WorldWideScience

Sample records for dynamic o-glcnac cycling

  1. The role of O-linked GlcNAc modification on the glucose response of ChREBP

    Energy Technology Data Exchange (ETDEWEB)

    Sakiyama, Haruhiko [Department of Biochemistry, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501 (Japan); Fujiwara, Noriko, E-mail: noriko-f@hyo-med.ac.jp [Department of Biochemistry, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501 (Japan); Noguchi, Takahiro; Eguchi, Hironobu; Yoshihara, Daisaku [Department of Biochemistry, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501 (Japan); Uyeda, Kosaku [Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, TX 75390-9038 (United States); Suzuki, Keiichiro [Department of Biochemistry, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501 (Japan)

    2010-11-26

    Research highlights: {yields} The O-linked GlcNAc modification is crucial for the glucose response. {yields} Mlx is required for nuclear localization and transcription activity of ChREBP. {yields} The presence of Mlx stabilizes ChREBP protein. -- Abstract: The carbohydrate response element-binding protein (ChREBP) functions as a transcription factor in mediating the glucose-activated gene expression of multiple liver enzymes, which are responsible for converting excess carbohydrate to storage fat. ChREBP is translocated into the nucleus in response to high glucose levels, and then up-regulates transcriptional activity. Although this glucose activation of ChREBP is generally observed only in liver cells, overexpression of wild type max-like protein X (Mlx), but not an inactive mutant Mlx, resulted in the exhibition of the ChREBP functions also in a human kidney cell line. Because high glucose conditions induce the glycosylation of cellular proteins, the effect of O-linked GlcNAc modification on ChREBP functions was examined. Treatment with an O-GlcNAcase inhibitor (PUGNAc), which increases the O-linked GlcNAc modification of cellular proteins, caused an increase in the glucose response of ChREBP. In contrast, treatment with a glutamine fructose amidotransferase inhibitor (DON), which decreases O-GlcNAcylation by inhibiting the hexosamine biosynthetic pathway, completely blocked the glucose response of ChREBP. These results suggest that the O-linked glycosylation of ChREBP itself or other proteins that regulate ChREBP is essential for the production of functional ChREBP.

  2. Scanning the available Dictyostelium discoideum proteome for O-linked GlcNAc glycosylation sitesusing neural networks

    DEFF Research Database (Denmark)

    Gupta, Ramneek; Jung, Eva; Gooley, Andrew A

    1999-01-01

    Dictyostelium discoideum has been suggested as a eukaryotic model organism for glycobiology studies. Presently, the characteristics of acceptor sites for the N-acetylglucosaminyl-transferases in Dictyostelium discoideum, which link GlcNAc in an alpha linkage to hydroxyl residues, are largely...... unknown. This motivates the development of a species specific method for prediction of O-linked GlcNAc glycosylation sites in secreted and membrane proteins of D. discoideum. The method presented here employs a jury of artificial neural networks. These networks were trained to recognize the sequence...... context and protein surface accessibility in 39 experimentally determined O-alpha-GlcNAc sites found in D. discoideum glycoproteins expressed in vivo. Cross-validation of the data revealed a correlation in which 97% of the glycosylated and nonglycosylated sites were correctly identified. Based...

  3. Efficient 1H-NMR Quantitation and Investigation of N-Acetyl-D-glucosamine (GlcNAc and N,N'-Diacetylchitobiose (GlcNAc2 from Chitin

    Directory of Open Access Journals (Sweden)

    Huey-Lang Yang

    2011-09-01

    Full Text Available A quantitative determination method of N-acetyl-D-glucosamine (GlcNAc and N,N'-diacetylchitobiose (GlcNAc2 is proposed using a proton nuclear magnetic resonance experiment. N-acetyl groups of GlcNAc and (GlcNAc2 are chosen as target signals, and the deconvolution technique is used to determine the concentration of the corresponding compound. Compared to the HPLC method, 1H-NMR spectroscopy is simple and fast. The method can be used for the analysis of chitin hydrolyzed products with real-time analysis, and for quantifying the content of products using internal standards without calibration curves. This method can be used to quickly evaluate chitinase activity. The temperature dependence of 1H-NMR spectra (VT-NMR is studied to monitor the chemical shift variation of acetyl peak. The acetyl groups of products are involved in intramolecular H-bonding with the OH group on anomeric sites. The rotation of the acetyl group is closely related to the intramolecular hydrogen bonding pattern, as suggested by the theoretical data (molecular modeling.

  4. Engineering the yeast Yarrowia lipolytica for the production of therapeutic proteins homogeneously glycosylated with Man8GlcNAc2 and Man5GlcNAc2

    Directory of Open Access Journals (Sweden)

    De Pourcq Karen

    2012-05-01

    Full Text Available Abstract Background Protein-based therapeutics represent the fastest growing class of compounds in the pharmaceutical industry. This has created an increasing demand for powerful expression systems. Yeast systems are widely used, convenient and cost-effective. Yarrowia lipolytica is a suitable host that is generally regarded as safe (GRAS. Yeasts, however, modify their glycoproteins with heterogeneous glycans containing mainly mannoses, which complicates downstream processing and often interferes with protein function in man. Our aim was to glyco-engineer Y. lipolytica to abolish the heterogeneous, yeast-specific glycosylation and to obtain homogeneous human high-mannose type glycosylation. Results We engineered Y. lipolytica to produce homogeneous human-type terminal-mannose glycosylated proteins, i.e. glycosylated with Man8GlcNAc2 or Man5GlcNAc2. First, we inactivated the yeast-specific Golgi α-1,6-mannosyltransferases YlOch1p and YlMnn9p; the former inactivation yielded a strain producing homogeneous Man8GlcNAc2 glycoproteins. We tested this strain by expressing glucocerebrosidase and found that the hypermannosylation-related heterogeneity was eliminated. Furthermore, detailed analysis of N-glycans showed that YlOch1p and YlMnn9p, despite some initial uncertainty about their function, are most likely the α-1,6-mannosyltransferases responsible for the addition of the first and second mannose residue, respectively, to the glycan backbone. Second, introduction of an ER-retained α-1,2-mannosidase yielded a strain producing proteins homogeneously glycosylated with Man5GlcNAc2. The use of the endogenous LIP2pre signal sequence and codon optimization greatly improved the efficiency of this enzyme. Conclusions We generated a Y. lipolytica expression platform for the production of heterologous glycoproteins that are homogenously glycosylated with either Man8GlcNAc2 or Man5GlcNAc2 N-glycans. This platform expands the utility of Y. lipolytica as a

  5. SILENCING THE NUCLEOCYTOPLASMIC O-GLCNAC TRANSFERASE REDUCES PROLIFERATION, ADHESION AND MIGRATION OF CANCER AND FETAL HUMAN COLON CELL LINES

    Directory of Open Access Journals (Sweden)

    AGATA eSTEENACKERS

    2016-05-01

    Full Text Available The post-translational modification of proteins by O-linked β-N-acetylglucosamine (O-GlcNAc is regulated by a unique couple of enzymes. O-GlcNAc transferase (OGT transfers the GlcNAc residue from UDP-GlcNAc, the final product of the hexosamine biosynthetic pathway (HBP, whereas O-GlcNAcase (OGA removes it. This study and others show that OGT and O-GlcNAcylation levels are increased in cancer cell lines. In that context we studied the effect of OGT silencing in the colon cancer cell lines HT29 and HCT116 and the primary colon cell line CCD841CoN. Herein we report that OGT silencing diminished proliferation, in vitro cell survival and adhesion of primary and cancer cell lines. SiOGT dramatically de-creased HT29 and CCD841CoN migration, CCD841CoN harboring high capabilities of mi-gration in Boyden chamber system when compared to HT29 and HCT116. The expression levels of actin and tubulin were unaffected by OGT knockdown but siOGT seemed to disor-ganize microfilament, microtubule and vinculin networks in CCD841CoN. While cancer cell lines harbor higher levels of OGT and O-GlcNAcylation to fulfill their proliferative and migra-tory properties, in agreement with their higher consumption of HBP main substrates glucose and glutamine, our data demonstrate that OGT expression is not only necessary for the biolog-ical properties of cancer cell lines but also for normal cells.

  6. Defining carbohydrate specificity of Ricinus communis agglutinin as Gal beta 1-->4GlcNAc (II) > Gal beta 1-->3GlcNAc (I) > Gal alpha 1-->3Gal (B) > Gal beta 1-->3GalNAc (T).

    Science.gov (United States)

    Wu, J H; Herp, A; Wu, A M

    1993-03-01

    To define carbohydrate specificity of Ricinus communis agglutinin (RCA1), the combining site of RCA1 was further characterized by quantitative precipitin (QPA) and precipitin-inhibition assays (QPIA). Among the oligosaccharides tested for QPIA, Gal beta 1-->4GlcNAc (II, human blood group type II precursor sequence) was found to be 7.1 times more active than Gal beta 1-->3GalNAc (T, Thomsen-Friedenreich sequence) and about 1.7 times more active than the other three disaccharides tested--Gal beta 1-->4Man, Gal beta 1-->3DAra and Gal beta 1-->6GalNAc. Gal alpha 1-->4Gal, the receptor of the uropathogenic E. coli ligand was 3.6 times less active than the II sequence. These results indicate that the beta 1-->4 linkage of the terminal Gal to subterminal GlcNAc is important as this beta 1-->4GlcNAc sequence is at least 1.6 times more active than other types of disaccharides. Among the glycoproteins examined for QPA, native and desialized bovine submandibular glycoproteins, native and desialized human plasma alpha 1-acid glycoproteins, as well as crude hog stomach mucin and its three mild acid hydrolyzed products reacted well with the lectin. These glycoproteins precipitated over 75% of the lectin nitrogen added indicating that RCA1 has the ability to recognize Gal beta 1-->4/3GlcNAc and/or the related residues at the non-reducing ends and at positions in the interior of the chains. However, Tn (GalNAc alpha 1-->Ser/Thr sequence) rich glycoproteins such as desialized ovine submandibular glycoprotein and desialized armadillo salivary glycoprotein, in which over 90% of the carbohydrate side chains are Tn determinants with none or only a trace of I/II or T determinants, precipitated poorly with RCA1. From the present and previous results obtained, the carbohydrate specificity of RCA1 can be constructed and summarized in decreasing order by lectin determinants as follows: II (Gal beta 1-->4GlcNAc) > I (Gal beta 1-->3GlcNAc) > E (Gal alpha 1-->4Gal) and B (Gal alpha 1-->3Gal

  7. Cell cycle-dependent O-GlcNAc modification of tobacco histones and their interaction with the tobacco lectin.

    Science.gov (United States)

    Delporte, Annelies; De Zaeytijd, Jeroen; De Storme, Nico; Azmi, Abdelkrim; Geelen, Danny; Smagghe, Guy; Guisez, Yves; Van Damme, Els J M

    2014-10-01

    The Nicotiana tabacum agglutinin or Nictaba is a nucleocytoplasmic lectin that is expressed in tobacco after the plants have been exposed to jasmonate treatment or insect herbivory. Nictaba specifically recognizes GlcNAc residues. Recently, it was shown that Nictaba is interacting in vitro with the core histone proteins from calf thymus. Assuming that plant histones - similar to their animal counterparts - undergo O-GlcNAcylation, this interaction presumably occurs through binding of the lectin to the O-GlcNAc modification present on the histones. Hereupon, the question was raised whether this modification also occurs in plants and if it is cell cycle dependent. To this end, histones were purified from tobacco BY-2 suspension cells and the presence of O-GlcNAc modifications was checked. Concomitantly, O-GlcNAcylation of histone proteins was studied. Our data show that similar to animal histones plant histones are modified by O-GlcNAc in a cell cycle-dependent fashion. In addition, the interaction between Nictaba and tobacco histones was confirmed using lectin chromatography and far Western blot analysis. Collectively these findings suggest that Nictaba can act as a modulator of gene transcription through its interaction with core histones. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  8. CLONING, EXPRESSION, PURIFICATION AND CRYSTALLIZATION OF A NOVEL GLCNAC METABOLIC PROTEIN, GIG2 (DUF1479 FROM PATHOGENIC FUNGUS CANDIDA ALBICANS

    Directory of Open Access Journals (Sweden)

    Priya Rani1

    2017-06-01

    Full Text Available N-acetylglucosamine (GlcNAc, an alternative sugar, is emerging as an important molecule having a multifarious role in Candida albicans including a major role in signaling. GlcNAc Inducible Gene 2, GIG2 is one of the highly upregulated genes in GlcNAc grown cells in C. albicans. Our earlier studies show the involvement of Gig2 in the formation of N-acetylneuraminic (NANA acid from GlcNAc-6-phosphate through an understudied route. The crystal structure of Gig2 would help us in determining the exact reaction that this enzyme catalyzes. Here the cloning, expression, purification and crystallization of this protein are reported along with preliminary X-ray crystallographic analysis at 2.4Å resolution. The crystal belonged to P21 space group, with unit cell parameters a=59.59, b= 54.43, c= 73.29Å; α = 90°, β = 102.7° and γ = 90°. The structure was solved using PDB ID 2CSG as a template which has only 27% identity. Molecular replacement yielded a solution with LLG score of 87. The structure is currently under further refinement

  9. Calreticulin discriminates the proximal region at the N-glycosylation site of Glc1Man9GlcNAc2 ligand

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, Makoto; Adachi, Yuka [Department of Materials and Life Science, Seikei University, 3-3-1 Kichijoji-kita, Musashino, Tokyo 180-8633 (Japan); Ito, Yukishige [Synthetic Cellular Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); ERATO, Japan Science and Technology Agency, Ito Glycotrilogy Project, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Totani, Kiichiro, E-mail: ktotani@st.seikei.ac.jp [Department of Materials and Life Science, Seikei University, 3-3-1 Kichijoji-kita, Musashino, Tokyo 180-8633 (Japan)

    2015-10-23

    Calreticulin (CRT) is well known as a lectin-like chaperone that recognizes Glc1Man9GlcNAc2 (G1M9)-glycoproteins in the endoplasmic reticulum (ER). However, whether CRT can directly interact with the aglycone moiety (protein portion) of the glycoprotein remains controversial. To improve our understanding of CRT interactions, structure-defined G1M9-derivatives with different aglycones (–OH, –Gly–NH{sub 2}, and –Gly–Glu–{sup t}Bu) were used as CRT ligands, and their interactions with recombinant CRT were analyzed using thermal shift analysis. The results showed that CRT binds strongly to a G1M9-ligand in the order –Gly–Glu–{sup t}Bu > –Gly–NH{sub 2} > –OH, which is the same as that of the reglucosylation of Man9GlcNAc2 (M9)-derivatives by the folding sensor enzyme UGGT (UDP-glucose: glycoprotein glucosyltransferase). Our results indicate that, similar to UGGT, CRT discriminates the proximal region at the N-glycosylation site, suggesting a similar mechanism mediating the recognition of aglycone moieties in the ER glycoprotein quality control system. - Highlights: • Glc1Man9GlcNAc2 (G1M9) ligands with different aglycones were chemically prepared. • Calreticulin (CRT) discriminates the aglycone of Glc1Man9GlcNAc2 (G1M9) ligand. • CRT binds with G1M9 ligands in a similar manner to folding sensor enzyme.

  10. Engineering of GlcNAc-1-Phosphotransferase for Production of Highly Phosphorylated Lysosomal Enzymes for Enzyme Replacement Therapy.

    Science.gov (United States)

    Liu, Lin; Lee, Wang-Sik; Doray, Balraj; Kornfeld, Stuart

    2017-06-16

    Several lysosomal enzymes currently used for enzyme replacement therapy in patients with lysosomal storage diseases contain very low levels of mannose 6-phosphate, limiting their uptake via mannose 6-phosphate receptors on the surface of the deficient cells. These enzymes are produced at high levels by mammalian cells and depend on endogenous GlcNAc-1-phosphotransferase α/β precursor to phosphorylate the mannose residues on their glycan chains. We show that co-expression of an engineered truncated GlcNAc-1-phosphotransferase α/β precursor and the lysosomal enzyme of interest in the producing cells resulted in markedly increased phosphorylation and cellular uptake of the secreted lysosomal enzyme. This method also results in the production of highly phosphorylated acid β-glucocerebrosidase, a lysosomal enzyme that normally has just trace amounts of this modification.

  11. Pivotal Role of O-GlcNAc Modification in Cold-Induced Thermogenesis by Brown Adipose Tissue Through Mitochondrial Biogenesis.

    Science.gov (United States)

    Ohashi, Natsuko; Morino, Katsutaro; Ida, Shogo; Sekine, Osamu; Lemecha, Mengistu; Kume, Shinji; Park, Shi-Young; Choi, Cheol Soo; Ugi, Satoshi; Maegawa, Hiroshi

    2017-09-01

    Adipose tissues considerably influence metabolic homeostasis, and both white (WAT) and brown (BAT) adipose tissue play significant roles in lipid and glucose metabolism. O -linked N -acetylglucosamine ( O -GlcNAc) modification is characterized by the addition of N -acetylglucosamine to various proteins by O -GlcNAc transferase (Ogt), subsequently modulating various cellular processes. However, little is known about the role of O -GlcNAc modification in adipose tissues. Here, we report the critical role of O -GlcNAc modification in cold-induced thermogenesis. Deletion of Ogt in WAT and BAT using adiponectin promoter-driven Cre recombinase resulted in severe cold intolerance with decreased uncoupling protein 1 (Ucp1) expression. Furthermore, Ogt deletion led to decreased mitochondrial protein expression in conjunction with decreased peroxisome proliferator-activated receptor γ coactivator 1-α protein expression. This phenotype was further confirmed by deletion of Ogt in BAT using Ucp1 promoter-driven Cre recombinase, suggesting that O -GlcNAc modification in BAT is responsible for cold-induced thermogenesis. Hypothermia was significant under fasting conditions. This effect was mitigated after normal diet consumption but not after consumption of a fatty acid-rich ketogenic diet lacking carbohydrates, suggesting impaired diet-induced thermogenesis, particularly by fat. In conclusion, O -GlcNAc modification is essential for cold-induced thermogenesis and mitochondrial biogenesis in BAT. Glucose flux into BAT may be a signal to maintain BAT physiological responses. © 2017 by the American Diabetes Association.

  12. Dynamic Simulations of Advanced Fuel Cycles

    International Nuclear Information System (INIS)

    Piet, Steven J.; Dixon, Brent W.; Jacobson, Jacob J.; Matthern, Gretchen E.; Shropshire, David E.

    2011-01-01

    Years of performing dynamic simulations of advanced nuclear fuel cycle options provide insights into how they could work and how one might transition from the current once-through fuel cycle. This paper summarizes those insights from the context of the 2005 objectives and goals of the U.S. Advanced Fuel Cycle Initiative (AFCI). Our intent is not to compare options, assess options versus those objectives and goals, nor recommend changes to those objectives and goals. Rather, we organize what we have learned from dynamic simulations in the context of the AFCI objectives for waste management, proliferation resistance, uranium utilization, and economics. Thus, we do not merely describe 'lessons learned' from dynamic simulations but attempt to answer the 'so what' question by using this context. The analyses have been performed using the Verifiable Fuel Cycle Simulation of Nuclear Fuel Cycle Dynamics (VISION). We observe that the 2005 objectives and goals do not address many of the inherently dynamic discriminators among advanced fuel cycle options and transitions thereof.

  13. Dynamic O-GlcNAc cycling at promoters of Caenorhabditis elegans genes regulating longevity, stress, and immunity.

    Science.gov (United States)

    Love, Dona C; Ghosh, Salil; Mondoux, Michelle A; Fukushige, Tetsunari; Wang, Peng; Wilson, Mark A; Iser, Wendy B; Wolkow, Catherine A; Krause, Michael W; Hanover, John A

    2010-04-20

    Nutrient-driven O-GlcNAcylation of key components of the transcription machinery may epigenetically modulate gene expression in metazoans. The global effects of GlcNAcylation on transcription can be addressed directly in C. elegans because knockouts of the O-GlcNAc cycling enzymes are viable and fertile. Using anti-O-GlcNAc ChIP-on-chip whole-genome tiling arrays on wild-type and mutant strains, we detected over 800 promoters where O-GlcNAc cycling occurs, including microRNA loci and multigene operons. Intriguingly, O-GlcNAc-marked promoters are biased toward genes associated with PIP3 signaling, hexosamine biosynthesis, and lipid/carbohydrate metabolism. These marked genes are linked to insulin-like signaling, metabolism, aging, stress, and pathogen-response pathways in C. elegans. Whole-genome transcriptional profiling of the O-GlcNAc cycling mutants confirmed dramatic deregulation of genes in these key pathways. As predicted, the O-GlcNAc cycling mutants show altered lifespan and UV stress susceptibility phenotypes. We propose that O-GlcNAc cycling at promoters participates in a molecular program impacting nutrient-responsive pathways in C. elegans, including stress, pathogen response, and adult lifespan. The observed impact of O-GlcNAc cycling on both signaling and transcription in C. elegans has important implications for human diseases of aging, including diabetes and neurodegeneration.

  14. Characterization of the okra mucilage by interaction with Gal, GalNAc and GlcNAc specific lectins.

    Science.gov (United States)

    Wu, A M; Jiang, Y J; Hwang, P Y; Shen, F S

    1995-02-23

    A bio-active polysaccharide, which was the major component of the extract of the common okra, Hibiscus esculentus, was isolated from the extract by precipitation with ethanol between 28.5 to 45%. According to a previous report (Whistler, R.L. and Conrad, H.E. (1954) J. Am. Chem. Soc. 76, 1673-1674), this polysaccharide contains the Gal alpha 1-->4Gal sequence, which is the ligand for the uropathogenic Escherichia coli and toxic lectins. Analysis of the binding property of the okra polysaccharide by precipitin assay with Gal, GalNAc and GlcNAc specific lectins showed that this okra mucilage reacted best with Mistletoe toxic lectin-I (ML-I) and precipitated over 80% of the ML-I nitrogen (5.1 micrograms N) added. It also precipitated well with Abrus precatorius (APA), Momordica charantia (MCA) and Ricinus communis (RCA1) agglutinins, but poorly with other lectins. The results obtained suggest that this polysaccharide is a valuable reagent to differentiate Gal specific lectins from the GalNAc and/or GlcNAc specific series.

  15. Epigenetic dynamics across the cell cycle

    DEFF Research Database (Denmark)

    Kheir, Tony Bou; Lund, Anders H.

    2010-01-01

    Progression of the mammalian cell cycle depends on correct timing and co-ordination of a series of events, which are managed by the cellular transcriptional machinery and epigenetic mechanisms governing genome accessibility. Epigenetic chromatin modifications are dynamic across the cell cycle...... a correct inheritance of epigenetic chromatin modifications to daughter cells. In this chapter, we summarize the current knowledge on the dynamics of epigenetic chromatin modifications during progression of the cell cycle....

  16. Peptide substrate-assisted study of O-GlcNAc transferase and O-GlcNAcylation

    NARCIS (Netherlands)

    Shi, Jie

    2018-01-01

    O-GlcNAcylation is a post translational modification (PTM) that corresponds to the addition of a single β-linked N-Acetyl-D-glucosamine (GlcNAc) sugar moiety onto the hydroxyl group of serine and threonine residues in numerous proteins. The addition of O-GlcNAc to proteins is catalyzed by O-GlcNAc

  17. CFTSIM-ITER dynamic fuel cycle model

    International Nuclear Information System (INIS)

    Busigin, A.; Gierszewski, P.

    1998-01-01

    Dynamic system models have been developed for specific tritium systems with considerable detail and for integrated fuel cycles with lesser detail (e.g. D. Holland, B. Merrill, Analysis of tritium migration and deposition in fusion reactor systems, Proceedings of the Ninth Symposium Eng. Problems of Fusion Research (1981); M.A. Abdou, E. Vold, C. Gung, M. Youssef, K. Shin, DT fuel self-sufficiency in fusion reactors, Fusion Technol. (1986); G. Spannagel, P. Gierszewski, Dynamic tritium inventory of a NET/ITER fuel cycle with lithium salt solution blanket, Fusion Eng. Des. (1991); W. Kuan, M.A. Abdou, R.S. Willms, Dynamic simulation of a proposed ITER tritium processing system, Fusion Technol. (1995)). In order to provide a tool to understand and optimize the behavior of the ITER fuel cycle, a dynamic fuel cycle model called CFTSIM is under development. The CFTSIM code incorporates more detailed ITER models, specifically for the important isotope separation system, and also has an easier-to-use graphical interface. This paper provides an overview of CFTSIM Version 1.0. The models included are those with significant and varying tritium inventories over a test campaign: fueling, plasma and first wall, pumping, fuel cleanup, isotope separation and storage. An illustration of the results is shown. (orig.)

  18. Effects of hypo-O-GlcNAcylation on Drosophila development.

    Science.gov (United States)

    Mariappa, Daniel; Ferenbach, Andrew T; van Aalten, Daan M F

    2018-05-11

    Post-translational modification of serine/threonine residues in nucleocytoplasmic proteins with GlcNAc ( O -GlcNAcylation) is an essential regulatory mechanism in many cellular processes. In Drosophila , null mutants of the Polycomb gene O -GlcNAc transferase ( OGT ; also known as super sex combs ( sxc )) display homeotic phenotypes. To dissect the requirement for O -GlcNAc signaling in Drosophila development, we used CRISPR/Cas9 gene editing to generate rationally designed sxc catalytically hypomorphic or null point mutants. Of the fertile males derived from embryos injected with the CRISPR/Cas9 reagents, 25% produced progeny carrying precise point mutations with no detectable off-target effects. One of these mutants, the catalytically inactive sxc K872M , was recessive lethal, whereas a second mutant, the hypomorphic sxc H537A , was homozygous viable. We observed that reduced total protein O -GlcNAcylation in the sxc H537A mutant is associated with a wing vein phenotype and temperature-dependent lethality. Genetic interaction between sxc H537A and a null allele of Drosophila host cell factor ( dHcf ), encoding an extensively O -GlcNAcylated transcriptional coactivator, resulted in abnormal scutellar bristle numbers. A similar phenotype was also observed in sxc H537A flies lacking a copy of skuld ( skd ), a Mediator complex gene known to affect scutellar bristle formation. Interestingly, this phenotype was independent of OGT Polycomb function or dHcf downstream targets. In conclusion, the generation of the endogenous OGT hypomorphic mutant sxc H537A enabled us to identify pleiotropic effects of globally reduced protein O -GlcNAc during Drosophila development. The mutants generated and phenotypes observed in this study provide a platform for discovery of OGT substrates that are critical for Drosophila development. © 2018 Mariappa et al.

  19. Lessons Learned From Dynamic Simulations of Advanced Fuel Cycles

    International Nuclear Information System (INIS)

    Piet, Steven J.; Dixon, Brent W.; Jacobson, Jacob J.; Matthern, Gretchen E.; Shropshire, David E.

    2009-01-01

    Years of performing dynamic simulations of advanced nuclear fuel cycle options provide insights into how they could work and how one might transition from the current once-through fuel cycle. This paper summarizes those insights from the context of the 2005 objectives and goals of the Advanced Fuel Cycle Initiative (AFCI). Our intent is not to compare options, assess options versus those objectives and goals, nor recommend changes to those objectives and goals. Rather, we organize what we have learned from dynamic simulations in the context of the AFCI objectives for waste management, proliferation resistance, uranium utilization, and economics. Thus, we do not merely describe 'lessons learned' from dynamic simulations but attempt to answer the 'so what' question by using this context. The analyses have been performed using the Verifiable Fuel Cycle Simulation of Nuclear Fuel Cycle Dynamics (VISION). We observe that the 2005 objectives and goals do not address many of the inherently dynamic discriminators among advanced fuel cycle options and transitions thereof

  20. Increased O-GlcNAcylation of Endothelial Nitric Oxide Synthase Compromises the Anti-contractile Properties of Perivascular Adipose Tissue in Metabolic Syndrome.

    Science.gov (United States)

    da Costa, Rafael M; da Silva, Josiane F; Alves, Juliano V; Dias, Thiago B; Rassi, Diane M; Garcia, Luis V; Lobato, Núbia de Souza; Tostes, Rita C

    2018-01-01

    Under physiological conditions, the perivascular adipose tissue (PVAT) negatively modulates vascular contractility. This property is lost in experimental and human obesity and in the metabolic syndrome, indicating that changes in PVAT function may contribute to vascular dysfunction associated with increased body weight and hyperglycemia. The O -linked β-N-acetylglucosamine ( O -GlcNAc) modification of proteins ( O -GlcNAcylation) is a unique posttranslational process that integrates glucose metabolism with intracellular protein activity. Increased flux of glucose through the hexosamine biosynthetic pathway and the consequent increase in tissue-specific O -GlcNAc modification of proteins have been linked to multiple facets of vascular dysfunction in diabetes and other pathological conditions. We hypothesized that chronic consumption of glucose, a condition that progresses to metabolic syndrome, leads to increased O -GlcNAc modification of proteins in the PVAT, decreasing its anti-contractile effects. Therefore, the current study was devised to determine whether a high-sugar diet increases O -GlcNAcylation in the PVAT and how increased O -GlcNAc interferes with PVAT vasorelaxant function. To assess molecular mechanisms by which O -GlcNAc contributes to PVAT dysfunction, thoracic aortas surrounded by PVAT were isolated from Wistar rats fed either a control or high sugar diet, for 10 and 12 weeks. Rats chronically fed a high sugar diet exhibited metabolic syndrome features, increased O -GlcNAcylated-proteins in the PVAT and loss of PVAT anti-contractile effect. PVAT from high sugar diet-fed rats for 12 weeks exhibited decreased NO formation, reduced expression of endothelial nitric oxide synthase (eNOS) and increased O -GlcNAcylation of eNOS. High sugar diet also decreased OGA activity and increased superoxide anion generation in the PVAT. Visceral adipose tissue samples from hyperglycemic patients showed increased levels of O -GlcNAc-modified proteins, increased ROS

  1. O-GLYCBASE version 2.0: a revised database of O-glycosylated proteins

    DEFF Research Database (Denmark)

    Hansen, Jan; Lund, Ole; Rapacki, Kristoffer

    1997-01-01

    O-GLYCBASE is an updated database of information on glycoproteins and their O-linked glycosylation sites. Entries are compiled and revised from the literature, and from the SWISS-PROT database. Entries include information about species, sequence, glycosylation sites and glycan type. O-GLYCBASE is...... patterns for the GalNAc, mannose and GlcNAc transferases are shown. The O-GLYCBASE database is available through WWW or by anonymous FTP....

  2. Dynamics of the cell-cycle network under genome-rewiring perturbations

    International Nuclear Information System (INIS)

    Katzir, Yair; Elhanati, Yuval; Braun, Erez; Averbukh, Inna

    2013-01-01

    The cell-cycle progression is regulated by a specific network enabling its ordered dynamics. Recent experiments supported by computational models have shown that a core of genes ensures this robust cycle dynamics. However, much less is known about the direct interaction of the cell-cycle regulators with genes outside of the cell-cycle network, in particular those of the metabolic system. Following our recent experimental work, we present here a model focusing on the dynamics of the cell-cycle core network under rewiring perturbations. Rewiring is achieved by placing an essential metabolic gene exclusively under the regulation of a cell-cycle's promoter, forcing the cell-cycle network to function under a multitasking challenging condition; operating in parallel the cell-cycle progression and a metabolic essential gene. Our model relies on simple rate equations that capture the dynamics of the relevant protein–DNA and protein–protein interactions, while making a clear distinction between these two different types of processes. In particular, we treat the cell-cycle transcription factors as limited ‘resources’ and focus on the redistribution of resources in the network during its dynamics. This elucidates the sensitivity of its various nodes to rewiring interactions. The basic model produces the correct cycle dynamics for a wide range of parameters. The simplicity of the model enables us to study the interface between the cell-cycle regulation and other cellular processes. Rewiring a promoter of the network to regulate a foreign gene, forces a multitasking regulatory load. The higher the load on the promoter, the longer is the cell-cycle period. Moreover, in agreement with our experimental results, the model shows that different nodes of the network exhibit variable susceptibilities to the rewiring perturbations. Our model suggests that the topology of the cell-cycle core network ensures its plasticity and flexible interface with other cellular processes

  3. Dynamic high-cadence cycling improves motor symptoms in Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Angela eRidgel

    2015-09-01

    Full Text Available Rationale: Individuals with Parkinson’s disease (PD often have deficits in kinesthesia. There is a need for rehabilitation interventions that improve these kinesthetic deficits. Forced (tandem cycling at a high cadence improves motor function. However, tandem cycling is difficult to implement in a rehabilitation setting. Objective: To construct an instrumented, motored cycle and to examine if high cadence dynamic cycling promotes improvements in motor function. Method: This motored cycle had two different modes: dynamic and static cycling. In dynamic mode, the motor maintained 75-85 rpm. In static mode, the rider determined the pedaling cadence. UPDRS Motor III and Timed Up and Go (TUG were used to assess changes in motor function after three cycling sessions. Results: Individuals in the static group showed a lower cadence but a higher power, torque and heart rate than the dynamic group. UPDRS score showed a significant 13.9% improvement in the dynamic group and only a 0.9% improvement in the static group. There was also a 16.5% improvement in TUG time in the dynamic group but only an 8% improvement in the static group. Conclusion: These findings show that dynamic cycling can improve PD motor function and that activation of proprioceptors with a high cadence but variable pattern may be important for motor improvements in PD.

  4. A New Dynamic Model for Nuclear Fuel Cycle System Analysis

    International Nuclear Information System (INIS)

    Choi, Sungyeol; Ko, Won Il

    2014-01-01

    The evaluation of mass flow is a complex process where numerous parameters and their complex interaction are involved. Given that many nuclear power countries have light and heavy water reactors and associated fuel cycle technologies, the mass flow analysis has to consider a dynamic transition from the open fuel cycle to other cycles over decades or a century. Although an equilibrium analysis provides insight concerning the end-states of fuel cycle transitions, it cannot answer when we need specific management options, whether the current plan can deliver these options when needed, and how fast the equilibrium can be achieved. As a pilot application, the government brought several experts together to conduct preliminary evaluations for nuclear fuel cycle options in 2010. According to Table 1, they concluded that the closed nuclear fuel cycle has long-term advantages over the open fuel cycle. However, it is still necessary to assess these options in depth and to optimize transition paths of these long-term options with advanced dynamic fuel cycle models. A dynamic simulation model for nuclear fuel cycle systems was developed and its dynamic mass flow analysis capability was validated against the results of existing models. This model can reflects a complex combination of various fuel cycle processes and reactor types, from once-through to multiple recycling, within a single nuclear fuel cycle system. For the open fuel cycle, the results of the developed model are well matched with the results of other models

  5. Dynamic analysis of the CTAR (constant temperature adsorption refrigeration) cycle

    International Nuclear Information System (INIS)

    Hassan, H.Z.; Mohamad, A.A.; Al-Ansary, H.A.; Alyousef, Y.M.

    2014-01-01

    The basic SAR (solar-driven adsorption refrigeration) machine is an intermittent cold production system. Recently, the CO-SAR (continuous operation solar-powered adsorption refrigeration) system is developed. The CO-SAR machine is based on the theoretical CTAR (constant temperature adsorption refrigeration) cycle in which the adsorption process takes place at a constant temperature that equals the ambient temperature. Practically, there should be a temperature gradient between the adsorption bed and the surrounding atmosphere to provide a driving potential for heat transfer. In the present study, the dynamic analysis of the CTAR cycle is developed. This analysis provides a comparison between the theoretical and the dynamic operation of the CTAR cycle. The developed dynamic model is based on the D-A adsorption equilibrium equation and the energy and mass balances in the adsorption reactor. Results obtained from the present work demonstrate that, the idealization of the constant temperature adsorption process in the theoretical CTAR cycle is not far from the real situation and can be approached. Furthermore, enhancing the heat transfer between the adsorption bed and the ambient during the bed pre-cooling process helps accelerating the heat rejection process from the adsorption reactor and therefore approaching the isothermal process. - Highlights: • The dynamic analysis of the CTAR (constant temperature adsorption refrigeration) cycle is developed. • The CTAR theoretical and dynamic cycles are compared. • The dynamic cycle approaches the ideal one by enhancing the bed precooling

  6. Pseudo-simple heteroclinic cycles in R4

    Science.gov (United States)

    Chossat, Pascal; Lohse, Alexander; Podvigina, Olga

    2018-06-01

    We study pseudo-simple heteroclinic cycles for a Γ-equivariant system in R4 with finite Γ ⊂ O(4) , and their nearby dynamics. In particular, in a first step towards a full classification - analogous to that which exists already for the class of simple cycles - we identify all finite subgroups of O(4) admitting pseudo-simple cycles. To this end we introduce a constructive method to build equivariant dynamical systems possessing a robust heteroclinic cycle. Extending a previous study we also investigate the existence of periodic orbits close to a pseudo-simple cycle, which depends on the symmetry groups of equilibria in the cycle. Moreover, we identify subgroups Γ ⊂ O(4) , Γ ⊄ SO(4) , admitting fragmentarily asymptotically stable pseudo-simple heteroclinic cycles. (It has been previously shown that for Γ ⊂ SO(4) pseudo-simple cycles generically are completely unstable.) Finally, we study a generalized heteroclinic cycle, which involves a pseudo-simple cycle as a subset.

  7. Tracking nuclear wave-packet dynamics in molecular oxygen ions with few-cycle infrared laser pulses

    International Nuclear Information System (INIS)

    De, S.; Bocharova, I. A.; Magrakvelidze, M.; Ray, D.; Cao, W.; Thumm, U.; Cocke, C. L.; Bergues, B.; Kling, M. F.; Litvinyuk, I. V.

    2010-01-01

    We have tracked nuclear wave-packet dynamics in doubly charged states of molecular oxygen using few-cycle infrared laser pulses. Bound and dissociating wave packets were launched and subsequently probed via a pair of 8-fs pulses of 790 nm radiation. Ionic fragments from the dissociating molecules were monitored by velocity-map imaging. Pronounced oscillations in the delay-dependent kinetic energy release spectra were observed. The occurrence of vibrational revivals permits us to identify the potential curves of the O 2 dication which are most relevant to the molecular dynamics. These studies show the accessibility to the dynamics of such higher-charged molecules.

  8. Characterization of chaotic dynamics in the human menstrual cycle

    Science.gov (United States)

    Derry, Gregory; Derry, Paula

    2010-03-01

    The human menstrual cycle exhibits much unexplained variability, which is typically dismissed as random variation. Given the many delayed nonlinear feedbacks in the reproductive endocrine system, however, the menstrual cycle might well be a nonlinear dynamical system in a chaotic trajectory, and that this instead accounts for the observed variability. Here, we test this hypothesis by performing a time series analysis on data for 7438 menstrual cycles from 38 women in the 20-40 year age range, using the database maintained by the Tremin Research Program on Women's Health. Using phase space reconstruction techniques with a maximum embedding dimension of 6, we find appropriate scaling behavior in the correlation sums for this data, indicating low dimensional deterministic dynamics. A correlation dimension of 2.6 is measured in this scaling regime, and this result is confirmed by recalculation using the Takens estimator. These results may be interpreted as offering an approximation to the fractal dimension of a strange attractor governing the chaotic dynamics of the menstrual cycle.

  9. Small business life cycle: statics and dynamics (S

    Directory of Open Access Journals (Sweden)

    Matejun Marek

    2017-12-01

    Full Text Available The aim of the paper is the presentation of theoretical foundations and the structure of original, 8-stage statics and dynamics model in the small business life cycle. Based on theoretical considerations, two hypotheses concerning the impact of dynamic and static nature of the life-cycle stages on selected determinants and effects of SMEs’ development were formulated. The hypotheses were verified based on the results of the survey conducted on a sample of 1,741 SMEs from 22 countries of the European Union. The results indicate that companies in the dynamic life-cycle stages are run by more enterprising owners, operate in more promising markets with a higher potential and make greater use of market niches thus limiting the level of competition. At the same time, such companies are characterised by higher levels of flexibility and involvement in innovative activities, which translates into obtaining a significantly higher level of business performance, in the area of quantitative as well as qualitative results.

  10. Glacial cycles: exogenous orbital changes vs. endogenous climate dynamics

    Science.gov (United States)

    Kaufmann, R. K.; Juselius, K.

    2010-04-01

    We use a statistical model, the cointegrated vector autoregressive model, to assess the degree to which variations in Earth's orbit and endogenous climate dynamics can be used to simulate glacial cycles during the late Quaternary (390 kyr-present). To do so, we estimate models of varying complexity and compare the accuracy of their in-sample simulations. Results indicate that strong statistical associations between endogenous climate variables are not enough for statistical models to reproduce glacial cycles. Rather, changes in solar insolation associated with changes in Earth's orbit are needed to simulate glacial cycles accurately. Also, results suggest that non-linear dynamics, threshold effects, and/or free oscillations may not play an overriding role in glacial cycles.

