs if coherence exists in wavenumber and frequency. - Abstract: Self-sustained oscillations in a cavity arise due to the unsteady separation of boundary layers at the leading edge. The dynamic mode decomposition method was employed to analyze the self-sustained oscillations. Two cavity flow data sets, with or without self-sustained oscillations and possessing thin or thick incoming boundary layers (Re D = 12,000 and 3000), were analyzed. The ratios between the cavity depth and the momentum thickness (D/θ) were 40 and 4.5, respectively, and the cavity aspect ratio was L/D = 2. The dynamic modes extracted from the thick boundary layer indicated that the upcoming boundary layer structures and the shear layer structures along the cavity lip line coexisted with coincident frequency space but with different wavenumber space, whereas structures with a thin boundary layer showed complete coherence among the modes to produce self-sustained oscillations. This result suggests that the hydrodynamic resonances that gave rise to the self-sustained oscillations occurred if the upcoming boundary layer structures and the shear layer structures coincided, not only in frequencies, but also in wavenumbers. The influences of the cavity dimensions and incoming momentum thickness on the self-sustained oscillations were examined.

  9. Complex dynamics of a particle in an oscillating potential field

    Indian Academy of Sciences (India)

    Barnali Pal

    2017-07-25

    Jul 25, 2017 ... time-dependent Hamiltonian systems lead to significant advances towards a qualitative and quantitative under- standing of their behaviour over a long time. In many cases, the chaotic dynamics of a particle inside the driven potential leads to very interesting phenomena, including power-law distribution for ...

  10. Dynamic magnetoconductance fluctuations and oscillations in mesoscopic wires and rings

    DEFF Research Database (Denmark)

    Liu, D. Z.; Hu, Ben Yu-Kuang; Stafford, C. A.

    1994-01-01

    wire, we observe ergodic behavior in the dynamic conductance fluctuations. At low omega, the real part of the conductance fluctuations is essentially given by the dc universal conductance fluctuations while the imaginary part increases linearly from zero, but for omega greater than the Thouless energy...

  11. A critical oscillation constant as a variable of time scales for half-linear dynamic equations

    Czech Academy of Sciences Publication Activity Database

    Řehák, Pavel

    2010-01-01

    Roč. 60, č. 2 (2010), s. 237-256 ISSN 0139-9918 R&D Projects: GA AV ČR KJB100190701 Institutional research plan: CEZ:AV0Z10190503 Keywords : dynamic equation * time scale * half-linear equation * (non)oscillation criteria * Hille-Nehari criteria * Kneser criteria * critical constant * oscillation constant * Hardy inequality Subject RIV: BA - General Mathematics Impact factor: 0.316, year: 2010 http://link.springer.com/article/10.2478%2Fs12175-010-0009-7

  12. Stochastic dynamics in a two-dimensional oscillator near a saddle-node bifurcation

    Science.gov (United States)

    Inchiosa, M. E.; in, V.; Bulsara, A. R.; Wiesenfeld, K.; Heath, T.; Choi, M. H.

    2001-06-01

    We study the oscillator equations describing a particular class of nonlinear amplifier, exemplified in this work by a two-junction superconducting quantum interference device. This class of dynamic system is described by a potential energy function that can admit minima (corresponding to stable solutions of the dynamic equations), or ``running states'' wherein the system is biased so that the potential minima disappear and the solutions display spontaneous oscillations. Just beyond the onset of the spontaneous oscillations, the system is known to show significantly enhanced sensitivity to very weak magnetic signals. The global phase space structure allows us to apply a center manifold technique to approximate analytically the oscillatory behavior just past the (saddle-node) bifurcation and compute the oscillation period, which obeys standard scaling laws. In this regime, the dynamics can be represented by an ``integrate-fire'' model drawn from the computational neuroscience repertoire; in fact, we obtain an ``interspike interval'' probability density function and an associated power spectral density (computed via Renewal theory) that agree very well with the results obtained via numerical simulations. Notably, driving the system with one or more time sinusoids produces a noise-lowering injection locking effect and/or heterodyning.

  13. Effects produced by oscillations applied to nonlinear dynamic systems: a general approach and examples

    DEFF Research Database (Denmark)

    Blekhman, I. I.; Sorokin, V. S.

    2016-01-01

    A general approach to study effects produced by oscillations applied to nonlinear dynamic systems is developed. It implies a transition from initial governing equations of motion to much more simple equations describing only the main slow component of motions (the vibro-transformed dynamics...... equations). The approach is named as the oscillatory strobodynamics, since motions are perceived as under a stroboscopic light. The vibro-transformed dynamics equations comprise terms that capture the averaged effect of oscillations. The method of direct separation of motions appears to be an efficient...... and simple tool to derive these equations. A modification of the method applicable to study problems that do not imply restrictions on the spectrum of excitation frequencies is proposed. It allows also to abandon other restrictions usually introduced when employing the classical asymptotic methods, e...

  14. Sustained small oscillations in nonlinear control systems. [launch vehicle dynamics

    Science.gov (United States)

    George, J. H.; Gunderson, R. W.; Hahn, H.

    1975-01-01

    Some results of bifurcation theory were used to study the existence of small-amplitude periodic behavior in launch vehicle dynamics, assuming that nonlinearity exists as a cubic term in the rudder response. The analysis follows closely Sattinger's (1973) approach to the theory of periodic bifurcations. The conditions under which a bifurcating branch of orbitally stable periodic solutions will exist are determined. It is shown that in more complicated cases, the conditions under which the system matrix has a pair of simple purely imaginary eigenvalues can be determined with the aid of linear stability techniques.

  15. Diversity in the dynamical behaviour of a compartmentalized programmable biochemical oscillator.

    Science.gov (United States)

    Weitz, Maximilian; Kim, Jongmin; Kapsner, Korbinian; Winfree, Erik; Franco, Elisa; Simmel, Friedrich C

    2014-04-01

    In vitro compartmentalization of biochemical reaction networks is a crucial step towards engineering artificial cell-scale devices and systems. At this scale the dynamics of molecular systems becomes stochastic, which introduces several engineering challenges and opportunities. Here we study a programmable transcriptional oscillator system that is compartmentalized into microemulsion droplets with volumes between 33 fl and 16 pl. Simultaneous measurement of large populations of droplets reveals major variations in the amplitude, frequency and damping of the oscillations. Variability increases for smaller droplets and depends on the operating point of the oscillator. Rather than reflecting the stochastic kinetics of the chemical reaction network itself, the variability can be attributed to the statistical variation of reactant concentrations created during their partitioning into droplets. We anticipate that robustness to partitioning variability will be a critical challenge for engineering cell-scale systems, and that highly parallel time-series acquisition from microemulsion droplets will become a key tool for characterization of stochastic circuit function.

  16. Synchronization dynamics in diverse ensemble of noisy phase oscillators with asynchronous phase updates

    Science.gov (United States)

    Belan, S.

    2015-12-01

    Decentralized control of autonomous phase oscillators integrated into networked systems is of great interest for many technological applications, from clock synchronization in sensor nets to coordinated motion in swarm robotics. In the simplest distributed synchronization scheme, each oscillator updates its phase from time to time to a new value equal to the average of its present phase and the phases of its neighbors. Here we describe the resulting synchronization dynamics within a mean-field model where the update actions of different oscillators are completely asynchronous. In particular, it is shown how the steady-state level of synchrony depends on noise intensity and frequency diversity for any given rate of updates. The central part of the analysis is devoted to the case when the correction rate positively correlates with the degree of macroscopic coherence. We demonstrate that depending on relation between correction rate and phase coherence the oscillators may exhibit both continuous and discontinuous transition from incoherence to synchrony upon the change of interaction constant. To illustrate our analytical results, numerical simulations have been performed for a large population of phase oscillators with the proposed type of coupling.

  17. Rabi-Bloch oscillations in spatially distributed systems: Temporal dynamics and frequency spectra

    Science.gov (United States)

    Levie, Ilay; Kastner, Raphael; Slepyan, Gregory

    2017-10-01

    We consider one-dimensional chains of two-level quantum systems coupled via tunneling. The chain is driven by the superposition of dc and ac fields in the strong coupling regime. Based on the fundamental principles of electrodynamics and quantum theory, we have developed a generalized model of quantum dynamics for such interactions, free of rotating-wave approximation. The system of equations of motion was studied numerically. We analyzed the dynamics and spectra of the inversion density, dipole current density, and tunneling current density. In the case of resonant interaction with the ac component, the particle dynamics exhibits itself in the oscillatory regime, which may be interpreted as a combination of Rabi and Bloch oscillations with their strong mutual influence. Such scenario for an obliquely incident ac field dramatically differs from the individual picture of both types of oscillations due to the interactions. This effect is counterintuitive because of the existence of markedly different frequency ranges for such two types of oscillations. These dynamics manifest themselves in multiline spectra in different combinations of Rabi and Bloch frequencies. The effect is promising as a framework of a new type of spectroscopy in nanoelectronics and electrical control of nanodevices.

  18. VO2 film temperature dynamics at low-frequency current self-oscillations

    Science.gov (United States)

    Bortnikov, S. G.; Aliev, V. Sh.; Badmaeva, I. A.; Mzhelskiy, I. V.

    2018-02-01

    Low-frequency (˜2 Hz) current self-oscillations were first obtained in a millimeter-sized two-terminal planar device with a vanadium dioxide (VO2) film. The film temperature distribution dynamics was investigated within one oscillation period. It was established that the formation and disappearance of a conductive channel occur in a film in less than 60 ms with oscillation period 560 ms. The experimentally observed temperature in the channel region reached 413 K, being understated due to a low infrared microscope performance (integration time 10 ms). The VO2 film temperature distribution dynamics was simulated by solving a 2D problem of the electric current flow and heat transfer in the film. The calculation showed that the thermally initiated resistance switching in the film occurs in less than 4 ms at a channel temperature reaching ˜1000 K. The experimental results and simulation are consistent with the current self-oscillation mechanism based on the current pinching and dielectric relaxation in the VO2 film at the metal-insulator phase transition.

  19. Porous media fracturing dynamics: stepwise crack advancement and fluid pressure oscillations

    Science.gov (United States)

    Cao, Toan D.; Hussain, Fazle; Schrefler, Bernhard A.

    2018-02-01

    We present new results explaining why fracturing in saturated porous media is not smooth and continuous but is a distinct stepwise process concomitant with fluid pressure oscillations. All exact solutions and almost all numerical models yield smooth fracture advancement and fluid pressure evolution, while recent experimental results, mainly from the oil industry, observation from geophysics and a very few numerical results for the quasi-static case indeed reveal the stepwise phenomenon. We summarize first these new experiments and these few numerical solutions for the quasi-static case. Both mechanical loading and pressure driven fractures are considered because their behaviours differ in the direction of the pressure jumps. Then we explore stepwise crack tip advancement and pressure fluctuations in dynamic fracturing with a hydro-mechanical model of porous media based on the Hybrid Mixture Theory. Full dynamic analyses of examples dealing with both hydraulic fracturing and mechanical loading are presented. The stepwise fracture advancement is confirmed in the dynamic setting as well as in the pressure fluctuations, but there are substantial differences in the frequency contents of the pressure waves in the two loading cases. Comparison between the quasi-static and fully dynamic solutions reveals that the dynamic response gives much more information such as the type of pressure oscillations and related frequencies and should be applied whenever there is a doubt about inertia forces playing a role - the case in most fracturing events. In the absence of direct relevant dynamic tests on saturated media some experimental results on dynamic fracture in dry materials, a fast hydraulic fracturing test and observations from geophysics confirm qualitatively the obtained results such as the type of pressure oscillations and the substantial difference in the behaviour under the two loading cases.

  20. Multiple spatially localized dynamical states in friction-excited oscillator chains

    Science.gov (United States)

    Papangelo, A.; Hoffmann, N.; Grolet, A.; Stender, M.; Ciavarella, M.

    2018-03-01

    Friction-induced vibrations are known to affect many engineering applications. Here, we study a chain of friction-excited oscillators with nearest neighbor elastic coupling. The excitation is provided by a moving belt which moves at a certain velocity vd while friction is modelled with an exponentially decaying friction law. It is shown that in a certain range of driving velocities, multiple stable spatially localized solutions exist whose dynamical behavior (i.e. regular or irregular) depends on the number of oscillators involved in the vibration. The classical non-repeatability of friction-induced vibration problems can be interpreted in light of those multiple stable dynamical states. These states are found within a "snaking-like" bifurcation pattern. Contrary to the classical Anderson localization phenomenon, here the underlying linear system is perfectly homogeneous and localization is solely triggered by the friction nonlinearity.

  1. Coupled slow and fast surface dynamics in an electrocatalytic oscillator: Model and simulations

    International Nuclear Information System (INIS)

    Nascimento, Melke A.; Nagao, Raphael; Eiswirth, Markus; Varela, Hamilton

    2014-01-01

    The co-existence of disparate time scales is pervasive in many systems. In particular for surface reactions, it has been shown that the long-term evolution of the core oscillator is decisively influenced by slow surface changes, such as progressing deactivation. Here we present an in-depth numerical investigation of the coupled slow and fast surface dynamics in an electrocatalytic oscillator. The model consists of four nonlinear coupled ordinary differential equations, investigated over a wide parameter range. Besides the conventional bifurcation analysis, the system was studied by means of high-resolution period and Lyapunov diagrams. It was observed that the bifurcation diagram changes considerably as the irreversible surface poisoning evolves, and the oscillatory region shrinks. The qualitative dynamics changes accordingly and the chaotic oscillations are dramatically suppressed. Nevertheless, periodic cascades are preserved in a confined region of the resistance vs. voltage diagram. Numerical results are compared to experiments published earlier and the latter reinterpreted. Finally, the comprehensive description of the time-evolution in the period and Lyapunov diagrams suggests further experimental studies correlating the evolution of the system's dynamics with changes of the catalyst structure

  2. Coupled slow and fast surface dynamics in an electrocatalytic oscillator: Model and simulations

    Science.gov (United States)

    Nascimento, Melke A.; Nagao, Raphael; Eiswirth, Markus; Varela, Hamilton

    2014-12-01

    The co-existence of disparate time scales is pervasive in many systems. In particular for surface reactions, it has been shown that the long-term evolution of the core oscillator is decisively influenced by slow surface changes, such as progressing deactivation. Here we present an in-depth numerical investigation of the coupled slow and fast surface dynamics in an electrocatalytic oscillator. The model consists of four nonlinear coupled ordinary differential equations, investigated over a wide parameter range. Besides the conventional bifurcation analysis, the system was studied by means of high-resolution period and Lyapunov diagrams. It was observed that the bifurcation diagram changes considerably as the irreversible surface poisoning evolves, and the oscillatory region shrinks. The qualitative dynamics changes accordingly and the chaotic oscillations are dramatically suppressed. Nevertheless, periodic cascades are preserved in a confined region of the resistance vs. voltage diagram. Numerical results are compared to experiments published earlier and the latter reinterpreted. Finally, the comprehensive description of the time-evolution in the period and Lyapunov diagrams suggests further experimental studies correlating the evolution of the system's dynamics with changes of the catalyst structure.

  3. Using stability analyses to predict dynamic behaviour of self-oscillating polymer gels

    Science.gov (United States)

    Palkar, Vaibhav; Srivastava, Gaurav; Kuksenok, Olga; Balazs, Anna C.; Dayal, Pratyush

    2015-03-01

    Use of chemo-mechanical transduction to produce locomotion is one of the significant characteristics of biological systems. Polymer gels, intrinsically powered by oscillatory Belousov-Zhabotinsky (BZ) reaction, are biomimetic materials that exhibit rhythmic self-sustained mechanical oscillations by chemo-mechanical transduction. Via simulations, based on the 3D gel lattice spring model, we have successfully captured the dynamic behaviour of BZ gels. We have demonstrated that it is possible to direct the movement of BZ gels along complex paths, guiding them to bend, reorient and turn. From a mathematical perspective, the oscillations in the BZ gels occur when the gel's steady states loose stability by virtue of Hopf bifurcations (HB). Through the use of stability analyses, we predict the conditions under which gel switches from stationary to oscillatory mode and vice versa. In addition, we characterize the nature of HB and also identify other types of bifurcations that play a critical role in governing the dynamic behaviour of BZ gels. Also, we successfully predict the frequency of chemo-mechanical oscillations and characterize its dependency on the model parameters. Our approach not only allows us to establish optimal conditions for the motion of BZ gels, but also can be used to design other dynamical systems. IIT Gandhinagar and DST-SERB for funding.

  4. Dynamical Tangles in Third-Order Oscillator with Single Jump Function

    Directory of Open Access Journals (Sweden)

    Jiří Petržela

    2014-01-01

    Full Text Available This contribution brings a deep and detailed study of the dynamical behavior associated with nonlinear oscillator described by a single third-order differential equation with scalar jump nonlinearity. The relative primitive geometry of the vector field allows making an exhaustive numerical analysis of its possible solutions, visualizations of the invariant manifolds, and basins of attraction as well as proving the existence of chaotic motion by using the concept of both Shilnikov theorems. The aim of this paper is also to complete, carry out and link the previous works on simple Newtonian dynamics, and answer the question how individual types of the phenomenon evolve with time via understandable notes.

  5. Dynamics of a model of two delay-coupled relaxation oscillators

    Science.gov (United States)

    Ruelas, R. E.; Rand, R. H.

    2010-08-01

    This paper investigates the dynamics of a new model of two coupled relaxation oscillators. The model replaces the usual DDE (differential-delay equation) formulation with a discrete-time approach with jumps. Existence, bifurcation and stability of in-phase periodic motions is studied. Simple periodic motions, which involve exactly two jumps per period, are found to have large plateaus in parameter space. These plateaus are separated by regions of complicated dynamics, reminiscent of the Devil's Staircase. Stability of motions in the in-phase manifold are contrasted with stability of motions in the full phase space.

  6. Dynamic phase transitions in a cylindrical Ising nanowire under a time-dependent oscillating magnetic field

    International Nuclear Information System (INIS)

    Deviren, Bayram; Kantar, Ersin; Keskin, Mustafa

    2012-01-01

    The dynamic phase transitions in a cylindrical Ising nanowire system under a time-dependent oscillating external magnetic field for both ferromagnetic and antiferromagnetic interactions are investigated within the effective-field theory with correlations and the Glauber-type stochastic dynamics approach. The effective-field dynamic equations for the average longitudinal magnetizations on the surface shell and core are derived by employing the Glauber transition rates. Temperature dependence of the dynamic magnetizations, the dynamic total magnetization, the hysteresis loop areas and the dynamic correlations are investigated in order to characterize the nature (first- or second-order) of the dynamic transitions as well as the dynamic phase transition temperatures and the compensation behaviors. The system strongly affected by the surface situations. Some characteristic phenomena are found depending on the ratio of the physical parameters in the surface shell and the core. According to the values of Hamiltonian parameters, five different types of compensation behaviors in the Néel classification nomenclature exist in the system. The system also exhibits a reentrant behavior. - Highlights: ► The dynamic aspects of a cylindrical Ising nanowire are investigated in detail. ► The dynamic magnetizations, hysteresis loop areas and correlations are calculated. ► We studied both the FM and AFM interactions within the EFT with correlations. ► Some characteristic phenomena are found depending on the interaction parameters. ► We obtained five different types of compensation behaviors and reentrant behavior.

  7. Dynamic phase transitions in a cylindrical Ising nanowire under a time-dependent oscillating magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Deviren, Bayram [Department of Physics, Nevsehir University, 50300 Nevsehir (Turkey); Kantar, Ersin [Department of Physics, Erciyes University, 38039 Kayseri (Turkey); Keskin, Mustafa, E-mail: keskin@erciyes.edu.tr [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)

    2012-07-15

    The dynamic phase transitions in a cylindrical Ising nanowire system under a time-dependent oscillating external magnetic field for both ferromagnetic and antiferromagnetic interactions are investigated within the effective-field theory with correlations and the Glauber-type stochastic dynamics approach. The effective-field dynamic equations for the average longitudinal magnetizations on the surface shell and core are derived by employing the Glauber transition rates. Temperature dependence of the dynamic magnetizations, the dynamic total magnetization, the hysteresis loop areas and the dynamic correlations are investigated in order to characterize the nature (first- or second-order) of the dynamic transitions as well as the dynamic phase transition temperatures and the compensation behaviors. The system strongly affected by the surface situations. Some characteristic phenomena are found depending on the ratio of the physical parameters in the surface shell and the core. According to the values of Hamiltonian parameters, five different types of compensation behaviors in the Neel classification nomenclature exist in the system. The system also exhibits a reentrant behavior. - Highlights: Black-Right-Pointing-Pointer The dynamic aspects of a cylindrical Ising nanowire are investigated in detail. Black-Right-Pointing-Pointer The dynamic magnetizations, hysteresis loop areas and correlations are calculated. Black-Right-Pointing-Pointer We studied both the FM and AFM interactions within the EFT with correlations. Black-Right-Pointing-Pointer Some characteristic phenomena are found depending on the interaction parameters. Black-Right-Pointing-Pointer We obtained five different types of compensation behaviors and reentrant behavior.

  8. Limited Investigation of the Effects of Elevator Rate Limiting and Stick Dynamics on Longitudinal Pilot Induced Oscillations (HAVE GRIP)

    National Research Council Canada - National Science Library

    Peters, Patrick

    1996-01-01

    This report presents the results of the HAVE GRIP flight test program. This program performed a limited investigation of the effects of stick dynamics and elevator rate limiting on longitudinal pilot induced oscillations (PIOs...

  9. Chaotic itinerancy within the coupled dynamics between a physical body and neural oscillator networks.

    Science.gov (United States)

    Park, Jihoon; Mori, Hiroki; Okuyama, Yuji; Asada, Minoru

    2017-01-01

    Chaotic itinerancy is a phenomenon in which the state of a nonlinear dynamical system spontaneously explores and attracts certain states in a state space. From this perspective, the diverse behavior of animals and its spontaneous transitions lead to a complex coupled dynamical system, including a physical body and a brain. Herein, a series of simulations using different types of non-linear oscillator networks (i.e., regular, small-world, scale-free, random) with a musculoskeletal model (i.e., a snake-like robot) as a physical body are conducted to understand how the chaotic itinerancy of bodily behavior emerges from the coupled dynamics between the body and the brain. A behavior analysis (behavior clustering) and network analysis for the classified behavior are then applied. The former consists of feature vector extraction from the motions and classification of the movement patterns that emerged from the coupled dynamics. The network structures behind the classified movement patterns are revealed by estimating the "information networks" different from the given non-linear oscillator networks based on the transfer entropy which finds the information flow among neurons. The experimental results show that: (1) the number of movement patterns and their duration depend on the sensor ratio to control the balance of strength between the body and the brain dynamics and on the type of the given non-linear oscillator networks; and (2) two kinds of information networks are found behind two kinds movement patterns with different durations by utilizing the complex network measures, clustering coefficient and the shortest path length with a negative and a positive relationship with the duration periods of movement patterns. The current results seem promising for a future extension of the method to a more complicated body and environment. Several requirements are also discussed.

  10. Chaotic itinerancy within the coupled dynamics between a physical body and neural oscillator networks.

    Directory of Open Access Journals (Sweden)

    Jihoon Park

    Full Text Available Chaotic itinerancy is a phenomenon in which the state of a nonlinear dynamical system spontaneously explores and attracts certain states in a state space. From this perspective, the diverse behavior of animals and its spontaneous transitions lead to a complex coupled dynamical system, including a physical body and a brain. Herein, a series of simulations using different types of non-linear oscillator networks (i.e., regular, small-world, scale-free, random with a musculoskeletal model (i.e., a snake-like robot as a physical body are conducted to understand how the chaotic itinerancy of bodily behavior emerges from the coupled dynamics between the body and the brain. A behavior analysis (behavior clustering and network analysis for the classified behavior are then applied. The former consists of feature vector extraction from the motions and classification of the movement patterns that emerged from the coupled dynamics. The network structures behind the classified movement patterns are revealed by estimating the "information networks" different from the given non-linear oscillator networks based on the transfer entropy which finds the information flow among neurons. The experimental results show that: (1 the number of movement patterns and their duration depend on the sensor ratio to control the balance of strength between the body and the brain dynamics and on the type of the given non-linear oscillator networks; and (2 two kinds of information networks are found behind two kinds movement patterns with different durations by utilizing the complex network measures, clustering coefficient and the shortest path length with a negative and a positive relationship with the duration periods of movement patterns. The current results seem promising for a future extension of the method to a more complicated body and environment. Several requirements are also discussed.

  11. Synchronization of Stochastically Coupled Oscillators: Dynamical Phase Transitions and Large Deviations Theory (or Birds and Frogs)

    Science.gov (United States)

    Teodorescu, Razvan

    2009-10-01

    Systems of oscillators coupled non-linearly (stochastically or not) are ubiquitous in nature and can explain many complex phenomena: coupled Josephson junction arrays, cardiac pacemaker cells, swarms or flocks of insects and birds, etc. They are know to have a non-trivial phase diagram, which includes chaotic, partially synchronized, and fully synchronized phases. A traditional model for this class of problems is the Kuramoto system of oscillators, which has been studied extensively for the last three decades. The model is a canonical example for non-equilibrium, dynamical phase transitions, so little understood in physics. From a stochastic analysis point of view, the transition is described by the large deviations principle, which offers little information on the scaling behavior near the critical point. I will discuss a special case of the model, which allows a rigorous analysis of the critical properties of the model, and reveals a new, anomalous scaling behavior in the vicinity of the critical point.

  12. Complex dynamics of an archetypal self-excited SD oscillator driven by moving belt friction

    International Nuclear Information System (INIS)

    Li Zhi-Xin; Cao Qing-Jie; Alain, Léger

    2016-01-01

    We propose an archetypal self-excited system driven by moving belt friction, which is constructed with the smooth and discontinuous (SD) oscillator proposed by the Cao et al. and the classical moving belt. The moving belt friction is modeled as the Coulomb friction to formulate the mathematical model of the proposed self-excited SD oscillator. The equilibrium states of the unperturbed system are obtained to show the complex equilibrium bifurcations. Phase portraits are depicted to present the hyperbolic structure transition, the multiple stick regions, and the friction-induced asymmetry phenomena. The numerical simulations are carried out to demonstrate the friction-induced vibration of multiple stick-slip phenomena and the stick-slip chaos in the perturbed self-excited system. The results presented here provide an opportunity for us to get insight into the mechanism of the complex friction-induced nonlinear dynamics in mechanical engineering and geography. (paper)

  13. An evaluation of ENSO dynamics in CMIP simulations in the framework of the recharge oscillator model

    Science.gov (United States)

    Vijayeta, Asha; Dommenget, Dietmar

    2017-11-01

    The CMIP model simulations show wide spread uncertainties in ENSO statistics and dynamics. In this study, we use the concept of the linear recharge oscillator (ReOsc) model to diagnose the ENSO-dynamics in CMIP3 and CMIP5 model simulations. The ReOsc model parameters allow us to quantify SST and thermocline damping, SST coupling to thermocline and vice-versa, sensitivity to wind stress and heat flux forcings and separate atmospheric from oceanic processes. Our results show that the ENSO-dynamics and their diversity within the CMIP ensemble can be well represented with the linear recharge oscillator model diagnostics. We also illustrate that the ENSO dynamics show larger biases relative to observations and spread within the models than simple large-scale statistics such as SST standard deviation would suggest. The CMIP models underestimate the atmospheric positive and negative feedbacks, they have compensating atmospheric and oceanic errors, the thermocline damping is too strong and stochastic noise forcings in models is too weak. The CMIP5 models show only marginal improvements relative to CMIP3. The results suggest that models can still be significantly improved and our analysis gives directions to what needs to be improved.

  14. GNSS Signal Tracking Performance Improvement for Highly Dynamic Receivers by Gyroscopic Mounting Crystal Oscillator.

    Science.gov (United States)

    Abedi, Maryam; Jin, Tian; Sun, Kewen

    2015-08-31

    In this paper, the efficiency of the gyroscopic mounting method is studied for a highly dynamic GNSS receiver's reference oscillator for reducing signal loss. Analyses are performed separately in two phases, atmospheric and upper atmospheric flights. Results show that the proposed mounting reduces signal loss, especially in parts of the trajectory where its probability is the highest. This reduction effect appears especially for crystal oscillators with a low elevation angle g-sensitivity vector. The gyroscopic mounting influences frequency deviation or jitter caused by dynamic loads on replica carrier and affects the frequency locked loop (FLL) as the dominant tracking loop in highly dynamic GNSS receivers. In terms of steady-state load, the proposed mounting mostly reduces the frequency deviation below the one-sigma threshold of FLL (1σ(FLL)). The mounting method can also reduce the frequency jitter caused by sinusoidal vibrations and reduces the probability of signal loss in parts of the trajectory where the other error sources accompany this vibration load. In the case of random vibration, which is the main disturbance source of FLL, gyroscopic mounting is even able to suppress the disturbances greater than the three-sigma threshold of FLL (3σ(FLL)). In this way, signal tracking performance can be improved by the gyroscopic mounting method for highly dynamic GNSS receivers.

  15. Imaging magnetisation dynamics in nano-contact spin-torque vortex oscillators exhibiting gyrotropic mode splitting

    International Nuclear Information System (INIS)

    Keatley, Paul Steven; Hicken, Robert James; Sani, Sohrab Redjai; Åkerman, Johan; Hrkac, Gino; Mohseni, Seyed Majid; Dürrenfeld, Philipp

    2017-01-01

    Nano-contact spin-torque vortex oscillators (STVOs) are anticipated to find application as nanoscale sources of microwave emission in future technological applications. Presently the output power and phase stability of individual STVOs are not competitive with existing oscillator technologies. Synchronisation of multiple nano-contact STVOs via magnetisation dynamics has been proposed to enhance the microwave emission. The control of device-to-device variations, such as mode splitting of the microwave emission, is essential if multiple STVOs are to be successfully synchronised. In this work a combination of electrical measurements and time-resolved scanning Kerr microscopy (TRSKM) was used to demonstrate how mode splitting in the microwave emission of STVOs was related to the magnetisation dynamics that are generated. The free-running STVO response to a DC current only was used to identify devices and bias magnetic field configurations for which single and multiple modes of microwave emission were observed. Stroboscopic Kerr images were acquired by injecting a small amplitude RF current to phase lock the free-running STVO response. The images showed that the magnetisation dynamics of a multimode device with moderate splitting could be controlled by the injected RF current so that they exhibit similar spatial character to that of a single mode. Significant splitting was found to result from a complicated equilibrium magnetic state that was observed in Kerr images as irregular spatial characteristics of the magnetisation dynamics. Such dynamics were observed far from the nano-contact and so their presence cannot be detected in electrical measurements. This work demonstrates that TRSKM is a powerful tool for the direct observation of the magnetisation dynamics generated by STVOs that exhibit complicated microwave emission. Characterisation of such dynamics outside the nano-contact perimeter permits a deeper insight into the requirements for optimal phase-locking of

  16. Temporal Expectations Guide Dynamic Prioritization in Visual Working Memory through Attenuated α Oscillations.

    Science.gov (United States)

    van Ede, Freek; Niklaus, Marcel; Nobre, Anna C

    2017-01-11

    Although working memory is generally considered a highly dynamic mnemonic store, popular laboratory tasks used to understand its psychological and neural mechanisms (such as change detection and continuous reproduction) often remain relatively "static," involving the retention of a set number of items throughout a shared delay interval. In the current study, we investigated visual working memory in a more dynamic setting, and assessed the following: (1) whether internally guided temporal expectations can dynamically and reversibly prioritize individual mnemonic items at specific times at which they are deemed most relevant; and (2) the neural substrates that support such dynamic prioritization. Participants encoded two differently colored oriented bars into visual working memory to retrieve the orientation of one bar with a precision judgment when subsequently probed. To test for the flexible temporal control to access and retrieve remembered items, we manipulated the probability for each of the two bars to be probed over time, and recorded EEG in healthy human volunteers. Temporal expectations had a profound influence on working memory performance, leading to faster access times as well as more accurate orientation reproductions for items that were probed at expected times. Furthermore, this dynamic prioritization was associated with the temporally specific attenuation of contralateral α (8-14 Hz) oscillations that, moreover, predicted working memory access times on a trial-by-trial basis. We conclude that attentional prioritization in working memory can be dynamically steered by internally guided temporal expectations, and is supported by the attenuation of α oscillations in task-relevant sensory brain areas. In dynamic, everyday-like, environments, flexible goal-directed behavior requires that mental representations that are kept in an active (working memory) store are dynamic, too. We investigated working memory in a more dynamic setting than is conventional

  17. Lorentz-Violating Regulator Gauge Fields as the Origin of Dynamical Flavour Oscillations

    CERN Document Server

    Alexandre, Jean; Mavromatos, Nick E

    2013-01-01

    We show how a mass mixing matrix can be generated dynamically, for two massless fermion flavours coupled to a Lorentz invariance violating (LIV) gauge field. The LIV features play the role of a regulator for the gap equations, and the non-analytic dependence of the dynamical masses, as functions of the gauge coupling, allows to consider the limit where the LIV gauge field eventually decouples from the fermions. Lorentz invariance is then recovered, to describe the oscillation between two free fermion flavours, and we check that the finite dynamical masses are the only effects of the original LIV theory. We also discuss briefly a connection of our results with the case of Majorana neutrinos in both, the standard model, where only left-handed (active) neutrinos are considered, and extensions thereof, with sterile right-handed neutrinos.

  18. Evolutionary Dynamics of Collective Behavior Selection and Drift: Flocking, Collapse, and Oscillation.

    Science.gov (United States)

    Tan, Shaolin; Wang, Yaonan; Chen, Yao; Wang, Zhen

    2016-06-14

    Behavioral choice is ubiquitous across a wide range of interactive decision-making processes and a myriad of scientific disciplines. With regard to this issue, one entitative problem is actually to understand how collective social behaviors form and evolve among populations when they face a variety of conflict alternatives. In this paper, a selection-drift dynamic model is formulated to characterize the behavior imitation and exploration processes in social populations. Based on the proposed framework, several typical behavior evolution patterns, including behavioral flocking, collapse, and oscillation, are reproduced with different kinds of behavior networks. Interestingly, for the selection-drift dynamics on homogeneous symmetric behavior networks, we unveil the phase transition from behavioral flocking to collapse and derive the bifurcation diagram of the evolutionary stable behaviors in social behavior evolution. While via analyzing the survival conditions of the best behavior on heterogeneous symmetric behavior networks, we propose a selection-drift mechanism to guarantee consensus at the optimal behavior. Moreover, when the selection-drift dynamics on asymmetric behavior networks is simulated, it is shown that breaking the symmetry in behavior networks can induce various behavioral oscillations. These obtained results may shed new insights into understanding, detecting, and further controlling how social norm and cultural trends evolve.

  19. Two-phase flow dynamics in a model steam generator under vertical acceleration oscillation field

    International Nuclear Information System (INIS)

    Ishida, T.; Teshima, N.; Sakurai, S.

    1992-01-01

    The influence of periodically varying acceleration on hydrodynamic response has been studied experimentally using an experimental rig which models a marine reactor subject to vertical motion. The effect on the primary loop is small, but the effect on the secondary loop is large. The variables of the secondary loop, such as circulation flow rate and water level, oscillate with acceleration. The variation of gains in frequency response is analysed. The variations of flow in the secondary loop and in the downcome water level, increase in proportion to the acceleration. The effect of the flow resistance in the secondary loop on the two-phase flow dynamics is clarified. (7 figures) (Author)

  20. Oscillating dipole layer facing a conducting plane: a classical analogue of the dynamical Casimir effect

    International Nuclear Information System (INIS)

    Fosco, Cesar D.; Lombardo, Fernando C.

    2015-01-01

    We study the properties of the classical electromagnetic radiation produced by two physically different yet closely related systems, which may be regarded as classical analogues of the dynamical Casimir effect. They correspond to two flat, infinite, parallel planes, one of them static and imposing perfect-conductor boundary conditions, while the other performs a rigid oscillatory motion. The systems differ just in the electrical properties of the oscillating plane: one of them is just a planar dipole layer (representing, for instance, a small-width electret). The other, instead, has a dipole layer on the side which faces the static plane, but behaves as a conductor on the other side: this can be used as a representation of a conductor endowed with patch potentials (on the side which faces the conducting plane). We evaluate, in both cases, the dissipative flux of energy between the system and its environment, showing that, at least for small mechanical oscillation amplitudes, it can be written in terms of the dipole layer autocorrelation function. We show that there are resonances as a function of the frequency of the mechanical oscillation. (orig.)

  1. Oscillating dipole layer facing a conducting plane: a classical analogue of the dynamical Casimir effect

    Energy Technology Data Exchange (ETDEWEB)

    Fosco, Cesar D. [Comision Nacional de Energia Atomica, Centro Atomico Bariloche, Instituto Balseiro, Bariloche (Argentina); Lombardo, Fernando C. [Ciudad Universitaria, Departamento de Fisica Juan Jose Giambiagi, FCEyN UBA y IFIBA CONICET-UBA, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina)

    2015-12-15

    We study the properties of the classical electromagnetic radiation produced by two physically different yet closely related systems, which may be regarded as classical analogues of the dynamical Casimir effect. They correspond to two flat, infinite, parallel planes, one of them static and imposing perfect-conductor boundary conditions, while the other performs a rigid oscillatory motion. The systems differ just in the electrical properties of the oscillating plane: one of them is just a planar dipole layer (representing, for instance, a small-width electret). The other, instead, has a dipole layer on the side which faces the static plane, but behaves as a conductor on the other side: this can be used as a representation of a conductor endowed with patch potentials (on the side which faces the conducting plane). We evaluate, in both cases, the dissipative flux of energy between the system and its environment, showing that, at least for small mechanical oscillation amplitudes, it can be written in terms of the dipole layer autocorrelation function. We show that there are resonances as a function of the frequency of the mechanical oscillation. (orig.)

  2. Oscillating dipole layer facing a conducting plane: a classical analogue of the dynamical Casimir effect

    Energy Technology Data Exchange (ETDEWEB)

    Fosco, César D. [Centro Atómico Bariloche, Instituto Balseiro, Comisión Nacional de Energía Atómica, R8402AGP, Bariloche (Argentina); Lombardo, Fernando C., E-mail: lombardo@df.uba.ar [Departamento de Física Juan José Giambiagi, FCEyN UBA and IFIBA CONICET-UBA, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Pabellón I, 1428, Buenos Aires (Argentina)

    2015-12-17

    We study the properties of the classical electromagnetic radiation produced by two physically different yet closely related systems, which may be regarded as classical analogues of the dynamical Casimir effect. They correspond to two flat, infinite, parallel planes, one of them static and imposing perfect-conductor boundary conditions, while the other performs a rigid oscillatory motion. The systems differ just in the electrical properties of the oscillating plane: one of them is just a planar dipole layer (representing, for instance, a small-width electret). The other, instead, has a dipole layer on the side which faces the static plane, but behaves as a conductor on the other side: this can be used as a representation of a conductor endowed with patch potentials (on the side which faces the conducting plane). We evaluate, in both cases, the dissipative flux of energy between the system and its environment, showing that, at least for small mechanical oscillation amplitudes, it can be written in terms of the dipole layer autocorrelation function. We show that there are resonances as a function of the frequency of the mechanical oscillation.

  3. Biological oscillations for learning walking coordination: dynamic recurrent neural network functionally models physiological central pattern generator.

    Science.gov (United States)

    Hoellinger, Thomas; Petieau, Mathieu; Duvinage, Matthieu; Castermans, Thierry; Seetharaman, Karthik; Cebolla, Ana-Maria; Bengoetxea, Ana; Ivanenko, Yuri; Dan, Bernard; Cheron, Guy

    2013-01-01

    The existence of dedicated neuronal modules such as those organized in the cerebral cortex, thalamus, basal ganglia, cerebellum, or spinal cord raises the question of how these functional modules are coordinated for appropriate motor behavior. Study of human locomotion offers an interesting field for addressing this central question. The coordination of the elevation of the 3 leg segments under a planar covariation rule (Borghese et al., 1996) was recently modeled (Barliya et al., 2009) by phase-adjusted simple oscillators shedding new light on the understanding of the central pattern generator (CPG) processing relevant oscillation signals. We describe the use of a dynamic recurrent neural network (DRNN) mimicking the natural oscillatory behavior of human locomotion for reproducing the planar covariation rule in both legs at different walking speeds. Neural network learning was based on sinusoid signals integrating frequency and amplitude features of the first three harmonics of the sagittal elevation angles of the thigh, shank, and foot of each lower limb. We verified the biological plausibility of the neural networks. Best results were obtained with oscillations extracted from the first three harmonics in comparison to oscillations outside the harmonic frequency peaks. Physiological replication steadily increased with the number of neuronal units from 1 to 80, where similarity index reached 0.99. Analysis of synaptic weighting showed that the proportion of inhibitory connections consistently increased with the number of neuronal units in the DRNN. This emerging property in the artificial neural networks resonates with recent advances in neurophysiology of inhibitory neurons that are involved in central nervous system oscillatory activities. The main message of this study is that this type of DRNN may offer a useful model of physiological central pattern generator for gaining insights in basic research and developing clinical applications.

  4. Dynamic Phase Transitions In The Spin-2 Ising System Under An Oscillating Magnetic Field Within The Effective-Field Theory

    International Nuclear Information System (INIS)

    Ertas, Mehmet; Keskin, Mustafa; Deviren, Bayram

    2010-01-01

    The dynamic phase transitions are studied in the spin-2 Ising model under a time-dependent oscillating magnetic field by using the effective-field theory with correlations. The effective-field dynamic equation is derived by employing the Glauber transition rates and the phases in the system are obtained by solving this dynamic equation. The nature (first- or second-order) of the dynamic phase transition is characterized by investigating the thermal behavior of the dynamic order parameter and the dynamic phase transition temperatures are obtained. The dynamic phase diagrams are presented in (T/zJ, h/zJ) plane.

  5. Nonlinear dynamics and bifurcations of a coupled oscillator model for calling behavior of Japanese tree frogs (Hyla japonica).

    Science.gov (United States)

    Aihara, Ikkyu; Tsumoto, Kunichika

    2008-01-01

    Synchronization has been observed in various systems, including living beings. In a previous study, we reported a new phenomenon with antisynchronization in calling behavior of two interacting Japanese tree frogs. In this paper, we theoretically analyse nonlinear dynamics in a system of three coupled oscillators, which models three interacting frogs, where the oscillators of each pair have the property of antisynchronization; in particular, we perform bifurcation analysis and Lyapunov function analysis.

  6. Modeling Friction Performance of Drill String Torsional Oscillation Using Dynamic Friction Model

    Directory of Open Access Journals (Sweden)

    Xingming Wang

    2017-01-01

    Full Text Available Drill string torsional and longitudinal oscillation can significantly reduce axial drag in horizontal drilling. An improved theoretical model for the analysis of the frictional force was proposed based on microscopic contact deformation theory and a bristle model. The established model, an improved dynamic friction model established for drill strings in a wellbore, was used to determine the relationship of friction force changes and the drill string torsional vibration. The model results were in good agreement with the experimental data, verifying the accuracy of the established model. The analysis of the influence of drilling mud properties indicated that there is an approximately linear relationship between the axial friction force and dynamic shear and viscosity. The influence of drill string torsional oscillation on the axial friction force is discussed. The results indicated that the drill string transverse velocity is a prerequisite for reducing axial friction. In addition, low amplitude of torsional vibration speed can significantly reduce axial friction. Then, increasing the amplitude of transverse vibration speed, the effect of axial reduction is not significant. In addition, by involving general field drilling parameters, this model can accurately describe the friction behavior and quantitatively predict the frictional resistance in horizontal drilling.

  7. Nonreciprocity in the dynamics of coupled oscillators with nonlinearity, asymmetry, and scale hierarchy

    Science.gov (United States)

    Moore, Keegan J.; Bunyan, Jonathan; Tawfick, Sameh; Gendelman, Oleg V.; Li, Shuangbao; Leamy, Michael; Vakakis, Alexander F.

    2018-01-01

    In linear time-invariant dynamical and acoustical systems, reciprocity holds by the Onsager-Casimir principle of microscopic reversibility, and this can be broken only by odd external biases, nonlinearities, or time-dependent properties. A concept is proposed in this work for breaking dynamic reciprocity based on irreversible nonlinear energy transfers from large to small scales in a system with nonlinear hierarchical internal structure, asymmetry, and intentional strong stiffness nonlinearity. The resulting nonreciprocal large-to-small scale energy transfers mimic analogous nonlinear energy transfer cascades that occur in nature (e.g., in turbulent flows), and are caused by the strong frequency-energy dependence of the essentially nonlinear small-scale components of the system considered. The theoretical part of this work is mainly based on action-angle transformations, followed by direct numerical simulations of the resulting system of nonlinear coupled oscillators. The experimental part considers a system with two scales—a linear large-scale oscillator coupled to a small scale by a nonlinear spring—and validates the theoretical findings demonstrating nonreciprocal large-to-small scale energy transfer. The proposed study promotes a paradigm for designing nonreciprocal acoustic materials harnessing strong nonlinearity, which in a future application will be implemented in designing lattices incorporating nonlinear hierarchical internal structures, asymmetry, and scale mixing.

  8. On the modeling and nonlinear dynamics of autonomous Silva-Young type chaotic oscillators with flat power spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Kengne, Jacques [Laboratoire d' Automatique et Informatique Apliquée (LAIA), Department of Electrical Engineering, IUT-FV Bandjoun, University of Dschang, Bandjoun (Cameroon); Kenmogne, Fabien [Laboratory of Modeling and Simulation in Engineering, Biomimetics and Prototype, University of Yaoundé 1, Yaoundé (Cameroon)

    2014-12-15

    The nonlinear dynamics of fourth-order Silva-Young type chaotic oscillators with flat power spectrum recently introduced by Tamaseviciute and collaborators is considered. In this type of oscillators, a pair of semiconductor diodes in an anti-parallel connection acts as the nonlinear component necessary for generating chaotic oscillations. Based on the Shockley diode equation and an appropriate selection of the state variables, a smooth mathematical model (involving hyperbolic sine and cosine functions) is derived for a better description of both the regular and chaotic dynamics of the system. The complex behavior of the oscillator is characterized in terms of its parameters by using time series, bifurcation diagrams, Lyapunov exponents' plots, Poincaré sections, and frequency spectra. It is shown that the onset of chaos is achieved via the classical period-doubling and symmetry restoring crisis scenarios. Some PSPICE simulations of the nonlinear dynamics of the oscillator are presented in order to confirm the ability of the proposed mathematical model to accurately describe/predict both the regular and chaotic behaviors of the oscillator.

  9. The magnetization dynamics of nano-contact spin-torque vortex oscillators

    Science.gov (United States)

    Keatley, Paul

    The operation of nano-contact (NC) spin-torque vortex oscillators (STVOs) is underpinned by vortex gyration in response to spin-torque delivered by high density current passing through the magnetic layers of a spin valve. Gyration directly beneath the NC yields radio frequency (RF) emission through the giant magnetoresistance (GMR) effect, which can be readily detected electronically. The magnetization dynamics that extend beyond the NC perimeter contribute little to the GMR signal, but are crucial for synchronization of multiple NC-STVOs that share the same spin valve film. In this work time-resolved scanning Kerr microscopy (TRSKM) was used to directly image the extended dynamics of STVOs phase-locked to an injected RF current. In this talk the dynamics of single 250-nm diameter NCs, and a pair of 100-nm diameter NCs, will be presented. In general the Kerr images reveal well-defined localized and far-field dynamics, driven by spin-torque and RF current Oersted fields respectively. The RF frequency, RF Oersted field, direction of an in-plane magnetic field, and equilibrium magnetic state, all influenced the spatial character of the dynamics observed in single NCs. In the pair of NCs, two modes were observed in the RF emission. Kerr images revealed that a vortex was formed beneath each NC and that the mode with enhanced spectral amplitude and line quality appeared to be correlated with two localized regions oscillating with similar amplitude and phase, while a second weaker mode exhibited amplitude and phase differences. This suggests that the RF emission was generated by collective modes of vortex gyration dynamically coupled via magnetization dynamics and dipolar interactions of the shared magnetic layers. Within the constraints of injection locking, this work demonstrates that TRSKM can provide valuable insight into the spatial character and time-evolution of magnetization dynamics generated by NC-STVOs and the conditions that may favor their synchronization

  10. Effect of Antimicrobial Agents on MinD Protein Oscillations in E. coli Bacterial Cells

    Science.gov (United States)

    Kelly, Corey; Giuliani, Maximiliano; Dutcher, John

    2012-02-01

    The pole-to-pole oscillation of MinD proteins in E. coli cells determines the location of the division septum, and is integral to healthy cell division. It has been shown previously that the MinD oscillation period is approximately 40 s for healthy cells [1] but is strongly dependant on environmental factors such as temperature, which may place stress on the cell [2,3]. We use a strain of E. coli in which the MinD proteins are tagged with green fluorescent protein (GFP), allowing fluorescence visualization of the MinD oscillation. We use high-resolution total internal reflection fluorescence (TIRF) microscopy and a custom, temperature controlled flow cell to observe the effect of exposure to antimicrobial agents on the MinD oscillation period and, more generally, to analyze the time variation of the spatial distribution of the MinD proteins within the cells. These measurements provide insight into the mechanism of antimicrobial action. [1] Raskin, D.M.; de Boer, P. (1999) Proc. Natl. Acad. Sci. 96: 4971-4976. [2] Touhami, A.; Jericho, M; Rutenberg, A. (2006) J. Bacteriol. 188: 7661-7667. [3] Downing, B.; Rutenberg, A.; Touhami, A.; Jericho, M. (2009) PLoS ONE 4: e7285.

  11. Imaging magnetisation dynamics in nano-contact spin-torque vortex oscillators exhibiting gyrotropic mode splitting

    Science.gov (United States)

    Keatley, Paul Steven; Redjai Sani, Sohrab; Hrkac, Gino; Majid Mohseni, Seyed; Dürrenfeld, Philipp; Åkerman, Johan; Hicken, Robert James

    2017-04-01

    Nano-contact spin-torque vortex oscillators (STVOs) are anticipated to find application as nanoscale sources of microwave emission in future technological applications. Presently the output power and phase stability of individual STVOs are not competitive with existing oscillator technologies. Synchronisation of multiple nano-contact STVOs via magnetisation dynamics has been proposed to enhance the microwave emission. The control of device-to-device variations, such as mode splitting of the microwave emission, is essential if multiple STVOs are to be successfully synchronised. In this work a combination of electrical measurements and time-resolved scanning Kerr microscopy (TRSKM) was used to demonstrate how mode splitting in the microwave emission of STVOs was related to the magnetisation dynamics that are generated. The free-running STVO response to a DC current only was used to identify devices and bias magnetic field configurations for which single and multiple modes of microwave emission were observed. Stroboscopic Kerr images were acquired by injecting a small amplitude RF current to phase lock the free-running STVO response. The images showed that the magnetisation dynamics of a multimode device with moderate splitting could be controlled by the injected RF current so that they exhibit similar spatial character to that of a single mode. Significant splitting was found to result from a complicated equilibrium magnetic state that was observed in Kerr images as irregular spatial characteristics of the magnetisation dynamics. Such dynamics were observed far from the nano-contact and so their presence cannot be detected in electrical measurements. This work demonstrates that TRSKM is a powerful tool for the direct observation of the magnetisation dynamics generated by STVOs that exhibit complicated microwave emission. Characterisation of such dynamics outside the nano-contact perimeter permits a deeper insight into the requirements for optimal phase-locking of

  12. On Dynamical Behavior of a Friction-Induced Oscillator with 2-DOF on a Speed-Varying Traveling Belt

    Directory of Open Access Journals (Sweden)

    Jinjun Fan

    2017-01-01

    Full Text Available The dynamical behavior of a friction-induced oscillator with 2-DOF on a speed-varying belt is investigated by using the flow switchability theory of discontinuous dynamical systems. The mechanical model consists of two masses and a speed-varying traveling belt. Both of the masses on the traveling belt are connected with three linear springs and three dampers and are harmonically excited. Different domains and boundaries for such system are defined according to the friction discontinuity. Based on the above domains and boundaries, the analytical conditions of the passable motions, stick motions, and grazing motions for the friction-induced oscillator are obtained mathematically. An analytical prediction of periodic motions is performed through the mapping dynamics. With appropriate mapping structure, the simulations of the stick and nonstick motions in the two-degree friction-induced oscillator are illustrated for a better understanding of the motion complexity.