  11. Unit Commitment With Dynamic Cycling Costs

    OpenAIRE

    Troy, Niamh; Flynn, Damian; Milligan, Michael R.; et al.

    2012-01-01

    Increased competition in the electricity sector and the integration of variable renewable energy sources is resulting in more frequent cycling of thermal plant. Thus, the wear-and-tear to generator components and the related costs are a growing concern for plant owners and system operators alike. This paper presents a formulation that can be implemented in a MIP dispatch model to dynamically model cycling costs based on unit operation. When implemented for a test system, the results show that...

  12. Phosphorylation of TET proteins is regulated via O-GlcNAcylation by the O-linked N-acetylglucosamine transferase (OGT).

    Science.gov (United States)

    Bauer, Christina; Göbel, Klaus; Nagaraj, Nagarjuna; Colantuoni, Christian; Wang, Mengxi; Müller, Udo; Kremmer, Elisabeth; Rottach, Andrea; Leonhardt, Heinrich

    2015-02-20

    TET proteins oxidize 5-methylcytosine to 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxylcytosine and thus provide a possible means for active DNA demethylation in mammals. Although their catalytic mechanism is well characterized and the catalytic dioxygenase domain is highly conserved, the function of the regulatory regions (the N terminus and the low-complexity insert between the two parts of the dioxygenase domains) is only poorly understood. Here, we demonstrate that TET proteins are subject to a variety of post-translational modifications that mostly occur at these regulatory regions. We mapped TET modification sites at amino acid resolution and show for the first time that TET1, TET2, and TET3 are highly phosphorylated. The O-linked GlcNAc transferase, which we identified as a strong interactor with all three TET proteins, catalyzes the addition of a GlcNAc group to serine and threonine residues of TET proteins and thereby decreases both the number of phosphorylation sites and site occupancy. Interestingly, the different TET proteins display unique post-translational modification patterns, and some modifications occur in distinct combinations. In summary, our results provide a novel potential mechanism for TET protein regulation based on a dynamic interplay of phosphorylation and O-GlcNAcylation at the N terminus and the low-complexity insert region. Our data suggest strong cross-talk between the modification sites that could allow rapid adaption of TET protein localization, activity, or targeting due to changing environmental conditions as well as in response to external stimuli. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Dynamical diagnostics of the SST annual cycle in the eastern equatorial Pacific: part I a linear coupled framework

    Science.gov (United States)

    Chen, Ying-Ying; Jin, Fei-Fei

    2018-03-01

    The eastern equatorial Pacific has a pronounced westward propagating SST annual cycle resulting from ocean-atmosphere interactions with equatorial semiannual solar forcing and off-equatorial annual solar forcing conveyed to the equator. In this two-part paper, a simple linear coupled framework is proposed to quantify the internal dynamics and external forcing for a better understanding of the linear part of the dynamics annual cycle. It is shown that an essential internal dynamical factor is the SST damping rate which measures the coupled stability in a similar way as the Bjerknes instability index for the El Niño-Southern Oscillation. It comprises three major negative terms (dynamic damping due to the Ekman pumping feedback, mean circulation advection, and thermodynamic feedback) and two positive terms (thermocline feedback and zonal advection). Another dynamical factor is the westward-propagation speed that is mainly determined by the thermodynamic feedback, the Ekman pumping feedback, and the mean circulation. The external forcing is measured by the annual and semiannual forcing factors. These linear internal and external factors, which can be estimated from data, determine the amplitude of the annual cycle.

  14. Induction of PNAd and N-acetylglucosamine 6-O-sulfotransferases 1 and 2 in mouse collagen-induced arthritis

    Directory of Open Access Journals (Sweden)

    Rosen Steven D

    2006-06-01

    Full Text Available Abstract Background Leukocyte recruitment across blood vessels is fundamental to immune surveillance and inflammation. Lymphocyte homing to peripheral lymph nodes is mediated by the adhesion molecule, L-selectin, which binds to sulfated carbohydrate ligands on high endothelial venules (HEV. These glycoprotein ligands are collectively known as peripheral node addressin (PNAd, as defined by the function-blocking monoclonal antibody known as MECA-79. The sulfation of these ligands depends on the action of two HEV-expressed N-acetylglucosamine 6-O-sulfotransferases: GlcNAc6ST-2 and to a lesser degree GlcNAc6ST-1. Induction of PNAd has also been shown to occur in a number of human inflammatory diseases including rheumatoid arthritis (RA. Results In order to identify an animal model suitable for investigating the role of PNAd in chronic inflammation, we examined the expression of PNAd as well as GlcNAc6ST-1 and -2 in collagen-induced arthritis in mice. Here we show that PNAd is expressed in the vasculature of arthritic synovium in mice immunized with collagen but not in the normal synovium of control animals. This de novo expression of PNAd correlates strongly with induction of transcripts for both GlcNAc6ST-1 and GlcNAc6ST-2, as well as the expression of GlcNAc6ST-2 protein. Conclusion Our results demonstrate that PNAd and the sulfotransferases GlcNAc6ST-1 and 2 are induced in mouse collagen-induced arthritis and suggest that PNAd antagonists or inhibitors of the enzymes may have therapeutic benefit in this widely-used mouse model of RA.

  15. Dynamical analysis of the global business-cycle synchronization.

    Science.gov (United States)

    Lopes, António M; Tenreiro Machado, J A; Huffstot, John S; Mata, Maria Eugénia

    2018-01-01

    This paper reports the dynamical analysis of the business cycles of 12 (developed and developing) countries over the last 56 years by applying computational techniques used for tackling complex systems. They reveal long-term convergence and country-level interconnections because of close contagion effects caused by bilateral networking exposure. Interconnectivity determines the magnitude of cross-border impacts. Local features and shock propagation complexity also may be true engines for local configuration of cycles. The algorithmic modeling proves to represent a solid approach to study the complex dynamics involved in the world economies.

  16. Dynamical analysis of the global business-cycle synchronization

    Science.gov (United States)

    2018-01-01

    This paper reports the dynamical analysis of the business cycles of 12 (developed and developing) countries over the last 56 years by applying computational techniques used for tackling complex systems. They reveal long-term convergence and country-level interconnections because of close contagion effects caused by bilateral networking exposure. Interconnectivity determines the magnitude of cross-border impacts. Local features and shock propagation complexity also may be true engines for local configuration of cycles. The algorithmic modeling proves to represent a solid approach to study the complex dynamics involved in the world economies. PMID:29408909

  17. Observed Responses of Mesospheric Water Vapor to Solar Cycle and Dynamical Forcings

    Science.gov (United States)

    Remsberg, Ellis; Damadeo, Robert; Natarajan, Murali; Bhatt, Praful

    2018-04-01

    This study focuses on responses of mesospheric water vapor (H2O) to the solar cycle flux at Lyman-α wavelength and to dynamical forcings according to the multivariate El-Nino/Southern Oscillation (ENSO) index. The zonal-averaged responses are for latitudes from 60°S to 60°N and pressure-altitudes from 0.01 to 1.0 hPa, as obtained from multiple linear regression analyses of time series of H2O from the Halogen Occultation Experiment for July 1992 to November 2005. The results compare very well with those from a separate simultaneous temporal and spatial (STS) method that also confirms that there are no significant sampling biases affecting both sets of results. Distributions of the seasonal amplitudes for temperature and H2O are in accord with the seasonal net circulation. In general, the responses of H2O to ENSO are anticorrelated with those of temperature. H2O responses to multivariate ENSO index are negative in the upper mesosphere and largest in the Northern Hemisphere; responses in the lower mesosphere are more symmetric with latitude. H2O responses to the Lyman-α flux (Lya) vary from strong negative values in the uppermost mesosphere to very weak, positive values in the tropical lowermost mesosphere. However, the effects of those H2O responses to the solar activity extend to the rest of the mesosphere via dynamical processes. Profiles of the responses to ENSO and Lya also agree reasonably with published results for H2O at the low latitudes from the Microwave Limb Sounder.

  18. O-GlcNAcylation regulates ischemia-induced neuronal apoptosis through AKT signaling.

    Science.gov (United States)

    Shi, Jianhua; Gu, Jin-hua; Dai, Chun-ling; Gu, Jianlan; Jin, Xiaoxia; Sun, Jianming; Iqbal, Khalid; Liu, Fei; Gong, Cheng-Xin

    2015-09-28

    Apoptosis plays an important role in neural development and neurological disorders. In this study, we found that O-GlcNAcylation, a unique protein posttranslational modification with O-linked β-N-acetylglucosamine (GlcNAc), promoted apoptosis through attenuating phosphorylation/activation of AKT and Bad. By using co-immunoprecipitation and mutagenesis techniques, we identified O-GlcNAc modification at both Thr308 and Ser473 of AKT. O-GlcNAcylation-induced apoptosis was attenuated by over-expression of AKT. We also found a dynamic elevation of protein O-GlcNAcylation during the first four hours of cerebral ischemia, followed by continuous decline after middle cerebral artery occlusion (MCAO) in the mouse brain. The elevation of O-GlcNAcylation coincided with activation of cell apoptosis. Finally, we found a negative correlation between AKT phosphorylation and O-GlcNAcylation in ischemic brain tissue. These results indicate that cerebral ischemia induces a rapid increase of O-GlcNAcylation that promotes apoptosis through down-regulation of AKT activity. These findings provide a novel mechanism through which O-GlcNAcylation regulates ischemia-induced neuronal apoptosis through AKT signaling.

  19. Dynamic analysis of stochastic transcription cycles.

    Directory of Open Access Journals (Sweden)

    Claire V Harper

    2011-04-01

    Full Text Available In individual mammalian cells the expression of some genes such as prolactin is highly variable over time and has been suggested to occur in stochastic pulses. To investigate the origins of this behavior and to understand its functional relevance, we quantitatively analyzed this variability using new mathematical tools that allowed us to reconstruct dynamic transcription rates of different reporter genes controlled by identical promoters in the same living cell. Quantitative microscopic analysis of two reporter genes, firefly luciferase and destabilized EGFP, was used to analyze the dynamics of prolactin promoter-directed gene expression in living individual clonal and primary pituitary cells over periods of up to 25 h. We quantified the time-dependence and cyclicity of the transcription pulses and estimated the length and variation of active and inactive transcription phases. We showed an average cycle period of approximately 11 h and demonstrated that while the measured time distribution of active phases agreed with commonly accepted models of transcription, the inactive phases were differently distributed and showed strong memory, with a refractory period of transcriptional inactivation close to 3 h. Cycles in transcription occurred at two distinct prolactin-promoter controlled reporter genes in the same individual clonal or primary cells. However, the timing of the cycles was independent and out-of-phase. For the first time, we have analyzed transcription dynamics from two equivalent loci in real-time in single cells. In unstimulated conditions, cells showed independent transcription dynamics at each locus. A key result from these analyses was the evidence for a minimum refractory period in the inactive-phase of transcription. The response to acute signals and the result of manipulation of histone acetylation was consistent with the hypothesis that this refractory period corresponded to a phase of chromatin remodeling which significantly

  20. GlcNAc-1-P-transferase–tunicamycin complex structure reveals basis for inhibition of N-glycosylation

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jiho; Mashalidis, Ellene H.; Kuk, Alvin C. Y.; Yamamoto, Kazuki; Kaeser, Benjamin; Ichikawa, Satoshi; Lee, Seok-Yong

    2018-02-19

    N-linked glycosylation is a predominant post-translational modification of protein in eukaryotes, and its dysregulation is the etiology of several human disorders. The enzyme UDP-N-acetylglucosamine:dolichyl-phosphate N-acetylglucosaminephosphotransferase (GlcNAc-1-P-transferase or GPT) catalyzes the first and committed step of N-linked glycosylation in the endoplasmic reticulum membrane, and it is the target of the natural product tunicamycin. Tunicamycin has potent antibacterial activity, inhibiting the bacterial cell wall synthesis enzyme MraY, but its usefulness as an antibiotic is limited by off-target inhibition of human GPT. Our understanding of how tunicamycin inhibits N-linked glycosylation and efforts to selectively target MraY are hampered by a lack of structural information. Here we present crystal structures of human GPT in complex with tunicamycin. In conclusion, structural and functional analyses reveal the difference between GPT and MraY in their mechanisms of inhibition by tunicamycin. We demonstrate that this difference could be exploited to design MraY-specific inhibitors as potential antibiotics.

  1. O-GlcNAcylation regulates ischemia-induced neuronal apoptosis through AKT signaling

    OpenAIRE

    Shi, Jianhua; Gu, Jin-hua; Dai, Chun-ling; Gu, Jianlan; Jin, Xiaoxia; Sun, Jianming; Iqbal, Khalid; Liu, Fei; Gong, Cheng-Xin

    2015-01-01

    Apoptosis plays an important role in neural development and neurological disorders. In this study, we found that O-GlcNAcylation, a unique protein posttranslational modification with O-linked β-N-acetylglucosamine (GlcNAc), promoted apoptosis through attenuating phosphorylation/activation of AKT and Bad. By using co-immunoprecipitation and mutagenesis techniques, we identified O-GlcNAc modification at both Thr308 and Ser473 of AKT. O-GlcNAcylation-induced apoptosis was attenuated by over-expr...

  2. Nonlinear dynamics of cycle-to-cycle combustion variations in a lean-burn natural gas engine

    Energy Technology Data Exchange (ETDEWEB)

    Li Guoxiu [School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044 (China)], E-mail: gxli@bjtu.edu.cn; Yao Baofeng [School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044 (China)

    2008-04-15

    Temporal dynamics of the combustion process in a lean-burn natural gas engine was studied by the analysis of time series of consecutive experimental in-cylinder pressure data in this work. Methods borrowed to the nonlinear dynamical system theory were applied to analyze the in-cylinder pressure time series under operating conditions with different equivalence ratio. Phase spaces were reconstructed from the in-cylinder pressure time series and Poincare section calculated from each phase space. Poincare sections show that the in-cylinder combustion process involves chaotic behavior. Furthermore, return maps plotted from time series of indicated mean effective pressure show that both nonlinear deterministic components and stochastic components are involved in the dynamics of cycle-to-cycle combustion variations in the lean burn natural gas engine. There is a transition from stochastic behavior to noisy nonlinear determinism as equivalence ratio decreases from near stoichiometric to very lean conditions.

  3. Nonlinear dynamics of cycle-to-cycle combustion variations in a lean-burn natural gas engine

    International Nuclear Information System (INIS)

    Li Guoxiu; Yao Baofeng

    2008-01-01

    Temporal dynamics of the combustion process in a lean-burn natural gas engine was studied by the analysis of time series of consecutive experimental in-cylinder pressure data in this work. Methods borrowed to the nonlinear dynamical system theory were applied to analyze the in-cylinder pressure time series under operating conditions with different equivalence ratio. Phase spaces were reconstructed from the in-cylinder pressure time series and Poincare section calculated from each phase space. Poincare sections show that the in-cylinder combustion process involves chaotic behavior. Furthermore, return maps plotted from time series of indicated mean effective pressure show that both nonlinear deterministic components and stochastic components are involved in the dynamics of cycle-to-cycle combustion variations in the lean burn natural gas engine. There is a transition from stochastic behavior to noisy nonlinear determinism as equivalence ratio decreases from near stoichiometric to very lean conditions

  4. Dynamic simulation of combined cycle power plant cycling in the electricity market

    International Nuclear Information System (INIS)

    Benato, A.; Bracco, S.; Stoppato, A.; Mirandola, A.

    2016-01-01

    Highlights: • The flexibility of traditional power plants have become of primary importance. • Three dynamic models of the same single pressure HRSG are built. • The plant dynamic behaviour is predicted. • A lifetime calculation procedure is proposed and tested. • The drum lifetime reduction is estimated. - Abstract: The energy markets deregulation coupled with the rapid spread of unpredictable energy sources power units are stressing the necessity of improving traditional power plants flexibility. Cyclic operation guarantees high profits in the short term but, in the medium-long time, cause a lifetime reduction due to thermo-mechanical fatigue, creep and corrosion. In this context, Combined Cycle Power Plants are the most concerned in flexible operation problems. For this reason, two research groups from two Italian universities have developed a procedure to estimate the devices lifetime reduction with a particular focus on steam drums and superheaters/reheaters. To assess the lifetime reduction, it is essential to predict the thermodynamic variables trend in order to describe the plant behaviour. Therefore, the core of the procedure is the power plant dynamic model. At this purpose, in this paper, three different dynamic models of the same single pressure Combined Cycle Gas Turbine are presented. The models have been built using three different approaches and are used to simulate plant behaviour under real operating conditions. Despite these differences, the thermodynamic parameters time profiles are in good accordance as presented in the paper. At last, an evaluation of the drum lifetime reduction is performed.

  5. OGT (O-GlcNAc Transferase) Selectively Modifies Multiple Residues Unique to Lamin A.

    Science.gov (United States)

    Simon, Dan N; Wriston, Amanda; Fan, Qiong; Shabanowitz, Jeffrey; Florwick, Alyssa; Dharmaraj, Tejas; Peterson, Sherket B; Gruenbaum, Yosef; Carlson, Cathrine R; Grønning-Wang, Line M; Hunt, Donald F; Wilson, Katherine L

    2018-05-17

    The LMNA gene encodes lamins A and C with key roles in nuclear structure, signaling, gene regulation, and genome integrity. Mutations in LMNA cause over 12 diseases ('laminopathies'). Lamins A and C are identical for their first 566 residues. However, they form separate filaments in vivo, with apparently distinct roles. We report that lamin A is β- O -linked N -acetylglucosamine- (O -GlcNAc)-modified in human hepatoma (Huh7) cells and in mouse liver. In vitro assays with purified O -GlcNAc transferase (OGT) enzyme showed robust O -GlcNAcylation of recombinant mature lamin A tails (residues 385⁻646), with no detectable modification of lamin B1, lamin C, or 'progerin' (Δ50) tails. Using mass spectrometry, we identified 11 O -GlcNAc sites in a 'sweet spot' unique to lamin A, with up to seven sugars per peptide. Most sites were unpredicted by current algorithms. Double-mutant (S612A/T643A) lamin A tails were still robustly O -GlcNAc-modified at seven sites. By contrast, O -GlcNAcylation was undetectable on tails bearing deletion Δ50, which causes Hutchinson⁻Gilford progeria syndrome, and greatly reduced by deletion Δ35. We conclude that residues deleted in progeria are required for substrate recognition and/or modification by OGT in vitro. Interestingly, deletion Δ35, which does not remove the majority of identified O -GlcNAc sites, does remove potential OGT-association motifs (lamin A residues 622⁻625 and 639⁻645) homologous to that in mouse Tet1. These biochemical results are significant because they identify a novel molecular pathway that may profoundly influence lamin A function. The hypothesis that lamin A is selectively regulated by OGT warrants future testing in vivo, along with two predictions: genetic variants may contribute to disease by perturbing OGT-dependent regulation, and nutrient or other stresses might cause OGT to misregulate wildtype lamin A.

  6. CORONAL DYNAMIC ACTIVITIES IN THE DECLINING PHASE OF A SOLAR CYCLE

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Minhwan; Choe, G. S. [Department of Astronomy and Space Science, Kyung Hee University, Yongin 17104 (Korea, Republic of); Woods, T. N. [Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80303 (United States); Hong, Sunhak, E-mail: gchoe@khu.ac.kr [School of Space Research, Kyung Hee University, Yongin 17104 (Korea, Republic of)

    2016-12-10

    It has been known that some solar activity indicators show a double-peak feature in their evolution through a solar cycle, which is not conspicuous in sunspot number. In this Letter, we investigate the high solar dynamic activity in the declining phase of the sunspot cycle by examining the evolution of polar and low-latitude coronal hole (CH) areas, splitting and merging events of CHs, and coronal mass ejections (CMEs) detected by SOHO /LASCO C3 in solar cycle 23. Although the total CH area is at its maximum near the sunspot minimum, in which polar CHs prevail, it shows a comparable second maximum in the declining phase of the cycle, in which low-latitude CHs are dominant. The events of CH splitting or merging, which are attributed to surface motions of magnetic fluxes, are also mostly populated in the declining phase of the cycle. The far-reaching C3 CMEs are also overpopulated in the declining phase of the cycle. From these results we suggest that solar dynamic activities due to the horizontal surface motions of magnetic fluxes extend far in the declining phase of the sunspot cycle.

  7. CORONAL DYNAMIC ACTIVITIES IN THE DECLINING PHASE OF A SOLAR CYCLE

    International Nuclear Information System (INIS)

    Jang, Minhwan; Choe, G. S.; Woods, T. N.; Hong, Sunhak

    2016-01-01

    It has been known that some solar activity indicators show a double-peak feature in their evolution through a solar cycle, which is not conspicuous in sunspot number. In this Letter, we investigate the high solar dynamic activity in the declining phase of the sunspot cycle by examining the evolution of polar and low-latitude coronal hole (CH) areas, splitting and merging events of CHs, and coronal mass ejections (CMEs) detected by SOHO /LASCO C3 in solar cycle 23. Although the total CH area is at its maximum near the sunspot minimum, in which polar CHs prevail, it shows a comparable second maximum in the declining phase of the cycle, in which low-latitude CHs are dominant. The events of CH splitting or merging, which are attributed to surface motions of magnetic fluxes, are also mostly populated in the declining phase of the cycle. The far-reaching C3 CMEs are also overpopulated in the declining phase of the cycle. From these results we suggest that solar dynamic activities due to the horizontal surface motions of magnetic fluxes extend far in the declining phase of the sunspot cycle.

  8. Static and dynamic modelling of gas turbines in advanced cycles

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, Jan-Olof

    1998-12-01

    Gas turbines have been in operation for at least 50 years. The engine is used for propulsion of aircraft and high speed ships. It is used for power production in remote locations and for peak load and emergency situations. Gas turbines have been used in combined cycles for 20 to 30 years. Highly efficient power plants based on gas turbines are a competitive option for the power industry today. The thermal efficiency of the simple cycle gas turbine has increased due to higher turbine inlet temperatures and improved compressor and expander designs. Equally important are the improved cycles in which the gas turbine operates. One example is the combined cycle that uses steam for turbine cooling. Steam is extracted from the bottoming cycle, then used as airfoil coolant in a closed loop and returned to the bottoming cycle. The Evaporative Gas Turbine (EvGT), also known as the Humid Air Turbine (HAT), is another advanced cycle. A mixture of air and water vapour is used as working media. Air from the compressor outlet is humidified and then preheated in a recuperator prior to combustion. The static and dynamic performance is changed when the gas turbine is introduced in an evaporative cycle. The cycle is gaining in popularity, but so far it has not been demonstrated. A Swedish joint program to develop the cycle has been in operation since 1993. As part of the program, a small pilot plant is being erected at the Lund Institute of Technology (LTH). The plant is based on a 600 kW gas turbine, and demonstration of the EvGT cycle started autumn 1998 and will continue, in the present phase, for one year. This thesis presents static and dynamic models for traditional gas turbine components, such as, the compressor, combustor, expander and recuperator. A static model for the humidifier is presented, based on common knowledge for atmospheric humidification. All models were developed for the pilot plant at LTH with the objective to support evaluation of the process and individual

  9. Economic Dynamics of the German Hog-Price Cycle

    Directory of Open Access Journals (Sweden)

    Ernst Berg

    2015-06-01

    Full Text Available We investigated the economic dynamics of the German hog-price cycle with an innovative ‘diagnostic’ modeling approach. Hog-price cycles are conventionally modeled stochastically—most recently as randomly-shifting sinusoidal oscillations. Alternatively, we applied Nonlinear Time Series analysis to empirically reconstruct a deterministic, low-dimensional, and nonlinear attractor from observed hog prices. We next formulated a structural (explanatory model of the pork industry to synthesize the empirical hog-price attractor. Model simulations demonstrate that low price-elasticity of demand contributes to aperiodic price cycling – a well know result – and further reveal two other important driving factors: investment irreversibility (caused by high specificity of technology, and liquidity-driven investment behavior of German farmers.

  10. SPADE H2O measurements and the seasonal cycle of statospheric water vapor

    Science.gov (United States)

    Hintsa, Eric J.; Weinstock, Elliot M.; Dessler, Andrew E.; Anderson, James G.; Loewenstein, Max; Podolske, James R.

    1994-01-01

    We present measurements of lower statospheric water vapor obtained during the Stratospheric Phototchemistry, Aerosols and Dynamics Expedition (SPADE) mission with a new high precision, fast response, Lyman-alpha hygrometer. The H2O data show a distinct seasonal cycle. For air that recently entered the statosphere, data collected during the fall show much more water vapor than data from the spring. Fast quasi-horizontal mixing causes compact relationships between water and N2O to be established on relatively short time scales. The measurements are consistent with horizontal mixing times of a few months or less. Vertical mixing appears to cause the seasonal variations in water vapor to propagate up to levels corresponding to air that has been in the stratosphere approximately one year.

  11. Assessment of a volume-dependent dynamic respiratory system compliance in ALI/ARDS by pooling breathing cycles

    International Nuclear Information System (INIS)

    Zhao, Zhanqi; Möller, Knut; Guttmann, Josef

    2012-01-01

    New methods were developed to calculate the volume-dependent dynamic respiratory system compliance (C rs ) in mechanically ventilated patients. Due to noise in respiratory signals and different characteristics of the methods, their results can considerably differ. The aim of the study was to establish a practical procedure to validate the estimation of intratidal dynamic C rs . A total of 28 patients from intensive care units of eight German university hospitals with acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) were studied retrospectively. Dynamic volume-dependent C rs was determined during ongoing mechanical ventilation with the SLICE method, dynostatic algorithm and adaptive slice method. Conventional two-point compliance C 2P was calculated for comparison. A number of consecutive breathing cycles were pooled to reduce noise in the respiratory signals. C rs -volume curves produced with different methods converged when the number of pooling cycles increased (n ≥ 7). The mean volume-dependent C rs of 20 breaths was highly correlated with mean C 2P (C 2P,mean = 0.945 × C rs,mean − 0.053, r 2 = 0.968, p < 0.0001). The Bland–Altman analysis indicated that C 2P,mean was lower than C rs,mean (−2.4 ± 6.4 ml cm −1 H 2 O, mean bias ± 2 SD), but not significant according to the paired t-test (p > 0.05). Methods for analyzing dynamic respiratory mechanics are sensitive to noise and will converge to a unique solution when the number of pooled cycles increases. Under steady-state conditions, assessment of the volume-dependent C rs in ALI/ARDS patients can be validated by pooling respiratory data of consecutive breaths regardless of which method is applied. Confidence in dynamic C rs determination may be increased with the proposed pooling. (note)

  12. Dynamic Analysis of the Thorium Fuel Cycle in CANDU Reactors

    International Nuclear Information System (INIS)

    Jeong, Chang Joon; Park, Chang Je

    2006-02-01

    The thorium fuel recycle scenarios through the Canada deuterium uranium (CANDU) reactor have been analyzed for two types of thorium fuel: homogeneous ThO 2 UO 2 and ThO 2 UO 2 -DUPIC fuels. The recycling is performed through the dry process fuel technology which has a proliferation resistance. For the once-through fuel cycle model, the existing nuclear power plant construction plan was considered up to 2016, while the nuclear demand growth rate from the year 2016 was assumed to be 0%. After setting up the once-through fuel cycle model, the thorium fuel CANDU reactor was modeled to investigate the fuel cycle parameters. In this analysis, the spent fuel inventory as well as the amount of plutonium, minor actinides and fission products of the multiple recycling fuel cycle were estimated and compared to those of the once-through fuel cycle. From the analysis results, it was found that the closed or partially closed thorium fuel cycle can be constructed through the dry process technology. Also, it is known that both the homogeneous and heterogeneous thorium fuel cycles can reduce the SF accumulation and save the natural uranium resource compared with the once-through cycle. From the material balance view point, the heterogeneous thorium fuel cycle seems to be more feasible. It is recommended, however, the economic analysis should be performed in future

  13. Dynamic Analysis of the Thorium Fuel Cycle in CANDU Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Chang Joon; Park, Chang Je

    2006-02-15

    The thorium fuel recycle scenarios through the Canada deuterium uranium (CANDU) reactor have been analyzed for two types of thorium fuel: homogeneous ThO{sub 2}UO{sub 2} and ThO{sub 2}UO{sub 2}-DUPIC fuels. The recycling is performed through the dry process fuel technology which has a proliferation resistance. For the once-through fuel cycle model, the existing nuclear power plant construction plan was considered up to 2016, while the nuclear demand growth rate from the year 2016 was assumed to be 0%. After setting up the once-through fuel cycle model, the thorium fuel CANDU reactor was modeled to investigate the fuel cycle parameters. In this analysis, the spent fuel inventory as well as the amount of plutonium, minor actinides and fission products of the multiple recycling fuel cycle were estimated and compared to those of the once-through fuel cycle. From the analysis results, it was found that the closed or partially closed thorium fuel cycle can be constructed through the dry process technology. Also, it is known that both the homogeneous and heterogeneous thorium fuel cycles can reduce the SF accumulation and save the natural uranium resource compared with the once-through cycle. From the material balance view point, the heterogeneous thorium fuel cycle seems to be more feasible. It is recommended, however, the economic analysis should be performed in future.

  14. Dynamic contact angle cycling homogenizes heterogeneous surfaces.

    Science.gov (United States)

    Belibel, R; Barbaud, C; Mora, L

    2016-12-01

    In order to reduce restenosis, the necessity to develop the appropriate coating material of metallic stent is a challenge for biomedicine and scientific research over the past decade. Therefore, biodegradable copolymers of poly((R,S)-3,3 dimethylmalic acid) (PDMMLA) were prepared in order to develop a new coating exhibiting different custom groups in its side chain and being able to carry a drug. This material will be in direct contact with cells and blood. It consists of carboxylic acid and hexylic groups used for hydrophilic and hydrophobic character, respectively. The study of this material wettability and dynamic surface properties is of importance due to the influence of the chemistry and the potential motility of these chemical groups on cell adhesion and polymer kinetic hydrolysis. Cassie theory was used for the theoretical correction of contact angles of these chemical heterogeneous surfaces coatings. Dynamic Surface Analysis was used as practical homogenizer of chemical heterogeneous surfaces by cycling during many cycles in water. In this work, we confirmed that, unlike receding contact angle, advancing contact angle is influenced by the difference of only 10% of acidic groups (%A) in side-chain of polymers. It linearly decreases with increasing acidity percentage. Hysteresis (H) is also a sensitive parameter which is discussed in this paper. Finally, we conclude that cycling provides real information, thus avoiding theoretical Cassie correction. H(10)is the most sensible parameter to %A. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Climate impacts of bioenergy: Inclusion of carbon cycle and albedo dynamics in life cycle impact assessment

    International Nuclear Information System (INIS)

    Bright, Ryan M.; Cherubini, Francesco; Strømman, Anders H.

    2012-01-01

    Life cycle assessment (LCA) can be an invaluable tool for the structured environmental impact assessment of bioenergy product systems. However, the methodology's static temporal and spatial scope combined with its restriction to emission-based metrics in life cycle impact assessment (LCIA) inhibits its effectiveness at assessing climate change impacts that stem from dynamic land surface–atmosphere interactions inherent to all biomass-based product systems. In this paper, we focus on two dynamic issues related to anthropogenic land use that can significantly influence the climate impacts of bioenergy systems: i) temporary changes to the terrestrial carbon cycle; and ii) temporary changes in land surface albedo—and illustrate how they can be integrated within the LCA framework. In the context of active land use management for bioenergy, we discuss these dynamics and their relevancy and outline the methodological steps that would be required to derive case-specific biogenic CO 2 and albedo change characterization factors for inclusion in LCIA. We demonstrate our concepts and metrics with application to a case study of transportation biofuel sourced from managed boreal forest biomass in northern Europe. We derive GWP indices for three land management cases of varying site productivities to illustrate the importance and need to consider case- or region-specific characterization factors for bioenergy product systems. Uncertainties and limitations of the proposed metrics are discussed. - Highlights: ► A method for including temporary surface albedo and carbon cycle changes in Life Cycle Impact Assessment (LCIA) is elaborated. ► Concepts are applied to a single bioenergy case whereby a range of feedstock productivities are shown to influence results. ► Results imply that case- and site-specific characterization factors can be essential for a more informed impact assessment. ► Uncertainties and limitations of the proposed methodologies are elaborated.

  16. Dynamical principles of cell-cycle arrest: Reversible, irreversible, and mixed strategies

    Science.gov (United States)

    Pfeuty, Benjamin

    2012-08-01

    Living cells often alternate between proliferating and nonproliferating states as part of individual or collective strategies to adapt to complex and changing environments. To this aim, they have evolved a biochemical regulatory network enabling them to switch between cell-division cycles (i.e., oscillatory state) and cell-cycle arrests (i.e., steady state) in response to extracellular cues. This can be achieved by means of a variety of bifurcation mechanisms that potentially give rise to qualitatively distinct cell-cycle arrest properties. In this paper, we study the dynamics of a minimal biochemical network model in which a cell-division oscillator and a differentiation switch mutually antagonize. We identify the existence of three biologically plausible bifurcation scenarios organized around a codimension-four swallowtail-homoclinic singularity. As a result, the model exhibits a broad repertoire of cell-cycle arrest properties in terms of reversibility of these arrests, tunability of interdivision time, and ability to track time-varying signals. This dynamic versatility would explain the diversity of cell-cycle arrest strategies developed in different living species and functional contexts.

  17. Phase-amplitude reduction of transient dynamics far from attractors for limit-cycling systems

    Science.gov (United States)

    Shirasaka, Sho; Kurebayashi, Wataru; Nakao, Hiroya

    2017-02-01

    Phase reduction framework for limit-cycling systems based on isochrons has been used as a powerful tool for analyzing the rhythmic phenomena. Recently, the notion of isostables, which complements the isochrons by characterizing amplitudes of the system state, i.e., deviations from the limit-cycle attractor, has been introduced to describe the transient dynamics around the limit cycle [Wilson and Moehlis, Phys. Rev. E 94, 052213 (2016)]. In this study, we introduce a framework for a reduced phase-amplitude description of transient dynamics of stable limit-cycling systems. In contrast to the preceding study, the isostables are treated in a fully consistent way with the Koopman operator analysis, which enables us to avoid discontinuities of the isostables and to apply the framework to system states far from the limit cycle. We also propose a new, convenient bi-orthogonalization method to obtain the response functions of the amplitudes, which can be interpreted as an extension of the adjoint covariant Lyapunov vector to transient dynamics in limit-cycling systems. We illustrate the utility of the proposed reduction framework by estimating the optimal injection timing of external input that efficiently suppresses deviations of the system state from the limit cycle in a model of a biochemical oscillator.

  18. Dynamic ubiquitin signaling in cell cycle regulation.

    Science.gov (United States)

    Gilberto, Samuel; Peter, Matthias

    2017-08-07

    The cell division cycle is driven by a collection of enzymes that coordinate DNA duplication and separation, ensuring that genomic information is faithfully and perpetually maintained. The activity of the effector proteins that perform and coordinate these biological processes oscillates by regulated expression and/or posttranslational modifications. Ubiquitylation is a cardinal cellular modification and is long known for driving cell cycle transitions. In this review, we emphasize emerging concepts of how ubiquitylation brings the necessary dynamicity and plasticity that underlie the processes of DNA replication and mitosis. New studies, often focusing on the regulation of chromosomal proteins like DNA polymerases or kinetochore kinases, are demonstrating that ubiquitylation is a versatile modification that can be used to fine-tune these cell cycle events, frequently through processes that do not involve proteasomal degradation. Understanding how the increasing variety of identified ubiquitin signals are transduced will allow us to develop a deeper mechanistic perception of how the multiple factors come together to faithfully propagate genomic information. Here, we discuss these and additional conceptual challenges that are currently under study toward understanding how ubiquitin governs cell cycle regulation. © 2017 Gilberto and Peter.

  19. Missing cycles: Effect of climate change on population dynamics

    Indian Academy of Sciences (India)

    population dynamics of the larch budmoth – an insect pest which causes massive defoliation of entire larch forests ... hypothesized that global warming has led to the collapse of the cycles ... When temperatures increase after winter, and the.

  20. Hydrophilic Fe2O3 dynamic membrane mitigating fouling of support ceramic membrane in ultrafiltration of oil/water emulsion

    KAUST Repository

    Lu, Dongwei; Cheng, Wei; Zhang, Tao; Lu, Xinglin; Liu, Qianliang; Jiang, Jin; Ma, Jun

    2016-01-01

    Oil/water (O/W) emulsion is daily produced and difficult to be treated effectively. Ceramic membrane ultrafiltration is one of reliable processes for the treatment of O/W emulsion, yet still hindered by membrane fouling. In this study, two types of Fe2O3 dynamic membranes (i.e., pre-coated dynamic membrane and self-forming dynamic membrane) were prepared to mitigate the fouling of support ceramic membrane in O/W emulsion treatment. Pre-coated dynamic membrane (DM) significantly reduced the fouling of ceramic membrane (i.e., 10% increase of flux recovery rate), while self-forming dynamic membrane aggravated ceramic membrane fouling (i.e., 8.6% decrease of flux recovery rate) after four filtration cycles. A possible fouling mechanism was proposed to explain this phenomenon, which was then confirmed by optical images of fouled membranes and the analysis of COD rejection. In addition, the cleaning efficiency of composite membranes (i.e., Fe2O3 dynamic membrane and support ceramic membrane) was enhanced by substitution of alkalescent water backwash for deionized water backwash. The possible reason for this enhancement was also explained. Our result suggests that pre-coated Fe2O3 dynamic membrane with alkalescent water backwash can be a promising technology to reduce the fouling of ceramic membrane and enhance membrane cleaning efficiency in the treatment of oily wastewater.

  1. Hydrophilic Fe2O3 dynamic membrane mitigating fouling of support ceramic membrane in ultrafiltration of oil/water emulsion

    KAUST Repository

    Lu, Dongwei

    2016-03-17

    Oil/water (O/W) emulsion is daily produced and difficult to be treated effectively. Ceramic membrane ultrafiltration is one of reliable processes for the treatment of O/W emulsion, yet still hindered by membrane fouling. In this study, two types of Fe2O3 dynamic membranes (i.e., pre-coated dynamic membrane and self-forming dynamic membrane) were prepared to mitigate the fouling of support ceramic membrane in O/W emulsion treatment. Pre-coated dynamic membrane (DM) significantly reduced the fouling of ceramic membrane (i.e., 10% increase of flux recovery rate), while self-forming dynamic membrane aggravated ceramic membrane fouling (i.e., 8.6% decrease of flux recovery rate) after four filtration cycles. A possible fouling mechanism was proposed to explain this phenomenon, which was then confirmed by optical images of fouled membranes and the analysis of COD rejection. In addition, the cleaning efficiency of composite membranes (i.e., Fe2O3 dynamic membrane and support ceramic membrane) was enhanced by substitution of alkalescent water backwash for deionized water backwash. The possible reason for this enhancement was also explained. Our result suggests that pre-coated Fe2O3 dynamic membrane with alkalescent water backwash can be a promising technology to reduce the fouling of ceramic membrane and enhance membrane cleaning efficiency in the treatment of oily wastewater.

  2. Importance of vegetation dynamics for future terrestrial carbon cycling

    International Nuclear Information System (INIS)

    Ahlström, Anders; Smith, Benjamin; Xia, Jianyang; Luo, Yiqi; Arneth, Almut

    2015-01-01

    Terrestrial ecosystems currently sequester about one third of anthropogenic CO 2 emissions each year, an important ecosystem service that dampens climate change. The future fate of this net uptake of CO 2 by land based ecosystems is highly uncertain. Most ecosystem models used to predict the future terrestrial carbon cycle share a common architecture, whereby carbon that enters the system as net primary production (NPP) is distributed to plant compartments, transferred to litter and soil through vegetation turnover and then re-emitted to the atmosphere in conjunction with soil decomposition. However, while all models represent the processes of NPP and soil decomposition, they vary greatly in their representations of vegetation turnover and the associated processes governing mortality, disturbance and biome shifts. Here we used a detailed second generation dynamic global vegetation model with advanced representation of vegetation growth and mortality, and the associated turnover. We apply an emulator that describes the carbon flows and pools exactly as in simulations with the full model. The emulator simulates ecosystem dynamics in response to 13 different climate or Earth system model simulations from the Coupled Model Intercomparison Project Phase 5 ensemble under RCP8.5 radiative forcing. By exchanging carbon cycle processes between these 13 simulations we quantified the relative roles of three main driving processes of the carbon cycle; (I) NPP, (II) vegetation dynamics and turnover and (III) soil decomposition, in terms of their contribution to future carbon (C) uptake uncertainties among the ensemble of climate change scenarios. We found that NPP, vegetation turnover (including structural shifts, wild fires and mortality) and soil decomposition rates explained 49%, 17% and 33%, respectively, of uncertainties in modelled global C-uptake. Uncertainty due to vegetation turnover was further partitioned into stand-clearing disturbances (16%), wild fires (0%), stand

  3. O-GlcNAc in cancer: An Oncometabolism-fueled vicious cycle.

    Science.gov (United States)

    Hanover, John A; Chen, Weiping; Bond, Michelle R

    2018-06-01

    Cancer cells exhibit unregulated growth, altered metabolism, enhanced metastatic potential and altered cell surface glycans. Fueled by oncometabolism and elevated uptake of glucose and glutamine, the hexosamine biosynthetic pathway (HBP) sustains glycosylation in the endomembrane system. In addition, the elevated pools of UDP-GlcNAc drives the O-GlcNAc modification of key targets in the cytoplasm, nucleus and mitochondrion. These targets include transcription factors, kinases, key cytoplasmic enzymes of intermediary metabolism, and electron transport chain complexes. O-GlcNAcylation can thereby alter epigenetics, transcription, signaling, proteostasis, and bioenergetics, key 'hallmarks of cancer'. In this review, we summarize accumulating evidence that many cancer hallmarks are linked to dysregulation of O-GlcNAc cycling on cancer-relevant targets. We argue that onconutrient and oncometabolite-fueled elevation increases HBP flux and triggers O-GlcNAcylation of key regulatory enzymes in glycolysis, Kreb's cycle, pentose-phosphate pathway, and the HBP itself. The resulting rerouting of glucose metabolites leads to elevated O-GlcNAcylation of oncogenes and tumor suppressors further escalating elevation in HBP flux creating a 'vicious cycle'. Downstream, elevated O-GlcNAcylation alters DNA repair and cellular stress pathways which influence oncogenesis. The elevated steady-state levels of O-GlcNAcylated targets found in many cancers may also provide these cells with a selective advantage for sustained growth, enhanced metastatic potential, and immune evasion in the tumor microenvironment.

  4. Thermodynamic analyses and optimization of a recompression N2O Brayton power cycle

    International Nuclear Information System (INIS)

    Sarkar, Jahar

    2010-01-01

    Thermodynamic analyses and simultaneous optimizations of cycle pressure ratio and flow split fraction to get maximum efficiency of N 2 O recompression Brayton cycle have been performed to study the effects of various operating conditions and component performances. The energetic as well as exergetic performance comparison with its counterpart recompression CO 2 cycle is presented as well. Optimization shows that the optimum minimum cycle pressure is close to pseudo-critical pressure for supercritical cycle, whereas saturation pressure corresponding to minimum cycle temperature for condensation cycle. Results show that the maximum thermal efficiency increases with decrease in minimum cycle temperature and increase in both maximum cycle pressure and temperature. Influence of turbine performance on cycle efficiency is more compared to that of compressors, HTR (high temperature recuperator) and LTR (low temperature recuperator). Comparison shows that N 2 O gives better thermal efficiency (maximum deviation of 1.2%) as well as second law efficiency compared to CO 2 for studied operating conditions. Component wise irreversibility distribution shows the similar trends for both working fluids. Present study reveals that N 2 O is a potential option for the recompression power cycle.

  5. Business Cycle Dynamics in the Euro Area: A Factor-SVAR Approach

    OpenAIRE

    Atilim Seymen

    2009-01-01

    The study investigates the business cycle dynamics in the euro area using an empirical framework which comprises common global and euro area shocks as well as allows bilateral spillovers of country-specific shocks across the member economies. Three core questions lie at the heart of the analysis: (i) To what extent are the business cycles of the euro area countries driven by common and spillover shocks? (ii) What are the extent and sources of business cycle heterogeneity in the euro area? (ii...

  6. Endogenous Business Cycle Dynamics within Metzlers Inventory Model: Adding an Inventory Floor.

    Science.gov (United States)

    Sushko, Irina; Wegener, Michael; Westerhoff, Frank; Zaklan, Georg

    2009-04-01

    Metzlers inventory model may produce dampened fluctuations in economic activity, thus contributing to our understanding of business cycle dynamics. For some parameter combinations, however, the model generates oscillations with increasing amplitude, implying that the inventory stock of firms eventually turns negative. Taking this observation into account, we reformulate Metzlers model by simply putting a floor to the inventory level. Within the new piecewise linear model, endogenous business cycle dynamics may now be triggered via a center bifurcation, i.e. for certain parameter combinations production changes are (quasi-)periodic.

  7. Closed Cycle Engine Program Used in Solar Dynamic Power Testing Effort

    Science.gov (United States)

    Ensworth, Clint B., III; McKissock, David B.

    1998-01-01

    NASA Lewis Research Center is testing the world's first integrated solar dynamic power system in a simulated space environment. This system converts solar thermal energy into electrical energy by using a closed-cycle gas turbine and alternator. A NASA-developed analysis code called the Closed Cycle Engine Program (CCEP) has been used for both pretest predictions and post-test analysis of system performance. The solar dynamic power system has a reflective concentrator that focuses solar thermal energy into a cavity receiver. The receiver is a heat exchanger that transfers the thermal power to a working fluid, an inert gas mixture of helium and xenon. The receiver also uses a phase-change material to store the thermal energy so that the system can continue producing power when there is no solar input power, such as when an Earth-orbiting satellite is in eclipse. The system uses a recuperated closed Brayton cycle to convert thermal power to mechanical power. Heated gas from the receiver expands through a turbine that turns an alternator and a compressor. The system also includes a gas cooler and a radiator, which reject waste cycle heat, and a recuperator, a gas-to-gas heat exchanger that improves cycle efficiency by recovering thermal energy.

  8. New device to measure dynamic intrusion/extrusion cycles of lyophobic heterogeneous systems.

    Science.gov (United States)

    Guillemot, Ludivine; Galarneau, Anne; Vigier, Gérard; Abensur, Thierry; Charlaix, Élisabeth

    2012-10-01

    Lyophobic heterogeneous systems (LHS) are made of mesoporous materials immersed in a non-wetting liquid. One application of LHS is the nonlinear damping of high frequency vibrations. The behaviour of LHS is characterized by P - ΔV cycles, where P is the pressure applied to the system, and ΔV its volume change due to the intrusion of the liquid into the pores of the material, or its extrusion out of the pores. Very few dynamic studies of LHS have been performed until now. We describe here a new apparatus that allows us to carry out dynamic intrusion/extrusion cycles with various liquid/porous material systems, controlling the temperature from ambient to 120 °C and the frequency from 0.01 to 20 Hz. We show that for two LHS: water/MTS and Galinstan/CPG, the energy dissipated during one cycle depends very weakly on the cycle frequency, in strong contrast to conventional dampers.

  9. Water Cycle Dynamics in a Changing Environment: Advancing Hydrologic Science through Synthesis

    Science.gov (United States)

    Sivapalan, M.; Kumar, P.; Rhoads, B. L.; Wuebbles, D.

    2007-12-01

    As one ponders a changing environment -- climate, hydrology, land use, biogeochemical cycles, human dynamics -- there is an increasing need to understand the long term evolution of the linked component systems (e.g., climatic, hydrologic and ecological) through conceptual and quantitative models. The most challenging problem toward this goal is to understand and incorporate the rich dynamics of multiple linked systems with weak and strong coupling, and with many internal variables that exhibit multi-scale interactions. The richness of these interactions leads to fluctuations in one variable that in turn drive the dynamics of other related variables. The key question then becomes: Do these complexities lend an inherently stochastic character to the system, rendering deterministic prediction and modeling of limited value, or do they translate into constrained self- organization through which emerges order, and a limited group of "active" processes (that may change from time to time) that determine the general evolution of the system through a series of structured states with a distinct signature? This is a grand challenge for predictability and therefore requires community effort. The interconnectivity and hence synthesis of knowledge across the fields should be natural for hydrologists since the global water cycle and its regional manifestations directly correspond to the information flows for mass and energy transformations across the media, and across the disciplines. Further, the rich history of numerical, conceptual and stochastic modeling in hydrology provides the training and breadth for addressing the multi- scale, complex system dynamics challenges posed by the evolution question. Theory and observational analyses that necessitate stepping back from the existing knowledge paradigms and looking at the integrated system are needed. In this talk we will present the outlines of a new NSF-funded community effort that attempts to forge inter- disciplinary

  10. Comparative carbon cycle dynamics of the present and last interglacial

    Science.gov (United States)

    Brovkin, Victor; Brücher, Tim; Kleinen, Thomas; Zaehle, Sönke; Joos, Fortunat; Roth, Raphael; Spahni, Renato; Schmitt, Jochen; Fischer, Hubertus; Leuenberger, Markus; Stone, Emma J.; Ridgwell, Andy; Chappellaz, Jérôme; Kehrwald, Natalie; Barbante, Carlo; Blunier, Thomas; Dahl Jensen, Dorthe

    2016-04-01

    Changes in temperature and carbon dioxide during glacial cycles recorded in Antarctic ice cores are tightly coupled. However, this relationship does not hold for interglacials. While climate cooled towards the end of both the last (Eemian) and present (Holocene) interglacials, CO2 remained stable during the Eemian while rising in the Holocene. We identify and review twelve biogeochemical mechanisms of terrestrial (vegetation dynamics and CO2 fertilization, land use, wildfire, accumulation of peat, changes in permafrost carbon, subaerial volcanic outgassing) and marine origin (changes in sea surface temperature, carbonate compensation to deglaciation and terrestrial biosphere regrowth, shallow-water carbonate sedimentation, changes in the soft tissue pump, and methane hydrates), which potentially may have contributed to the CO2 dynamics during interglacials but which remain not well quantified. We use three Earth System Models (ESMs) of intermediate complexity to compare effects of selected mechanisms on the interglacial CO2 and δ13CO2 changes, focusing on those with substantial potential impacts: namely carbonate sedimentation in shallow waters, peat growth, and (in the case of the Holocene) human land use. A set of specified carbon cycle forcings could qualitatively explain atmospheric CO2 dynamics from 8 ka BP to the pre-industrial. However, when applied to Eemian boundary conditions from 126 to 115 ka BP, the same set of forcings led to disagreement with the observed direction of CO2 changes after 122 ka BP. This failure to simulate late-Eemian CO2 dynamics could be a result of the imposed forcings such as prescribed CaCO3 accumulation and/or an incorrect response of simulated terrestrial carbon to the surface cooling at the end of the interglacial. These experiments also reveal that key natural processes of interglacial CO2 dynamics - shallow water CaCO3 accumulation, peat and permafrost carbon dynamics - are not well represented in the current ESMs. Global

  11. Revisiting the BaO2/BaO redox cycle for solar thermochemical energy storage.

    Science.gov (United States)

    Carrillo, A J; Sastre, D; Serrano, D P; Pizarro, P; Coronado, J M

    2016-03-21

    The barium peroxide-based redox cycle was proposed in the late 1970s as a thermochemical energy storage system. Since then, very little attention has been paid to such redox couples. In this paper, we have revisited the use of reduction-oxidation reactions of the BaO2/BaO system for thermochemical heat storage at high temperatures. Using thermogravimetric analysis, reduction and oxidation reactions were studied in order to find the main limitations associated with each process. Furthermore, the system was evaluated through several charge-discharge stages in order to analyse its possible degradation after repeated cycling. Through differential scanning calorimetry the heat stored and released were also determined. Oxidation reaction, which was found to be slower than reduction, was studied in more detail using isothermal tests. It was observed that the rate-controlling step of BaO oxidation follows zero-order kinetics, although at high temperatures a deviation from Arrhenius behaviour was observed probably due to hindrances to anionic oxygen diffusion caused by the formation of an external layer of BaO2. This redox couple was able to withstand several redox cycles without deactivation, showing reaction conversions close to 100% provided that impurities are previously eliminated through thermal pre-treatment, demonstrating the feasibility of this system for solar thermochemical heat storage.

  12. AeroPropulsoServoElasticity: Dynamic Modeling of the Variable Cycle Propulsion System

    Science.gov (United States)

    Kopasakis, George

    2012-01-01

    This presentation was made at the 2012 Fundamental Aeronautics Program Technical Conference and it covers research work for the Dynamic Modeling of the Variable cycle Propulsion System that was done under the Supersonics Project, in the area of AeroPropulsoServoElasticity. The presentation covers the objective for the propulsion system dynamic modeling work, followed by the work that has been done so far to model the variable Cycle Engine, modeling of the inlet, the nozzle, the modeling that has been done to model the affects of flow distortion, and finally presenting some concluding remarks and future plans.

  13. Fast and stable redox reactions of MnO2/CNT hybrid electrodes for dynamically stretchable pseudocapacitors

    Science.gov (United States)

    Gu, Taoli; Wei, Bingqing

    2015-07-01

    Pseudocapacitors, which are energy storage devices that take advantage of redox reactions to store electricity, have a different charge storage mechanism compared to lithium-ion batteries (LIBs) and electric double-layer capacitors (EDLCs), and they could realize further gains if they were used as stretchable power sources. The realization of dynamically stretchable pseudocapacitors and understanding of the underlying fundamentals of their mechanical-electrochemical relationship have become indispensable. We report herein the electrochemical performance of dynamically stretchable pseudocapacitors using buckled MnO2/CNT hybrid electrodes. The extremely small relaxation time constant of less than 0.15 s indicates a fast redox reaction at the MnO2/CNT hybrid electrodes, securing a stable electrochemical performance for the dynamically stretchable pseudocapacitors. This finding and the fundamental understanding gained from the pseudo-capacitive behavior coupled with mechanical deformation under a dynamic stretching mode would provide guidance to further improve their overall performance including a higher power density than LIBs, a higher energy density than EDLCs, and a long-life cycling stability. Most importantly, these results will potentially accelerate the applications of stretchable pseudocapacitors for flexible and biomedical electronics.Pseudocapacitors, which are energy storage devices that take advantage of redox reactions to store electricity, have a different charge storage mechanism compared to lithium-ion batteries (LIBs) and electric double-layer capacitors (EDLCs), and they could realize further gains if they were used as stretchable power sources. The realization of dynamically stretchable pseudocapacitors and understanding of the underlying fundamentals of their mechanical-electrochemical relationship have become indispensable. We report herein the electrochemical performance of dynamically stretchable pseudocapacitors using buckled MnO2/CNT hybrid

  14. A system dynamics model for tritium cycle of pulsed fusion reactor

    International Nuclear Information System (INIS)

    Zhu, Zuolong; Nie, Baojie; Chen, Dehong

    2017-01-01

    As great challenges and uncertainty exist in achieving steady plasma burning, pulsed plasma burning may be a potential scenario for fusion engineering test reactor, even for fusion DEMOnstration reactor. In order to analyze dynamic tritium inventory and tritium self-sufficiency for pulsed fusion systems, a system dynamics model of tritium cycle was developed on the basis of earlier version of Tritium Analysis program for fusion System (TAS). The model was verified with TRIMO, which was developed by KIT in Germany. Tritium self-sufficiency and dynamic tritium inventory assessment were performed for a typical fusion engineering test reactor. The verification results show that the system dynamics model can be used for tritium cycle analysis of pulsed fusion reactor with sufficient reliability. The assessment results of tritium self-sufficiency indicate that the fusion reactor might only need several hundred gram tritium to startup if achieved high efficient tritium handling ability (Referred ITER: 1 h). And the initial tritium startup inventory in pulsed fusion reactor is determined by the combined influence of pulse length, burn availability, and tritium recycle time. Meanwhile, tritium self-sufficiency can be achieved under the defined condition.

  15. A system dynamics model for tritium cycle of pulsed fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zuolong; Nie, Baojie [Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); University of Science and Technology of China, Hefei, Anhui, 230027 (China); Chen, Dehong, E-mail: dehong.chen@fds.org.cn [Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China)

    2017-05-15

    As great challenges and uncertainty exist in achieving steady plasma burning, pulsed plasma burning may be a potential scenario for fusion engineering test reactor, even for fusion DEMOnstration reactor. In order to analyze dynamic tritium inventory and tritium self-sufficiency for pulsed fusion systems, a system dynamics model of tritium cycle was developed on the basis of earlier version of Tritium Analysis program for fusion System (TAS). The model was verified with TRIMO, which was developed by KIT in Germany. Tritium self-sufficiency and dynamic tritium inventory assessment were performed for a typical fusion engineering test reactor. The verification results show that the system dynamics model can be used for tritium cycle analysis of pulsed fusion reactor with sufficient reliability. The assessment results of tritium self-sufficiency indicate that the fusion reactor might only need several hundred gram tritium to startup if achieved high efficient tritium handling ability (Referred ITER: 1 h). And the initial tritium startup inventory in pulsed fusion reactor is determined by the combined influence of pulse length, burn availability, and tritium recycle time. Meanwhile, tritium self-sufficiency can be achieved under the defined condition.

  16. Cycling in São Paulo, Brazil (1997–2012: Correlates, time trends and health consequences

    Directory of Open Access Journals (Sweden)

    Thiago Hérick Sá

    2016-12-01

    Full Text Available The purpose of the study was to describe cyclists and cycling trips, and to explore correlates, time trends and health consequences of cycling in São Paulo, Brazil from 1997 to 2012. Cross-sectional analysis using repeated São Paulo Household Travel Surveys (HTS. At all time periods cycling was a minority travel mode in São Paulo (1174 people with cycling trips out of 214,719 people. Poisson regressions for individual correlates were estimated using the entire 2012 HTS sample. Men were six times more likely to cycle than women. We found rates of bicycle use rising over time among the richest quartile but total cycling rates dropped from 1997 to 2012 due to decreasing rates among the poor. Harms from air pollution would negate benefits from physical activity through cycling only at 1997 air pollution levels and at very high cycling levels (≥9 h of cycling per day. Exposure-based road injury risk decreased between 2007 and 2012, from 0.76 to 0.56 cyclist deaths per 1000 person-hours travelled. Policies to reduce spatial segregation, measures to tackle air pollution, improvements in dedicated cycling infrastructure, and integrating the bicycle with the public transport system in neighborhoods of all income levels could make cycling safer and prevent more individuals from abandoning the cycling mode in São Paulo.

  17. Solar Thermochemical Energy Storage Through Carbonation Cycles of SrCO3/SrO Supported on SrZrO3.

    Science.gov (United States)

    Rhodes, Nathan R; Barde, Amey; Randhir, Kelvin; Li, Like; Hahn, David W; Mei, Renwei; Klausner, James F; AuYeung, Nick

    2015-11-01

    Solar thermochemical energy storage has enormous potential for enabling cost-effective concentrated solar power (CSP). A thermochemical storage system based on a SrO/SrCO3 carbonation cycle offers the ability to store and release high temperature (≈1200 °C) heat. The energy density of SrCO3/SrO systems supported by zirconia-based sintering inhibitors was investigated for 15 cycles of exothermic carbonation at 1150 °C followed by decomposition at 1235 °C. A sample with 40 wt % of SrO supported by yttria-stabilized zirconia (YSZ) shows good energy storage stability at 1450 MJ m(-3) over fifteen cycles at the same cycling temperatures. After further testing over 45 cycles, a decrease in energy storage capacity to 1260 MJ m(-3) is observed during the final cycle. The decrease is due to slowing carbonation kinetics, and the original value of energy density may be obtained by lengthening the carbonation steps. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Autonomous dynamic decision making in a nuclear fuel cycle simulator

    International Nuclear Information System (INIS)

    Pelakauskas, Martynas; Auzans, Aris; Schneider, Erich A.; Tkaczyk, Alan H.

    2013-01-01

    Highlights: • Objective criteria based decision making in a nuclear fuel cycle simulator. • Simulation driven by an evolving performance metric. • Implementation of the model in a nuclear fuel cycle simulator. • Verification of dynamic decision making based on uranium price evolution. -- Abstract: Growing energy demand and the push to move toward carbon-free ways of electricity generation have renewed the world's interest in nuclear energy. Due to the high technical and economic uncertainties related to nuclear energy, simulation tools have become a necessity in order to plan and evaluate possible nuclear fuel cycles (NFCs). Most of the NFC simulators today work by running the simulation with a user-defined set of facility build orders and preferences. While this allows for a simple way to change the simulation conditions, it may not always lead to optimal results and strongly relies on the user defining the correct parameters. This study looks into the possibility of using the expected cost of electricity (CoE) as the driving build decision variable instead of relying on user-defined build orders. This is a first step toward a more general decision making strategy in dynamic fuel cycle simulation. For this purpose, additional modules were implemented in an NFC simulator, VEGAS, with the consumption dependent price of uranium as a time-varying NFC cost component that drives the cost competitiveness of available NFC options. The model was demonstrated to verify the correct operation of a CoE-driven NFC simulator

  19. Structural transformation of sputtered o-LiMnO2 thin-film cathodes induced by electrochemical cycling

    International Nuclear Information System (INIS)

    Fischer, J.; Chang, K.; Ye, J.; Ulrich, S.; Ziebert, C.; Music, D.; Hallstedt, B.; Seifert, H.J.

    2013-01-01

    Orthorhombic LiMnO 2 (o-LiMnO 2 ) thin films were produced by non-reactive r.f. magnetron sputtering in combination with thermal post-annealing. Oxide phase formation was investigated by X-ray diffraction and Raman spectroscopy. In order to assign the X-ray signals and estimate the grain size, a simulation of the diffraction pattern was performed and compared with experimental data. The density of the films was determined to be 3.39 g/cm 3 using X-ray reflectivity. Electrochemical characterization was carried out by galvanostatic cycling and cyclic voltammetry of Li/o-LiMnO 2 half cells. There are distinct redox reactions at approx. 3 V and 4 V, whereas the latter splits into multiple peaks. Using ab initio calculations and thermodynamic models, Gibbs energies of o-LiMnO 2 and c-LiMn 2 O 4 were determined. The relation between these energies explains the irreversible phase transformation that has been observed during the cycling of the Li/o-LiMnO 2 half cell. - Highlights: • Quantitative, thermodynamic modeling of the o-LiMnO 2 /c-LiMn 2 O 4 phase transformation • First CV-investigations on magnetron sputtered nanocrystalline o-LiMnO 2 thin films • Synthesis of o-LiMnO 2 planar model systems for protective coating and SEI development

  20. Diversity Within the O-linked Protein Glycosylation Systems of Acinetobacter Species

    DEFF Research Database (Denmark)

    Scott, N. E.; Kinsella, R. L.; Edwards, A. V. G.

    2014-01-01

    nature of glycan biogenesis we investigated the composition, diversity, and properties of the Acinetobacter glycoproteome. Utilizing global and targeted mass spectrometry methods, we examined 15 strains and found extensive glycan diversity in the O-linked glycoproteome of Acinetobacter. Comparison......-linked glycosylation favors short (three to five residue) glycans with limited branching containing negatively charged sugars such as GlcNAc3NAcA4OAc or legionaminic/pseudaminic acid derivatives. These observations suggest that although highly diverse, the capsule/O-linked glycan biosynthetic pathways generate glycans...

  1. Dynamic modeling and analysis of alternative fuel cycle scenarios in Korea

    International Nuclear Information System (INIS)

    Jeong, Chang Joon; Choi, Hang Bok

    2007-01-01

    The Korean nuclear fuel cycle was modeled by the dynamic analysis method, which was applied to the once-through and alternative fuel cycles. First, the once-through fuel cycle was analyzed based on the Korean nuclear power plant construction plan up to 2015 and a postulated nuclear demand growth rate of zero after 2015. Second, alternative fuel cycles including the direct use of spent pressurized water reactor fuel in Canada deuterium reactors (DUPIC), a sodium-cooled fast reactor and an accelerator driven system were assessed and the results were compared with those of the once-through fuel cycle. The once-through fuel cycle calculation showed that the nuclear power demand would be 25 GWe and the amount of the spent fuel will be ∼65000 tons by 2100. The alternative fuel cycle analyses showed that the spent fuel inventory could be reduced by more than 30% and 90% through the DUPIC and fast reactor fuel cycles, respectively, when compared with the once-through fuel cycle. The results of this study indicate that both spent fuel and uranium resources can be effectively managed if alternative reactor systems are timely implemented along with the existing reactors

  2. Development of dynamic simulation code for fuel cycle fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, Isao; Seki, Yasushi [Department of Fusion Engineering Research, Naka Fusion Research Establishment, Japan Atomic Energy Research Institute, Naka, Ibaraki (Japan); Sasaki, Makoto; Shintani, Kiyonori; Kim, Yeong-Chan

    1999-02-01

    A dynamic simulation code for fuel cycle of a fusion experimental reactor has been developed. The code follows the fuel inventory change with time in the plasma chamber and the fuel cycle system during 2 days pulse operation cycles. The time dependence of the fuel inventory distribution is evaluated considering the fuel burn and exhaust in the plasma chamber, purification and supply functions. For each subsystem of the plasma chamber and the fuel cycle system, the fuel inventory equation is written based on the equation of state considering the fuel burn and the function of exhaust, purification, and supply. The processing constants of subsystem for steady states were taken from the values in the ITER Conceptual Design Activity (CDA) report. Using this code, the time dependence of the fuel supply and inventory depending on the burn state and subsystem processing functions are shown. (author)

  3. Testing the Goodwin growth-cycle macroeconomic dynamics in Brazil

    Science.gov (United States)

    Moura, N. J.; Ribeiro, Marcelo B.

    2013-05-01

    This paper discusses the empirical validity of Goodwin’s (1967) macroeconomic model of growth with cycles by assuming that the individual income distribution of the Brazilian society is described by the Gompertz-Pareto distribution (GPD). This is formed by the combination of the Gompertz curve, representing the overwhelming majority of the population (˜99%), with the Pareto power law, representing the tiny richest part (˜1%). In line with Goodwin’s original model, we identify the Gompertzian part with the workers and the Paretian component with the class of capitalists. Since the GPD parameters are obtained for each year and the Goodwin macroeconomics is a time evolving model, we use previously determined, and further extended here, Brazilian GPD parameters, as well as unemployment data, to study the time evolution of these quantities in Brazil from 1981 to 2009 by means of the Goodwin dynamics. This is done in the original Goodwin model and an extension advanced by Desai et al. (2006). As far as Brazilian data is concerned, our results show partial qualitative and quantitative agreement with both models in the studied time period, although the original one provides better data fit. Nevertheless, both models fall short of a good empirical agreement as they predict single center cycles which were not found in the data. We discuss the specific points where the Goodwin dynamics must be improved in order to provide a more realistic representation of the dynamics of economic systems.

  4. Two-rate periodic protocol with dynamics driven through many cycles

    Science.gov (United States)

    Kar, Satyaki

    2017-02-01

    We study the long time dynamics in closed quantum systems periodically driven via time dependent parameters with two frequencies ω1 and ω2=r ω1 . Tuning of the ratio r there can unleash plenty of dynamical phenomena to occur. Our study includes integrable models like Ising and X Y models in d =1 and the Kitaev model in d =1 and 2 and can also be extended to Dirac fermions in graphene. We witness the wave-function overlap or dynamic freezing that occurs within some small/ intermediate frequency regimes in the (ω1,r ) plane (with r ≠0 ) when the ground state is evolved through a single cycle of driving. However, evolved states soon become steady with long driving, and the freezing scenario gets rarer. We extend the formalism of adiabatic-impulse approximation for many cycle driving within our two-rate protocol and show the near-exact comparisons at small frequencies. An extension of the rotating wave approximation is also developed to gather an analytical framework of the dynamics at high frequencies. Finally we compute the entanglement entropy in the stroboscopically evolved states within the gapped phases of the system and observe how it gets tuned with the ratio r in our protocol. The minimally entangled states are found to fall within the regime of dynamical freezing. In general, the results indicate that the entanglement entropy in our driven short-ranged integrable systems follow a genuine nonarea law of scaling and show a convergence (with a r dependent pace) towards volume scaling behavior as the driving is continued for a long time.

  5. The mechanism of enhanced wastewater nitrogen removal by photo-sequencing batch reactors based on comprehensive analysis of system dynamics within a cycle.

    Science.gov (United States)

    Ye, Jianfeng; Liang, Junyu; Wang, Liang; Markou, Giorgos

    2018-07-01

    To understand the mechanism of enhanced nitrogen removal by photo-sequencing batch reactors (photo-SBRs), which incorporated microalgal photosynthetic oxygenation into the aerobic phases of a conventional cycle, this study performed comprehensive analysis of one-cycle dynamics. Under a low aeration intensity (about 0.02 vvm), a photo-SBR, illuminated with light at 92.27 μ·mol·m -2 ·s -1 , could remove 99.45% COD, 99.93% NH 4 + -N, 90.39% TN, and 95.17% TP, while the control SBR could only remove 98.36% COD, 83.51% NH 4 + -N, 78.96% TN, and 97.75% TP, for a synthetic domestic sewage. The specific oxygen production rate (SOPR) of microalgae in the photo-SBR could reach 6.63 fmol O 2 ·cell -1 ·h -1 . One-cycle dynamics shows that the enhanced nitrogen removal by photo-SBRs is related to photosynthetic oxygenation, resulting in strengthened nitrification, instead of direct nutrient uptake by microalgae. A too high light or aeration intensity could deteriorate anoxic conditions and thus adversely affect the removal of TN and TP in photo-SBRs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Enhanced cycling stability of microsized LiCoO2 cathode by Li4Ti5O12 coating for lithium ion battery

    International Nuclear Information System (INIS)

    Yi, Ting-Feng; Shu, J.; Yue, Cai-Bo; Zhu, Xiao-Dong; Zhou, An-Na; Zhu, Yan-Rong; Zhu, Rong-Sun

    2010-01-01

    The effect of Li 4 Ti 5 O 12 (LTO) coating amount on the electrochemical cycling behavior of the LiCoO 2 cathode was investigated at the high upper voltage limit of 4.5 V. Li 4 Ti 5 O 12 (≤5 wt.%) is not incorporated into the host structure and leads to formation of uniform coating. The cycling performance of LiCoO 2 cathode is related with the amount of Li 4 Ti 5 O 12 coating. The initial capacity of the LTO-coated LiCoO 2 decreased with increasing Li 4 Ti 5 O 12 coating amount but showed enhanced cycling properties, compared to those of pristine material. The 3 wt.% LTO-coated LiCoO 2 has the best electrochemical performance, showing capacity retention of 97.3% between 2.5 V and 4.3 V and 85.1% between 2.5 V and 4.5 V after 40 cycles. The coulomb efficiency shows that the surface coating of Li 4 Ti 5 O 12 is beneficial to the reversible intercalation/de-intercalation of Li + . LTO-coated LiCoO 2 provides good prospects for practical application of lithium secondary batteries free from safety issues.

  7. Operating regimes of signaling cycles: statics, dynamics, and noise filtering.

    Directory of Open Access Journals (Sweden)

    Carlos Gomez-Uribe

    2007-12-01

    Full Text Available A ubiquitous building block of signaling pathways is a cycle of covalent modification (e.g., phosphorylation and dephosphorylation in MAPK cascades. Our paper explores the kind of information processing and filtering that can be accomplished by this simple biochemical circuit. Signaling cycles are particularly known for exhibiting a highly sigmoidal (ultrasensitive input-output characteristic in a certain steady-state regime. Here, we systematically study the cycle's steady-state behavior and its response to time-varying stimuli. We demonstrate that the cycle can actually operate in four different regimes, each with its specific input-output characteristics. These results are obtained using the total quasi-steady-state approximation, which is more generally valid than the typically used Michaelis-Menten approximation for enzymatic reactions. We invoke experimental data that suggest the possibility of signaling cycles operating in one of the new regimes. We then consider the cycle's dynamic behavior, which has so far been relatively neglected. We demonstrate that the intrinsic architecture of the cycles makes them act--in all four regimes--as tunable low-pass filters, filtering out high-frequency fluctuations or noise in signals and environmental cues. Moreover, the cutoff frequency can be adjusted by the cell. Numerical simulations show that our analytical results hold well even for noise of large amplitude. We suggest that noise filtering and tunability make signaling cycles versatile components of more elaborate cell-signaling pathways.

  8. Dynamics and energetics of the mammalian phosphatidylinositol transfer protein phospholipid exchange cycle

    DEFF Research Database (Denmark)

    Grabon, Aby; Orłowski, Adam; Tripathi, Ashutosh

    2017-01-01

    . However, the details of the PITP-mediated lipid exchange cycle remain entirely obscure. Here, all-atom molecular dynamics simulations of the mammalian StART-like PtdIns/phosphatidylcholine (PtdCho) transfer protein PITPα, both on membrane bilayers and in solvated systems, informed downstream biochemical...... analyses that tested key aspects of the hypotheses generated by the molecular dynamics simulations. These studies provided five key insights into the PITPα lipid exchange cycle: (i) interaction of PITPα with the membrane is spontaneous and mediated by four specific protein substructures; (ii) the ability......Phosphatidylinositol-transfer proteins (PITPs) regulate phosphoinositide signaling in eukaryotic cells. The defining feature of PITPs is their ability to exchange phosphatidylinositol (PtdIns) molecules between membranes, and this property is central to PITP-mediated regulation of lipid signaling...

  9. Dynamics of the driven Goodwin business cycle equation

    International Nuclear Information System (INIS)

    Antonova, A. O.; Reznik, S. N.; Todorov, M. D.

    2015-01-01

    We study dynamics of the Goodwin nonlinear accelerator business cycle model with periodic forced autonomous investment I a (t) = a(1 – cos ωt), where a and ω are the amplitude and the frequency of investment. We give examples of the parameters a and ω when the chaotic oscillations of income are possible. We find the critical values of amplitude a cr (ω): if a > a cr (ω) the period of the income equals to the driving period T=2π/ω

  10. An OGA-Resistant Probe Allows Specific Visualization and Accurate Identification of O-GlcNAc-Modified Proteins in Cells.

    Science.gov (United States)

    Li, Jing; Wang, Jiajia; Wen, Liuqing; Zhu, He; Li, Shanshan; Huang, Kenneth; Jiang, Kuan; Li, Xu; Ma, Cheng; Qu, Jingyao; Parameswaran, Aishwarya; Song, Jing; Zhao, Wei; Wang, Peng George

    2016-11-18

    O-linked β-N-acetyl-glucosamine (O-GlcNAc) is an essential and ubiquitous post-translational modification present in nucleic and cytoplasmic proteins of multicellular eukaryotes. The metabolic chemical probes such as GlcNAc or GalNAc analogues bearing ketone or azide handles, in conjunction with bioorthogonal reactions, provide a powerful approach for detecting and identifying this modification. However, these chemical probes either enter multiple glycosylation pathways or have low labeling efficiency. Therefore, selective and potent probes are needed to assess this modification. We report here the development of a novel probe, 1,3,6-tri-O-acetyl-2-azidoacetamido-2,4-dideoxy-d-glucopyranose (Ac 3 4dGlcNAz), that can be processed by the GalNAc salvage pathway and transferred by O-GlcNAc transferase (OGT) to O-GlcNAc proteins. Due to the absence of a hydroxyl group at C4, this probe is less incorporated into α/β 4-GlcNAc or GalNAc containing glycoconjugates. Furthermore, the O-4dGlcNAz modification was resistant to the hydrolysis of O-GlcNAcase (OGA), which greatly enhanced the efficiency of incorporation for O-GlcNAcylation. Combined with a click reaction, Ac 3 4dGlcNAz allowed the selective visualization of O-GlcNAc in cells and accurate identification of O-GlcNAc-modified proteins with LC-MS/MS. This probe represents a more potent and selective tool in tracking, capturing, and identifying O-GlcNAc-modified proteins in cells and cell lysates.

  11. Solar Activity Across the Scales: From Small-Scale Quiet-Sun Dynamics to Magnetic Activity Cycles

    Science.gov (United States)

    Kitiashvili, Irina N.; Collins, Nancy N.; Kosovichev, Alexander G.; Mansour, Nagi N.; Wray, Alan A.

    2017-01-01

    Observations as well as numerical and theoretical models show that solar dynamics is characterized by complicated interactions and energy exchanges among different temporal and spatial scales. It reveals magnetic self-organization processes from the smallest scale magnetized vortex tubes to the global activity variation known as the solar cycle. To understand these multiscale processes and their relationships, we use a two-fold approach: 1) realistic 3D radiative MHD simulations of local dynamics together with high resolution observations by IRIS, Hinode, and SDO; and 2) modeling of solar activity cycles by using simplified MHD dynamo models and mathematical data assimilation techniques. We present recent results of this approach, including the interpretation of observational results from NASA heliophysics missions and predictive capabilities. In particular, we discuss the links between small-scale dynamo processes in the convection zone and atmospheric dynamics, as well as an early prediction of Solar Cycle 25.

  12. Electric Resistance Tests on Compacted Clay Material under Dynamic Load Coupled with Dry-Wet Cycling

    Directory of Open Access Journals (Sweden)

    Zheng Lu

    2018-01-01

    Full Text Available The study of compacted clay material under dynamic load coupled with dry-wet cycling is one of the most important areas in the field of transportation. In this paper, experiments in terms of compacted clay under dynamic load coupled with dry-wet cycling are performed, and synchronous resistivity tests are also conducted. According to the test results, the influences of cumulative plastic strain, dry-wet cycles, and amplitudes on the soil resistivity are analyzed. Then a new damage factor based on resistivity is proposed to evaluate the long-term performance of compacted clay material. The result of research shows that the evolution of the soil resistivity can be divided into two stages, which has a contrary tendency with that of cumulative plastic strain. The dry-wet cycles and amplitudes have a significant effect on the damage of the compacted soil, which indicates that the dry-wet cycling of compacted soil materials should not be ignored in road engineering, especially in rainy and humid areas.

  13. Soil organic matter dynamics and the global carbon cycle

    International Nuclear Information System (INIS)

    Post, W.M.; Emanuel, W.R.; King, A.W.

    1992-01-01

    The large size and potentially long residence time of the soil organic matter pool make it an important component of the global carbon cycle. Net terrestrial primary production of about 60 Pg C·yr -1 is, over a several-year period of time, balanced by an equivalent flux of litter production and subsequent decomposition of detritus and soil organic matter. We will review many of the major factors that influence soil organic matter dynamics that need to be explicitly considered in development of global estimates of carbon turnover in the world's soils. We will also discuss current decomposition models that are general enough to be used to develop a representation of global soil organic matter dynamics

  14. Microbial biomass dynamics dominate N cycle responses to warming in a sub-arctic peatland

    Science.gov (United States)

    Weedon, J. T.; Aerts, R.; Kowalchuk, G. K.; van Bodegom, P. M.

    2012-04-01

    The balance of primary production and decomposition in sub-arctic peatlands may shift with climate change. Nitrogen availability will modulate this shift, but little is known about the drivers of soil nitrogen dynamics in these environments, and how they are influenced by rising soil temperatures. We used a long-term open top chamber warming experiment in Abisko, Sweden, to test for the interactive effects of spring warming, summer warming and winter snow addition on soil organic and inorganic nitrogen fluxes, potential activities of carbon and nitrogen cycle enzymes, and the structure of the soil-borne microbial communities. Summer warming increased the flux of soil organic nitrogen over the growing season, while simultaneously causing a seasonal decrease in microbial biomass, suggesting that N flux is driven by large late-season dieback of microbes. This change in N cycle dynamics was not reflected in any of the measured potential enzyme activities. Moreover, the soil microbial community structure was stable across treatments, suggesting non-specific microbial dieback. To further test whether the observed patterns were driven by direct temperature effects or indirect effects (via microbial biomass dynamics), we conducted follow-up controlled experiments in soil mesocosms. Experimental additions of dead microbial cells had stronger effects on N pool sizes and enzyme activities than either plant litter addition or a 5 °C alteration in incubation temperatures. Peat respiration was positively affected by both substrate addition and higher incubation temperatures, but the temperature-only effect was not sufficient to account for the increases in respiration observed in previous field experiments. We conclude that warming effects on peatland N cycling (and to some extent C cycling) are dominated by indirect effects, acting through alterations to the seasonal flux of microbe-derived organic matter. We propose that climate change models of soil carbon and nitrogen

  15. Similar below-ground carbon cycling dynamics but contrasting modes of nitrogen cycling between arbuscular mycorrhizal and ectomycorrhizal forests.