  13. Peculiarities of dynamics of oscillation of Q-switched Nd:YAG and Nd:KGW minilasers

    Science.gov (United States)

    Ustimenko, Nikolai S.; Gulin, Alexander V.

    2003-06-01

    We present the experimental results of the investigation of the dynamics of oscillation of the passively Q-switched neodymium-doped aluminum yttrium garnet (Nd:YAG) laser. The model of oscillation that allows explanation of appearance of repeat pulses is discussed. Several methods to eliminate these pulses are presented. In the study of the time characteristics of the SRS neodymium-doped potassium gadolinium tungstate Nd3+:KGd(WO4)2 laser (Nd:KGW), abnormal dynamics of a single pulse due to multimode emission was revealed. The performance and the designs of Nd:YAG and Nd:KGW minilasers are presented.

  14. Self-oscillations in dynamic systems a new methodology via two-relay controllers

    CERN Document Server

    Aguilar, Luis T; Fridman, Leonid; Iriarte, Rafael

    2015-01-01

    This monograph presents a simple and efficient two-relay control algorithm for generation of self-excited oscillations of a desired amplitude and frequency in dynamic systems. Developed by the authors, the two-relay controller consists of two relays switched by the feedback received from a linear or nonlinear system, and represents a new approach to the self-generation of periodic motions in underactuated mechanical systems. The first part of the book explains the design procedures for two-relay control using three different methodologies – the describing-function method, Poincaré maps, and the locus-of-a perturbed-relay-system method – and concludes with stability analysis of designed periodic oscillations. Two methods to ensure the robustness of two-relay control algorithms are explored in the second part, one based on the combination of the high-order sliding mode controller and backstepping, and the other on higher-order sliding-modes-based reconstruction of uncertainties and their compensation where...

  15. Complex dynamics of an archetypal self-excited SD oscillator driven by moving belt friction

    Science.gov (United States)

    Zhi-Xin, Li; Qing-Jie, Cao; Léger, Alain

    2016-01-01

    We propose an archetypal self-excited system driven by moving belt friction, which is constructed with the smooth and discontinuous (SD) oscillator proposed by the Cao et al. and the classical moving belt. The moving belt friction is modeled as the Coulomb friction to formulate the mathematical model of the proposed self-excited SD oscillator. The equilibrium states of the unperturbed system are obtained to show the complex equilibrium bifurcations. Phase portraits are depicted to present the hyperbolic structure transition, the multiple stick regions, and the friction-induced asymmetry phenomena. The numerical simulations are carried out to demonstrate the friction-induced vibration of multiple stick-slip phenomena and the stick-slip chaos in the perturbed self-excited system. The results presented here provide an opportunity for us to get insight into the mechanism of the complex friction-induced nonlinear dynamics in mechanical engineering and geography. Project supported by the National Natural Science Foundation of China (Grant Nos. 11372082 and 11572096) and the National Basic Research Program of China (Grant No. 2015CB057405).

  16. Dynamic tensile tests with superimposed ultrasonic oscillations applied to stainless steel

    International Nuclear Information System (INIS)

    Schinke, B.

    1986-09-01

    For the analysis of the mechanical consequences of core disruptive accidents in Fast Breeder Reactors various computer codes have been developed in the European Community. In recent years an extensive assessment has been performed by comparing the results of these codes with explosion tests in waterfilled vessels (COVA-experiments). Common to the various codes, a systematic underestimation of the vessel strains was found. In the COVA tests high frequency pressure oscillations were observed and thus it was conjectured that the phenomenon of ''acoustic softening'' might be relevant in explaining the discrepancies in the strains. To validate this conjecture a hydro-pneumatic tensile test apparatus was developed which allows dynamic tensile testing at room temperature with and without superimposed ultrasonic oscillations (40 kHz). The mean strain rate can be varied from 5 x 10 -5 to 30 s -1 and the ultrasound intensity may amount up to 30 W/mm -2 . The test specimens were fabricated from the actual COVA sheet material (stainless steel type 321). (orig./GL) [de

  17. Predictability of the monthly North Atlantic Oscillation index based on fractal analyses and dynamic system theory

    Science.gov (United States)

    Martínez, M. D.; Lana, X.; Burgueño, A.; Serra, C.

    2010-03-01

    The predictability of the monthly North Atlantic Oscillation, NAO, index is analysed from the point of view of different fractal concepts and dynamic system theory such as lacunarity, rescaled analysis (Hurst exponent) and reconstruction theorem (embedding and correlation dimensions, Kolmogorov entropy and Lyapunov exponents). The main results point out evident signs of randomness and the necessity of stochastic models to represent time evolution of the NAO index. The results also show that the monthly NAO index behaves as a white-noise Gaussian process. The high minimum number of nonlinear equations needed to describe the physical process governing the NAO index fluctuations is evidence of its complexity. A notable predictive instability is indicated by the positive Lyapunov exponents. Besides corroborating the complex time behaviour of the NAO index, present results suggest that random Cantor sets would be an interesting tool to model lacunarity and time evolution of the NAO index.

  18. Predictability of the monthly North Atlantic Oscillation index based on fractal analyses and dynamic system theory

    Directory of Open Access Journals (Sweden)

    M. D. Martínez

    2010-03-01

    Full Text Available The predictability of the monthly North Atlantic Oscillation, NAO, index is analysed from the point of view of different fractal concepts and dynamic system theory such as lacunarity, rescaled analysis (Hurst exponent and reconstruction theorem (embedding and correlation dimensions, Kolmogorov entropy and Lyapunov exponents. The main results point out evident signs of randomness and the necessity of stochastic models to represent time evolution of the NAO index. The results also show that the monthly NAO index behaves as a white-noise Gaussian process. The high minimum number of nonlinear equations needed to describe the physical process governing the NAO index fluctuations is evidence of its complexity. A notable predictive instability is indicated by the positive Lyapunov exponents. Besides corroborating the complex time behaviour of the NAO index, present results suggest that random Cantor sets would be an interesting tool to model lacunarity and time evolution of the NAO index.

  19. Dynamics of a periodically modulated optical parametric oscillator near lasing threshold

    International Nuclear Information System (INIS)

    Brazhnyi, V. A.; Konotop, V. V.; Taki, M.

    2009-01-01

    We present analytical investigation of the nonlinear dynamics of a degenerate optical parametric oscillator with periodic modulation of transverse refraction index. By a proper choice of the injected external field that must compensate for losses and match with the modulation period, nonlinear optical cavities can exhibit dissipative Bloch waves which are attracting solutions of nonequilibrium system. This allows us to propose method of experimental visualization of the band structure of the cavity medium. Using multiple-scale expansion near the leasing threshold, we obtain the equation of evolution of the small-amplitude envelop of the signal field which appears strongly affected by the periodic modulation of the refractive index. We discuss the physical meaning of the obtained equation.

  20. Effects of non-condensable gas on the dynamic oscillations of cavitation bubbles

    Science.gov (United States)

    Zhang, Yuning

    2016-11-01

    Cavitation is an essential topic of multiphase flow with a broad range of applications. Generally, there exists non-condensable gas in the liquid and a complex vapor/gas mixture bubble will be formed. A rigorous prediction of the dynamic behavior of the aforementioned mixture bubble is essential for the development of a complete cavitation model. In the present paper, effects of non-condensable gas on the dynamic oscillations of the vapor/gas mixture bubble are numerically investigated in great detail. For the completeness, a large parameter zone (e.g. bubble radius, frequency and ratio between gas and vapor) is investigated with many demonstrating examples. The mechanisms of mass diffusion are categorized into different groups with their characteristics and dominated regions given. Influences of non-condensable gas on the wave propagation (e.g. wave speed and attenuation) in the bubbly liquids are also briefly discussed. Specifically, the minimum wave speed is quantitatively predicted in order to close the pressure-density coupling relationship usually employed for the cavitation modelling. Finally, the application of the present finding on the development of cavitation model is demonstrated with a brief discussion of its influence on the cavitation dynamics. This work was financially supported by the National Natural Science Foundation of China (Project No.: 51506051).

  1. Dynamic phase diagrams of the Ising metamagnet in an oscillating magnetic field within the effective-field theory

    Energy Technology Data Exchange (ETDEWEB)

    Deviren, Bayram [Department of Physics, Nevsehir University, 50300 Nevsehir (Turkey); Institute of Science, Erciyes University, 38039 Kayseri (Turkey); Keskin, Mustafa, E-mail: keskin@erciyes.edu.t [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)

    2010-07-12

    Dynamic aspects of a two-sublattice Ising metamagnet on honeycomb, square and hexagonal lattices under the presence of a time-dependent oscillating external magnetic field are studied by using the effective-field theory with correlations. The set of effective-field dynamic equations is derived by employing Glauber transition rates. The phases in the system are obtained by solving these dynamic equations. The thermal behavior of the dynamic staggered magnetization, the hysteresis loop area and correlation are investigated in order to characterize the nature of the dynamic transitions and to obtain dynamic phase transition temperatures. The phase diagrams are constructed in two different planes, and exhibit dynamic tricritical behavior, which strongly depends on interaction parameters. In order to investigate the spin correlation effect on the dynamic phase diagrams of the system, the results are also given within the framework of the dynamic mean-field approximation.

  2. Dynamic phase diagrams of the Ising metamagnet in an oscillating magnetic field within the effective-field theory

    International Nuclear Information System (INIS)

    Deviren, Bayram; Keskin, Mustafa

    2010-01-01

    Dynamic aspects of a two-sublattice Ising metamagnet on honeycomb, square and hexagonal lattices under the presence of a time-dependent oscillating external magnetic field are studied by using the effective-field theory with correlations. The set of effective-field dynamic equations is derived by employing Glauber transition rates. The phases in the system are obtained by solving these dynamic equations. The thermal behavior of the dynamic staggered magnetization, the hysteresis loop area and correlation are investigated in order to characterize the nature of the dynamic transitions and to obtain dynamic phase transition temperatures. The phase diagrams are constructed in two different planes, and exhibit dynamic tricritical behavior, which strongly depends on interaction parameters. In order to investigate the spin correlation effect on the dynamic phase diagrams of the system, the results are also given within the framework of the dynamic mean-field approximation.

  3. Oscillating behavior of Clostridium difficile Min proteins in Bacillus subtilis.

    Science.gov (United States)

    Makroczyová, Jana; Jamroškovič, Ján; Krascsenitsová, Eva; Labajová, Nad'a; Barák, Imrich

    2016-06-01

    In rod-shaped bacteria, the proper placement of the division septum at the midcell relies, at least partially, on the proteins of the Min system as an inhibitor of cell division. The main principle of Min system function involves the formation of an inhibitor gradient along the cell axis; however, the establishment of this gradient differs between two well-studied gram-negative and gram-positive bacteria. While in gram-negative Escherichia coli, the Min system undergoes pole-to-pole oscillation, in gram-positive Bacillus subtilis, proper spatial inhibition is achieved by the preferential attraction of the Min proteins to the cell poles. Nevertheless, when E.coli Min proteins are inserted into B.subtilis cells, they still oscillate, which negatively affects asymmetric septation during sporulation in this organism. Interestingly, homologs of both Min systems were found to be present in various combinations in the genomes of anaerobic and endospore-forming Clostridia, including the pathogenic Clostridium difficile. Here, we have investigated the localization and behavior of C.difficile Min protein homologs and showed that MinDE proteins of C.difficile can oscillate when expressed together in B.subtilis cells. We have also investigated the effects of this oscillation on B.subtilis sporulation, and observed decreased sporulation efficiency in strains harboring the MinDE genes. Additionally, we have evaluated the effects of C.difficile Min protein expression on vegetative division in this heterologous host. © 2016 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  4. Quantum Dynamics of Multi Harmonic Oscillators Described by Time Variant Conic Hamiltonian and their Use in Contemporary Sciences

    Science.gov (United States)

    Demiralp, Metin

    2010-09-01

    This work focuses on the dynamics of a system of quantum multi harmonic oscillators whose Hamiltonian is conic in positions and momenta with time variant coefficients. While it is simple, this system is useful for modeling the dynamics of a number of systems in contemporary sciences where the equations governing spatial or temporal changes are described by sets of ODEs. The dynamical causal models used readily in neuroscience can be indirectly described by these systems. In this work, we want to show that it is possible to describe these systems using quantum wave function type entities and expectations if the dynamic of the system is related to a set of ODEs.

  5. Complex dynamics analysis of impulsively coupled Duffing oscillators with ring structure

    Science.gov (United States)

    Jiang, Hai-Bo; Zhang, Li-Ping; Yu, Jian-Jiang

    2015-02-01

    Impulsively coupled systems are high-dimensional non-smooth systems that can exhibit rich and complex dynamics. This paper studies the complex dynamics of a non-smooth system which is unidirectionally impulsively coupled by three Duffing oscillators in a ring structure. By constructing a proper Poincaré map of the non-smooth system, an analytical expression of the Jacobian matrix of Poincaré map is given. Two-parameter Hopf bifurcation sets are obtained by combining the shooting method and the Runge-Kutta method. When the period is fixed and the coupling strength changes, the system undergoes stable, periodic, quasi-periodic, and hyper-chaotic solutions, etc. Floquet theory is used to study the stability of the periodic solutions of the system and their bifurcations. Project supported by the National Natural Science Foundation of China (Grant Nos. 11402224, 11202180, 61273106, and 11171290), the Qing Lan Project of the Jiangsu Higher Educational Institutions of China, and the Jiangsu Overseas Research and Training Program for University Prominent Young and Middle-aged Teachers and Presidents.

  6. Multi-mode dynamics of optical oscillators based on intracavity nonlinear frequency down-conversion

    Science.gov (United States)

    Morozov, Yuri A.

    2018-01-01

    The transient power characteristics of two optical oscillators—a difference frequency generator (ICDFG) and a singly resonant optical parametric oscillator (ICSRO)—based on intracavity nonlinear optical frequency conversion, are described. The simulation has been performed via the rate-equation mathematical model, which features a multi-mode behavior of all optical fields. The reason for unattainability of single-mode emission in these devices without an additional frequency-selective element (e.g., a Fabry-Perot etalon) is clarified. It is shown that the dynamics of a short-wavelength emission (pump) results mainly from the nonlinear optical interaction, while that of the longer-wavelength optical fields (signal and idler) depends on selectivity of the etalon. With the suitable etalons inserted in their cavities, both devices are shown to operate dynamically single-mode under conventional experimental conditions. The nonlinear interaction makes the pump emission collapse to the single-mode operation very fast (it takes no more than a few tens of the photon lifetimes). To overcome the threshold of parametric generation, the intracavity pump power in the ICSRO has to exceed ˜ 100 W, while the ICDFG is essentially a "thresholdless" device.

  7. Robust network oscillations during mammalian respiratory rhythm generation driven by synaptic dynamics

    Science.gov (United States)

    Guerrier, Claire; Hayes, John A.; Fortin, Gilles; Holcman, David

    2015-01-01

    How might synaptic dynamics generate synchronous oscillations in neuronal networks? We address this question in the preBötzinger complex (preBötC), a brainstem neural network that paces robust, yet labile, inspiration in mammals. The preBötC is composed of a few hundred neurons that alternate bursting activity with silent periods, but the mechanism underlying this vital rhythm remains elusive. Using a computational approach to model a randomly connected neuronal network that relies on short-term synaptic facilitation (SF) and depression (SD), we show that synaptic fluctuations can initiate population activities through recurrent excitation. We also show that a two-step SD process allows activity in the network to synchronize (bursts) and generate a population refractory period (silence). The model was validated against an array of experimental conditions, which recapitulate several processes the preBötC may experience. Consistent with the modeling assumptions, we reveal, by electrophysiological recordings, that SF/SD can occur at preBötC synapses on timescales that influence rhythmic population activity. We conclude that nondeterministic neuronal spiking and dynamic synaptic strengths in a randomly connected network are sufficient to give rise to regular respiratory-like rhythmic network activity and lability, which may play an important role in generating the rhythm for breathing and other coordinated motor activities in mammals. PMID:26195782

  8. Dynamic and thermodynamic impacts of the winter Arctic Oscillation on summer sea ice extent.

    Science.gov (United States)

    Park, H. S.; Stewart, A.

    2017-12-01

    Arctic summer sea ice extent exhibits substantial interannual variability, as is highlighted by the remarkable recovery in sea ice extent in 2013 following the record minimum in the summer of 2012. Here, we explore the mechanism via which Arctic Oscillation (AO)-induced ice thickness changes impact summer sea ice, using observations and reanalysis data. A positive AO weakens the basin-scale anticyclonic sea ice drift and decreases the winter ice thickness by 15cm and 10cm in the Eurasian and the Pacific sectors of the Arctic respectively. Three reanalysis datasets show that the (upward) surface heat fluxes are reduced over wide areas of the Arctic, suppressing the ice growth during the positive AO winters. The winter dynamic and thermodynamic thinning preconditions the ice for enhanced radiative forcing via the ice-albedo feedback in late spring-summer, leading to an additional 8-10 cm of thinning over the Pacific sector of the Arctic. Because of these winter AO-induced dynamic and thermodynamics effects, the winter AO explains about 22% (r = -0.48) of the interannual variance of September sea ice extent from year 1980 to 2015.

  9. Unified neural field theory of brain dynamics underlying oscillations in Parkinson's disease and generalized epilepsies.

    Science.gov (United States)

    Müller, E J; van Albada, S J; Kim, J W; Robinson, P A

    2017-09-07

    The mechanisms underlying pathologically synchronized neural oscillations in Parkinson's disease (PD) and generalized epilepsies are explored in parallel via a physiologically-based neural field model of the corticothalamic-basal ganglia (CTBG) system. The basal ganglia (BG) are approximated as a single effective population and their roles in the modulation of oscillatory dynamics of the corticothalamic (CT) system and vice versa are analyzed. In addition to normal EEG rhythms, enhanced activity around 4 Hz and 20 Hz exists in the model, consistent with the characteristic frequencies observed in PD. These rhythms result from resonances in loops formed between the BG and CT populations, analogous to those that underlie epileptic oscillations in a previous CT model, and which are still present in the combined CTBG system. Dopamine depletion is argued to weaken the dampening of these loop resonances in PD, and network connections then explain the significant coherence observed between BG, thalamic, and cortical population activity around 4-8 Hz and 20 Hz. Parallels between the afferent and efferent connection sites of the thalamic reticular nucleus (TRN) and BG predict low dopamine to correspond to a reduced likelihood of tonic-clonic (grand mal) seizures, which agrees with experimental findings. Furthermore, the model predicts an increased likelihood of absence (petit mal) seizure resulting from pathologically low dopamine levels in accordance with experimental observations. Suppression of absence seizure activity is demonstrated when afferent and efferent BG connections to the CT system are strengthened, which is consistent with other CTBG modeling studies. The BG are demonstrated to have a suppressive effect on activity of the CTBG system near tonic-clonic seizure states, which provides insight into the reported efficacy of current treatments in BG circuits. Sleep states of the TRN are also found to suppress pathological PD activity in accordance with

  10. Mouse hair cycle expression dynamics modeled as coupled mesenchymal and epithelial oscillators.

    Directory of Open Access Journals (Sweden)

    Ryan Tasseff

    2014-11-01

    Full Text Available The hair cycle is a dynamic process where follicles repeatedly move through phases of growth, retraction, and relative quiescence. This process is an example of temporal and spatial biological complexity. Understanding of the hair cycle and its regulation would shed light on many other complex systems relevant to biological and medical research. Currently, a systematic characterization of gene expression and summarization within the context of a mathematical model is not yet available. Given the cyclic nature of the hair cycle, we felt it was important to consider a subset of genes with periodic expression. To this end, we combined several mathematical approaches with high-throughput, whole mouse skin, mRNA expression data to characterize aspects of the dynamics and the possible cell populations corresponding to potentially periodic patterns. In particular two gene clusters, demonstrating properties of out-of-phase synchronized expression, were identified. A mean field, phase coupled oscillator model was shown to quantitatively recapitulate the synchronization observed in the data. Furthermore, we found only one configuration of positive-negative coupling to be dynamically stable, which provided insight on general features of the regulation. Subsequent bifurcation analysis was able to identify and describe alternate states based on perturbation of system parameters. A 2-population mixture model and cell type enrichment was used to associate the two gene clusters to features of background mesenchymal populations and rapidly expanding follicular epithelial cells. Distinct timing and localization of expression was also shown by RNA and protein imaging for representative genes. Taken together, the evidence suggests that synchronization between expanding epithelial and background mesenchymal cells may be maintained, in part, by inhibitory regulation, and potential mediators of this regulation were identified. Furthermore, the model suggests that

  11. Extension of the Method of Direct Separation of Motions for Problems of Oscillating Action on Dynamical Systems

    DEFF Research Database (Denmark)

    Blekhman, Iliya I.; Sorokin, Vladislav

    2016-01-01

    A general approach to study oscillating action on nonlinear dynamical systems is developed. It implies a transition from initial governing equations of motion to much more simple equations describing only the main slow component of motions (the vibro-transformed dynamics equations). The approach...... is named as the Oscillatory Strobodynamics, since motions are perceived as under a stroboscopic light. The vibro-transformed dynamics equations comprise terms that represent the averaged effect of the oscillating action. The method of direct separation of motions (MDSM) appears to be an efficient...... and simple tool to derive these equations. A modification of the method applicable to study problems that do not imply restrictions on the spectrum of excitation frequencies is proposed. It allows also to abandon other restrictions usually introduced when employing the classical asymptotic methods, e...

  12. Dynamical transitions in large systems of mean field-coupled Landau-Stuart oscillators: Extensive chaos and cluster states

    Energy Technology Data Exchange (ETDEWEB)

    Ku, Wai Lim; Girvan, Michelle; Ott, Edward [Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742 (United States)

    2015-12-15

    In this paper, we study dynamical systems in which a large number N of identical Landau-Stuart oscillators are globally coupled via a mean-field. Previously, it has been observed that this type of system can exhibit a variety of different dynamical behaviors. These behaviors include time periodic cluster states in which each oscillator is in one of a small number of groups for which all oscillators in each group have the same state which is different from group to group, as well as a behavior in which all oscillators have different states and the macroscopic dynamics of the mean field is chaotic. We argue that this second type of behavior is “extensive” in the sense that the chaotic attractor in the full phase space of the system has a fractal dimension that scales linearly with N and that the number of positive Lyapunov exponents of the attractor also scales linearly with N. An important focus of this paper is the transition between cluster states and extensive chaos as the system is subjected to slow adiabatic parameter change. We observe discontinuous transitions between the cluster states (which correspond to low dimensional dynamics) and the extensively chaotic states. Furthermore, examining the cluster state, as the system approaches the discontinuous transition to extensive chaos, we find that the oscillator population distribution between the clusters continually evolves so that the cluster state is always marginally stable. This behavior is used to reveal the mechanism of the discontinuous transition. We also apply the Kaplan-Yorke formula to study the fractal structure of the extensively chaotic attractors.

  13. Coherent Dynamics of a Hybrid Quantum Spin-Mechanical Oscillator System

    Science.gov (United States)

    Lee, Kenneth William, III

    previous demonstrations of a strain-mediated spin-mechanical interface and hence the system is largely uncharacterized. Second, fabricating high quality diamond mechanical oscillators is difficult due to the robust and chemically inert nature of diamond. Finally, engineering highly coherent NV centers with a coherent optical interface in nanostructured diamond remains an outstanding challenge. In this thesis, we theoretically and experimentally address each of these challenges, and show that with future improvements, this device is suitable for future quantum-enabled applications. First, we theoretically and experimentally demonstrate a dynamic, strain-mediated coupling between the spin and orbital degrees of freedom of the NV center and the driven mechanical motion of a single-crystal diamond cantilever. We employ Ramsey interferometry to demonstrate coherent, mechanical driving of the NV spin evolution. Using this interferometry technique, we present the first demonstration of nanoscale strain imaging, and quantitatively characterize the previously unknown spin-strain coupling constants. Next, we use the driven motion of the cantilever to perform deterministic control of the frequency and polarization dependence of the optical transitions of the NV center. Importantly, this experiment constitutes the first demonstration of on-chip control of both the frequency and polarization state of a single photon produced by a quantum emitter. In the final experiment, we use mechanical driving to engineer a series of spin ``clock" states and demonstrate a significant increase in the spin coherence time of the NV center. We conclude this thesis with a theoretical discussion of prospective applications for this device, including generation of non-classical mechanical states and spin-spin entanglement, as well as an evaluation of the current limitations of our devices, including a possible avenues for improvement to reach the regime of strong spin-phonon coupling.

  14. Spatio-temporal dynamics and transition from asymptotic equilibrium to bounded oscillations in Chrysomya albiceps (Diptera, Calliphoridae

    Directory of Open Access Journals (Sweden)

    Wesley Augusto Conde Godoy

    2001-07-01

    Full Text Available The sensitivity of parameters that govern the stability of population size in Chrysomya albiceps and describe its spatial dynamics was evaluated in this study. The dynamics was modeled using a density-dependent model of population growth. Our simulations show that variation in fecundity and mainly in survival has marked effect on the dynamics and indicates the possibility of transitions from one-point equilibrium to bounded oscillations. C. albiceps exhibits a two-point limit cycle, but the introduction of diffusive dispersal induces an evident qualitative shift from two-point limit cycle to a one fixed-point dynamics. Population dynamics of C. albiceps is here compared to dynamics of Cochliomyia macellaria, C. megacephala and C. putoria.

  15. Dynamic load mitigation using dissipative elastic metamaterials with multiple Maxwell-type oscillators

    Science.gov (United States)

    Alamri, Sagr; Li, Bing; Tan, K. T.

    2018-03-01

    Dissipative elastic metamaterials have attracted increased attention in recent times. This paper presents the development of a dissipative elastic metamaterial with multiple Maxwell-type resonators for stress wave attenuation. The mechanism of the dissipation effect on the vibration characteristics is systematically investigated by mass-spring-damper models with single and dual resonators. Based on the parameter optimization, it is revealed that a broadband wave attenuation region (stopping band) can be obtained by properly utilizing interactions from resonant motions and viscoelastic effects of the Maxwell-type oscillators. The relevant numerical verifications are conducted for various cases, and excellent agreement between the numerical and theoretical frequency response functions is shown. The design of this dissipative metamaterial system is further applied for dynamic load mitigation and blast wave attenuation. Moreover, the transient response in the continuum model is designed and analyzed for more robust design. By virtue of the bandgap merging effect induced by the Maxwell-type damper, the transient blast wave can be almost completely suppressed in the low frequency range. A significantly improved performance of the proposed dissipative metamaterials for stress wave mitigation is verified in both time and frequency domains.

  16. Prediction of the Arctic Oscillation in Boreal Winter by Dynamical Seasonal Forecasting Systems

    Science.gov (United States)

    Kang, Daehyun; Lee, Myong-In; Im, Jungho; Kim, Daehyun; Kim, Hye-Mi; Kang, Hyun-Suk; Schubert, Siegfried D.; Arribas, Alberto; MacLachlan, Craig

    2014-01-01

    This study assesses the skill of boreal winter Arctic Oscillation (AO) predictions with state-of-the-art dynamical ensemble prediction systems (EPSs): GloSea4, CFSv2, GEOS-5, CanCM3, CanCM4, and CM2.1. Long-term reforecasts with the EPSs are used to evaluate how well they represent the AO and to assess the skill of both deterministic and probabilistic forecasts of the AO. The reforecasts reproduce the observed changes in the large-scale patterns of the Northern Hemispheric surface temperature, upper level wind, and precipitation associated with the different phases of the AO. The results demonstrate that most EPSs improve upon persistence skill scores for lead times up to 2 months in boreal winter, suggesting some potential for skillful prediction of the AO and its associated climate anomalies at seasonal time scales. It is also found that the skill of AO forecasts during the recent period (1997-2010) is higher than that of the earlier period (1983-1996).

  17. Response and Dynamical Stability of Oscillators with Discontinuous or Steep First Derivative of Restoring Characteristic

    Directory of Open Access Journals (Sweden)

    Željko Božić

    2009-01-01

    Full Text Available Response and dynamical stability of oscillators with discontinuous or steep first derivative of restoring characteristic is considered in this paper. For that purpose, a simple single-degree-of-freedom system with piecewise-linear force-displacement relationship subjected to a harmonic force excitation is analysed by the method of piecing the exact solutions (MPES in the time domain and by the incremental harmonic balance method (IHBM in the frequency domain. The stability of the periodic solutions obtained in the frequency domain by IHBM is estimated by the Floquet-Lyapunov theorem. Obtained frequency response characteristic is very complex and includes multi-frequency response for a single frequency excitation, jump phenomenon, multi-valued and non-periodic solutions. Determining of frequency response characteristic in the time domain by MPES is exceptionally time consuming, particularly inside the frequency ranges of co-existence of multiple stable solutions. In the frequency domain, IHBM is very efficient and very well suited for obtaining wide range frequency response characteristics, parametric studies and bifurcation analysis. On the other hand, neglecting of very small harmonic terms (which in-significantly influence the r.m.s. values of the response and are very small in comparison to other terms of the spectrum can cause very large error in evaluation of the eigenvalues of the monodromy matrix, and so they can lead to incorrect prediction of the dynamical stability of the solution. Moreover, frequency ranges are detected inside which the procedure of evaluation of eigenvalues of the monodromy matrix does not converge with increasing the number of harmonics included in the supposed approximate solution.

  18. Orbital Dynamics of an Oscillating Sail in the Earth-Moon System

    NARCIS (Netherlands)

    Heiligers, M.J.; Ceriotti, M.

    2017-01-01

    The oscillating sail is a novel solar sail configuration where a triangular sail is released at a deflected angle with respect to the Sun-direction. As a result, the sail will conduct an undamped oscillating motion around the Sun-line due to the offset between the centre-of-pressure and

  19. Dynamics of two forced quantum oscillators with parametric down-conversion interaction solved by virtue of the entangled state representation

    Energy Technology Data Exchange (ETDEWEB)

    Fan Hongyi [CCAST (World Laboratory) PO Box 8730, Beijing 100080 (China); Jiang Zhonghua [Special Class for the Gifted Young, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2004-02-13

    By virtue of the entangled state representation |{xi} rang rang, we solve the dynamics of a generalized parametric amplifier whose Hamiltonian is composed of two forced quantum oscillators plus a parametric down-conversion interaction in the resonant case. The solutions and state vectors of the Schroedinger equation are derived, of which the simplest solution is a squeezed coherent state. The method of characteristics is employed.

  20. Pole-to-Pole Connections: Similarities between Arctic and Antarctic Microbiomes and Their Vulnerability to Environmental Change

    Directory of Open Access Journals (Sweden)

    Julia Kleinteich

    2017-11-01

    Full Text Available The global biogeography of microorganisms remains poorly resolved, which limits the current understanding of microbial resilience toward environmental changes. Using high-throughput 16S rRNA gene amplicon sequencing, we characterized the microbial diversity of terrestrial and lacustrine biofilms from the Arctic, Antarctic and temperate regions. Our analyses suggest that bacterial community compositions at the poles are more similar to each other than they are to geographically closer temperate habitats, with 32% of all operational taxonomic units (OTUs co-occurring in both polar regions. While specific microbial taxa were confined to distinct regions, representing potentially endemic populations, the percentage of cosmopolitan taxa was higher in Arctic (43% than in Antarctic samples (36%. The overlap in polar microbial OTUs may be explained by natural or anthropogenically-mediated dispersal in combination with environmental filtering. Current and future changing environmental conditions may enhance microbial invasion, establishment of cosmopolitan genotypes and loss of endemic taxa.

  1. Phasic bursting pattern of postural responses may reflect internal dynamics: simulation of trunk reflexes with a neural oscillator model.

    Science.gov (United States)

    Wulf, Arne; Wagner, Heiko; Wulf, Thomas; Schinowski, David; Puta, Christian; Anders, Christoph; Chong, Sook Yee

    2012-10-11

    Postural responses are usually investigated as reflexes. Several trials are averaged, and trial-to-trial variations are interpreted as noise. Several studies providing single-trial data plots revealed oscillations that may be cancelled out in averaged time series. Variations between single trials may also be interpreted as a consequence of changed dynamic properties of the neural circuitries. Therefore, we propose a Matsuoka oscillator model to describe single-trial postural responses to external perturbations. The applicability of the model was demonstrated by a comparison between simulations and experimental electromyographic (EMG) data. Vertical force perturbations of durations 0.4 s and 0.2 s were applied via a handle to 10 subjects. Handle force was used as model input, and EMG data from the external oblique muscles was compared with simulation output. Model coefficients were optimized by a least-squares algorithm. The optimization produced a good similarity between simulation and experimental data with determination coefficients of r(2)=0.7 and greater. Furthermore, as a model validation, the model coefficients were used to predict other perturbation trials with similarities between predictions and respective EMG data of about r(2)=0.45, which was in the range of trial-to-trial EMG variability. The observed oscillations are assumed to originate from the central nervous system with changes in the neural circuitries between trials. Hence, the oscillations in single trial responses which are usually regarded as noise might be generated by the dynamics of a neural oscillator. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Effects of spin on the dynamics of the 2D Dirac oscillator in the magnetic cosmic string background

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Fabiano M. [Universidade Estadual de Ponta Grossa, Departamento de Matematica e Estatistica, Ponta Grossa, PR (Brazil); Silva, Edilberto O. [Universidade Federal do Maranhao, Departamento de Fisica, Sao Luis, MA (Brazil)

    2014-12-01

    In this work the dynamics of a 2D Dirac oscillator in the spacetime of a magnetic cosmic string is considered. It is shown that earlier approaches to this problem have neglected a δ function contribution to the full Hamiltonian, which comes from the Zeeman interaction. The inclusion of spin effects leads to results which confirm a modified dynamics. Based on the self-adjoint extension method, we determined the most relevant physical quantities, such as energy spectrum, wave functions and the self-adjoint extension parameter by applying boundary conditions allowed by the system. (orig.)

  3. El Nino Southern Oscillation and vegetation dynamics as predictors of dengue fever cases in Costa Rica

    Energy Technology Data Exchange (ETDEWEB)

    Fuller, D O [Department of Geography and Regional Studies, University of Miami, Coral Gables, FL 33124-2221 (United States); Troyo, A [Centro de Investigacion en Enfermedades Tropicales, Departamento de ParasitologIa, Facultad de MicrobiologIa, Universidad de Costa Rica, San Jose (Costa Rica); Beier, J C [Global Public Health Program, Department of Epidemiology and Public Health, University of Miami, Miami, FL (United States)], E-mail: dofuller@miami.edu

    2009-01-15

    Dengue fever (DF) and dengue hemorrhagic fever (DHF) are growing health concerns throughout Latin America and the Caribbean. This study focuses on Costa Rica, which experienced over 100 000 cases of DF/DHF from 2003 to 2007. We utilized data on sea-surface temperature anomalies related to the El Nino Southern Oscillation (ENSO) and two vegetation indices derived from the Moderate Resolution Imaging Spectrometer (MODIS) from the Terra satellite to model the influence of climate and vegetation dynamics on DF/DHF cases in Costa Rica. Cross-correlations were calculated to evaluate both positive and negative lag effects on the relationships between independent variables and DF/DHF cases. The model, which utilizes a sinusoid and non-linear least squares to fit case data, was able to explain 83% of the variance in weekly DF/DHF cases when independent variables were shifted backwards in time. When the independent variables were shifted forward in time, consistently with a forecasting approach, the model explained 64% of the variance. Importantly, when five ENSO and two vegetation indices were included, the model reproduced a major DF/DHF epidemic of 2005. The unexplained variance in the model may be due to herd immunity and vector control measures, although information regarding these aspects of the disease system are generally lacking. Our analysis suggests that the model may be used to predict DF/DHF outbreaks as early as 40 weeks in advance and may also provide valuable information on the magnitude of future epidemics. In its current form it may be used to inform national vector control programs and policies regarding control measures; it is the first climate-based dengue model developed for this country and is potentially scalable to the broader region of Latin America and the Caribbean where dramatic increases in DF/DHF incidence and spread have been observed.

  4. El Nino Southern Oscillation and vegetation dynamics as predictors of dengue fever cases in Costa Rica

    International Nuclear Information System (INIS)

    Fuller, D O; Troyo, A; Beier, J C

    2009-01-01

    Dengue fever (DF) and dengue hemorrhagic fever (DHF) are growing health concerns throughout Latin America and the Caribbean. This study focuses on Costa Rica, which experienced over 100 000 cases of DF/DHF from 2003 to 2007. We utilized data on sea-surface temperature anomalies related to the El Nino Southern Oscillation (ENSO) and two vegetation indices derived from the Moderate Resolution Imaging Spectrometer (MODIS) from the Terra satellite to model the influence of climate and vegetation dynamics on DF/DHF cases in Costa Rica. Cross-correlations were calculated to evaluate both positive and negative lag effects on the relationships between independent variables and DF/DHF cases. The model, which utilizes a sinusoid and non-linear least squares to fit case data, was able to explain 83% of the variance in weekly DF/DHF cases when independent variables were shifted backwards in time. When the independent variables were shifted forward in time, consistently with a forecasting approach, the model explained 64% of the variance. Importantly, when five ENSO and two vegetation indices were included, the model reproduced a major DF/DHF epidemic of 2005. The unexplained variance in the model may be due to herd immunity and vector control measures, although information regarding these aspects of the disease system are generally lacking. Our analysis suggests that the model may be used to predict DF/DHF outbreaks as early as 40 weeks in advance and may also provide valuable information on the magnitude of future epidemics. In its current form it may be used to inform national vector control programs and policies regarding control measures; it is the first climate-based dengue model developed for this country and is potentially scalable to the broader region of Latin America and the Caribbean where dramatic increases in DF/DHF incidence and spread have been observed.

  5. Dynamic electrical characteristics of low-power ring oscillators constructed with inorganic nanoparticles on flexible plastics.

    Science.gov (United States)

    Yun, Junggwon; Cho, Kyoungah; Kim, Sangsig

    2012-11-01

    In this study, we demonstrate for the first time the low-power and stable performance of a ring oscillator constructed on a flexible plastic with solution-processable inorganic nanoparticles (NPs). Our flexible ring oscillator is composed of three inverters based on n- and p-type inorganic NP thin-film transistors. Each of the component inverters exhibits a gain of ∼80 at a voltage of 5 V. For the ring oscillator, the sine waves are generated with a frequency of up to 12 kHz. The waveforms are undistorted under strained conditions and maintained even after 5000 bending cycles. The frequency and waveform of the output waves obtained from our flexible ring oscillator are analyzed and discussed in detail.

  6. Thermoacoustic analysis of the dynamic pressure inside a model combustor during limit cycle oscillations

    NARCIS (Netherlands)

    Alemela, P.R.; Roman Casado, J.C.; Tarband Veeraraghavan, S.K.; Kok, Jacobus B.W.

    2013-01-01

    In this work comprehensive experimental and numerical studies incorporating the most relevant physical mechanisms causing limit cycle pressure and combustion rate oscillations (LCO) in a laboratory scale combustor will be discussed. The strong interaction between the aerodynamics-combustion-acoustic

  7. Dynamic phase transitions and dynamic phase diagrams of the spin-2 Blume-Capel model under an oscillating magnetic field within the effective-field theory

    Energy Technology Data Exchange (ETDEWEB)

    Ertas, Mehmet [Department of Physics, Erciyes University, 38039 Kayseri (Turkey); Institute of Science, Erciyes University, 38039 Kayseri (Turkey); Deviren, Bayram [Department of Physics, Nevsehir University, 50300 Nevsehir (Turkey); Keskin, Mustafa, E-mail: keskin@erciyes.edu.tr [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)

    2012-03-15

    The dynamic phase transitions are studied in the kinetic spin-2 Blume-Capel model under a time-dependent oscillating magnetic field using the effective-field theory with correlations. The effective-field dynamic equation for the average magnetization is derived by employing the Glauber transition rates and the phases in the system are obtained by solving this dynamic equation. The nature (first- or second-order) of the dynamic phase transition is characterized by investigating the thermal behavior of the dynamic magnetization and the dynamic phase transition temperatures are obtained. The dynamic phase diagrams are constructed in the reduced temperature and magnetic field amplitude plane and are of seven fundamental types. Phase diagrams contain the paramagnetic (P), ferromagnetic-2 (F{sub 2}) and three coexistence or mixed phase regions, namely the F{sub 2}+P, F{sub 1}+P and F{sub 2}+F{sub 1}+P, which strongly depend on the crystal-field interaction (D) parameter. The system also exhibits the dynamic tricritical behavior. - Highlights: Black-Right-Pointing-Pointer Dynamic phase transitions are studied in spin-2 BC model using EFT. Black-Right-Pointing-Pointer Dynamic phase diagrams are constructed in (T/zJ, h/zJ) plane. Black-Right-Pointing-Pointer Seven fundamental types of dynamic phase diagrams are found in the system. Black-Right-Pointing-Pointer System exhibits dynamic tricritical behavior.

  8. Dynamic magnetic behavior of the mixed-spin bilayer system in an oscillating field within the mean-field theory

    International Nuclear Information System (INIS)

    Ertaş, Mehmet; Keskin, Mustafa

    2012-01-01

    The dynamic magnetic behavior of the mixed Ising bilayer system (σ=2 and S=5/2), with a crystal-field interaction in an oscillating field are studied, within the mean-field approach, by using the Glauber-type stochastic dynamics for both ferromagnetic/ferromagnetic and antiferromagnetic/ferromagnetic interactions. The time variations of average magnetizations and the temperature dependence of the dynamic magnetizations are investigated. The dynamic phase diagrams are presented in the reduced temperature and magnetic field amplitude plane and they exhibit several ordered phases, coexistence phase regions and critical points as well as a re-entrant behavior depending on interaction parameters. -- Highlights: ► Dynamic magnetic behavior of the mixed Ising bilayer system is investigated within the Glauber-type stochastic dynamics. ► The time variations of average magnetizations are studied to find the phases. ► The temperature dependence of the dynamic magnetizations is investigated to obtain the dynamic phase transition points. ► The dynamic phase diagrams are presented and they exhibit several ordered phases, coexistence phase regions and critical points as well as a re-entrant behavior.

  9. Dynamic magnetic behavior of the mixed-spin bilayer system in an oscillating field within the mean-field theory

    Energy Technology Data Exchange (ETDEWEB)

    Ertaş, Mehmet [Department of Physics, Erciyes University, 38039 Kayseri (Turkey); Keskin, Mustafa, E-mail: keskin@erciyes.edu.tr [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)

    2012-07-23

    The dynamic magnetic behavior of the mixed Ising bilayer system (σ=2 and S=5/2), with a crystal-field interaction in an oscillating field are studied, within the mean-field approach, by using the Glauber-type stochastic dynamics for both ferromagnetic/ferromagnetic and antiferromagnetic/ferromagnetic interactions. The time variations of average magnetizations and the temperature dependence of the dynamic magnetizations are investigated. The dynamic phase diagrams are presented in the reduced temperature and magnetic field amplitude plane and they exhibit several ordered phases, coexistence phase regions and critical points as well as a re-entrant behavior depending on interaction parameters. -- Highlights: ► Dynamic magnetic behavior of the mixed Ising bilayer system is investigated within the Glauber-type stochastic dynamics. ► The time variations of average magnetizations are studied to find the phases. ► The temperature dependence of the dynamic magnetizations is investigated to obtain the dynamic phase transition points. ► The dynamic phase diagrams are presented and they exhibit several ordered phases, coexistence phase regions and critical points as well as a re-entrant behavior.

  10. The theory of the anti-bouncer of dynamic bumping on the plough at forced oscillations of the framework

    Directory of Open Access Journals (Sweden)

    A.P. Tarverdyan

    2017-12-01

    Full Text Available In the work the problem of the use of the external revolting factors is considered which arise from fluctuation of traction resistance of between each other pair-connected yoke and the hulls of the plow, within 27÷98%, with average coefficient of unevenness 3÷5 as power source for irrevocable performance of technological process with due quality.For execution of the principal condition of support of normal operation of the conjugate casing - supports of identity of parameters of their oscillations and congestion avoidance and deviation prefir-trees of admissible amplitude in the case of accidental collision with a hindrance, on the middle of a balance the shock-absorber of dynamic shock is provided.The solution of the task of optimization of parameters of the shock-absorber is based on value of admissible maximum amplitude of oscillations of the slave housing is made in three versions: plough share edge meeting with a motionless obstacle; case meeting with a mobile obstacle; operation of the fluctuating case in non-uniform, on specific resistance, soil conditions with unevenness coefficient to δ=2,9. After the analysis of results of the theory of calculation for three options is established: rigidity, C″ springs of an udarogasitel should be calculated by option at which the difference of resistance of forward and back cases is maximum. Keywords: Plough, Framework, Oscillation, Anti-bouncer, Bumping, Dynamics

  11. Hamiltonian Dynamics and Adiabatic Invariants for Time-Dependent Superconducting Qubit-Oscillators and Resonators in Quantum Computing Systems

    Directory of Open Access Journals (Sweden)

    Jeong Ryeol Choi

    2015-01-01

    Full Text Available An adiabatic invariant, which is a conserved quantity, is useful for studying quantum and classical properties of dynamical systems. Adiabatic invariants for time-dependent superconducting qubit-oscillator systems and resonators are investigated using the Liouville-von Neumann equation. At first, we derive an invariant for a simple superconducting qubit-oscillator through the introduction of its reduced Hamiltonian. Afterwards, an adiabatic invariant for a nanomechanical resonator linearly interfaced with a superconducting circuit, via a coupling with a time-dependent strength, is evaluated using the technique of unitary transformation. The accuracy of conservation for such invariant quantities is represented in detail. Based on the results of our developments in this paper, perturbation theory is applicable to the research of quantum characteristics of more complicated qubit systems that are described by a time-dependent Hamiltonian involving nonlinear terms.

  12. Electric fields generated by synchronized oscillations of microtubules, centrosomes and chromosomes regulate the dynamics of mitosis and meiosis

    Directory of Open Access Journals (Sweden)

    Zhao Yue

    2012-07-01

    Full Text Available Abstract Super-macromolecular complexes play many important roles in eukaryotic cells. Classical structural biological studies focus on their complicated molecular structures, physical interactions and biochemical modifications. Recent advances concerning intracellular electric fields generated by cell organelles and super-macromolecular complexes shed new light on the mechanisms that govern the dynamics of mitosis and meiosis. In this review we synthesize this knowledge to provide an integrated theoretical model of these cellular events. We suggest that the electric fields generated by synchronized oscillation of microtubules, centrosomes, and chromatin fibers facilitate several events during mitosis and meiosis, including centrosome trafficking, chromosome congression in mitosis and synapsis between homologous chromosomes in meiosis. These intracellular electric fields are generated under energy excitation through the synchronized electric oscillations of the dipolar structures of microtubules, centrosomes and chromosomes, three of the super-macromolecular complexes within an animal cell.

  13. Dynamics of decadal variability in the Atlantic subpolar gyre: a stochastically forced oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Born, Andreas [University of Bern, Climate and Environmental Physics, Physics Institute, Bern (Switzerland); Oeschger Centre for Climate Change Research, Bern (Switzerland); Bjerknes Centre for Climate Research, Bergen (Norway); University of Bergen, Geophysical Institute, Bergen (Norway); Mignot, Juliette [IPSL/UPMC/CNRS/IRD/MNHN, Laboratoire d' Oceanographie et du Climat, Experimentation et Approches Numeriques, Paris (France)

    2012-07-15

    Internal variability of the Atlantic subpolar gyre is investigated in a 600 years control simulation of a comprehensive coupled climate model. The subpolar gyre shows irregular oscillations of decadal time scale with most spectral power between 15 and 20 years. Positive and negative feedback mechanisms act successively on the circulation leading to an internal oscillation. This involves periodically enhanced deep convection in the subpolar gyre center and intermittently enhanced air-sea thermal coupling. As a result, anomalies of the large-scale atmospheric circulation can be transferred to the ocean on the ocean's intrinsic time scale, exciting the oscillator stochastically. A detailed understanding of oscillatory mechanisms of the ocean and their sensitivity to atmospheric forcing holds considerable potential for decadal predictions as well as for the interpretation of proxy data records. (orig.)

  14. On the non-linear dynamics of potential relaxation oscillations in bounded plasmas

    International Nuclear Information System (INIS)

    Krssak, M.; Skalny, J.D.; Gyergyek, T.; Cercek, M.

    2007-01-01

    Plasma in a 1-dimensional diode is studied theoretically and the computer simulations are used for verification of the theoretical model. When collector in the diode is biased positively, a double-layer is created in the system and consequently, we are able to observe oscillations of the potential, density and other plasma parameters. When external periodic forcing is applied, spectra of these oscillations are changed and effects of synchronisation and periodic pulling can be observed. Both of these effects are of non-linear nature and a good explanation is found using the analogy with Van der Pol oscillators. Following [1] and [2] approximate analytical solutions are found and then compared with computer simulations obtained using a 1-dimensional particle-in-cell code XPDP1. (author)

  15. The dynamics of a low-order model for the Atlantic multidecadal oscillation

    NARCIS (Netherlands)

    Broer, H.; Dijkstra, H.; Simó, C.; Sterk, A.; Vitolo, R.

    Observational and model based studies provide ample evidence for the presence of multidecadal variability in the North Atlantic sea-surface temperature known as the Atlantic Multidecadal Oscillation (AMO). This variability is characterised by a multidecadal time scale, a westward propagation of

  16. THREE-MINUTE OSCILLATIONS ABOVE SUNSPOT UMBRA OBSERVED WITH THE SOLAR DYNAMICS OBSERVATORY/ATMOSPHERIC IMAGING ASSEMBLY AND NOBEYAMA RADIOHELIOGRAPH

    International Nuclear Information System (INIS)

    Reznikova, V. E.; Shibasaki, K.; Sych, R. A.; Nakariakov, V. M.

    2012-01-01

    Three-minute oscillations over a sunspot's umbra in AR 11131 were observed simultaneously in UV/EUV emission by the Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA) and in radio emission by the Nobeyama Radioheliograph (NoRH). We use 24 hr series of SDO and 8 hr series of NoRH observations to study spectral, spatial, and temporal variations of pulsations in the 5-9 mHz frequency range at different layers of the solar atmosphere. High spatial and temporal resolution of SDO/AIA in combination with long-duration observations allowed us to trace the variations of the cutoff frequency and spectrum of oscillations across the umbra. We found that higher frequency oscillations are more pronounced closer to the umbra's center, while the lower frequencies concentrate on the peripheral parts. We interpreted this discovery as a manifestation of variation of the magnetic field inclination across the umbra at the level of temperature minimum. Possible implications of this interpretation for the diagnostics of sunspot atmospheres are discussed.

  17. OSCILLATION OF CURRENT SHEETS IN THE WAKE OF A FLUX ROPE ERUPTION OBSERVED BY THE SOLAR DYNAMICS OBSERVATORY

    Energy Technology Data Exchange (ETDEWEB)

    Li, L. P.; Zhang, J.; Su, J. T. [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, 100012 Beijing (China); Liu, Y. [Department of Astronomy, Beijing Normal University, 100875 Beijing (China)

    2016-10-01

    An erupting flux rope (FR) draws its overlying coronal loops upward, causing a coronal mass ejection. The legs of the overlying loops with opposite polarities are driven together. Current sheets (CSs) form, and magnetic reconnection, producing underneath flare arcades, occurs in the CSs. Employing Solar Dynamic Observatory /Atmospheric Imaging Assembly images, we study a FR eruption on 2015 April 23, and for the first time report the oscillation of CSs underneath the erupting FR. The FR is observed in all AIA extreme-ultraviolet passbands, indicating that it has both hot and warm components. Several bright CSs, connecting the erupting FR and the underneath flare arcades, are observed only in hotter AIA channels, e.g., 131 and 94 Å. Using the differential emission measure (EM) analysis, we find that both the temperature and the EM of CSs temporally increase rapidly, reach the peaks, and then decrease slowly. A significant delay between the increases of the temperature and the EM is detected. The temperature, EM, and density spatially decrease along the CSs with increasing heights. For a well-developed CS, the temperature (EM) decreases from 9.6 MK (8 × 10{sup 28} cm{sup −5}) to 6.2 MK (5 × 10{sup 27} cm{sup −5}) in 52 Mm. Along the CSs, dark supra-arcade downflows (SADs) are observed, and one of them separates a CS into two. While flowing sunward, the speeds of the SADs decrease. The CSs oscillate with a period of 11 minutes, an amplitude of 1.5 Mm, and a phase speed of 200 ± 30 km s{sup −1}. One of the oscillations lasts for more than 2 hr. These oscillations represent fast-propagating magnetoacoustic kink waves.