    Science.gov (United States)

    Lin, Guigang; McCormack, M Luke; Ma, Chengen; Guo, Dali

    2017-02-01

    Compared with ectomycorrhizal (ECM) forests, arbuscular mycorrhizal (AM) forests are hypothesized to have higher carbon (C) cycling rates and a more open nitrogen (N) cycle. To test this hypothesis, we synthesized 645 observations, including 22 variables related to below-ground C and N dynamics from 100 sites, where AM and ECM forests co-occurred at the same site. Leaf litter quality was lower in ECM than in AM trees, leading to greater forest floor C stocks in ECM forests. By contrast, AM forests had significantly higher mineral soil C concentrations, and this result was strongly mediated by plant traits and climate. No significant differences were found between AM and ECM forests in C fluxes and labile C concentrations. Furthermore, inorganic N concentrations, net N mineralization and nitrification rates were all higher in AM than in ECM forests, indicating 'mineral' N economy in AM but 'organic' N economy in ECM trees. AM and ECM forests show systematic differences in mineral vs organic N cycling, and thus mycorrhizal type may be useful in predicting how different tree species respond to multiple environmental change factors. By contrast, mycorrhizal type alone cannot reliably predict below-ground C dynamics without considering plant traits and climate. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  16. International and Domestic Business Cycles as Dynamics of a Network of Networks

    Science.gov (United States)

    Ikeda, Yuichi; Iyetomi, Hiroshi; Aoyama, Hideaki; Yoshikawa, Hiroshi

    2014-03-01

    Synchronization in business cycles has attracted economists and physicists as self-organization in the time domain. From a different point of view, international and domestic business cycles are also interesting as dynamics of a network of networks or a multi-level network. In this paper, we analyze the Indices of Industrial Production monthly time-series in Japan from January 1988 to December 2007 to develop a deeper understanding of domestic business cycles. The frequency entrainment and the partial phase locking were observed for the 16 sectors to be direct evidence of synchronization. We also showed that the information of the economic shock is carried by the phase time-series. The common shock and individual shocks are separated using phase time-series. The former dominates the economic recession in all of 1992, 1998 and 2001. In addition to the above analysis, we analyze the quarterly GDP time series for Australia, Canada, France, Italy, the United Kingdom, and the United States from Q2 1960 to Q1 2010 in order to clarify its origin. We find frequency entrainment and partial phase locking. Furthermore, a coupled limit-cycle oscillator model is developed to explain the mechanism of synchronization. In this model, the interaction due to international trade is interpreted as the origin of the synchronization. The obtained results suggest that the business cycle may be described as a dynamics of the multi-level coupled oscillators exposed to random individual shocks.

  17. A nuclear fuel cycle system dynamic model for spent fuel storage options

    International Nuclear Information System (INIS)

    Brinton, Samuel; Kazimi, Mujid

    2013-01-01

    Highlights: • Used nuclear fuel management requires a dynamic system analysis study due to its socio-technical complexity. • Economic comparison of local, regional, and national storage options is limited due to the public financial information. • Local and regional options of used nuclear fuel management are found to be the most economic means of storage. - Abstract: The options for used nuclear fuel storage location and affected parameters such as economic liabilities are currently a focus of several high level studies. A variety of nuclear fuel cycle system analysis models are available for such a task. The application of nuclear fuel cycle system dynamics models for waste management options is important to life-cycle impact assessment. The recommendations of the Blue Ribbon Committee on America’s Nuclear Future led to increased focus on long periods of spent fuel storage [1]. This motivated further investigation of the location dependency of used nuclear fuel in the parameters of economics, environmental impact, and proliferation risk. Through a review of available literature and interactions with each of the programs available, comparisons of post-reactor fuel storage and handling options will be evaluated based on the aforementioned parameters and a consensus of preferred system metrics and boundary conditions will be provided. Specifically, three options of local, regional, and national storage were studied. The preliminary product of this research is the creation of a system dynamics tool known as the Waste Management Module (WMM) which provides an easy to use interface for education on fuel cycle waste management economic impacts. Initial results of baseline cases point to positive benefits of regional storage locations with local regional storage options continuing to offer the lowest cost

  18. Structural transformation of sputtered o-LiMnO{sub 2} thin-film cathodes induced by electrochemical cycling

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, J., E-mail: Julian.Fischer@kit.edu [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials – Applied Materials Physics (IAM-AWP), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Chang, K. [RWTH Aachen University, Materials Chemistry, Kopernikusstrasse 10, 52074 Aachen (Germany); Ye, J.; Ulrich, S.; Ziebert, C. [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials – Applied Materials Physics (IAM-AWP), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Music, D.; Hallstedt, B. [RWTH Aachen University, Materials Chemistry, Kopernikusstrasse 10, 52074 Aachen (Germany); Seifert, H.J. [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials – Applied Materials Physics (IAM-AWP), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2013-12-31

    Orthorhombic LiMnO{sub 2} (o-LiMnO{sub 2}) thin films were produced by non-reactive r.f. magnetron sputtering in combination with thermal post-annealing. Oxide phase formation was investigated by X-ray diffraction and Raman spectroscopy. In order to assign the X-ray signals and estimate the grain size, a simulation of the diffraction pattern was performed and compared with experimental data. The density of the films was determined to be 3.39 g/cm{sup 3} using X-ray reflectivity. Electrochemical characterization was carried out by galvanostatic cycling and cyclic voltammetry of Li/o-LiMnO{sub 2} half cells. There are distinct redox reactions at approx. 3 V and 4 V, whereas the latter splits into multiple peaks. Using ab initio calculations and thermodynamic models, Gibbs energies of o-LiMnO{sub 2} and c-LiMn{sub 2}O{sub 4} were determined. The relation between these energies explains the irreversible phase transformation that has been observed during the cycling of the Li/o-LiMnO{sub 2} half cell. - Highlights: • Quantitative, thermodynamic modeling of the o-LiMnO{sub 2}/c-LiMn{sub 2}O{sub 4} phase transformation • First CV-investigations on magnetron sputtered nanocrystalline o-LiMnO{sub 2} thin films • Synthesis of o-LiMnO{sub 2} planar model systems for protective coating and SEI development.

  19. Development of dynamic simulation code for fuel cycle of fusion reactor

    International Nuclear Information System (INIS)

    Aoki, Isao; Seki, Yasushi; Sasaki, Makoto; Shintani, Kiyonori; Kim, Yeong-Chan

    1999-02-01

    A dynamic simulation code for fuel cycle of a fusion experimental reactor has been developed. The code follows the fuel inventory change with time in the plasma chamber and the fuel cycle system during 2 days pulse operation cycles. The time dependence of the fuel inventory distribution is evaluated considering the fuel burn and exhaust in the plasma chamber, purification and supply functions. For each subsystem of the plasma chamber and the fuel cycle system, the fuel inventory equation is written based on the equation of state considering the fuel burn and the function of exhaust, purification, and supply. The processing constants of subsystem for steady states were taken from the values in the ITER Conceptual Design Activity (CDA) report. Using this code, the time dependence of the fuel supply and inventory depending on the burn state and subsystem processing functions are shown. (author)

  20. N-Acetylglucosamine Functions in Cell Signaling

    Directory of Open Access Journals (Sweden)

    James B. Konopka

    2012-01-01

    Full Text Available The amino sugar N-acetylglucosamine (GlcNAc is well known for the important structural roles that it plays at the cell surface. It is a key component of bacterial cell wall peptidoglycan, fungal cell wall chitin, and the extracellular matrix of animal cells. Interestingly, recent studies have also identified new roles for GlcNAc in cell signaling. For example, GlcNAc stimulates the human fungal pathogen Candida albicans to undergo changes in morphogenesis and expression of virulence genes. Pathogenic E. coli responds to GlcNAc by altering the expression of fimbriae and CURLI fibers that promote biofilm formation and GlcNAc stimulates soil bacteria to undergo changes in morphogenesis and production of antibiotics. Studies with animal cells have revealed that GlcNAc influences cell signaling through the posttranslational modification of proteins by glycosylation. O-linked attachment of GlcNAc to Ser and Thr residues regulates a variety of intracellular proteins, including transcription factors such as NFκB, c-myc, and p53. In addition, the specificity of Notch family receptors for different ligands is altered by GlcNAc attachment to fucose residues in the extracellular domain. GlcNAc also impacts signal transduction by altering the degree of branching of N-linked glycans, which influences cell surface signaling proteins. These emerging roles of GlcNAc as an activator and mediator of cellular signaling in fungi, animals, and bacteria will be the focus of this paper.

  1. Glacial cycles:exogenous orbital changes vs. endogenous climate dynamics

    OpenAIRE

    Kaufmann, R. K.; Juselius, Katarina

    2010-01-01

    We use a statistical model, the cointegrated vector autoregressive model, to assess the degree to which variations in Earth's orbit and endogenous climate dynamics can be used to simulate glacial cycles during the late Quaternary (390 kyr-present). To do so, we estimate models of varying complexity and compare the accuracy of their in-sample simulations. Results indicate that strong statistical associations between endogenous climate variables are not enough for statistical models to reproduc...

  2. Microbial community dynamics in diesel waste biodegradation using ...

    African Journals Online (AJOL)

    Microbial community dynamics in diesel waste biodegradation using sequencing batch bioreactor operation mode (SBR) ... African Journal of Biotechnology ... Oxygen uptake rate (OUR) indicated increases in microbial activity from cycle one to cycle two (124.9 to 252.9 mgO2/L/h) and decreases in cycles three and four ...

  3. Dynamic analysis of Korean nuclear fuel cycle with fast reactor systems

    International Nuclear Information System (INIS)

    Jeong, Chang Joon

    2004-12-01

    The Korean nuclear fuel cycle scenario was analyzed by the dynamic analysis method, including Pressurized Water Reactor (PWR), Canadian Deuterium Uranium (CANDU) and fast reactor systems. For the once-through fuel cycle model, the existing nuclear power plant construction plan was considered up to 2016, while the nuclear demand growth rate from the year 2016 was assumed to be 1%. After setting up the once-through fuel cycle model, the Korea Advanced Liquid Metal Reactor (KALIMER) scenario was modeled to investigate the fuel cycle parameters. For the analysis of the fast reactor fuel cycle, both KAILMER-150 and KALIMER-600 reactors were considered. In this analysis, the spent fuel inventory as well as the amount of plutonium, Minor Actinides (MA) and Fission Products (FP) of the recycling fuel cycle was estimated and compared to that of the once-through fuel cycle. Results of the once-through fuel cycle calculation showed that the demand grows up to 64 GWe and total amount of spent fuel would be ∼102 kt in 2100. If the KALIMER scenario is implemented, the total spent fuel inventory can be reduced by ∼80%. However it was found that the KALIMER scenario does not contribute to reduce the amount of MA and FP, which is important when designing a repository. For the further destruction of MA, an actinide burner can be considered in the future nuclear fuel cycle

  4. Finite element simulation of earthquake cycle dynamics for continental listric fault system

    Science.gov (United States)

    Wei, T.; Shen, Z. K.

    2017-12-01

    We simulate stress/strain evolution through earthquake cycles for a continental listric fault system using the finite element method. A 2-D lithosphere model is developed, with the upper crust composed of plasto-elastic materials and the lower crust/upper mantle composed of visco-elastic materials respectively. The media is sliced by a listric fault, which is soled into the visco-elastic lower crust at its downdip end. The system is driven laterally by constant tectonic loading. Slip on fault is controlled by rate-state friction. We start with a simple static/dynamic friction law, and drive the system through multiple earthquake cycles. Our preliminary results show that: (a) periodicity of the earthquake cycles is strongly modulated by the static/dynamic friction, with longer period correlated with higher static friction and lower dynamic friction; (b) periodicity of earthquake is a function of fault depth, with less frequent events of greater magnitudes occurring at shallower depth; and (c) rupture on fault cannot release all the tectonic stress in the system, residual stress is accumulated in the hanging wall block at shallow depth close to the fault, which has to be released either by conjugate faulting or inelastic folding. We are in a process of exploring different rheologic structure and friction laws and examining their effects on earthquake behavior and deformation pattern. The results will be applied to specific earthquakes and fault zones such as the 2008 great Wenchuan earthquake on the Longmen Shan fault system.

  5. Oceanic nitrogen cycling and N2O flux perturbations in the Anthropocene

    Science.gov (United States)

    Landolfi, A.; Somes, C. J.; Koeve, W.; Zamora, L. M.; Oschlies, A.

    2017-08-01

    There is currently no consensus on how humans are affecting the marine nitrogen (N) cycle, which limits marine biological production and CO2 uptake. Anthropogenic changes in ocean warming, deoxygenation, and atmospheric N deposition can all individually affect the marine N cycle and the oceanic production of the greenhouse gas nitrous oxide (N2O). However, the combined effect of these perturbations on marine N cycling, ocean productivity, and marine N2O production is poorly understood. Here we use an Earth system model of intermediate complexity to investigate the combined effects of estimated 21st century CO2 atmospheric forcing and atmospheric N deposition. Our simulations suggest that anthropogenic perturbations cause only a small imbalance to the N cycle relative to preindustrial conditions (˜+5 Tg N y-1 in 2100). More N loss from water column denitrification in expanded oxygen minimum zones (OMZs) is counteracted by less benthic denitrification, due to the stratification-induced reduction in organic matter export. The larger atmospheric N load is offset by reduced N inputs by marine N2 fixation. Our model predicts a decline in oceanic N2O emissions by 2100. This is induced by the decrease in organic matter export and associated N2O production and by the anthropogenically driven changes in ocean circulation and atmospheric N2O concentrations. After comprehensively accounting for a series of complex physical-biogeochemical interactions, this study suggests that N flux imbalances are limited by biogeochemical feedbacks that help stabilize the marine N inventory against anthropogenic changes. These findings support the hypothesis that strong negative feedbacks regulate the marine N inventory on centennial time scales.

  6. Enhanced high-potential and elevated-temperature cycling stability of LiMn2O4 cathode by TiO2 modification for Li-ion battery

    International Nuclear Information System (INIS)

    Yu Lihong; Qiu Xinping; Xi Jingyu; Zhu Wentao; Chen Liquan

    2006-01-01

    The surface of spinel LiMn 2 O 4 was modified with TiO 2 by a simple sol-gel method to improve its electrochemical performance at elevated temperatures and higher working potentials. Compared with pristine LiMn 2 O 4 , surface-modification improved the cycling stability of the material. The capacity retention of TiO 2 -modified LiMn 2 O 4 was more than 85% after 60 cycles at high potential cycles between 3.0 and 4.8 V at room temperature and near to 90% after 30 cycles at elevated temperature of 55 deg. C at 1C charge-discharge rate. SEM studies shows that the surface morphology of TiO 2 -modified LiMn 2 O 4 was different from that of pristine LiMn 2 O 4 . Powder X-ray diffraction indicated that spinel was the only detected phase in TiO 2 -modified LiMn 2 O 4 . Introduction of Ti into LiMn 2 O 4 changed the electronic structures of the particle surface. Therefore a surface solid compound of LiTi x Mn 2-x O 4 may be formed on LiMn 2 O 4 . The improved electrochemical performance of surface-modified LiMn 2 O 4 was attributed to the improved stability of crystalline structure and the higher Li + conductivity

  7. Oscillating in synchrony with a metronome: serial dependence, limit cycle dynamics, and modeling.

    Science.gov (United States)

    Torre, Kjerstin; Balasubramaniam, Ramesh; Delignières, Didier

    2010-07-01

    We analyzed serial dependencies in periods and asynchronies collected during oscillations performed in synchrony with a metronome. Results showed that asynchronies contain 1/f fluctuations, and the series of periods contain antipersistent dependence. The analysis of the phase portrait revealed a specific asymmetry induced by synchronization. We propose a hybrid limit cycle model including a cycle-dependent stiffness parameter provided with fractal properties, and a parametric driving function based on velocity. This model accounts for most experimentally evidenced statistical features, including serial dependence and limit cycle dynamics. We discuss the results and modeling choices within the framework of event-based and emergent timing.

  8. Cell mass and cell cycle dynamics of an asynchronous budding yeast population

    DEFF Research Database (Denmark)

    Lencastre Fernandes, Rita; Carlquist, Magnus; Lundin, Luisa

    2013-01-01

    of model predictions for cell property distributions against experimental data is scarce. This study focuses on the experimental and mathematical description of the dynamics of cell size and cell cycle position distributions, of a population of Saccharomyces cerevisiae, in response to the substrate...

  9. Predicting the Retention Behavior of Specific O-Linked Glycopeptides.

    Science.gov (United States)

    Badgett, Majors J; Boyes, Barry; Orlando, Ron

    2017-09-01

    O -Linked glycosylation is a common post-translational modification that can alter the overall structure, polarity, and function of proteins. Reverse-phase (RP) chromatography is the most common chromatographic approach to analyze O -glycosylated peptides and their unmodified counterparts, even though this approach often does not provide adequate separation of these two species. Hydrophilic interaction liquid chromatography (HILIC) can be a solution to this problem, as the polar glycan interacts with the polar stationary phase and potentially offers the ability to resolve the peptide from its modified form(s). In this paper, HILIC is used to separate peptides with O - N -acetylgalactosamine ( O -GalNAc), O - N -acetylglucosamine ( O -GlcNAc), and O -fucose additions from their native forms, and coefficients representing the extent of hydrophilicity were derived using linear regression analysis as a means to predict the retention times of peptides with these modifications.

  10. Dynamic modelling of the expansion cylinder of an open Joule cycle Ericsson engine: A bond graph approach

    International Nuclear Information System (INIS)

    Creyx, M.; Delacourt, E.; Morin, C.; Desmet, B.

    2016-01-01

    A dynamic model using the bond graph formalism of the expansion cylinder of an open Joule cycle Ericsson engine intended for a biomass-fuelled micro-CHP system is presented. Dynamic phenomena, such as the thermodynamic evolution of air, the instantaneous air mass flow rates linked to pressure drops crossing the valves, the heat transferred through the expansion cylinder wall and the mechanical friction losses, are included in the model. The influence on the Ericsson engine performances of the main operating conditions (intake air pressure and temperature, timing of intake and exhaust valve closing, rotational speed, mechanical friction losses and heat transfer at expansion cylinder wall) is studied. The operating conditions maximizing the performances of the Ericsson engine used in the a biomass-fuelled micro-CHP unit are an intake air pressure between 6 and 8 bar, a maximized intake air temperature, an adjustment of the intake and exhaust valve closing corresponding to an expansion cycle close to the theoretical Joule cycle, a rotational speed close to 800 rpm. The heat transfer at the expansion cylinder wall reduces the engine performances. - Highlights: • A bond graph dynamic model of the Ericsson engine expansion cylinder is presented. • Dynamic aspects are modelled: pressure drops, friction losses, wall heat transfer. • Influent factors and phenomena on the engine performances are investigated. • Expansion cycles close to the theoretical Joule cycle maximize the performances. • The heat transfer at the expansion chamber wall reduces the performances.

  11. Probing cycle stability and reversibility in thermochemical energy storage – CaC_2O_4·H_2O as perfect match?

    International Nuclear Information System (INIS)

    Knoll, Christian; Müller, Danny; Artner, Werner; Welch, Jan M.; Werner, Andreas; Harasek, Michael; Weinberger, Peter

    2017-01-01

    Highlights: • CaC_2O_4·H_2O dehydration is fully reversible between 25 °C and 200 °C. • Isothermal cycling between hydrate and anhydrate phase can be triggered by the water vapour concentration. • High reaction rates and full reversibility demonstrated over 100 cycles. • Material shows no ageing effects or reactivity decrease. - Abstract: The dehydration and subsequent rehydration of calcium oxalate monohydrate has yet to find application in thermochemical energy storage. Unlike for many other salt hydrates, complete reversibility of the dehydration-rehydration reaction was observed. Additionally, it was found that the rehydration temperature is strongly affected by the water vapour concentration: Full reversibility is not only achieved at room-temperature, but, depending on the water vapour concentration, at up to 200 °C. This allows isothermal switching of the material between charging and discharging by a change of the H_2O-partial pressure. Cycle stability of the material was tested by a long-term stress experiment involving 100 charging and discharging cycles. No signs of material fatigue or reactivity loss were found. In-situ powder X-ray diffraction showed complete rehydration of the material within 300 s. The experimental findings indicate that the CaC_2O_4·H_2O/CaC_2O_4 system is perfectly suited for technical application as a thermochemical energy storage medium.

  12. Hydrologic control on redox and nitrogen dynamics in a peatland soil.

    Science.gov (United States)

    Rubol, Simonetta; Silver, Whendee L; Bellin, Alberto

    2012-08-15

    Soils are a dominant source of nitrous oxide (N(2)O), a potent greenhouse gas. However, the complexity of the drivers of N(2)O production and emissions has hindered our ability to predict the magnitude and spatial dynamics of N(2)O fluxes. Soil moisture can be considered a key driver because it influences oxygen (O(2)) supply, which feeds back on N(2)O sources (nitrification versus denitrification) and sinks (reduction to dinitrogen). Soil water content is directly linked to O(2) and redox potential, which regulate microbial metabolism and chemical transformations in the environment. Despite its importance, only a few laboratory studies have addressed the effects of hydrological transient dynamics on nitrogen (N) cycling in the vadose zone. To further investigate these aspects, we performed a long term experiment in a 1.5 m depth soil column supplemented by chamber experiments. With this experiment, we aimed to investigate how soil moisture dynamics influence redox sensitive N cycling in a peatland soil. As expected, increased soil moisture lowered O(2) concentrations and redox potential in the soil. The decline was more severe for prolonged saturated conditions than for short events and at deep than at the soil surface. Gaseous and dissolved N(2)O, dissolved nitrate (NO(3)(-)) and ammonium (NH(4)(+)) changed considerably along the soil column profile following trends in soil O(2) and redox potential. Hot spots of N(2)O concentrations corresponded to high variability in soil O(2) in the upper and lower parts of the column. Results from chamber experiments confirmed high NO(3)(-) reduction potential in soils, particularly from the bottom of the column. Under our experimental conditions, we identified a close coupling of soil O(2) and N(2)O dynamics, both of which lagged behind soil moisture changes. These results highlight the relationship among soil hydrologic properties, redox potential and N cycling, and suggest that models working at a daily scale need to

  13. A Multi-Cycle Q-Modulation for Dynamic Optimization of Inductive Links.

    Science.gov (United States)

    Lee, Byunghun; Yeon, Pyungwoo; Ghovanloo, Maysam

    2016-08-01

    This paper presents a new method, called multi-cycle Q-modulation, which can be used in wireless power transmission (WPT) to modulate the quality factor (Q) of the receiver (Rx) coil and dynamically optimize the load impedance to maximize the power transfer efficiency (PTE) in two-coil links. A key advantage of the proposed method is that it can be easily implemented using off-the-shelf components without requiring fast switching at or above the carrier frequency, which is more suitable for integrated circuit design. Moreover, the proposed technique does not need any sophisticated synchronization between the power carrier and Q-modulation switching pulses. The multi-cycle Q-modulation is analyzed theoretically by a lumped circuit model, and verified in simulation and measurement using an off-the-shelf prototype. Automatic resonance tuning (ART) in the Rx, combined with multi-cycle Q-modulation helped maximizing PTE of the inductive link dynamically in the presence of environmental and loading variations, which can otherwise significantly degrade the PTE in multi-coil settings. In the prototype conventional 2-coil link, the proposed method increased the power amplifier (PA) plus inductive link efficiency from 4.8% to 16.5% at ( R L = 1 kΩ, d 23 = 3 cm), and from 23% to 28.2% at ( R L = 100 Ω, d 23 = 3 cm) after 11% change in the resonance capacitance, while delivering 168.1 mW to the load (PDL).

  14. Nonlinear dynamics in a business-cycle model with logistic population growth

    International Nuclear Information System (INIS)

    Brianzoni, Serena; Mammana, Cristiana; Michetti, Elisabetta

    2009-01-01

    We consider a discrete-time growth model of the Solow type where workers and shareholders have different but constant saving rates and the population growth dynamics is described by the logistic equation able to exhibit complicated dynamics. We show conditions for the resulting system having a compact global attractor and we describe its structure. We also perform a mainly numerical analysis using the critical lines method able to describe the strange attractor and the absorbing area, in order to show how cyclical or complex fluctuations may be produced in a business-cycle model. We study the dynamic behaviour of the model under different ranges of the main parameters, i.e. the elasticity of substitution between the two production factors and the one in the logistic equation (namely μ). We prove the existence of complex dynamics when the elasticity of substitution between production factors drops below one (so that capital income declines) or μ increases (so that the amplitude of movements in the population growth rate increases).

  15. Economic Analysis of Pyro-SFR Fuel Cycle

    International Nuclear Information System (INIS)

    Gao, Fanxing; Park, Byungheung; Kwon, Eunha; Ko, Wonil

    2010-01-01

    In this study, based on the material flow the economics of Pyro-SFR has been estimated. These are mainly two methodologies to perform nuclear fuel cycle cost study which is based on the material flow calculations. One is equilibrium model and the other is dynamic model. Equilibrium model focus on the batch study with the assumptions that the whole system is in a steady state and mass flow as well as the electricity production all through the fuel cycle is in equilibrium state, which calculates the electricity production within a certain period and associated material flow with reference to unit cost in order to obtain the cost of electricity. Dynamic model takes the time factor into consideration to simulate the actual cases. Compared with the dynamic analysis model, the outcome of equilibrium model is more theoretical comparisons, especially with regard to the large uncertainty of the development of the pyro-technology evaluated. In this study equilibrium model was built to calculate the material flow on a batch basis. With the unit cost being determined, the cost of each step of fuel cycle could be obtained, so does the FMC. Due to the unavoidable uncertainty with certain unit costs, evaluated cost range and uncertainty study are applied. Sensitivity analysis has also been performed to obtain the breakeven uranium price for Pyro-SFR against PWR-O T. Economics of Pyro-SFR fuel cycle scenario has been calculated and compared by employing equilibrium model. The LFCC were obtained, Pyro-SFR 7.68 mills/kWh. The Uranium price is the dominant driver of LFCC. Pyro-techniques also weight considerably in Pyro-SFR scenario. On consideration of the current unavoidable uncertainties introduced by certain cost data, cost range and triangle techniques were used to perform the uncertainty study which indicates that the gap between Pyro-SFR and PWR-O T fuel cycle scenario is relatively small

  16. Temporal variation in the infection dynamics and maturation cycle of Oligogonotylus manteri (Digenea) in the cichlid fish, 'Cichlasoma' urophthalmus, from Yucatán, México.

    Science.gov (United States)

    Jiménez-García, M I; Vidal-Martínez, V M

    2005-10-01

    We studied the infection dynamics and maturation cycle of Oligogonotylus manteri in wild and caged 'Cichlasoma' urophthalmus, and determined the potential role of different sources of infection in its transmission in a quarry (MITZA). Metacercariae, and nongravid and gravid stages of O. manteri were present throughout 1 annual cycle. Prevalence, mean intensity, and/or aggregation values peaked around April and June in both wild and caged fish. This period of time includes the start of the rainy season, in which the water temperature reaches its maximum annual values. Because temperature is a major factor triggering 'C.' urophthalmus activity (food intake, growth, and reproduction), and O. manteri metacercariae and adults are trophically transmitted, temperature may be playing an important role in the recruitment of worms to the fish. We also determined that cercariae infect caged fish through a mechanism other than trophic transmission whereby fish consume infected snails, which has been described as the most common mode of transmission to 'C.' urophthalmus.

  17. The Dynamical Mechanisms of the Cell Cycle Size Checkpoint

    International Nuclear Information System (INIS)

    Feng Shi-Fu; Yang Ling; Yan Jie; Liu Zeng-Rong

    2012-01-01

    Cell division must be tightly coupled to cell growth in order to maintain cell size, whereas the mechanisms of how initialization of mitosis is regulated by cell size remain to be elucidated. We develop a mathematical model of the cell cycle, which incorporates cell growth to investigate the dynamical properties of the size checkpoint in embryos of Xenopus laevis. We show that the size checkpoint is naturally raised from a saddle-node bifurcation, and in a mutant case, the cell loses its size control ability due to the loss of this saddle-node point

  18. A Dynamic Analysis of the Business Cycle Model with a Fixed-time Delay

    Directory of Open Access Journals (Sweden)

    Yuhang Zheng

    2017-07-01

    Full Text Available In business activities, there is a certain time lag effect in investment and capital stock, which would affect the dynamic behavior of the business cycle model and then complicate the economic stability adjustment made through investment policies. Considering the influence on investment activities caused by the expectation time about capital stock, this paper, employing the Hopf bifurcation theory, with the delay in investment as the bifurcation parameter, not only studies the equilibrium stability of the business cycle model with a fixed-time delay, but also discusses the formation conditions of the business cycle. The research discovers that the investment lag during the investing process and the expectation time about the capital stock are two crucial incentives of the business cycle; meanwhile, the expecting equilibrium target can be met through the adjustment of the government investment policies. These findings may serve as guidelines in stabilizing the business cycle and making relative economic policies. The conclusion is verified through numerical simulation.

  19. O-Linked N-Acetylglucosamine Transiently Elevates in HeLa Cells during Mitosis

    Directory of Open Access Journals (Sweden)

    Viktória Fisi

    2018-05-01

    Full Text Available O-linked N-acetylglucosamine (O-GlcNAc is a dynamic post-translational modification of serine and threonine residues on nuclear and cytoplasmic proteins. O-GlcNAc modification influences many cellular mechanisms, including carbohydrate metabolism, signal transduction and protein degradation. Multiple studies also showed that cell cycle might be modulated by O-GlcNAc. Although the role of O-GlcNAc in the regulation of some cell cycle processes such as mitotic spindle organization or histone phosphorylation is well established, the general behaviour of O-GlcNAc regulation during cell cycle is still controversial. In this study, we analysed the dynamic changes of overall O-GlcNAc levels in HeLa cells using double thymidine block. O-GlcNAc levels in G1, S, G2 and M phase were measured. We observed that O-GlcNAc levels are significantly increased during mitosis in comparison to the other cell cycle phases. However, this change could only be detected when mitotic cells were enriched by harvesting round shaped cells from the G2/M fraction of the synchronized cells. Our data verify that O-GlcNAc is elevated during mitosis, but also emphasize that O-GlcNAc levels can significantly change in a short period of time. Thus, selection and collection of cells at specific cell-cycle checkpoints is a challenging, but necessary requirement for O-GlcNAc studies.

  20. Nonlinear error dynamics for cycled data assimilation methods

    International Nuclear Information System (INIS)

    Moodey, Alexander J F; Lawless, Amos S; Potthast, Roland W E; Van Leeuwen, Peter Jan

    2013-01-01

    We investigate the error dynamics for cycled data assimilation systems, such that the inverse problem of state determination is solved at t k , k = 1, 2, 3, …, with a first guess given by the state propagated via a dynamical system model M k from time t k−1 to time t k . In particular, for nonlinear dynamical systems M k that are Lipschitz continuous with respect to their initial states, we provide deterministic estimates for the development of the error ‖e k ‖ ≔ ‖x (a) k − x (t) k ‖ between the estimated state x (a) and the true state x (t) over time. Clearly, observation error of size δ > 0 leads to an estimation error in every assimilation step. These errors can accumulate, if they are not (a) controlled in the reconstruction and (b) damped by the dynamical system M k under consideration. A data assimilation method is called stable, if the error in the estimate is bounded in time by some constant C. The key task of this work is to provide estimates for the error ‖e k ‖, depending on the size δ of the observation error, the reconstruction operator R α , the observation operator H and the Lipschitz constants K (1) and K (2) on the lower and higher modes of M k controlling the damping behaviour of the dynamics. We show that systems can be stabilized by choosing α sufficiently small, but the bound C will then depend on the data error δ in the form c‖R α ‖δ with some constant c. Since ‖R α ‖ → ∞ for α → 0, the constant might be large. Numerical examples for this behaviour in the nonlinear case are provided using a (low-dimensional) Lorenz ‘63 system. (paper)

  1. Hat cycle dynamic simulation

    International Nuclear Information System (INIS)

    Trucco, A.; Corallo, C.; Pini Prato, A.; Porro, S.

    1999-01-01

    Among the innovative cycle recently proposed in literature, the Humid Air Turbine Cycle - Hat better seems to fulfil the main energy market requirements of today: High efficiency in a large power ranger, low pollution, low specific capital cost. The previous results of an analysis at partial load and transient conditions are here presented, where the Hat plant has been simulated using the original model implemented in LEGO environment [it

  2. Spin-glass-like dynamics of ferromagnetic clusters in La0.75Ba0.25CoO3

    International Nuclear Information System (INIS)

    Kumar, Devendra

    2014-01-01

    We report a magnetization study of the compound La 0.75 Ba 0.25 CoO 3 where the Ba 2+ doping is just above the critical limit for percolation of ferromagnetic clusters. The field cooled and zero-field cooled (ZFC) magnetization exhibit thermomagnetic irreversibility and the ac susceptibility shows a frequency dependent peak at the ferromagnetic ordering temperature (T C  ≈ 203 K) of the clusters. These features indicate the presence of a non-equilibrium state below T C . For the non-equilibrium state, the dynamic scaling of the imaginary part of the ac susceptibility and the static scaling of the nonlinear susceptibility clearly establish a spin-glass-like cooperative freezing of ferromagnetic clusters at 200.9(2) K. The assertion of the occurrence of spin-glass-like freezing of ferromagnetic clusters is further substantiated by ZFC ageing and memory experiments. We also observe certain dynamical features which are not present in a typical spin glass, such as: the initial magnetization after ZFC ageing first increases and then decreases with the waiting time; and there is an imperfect recovery of relaxation in negative temperature cycling experiments. This imperfect recovery transforms to perfect recovery for concurrent field cycling. Our analysis suggests that these additional dynamical features have their origin in the inter-cluster exchange interaction and cluster size distribution. The inter-cluster exchange interaction above the magnetic percolation level gives a superferromagnetic state in some granular thin films, but our results show the absence of a typical superferromagnetic-like state in La 0.75 Ba 0.25 CoO 3 . (paper)

  3. Photocatalytic oxidation dynamics of acetone on TiO2: tight-binding quantum chemical molecular dynamics study

    International Nuclear Information System (INIS)

    Lv Chen; Wang Xiaojing; Agalya, Govindasamy; Koyama, Michihisa; Kubo, Momoji; Miyamoto, Akira

    2005-01-01

    The clarification of the excited states dynamics on TiO 2 surface is important subject for the design of the highly active photocatalysts. In the present study, we applied our novel tight-binding quantum chemical molecular dynamics method to the investigation on the photocatalytic oxidation dynamics of acetone by photogenerated OH radicals on the hydrated anatase TiO 2 surface. The elucidated photocatalytic reaction mechanism strongly supports the previous experimental proposal and finally the effectiveness of our new approach for the clarification of the photocatalytic reaction dynamics employing the large simulation model was confirmed

  4. Fabrication of Porous ZnO/Co₃O₄ Composites for Improving Cycling Stability of Supercapacitors.

    Science.gov (United States)

    Su, Dongqing; Zhang, Longmei; Tang, Zehua; Yu, Tingting; Liu, Huili; Zhang, Junhao; Liu, Yuanjun; Yuan, Aihua; Kong, Qinghong

    2018-07-01

    To tackle the issue of poor cycling stability for metal oxide nanoparticles as supercapacitor electrode, porous ZnO/Co3O4 composites were fabricated via solid-state thermolysis of [CoZn(BTC)(NO3)](2H2O)(0.5DMF) under air atmosphere. The results demonstrate that the products are mesoporous polyhedron structure with the diameter of about 10 μm, which are constructed by many interconnected nanocrystals with the sizes of around 20 nm. ZnO/Co3O4 composites as supercapacitor electrode exhibited excellent cyclic stability capacity, showing a maximum specific capacitance of 106.7 F g-1 and a capacity retention of 102.7 F · g-1 after 1000 cycles at 0.5 A · g-1. The superior electrochemical performance was contributed to ZnO/Co3O4 composites with porous structures and small size, which shortened the route of electronic transmission as well as ions insertion and desertion processes. Additionally, the synergetic effect of bimetallic oxides improved the electrochemical stability.

  5. Cycling-induced degradation of LiCoO2 thin-film cathodes at elevated temperature

    International Nuclear Information System (INIS)

    Van Sluytman, J.S.; West, W.C.; Whitacre, J.F.; Alamgir, F.M.; Greenbaum, S.G.

    2006-01-01

    The cycle life of LiCoO 2 -based all solid-state thin-film cells has been studied at room temperature, and at elevated temperatures of 50, 100, and 150 deg. C. X-ray diffraction, as well as Raman analysis, has been used to complement the electrochemical data in examining structural and chemical changes. XRD and Raman spectroscopy data indicate that elevated temperature soaks of the thin-film batteries in the quiescent state causes no discernable changes in the LiCoO 2 cathode layer. However, when the thin-film batteries are cycled at elevated temperatures, decreases in average grain size of the LiCoO 2 film occur with dramatic concomitant charge and discharge capacity loss

  6. School Crisis Management: A Model of Dynamic Responsiveness to Crisis Life Cycle

    Science.gov (United States)

    Liou, Yi-Hwa

    2015-01-01

    Purpose: This study aims to analyze a school's crisis management and explore emerging aspects of its response to a school crisis. Traditional linear modes of analysis often fail to address complex crisis situations. The present study applied a dynamic crisis life cycle model that draws on chaos and complexity theory to a crisis management case,…

  7. Rewiring the Glucose Transportation and Central Metabolic Pathways for Overproduction of N-Acetylglucosamine in Bacillus subtilis.

    Science.gov (United States)

    Gu, Yang; Deng, Jieying; Liu, Yanfeng; Li, Jianghua; Shin, Hyun-Dong; Du, Guocheng; Chen, Jian; Liu, Long

    2017-10-01

    N-acetylglucosamine (GlcNAc) is an important amino sugar extensively used in the healthcare field. In a previous study, the recombinant Bacillus subtilis strain BSGN6-P xylA -glmS-pP43NMK-GNA1 (BN0-GNA1) had been constructed for microbial production of GlcNAc by pathway design and modular optimization. Here, the production of GlcNAc is further improved by rewiring both the glucose transportation and central metabolic pathways. First, the phosphotransferase system (PTS) is blocked by deletion of three genes, yyzE (encoding the PTS system transporter subunit IIA YyzE), ypqE (encoding the PTS system transporter subunit IIA YpqE), and ptsG (encoding the PTS system glucose-specific EIICBA component), resulting in 47.6% increase in the GlcNAc titer (from 6.5 ± 0.25 to 9.6 ± 0.16 g L -1 ) in shake flasks. Then, reinforcement of the expression of the glcP and glcK genes and optimization of glucose facilitator proteins are performed to promote glucose import and phosphorylation. Next, the competitive pathways for GlcNAc synthesis, namely glycolysis, peptidoglycan synthesis pathway, pentose phosphate pathway, and tricarboxylic acid cycle, are repressed by initiation codon-optimization strategies, and the GlcNAc titer in shake flasks is improved from 10.8 ± 0.25 to 13.2 ± 0.31 g L -1 . Finally, the GlcNAc titer is further increased to 42.1 ± 1.1 g L -1 in a 3-L fed-batch bioreactor, which is 1.72-fold that of the original strain, BN0-GNA1. This study shows considerably enhanced GlcNAc production, and the metabolic engineering strategy described here will be useful for engineering other prokaryotic microorganisms for the production of GlcNAc and related molecules. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. MR mammography: influence of menstrual cycle on the dynamic contrast enhancement of fibrocystic disease

    International Nuclear Information System (INIS)

    Rieber, A.; Nuessle, K.; Merkle, E.; Tomczak, R.; Brambs, H.J.; Kreienberg, R.

    1999-01-01

    Magnetic resonance mammography (MRM) provides data regarding the nature of tumours based on contrast medium dynamics; fibrocystic changes in the breast, however, may lead to false-positive results. This study investigated whether the contrast medium dynamics of fibrocystic changes are dependent on the menstrual cycle. Twenty-four patients with palpable lumps but normal mammographies and ultrasound studies were examined. The MRM technique was performed during the first and second part of the menstrual cycle using a FLASH 3D sequence, both native and at 1, 2, 3 and 8 min after intravenous application of 0.15 mmol/kg body weight of gadodiamide. The calculated time-intensity curves were evaluated based on the following criteria: early percentage of contrast medium uptake in relation to the native value; formation of a plateau phenomenon after the second minute; the point of maximal contrast medium uptake; and calculation of the contrast enhancing index. During the second half of the menstrual cycle, a generally greater contrast medium uptake was observed. Nevertheless, when further diagnostic criteria, such as continuous contrast medium increase as a function of time, were considered, there was no increased rate of false-positive findings. The phase of the menstrual cycle may affect the specificity of the examination, if only the quantitative contrast medium uptake and the percentage of contrast medium uptake in the first 2 min are considered. A control MRM during the other half of the cycle may then be indicated and additional diagnostic criteria may improve specificity. (orig.)