  18. Dynamic phase transition in the kinetic spin-2 Blume-Emery-Griffiths model in an oscillating field

    Energy Technology Data Exchange (ETDEWEB)

    Ertas, Mehmet [Institute of Science, Erciyes University, 38039 Kayseri (Turkey); Canko, Osman [Department of Physics, Erciyes University, 38039 Kayseri (Turkey); Keskin, Mustafa [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)], E-mail: keskin@erciyes.edu.tr

    2008-06-15

    We extend our recent paper [M. Keskin, O. Canko, M. Ertas, J. Exp. Theor. Phys. (Sov. Phys. JETP) 105 (2007) 1190.] to present a study, within a mean-field approach, the stationary states of the kinetic spin-2 Blume-Emery-Griffiths model in the presence of a time-dependent oscillating magnetic field by using the Glauber-type of stochastic dynamics. We found 20 fundamental types of dynamic phase diagrams where exhibit more complex and richer phase diagrams than our recent paper. Especially, the obtained dynamic phase diagrams show the dynamic triple, quadruple and dynamic double critical end points besides dynamic tricritical points that depending on interaction parameters. The phase diagrams also exhibit a disordered (d) and the ferromagnetic-2 (f{sub 2}) phases, and the f{sub 2}+d, f{sub 2}+fq, fq+d, f{sub 2}+f{sub 1}+fq and f{sub 2}+fq+d, where f{sub 1} are fq the ferromagnetic-1 and ferroquadrupolar or simply quadrupolar phases respectively, coexistence phase regions that strongly depend on interaction parameters.

  19. Dynamic phase transition in the kinetic spin-2 Blume-Emery-Griffiths model in an oscillating field

    International Nuclear Information System (INIS)

    Ertas, Mehmet; Canko, Osman; Keskin, Mustafa

    2008-01-01

    We extend our recent paper [M. Keskin, O. Canko, M. Ertas, J. Exp. Theor. Phys. (Sov. Phys. JETP) 105 (2007) 1190.] to present a study, within a mean-field approach, the stationary states of the kinetic spin-2 Blume-Emery-Griffiths model in the presence of a time-dependent oscillating magnetic field by using the Glauber-type of stochastic dynamics. We found 20 fundamental types of dynamic phase diagrams where exhibit more complex and richer phase diagrams than our recent paper. Especially, the obtained dynamic phase diagrams show the dynamic triple, quadruple and dynamic double critical end points besides dynamic tricritical points that depending on interaction parameters. The phase diagrams also exhibit a disordered (d) and the ferromagnetic-2 (f 2 ) phases, and the f 2 +d, f 2 +fq, fq+d, f 2 +f 1 +fq and f 2 +fq+d, where f 1 are fq the ferromagnetic-1 and ferroquadrupolar or simply quadrupolar phases respectively, coexistence phase regions that strongly depend on interaction parameters

  20. Dynamic phase transition in the kinetic spin-2 Blume-Emery-Griffiths model in an oscillating field

    Science.gov (United States)

    Ertaş, Mehmet; Canko, Osman; Keskin, Mustafa

    We extend our recent paper [M. Keskin, O. Canko, M. Ertaş, J. Exp. Theor. Phys. (Sov. Phys. JETP) 105 (2007) 1190.] to present a study, within a mean-field approach, the stationary states of the kinetic spin-2 Blume-Emery-Griffiths model in the presence of a time-dependent oscillating magnetic field by using the Glauber-type of stochastic dynamics. We found 20 fundamental types of dynamic phase diagrams where exhibit more complex and richer phase diagrams than our recent paper. Especially, the obtained dynamic phase diagrams show the dynamic triple, quadruple and dynamic double critical end points besides dynamic tricritical points that depending on interaction parameters. The phase diagrams also exhibit a disordered ( d) and the ferromagnetic-2 ( f2) phases, and the f2+ d, f2+ fq, fq+ d, f2+ f1+ fq and f2+ fq+ d, where f1 are fq the ferromagnetic-1 and ferroquadrupolar or simply quadrupolar phases respectively, coexistence phase regions that strongly depend on interaction parameters.

  1. Exact Quantum-Statistical Dynamics of Time-Dependent Generalized Oscillators

    OpenAIRE

    Kim, Sang Pyo; Page, Don N.

    2002-01-01

    Using linear invariant operators in a constructive way we find the most general thermal density operator and Wigner function for time-dependent generalized oscillators. The general Wigner function has five free parameters and describes the thermal Wigner function about a classical trajectory in phase space. The contour of the Wigner function depicts an elliptical orbit with a constant area moving about the classical trajectory, whose eccentricity determines the squeezing of the initial vacuum.

  2. Dynamic hysteresis behaviors for the two-dimensional mixed spin (2, 5/2) ferrimagnetic Ising model in an oscillating magnetic field

    Science.gov (United States)

    Ertaş, Mehmet

    2015-09-01

    Keskin and Ertaş (2009) presented a study of the magnetic properties of a mixed spin (2, 5/2) ferrimagnetic Ising model within an oscillating magnetic field. They employed dynamic mean-field calculations to find the dynamic phase transition temperatures, the dynamic compensation points of the model and to present the dynamic phase diagrams. In this work, we extend the study and investigate the dynamic hysteresis behaviors for the two-dimensional (2D) mixed spin (2, 5/2) ferrimagnetic Ising model on a hexagonal lattice in an oscillating magnetic field within the framework of dynamic mean-field calculations. The dynamic hysteresis curves are obtained for both the ferromagnetic and antiferromagnetic interactions and the effects of the Hamiltonian parameters on the dynamic hysteresis behaviors are discussed in detail. The thermal behaviors of the coercivity and remanent magnetizations are also investigated. The results are compared with some theoretical and experimental works and a qualitatively good agreement is found. Finally, the dynamic phase diagrams depending on the frequency of an oscillating magnetic field in the plane of the reduced temperature versus magnetic field amplitude is examined and it is found that the dynamic phase diagrams display richer dynamic critical behavior for higher values of frequency than for lower values.

  3. Examination of the rheological properties of stirred joghurt during the long-term storage by using dynamic oscillation method

    Directory of Open Access Journals (Sweden)

    Milica Vilušić

    2003-07-01

    Full Text Available In this work the rheological properties of stirred yoghurt during the longterm storage at 4 and 8°C were investigated. The optimal quantity of additives, in order to increase dry matter content (whole milk powder and whey protein-lactalbumin, was preliminary determined and the fermentation was performed. During 42 days, i.e., 1st, 7th, 14th, 21st, 28th, 35th and 42nd day of storage of stirred yoghurt, in refrigerator at 4 and 8°C, the changes of pH value, acidity and rheological properties by using of dynamic oscillation method were observed. Results of this work indicated that an addition of whole milk powder and whey protein have an influence on rheological properties of stirred yoghurt. The long-term storage of stirred yoghurt and the results of dynamic oscilations showed permanently higher G’storage (elasticity modulus, where elastic properties of viscoelastic products dominate, in comparison with the G” loss (viscosity modulus. Increased moduls of elasticy and viscosity, as function of time, permanently occurs at pH value 4.00 and lower, as an indication of alteration of long casein chains in the coagulum structure. Different temperatures of storage had no influence on changes of rheological properties of examinated types of stirred yoghur. The relation of above mentioned moduls of elasticy and viscosity kept the same increasing tendency.

  4. Oscillations of neutral K mesons in the theory of dynamical expansion of the weak interaction theory or in the theory of dynamical analogy of the Cabibbo-Kobayashi-Maskawa matrices

    International Nuclear Information System (INIS)

    Beshtoev, Kh.M.

    1998-01-01

    The elements of the theory of dynamical expansion of the weak interaction theory working on the tree level, i.e., the theory of dynamical analogy of Cabibbo-Kobayashi-Maskawa matrices, are given. The equation for mass difference of K 1 0 , K 2 0 mesons or the length of K 0 -, K bar 0 - meson oscillations is calculated. In the framework of this theory the oscillations of K 0 , K 0 mesons which arise at violation of strangeness by B bosons are considered. The general conclusion is: the length of K 0 -, K 0 -meson oscillations is proportional to the mass of B boson (which changes strangeness) in the fourth degree

  5. On loading velocity oscillations during dynamic tensile testing with flying wheel systems

    Directory of Open Access Journals (Sweden)

    Erice Borja

    2015-01-01

    Full Text Available Flying Wheels (FW provide a space-saving alternative to Split Hopkinson Bar (SHB systems for generating the loading pulse for intermediate and high strain rate material testing. This is particularly attractive in view of performing ductile fracture experiments at intermediate strain rates that require a several milliseconds long loading pulse. More than 50 m long Hopkinson bars are required in that case, whereas the same kinetic energy (for a given loading velocity can be stored in rather compact flying wheels (e.g. diameter of less than 1.5 m. To gain more insight into the loading capabilities of FW tensile testing systems, a simple analytical model is presented to analyze the loading history applied by a FW system. It is found that due to the presence of a puller bar that transmits the tensile load from the rotating wheel to the specimen, the loading velocity applied onto the specimen oscillates between about zero and twice the tangential loading speed applied by the FW. The theoretical and numerical evaluation for a specific 1.1 m diameter FW system revealed that these oscillations occur at a frequency in the kHz range, thereby questioning the approximate engineering assumption of a constant strain rate in FW tensile experiments at strain rates of the order of 100/s.

  6. High-frequency oscillations in distributed neural networks reveal the dynamics of human decision making

    Directory of Open Access Journals (Sweden)

    Adrian G Guggisberg

    2008-03-01

    Full Text Available We examine the relative timing of numerous brain regions involved in human decisions that are based on external criteria, learned information, personal preferences, or unconstrained internal considerations. Using magnetoencephalography (MEG and advanced signal analysis techniques, we were able to non-invasively reconstruct oscillations of distributed neural networks in the high-gamma frequency band (60–150 Hz. The time course of the observed neural activity suggested that two-alternative forced choice tasks are processed in four overlapping stages: processing of sensory input, option evaluation, intention formation, and action execution. Visual areas are activated fi rst, and show recurring activations throughout the entire decision process. The temporo-occipital junction and the intraparietal sulcus are active during evaluation of external values of the options, 250–500 ms after stimulus presentation. Simultaneously, personal preference is mediated by cortical midline structures. Subsequently, the posterior parietal and superior occipital cortices appear to encode intention, with different subregions being responsible for different types of choice. The cerebellum and inferior parietal cortex are recruited for internal generation of decisions and actions, when all options have the same value. Action execution was accompanied by activation peaks in the contralateral motor cortex. These results suggest that high-gamma oscillations as recorded by MEG allow a reliable reconstruction of decision processes with excellent spatiotemporal resolution.

  7. Non-stationary oscillations of sandwich plates under local dynamic loading

    NARCIS (Netherlands)

    Skvortsov, Vitaly; Krakhmalev, Sergey; Koysin, V.; Shipsha, Andrey

    2003-01-01

    The paper addresses the elastic response of composite sandwich panels to local dynamic loading. The plane and axisymmetric formulations are considered; no overall bending is assumed. The governing equations are derived using the static Lamé equations for the core and the plate Kirchoff-Love dynamic

  8. On the genesis of spike-wave oscillations in a mean-field model of human thalamic and corticothalamic dynamics

    International Nuclear Information System (INIS)

    Rodrigues, Serafim; Terry, John R.; Breakspear, Michael

    2006-01-01

    In this Letter, the genesis of spike-wave activity-a hallmark of many generalized epileptic seizures-is investigated in a reduced mean-field model of human neural activity. Drawing upon brain modelling and dynamical systems theory, we demonstrate that the thalamic circuitry of the system is crucial for the generation of these abnormal rhythms, observing that the combination of inhibition from reticular nuclei and excitation from the cortical signal, interplay to generate the spike-wave oscillation. The mechanism revealed provides an explanation of why approaches based on linear stability and Heaviside approximations to the activation function have failed to explain the phenomena of spike-wave behaviour in mean-field models. A mathematical understanding of this transition is a crucial step towards relating spiking network models and mean-field approaches to human brain modelling

  9. Dynamic transition of neuronal firing induced by abnormal astrocytic glutamate oscillation

    Science.gov (United States)

    Li, Jiajia; Tang, Jun; Ma, Jun; Du, Mengmeng; Wang, Rong; Wu, Ying

    2016-08-01

    The gliotransmitter glutamate released from astrocytes can modulate neuronal firing by activating neuronal N-methyl-D-aspartic acid (NMDA) receptors. This enables astrocytic glutamate(AG) to be involved in neuronal physiological and pathological functions. Based on empirical results and classical neuron-glial “tripartite synapse” model, we propose a practical model to describe extracellular AG oscillation, in which the fluctuation of AG depends on the threshold of calcium concentration, and the effect of AG degradation is considered as well. We predict the seizure-like discharges under the dysfunction of AG degradation duration. Consistent with our prediction, the suppression of AG uptake by astrocytic transporters, which operates by modulating the AG degradation process, can account for the emergence of epilepsy.

  10. Nonlinear dynamics and chaotization of oscillations of a virtual cathode in an annular electron beam in a uniform external magnetic field

    International Nuclear Information System (INIS)

    Kurkin, S. A.; Koronovski, A. A.; Hramov, A. E.

    2009-01-01

    Results are presented from a numerical study of the effect of an external magnetic field on the conditions and mechanisms for the formation of a virtual cathode in a relativistic electron beam. Characteristic features of the nonlinear dynamics of an electron beam with a virtual cathode are considered when the external magnetic field is varied. Various mechanisms are investigated by which the virtual cathode oscillations become chaotic and their spectrum becomes a multifrequency spectrum, thereby complicating the dynamics of the vircator system. A general mechanism for chaotization of the oscillations of a virtual cathode in a vircator system is revealed: the electron structures that form in an electron beam interact by means of a common space charge field to give rise to additional internal feedback. That the oscillations of a virtual cathode change from the chaotic to the periodic regime is due to the suppression of the mechanism for forming secondary electron structures.

  11. Nature's Autonomous Oscillators

    Science.gov (United States)

    Mayr, H. G.; Yee, J.-H.; Mayr, M.; Schnetzler, R.

    2012-01-01

    Nonlinearity is required to produce autonomous oscillations without external time dependent source, and an example is the pendulum clock. The escapement mechanism of the clock imparts an impulse for each swing direction, which keeps the pendulum oscillating at the resonance frequency. Among nature's observed autonomous oscillators, examples are the quasi-biennial oscillation and bimonthly oscillation of the Earth atmosphere, and the 22-year solar oscillation. The oscillations have been simulated in numerical models without external time dependent source, and in Section 2 we summarize the results. Specifically, we shall discuss the nonlinearities that are involved in generating the oscillations, and the processes that produce the periodicities. In biology, insects have flight muscles, which function autonomously with wing frequencies that far exceed the animals' neural capacity; Stretch-activation of muscle contraction is the mechanism that produces the high frequency oscillation of insect flight, discussed in Section 3. The same mechanism is also invoked to explain the functioning of the cardiac muscle. In Section 4, we present a tutorial review of the cardio-vascular system, heart anatomy, and muscle cell physiology, leading up to Starling's Law of the Heart, which supports our notion that the human heart is also a nonlinear oscillator. In Section 5, we offer a broad perspective of the tenuous links between the fluid dynamical oscillators and the human heart physiology.

  12. Near wake dynamics around a vibrating airfoil by means of PIV and Oscillation Pattern Decomposition at Reynolds number of 65 000

    Czech Academy of Sciences Publication Activity Database

    Uruba, Václav

    2015-01-01

    Roč. 55, May (2015), s. 372-383 ISSN 0889-9746 R&D Projects: GA ČR GAP101/10/1230 Institutional support: RVO:61388998 Keywords : airfoil * vibrations * boundary layer separation * oscillation pattern decomposition Subject RIV: BK - Fluid Dynamics Impact factor: 1.709, year: 2015

  13. Grazing Impact Oscillations

    NARCIS (Netherlands)

    Weger, J.G.; Water, van de W.; Molenaar, J.

    2000-01-01

    An impact oscillator is a periodically driven system that hits a wall when its amplitude exceeds a critical value. We study impact oscillations where collisions with the wall are with near-zero velocity (grazing impacts). A characteristic feature of grazing impact dynamics is a geometrically

  14. Nonlinear dynamics of a magnetically driven Duffing-type spring–magnet oscillator in the static magnetic field of a coil

    International Nuclear Information System (INIS)

    Donoso, Guillermo; Ladera, Celso L

    2012-01-01

    We study the nonlinear oscillations of a forced and weakly dissipative spring–magnet system moving in the magnetic fields of two fixed coaxial, hollow induction coils. As the first coil is excited with a dc current, both a linear and a cubic magnet-position dependent force appear on the magnet–spring system. The second coil, located below the first, excited with an ac current, provides the oscillating magnetic driving force on the system. From the magnet–coil interactions, we obtain, analytically, the nonlinear motion equation of the system, found to be a forced and damped cubic Duffing oscillator moving in a quartic potential. The relative strengths of the coefficients of the motion equation can be easily set by varying the coils’ dc and ac currents. We demonstrate, theoretically and experimentally, the nonlinear behaviour of this oscillator, including its oscillation modes and nonlinear resonances, the fold-over effect, the hysteresis and amplitude jumps, and its chaotic behaviour. It is an oscillating system suitable for teaching an advanced experiment in nonlinear dynamics both at senior undergraduate and graduate levels. (paper)

  15. Synchronization and Collective Dynamics of Flagella and Cilia as Hydrodynamically Coupled Oscillators

    Science.gov (United States)

    Uchida, Nariya; Golestanian, Ramin; Bennett, Rachel R.

    2017-10-01

    Cooperative motion of flagella and cilia faciliates swimming of microorganisms and material transport in the body of multicellular organisms. Using minimal models, we address the roles of hydrodynamic interaction in synchronization and collective dynamics of flagella and cilia. Collective synchronization of bacterial flagella is studied with a model of bacterial carpets. Cilia and eukaryotic flagella are characterized by periodic modulation of their driving forces, which produces various patterns of two-body synchronization and metachronal waves. Long-range nature of the interaction introduces novel features in the dynamics of these model systems. The flagella of a swimmer synchronize also by a viscous drag force mediated through the swimmer's body. Recent advance in experimental studies of the collective dynamics of flagella, cilia and related artificial systems are summarized.

  16. The FFA dynamic stall model. The Beddoes-Leishman dynamic stall model modified for lead-lag oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Bjoerck, A. [FFA, The Aeronautical Research Institute of Sweden, Bromma (Sweden)

    1997-08-01

    For calculations of the dynamics of wind turbines the inclusion of a dynamic stall model is necessary in order to obtain reliable results at high winds. For blade vibrations in the lead-lag motion the velocity relative to the blade will vary in time. In the present paper modifications to the Beddoes-Leishman model is presented in order to improve the model for calculations of cases with a varying relative velocity. Comparisons with measurement are also shown and the influence on the calculated aerodynamic damping by the modifications are investigated. (au)

  17. Oscillation theory for a pair of second order dynamic equations with a singular interface

    Directory of Open Access Journals (Sweden)

    Pallav Kumar Baruah

    2008-03-01

    Full Text Available In this paper we consider a pair of second order dynamic equations defined on the time scale $I = [a,c]cup [sigma(c,b]$. We impose matching interface conditions at the singular interface $c$. We prove a theorem regarding the relationship between the number of eigenvalues and zeros of the corresponding eigenfunctions.

  18. The effect of temperature on the coupled slow and fast dynamics of an electrochemical oscillator

    Science.gov (United States)

    Zülke, Alana A.; Varela, Hamilton

    2016-04-01

    The coupling among disparate time-scales is ubiquitous in many chemical and biological systems. We have recently investigated the effect of fast and, long-term, slow dynamics in surface processes underlying some electrocatalytic reactions. Herein we report on the effect of temperature on the coupled slow and fast dynamics of a model system, namely the electro-oxidation of formic acid on platinum studied at five temperatures between 5 and 45 °C. The main result was a turning point found at 25 °C, which clearly defines two regions for the temperature dependency on the overall kinetics. In addition, the long-term evolution allowed us to compare reaction steps related to fast and slow evolutions. Results were discussed in terms of the key role of PtO species, which chemically couple slow and fast dynamics. In summary we were able to: (a) identify the competition between two reaction steps as responsible for the occurrence of two temperature domains; (b) compare the relative activation energies of these two steps; and (c) suggest the role of a given reaction step on the period-increasing set of reactions involved in the oscillatory dynamics. The introduced methodology could be applied to other systems to uncover the temperature dependence of complex chemical networks.

  19. Oscillation and nonoscillation for impulsive dynamic equations on certain time scales

    Directory of Open Access Journals (Sweden)

    Henderson Johnny

    2006-01-01

    Full Text Available We discuss the existence of oscillatory and nonoscillatory solutions for first-order impulsive dynamic equations on time scales with certain restrictions on the points of impulse. We will rely on the nonlinear alternative of Leray-Schauder type combined with a lower and upper solutions method.

  20. Dynamical relationship between wind speed magnitude and meridional temperature contrast: Application to an interannual oscillation in Venusian middle atmosphere GCM

    Science.gov (United States)

    Yamamoto, Masaru; Takahashi, Masaaki

    2018-03-01

    We derive simple dynamical relationships between wind speed magnitude and meridional temperature contrast. The relationship explains scatter plot distributions of time series of three variables (maximum zonal wind speed UMAX, meridional wind speed VMAX, and equator-pole temperature contrast dTMAX), which are obtained from a Venus general circulation model with equatorial Kelvin-wave forcing. Along with VMAX and dTMAX, UMAX likely increases with the phase velocity and amplitude of a forced wave. In the scatter diagram of UMAX versus dTMAX, points are plotted along a linear equation obtained from a thermal-wind relationship in the cloud layer. In the scatter diagram of VMAX versus UMAX, the apparent slope is somewhat steep in the high UMAX regime, compared with the low UMAX regime. The scatter plot distributions are qualitatively consistent with a quadratic equation obtained from a diagnostic equation of the stream function above the cloud top. The plotted points in the scatter diagrams form a linear cluster for weak wave forcing, whereas they form a small cluster for strong wave forcing. An interannual oscillation of the general circulation forming the linear cluster in the scatter diagram is apparent in the experiment of weak 5.5-day wave forcing. Although a pair of equatorial Kelvin and high-latitude Rossby waves with a same period (Kelvin-Rossby wave) produces equatorward heat and momentum fluxes in the region below 60 km, the equatorial wave does not contribute to the long-period oscillation. The interannual fluctuation of the high-latitude jet core leading to the time variation of UMAX is produced by growth and decay of a polar mixed Rossby-gravity wave with a 14-day period.

  1. Transient magnetization dynamics of spin-torque oscillator and magnetic dot coupled by magnetic dipolar interaction: Reading of magnetization direction using magnetic resonance

    Science.gov (United States)

    Kanao, Taro; Suto, Hirofumi; Kudo, Kiwamu; Nagasawa, Tazumi; Mizushima, Koichi; Sato, Rie

    2018-01-01

    We study the magnetization dynamics of a spin-torque oscillator (STO) and a magnetic dot coupled by a magnetic dipolar field using micromagnetic simulation with the aim of developing a read method in magnetic recording that uses magnetic resonance. We propose an STO with a perpendicularly magnetized free layer and an in-plane-magnetized fixed layer as a suitable STO for this resonance read method. When the oscillation frequency of the STO is near the ferromagnetic resonance (FMR) frequency of the magnetic dot, the oscillation amplitude of the STO decreases because FMR excited in the magnetic dot causes additional dissipation. To estimate the read rate of the resonance read method, we study the transient magnetization dynamics to the coupled oscillation state from an initial state where the STO is in a free-running state and the magnetic dot is in a stationary stable state. The STO shows transient dynamics within a time scale of 1 ns, which means that the STO can perform resonance reading with a response time within this time scale. This response time is shorter when the separation length between the STO and the magnetic dot is shorter, which indicates that the response speed can become faster by increasing the strength of the interaction between the STO and the magnetic dot. Successive reads are demonstrated by moving the STO over an array of magnetic dots.

  2. Dynamic phase transitions of the Blume–Emery–Griffiths model under an oscillating external magnetic field by the path probability method

    Energy Technology Data Exchange (ETDEWEB)

    Ertaş, Mehmet, E-mail: mehmetertas@erciyes.edu.tr; Keskin, Mustafa

    2015-03-01

    By using the path probability method (PPM) with point distribution, we study the dynamic phase transitions (DPTs) in the Blume–Emery–Griffiths (BEG) model under an oscillating external magnetic field. The phases in the model are obtained by solving the dynamic equations for the average order parameters and a disordered phase, ordered phase and four mixed phases are found. We also investigate the thermal behavior of the dynamic order parameters to analyze the nature dynamic transitions as well as to obtain the DPT temperatures. The dynamic phase diagrams are presented in three different planes in which exhibit the dynamic tricritical point, double critical end point, critical end point, quadrupole point, triple point as well as the reentrant behavior, strongly depending on the values of the system parameters. We compare and discuss the dynamic phase diagrams with dynamic phase diagrams that were obtained within the Glauber-type stochastic dynamics based on the mean-field theory. - Highlights: • Dynamic magnetic behavior of the Blume–Emery–Griffiths system is investigated by using the path probability method. • The time variations of average magnetizations are studied to find the phases. • The temperature dependence of the dynamic magnetizations is investigated to obtain the dynamic phase transition points. • We compare and discuss the dynamic phase diagrams with dynamic phase diagrams that were obtained within the Glauber-type stochastic dynamics based on the mean-field theory.

  3. Self-oscillation

    Science.gov (United States)

    Jenkins, Alejandro

    2013-04-01

    Physicists are very familiar with forced and parametric resonance, but usually not with self-oscillation, a property of certain dynamical systems that gives rise to a great variety of vibrations, both useful and destructive. In a self-oscillator, the driving force is controlled by the oscillation itself so that it acts in phase with the velocity, causing a negative damping that feeds energy into the vibration: no external rate needs to be adjusted to the resonant frequency. The famous collapse of the Tacoma Narrows bridge in 1940, often attributed by introductory physics texts to forced resonance, was actually a self-oscillation, as was the swaying of the London Millennium Footbridge in 2000. Clocks are self-oscillators, as are bowed and wind musical instruments. The heart is a “relaxation oscillator”, i.e., a non-sinusoidal self-oscillator whose period is determined by sudden, nonlinear switching at thresholds. We review the general criterion that determines whether a linear system can self-oscillate. We then describe the limiting cycles of the simplest nonlinear self-oscillators, as well as the ability of two or more coupled self-oscillators to become spontaneously synchronized (“entrained”). We characterize the operation of motors as self-oscillation and prove a theorem about their limit efficiency, of which Carnot’s theorem for heat engines appears as a special case. We briefly discuss how self-oscillation applies to servomechanisms, Cepheid variable stars, lasers, and the macroeconomic business cycle, among other applications. Our emphasis throughout is on the energetics of self-oscillation, often neglected by the literature on nonlinear dynamical systems.

  4. Bimodal oscillations in nephron autoregulation

    DEFF Research Database (Denmark)

    Sosnovtseva, Olga; Pavlov, A N; Mosekilde, E

    2002-01-01

    The individual functional unit of the kidney (the nephron) displays oscillations in its pressure and flow regulation at two different time scales: fast oscillations associated with a myogenic dynamics of the afferent arteriole, and slower oscillations arising from a delay in the tubuloglomerular ...

  5. Strange attractors and synchronization dynamics of coupled Van der Pol-Duffing oscillators

    International Nuclear Information System (INIS)

    Yamapi, R.; Filatrella, G.

    2006-07-01

    We consider in this paper the dynamics and synchronization of coupled chaotic Van der Pol-Duffing systems. The stability of the synchronization process between two coupled autonomous Van der Pol model is first analyzed analytically and numerically, before following the problem of synchronizing chaos both on the same and different chaotic orbits of two coupled Van der Pol-Duffing systems. The stability boundaries of the synchronization process are derived and the effects of the amplitude of the periodic perturbation of the coupling parameter on these boundaries are analyzed. The results are provided on the stability map in the (q, K) plane. (author)

  6. Dynamic compensation temperatures in a mixed spin-1 and spin-3/2 Ising system under a time-dependent oscillating magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Keskin, Mustafa, E-mail: keskin@erciyes.edu.t [Department of Physics, Erciyes University, 38039 Kayseri (Turkey); Kantar, Ersin [Institute of Science, Erciyes University, 38039 Kayseri (Turkey)

    2010-09-15

    We study the existence of dynamic compensation temperatures in the mixed spin-1 and spin-3/2 Ising ferrimagnetic system Hamiltonian with bilinear and crystal-field interactions in the presence of a time-dependent oscillating external magnetic field on a hexagonal lattice. We employ the Glauber transitions rates to construct the mean-field dynamic equations. We investigate the time dependence of an average sublattice magnetizations, the thermal behavior of the dynamic sublattice magnetizations and the total magnetization. From these studies, we find the phases in the system, and characterize the nature (continuous or discontinuous) of transitions as well as obtain the dynamic phase transition (DPT) points and the dynamic compensation temperatures. We also present dynamic phase diagrams, including the compensation temperatures, in the five different planes. A comparison is made with the results of the available mixed spin Ising systems.

  7. Dynamic compensation temperatures in a mixed spin-1 and spin-3/2 Ising system under a time-dependent oscillating magnetic field

    International Nuclear Information System (INIS)

    Keskin, Mustafa; Kantar, Ersin

    2010-01-01

    We study the existence of dynamic compensation temperatures in the mixed spin-1 and spin-3/2 Ising ferrimagnetic system Hamiltonian with bilinear and crystal-field interactions in the presence of a time-dependent oscillating external magnetic field on a hexagonal lattice. We employ the Glauber transitions rates to construct the mean-field dynamic equations. We investigate the time dependence of an average sublattice magnetizations, the thermal behavior of the dynamic sublattice magnetizations and the total magnetization. From these studies, we find the phases in the system, and characterize the nature (continuous or discontinuous) of transitions as well as obtain the dynamic phase transition (DPT) points and the dynamic compensation temperatures. We also present dynamic phase diagrams, including the compensation temperatures, in the five different planes. A comparison is made with the results of the available mixed spin Ising systems.

  8. Impacts of El Niño-Southern Oscillation on the wheat market: A global dynamic analysis.

    Directory of Open Access Journals (Sweden)

    Luciano Gutierrez

    Full Text Available Although the widespread influence of the El Niño-Southern Oscillation (ENSO occurrences on crop yields of the main agricultural commodities is well known, the global socio-economic consequences of ENSO still remain uncertain. Given the global importance of wheat for global consumption by providing 20% of global calories and nourishment, the monitoring and prediction of ENSO-induced variations in the worldwide wheat market are essential for allowing national governments to manage the associated risks and to ensure the supplies of wheat for consumers, including the underprivileged. To this end, we propose a global dynamic model for the analysis of ENSO impacts on wheat yield anomalies, export prices, exports and stock-to-use ratios. Our framework focuses on seven countries/regions: the six main wheat-exporting countries-the United States, Argentina, Australia, Canada, the EU, and the group of the main Black Sea export countries, i.e. Russia, Ukraine, and Kazakhstan-plus the rest of the world. The study shows that La Niña exerts, on average, a stronger and negative impact on wheat yield anomalies, exports and stock-to-use ratios than El Niño. In contrast, wheat export prices are positively related to La Niña occurrences evidencing, once again, its steady impact in both the short and long run. Our findings emphasize the importance of the two ENSO extreme phases for the worldwide wheat market.

  9. Impacts of El Niño-Southern Oscillation on the wheat market: A global dynamic analysis.

    Science.gov (United States)

    Gutierrez, Luciano

    2017-01-01

    Although the widespread influence of the El Niño-Southern Oscillation (ENSO) occurrences on crop yields of the main agricultural commodities is well known, the global socio-economic consequences of ENSO still remain uncertain. Given the global importance of wheat for global consumption by providing 20% of global calories and nourishment, the monitoring and prediction of ENSO-induced variations in the worldwide wheat market are essential for allowing national governments to manage the associated risks and to ensure the supplies of wheat for consumers, including the underprivileged. To this end, we propose a global dynamic model for the analysis of ENSO impacts on wheat yield anomalies, export prices, exports and stock-to-use ratios. Our framework focuses on seven countries/regions: the six main wheat-exporting countries-the United States, Argentina, Australia, Canada, the EU, and the group of the main Black Sea export countries, i.e. Russia, Ukraine, and Kazakhstan-plus the rest of the world. The study shows that La Niña exerts, on average, a stronger and negative impact on wheat yield anomalies, exports and stock-to-use ratios than El Niño. In contrast, wheat export prices are positively related to La Niña occurrences evidencing, once again, its steady impact in both the short and long run. Our findings emphasize the importance of the two ENSO extreme phases for the worldwide wheat market.

  10. Utilization of Solar Dynamics Observatory space weather digital image data for comparative analysis with application to Baryon Oscillation Spectroscopic Survey

    Science.gov (United States)

    Shekoyan, V.; Dehipawala, S.; Liu, Ernest; Tulsee, Vivek; Armendariz, R.; Tremberger, G.; Holden, T.; Marchese, P.; Cheung, T.

    2012-10-01

    Digital solar image data is available to users with access to standard, mass-market software. Many scientific projects utilize the Flexible Image Transport System (FITS) format, which requires specialized software typically used in astrophysical research. Data in the FITS format includes photometric and spatial calibration information, which may not be useful to researchers working with self-calibrated, comparative approaches. This project examines the advantages of using mass-market software with readily downloadable image data from the Solar Dynamics Observatory for comparative analysis over with the use of specialized software capable of reading data in the FITS format. Comparative analyses of brightness statistics that describe the solar disk in the study of magnetic energy using algorithms included in mass-market software have been shown to give results similar to analyses using FITS data. The entanglement of magnetic energy associated with solar eruptions, as well as the development of such eruptions, has been characterized successfully using mass-market software. The proposed algorithm would help to establish a publicly accessible, computing network that could assist in exploratory studies of all FITS data. The advances in computer, cell phone and tablet technology could incorporate such an approach readily for the enhancement of high school and first-year college space weather education on a global scale. Application to ground based data such as that contained in the Baryon Oscillation Spectroscopic Survey is discussed.

  11. Photoisomerization among ring-open merocyanines. I. Reaction dynamics and wave-packet oscillations induced by tunable femtosecond pulses

    Science.gov (United States)

    Ruetzel, Stefan; Diekmann, Meike; Nuernberger, Patrick; Walter, Christof; Engels, Bernd; Brixner, Tobias

    2014-06-01

    Upon ultraviolet excitation, photochromic spiropyran compounds can be converted by a ring-opening reaction into merocyanine molecules, which in turn can form several isomers differing by cis and trans configurations in the methine bridge. Whereas the spiropyran-merocyanine conversion reaction of the nitro-substituted indolinobenzopyran 6-nitro-1',3',3'-trimethylspiro[2H-1-benzopyran-2,2'-indoline] (6-nitro BIPS) has been studied extensively in theory and experiments, little is known about photoisomerization among the merocyanine isomers. In this article, we employ femtosecond transient absorption spectroscopy with variable excitation wavelengths to investigate the excited-state dynamics of the merocyanine in acetonitrile at room temperature, where exclusively the trans-trans-cis (TTC) and trans-trans-trans (TTT) isomers contribute. No photochemical ring-closure pathways exist for the two isomers. Instead, we found that (18±4)% of excited TTC isomers undergo an ultrafast excited-state cis→trans photoisomerization to TTT within 200 fs, while the excited-state lifetime of TTC molecules that do not isomerize is 35 ps. No photoisomerization was detected for the TTT isomer, which relaxes to the ground state with a lifetime of roughly 160 ps. Moreover, signal oscillations at 170 cm-1 and 360 cm-1 were observed, which can be ascribed to excited-state wave-packet dynamics occurring in the course of the TTC→TTT isomerization. The results of high-level time-dependent density functional theory in conjunction with polarizable continuum models are presented in the subsequent article [C. Walter, S. Ruetzel, M. Diekmann, P. Nuernberger, T. Brixner, and B. Engels, J. Chem. Phys. 140, 224311 (2014)].

  12. Altered dynamics in the circadian oscillation of clock genes in dermal fibroblasts of patients suffering from idiopathic hypersomnia.

    Directory of Open Access Journals (Sweden)

    Julian Lippert

    Full Text Available From single cell organisms to the most complex life forms, the 24-hour circadian rhythm is important for numerous aspects of physiology and behavior such as daily periodic fluctuations in body temperature and sleep-wake cycles. Influenced by environmental cues - mainly by light input -, the central pacemaker in the thalamic suprachiasmatic nuclei (SCN controls and regulates the internal clock mechanisms which are present in peripheral tissues. In order to correlate modifications in the molecular mechanisms of circadian rhythm with the pathophysiology of idiopathic hypersomnia, this study aimed to investigate the dynamics of the expression of circadian clock genes in dermal fibroblasts of idiopathic hypersomniacs (IH in comparison to those of healthy controls (HC. Ten clinically and polysomnographically proven IH patients were recruited from the department of sleep medicine of the University Hospital of Muenster. Clinical diagnosis was done by two consecutive polysomnographies (PSG and Multiple Sleep Latency Test (MSLT. Fourteen clinical healthy volunteers served as control group. Dermal fibroblasts were obtained via punch biopsy and grown in cell culture. The expression of circadian clock genes was investigated by semiquantitative Reverse Transcriptase-PCR qRT-PCR analysis, confirming periodical oscillation of expression of the core circadian clock genes BMAL1, PER1/2 and CRY1/2. The amplitude of the rhythmically expressed BMAL1, PER1 and PER2 was significantly dampened in dermal fibroblasts of IH compared to HC over two circadian periods whereas the overall expression of only the key transcriptional factor BMAL1 was significantly reduced in IH. Our study suggests for the first time an aberrant dynamics in the circadian clock in IH. These findings may serve to better understand some clinical features of the pathophysiology in sleep - wake rhythms in IH.

  13. Characterisation of Interaction between Combustion Dynamics and Equivalence Ratio Oscillations in a Pressurised Combustor

    Directory of Open Access Journals (Sweden)

    Jaap F. van Kampen

    2010-09-01

    Full Text Available In regular operation, all gas turbine combustors have a significant spontaneous noise level induced by the turbulent high power flame. This noise is characteristic for the operation as it is the result of the interaction between turbulence and combustion. Pressure fluctuations may also be generated by thermoacoustic instabilities induced by amplification by the flame of the acoustic field in the combustor. This paper focuses on the characterisation of the latter process, the combustion dynamics, in a pressurized premixed natural gas combustor. In order to predict the thermo-acoustically unstable operating ranges of modern gas-turbines with the use of an acoustic network model, it is essential to determine accurately the flame transfer function. This transfer function gives the relationship between a perturbation upstream of the flame and its combustion response, leading to acoustic forcing. In this paper, the flame transfer function is obtained by experimental means in a combustor test rig. This test rig was built in the framework of the European DESIRE project, and has the ability to perform thermo-acoustic measurements up to an absolute pressure of 5 bars. The maximum power of the setup is 500 kW. The paper presents a method to determine the flame transfer function by factorizing it in six subfunctions. Systematically these subfunctions are determined. With the method presented, acoustic measurements on the steady, unperturbed flame and on the unsteady, actively perturbed flame are performed. The effect of pressure is investigated. The steady measurements are used to provide an acousto-combustion finger print of the combustor. In the unsteady measurements, the flame transfer function is reconstructed from the measured acoustic pressures. These flame transfer functions are compared to transfer functions obtained from a numerical experiment in CFD. Good agreement is obtained.

  14. Neuronal oscillations during contour integration of dynamic visual stimuli form parietal/frontal networks

    Directory of Open Access Journals (Sweden)

    Marta eCastellano

    2014-08-01

    Full Text Available The ability to integrate visual features into a global coherent percept that can be further categorized and manipulated are fundamental abilities of the neural system. While the processing of visual information involves activation of early visual cortices, the recruitment of parietal and frontal cortices has been shown to be crucial for perceptual processes. Yet is it not clear how both cortical and long-range oscillatory activity leads to the integration of visual features into a coherent percept. Here, we will investigate perceptual grouping through the analysis of a contour categorization task, where the local elements that form contour must be linked into a coherent structure, which is then further processed and manipulated to perform the categorization task. The contour formation in our visual stimulus is a dynamic process where, for the first time, visual perception of contours is disentangled from the onset of visual stimulation or from motor preparation, cognitive processes that until now have been behaviorally attached to perceptual processes. Our main finding is that, while local and long-range synchronization at several frequencies seem to be an ongoing phenomena, categorization of a contour could only be predicted through local oscillatory activity within parietal/frontal sources, which in turn, would synchronize at gamma (>30 Hz frequency. Simultaneously, fronto-parietal beta (13-30 Hz phase locking forms a network spanning across neural sources that are not category specific. Both long range networks, i.e. the gamma network that is category specific, and the beta network that is not category specific, are functionally distinct but spatially overlapping. Altogether, we show that a critical mechanism underlying contour categorization involves oscillatory activity within parietal/frontal cortices, as well as its synchronization across distal cortical sites.

  15. The potential and flux landscape, Lyapunov function and non-equilibrium thermodynamics for dynamic systems and networks with an application to signal-induced Ca2+ oscillation

    International Nuclear Information System (INIS)

    Xu, Li; Zhang, Feng; Wang, Erkang; Wang, Jin

    2013-01-01

    In this review, we summarize our recent efforts in exploring the non-equilibrium potential and flux landscape for dynamical systems and networks. The driving force of non-equilibrium dynamics can be decomposed into the gradient of the non-equilibrium potential and the divergent free probability flux divided by the steady-state probability distribution. The potential landscape is linked to the probability distribution of the steady state. We found that the intrinsic potential landscape in the zero noise limit is a Lyapunov function. We have defined and quantified the entropy, energy and free energy of the non-equilibrium systems. These can be used for formulating the first law of non-equilibrium thermodynamics. The free energy of the non-equilibrium system is also a Lyapunov function. Therefore, we can use both the intrinsic potential landscape and the free energy to quantify the robustness and global stability of the system. The Lyapunov property provides the formulation for the second law of non-equilibrium thermodynamics. The non-zero probability flux breaks the detailed balance. The two driving forces from the gradient of intrinsic potential landscape and the probability flux are perpendicular to each other under the zero noise limit. We investigate the dynamics of a new biological example of signal-induced Ca 2+ oscillation. We explored the underlying potential landscape which shows a Mexican hat shape attracting the system down to the oscillation ring and the flux which provides the driving force on the ring for coherent and stable oscillation. We explored how the landscape and flux topography change with respect to the system parameters and the relationship to the period of oscillations and how the non-equilibrium free energy changes with respect to different dynamic phases and phase transitions when the system parameters vary. These explain how the system becomes robust and stable under different conditions and can help guide the experiment. (invited article)

  16. Dynamic Rabi oscillations in a quantum dot embedded in a nanobridge in the presence of surface acoustic waves

    Science.gov (United States)

    Mourokh, L.; Wixforth, A.; Beil, F.; Bichler, M.; Wegscheider, W.; Blick, R. H.

    2017-10-01

    A quantum dot is created within a suspended nanobridge containing a two-dimensional electron gas. The electron current through this dot exhibits well-pronounced Coulomb blockade oscillations. When surface acoustic waves (SAW) are driven through the nanobridge, Coulomb blockade peaks are shifted. To explain this feature, we derive the expressions for the quantum dot level populations and electron currents through these levels and show that SAW-induced Rabi oscillations lead to the observed phenomenology.

  17. Effective-field theory for dynamic phase diagrams of the kinetic spin-3/2 Blume–Capel model under a time oscillating longitudinal field

    Energy Technology Data Exchange (ETDEWEB)

    Ertaş, Mehmet [Department of Physics, Erciyes University, 38039 Kayseri (Turkey); Kocakaplan, Yusuf [Institute of Science, Erciyes University, 38039 Kayseri (Turkey); Keskin, Mustafa, E-mail: keskin@erciyes.edu.tr [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)

    2013-12-15

    Dynamic phase diagrams are presented for the kinetic spin-3/2 Blume–Capel model under a time oscillating longitudinal field by use of the effective-field theory with correlations. The dynamic equation of the average magnetization is obtained for the square lattice by utilizing the Glauber-type stochastic process. Dynamic phase diagrams are presented in the reduced temperature and the magnetic field amplitude plane. We also investigated the effect of longitudinal field frequency. Finally, the discussion and comparison of the phase diagrams are given. - Highlights: • Dynamic behaviors in the spin-3/2 Blume–Capel system is investigated by the effective-field theory based on the Glauber-type stochastic dynamics. • The dynamic phase transitions and dynamic phase diagrams are obtained. • The effects of the longitudinal field frequency on the dynamic phase diagrams of the system are investigated. • Dynamic phase diagrams exhibit several ordered phases, coexistence phase regions and several critical points as well as a re-entrant behavior.

  18. Effective-field theory for dynamic phase diagrams of the kinetic spin-3/2 Blume–Capel model under a time oscillating longitudinal field

    International Nuclear Information System (INIS)

    Ertaş, Mehmet; Kocakaplan, Yusuf; Keskin, Mustafa

    2013-01-01

    Dynamic phase diagrams are presented for the kinetic spin-3/2 Blume–Capel model under a time oscillating longitudinal field by use of the effective-field theory with correlations. The dynamic equation of the average magnetization is obtained for the square lattice by utilizing the Glauber-type stochastic process. Dynamic phase diagrams are presented in the reduced temperature and the magnetic field amplitude plane. We also investigated the effect of longitudinal field frequency. Finally, the discussion and comparison of the phase diagrams are given. - Highlights: • Dynamic behaviors in the spin-3/2 Blume–Capel system is investigated by the effective-field theory based on the Glauber-type stochastic dynamics. • The dynamic phase transitions and dynamic phase diagrams are obtained. • The effects of the longitudinal field frequency on the dynamic phase diagrams of the system are investigated. • Dynamic phase diagrams exhibit several ordered phases, coexistence phase regions and several critical points as well as a re-entrant behavior

  19. π ± ↔ K ± meson-vacuum transitions (oscillations) in diagram approach in the model of dynamical analogy of the Cabibbo-Kobayashi-Maskawa matrices

    International Nuclear Information System (INIS)

    Beshtoev, Kh.M.

    1999-01-01

    The elements of the theory of vacuum oscillations and the model of dynamical expansion of the theory of weak interactions working at the tree level, i.e. the model of dynamical analogy of Cabibbo-Kobayashi-Maskawa matrices and its further development, are given. It is shown that the quarks and massive vector bosons must be structural and these structural particles (subparticles) must interact to generate quark and vector boson masses. In this case the problem of singularity cancellations does not arise in this model. It is also shown that for self-consistence of the theory the weak decays of K-mesons must go through massive vector boson B but not W-boson. In the framework of this model the probability of π ↔ K transitions (oscillations) in the diagram approach is computed. These transitions (oscillations) can be registered through K-decays after transitions of virtual K-mesons to their own mass shell by using their quasielastic strong interactions

  20. Dynamic phase transitions and dynamic phase diagrams in the kinetic spin-5/2 Blume–Capel model in an oscillating external magnetic field: Effective-field theory and the Glauber-type stochastic dynamics approach

    International Nuclear Information System (INIS)

    Ertaş, Mehmet; Keskin, Mustafa; Deviren, Bayram

    2012-01-01

    Using an effective field theory with correlations, we study a kinetic spin-5/2 Blume–Capel model with bilinear exchange interaction and single-ion crystal field on a square lattice. The effective-field dynamic equation is derived by employing the Glauber transition rates. First, the phases in the kinetic system are obtained by solving this dynamic equation. Then, the thermal behavior of the dynamic magnetization, the hysteresis loop area and correlation are investigated in order to characterize the nature of the dynamic transitions and to obtain dynamic phase transition temperatures. Finally, we present the phase diagrams in two planes, namely (T/zJ, h 0 /zJ) and (T/zJ, D/zJ), where T absolute temperature, h 0 , the amplitude of the oscillating field, D, crystal field interaction or single-ion anisotropy constant and z denotes the nearest-neighbor sites of the central site. The phase diagrams exhibit four fundamental phases and ten mixed phases which are composed of binary, ternary and tetrad combination of fundamental phases, depending on the crystal field interaction parameter. Moreover, the phase diagrams contain a dynamic tricritical point (T), a double critical end point (B), a multicritical point (A) and zero-temperature critical point (Z). - Highlights: ► The effective-field theory is used to study the kinetic spin-5/2 Ising Blume–Capel model. ► Time variations of average order parameter have been studied to find phases in the system. ► The dynamic magnetization, hysteresis loop area and correlation have been calculated. ► The dynamic phase boundaries of the system depend on D/zJ. ► The dynamic phase diagrams are presented in the (T/zJ, h 0 /zJ) and (D/zJ, T/zJ) planes.

  1. Dynamic phase transitions and dynamic phase diagrams in the kinetic spin-5/2 Blume-Capel model in an oscillating external magnetic field: Effective-field theory and the Glauber-type stochastic dynamics approach

    Energy Technology Data Exchange (ETDEWEB)

    Ertas, Mehmet [Department of Physics, Erciyes University, 38039 Kayseri (Turkey); Keskin, Mustafa, E-mail: keskin@erciyes.edu.tr [Department of Physics, Erciyes University, 38039 Kayseri (Turkey); Deviren, Bayram [Department of Physics, Nevsehir University, 50300 Nevsehir (Turkey)

    2012-04-15

    Using an effective field theory with correlations, we study a kinetic spin-5/2 Blume-Capel model with bilinear exchange interaction and single-ion crystal field on a square lattice. The effective-field dynamic equation is derived by employing the Glauber transition rates. First, the phases in the kinetic system are obtained by solving this dynamic equation. Then, the thermal behavior of the dynamic magnetization, the hysteresis loop area and correlation are investigated in order to characterize the nature of the dynamic transitions and to obtain dynamic phase transition temperatures. Finally, we present the phase diagrams in two planes, namely (T/zJ, h{sub 0}/zJ) and (T/zJ, D/zJ), where T absolute temperature, h{sub 0}, the amplitude of the oscillating field, D, crystal field interaction or single-ion anisotropy constant and z denotes the nearest-neighbor sites of the central site. The phase diagrams exhibit four fundamental phases and ten mixed phases which are composed of binary, ternary and tetrad combination of fundamental phases, depending on the crystal field interaction parameter. Moreover, the phase diagrams contain a dynamic tricritical point (T), a double critical end point (B), a multicritical point (A) and zero-temperature critical point (Z). - Highlights: Black-Right-Pointing-Pointer The effective-field theory is used to study the kinetic spin-5/2 Ising Blume-Capel model. Black-Right-Pointing-Pointer Time variations of average order parameter have been studied to find phases in the system. Black-Right-Pointing-Pointer The dynamic magnetization, hysteresis loop area and correlation have been calculated. Black-Right-Pointing-Pointer The dynamic phase boundaries of the system depend on D/zJ. Black-Right-Pointing-Pointer The dynamic phase diagrams are presented in the (T/zJ, h{sub 0}/zJ) and (D/zJ, T/zJ) planes.

  2. Neurodynamic oscillators

    Science.gov (United States)

    Espinosa, Ismael; Gonzalez, Hortensia; Quiza, Jorge; Gonazalez, J. Jesus; Arroyo, Ruben; Lara, Ritaluz

    1995-01-01

    Oscillation of electrical activity has been found in many nervous systems, from invertebrates to vertebrates including man. There exists experimental evidence of very simple circuits with the capability of oscillation. Neurons with intrinsic oscillation have been found and also neural circuits where oscillation is a property of the network. These two types of oscillations coexist in many instances. It is nowadays hypothesized that behind synchronization and oscillation there is a system of coupled oscillators responsible for activities that range from locomotion and feature binding in vision to control of sleep and circadian rhythms. The huge knowledge that has been acquired on oscillators from the times of Lord Rayleigh has made the simulation of neural oscillators a very active endeavor. This has been enhanced with more recent physiological findings about small neural circuits by means of intracellular and extracellular recordings as well as imaging methods. The future of this interdisciplinary field looks very promising; some researchers are going into quantum mechanics with the idea of trying to provide a quantum description of the brain. In this work we describe some simulations using neuron models by means of which we form simple neural networks that have the capability of oscillation. We analyze the oscillatory activity with root locus method, cross-correlation histograms, and phase planes. In the more complicated neural network models there is the possibility of chaotic oscillatory activity and we study that by means of Lyapunov exponents. The companion paper shows an example of that kind.

  3. Mixed-mode bursting oscillations: Dynamics created by a slow passage through spike-adding canard explosion in a square-wave burster

    Science.gov (United States)

    Desroches, Mathieu; Kaper, Tasso J.; Krupa, Martin

    2013-12-01

    This article concerns the phenomenon of Mixed-Mode Bursting Oscillations (MMBOs). These are solutions of fast-slow systems of ordinary differential equations that exhibit both small-amplitude oscillations (SAOs) and bursts consisting of one or multiple large-amplitude oscillations (LAOs). The name MMBO is given in analogy to Mixed-Mode Oscillations, which consist of alternating SAOs and LAOs, without the LAOs being organized into burst events. In this article, we show how MMBOs are created naturally in systems that have a spike-adding bifurcation or spike-adding mechanism, and in which the dynamics of one (or more) of the slow variables causes the system to pass slowly through that bifurcation. Canards are central to the dynamics of MMBOs, and their role in shaping the MMBOs is two-fold: saddle-type canards are involved in the spike-adding mechanism of the underlying burster and permit one to understand the number of LAOs in each burst event, and folded-node canards arise due to the slow passage effect and control the number of SAOs. The analysis is carried out for a prototypical fourth-order system of this type, which consists of the third-order Hindmarsh-Rose system, known to have the spike-adding mechanism, and in which one of the key bifurcation parameters also varies slowly. We also include a discussion of the MMBO phenomenon for the Morris-Lecar-Terman system. Finally, we discuss the role of the MMBOs to a biological modeling of secreting neurons.

  4. Observation of Oscillating, Spin-Like Propagation in Reactive Multi-Layer Foils Using the Dynamic Transmission Electron Microscope

    Science.gov (United States)

    Bonds, Marta Anna

    Self-propagating high temperature synthesis (SHS) in reactive multilayer foils (RMLFs) has been systematically studied in situ and ex situ. RMLFs are layered materials comprised of two constituents with a high enthalpy of mixing. The two constituents are deposited in an alternating fashion. The 10s--100s nanometer-thick layers produce short diffusion distances to enhance mixing. When initiated by an external heat source, the foils react in a self-propagating fashion driven by exothermic mixing. The propagation characteristics, namely velocity and maximum temperature, depend on the chemistries involved as well as the foil architecture. The Al/Ni 3:1 system was chosen because of its potential application in microelectronics and its lower reaction temperature. The foils were grown by magnetron sputtering with bilayers measuring 25 or 27nm and a final thickness of 125 and 189nm. In situ and ex situ experiments have yielded significant cumulative trends about RMLF behavior. Ex situ experiments rely on reaction quenching and post mortem examination with XRD to reveal intermetallic phase evolution. Quenching can introduce intermediate phases not necessarily native to the original process. In situ optical observation yield temperature and velocity information, but not necessarily phase information. In situ x-ray microdiffraction has been applied to study phase evolution but samples a large portion of the foil. The dynamic TEM (DTEM) has the spatial and temporal resolution to study these reactions in situ to better our understanding of the reaction process, which tends to be rather uncontrollable and occurs at very high temperatures. Using SHS of RMLFs as a novel method for intermetallic formation will be benefited by a more thorough understanding of the thermodynamics and kinetics involved, especially for heat-sensitive application. The dynamic transmission electron microscope (DTEM) has been a unique instrument allowing for in situ examination of RMLFs during the

  5. Dynamic compensation temperature in the mixed spin-1 and spin-2 Ising model in an oscillating field on alternate layers of a hexagonal lattice

    Energy Technology Data Exchange (ETDEWEB)

    Korkmaz, Tugba [Institute of Science, Bozok University, 66200 Yozgat (Turkey); Temizer, Uemuet, E-mail: umut.temizer@bozok.edu.tr [Department of Physics, Bozok University, 66200 Yozgat (Turkey)

    2012-11-15

    The dynamic behavior of a mixed spin-1 and spin-2 Ising system with a crystal-field interaction in the presence of a time-dependent oscillating external magnetic field on a hexagonal lattice is studied by using the Glauber-type stochastic dynamics. The lattice is formed by alternate layers of spins {sigma}=1 and S=2. The Hamiltonian model includes intersublattice, intrasublattice and crystal-field interactions. The set of mean-field dynamic equations is obtained by employing the Glauber transition rates. Firstly, we study time variations of the average sublattice magnetizations in order to find the phases in the system, and the thermal behavior of the average sublattice magnetizations in a period or the dynamic sublattice magnetizations to obtain the dynamic phase transition points as well as to characterize the nature (continuous and discontinuous) of transitions. Then, the behavior of the dynamic total magnetization as a function of the temperature is investigated to find the dynamic compensation points as well as determine the type of behavior. We also present the dynamic phase diagrams for both presence and absence of the dynamic compensation temperatures in the nine different planes. According to the values of Hamiltonian parameters, besides the paramagnetic (p), antiferromagnetic (af), ferrimagnetic (i) and non-magnetic (nm) fundamental phases, eight different mixed phases and the compensation temperature or L- and N-types behavior in the Neel classification nomenclature exist in the system. - Highlights: Black-Right-Pointing-Pointer The mixed spin (1, 2) Ising system is studied by using the Glauber dynamics. Black-Right-Pointing-Pointer We employ the Glauber transition rates to construct the dynamic equations. Black-Right-Pointing-Pointer The phase diagrams are presented in the nine different planes. ? The system displays L- and N-types compensation temperatures.

  6. Synchronization, non-linear dynamics and low-frequency fluctuations: Analogy between spontaneous brain activity and networked single-transistor chaotic oscillators

    Science.gov (United States)

    Minati, Ludovico; Chiesa, Pietro; Tabarelli, Davide; D'Incerti, Ludovico; Jovicich, Jorge

    2015-03-01

    In this paper, the topographical relationship between functional connectivity (intended as inter-regional synchronization), spectral and non-linear dynamical properties across cortical areas of the healthy human brain is considered. Based upon functional MRI acquisitions of spontaneous activity during wakeful idleness, node degree maps are determined by thresholding the temporal correlation coefficient among all voxel pairs. In addition, for individual voxel time-series, the relative amplitude of low-frequency fluctuations and the correlation dimension (D2), determined with respect to Fourier amplitude and value distribution matched surrogate data, are measured. Across cortical areas, high node degree is associated with a shift towards lower frequency activity and, compared to surrogate data, clearer saturation to a lower correlation dimension, suggesting presence of non-linear structure. An attempt to recapitulate this relationship in a network of single-transistor oscillators is made, based on a diffusive ring (n = 90) with added long-distance links defining four extended hub regions. Similarly to the brain data, it is found that oscillators in the hub regions generate signals with larger low-frequency cycle amplitude fluctuations and clearer saturation to a lower correlation dimension compared to surrogates. The effect emerges more markedly close to criticality. The homology observed between the two systems despite profound differences in scale, coupling mechanism and dynamics appears noteworthy. These experimental results motivate further investigation into the heterogeneity of cortical non-linear dynamics in relation to connectivity and underline the ability for small networks of single-transistor oscillators to recreate collective phenomena arising in much more complex biological systems, potentially representing a future platform for modelling disease-related changes.

  7. Synchronization, non-linear dynamics and low-frequency fluctuations: Analogy between spontaneous brain activity and networked single-transistor chaotic oscillators

    International Nuclear Information System (INIS)

    Minati, Ludovico; Chiesa, Pietro; Tabarelli, Davide; Jovicich, Jorge; D'Incerti, Ludovico

    2015-01-01

    In this paper, the topographical relationship between functional connectivity (intended as inter-regional synchronization), spectral and non-linear dynamical properties across cortical areas of the healthy human brain is considered. Based upon functional MRI acquisitions of spontaneous activity during wakeful idleness, node degree maps are determined by thresholding the temporal correlation coefficient among all voxel pairs. In addition, for individual voxel time-series, the relative amplitude of low-frequency fluctuations and the correlation dimension (D 2 ), determined with respect to Fourier amplitude and value distribution matched surrogate data, are measured. Across cortical areas, high node degree is associated with a shift towards lower frequency activity and, compared to surrogate data, clearer saturation to a lower correlation dimension, suggesting presence of non-linear structure. An attempt to recapitulate this relationship in a network of single-transistor oscillators is made, based on a diffusive ring (n = 90) with added long-distance links defining four extended hub regions. Similarly to the brain data, it is found that oscillators in the hub regions generate signals with larger low-frequency cycle amplitude fluctuations and clearer saturation to a lower correlation dimension compared to surrogates. The effect emerges more markedly close to criticality. The homology observed between the two systems despite profound differences in scale, coupling mechanism and dynamics appears noteworthy. These experimental results motivate further investigation into the heterogeneity of cortical non-linear dynamics in relation to connectivity and underline the ability for small networks of single-transistor oscillators to recreate collective phenomena arising in much more complex biological systems, potentially representing a future platform for modelling disease-related changes

  8. Intergenerational continuity of cell shape dynamics in Caulobacter crescentus

    Science.gov (United States)

    Wright, Charles S.; Banerjee, Shiladitya; Iyer-Biswas, Srividya; Crosson, Sean; Dinner, Aaron R.; Scherer, Norbert F.

    2015-03-01

    We investigate the intergenerational shape dynamics of single Caulobacter crescentus cells using a novel combination of imaging techniques and theoretical modeling. We determine the dynamics of cell pole-to-pole lengths, cross-sectional widths, and medial curvatures from high accuracy measurements of cell contours. Moreover, these shape parameters are determined for over 250 cells across approximately 10000 total generations, which affords high statistical precision. Our data and model show that constriction is initiated early in the cell cycle and that its dynamics are controlled by the time scale of exponential longitudinal growth. Based on our extensive and detailed growth and contour data, we develop a minimal mechanical model that quantitatively accounts for the cell shape dynamics and suggests that the asymmetric location of the division plane reflects the distinct mechanical properties of the stalked and swarmer poles. Furthermore, we find that the asymmetry in the division plane location is inherited from the previous generation. We interpret these results in terms of the current molecular understanding of shape, growth, and division of C. crescentus.

  9. Vortex dynamics behind a self-oscillating inverted flag placed in a channel flow: Time-resolved particle image velocimetry measurements

    Science.gov (United States)

    Yu, Yuelong; Liu, Yingzheng; Chen, Yujia

    2017-12-01

    The unsteady flow behind an inverted flag placed in a water channel and then excited into a self-oscillating state is measured using time-resolved particle image velocimetry. The dynamically deformed profiles of the inverted flag are determined by a novel algorithm that combines morphological image processing and principle component analysis. Three modes are discovered with the successive decrease in the dimensionless bending stiffness: the biased mode, the flapping mode, and the deflected mode. The distinctly different flow behavior is discussed in terms of instantaneous velocity field, phase-averaged vorticity field, time-mean flow field, and turbulent kinetic energy. The results demonstrated that the biased mode generated abundant vortices at the oscillating side of the inverted flag. In the deflected mode, the inverted flag is highly deflected to one side of the channel and remains almost stationary, inducing two stable recirculation zones and a considerably inversed flow between them. In the flapping mode, the strongly oscillating flag periodically provides a strengthened influence on the fluid near the two sidewalls. The reverse von Kármán vortex street is well formed and energetic in the wake, and a series of high-speed impingement jets between the neighboring vortices are directed toward the sidewalls in a staggered fashion.

  10. Pole-to-pole sea surface temperatures from the Paleocene-Eocene thermal maximum using organic and inorganic paleothermometers: the ultimate test case for climate models

    Science.gov (United States)

    Sluijs, A.; Schouten, S.; Zachos, J. C.; Bijl, P. K.; Reichart, G.; Sinninghe Damsté, J. S.; Huber, M.; Pearson, P. N.; Brinkhuis, H.

    2007-12-01

    The Paleocene-Eocene Thermal Maximum was a short-lived (about 170 kyr) episode of globally elevated temperatures, superimposed on already warm late Paleocene - early Eocene greenhouse climates. Recent application of the relatively new organic paleothermometer TEX86 as well as oxygen isotope analyses on well-preserved foraminifera on marginal marine PETM sections has allowed direct comparison of absolute sea surface temperature (SST) reconstructions by independent proxies. These records show relatively good correspondence, suggesting they are both suitable to reconstruct late Paleocene and early Eocene absolute SSTs. Both low- and high-latitude temperatures were (much) warmer than at present, consistent with biogeographical patterns, but the difference between high- and low latitude temperatures was extremely low. Current generation fully coupled climate models fed with early Paleogene boundary conditions indeed predict warming on a global scale with higher CO2 concentrations. However, meridional temperature gradients remain structurally overestimated in the models, implying that important feedbacks during greenhouse climates are not (correctly) implemented in the climate models. Moreover, temperatures during the PETM, rose by 5 to 8 ° C on a global scale (in the absence of ice-albedo feedbacks), thus not showing significant polar amplification. This suggests that the mechanism that caused the reduced meridional temperature gradient was not amplified during the PETM.

  11. Neutrino Oscillations

    Indian Academy of Sciences (India)

    Neutrino Oscillations: New Windows to the Particle World. General Article Volume 21 Issue 10 ... Neutrino oscillation is a quantum mechanicalphenomenon whereby a neutrino created witha specific lepton flavour (electron, muon, or tau) can later bemeasured to have a different flavour. Historical developmentof the field in ...

  12. Chemical Oscillations

    Indian Academy of Sciences (India)

    The law of mass-action led chemists to the belief that reactions approach equilibrium steadily. So the discovery of chemical oscillations came as a surprise. Now chemists are very familiar with reactions that oscillate in time and/or space. Experimental and theoretical studies of such reac- tions showing temporal and spatial ...

  13. The Wien Bridge Oscillator Family

    DEFF Research Database (Denmark)

    Lindberg, Erik

    2006-01-01

    A tutorial in which the Wien bridge family of oscillators is defined and investigated. Oscillators which do not fit into the Barkhausen criterion topology may be designed. A design procedure based on initial complex pole quality factor is reported. The dynamic transfer characteristic...

  14. Stochastic and Chaotic Relaxation Oscillations

    NARCIS (Netherlands)

    Grasman, J.; Roerdink, J.B.T.M.

    1988-01-01

    For relaxation oscillators stochastic and chaotic dynamics are investigated. The effect of random perturbations upon the period is computed. For an extended system with additional state variables chaotic behavior can be expected. As an example, the Van der Pol oscillator is changed into a

  15. Modeling microtubule oscillations

    DEFF Research Database (Denmark)

    Jobs, E.; Wolf, D.E.; Flyvbjerg, H.

    1997-01-01

    Synchronization of molecular reactions in a macroscopic volume may cause the volume's physical properties to change dynamically and thus reveal much about the reactions. As an example, experimental time series for so-called microtubule oscillations are analyzed in terms of a minimal model for thi...

  16. From excitability to oscillations

    DEFF Research Database (Denmark)

    Postnov, D. E.; Neganova, A. Y.; Jacobsen, J. C. B.

    2013-01-01

    One consequence of cell-to-cell communication is the appearance of synchronized behavior, where many cells cooperate to generate new dynamical patterns. We present a simple functional model of vasomotion based on the concept of a two-mode oscillator with dual interactions: via relatively slow...

  17. Topic 1.1.2, Unsteady Aerodynamics: Time-Varying Compressible Dynamic Stall Mechanisms Due to Freestream Mach Oscillations

    Science.gov (United States)

    2014-12-31

    Chandrasekhara and Carr, 1990), development of a point diffraction interferometry system for quantitative visualization of DS vortex behavior (Carr et...b) thrust bearing for pitch oscillation. Connection Bar Movement Lever Arm Fly Wheel Eccentric Disk V-Belt 5-hp A/C Motor Flow Pulley diameter...connected to an ESP Pressure Scanner System to obtain the static pressure distribution along the airfoil surface. The pressure-coefficient (Cp) is

  18. Experience Drives Synchronization: The phase and Amplitude Dynamics of Neural Oscillations to Musical Chords Are Differentially Modulated by Musical Expertise.

    Directory of Open Access Journals (Sweden)

    Karen Johanne Pallesen

    Full Text Available Musical expertise is associated with structural and functional changes in the brain that underlie facilitated auditory perception. We investigated whether the phase locking (PL and amplitude modulations (AM of neuronal oscillations in response to musical chords are correlated with musical expertise and whether they reflect the prototypicality of chords in Western tonal music. To this aim, we recorded magnetoencephalography (MEG while musicians and non-musicians were presented with common prototypical major and minor chords, and with uncommon, non-prototypical dissonant and mistuned chords, while watching a silenced movie. We then analyzed the PL and AM of ongoing oscillations in the theta (4-8 Hz alpha (8-14 Hz, beta- (14-30 Hz and gamma- (30-80 Hz bands to these chords. We found that musical expertise was associated with strengthened PL of ongoing oscillations to chords over a wide frequency range during the first 300 ms from stimulus onset, as opposed to increased alpha-band AM to chords over temporal MEG channels. In musicians, the gamma-band PL was strongest to non-prototypical compared to other chords, while in non-musicians PL was strongest to minor chords. In both musicians and non-musicians the long-latency (> 200 ms gamma-band PL was also sensitive to chord identity, and particularly to the amplitude modulations (beats of the dissonant chord. These findings suggest that musical expertise modulates oscillation PL to musical chords and that the strength of these modulations is dependent on chord prototypicality.

  19. Assessing the quality of stochastic oscillations

    Indian Academy of Sciences (India)

    Population dynamics; stochastic oscillations. ... We propose a quantification of the oscillatory appearance of the fluctuating populations, and show that good stochastic oscillations are present if a parameter of the macroscopic model is small, and that no microscopic model will show oscillations if that parameter is large.

  20. Dependence of synchronization frequency of Kuramoto oscillators ...

    Indian Academy of Sciences (India)

    journal of. December 2014 physics pp. 945–953. Dependence of synchronization frequency of Kuramoto oscillators on symmetry of intrinsic frequency in ring ... In this article, we study the difference between networks with sym- ... The dynamics of a general ith oscillator in a system of N Kuramoto oscillators is given as.

  1. Dynamic phase transition properties for the mixed spin-(1/2, 1) Ising model in an oscillating magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Ertaş, Mehmet, E-mail: mehmetertas@erciyes.edu.tr; Keskin, Mustafa

    2015-08-15

    Herein we study the dynamic phase transition properties for the mixed spin-(1/2, 1) Ising model on a square lattice under a time-dependent magnetic field by means of the effective-field theory (EFT) with correlations based on Glauber dynamics. We present the dynamic phase diagrams in the reduced magnetic field amplitude and reduced temperature plane and find that the phase diagrams exhibit dynamic tricitical behavior, multicritical and zero-temperature critical points as well as reentrant behavior. We also investigate the influence of frequency (ω) and observe that for small values of ω the mixed phase disappears, but for high values it appears and the system displays reentrant behavior as well as a critical end point. - Highlights: • Dynamic behaviors of a ferrimagnetic mixed spin (1/2, 1) Ising system are studied. • We examined the effects of the Hamiltonian parameters on the dynamic behaviors. • The phase diagrams are obtained in (T-h) plane. • The dynamic phase diagrams exhibit the dynamic tricritical and reentrant behaviors.

  2. Dynamic phase transition properties for the mixed spin-(1/2, 1) Ising model in an oscillating magnetic field

    International Nuclear Information System (INIS)

    Ertaş, Mehmet; Keskin, Mustafa

    2015-01-01

    Herein we study the dynamic phase transition properties for the mixed spin-(1/2, 1) Ising model on a square lattice under a time-dependent magnetic field by means of the effective-field theory (EFT) with correlations based on Glauber dynamics. We present the dynamic phase diagrams in the reduced magnetic field amplitude and reduced temperature plane and find that the phase diagrams exhibit dynamic tricitical behavior, multicritical and zero-temperature critical points as well as reentrant behavior. We also investigate the influence of frequency (ω) and observe that for small values of ω the mixed phase disappears, but for high values it appears and the system displays reentrant behavior as well as a critical end point. - Highlights: • Dynamic behaviors of a ferrimagnetic mixed spin (1/2, 1) Ising system are studied. • We examined the effects of the Hamiltonian parameters on the dynamic behaviors. • The phase diagrams are obtained in (T-h) plane. • The dynamic phase diagrams exhibit the dynamic tricritical and reentrant behaviors

  3. Mid- to late-Holocene El Nino-Southern Oscillation dynamics reflected in the subtropical terrestrial realm.

    Science.gov (United States)

    Donders, Timme H; Wagner, Friederike; Dilcher, David L; Visscher, Henk

    2005-08-02

    High resolution pollen analysis of mid- to late-Holocene peat deposits from southwest Florida reveals a stepwise increase in wetland vegetation that points to an increased precipitation-driven fresh water flow during the past 5,000 years. The tight coupling between winter precipitation patterns in Florida and the strength of the El Niño-Southern Oscillation (ENSO) strongly suggests that the paleo-hydrology record reflects changes in ENSO intensity. A terrestrial subtropical record outside the Indo Pacific Warm Pool both documents ecosystem response to the known onset of modern-day ENSO periodicities, between approximately 7,000 and 5,000 years B.P., and subsequent ENSO intensification after 3,500 years B.P. The observed increases in "wetness" are sustained by a gradual rise in relative sea level that prevents a return to drier vegetation through natural succession.

  4. Nonlinear oscillations

    CERN Document Server

    Nayfeh, Ali Hasan

    1995-01-01

    Nonlinear Oscillations is a self-contained and thorough treatment of the vigorous research that has occurred in nonlinear mechanics since 1970. The book begins with fundamental concepts and techniques of analysis and progresses through recent developments and provides an overview that abstracts and introduces main nonlinear phenomena. It treats systems having a single degree of freedom, introducing basic concepts and analytical methods, and extends concepts and methods to systems having degrees of freedom. Most of this material cannot be found in any other text. Nonlinear Oscillations uses sim

  5. Dynamic phase transition in the kinetic spin-3/2 Blume-Emery-Griffiths model in an oscillating field

    Energy Technology Data Exchange (ETDEWEB)

    Canko, Osman; Deviren, Bayram; Keskin, Mustafa [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)

    2006-07-26

    The dynamic phase transitions are studied, within a mean-field approach, in the kinetic Blume-Emery-Griffiths model under the presence of a time varying (sinusoidal) magnetic field by using the Glauber-type stochastic dynamics. The behaviour of the time-dependence of the order parameters and the behaviour of the average order parameters in a period, which is also called the dynamic order parameters, as a function of reduced temperature, are investigated. The nature (continuous and discontinuous) of transition is characterized by studying the average order parameters in a period. The dynamic phase transition points are obtained and the phase diagrams are presented in the reduced magnetic field amplitude and reduced temperature plane. The phase diagrams exhibit one, two, or three dynamic tricritical points and a dynamic double critical end point, and besides a disordered and two ordered phases, seven coexistence phase regions exist, which strongly depend on interaction parameters. We also calculate the Liapunov exponent to verify the stability of solutions and the dynamic phase transition points.

  6. Dynamic phase transition in the kinetic spin-3/2 Blume-Emery-Griffiths model in an oscillating field

    International Nuclear Information System (INIS)

    Canko, Osman; Deviren, Bayram; Keskin, Mustafa

    2006-01-01

    The dynamic phase transitions are studied, within a mean-field approach, in the kinetic Blume-Emery-Griffiths model under the presence of a time varying (sinusoidal) magnetic field by using the Glauber-type stochastic dynamics. The behaviour of the time-dependence of the order parameters and the behaviour of the average order parameters in a period, which is also called the dynamic order parameters, as a function of reduced temperature, are investigated. The nature (continuous and discontinuous) of transition is characterized by studying the average order parameters in a period. The dynamic phase transition points are obtained and the phase diagrams are presented in the reduced magnetic field amplitude and reduced temperature plane. The phase diagrams exhibit one, two, or three dynamic tricritical points and a dynamic double critical end point, and besides a disordered and two ordered phases, seven coexistence phase regions exist, which strongly depend on interaction parameters. We also calculate the Liapunov exponent to verify the stability of solutions and the dynamic phase transition points

  7. Waves and oscillations in nature an introduction

    CERN Document Server

    Narayanan, A Satya

    2015-01-01

    Waves and oscillations are found in large scales (galactic) and microscopic scales (neutrino) in nature. Their dynamics and behavior heavily depend on the type of medium through which they propagate.Waves and Oscillations in Nature: An Introduction clearly elucidates the dynamics and behavior of waves and oscillations in various mediums. It presents different types of waves and oscillations that can be observed and studied from macroscopic to microscopic scales. The book provides a thorough introduction for researchers and graduate students in assorted areas of physics, such as fluid dynamics,

  8. Multicritical dynamical phase diagrams of the kinetic Blume-Emery-Griffiths model with repulsive biquadratic coupling in an oscillating field

    Energy Technology Data Exchange (ETDEWEB)

    Temizer, Umuet [Department of Physics, Bozok University, 66100 Yozgat (Turkey); Kantar, Ersin [Institute of Science, Erciyes University, 38039 Kayseri (Turkey); Keskin, Mustafa [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)], E-mail: keskin@erciyes.edu.tr; Canko, Osman [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)

    2008-06-15

    We study, within a mean-field approach, the stationary states of the kinetic Blume-Emery-Griffiths model with repulsive biquadratic coupling under the presence of a time-varying (sinusoidal) magnetic field. We employ the Glauber-type stochastic dynamics to construct set of dynamic equations of motion. The behavior of the time dependence of the order parameters and the behavior of the average order parameters in a period, which is also called the dynamic order parameters, as functions of the reduced temperature are investigated. The dynamic phase transition points are calculated and phase diagrams are presented in the reduced magnetic field amplitude and reduced temperature plane. The dynamical transition from one regime to the other can be of first- or second order depending on the region in the phase diagram. According to the values of the crystal field interaction or single-ion anisotropy constant and biquadratic exchange constant, we find 20 fundamental types of phase diagrams which exhibit many dynamic critical points, such as tricritical points, zero-temperature critical points, double critical end points, critical end point, triple point and multicritical point. Moreover, besides a disordered and ordered phases, seven coexistence phase regions exist in the system.

  9. Chemical Oscillations

    Indian Academy of Sciences (India)

    behaviour of a few complex chemical systems. We observed that these chemical oscillators are basically .... Kutta fourth order integration method to solve the Lotka-. Volterra equation as per the Fortran program given in ... This is known as the phase plane represen- tation. We have obtained these plots using the software.

  10. Chemical Oscillations

    Indian Academy of Sciences (India)

    relevant species is zero. So, oscillations can appear only if the inhibition step is somehow .... the value of such an experimental parameter can possi- bly move the system between the steady states. Per- ... states for different values of [X], obtained far from equilibrium. Figure 2. System showing. The concentrations [X] ...

  11. New dynamic NNORSY ozone profile climatology

    Science.gov (United States)

    Kaifel, A. K.; Felder, M.; Declercq, C.; Lambert, J.-C.

    2012-01-01

    Climatological ozone profile data are widely used as a-priori information for total ozone using DOAS type retrievals as well as for ozone profile retrieval using optimal estimation, for data assimilation or evaluation of 3-D chemistry-transport models and a lot of other applications in atmospheric sciences and remote sensing. For most applications it is important that the climatology represents not only long term mean values but also the links between ozone and dynamic input parameters. These dynamic input parameters should be easily accessible from auxiliary datasets or easily measureable, and obviously should have a high correlation with ozone. For ozone profile these parameters are mainly total ozone column and temperature profile data. This was the outcome of a user consultation carried out in the framework of developing a new, dynamic ozone profile climatology. The new ozone profile climatology is based on the Neural Network Ozone Retrieval System (NNORSY) widely used for ozone profile retrieval from UV and IR satellite sounder data. NNORSY allows implicit modelling of any non-linear correspondence between input parameters (predictors) and ozone profile target vector. This paper presents the approach, setup and validation of a new family of ozone profile climatologies with static as well as dynamic input parameters (total ozone and temperature profile). The neural network training relies on ozone profile measurement data of well known quality provided by ground based (ozonesondes) and satellite based (SAGE II, HALOE, and POAM-III) measurements over the years 1995-2007. In total, four different combinations (modes) for input parameters (date, geolocation, total ozone column and temperature profile) are available. The geophysical validation spans from pole to pole using independent ozonesonde, lidar and satellite data (ACE-FTS, AURA-MLS) for individual and time series comparisons as well as for analysing the vertical and meridian structure of different modes of

  12. Sustained oscillations, irregular firing, and chaotic dynamics in hierarchical modular networks with mixtures of electrophysiological cell types.

    Science.gov (United States)

    Tomov, Petar; Pena, Rodrigo F O; Zaks, Michael A; Roque, Antonio C

    2014-01-01

    The cerebral cortex exhibits neural activity even in the absence of external stimuli. This self-sustained activity is characterized by irregular firing of individual neurons and population oscillations with a broad frequency range. Questions that arise in this context, are: What are the mechanisms responsible for the existence of neuronal spiking activity in the cortex without external input? Do these mechanisms depend on the structural organization of the cortical connections? Do they depend on intrinsic characteristics of the cortical neurons? To approach the answers to these questions, we have used computer simulations of cortical network models. Our networks have hierarchical modular architecture and are composed of combinations of neuron models that reproduce the firing behavior of the five main cortical electrophysiological cell classes: regular spiking (RS), chattering (CH), intrinsically bursting (IB), low threshold spiking (LTS), and fast spiking (FS). The population of excitatory neurons is built of RS cells (always present) and either CH or IB cells. Inhibitory neurons belong to the same class, either LTS or FS. Long-lived self-sustained activity states in our network simulations display irregular single neuron firing and oscillatory activity similar to experimentally measured ones. The duration of self-sustained activity strongly depends on the initial conditions, suggesting a transient chaotic regime. Extensive analysis of the self-sustained activity states showed that their lifetime expectancy increases with the number of network modules and is favored when the network is composed of excitatory neurons of the RS and CH classes combined with inhibitory neurons of the LTS class. These results indicate that the existence and properties of the self-sustained cortical activity states depend on both the topology of the network and the neuronal mixture that comprises the network.

  13. Sustained oscillations, irregular firing and chaotic dynamics in hierarchical modular networks with mixtures of electrophysiological cell types

    Directory of Open Access Journals (Sweden)

    Petar eTomov

    2014-09-01

    Full Text Available The cerebral cortex exhibits neural activity even in the absence of externalstimuli. This self-sustained activity is characterized by irregular firing ofindividual neurons and population oscillations with a broad frequency range.Questions that arise in this context, are: What are the mechanismsresponsible for the existence of neuronal spiking activity in the cortexwithout external input? Do these mechanisms depend on the structural organization of the cortical connections? Do they depend onintrinsic characteristics of the cortical neurons? To approach the answers to these questions, we have used computer simulations of cortical network models. Our networks have hierarchical modular architecture and are composedof combinations of neuron models that reproduce the firing behavior of the five main cortical electrophysiological cell classes: regular spiking (RS, chattering (CH, intrinsically bursting (IB, low threshold spiking (LTS and fast spiking (FS. The population of excitatory neurons is built of RS cells(always present and either CH or IB cells. Inhibitoryneurons belong to the same class, either LTS or FS. Long-lived self-sustained activity states in our networksimulations display irregular single neuron firing and oscillatoryactivity similar to experimentally measured ones. The duration of self-sustained activity strongly depends on the initial conditions,suggesting a transient chaotic regime. Extensive analysis of the self-sustainedactivity states showed that their lifetime expectancy increases with the numberof network modules and is favored when the network is composed of excitatory neurons of the RS and CH classes combined with inhibitory neurons of the LTS class. These results indicate that the existence and properties of the self-sustained cortical activity states depend on both the topology of the network and the neuronal mixture that comprises the network.

  14. Dynamic Characteristics of Area Variations of Small and Large Sunspots and Quasi-Biennial Oscillations in Solar Activity

    Science.gov (United States)

    Kostyuchenko, I. G.

    2017-12-01

    The spatiotemporal and chaotic dynamics of variations in area of sunspot groups related conventionally to small (area 50 Msh) populations is analyzed. The Greenwich Observatory-Marshall Space Flight Center data were used. The results show that both sunspot populations have a single initial source, which is a magnetic flux generated by the dynamo process (presumably at the bottom of the convective zone) and is responsible for the 11—22-year periodicity of solar activity. A possible explanation of the revealed different behavior of the considered populations is that the magnetic flux is partially involved in another process responsible for the shaping of primarily very large sunspot groups. This process develops presumably in the upper layer of the convective zone with an unstable amplitude and a period varying within 1-2 years. The analysis of power spectrum of the Wolf number time series has indicated the difference between dynamic characteristics of the two studied processes.

  15. Lattice dynamics and domain wall oscillations of morphotropic Pb(Zr,Ti)O.sub.3./sub. ceramics

    Czech Academy of Sciences Publication Activity Database

    Buixaderas, Elena; Bovtun, Viktor; Kempa, Martin; Nuzhnyy, Dmitry; Savinov, Maxim; Vaněk, Přemysl; Gregora, Ivan; Malic, B.

    2016-01-01

    Roč. 94, č. 5 (2016), 1-10, č. článku 054315. ISSN 1098-0121 R&D Projects: GA ČR(CZ) GA14-25639S; GA MŠk(CZ) LD15014 Institutional support: RVO:68378271 Keywords : PZT * phonon * lattice dynamics * dielectric response * Raman * infrared spectroscopy * broad-band spectroscopy * piezoelectrics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.736, year: 2014

  16. Nonlinear (Anharmonic Casimir Oscillator

    Directory of Open Access Journals (Sweden)

    Habibollah Razmi

    2011-01-01

    Full Text Available We want to study the dynamics of a simple linear harmonic micro spring which is under the influence of the quantum Casimir force/pressure and thus behaves as a (an nonlinear (anharmonic Casimir oscillator. Generally, the equation of motion of this nonlinear micromechanical Casimir oscillator has no exact solvable (analytical solution and the turning point(s of the system has (have no fixed position(s; however, for particular values of the stiffness of the micro spring and at appropriately well-chosen distance scales and conditions, there is (are approximately sinusoidal solution(s for the problem (the variable turning points are collected in a very small interval of positions. This, as a simple and elementary plan, may be useful in controlling the Casimir stiction problem in micromechanical devices.

  17. Effect of nonlinearity on the dynamics of Bragg-induced optical Rabi oscillations in a one-dimensional periodic photonic structure

    Science.gov (United States)

    Brandão, P. A.; Cavalcanti, S. B.

    2017-10-01

    Propagation of wide optical beams in transverse periodic lattices have been reported to induce power oscillations between Fourier modes related by the Bragg resonance condition, resulting from the coupling between the beam and the periodic structure. These oscillations have been referred to as Rabi optical oscillations due to the analogy with matter Rabi oscillations. In this work, we investigate the behavior of Bragg-induced Rabi-type oscillations of a multimode Gaussian beam in the presence of optical nonlinearity. We find a combination of oscillation and spectrum broadening under both self-focusing and self-defocusing nonlinearities, in the sense that the oscillations are maintained while the spectrum is broadened and therefore partially transferred to the twin frequency. For intense self-focusing nonlinearities a complete leak of the initial mode profile to other modes is rapidly attained so that no oscillation is observed. In contrast, for intense self-defocusing nonlinearities the redistribution rate is so dramatic that oscillations cease and power only fades away.

  18. Power oscillation damping controller

    DEFF Research Database (Denmark)

    2012-01-01

    A power oscillation damping controller is provided for a power generation device such as a wind turbine device. The power oscillation damping controller receives an oscillation indicating signal indicative of a power oscillation in an electricity network and provides an oscillation damping control...... signal in response to the oscillation indicating signal, by processing the oscillation damping control signal in a signal processing chain. The signal processing chain includes a filter configured for passing only signals within a predetermined frequency range....

  19. A breakthrough in neuroscience needs a "Nebulous Cartesian System" Oscillations, quantum dynamics and chaos in the brain and vegetative system.

    Science.gov (United States)

    Başar, Erol; Güntekin, Bahar

    2007-04-01

    The Cartesian System is a fundamental conceptual and analytical framework related and interwoven with the concept and applications of Newtonian Dynamics. In order to analyze quantum processes physicist moved to a Probabilistic Cartesian System in which the causality principle became a probabilistic one. This means the trajectories of particles (obeying quantum rules) can be described only with the concept of cloudy wave packets. The approach to the brain-body-mind problem requires more than the prerequisite of modern physics and quantum dynamics. In the analysis of the brain-body-mind construct we have to include uncertain causalities and consequently multiple uncertain causalities. These multiple causalities originate from (1) nonlinear properties of the vegetative system (e.g. irregularities in biochemical transmitters, cardiac output, turbulences in the vascular system, respiratory apnea, nonlinear oscillatory interactions in peristalsis); (2) nonlinear behavior of the neuronal electricity (e.g. chaotic behavior measured by EEG), (3) genetic modulations, and (4) additional to these physiological entities nonlinear properties of physical processes in the body. The brain shows deterministic chaos with a correlation dimension of approx. D(2)=6, the smooth muscles approx. D(2)=3. According to these facts we propose a hyper-probabilistic approach or a hyper-probabilistic Cartesian System to describe and analyze the processes in the brain-body-mind system. If we add aspects as our sentiments, emotions and creativity to this construct, better said to this already hyper-probabilistic construct, this "New Cartesian System" is more than hyper-probabilistic, it is a nebulous system, we can predict the future only in a nebulous way; however, despite this chain of reasoning we can still provide predictions on brain-body-mind incorporations. We tentatively assume that the processes or mechanisms of the brain-body-mind system can be analyzed and predicted similar to the

  20. Oscillating dynamics of bacterial populations and their predators in response to fresh organic matter added to soil: The simulation model 'BACWAVE-WEB'

    NARCIS (Netherlands)

    Zelenev, V.V.; Bruggen, van A.H.C.; Leffelaar, P.A.; Bloem, J.; Semenov, A.M.

    2006-01-01

    Recently, regular oscillations in bacterial populations and growth rates of bacterial feeding nematodes (BFN) were shown to occur after addition of fresh organic matter to soil. This paper presents a model developed to investigate potential mechanisms of those oscillations, and whether they were

  1. Damping elastic oscillations of digging mechanism

    Science.gov (United States)

    Kuznetsov, N. K.; Makhno, D. E.; Iov, I. A.

    2017-10-01

    The article studies methods for reducing dynamic loading and elastic oscillations of excavator buckets using dampers. The authors suggest a structural scheme for damping bucket oscillations using a damping device installed in a running gear of the traction cable. The results of numerical efficiency simulation are presented. The article shows that the system helps to reduce intensity of elastic oscillations and a transition period in acceleration and deceleration modes.

  2. Oscillations of void lattices

    International Nuclear Information System (INIS)

    Akhiezer, A.I.; Davydov, L.N.; Spol'nik, Z.A.

    1976-01-01

    Oscillations of a nonideal crystal are studied, in which macroscopic defects (pores) form a hyperlattice. It is shown that alongside with acoustic and optical phonons (relative to the hyperlattice), in such a crystal oscillations of the third type are possible which are a hydridization of sound oscillations of atoms and surface oscillations of a pore. Oscillation spectra of all three types were obtained

  3. Theory of oscillators

    CERN Document Server

    Andronov, Aleksandr Aleksandrovich; Vitt, Aleksandr Adolfovich

    1966-01-01

    Theory of Oscillators presents the applications and exposition of the qualitative theory of differential equations. This book discusses the idea of a discontinuous transition in a dynamic process. Organized into 11 chapters, this book begins with an overview of the simplest type of oscillatory system in which the motion is described by a linear differential equation. This text then examines the character of the motion of the representative point along the hyperbola. Other chapters consider examples of two basic types of non-linear non-conservative systems, namely, dissipative systems and self-

  4. Modeling diauxic glycolytic oscillations in yeast

    DEFF Research Database (Denmark)

    Hald, Bjørn Olav; Sørensen, Preben Graae

    2010-01-01

    Glycolytic oscillations in a stirred suspension of starved yeast cells is an excellent model system for studying the dynamics of metabolic switching in living systems. In an open-flow system the oscillations can be maintained indefinitely at a constant operating point where they can be characteri...

  5. Oscillators - a simple introduction

    DEFF Research Database (Denmark)

    Lindberg, Erik

    2013-01-01

    Oscillators are kernel components of electrical and electronic circuits. Discussion of history, mechanisms and design based on Barkhausens observation. Discussion of a Wien Bridge oscillator based on the question: Why does this circuit oscillate ?......Oscillators are kernel components of electrical and electronic circuits. Discussion of history, mechanisms and design based on Barkhausens observation. Discussion of a Wien Bridge oscillator based on the question: Why does this circuit oscillate ?...

  6. Control, synchronization, and enhanced reliability of aperiodic oscillations in the Mercury Beating Heart system

    Science.gov (United States)

    Kumar, Pawan; Parmananda, P.

    2018-04-01

    Experiments involving the Mercury Beating Heart (MBH) oscillator, exhibiting irregular (aperiodic) dynamics, are performed. In the first set of experiments, control over irregular dynamics of the MBH oscillator was obtained via a superimposed periodic voltage signal. These irregular (aperiodic) dynamics were recovered once the control was switched off. Subsequently, two MBH oscillators were coupled to attain synchronization of their aperiodic oscillations. Finally, two uncoupled MBH oscillators were subjected, repeatedly, to a common stochastic forcing, resulting in an enhancement of their mutual phase correlation.

  7. Oscillating Permanent Magnets.

    Science.gov (United States)

    Michaelis, M. M.; Haines, C. M.

    1989-01-01

    Describes several ways to partially levitate permanent magnets. Computes field line geometries and oscillation frequencies. Provides several diagrams illustrating the mechanism of the oscillation. (YP)

  8. Separation control with fluidic oscillators in water

    Science.gov (United States)

    Schmidt, H.-J.; Woszidlo, R.; Nayeri, C. N.; Paschereit, C. O.

    2017-08-01

    The present study assesses the applicability of fluidic oscillators for separation control in water. The first part of this work evaluates the properties of the fluidic oscillators including frequency, cavitation effects, and exerted thrust. Derived from the governing internal dynamics, the oscillation frequency is found to scale directly with the jet's exit velocity and the size of the fluidic oscillator independent of the working fluid. Frequency data from various experiments collapse onto a single curve. The occurrence of cavitation is examined by visual inspection and hydrophone measurements. The oscillation frequency is not affected by cavitation because it does not occur inside the oscillators. The spectral information obtained with the hydrophone provide a reliable indicator for the onset of cavitation at the exit. The performance of the fluidic oscillators for separation control on a bluff body does not seem to be affected by the presence of cavitation. The thrust exerted by an array of fluidic oscillators with water as the working fluid is measured to be even larger than theoretically estimated values. The second part of the presented work compares the performance of fluidic oscillators for separation control in water with previous results in air. The array of fluidic oscillators is installed into the rear end of a bluff body model. The drag improvements based on force balance measurements agree well with previous wind tunnel experiments on the same model. The flow field is examined by pressure measurements and with particle image velocimetry. Similar performance and flow field characteristics are observed in both water and air.

  9. Spontaneous oscillations in microfluidic networks

    Science.gov (United States)

    Case, Daniel; Angilella, Jean-Regis; Motter, Adilson

    2017-11-01

    Precisely controlling flows within microfluidic systems is often difficult which typically results in systems being heavily reliant on numerous external pumps and computers. Here, I present a simple microfluidic network that exhibits flow rate switching, bistablity, and spontaneous oscillations controlled by a single pressure. That is, by solely changing the driving pressure, it is possible to switch between an oscillating and steady flow state. Such functionality does not rely on external hardware and may even serve as an on-chip memory or timing mechanism. I use an analytic model and rigorous fluid dynamics simulations to show these results.

  10. Bloch Oscillations in Complex Crystals with PT Symmetry

    International Nuclear Information System (INIS)

    Longhi, S.

    2009-01-01

    Bloch oscillations in complex lattices with PT symmetry are theoretically investigated with specific reference to optical Bloch oscillations in photonic lattices with gain or loss regions. Novel dynamical phenomena with no counterpart in ordinary lattices, such as nonreciprocal Bloch oscillations related to violation of the Friedel's law of Bragg scattering in complex potentials, are highlighted.

  11. A novel method combining cellular neural networks and the coupled nonlinear oscillators' paradigm involving a related bifurcation analysis for robust image contrast enhancement in dynamically changing difficult visual environments

    International Nuclear Information System (INIS)

    Chedjou, Jean Chamberlain; Kyamakya, Kyandoghere

    2010-01-01

    It is well known that a machine vision-based analysis of a dynamic scene, for example in the context of advanced driver assistance systems (ADAS), does require real-time processing capabilities. Therefore, the system used must be capable of performing both robust and ultrafast analyses. Machine vision in ADAS must fulfil the above requirements when dealing with a dynamically changing visual context (i.e. driving in darkness or in a foggy environment, etc). Among the various challenges related to the analysis of a dynamic scene, this paper focuses on contrast enhancement, which is a well-known basic operation to improve the visual quality of an image (dynamic or static) suffering from poor illumination. The key objective is to develop a systematic and fundamental concept for image contrast enhancement that should be robust despite a dynamic environment and that should fulfil the real-time constraints by ensuring an ultrafast analysis. It is demonstrated that the new approach developed in this paper is capable of fulfilling the expected requirements. The proposed approach combines the good features of the 'coupled oscillators'-based signal processing paradigm with the good features of the 'cellular neural network (CNN)'-based one. The first paradigm in this combination is the 'master system' and consists of a set of coupled nonlinear ordinary differential equations (ODEs) that are (a) the so-called 'van der Pol oscillator' and (b) the so-called 'Duffing oscillator'. It is then implemented or realized on top of a 'slave system' platform consisting of a CNN-processors platform. An offline bifurcation analysis is used to find out, a priori, the windows of parameter settings in which the coupled oscillator system exhibits the best and most appropriate behaviours of interest for an optimal resulting image processing quality. In the frame of the extensive bifurcation analysis carried out, analytical formulae have been derived, which are capable of determining the various

  12. A novel method combining cellular neural networks and the coupled nonlinear oscillators' paradigm involving a related bifurcation analysis for robust image contrast enhancement in dynamically changing difficult visual environments

    Science.gov (United States)

    Chamberlain Chedjou, Jean; Kyamakya, Kyandoghere

    2010-10-01

    It is well known that a machine vision-based analysis of a dynamic scene, for example in the context of advanced driver assistance systems (ADAS), does require real-time processing capabilities. Therefore, the system used must be capable of performing both robust and ultrafast analyses. Machine vision in ADAS must fulfil the above requirements when dealing with a dynamically changing visual context (i.e. driving in darkness or in a foggy environment, etc). Among the various challenges related to the analysis of a dynamic scene, this paper focuses on contrast enhancement, which is a well-known basic operation to improve the visual quality of an image (dynamic or static) suffering from poor illumination. The key objective is to develop a systematic and fundamental concept for image contrast enhancement that should be robust despite a dynamic environment and that should fulfil the real-time constraints by ensuring an ultrafast analysis. It is demonstrated that the new approach developed in this paper is capable of fulfilling the expected requirements. The proposed approach combines the good features of the 'coupled oscillators'-based signal processing paradigm with the good features of the 'cellular neural network (CNN)'-based one. The first paradigm in this combination is the 'master system' and consists of a set of coupled nonlinear ordinary differential equations (ODEs) that are (a) the so-called 'van der Pol oscillator' and (b) the so-called 'Duffing oscillator'. It is then implemented or realized on top of a 'slave system' platform consisting of a CNN-processors platform. An offline bifurcation analysis is used to find out, a priori, the windows of parameter settings in which the coupled oscillator system exhibits the best and most appropriate behaviours of interest for an optimal resulting image processing quality. In the frame of the extensive bifurcation analysis carried out, analytical formulae have been derived, which are capable of determining the various

  13. State space modeling of Memristor-based Wien oscillator

    KAUST Repository

    Talukdar, Abdul Hafiz Ibne

    2011-12-01

    State space modeling of Memristor based Wien \\'A\\' oscillator has been demonstrated for the first time considering nonlinear ion drift in Memristor. Time dependant oscillating resistance of Memristor is reported in both state space solution and SPICE simulation which plausibly provide the basis of realizing parametric oscillation by Memristor based Wien oscillator. In addition to this part Memristor is shown to stabilize the final oscillation amplitude by means of its nonlinear dynamic resistance which hints for eliminating diode in the feedback network of conventional Wien oscillator. © 2011 IEEE.

  14. Enhancing synchronization in chaotic oscillators by induced heterogeneity

    Science.gov (United States)

    Banerjee, Ranjib; Bera, Bidesh K.; Ghosh, Dibakar; Dana, Syamal Kumar

    2017-06-01

    We report enhancing of complete synchronization in identical chaotic oscillators when their interaction is mediated by a mismatched oscillator. The identical oscillators now interact indirectly through the intermediate relay oscillator. The induced heterogeneity in the intermediate oscillator plays a constructive role in reducing the critical coupling for a transition to complete synchronization. A common lag synchronization emerges between the mismatched relay oscillator and its neighboring identical oscillators that leads to this enhancing effect. We present examples of one-dimensional open array, a ring, a star network and a two-dimensional lattice of dynamical systems to demonstrate how this enhancing effect occurs. The paradigmatic Rössler oscillator is used as a dynamical unit, in our numerical experiment, for different networks to reveal the enhancing phenomenon.

  15. Damping of coupled harmonic oscillators

    Science.gov (United States)

    Dolfo, Gilles; Vigué, Jacques

    2018-03-01

    When two harmonic oscillators are coupled in the presence of damping, their dynamics exhibit two very different regimes depending on the relative magnitude of the coupling and damping terms At resonance, when the coupling has its largest effect, if the coupling dominates the damping, there is a periodic exchange of energy between the two oscillators while, in the opposite case, the energy transfer from one oscillator to the other one is irreversible. We prove that the border between these two regimes goes through an exceptional point and we briefly explain what is an exceptional point. The present paper is written for undergraduate students, with some knowledge in classical mechanics, but it may also be of interest for graduate students.

  16. Phase patterns of coupled oscillators with application to wireless communication

    Energy Technology Data Exchange (ETDEWEB)

    Arenas, A.

    2008-01-02

    Here we study the plausibility of a phase oscillators dynamical model for TDMA in wireless communication networks. We show that emerging patterns of phase locking states between oscillators can eventually oscillate in a round-robin schedule, in a similar way to models of pulse coupled oscillators designed to this end. The results open the door for new communication protocols in a continuous interacting networks of wireless communication devices.

  17. Quorum Sensing and Synchronization in Populations of Coupled Chemical Oscillators

    Science.gov (United States)

    Taylor, Annette F.; Tinsley, Mark R.; Showalter, Kenneth

    2013-12-01

    Experiments and simulations of populations of coupled chemical oscillators, consisting of catalytic particles suspended in solution, provide insights into density-dependent dynamics displayed by many cellular organisms. Gradual synchronization transitions, the "switching on" of activity above a threshold number of oscillators (quorum sensing) and the formation of synchronized groups (clusters) of oscillators have been characterized. Collective behavior is driven by the response of the oscillators to chemicals emitted into the surrounding solution.

  18. Nonlinear Dynamics of a Magnetically Driven Duffing-Type Spring-Magnet Oscillator in the Static Magnetic Field of a Coil

    Science.gov (United States)

    Donoso, Guillermo; Ladera, Celso L.