  9. MR mammography: influence of menstrual cycle on the dynamic contrast enhancement of fibrocystic disease

    Energy Technology Data Exchange (ETDEWEB)

    Rieber, A.; Nuessle, K.; Merkle, E.; Tomczak, R.; Brambs, H.J. [Ulm Univ. (Germany). Abt. Radiologie 1 (Roentgendiagnostik); Kreienberg, R. [Ulm Univ. (Germany). Dept. of Gynecology

    1999-08-01

    Magnetic resonance mammography (MRM) provides data regarding the nature of tumours based on contrast medium dynamics; fibrocystic changes in the breast, however, may lead to false-positive results. This study investigated whether the contrast medium dynamics of fibrocystic changes are dependent on the menstrual cycle. Twenty-four patients with palpable lumps but normal mammographies and ultrasound studies were examined. The MRM technique was performed during the first and second part of the menstrual cycle using a FLASH 3D sequence, both native and at 1, 2, 3 and 8 min after intravenous application of 0.15 mmol/kg body weight of gadodiamide. The calculated time-intensity curves were evaluated based on the following criteria: early percentage of contrast medium uptake in relation to the native value; formation of a plateau phenomenon after the second minute; the point of maximal contrast medium uptake; and calculation of the contrast enhancing index. During the second half of the menstrual cycle, a generally greater contrast medium uptake was observed. Nevertheless, when further diagnostic criteria, such as continuous contrast medium increase as a function of time, were considered, there was no increased rate of false-positive findings. The phase of the menstrual cycle may affect the specificity of the examination, if only the quantitative contrast medium uptake and the percentage of contrast medium uptake in the first 2 min are considered. A control MRM during the other half of the cycle may then be indicated and additional diagnostic criteria may improve specificity. (orig.) With 2 figs., 2 tabs., 24 refs.

  10. Structure evolution of the LiMnO{sub 2} lamellar oxide during electrochemical cycling; Evolution structurale de l`oxyde lamellaire LiMnO{sub 2} lors du cyclage electrochimique

    Energy Technology Data Exchange (ETDEWEB)

    Delmas, C. [Centre National de la Recherche Scientifique (CNRS), 33 - Pessac (France). Institut de Chimie de la Matiere Condensee de Bordeaux; Capitaine, F.; Majastre [Bollore Technologies, 29 - Quimper (France); Baudry, P. [Electricite de France, 77 - Moret sur Loing (France). Direction des Etudes et Recherches

    1996-12-31

    The LiMnO{sub 2} lamellar oxide, obtained by exchange reaction from its sodium homologue {alpha}-NaMnO{sub 2}, has been used as a positive electrode for lithium batteries. After the first electrochemical cycle, the shape of the potential-composition curve changes and indicates a change in the structure. This modification changes imperceptibly at each cycle and after about 40 cycles, a stationary state is reached. Powder spectra refinement using the Rietvelt method shows a migration of manganese ions from the thin sheets towards the inter-sheet space. After a single cycle, 8% of the manganese ions are already present in the lithium site and this rate reaches 13% after 3 cycles. During long cycling, a redistribution of ions and vacancies inside the cfc oxygenated pile leads to a structure very similar to the LiMn{sub 2}O{sub 4} spinel. This structure evolution is to be compared with the one obtained from the orthorhombic variety of LiMnO{sub 2} but the modification is more progressive with lamellar LiMnO{sub 2}. Abstract only. (J.S.)

  11. Structure evolution of the LiMnO{sub 2} lamellar oxide during electrochemical cycling; Evolution structurale de l`oxyde lamellaire LiMnO{sub 2} lors du cyclage electrochimique

    Energy Technology Data Exchange (ETDEWEB)

    Delmas, C [Centre National de la Recherche Scientifique (CNRS), 33 - Pessac (France). Institut de Chimie de la Matiere Condensee de Bordeaux; Capitaine, F; Majastre, [Bollore Technologies, 29 - Quimper (France); Baudry, P [Electricite de France, 77 - Moret sur Loing (France). Direction des Etudes et Recherches

    1997-12-31

    The LiMnO{sub 2} lamellar oxide, obtained by exchange reaction from its sodium homologue {alpha}-NaMnO{sub 2}, has been used as a positive electrode for lithium batteries. After the first electrochemical cycle, the shape of the potential-composition curve changes and indicates a change in the structure. This modification changes imperceptibly at each cycle and after about 40 cycles, a stationary state is reached. Powder spectra refinement using the Rietvelt method shows a migration of manganese ions from the thin sheets towards the inter-sheet space. After a single cycle, 8% of the manganese ions are already present in the lithium site and this rate reaches 13% after 3 cycles. During long cycling, a redistribution of ions and vacancies inside the cfc oxygenated pile leads to a structure very similar to the LiMn{sub 2}O{sub 4} spinel. This structure evolution is to be compared with the one obtained from the orthorhombic variety of LiMnO{sub 2} but the modification is more progressive with lamellar LiMnO{sub 2}. Abstract only. (J.S.)

  12. Characteristics of multilevel storage and switching dynamics in resistive switching cell of Al2O3/HfO2/Al2O3 sandwich structure

    Science.gov (United States)

    Liu, Jian; Yang, Huafeng; Ma, Zhongyuan; Chen, Kunji; Zhang, Xinxin; Huang, Xinfan; Oda, Shunri

    2018-01-01

    We reported an Al2O3/HfO2/Al2O3 sandwich structure resistive switching device with significant improvement of multilevel cell (MLC) operation capability, which exhibited that four stable and distinct resistance states (one low resistance state and three high resistance states) can be achieved by controlling the Reset stop voltages (V Reset-stop) during the Reset operation. The improved MLC operation capability can be attributed to the R HRS/R LRS ratio enhancement resulting from increasing of the series resistance and decreasing of leakage current by inserting two Al2O3 layers. For the high-speed switching applications, we studied the initial switching dynamics by using the measurements of the pulse width and amplitude dependence of Set and Reset switching characteristics. The results showed that under the same pulse amplitude conditions, the initial Set progress is faster than the initial Reset progress, which can be explained by thermal-assisted electric field induced rupture model in the oxygen vacancies conductive filament. Thus, proper combination of varying pulse amplitude and width can help us to optimize the device operation parameters. Moreover, the device demonstrated ultrafast program/erase speed (10 ns) and good pulse switching endurance (105 cycles) characteristics, which are suitable for high-density and fast-speed nonvolatile memory applications.

  13. Sputtering graphite coating to improve the elevated-temperature cycling ability of the LiMn2O4 electrode.

    Science.gov (United States)

    Wang, Jiexi; Zhang, Qiaobao; Li, Xinhai; Wang, Zhixing; Guo, Huajun; Xu, Daguo; Zhang, Kaili

    2014-08-14

    To improve the cycle performance of LiMn2O4 at elevated temperature, a graphite layer is introduced to directly cover the surface of a commercial LiMn2O4-based electrode via room-temperature DC magnetron sputtering. The as-modified cathodes display improved capacity retention as compared to the bare LiMn2O4 cathode (BLMO) at 55 °C. When sputtering graphite for 30 min, the sample shows the best cycling performance at 55 °C, maintaining 96.2% capacity retention after 200 cycles. Reasons with respect to the graphite layer for improving the elevated-temperature performance of LiMn2O4 are systematically investigated via the methods of cyclic voltammetry, electrochemical impedance spectroscopy, X-ray photoelectron spectrometry, scanning and transmission electron microscopy, X-ray diffraction and inductively coupled plasma-atomic emission spectrometry. The results demonstrate that the graphite coated LiMn2O4 cathode has much less increased electrode polarization and electrochemical impedance than BLMO during the elevated-temperature cycling process. Furthermore, the graphite layer is able to alleviate the severe dissolution of manganese ions into the electrolyte and mitigate the morphological and structural degradation of LiMn2O4 during cycling. A model for the electrochemical kinetics process is also suggested for explaining the roles of the graphite layer in suppressing the Mn dissolution.

  14. Computational Fluid Dynamics Modeling of a Supersonic Nozzle and Integration into a Variable Cycle Engine Model

    Science.gov (United States)

    Connolly, Joseph W.; Friedlander, David; Kopasakis, George

    2015-01-01

    This paper covers the development of an integrated nonlinear dynamic simulation for a variable cycle turbofan engine and nozzle that can be integrated with an overall vehicle Aero-Propulso-Servo-Elastic (APSE) model. A previously developed variable cycle turbofan engine model is used for this study and is enhanced here to include variable guide vanes allowing for operation across the supersonic flight regime. The primary focus of this study is to improve the fidelity of the model's thrust response by replacing the simple choked flow equation convergent-divergent nozzle model with a MacCormack method based quasi-1D model. The dynamic response of the nozzle model using the MacCormack method is verified by comparing it against a model of the nozzle using the conservation element/solution element method. A methodology is also presented for the integration of the MacCormack nozzle model with the variable cycle engine.

  15. Cycling-induced degradation of LiCoO{sub 2} thin-film cathodes at elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Van Sluytman, J.S.; Alamgir, F.M.; Greenbaum, S.G. [Department of Physics and Astronomy, Hunter College of the City University of New York, 695 Park Avenue, New York, NY 10021 (United States); West, W.C.; Whitacre, J.F. [Electrochemical Technologies Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)

    2006-04-01

    The cycle life of LiCoO{sub 2}-based all solid-state thin-film cells has been studied at room temperature, and at elevated temperatures of 50, 100, and 150{sup o}C. X-ray diffraction, as well as Raman analysis, has been used to complement the electrochemical data in examining structural and chemical changes. XRD and Raman spectroscopy data indicate that elevated temperature soaks of the thin-film batteries in the quiescent state causes no discernible changes in the LiCoO{sub 2} cathode layer. However, when the thin-film batteries are cycled at elevated temperatures, decreases in average grain size of the LiCoO{sub 2} film occur with dramatic concomitant charge and discharge capacity loss. (author)

  16. Isometric strength training lowers the O2 cost of cycling during moderate-intensity exercise.

    Science.gov (United States)

    Zoladz, Jerzy A; Szkutnik, Zbigniew; Majerczak, Joanna; Grandys, Marcin; Duda, Krzysztof; Grassi, Bruno

    2012-12-01

    The effect of maximal voluntary isometric strength training of knee extensor muscles on pulmonary V'O(2) on-kinetics, the O(2) cost of cycling and peak oxygen uptake (V'O(2peak)) in humans was studied. Seven healthy males (mean ± SD, age 22.3 ± 2.0 years, body weight 75.0 ± 9.2 kg, V'O(2peak) 49.5 ± 3.8 ml kg(-1) min(-1)) performed maximal isometric strength training lasting 7 weeks (4 sessions per week). Force during maximal voluntary contraction (MVC) increased by 15 % (P Strength training resulted in a significant decrease (by ~7 %; P Isometric strength training rapidly (i.e., after 1 week) decreases the O(2) cost of cycling during moderate-intensity exercise, whereas it does not affect the amplitude of the slow component of the V'O(2) on-kinetics during heavy-intensity exercise. Isometric strength training can have beneficial effects on performance during endurance events.

  17. Fashion cycle dynamics in a model with endogenous discrete evolution of heterogeneous preferences

    Science.gov (United States)

    Naimzada, A. K.; Pireddu, M.

    2018-05-01

    We propose a discrete-time exchange economy evolutionary model, in which two groups of agents are characterized by different preference structures. The reproduction level of a group is related to its attractiveness degree, which depends on the social visibility level, determined by the consumption choices of the agents in that group. The attractiveness of a group is initially increasing with its visibility level, but it becomes decreasing when its visibility exceeds a given threshold value, due to a congestion effect. Thanks to the combined action of the price mechanism and of the share updating rule, the model is able to reproduce the recurrent dynamic behavior typical of the fashion cycle, presenting booms and busts both in the agents' consumption choices and in the population shares. More precisely, we investigate the existence of equilibria and their stability, and we perform a qualitative bifurcation analysis on varying the parameter describing the group's heterogeneity degree. From a global viewpoint, we detect, among others, multistability phenomena in which the group coexistence is dynamic, either regular or irregular, and the fashion cycle occurs. The existence of complex dynamics is proven via the method of the turbulent maps, working with homoclinic orbits. Finally, we provide a social and economic interpretation of the main scenarios.

  18. High-capacity FeTiO3/C negative electrode for sodium-ion batteries with ultralong cycle life

    Science.gov (United States)

    Ding, Changsheng; Nohira, Toshiyuki; Hagiwara, Rika

    2018-06-01

    The development of electrode materials which improve both the energy density and cycle life is one of the most challenging issues facing the practical application of sodium-ion batteries today. In this work, FeTiO3/C nanoparticles are synthesized as negative electrode materials for sodium-ion batteries. The electrochemical performance and charge-discharge mechanism of the FeTiO3/C negative electrode are investigated in an ionic liquid electrolyte at 90 °C. The FeTiO3/C negative electrode delivers a high reversible capacity of 403 mAh g-1 at a current rate of 10 mA g-1, and exhibits high rate capability and excellent cycling stability for up to 2000 cycles. The results indicate that FeTiO3/C is a promising negative electrode material for sodium-ion batteries.

  19. Enzymatic production of N-acetyl-d-glucosamine from crayfish shell wastes pretreated via high pressure homogenization.

    Science.gov (United States)

    Wei, Guoguang; Zhang, Alei; Chen, Kequan; Ouyang, Pingkai

    2017-09-01

    This study presents an efficient pretreatment of crayfish shell using high pressure homogenization that enables N-acetyl-d-glucosamine (GlcNAc) production by chitinase. Firstly, the chitinase from Serratia proteamaculans NJ303 was screened for its ability to degrade crayfish shell and produce GlcNAc as the sole product. Secondly, high pressure homogenization, which caused the crayfish shell to adopt a fluffy netted structure that was characterized by Scanning electron microscope (SEM), Fourier transform infrared spectrometer (FT-IR), X-ray diffraction (XRD), was evaluated as the best pretreatment method. In addition, the optimal conditions of high pressure homogenization of crayfish shell were determined to be five cycles at a pressure of 400bar, which achieved a yield of 3.9g/L of GlcNAc from 25g/L of crayfish shell in a batch enzymatic reaction over 1.5h. The results showed high pressure homogenization might be an efficient method for direct utilization of crayfish shell for enzymatic production of GlcNAc. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Culture in cycles: considering H.T. Odum's 'information cycle'

    Science.gov (United States)

    Abel, Thomas

    2014-01-01

    'Culture' remains a conundrum in anthropology. When recast in the mold of 'information cycles,' culture is transformed. New fault lines appear. Information is splintered into parallel or nested forms. Dynamics becomes cycling. Energy is essential. And culture has function in a directional universe. The 'information cycle' is the crowning component of H.T. Odum's theory of general systems. What follows is an application of the information cycle to the cultural domains of discourse, social media, ritual, education, journalism, technology, academia, and law, which were never attempted by Odum. In information cycles, cultural information is perpetuated - maintained against Second Law depreciation. Conclusions are that culture is in fact a nested hierarchy of cultural forms. Each scale of information production is semi-autonomous, with its own evolutionary dynamics of production and selection in an information cycle. Simultaneously, each information cycle is channeled or entrained by its larger scale of information and ultimately human-ecosystem structuring.

  1. Glacial cycles

    DEFF Research Database (Denmark)

    Kaufmann, R. K.; Juselius, Katarina

    We use a statistical model, the cointegrated vector autoregressive model, to assess the degree to which variations in Earth's orbit and endogenous climate dynamics can be used to simulate glacial cycles during the late Quaternary (390 kyr-present). To do so, we estimate models of varying complexity...... and compare the accuracy of their in-sample simulations. Results indicate that strong statistical associations between endogenous climate variables are not enough for statistical models to reproduce glacial cycles. Rather, changes in solar insolation associated with changes in Earth's orbit are needed...... to simulate glacial cycles accurately. Also, results suggest that non-linear 10 dynamics, threshold effects, and/or free oscillations may not play an overriding role in glacial cycles....

  2. Hydrologic control on redox and nitrogen dynamics in a peatland soil

    International Nuclear Information System (INIS)

    Rubol, Simonetta; Silver, Whendee L.; Bellin, Alberto

    2012-01-01

    Soils are a dominant source of nitrous oxide (N 2 O), a potent greenhouse gas. However, the complexity of the drivers of N 2 O production and emissions has hindered our ability to predict the magnitude and spatial dynamics of N 2 O fluxes. Soil moisture can be considered a key driver because it influences oxygen (O 2 ) supply, which feeds back on N 2 O sources (nitrification versus denitrification) and sinks (reduction to dinitrogen). Soil water content is directly linked to O 2 and redox potential, which regulate microbial metabolism and chemical transformations in the environment. Despite its importance, only a few laboratory studies have addressed the effects of hydrological transient dynamics on nitrogen (N) cycling in the vadose zone. To further investigate these aspects, we performed a long term experiment in a 1.5 m depth soil column supplemented by chamber experiments. With this experiment, we aimed to investigate how soil moisture dynamics influence redox sensitive N cycling in a peatland soil. As expected, increased soil moisture lowered O 2 concentrations and redox potential in the soil. The decline was more severe for prolonged saturated conditions than for short events and at deep than at the soil surface. Gaseous and dissolved N 2 O, dissolved nitrate (NO 3 − ) and ammonium (NH 4 + ) changed considerably along the soil column profile following trends in soil O 2 and redox potential. Hot spots of N 2 O concentrations corresponded to high variability in soil O 2 in the upper and lower parts of the column. Results from chamber experiments confirmed high NO 3 − reduction potential in soils, particularly from the bottom of the column. Under our experimental conditions, we identified a close coupling of soil O 2 and N 2 O dynamics, both of which lagged behind soil moisture changes. These results highlight the relationship among soil hydrologic properties, redox potential and N cycling, and suggest that models working at a daily scale need to consider

  3. Water cycle and salinity dynamics in the mangrove forests of Europa and Juan de Nova Islands, southwest Indian Ocean.

    Science.gov (United States)

    Lambs, Luc; Mangion, Perrine; Mougin, Eric; Fromard, François

    2016-01-30

    The functioning of mangrove forests found on small coralline islands is characterized by limited freshwater inputs. Here, we present data on the water cycling of such systems located on Europa and Juan de Nova Islands, Mozambique Channel. In order to better understand the water cycle and mangrove growth conditions, we have analysed the hydrological and salinity dynamics of the systems by gauge pressure and isotopic tracing (δ18O and δ2H values). Both islands have important seawater intrusion as measured by the water level change and the high salinities in the karstic ponds. Europa Island displays higher salinity stress, with its inner lagoon, but presents a pluri-specific mangrove species formation ranging from shrub to forest stands. No freshwater signal could be detected around the mangrove trees. On Juan de Nova Island, the presence of sand and detrital sediment allows the storage of some amount of rainfall to form a brackish groundwater. The mangrove surface area is very limited with only small mono-specific stands being present in karstic depression. On the drier Europa Island, the salinity of all the water points is equal to or higher than that of the seawater, and on Juan de Nova the groundwater salinity is lower (5 to 20 PSU). This preliminary study shows that the karstic pothole mangroves exist due to the sea connection through the fractured coral and the high tidal dynamics.

  4. Long-Term Charge/Discharge Cycling Stability of MnO2 Aqueous Supercapacitor under Positive Polarization

    KAUST Repository

    Ataherian, Fatemeh

    2011-01-01

    The long-term charge/discharge cycling stability of MnO 2 electrode under positive polarization in aqueous KCl electrolyte has been studied over different potential windows spanning from the open circuit potential to varied higher-end potential limited by O 2 evolution. Cycling up to 1.2 V (vs Ag/AgCl (aq)) causes partial (35) capacitance fading to a plateau value within the initial cycles, accompanied by morphological reconstruction, reduction of surface Mn ions and oxygen evolution. The surface Mn-ion reduction has been attributed to a two-step oxidation-reduction mechanism involving OH oxidation in electrolyte, based on electrochemical analysis. When cycling potential extends to 1.4 V, extensive oxygen evolution takes place. The combination of surface passivation of current collector and extensive gas bubbling, which deteriorates electrical contact among the constituent particles within the electrode, results in further monotonic capacitance reduction. © 2011 The Electrochemical Society.

  5. An application of the Caputo-Fabrizio operator to replicator-mutator dynamics: Bifurcation, chaotic limit cycles and control

    Science.gov (United States)

    Doungmo Goufo, Emile Franc

    2018-02-01

    The physical behaviors of replicator-mutator processes found in theoretical biophysics, physical chemistry, biochemistry and population biology remain complex with unlimited expressibility. People languages, for instance, have impressively and unpredictably changed over the time in human history. This is mainly due to the collection of small changes and collaboration with other languages. In this paper, the Caputo-Fabrizio operator is applied to a replicator-mutator dynamic taking place in midsts with movement. The model is fully analyzed and solved numerically via the Crank-Nicolson scheme. Stability and convergence results are provided. A concrete application to replicator-mutator dynamics for a population with three strategies is performed with numerical simulations provided for some fixed values of the physical position of the population symbolized by r and the grid points. Physically, it happens that limit cycles appear, not only in function of the mutation parameter μ but also in function of the values given to r . The amplitudes of limit cycles also appear to be proportional to r but the stability of the system remains unaffected. However, those limit cycles instead of disappearing as expected, are immediately followed by chaotic and unpredictable behaviors certainly due to the non-singular kernel used in the model and suitable to non-linear dynamics. Hence, the appearance and disappearance of limit cycles might be controlled by the position variable r which can also apprehend chaos.

  6. Dynamic compaction of Al2O3-ZrO2 compositions

    International Nuclear Information System (INIS)

    Tunaboylu, B.; McKittrick, J.; Nutt, S.R.

    1994-01-01

    Shock compaction of Al 2 O 3 -ZrO 2 binary and ternary powder compositions resulted in dense, one-piece samples without visible cracks for pressures ≤12.6 GPa. Dynamic pressures were achieved by using a 6.5-m-long two-state gas gun. It is believed that plastic deformation by dislocation slip of α-Al 2 O 3 partially accommodates the tensile stresses created during the release of shock pressures. A fine and narrow particle size distribution is necessary to achieve high bulk densities, but the bulk structural integrity was not strongly related to the distribution. A high-pressure phase of ZrO 2 , which was formed from the monoclinic polymorph, was found at and above shock pressure of 6.3 GPa. No evidence of the orthorhombic cotunnite structure was observed. Compaction of glassy and submicrocrystalline rapidly solidified starting materials showed good structural integrity, although the bulk density was relatively low. It is not clear what the densification/bonding mechanism is in these materials, although it appears not to be plastic deformation. Microstructural analysis showed that fine and uniform microstructures are retained after compaction at appropriate dynamic pressures for all compositions, with some interparticle cohesion present

  7. Cycling Performance of Li4Ti5O12 Electrodes in Ionic Liquid-Based Gel Polymer Electrolytes

    International Nuclear Information System (INIS)

    Kim, Jin Hee; Kim, Dong Won; Kang, Yong Ku

    2012-01-01

    We investigated the cycling behavior of Li 4 Ti 5 O 12 electrode in a cross-linked gel polymer electrolyte based on non-flammable ionic liquid consisting of 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl) imide and vinylene carbonate. The Li 4 Ti 5 O 12 electrodes in ionic liquid-based gel polymer electrolytes exhibited reversible cycling behavior with good capacity retention. Cycling data and electrochemical impedance spectroscopy analyses revealed that the optimum content of the cross-linking agent necessary to ensure both acceptable initial discharge capacity and good capacity retention was about 8 wt %

  8. Software life cycle dynamic simulation model: The organizational performance submodel

    Science.gov (United States)

    Tausworthe, Robert C.

    1985-01-01

    The submodel structure of a software life cycle dynamic simulation model is described. The software process is divided into seven phases, each with product, staff, and funding flows. The model is subdivided into an organizational response submodel, a management submodel, a management influence interface, and a model analyst interface. The concentration here is on the organizational response model, which simulates the performance characteristics of a software development subject to external and internal influences. These influences emanate from two sources: the model analyst interface, which configures the model to simulate the response of an implementing organization subject to its own internal influences, and the management submodel that exerts external dynamic control over the production process. A complete characterization is given of the organizational response submodel in the form of parameterized differential equations governing product, staffing, and funding levels. The parameter values and functions are allocated to the two interfaces.

  9. Water on TiO2 studied by work function change: adsorption in cycles

    International Nuclear Information System (INIS)

    Bundaleski, Nenad; Silva, Ana G; Jean-Shaw, Bobbie; Teodoro, Orlando; Moutinho, Augusto

    2013-01-01

    The nature of water adsorption on TiO 2 (110) rutile surface attracts a lot of attention for quite some time. In spite of the considerable experimental and theoretical efforts a lot of details remain unclear. We have been using work function study to follow the adsorption of water on TiO 2 at room temperature, and interpreted the results in terms of fast dissociative adsorption on bridging oxygen vacancies (BOV) and much slower non-dissociative adsorption on Ti 5f rows. Additionally, we concluded that water from Ti 5f rows efficiently desorbs at room temperature which is not the case for BOV adsorption sites. Here we propose a novel experimental approach which consists of monitoring in real-time the work function change during cycles of water adsorption. Since desorption at BOVs does not take place at room temperature, this method allows us to resolve the adsorption dynamics on the two adsorption sites. The first results changed our understanding of the phenomenon: we show that both, adsorption on BOVs and Ti 5f are both very fast. Additionally, slow exponential decay of the work function is observed, which is not directly related to water adsorption. The possible explanation of the third slow contribution could be related to the migration of hydrogen atoms along the bridging oxygen rows.

  10. Fast "Feast/Famine" Cycles for Studying Microbial Physiology Under Dynamic Conditions: A Case Study with Saccharomyces cerevisiae.

    Science.gov (United States)

    Suarez-Mendez, Camilo A; Sousa, Andre; Heijnen, Joseph J; Wahl, Aljoscha

    2014-05-15

    Microorganisms are constantly exposed to rapidly changing conditions, under natural as well as industrial production scale environments, especially due to large-scale substrate mixing limitations. In this work, we present an experimental approach based on a dynamic feast/famine regime (400 s) that leads to repetitive cycles with moderate changes in substrate availability in an aerobic glucose cultivation of Saccharomyces cerevisiae. After a few cycles, the feast/famine produced a stable and repetitive pattern with a reproducible metabolic response in time, thus providing a robust platform for studying the microorganism's physiology under dynamic conditions. We found that the biomass yield was slightly reduced (-5%) under the feast/famine regime, while the averaged substrate and oxygen consumption as well as the carbon dioxide production rates were comparable. The dynamic response of the intracellular metabolites showed specific differences in comparison to other dynamic experiments (especially stimulus-response experiments, SRE). Remarkably, the frequently reported ATP paradox observed in single pulse experiments was not present during the repetitive perturbations applied here. We found that intracellular dynamic accumulations led to an uncoupling of the substrate uptake rate (up to 9-fold change at 20 s.) Moreover, the dynamic profiles of the intracellular metabolites obtained with the feast/famine suggest the presence of regulatory mechanisms that resulted in a delayed response. With the feast famine setup many cellular states can be measured at high frequency given the feature of reproducible cycles. The feast/famine regime is thus a versatile platform for systems biology approaches, which can help us to identify and investigate metabolite regulations under realistic conditions (e.g., large-scale bioreactors or natural environments).

  11. Much improved capacity and cycling performance of LiVMoO6 cathode for lithium ion batteries

    International Nuclear Information System (INIS)

    Zhou Liqun; Liang Yongguang; Hu Ling; Han Xiaoyan; Yi Zonghui; Sun Jutang; Yang Shuijin

    2008-01-01

    Spherical LiVMoO 6 nanocrystals as cathode for lithium ion batteries were synthesized using a solvothermal reaction method. Powder XRD data indicate that a single phase LiVMoO 6 with brannerite-type structure is obtained at 550 deg. C by the thermal treatment of the precursor for 6 h. SEM image shows that the particles are composed of loosely stacked spheres with a uniform particle size about 40 nm. The electrode properties of LiVMoO 6 have also been studied by galvanostatic cycling and ac impedance spectroscopy. LiVMoO 6 nanospheres delivered 172 mAh g -1 capacity in the initial discharge process with a reversible capacity retention of 94.4% after 100 cycles in the range of 3.6-1.80 V versus metallic Li at a current density of 100 mA g -1 . The microstructure developed in the electrodes give evidence that the particle size and morphological properties play an important role in the much improved capacity and cycling stability at large currents than ordinary samples

  12. Revisitando a teoria do ciclo do produto Revisiting the product cycle theory

    Directory of Open Access Journals (Sweden)

    Eneuton Pessoa

    2007-08-01

    Full Text Available Este artigo busca refletir sobre uma questão-chave que perpassa grande parte da literatura crítica à teoria do ciclo do produto: o que foi superado e o que permanece vivo nessa teoria. Após sistematizar o mecanismo básico do ciclo do produto, discutem-se algumas principais insuficiências apontadas e/ou sugeridas pela literatura. Argumenta-se que, se não mais se sustenta a hipótese de que a dinâmica das inovações e dos investimentos diretos externos responde à cronologia do ciclo de vida do produto, por outro lado, a hipótese de que as vantagens comparativas possuem um caráter dinâmico, cuja natureza e importância relativa se modificam ao longo do tempo, em resposta a mudanças nos condicionantes da produção, e conforme o estágio de desenvolvimento e complexidade do produto, permanece viva e mais atual do que nunca.This article aims to think about a key-question that involves the majority of the critic literature in respect to the product-cycle theory. What is over and what remains alive in this theory? After systematizing the basic mechanism of the product-cycle theory, it discusses some of its main insufficiencies, how it is appointed or suggested by the literature. Summarily, we argue that, if it is over the hypothesis which argues that the dynamics of innovations, and the foreign direct investments depends on the product life cycle chronology, on the other side, it remains alive and does up-to-date the hypothesis which argues that the comparative advantages have a dynamic character, which nature and relative account is modified along time in response to changes in the production conditions, in accordance to the product evolution and its complexity.

  13. Dynamic protein S-palmitoylation mediates parasite life cycle progression and diverse mechanisms of virulence.

    Science.gov (United States)

    Brown, Robert W B; Sharma, Aabha I; Engman, David M

    2017-04-01

    Eukaryotic parasites possess complex life cycles and utilize an assortment of molecular mechanisms to overcome physical barriers, suppress and/or bypass the host immune response, including invading host cells where they can replicate in a protected intracellular niche. Protein S-palmitoylation is a dynamic post-translational modification in which the fatty acid palmitate is covalently linked to cysteine residues on proteins by the enzyme palmitoyl acyltransferase (PAT) and can be removed by lysosomal palmitoyl-protein thioesterase (PPT) or cytosolic acyl-protein thioesterase (APT). In addition to anchoring proteins to intracellular membranes, functions of dynamic palmitoylation include - targeting proteins to specific intracellular compartments via trafficking pathways, regulating the cycling of proteins between membranes, modulating protein function and regulating protein stability. Recent studies in the eukaryotic parasites - Plasmodium falciparum, Toxoplasma gondii, Trypanosoma brucei, Cryptococcus neoformans and Giardia lamblia - have identified large families of PATs and palmitoylated proteins. Many palmitoylated proteins are important for diverse aspects of pathogenesis, including differentiation into infective life cycle stages, biogenesis and tethering of secretory organelles, assembling the machinery powering motility and targeting virulence factors to the plasma membrane. This review aims to summarize our current knowledge of palmitoylation in eukaryotic parasites, highlighting five exemplary mechanisms of parasite virulence dependent on palmitoylation.

  14. pO2 Fluctuation Pattern and Cycling Hypoxia in Human Cervical Carcinoma and Melanoma Xenografts

    International Nuclear Information System (INIS)

    Ellingsen, Christine; Øvrebø, Kirsti Marie; Galappathi, Kanthi; Mathiesen, Berit; Rofstad, Einar K.

    2012-01-01

    Purpose: Blood perfusion in tumors is spatially and temporally heterogeneous, resulting in local fluctuations in tissue oxygen tension (pO 2 ) and tissue regions showing cycling hypoxia. In this study, we investigated whether the pO 2 fluctuation pattern and the extent of cycling hypoxia differ between tumor types showing high (e.g., cervical carcinoma xenograft) and low (e.g., melanoma xenograft) fractions of connective tissue-associated blood vessels. Methods and Materials: Two cervical carcinoma lines (CK-160 and TS-415) and two melanoma lines (A-07 and R-18) transplanted into BALB/c nu/nu mice were included in the study. Tissue pO 2 was measured simultaneously in two positions in each tumor by using a two-channel OxyLite fiber-optic oxygen-sensing device. The extent of acute and chronic hypoxia was assessed by combining a radiobiological and a pimonidazole-based immunohistochemical assay of tumor hypoxia. Results: The proportion of tumor regions showing pO 2 fluctuations, the pO 2 fluctuation frequency in these regions, and the relative amplitude of the pO 2 fluctuations were significantly higher in the melanoma xenografts than in the cervical carcinoma xenografts. Cervical carcinoma and melanoma xenografts did not differ significantly in the fraction of acutely hypoxic cells or the fraction of chronically hypoxic cells. However, the ratio between fraction of acutely hypoxic cells and fraction of chronically hypoxic cells was significantly higher in melanoma than in cervical carcinoma xenografts. Conclusions: Temporal heterogeneity in blood flow and tissue pO 2 in tumors may depend on tumor histology. Connective tissue surrounding microvessels may stabilize blood flow and pO 2 and, thus, protect tumor tissue from cycling hypoxia.

  15. Multiway simple cycle separators and I/O-efficient algorithms for planar graphs

    DEFF Research Database (Denmark)

    Arge, L.; Walderveen, Freek van; Zeh, Norbert

    2013-01-01

    memory, where sort(N) is the number of I/Os needed to sort N items in external memory. The key, and the main technical contribution of this paper, is a multiway version of Miller's simple cycle separator theorem. We show how to compute these separators in linear time in internal memory, and using O...... in internal memory, thereby completely negating the performance gain achieved by minimizing the number of disk accesses. In this paper, we show how to make these algorithms simultaneously efficient in internal and external memory so they achieve I/O complexity O(sort(N)) and take O(N log N) time in internal......(sort(N)) I/Os and O(N log N) (internal-memory computation) time in external memory....

  16. Improvement of CaO-based sorbent performance for CO{sub 2} looping cycles

    Energy Technology Data Exchange (ETDEWEB)

    Vasilije Manovic; Edward J. Anthony [CANMET Energy Technology Centre-Ottawa, Ottawa, ON (Canada)

    2009-07-01

    This paper presents research on CO{sub 2} capture by lime-based looping cycles. This is a new and promising technology that may help in mitigation of global warming and climate change caused primarily by the use of fossil fuels. The intensity of the anticipated changes urgently requires solutions such as the developing technologies for CO{sub 2} capture, especially those based on CaO looping cycles. This technology is at the pilot plant demonstration stage and there are still significant challenges that require solutions. The technology is based on a dual fluidized bed reactor which contains a carbonator - a unit for CO{sub 2} capture, and a calciner - a unit for CaO regeneration. The major technology components are well known from other technologies and easily applicable. However, even though CaO is a very good candidate as a solid CO{sub 2} carrier, its performance in a practical system still has significant limitations. Thus, research on CaO performance is critical and this paper discusses some of the more important problems and potential solutions that are being examined at CETC-O. To date, the most promising methods were reactivation of spent sorbent by steam, thermal pretreatment of sorbent, and doping, most likely with Al{sub 2}O{sub 3}. The combination of these methods, including pelletization, should provide us with enhanced sorbent performance. 75 refs., 19 figs.

  17. Pb-H2O Thermogravimetric Plants. The Rankine Cycle

    International Nuclear Information System (INIS)

    Arosio, S.; Carlevaro, R.

    2000-01-01

    An economic evaluation concerning Pb-H 2 O thermogravimetric systems with an electric power in the range 200-1.000 kW has been done. Moreover, plant and running costs for a thermogravimetric and a Rankine cycle, 1 MW power, have been compared. Basically due to the lead charge, the plant cost of the former is higher: nevertheless such amount can be recuperated in less than three years, being higher the running cost of the latter [it

  18. Inelastic neutron scattering and lattice dynamics of ZrO2, Y2O3 and ThSiO4

    International Nuclear Information System (INIS)

    Bose, Preyoshi P.; Mittal, R.; Choudhury, N.; Chaplot, S.L.

    2008-01-01

    Zirconia (ZrO 2 ), yttria (Y 2 O 3 ) and thorite (ThSiO 4 ) are ceramic materials used for a wide range of industrial applications. The dynamical properties of these materials are of interest as they exhibit numerous interesting phase transitions at high temperature and pressure. Using a combination of inelastic neutron scattering and theoretical lattice dynamics we have studied the phonon spectra and thermodynamic properties of these compounds. The experimental data validate the theoretical model, while the model enables microscopic interpretations of the observed data. The calculated thermodynamic properties are in good agreement with the experimental data. (author)

  19. Molecular dynamics simulation based on the multi-component molecular orbital method: Application to H5O2+,D5O2+,andT5O2+

    International Nuclear Information System (INIS)

    Ishimoto, Takayoshi; Koyama, Michihisa

    2012-01-01

    Graphical abstract: Molecular dynamics method based on multi-component molecular orbital method was applied to basic hydrogen bonding systems, H 5 O 2 + , and its isotopomers (D 5 O 2 + andT 5 O 2 + ). Highlights: ► Molecular dynamics method with nuclear quantum effect was developed. ► Multi-component molecular orbital method was used as ab initio MO calculation. ► Developed method applied to basic hydrogen bonding system, H 5 O 2 + , and isotopomers. ► OO vibrational stretching reflected to the distribution of protonic wavefunctions. ► H/D/T isotope effect was also analyzed. - Abstract: We propose a molecular dynamics (MD) method based on the multi-component molecular orbital (MC M O) method, which takes into account the quantum effect of proton directly, for the detailed analyses of proton transfer in hydrogen bonding system. The MC M O based MD (MC M O-MD) method is applied to the basic structures, H 5 O 2 + (called “Zundel ion”), and its isotopomers (D 5 O 2 + andT 5 O 2 + ). We clearly demonstrate the geometrical difference of hydrogen bonded OO distance induced by H/D/T isotope effect because the OO in H-compound was longer than that in D- or T-compound. We also find the strong relation between stretching vibration of OO and the distribution of hydrogen bonded protonic wavefunction because the protonic wavefunction tends to delocalize when the OO distance becomes short during the dynamics. Our proposed MC M O-MD simulation is expected as a powerful tool to analyze the proton dynamics in hydrogen bonding systems.

  20. Phase resetting reveals network dynamics underlying a bacterial cell cycle.

    Science.gov (United States)

    Lin, Yihan; Li, Ying; Crosson, Sean; Dinner, Aaron R; Scherer, Norbert F

    2012-01-01

    Genomic and proteomic methods yield networks of biological regulatory interactions but do not provide direct insight into how those interactions are organized into functional modules, or how information flows from one module to another. In this work we introduce an approach that provides this complementary information and apply it to the bacterium Caulobacter crescentus, a paradigm for cell-cycle control. Operationally, we use an inducible promoter to express the essential transcriptional regulatory gene ctrA in a periodic, pulsed fashion. This chemical perturbation causes the population of cells to divide synchronously, and we use the resulting advance or delay of the division times of single cells to construct a phase resetting curve. We find that delay is strongly favored over advance. This finding is surprising since it does not follow from the temporal expression profile of CtrA and, in turn, simulations of existing network models. We propose a phenomenological model that suggests that the cell-cycle network comprises two distinct functional modules that oscillate autonomously and couple in a highly asymmetric fashion. These features collectively provide a new mechanism for tight temporal control of the cell cycle in C. crescentus. We discuss how the procedure can serve as the basis for a general approach for probing network dynamics, which we term chemical perturbation spectroscopy (CPS).

  1. Cycle bases to the rescue

    Science.gov (United States)

    Tóbiás, Roland; Furtenbacher, Tibor; Császár, Attila G.

    2017-12-01

    Cycle bases of graph theory are introduced for the analysis of transition data deposited in line-by-line rovibronic spectroscopic databases. The principal advantage of using cycle bases is that outlier transitions -almost always present in spectroscopic databases built from experimental data originating from many different sources- can be detected and identified straightforwardly and automatically. The data available for six water isotopologues, H216O, H217O, H218O, HD16O, HD17O, and HD18O, in the HITRAN2012 and GEISA2015 databases are used to demonstrate the utility of cycle-basis-based outlier-detection approaches. The spectroscopic databases appear to be sufficiently complete so that the great majority of the entries of the minimum cycle basis have the minimum possible length of four. More than 2000 transition conflicts have been identified for the isotopologue H216O in the HITRAN2012 database, the seven common conflict types are discussed. It is recommended to employ cycle bases, and especially a minimum cycle basis, for the analysis of transitions deposited in high-resolution spectroscopic databases.