    2012-01-01

    We study the nonlinear oscillations of a forced and weakly dissipative spring-magnet system moving in the magnetic fields of two fixed coaxial, hollow induction coils. As the first coil is excited with a dc current, both a linear and a cubic magnet-position dependent force appear on the magnet-spring system. The second coil, located below the…

  19. Oscillating heat pipes

    CERN Document Server

    Ma, Hongbin

    2015-01-01

    This book presents the fundamental fluid flow and heat transfer principles occurring in oscillating heat pipes and also provides updated developments and recent innovations in research and applications of heat pipes. Starting with fundamental presentation of heat pipes, the focus is on oscillating motions and its heat transfer enhancement in a two-phase heat transfer system. The book covers thermodynamic analysis, interfacial phenomenon, thin film evaporation,  theoretical models of oscillating motion and heat transfer of single phase and two-phase flows, primary  factors affecting oscillating motions and heat transfer,  neutron imaging study of oscillating motions in an oscillating heat pipes, and nanofluid’s effect on the heat transfer performance in oscillating heat pipes.  The importance of thermally-excited oscillating motion combined with phase change heat transfer to a wide variety of applications is emphasized. This book is an essential resource and learning tool for senior undergraduate, gradua...

  20. Phenomenology of neutrino oscillations

    Indian Academy of Sciences (India)

    Abstract. The phenomenology of solar, atmospheric, supernova and laboratory neutrino oscillations is described. Analytical formulae for matter effects are reviewed. The results from oscillations are confronted with neutrinoless double beta decay.

  1. The colpitts oscillator family

    DEFF Research Database (Denmark)

    Lindberg, Erik; Murali, K.; Tamasevicius, A.

    A tutorial study of the Colpitts oscillator family defined as all oscillators based on a nonlinear amplifier and a three- terminal linear resonance circuit with one coil and two capacitors. The original patents are investigated. The eigenvalues of the linearized Jacobian for oscillators based...

  2. Rayleigh-type parametric chemical oscillation

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Shyamolina; Ray, Deb Shankar, E-mail: pcdsr@iacs.res.in [Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India)

    2015-09-28

    We consider a nonlinear chemical dynamical system of two phase space variables in a stable steady state. When the system is driven by a time-dependent sinusoidal forcing of a suitable scaling parameter at a frequency twice the output frequency and the strength of perturbation exceeds a threshold, the system undergoes sustained Rayleigh-type periodic oscillation, wellknown for parametric oscillation in pipe organs and distinct from the usual forced quasiperiodic oscillation of a damped nonlinear system where the system is oscillatory even in absence of any external forcing. Our theoretical analysis of the parametric chemical oscillation is corroborated by full numerical simulation of two well known models of chemical dynamics, chlorite-iodine-malonic acid and iodine-clock reactions.

  3. Rayleigh-type parametric chemical oscillation.

    Science.gov (United States)

    Ghosh, Shyamolina; Ray, Deb Shankar

    2015-09-28

    We consider a nonlinear chemical dynamical system of two phase space variables in a stable steady state. When the system is driven by a time-dependent sinusoidal forcing of a suitable scaling parameter at a frequency twice the output frequency and the strength of perturbation exceeds a threshold, the system undergoes sustained Rayleigh-type periodic oscillation, wellknown for parametric oscillation in pipe organs and distinct from the usual forced quasiperiodic oscillation of a damped nonlinear system where the system is oscillatory even in absence of any external forcing. Our theoretical analysis of the parametric chemical oscillation is corroborated by full numerical simulation of two well known models of chemical dynamics, chlorite-iodine-malonic acid and iodine-clock reactions.

  4. Oscillation and chaos in physiological control systems.

    Science.gov (United States)

    Mackey, M C; Glass, L

    1977-07-15

    First-order nonlinear differential-delay equations describing physiological control systems are studied. The equations display a broad diversity of dynamical behavior including limit cycle oscillations, with a variety of wave forms, and apparently aperiodic or "chaotic" solutions. These results are discussed in relation to dynamical respiratory and hematopoietic diseases.

  5. TRANSVERSE OSCILLATIONS OF SYSTEMS OF CORONAL LOOPS

    International Nuclear Information System (INIS)

    Luna, M.; Oliver, R.; Ballester, J. L.; Terradas, J.

    2009-01-01

    We study the collective kinklike normal modes of a system of several cylindrical loops using the T-matrix theory. Loops that have similar kink frequencies oscillate collectively with a frequency which is slightly different from that of the individual kink mode. On the other hand, if the kink frequency of a loop is different from that of the others, it oscillates individually with its own frequency. Since the individual kink frequency depends on the loop density but not on its radius for typical 1 MK coronal loops, a coupling between kink oscillations of neighboring loops takes place when they have similar densities. The relevance of these results in the interpretation of the oscillations studied by Schrijver and Brown in 2000 and Verwichte et al. in 2004, in which transverse collective loop oscillations seem to be detected, is discussed. In the first case, two loops oscillating in antiphase are observed; interpreting this motion as a collective kink mode suggests that their densities are roughly equal. In the second case, there are almost three groups of tubes that oscillate with similar periods, and therefore their dynamics can be collective, which again seems to indicate that the loops of each group share a similar density. All the other loops seem to oscillate individually and their densities can be different from the rest.

  6. Entanglement of higher-derivative oscillators in holographic systems

    Science.gov (United States)

    Dimov, Hristo; Mladenov, Stefan; Rashkov, Radoslav C.; Vetsov, Tsvetan

    2017-05-01

    We study the quantum entanglement of coupled Pais-Uhlenbeck oscillators using the formalism of thermo-field dynamics. The entanglement entropy is computed for the specific cases of two and a ring of N coupled Pais-Uhlenbeck oscillators of fourth order. It is shown that the entanglement entropy depends on the temperatures, frequencies and coupling parameters of the different degrees of freedom corresponding to harmonic oscillators. We also make remarks on the appearance of instabilities of higher-derivative oscillators in the context of AdS/CFT correspondence. Finally, we advert to the information geometry theory by calculating the Fisher information metric for the considered system of coupled oscillators.

  7. Periodization of Duffing oscillators suspended on elastic structure: Mechanical explanation

    Energy Technology Data Exchange (ETDEWEB)

    Czolczynski, K. [Division of Dynamics, Technical University of Lodz, Stefanowskiego 1/15, 90-924 Lodz (Poland)]. E-mail: dzanta@ck-sg.p.lodz.pl; Kapitaniak, T. [Division of Dynamics, Technical University of Lodz, Stefanowskiego 1/15, 90-924 Lodz (Poland); Perlikowski, P. [Division of Dynamics, Technical University of Lodz, Stefanowskiego 1/15, 90-924 Lodz (Poland); Stefanski, A. [Division of Dynamics, Technical University of Lodz, Stefanowskiego 1/15, 90-924 Lodz (Poland)

    2007-05-15

    We consider the dynamics of chaotic oscillators suspended on the elastic structure. We show that for the given conditions of the structure, initially uncorrelated chaotic oscillators can synchronize both in chaotic and periodic regimes. The phenomena of the periodization, i.e., the behavior of nonlinear oscillators become periodic as a result of interaction with elastic structure, have been observed. We formulate the criterion for periodization of double well-potential Duffing oscillator evolution in terms of the forces and displacements in the spring elements. We argue that the observed phenomena are generic in the parameter space and independent of the number of oscillators and their location on the elastic structure.

  8. Entanglement of higher-derivative oscillators in holographic systems

    Energy Technology Data Exchange (ETDEWEB)

    Dimov, Hristo, E-mail: h_dimov@phys.uni-sofia.bg [Department of Physics, Sofia University, 5 J. Bourchier Blvd., 1164 Sofia (Bulgaria); Mladenov, Stefan, E-mail: smladenov@phys.uni-sofia.bg [Department of Physics, Sofia University, 5 J. Bourchier Blvd., 1164 Sofia (Bulgaria); Rashkov, Radoslav C., E-mail: rash@phys.uni-sofia.bg [Department of Physics, Sofia University, 5 J. Bourchier Blvd., 1164 Sofia (Bulgaria); Institute for Theoretical Physics, Vienna University of Technology, Wiedner Hauptstr. 8–10, 1040 Vienna (Austria); Vetsov, Tsvetan, E-mail: vetsov@phys.uni-sofia.bg [Department of Physics, Sofia University, 5 J. Bourchier Blvd., 1164 Sofia (Bulgaria)

    2017-05-15

    We study the quantum entanglement of coupled Pais–Uhlenbeck oscillators using the formalism of thermo-field dynamics. The entanglement entropy is computed for the specific cases of two and a ring of N coupled Pais–Uhlenbeck oscillators of fourth order. It is shown that the entanglement entropy depends on the temperatures, frequencies and coupling parameters of the different degrees of freedom corresponding to harmonic oscillators. We also make remarks on the appearance of instabilities of higher-derivative oscillators in the context of AdS/CFT correspondence. Finally, we advert to the information geometry theory by calculating the Fisher information metric for the considered system of coupled oscillators.

  9. A novel optogenetically tunable frequency modulating oscillator.

    Directory of Open Access Journals (Sweden)

    Tarun Mahajan

    Full Text Available Synthetic biology has enabled the creation of biological reconfigurable circuits, which perform multiple functions monopolizing a single biological machine; Such a system can switch between different behaviours in response to environmental cues. Previous work has demonstrated switchable dynamical behaviour employing reconfigurable logic gate genetic networks. Here we describe a computational framework for reconfigurable circuits in E.coli using combinations of logic gates, and also propose the biological implementation. The proposed system is an oscillator that can exhibit tunability of frequency and amplitude of oscillations. Further, the frequency of operation can be changed optogenetically. Insilico analysis revealed that two-component light systems, in response to light within a frequency range, can be used for modulating the frequency of the oscillator or stopping the oscillations altogether. Computational modelling reveals that mixing two colonies of E.coli oscillating at different frequencies generates spatial beat patterns. Further, we show that these oscillations more robustly respond to input perturbations compared to the base oscillator, to which the proposed oscillator is a modification. Compared to the base oscillator, the proposed system shows faster synchronization in a colony of cells for a larger region of the parameter space. Additionally, the proposed oscillator also exhibits lesser synchronization error in the transient period after input perturbations. This provides a strong basis for the construction of synthetic reconfigurable circuits in bacteria and other organisms, which can be scaled up to perform functions in the field of time dependent drug delivery with tunable dosages, and sets the stage for further development of circuits with synchronized population level behaviour.

  10. A memristor-based third-order oscillator: beyond oscillation

    KAUST Repository

    Talukdar, Abdul Hafiz Ibne

    2012-10-06

    This paper demonstrates the first third-order autonomous linear time variant circuit realization that enhances parametric oscillation through the usage of memristor in conventional oscillators. Although the output has sustained oscillation, the linear features of the conventional oscillators become time dependent. The poles oscillate in nonlinear behavior due to the oscillation of memristor resistance. The mathematical formulas as well as SPICE simulations are introduced for the memristor-based phase shift oscillator showing a great matching.

  11. A memristor-based third-order oscillator: beyond oscillation

    Science.gov (United States)

    Talukdar, A.; Radwan, A. G.; Salama, K. N.

    2011-09-01

    This paper demonstrates the first third-order autonomous linear time variant circuit realization that enhances parametric oscillation through the usage of memristor in conventional oscillators. Although the output has sustained oscillation, the linear features of the conventional oscillators become time dependent. The poles oscillate in nonlinear behavior due to the oscillation of memristor resistance. The mathematical formulas as well as SPICE simulations are introduced for the memristor-based phase shift oscillator showing a great matching.

  12. Chimera states in nonlocally coupled phase oscillators with biharmonic interaction

    Science.gov (United States)

    Cheng, Hongyan; Dai, Qionglin; Wu, Nianping; Feng, Yuee; Li, Haihong; Yang, Junzhong

    2018-03-01

    Chimera states, which consist of coexisting domains of coherent and incoherent parts, have been observed in a variety of systems. Most of previous works on chimera states have taken into account specific form of interaction between oscillators, for example, sinusoidal coupling or diffusive coupling. Here, we investigate chimera dynamics in nonlocally coupled phase oscillators with biharmonic interaction. We find novel chimera states with features such as that oscillators in the same coherent cluster may split into two groups with a phase difference around π/2 and that oscillators in adjacent coherent clusters may have a phase difference close to π/2. The different impacts of the coupling ranges in the first and the second harmonic interactions on chimera dynamics are investigated based on the synchronous dynamics in globally coupled phase oscillators. Our study suggests a new direction in the field of chimera dynamics.

  13. Research into 2D Dynamics and Control of Small Oscillations of a Cross-Beam during Transportation by Two Overhead Cranes

    Directory of Open Access Journals (Sweden)

    Alexander V. Perig

    2017-01-01

    Full Text Available A new mathematical model of a 3DOF 2D mechanical system “transported cross-beam, two moving bridge cranes” has been proposed. Small system oscillations have been derived through the introduction of Lagrange equations. The numerical estimation of 3DOF system motion has been carried out with equation-based Modelica language. The present article uses the Lagrange method and numerical and optimization methods, realized with JModelica.org and Optimica freeware. The absolute swaying of the cross-beam with respect to the displacement of the two moving bridge cranes was estimated. The phase portraits of the 3DOF system for linear and angular coordinates were presented. An open loop optimal control problem was posed for the motion of the bridge cranes. A “bang-bang” control strategy was implemented for the derivation of an optimal control solution, which enables the travel of two bridge cranes at a prescribed distance for minimum time and minimum swaying of a heavy cross-beam. The derived results of the numerical simulation can be easily practically realized by crane operators with good agreement with simple engineering estimations. The proposed control strategy enables synchronous motion of two bridge cranes with a cross-beam that practically solves the posed problem of unwanted excessive oscillations of a heavy cross-beam during transportation.

  14. Clusters in nonsmooth oscillator networks

    Science.gov (United States)

    Nicks, Rachel; Chambon, Lucie; Coombes, Stephen

    2018-03-01

    For coupled oscillator networks with Laplacian coupling, the master stability function (MSF) has proven a particularly powerful tool for assessing the stability of the synchronous state. Using tools from group theory, this approach has recently been extended to treat more general cluster states. However, the MSF and its generalizations require the determination of a set of Floquet multipliers from variational equations obtained by linearization around a periodic orbit. Since closed form solutions for periodic orbits are invariably hard to come by, the framework is often explored using numerical techniques. Here, we show that further insight into network dynamics can be obtained by focusing on piecewise linear (PWL) oscillator models. Not only do these allow for the explicit construction of periodic orbits, their variational analysis can also be explicitly performed. The price for adopting such nonsmooth systems is that many of the notions from smooth dynamical systems, and in particular linear stability, need to be modified to take into account possible jumps in the components of Jacobians. This is naturally accommodated with the use of saltation matrices. By augmenting the variational approach for studying smooth dynamical systems with such matrices we show that, for a wide variety of networks that have been used as models of biological systems, cluster states can be explicitly investigated. By way of illustration, we analyze an integrate-and-fire network model with event-driven synaptic coupling as well as a diffusively coupled network built from planar PWL nodes, including a reduction of the popular Morris-Lecar neuron model. We use these examples to emphasize that the stability of network cluster states can depend as much on the choice of single node dynamics as it does on the form of network structural connectivity. Importantly, the procedure that we present here, for understanding cluster synchronization in networks, is valid for a wide variety of systems in

  15. Oscillations of disks

    CERN Document Server

    Kato, Shoji

    2016-01-01

    This book presents the current state of research on disk oscillation theory, focusing on relativistic disks and tidally deformed disks. Since the launch of the Rossi X-ray Timing Explorer (RXTE) in 1996, many high-frequency quasiperiodic oscillations (HFQPOs) have been observed in X-ray binaries. Subsequently, similar quasi-periodic oscillations have been found in such relativistic objects as microquasars, ultra-luminous X-ray sources, and galactic nuclei. One of the most promising explanations of their origin is based on oscillations in relativistic disks, and a new field called discoseismology is currently developing. After reviewing observational aspects, the book presents the basic characteristics of disk oscillations, especially focusing on those in relativistic disks. Relativistic disks are essentially different from Newtonian disks in terms of several basic characteristics of their disk oscillations, including the radial distributions of epicyclic frequencies. In order to understand the basic processes...

  16. A novel method combining cellular neural networks and the coupled nonlinear oscillators' paradigm involving a related bifurcation analysis for robust image contrast enhancement in dynamically changing difficult visual environments

    Energy Technology Data Exchange (ETDEWEB)

    Chedjou, Jean Chamberlain; Kyamakya, Kyandoghere, E-mail: kyandoghere.kyamakya@uni-klu.ac.a, E-mail: jean.chedjou@uni-klu.ac.a [Transportation Informatics Group, Institute of Smart Systems Technologies, University of Klagenfurt (Austria)

    2010-10-15

    It is well known that a machine vision-based analysis of a dynamic scene, for example in the context of advanced driver assistance systems (ADAS), does require real-time processing capabilities. Therefore, the system used must be capable of performing both robust and ultrafast analyses. Machine vision in ADAS must fulfil the above requirements when dealing with a dynamically changing visual context (i.e. driving in darkness or in a foggy environment, etc). Among the various challenges related to the analysis of a dynamic scene, this paper focuses on contrast enhancement, which is a well-known basic operation to improve the visual quality of an image (dynamic or static) suffering from poor illumination. The key objective is to develop a systematic and fundamental concept for image contrast enhancement that should be robust despite a dynamic environment and that should fulfil the real-time constraints by ensuring an ultrafast analysis. It is demonstrated that the new approach developed in this paper is capable of fulfilling the expected requirements. The proposed approach combines the good features of the 'coupled oscillators'-based signal processing paradigm with the good features of the 'cellular neural network (CNN)'-based one. The first paradigm in this combination is the 'master system' and consists of a set of coupled nonlinear ordinary differential equations (ODEs) that are (a) the so-called 'van der Pol oscillator' and (b) the so-called 'Duffing oscillator'. It is then implemented or realized on top of a 'slave system' platform consisting of a CNN-processors platform. An offline bifurcation analysis is used to find out, a priori, the windows of parameter settings in which the coupled oscillator system exhibits the best and most appropriate behaviours of interest for an optimal resulting image processing quality. In the frame of the extensive bifurcation analysis carried out, analytical formulae have

  17. Single-ion nonlinear mechanical oscillator

    International Nuclear Information System (INIS)

    Akerman, N.; Kotler, S.; Glickman, Y.; Dallal, Y.; Keselman, A.; Ozeri, R.

    2010-01-01

    We study the steady-state motion of a single trapped ion oscillator driven to the nonlinear regime. Damping is achieved via Doppler laser cooling. The ion motion is found to be well described by the Duffing oscillator model with an additional nonlinear damping term. We demonstrate here the unique ability of tuning both the linear as well as the nonlinear damping coefficients by controlling the laser-cooling parameters. Our observations pave the way for the investigation of nonlinear dynamics on the quantum-to-classical interface as well as mechanical noise squeezing in laser-cooling dynamics.

  18. Nonlinear Analysis of Ring Oscillator and Cross-Coupled Oscillator Circuits

    KAUST Repository

    Ge, Xiaoqing

    2010-12-01

    Hassan Khalil’s research results and beautifully written textbook on nonlinear systems have influenced generations of researchers, including the authors of this paper. Using nonlinear systems techniques, this paper analyzes ring oscillator and cross-coupled oscillator circuits, which are essential building blocks in digital systems. The paper first investigates local and global stability properties of an n-stage ring oscillator by making use of its cyclic structure. It next studies global stability properties of a class of cross-coupled oscillators which admit the representation of a dynamic system in feedback with a static nonlinearity, and presents su cient conditions for almost global convergence of the solutions to a limit cycle when the feedback gain is in the vicinity of a bifurcation point. The result are also extended to the synchronization of interconnected identical oscillator circuits.

  19. On Oscillators in Phyllosilicate Excitable Automata

    Science.gov (United States)

    Adamatzky, Andrew

    2013-06-01

    Phyllosilicate is a sheet of silicate tetrahedra bound by basal oxygens. A phyllosilicate excitable automaton is a regular network of finite state machines, which mimics structure of a silicate sheet. A node of the silicate sheet is an automaton, which takes resting, excited and refractory states, and updates its state in discrete time depending on a sum of excited states of its three (silicon automata) or six (oxygen automata) closest neighbors. Oscillator is a localized compact configuration of nonquiescent states which undergoes finite growth and modification but returns to its original state in a finite number of steps. We show that phyllosilicate excitable automata exhibit waves and oscillating localizations (oscillators) dynamics. Basic types of oscillators are classified and characterized.

  20. Chimeralike states in networks of bistable time-delayed feedback oscillators coupled via the mean field.

    Science.gov (United States)

    Ponomarenko, V I; Kulminskiy, D D; Prokhorov, M D

    2017-08-01

    We study the collective dynamics of oscillators in a network of identical bistable time-delayed feedback systems globally coupled via the mean field. The influence of delay and inertial properties of the mean field on the collective behavior of globally coupled oscillators is investigated. A variety of oscillation regimes in the network results from the presence of bistable states with substantially different frequencies in coupled oscillators. In the physical experiment and numerical simulation we demonstrate the existence of chimeralike states, in which some of the oscillators in the network exhibit synchronous oscillations, while all other oscillators remain asynchronous.

  1. Oscillations in Mathematical Biology

    CERN Document Server

    1983-01-01

    The papers in this volume are based on talks given at a one day conference held on the campus of Adelphi University in April 1982. The conference was organized with the title "Oscillations in Mathematical Biology;" however the speakers were allowed considerable latitutde in their choice of topics. In the event, the talks all concerned the dynamics of non-linear systems arising in biology so that the conference achieved a good measure of cohesion. Some of the speakers cho~e not to submit a manuscript for these proceedings, feeling that their material was too conjectural to be committed to print. Also the paper of Rinzel and Troy is a distillation of the two separate talks that the authors gave. Otherwise the material reproduces the conference proceedings. The conference was made possible by the generous support of the Office of the Dean of the College of Arts and Sciences at Adelphi. The bulk of the organization of the conference was carried out by Dr. Ronald Grisell whose energy was in large measure responsib...

  2. SU(1,2) invariance in two-dimensional oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Krivonos, Sergey [Bogoliubov Laboratory of Theoretical Physics,Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Nersessian, Armen [Yerevan State University,1 Alex Manoogian St., Yerevan, 0025 (Armenia); Tomsk Polytechnic University,Lenin Ave. 30, 634050 Tomsk (Russian Federation)

    2017-02-01

    Performing the Hamiltonian analysis we explicitly established the canonical equivalence of the deformed oscillator, constructed in arXiv:1607.03756, with the ordinary one. As an immediate consequence, we proved that the SU(1,2) symmetry is the dynamical symmetry of the ordinary two-dimensional oscillator. The characteristic feature of this SU(1,2) symmetry is a non-polynomial structure of its generators written in terms of the oscillator variables.

  3. Phenomenology of neutrino oscillations

    Indian Academy of Sciences (India)

    In this talk, I shall try to give a bird's eye view of the current status of neutrino oscillations. ..... the night effect. An asymmetry between the night and day rates would be an unambiguous signal for neutrino oscillations independent of the details of the solar ... It is particularly important to see the effect of the core of the earth [19].

  4. Active-bridge oscillator

    Science.gov (United States)

    Wessendorf, Kurt O.

    2001-01-01

    An active bridge oscillator is formed from a differential amplifier where positive feedback is a function of the impedance of one of the gain elements and a relatively low value common emitter resistance. This use of the nonlinear transistor parameter h stabilizes the output and eliminates the need for ALC circuits common to other bridge oscillators.

  5. On the Dirac oscillator

    International Nuclear Information System (INIS)

    Rodrigues, R. de Lima

    2007-01-01

    In the present work we obtain a new representation for the Dirac oscillator based on the Clifford algebra C 7. The symmetry breaking and the energy eigenvalues for our model of the Dirac oscillator are studied in the non-relativistic limit. (author)

  6. Dynamic compensation temperature in the kinetic spin-1 Ising model in an oscillating external magnetic field on alternate layers of a hexagonal lattice

    International Nuclear Information System (INIS)

    Temizer, Umuet; Keskin, Mustafa; Canko, Osman

    2009-01-01

    The dynamic behavior of a two-sublattice spin-1 Ising model with a crystal-field interaction (D) in the presence of a time-varying magnetic field on a hexagonal lattice is studied by using the Glauber-type stochastic dynamics. The lattice is formed by alternate layers of spins σ=1 and S=1. For this spin arrangement, any spin at one lattice site has two nearest-neighbor spins on the same sublattice, and four on the other sublattice. The intersublattice interaction is antiferromagnetic. We employ the Glauber transition rates to construct the mean-field dynamical equations. Firstly, we study time variations of the average magnetizations in order to find the phases in the system, and the temperature dependence of the average magnetizations in a period, which is also called the dynamic magnetizations, to obtain the dynamic phase transition (DPT) points as well as to characterize the nature (continuous and discontinuous) of transitions. Then, the behavior of the total dynamic magnetization as a function of the temperature is investigated to find the types of the compensation behavior. Dynamic phase diagrams are calculated for both DPT points and dynamic compensation effect. Phase diagrams contain the paramagnetic (p) and antiferromagnetic (af) phases, the p+af and nm+p mixed phases, nm is the non-magnetic phase, and the compensation temperature or the L-type behavior that strongly depend on the interaction parameters. For D 0 >3.8275, H 0 is the magnetic field amplitude, the compensation effect does not appear in the system.

  7. Dynamic compensation temperature in the kinetic spin-1 Ising model in an oscillating external magnetic field on alternate layers of a hexagonal lattice

    Energy Technology Data Exchange (ETDEWEB)

    Temizer, Umuet [Department of Physics, Bozok University, 66100 Yozgat (Turkey); Keskin, Mustafa [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)], E-mail: keskin@erciyes.edu.tr; Canko, Osman [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)

    2009-10-15

    The dynamic behavior of a two-sublattice spin-1 Ising model with a crystal-field interaction (D) in the presence of a time-varying magnetic field on a hexagonal lattice is studied by using the Glauber-type stochastic dynamics. The lattice is formed by alternate layers of spins {sigma}=1 and S=1. For this spin arrangement, any spin at one lattice site has two nearest-neighbor spins on the same sublattice, and four on the other sublattice. The intersublattice interaction is antiferromagnetic. We employ the Glauber transition rates to construct the mean-field dynamical equations. Firstly, we study time variations of the average magnetizations in order to find the phases in the system, and the temperature dependence of the average magnetizations in a period, which is also called the dynamic magnetizations, to obtain the dynamic phase transition (DPT) points as well as to characterize the nature (continuous and discontinuous) of transitions. Then, the behavior of the total dynamic magnetization as a function of the temperature is investigated to find the types of the compensation behavior. Dynamic phase diagrams are calculated for both DPT points and dynamic compensation effect. Phase diagrams contain the paramagnetic (p) and antiferromagnetic (af) phases, the p+af and nm+p mixed phases, nm is the non-magnetic phase, and the compensation temperature or the L-type behavior that strongly depend on the interaction parameters. For D<2.835 and H{sub 0}>3.8275, H{sub 0} is the magnetic field amplitude, the compensation effect does not appear in the system.

  8. Relaxation Oscillation and Canard Explosion

    Science.gov (United States)

    Krupa, M.; Szmolyan, P.

    2001-08-01

    We give a geometric analysis of relaxation oscillations and canard cycles in singularly perturbed planar vector fields. The transition from small Hopf-type cycles to large relaxation cycles, which occurs in an exponentially thin parameter interval, is described as a perturbation of a family of singular cycles. The results are obtained by means of two blow-up transformations combined with standard tools of dynamical systems theory. The efficient use of various charts is emphasized. The results are applied to the van der Pol equation.

  9. Cluster synchronization of dry friction oscillators

    Directory of Open Access Journals (Sweden)

    Marszal Michał

    2018-01-01

    Full Text Available Synchronization is a well known phenomenon in non-linear dynamics and is treated as correlation in time of at least two different processes. In scope of this article, we focus on complete and cluster synchronization in the systems of coupled dry friction oscillators, coupled by linear springs. The building block of the system is the classic stick-slip oscillator, which consists of mass, spring and belt-mass friction interface. The Stribeck friction itself is modelled using Stribeck friction model with exponential non-linearity. The oscillators in the systems are connected in nearest neighbour fashion, both in open and closed ring topology. We perform a numerical study of the properties of the dynamics of the systems in question, in two-parameter space (coupling coefficient vs. angular excitation frequency and explore the possible configurations of cluster synchronization.

  10. Acute effects on cardiovascular oscillations during controlled slow yogic breathing

    Directory of Open Access Journals (Sweden)

    Om Lata Bhagat

    2017-01-01

    Interpretation & conclusions: Significant increase in cardiovascular oscillations and baroreflex recruitments during-ANB suggested a dynamic interaction between respiratory and cardiovascular system. Enhanced phasic relationship with some delay indicated the complexity of the system. It indicated that respiratory and cardiovascular oscillations were coupled through multiple regulatory mechanisms, such as mechanical coupling, baroreflex and central cardiovascular control.

  11. Synchronization of two coupled fractional-order chaotic oscillators

    International Nuclear Information System (INIS)

    Gao Xin; Yu, Juebang

    2005-01-01

    The dynamics of fractional-order systems have attracted increasing attentions in recent years. In this paper, the synchronization of two coupled nonlinear fractional order chaotic oscillators is numerically demonstrated using the master-slave synchronization scheme. It is shown that fractional-order chaotic oscillators can be synchronized with appropriate coupling strength

  12. Winner-take-all in a phase oscillator system with adaptation.

    Science.gov (United States)

    Burylko, Oleksandr; Kazanovich, Yakov; Borisyuk, Roman

    2018-01-11

    We consider a system of generalized phase oscillators with a central element and radial connections. In contrast to conventional phase oscillators of the Kuramoto type, the dynamic variables in our system include not only the phase of each oscillator but also the natural frequency of the central oscillator, and the connection strengths from the peripheral oscillators to the central oscillator. With appropriate parameter values the system demonstrates winner-take-all behavior in terms of the competition between peripheral oscillators for the synchronization with the central oscillator. Conditions for the winner-take-all regime are derived for stationary and non-stationary types of system dynamics. Bifurcation analysis of the transition from stationary to non-stationary winner-take-all dynamics is presented. A new bifurcation type called a Saddle Node on Invariant Torus (SNIT) bifurcation was observed and is described in detail. Computer simulations of the system allow an optimal choice of parameters for winner-take-all implementation.

  13. Broadband hyperchaotic oscillator with delay line

    DEFF Research Database (Denmark)

    Cenys, Antanas; Lindberg, Erik; Anagnostopoulos, A. N.

    2002-01-01

    Dynamical systems with time delay can be employed as high dimensional hyperchaotic oscillators with multiple positive Lyapunov exponents. We describe an electronic circuit composed of a 3-stage amplifier and a delay line in the feedback loop. The 1st stage of the amplifier is a nonlinear one while...

  14. Synchronization of indirectly coupled Lorenz oscillators: An ...

    Indian Academy of Sciences (India)

    E-mail: m.shrimali@gmail.com. Abstract. The dynamics of indirectly coupled Lorenz circuits is investigated experimentally. The in-phase and anti-phase synchronization of indirectly coupled chaotic oscillators reported in Phys. Rev. E 81, 046216 (2010) is verified by physical experiments with electronic circuits. Two chaotic.

  15. Pattern formation in arrays of chemical oscillators

    Indian Academy of Sciences (India)

    oscillation death and settle down to fixed points. The time series and spatiotemporal plots of both the fast and slow variables in this dynamical region are shown in figure 3. For coupling strengths greater than 0.65 all the cells settle down to fixed points. The number of distinct fixed points depends on the value of ϵ again.

  16. Liquid Oscillations in a U-Tube

    Science.gov (United States)

    Aguilar, Horacio Munguía; Maldonado, Rigoberto Franco; Navarro, Luis Barba

    2018-01-01

    In hydrostatics, pressure measurement with U-gauges and their relationship to density is a well-known experiment. Very little is studied or experimented with the dynamics of the movement of a liquid in a U-tube probably due to its theoretical complexity but, after all, it is a simple damped oscillating system. In this paper we present a relatively…

  17. Synchronization of indirectly coupled Lorenz oscillators: An ...

    Indian Academy of Sciences (India)

    Partial synchronization occurs in a population of chemical oscillators coupled through the concentration of chemical in the surrounding solutions [19]. Two nonlinear chaotic systems coupled indirectly through a common dynamic environment synchronize to in-phase or anti-phase state [20]. The early stages of Alzheimer's ...

  18. Chaotic synchronization of two complex nonlinear oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoud, Gamal M. [Department of Mathematics, Faculty of Science, Assiut University, Assiut 71516 (Egypt)], E-mail: gmahmoud@aun.edu.eg; Mahmoud, Emad E. [Department of Mathematics, Faculty of Science, Sohag University (Egypt)], E-mail: emad_eluan@yahoo.com; Farghaly, Ahmed A. [Department of Mathematics, Faculty of Science, Assiut University, Assiut 71516 (Egypt)], E-mail: ahmed_1_66@yahoo.com; Aly, Shaban A. [Department of Mathematics, Faculty of Science, Al-Azhar University, Assiut 71511 (Egypt)], E-mail: shhaly12@yahoo.com

    2009-12-15

    Synchronization is an important phenomenon commonly observed in nature. It is also often artificially induced because it is desirable for a variety of applications in physics, applied sciences and engineering. In a recent paper [Mahmoud GM, Mohamed AA, Aly SA. Strange attractors and chaos control in periodically forced complex Duffing's oscillators. Physica A 2001;292:193-206], a system of periodically forced complex Duffing's oscillators was introduced and shown to display chaotic behavior and possess strange attractors. Such complex oscillators appear in many problems of physics and engineering, as, for example, nonlinear optics, deep-water wave theory, plasma physics and bimolecular dynamics. Their connection to solutions of the nonlinear Schroedinger equation has also been pointed out. In this paper, we study the remarkable phenomenon of chaotic synchronization on these oscillator systems, using active control and global synchronization techniques. We derive analytical expressions for control functions and show that the dynamics of error evolution is globally stable, by constructing appropriate Lyapunov functions. This means that, for a relatively large set initial conditions, the differences between the drive and response systems vanish exponentially and synchronization is achieved. Numerical results are obtained to test the validity of the analytical expressions and illustrate the efficiency of these techniques for inducing chaos synchronization in our nonlinear oscillators.

  19. Chaotic synchronization of two complex nonlinear oscillators

    International Nuclear Information System (INIS)

    Mahmoud, Gamal M.; Mahmoud, Emad E.; Farghaly, Ahmed A.; Aly, Shaban A.

    2009-01-01

    Synchronization is an important phenomenon commonly observed in nature. It is also often artificially induced because it is desirable for a variety of applications in physics, applied sciences and engineering. In a recent paper [Mahmoud GM, Mohamed AA, Aly SA. Strange attractors and chaos control in periodically forced complex Duffing's oscillators. Physica A 2001;292:193-206], a system of periodically forced complex Duffing's oscillators was introduced and shown to display chaotic behavior and possess strange attractors. Such complex oscillators appear in many problems of physics and engineering, as, for example, nonlinear optics, deep-water wave theory, plasma physics and bimolecular dynamics. Their connection to solutions of the nonlinear Schroedinger equation has also been pointed out. In this paper, we study the remarkable phenomenon of chaotic synchronization on these oscillator systems, using active control and global synchronization techniques. We derive analytical expressions for control functions and show that the dynamics of error evolution is globally stable, by constructing appropriate Lyapunov functions. This means that, for a relatively large set initial conditions, the differences between the drive and response systems vanish exponentially and synchronization is achieved. Numerical results are obtained to test the validity of the analytical expressions and illustrate the efficiency of these techniques for inducing chaos synchronization in our nonlinear oscillators.

  20. Harmonic oscillator Green's function

    International Nuclear Information System (INIS)

    Macek, J.H.; Ovchinnikov, S.Yu.; Khrebtukov, D.B.

    2000-01-01

    The Green's function for the harmonic oscillator in three dimensions plays an important role in the theory of atomic collisions. One representation of low-energy ion-atom collisions involves harmonic oscillator potentials. A closed-form expression for the harmonic oscillator Green's function, needed to exploit this representation, is derived. This expression is similar to the expression for the Coulomb Green's function obtained by Hostler and Pratt. Calculations of electron distributions for a model system of ion-atom collisions are reported to illustrate the theory.

  1. Oscillating foil propulsion

    OpenAIRE

    Hauge, Jacob

    2013-01-01

    Unsteady foil theory is discussed and applied on several cases of an oscillating foil. The oscillating foil is meant as a propulsion system for a platform supply vessel.Four case studies of foil oscillation have been performed. A thrust coefficient of 0.1 was achieved at an efficiency of 0.75. A thrust coefficient of minimum 0.184 is necessary to overcome the calm water resistance of the foil.Issues connected to coupled vessel-foil models are discussed.

  2. Neutrino Oscillation Physics

    CERN Document Server

    Kayser, Boris

    2014-04-10

    To complement the neutrino-physics lectures given at the 2011 International School on Astro Particle Physics devoted to Neutrino Physics and Astrophysics (ISAPP 2011; Varenna, Italy), at the 2011 European School of High Energy Physics (ESHEP 2011; Cheila Gradistei, Romania), and, in modified form, at other summer schools, we present here a written description of the physics of neutrino oscillation. This description is centered on a new way of deriving the oscillation probability. We also provide a brief guide to references relevant to topics other than neutrino oscillation that were covered in the lectures.

  3. Oscillator, neutron modulator

    International Nuclear Information System (INIS)

    Agaisse, R.; Leguen, R.; Ombredane, D.

    1960-01-01

    The authors present a mechanical device and an electronic control circuit which have been designed to sinusoidally modulate the reactivity of the Proserpine atomic pile. The mechanical device comprises an oscillator and a mechanism assembly. The oscillator is made of cadmium blades which generate the reactivity oscillation. The mechanism assembly comprises a pulse generator for cycle splitting, a gearbox and an engine. The electronic device comprises or performs pulse detection, an on-off device, cycle pulse shaping, phase separation, a dephasing amplifier, electronic switches, counting scales, and control devices. All these elements are briefly presented

  4. Harmonic oscillator in quantum rotational spectra: Molecules and nuclei

    Science.gov (United States)

    Pavlichenkov, Igor M.

    1995-01-01

    The mapping of a rotational dynamics on a harmonic oscillator is considered. The method used for studying the stabilization of the rigid top rotation around the intermediate moment of inertial axix by orbiting particle is described.

  5. A harmonic oscillator having “volleyball damping”

    Science.gov (United States)

    Mickens, R. E.; Oyedeji, K.; Rucker, S. A.

    2006-05-01

    Volleyball damping corresponds to linear damping up to a certain critical velocity, with zero damping above this value. The dynamics of a linear harmonic oscillator is investigated with this damping mechanism.

  6. Quenched noise and nonlinear oscillations in bistable multiscale systems

    Science.gov (United States)

    Kuehn, C.

    2017-10-01

    Nonlinear oscillators are a key modelling tool in many applications. The influence of annealed noise on nonlinear oscillators has been studied intensively. It can induce effects in nonlinear oscillators not present in the deterministic setting. Yet, there is no theory regarding the quenched noise scenario of random parameters sampled on fixed time intervals, although this situation is often a lot more natural. Here we study a paradigmatic nonlinear oscillator of van-der-Pol/FitzHugh-Nagumo type under quenched noise as a piecewise-deterministic Markov process. There are several interesting effects such as period shifts and new different trapped types of small-amplitude oscillations, which can be captured analytically. Furthermore, we numerically discover quenched resonance and show that it differs significantly from previous finite-noise optimality resonance effects. This demonstrates that quenched oscillators can be viewed as a new building block of nonlinear dynamics.

  7. Oscillating fluid power generator

    Science.gov (United States)

    Morris, David C

    2014-02-25

    A system and method for harvesting the kinetic energy of a fluid flow for power generation with a vertically oriented, aerodynamic wing structure comprising one or more airfoil elements pivotably attached to a mast. When activated by the moving fluid stream, the wing structure oscillates back and forth, generating lift first in one direction then in the opposite direction. This oscillating movement is converted to unidirectional rotational movement in order to provide motive power to an electricity generator. Unlike other oscillating devices, this device is designed to harvest the maximum aerodynamic lift forces available for a given oscillation cycle. Because the system is not subjected to the same intense forces and stresses as turbine systems, it can be constructed less expensively, reducing the cost of electricity generation. The system can be grouped in more compact clusters, be less evident in the landscape, and present reduced risk to avian species.

  8. Fluctuations in LC Oscillators

    Directory of Open Access Journals (Sweden)

    O. Ondracek

    1994-03-01

    Full Text Available An analysis of the phase and amplitude fluctuations in oscillators with simple resonant circuit is presented. Negative feedback is used to minimize effect of the inherent noise produced by bipolar transistor on fluctuation characteristics.

  9. High frequency nanotube oscillator

    Science.gov (United States)

    Peng, Haibing [Houston, TX; Zettl, Alexander K [Kensington, TX

    2012-02-21

    A tunable nanostructure such as a nanotube is used to make an electromechanical oscillator. The mechanically oscillating nanotube can be provided with inertial clamps in the form of metal beads. The metal beads serve to clamp the nanotube so that the fundamental resonance frequency is in the microwave range, i.e., greater than at least 1 GHz, and up to 4 GHz and beyond. An electric current can be run through the nanotube to cause the metal beads to move along the nanotube and changing the length of the intervening nanotube segments. The oscillator can operate at ambient temperature and in air without significant loss of resonance quality. The nanotube is can be fabricated in a semiconductor style process and the device can be provided with source, drain, and gate electrodes, which may be connected to appropriate circuitry for driving and measuring the oscillation. Novel driving and measuring circuits are also disclosed.

  10. Direct observation of surface-state thermal oscillations in SmB6 oscillators

    Science.gov (United States)

    Casas, Brian; Stern, Alex; Efimkin, Dmitry K.; Fisk, Zachary; Xia, Jing

    2018-01-01

    SmB6 is a mixed valence Kondo insulator that exhibits a sharp increase in resistance following an activated behavior that levels off and saturates below 4 K. This behavior can be explained by the proposal of SmB6 representing a new state of matter, a topological Kondo insulator, in which a Kondo gap is developed, and topologically protected surface conduction dominates low-temperature transport. Exploiting its nonlinear dynamics, a tunable SmB6 oscillator device was recently demonstrated, where a small dc current generates large oscillating voltages at frequencies from a few Hz to hundreds of MHz. This behavior was explained by a theoretical model describing the thermal and electronic dynamics of coupled surface and bulk states. However, a crucial aspect of this model, the predicted temperature oscillation in the surface state, has not been experimentally observed to date. This is largely due to the technical difficulty of detecting an oscillating temperature of the very thin surface state. Here we report direct measurements of the time-dependent surface-state temperature in SmB6 with a RuO2 microthermometer. Our results agree quantitatively with the theoretically simulated temperature waveform, and hence support the validity of the oscillator model, which will provide accurate theoretical guidance for developing future SmB6 oscillators at higher frequencies.

  11. Again on neutrino oscillations

    International Nuclear Information System (INIS)

    Bilenky, S.M.; Pontecorvo, B.

    1976-01-01

    The general case is treated of a weak interaction theory in which a term violating lepton charges is present. In such a scheme the particles with definite masses are Majorana neutrinos (2N if in the weak interaction participate N four-component neutrinos). Neutrino oscillations are discussed and it is shown that the minimum average intensity at the earth of solar neutrinos is 1/2N of the intensity expected when oscillations are absent

  12. Neutrino oscillations with LSND

    International Nuclear Information System (INIS)

    Stancu, Ion

    2000-01-01

    The Liquid Scintillator Neutrino Detector (LSND) at the Los Alamos Meson Physics Facility (LAMPF) has conducted searches for ν-bar μ → ν-bar e oscillations using ν-bar μ from μ + decay at rest (DAR) and for ν μ → ν e oscillations using ν μ from π + decay in flight (DIF). For the 1993-1995 data taking period, significant beam-excess events have been found in both oscillation channels. For the DAR search, a total excess of 51.8 +18.7 -16.9 ± 8.0 events from the ν-bar e p → e + n inverse β-decay reaction is observed, with e + energies between 20-60 MeV. For the DIF search, a total excess of 18.1 ± 6.6 ± 4.0 events from the ν e C → e - X inclusive reaction is observed, with e - energies between 60-200 MeV. If interpreted as neutrino oscillations, these excesses correspond to oscillation probabilities of (3.1±1.2±0.5) x 10 -3 and (2.6 ± 1.0 ± 0.5) x 10 -3 , respectively. Additional data collected during the 1996-1998 runs has been preliminarily analyzed for the DAR channel and yields very good agreement with the previously obtained results, for a combined oscillation probability of (3.3±0.9±0.5) x 10 -3

  13. Primordial oscillations in life: Direct observation of glycolytic oscillations in individual HeLa cervical cancer cells

    Science.gov (United States)

    Amemiya, Takashi; Shibata, Kenichi; Itoh, Yoshihiro; Itoh, Kiminori; Watanabe, Masatoshi; Yamaguchi, Tomohiko

    2017-10-01

    We report the first direct observation of glycolytic oscillations in HeLa cervical cancer cells, which we regard as primordial oscillations preserved in living cells. HeLa cells starved of glucose or both glucose and serum exhibited glycolytic oscillations in nicotinamide adenine dinucleotide (NADH), exhibiting asynchronous intercellular behaviors. Also found were spatially homogeneous and inhomogeneous intracellular NADH oscillations in the individual cells. Our results demonstrate that starved HeLa cells may be induced to exhibit glycolytic oscillations by either high-uptake of glucose or the enhancement of a glycolytic pathway (Crabtree effect or the Warburg effect), or both. Their asynchronous collective behaviors in the oscillations were probably due to a weak intercellular coupling. Elucidation of the relationship between the mechanism of glycolytic dynamics in cancer cells and their pathophysiological characteristics remains a challenge in future.

  14. Adaptive Synchronization of Grid-Connected Threephase Inverters by Using Virtual Oscillator Control

    DEFF Research Database (Denmark)

    Li, Mingshen; Gui, Yonghao; Guerrero, Josep M.

    2018-01-01

    This paper presents an adaptive synchronization for current-controlled grid-connected inverter based on a time domain virtual oscillator controller (VOC). Inspired by the phenomenon of dynamics of adaptive oscillator under the perturbation effect. Firstly, the fast learning rule of the oscillator...

  15. Temperature Oscillations, Complex Oscillations, and Elimination of Extraordinary Temperature Sensitivity in the Iodate-Sulfite-Thiosulfate Flow System

    Science.gov (United States)

    Liu, Haimiao; Xie, Jingxuan; Yuan, Ling; Gao, Qingyu

    2009-09-01

    Temperature oscillations and complex pH oscillations in the IO3--SO32--S2O32- system were observed in a continuously flow stirred tank reactor. During one period of oscillation, the temperature increases rapidly while the pH shows an extremely sharp change. High-amplitude pH oscillations undergo 11 complex oscillations (LS, oscillations with L large peaks and S small peaks per period) to another kind of higher-amplitude regular oscillations upon increasing the concentration of sulfite step by step. Importantly, the longstanding experimental phenomena, the extraordinary temperature sensitivity of oscillatory behavior reported 20 years ago by Rábai and Beck, can be eliminated by premixing of sulfite and sulfuric acid before entering into the reactor, avoiding local acidification, which brings out fluctuation and temperature sensitivity. The temperature oscillations can be understood by taking into account the interaction between thermal effect of various reactions and heat transfer. Experimental observations, both temperature oscillations and 11-type pH oscillations, are reproduced with a four-step Horváth model by addition of an energy-balance equation. This new detailed dynamical behavior would have potential applications in designing complex chemical waves and pH responsive gels with rhythmical motion.

  16. Synchronization of mobile chaotic oscillator networks

    International Nuclear Information System (INIS)

    Fujiwara, Naoya; Kurths, Jürgen; Díaz-Guilera, Albert

    2016-01-01

    We study synchronization of systems in which agents holding chaotic oscillators move in a two-dimensional plane and interact with nearby ones forming a time dependent network. Due to the uncertainty in observing other agents' states, we assume that the interaction contains a certain amount of noise that turns out to be relevant for chaotic dynamics. We find that a synchronization transition takes place by changing a control parameter. But this transition depends on the relative dynamic scale of motion and interaction. When the topology change is slow, we observe an intermittent switching between laminar and burst states close to the transition due to small noise. This novel type of synchronization transition and intermittency can happen even when complete synchronization is linearly stable in the absence of noise. We show that the linear stability of the synchronized state is not a sufficient condition for its stability due to strong fluctuations of the transverse Lyapunov exponent associated with a slow network topology change. Since this effect can be observed within the linearized dynamics, we can expect such an effect in the temporal networks with noisy chaotic oscillators, irrespective of the details of the oscillator dynamics. When the topology change is fast, a linearized approximation describes well the dynamics towards synchrony. These results imply that the fluctuations of the finite-time transverse Lyapunov exponent should also be taken into account to estimate synchronization of the mobile contact networks.

  17. Frequency Dependent Non- Thermal Effects of Oscillating Electric Fields in the Microwave Region on the Properties of a Solvated Lysozyme System: A Molecular Dynamics Study.

    Directory of Open Access Journals (Sweden)

    Stelios Floros

    Full Text Available The use of microwaves in every day's applications raises issues regarding the non thermal biological effects of microwaves. In this work we employ molecular dynamics simulations to advance further the dielectric studies of protein solutions in the case of lysozyme, taking into consideration possible frequency dependent changes in the structural and dynamic properties of the system upon application of electric field in the microwave region. The obtained dielectric spectra are identical with those derived in our previous work using the Fröhlich-Kirkwood approach in the framework of the linear response theory. Noticeable structural changes in the protein have been observed only at frequencies near its absorption maximum. Concerning Cα position fluctuations, different frequencies affected different regions of the protein sequence. Furthermore, the influence of the field on the kinetics of protein-water as well as on the water-water hydrogen bonds in the first hydration shell has been studied; an extension of the Luzar-Chandler kinetic model was deemed necessary for a better fit of the applied field results and for the estimation of more accurate hydrogen bond lifetime values.

  18. Theoretical Interpretation of Current Neutrino Oscillation Data

    Science.gov (United States)

    Fogli, Gianluigi; Lisi, Eligio

    We discuss the theoretical interpretation of neutrino oscillation data in terms of 3v and 4v mixing. Two-neutrino oscillations, often used to describe experimental results in a first approximation, are briefly recalled (Sect. 5.1). The main focus of our review is 3v mixing (Sect. 5.2), which accommodates both the negative results of oscillation searches at reactors (Sect. 5.3) and the evidence for flavor transitions obtained from atmospheric and solar neutrino data (Sects. 5.4 and 5.5). The status and problems of 4v scenarios embedding the additional LSND signal are also discussed (Sect. 5.7). Finally, we outline the impact of the very latest data (Sect. 5.8). Standard electroweak neutrino interactions are assumed in all cases; scenarios with nonstandard dynamics are beyond the scope of this review.

  19. Are population dynamics of shorebirds affected by El Niño/Southern Oscillation (ENSO) while on their non-breeding grounds in Ecuador?

    Science.gov (United States)

    O'Hara, Patrick D.; Haase, Ben J. M.; Elner, Robert W.; Smith, Barry D.; Kenyon, Jamie K.

    2007-08-01

    Declines in avian populations are a global concern, particularly for species that migrate between Arctic-temperate and tropical locations. Long-term population studies offer opportunities to detect and document ecological effects attributable to long-term climatic cycles such as the El Niño/Southern Oscillation (ENSO). In this study, we report possible population-level effects of such climatic cycles on shorebird species that use two non-breeding season sites in Ecuador (Santa Elena peninsula area, near La Libertad). During our 9-year study period (1991/1992-1999/2000), there was a particularly strong ENSO warm phase event during 1997/1998. Population trend data for three species of shorebird, Western Sandpipers ( Calidris mauri), Semipalmated Sandpipers ( C. pusilla), and Least Sandpipers ( C. minutilla), indicated abundances generally declined during the 1990s, but there was an increase in the proportion of first-year birds and their abundance in the years following the 1997/1998 ENSO warm phase. There was some support for variation in apparent survivorship associated with the onset of the ENSO warm phase event in our population models, based on capture-mark-recapture data. Following the 1997/1998 ENSO event onset, individuals for all three species were significantly lighter during the non-breeding season ( F1,3789 = 6.6, p = 0.01). Least-squares mean mass (controlling for size, sex and day of capture) for first-year birds dropped significantly more than for adults following ENSO (first-year mass loss = 0.69 ± 0.12 g; adult mass loss = 0.34 ± 0.11 g, F1,3789 = 5.31, p = 0.021), and least-squares mean mass dropped most during the period when sandpipers prepare for northward migration by gaining mass and moulting into breeding plumage. Least Sandpipers may have declined the most in mean mass following ENSO (0.76 ± 0.19 g), whereas Semipalmated Sandpipers were 0.52 ± 0.12 g lighter, and Western Sandpipers 0.40 ± 0.13 g lighter, but overall variation among

  20. Polaritonic Rabi and Josephson Oscillations.

    Science.gov (United States)

    Rahmani, Amir; Laussy, Fabrice P

    2016-07-25

    The dynamics of coupled condensates is a wide-encompassing problem with relevance to superconductors, BECs in traps, superfluids, etc. Here, we provide a unified picture of this fundamental problem that includes i) detuning of the free energies, ii) different self-interaction strengths and iii) finite lifetime of the modes. At such, this is particularly relevant for the dynamics of polaritons, both for their internal dynamics between their light and matter constituents, as well as for the more conventional dynamics of two spatially separated condensates. Polaritons are short-lived, interact only through their material fraction and are easily detuned. At such, they bring several variations to their atomic counterpart. We show that the combination of these parameters results in important twists to the phenomenology of the Josephson effect, such as the behaviour of the relative phase (running or oscillating) or the occurence of self-trapping. We undertake a comprehensive stability analysis of the fixed points on a normalized Bloch sphere, that allows us to provide a generalized criterion to identify the Rabi and Josephson regimes in presence of detuning and decay.

  1. Biological oscillations: Fluorescence monitoring by confocal microscopy

    Science.gov (United States)

    Chattoraj, Shyamtanu; Bhattacharyya, Kankan

    2016-09-01

    Fluctuations play a vital role in biological systems. Single molecule spectroscopy has recently revealed many new kinds of fluctuations in biological molecules. In this account, we focus on structural fluctuations of an antigen-antibody complex, conformational dynamics of a DNA quadruplex, effects of taxol on dynamics of microtubules, intermittent red-ox oscillations at different organelles in a live cell (mitochondria, lipid droplets, endoplasmic reticulum and cell membrane) and stochastic resonance in gene silencing. We show that there are major differences in these dynamics between a cancer cell and the corresponding non-cancer cell.

  2. Oscillating shells and oscillating balls in AdS

    Science.gov (United States)

    Banerjee, Avik; Kundu, Arnab; Roy, Pratik; Virmani, Amitabh

    2017-07-01

    It has recently been reported that certain thin timelike shells undergo oscillatory motion in AdS. In this paper, we compute two-point function of a probe field in the geodesic approximation in such an oscillating shell background. We confirm that the two-point function exhibits an oscillatory behaviour following the motion of the shell. We show that similar oscillatory dynamics is possible when the perfect fluid on the shell has a polytropic equation of state. Moreover, we show that certain ball like configurations in AdS also exhibit oscillatory motion and comment on how such a solution can be smoothly matched to an appropriate exterior solution. We also demonstrate that the weak energy condition is satisfied for these oscillatory configurations.

  3. Magma chamber interaction giving rise to asymmetric oscillations

    Science.gov (United States)

    Walwer, D.; Ghil, M.; Calais, E.

    2017-12-01

    Geodetic time series at four volcanoes (Okmok, Akutan, Shishaldin, and Réunion) are processed using Multi-channel Singular Spectrum Analysis (M-SSA) and reveal sawtooth-shaped oscillations ; the latter are characterized by short intervals of fast inflations followed by longer intervals of slower deflations. At Okmok and Akutan, the oscillations are first damped and then accentuated. At Okmok, the increase in amplitude of the oscillations is followed by an eruption. We first show that the dynamics of these four volcanoes bears similarities with that of a simple nonlinear, dissipative oscillator, indicating that the inflation-deflation episodes are relaxation oscillations. These observations imply that ab initio dynamical models of magma chambers should possess an asymmetric oscillatory regime. Next, based on the work of Whitehead and Helfrich [1991], we show that a model of two magma chambers — connected by a cylindrical conduit in which the magma viscosity depends on temperature — gives rise to asymmetric overpressure oscillations in the magma reservoirs. These oscillations lead to surface deformations that are consistent with those observed at the four volcanoes in this study. This relaxation oscillation regime occurs only when the vertical temperature gradient in the host rock between the two magma chambers is large enough and when the magma flux entering the volcanic system is sufficiently high. The magma being supplied by a deeper source region, the input flux depends on the pressure difference between the source and the deepest reservoir. When this difference is not sufficiently high, the magma flux exponentially decreases, leading to damped oscillations as observed at Akutan and Okmok. The combination of observational and modeling results clearly supports the role of relaxation oscillations in the dynamics of volcanic systems.

  4. Oscillations in neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Hoeye, Gudrun Kristine

    1999-07-01

    We have studied radial and nonradial oscillations in neutron stars, both in a general relativistic and non-relativistic frame, for several different equilibrium models. Different equations of state were combined, and our results show that it is possible to distinguish between the models based on their oscillation periods. We have particularly focused on the p-, f-, and g-modes. We find oscillation periods of II approx. 0.1 ms for the p-modes, II approx. 0.1 - 0.8 ms for the f-modes and II approx. 10 - 400 ms for the g-modes. For high-order (l (>{sub )} 4) f-modes we were also able to derive a formula that determines II{sub l+1} from II{sub l} and II{sub l-1} to an accuracy of 0.1%. Further, for the radial f-mode we find that the oscillation period goes to infinity as the maximum mass of the star is approached. Both p-, f-, and g-modes are sensitive to changes in the central baryon number density n{sub c}, while the g-modes are also sensitive to variations in the surface temperature. The g-modes are concentrated in the surface layer, while p- and f-modes can be found in all parts of the star. The effects of general relativity were studied, and we find that these are important at high central baryon number densities, especially for the p- and f-modes. General relativistic effects can therefore not be neglected when studying oscillations in neutron stars. We have further developed an improved Cowling approximation in the non-relativistic frame, which eliminates about half of the gap in the oscillation periods that results from use of the ordinary Cowling approximation. We suggest to develop an improved Cowling approximation also in the general relativistic frame. (Author)

  5. Oscillating Finite Sums

    KAUST Repository

    Alabdulmohsin, Ibrahim M.

    2018-03-07

    In this chapter, we use the theory of summability of divergent series, presented earlier in Chap. 4, to derive the analogs of the Euler-Maclaurin summation formula for oscillating sums. These formulas will, in turn, be used to perform many remarkable deeds with ease. For instance, they can be used to derive analytic expressions for summable divergent series, obtain asymptotic expressions of oscillating series, and even accelerate the convergence of series by several orders of magnitude. Moreover, we will prove the notable fact that, as far as the foundational rules of summability calculus are concerned, summable divergent series behave exactly as if they were convergent.

  6. Non-linear oscillations

    CERN Document Server

    Hagedorn, Peter

    1982-01-01

    Thoroughly revised and updated, the second edition of this concise text provides an engineer's view of non-linear oscillations, explaining the most important phenomena and solution methods. Non-linear descriptions are important because under certain conditions there occur large deviations from the behaviors predicted by linear differential equations. In some cases, completely new phenomena arise that are not possible in purely linear systems. The theory of non-linear oscillations thus has important applications in classical mechanics, electronics, communications, biology, and many other branches of science. In addition to many other changes, this edition has a new section on bifurcation theory, including Hopf's theorem.

  7. Friedel oscillations in graphene

    DEFF Research Database (Denmark)

    Lawlor, J. A.; Power, S. R.; Ferreira, M.S.

    2013-01-01

    Symmetry breaking perturbations in an electronically conducting medium are known to produce Friedel oscillations in various physical quantities of an otherwise pristine material. Here we show in a mathematically transparent fashion that Friedel oscillations in graphene have a strong sublattice...... asymmetry. As a result, the presence of impurities and/or defects may impact the distinct graphene sublattices very differently. Furthermore, such an asymmetry can be used to explain the recent observations that nitrogen atoms and dimers are not randomly distributed in graphene but prefer to occupy one...

  8. Oscillators from nonlinear realizations

    Science.gov (United States)

    Kozyrev, N.; Krivonos, S.

    2018-02-01

    We construct the systems of the harmonic and Pais-Uhlenbeck oscillators, which are invariant with respect to arbitrary noncompact Lie algebras. The equations of motion of these systems can be obtained with the help of the formalism of nonlinear realizations. We prove that it is always possible to choose time and the fields within this formalism in such a way that the equations of motion become linear and, therefore, reduce to ones of ordinary harmonic and Pais-Uhlenbeck oscillators. The first-order actions, that produce these equations, can also be provided. As particular examples of this construction, we discuss the so(2, 3) and G 2(2) algebras.

  9. Hybrid Reactor Simulation of Boiling Water Reactor Power Oscillations

    International Nuclear Information System (INIS)

    Huang Zhengyu; Edwards, Robert M.

    2003-01-01

    Hybrid reactor simulation (HRS) of boiling water reactor (BWR) instabilities, including in-phase and out-of-phase (OOP) oscillations, has been implemented on The Pennsylvania State University TRIGA reactor. The TRIGA reactor's power response is used to simulate reactor neutron dynamics for in-phase oscillation or the fundamental mode of the reactor modal kinetics for OOP oscillations. The reactor power signal drives a real-time boiling channel simulation, and the calculated reactivity feedback is in turn fed into the TRIGA reactor via an experimental changeable reactivity device. The thermal-hydraulic dynamics, together with first harmonic mode power dynamics, is digitally simulated in the real-time environment. The real-time digital simulation of boiling channel thermal hydraulics is performed by solving constitutive equations for different regions in the channel and is realized by a high-performance personal computer. The nonlinearity of the thermal-hydraulic model ensures the capability to simulate the oscillation phenomena, limit cycle and OOP oscillation, in BWR nuclear power plants. By adjusting reactivity feedback gains for both modes, various oscillation combinations can be realized in the experiment. The dynamics of axially lumped power distribution over the core is displayed in three-dimensional graphs. The HRS reactor power response mimics the BWR core-wide power stability phenomena. In the OOP oscillation HRS, the combination of reactor response and the simulated first harmonic power using shaping functions mimics BWR regional power oscillations. With this HRS testbed, a monitoring and/or control system designed for BWR power oscillations can be experimentally tested and verified

  10. Thermal behavior of dynamic magnetizations, hysteresis loop areas and correlations of a cylindrical Ising nanotube in an oscillating magnetic field within the effective-field theory and the Glauber-type stochastic dynamics approach

    International Nuclear Information System (INIS)

    Deviren, Bayram; Keskin, Mustafa

    2012-01-01

    The dynamical aspects of a cylindrical Ising nanotube in the presence of a time-varying magnetic field are investigated within the effective-field theory with correlations and Glauber-type stochastic approach. Temperature dependence of the dynamic magnetizations, dynamic total magnetization, hysteresis loop areas and correlations are investigated in order to characterize the nature of dynamic transitions as well as to obtain the dynamic phase transition temperatures and compensation behaviors. Some characteristic phenomena are found depending on the ratio of the physical parameters in the surface shell and core, i.e., five different types of compensation behaviors in the Néel classification nomenclature exist in the system. -- Highlights: ► Kinetic cylindrical Ising nanotube is investigated using the effective-field theory. ► The dynamic magnetizations, hysteresis loop areas and correlations are calculated. ► The effects of the exchange interactions have been studied in detail. ► Five different types of compensation behaviors have been found. ► Some characteristic phenomena are found depending on ratio of physical parameters.

  11. Thermal behavior of dynamic magnetizations, hysteresis loop areas and correlations of a cylindrical Ising nanotube in an oscillating magnetic field within the effective-field theory and the Glauber-type stochastic dynamics approach

    Energy Technology Data Exchange (ETDEWEB)

    Deviren, Bayram, E-mail: bayram.deviren@nevsehir.edu.tr [Department of Physics, Nevsehir University, 50300 Nevsehir (Turkey); Keskin, Mustafa [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)

    2012-02-20

    The dynamical aspects of a cylindrical Ising nanotube in the presence of a time-varying magnetic field are investigated within the effective-field theory with correlations and Glauber-type stochastic approach. Temperature dependence of the dynamic magnetizations, dynamic total magnetization, hysteresis loop areas and correlations are investigated in order to characterize the nature of dynamic transitions as well as to obtain the dynamic phase transition temperatures and compensation behaviors. Some characteristic phenomena are found depending on the ratio of the physical parameters in the surface shell and core, i.e., five different types of compensation behaviors in the Néel classification nomenclature exist in the system. -- Highlights: ► Kinetic cylindrical Ising nanotube is investigated using the effective-field theory. ► The dynamic magnetizations, hysteresis loop areas and correlations are calculated. ► The effects of the exchange interactions have been studied in detail. ► Five different types of compensation behaviors have been found. ► Some characteristic phenomena are found depending on ratio of physical parameters.

  12. Cooperative and competitive concurrency in scientific computing. A full open-source upgrade of the program for dynamical calculations of RHEED intensity oscillations

    Science.gov (United States)

    Daniluk, Andrzej

    2011-06-01

    identifier of previous version: ADVL_v3_0 Journal reference of previous version: Comput. Phys. Comm. 181 (2010) 709 Does the new version supersede the previous version?: Yes Nature of problem: Reflection high-energy electron diffraction (RHEED) is an important in-situ analysis technique, which is capable of giving quantitative information about the growth process of thin layers and its control. It can be used to calibrate growth rate, analyze surface morphology, calibrate surface temperature, monitor the arrangement of the surface atoms, and provide information about growth kinetics. Such control allows the development of structures where the electrons can be confined in space, giving quantum wells or even quantum dots. In order to determine the atomic positions of atoms in the first few layers, the RHEED intensity must be measured as a function of the scattering angles and then compared with dynamic calculations. The objective of this release is to address the design of architecture for application that simulates the rocking curves RHEED intensities during hetero-epitaxial growth process of thin films. Solution method: The GrowthCP is a complex numerical model that uses multiple threads for simulation of epitaxial growth of thin layers. This model consists of two transactional parts. The first part is a mathematical model being based on the Runge-Kutta method with adaptive step-size control. The second part represents first-principles of the one-dimensional RHEED computational model. This model is based on solving a one-dimensional Schrödinger equation. Several problems can arise when applications contain a mixture of data access code, numerical code, and presentation code. Such applications are difficult to maintain, because interdependencies between all the components cause strong ripple effects whenever a change is made anywhere. Adding new data views often requires reimplementing a numerical code, which then requires maintenance in multiple places. In order to solve

  13. Neutrino oscillation experiments

    International Nuclear Information System (INIS)

    Camilleri, L.

    1996-01-01

    Neutrino oscillation experiments (ν μ →ν e and ν μ →ν τ ) currently being performed at accelerators are reviewed. Future plans for short and long base-line experiments are summarized. (author) 10 figs., 2 tabs., 29 refs

  14. A simple violin oscillator

    Science.gov (United States)

    Jones, R. T.

    1976-01-01

    For acoustic tests the violin is driven laterally at the bridge by a small speaker of the type commonly found in pocket transistor radios. An audio oscillator excites the tone which is picked up by a sound level meter. Gross patterns of vibration modes are obtained by the Chladni method.

  15. The variational spiked oscillator

    International Nuclear Information System (INIS)

    Aguilera-Navarro, V.C.; Ullah, N.

    1992-08-01

    A variational analysis of the spiked harmonic oscillator Hamiltonian -d 2 / d x 2 + x 2 + δ/ x 5/2 , δ > 0, is reported in this work. A trial function satisfying Dirichlet boundary conditions is suggested. The results are excellent for a large range of values of the coupling parameter. (author)

  16. Proprioceptive evoked gamma oscillations

    DEFF Research Database (Denmark)

    Arnfred, Sidse M; Hansen, Lars Kai; Parnas, Josef

    2007-01-01

    A proprioceptive stimulus consisting of a weight change of a handheld load has recently been shown to elicit an evoked potential. Previously, somatosensory gamma oscillations have only been evoked by electrical stimuli. We conjectured that a natural proprioceptive stimulus also would be able...

  17. Neutrino oscillation experiments

    Energy Technology Data Exchange (ETDEWEB)

    Camilleri, L. [European Organization for Nuclear Research, Geneva (Switzerland)

    1996-11-01

    Neutrino oscillation experiments ({nu}{sub {mu}}{yields}{nu}{sub e} and {nu}{sub {mu}}{yields}{nu}{sub {tau}}) currently being performed at accelerators are reviewed. Future plans for short and long base-line experiments are summarized. (author) 10 figs., 2 tabs., 29 refs.

  18. Nonlinearity in oscillating bridges

    Directory of Open Access Journals (Sweden)

    Filippo Gazzola

    2013-09-01

    Full Text Available We first recall several historical oscillating bridges that, in some cases, led to collapses. Some of them are quite recent and show that, nowadays, oscillations in suspension bridges are not yet well understood. Next, we survey some attempts to model bridges with differential equations. Although these equations arise from quite different scientific communities, they display some common features. One of them, which we believe to be incorrect, is the acceptance of the linear Hooke law in elasticity. This law should be used only in presence of small deviations from equilibrium, a situation which does not occur in widely oscillating bridges. Then we discuss a couple of recent models whose solutions exhibit self-excited oscillations, the phenomenon visible in real bridges. This suggests a different point of view in modeling equations and gives a strong hint how to modify the existing models in order to obtain a reliable theory. The purpose of this paper is precisely to highlight the necessity of revisiting the classical models, to introduce reliable models, and to indicate the steps we believe necessary to reach this target.

  19. Solar neutrino oscillations

    International Nuclear Information System (INIS)

    Haxton, W.C.

    1993-01-01

    The special properties of solar neutrinos that render this flux so uniquely important in searches for neutrino masses and flavor mixing are reviewed. The effects of matter, including density fluctuations and turbulence, on solar neutrino oscillations are explained through analogies with more familiar atomic physics phenomena

  20. Charge oscillations in orbitrons

    International Nuclear Information System (INIS)

    Porto, M.; Gomes, L.C.

    1981-01-01

    A statistical model for the electron distribution in orbitrons is constructed where the effect of the end plates is considered. A comparison is made with the measured density of charge. The electromagnetic oscillations generated by orbitrons are calculated as pressure waves and the results obtained are compared with the data. (Author) [pt

  1. solar neutrino oscillation phenomenology

    Indian Academy of Sciences (India)

    sRUBABATI GOsWAMI. Harish-Chandra Research Institute, Chhatnag Road, Jhusi, Allahabad 211 019, India. Email: sruba@mri.ernet.in. Abstract. This article summarises the status of the solar neutrino oscillation phe- nomenology at the end of 2002 in the light of the SNO and KamLAND results. We first present the allowed ...

  2. Asymptotic representation of relaxation oscillations in lasers

    CERN Document Server

    Grigorieva, Elena V

    2017-01-01

    In this book we analyze relaxation oscillations in models of lasers with nonlinear elements controlling light dynamics. The models are based on rate equations taking into account periodic modulation of parameters, optoelectronic delayed feedback, mutual coupling between lasers, intermodal interaction and other factors. With the aim to study relaxation oscillations we present the special asymptotic method of integration for ordinary differential equations and differential-difference equations. As a result, they are reduced to discrete maps. Analyzing the maps we describe analytically such nonlinear phenomena in lasers as multistability of large-amplitude relaxation cycles, bifurcations of cycles, controlled switching of regimes, phase synchronization in an ensemble of coupled systems and others. The book can be fruitful for students and technicians in nonlinear laser dynamics and in differential equations.

  3. Detection of forced oscillations in power systems with multichannel methods

    Energy Technology Data Exchange (ETDEWEB)

    Follum, James D. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)

    2015-09-30

    The increasing availability of high fidelity, geographically dispersed measurements in power systems improves the ability of researchers and engineers to study dynamic behaviors in the grid. One such behavior that is garnering increased attention is the presence of forced oscillations. Power system engineers are interested in forced oscillations because they are often symptomatic of the malfunction or misoperation of equipment. Though the resulting oscillation is not always large in amplitude, the root cause may be serious. In this report, multi-channel forced oscillation detection methods are developed. These methods leverage previously developed detection approaches based on the periodogram and spectral-coherence. Making use of geographically distributed channels of data is shown to improved detection performance and shorten the delay before an oscillation can be detected in the online environment. Results from simulated and measured power system data are presented.

  4. Synchronization of muscular oscillations between two subjects during isometric interaction

    Directory of Open Access Journals (Sweden)

    Laura V. Schaefer

    2014-05-01

    Full Text Available Muscles oscillate with a frequency around 10 Hz. But what happens with myofascial oscillations, if two neuromuscular systems interact? The purpose of this study was to examine this question, initially, on the basis of a case study. Oscillations of the triceps brachii muscles of two subjects were determined through mechanomyography (MMG during isometric interaction. The MMG-signals were analyzed concerning the interaction of the two subjects with algorithms of nonlinear dynamics. In this case study it could be shown, that the muscles of both neuromuscular systems also oscillate with the known frequency (here 12 Hz during interaction. Furthermore, both subjects were able to adapt their oscillations against each other. This adjustment induced a significant ( < .05 coherent behavior, which was characterized by a phase shifting of approximately 90°. The authors draw the conclusion, that the complementary neuromuscular partners potentially have the ability of mutual synchronization.

  5. Collective behavior of chaotic oscillators with environmental coupling

    International Nuclear Information System (INIS)

    Quintero-Quiroz, C.; Cosenza, M.G.

    2015-01-01

    Highlights: •A system of chaotic oscillators coupled through a common environment is considered. •The environment has its own dynamics which in turn is affected by the oscillators. •Nontrivial collective behavior occurs for some values of coupling strength parameter. •Dynamical clustering is found for some values of the coupling parameter. -- Abstract: We investigate the collective behavior of a system of chaotic Rössler oscillators indirectly coupled through a common environment that possesses its own dynamics and which in turn is modulated by the interaction with the oscillators. By varying the parameter representing the coupling strength between the oscillators and the environment, we find two collective states previously not reported in systems with environmental coupling: (i) nontrivial collective behavior, characterized by a periodic evolution of macroscopic variables coexisting with the local chaotic dynamics; and (ii) dynamical clustering, consisting of the formation of differentiated subsets of synchronized elements within the system. These states are relevant for many physical and biological systems where interactions with a dynamical environment are frequent

  6. Dynamic phase transition and multicritical dynamic phase diagrams of the kinetic spin-3/2 Blume Emery Griffiths model with repulsive biquadratic coupling under a time-dependent oscillating external field

    Science.gov (United States)

    Deviren, Bayram; Keskin, Mustafa; Canko, Osman

    2008-03-01

    We extend our recent paper [O. Canko, B. Deviren, M. Keskin, J. Phys.: Condens. Mater 118 (2006) 6635] to present a study, within a mean-field approach, the stationary states of the kinetic spin-3/2 Blume-Emery-Griffiths model with repulsive biquadratic interaction under the presence of a time varying (sinusoidal) magnetic field. We found that the dynamic phase diagrams of the present work exhibit more complex, richer and more topological different types of phase diagrams than our recent paper. Especially, the obtained dynamic phase diagrams show the ferrimagnetic ( i) phase in addition to the ferromagnetic ±3/2 ( f), ferromagnetic ±1/2 ( f), antiquadrupolar or staggered ( a) and disordered ( d) phases, and the f+i, f+d, i+d, f+i+d, a+d and/or f+i+a coexistence regions in addition to the f+f, f+d, f+a, f+d and/or f+a+d coexistence regions, depending on interaction parameters. Moreover, the phase diagrams exhibit dynamic zero-temperature critical, critical end, double critical end, multicritical, and/or pentacritical special points in addition to the dynamic tricritical, double critical end point, triple, quadruple and/or tetracritical special points that depending on the interaction parameters.

  7. Spontaneous oscillations of elastic contractile materials with turnover.

    Science.gov (United States)

    Dierkes, Kai; Sumi, Angughali; Solon, Jérôme; Salbreux, Guillaume

    2014-10-03

    Single and collective cellular oscillations driven by the actomyosin cytoskeleton have been observed in numerous biological systems. Here, we propose that these oscillations can be accounted for by a generic oscillator model of a material turning over and contracting against an elastic element. As an example, we show that during dorsal closure of the Drosophila embryo, experimentally observed changes in actomyosin concentration and oscillatory cell shape changes can, indeed, be captured by the dynamic equations studied here. We also investigate the collective dynamics of an ensemble of such contractile elements and show that the relative contribution of viscous and friction losses yields different regimes of collective oscillations. Taking into account the diffusion of force-producing molecules between contractile elements, our theoretical framework predicts the appearance of traveling waves, resembling the propagation of actomyosin waves observed during morphogenesis.

  8. Methods for Stability and Noise Analysis of Coupled Oscillating Systems

    DEFF Research Database (Denmark)

    Djurhuus, Torsten

    2008-01-01

    In this thesis a study of analytical and numerical models of coupled oscillating systems, perturbed by delta-correlated noise sources, is undertaken. These models are important for the attainment of a qualitative understanding of the complex dynamics seen in various physical, biological, electron......, perturbed by white noise.......In this thesis a study of analytical and numerical models of coupled oscillating systems, perturbed by delta-correlated noise sources, is undertaken. These models are important for the attainment of a qualitative understanding of the complex dynamics seen in various physical, biological, electronic...... and phase-noise filters; to name but a few of the possible applications areas. Taking outset in the established single-oscillator phase-macro model, a novel numerical algorithm for the automated phase-noise characterization of coupled oscillators, perturbed by noise, is developed. The algorithm, which...

  9. Observation and analysis of oscillations in linear accelerators

    International Nuclear Information System (INIS)

    Seeman, J.T.

    1991-11-01

    This report discusses the following on oscillation in linear accelerators: Betatron Oscillations; Betatron Oscillations at High Currents; Transverse Profile Oscillations; Transverse Profile Oscillations at High Currents.; Oscillation and Profile Transient Jitter; and Feedback on Transverse Oscillations

  10. There is more to climate than the North Atlantic Oscillation: a new perspective from climate dynamics to explain the variability in population growth rates of a long-lived seabird

    Directory of Open Access Journals (Sweden)

    Michel D. S. Mesquita

    2015-04-01

    Full Text Available Predicting the impact of global climate change on the biosphere has become one of the most important efforts in ecology. Ecosystems worldwide are changing rapidly as a consequence of global warming, yet our understanding of the consequences of these changes on populations is limited. The North Atlantic Oscillation (NAO has been used as a proxy for climate in several ecological studies, but this index may not always explain the patterns of variation in populations examined. Other techniques to study the relationship between ecological time series and climate are therefore needed. A standard method used in climatology is to work with point maps, where point correlation, point regression or other techniques are used to identify hotspots of regions that can explain the variability observed in the time series. These hotspots may be part of a teleconnection, which is an atmospheric mode of variability that affects remote regions around the globe. The NAO is one type of teleconnection, but not all climate variability can be explained through it. In the present study we have used climate-related techniques and analyzed the yearly variation in the population growth of a Common Guillemot Uria aalge colony in the Barents Sea area spanning 30 years. We show that the NAO does not explain this variation, but that point analysis can help identify indices that can explain a significant part of it. These indices are related to changes of mean sea level pressure in the Barents Sea via the Pacific – forming a teleconnection-type pattern. The dynamics are as follows: in years when the population growth rate is higher, the patterns observed are that of an anomalous low-pressure system in the Barents Sea. These low-pressure systems are a source of heat transport into the region and they force upwelling mixing in the ocean, thus creating favorable conditions for a more successful survival and breeding of the Common Guillemot.

  11. Energy spectrum of oscillations in generalized Sagdeev potential

    Science.gov (United States)

    Akbari-Moghanjoughi, M.

    2017-07-01

    In this paper, the full energy spectrum of nonlinear oscillations, known as the cnoidal waves, is studied in the framework of small-amplitude Korteweg de Vries and modified Korteweg de Vries (mKdV) theories based on the pseudoparticle motion in Helmholtz and Duffing potentials by employing the newly introduced pseudoenergy concept. The pseudoenergy dependence of various cnoidal oscillation parameters is then studied, and it is shown that superposition of cnoidal waves leads to familiar beating and Lissajous profiles. One of the most important aspects of the nonlinear oscillation is found to be the frequency dependence of the oscillation amplitude which mainly characterizes the nature of oscillations. It is shown that the developed method can be used to study the spectrum of oscillations and shock waves in the fully nonlinear Sagdeev pseudopotential and to directly calculate many dynamic parameters of the given nonlinear system. Current research may be helpful in understanding of basic excitations and interaction of nonlinear oscillation in various hydrodynamic systems including plasmas. It is also shown that nonlinear excitations in a hydrodynamic fluid can be effectively investigated by close inspection of shock waves which contain the full nonlinear spectrum of dynamical systems.

  12. Klein-Gordon oscillators in noncommutative phase space

    International Nuclear Information System (INIS)

    Wang Jianhua

    2008-01-01

    We study the Klein-Gordon oscillators in non-commutative (NC) phase space. We find that the Klein-Gordon oscillators in NC space and NC phase-space have a similar behaviour to the dynamics of a particle in commutative space moving in a uniform magnetic field. By solving the Klein-Gordon equation in NC phase space, we obtain the energy levels of the Klein-Gordon oscillators, where the additional terms related to the space-space and momentum-momentum non-commutativity are given explicitly. (authors)

  13. Nonlinear analysis of a cross-coupled quadrature harmonic oscillator

    DEFF Research Database (Denmark)

    Djurhuus, Torsten; Krozer, Viktor; Vidkjær, Jens

    2005-01-01

    The dynamic equations governing the cross-coupled quadrature harmonic oscillator are derived assuming quasi-sinusoidal operation. This allows for an investigation of the previously reported tradeoff between close-to-carrier phase noise and quadrature precision. The results explain how nonlinearity...... in the coupling transconductances, in conjunction with a finite amplitude relaxation time and de-tuning of the individual oscillators, cause close-to-carrier AM-to-PM noise conversion. A discussion is presented of how the theoretic results translate into design rules for quadrature oscillator ICs. SPECTRE RF...

  14. A coupled-oscillator model of olfactory bulb gamma oscillations.

    Directory of Open Access Journals (Sweden)

    Guoshi Li

    2017-11-01

    Full Text Available The olfactory bulb transforms not only the information content of the primary sensory representation, but also its underlying coding metric. High-variance, slow-timescale primary odor representations are transformed by bulbar circuitry into secondary representations based on principal neuron spike patterns that are tightly regulated in time. This emergent fast timescale for signaling is reflected in gamma-band local field potentials, presumably serving to efficiently integrate olfactory sensory information into the temporally regulated information networks of the central nervous system. To understand this transformation and its integration with interareal coordination mechanisms requires that we understand its fundamental dynamical principles. Using a biophysically explicit, multiscale model of olfactory bulb circuitry, we here demonstrate that an inhibition-coupled intrinsic oscillator framework, pyramidal resonance interneuron network gamma (PRING, best captures the diversity of physiological properties exhibited by the olfactory bulb. Most importantly, these properties include global zero-phase synchronization in the gamma band, the phase-restriction of informative spikes in principal neurons with respect to this common clock, and the robustness of this synchronous oscillatory regime to multiple challenging conditions observed in the biological system. These conditions include substantial heterogeneities in afferent activation levels and excitatory synaptic weights, high levels of uncorrelated background activity among principal neurons, and spike frequencies in both principal neurons and interneurons that are irregular in time and much lower than the gamma frequency. This coupled cellular oscillator architecture permits stable and replicable ensemble responses to diverse sensory stimuli under various external conditions as well as to changes in network parameters arising from learning-dependent synaptic plasticity.

  15. Automated Detection of Oscillating Regions in the Solar Atmosphere

    Science.gov (United States)

    Ireland, J.; Marsh, M. S.; Kucera, T. A.; Young, C. A.

    2010-01-01

    Recently observed oscillations in the solar atmosphere have been interpreted and modeled as magnetohydrodynamic wave modes. This has allowed for the estimation of parameters that are otherwise hard to derive, such as the coronal magnetic-field strength. This work crucially relies on the initial detection of the oscillations, which is commonly done manually. The volume of Solar Dynamics Observatory (SDO) data will make manual detection inefficient for detecting all of the oscillating regions. An algorithm is presented that automates the detection of areas of the solar atmosphere that support spatially extended oscillations. The algorithm identifies areas in the solar atmosphere whose oscillation content is described by a single, dominant oscillation within a user-defined frequency range. The method is based on Bayesian spectral analysis of time series and image filtering. A Bayesian approach sidesteps the need for an a-priori noise estimate to calculate rejection criteria for the observed signal, and it also provides estimates of oscillation frequency, amplitude, and noise, and the error in all of these quantities, in a self-consistent way. The algorithm also introduces the notion of quality measures to those regions for which a positive detection is claimed, allowing for simple post-detection discrimination by the user. The algorithm is demonstrated on two Transition Region and Coronal Explorer (TRACE) datasets, and comments regarding its suitability for oscillation detection in SDO are made.

  16. Magnetic molecule on a microcantilever: quantum magnetomechanical oscillations.

    Science.gov (United States)

    Jaafar, Reem; Chudnovsky, E M

    2009-06-05

    We study the quantum dynamics of a system consisting of a magnetic molecule placed on a microcantilever. The amplitude and frequencies of the coupled magnetomechanical oscillations are computed. Parameter-free theory shows that the existing experimental techniques permit observation of the driven coupled oscillations of the spin and the cantilever, as well as of the splitting of the mechanical modes of the cantilever caused by spin tunneling.

  17. Acoustics waves and oscillations

    CERN Document Server

    Sen, S.N.

    2013-01-01

    Parameters of acoustics presented in a logical and lucid style Physical principles discussed with mathematical formulations Importance of ultrasonic waves highlighted Dispersion of ultrasonic waves in viscous liquids explained This book presents the theory of waves and oscillations and various applications of acoustics in a logical and simple form. The physical principles have been explained with necessary mathematical formulation and supported by experimental layout wherever possible. Incorporating the classical view point all aspects of acoustic waves and oscillations have been discussed together with detailed elaboration of modern technological applications of sound. A separate chapter on ultrasonics emphasizes the importance of this branch of science in fundamental and applied research. In this edition a new chapter ''Hypersonic Velocity in Viscous Liquids as revealed from Brillouin Spectra'' has been added. The book is expected to present to its readers a comprehensive presentation of the subject matter...

  18. Plasma oscillations in porous samples

    Directory of Open Access Journals (Sweden)

    Kornyushin Y.

    2004-01-01

    Full Text Available The influence of the shape of a sample on the type of uniform dipole collective electrons oscillations is discussed. In samples of a bulk shape uniform bulk dipole oscillations cannot exist. They exist in samples of a thin slab shape only. However in essentially porous materials the electrostatic energy of the oscillation in a sample is considerably larger thus leading to stronger restoring force and higher frequency of the oscillation. When this frequency exceeds the Langmuir frequency, the oscillation becomes of a bulk type. .

  19. Neutrino Masses and Oscillations

    CERN Multimedia

    CERN. Geneva. Audiovisual Unit; Treille, Daniel

    2002-01-01

    This course will not cover its subject in the customary way. The emphasis will be on the simple theoretical concepts (helicity, handedness, chirality, Majorana masses) which are obscure in most of the literature, and on the quantum mechanics of oscillations, that ALL books get wrong. Which, hopefully, will not deter me from discussing some of the most interesting results from the labs and from the cosmos.

  20. Oscillations in quasineutral plasmas

    International Nuclear Information System (INIS)

    Grenier, E.

    1996-01-01

    The purpose of this article is to describe the limit, as the vacuum electric permittivity goes to zero, of a plasma physics system, deduced from the Vlasov-Poisson system for special initial data (distribution functions which are analytic in the space variable, with compact support in velocity), a limit also called open-quotes quasineutral regimeclose quotes of the plasma, and the related oscillations of the electric field, with high frequency in time. 20 refs

  1. Oscillations with laboratory neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Saitta, Biagio

    2001-05-01

    The status of searches for oscillations using neutrinos produced in the laboratory is reviewed. The most recent results from experiments approaching completion are reported and the potential capabilities of long baseline projects being developed in USA and Europe are considered and compared. The steps that should naturally follow this new generation of experiments are outlined and the impact of future facilities - such as neutrino factories or conventional superbeams - in precision measurements of elements of the neutrino mixing matrix is discussed.

  2. Seasonality and mechanisms of tropical intraseasonal oscillations

    Science.gov (United States)

    Hazra, Abheera; Krishnamurthy, V.

    2018-01-01

    This study has compared the monsoon intraseasonal oscillation (MISO) during the boreal summer and Madden Julian Oscillation (MJO) during the boreal winter. Based on MISO and MJO in high-resolution three-dimensional diabatic heating, the possible mechanisms are discussed through observational analyses of dynamical and thermodynamical variables. The MISO and MJO are extracted as nonlinear oscillations during boreal summer and winter, respectively, by applying multi-channel singular spectrum analysis on daily anomalies of diabatic heating over the Indo-Pacific region. Lead and lag relations among moisture, temperature and surface fields relative to diabatic heating are analyzed to compare the mechanisms of MISO and MJO. While both the oscillations show eastward propagation, MISO has a strong northward propagation and MJO has a weak southward propagation as well. The analysis shows that MJO and MISO are essentially driven by the same mechanisms but with some difference in the meridional propagation. The westerly shear leads the diabatic heating, while the vorticity has weak correlation. Large-scale circulation creates positive moisture preconditioning before convection and negative moisture preconditioning before suppressed conditions. A positive lower level horizontal advection of temperature and upper level temperature tendencies lead the convective state while a negative lower level horizontal advection of temperature and upper level temperature tendencies lead the suppressed state. There is positive feedback from the SST to atmosphere. The difference in the meridional propagation of MISO and MJO is hypothesized to be because of the different differential heating meridionally during the two seasons.

  3. On-line measurements of oscillating mitochondrial membrane potential in glucose-fermenting Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Andersen, Ann Zahle; Poulsen, Allan K; Brasen, Jens Christian

    2007-01-01

    We employed the fluorescent cyanine dye DiOC(2)(3) to measure membrane potential in semi-anaerobic yeast cells under conditions where glycolysis was oscillating. Oscillations in glycolysis were studied by means of the naturally abundant nicotinamide adenine dinucleotide (NADH). We found...... studies showed that glycolytic oscillations perturb the mitochondrial membrane potential and that the mitochondria do not have any controlling effect on the dynamics of glycolysis under these conditions. Depolarization of the mitochondrial membrane by addition of FCCP quenched mitochondrial membrane...... potential oscillations and delocalized DiOC(2)(3), while glycolysis continued to oscillate unaffected....

  4. Dynamics of machinery

    CERN Document Server

    Dresig, Hans

    2010-01-01

    Dynamic loads and disturbing oscillations increase with higher speed of the machines and more lightweight constructions. Industrial safety standards require better oscillation reduction and noise control. The book by Dresig/Holzweissig deals with these topics. It presents the classical areas of modeling, dynamics of rigid bodies, balancing, torsional and bending vibrations, problems of vibration isolation and the dynamic behavior of complex vibrating systems. Typical dynamic effects, i.e., the gyroscopic effect, the damping of oscillations, resonances of k-th order, subharmonic and nonlinear f

  5. Microscopic mechanism for self-organized quasiperiodicity in random networks of nonlinear oscillators.

    Science.gov (United States)

    Burioni, Raffaella; di Santo, Serena; di Volo, Matteo; Vezzani, Alessandro

    2014-10-01

    Self-organized quasiperiodicity is one of the most puzzling dynamical phases observed in systems of nonlinear coupled oscillators. The single dynamical units are not locked to the periodic mean field they produce, but they still feature a coherent behavior, through an unexplained complex form of correlation. We consider a class of leaky integrate-and-fire oscillators on random sparse and massive networks with dynamical synapses, featuring self-organized quasiperiodicity, and we show how complex collective oscillations arise from constructive interference of microscopic dynamics. In particular, we find a simple quantitative relationship between two relevant microscopic dynamical time scales and the macroscopic time scale of the global signal. We show that the proposed relation is a general property of collective oscillations, common to all the partially synchronous dynamical phases analyzed. We argue that an analogous mechanism could be at the origin of similar network dynamics.

  6. The charged bubble oscillator: Dynamics and thresholds

    Indian Academy of Sciences (India)

    of day-to-day medical devices and techniques using ultrasound ... When a pressure wave is incident on the bubble in the liquid .... Dependence of the expansion-compression ratio on the driving pressure amplitude Ps. we will merely cite the result here. We find the critical. Blake radius and the critical liquid pressure to be.

  7. Large-amplitude Longitudinal Oscillations in a Solar Filament

    Science.gov (United States)

    Zhang, Q. M.; Li, T.; Zheng, R. S.; Su, Y. N.; Ji, H. S.

    2017-06-01

    In this paper, we report our multiwavelength observations of the large-amplitude longitudinal oscillations of a filament observed on 2015 May 3. Located next to active region 12335, the sigmoidal filament was observed by the ground-based Hα telescopes from the Global Oscillation Network Group and by the Atmospheric Imaging Assembly instrument on board the Solar Dynamics Observatory. The filament oscillations were most probably triggered by the magnetic reconnection in the filament channel, which is characterized by the bidirectional flows, brightenings in EUV and soft X-ray, and magnetic cancellation in the photosphere. The directions of oscillations have angles of 4°-36° with respect to the filament axis. The whole filament did not oscillate in phase as a rigid body. Meanwhile, the oscillation periods (3100-4400 s) have a spatial dependence, implying that the curvature radii (R) of the magnetic dips are different at different positions. The values of R are estimated to be 69.4-133.9 Mm, and the minimum transverse magnetic field of the dips is estimated to be 15 G. The amplitudes of S5-S8 grew with time, while the amplitudes of S9-S14 damped with time. The oscillation amplitudes range from a few to ten Mm, and the maximum velocity can reach 30 km s-1. Interestingly, the filament experienced mass drainage southward at a speed of ˜27 km s-1. The oscillations continued after the mass drainage and lasted for more than 11 hr. After the mass drainage, the oscillation phases did not change much. The periods of S5-S8 decreased, while the periods of S9-S14 increased. The amplitudes of S5-S8 damped with time, while the amplitudes of S9-S14 grew. Most of the damping (growing) ratios are between -9 and 14. We offer a schematic cartoon to explain the complex behaviors of oscillations by introducing thread-thread interaction.

  8. Rapid detection of small oscillation faults via deterministic learning.

    Science.gov (United States)

    Wang, Cong; Chen, Tianrui

    2011-08-01

    Detection of small faults is one of the most important and challenging tasks in the area of fault diagnosis. In this paper, we present an approach for the rapid detection of small oscillation faults based on a recently proposed deterministic learning (DL) theory. The approach consists of two phases: the training phase and the test phase. In the training phase, the system dynamics underlying normal and fault oscillations are locally accurately approximated through DL. The obtained knowledge of system dynamics is stored in constant radial basis function (RBF) networks. In the diagnosis phase, rapid detection is implemented. Specially, a bank of estimators are constructed using the constant RBF neural networks to represent the training normal and fault modes. By comparing the set of estimators with the test monitored system, a set of residuals are generated, and the average L(1) norms of the residuals are taken as the measure of the differences between the dynamics of the monitored system and the dynamics of the training normal mode and oscillation faults. The occurrence of a test oscillation fault can be rapidly detected according to the smallest residual principle. A rigorous analysis of the performance of the detection scheme is also given. The novelty of the paper lies in that the modeling uncertainty and nonlinear fault functions are accurately approximated and then the knowledge is utilized to achieve rapid detection of small oscillation faults. Simulation studies are included to demonstrate the effectiveness of the approach.

  9. Movement of the pulsars and neutrino oscillations

    International Nuclear Information System (INIS)

    Barkovich, M.A.

    2005-01-01

    The astronomical observations show that the pulsars are not in the center of the remainder of the supernovae that gave its origin, but rather are displaced of the same one and moving to a speed of about 500 km/s, which is much bigger that of the progenitor star. This fact constitutes a strong evidence that the pulsars is accelerated in the moment of its birth and by this it is denominated to this phenomenon 'pulsars kick'. They exist numerous and varied mechanisms to explain this effect, but none makes it in way completely satisfactory. In this thesis we will study in detail a mechanism proposed originally by Kusenko and Segre and that is based on an asymmetric emission of the neutrinos flow induced by the oscillations of the same ones when its spread in a magnetized media. For this end we will develop, in first instance, the Eddington model. This is based on the transport of the neutrino flux and it describes in a reasonable way the atmosphere of a neutron protostar, place where take place the oscillations. Next we will study the problem of the emission of a neutrino gas from a resonance volume. These results will be applied to the study of the kick in the cases of oscillations among active neutrinos and actives with sterile to determine the magnetic field and the oscillation parameters (difference of the square of the masses of those neutrinos and mixture angle in vacuum) required. Finally we will analyze those neutrino oscillations induced by a possible violation of the Equivalence principle and it implication in the pulsars dynamics. (Author)

  10. Oscillation and stability of delay models in biology

    CERN Document Server

    Agarwal, Ravi P; Saker, Samir H

    2014-01-01

    Environmental variation plays an important role in many biological and ecological dynamical systems. This monograph focuses on the study of oscillation and the stability of delay models occurring in biology. The book presents recent research results on the qualitative behavior of mathematical models under different physical and environmental conditions, covering dynamics including the distribution and consumption of food. Researchers in the fields of mathematical modeling, mathematical biology, and population dynamics will be particularly interested in this material.

  11. Comparison of Virtual Oscillator and Droop Control

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Brian B [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Rodriguez, Miguel [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sinha, Mohit [University of Minnesota; Dhople, Sairaj [University of Minnesota

    2017-08-21

    Virtual oscillator control (VOC) and droop control are distinct methods to ensure synchronization and power sharing of parallel inverters in islanded systems. VOC is a control strategy where the dynamics of a nonlinear oscillator are used to derive control states to modulate the switch terminals of an inverter. Since VOC is a time-domain controller that reacts to instantaneous measurements with no additional filters or computations, it provides a rapid response during transients and stabilizes volatile dynamics. In contrast, droop control regulates the inverter voltage in response to the measured average real and reactive power output. Given that real and reactive power are phasor quantities that are not well-defined in real time, droop controllers typically use multiplicative operations in conjunction with low-pass filters on the current and voltage measurements to calculate such quantities. Since these filters must suppress low frequency ac harmonics, they typically have low cutoff frequencies that ultimately impede droop controller bandwidth. Although VOC and droop control can be engineered to produce similar steady-state characteristics, their dynamic performance can differ markedly. This paper presents an analytical framework to characterize and compare the dynamic response of VOC and droop control. The analysis is experimentally validated with three 120 V inverters rated at 1kW, demonstrating that for the same design specifications VOC is roughly 8 times faster and presents almost no overshoot after a transient.

  12. Proprioceptive evoked gamma oscillations

    DEFF Research Database (Denmark)

    Arnfred, S.M.; Hansen, Lars Kai; Parnas, J.

    2007-01-01

    A proprioceptive stimulus consisting of a weight change of a handheld load has recently been shown to elicit an evoked potential. Previously, somatosensory gamma oscillations have only been evoked by electrical stimuli. We conjectured that a natural proprioceptive stimulus also would be able...... contralateral to stimulus side and additionally an unexpected 20 Hz activity was observed slightly lateralized in the frontal central region. The gamma phase locking may be a manifestation of early somatosensory feature integration. The analyses suggest that the high frequency activity consists of two distinct...

  13. Neutrino oscillations at LAMPF

    International Nuclear Information System (INIS)

    Carlini, R.; Choi, C.; Donohue, J.

    1985-01-01

    Work at Argonne continues on the construction of the neutrino oscillation experiment (E645). Construction of detector supports and active shield components were completed at the Provo plant of the principal contractor for the project (the Pittsburgh-Des Moines Corporation). Erection of the major experimental components was completed at the LAMPF experimental site in mid-March 1985. Work continues on the tunnel which will house the detector. Construction of detector components (scintillators and proportional drift tubes) is proceeding at Ohio State University and Louisiana State University. Consolidation of these components into the 20-ton neutrino detector is beginning at LAMPF

  14. Brain Oscillations, Hypnosis, and Hypnotizability

    Science.gov (United States)

    Jensen, Mark P.; Adachi, Tomonori; Hakimian, Shahin

    2014-01-01

    In this article, we summarize the state-of-science knowledge regarding the associations between hypnosis and brain oscillations. Brain oscillations represent the combined electrical activity of neuronal assemblies, and are usually measured as specific frequencies representing slower (delta, theta, alpha) and faster (beta, gamma) oscillations. Hypnosis has been most closely linked to power in the theta band and changes in gamma activity. These oscillations are thought to play a critical role in both the recording and recall of declarative memory and emotional limbic circuits. Here we propose that it is this role that may be the mechanistic link between theta (and perhaps gamma) oscillations and hypnosis; specifically that theta oscillations may facilitate, and that changes in gamma activity observed with hypnosis may underlie, some hypnotic responses. If these hypotheses are supported, they have important implications for both understanding the effects of hypnosis, and for enhancing response to hypnotic treatments. PMID:25792761

  15. Brain Oscillations, Hypnosis, and Hypnotizability.

    Science.gov (United States)

    Jensen, Mark P; Adachi, Tomonori; Hakimian, Shahin

    2015-01-01

    This article summarizes the state-of-science knowledge regarding the associations between hypnosis and brain oscillations. Brain oscillations represent the combined electrical activity of neuronal assemblies, usually measured as specific frequencies representing slower (delta, theta, alpha) and faster (beta, gamma) oscillations. Hypnosis has been most closely linked to power in the theta band and changes in gamma activity. These oscillations are thought to play a critical role in both the recording and recall of declarative memory and emotional limbic circuits. The authors propose that this role may be the mechanistic link between theta (and perhaps gamma) oscillations and hypnosis, specifically, that the increases in theta oscillations and changes in gamma activity observed with hypnosis may underlie some hypnotic responses. If these hypotheses are supported, they have important implications for both understanding the effects of hypnosis and for enhancing response to hypnotic treatments.

  16. Bounded-oscillation Pushdown Automata

    Directory of Open Access Journals (Sweden)

    Pierre Ganty

    2016-09-01

    Full Text Available We present an underapproximation for context-free languages by filtering out runs of the underlying pushdown automaton depending on how the stack height evolves over time. In particular, we assign to each run a number quantifying the oscillating behavior of the stack along the run. We study languages accepted by pushdown automata restricted to k-oscillating runs. We relate oscillation on pushdown automata with a counterpart restriction on context-free grammars. We also provide a way to filter all but the k-oscillating runs from a given PDA by annotating stack symbols with information about the oscillation. Finally, we study closure properties of the defined class of languages and the complexity of the k-emptiness problem asking, given a pushdown automaton P and k >= 0, whether P has a k-oscillating run. We show that, when k is not part of the input, the k-emptiness problem is NLOGSPACE-complete.

  17. An Artificial Muscle Ring Oscillator

    OpenAIRE

    O’Brien, Benjamin Marc; Anderson, Iain Alexander

    2012-01-01

    Dielectric elastomer artificialmuscles have great potential for the creation of novel pumps, motors, and circuitry. Control of these devices requires an oscillator, either as a driver or clock circuit, which is typically provided as part of bulky, rigid, and costly external electronics. Oscillator circuits based on piezo-resistive dielectric elastomer switch technology provide a way to embed oscillatory behavior into artificial muscle devices. Previous oscillator circuits were not digital, ab...