  2. Cycles and Common Cycles in Property and Related Sectors

    OpenAIRE

    Peijie Wang

    2003-01-01

    This paper examines cycles and common cycles in the property market and the economy. While focusing on common cycles, the study also incorporates common trends in the meantime, so it covers the whole spectrum of dynamic analysis. It has been found that property shares common cycles, particularly with those sectors that are the user markets of property. The mechanisms of common cycles and the relative magnitudes of cycles of the sectors related to property are discussed to shed light on proper...

  3. Population dynamics of graphene driven by a few-cycle laser pulse

    Science.gov (United States)

    Ding, Chunling; Yu, Rong; Hao, Xiangying; Zhang, Duo; Zu, Fengxia

    2017-06-01

    We study the time evolution of the populations in a two-dimensional (2D) graphene system by employing a few-cycle laser pulse with a linear polarization. Specifically, we present a comparative numerical analysis of the population dynamics of graphene in three different model configurations. Our results show that the Rabi-like oscillations and intraband population inversion can be observed in the population spectrum, which originated from the periodicity of a few-cycle laser pulse and the intraband Coulomb scattering. Also, coherent population oscillations are produced across the Dirac point when the Rabi frequency of the laser field which is used to couple the interband transition is much larger than that couples the intraband transition, and vice versa. These investigations may be helpful to enhance the performance of graphene-based ultrafast electronic and optoelectronic devices, including light-emitting devices, touch screens, photodetectors, and ultrafast lasers.

  4. Top-down constraints on disturbance dynamics in the terrestrial carbon cycle: effects at global and regional scales

    Science.gov (United States)

    Bloom, A. A.; Exbrayat, J. F.; van der Velde, I.; Peters, W.; Williams, M.

    2014-12-01

    Large uncertainties preside over terrestrial carbon flux estimates on a global scale. In particular, the strongly coupled dynamics between net ecosystem productivity and disturbance C losses are poorly constrained. To gain an improved understanding of ecosystem C dynamics from regional to global scale, we apply a Markov Chain Monte Carlo based model-data-fusion approach into the CArbon DAta-MOdel fraMework (CARDAMOM). We assimilate MODIS LAI and burned area, plant-trait data, and use the Harmonized World Soil Database (HWSD) and maps of above ground biomass as prior knowledge for initial conditions. We optimize model parameters based on (a) globally spanning observations and (b) ecological and dynamic constraints that force single parameter values and parameter inter-dependencies to be representative of real world processes. We determine the spatial and temporal dynamics of major terrestrial C fluxes and model parameter values on a global scale (GPP = 123 +/- 8 Pg C yr-1 & NEE = -1.8 +/- 2.7 Pg C yr-1). We further show that the incorporation of disturbance fluxes, and accounting for their instantaneous or delayed effect, is of critical importance in constraining global C cycle dynamics, particularly in the tropics. In a higher resolution case study centred on the Amazon Basin we show how fires not only trigger large instantaneous emissions of burned matter, but also how they are responsible for a sustained reduction of up to 50% in plant uptake following the depletion of biomass stocks. The combination of these two fire-induced effects leads to a 1 g C m-2 d-1reduction in the strength of the net terrestrial carbon sink. Through our simulations at regional and global scale, we advocate the need to assimilate disturbance metrics in global terrestrial carbon cycle models to bridge the gap between globally spanning terrestrial carbon cycle data and the full dynamics of the ecosystem C cycle. Disturbances are especially important because their quick occurrence may have

  5. Is There Really a Global Business Cycle? : A Dynamic Factor Model with Stochastic Factor Selection

    NARCIS (Netherlands)

    T. Berger (Tino); L.C.G. Pozzi (Lorenzo)

    2016-01-01

    textabstractWe investigate the presence of international business cycles in macroeconomic aggregates (output, consumption, investment) using a panel of 60 countries over the period 1961-2014. The paper presents a Bayesian stochastic factor selection approach for dynamic factor models with

  6. Hydrologic control on redox and nitrogen dynamics in a peatland soil

    Energy Technology Data Exchange (ETDEWEB)

    Rubol, Simonetta, E-mail: rubols@ing.unitn.it [Dipartimento di Ingegneria Civile ed Ambientale, Universita di Trento, Via Mesiano 77, I 38123 Trento (Italy); Silver, Whendee L. [Department of Environmental Science, Policy, and Management, 130 Mulford Hall, University of California, Berkeley, CA, 94720 (United States); Bellin, Alberto [Dipartimento di Ingegneria Civile ed Ambientale, Universita di Trento, Via Mesiano 77, I 38123 Trento (Italy)

    2012-08-15

    Soils are a dominant source of nitrous oxide (N{sub 2}O), a potent greenhouse gas. However, the complexity of the drivers of N{sub 2}O production and emissions has hindered our ability to predict the magnitude and spatial dynamics of N{sub 2}O fluxes. Soil moisture can be considered a key driver because it influences oxygen (O{sub 2}) supply, which feeds back on N{sub 2}O sources (nitrification versus denitrification) and sinks (reduction to dinitrogen). Soil water content is directly linked to O{sub 2} and redox potential, which regulate microbial metabolism and chemical transformations in the environment. Despite its importance, only a few laboratory studies have addressed the effects of hydrological transient dynamics on nitrogen (N) cycling in the vadose zone. To further investigate these aspects, we performed a long term experiment in a 1.5 m depth soil column supplemented by chamber experiments. With this experiment, we aimed to investigate how soil moisture dynamics influence redox sensitive N cycling in a peatland soil. As expected, increased soil moisture lowered O{sub 2} concentrations and redox potential in the soil. The decline was more severe for prolonged saturated conditions than for short events and at deep than at the soil surface. Gaseous and dissolved N{sub 2}O, dissolved nitrate (NO{sub 3}{sup -}) and ammonium (NH{sub 4}{sup +}) changed considerably along the soil column profile following trends in soil O{sub 2} and redox potential. Hot spots of N{sub 2}O concentrations corresponded to high variability in soil O{sub 2} in the upper and lower parts of the column. Results from chamber experiments confirmed high NO{sub 3}{sup -} reduction potential in soils, particularly from the bottom of the column. Under our experimental conditions, we identified a close coupling of soil O{sub 2} and N{sub 2}O dynamics, both of which lagged behind soil moisture changes. These results highlight the relationship among soil hydrologic properties, redox potential

  7. High electrochemical energy storage in self-assembled nest-like CoO nanofibers with long cycle life

    Energy Technology Data Exchange (ETDEWEB)

    Pramanik, Atin; Maiti, Sandipan [CSIR-Central Glass & Ceramic Research Institute, Fuel Cell & Battery Division (India); Sreemany, Monjoy [CSIR-Central Glass & Ceramic Research Institute, Advanced Mechanical and Materials Characterization Division (India); Mahanty, Sourindra, E-mail: mahanty@cgcri.res.in [CSIR-Central Glass & Ceramic Research Institute, Fuel Cell & Battery Division (India)

    2016-04-15

    Developing efficient electrode material is essential to keep pace with the demand for high energy density together with high power density and long cycle life in next generation energy storage devices. Herein, we report the electrochemical properties of hydrothermally synthesized CoO nanofibers of diameter 30–80 nm assembled in a nest-like morphology which showed a very high reversible lithium storage capacity of 2000 mA h g{sup −1} after 600 cycles at 0.1 mA cm{sup −2} as lithium-ion battery anode. Systematic investigation by ex situ transmission electron microscopy, X-ray photoelectron spectroscopy, cyclic voltammetry, and impedance spectroscopy at different cycling stages indicated that the extraordinary performance could be related to an enhancement in the Co{sup 2+}↔Co{sup x+} (2 < x ≤ 3) redox process in addition to the commonly believed structural and morphological evolution during cycling favoring generation of large number of accessible active sites for lithium insertion. Further, when examined as a supercapacitor electrode in 1.0 M KOH, a capacitance of 1167 F g{sup −1} is achieved from these 1D CoO nanofibers after 10,000 charge discharge cycles at a high current density of 5 A g{sup −1} demonstrating good application potential.Graphical AbstractNest-like CoO nanofibers showed a reversible lithium storage capacity of 2000 mA h g{sup −1} after 600 cycles as LIB anode and a capacitance of 1167 F g{sup −1} after 10,000 cycles as electrochemical supercapacitor.

  8. The Dynamical Structure Factor of NiO and CoO*

    Science.gov (United States)

    Larson, B. C.; Zschack, P.; Finkelstein, K. D.; Ku, Wei; Restrepo, O.; Equiluz, A. G.

    2005-03-01

    Non-resonant inelastic x-ray scattering (IXS) and ab initio dynamical electronic response calculations have been used to investigate highly correlated transition metal monoxides NiO and CoO. Absolute IXS measurements were made as a function of the magnitude and orientation of momentum transfers, q, at the APS and CHESS using energy resolution ranging from 0.3 -- 1.1 eV. In addition to ˜4 eV energy gaps observed for all q, sharp excitonic peaks were observed below the gap of both NiO and CoO for momentum transfers higher than ˜2 A-1. Comparisons of S(q,w) measurements with dynamical response calculations performed within LDA+U (including crystal field effects) show that the gap energy and the electronic response above the gap are described by U ˜8 eV within RPA for low q-values. However, the excitonic peaks are not described by LDA+U calculations, nor are the calculated S(q,w) spectra in agreement with the measured response for large q. The results will be compared with resonant x-ray emission and resonant electron energy loss spectra in the literature. *Work at the APS supported by the DOE Office of Science, DMS under contract with ORNL, managed by UT-Battelle, LLC; UNI-CAT is supported by UIUC, ORNL, NIST and UOP Res., Inc. The APS is supported by the DOE and CHESS is supported by the NSF.

  9. Evolutionarily conserved histone methylation dynamics during seed life-cycle transitions.

    Directory of Open Access Journals (Sweden)

    Kerstin Müller

    Full Text Available Plants have a remarkable ability to react to seasonal changes by synchronizing life-cycle transitions with environmental conditions. We addressed the question of how transcriptional re-programming occurs in response to an environmental cue that triggers the major life cycle transition from seed dormancy to germination and seedling growth. We elucidated an important mechanistic aspect of this process by following the chromatin dynamics of key regulatory genes with a focus on the two antagonistic marks, H3K4me3 and H3K27me3. Histone methylation patterns of major dormancy regulators changed during the transition to germination and seedling growth. We observed a switch from H3K4me3 and high transcription levels to silencing by the repressive H3K27me3 mark when dormancy was broken through exposure to moist chilling, underscoring that a functional PRC2 complex is necessary for this transition. Moreover, this reciprocal regulation by H3K4me3 and H3K27me3 is evolutionarily conserved from gymnosperms to angiosperms.

  10. Preparation of Carbon-Encapsulated ZnO Tetrahedron as an Anode Material for Ultralong Cycle Life Performance Lithium-ion Batteries

    International Nuclear Information System (INIS)

    Ren, Zhimin; Wang, Zhiyu; Chen, Chao; Wang, Jia; Fu, Xinxin; Fan, Chenyao; Qian, Guodong

    2014-01-01

    Highlights: • A novel architecture of 3D carbon framework to encapsulate ZnO nanocrystals was prepared. • The ZnO@C exhibits ultralong cycle life and high specific capacity when was used as anode. • The in situ carbonization leads to a strong connection between the carbon and ZnO. - ABSTRACT: In this paper we report a novel architecture of three-dimension (3D) carbon framework to encapsulate tetrahedron ZnO nanocrystals that serves as an anode material for lithium-ion batteries (LIBs). The ZnO@C composites are prepared via a simple internal-reflux method combined with subsequent calcination in argon. The amorphous carbon is formed on the surface of the ZnO crystals by in situ carbonization of the surfactant, which leads to a strong connection between the carbon framework and the active materials and guarantees faster charge transfer on the electrode. The ZnO crystal calcined at 500°C (ZnO@C-5) possesses regular tetrahedron shape with a side length of 150-200 nm and all of them are uniformly anchored among the network of amorphous carbon. The developed ZnO@C structures not only improve the electronic conductivity of the electrode, but they also offer a larger volume expansion of ZnO during cycling. As a result, the ZnO@C-5 demonstrates a higher reversible capacity, ultralong cycle life and better rate capability than that of the ZnO@C-7 and pure ZnO crystals. After 300 cycles, the ZnO@C-5 demonstrates a high capacity of 518 mAhg −1 at a current density of 110.7 mAg −1 . Moreover, this simple approach prepared the 3D composites architecture could shed light on the design and synthesis of other transition metal oxides for energy storage

  11. Experimental study on the application of phase change material in the dynamic cycling of battery pack system

    International Nuclear Information System (INIS)

    Yan, Jiajia; Li, Ke; Chen, Haodong; Wang, Qingsong; Sun, Jinhua

    2016-01-01

    Highlights: • Two temperature peaks are observed in the single battery during the dynamic cycling. • The cooling performance of PCM system is superior to the natural convection system. • Increasing the laying-aside time is beneficial to the cooling performance of PCM system. • The optimal phase change temperature of PCM is recommended as 45 °C. - Abstract: The thermal performance of phase change material (PCM) based battery thermal management system in dynamic cycling is investigated, and several factors influencing the PCM system are discussed in detail. It is established that the surface temperature of a single battery has two temperature peaks during one charge/discharge cycle, while it disappears in the PCM system for the temperature buffering of PCM. In addition, the cooling performance of the PCM system is superior to that of natural convection system especially at a high current rate. Moreover, increasing the laying-aside time properly between each cycling step is beneficial to the cooling performance of the PCM system. Additionally, PCM with a phase change temperature of 45 °C is recommended to be used in the real battery pack system.

  12. Life cycle assessment of facile microwave-assisted zinc oxide (ZnO) nanostructures

    CSIR Research Space (South Africa)

    Papadaki, D

    2017-05-01

    Full Text Available The life cycle assessment of several zinc oxide (ZnO) nanostructures, fabricated by a facile microwave technique, is presented. Key synthesis parameters such as annealing temperature, varied from 90 °C to 220 °C, and microwave power, varied from 110...

  13. Simulation of the compressor-assisted triple-effect H{sub 2}O/LiBr absorption cooling cycles

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Soo; Ziegler, F. [Bavarian Center for Applied Energy Research, Garching (Germany); Lee, Huen [Korea Advanced Inst. of Science and Technology, Taejon (Korea). Dept. of Chemical Engineering

    2002-03-01

    The construction of a triple-effect absorption cooling machine using the lithium bromide-based working fluid is strongly limited by the corrosion problem caused by the high generator temperature. In this study four compressor-assisted H{sub 2}O/LiBr cooling cycles were suggested to solve the problem by lowering the generator temperature of the basic theoretical triple-effect cycle. Each cycle includes one compressor at a different state point to elevate the pressure of the refrigerant vapor up to a useful condensation temperature. Cycle simulations were carried out to investigate both a basic triple-effect cycle and four compressor-assisted cycles. All types of compressor-assisted cycles were found to be operable with a significantly lowered generator temperature. The temperature decrements increase with elevated compression ratios. This means that, if a part of energy input is changed from heat to mechanical energy, the machine can be operated in a favorable region of generator temperature not to cause corrosion problems. In order to obtain 40 K of generator temperature decrement (from 475.95 K) for all cycles, 3-5% of cooling capacity equivalent mechanical energies were required for operating the compressor. A great advantage of the investigated triple-effect cycles is that the conventionally used H{sub 2}O/LiBr solution can be used as a working fluid without the danger of corrosion or without integrating multiple solution circuits.(author)

  14. Establishment and prioritization of relevant factors to the safety of fuel cycle facilities non reactor through dynamics archetypes evaluation

    International Nuclear Information System (INIS)

    Sousa, Anna Leticia Barbosa de

    2012-01-01

    The present work aims to establish and prioritize factors that are important to the safety of nuclear fuel cycle facilities in order to model, analyze and design safety as a physical system, employing systemic models in an innovative way. This work takes into consideration the fact that models that use adaptations of methodologies for nuclear reactors will not properly work due to the specificities of fuel cycle facilities. Based on the fundamentals of the theory of systems, the four levels of system thinking, and the relationship of eight socio technical factors, a mental model has been developed for safety management in the nuclear fuel cycle context. From this conceptual model, safety archetypes were constructed in order to identify and highlight the processes of change and decision making that allow the system to migrate to a state of loss of safety. After that, stock and flow diagrams were created so that their behavior could be assessed by the system's dynamics. The results from the analysis using the model that simulates the dynamic behavior of the variables (socio technical factors) indicated, as expected, that the system's dynamics proved to be an appropriate and efficient tool for modeling fuel cycle safety as an emergent property. (author)

  15. Fast “Feast/Famine” Cycles for Studying Microbial Physiology Under Dynamic Conditions: A Case Study with Saccharomyces cerevisiae

    Science.gov (United States)

    Suarez-Mendez, Camilo A.; Sousa, Andre; Heijnen, Joseph J.; Wahl, Aljoscha

    2014-01-01

    Microorganisms are constantly exposed to rapidly changing conditions, under natural as well as industrial production scale environments, especially due to large-scale substrate mixing limitations. In this work, we present an experimental approach based on a dynamic feast/famine regime (400 s) that leads to repetitive cycles with moderate changes in substrate availability in an aerobic glucose cultivation of Saccharomyces cerevisiae. After a few cycles, the feast/famine produced a stable and repetitive pattern with a reproducible metabolic response in time, thus providing a robust platform for studying the microorganism’s physiology under dynamic conditions. We found that the biomass yield was slightly reduced (−5%) under the feast/famine regime, while the averaged substrate and oxygen consumption as well as the carbon dioxide production rates were comparable. The dynamic response of the intracellular metabolites showed specific differences in comparison to other dynamic experiments (especially stimulus-response experiments, SRE). Remarkably, the frequently reported ATP paradox observed in single pulse experiments was not present during the repetitive perturbations applied here. We found that intracellular dynamic accumulations led to an uncoupling of the substrate uptake rate (up to 9-fold change at 20 s.) Moreover, the dynamic profiles of the intracellular metabolites obtained with the feast/famine suggest the presence of regulatory mechanisms that resulted in a delayed response. With the feast famine setup many cellular states can be measured at high frequency given the feature of reproducible cycles. The feast/famine regime is thus a versatile platform for systems biology approaches, which can help us to identify and investigate metabolite regulations under realistic conditions (e.g., large-scale bioreactors or natural environments). PMID:24957030

  16. Topological Classification of Limit Cycles of Piecewise Smooth Dynamical Systems and Its Associated Non-Standard Bifurcations

    Directory of Open Access Journals (Sweden)

    John Alexander Taborda

    2014-04-01

    Full Text Available In this paper, we propose a novel strategy for the synthesis and the classification of nonsmooth limit cycles and its bifurcations (named Non-Standard Bifurcations or Discontinuity Induced Bifurcations or DIBs in n-dimensional piecewise-smooth dynamical systems, particularly Continuous PWS and Discontinuous PWS (or Filippov-type PWS systems. The proposed qualitative approach explicitly includes two main aspects: multiple discontinuity boundaries (DBs in the phase space and multiple intersections between DBs (or corner manifolds—CMs. Previous classifications of DIBs of limit cycles have been restricted to generic cases with a single DB or a single CM. We use the definition of piecewise topological equivalence in order to synthesize all possibilities of nonsmooth limit cycles. Families, groups and subgroups of cycles are defined depending on smoothness zones and discontinuity boundaries (DB involved. The synthesized cycles are used to define bifurcation patterns when the system is perturbed with parametric changes. Four families of DIBs of limit cycles are defined depending on the properties of the cycles involved. Well-known and novel bifurcations can be classified using this approach.

  17. Nanodomain Engineered (K, Na)NbO3 Lead-Free Piezoceramics: Enhanced Thermal and Cycling Reliabilities

    DEFF Research Database (Denmark)

    Yao, Fang-Zhou; Wang, Ke; Cheng, Li-Qian

    2015-01-01

    - based materials, accepting the drawbacks of high temperature and cycling instabilities. Here, we present that CaZrO3-modified (K, Na)NbO3 piezoceramics not only possess excellent performance at ambient conditions benefiting from nanodomain engineering, but also exhibit superior stability against......The growing environmental concerns have been pushing the development of viable green alternatives for lead-based piezoceramics to be one of the priorities in functional ceramic materials. A polymorphic phase transition has been utilized to enhance piezoelectric properties of lead-free (K, Na)NbO3...... temperature fluctuation and electrical fatigue cycling. It was found that the piezoelectric coefficient d33 is temperature independent under 4 kV/mm, which can be attributed to enhanced thermal stability of electric field engineered domain configuration; whereas the electric field induced strain exhibits...

  18. Effect of cerium oxide doping on the performance of CaO-based sorbents during calcium looping cycles.

    Science.gov (United States)

    Wang, Shengping; Fan, Shasha; Fan, Lijing; Zhao, Yujun; Ma, Xinbin

    2015-04-21

    A series of CaO-based sorbents were synthesized through a sol-gel method and doped with different amounts of CeO2. The sorbent with a Ca/Ce molar ratio of 15:1 showed an excellent absorption capacity (0.59 gCO2/g sorbent) and a remarkable cycle durability (up to 18 cycles). The admirable capture performance of CaCe-15 was ascribed to its special morphology formed by the doping of CeO2 and the well-distributed CeO2 particles. The sorbents doped with CeO2 possessed a loose shell-connected cross-linking structure, which was beneficial for the contact between CaO and CO2. CaO and CeO2 were dispersed homogeneously, and the existence of CeO2 also decreased the grain size of CaO. The well-dispersed CeO2, which could act as a barrier, effectively prevented the CaO crystallite from growing and sintering, thus the sorbent exhibited outstanding stability. The doping of CeO2 also improved the carbonation rate of the sorbent, resulting in a high capacity in a short period of time.

  19. Thermal cycling tests on Li4SiO4 and beryllium pebbles

    International Nuclear Information System (INIS)

    Dalle Donne, M.; Norajitra, P.; Weisenburger, A.

    1995-01-01

    The European B.O.T. Demo-relevant solid breeder blanket is based on the use of beds of beryllium and Li 4 SiO 4 pebbles. Particularly dangerous for the pebble integrity are the rapid temperature changes which could occur, for instance, by a sudden blanket power shut-down. A series of thermal cycle tests have been performed for various beds of beryllium and Li 4 SiO 4 pebbles. No breaking was observed in the beryllium pebbles, however the Li 4 SiO 4 pebbles broke by temperature rates of change of about -50 C/sec independently on pebbles size and lithium enrichment. This value is considerably higher than the peak temperature rates of change expected in the blanket. (orig.)

  20. Classical linear-control analysis applied to business-cycle dynamics and stability

    Science.gov (United States)

    Wingrove, R. C.

    1983-01-01

    Linear control analysis is applied as an aid in understanding the fluctuations of business cycles in the past, and to examine monetary policies that might improve stabilization. The analysis shows how different policies change the frequency and damping of the economic system dynamics, and how they modify the amplitude of the fluctuations that are caused by random disturbances. Examples are used to show how policy feedbacks and policy lags can be incorporated, and how different monetary strategies for stabilization can be analytically compared. Representative numerical results are used to illustrate the main points.

  1. Implications of incorporating N cycling and N limitations on primary production in an individual-based dynamic vegetation model

    Science.gov (United States)

    Smith, B.; Wårlind, D.; Arneth, A.; Hickler, T.; Leadley, P.; Siltberg, J.; Zaehle, S.

    2014-04-01

    The LPJ-GUESS dynamic vegetation model uniquely combines an individual- and patch-based representation of vegetation dynamics with ecosystem biogeochemical cycling from regional to global scales. We present an updated version that includes plant and soil N dynamics, analysing the implications of accounting for C-N interactions on predictions and performance of the model. Stand structural dynamics and allometric scaling of tree growth suggested by global databases of forest stand structure and development were well reproduced by the model in comparison to an earlier multi-model study. Accounting for N cycle dynamics improved the goodness of fit for broadleaved forests. N limitation associated with low N-mineralisation rates reduces productivity of cold-climate and dry-climate ecosystems relative to mesic temperate and tropical ecosystems. In a model experiment emulating free-air CO2 enrichment (FACE) treatment for forests globally, N limitation associated with low N-mineralisation rates of colder soils reduces CO2 enhancement of net primary production (NPP) for boreal forests, while some temperate and tropical forests exhibit increased NPP enhancement. Under a business-as-usual future climate and emissions scenario, ecosystem C storage globally was projected to increase by ca. 10%; additional N requirements to match this increasing ecosystem C were within the high N supply limit estimated on stoichiometric grounds in an earlier study. Our results highlight the importance of accounting for C-N interactions in studies of global terrestrial N cycling, and as a basis for understanding mechanisms on local scales and in different regional contexts.

  2. Development of Comparative Toxicity Potentials of TiO2 Nanoparticles for Use in Life Cycle Assessment

    DEFF Research Database (Denmark)

    Ettrup, Kim; Kounina, Anna; Hansen, Steffen Foss

    2017-01-01

    for TiO2 nanoparticles (TiO2-NP) for use in LCA. We adapted the USEtox 2.0 consensus model to integrate the SimpleBox4Nano fate model, and we populated the resulting model with TiO2-NP specific data. We thus calculated CTP values for TiO2 nanoparticles for air, water, and soil emission compartments...... in earlier studies. Assumptions, which were performed in those previous studies because of lack of data and knowledge at the time they were made, primarily explain such discrepancies. For future assessment of potential toxic impacts of TiO2 nanoparticles in LCA studies, we therefore recommend the use of our......Studies have shown that releases of nanoparticles may take place through the life cycle of products embedding nanomaterials, thus resulting in potential impacts on ecosystems and human health. While several life cycle assessment (LCA) studies have assessed such products, only a few of them have...

  3. VRK1 regulates Cajal body dynamics and protects coilin from proteasomal degradation in cell cycle.

    Science.gov (United States)

    Cantarero, Lara; Sanz-García, Marta; Vinograd-Byk, Hadar; Renbaum, Paul; Levy-Lahad, Ephrat; Lazo, Pedro A

    2015-06-12

    Cajal bodies (CBs) are nuclear organelles associated with ribonucleoprotein functions and RNA maturation. CBs are assembled on coilin, its main scaffold protein, in a cell cycle dependent manner. The Ser-Thr VRK1 (vaccinia-related kinase 1) kinase, whose activity is also cell cycle regulated, interacts with and phosphorylates coilin regulating assembly of CBs. Coilin phosphorylation is not necessary for its interaction with VRK1, but it occurs in mitosis and regulates coilin stability. Knockdown of VRK1 or VRK1 inactivation by serum deprivation causes a loss of coilin phosphorylation in Ser184 and of CBs formation, which are rescued with an active VRK1, but not by kinase-dead VRK1. The phosphorylation of coilin in Ser184 occurs during mitosis before assembly of CBs. Loss of coilin phosphorylation results in disintegration of CBs, and of coilin degradation that is prevented by proteasome inhibitors. After depletion of VRK1, coilin is ubiquitinated in nuclei, which is partly mediated by mdm2, but its proteasomal degradation occurs in cytosol and is prevented by blocking its nuclear export. We conclude that VRK1 is a novel regulator of CBs dynamics and stability in cell cycle by protecting coilin from ubiquitination and degradation in the proteasome, and propose a model of CB dynamics.

  4. Enhanced Cycling Stability of Rechargeable Li-O2 Batteries Using High Concentration Electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Bin; Xu, Wu; Yan, Pengfei; Sun, Xiuliang; Bowden, Mark E.; Read, Jeffrey; Qian, Jiangfeng; Mei, Donghai; Wang, Chong M.; Zhang, Jiguang

    2016-01-26

    The electrolyte stability against reactive reduced-oxygen species is crucial for the development of rechargeable Li-O2 batteries. In this work, we systematically investigated the effect of lithium salt concentration in 1,2-dimethoxyethane (DME)-based electrolytes on the cycling stability of Li-O2 batteries. Cells with high concentration electrolyte illustrate largely enhanced cycling stability under both the full discharge/charge (2.0-4.5 V vs. Li/Li+) and the capacity limited (at 1,000 mAh g-1) conditions. These cells also exhibit much less reaction-residual on the charged air electrode surface, and much less corrosion to the Li metal anode. The density functional theory calculations are conducted on the molecular orbital energies of the electrolyte components and the Gibbs activation barriers for superoxide radical anion to attack DME solvent and Li+-(DME)n solvates. In a highly concentrated electrolyte, all DME molecules have been coordinated with salt and the C-H bond scission of a DME molecule becomes more difficult. Therefore, the decomposition of highly concentrated electrolyte in a Li-O2 battery can be mitigated and both air-cathodes and Li-metal anodes exhibits much better reversibility. As a results, the cyclability of Li-O2 can be largely improved.

  5. Cardiorespiratory Kinetics Determined by Pseudo-Random Binary Sequences - Comparisons between Walking and Cycling.

    Science.gov (United States)

    Koschate, J; Drescher, U; Thieschäfer, L; Heine, O; Baum, K; Hoffmann, U

    2016-12-01

    This study aims to compare cardiorespiratory kinetics as a response to a standardised work rate protocol with pseudo-random binary sequences between cycling and walking in young healthy subjects. Muscular and pulmonary oxygen uptake (V̇O 2 ) kinetics as well as heart rate kinetics were expected to be similar for walking and cycling. Cardiac data and V̇O 2 of 23 healthy young subjects were measured in response to pseudo-random binary sequences. Kinetics were assessed applying time series analysis. Higher maxima of cross-correlation functions between work rate and the respective parameter indicate faster kinetics responses. Muscular V̇O 2 kinetics were estimated from heart rate and pulmonary V̇O 2 using a circulatory model. Muscular (walking vs. cycling [mean±SD in arbitrary units]: 0.40±0.08 vs. 0.41±0.08) and pulmonary V̇O 2 kinetics (0.35±0.06 vs. 0.35±0.06) were not different, although the time courses of the cross-correlation functions of pulmonary V̇O 2 showed unexpected biphasic responses. Heart rate kinetics (0.50±0.14 vs. 0.40±0.14; P=0.017) was faster for walking. Regarding the biphasic cross-correlation functions of pulmonary V̇O 2 during walking, the assessment of muscular V̇O 2 kinetics via pseudo-random binary sequences requires a circulatory model to account for cardio-dynamic distortions. Faster heart rate kinetics for walking should be considered by comparing results from cycle and treadmill ergometry. © Georg Thieme Verlag KG Stuttgart · New York.

  6. Dynamics of biogeochemical sulfur cycling in Mono Lake

    Science.gov (United States)

    Phillips, A. A.; Fairbanks, D.; Wells, M.; Fullerton, K. M.; Bao, R.; Johnson, H.; Speth, D. R.; Stamps, B. W.; Miller, L.; Sessions, A. L.

    2017-12-01

    Mono Lake, California is a closed-basin soda lake (pH 9.8) with high sulfate (120mM), and is an ideal natural laboratory for studying microbial sulfur cycling. Mono Lake is typically thermally stratified in summer while mixing completely in winter. However, large snowmelt inputs may induce salinity stratification that persists for up to five years, causing meromixis. During the California drought of 2014-16, the lake has mixed thoroughly each winter, but the abundant 2017 snowmelt may usher in a multi-year stratification. This natural experiment provides an opportunity to investigate the temporal relationship between microbial sulfur cycling and lake biogeochemistry. We analyzed water samples from five depths at two stations in May of 2017, before the onset of meromixis. Water column sulfate isotope values were generally constant with depth, centering at a δ34SVCDT of 17.39 ± 0.06‰. Organic sulfur isotopes were consistently lighter than lake sulfate, with a δ34SVCDT of 15.59 ± 0.56‰. This significant offset between organic and inorganic sulfur contradicts the minimal isotope effect associated with sulfate assimilation. Sediment push core organic values were further depleted, ranging between δ34SVCDT of -8.94‰ and +0.23‰, implying rapid turnover of Mono Lake sulfur pools. Both lipid biomarkers and 16S rRNA gene amplicons identify Picocystis salinarum, a unicellular green alga, as the dominant member of the microbial community. However, bacterial biomarkers and 16S rRNA genes point to microbes capable of sulfur cycling. We found that dsrA increased with depth (R2 = 0.9008, p reducers and sulfide oxidizers after >1 year of stratification. We saw no evidence in May of 2017 of sulfate reducing bacteria across the oxycline. Additionally, no sulfide was detectable in lake bottom waters despite oxygen below 6.25 µM. Preliminary results suggest a dynamic interplay between sulfide oxidation, sulfate reduction, and the onset of lake stratification. Additional

  7. Mapped Chebyshev Pseudo-Spectral Method for Dynamic Aero-Elastic Problem of Limit Cycle Oscillation

    Science.gov (United States)

    Im, Dong Kyun; Kim, Hyun Soon; Choi, Seongim

    2018-05-01

    A mapped Chebyshev pseudo-spectral method is developed as one of the Fourier-spectral approaches and solves nonlinear PDE systems for unsteady flows and dynamic aero-elastic problem in a given time interval, where the flows or elastic motions can be periodic, nonperiodic, or periodic with an unknown frequency. The method uses the Chebyshev polynomials of the first kind for the basis function and redistributes the standard Chebyshev-Gauss-Lobatto collocation points more evenly by a conformal mapping function for improved numerical stability. Contributions of the method are several. It can be an order of magnitude more efficient than the conventional finite difference-based, time-accurate computation, depending on the complexity of solutions and the number of collocation points. The method reformulates the dynamic aero-elastic problem in spectral form for coupled analysis of aerodynamics and structures, which can be effective for design optimization of unsteady and dynamic problems. A limit cycle oscillation (LCO) is chosen for the validation and a new method to determine the LCO frequency is introduced based on the minimization of a second derivative of the aero-elastic formulation. Two examples of the limit cycle oscillation are tested: nonlinear, one degree-of-freedom mass-spring-damper system and two degrees-of-freedom oscillating airfoil under pitch and plunge motions. Results show good agreements with those of the conventional time-accurate simulations and wind tunnel experiments.

  8. Dynamics and energetics of the mammalian phosphatidylinositol transfer protein phospholipid exchange cycle.

    Science.gov (United States)

    Grabon, Aby; Orłowski, Adam; Tripathi, Ashutosh; Vuorio, Joni; Javanainen, Matti; Róg, Tomasz; Lönnfors, Max; McDermott, Mark I; Siebert, Garland; Somerharju, Pentti; Vattulainen, Ilpo; Bankaitis, Vytas A

    2017-09-01

    Phosphatidylinositol-transfer proteins (PITPs) regulate phosphoinositide signaling in eukaryotic cells. The defining feature of PITPs is their ability to exchange phosphatidylinositol (PtdIns) molecules between membranes, and this property is central to PITP-mediated regulation of lipid signaling. However, the details of the PITP-mediated lipid exchange cycle remain entirely obscure. Here, all-atom molecular dynamics simulations of the mammalian StART-like PtdIns/phosphatidylcholine (PtdCho) transfer protein PITPα, both on membrane bilayers and in solvated systems, informed downstream biochemical analyses that tested key aspects of the hypotheses generated by the molecular dynamics simulations. These studies provided five key insights into the PITPα lipid exchange cycle: (i) interaction of PITPα with the membrane is spontaneous and mediated by four specific protein substructures; (ii) the ability of PITPα to initiate closure around the PtdCho ligand is accompanied by loss of flexibility of two helix/loop regions, as well as of the C-terminal helix; (iii) the energy barrier of phospholipid extraction from the membrane is lowered by a network of hydrogen bonds between the lipid molecule and PITPα; (iv) the trajectory of PtdIns or PtdCho into and through the lipid-binding pocket is chaperoned by sets of PITPα residues conserved throughout the StART-like PITP family; and (v) conformational transitions in the C-terminal helix have specific functional involvements in PtdIns transfer activity. Taken together, these findings provide the first mechanistic description of key aspects of the PITPα PtdIns/PtdCho exchange cycle and offer a rationale for the high conservation of particular sets of residues across evolutionarily distant members of the metazoan StART-like PITP family. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Bifunctional composite catalysts using Co3O4 nanofibers immobilized on nonoxidized graphene nanoflakes for high-capacity and long-cycle Li-O2 batteries.

    Science.gov (United States)

    Ryu, Won-Hee; Yoon, Taek-Han; Song, Sung Ho; Jeon, Seokwoo; Park, Yong-Joon; Kim, Il-Doo

    2013-09-11

    Designing a highly efficient catalyst is essential to improve the electrochemical performance of Li-O2 batteries for long-term cycling. Furthermore, these batteries often show significant capacity fading due to the irreversible reaction characteristics of the Li2O2 product. To overcome these limitations, we propose a bifunctional composite catalyst composed of electrospun one-dimensional (1D) Co3O4 nanofibers (NFs) immobilized on both sides of the 2D nonoxidized graphene nanoflakes (GNFs) for an oxygen electrode in Li-O2 batteries. Highly conductive GNFs with noncovalent functionalization can facilitate a homogeneous dispersion in solution, thereby enabling simple and uniform attachment of 1D Co3O4 NFs on GNFs without restacking. High first discharge capacity of 10 500 mAh/g and superior cyclability for 80 cycles with a limited capacity of 1000 mAh/g were achieved by (i) improved catalytic activity of 1D Co3O4 NFs with large surface area, (ii) facile electron transport via interconnected GNFs functionalized by Co3O4 NFs, and (iii) fast O2 diffusion through the ultrathin GNF layer and porous Co3O4 NF networks.

  10. A methodology for determining the dynamic exchange of resources in nuclear fuel cycle simulation

    Energy Technology Data Exchange (ETDEWEB)

    Gidden, Matthew J., E-mail: gidden@iiasa.ac.at [International Institute for Applied Systems Analysis, Schlossplatz 1, A-2361 Laxenburg (Austria); University of Wisconsin – Madison, Department of Nuclear Engineering and Engineering Physics, Madison, WI 53706 (United States); Wilson, Paul P.H. [University of Wisconsin – Madison, Department of Nuclear Engineering and Engineering Physics, Madison, WI 53706 (United States)

    2016-12-15

    Highlights: • A novel fuel cycle simulation entity interaction mechanism is proposed. • A framework and implementation of the mechanism is described. • New facility outage and regional interaction scenario studies are described and analyzed. - Abstract: Simulation of the nuclear fuel cycle can be performed using a wide range of techniques and methodologies. Past efforts have focused on specific fuel cycles or reactor technologies. The CYCLUS fuel cycle simulator seeks to separate the design of the simulation from the fuel cycle or technologies of interest. In order to support this separation, a robust supply–demand communication and solution framework is required. Accordingly an agent-based supply-chain framework, the Dynamic Resource Exchange (DRE), has been designed implemented in CYCLUS. It supports the communication of complex resources, namely isotopic compositions of nuclear fuel, between fuel cycle facilities and their managers (e.g., institutions and regions). Instances of supply and demand are defined as an optimization problem and solved for each timestep. Importantly, the DRE allows each agent in the simulation to independently indicate preference for specific trading options in order to meet both physics requirements and satisfy constraints imposed by potential socio-political models. To display the variety of possible simulations that the DRE enables, example scenarios are formulated and described. Important features include key fuel-cycle facility outages, introduction of external recycled fuel sources (similar to the current mixed oxide (MOX) fuel fabrication facility in the United States), and nontrivial interactions between fuel cycles existing in different regions.

  11. A methodology for determining the dynamic exchange of resources in nuclear fuel cycle simulation

    International Nuclear Information System (INIS)

    Gidden, Matthew J.; Wilson, Paul P.H.

    2016-01-01

    Highlights: • A novel fuel cycle simulation entity interaction mechanism is proposed. • A framework and implementation of the mechanism is described. • New facility outage and regional interaction scenario studies are described and analyzed. - Abstract: Simulation of the nuclear fuel cycle can be performed using a wide range of techniques and methodologies. Past efforts have focused on specific fuel cycles or reactor technologies. The CYCLUS fuel cycle simulator seeks to separate the design of the simulation from the fuel cycle or technologies of interest. In order to support this separation, a robust supply–demand communication and solution framework is required. Accordingly an agent-based supply-chain framework, the Dynamic Resource Exchange (DRE), has been designed implemented in CYCLUS. It supports the communication of complex resources, namely isotopic compositions of nuclear fuel, between fuel cycle facilities and their managers (e.g., institutions and regions). Instances of supply and demand are defined as an optimization problem and solved for each timestep. Importantly, the DRE allows each agent in the simulation to independently indicate preference for specific trading options in order to meet both physics requirements and satisfy constraints imposed by potential socio-political models. To display the variety of possible simulations that the DRE enables, example scenarios are formulated and described. Important features include key fuel-cycle facility outages, introduction of external recycled fuel sources (similar to the current mixed oxide (MOX) fuel fabrication facility in the United States), and nontrivial interactions between fuel cycles existing in different regions.