  18. How adaptation shapes spike rate oscillations in recurrent neuronal networks

    Directory of Open Access Journals (Sweden)

    Moritz eAugustin

    2013-02-01

    Full Text Available Neural mass signals from in-vivo recordings often show oscillations with frequencies ranging from <1 Hz to 100 Hz. Fast rhythmic activity in the beta and gamma range can be generated by network based mechanisms such as recurrent synaptic excitation-inhibition loops. Slower oscillations might instead depend on neuronal adaptation currents whose timescales range from tens of milliseconds to seconds. Here we investigate how the dynamics of such adaptation currents contribute to spike rate oscillations and resonance properties in recurrent networks of excitatory and inhibitory neurons. Based on a network of sparsely coupled spiking model neurons with two types of adaptation current and conductance based synapses with heterogeneous strengths and delays we use a mean-field approach to analyze oscillatory network activity. For constant external input, we find that spike-triggered adaptation currents provide a mechanism to generate slow oscillations over a wide range of adaptation timescales as long as recurrent synaptic excitation is sufficiently strong. Faster rhythms occur when recurrent inhibition is slower than excitation and oscillation frequency increases with the strength of inhibition. Adaptation facilitates such network based oscillations for fast synaptic inhibition and leads to decreased frequencies. For oscillatory external input, adaptation currents amplify a narrow band of frequencies and cause phase advances for low frequencies in addition to phase delays at higher frequencies. Our results therefore identify the different key roles of neuronal adaptation dynamics for rhythmogenesis and selective signal propagation in recurrent networks.

  19. Nanoscale relaxation oscillator

    Science.gov (United States)

    Zettl, Alexander K.; Regan, Brian C.; Aloni, Shaul

    2009-04-07

    A nanoscale oscillation device is disclosed, wherein two nanoscale droplets are altered in size by mass transport, then contact each other and merge through surface tension. The device may also comprise a channel having an actuator responsive to mechanical oscillation caused by expansion and contraction of the droplets. It further has a structure for delivering atoms between droplets, wherein the droplets are nanoparticles. Provided are a first particle and a second particle on the channel member, both being made of a chargeable material, the second particle contacting the actuator portion; and electrodes connected to the channel member for delivering a potential gradient across the channel and traversing the first and second particles. The particles are spaced apart a specified distance so that atoms from one particle are delivered to the other particle by mass transport in response to the potential (e.g. voltage potential) and the first and second particles are liquid and touch at a predetermined point of growth, thereby causing merging of the second particle into the first particle by surface tension forces and reverse movement of the actuator. In a preferred embodiment, the channel comprises a carbon nanotube and the droplets comprise metal nanoparticles, e.g. indium, which is readily made liquid.

  20. Unstable oscillators based hyperchaotic circuit

    DEFF Research Database (Denmark)

    Murali, K.; Tamasevicius, A.; G. Mykolaitis, A.

    1999-01-01

    A simple 4th order hyperchaotic circuit with unstable oscillators is described. The circuit contains two negative impedance converters, two inductors, two capacitors, a linear resistor and a diode. The Lyapunov exponents are presented to confirm hyperchaotic nature of the oscillations in the circ......A simple 4th order hyperchaotic circuit with unstable oscillators is described. The circuit contains two negative impedance converters, two inductors, two capacitors, a linear resistor and a diode. The Lyapunov exponents are presented to confirm hyperchaotic nature of the oscillations...

  1. Spatial computation with gamma oscillations

    Science.gov (United States)

    Engelhard, Ben; Vaadia, Eilon

    2014-01-01

    Gamma oscillations in cortex have been extensively studied with relation to behavior in both humans and animal models; however, their computational role in the processing of behaviorally relevant signals is still not clear. One oft-overlooked characteristic of gamma oscillations is their spatial distribution over the cortical space and the computational consequences of such an organization. Here, we advance the proposal that the spatial organization of gamma oscillations is of major importance for their function. The interaction of specific spatial distributions of oscillations with the functional topography of cortex enables select amplification of neuronal signals, which supports perceptual and cognitive processing. PMID:25249950

  2. The Duffing oscillator with damping

    DEFF Research Database (Denmark)

    Johannessen, Kim

    2015-01-01

    An analytical solution to the differential equation describing the Duffing oscillator with damping is presented. The damping term of the differential equation and the initial conditions satisfy an algebraic equation, and thus the solution is specific for this type of damping. The nonlinear term....... It is established that the period of oscillation is shorter compared to that of a linearized model but increasing with time and asymptotically approaching the period of oscillation of the linear damped model. An explicit expression for the period of oscillation has been derived, and it is found to be very accurate....

  3. Heartbeat of the Southern Oscillation explains ENSO climatic resonances

    Science.gov (United States)

    Bruun, John T.; Allen, J. Icarus; Smyth, Timothy J.

    2017-08-01

    The El Niño-Southern Oscillation (ENSO) nonlinear oscillator phenomenon has a far reaching influence on the climate and human activities. The up to 10 year quasi-period cycle of the El Niño and subsequent La Niña is known to be dominated in the tropics by nonlinear physical interaction of wind with the equatorial waveguide in the Pacific. Long-term cyclic phenomena do not feature in the current theory of the ENSO process. We update the theory by assessing low (>10 years) and high (climatic cycles of the ENSO process with resonance frequencies of {2.5, 3.8, 5, 12-14, 61-75, 180} years. This fundamental result shows long-term and short-term signal coupling with mode locking across the dominant ENSO dynamics. These dominant oscillation frequency dynamics, defined as ENSO frequency states, contain a stable attractor with three frequencies in resonance allowing us to coin the term Heartbeat of the Southern Oscillation due to its characteristic shape. We predict future ENSO states based on a stable hysteresis scenario of short-term and long-term ENSO oscillations over the next century.Plain Language SummaryThe Pacific El Niño-Southern Oscillation (ENSO) nonlinear oscillator phenomenon has a far reaching influence on the climate and our human activities. This work can help predict both long-term and short-term future ENSO events and to assess the risk of future climate hysteresis changes: is the elastic band that regulates the ENSO climate breaking? We update the current theory of the ENSO process with a sophisticated analysis approach (Dominant Frequency State Analysis) to include long-term oscillations (up to 200 years) as well as tropical and extratropical interaction dynamics. The analysis uses instrumental and paleoproxy data records in combination with theoretical models of ENSO. This fundamental result that shows the ENSO phenomenon has a stable tropical Pacific attractor with El Niño and La Niña phases, tropical and extratropical coupling and an

  4. Laser Beam Oscillation Strategies for Fillet Welds in Lap Joints

    Science.gov (United States)

    Müller, Alexander; Goecke, Sven-F.; Sievi, Pravin; Albert, Florian; Rethmeier, Michael

    Laser beam oscillation opens up new possibilities of influencing the welding process in terms of compensation of tolerances and reduction of process emissions that occur in industrial applications, such as in body-in-white manufacturing. The approaches are to adapt the melt pool width in order to generate sufficient melt volume or to influence melt pool dynamics, e.g. for a better degassing. Welding results are highly dependent on the natural frequency of the melt pool, the used spot diameter and the oscillation speed of the laser beam. The conducted investigations with an oscillated 300 μm laser spot show that oscillation strategies, which are adjusted to the joining situation improve welding result for zero-gap welding as well as for bridging gaps to approximately 0.8 mm. However, a complex set of parameters has to be considered in order to generate proper welding results. This work puts emphasize on introducing them.

  5. Hydroelastic Oscillations of a Circular Plate, Resting on Winkler Foundation

    Science.gov (United States)

    Kondratov, D. V.; Mogilevich, L. I.; Popov, V. S.; Popova, A. A.

    2018-01-01

    The forced hydroelastic oscillations of a circular plate resting on elastic foundation are investigated. The oscillations are caused by a stamp vibration under interaction with a plate through a thin layer of viscous incompressible liquid. The axis-symmetric problem for the regime of the steady-state harmonic oscillations is considered. On the basis of hydroelasticity problem solution the laws of plate deflection and pressure in the liquid are found. The functions of the amplitudes deflection distribution and liquid pressure along the plate are constructed. The presented mathematical model provides for investigating viscous liquid layer interaction dynamics with a circular plate resting on an elastic foundation. The above-mentioned model makes it possible to define the plate oscillations resonance frequencies and the corresponding amplitudes of deflection and liquid pressure, as well.

  6. Coherent oscillations between two weakly coupled Bose-Einstein condensates: Josephson effects, π oscillations, and macroscopic quantum self-trapping

    International Nuclear Information System (INIS)

    Raghavan, S.; Smerzi, A.; Fantoni, S.; Shenoy, S.R.

    2001-03-01

    We discuss the coherent atomic oscillations between two weakly coupled Bose-Einstein condensates. The weak link is provided by a laser barrier in a (possibly asymmetric) double-well trap or by Raman coupling between two condensates in different hyperfine levels. The boson Josephson junction (BJJ) dynamics is described by the two-mode nonlinear Gross-Pitaevskii equation that is solved analytically in terms of elliptic functions. The BJJ, being a neutral, isolated system, allows the investigations of dynamical regimes for the phase difference across the junction and for the population imbalance that are not accessible with superconductor Josephson junctions (SJJ's). These include oscillations with either or both of the following properties: (i) the time-averaged value of the phase is equal to π (π-phase oscillations); (ii) the average population imbalance is nonzero, in states with macroscopic quantum self-trapping. The (nonsinusoidal) generalization of the SJJ ac and plasma oscillations and the Shapiro resonance can also be observed. We predict the collapse of experimental data (corresponding to different trap geometries and the total number of condensate atoms) onto a single universal curve for the inverse period of oscillations. Analogies with Josephson oscillations between two weakly coupled reservoirs of 3 He-B and the internal Josephson effect in 3 He-A are also discussed. (author)

  7. Quantum interference oscillations of the superparamagnetic blocking in an Fe8 molecular nanomagnet

    OpenAIRE

    Burzurí, E.; Luis, F.; Montero, O.; Barbara, B.; Ballou, R.; Maegawa, S.

    2013-01-01

    We show that the dynamic magnetic susceptibility and the superparamagnetic blocking temperature of an Fe8 single molecule magnet oscillate as a function of the magnetic field Hx applied along its hard magnetic axis. These oscillations are associated with quantum interferences, tuned by Hx, between different spin tunneling paths linking two excited magnetic states. The oscillation period is determined by the quantum mixing between the ground S=10 and excited multiplets. These experiments enabl...

  8. Coronal Waves and Oscillations

    Directory of Open Access Journals (Sweden)

    Nakariakov Valery M.

    2005-07-01

    Full Text Available Wave and oscillatory activity of the solar corona is confidently observed with modern imaging and spectral instruments in the visible light, EUV, X-ray and radio bands, and interpreted in terms of magnetohydrodynamic (MHD wave theory. The review reflects the current trends in the observational study of coronal waves and oscillations (standing kink, sausage and longitudinal modes, propagating slow waves and fast wave trains, the search for torsional waves, theoretical modelling of interaction of MHD waves with plasma structures, and implementation of the theoretical results for the mode identification. Also the use of MHD waves for remote diagnostics of coronal plasma - MHD coronal seismology - is discussed and the applicability of this method for the estimation of coronal magnetic field, transport coefficients, fine structuring and heating function is demonstrated.

  9. Hyperchaos in coupled Colpitts oscillators

    DEFF Research Database (Denmark)

    Cenys, Antanas; Tamasevicius, Arunas; Baziliauskas, Antanas

    2003-01-01

    The paper suggests a simple solution of building a hyperchaotic oscillator. Two chaotic Colpitts oscillators, either identical or non-identical ones are coupled by means of two linear resistors R-k. The hyperchaotic output signal v(t) is a linear combination, specifically the mean of the individual...

  10. Oscillating solitons in nonlinear optics

    Indian Academy of Sciences (India)

    ... are derived, and the relevant properties and features of oscillating solitons are illustrated. Oscillating solitons are controlled by the reciprocal of the group velocity and Kerr nonlinearity. Results of this paper will be valuable to the study of dispersion-managed optical communication system and mode-locked fibre lasers.

  11. Mechanical Parametric Oscillations and Waves

    Science.gov (United States)

    Dittrich, William; Minkin, Leonid; Shapovalov, Alexander S.

    2013-01-01

    Usually parametric oscillations are not the topic of general physics courses. Probably it is because the mathematical theory of this phenomenon is relatively complicated, and until quite recently laboratory experiments for students were difficult to implement. However parametric oscillations are good illustrations of the laws of physics and can be…

  12. Oscillator strengths for neutral technetium

    International Nuclear Information System (INIS)

    Garstang, R.H.

    1981-01-01

    Oscillator strengths have been calculated for most of the spectral lines of TcI which are of interest in the study of stars of spectral type S. Oscillator strengths have been computed for the corresponding transitions in MnI as a partial check of the technetium calculations

  13. Quasi Periodic Oscillations in Blazars

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Home; Journals; Journal of Astrophysics and Astronomy; Volume 35; Issue 3. Quasi Periodic Oscillations in Blazars ... Here we report our recent discoveries of Quasi-Periodic Oscillations (QPOs) in blazars time series data in X-ray and optical electromagnetic bands. Any such detection can give important ...

  14. Faraday diamagnetism under slowly oscillating magnetic fields

    Science.gov (United States)

    Kimura, Tsunehisa; Kimura, Fumiko; Kimura, Yosuke

    2018-04-01

    Diamagnetism is a universal phenomenon of materials arising from the orbital motion of electrons bound to atoms, which is commonly known as Langevin diamagnetism. The orbital motion also occurs according to the Faraday's law of induction when the applied magnetic field is oscillating. However, the influence of this dynamic effect on the magnetism of materials has seldom been studied. Here, we propose a new type diamagnetism coined Faraday diamagnetism. The magnitude of this diamagnetism evaluated by an atomic electric circuit model was as large as that of Langevin diamagnetism. The predicted scale of Faraday diamagnetism was supported by experiments.

  15. Chimera states in mechanical oscillator networks

    DEFF Research Database (Denmark)

    Martens, Erik Andreas; Thutupalli, Shashi; Fourrière, Antoine

    2013-01-01

    of whether chimeras are indeed characteristic of natural systems. This calls for a palpable realization of chimera states without any fine-tuning, from which physical mechanisms underlying their emergence can be uncovered. Here, we devise a simple experiment with mechanical oscillators coupled...... in our experiments is controlled by elementary dynamical equations from mechanics that are ubiquitous in many natural and technological systems. The symmetry-breaking mechanism revealed by our experiments may thus be prevalent in systems exhibiting collective behavior, such as power grids, optomechanical...

  16. The stability of large oscillating bubbles

    Science.gov (United States)

    Blake, John; Pearson, Antony

    2002-11-01

    In a most remarkable paper, in October 1942, Penney & Price developed a theory for the stability of large oscillating bubbles; in their case they were interested in underwater explosions. Much of our current understanding on the stability of oscillating bubbles can be traced to the theoretical and experimental insight shown in this paper. While interest in this particular area continues with regard ship survivability to underwater explosions, other newer areas include the oscillatory behaviour of of seismic airgun generated bubbles. Apart from large volume oscillations with a characteristic period, the other dominant parameter is associated with buoyancy. An appropriate parameter is chosen that provides a measure of the distance of migration of a bubble over one period. An analytical and computational analysis of this class of problem reveals that this pressure gradient driven instability, normally observed in the form of a high speed liquid jet threading the bubble, is the most dominant surface instability, a characteristic feature borne out in most experimental and practical applications due to the presence of an incipient pressure gradient associated with hydrostatics, dynamics or boundaries

  17. Oscillating nonlinear acoustic shock waves

    DEFF Research Database (Denmark)

    Gaididei, Yuri; Rasmussen, Anders Rønne; Christiansen, Peter Leth

    2016-01-01

    We investigate oscillating shock waves in a tube using a higher order weakly nonlinear acoustic model. The model includes thermoviscous effects and is non isentropic. The oscillating shock waves are generated at one end of the tube by a sinusoidal driver. Numerical simulations show...... that at resonance a stationary state arise consisting of multiple oscillating shock waves. Off resonance driving leads to a nearly linear oscillating ground state but superimposed by bursts of a fast oscillating shock wave. Based on a travelling wave ansatz for the fluid velocity potential with an added 2'nd order...... polynomial in the space and time variables, we find analytical approximations to the observed single shock waves in an infinitely long tube. Using perturbation theory for the driven acoustic system approximative analytical solutions for the off resonant case are determined....

  18. Oscillating universe with quintom matter

    International Nuclear Information System (INIS)

    Xiong Huahui; Cai Yifu; Qiu Taotao; Piao Yunsong; Zhang Xinmin

    2008-01-01

    In this Letter, we study the possibility of building a model of the oscillating universe with quintom matter in the framework of 4-dimensional Friedmann-Robertson-Walker background. Taking the two-scalar-field quintom model as an example, we find in the model parameter space there are five different types of solutions which correspond to: (I) a cyclic universe with the minimal and maximal values of the scale factor remaining the same in every cycle, (II) an oscillating universe with its minimal and maximal values of the scale factor increasing cycle by cycle, (III) an oscillating universe with its scale factor always increasing, (IV) an oscillating universe with its minimal and maximal values of the scale factor decreasing cycle by cycle, and (V) an oscillating universe with its scale factor always decreasing

  19. Control of coupled oscillator networks with application to microgrid technologies

    Science.gov (United States)

    Skardal, Per Sebastian; Arenas, Alex

    2015-01-01

    The control of complex systems and network-coupled dynamical systems is a topic of vital theoretical importance in mathematics and physics with a wide range of applications in engineering and various other sciences. Motivated by recent research into smart grid technologies, we study the control of synchronization and consider the important case of networks of coupled phase oscillators with nonlinear interactions—a paradigmatic example that has guided our understanding of self-organization for decades. We develop a method for control based on identifying and stabilizing problematic oscillators, resulting in a stable spectrum of eigenvalues, and in turn a linearly stable synchronized state. The amount of control, that is, number of oscillators, required to stabilize the network is primarily dictated by the coupling strength, dynamical heterogeneity, and mean degree of the network, and depends little on the structural heterogeneity of the network itself. PMID:26601231

  20. Oscillations and chaos in renal blood flow control

    DEFF Research Database (Denmark)

    Holstein-Rathlou, N H

    1993-01-01

    . This is especially prominent in the frequency range in which TGF operates, and it is suggested that a causal relationship may exist between the two phenomena. This difference may play a role in the pathogenesis of hypertension by altering the renal response to the normal fluctuations in arterial pressure....... to the other. In renovascular and spontaneously hypertensive rats, regular oscillations give way to highly irregular, chaotic fluctuations. The chaotic fluctuations appear to have the same mechanism as the regular TGF-mediated oscillations. The irregular fluctuations most likely represent a parameter......-dependent transition from a limit cycle (regular oscillation) to deterministic chaos. The key parameters causing the transition have not been identified. Associated with the difference in the dynamics of TGF between normotensive and hypertensive rats is a change in the dynamic autoregulation of total RBF...

  1. Theta oscillations locked to intended actions rhythmically modulate perception.

    Science.gov (United States)

    Tomassini, Alice; Ambrogioni, Luca; Medendorp, W Pieter; Maris, Eric

    2017-07-07

    Ongoing brain oscillations are known to influence perception, and to be reset by exogenous stimulations. Voluntary action is also accompanied by prominent rhythmic activity, and recent behavioral evidence suggests that this might be coupled with perception. Here, we reveal the neurophysiological underpinnings of this sensorimotor coupling in humans. We link the trial-by-trial dynamics of EEG oscillatory activity during movement preparation to the corresponding dynamics in perception, for two unrelated visual and motor tasks. The phase of theta oscillations (~4 Hz) predicts perceptual performance, even >1 s before movement. Moreover, theta oscillations are phase-locked to the onset of the movement. Remarkably, the alignment of theta phase and its perceptual relevance unfold with similar non-monotonic profiles, suggesting their relatedness. The present work shows that perception and movement initiation are automatically synchronized since the early stages of motor planning through neuronal oscillatory activity in the theta range.

  2. Control of coupled oscillator networks with application to microgrid technologies

    Science.gov (United States)

    Arenas, Alex

    The control of complex systems and network-coupled dynamical systems is a topic of vital theoretical importance in mathematics and physics with a wide range of applications in engineering and various other sciences. Motivated by recent research into smart grid technologies, we study the control of synchronization and consider the important case of networks of coupled phase oscillators with nonlinear interactions-a paradigmatic example that has guided our understanding of self-organization for decades. We develop a method for control based on identifying and stabilizing problematic oscillators, resulting in a stable spectrum of eigenvalues, and in turn a linearly stable syn- chronized state. The amount of control, that is, number of oscillators, required to stabilize the network is primarily dictated by the coupling strength, dynamical heterogeneity, and mean degree of the network, and depends little on the structural heterogeneity of the network itself.

  3. Structural Dynamics

    International Nuclear Information System (INIS)

    Kim, Du Gi

    2005-08-01

    This book introduces summary of structural dynamics, the reason of learning of structural dynamics, single-degree of freedom system, simple harmonic vibration and application, numerical analysis method, such as time domain and frequency domain and nonlinear system, multi-degree of freedom system random vibration over discrete distribution, continuous distribution and extreme value distribution, circumstance vibration, earth quake vibration, including input earthquake, and earthquake-resistant design and capacity spectrum method, wind oscillation wave vibration, vibration control and maintenance control.

  4. Dynamics

    CERN Document Server

    Goodman, Lawrence E

    2001-01-01

    Beginning text presents complete theoretical treatment of mechanical model systems and deals with technological applications. Topics include introduction to calculus of vectors, particle motion, dynamics of particle systems and plane rigid bodies, technical applications in plane motions, theory of mechanical vibrations, and more. Exercises and answers appear in each chapter.

  5. Instability of an oscillator moving along a thin ring on a viscoelastic foundation

    NARCIS (Netherlands)

    Lu, T.; Metrikine, A.

    2017-01-01

    The stability of an oscillator uniformly moving along a thin ring that is connected to an immovable axis by a distributed viscoelastic foundation has been studied. The dynamic reaction of the ring to the oscillator is represented by a frequency and velocity dependent equivalent stiffness. The

  6. Asymptotic definition of the periods of relaxation oscillation of strongly nonlinear systems with feedback

    OpenAIRE

    ANNAKULOVA GULSARA KUCHKAROVNA

    2016-01-01

    The problem of asymptotic approximation construction for the periods of relaxation oscillations of strongly nonlinear dynamic system with feedback is considered in the paper. Recurrent formulae to calculate with arbitrary degree of accuracy the periods of relaxation oscillations for corresponding degrees of nonlinearity of the system with feedback are derived.

  7. Oscillations of atomic nuclei in crystals

    OpenAIRE

    Vdovenkov, V. A.

    2002-01-01

    Oscillations of atomic nuclei in crystals are considered in this paper. It is shown that elastic nuclei oscillations relatively electron envelops (inherent, I-oscillations) and waves of such oscillations can exist in crystals at adiabatic condition. The types and energy quantums of I-oscillations for different atoms are determined. In this connection the adiabatic crystal model is offered. Each atom in the adiabatic model is submitted as I-oscillator whose stationary oscillatory terms are sho...

  8. Thermal state of the general time-dependent harmonic oscillator

    Indian Academy of Sciences (India)

    Taking advantage of dynamical invariant operator, we derived quantum mechanical solution of general time-dependent harmonic oscillator. ... The domain part of the email address of all email addresses used by the office of Indian Academy of Sciences, including those of the staff, the journals, various programmes, and ...

  9. Chaotic synchronization of three coupled oscillators with ring connection

    CERN Document Server

    Kyprianidis, I M

    2003-01-01

    We study the evolution of three identical, resistively coupled with ring connection, nonlinear and nonautonomous electric circuits from nonsynchronized oscillations to synchronized ones, when they exhibit chaotic behavior. Phase-locked states are also observed, as the coupling parameter is varied. The system's dynamics depends on the way of coupling (unidirectional or bidirectional).

  10. Scaling Features of Multimode Motions in Coupled Chaotic Oscillators

    DEFF Research Database (Denmark)

    Pavlov, A.N.; Sosnovtseva, Olga; Mosekilde, Erik

    2003-01-01

    Two different methods (the WTMM- and DFA-approaches) are applied to investigate the scaling properties in the return-time sequences generated by a system of two coupled chaotic oscillators. Transitions from twomode asynchronous dynamics (torus or torus-Chaos) to different states of chaotic phase ...

  11. Emergent organization of oscillator clusters in coupled self ...

    Indian Academy of Sciences (India)

    We observe that the sizes of these oscillator clusters have a power-law distribution. Moreover, we find that the transient dynamics gives rise to a 1/ power spectrum. All these characteristics indicate self-organization and emergent scaling behavior in this system. We also interpret the power-law characteristics of the ...

  12. Nonlinear Analysis of a Cross-Coupled Quadrature Harmonic Oscillator

    DEFF Research Database (Denmark)

    Djurhuus, Torsten; Krozer, Viktor; Vidkjær, Jens

    2004-01-01

    We derive the dynamic equations governing the cross-coupled quadrature oscillator leading to an expression for the trade-off between signal quadrature and close-in phase noise. The theory shows that nonlinearity in the coupling transconductance results in AM-PM noise close to the carrier, which...... increases with the coupling strength. The results are compared with SPECTRE RF simulations....

  13. New construction of coherent states for generalized harmonic oscillators

    International Nuclear Information System (INIS)

    El Baz, M.; Hassouni, Y.; Madouri, F.

    2001-08-01

    A dynamical algebra A q , englobing many of the deformed harmonic oscillator algebras is introduced. One of its special cases is extensively developed. A general method for constructing coherent states related to any algebra of the type A q is discussed. The construction following this method is carried out for the special case. (author)

  14. Electronically induced nuclear transitions - temperature dependence and Rabi oscillations

    CERN Document Server

    Niez, J J

    2002-01-01

    This paper deals with a nucleus electromagnetically coupled with the bound states of its electronic surroundings. It describes the temperature dependence of its dynamics and the onset of potential Rabi oscillations by means of a Master Equation. The latter is generalized in order to account for possible strong resonances. Throughout the paper the approximation schemes are discussed and tested. (authors)

  15. Thermal state of the general time-dependent harmonic oscillator

    Indian Academy of Sciences (India)

    Harmonic oscillator that has time-dependent mass or frequency may be a good example of time-dependent Hamiltonian systems. Although a large number of dynamical systems have been investigated using approximation and perturbation method in the literature [2,3], we confine our concern to the exact quantum solution ...

  16. Semiclassical approximation for a nonlinear oscillator with dissipation

    OpenAIRE

    Iomin, A.

    2003-01-01

    An $S$--matrix approach is developed for the chaotic dynamics of a nonlinear oscillator with dissipation. The quantum--classical crossover is studied in the framework of the semiclassical expansion for the $S$--matrix. Analytical expressions for the braking time and the $S$--matrix are obtained.

  17. Rabi spin oscillations generated by ultrasound in solids.

    Science.gov (United States)

    Calero, C; Chudnovsky, E M

    2007-07-27

    It is shown that ultrasound in the gigahertz range can generate space-time Rabi oscillations between spin states of molecular magnets. We compute dynamics of the magnetization generated by surface acoustic waves and discuss conditions under which this novel quantum effect can be observed.

  18. Does the classically chaotic Henon–Heiles oscillator exhibit ...

    Indian Academy of Sciences (India)

    ∗Corresponding author. MS received 30 January 2006; ... is identified and in this region quantum chaos has been diagnosed through a combination of various dynamical signatures such as the .... Here, the coupling constant λ is taken as 0.11180340 [1–14] for the classically chaotic. HH oscillator. The ground-state wave ...

  19. Present state of the study of 160-minutes solar oscillation

    International Nuclear Information System (INIS)

    Severny, A.B.; Kotov, V.A.; Tsap, T.T.

    1981-01-01

    Global oscillation of the Sun with a period of 160 min were first discovered in 1974 and since observed in Crimea during the last 6 years; they were confirmed, in 1976-1979, by Doppler measurements at Stanford (Scherrer et al., 1980) and quite recently by observations of Fossat and Grec at the south geographic pole. The average amplitude of the oscillation is about 0.5 m s -1 . The phase shows remarkable stability at the period 160.010 min and good agreement between different sites on the Earth; therefore, this oscillation should now be recognized as definitely of solar origin. It is probably accompanied by synchronous fluctuations in the IR brightness and radio-emission of the Sun, and exhibits a dependence of the amplitude on the phase of solar rotation (with a peak of power at 27.2 days). In agreement with results of the Birmingham group and the South Pole observation we also find evidence in favour of a discrete spectrum within the 5 min global oscillations of the Sun, with the average splitting of about 69,5 μHz in frequency. Strict gas-dynamical equations being solved in the adiabatic approximation for a polytropic sphere n = 3 display the pattern of radial oscillations with wave separated by 120 m time-intervals filled with high frequency (and split by 117 μHz) oscillations implying a similarity with the observed pattern. (orig.)

  20. Oscillating-flow loss test results in rectangular heat exchanger passages

    Science.gov (United States)

    Wood, J. Gary

    1991-01-01

    Test results of oscillating flow losses in rectangular heat exchanger passages of various aspect ratios are given. This work was performed in support of the design of a free-piston Stirling engine (FPSE) for a dynamic space power conversion system. Oscillating flow loss testing was performed using an oscillating flow rig, which was based on a variable stroke and variable frequency linear drive motor. Tests were run over a range of oscillating flow parameters encompassing the flow regimes of the proposed engine design. Test results are presented in both tabular and graphical form and are compared against analytical predictions.

  1. Electron-beam driven relaxation oscillations in ferroelectric nanodisks

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Nathaniel; Ahluwalia, Rajeev [Institute of High Performance Computing, Singapore 138632 (Singapore); Kumar, Ashok [CSIR-National Physical Laboratory, Delhi 110012 (India); Srolovitz, David J. [Department of Materials Science and Engineering and Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Chandra, Premala [Department of Physics and Astronomy, Center for Materials Theory, Rutgers University, Piscataway, New Jersey 08854 (United States); Scott, James F. [Department of Physics, Cavendish Laboratory, J. J. Thompson Avenue, Cambridge CB3 0HE (United Kingdom); Department of Chemistry and Department of Physics, University of St. Andrews, St. Andrews YX16 9ST (United Kingdom)

    2015-10-12

    Using a combination of computational simulations, atomic-scale resolution imaging and phenomenological modelling, we examine the underlying mechanism for nanodomain restructuring in lead zirconate titanate nanodisks driven by electron beams. The observed subhertz nanodomain dynamics are identified with relaxation oscillations where the charging/discharging cycle time is determined by saturation of charge traps and nanodomain wall creep. These results are unusual in that they indicate very slow athermal dynamics in nanoscale systems, and possible applications of gated versions are discussed.

  2. Heat transfer with oscillating pressure and oscillating flow

    Science.gov (United States)

    Kornhauser, Alan A.; Smith, Joseph L., Jr.

    Heat exchangers in Stirling engines and many other reciprocating machines operating under conditions of both oscillating pressure and oscillating flow are discussed. Experiments were done on an apparatus consisting of a piston-cylinder space connected to an annular dead-end heat exchanger space. Instantaneous heat flux and center gas temperature were measured at six locations along the heat exchanger. The results were used to test the model, with the complex Nusselt number correlated against oscillating-flow Peclet number. The experimental results showed that the complex Nusselt number was capable of predicting the heat flux, but that there was at least one other important independent variable besides oscillating-flow Peclet number. Dimensional analysis suggested that this was either the ratio of gas thermal properties to those of the wall or a measure of compressibility effects.

  3. Neutrino oscillation: status and outlooks

    International Nuclear Information System (INIS)

    Nedelec, P.

    1994-01-01

    Whether the neutrinos are massive or not is one of the most puzzling question of physics today. If they are massive, they can contribute significantly to the Dark Matter of the Universe. An other consequence of a non-zero mass of neutrinos is that they might oscillate from one flavor to another. This oscillation process is by now the only way to detect a neutrino with a mass in the few eV range. Several neutrino experiments are currently looking for such an oscillation, in different modes, using different techniques. An overview of the experimental situation for neutrino experiments at accelerators is given. (author). 9 refs., 5 figs., 5 tabs

  4. Collective oscillations in a plasma

    CERN Document Server

    Akhiezer, A I; Polovin, R V; ter Haar, D

    2013-01-01

    International Series of Monographs in Natural Philosophy: Collective Oscillations in a Plasma, Volume 7 presents specific topics within the general field of radio waves propagation. This book contains five chapters that address the theory of linear oscillations in a plasma, the spectra of the eigen oscillations, and the mechanism of high-frequency heating. The opening chapters deal with the self-consistent fields; development of initial perturbation; dispersion permittivity tensor of a plasma in a magnetic field; effect of thermal motion of particles on low-frequency resonances; excitation of

  5. Principal oscillation patterns

    International Nuclear Information System (INIS)

    Storch, H. von; Buerger, G.; Storch, J.S. von

    1993-01-01

    The Principal Oscillation Pattern (POP) analysis is a technique which is used to simultaneously infer the characteristic patterns and time scales of a vector time series. The POPs may be seen as the normal modes of a linearized system whose system matrix is estimated from data. The concept of POP analysis is reviewed. Examples are used to illustrate the potential of the POP technique. The best defined POPs of tropospheric day-to-day variability coincide with the most unstable modes derived from linearized theory. POPs can be derived even from a space-time subset of data. POPs are successful in identifying two independent modes with similar time scales in the same data set. The POP method can also produce forecasts which may potentially be used as a reference for other forecast models. The conventional POP analysis technique has been generalized in various ways. In the cyclostationary POP analysis, the estimated system matrix is allowed to vary deterministically with an externally forced cycle. In the complex POP analysis not only the state of the system but also its ''momentum'' is modeled. Associated correlation patterns are a useful tool to describe the appearance of a signal previously identified by a POP analysis in other parameters. (orig.)

  6. Rabi oscillation between states of a coupled harmonic oscillator

    International Nuclear Information System (INIS)

    Park, Tae Jun

    2003-01-01

    Rabi oscillation between bound states of a single potential is well known. However the corresponding formula between the states of two different potentials has not been obtained yet. In this work, we derive Rabi formula between the states of a coupled harmonic oscillator which may be used as a simple model for the electron transfer. The expression is similar to typical Rabi formula for a single potential. This result may be used to describe transitions between coupled diabatic potential curves

  7. Harnessing Energy from Arrays of Oscillating Hydrofoils

    Science.gov (United States)

    Simeski, Filip; Spaulding, Arianne; Franck, Jennifer

    2016-11-01

    Computational Fluid Dynamics (CFD) simulations are performed on multiple-hydrofoil systems for the application of energy harvesting. Oscillating hydrofoils generate power through a coupled heaving and pitching motion. Various linear and staggered configurations consisting of three to four hydrofoils are simulated, and the system efficiency of the array is evaluated, as well as the energy density of the system. Of particular interest is the observation that regular vortices from the foils' leading and trailing edges develop into a well-structured wake affecting performance of downstream-located hydrofoils in the system, and leading to an optimal phase difference between foils. Simulations are performed at a Reynolds number of 1000, and utilize OpenFOAM with dynamic meshing libraries employed to handle the foil motion.

  8. Role of Frontal Alpha Oscillations in Creativity

    Science.gov (United States)

    Lustenberger, Caroline; Boyle, Michael R.; Foulser, A. Alban; Mellin, Juliann M.; Fröhlich, Flavio

    2015-01-01

    Creativity, the ability to produce innovative ideas, is a key higher-order cognitive function that is poorly understood. At the level of macroscopic cortical network dynamics, recent EEG data suggests that cortical oscillations in the alpha frequency band (8 – 12 Hz) are correlated with creative thinking. However, whether alpha oscillations play a fundamental role in creativity has remained unknown. Here we show that creativity is increased by enhancing alpha power using 10 Hz transcranial alternating current stimulation (10Hz-tACS) of the frontal cortex. In a study of 20 healthy participants with a randomized, balanced cross-over design, we found a significant improvement of 7.4% in the Creativity Index measured by the Torrance Test of Creative Thinking, a comprehensive and most frequently used assay of creative potential and strengths. In a second similar study with 20 subjects, 40Hz-tACS was used in instead of 10Hz-tACS to rule out a general “electrical stimulation” effect. No significant change in the Creativity Index was found for such frontal gamma stimulation. Our results suggest that alpha activity in frontal brain areas is selectively involved in creativity; this enhancement represents the first demonstration of specific neuronal dynamics that drive creativity and can be modulated by non-invasive brain stimulation. Our findings agree with the model that alpha recruitment increases with internal processing demands and is involved in inhibitory top-down control, which is an important requirement for creative ideation. PMID:25913062

  9. A modified wake oscillator model for predicting vortex induced vibration of heat exchanger tube

    International Nuclear Information System (INIS)

    Feng Zhipeng; Zang Fenggang; Zhang Yixiong; Ye Xianhui

    2014-01-01

    Base on the classical wake oscillator model, a new modified wake oscillator model is proposed, for predicting vortex induced vibration of heat exchanger tube in uniform current. The comparison between the new wake oscillator model and experimental show that the present model can simulate the characteristics of vortex induced vibration of tube. Firstly, the research shows that the coupled fluid-structure dynamical system should be modeled by combined displacement and acceleration mode. Secondly, the empirical parameter in wake oscillator model depends on the material properties of the structure, instead of being a universal constant. Lastly, the results are compared between modified wake oscillator model and fluid-structure interaction numerical model. It shows the present, predicted results are compared to the fluid-structure interaction numerical data. The new modified wake oscillator model can predict the vortex induced heat exchanger tube vibration feasibly. (authors)

  10. Global Status of Neutrino Oscillation

    Indian Academy of Sciences (India)

    monojit

    2014-11-08

    Outline of talk. Neutrino Oscillations: the context. Solar and geo neutrino physics. Reactor neutrino physics. Atmospheric and long-baseline neutrino physics. Atmospheric neutrinos and INO. Nov 8, 2014, IASc Annual Meeting, IIT-Madras, Chennai – p. 2 ...

  11. Strongly nonlinear oscillators analytical solutions

    CERN Document Server

    Cveticanin, Livija

    2014-01-01

    This book provides the presentation of the motion of pure nonlinear oscillatory systems and various solution procedures which give the approximate solutions of the strong nonlinear oscillator equations. The book presents the original author’s method for the analytical solution procedure of the pure nonlinear oscillator system. After an introduction, the physical explanation of the pure nonlinearity and of the pure nonlinear oscillator is given. The analytical solution for free and forced vibrations of the one-degree-of-freedom strong nonlinear system with constant and time variable parameter is considered. Special attention is given to the one and two mass oscillatory systems with two-degrees-of-freedom. The criteria for the deterministic chaos in ideal and non-ideal pure nonlinear oscillators are derived analytically. The method for suppressing chaos is developed. Important problems are discussed in didactic exercises. The book is self-consistent and suitable as a textbook for students and also for profess...

  12. Quorum Sensing in Populations of Spatially Extended Chaotic Oscillators Coupled Indirectly via a Heterogeneous Environment

    Science.gov (United States)

    Li, Bing-Wei; Cao, Xiao-Zhi; Fu, Chenbo

    2017-12-01

    Many biological and chemical systems could be modeled by a population of oscillators coupled indirectly via a dynamical environment. Essentially, the environment by which the individual element communicates with each other is heterogeneous. Nevertheless, most of previous works considered the homogeneous case only. Here we investigated the dynamical behaviors in a population of spatially distributed chaotic oscillators immersed in a heterogeneous environment. Various dynamical synchronization states (such as oscillation death, phase synchronization, and complete synchronized oscillation) as well as their transitions were explored. In particular, we uncovered a non-traditional quorum sensing transition: increasing the population density leaded to a transition from oscillation death to synchronized oscillation at first, but further increasing the density resulted in degeneration from complete synchronization to phase synchronization or even from phase synchronization to desynchronization. The underlying mechanism of this finding was attributed to the dual roles played by the population density. What's more, by treating the environment as another component of the oscillator, the full system was then effectively equivalent to a locally coupled system. This fact allowed us to utilize the master stability functions approach to predict the occurrence of complete synchronization oscillation, which agreed with that from the direct numerical integration of the system. The potential candidates for the experimental realization of our model were also discussed.

  13. Modelling solar-like oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Eggenberger, P; Miglio, A [Institut d' Astrophysique et de Geophysique de l' Universite de Liege, 17 Allee du 6 Aout, B-4000 Liege (Belgium); Carrier, F [Institute of Astronomy, University of Leuven, Celestijnenlaan 200 D, B-3001 Leuven (Belgium); Mathis, S [CEA/DSM/DAPNIA/Service d' Astrophysique, CEA/Saclay, AIM-Unite Mixte de Recherche CEA-CNRS-Universite Paris VII, UMR 7158, 91191 Gif-sur-Yvette Cedex (France)], E-mail: eggenberger@Qastro.ulg.ac.be

    2008-10-15

    The computation of models of stars for which solar-like oscillations have been observed is discussed. After a brief intoduction on the observations of solar-like oscillations, the modelling of isolated stars and of stars belonging to a binary system is presented with specific examples of recent theoretical calibrations. Finally the input physics introduced in stellar evolution codes for the computation of solar-type stars is discussed with a peculiar emphasis on the modelling of rotation for these stars.

  14. Characterization and detection of thermoacoustic combustion oscillations based on statistical complexity and complex-network theory

    Science.gov (United States)

    Murayama, Shogo; Kinugawa, Hikaru; Tokuda, Isao T.; Gotoda, Hiroshi

    2018-02-01

    We present an experimental study on the characterization of dynamic behavior of flow velocity field during thermoacoustic combustion oscillations in a turbulent confined combustor from the viewpoints of statistical complexity and complex-network theory, involving detection of a precursor of thermoacoustic combustion oscillations. The multiscale complexity-entropy causality plane clearly shows the possible presence of two dynamics, noisy periodic oscillations and noisy chaos, in the shear layer regions (1) between the outer recirculation region in the dump plate and a recirculation flow in the wake of the centerbody and (2) between the outer recirculation region in the dump plate and a vortex breakdown bubble away from the centerbody. The vertex strength in the turbulence network and the community structure of the vorticity field can identify the vortical interactions during thermoacoustic combustion oscillations. Sequential horizontal visibility graph motifs are useful for capturing a precursor of themoacoustic combustion oscillations.

  15. Broad-scale small-world network topology induces optimal synchronization of flexible oscillators

    International Nuclear Information System (INIS)

    Markovič, Rene; Gosak, Marko; Marhl, Marko

    2014-01-01

    The discovery of small-world and scale-free properties of many man-made and natural complex networks has attracted increasing attention. Of particular interest is how the structural properties of a network facilitate and constrain its dynamical behavior. In this paper we study the synchronization of weakly coupled limit-cycle oscillators in dependence on the network topology as well as the dynamical features of individual oscillators. We show that flexible oscillators, characterized by near zero values of divergence, express maximal correlation in broad-scale small-world networks, whereas the non-flexible (rigid) oscillators are best correlated in more heterogeneous scale-free networks. We found that the synchronization behavior is governed by the interplay between the networks global efficiency and the mutual frequency adaptation. The latter differs for flexible and rigid oscillators. The results are discussed in terms of evolutionary advantages of broad-scale small-world networks in biological systems

  16. Numerical simulation on quantum turbulence created by an oscillating object

    Energy Technology Data Exchange (ETDEWEB)

    Fujiyama, S; Tsubota, M [Department of Physics, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka City, Osaka (Japan)], E-mail: fujiyama@sci.osaka-cu.ac.jp

    2009-02-01

    We have conducted a numerical simulation of vortex dynamics in superfluid {sup 4}He in the presence of an oscillating sphere. The experiment on a vibrating wire that measured the transition from laminar to turbulent flow is modelled in our simulations. The simulation exhibits the details of vortex growth by the oscillating sphere. Our result also shows that a more realistic modelling may change the destiny of the vortex rings detached from the sphere. We have evaluated the force driven by the sphere in the simulation and have confirmed the onset of the quantum turbulence.

  17. Intraburst versus interburst locking in networks of driven nonidentical oscillators

    Science.gov (United States)

    Waddell, Jack; Zochowski, Michal

    2007-11-01

    We investigate the effect of common periodic drive applied to mean-field coupled oscillators and observe a specific realization of synchronization for particular ranges of drive frequency. This synchronization occurs when the phase difference variability between a pair of oscillators on a given cycle is larger than that between consecutive cycles. This synchrony may have implications for neural systems, in which case the apparent locking between neurons based on the magnitude of their interspike intervals may not be consistent with their dynamical locking.

  18. Nonlinearly driven oscillations in the gyrotron traveling-wave amplifier

    International Nuclear Information System (INIS)

    Chiu, C. C.; Pao, K. F.; Yan, Y. C.; Chu, K. R.; Barnett, L. R.; Luhmann, N. C. Jr.

    2008-01-01

    By delivering unprecedented power and gain, the gyrotron traveling-wave amplifier (gyro-TWT) offers great promise for advanced millimeter wave radars. However, the underlying physics of this complex nonlinear system is yet to be fully elucidated. Here, we report a new phenomenon in the form of nonlinearly driven oscillations. A zero-drive stable gyro-TWT is shown to be susceptible to a considerably reduced dynamic range at the band edge, followed by a sudden transition into driven oscillations and then a hysteresis effect. An analysis of this unexpected behavior and its physical interpretation are presented.

  19. Oscillation in Pest Population and Its Management: A Mathematical Study

    Directory of Open Access Journals (Sweden)

    Samit Bhattacharyya

    2013-01-01

    Full Text Available We study the role of predation dynamics in oscillation of pest population in insect ecology. A two-dimensional pest control model (under the use of insecticides with time delay in predation is considered in this paper. By the Hopf bifurcation theory, we prove the existence of the stable oscillation of the system. We also consider the economic viability of the control process. First we improve the Pontryagin maximum principle (PMP where the delay in the system is sufficiently small and control function is linear, and then we apply the improved version of PMP to perform the optimal analysis of the pest control model as a special case.

  20. Experimental synchronization of circuit oscillations induced by common telegraph noise.

    Science.gov (United States)

    Nagai, Ken; Nakao, Hiroya

    2009-03-01

    Experimental realization and quantitative investigation of common-noise-induced synchronization of limit-cycle oscillations subject to random telegraph signals are performed using an electronic oscillator circuit. Based on our previous formulation [K. Nagai, Phys. Rev. E 71, 036217 (2005)], dynamics of the circuit is described as random-phase mappings between two limit cycles. Lyapunov exponents characterizing the degree of synchronization are estimated from experimentally determined phase maps and compared with linear damping rates of phase differences measured directly. Noisy on-off intermittency of the phase difference as predicted by the theory is also confirmed experimentally.

  1. The evolution of patterns in a homogeneously oscillating medium

    Science.gov (United States)

    Kawczyński, Andrzej L.; Comstock, William S.; Field, Richard J.

    1992-01-01

    The evolution of concentration patterns from a local disturbance of an unstirred, homogeneously oscillating, chemical system subject to reaction and diffusion is investigated. A new pulse of concentration forms after each homogeneous oscillation until eventually the entire domain is filled. The theory of travelling fronts is used to develop a treatment which is useful in understanding the evolution of these patterns whenever the nullclines of the chemical dynamics have a certain, quite common form. The concepts developed are used to interpret the results of numerical simulation of the behavior of a modified Oregonator model of the Belousov-Zhabotinsky reaction.

  2. Modeling nonlinearities in MEMS oscillators.

    Science.gov (United States)

    Agrawal, Deepak K; Woodhouse, Jim; Seshia, Ashwin A

    2013-08-01

    We present a mathematical model of a microelectromechanical system (MEMS) oscillator that integrates the nonlinearities of the MEMS resonator and the oscillator circuitry in a single numerical modeling environment. This is achieved by transforming the conventional nonlinear mechanical model into the electrical domain while simultaneously considering the prominent nonlinearities of the resonator. The proposed nonlinear electrical model is validated by comparing the simulated amplitude-frequency response with measurements on an open-loop electrically addressed flexural silicon MEMS resonator driven to large motional amplitudes. Next, the essential nonlinearities in the oscillator circuit are investigated and a mathematical model of a MEMS oscillator is proposed that integrates the nonlinearities of the resonator. The concept is illustrated for MEMS transimpedance-amplifier- based square-wave and sine-wave oscillators. Closed-form expressions of steady-state output power and output frequency are derived for both oscillator models and compared with experimental and simulation results, with a good match in the predicted trends in all three cases.

  3. Magnetically Coupled Magnet-Spring Oscillators

    Science.gov (United States)

    Donoso, G.; Ladera, C. L.; Martin, P.

    2010-01-01

    A system of two magnets hung from two vertical springs and oscillating in the hollows of a pair of coils connected in series is a new, interesting and useful example of coupled oscillators. The electromagnetically coupled oscillations of these oscillators are experimentally and theoretically studied. Its coupling is electromagnetic instead of…

  4. On the nonlinear modeling of ring oscillators

    KAUST Repository

    Elwakil, Ahmed S.

    2009-06-01

    We develop higher-order nonlinear models of three-stage and five-stage ring oscillators based on a novel inverter model. The oscillation condition and oscillation frequency are derived and compared to classical linear model analysis. Two important special cases for five-stage ring oscillators are also studied. Numerical simulations are shown. © 2009 World Scientific Publishing Company.

  5. On the mechanism of oscillations in neutrophils

    DEFF Research Database (Denmark)

    Brasen, Jens Christian; Barington, Torben; Olsen, Lars Folke

    2010-01-01

    We have investigated the regulation of the oscillatory generation of H(2)O(2) and oscillations in shape and size in neutrophils in suspension. The oscillations are independent of cell density and hence do not represent a collective phenomena. Furthermore, the oscillations are independent...... of the external glucose concentration and the oscillations in H(2)O(2) production are 180 degrees out of phase with the oscillations in NAD(P)H. Cytochalasin B blocked the oscillations in shape and size whereas it increased the period of the oscillations in H(2)O(2) production. 1- and 2-butanol also blocked...... the oscillations in shape and size, but only 1-butanol inhibited the oscillations in H(2)O(2) production. We conjecture that the oscillations are likely to be due to feedback regulations in the signal transduction cascade involving phosphoinositide 3-kinases (PI3K). We have tested this using a simple mathematical...

  6. Damping time of transverse kink oscillations in active region coronal loops observed by AIA/SDO

    Directory of Open Access Journals (Sweden)

    Abbas Abedini

    2017-05-01

    Full Text Available A coronal loop can be oscillated in various directions. A basic type of coronal loop oscillation is called transverse oscillation that can be caused by different factors, such as nearby active regions and flares. The damping of transverse oscillation may be produced by the dissipation mechanism or the wake of the traveling disturbance. The aim of this paper is to estimate the damping time of transverse (kink coronal loop oscillations and the quantitative dependence of these oscillations on their frequencies in the solar corona loops that are situated near an active region with the Atmospheric Imaging Assembly (AIA onboard Solar Dynamic Observatory (SDO. The observed data on 2014-Oct-17, consisting of 130 images with an interval of 24 seconds in the 171 A0 pass band is analyzed for evidence of transvers kink oscillations along the coronal loops and for estimate of physical parameters by fast Fourier transform (FFT of data times series. In this analyzed signatures of transvers oscillations that are damped rapidly were found, with oscillation periods in the range of P=2-9.5 minutes. Also, damping times and damping qualities of filtered intensities centered on the dominant frequencies are measured in the range of minutes and , respectively. The observational results of this study indicate that the damping times increase with increasing the oscillation periods, and are highly sensitive function of oscillation period, but damping qualities are not very sensitive to the oscillations period. The order of magnitude of the damping times and damping qualities that obtained from this analysis are in good agreement with previous findings by authors and the theoretical prediction for damping of fast kink mode oscillations.

  7. Discomfort caused by low-frequency lateral oscillation, roll oscillation and roll-compensated lateral oscillation.

    Science.gov (United States)

    Beard, George F; Griffin, Michael J

    2013-01-01

    Roll compensation during cornering (aligning the feet-to-head axis of the body with the resultant force) reduces lateral acceleration, but how any improvement in comfort depends on the frequency of the acceleration has not previously been investigated. Seated subjects judged the discomfort caused by lateral oscillation, roll oscillation and fully roll-compensated lateral oscillation at each of seven frequencies (0.25-1.0 Hz). Irrespective of whether it was caused by pure lateral acceleration or gravitational acceleration due to pure roll, acceleration in the plane of the seat caused similar discomfort at frequencies less than 0.4 Hz. From 0.4 to 1.0 Hz, with the same lateral acceleration in the plane of the seat, there was greater discomfort from roll oscillation than from lateral acceleration. With fully roll-compensated lateral oscillation, discomfort was less than with either the lateral component or the roll component of the motion from 0.2 to 0.5 Hz, but discomfort increased with increasing frequency and caused similar discomfort to pure roll oscillation at 1.0 Hz. Tilting can reduce passenger exposure to vehicle lateral acceleration when cornering, but how comfort depends on the frequency of motion was unknown. This study shows 'tilt-compensation' only improves comfort at frequencies less than 0.5 Hz. The findings affect tilting vehicles and the prediction of discomfort caused by low-frequency motions.

  8. Relaxation oscillations in an idealized ocean circulation model

    Science.gov (United States)

    Roberts, Andrew; Saha, Raj

    2017-04-01

    This work is motivated by a desire to understand transitions between stable equilibria observed in Stommel's 1961 thermohaline circulation model. We adapt the model, including a forcing parameter as a dynamic slow variable. The resulting model is a piecewise-smooth, three time-scale system. The model is analyzed using geometric singular perturbation theory to demonstrate the existence of attracting periodic orbits. The system is capable of producing classical relaxation oscillations as expected, but there is also a parameter regime in which the model exhibits small amplitude oscillations known as canard cycles. Forcing the model with obliquity variations from the last 100,000 years produces oscillations that are modulated in amplitude and frequency. The output shows similarities with important features of the climate proxy data of the same period.

  9. Large-amplitude Longitudinal Oscillations in a Solar Filament

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Q. M.; Su, Y. N.; Ji, H. S. [Key Laboratory for Dark Matter and Space Science, Purple Mountain Observatory, CAS, Nanjing 210008 (China); Li, T. [CAS Key Laboratory of Solar Activity, National Astronomical Observatories, Beijing 100012 (China); Zheng, R. S., E-mail: zhangqm@pmo.ac.cn [Institute of Space Sciences, Shandong University, Weihai 264209 (China)

    2017-06-10

    In this paper, we report our multiwavelength observations of the large-amplitude longitudinal oscillations of a filament observed on 2015 May 3. Located next to active region 12335, the sigmoidal filament was observed by the ground-based H α telescopes from the Global Oscillation Network Group and by the Atmospheric Imaging Assembly instrument on board the Solar Dynamics Observatory . The filament oscillations were most probably triggered by the magnetic reconnection in the filament channel, which is characterized by the bidirectional flows, brightenings in EUV and soft X-ray, and magnetic cancellation in the photosphere. The directions of oscillations have angles of 4°–36° with respect to the filament axis. The whole filament did not oscillate in phase as a rigid body. Meanwhile, the oscillation periods (3100–4400 s) have a spatial dependence, implying that the curvature radii ( R ) of the magnetic dips are different at different positions. The values of R are estimated to be 69.4–133.9 Mm, and the minimum transverse magnetic field of the dips is estimated to be 15 G. The amplitudes of S5-S8 grew with time, while the amplitudes of S9-S14 damped with time. The oscillation amplitudes range from a few to ten Mm, and the maximum velocity can reach 30 km s{sup −1}. Interestingly, the filament experienced mass drainage southward at a speed of ∼27 km s{sup −1}. The oscillations continued after the mass drainage and lasted for more than 11 hr. After the mass drainage, the oscillation phases did not change much. The periods of S5-S8 decreased, while the periods of S9-S14 increased. The amplitudes of S5-S8 damped with time, while the amplitudes of S9-S14 grew. Most of the damping (growing) ratios are between −9 and 14. We offer a schematic cartoon to explain the complex behaviors of oscillations by introducing thread-thread interaction.

  10. ALG-2 oscillates in subcellular localization, unitemporally with calcium oscillations

    DEFF Research Database (Denmark)

    la Cour, Jonas Marstrand; Mollerup, Jens; Berchtold, Martin Werner

    2007-01-01

    A variety of stimuli can trigger intracellular calcium oscillations. Relatively little is known about the molecular mechanisms decoding these events. We show that ALG-2, a Ca2+-binding protein originally isolated as a protein associated with apoptosis, is directly linked to Ca2+ signalling. We...... localization in an oscillatory fashion unitemporally with Ca2+ oscillations, whereas a Ca2+-binding deficient mutant of ALG-2 did not redistribute. Using tagged ALG-2 as bait we identified its novel target protein Sec31A and based on the partial colocalization of endogenous ALG-2 and Sec31A we propose that ALG...

  11. U.S. Hail Frequency and the Global Wind Oscillation

    Science.gov (United States)

    Gensini, Vittorio A.; Allen, John T.

    2018-02-01

    Changes in Earth relative atmospheric angular momentum can be described by an index known as the Global Wind Oscillation. This global index accounts for changes in Earth's atmospheric budget of relative angular momentum through interactions of tropical convection anomalies, extratropical dynamics, and engagement of surface torques (e.g., friction and mountain). It is shown herein that U.S. hail events are more (less) likely to occur in low (high) atmospheric angular momentum base states when excluding weak Global Wind Oscillation days, with the strongest relationships found in the boreal spring and fall. Severe, significant severe, and giant hail events are more likely to occur during Global Wind Oscillation phases 8, 1, 2, and 3 during the peak of U.S. severe weather season. Lower frequencies of hail events are generally found in Global Wind Oscillation phases 4-7 but vary based on Global Wind Oscillation amplitude and month. In addition, probabilistic anomalies of atmospheric ingredients supportive of hail producing supercell thunderstorms closely mimic locations of reported hail frequency, helping to corroborate report results.

  12. Photoinduced High-Frequency Charge Oscillations in Dimerized Systems

    Science.gov (United States)

    Yonemitsu, Kenji

    2018-04-01

    Photoinduced charge dynamics in dimerized systems is studied on the basis of the exact diagonalization method and the time-dependent Schrödinger equation for a one-dimensional spinless-fermion model at half filling and a two-dimensional model for κ-(bis[ethylenedithio]tetrathiafulvalene)2X [κ-(BEDT-TTF)2X] at three-quarter filling. After the application of a one-cycle pulse of a specifically polarized electric field, the charge densities at half of the sites of the system oscillate in the same phase and those at the other half oscillate in the opposite phase. For weak fields, the Fourier transform of the time profile of the charge density at any site after photoexcitation has peaks for finite-sized systems that correspond to those of the steady-state optical conductivity spectrum. For strong fields, these peaks are suppressed and a new peak appears on the high-energy side, that is, the charge densities mainly oscillate with a single frequency, although the oscillation is eventually damped. In the two-dimensional case without intersite repulsion and in the one-dimensional case, this frequency corresponds to charge-transfer processes by which all the bonds connecting the two classes of sites are exploited. Thus, this oscillation behaves as an electronic breathing mode. The relevance of the new peak to a recently found reflectivity peak in κ-(BEDT-TTF)2X after photoexcitation is discussed.

  13. The Red Queen and the persistence of linkage-disequilibrium oscillations in finite and infinite populations.

    Science.gov (United States)

    Kouyos, Roger D; Salathé, Marcel; Bonhoeffer, Sebastian

    2007-11-06

    The Red Queen Hypothesis (RQH) suggests that the coevolutionary dynamics of host-parasite systems can generate selection for increased host recombination. Since host-parasite interactions often have a strong genetic basis, recombination between different hosts can increase the fraction of novel and potentially resistant offspring genotypes. A prerequisite for this mechanism is that host-parasite interactions generate persistent oscillations of linkage disequilibria (LD). We use deterministic and stochastic models to investigate the persistence of LD oscillations and its impact on the RQH. The standard models of the Red Queen dynamics exhibit persistent LD oscillations under most circumstances. Here, we show that altering the standard model from discrete to continuous time or from simultaneous to sequential updating results in damped LD oscillations. This suggests that LD oscillations are structurally not robust. We then show that in a stochastic regime, drift can counteract this dampening and maintain the oscillations. In addition, we show that the amplitude of the oscillations and therefore the strength of the resulting selection for or against recombination are inversely proportional to the size of the (host) population. We find that host parasite-interactions cannot generally maintain oscillations in the absence of drift. As a consequence, the RQH can strongly depend on population size and should therefore not be interpreted as a purely deterministic hypothesis.

  14. The Red Queen and the persistence of linkage-disequilibrium oscillations in finite and infinite populations

    Directory of Open Access Journals (Sweden)

    Bonhoeffer Sebastian

    2007-11-01

    Full Text Available Abstract Background The Red Queen Hypothesis (RQH suggests that the coevolutionary dynamics of host-parasite systems can generate selection for increased host recombination. Since host-parasite interactions often have a strong genetic basis, recombination between different hosts can increase the fraction of novel and potentially resistant offspring genotypes. A prerequisite for this mechanism is that host-parasite interactions generate persistent oscillations of linkage disequilibria (LD. Results We use deterministic and stochastic models to investigate the persistence of LD oscillations and its impact on the RQH. The standard models of the Red Queen dynamics exhibit persistent LD oscillations under most circumstances. Here, we show that altering the standard model from discrete to continuous time or from simultaneous to sequential updating results in damped LD oscillations. This suggests that LD oscillations are structurally not robust. We then show that in a stochastic regime, drift can counteract this dampening and maintain the oscillations. In addition, we show that the amplitude of the oscillations and therefore the strength of the resulting selection for or against recombination are inversely proportional to the size of the (host population. Conclusion We find that host parasite-interactions cannot generally maintain oscillations in the absence of drift. As a consequence, the RQH can strongly depend on population size and should therefore not be interpreted as a purely deterministic hypothesis.

  15. Stochastic process of pragmatic information for 2D spiral wave turbulence in globally and locally coupled Alief-Panfilov oscillators

    Science.gov (United States)

    Kuwahara, Jun; Miyata, Hajime; Konno, Hidetoshi

    2017-09-01

    Recently, complex dynamics of globally coupled oscillators have been attracting many researcher's attentions. In spite of their numerous studies, their features of nonlinear oscillator systems with global and local couplings in two-dimension (2D) are not understood fully. The paper focuses on 2D states of coherent, clustered and chaotic oscillation especially under the effect of negative global coupling (NGC) in 2D Alief-Panfilov model. It is found that the tuning NGC can cause various new coupling-parameter dependency on the features of oscillations. Then quantitative characterization of various states of oscillations (so called spiral wave turbulence) is examined by using the pragmatic information (PI) which have been utilized in analyzing multimode laser, solar activity and neuronal systems. It is demonstrated that the dynamics of the PI for various oscillations can be characterized successfully by the Hyper-Gamma stochastic process.

  16. Real oscillations of virtual neutrinos

    International Nuclear Information System (INIS)

    Grimus, W.; Stockinger, P.

    1996-01-01

    We study the conditions for neutrino oscillations in a field-theoretical approach by taking into account that only the neutrino production and detection processes, which are localized in space around the coordinates x searrow P and x searrow D , respectively, can be manipulated. In this sense the neutrinos whose oscillations are investigated appear as virtual lines connecting production with detection in the total Feynman graph and all neutrino fields or states to be found in the discussion are mass eigenfields or eigenstates. We perform a thorough examination of the integral over the spatial components of the inner neutrino momentum and show that in the asymptotic limit L=|x searrow D -x searrow P |→∞ the virtual neutrinos become open-quote open-quote real close-quote close-quote and under certain conditions the usual picture of neutrino oscillations emerges without ambiguities. copyright 1996 The American Physical Society

  17. Prediction of pilot induced oscillations

    Directory of Open Access Journals (Sweden)

    Valentin PANĂ

    2011-03-01

    Full Text Available An important problem in the design of flight-control systems for aircraft under pilotedcontrol is the determination of handling qualities and pilot-induced oscillations (PIO tendencieswhen significant nonlinearities exist in the vehicle description. The paper presents a method to detectpossible pilot-induced oscillations of Category II (with rate and position limiting, a phenomenonusually due to a misadaptation between the pilot and the aircraft response during some tasks in whichtight closed loop control of the aircraft is required from the pilot. For the analysis of Pilot in the LoopOscillations an approach, based on robust stability analysis of a system subject to uncertainparameters, is proposed. In this analysis the nonlinear elements are substituted by linear uncertainparameters. This approach assumes that PIO are characterized by a limit cycle behavior.

  18. Van der Pol and the history of relaxation oscillations: Toward the emergence of a concept

    Science.gov (United States)

    Ginoux, Jean-Marc; Letellier, Christophe

    2012-06-01

    Relaxation oscillations are commonly associated with the name of Balthazar van der Pol via his paper (Philosophical Magazine, 1926) in which he apparently introduced this terminology to describe the nonlinear oscillations produced by self-sustained oscillating systems such as a triode circuit. Our aim is to investigate how relaxation oscillations were actually discovered. Browsing the literature from the late 19th century, we identified four self-oscillating systems in which relaxation oscillations have been observed: (i) the series dynamo machine conducted by Gérard-Lescuyer (1880), (ii) the musical arc discovered by Duddell (1901) and investigated by Blondel (1905), (iii) the triode invented by de Forest (1907), and (iv) the multivibrator elaborated by Abraham and Bloch (1917). The differential equation describing such a self-oscillating system was proposed by Poincaré for the musical arc (1908), by Janet for the series dynamo machine (1919), and by Blondel for the triode (1919). Once Janet (1919) established that these three self-oscillating systems can be described by the same equation, van der Pol proposed (1926) a generic dimensionless equation which captures the relevant dynamical properties shared by these systems. Van der Pol's contributions during the period of 1926-1930 were investigated to show how, with Le Corbeiller's help, he popularized the "relaxation oscillations" using the previous experiments as examples and, turned them into a concept.

  19. Low-dimensional maps for piecewise smooth oscillators

    Science.gov (United States)

    Pavlovskaia, Ekaterina; Wiercigroch, Marian

    2007-09-01

    Dynamics of the piecewise smooth nonlinear oscillators is considered, for which, general methodology of reducing multidimensional flows to low-dimensional maps is proposed. This includes a definition of piecewise smooth oscillator and creation of a global iterative map providing an exact solution. The global map is comprised of local maps, which are constructed in the smooth sub-regions of phase space. To construct this low-dimensional map, it is proposed to monitor the points of intersections of a chosen boundary between smooth subspaces by a trajectory. The dimension reduction is directly related to the dimension of the chosen boundary, and the lower its dimension is, the larger dimension reduction can be achieved. Full details are given for a drifting impact oscillator, where the five-dimensional flow is reduced to one-dimensional (1D) approximate analytical map. First an exact two-dimensional map has been formulated and analysed. A further reduction to 1D approximate map is introduced and discussed. Standard nonlinear dynamic analysis reveals a complex behaviour ranging from periodic oscillations to chaos, and co-existence of multiple attractors. Accuracy of the constructed maps is examined by comparing with the exact solutions for a wide range of the system parameters.

  20. Brain oscillations in sport: toward EEG biomakers of performance

    Directory of Open Access Journals (Sweden)

    Guy eCheron

    2016-02-01

    Full Text Available Brain dynamics is at the basis of top performance accomplishment in sports. The search for neural biomarkers of performance remains a challenge in movement science and sport psychology. The noninvasive nature of high-density electroencephalography (EEG recording has made it a most promising avenue for providing quantitative feedback to practitioners and coaches. Here, we review the current relevance of the main types of EEG oscillations in order to trace a perspective for future practical applications of EEG and event-related potentials (ERP in sport. In this context, the hypotheses of unified brain rhythms and continuity between wake and sleep states should provide a functional template for EEG biomarkers in sport. The oscillations in the thalamo-cortical and hippocampal circuitry including the physiology of the place cells and the grid cells provide a frame of reference for the analysis of delta, theta, beta, alpha (incl.mu and gamma oscillations recorded in the space field of human performance. Based on recent neuronal models facilitating the distinction between the different dynamic regimes (selective gating and binding in these different oscillations we suggest an integrated approach articulating together the classical biomechanical factors (3D movements and EMG and the high-density EEG and ERP signals to allow finer mathematical analysis to optimize sport performance, such as microstates, coherency/directionality analysis and neural generators.

  1. DIGITAL SELF-OSCILLATING MODULATOR

    DEFF Research Database (Denmark)

    2007-01-01

    A digital self-oscillating modulator (1) having a digital reference signal as input (Vref) comprises a forward loop with a first output and a feedback loop. The feedback loop comprises a feedback block (18) having a transfer function (MFB) and a digital output. The forward loop comprises an alter......A digital self-oscillating modulator (1) having a digital reference signal as input (Vref) comprises a forward loop with a first output and a feedback loop. The feedback loop comprises a feedback block (18) having a transfer function (MFB) and a digital output. The forward loop comprises...

  2. Two-electron Rabi oscillations in real-time time-dependent density-functional theory.

    Science.gov (United States)

    Habenicht, Bradley F; Tani, Noriyuki P; Provorse, Makenzie R; Isborn, Christine M

    2014-11-14

    We investigate the Rabi oscillations of electrons excited by an applied electric field in several simple molecular systems using time-dependent configuration interaction (TDCI) and real-time time-dependent density-functional theory (RT-TDDFT) dynamics. While the TDCI simulations exhibit the expected single-electron Rabi oscillations at a single resonant electric field frequency, Rabi oscillations in the RT-TDDFT simulations are a two-electron process. The existence of two-electron Rabi oscillations is determined both by full population inversion between field-free molecular orbitals and the behavior of the instantaneous dipole moment during the simulations. Furthermore, the Rabi oscillations in RT-TDDFT are subject to an intensity threshold of the electric field, below which Rabi oscillations do not occur and above which the two-electron Rabi oscillations occur at a broad range of frequencies. It is also shown that at field intensities near the threshold intensity, the field frequency predicted to induce Rabi oscillations by linear response TDDFT only produces detuned Rabi oscillations. Instead, the field frequency that yields the full two-electron population inversion and Rabi oscillation behavior is shown to be the average of single-electron transition frequencies from the ground S0 state and the doubly-excited S2 state. The behavior of the two-electron Rabi oscillations is rationalized via two possible models. The first model is a multi-photon process that results from the electric field interacting with the three level system such that three level Rabi oscillations may occur. The second model suggests that the mean-field nature of RT-TDDFT induces paired electron propagation.

  3. Two-electron Rabi oscillations in real-time time-dependent density-functional theory

    International Nuclear Information System (INIS)

    Habenicht, Bradley F.; Tani, Noriyuki P.; Provorse, Makenzie R.; Isborn, Christine M.

    2014-01-01

    We investigate the Rabi oscillations of electrons excited by an applied electric field in several simple molecular systems using time-dependent configuration interaction (TDCI) and real-time time-dependent density-functional theory (RT-TDDFT) dynamics. While the TDCI simulations exhibit the expected single-electron Rabi oscillations at a single resonant electric field frequency, Rabi oscillations in the RT-TDDFT simulations are a two-electron process. The existence of two-electron Rabi oscillations is determined both by full population inversion between field-free molecular orbitals and the behavior of the instantaneous dipole moment during the simulations. Furthermore, the Rabi oscillations in RT-TDDFT are subject to an intensity threshold of the electric field, below which Rabi oscillations do not occur and above which the two-electron Rabi oscillations occur at a broad range of frequencies. It is also shown that at field intensities near the threshold intensity, the field frequency predicted to induce Rabi oscillations by linear response TDDFT only produces detuned Rabi oscillations. Instead, the field frequency that yields the full two-electron population inversion and Rabi oscillation behavior is shown to be the average of single-electron transition frequencies from the ground S 0 state and the doubly-excited S 2 state. The behavior of the two-electron Rabi oscillations is rationalized via two possible models. The first model is a multi-photon process that results from the electric field interacting with the three level system such that three level Rabi oscillations may occur. The second model suggests that the mean-field nature of RT-TDDFT induces paired electron propagation

  4. TOWARDS THRESHOLD FREQUENCY IN CHAOTIC COLPITTS OSCILLATOR

    DEFF Research Database (Denmark)

    Lindberg, Erik; Tamasevicius, Arunas; Mykolaitis, Gytis

    2007-01-01

    A novel version of chaotic Colpitts oscillator is described. Instead of a linear loss resistor, it includes an extra inductor and diode in the collector circuit of the transistor. The modified circuit in comparison with the common Colpitts oscillator may generate chaotic oscillations at the funda......A novel version of chaotic Colpitts oscillator is described. Instead of a linear loss resistor, it includes an extra inductor and diode in the collector circuit of the transistor. The modified circuit in comparison with the common Colpitts oscillator may generate chaotic oscillations...

  5. Normal dispersion femtosecond fiber optical parametric oscillator.

    Science.gov (United States)

    Nguyen, T N; Kieu, K; Maslov, A V; Miyawaki, M; Peyghambarian, N

    2013-09-15

    We propose and demonstrate a synchronously pumped fiber optical parametric oscillator (FOPO) operating in the normal dispersion regime. The FOPO generates chirped pulses at the output, allowing significant pulse energy scaling potential without pulse breaking. The output average power of the FOPO at 1600 nm was ∼60  mW (corresponding to 1.45 nJ pulse energy and ∼55% slope power conversion efficiency). The output pulses directly from the FOPO were highly chirped (∼3  ps duration), and they could be compressed outside of the cavity to 180 fs by using a standard optical fiber compressor. Detailed numerical simulation was also performed to understand the pulse evolution dynamics around the laser cavity. We believe that the proposed design concept is useful for scaling up the pulse energy in the FOPO using different pumping wavelengths.

  6. Analysis of Switched-Rigid Floating Oscillator

    Directory of Open Access Journals (Sweden)

    Prabhakar R. Marur

    2009-01-01

    Full Text Available In explicit finite element simulations, a technique called deformable-to-rigid (D2R switching is used routinely to reduce the computation time. Using the D2R option, the deformable parts in the model can be switched to rigid and reverted back to deformable when needed during the analysis. The time of activation of D2R however influences the overall dynamics of the system being analyzed. In this paper, a theoretical basis for the selection of time of rigid switching based on system energy is established. A floating oscillator problem is investigated for this purpose and closed-form analytical expressions are derived for different phases in rigid switching. The analytical expressions are validated by comparing the theoretical results with numerical computations.

  7. Investigation of self-generation of broadband microwave chaotic and noise signals in microwave photonic ring oscillator

    Science.gov (United States)

    Ustinov, A. B.; Kondrashov, A. V.; Kalinikos, B. A.

    2017-11-01

    Nonlinear dynamics of a microwave optoelectronic oscillator was investigated for the first time with the use of time series analysis. The detailed study of the generated microwave waveforms showed a route from stable monochromatic oscillations to noise through a series of bifurcations. The oscillator demonstrated the periodic and chaotic dynamics in the intermediate regimes of self-generation. Peculiarities of the signals and their spectra for the chaotic and noise regimes were found. The chaotic and noise dynamics were proven with the Grassberger-Procaccia method.

  8. Ellipsoidal basis for isotropic oscillator

    International Nuclear Information System (INIS)

    Kallies, W.; Lukac, I.; Pogosyan, G.S.; Sisakyan, A.N.

    1994-01-01

    The solutions of the Schroedinger equation are derived for the isotropic oscillator potential in the ellipsoidal coordinate system. The explicit expression is obtained for the ellipsoidal integrals of motion through the components of the orbital moment and Demkov's tensor. The explicit form of the ellipsoidal basis is given for the lowest quantum numbers. 10 refs.; 1 tab. (author)

  9. Oscillating solitons in nonlinear optics

    Indian Academy of Sciences (India)

    Abstract. Oscillating solitons are obtained in nonlinear optics. Analytical study of the variable- coefficient nonlinear Schrödinger equation, which is used to describe the soliton propagation in those systems, is carried out using the Hirota's bilinear method. The bilinear forms and analytic soliton solutions are derived, and the ...

  10. Low-Vibration Oscillating Compressor

    Science.gov (United States)

    Studer, P. A.

    1984-01-01

    Oscillating compressor momentum compensated: produces little vibration in its supporting structure. Compressure requires no lubrication and virtually free of wear. Compresses working fluids such as helium, nitrogen or chlorfluorocarbons for Stirling-cycle refrigeration or other purposes. Compressor includes two mutually opposed ferromagnetic pistons of same shape and mass. Electromagnetic flux links both pistons, causing magnetic attraction between them.

  11. Sound oscillation of dropwise cluster

    Energy Technology Data Exchange (ETDEWEB)

    Shavlov, A.V., E-mail: shavlov@ikz.ru [Institute of the Earth Cryosphere, RAS Siberian Branch, P.O. 1230, 625000 Tyumen (Russian Federation); Dzhumandzhi, V.A.; Romanyuk, S.N. [Institute of the Earth Cryosphere, RAS Siberian Branch, P.O. 1230, 625000 Tyumen (Russian Federation)

    2012-06-04

    There was registered sound oscillation of a dropwise cluster formed over the warmed-up water surface. We have calculated the electrical charge of drops on the basis of experimental data on ion-sound oscillation. It was demonstrated that the charge is proportional to surface area of the drops and does not depend on intensity of their evaporation (condensation) in the range of 60–100 °C. The charge of drops reaches 10{sup 2}–10{sup 3} units of elementary charge and coincides on magnitude order with the literary value of a charge calculated by another method. -- Highlights: ► The present investigation registered short-wave sound oscillations of water drops in a dropwise cluster in the range of 60–100 °C. ► We have found autocorrelation functions and Fourier transforms of time series of interdroplet distance; defined oscillation frequencies. ► Calculated electrical charge of drops and specified that the charge is proportional to the drop surface area.

  12. Sound oscillation of dropwise cluster

    International Nuclear Information System (INIS)

    Shavlov, A.V.; Dzhumandzhi, V.A.; Romanyuk, S.N.

    2012-01-01

    There was registered sound oscillation of a dropwise cluster formed over the warmed-up water surface. We have calculated the electrical charge of drops on the basis of experimental data on ion-sound oscillation. It was demonstrated that the charge is proportional to surface area of the drops and does not depend on intensity of their evaporation (condensation) in the range of 60–100 °C. The charge of drops reaches 10 2 –10 3 units of elementary charge and coincides on magnitude order with the literary value of a charge calculated by another method. -- Highlights: ► The present investigation registered short-wave sound oscillations of water drops in a dropwise cluster in the range of 60–100 °C. ► We have found autocorrelation functions and Fourier transforms of time series of interdroplet distance; defined oscillation frequencies. ► Calculated electrical charge of drops and specified that the charge is proportional to the drop surface area.

  13. Coherent Phonon Rabi Oscillations with a High-Frequency Carbon Nanotube Phonon Cavity.

    Science.gov (United States)

    Zhu, Dong; Wang, Xin-He; Kong, Wei-Cheng; Deng, Guang-Wei; Wang, Jiang-Tao; Li, Hai-Ou; Cao, Gang; Xiao, Ming; Jiang, Kai-Li; Dai, Xing-Can; Guo, Guang-Can; Nori, Franco; Guo, Guo-Ping

    2017-02-08

    Phonon-cavity electromechanics allows the manipulation of mechanical oscillations similar to photon-cavity systems. Many advances on this subject have been achieved in various materials. In addition, the coherent phonon transfer (phonon Rabi oscillations) between the phonon cavity mode and another oscillation mode has attracted many interest in nanoscience. Here, we demonstrate coherent phonon transfer in a carbon nanotube phonon-cavity system with two mechanical modes exhibiting strong dynamical coupling. The gate-tunable phonon oscillation modes are manipulated and detected by extending the red-detuned pump idea of photonic cavity electromechanics. The first- and second-order coherent phonon transfers are observed with Rabi frequencies 591 and 125 kHz, respectively. The frequency quality factor product fQ m ∼ 2 × 10 12 Hz achieved here is larger than k B T base /h, which may enable the future realization of Rabi oscillations in the quantum regime.

  14. Hybrid Dislocated Control and General Hybrid Projective Dislocated Synchronization for Memristor Chaotic Oscillator System

    Directory of Open Access Journals (Sweden)

    Junwei Sun

    2014-01-01

    Full Text Available Some important dynamical properties of the memristor chaotic oscillator system have been studied in the paper. A novel hybrid dislocated control method and a general hybrid projective dislocated synchronization scheme have been realized for memristor chaotic oscillator system. The paper firstly presents hybrid dislocated control method for stabilizing chaos to the unstable equilibrium point. Based on the Lyapunov stability theorem, general hybrid projective dislocated synchronization has been studied for the drive memristor chaotic oscillator system and the same response memristor chaotic oscillator system. For the different dimensions, the memristor chaotic oscillator system and the other chaotic system have realized general hybrid projective dislocated synchronization. Numerical simulations are given to show the effectiveness of these methods.

  15. Characterizing brain oscillations in cognition and disease

    NARCIS (Netherlands)

    Jiang, H.

    2016-01-01

    It has been suggested that neuronal oscillations play a fundamental role for shaping the functional architecture of the working brain. This thesis investigates brain oscillations in rat, human healthy population and major depressive disorder (MDD) patients. A novel measurement termed

  16. Cyanohydrin reactions enhance glycolytic oscillations in yeast

    DEFF Research Database (Denmark)

    Hald, Bjørn Olav; Nielsen, Astrid Gram; Tortzen, Christian

    2015-01-01

    Synchronous metabolic oscillations can be induced in yeast by addition of glucose and removal of extracellular acetaldehyde (ACAx). Compared to other means of ACAx removal, cyanide robustly induces oscillations, indicating additional cyanide reactions besides ACA to lactonitrile conversion. Here...

  17. Analytic Neutrino Oscillation Probabilities in Matter: Revisited

    Energy Technology Data Exchange (ETDEWEB)

    Parke, Stephen J. [Fermilab; Denton, Peter B. [Copenhagen U.; Minakata, Hisakazu [Madrid, IFT

    2018-01-02

    We summarize our recent paper on neutrino oscillation probabilities in matter, explaining the importance, relevance and need for simple, highly accurate approximations to the neutrino oscillation probabilities in matter.

  18. Oscillating Cell Culture Bioreactor

    Science.gov (United States)

    Freed, Lisa E.; Cheng, Mingyu; Moretti, Matteo G.

    2010-01-01

    dynamic shear (i.e., as required for viability of shear-sensitive cells) to the developing engineered tissue construct. This bioreactor was recently utilized to show independent and interactive effects of a growth factor (IGF-I) and slow bidirectional perfusion on the survival, differentiation, and contractile performance of 3D tissue engineering cardiac constructs. The main application of this system is within the tissue engineering industry. The ideal final application is within the automated mass production of tissue- engineered constructs. Target industries could be both life sciences companies as well as bioreactor device producing companies.

  19. Towards irreversibility with a finite bath of oscillators

    Energy Technology Data Exchange (ETDEWEB)

    De São José, A.N. [Departamento de Engenharia Elétrica, Centro Federal de Educação Tecnológica de Minas Gerais, 30510-000 Belo Horizonte, MG (Brazil); Dias, P.M. [Programa de Pós-Graduação em Modelagem Matemática e Computacional, Centro Federal de Educação Tecnológica de Minas Gerais, 30510-000 Belo Horizonte, MG (Brazil); Bosco de Magalhães, A.R., E-mail: arthur.magalhaes@pq.cnpq.br [Programa de Pós-Graduação em Modelagem Matemática e Computacional, Centro Federal de Educação Tecnológica de Minas Gerais, 30510-000 Belo Horizonte, MG (Brazil); Departamento de Física e Matemática, Centro Federal de Educação Tecnológica de Minas Gerais, 30510-000 Belo Horizonte, MG (Brazil); and others

    2012-12-03

    We investigate the routes by which a bath composed of a finite number of oscillators at zero temperature approaches the induction of dissipation when it nears the usual limit of dense spectrum spread in an infinite interval. It is shown that, when this limit is taken, different distributions of environment frequencies can lead to the same irreversible evolution. However, when we move away from it, the dynamics departs from irreversibility in qualitatively different manners.

  20. Microbubble generator excited by fluidic oscillator's third harmonic frequency

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav

    2014-01-01

    Roč. 92, č. 9 (2014), s. 1603-1615 ISSN 0263-8762 R&D Projects: GA ČR GA13-23046S Institutional support: RVO:61388998 Keywords : fluidic oscillator * microbubble generation * fluidic feedback loop Subject RIV: BK - Fluid Dynamics Impact factor: 2.348, year: 2014 http://dx.doi.org/10.1016/j.cherd.2013.12.004

  1. On the oscillations in Mercury's obliquity

    Science.gov (United States)

    Bois, E.; Rambaux, N.

    2007-12-01

    Mercury's capture into the 3:2 spin-orbit resonance can be explained as a result of its chaotic orbital dynamics. One major objective of MESSENGER and BepiColombo spatial missions is to accurately measure Mercury's rotation and its obliquity in order to obtain constraints on internal structure of the planet. Analytical approaches at the first-order level using the Cassini state assumptions give the obliquity constant or quasi-constant. Which is the obliquity's dynamical behavior deriving from a complete spin-orbit motion of Mercury simultaneously integrated with planetary interactions? We have used our SONYR model (acronym of Spin-Orbit N-bodY Relativistic model) integrating the spin-orbit N-body problem applied to the Solar System (Sun and planets). For lack of current accurate observations or ephemerides of Mercury's rotation, and therefore for lack of valid initial conditions for a numerical integration, we have built an original method for finding the libration center of the spin-orbit system and, as a consequence, for avoiding arbitrary amplitudes in librations of the spin-orbit motion as well as in Mercury's obliquity. The method has been carried out in two cases: (1) the spin-orbit motion of Mercury in the 2-body problem case (Sun-Mercury) where an uniform precession of the Keplerian orbital plane is kinematically added at a fixed inclination ( S2K case), (2) the spin-orbit motion of Mercury in the N-body problem case (Sun and planets) ( S case). We find that the remaining amplitude of the oscillations in the S case is one order of magnitude larger than in the S2K case, namely 4 versus 0.4 arcseconds (peak-to-peak). The mean obliquity is also larger, namely 1.98 versus 1.80 arcminutes, for a difference of 10.8 arcseconds. These theoretical results are in a good agreement with recent radar observations but it is not excluded that it should be possible to push farther the convergence process by drawing nearer still more precisely to the libration center. We

  2. Nonlinear analysis of ring oscillator circuits

    KAUST Repository

    Ge, Xiaoqing

    2010-06-01

    Using nonlinear systems techniques, we analyze the stability properties and synchronization conditions for ring oscillator circuits, which are essential building blocks in digital systems. By making use of its cyclic structure, we investigate local and global stability properties of an n-stage ring oscillator. We present a sufficient condition for global asymptotic stability of the origin and obtain necessity if the ring oscillator consists of identical inverter elements. We then give a synchronization condition for identical interconnected ring oscillators.

  3. A theory of generalized Bloch oscillations

    DEFF Research Database (Denmark)

    Duggen, Lars; Lew Yan Voon, L. C.; Lassen, Benny

    2016-01-01

    Bloch oscillations of electrons are shown to occur for cases when the energy spectrum does not consist of the traditional evenly-spaced ladders and the potential gradient does not result from an external electric field. A theory of such generalized Bloch oscillations is presented and an exact...... oscillations. We stipulate that the presented theory of generalized Bloch oscillations can be extended to other systems such as acoustics and photonics....

  4. Instrumented impact testing machine with reduced specimen oscillation effects

    International Nuclear Information System (INIS)

    Rintamaa, R.; Rahka, K.; Wallin, K.

    1984-07-01

    Owing to small and inexpensive specimens the Charpy impact test is widely used in quality control and alloy development. Limitations in power reactor survellance capsules it is also widely used for safety analysis purposes. Instrumenting the tup and computerizing data acquisition, makes dynamic fracture mechanics data measurement possible and convenient. However, the dynamic effects (inertia forces, specimen oscillations) in the impact test cause inaccuracies in the recorded load-time diagram and hence diminish the reliability of the calculated dynamic fracture mechanics parameters. To decrease inaccuracies a new pendulum type of instrumented impact test apparatus has been developed and constructed in the Metals Laboratory of the Technical Research Centre of Finland. This tester is based on a new principle involving inverted test geometry. The purpose of the geometry inversion is to reduce inertia load and specimen oscillation effects. Further, the new impact tester has some other novel features: e.g. the available initia impact energy is about double compared to the conventional standard (300 J) impact tester allowing the use of larger (10 x 20 x 110 mm) bend specimens than normal Charpy specimens. Also, the rotation asix in the three point bending is nearly stationary making COD-measurements possible. An experimental test series is described in which the inertia effects and specimen oscillations are compared in the conventional and new impact tester utilizing Charpy V-notch specimens. Comparison of the two test geometries is also made with the aid of an analytical model using finite element method (FEM) analysis. (author)

  5. Oscillating electromagnetic soliton in an anisotropic ferromagnetic medium

    Energy Technology Data Exchange (ETDEWEB)

    Sathishkumar, P., E-mail: perumal_sathish@yahoo.co.in [Department of Physics, K.S.R. College of Engineering (Autonomous), Tiruchengode 637215, Tamilnadu (India); Senjudarvannan, R. [Department of Physics, Jansons Institute of Technology, Karumathampatty, Coimbatore 641659 (India)

    2017-05-01

    We investigate theoretically the propagation of electromagnetic oscillating soliton in the form of breather in an anisotropic ferromagnetic medium. The interaction of magnetization with the magnetic field component of the electromagnetic (EM) wave has been studied by solving Maxwell's equations coupled with a Landau–Lifshitz equation for the magnetization of the medium. We made a small perturbation on the magnetization and magnetic field along the direction of propagation of EM wave in the framework of reductive perturbation method and the associated nonlinear magnetization dynamics is governed by a generalized derivative nonlinear Schrödinger (DNLS) equation. In order to understand the dynamics of the concerned system, we employ the Jacobi elliptic function method to solve the DNLS equation and deduce breatherlike soliton modes for the EM wave in the medium. - Highlights: • The propagation of electromagnetic oscillating soliton in an anisotropic ferromagnetic medium is investigated in the presence of varying external magnetic field. • The magnetization and electromagnetic wave modulates in the form of breathing like oscillating solitons. • The governing nonlinear spin dynamical equation is studied through a reductive perturbation method. • The magnetization components of the ferromagnetic medium are derived using Jacobi elliptic functions method with the aid of symbolic computation.

  6. Modeling active materials based on self-oscillating gels

    Science.gov (United States)

    Yashin, Victor V.; Balazs, Anna C.

    2011-03-01

    The Belousov-Zhabotinsky (BZ) reaction in solution is a classical example of an active medium that demonstrates various chemical oscillations and waves, which can be observed visually. Grafting a ruthenium metal-ion complex, the catalyst to the BZ reaction, to a chemo-responsive polymer gel creates an active material (BZ gel), which exhibits periodic volumetric changes in the course of the reaction. The redox oscillations of the catalyst affect the polymer-solvent interactions and cause the periodic swelling and de-swelling of the gel, so that chemo- mechanical energy transduction occurs within the material. We consider a model that couples the polymer gel dynamics and the BZ reaction kinetics; the latter is described by the modified Oregonator model. The model equations are solved numerically in 2D. We demonstrate that the dynamical behavior of the BZ gel can be controlled by a heterogeneous distribution of the catalyst and by such structural features as the solvent-filled voids. The dynamics of an active membrane having the self-oscillating pores is considered as an example.

  7. Oscillation of an isolated liquid plug inside a dry capillary

    Science.gov (United States)

    Srinivasan, Vyas; Kumar, Siddhartha; Asfer, Mohammed; Khandekar, Sameer

    2017-11-01

    The present work reports an experimental study on the dynamics of partially wetting isolated liquid plug (DI water), which is made to oscillate inside a square, glass capillary tube (1 mm × 1 mm; 60 mm length). The liquid plug is made to oscillate pneumatically at two different frequencies (0.25 and 0.35 Hz), using a cam-follower mechanism. Bright field imaging is used to visualize the three-phase contact line behavior, while, micro-Particle Imaging Velocimetry (PIV) apparatus is used to discern the nature of flow inside the oscillating liquid plug. During a cycle, due to the partial wetting nature of DI water, the three-phase contact line at the menisci gets pinned at the extreme end of each stroke, where the dynamic apparent contact angle gets drastically altered before the initiation of the next stroke. The difference between the apparent contact angle of the front and rear meniscus are seen to be a function of the oscillating frequency; the difference increasing with increasing frequency. The flow inside the liquid plug reveals unique non-Poiseuille flow features near the meniscus, due to free-slip boundary condition, which leads to formation of distinct vortex pairs behind it. The vortices too change their direction during each stroke of the oscillation, eventually leading to an alternating recirculation pattern inside the plug. The results clearly indicate that improved mathematical models are required for predicting transport parameters in such flows, which are important in engineering systems such as pulsating heat pipes, lab-on-chip devices and PEM fuel cells.

  8. Effective harmonic oscillator description of anharmonic molecular ...

    Indian Academy of Sciences (India)

    Administrator

    The effective harmonic oscillator is constructed variationally, by taking the trial wave function as a harmonic oscillator eigenfunction with the centroid and width parameter as variational para- eters. It is found that the effective harmonic oscillator approximation provides a description of the anharmonic eigenstates very similar ...

  9. Neutrino oscillations in the early universe

    International Nuclear Information System (INIS)

    Enqvist, K.

    1990-01-01

    The oscillations of electron neutrinos into inert neutrinos may have resonant behaviour in the heat bath of the early Universe. It is shown that any initial neutrino asymmetry will be washed away by the oscillations. Neutrino oscillations would affect also primordial helium production, which implies stringent limits on the neutrino mixing parameters. (orig.)

  10. The supersymmetric Pegg-Barnett oscillator

    International Nuclear Information System (INIS)

    Shen, Jian Qi

    2005-01-01

    The su(n) Lie algebraic structure of the Pegg-Barnett oscillator that possesses a finite-dimensional number-state space is demonstrated. The supersymmetric generalization of the Pegg-Barnett oscillator is suggested. it is shown that such a supersymmetric Pegg-Barnett oscillator may have some potential applications, e.g., the mass spectrum of the charged leptons

  11. Three flavour oscillation interpretation of neutrino data

    Indian Academy of Sciences (India)

    To explain the atmospheric neutrino problem in terms of neutrino oscillations, ЖС¾ of about 10-¿. eV. ¾. [8] is needed whereas the neutrino oscil- lation solution to the solar neutrino problem requires ЖС¾ ~10- eV. ¾ . Hence both solar and atmospheric neutrino problems cannot be explained in terms of e ° μ oscillations.

  12. Comparison of Methods for Oscillation Detection

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Trangbæk, Klaus

    2006-01-01

    This paper compares a selection of methods for detecting oscillations in control loops. The methods are tested on measurement data from a coal-fired power plant, where some oscillations are occurring. Emphasis is put on being able to detect oscillations without having a system model and without u...

  13. Analysis of synchronized regimes for injection-locked spin-transfer nano-oscillators

    Energy Technology Data Exchange (ETDEWEB)

    D' Aquino, M., E-mail: daquino@uniparthenope.it [Department of Technology, University of Napoli ' Parthenope' , 80143 Napoli (Italy); Serpico, C. [Department of Engineering, University of Napoli Federico II, 80125 Napoli (Italy); Bonin, R. [Politecnico di Torino - Sede di Verres, 11029 Verres (Aosta) (Italy); Bertotti, G. [Istituto Nazionale di Ricerca Metrologica, 10135 Torino (Italy); Mayergoyz, I.D. [ECE Dept. and UMIACS, University of Maryland, College Park, MD 20742 (United States)

    2012-05-01

    The large-angle magnetization dynamics of an injection-locked spin-transfer nano-oscillator (STNO) is studied. The magnetic system is subject to the action of time-varying spin-polarized currents and external magnetic fields. The uniform mode theory is developed and describes the hysteretic synchronization mechanism in terms of bifurcations of equilibria and limit cycles of appropriate dynamical systems. Analytical predictions of control parameters for the synchronization between the magnetization self-oscillation and the external microwave excitations (current, field) are provided. The effect of temperature on the locking band and the hysteretic character of the oscillation response is analyzed. An analytical approach is developed to determine the thermally induced sidebands in the power spectral density of phase-locked oscillations as a function of control parameters. The analytical predictions are in good agreement with the results of numerical simulations.

  14. Analysis and observation of moving domain fronts in a ring of coupled electronic self-oscillators

    Science.gov (United States)

    English, L. Q.; Zampetaki, A.; Kevrekidis, P. G.; Skowronski, K.; Fritz, C. B.; Abdoulkary, Saidou

    2017-10-01

    In this work, we consider a ring of coupled electronic (Wien-bridge) oscillators from a perspective combining modeling, simulation, and experimental observation. Following up on earlier work characterizing the pairwise interaction of Wien-bridge oscillators by Kuramoto-Sakaguchi phase dynamics, we develop a lattice model for a chain thereof, featuring an exponentially decaying spatial kernel. We find that for certain values of the Sakaguchi parameter α, states of traveling phase-domain fronts involving the coexistence of two clearly separated regions of distinct dynamical behavior, can establish themselves in the ring lattice. Experiments and simulations show that stationary coexistence domains of synchronization only manifest themselves with the introduction of a local impurity; here an incoherent cluster of oscillators can arise reminiscent of the chimera states in a range of systems with homogeneous oscillators and suitable nonlocal interactions between them.

  15. Potential role of the glycolytic oscillator in acute hypoxia in tumors

    Science.gov (United States)

    Che Fru, Leonard; Adamson, Erin B.; Campos, David D.; Fain, Sean B.; Jacques, Steven L.; van der Kogel, Albert J.; Nickel, Kwang P.; Song, Chihwa; Kimple, Randall J.; Kissick, Michael W.

    2015-12-01

    Tumor acute hypoxia has a dynamic component that is also, at least partially, coherent. Using blood oxygen level dependent magnetic resonance imaging, we observed coherent oscillations in hemoglobin saturation dynamics in cell line xenograft models of head and neck squamous cell carcinoma. We posit a well-established biochemical nonlinear oscillatory mechanism called the glycolytic oscillator as a potential cause of the coherent oscillations in tumors. These data suggest that metabolic changes within individual tumor cells may affect the local tumor microenvironment including oxygen availability and therefore radiosensitivity. These individual cells can synchronize the oscillations in patches of similar intermediate glucose levels. These alterations have potentially important implications for radiation therapy and are a potential target for optimizing the cancer response to radiation.

  16. Chaotic oscillations in electron beam with virtual cathode in external magnetic field

    Science.gov (United States)

    Hramov, A. E.; Koronovskiy, A. A.; Kurkin, S. A.; Rempen, I. S.

    2011-11-01

    This article presents the results of a numerical study of external magnetic field influence on the conditions and mechanisms of virtual cathode (VC) formation in a relativistic electron beam. It also considers other related issues, e.g. peculiarities of nonlinear dynamics of electron beam with VC under changed external magnetic field, different mechanisms of VC oscillation chaotisation leading to complication of vircator system dynamics and appearance of multi-frequency VC oscillations. General systemic mechanism of VC oscillation chaotisation has been identified which is connected with formation of electronic patterns in electron beam whose interaction in the common field of spatial charge determines appearance of additional inner feedback. Transition from chaotic to periodical oscillation regime is found to be connected with destroying the mechanism of secondary electronic structures (electron bunches) formation. Besides, the influence of extent of screening of electron gun from magnetic field is discussed.

  17. Chaos control of chaotic limit cycles of real and complex van der Pol oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoud, Gamal M. E-mail: gmahmoud@uaeu.ac.ae; Farghaly, Ahmed A.M. E-mail: ahmed_1_66@yahoo.com

    2004-08-01

    Chaos control and nonlinear dynamics of both real and complex nonlinear oscillators constitutes some of the most fascinating developments in applied sciences. The chaos control of chaotic unstable limit cycles of real and complex (or coupled) nonlinear van der Pol oscillators is investigated in this paper. These oscillators appear in many important applications in engineering, for example, vacuum tube circuits. The presence of chaotic limit cycles is verified by calculating largest Lyapunov exponent and the power spectrum. The problem of chaos control of these limit cycles is studied using a feedback control method, which is based on the construction of a special form of a time-continuous perturbation. Our investigation of both real and complex (or coupled) van der Pol oscillators enriches the nonlinear dynamical systems.

  18. Vapor plume oscillation mechanisms in transient keyhole during tandem dual beam fiber laser welding

    Science.gov (United States)

    Chen, Xin; Zhang, Xiaosi; Pang, Shengyong; Hu, Renzhi; Xiao, Jianzhong

    2018-01-01

    Vapor plume oscillations are common physical phenomena that have an important influence on the welding process in dual beam laser welding. However, until now, the oscillation mechanisms of vapor plumes remain unclear. This is primarily because mesoscale vapor plume dynamics inside a millimeter-scale, invisible, and time-dependent keyhole are difficult to quantitatively observe. In this paper, based on a developed three-dimensional (3D) comprehensive model, the vapor plume evolutions in a dynamical keyhole are directly simulated in tandem dual beam, short-wavelength laser welding. Combined with the vapor plume behaviors outside the keyhole observed by high-speed imaging, the vapor plume oscillations in dynamical keyholes at different inter-beam distances are the first, to our knowledge, to be quantitatively analyzed. It is found that vapor plume oscillations outside the keyhole mainly result from vapor plume instabilities inside the keyhole. The ejection velocity at the keyhole opening and dynamical behaviors outside the keyhole of a vapor plume both violently oscillate with the same order of magnitude of high frequency (several kHz). Furthermore, the ejection speed at the keyhole opening and ejection area outside the keyhole both decrease as the beam distance increases, while the degree of vapor plume instability first decreases and then increases with increasing beam distance from 0.6 to 1.0 mm. Moreover, the oscillation mechanisms of a vapor plume inside the dynamical keyhole irradiated by dual laser beams are investigated by thoroughly analyzing the vapor plume occurrence and flow process. The vapor plume oscillations in the dynamical keyhole are found to mainly result from violent local evaporations and severe keyhole geometry variations. In short, the quantitative method and these findings can serve as a reference for further understanding of the physical mechanisms in dual beam laser welding and of processing optimizations in industrial applications.

  19. Measuring neutrino oscillation parameters using $\

    Energy Technology Data Exchange (ETDEWEB)

    Backhouse, Christopher James [Oriel College, Oxford (United Kingdom)

    2011-01-01

    MINOS is a long-baseline neutrino oscillation experiment. It consists of two large steel-scintillator tracking calorimeters. The near detector is situated at Fermilab, close to the production point of the NuMI muon-neutrino beam. The far detector is 735 km away, 716m underground in the Soudan mine, Northern Minnesota. The primary purpose of the MINOS experiment is to make precise measurements of the 'atmospheric' neutrino oscillation parameters (Δmatm2 and sin2atm). The oscillation signal consists of an energy-dependent deficit of vμ interactions in the far detector. The near detector is used to characterize the properties of the beam before oscillations develop. The two-detector design allows many potential sources of systematic error in the far detector to be mitigated by the near detector observations. This thesis describes the details of the vμ-disappearance analysis, and presents a new technique to estimate the hadronic energy of neutrino interactions. This estimator achieves a significant improvement in the energy resolution of the neutrino spectrum, and in the sensitivity of the neutrino oscillation fit. The systematic uncertainty on the hadronic energy scale was re-evaluated and found to be comparable to that of the energy estimator previously in use. The best-fit oscillation parameters of the vμ-disappearance analysis, incorporating this new estimator were: Δm2 = 2.32-0.08+0.12 x 10-3 eV2, sin 2 2θ > 0.90 (90% C.L.). A similar analysis, using data from a period of running where the NuMI beam was operated in a configuration producing a predominantly $\\bar{v}$μ beam, yielded somewhat different best-fit parameters Δ$\\bar{m}${sup 2} = (3.36-0.40+0.46(stat.) ± 0.06(syst.)) x 10-3eV2, sin2 2$\\bar{θ}$ = 0.86-0.12_0

  20. Time domain oscillating poles: Stability redefined in Memristor based Wien-oscillators

    KAUST Repository

    Talukdar, Abdul Hafiz Ibne

    2012-07-28

    Traditionally, the necessary and sufficient condition for any system to be oscillating is that its poles are located on the imaginary (jω) axis. In this paper, for the first time, we have shown that systems can oscillate with time-domain oscillating poles. The idea is verified using a Memristor based Wien oscillator. Sustained oscillations are observed without having the poles of the system fixed on the imaginary axis and the oscillating behavior of the system poles is reported. The oscillating resistance and triangular shape of FFT are also demonstrated with mathematical reasoning and simulation results to support the unusual and surprising characteristics. © 2009 IEEE.