  12. Local vibrational dynamics of hematite (α-Fe{sub 2}O{sub 3}) studied by extended x-ray absorption fine structure and molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Sanson, A., E-mail: andrea.sanson@unipd.it [Dipartimento di Fisica e Astronomia - Università di Padova, Padova (Italy); Mathon, O.; Pascarelli, S. [ESRF - European Synchrotron Radiation Facility, Grenoble (France)

    2014-06-14

    The local vibrational dynamics of hematite (α-Fe{sub 2}O{sub 3}) has been investigated by temperature-dependent extended x-ray absorption fine structure spectroscopy and molecular dynamics simulations. The local dynamics of both the short and long nearest-neighbor Fe–O distances has been singled out, i.e., their local thermal expansion and the parallel and perpendicular mean-square relative atomic displacements have been determined, obtaining a partial agreement with molecular dynamics. No evidence of the Morin transition has been observed. More importantly, the strong anisotropy of relative thermal vibrations found for the short Fe–O distance has been related to its negative thermal expansion. The differences between the local dynamics of short and long Fe–O distances are discussed in terms of projection and correlation of atomic motion. As a result, we can conclude that the short Fe–O bond is stiffer to stretching and softer to bending than the long Fe–O bond.

  13. Dynamic analysis of once-through and closed fuel cycle economics using Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Sungyeol, E-mail: csy@kaeri.re.kr; Lee, Hyo Jik, E-mail: hyojik@kaeri.re.kr; Ko, Won Il, E-mail: nwiko@kaeri.re.kr

    2014-10-01

    Highlights: • Dynamic behavior of system costs, both reactor and fuel cycle costs, is analyzed. • Relative economics of once-through and closed fuel cycles is explored. • Probabilistic approaches are adopted for levelized electricity generation costs. • Main cost drivers for cost gaps between once-through and closed cycles are identified. - Abstract: Although no consensus about the best approach to manage spent fuels has been achieved, economics is one of the major criteria for assessing and selecting acceptable management options. This study compares the reactor and fuel cycle costs of the closed system associated with sodium-cooled fast reactors and pyroprocessing versus the once-through system. We specifically investigated the fuel cycle transition cases of the Republic of Korea from 2013 to 2100. The results revealed that the closed system (34.00 mills/kWh as a mean value) could be more expensive than the once-through system (32.75 mills/kWh). In contrast, the once-through fuel cycle costs (8.31 mills/kWh), excluding reactor costs, were projected to be greater than the closed fuel cycle costs (7.77 mills/kWh) because of the increased costs of interim storage estimated by the Korean government and the limited contribution of backend fuel cycle components to the discounted costs. The capital cost of sodium-cooled fast reactor is the largest component contributing to the cost gap between the two systems. Among fuel cycle components, pyroprocessing has the largest uncertainty contribution to the cost gap. We also calculated the breakeven unit costs of SFR capital cost and PWR spent fuel pyroprocessing cost.

  14. Effect of dynamic strain aging on isotropic hardening in low cycle fatigue for carbon manganese steel

    International Nuclear Information System (INIS)

    Huang, Zhi Yong; Chaboche, Jean-Louis; Wang, Qing Yuan; Wagner, Danièle; Bathias, Claude

    2014-01-01

    Carbon–manganese steel A48 (French standard) is used in steam generator pipes of nuclear reactor pressure vessels at high temperatures (about 200 °C). The steel is sensitive to dynamic strain aging in monotonic tensile test and low cycle fatigue test at certain temperature range and strain rate. Its isotropic hardening behavior observed from experiments has a hardening, softening and hardening evolution with the effect of dynamic strain aging. The isotropic hardening model is improved by coupling the dislocation and dynamic strain aging theory to describe the behavior of A48 at 200 °C

  15. Effect of dynamic strain aging on isotropic hardening in low cycle fatigue for carbon manganese steel

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhi Yong, E-mail: huangzy@scu.edu.cn [Sichuan University, School of Aeronautics and Astronautics, No. 29 Jiuyanqiao Wangjiang Road, Chengdu 610064 (China); Chaboche, Jean-Louis [ONERA, DMSM, 29 avenue de la Division Lecerc, F-92320 Chatillon (France); Wang, Qing Yuan [Sichuan University, School of Aeronautics and Astronautics, No. 29 Jiuyanqiao Wangjiang Road, Chengdu 610064 (China); Wagner, Danièle; Bathias, Claude [Université ParisOuest Nanterre La Défense (France)

    2014-01-01

    Carbon–manganese steel A48 (French standard) is used in steam generator pipes of nuclear reactor pressure vessels at high temperatures (about 200 °C). The steel is sensitive to dynamic strain aging in monotonic tensile test and low cycle fatigue test at certain temperature range and strain rate. Its isotropic hardening behavior observed from experiments has a hardening, softening and hardening evolution with the effect of dynamic strain aging. The isotropic hardening model is improved by coupling the dislocation and dynamic strain aging theory to describe the behavior of A48 at 200 °C.

  16. Zn/V2O5 Aqueous Hybrid-Ion Battery with High Voltage Platform and Long Cycle Life.

    Science.gov (United States)

    Hu, Ping; Yan, Mengyu; Zhu, Ting; Wang, Xuanpeng; Wei, Xiujuan; Li, Jiantao; Zhou, Liang; Li, Zhaohuai; Chen, Lineng; Mai, Liqiang

    2017-12-13

    Aqueous zinc-ion batteries attract increasing attention due to their low cost, high safety, and potential application in stationary energy storage. However, the simultaneous realization of high cycling stability and high energy density remains a major challenge. To tackle the above-mentioned challenge, we develop a novel Zn/V 2 O 5 rechargeable aqueous hybrid-ion battery system by using porous V 2 O 5 as the cathode and metallic zinc as the anode. The V 2 O 5 cathode delivers a high discharge capacity of 238 mAh g -1 at 50 mA g -1 . 80% of the initial discharge capacity can be retained after 2000 cycles at a high current density of 2000 mA g -1 . Meanwhile, the application of a "water-in-salt" electrolyte results in the increase of discharge platform from 0.6 to 1.0 V. This work provides an effective strategy to simultaneously enhance the energy density and cycling stability of aqueous zinc ion-based batteries.

  17. FES-assisted Cycling Improves Aerobic Capacity and Locomotor Function Postcerebrovascular Accident.

    Science.gov (United States)

    Aaron, Stacey E; Vanderwerker, Catherine J; Embry, Aaron E; Newton, Jennifer H; Lee, Samuel C K; Gregory, Chris M

    2018-03-01

    After a cerebrovascular accident (CVA) aerobic deconditioning contributes to diminished physical function. Functional electrical stimulation (FES)-assisted cycling is a promising exercise paradigm designed to target both aerobic capacity and locomotor function. This pilot study aimed to evaluate the effects of an FES-assisted cycling intervention on aerobic capacity and locomotor function in individuals post-CVA. Eleven individuals with chronic (>6 months) post-CVA hemiparesis completed an 8-wk (three times per week; 24 sessions) progressive FES-assisted cycling intervention. V˙O2peak, self-selected, and fastest comfortable walking speeds, gait, and pedaling symmetry, 6-min walk test (6MWT), balance, dynamic gait movements, and health status were measured at baseline and posttraining. Functional electrical stimulation-assisted cycling significantly improved V˙O2peak (12%, P = 0.006), self-selected walking speed (SSWS, 0.05 ± 0.1 m·s, P = 0.04), Activities-specific Balance Confidence scale score (12.75 ± 17.4, P = 0.04), Berg Balance Scale score (3.91 ± 4.2, P = 0.016), Dynamic Gait Index score (1.64 ± 1.4, P = 0.016), and Stroke Impact Scale participation/role domain score (12.74 ± 16.7, P = 0.027). Additionally, pedal symmetry, represented by the paretic limb contribution to pedaling (paretic pedaling ratio [PPR]) significantly improved (10.09% ± 9.0%, P = 0.016). Although step length symmetry (paretic step ratio [PSR]) did improve, these changes were not statistically significant (-0.05% ± 0.1%, P = 0.09). Exploratory correlations showed moderate association between change in SSWS and 6-min walk test (r = 0.74), and moderate/strong negative association between change in PPR and PSR. These results support FES-assisted cycling as a means to improve both aerobic capacity and locomotor function. Improvements in SSWS, balance, dynamic walking movements, and participation in familial and societal roles are important targets for rehabilitation of individuals

  18. Synthetic assembly of novel avidin-biotin-GlcNAc (ABG) complex as an attractive bio-probe and its interaction with wheat germ agglutinin (WGA).

    Science.gov (United States)

    Kumari, Amrita; Koyama, Tetsuo; Hatano, Ken; Matsuoka, Koji

    2016-10-01

    A tetravalent GlcNAc pendant glycocluster was constructed with terminal biotin through C6 linker. To acquire the multivalent carbohydrate-protein interactions, we synthesized a glycopolymer of tetrameric structure using N-acetyl-d-glucosamine (GlcNAc) as the target carbohydrate by the use of 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMT-MM) as coupling reagent, followed by biotin-avidin complexation leading to the formation of glycocluster of avidin-biotin-GlcNAc conjugate (ABG complex). The dynamic light scattering (DLS) system was implied for size detection and to check the binding affinity of GlcNAc conjugate with a WGA lectin we use fluorometric assay by means of specific excitation of tryptophan at λex 295nm and it was found to be very high Ka∼1.39×10(7) M(-1) in case of ABG complex as compared to GlcNAc only Ka∼1.01×10(4) M(-1) with the phenomenon proven to be due to glycocluster effect. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. pO{sub 2} Fluctuation Pattern and Cycling Hypoxia in Human Cervical Carcinoma and Melanoma Xenografts

    Energy Technology Data Exchange (ETDEWEB)

    Ellingsen, Christine; Ovrebo, Kirsti Marie; Galappathi, Kanthi; Mathiesen, Berit [Radiation Biology and Tumor Physiology Group, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo (Norway); Rofstad, Einar K., E-mail: einar.k.rofstad@rr-research.no [Radiation Biology and Tumor Physiology Group, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo (Norway)

    2012-07-15

    Purpose: Blood perfusion in tumors is spatially and temporally heterogeneous, resulting in local fluctuations in tissue oxygen tension (pO{sub 2}) and tissue regions showing cycling hypoxia. In this study, we investigated whether the pO{sub 2} fluctuation pattern and the extent of cycling hypoxia differ between tumor types showing high (e.g., cervical carcinoma xenograft) and low (e.g., melanoma xenograft) fractions of connective tissue-associated blood vessels. Methods and Materials: Two cervical carcinoma lines (CK-160 and TS-415) and two melanoma lines (A-07 and R-18) transplanted into BALB/c nu/nu mice were included in the study. Tissue pO{sub 2} was measured simultaneously in two positions in each tumor by using a two-channel OxyLite fiber-optic oxygen-sensing device. The extent of acute and chronic hypoxia was assessed by combining a radiobiological and a pimonidazole-based immunohistochemical assay of tumor hypoxia. Results: The proportion of tumor regions showing pO{sub 2} fluctuations, the pO{sub 2} fluctuation frequency in these regions, and the relative amplitude of the pO{sub 2} fluctuations were significantly higher in the melanoma xenografts than in the cervical carcinoma xenografts. Cervical carcinoma and melanoma xenografts did not differ significantly in the fraction of acutely hypoxic cells or the fraction of chronically hypoxic cells. However, the ratio between fraction of acutely hypoxic cells and fraction of chronically hypoxic cells was significantly higher in melanoma than in cervical carcinoma xenografts. Conclusions: Temporal heterogeneity in blood flow and tissue pO{sub 2} in tumors may depend on tumor histology. Connective tissue surrounding microvessels may stabilize blood flow and pO{sub 2} and, thus, protect tumor tissue from cycling hypoxia.

  20. LEVEL OF ESTRADIOL 17-β SERUM AND OVARIAN FOLLICULARE DYNAMICS IN SHORT ESTROUS CYCLE OF BALI CATTLE

    Directory of Open Access Journals (Sweden)

    C.M Airin

    2014-09-01

    Full Text Available The aims of the research were to confirm the short estrous cycles and determine the blood level ofestradiol 17-β and ovarian follicukar dynamics in these cases. The research was conducted using sevenBali cattle, approximately 2 years of age, kept in healthy condition with normal estrous cycles.Observation of estrus symptoms was performed daily. Ovarian follicles was examined and measuredusing ultrasonography started at the estrus day. Blood samples were collected from jugular vein, bloodsample collection and ultrasonographical examination of the ovaries were performed daily in the sametime. Serum level of estradiol 17-β was performed using EIA. The short cycle estrus were observed in 4Bali cattle (n=7 among natural estrous cycle. They have only one wave ovarian follicular developmentwhereas the maximal size of ovarian follicles ovulation likes the normal cycle The duration of shortestrous cycle was 7-10 days with normal usual estrus behavior. The peak of blood serum level was107.77 ± 55.94 pg/ml when the diameter dominant follicle of short estrous cycle was reached 10.5 ±0.38 mm. It can be concluded that the short estrous cycles may occur in Bali cattle after puberty amongnormal cycles.

  1. Internal cycling, not external loading, decides the nutrient limitation in eutrophic lake: A dynamic model with temporal Bayesian hierarchical inference.

    Science.gov (United States)

    Wu, Zhen; Liu, Yong; Liang, Zhongyao; Wu, Sifeng; Guo, Huaicheng

    2017-06-01

    Lake eutrophication is associated with excessive anthropogenic nutrients (mainly nitrogen (N) and phosphorus (P)) and unobserved internal nutrient cycling. Despite the advances in understanding the role of external loadings, the contribution of internal nutrient cycling is still an open question. A dynamic mass-balance model was developed to simulate and measure the contributions of internal cycling and external loading. It was based on the temporal Bayesian Hierarchical Framework (BHM), where we explored the seasonal patterns in the dynamics of nutrient cycling processes and the limitation of N and P on phytoplankton growth in hyper-eutrophic Lake Dianchi, China. The dynamic patterns of the five state variables (Chla, TP, ammonia, nitrate and organic N) were simulated based on the model. Five parameters (algae growth rate, sediment exchange rate of N and P, nitrification rate and denitrification rate) were estimated based on BHM. The model provided a good fit to observations. Our model results highlighted the role of internal cycling of N and P in Lake Dianchi. The internal cycling processes contributed more than external loading to the N and P changes in the water column. Further insights into the nutrient limitation analysis indicated that the sediment exchange of P determined the P limitation. Allowing for the contribution of denitrification to N removal, N was the more limiting nutrient in most of the time, however, P was the more important nutrient for eutrophication management. For Lake Dianchi, it would not be possible to recover solely by reducing the external watershed nutrient load; the mechanisms of internal cycling should also be considered as an approach to inhibit the release of sediments and to enhance denitrification. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Cycling behaviour of sponge-like nanostructured ZnO as thin-film Li-ion battery anodes

    International Nuclear Information System (INIS)

    Garino, Nadia; Lamberti, Andrea; Gazia, Rossana; Chiodoni, Angelica; Gerbaldi, Claudio

    2014-01-01

    Highlights: • Zn is thermally oxidized in ambient air to obtain sponge-like ZnO film. • Polycrystalline, transparent, porous thin film is obtained. • Film exhibits stabile specific capacity (∼300 mAh g −1 ) after prolonged cycling. • Sponge-like ZnO film shows promising prospects as Li-ion battery anode. - Abstract: Single phase wurtzitic porous ZnO thin films are obtained by a simple two-step method, involving the sputtering deposition of a sponge-like metallic Zn layer, followed by a moderately low temperature treatment for the complete zinc oxidation. Thanks to its 3D nanostructuration, the superimposition of small branches able to grow in length almost isotropically and forming a complex topography, sponge-like ZnO can combine the fast transport properties of one dimensional material and the high surface area usually provided by nanocrystalline electrodes. When galvanostatically tested in lithium cell, after the initial decay, it can provide an almost stable specific capacity higher than 50 μAh cm −2 after prolonged cycling at estimated 0.7 C, with very high Coulombic efficiency

  3. Cycling behaviour of sponge-like nanostructured ZnO as thin-film Li-ion battery anodes

    Energy Technology Data Exchange (ETDEWEB)

    Garino, Nadia, E-mail: nadia.garino@iit.it [Center for Space Human Robotics @Polito, Istituto Italiano di Tecnologia, Corso Trento, 21, 10129 Turin (Italy); Lamberti, Andrea; Gazia, Rossana; Chiodoni, Angelica [Center for Space Human Robotics @Polito, Istituto Italiano di Tecnologia, Corso Trento, 21, 10129 Turin (Italy); Gerbaldi, Claudio, E-mail: claudio.gerbaldi@polito.it [Center for Space Human Robotics @Polito, Istituto Italiano di Tecnologia, Corso Trento, 21, 10129 Turin (Italy); GAME Lab, Department of Applied Science and Technology – DISAT, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Turin (Italy)

    2014-12-05

    Highlights: • Zn is thermally oxidized in ambient air to obtain sponge-like ZnO film. • Polycrystalline, transparent, porous thin film is obtained. • Film exhibits stabile specific capacity (∼300 mAh g{sup −1}) after prolonged cycling. • Sponge-like ZnO film shows promising prospects as Li-ion battery anode. - Abstract: Single phase wurtzitic porous ZnO thin films are obtained by a simple two-step method, involving the sputtering deposition of a sponge-like metallic Zn layer, followed by a moderately low temperature treatment for the complete zinc oxidation. Thanks to its 3D nanostructuration, the superimposition of small branches able to grow in length almost isotropically and forming a complex topography, sponge-like ZnO can combine the fast transport properties of one dimensional material and the high surface area usually provided by nanocrystalline electrodes. When galvanostatically tested in lithium cell, after the initial decay, it can provide an almost stable specific capacity higher than 50 μAh cm{sup −2} after prolonged cycling at estimated 0.7 C, with very high Coulombic efficiency.

  4. Dynamic simulation of a fuel cell hybrid vehicle during the federal test procedure-75 driving cycle

    International Nuclear Information System (INIS)

    Kang, Sanggyu; Min, Kyoungdoug

    2016-01-01

    Highlights: • Development of a FCHV dynamic model. • Integration of a PEMFC system dynamic model with the electric vehicle model. • Investigation of the dynamic behavior of the FCEV and PEMFC system during FTP-75. • Capturing the dynamic correlation among components in PEMFC system during FTP-75. - Abstract: The dynamic behavior of a proton exchange membrane fuel cell (PEMFC) system is a crucial factor to ensure the safe and effective operation of fuel cell hybrid vehicles (FCHVs). Specifically, water and thermal management are critical to stabilize the performance of the PEMFC during severe load changes. In the present study, the FCHV dynamic model is developed. The dynamic model of the PEMFC system developed by Matlab–Simulink® is integrated into the electric vehicle model embedded in the Amesim®. The dynamic model of the PEMFC system is composed of a PEMFC stack, an air feeding system, and a thermal management system (TMS). The component models of PEMFC, a shell-and-tube gas-to-gas membrane humidifier, and a heat exchanger are validated via a comparison with the experimental data. The FCHV model is simulated during a federal test procedure (FTP)-75 driving cycle. One system configuration and control strategy is adopted to attain optimal water and thermal management in the PEMFC system. The vehicle speed obtained from the FCHV model aptly tracks the target velocity profile of the FTP-75 cycle within an error of ±0.5%. The dynamic behavior and correlation of each component in the PEMFC system is investigated. The mass and heat transfer in the PEMFC, a humidifier, and a heat exchanger are resolved to determine the species concentration and the temperature more accurately with discretization in the flow’s perpendicular direction. Discretization in the flow parallel direction of humidifier and heat exchanger model makes it possible to capture the distribution of the characteristics. The present model can be used to attain the optimization of the system

  5. Earth's early O2 cycle suppressed by primitive continents

    Science.gov (United States)

    Smit, Matthijs A.; Mezger, Klaus

    2017-10-01

    Free oxygen began to accumulate in Earth's surface environments between 3.0 and 2.4 billion years ago. Links between oxygenation and changes in the composition of continental crust during this time are suspected, but have been difficult to demonstrate. Here we constrain the average composition of the exposed continental crust since 3.7 billion years ago by compiling records of the Cr/U ratio of terrigenous sediments. The resulting record is consistent with a predominantly mafic crust prior to 3.0 billion years ago, followed by a 500- to 700-million-year transition to a crust of modern andesitic composition. Olivine and other Mg-rich minerals in the mafic Archaean crust formed serpentine minerals upon hydration, continuously releasing O2-scavenging agents such as dihydrogen, hydrogen sulfide and methane to the environment. Temporally, the decline in mafic crust capable of such process coincides with the first accumulation of O2 in the oceans, and subsequently the atmosphere. We therefore suggest that Earth's early O2 cycle was ultimately limited by the composition of the exposed upper crust, and remained underdeveloped until modern andesitic continents emerged.

  6. Generalization of the Rabi population inversion dynamics in the sub-one-cycle pulse limit

    International Nuclear Information System (INIS)

    Doslic, N.

    2006-01-01

    We consider the population inversion in a two-level system generated by a sub-one-cycle pulse excitation. Specifically, we explore the effect that the time derivative of the pulse envelope has on the Rabi dynamics. Our analysis is based on a combination of analytical, perturbative, and nonperturbative treatments and is complemented by numerical simulations. We find a shortening of the Rabi inversion period and show that complete inversion is unobtainable under resonant, ultrashort pulse conditions. The impact of nonresonant and carrier-envelope phase-dependent effects on the dynamics of two-level and multilevel systems is studied numerically, and conditions for complete population inversion are derived

  7. Thermal energy storage for organic Rankine cycle solar dynamic space power systems

    Science.gov (United States)

    Heidenreich, G. R.; Parekh, M. B.

    An organic Rankine cycle-solar dynamic power system (ORC-SDPS) comprises a concentrator, a radiator, a power conversion unit, and a receiver with a thermal energy storage (TES) subsystem which charges and discharges energy to meet power demands during orbital insolation and eclipse periods. Attention is presently given to the criteria used in designing and evaluating an ORC-SDPS TES, as well as the automated test facility employed. It is found that a substantial data base exists for the design of an ORC-SDPS TES subsystem.

  8. Solar Cycle Variations of SABER CO2 and MLS H2O in the Mesosphere and Lower Thermosphere Region

    Science.gov (United States)

    Salinas, C. C. J.; Chang, L. C.; Liang, M. C.; Qian, L.; Yue, J.; Russell, J. M., III; Mlynczak, M. G.

    2017-12-01

    This work aims to present the solar cycle variations of SABER CO2 and MLS H2O in the Mesosphere and Lower Thermosphere region. These observations are then compared to SD-WACCM outputs of CO2 and H2O in order to understand their physical mechanisms. After which, we attempt to model their solar cycle variations using the default TIME-GCM and the TIME-GCM with MERRA reanalysis as lower-boundary conditions. Comparing the outputs of the default TIME-GCM and TIME-GCM with MERRA will give us insight into the importance of solar forcing and lower atmospheric forcing on the solar cycle variations of CO2 and H2O. The solar cycle influence in the parameters are calculated by doing a multiple linear regression with the F10.7 index. The solar cycle of SABER CO2 is reliable above 1e-2 mb and below 1e-3 mb. Preliminary results from the observations show that SABER CO2 has a stronger negative anomaly due to the solar cycle over the winter hemisphere. MLS H2O is reliable until 1e-2. Preliminary results from the observations show that MLS H2O also has a stronger negative anomaly due to the solar cycle over the winter hemisphere. Both SD-WACCM and the default TIME-GCM reproduce these stronger anomalies over the winter hemisphere. An analysis of the tendency equations in SD-WACCM and default TIME-GCM then reveal that for CO2, the stronger winter anomaly may be attributed to stronger downward transport over the winter hemisphere. For H2O, an analysis of the tendency equations in SD-WACCM reveal that the stronger winter anomaly may be attributed to both stronger downward transport and stronger photochemical loss. On the other hand, in the default TIME-GCM, the stronger winter anomaly in H2O may only be attributed to stronger downward transport. For both models, the stronger downward transport is attributed to enhanced stratospheric polar winter jet during solar maximum. Future work will determine whether setting the lower boundary conditions of TIME-GCM with MERRA will improve the match

  9. Enhanced cycling stability of NiCo2S4@NiO core-shell nanowire arrays for all-solid-state asymmetric supercapacitors

    Science.gov (United States)

    Huang, Yuanyuan; Shi, Tielin; Jiang, Shulan; Cheng, Siyi; Tao, Xiangxu; Zhong, Yan; Liao, Guanglan; Tang, Zirong

    2016-12-01

    As a new class of pseudocapacitive material, metal sulfides possess high electrochemical performance. However, their cycling performance as conventional electrodes is rather poor for practical applications. In this article, we report an original composite electrode based on NiCo2S4@NiO core-shell nanowire arrays (NWAs) with enhanced cycling stability. This three-dimensional electrode also has a high specific capacitance of 12.2 F cm-2 at the current density of 1 mA cm-2 and excellent cycling stability (about 89% retention after 10,000 cycles). Moreover, an all-solid-state asymmetric supercapacitor (ASC) device has been assembled with NiCo2S4@NiO NWAs as the positive electrode and active carbon (AC) as the negative electrode, delivering a high energy density of 30.38 W h kg-1 at 0.288 KW kg-1 and good cycling stability (about 109% retention after 5000 cycles). The results show that NiCo2S4@NiO NWAs are promising for high-performance supercapacitors with stable cycling based on the unique core-shell structure and well-designed combinations.

  10. Three-dimensional graphene sheets with NiO nanobelt outgrowths for enhanced capacity and long term high rate cycling Li-ion battery anode material

    Science.gov (United States)

    Shi, Waipeng; Zhang, Yingmeng; Key, Julian; Shen, Pei Kang

    2018-03-01

    An efficient synthesis method to grow well attached NiO nanobelts from 3D graphene sheets (3DGS) is reported herein. Ni-ion exchanged resin provides the initial Ni reactant portion, which serves both as a catalyst to form 3DGS and then as a seeding agent to grow the NiO nanobelts. The macroporous structure of 3DGS provides NiO containment to achieve a high cycling stability of up to 445 mAh g-1 after 360 cycles (and >112% capacity retention after 515 cycles) at a high current density of 2 A g-1. With a 26.8 wt.% content of NiO on 3DGS, increases in specific and volumetric capacity were 41.6 and 75.7% respectively over that of 3DGS at matching current densities. Therefore, the seeded growth of NiO nanobelts from 3DGS significantly boosts volumetric capacity, while 3DGS enables high rate long term cycling of the NiO. The high rate cycling stability of NiO on 3DGS can be attributed to (i) good attachment and contact to the large surface of 3DGS, (ii) high electron conductivity and rapid Li-ion transfer (via the interconnected, highly conductive graphitized walls of 3DGS) and (iii) buffering void space in 3DGS to contain volume expansion of NiO during charge/discharge.

  11. Mechanical and dynamic mechanical behaviour of novel glass ...

    Indian Academy of Sciences (India)

    M Rajesh

    the intra-ply woven fabric hybridization enhances impact and damping properties of the composite ... Keywords. Intra-ply hybrid; natural fibre; mechanical properties; dynamic mechanical analysis; vibration; .... analysis test is conducted in nitrogen environment over a ..... Mnson J A and Jolliet O 2001 Life cycle assessment of.

  12. Joint Ne/O and Fe/O Analysis to Diagnose Large Solar Energetic Particle Events during Solar Cycle 23

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Lun C.; Shao, Xi [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Malandraki, Olga E., E-mail: ltan@umd.edu [IAASARS, National Observatory of Athens, GR-15236, Penteli (Greece)

    2017-02-01

    We have examined 29 large solar energetic particle (SEP) events with the peak proton intensity J {sub pp}(>60 MeV) > 1 pfu during solar cycle 23. The emphasis of our examination is put on a joint analysis of Ne/O and Fe/O data in the energy range (3–40 MeV nucleon{sup −1}) covered by Wind /Low-Energy Matrix Telescope and ACE /Solar Isotope Spectrometer sensors in order to differentiate between the Fe-poor and Fe-rich events that emerged from the coronal mass ejection driven shock acceleration process. An improved ion ratio calculation is carried out by rebinning ion intensity data into the form of equal bin widths in the logarithmic energy scale. Through the analysis we find that the variability of Ne/O and Fe/O ratios can be used to investigate the accelerating shock properties. In particular, the high-energy Ne/O ratio is well correlated with the source plasma temperature of SEPs.

  13. Advanced fuel cycle cost estimation model and its cost estimation results for three nuclear fuel cycles using a dynamic model in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sungki, E-mail: sgkim1@kaeri.re.kr [Korea Atomic Energy Research Institute, 1045 Daedeokdaero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Ko, Wonil [Korea Atomic Energy Research Institute, 1045 Daedeokdaero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Youn, Saerom; Gao, Ruxing [University of Science and Technology, 217 Gajungro, Yuseong-gu, Daejeon 305-350 (Korea, Republic of); Bang, Sungsig, E-mail: ssbang@kaist.ac.kr [Korea Advanced Institute of Science and Technology, Department of Business and Technology Management, 291 Deahak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of)

    2015-11-15

    Highlights: • The nuclear fuel cycle cost using a new cost estimation model was analyzed. • The material flows of three nuclear fuel cycle options were calculated. • The generation cost of once-through was estimated to be 66.88 mills/kW h. • The generation cost of pyro-SFR recycling was estimated to be 78.06 mills/kW h. • The reactor cost was identified as the main cost driver of pyro-SFR recycling. - Abstract: The present study analyzes advanced nuclear fuel cycle cost estimation models such as the different discount rate model and its cost estimation results. To do so, an analysis of the nuclear fuel cycle cost of three options (direct disposal (once through), PWR–MOX (Mixed OXide fuel), and Pyro-SFR (Sodium-cooled Fast Reactor)) from the viewpoint of economic sense, focusing on the cost estimation model, was conducted using a dynamic model. From an analysis of the fuel cycle cost estimation results, it was found that some cost gap exists between the traditional same discount rate model and the advanced different discount rate model. However, this gap does not change the priority of the nuclear fuel cycle option from the viewpoint of economics. In addition, the fuel cycle costs of OT (Once-Through) and Pyro-SFR recycling based on the most likely value using a probabilistic cost estimation except for reactor costs were calculated to be 8.75 mills/kW h and 8.30 mills/kW h, respectively. Namely, the Pyro-SFR recycling option was more economical than the direct disposal option. However, if the reactor cost is considered, the economic sense in the generation cost between the two options (direct disposal vs. Pyro-SFR recycling) can be changed because of the high reactor cost of an SFR.

  14. Fuzzy Nonlinear Dynamic Evaporator Model in Supercritical Organic Rankine Cycle Waste Heat Recovery Systems

    Directory of Open Access Journals (Sweden)

    Jahedul Islam Chowdhury

    2018-04-01

    Full Text Available The organic Rankine cycle (ORC-based waste heat recovery (WHR system operating under a supercritical condition has a higher potential of thermal efficiency and work output than a traditional subcritical cycle. However, the operation of supercritical cycles is more challenging due to the high pressure in the system and transient behavior of waste heat sources from industrial and automotive engines that affect the performance of the system and the evaporator, which is the most crucial component of the ORC. To take the transient behavior into account, the dynamic model of the evaporator using renowned finite volume (FV technique is developed in this paper. Although the FV model can capture the transient effects accurately, the model has a limitation for real-time control applications due to its time-intensive computation. To capture the transient effects and reduce the simulation time, a novel fuzzy-based nonlinear dynamic evaporator model is also developed and presented in this paper. The results show that the fuzzy-based model was able to capture the transient effects at a data fitness of over 90%, while it has potential to complete the simulation 700 times faster than the FV model. By integrating with other subcomponent models of the system, such as pump, expander, and condenser, the predicted system output and pressure have a mean average percentage error of 3.11% and 0.001%, respectively. These results suggest that the developed fuzzy-based evaporator and the overall ORC-WHR system can be used for transient simulations and to develop control strategies for real-time applications.

  15. O ciclo dos imóveis e o crescimento econômico nos Estados Unidos 2002-2008 The housing cycle and U.S. economic growth: 2002-2008

    Directory of Open Access Journals (Sweden)

    Rafael Fagundes Cagnin

    2009-01-01

    Full Text Available A partir dos anos 1980, as finanças americanas passaram por profundas transformações reforçando o papel dos mercados de capitais na gestão da riqueza e do crédito nos Estados Unidos. Nessa nova estrutura financeira, as decisões de gasto das famílias e das empresas sofrem influências importantes dos ciclos de preço de seus ativos, dando origem a ciclos econômicos finance-led. O artigo discute os dois últimos ciclos econômicos dos Estados Unidos, período em que a valorização dos imóveis residenciais substituiu o papel desempenhado pela valorização da riqueza no estímulo ao consumo e ao investimento agregados.Since the 1980's and from then on, the American finances had passed through deep changes that reinforced the role of the capital markets in the wealth and credit management in the U. S. In this new finance structure the household and corporation's decision expenses suffered important influence of theirs assets price cycles, resulting in economic cycles finance-led. The article assesses the last two economic cycles in the United States, in which period the value of the residential property replaced the role previously fulfilled by the shareholder value to stimulate the aggregates expenditure and investment.

  16. A new concept for high-cycle-life LEO: Rechargeable MnO2-hydrogen

    Science.gov (United States)

    Appleby, A. J.; Dhar, H. P.; Kim, Y. J.; Murphy, O. J.

    1989-01-01

    The nickel-hydrogen secondary battery system, developed in the early 1970s, has become the system of choice for geostationary earth orbit (GEO) applications. However, for low earth orbit (LEO) satellites with long expected lifetimes the nickel positive limits performance. This requires derating of the cell to achieve very long cycle life. A new system, rechargeable MnO2-Hydrogen, which does not require derating, is described here. For LEO applications, it promises to have longer cycle life, high rate capability, a higher effective energy density, and much lower self-discharge behavior than those of the nickel-hydrogen system.

  17. Ultrafast dynamics in ZnO/ZnMgO multiple quantum wells

    International Nuclear Information System (INIS)

    Wen, X M; Davis, J A; McDonald, D; Dao, L V; Hannaford, P; Coleman, V A; Tan, H H; Jagadish, C; Koike, K; Sasa, S; Inoue, M; Yano, M

    2007-01-01

    We have investigated carrier relaxation and exciton recombination dynamics in ZnO/ZnMgO multiple quantum wells using femtosecond pump-probe techniques at room temperature. For a probe energy above the band gap, the hot carriers exhibit an effective relaxation by longitudinal optical phonon scattering with a cooling time of 700-850 fs. By detecting the emission near the band-gap, a longer decay time of a few picoseconds was observed which is attributed to acoustic phonon scattering. As the probe energy is decreased further, the decay time continues to increase due to the transitions of exciton recombination or localized carrier recombination

  18. Effect of CuO nanolubricant on compressor characteristics and performance of LPG based refrigeration cycle: experimental investigation

    Science.gov (United States)

    Kumar, Ravinder; Singh, Jagdev; Kundal, Pankaj

    2018-05-01

    Refrigeration, Ventilation and Air Conditioning system is the largest reason behind the increasing demand of energy consumption in the world and saving that energy through some innovative methods becomes a large issue for the researchers. Compressor is a primary component of the refrigeration cycle. The application of nanoparticles in refrigeration cycle overcomes the energy consumption issue by improving the compressor suction and discharge characteristics. In this paper, an experimental study is carried out to investigate the effect of copper oxide (CuO) nanoparticles on different parameters of the refrigeration cycle. CuO particles are appended with the system refrigerant through lubricating oil of the compressor. Further, the viscosity measurements and friction coefficient analysis of compressor lubricant for different fractions of nanoparticles has been investigated. The results showed that both the suction and discharge characteristics of the compressor were enhanced with the utilization of nanolubricant in LPG based refrigeration cycle. Nanoparticles additive in lubricant increases the viscosity which lead to a significant decrease in friction coefficient. The COP of the cycle was improved by 46%, as the energy consumption of the compressor was decreased by 7%.

  19. Effect of CuO nanolubricant on compressor characteristics and performance of LPG based refrigeration cycle: experimental investigation

    Science.gov (United States)

    Kumar, Ravinder; Singh, Jagdev; Kundal, Pankaj

    2017-11-01

    Refrigeration, Ventilation and Air Conditioning system is the largest reason behind the increasing demand of energy consumption in the world and saving that energy through some innovative methods becomes a large issue for the researchers. Compressor is a primary component of the refrigeration cycle. The application of nanoparticles in refrigeration cycle overcomes the energy consumption issue by improving the compressor suction and discharge characteristics. In this paper, an experimental study is carried out to investigate the effect of copper oxide (CuO) nanoparticles on different parameters of the refrigeration cycle. CuO particles are appended with the system refrigerant through lubricating oil of the compressor. Further, the viscosity measurements and friction coefficient analysis of compressor lubricant for different fractions of nanoparticles has been investigated. The results showed that both the suction and discharge characteristics of the compressor were enhanced with the utilization of nanolubricant in LPG based refrigeration cycle. Nanoparticles additive in lubricant increases the viscosity which lead to a significant decrease in friction coefficient. The COP of the cycle was improved by 46%, as the energy consumption of the compressor was decreased by 7%.

  20. Interface chemistry engineering for stable cycling of reduced GO/SnO2 nanocomposites for lithium ion battery.

    Science.gov (United States)

    Wang, Lei; Wang, Dong; Dong, Zhihui; Zhang, Fengxing; Jin, Jian

    2013-04-10

    From the whole anode electrode of view, we report in this work a system-level strategy of fabrication of reduced graphene oxide (RGO)/SnO2 composite-based anode for lithium ion battery (LIB) to enhance the capacity and cyclic performance of SnO2-based electrode materials. RGO/SnO2 composite was first coated by a nanothick polydopamine (PD) layer and the PD-coated RGO/SnO2 composite was then cross-linked with poly(acrylic acid) (PAA) that was used as a binder to accomplish a whole anode electrode. The cross-link reaction between PAA and PD produced a robust network in the anode system to stabilize the whole anode during cycling. As a result, the designed anode exhibits an outstanding energy capacity up to 718 mAh/g at current density of 100 mA/g after 200 cycles and a good rate performance of 811, 700, 641, and 512 mAh/g at current density of 100, 250, 500, and 1000 mA/g, respectively. Fourier transform IR spectra confirm the formation of cross-link reaction and the stability of the robust network after long-term cycling. Our results indicate the importance of designing interfaces in anode system on achieving improved performance of electrode of LIBs.

  1. MMSET is dynamically regulated during cell-cycle progression and promotes normal DNA replication.

    Science.gov (United States)

    Evans, Debra L; Zhang, Haoxing; Ham, Hyoungjun; Pei, Huadong; Lee, SeungBaek; Kim, JungJin; Billadeau, Daniel D; Lou, Zhenkun

    2016-01-01

    The timely and precise duplication of cellular DNA is essential for maintaining genome integrity and is thus tightly-regulated. During mitosis and G1, the Origin Recognition Complex (ORC) binds to future replication origins, coordinating with multiple factors to load the minichromosome maintenance (MCM) complex onto future replication origins as part of the pre-replication complex (pre-RC). The pre-RC machinery, in turn, remains inactive until the subsequent S phase when it is required for replication fork formation, thereby initiating DNA replication. Multiple myeloma SET domain-containing protein (MMSET, a.k.a. WHSC1, NSD2) is a histone methyltransferase that is frequently overexpressed in aggressive cancers and is essential for normal human development. Several studies have suggested a role for MMSET in cell-cycle regulation; however, whether MMSET is itself regulated during cell-cycle progression has not been examined. In this study, we report that MMSET is degraded during S phase in a cullin-ring ligase 4-Cdt2 (CRL4(Cdt2)) and proteasome-dependent manner. Notably, we also report defects in DNA replication and a decreased association of pre-RC factors with chromatin in MMSET-depleted cells. Taken together, our results suggest a dynamic regulation of MMSET levels throughout the cell cycle, and further characterize the role of MMSET in DNA replication and cell-cycle progression.

  2. Effect of obesity on oxygen uptake and cardiovascular dynamics during whole-body and leg exercise in adult males and females.

    LENUS (Irish Health Repository)

    Green, Simon

    2018-05-01

    Obesity has been associated with a slowing of V˙O2 dynamics in children and adolescents, but this problem has not been studied in adults. Cardiovascular mechanisms underlying this effect are not clear. In this study, 48 adults (18 males, 30 females) grouped according to body mass index (BMI) (lean < 25 kg·m-2 , overweight = 25-29.9 kg·m-2 , obese ≥30 kg·m-2 ) provided a fasting blood sample, completed a maximal graded exercise test and six bouts of submaximal exercise on a cycle ergometer, and performed two protocols of calf exercise. Dynamic response characteristics of V˙O2 and leg vascular conductance (LVC) were assessed during cycling (80% ventilatory threshold) and calf exercise (30% MVC), respectively. Dynamic responses of cardiac output, mean arterial pressure and total systemic vascular conductance were also assessed during cycling based on measurements at 30 and 240 sec. The time constant of the second phase of the V˙O2 response was significantly greater in obese than lean subjects (39.4 (9.2) vs. 29.1 (7.6) sec); whereas dynamic responses of cardiac output and systemic vascular conductance were not affected by BMI. For calf exercise, the time constant of the second growth phase of LVC was slowed significantly in obese subjects (22.1 (12.7) sec) compared with lean and overweight subjects (11.6 (4.5) sec and 13.4 (6.7) sec). These data show that obesity slows dynamic responses of V˙O2 during cycling and the slower phase of vasodilation in contracting muscles of male and female adults.

  3. Microstructure and kinetics evolution in MgH2–TiO2 pellets after hydrogen cycling

    International Nuclear Information System (INIS)

    Mirabile Gattia, D.; Di Girolamo, G.; Montone, A.

    2014-01-01

    Highlights: • MgH 2 was ball milled with TiO 2 anatase phase and expanded graphite to prepare pellets. • Different pellets have been prepared at different compression load. • Pellets were repeatedly cycled under hydrogen pressure to simulate tank exercise and verify their stability. • The compression load highly affects the stability of the pellets to cycling. • Microstructural evolution of the particles due to cycling have been observed. - Abstract: The interest in Mg-based hydrides for solid state hydrogen storage is associated to their capability to reversibly absorb and desorb large amounts of hydrogen. In this work MgH 2 powder with 5 wt.% TiO 2 was ball milled for 10 h. The as-milled nanostructured powder was enriched with 5 wt.% of Expanded Natural Graphite (ENG) and then compacted in cylindrical pellets by cold pressing using different loads. Both the powder and the pellets were subjected to kinetic and thermodynamic tests using a Sievert’s type gas reaction controller, in order to study the microstructural and kinetic changes which took place during repeated H 2 absorption and desorption cycles. The pellets exhibited good kinetic performance and durability, even if the pressure of compaction revealed to be an important parameter for their mechanical stability. Scanning Electron Microscopy observations of as-prepared and cycled pellets were carried out to investigate the evolution of their microstructure. In turn the phase composition before and after cycling was analyzed by X-ray diffraction

  4. Relation Between the Cell Volume and the Cell Cycle Dynamics in Mammalian cell

    International Nuclear Information System (INIS)

    Magno, A.C.G.; Oliveira, I.L.; Hauck, J.V.S.

    2016-01-01

    The main goal of this work is to add and analyze an equation that represents the volume in a dynamical model of the mammalian cell cycle proposed by Gérard and Goldbeter (2011) [1]. The cell division occurs when the cyclinB/Cdkl complex is totally degraded (Tyson and Novak, 2011)[2] and it reaches a minimum value. At this point, the cell is divided into two newborn daughter cells and each one will contain the half of the cytoplasmic content of the mother cell. The equations of our base model are only valid if the cell volume, where the reactions occur, is constant. Whether the cell volume is not constant, that is, the rate of change of its volume with respect to time is explicitly taken into account in the mathematical model, then the equations of the original model are no longer valid. Therefore, every equations were modified from the mass conservation principle for considering a volume that changes with time. Through this approach, the cell volume affects all model variables. Two different dynamic simulation methods were accomplished: deterministic and stochastic. In the stochastic simulation, the volume affects every model's parameters which have molar unit, whereas in the deterministic one, it is incorporated into the differential equations. In deterministic simulation, the biochemical species may be in concentration units, while in stochastic simulation such species must be converted to number of molecules which are directly proportional to the cell volume. In an effort to understand the influence of the new equation a stability analysis was performed. This elucidates how the growth factor impacts the stability of the model's limit cycles. In conclusion, a more precise model, in comparison to the base model, was created for the cell cycle as it now takes into consideration the cell volume variation (paper)

  5. Chromatin dynamics during cell cycle mediate conversion of DNA damage into chromatid breaks and affect formation of chromosomal aberrations: Biological and clinical significance

    International Nuclear Information System (INIS)

    Terzoudi, Georgia I.; Hatzi, Vasiliki I.; Donta-Bakoyianni, Catherine; Pantelias, Gabriel E.

    2011-01-01

    The formation of diverse chromosomal aberrations following irradiation and the variability in radiosensitivity at different cell-cycle stages remain a long standing controversy, probably because most of the studies have focused on elucidating the enzymatic mechanisms involved using simple DNA substrates. Yet, recognition, processing and repair of DNA damage occur within the nucleoprotein complex of chromatin which is dynamic in nature, capable of rapid unfolding, disassembling, assembling and refolding. The present work reviews experimental work designed to investigate the impact of chromatin dynamics and chromosome conformation changes during cell-cycle in the formation of chromosomal aberrations. Using conventional cytogenetics and premature chromosome condensation to visualize interphase chromatin, the data presented support the hypothesis that chromatin dynamic changes during cell-cycle are important determinants in the conversion of sub-microscopic DNA lesions into chromatid breaks. Consequently, the type and yield of radiation-induced chromosomal aberrations at a given cell-cycle-stage depends on the combined effect of DNA repair processes and chromatin dynamics, which is cell-cycle-regulated and subject to up- or down-regulation following radiation exposure or genetic alterations. This new hypothesis is used to explain the variability in radiosensitivity observed at various cell-cycle-stages, among mutant cells and cells of different origin, or among different individuals, and to revisit unresolved issues and unanswered questions. In addition, it is used to better understand hypersensitivity of AT cells and to provide an improved predictive G2-assay for evaluating radiosensitivity at individual level. Finally, experimental data at single cell level obtained using hybrid cells suggest that the proposed hypothesis applies only to the irradiated component of the hybrid.

  6. The effects of different substrates on the electron stimulated desorption dynamics of O - from physisorbed O2

    Science.gov (United States)

    Hedhili, M. N.; Parenteau, L.; Huels, M. A.; Azria, R.; Tronc, M.; Sanche, L.

    1997-11-01

    We report condensed phase measurements of kinetic energy (Ek) distributions of O-, produced by dissociative electron attachment (DEA) at 6 eV incident electron energy; they are obtained under identical experimental conditions from submonolayer quantities of 16O2 deposited on disordered multilayer substrates of 18O2, Ar, Kr, Xe, CH4, and C2H6, all condensed at 20 K on polycrystalline platinum (Pt). The results suggest that the desorption dynamics of O- DEA fragments is, in part, determined by large angle elastic scattering of O- prior to desorption, as well as the net image charge potential (Ep) induced in the condensed dielectric solid and the Pt metal. The measurements also indicate that, particularly at small Kr substrate thicknesses, the Ep may not necessarily be uniform across the surface, but may fluctuate due to surface roughness. Thus, in addition to energy losses in the substrate prior to, and during, DEA, these effects may influence the dissociation dynamics of the O2- resonance itself, as well as the desorption of the DEA O- fragment.

  7. Absorptive capacity, technological innovation, and product life cycle: a system dynamics model.

    Science.gov (United States)

    Zou, Bo; Guo, Feng; Guo, Jinyu

    2016-01-01

    While past research has recognized the importance of the dynamic nature of absorptive capacity, there is limited knowledge on how to generate a fair and comprehensive analytical framework. Based on interviews with 24 Chinese firms, this study develops a system-dynamics model that incorporates an important feedback loop among absorptive capacity, technological innovation, and product life cycle (PLC). The simulation results reveal that (1) PLC affects the dynamic process of absorptive capacity; (2) the absorptive capacity of a firm peaks in the growth stage of PLC, and (3) the market demand at different PLC stages is the main driving force in firms' technological innovations. This study also explores a sensitivity simulation using the variables of (1) time spent in founding an external knowledge network, (2) research and development period, and (3) knowledge diversity. The sensitivity simulation results show that the changes of these three variables have a greater impact on absorptive capacity and technological innovation during growth and maturity stages than in the introduction and declining stages of PLC. We provide suggestions on how firms can adjust management policies to improve their absorptive capacity and technological innovation performance during different PLC stages.

  8. Improvement of the cycling performance of LiCoO2 with assistance of cross-linked PAN for lithium ion batteries

    International Nuclear Information System (INIS)

    Yang, Xinhe; Shen, Lanyao; Wu, Bin; Zuo, Zicheng; Mu, Daobin; Wu, Borong; Zhou, Henghui

    2015-01-01

    Highlights: • Cross-linked PAN coating was prepared without damaging the surface of LiCoO 2 . • The coating layer owns good electronic conductivity and mechanical strength. • The cross-linked PAN coating layer is more sufficient than Al 2 O 3 coating. • It shows much improved cyclability than that of bare and Al 2 O 3 coated LiCoO 2 . - Abstract: LiCoO 2 has been widely used in lithium ion batteries for digital electronic products. However, the limited cycling performance under high cut-off voltage hinders its commercial application. Many metal oxides and/or phosphorus coating have been reported to improve the cycling performance of LiCoO 2 . In this paper, we report on cross-linked PAN coated LiCoO 2 composite as a cathode material for lithium ion batteries. The coating layer was obtained by intermolecular crosslinking of PAN polymer chain by heat treatment at high temperature in air. The air heating process avoids the possible damage arising from the carbon thermal reduction to the surface structure of LiCoO 2 . Electrochemical test indicates that the LiCoO 2 with the cross-linked PAN coating layer shows much improved cycle performance compared with that of bare and Al 2 O 3 coated LiCoO 2 . These findings might also open new avenues to explore polymer coating for other cathode materials of lithium ion batteries

  9. Self-organizing biochemical cycle in dynamic feedback with soil structure

    Science.gov (United States)

    Vasilyeva, Nadezda; Vladimirov, Artem; Smirnov, Alexander; Matveev, Sergey; Tyrtyshnikov, Evgeniy; Yudina, Anna; Milanovskiy, Evgeniy; Shein, Evgeniy

    2016-04-01

    formulated as a sum of state variables products, with no need to introduce any saturation functions, such as Mikhaelis-Menten type kinetics, inside the model. Analyzed dynamic soil model is being further developed to describe soil structure formation and its effect on organic matter decomposition at macro-scale, to predict changes with external perturbations. To link micro- and macro-scales we additionally model soil particles aggregation process. The results from local biochemical soil organic matter cycle serve as inputs to aggregation process, while the output aggregate size distributions define physical properties in the soil profile, these in turn serve as dynamic parameters in local biochemical cycles. The additional formulation is a system of non-linear ordinary differential equations, including Smoluchowski-type equations for aggregation and reaction kinetics equations for coagulation/adsorption/adhesion processes. Vasilyeva N.A., Ingtem J.G., Silaev D.A. Nonlinear dynamical model of microbial growth in soil medium. Computational Mathematics and Modeling, vol. 49, p.31-44, 2015 (in Russian). English version is expected in corresponding vol.27, issue 2, 2016.

  10. Performance of one and a half-effect absorption cooling cycle of H2O/LiBr system

    International Nuclear Information System (INIS)

    Wang Jianzhao; Zheng Danxing

    2009-01-01

    The performances of half-effect, single-effect and double-effect H 2 O/LiBr absorption cooling cycles were analyzed, and it was found that there is an obvious blank for generation temperature between the maximum generation temperature of the single-effect cycle and the minimum generation temperature of the double-effect cycle. It was proposed that the one and a half-effect (1.5-effect) cycle can fill up the blank perfectly. The state of the art in the 1.5-effect cycles was reviewed and analyzed, and two new configurations of 1.5-effect cycles were proposed. Three configurations of 1.5-effect cycles, which are suitable for H 2 O/LiBr as working fluids, were selected to be analyzed in detail. The 1.5-effect cycle shows the optimum performance at the foregoing blank of generation temperature. For example, under the conditions of evaporation temperature t E is 5 deg. C, and condensation temperature t C is 42 deg. C, and absorption temperature t A is 37 deg. C, the optimum range of generation temperature t G for the 1.5-effect cycle is from 110 deg. C to 140 deg. C. The coefficient of performance of the 1.5-effect cycle is about 1.0, which is more than 30% higher than that of the single-effect cycle at the same condition. The effects of the efficiency of solution heat exchanger, the generation temperature, the absorption temperature (or the condensation temperature) and the evaporation temperature on the performances of the three configurations of 1.5-effect cycle were analyzed. It was shown that the configuration II, which is composed with a high-temperature single-effect subcycle and a low-temperature half-effect subcycle, has the highest coefficient of performance and the best operational flexibility. Among the four parameters analyzed, the performances of 1.5-effect cycles are most sensitive to the change of absorption temperature (or condensation temperature), and then to the change of generation temperature.

  11. A Panel of Recombinant Mucins Carrying a Repertoire of Sialylated O-Glycans Based on Different Core Chains for Studies of Glycan Binding Proteins

    Directory of Open Access Journals (Sweden)

    Reeja Maria Cherian

    2015-08-01

    Full Text Available Sialylated glycans serve as key elements of receptors for many viruses, bacteria, and bacterial toxins. The microbial recognition and their binding specificity can be affected by the linkage of the terminal sugar residue, types of underlying sugar chains, and the nature of the entire glycoconjugate. Owing to the pathobiological significance of sialylated glycans, we have engineered Chinese hamster ovary (CHO cells to secrete mucin-type immunoglobulin-fused proteins carrying terminal α2,3- or α2,6-linked sialic acid on defined O-glycan core saccharide chains. Besides stably expressing P-selectin glycoprotein ligand-1/mouse immunoglobulin G2b cDNA (PSGL-1/mIgG2b, CHO cells were stably transfected with plasmids encoding glycosyltransferases to synthesize core 2 (GCNT1, core 3 (B3GNT6, core 4 (GCNT1 and B3GNT6, or extended core 1 (B3GNT3 chains with or without the type 1 chain-encoding enzyme B3GALT5 and ST6GAL1. Western blot and liquid chromatography-mass spectrometry analysis confirmed the presence of core 1, 2, 3, 4, and extended core 1 chains carrying either type 1 (Galb3GlcNAc or type 2 (Galb4GlcNAc outer chains with or without α2,6-linked sialic acids. This panel of recombinant mucins carrying a repertoire of sialylated O-glycans will be important tools in studies aiming at determining the fine O-glycan binding specificity of sialic acid-specific microbial adhesins and mammalian lectins.

  12. Marine nitrogen cycle

    Digital Repository Service at National Institute of Oceanography (India)

    Naqvi, S.W.A.

    ) such as the Marine nitrogen cycle The marine nitrogen cycle. ‘X’ and ‘Y’ are intra-cellular intermediates that do not accumulate in water column. (Source: Codispoti et al., 2001) Page 1 of 3Marine nitrogen cycle - Encyclopedia of Earth 11/20/2006http://www... and nitrous oxide budgets: Moving targets as we enter the anthropocene?, Sci. Mar., 65, 85-105, 2001. Page 2 of 3Marine nitrogen cycle - Encyclopedia of Earth 11/20/2006http://www.eoearth.org/article/Marine_nitrogen_cycle square6 Gruber, N.: The dynamics...

  13. Interaction of hamster submaxillary sialyl-Tn and Tn glycoproteins with Gal, GalNAc and GlcNAc specific lectins.

    Science.gov (United States)

    Wu, A M; Shen, F; Herp, A; Wu, J H

    1994-04-01

    Hamster submaxillary glycoprotein (HSM), one of the simplest glycoproteins among mammalian salivary mucins, is composed of approximately equivalent amounts of protein, hexosamine and sialic acid. The Thr and Ser residues in the protein core account for more than half of all of the amino acid residues, while Lys, Glu, Pro and Ala are the major components of the remaining portion of amino acids. The carbohydrate side chains of this mucous glycoprotein have mainly the NeuAc-GalNAc-(sialyl-Tn) sequence (HSM), and those of the desialylated product (HSM-Tn) are almost exclusively unsubstituted GalNAc residues (Tn determinants). The binding properties of sialyl-Tn (HSM) and asialo-HSM (HSM-Tn) glycoproteins were tested by precipitin assay with Gal, GalNAc and GlcNAc specific lectins. The HSM-Tn completely precipitated Vicia villosa (VVL both B4 and mixture of A and B), Maclura pomifera (MPL), and Artocarpus integrifolia (Jacalin) lectins; less than 2 micrograms of HSM-Tn were required for precipitating 50% of 5.0-6.3 micrograms lectin nitrogen added. HSM-Tn also reacted well with Helix pomatia lectin (HPL), Wistaria floribunda lectin (WFL) and Abrus precatorius agglutinin (APA) and precipitated in each case over 81% of the lectin nitrogen added. The reactivity of HSM-Tn with other lectins (Ricinus communis, RCA1; Dolichol biflorus, DBL; Viscum album, ML-I; Arachis hypogaea, PNA, and Triticum vulgaris, WGA) was weak or negligible. The activity of sialyl-Tn (HSM) was more restricted; HSM reacted well with Jacalin, moderately with MPL and VVL-B4, but was inactive or only weakly with the other lectins used. These findings indicate that HSM and its desialylated product (HSM-Tn) are highly useful reagents for the differentiation of Tn and T/Gal specific lectins and for anti-T, Tn and Af monoclonal antibodies.

  14. Chemical Arsenal for the Study of O-GlcNAc

    Directory of Open Access Journals (Sweden)

    Eun J. Kim

    2011-02-01

    Full Text Available The concepts of both protein glycosylation and cellular signaling have been influenced by O-linked-β-N-acetylglucosamine (O-GlcNAc modification (O-GlcNAcylation on the hydroxyl group of serine or threonine residues. Unlike conventional protein glycosylation, O-GlcNAcylation is localized in the nucleocytoplasm and its cycling is a dynamic process that operates in a highly regulated manner in response to various cellular stimuli. These characteristics render O-GlcNAcylation similar to phosphorylation, which has long been considered a major regulatory mechanism in cellular processes. Various efficient chemical approaches and novel mass spectrometric (MS techniques have uncovered numerous O-GlcNAcylated proteins that are involved in the regulation of many important cellular events. These discoveries imply that O-GlcNAcylation is another major regulator of cellular signaling. However, in contrast to phosphorylation, which is regulated by hundreds of kinases and phosphatases, dynamic O-GlcNAc cycling is catalyzed by only two enzymes: uridine diphospho-N-acetyl-glucosamine:polypeptide β-N-acetylglucosaminyl transferase (OGT and β-D-N-acetylglucosaminidase (OGA. Many useful chemical tools have recently been used to greatly expand our understanding of the extensive crosstalk between O-GlcNAcylation and phosphorylation and hence of cellular signaling. This review article describes the various useful chemical tools that have been developed and discusses the considerable advances made in the O-GlcNAc field.

  15. H2O2: A Dynamic Neuromodulator

    Science.gov (United States)

    Rice, Margaret E.

    2012-01-01

    Increasing evidence implicates hydrogen peroxide (H2O2) as an intra- and intercellular signaling molecule that can influence processes from embryonic development to cell death. Most research has focused on relatively slow signaling, on the order of minutes to days, via second messenger cascades. However, H2O2 can also mediate subsecond signaling via ion channel activation. This rapid signaling has been examined most thoroughly in the nigrostriatal dopamine (DA) pathway, which plays a key role in facilitating movement mediated by the basal ganglia. In DA neurons of the substantia nigra, endogenously generated H2O2 activates ATP-sensitive K+ (KATP) channels that inhibit DA neuron firing. In the striatum, H2O2 generated downstream from glutamatergic AMPA receptor activation in medium spiny neurons acts as a diffusible messenger that inhibits axonal DA release, also via KATP channels. The source of dynamically generated H2O2 is mitochondrial respiration; thus, H2O2 provides a novel link between activity and metabolism via KATP channels. Additional targets of H2O2 include transient receptor potential (TRP) channels. In contrast to the inhibitory effect of H2O2 acting via KATP channels, TRP channel activation is excitatory. This review describes emerging roles of H2O2 as a signaling agent in the nigrostriatal pathway and other basal ganglia neurons. PMID:21666063

  16. Decline of Phosphotransfer and Substrate Supply Metabolic Circuits Hinders ATP Cycling in Aging Myocardium.

    Directory of Open Access Journals (Sweden)

    Emirhan Nemutlu

    Full Text Available Integration of mitochondria with cytosolic ATP-consuming/ATP-sensing and substrate supply processes is critical for muscle bioenergetics and electrical activity. Whether age-dependent muscle weakness and increased electrical instability depends on perturbations in cellular energetic circuits is unknown. To define energetic remodeling of aged atrial myocardium we tracked dynamics of ATP synthesis-utilization, substrate supply, and phosphotransfer circuits through adenylate kinase (AK, creatine kinase (CK, and glycolytic/glycogenolytic pathways using 18O stable isotope-based phosphometabolomic technology. Samples of intact atrial myocardium from adult and aged rats were subjected to 18O-labeling procedure at resting basal state, and analyzed using the 18O-assisted HPLC-GC/MS technique. Characteristics for aging atria were lower inorganic phosphate Pi[18O], γ-ATP[18O], β-ADP[18O], and creatine phosphate CrP[18O] 18O-labeling rates indicating diminished ATP utilization-synthesis and AK and CK phosphotransfer fluxes. Shift in dynamics of glycolytic phosphotransfer was reflected in the diminished G6P[18O] turnover with relatively constant glycogenolytic flux or G1P[18O] 18O-labeling. Labeling of G3P[18O], an indicator of G3P-shuttle activity and substrate supply to mitochondria, was depressed in aged myocardium. Aged atrial myocardium displayed reduced incorporation of 18O into second (18O2, third (18O3, and fourth (18O4 positions of Pi[18O] and a lower Pi[18O]/γ-ATP[18 O]-labeling ratio, indicating delayed energetic communication and ATP cycling between mitochondria and cellular ATPases. Adrenergic stress alleviated diminished CK flux, AK catalyzed β-ATP turnover and energetic communication in aging atria. Thus, 18O-assisted phosphometabolomics uncovered simultaneous phosphotransfer through AK, CK, and glycolytic pathways and G3P substrate shuttle deficits hindering energetic communication and ATP cycling, which may underlie energetic

  17. Li-storage and cycling properties of spinel, CdFe 2 O 4 , as an ...

    Indian Academy of Sciences (India)

    Li-storage; cycling properties; CdFe2O4; lithium ion batteries. ... (CV) and impedance spectroscopy in the voltage range, 0.005–3.0 V vs Li at room temperature. ... data, ex situ-XRD, -TEM and -SAED studies, a reaction mechanism is proposed.

  18. Dynamic grain growth in superplastic Y-TZP and Al2O3/YTZ

    International Nuclear Information System (INIS)

    Nieh, T.G.; Tomasello, C.M.; Wadsworth, J.

    1990-01-01

    This paper reports that both static and dynamic grain growth have been studied during superplastic deformation of fine-grained yttria-stabilized tetragonal zirconia (Y-TZP) and alumina reinforced yttria-stabilized tetragonal zirconia (Al 2 O 3 /YTZ). Grain growth was observed in both materials at temperatures above 1350 degrees C. In the case of Y-TZP, both static and dynamic grain growth were found to obey a similar equation of the form: D 3 -D 0 3 = kt where D is the instantaneous grain size, D 0 is the initial grain size, t is the time, and k is a kinetic constant which depends primarily on temperature and grain boundary energy. The activation energies for Y-TZP were approximately 580 and 520 kJ/mol, for static and dynamic grain growth, respectively. In the case of Al 2 O 3 /YTZ, it was found that the grain growth rate for the Al 2 O 3 phase was slower than that for the ZrO 2 phase. The growth rate of the ZrO 2 phase in Al 2 O 3 /YTZ is, however, similar to that in monolithic ZrO 2 i.e., Y-TZP

  19. Vestibular characterization in the menstrual cycle Caracterização vestibular no ciclo menstrual

    Directory of Open Access Journals (Sweden)

    Cintia Ishii

    2009-06-01

    Full Text Available Hormonal disorders in the menstrual cycle can affect labyrinthine fluid homeostasis, causing balance and hearing dysfunctions. STUDY DESIGN: Clinical prospective. AIM: compare the results from vestibular tests in young women, in the premenstrual and postmenstrual periods. MATERIALS AND METHODS: twenty women were selected with ages ranging from 18 to 35 years, who were not using any kind of contraceptive method for at least six months, and without vestibular or hearing complaints. The test was carried out in each subject before and after the menstrual period, respecting the limit of ten days before or after menstruation. RESULTS: there was a statistically significant difference in the menstrual cycle phases only in the following vestibular tests: calibration, saccadic movements, PRPD and caloric-induced nystagmus. We also noticed that age; a regular menstrual cycle; hearing loss or dizziness cases in the family; and premenstrual symptoms such as tinnitus, headache, sleep disorders, anxiety, nausea and hyperacusis can interfere in the vestibular test. CONCLUSION: there are differences in the vestibular tests of healthy women when comparing their pre and postmenstrual periods.As alterações hormonais do ciclo menstrual podem comprometer a homeostase dos fluidos labirínticos, gerando alterações no equilíbrio e na audição. FORMA DO ESTUDO: Clínico prospectivo. OBJETIVO: Comparar os resultados dos testes do exame vestibular em mulheres jovens, nos períodos pré e pós-menstrual. MATERIAL E MÉTODO: Foram selecionadas vinte mulheres, entre dezoito e trinta e cinco anos, que não fizessem uso de qualquer tipo de anticoncepcional, com audição normal e sem queixas vestibulares. O exame vestibular foi realizado em cada participante no período pré e no período pós-menstrual, em ordem aleatória, e respeitando o limite de até dez dias antes do início da menstruação e até dez dias após o início da menstruação. RESULTADO: Foi observada

  20. Microbial Character Related Sulfur Cycle under Dynamic Environmental Factors Based on the Microbial Population Analysis in Sewerage System.

    Science.gov (United States)

    Dong, Qian; Shi, Hanchang; Liu, Yanchen

    2017-01-01

    The undesired sulfur cycle derived by microbial population can ultimately causes the serious problems of sewerage systems. However, the microbial community characters under dynamic environment factors in actual sewerage system is still not enough. This current study aimed to character the distributions and compositions of microbial communities that participate in the sulfur cycle under the dynamic environmental conditions in a local sewerage system. To accomplish this, microbial community compositions were assessed using 454 high-throughput sequencing (16S rDNA) combined with dsrB gene-based denaturing gradient gel electrophoresis. The results indicated that a higher diversity of microbial species was present at locations in sewers with high concentrations of H 2 S. Actinobacteria and Proteobacteria were dominant in the sewerage system, while Actinobacteria alone were dominant in regions with high concentrations of H 2 S. Specifically, the unique operational taxonomic units could aid to characterize the distinct microbial communities within a sewerage manhole. The proportion of sulfate-reducing bacteria, each sulfur-oxidizing bacteria (SOB) were strongly correlated with the liquid parameters (DO, ORP, COD, Sulfide, NH 3 -N), while the Mycobacterium and Acidophilic SOB (M&A) was strongly correlated with gaseous factors within the sewer, such as H 2 S, CH 4 , and CO. Identifying the distributions and proportions of critical microbial communities within sewerage systems could provide insights into how the microbial sulfur cycle is affected by the dynamic environmental conditions that exist in sewers and might be useful for explaining the potential sewerage problems.

  1. Life cycle size dynamics in Didymosphenia geminata (Bacillariophyceae).

    Science.gov (United States)

    Bishop, Ian W; Spaulding, Sarah A

    2017-06-01

    Didymosphenia geminata has received a great deal of attention in the last 25 years, and considerable effort has gone into determining the origin, ecological impact, and economic consequences of its invasive behavior. While environmental conditions are a controlling influence in distribution, the extreme success of the species may be tied to its basic biology and life history. Little is known, however, about population dynamics, size restoration and reproduction of D. geminata. The objective of this study was to determine the temporal patterns in cell size frequency, size restoration strategy, and synchronization of life cycles between populations in close proximity. We implemented FlowCam technology to measure the length of more than 100,000 D. geminata cells from two sites in South Boulder Creek, Colorado over 1 year. We applied finite mixture modeling to uncover temporal patterns in size distribution. Our results show that collections of D. geminata exhibited a complex, multimodal size distribution, almost always containing four overlapping age cohorts. We failed to observe direct visual evidence of the sexual phase. Multiple abrupt and directional shifts in size distribution, however, were documented providing conclusive evidence of cell size restoration. Lastly, nodules in close proximity were asynchronous with respect to size frequency profiles and size diminution, highlighting the relevance of spatial heterogeneity in in situ diatom size dynamics. This study is the first to document the complexity of diatom cell size distribution in a lotic system, size restoration in D. geminata, and the variability in rates of size reduction at microhabitat spatial scales. © 2017 Phycological Society of America.

  2. Development of dynamic simulation code for fuel cycle of fusion reactor. 1. Single pulse operation simulation

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, Isao; Seki, Yasushi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Sasaki, Makoto; Shintani, Kiyonori; Kim, Yeong-Chan

    1997-11-01

    A dynamic simulation code for the fuel cycle of a fusion experimental reactor has been developed. The code follows the fuel inventory change with time in the plasma chamber and the fuel cycle system during a single pulse operation. The time dependence of the fuel inventory distribution is evaluated considering the fuel burn and exhaust in the plasma chamber, purification and supply functions. For each subsystem of the plasma chamber and the fuel cycle system, the fuel inventory equation is written based on the equation of state considering the function of fuel burn, exhaust, purification, and supply. The processing constants of subsystem for the steady states were taken from the values in the ITER Conceptual Design Activity (CDA) report. Using the code, the time dependence of the fuel supply and inventory depending on the burn state and subsystem processing functions are shown. (author)

  3. Evaluation of new alternatives in wastewater treatment plants based on dynamic modelling and life cycle assessment (DM-LCA).

    Science.gov (United States)

    Bisinella de Faria, A B; Spérandio, M; Ahmadi, A; Tiruta-Barna, L

    2015-11-01

    With a view to quantifying the energy and environmental advantages of Urine Source-Separation (USS) combined with different treatment processes, five wastewater treatment plant (WWTP) scenarios were compared to a reference scenario using Dynamic Modelling (DM) and Life Cycle Assessment (LCA), and an integrated DM-LCA framework was thus developed. Dynamic simulations were carried out in BioWin(®) in order to obtain a realistic evaluation of the dynamic behaviour and performance of plants under perturbation. LCA calculations were performed within Umberto(®) using the Ecoinvent database. A Python™ interface was used to integrate and convert simulation data and to introduce them into Umberto(®) to achieve a complete LCA evaluation comprising foreground and background processes. Comparisons between steady-state and dynamic simulations revealed the importance of considering dynamic aspects such as nutrient and flow peaks. The results of the evaluation highlighted the potential of the USS scenario for nutrient recovery whereas the Enhanced Primary Clarification (EPC) scenario gave increased biogas production and also notably decreased aeration consumption, leading to a positive energy balance. Both USS and EPC scenarios also showed increased stability of plant operation, with smaller daily averages of total nitrogen and phosphorus. In this context, USS and EPC results demonstrated that the coupled USS + EPC scenario and its combinations with agricultural spreading of N-rich effluent and nitritation/anaerobic deammonification could present an energy-positive balance with respectively 27% and 33% lower energy requirements and an increase in biogas production of 23%, compared to the reference scenario. The coupled scenarios also presented lesser environmental impacts (reduction of 31% and 39% in total endpoint impacts) along with effluent quality well within the specified limits. The marked environmental performance (reduction of global warming) when nitrogen is used

  4. Long-Term Charge/Discharge Cycling Stability of MnO2 Aqueous Supercapacitor under Positive Polarization

    KAUST Repository

    Ataherian, Fatemeh; Wu, Nae-Lih

    2011-01-01

    The long-term charge/discharge cycling stability of MnO 2 electrode under positive polarization in aqueous KCl electrolyte has been studied over different potential windows spanning from the open circuit potential to varied higher-end potential

  5. Superior Cycle Stability Performance of Quasi-Cuboidal CoV2O6 Microstructures as Electrode Material for Supercapacitors.

    Science.gov (United States)

    Wang, Yucheng; Chai, Hui; Dong, Hong; Xu, Jiayu; Jia, Dianzeng; Zhou, Wanyong

    2016-10-12

    In this study, a rapid, facile, and environment-friendly microwave-assisted method followed by annealing for synthesizing the quasi-cuboidal CoV 2 O 6 is developed. The as-prepared samples manifest high supercapacitor properties with a specific capacitance of 223 F g -1 , good rate capability, and superior cycle stability, retaining 123.3% capacitance when the number of cycles reaches 15,000 after determined by electrochemical tests. More importantly, the quasi-cuboidal CoV 2 O 6 for the first time is introduced into the supercapacitor as a kind of electrode material. The superior electrochemical performance of the quasi-cuboidal CoV 2 O 6 will render the metal vanadium oxides as new and attractive active material for promising application in supercapacitors.

  6. Performance evaluation of combined ejector LiBr/H2O absorption cooling cycle

    Directory of Open Access Journals (Sweden)

    Hasan Sh. Majdi

    2016-03-01

    Full Text Available The objective of this work is to develop a computer simulation program to evaluate the performance of solar-assited combined ejector absorption (single-effect cooling system using LiBr/H2O as a working fluid and operating under steady-state conditions. The ejector possess no moving parts and is simple and reliable, which makes it attractive for combination with single-stage absorption cycle for further improvement to the system's performance. In this research, improvement to the system is achieved by utilizing the potential kinetic energy of the ejector to enhance refrigeration efficiency. The effects of the entrainment ratio of the ejector, operating temperature, on the thermal loads, and system performance have been investigated. The results showed that the evaporator and condenser loads, post-addition of the ejector, is found to be permanently higher than that in the basic cycle, which indicates a significant enhancement of the proposed cycle and the cooling capacity of the system increasing with the increase in evaporator temperature and entrainment ratio. The COP of the modified cycle is improved by up to 60 % compared with that of the basic cycle at the given condition. This process stabilizes the refrigeration system, enhanced its function, and enabled the system to work under higher condenser temperatures.

  7. Plant accident dynamics of high-temperature reactors with direct gas turbine cycle

    International Nuclear Information System (INIS)

    Waloch, M.L.

    1977-01-01

    In the paper submitted, a one-dimensional accident simulation model for high-temperature reactors with direct-cycle gas turbine (single-cycle facilities) is described. The paper assesses the sudden failure of a gas duct caused by the double-ended break of one out of several parallel pipes before and behind the reactor for a non-integrated plant, leading to major loads in the reactor region, as well as the complete loss of vanes of the compressor for an integrated plant. The results of the calculations show especially high loads for the break of a hot-gas pipe immediately behind the flow restrictors of the reactor outlet, because of prolonged effects of pressure gradients in the reactor region and the maximum core differential pressure. A plant accident dynamics calculation therefore allows to find a compromise between the requirements of stable compressor operation, on the one hand, and small loads in the reactor in the course of an accident, on the other, by establishing in a co-ordinated manner the narrowing ratio of the flow restrictors. (GL) [de

  8. Seasonal Synchronization of a Simple Stochastic Dynamical Model Capturing El Niño Diversity

    Science.gov (United States)

    Thual, S.; Majda, A.; Chen, N.

    2017-12-01

    The El Niño-Southern Oscillation (ENSO) has significant impact on global climate and seasonal prediction. Recently, a simple ENSO model was developed that automatically captures the ENSO diversity and intermittency in nature, where state-dependent stochastic wind bursts and nonlinear advection of sea surface temperature (SST) are coupled to simple ocean-atmosphere processes that are otherwise deterministic, linear and stable. In the present article, it is further shown that the model can reproduce qualitatively the ENSO synchronization (or phase-locking) to the seasonal cycle in nature. This goal is achieved by incorporating a cloud radiative feedback that is derived naturally from the model's atmosphere dynamics with no ad-hoc assumptions and accounts in simple fashion for the marked seasonal variations of convective activity and cloud cover in the eastern Pacific. In particular, the weak convective response to SSTs in boreal fall favors the eastern Pacific warming that triggers El Niño events while the increased convective activity and cloud cover during the following spring contributes to the shutdown of those events by blocking incoming shortwave solar radiations. In addition to simulating the ENSO diversity with realistic non-Gaussian statistics in different Niño regions, both the eastern Pacific moderate and super El Niño, the central Pacific El Niño as well as La Niña show a realistic chronology with a tendency to peak in boreal winter as well as decreased predictability in spring consistent with the persistence barrier in nature. The incorporation of other possible seasonal feedbacks in the model is also documented for completeness.

  9. Solvothermal preparation of ZnO nanorods as anode material for improved cycle life Zn/AgO batteries.

    Directory of Open Access Journals (Sweden)

    Shafiq Ullah

    Full Text Available Nano materials with high surface area increase the kinetics and extent of the redox reactions, thus resulting in high power and energy densities. In this study high surface area zinc oxide nanorods have been synthesized by surfactant free ethylene glycol assisted solvothermal method. The nanorods thus prepared have diameters in the submicron range (300 ~ 500 nm with high aspect ratio. They have uniform geometry and well aligned direction. These nanorods are characterized by XRD, SEM, Specific Surface Area Analysis, solubility in alkaline medium, EDX analysis and galvanostatic charge/discharge studies in Zn/AgO batteries. The prepared zinc oxide nanorods have low solubility in alkaline medium with higher structural stability, which imparts the improved cycle life stability to Zn/AgO cells.

  10. First and Second Law Analyses of Trans-critical N2O Refrigeration Cycle Using an Ejector

    Directory of Open Access Journals (Sweden)

    Damoon Aghazadeh Dokandari

    2018-04-01

    Full Text Available An ejector-expansion refrigeration cycle using nitrous oxide was assessed. Thermodynamic analyses, including energy and exergy analyses, were carried out to investigate the effects on performance of several key factors in the system. The results show that the ejector-expansion refrigeration cycle (EERC has a higher maximum coefficient of performance and exergy efficiency than the internal heat exchanger cycle (IHEC, by 12% and 15%, respectively. The maximum coefficient of performance and exergy efficiency are 14% and 16.5% higher than the corresponding values for the vapor-compression refrigeration cycle (VCRC, respectively. The total exergy destruction for the N2O ejector-expansion cycle is 63% and 53% less than for IHEC and VCRC, respectively. Furthermore, the highest COPs for the vapor-compression refrigeration, the internal heat exchanger and the ejector-expansion refrigeration cycles correspond to a high side pressure of 7.3 MPa, and the highest COPs for the three types of CO2 refrigeration cycles correspond to a high side pressure of 8.5 MPa. Consequently, these lead to a lower electrical power consumption by the compressor.

  11. Single generation cycles and delayed feedback cycles are not separate phenomena.

    Science.gov (United States)

    Pfaff, T; Brechtel, A; Drossel, B; Guill, C

    2014-12-01

    We study a simple model for generation cycles, which are oscillations with a period of one or a few generation times of the species. The model is formulated in terms of a single delay-differential equation for the population density of an adult stage, with recruitment to the adult stage depending on the intensity of competition during the juvenile phase. This model is a simplified version of a group of models proposed by Gurney and Nisbet, who were the first to distinguish between single-generation cycles and delayed-feedback cycles. According to these authors, the two oscillation types are caused by different mechanisms and have periods in different intervals, which are one to two generation times for single-generation cycles and two to four generation times for delayed-feedback cycles. By abolishing the strict coupling between the maturation time and the time delay between competition and its effect on the population dynamics, we find that single-generation cycles and delayed-feedback cycles occur in the same model version, with a gradual transition between the two as the model parameters are varied over a sufficiently large range. Furthermore, cycle periods are not bounded to lie within single octaves. This implies that a clear distinction between different types of generation cycles is not possible. Cycles of all periods and even chaos can be generated by varying the parameters that determine the time during which individuals from different cohorts compete with each other. This suggests that life-cycle features in the juvenile stage and during the transition to the adult stage are important determinants of the dynamics of density limited populations. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Will Solar Cycles 25 and 26 Be Weaker than Cycle 24?

    Science.gov (United States)

    Javaraiah, J.

    2017-11-01

    The study of variations in solar activity is important for understanding the underlying mechanism of solar activity and for predicting the level of activity in view of the activity impact on space weather and global climate. Here we have used the amplitudes (the peak values of the 13-month smoothed international sunspot number) of Solar Cycles 1 - 24 to predict the relative amplitudes of the solar cycles during the rising phase of the upcoming Gleissberg cycle. We fitted a cosine function to the amplitudes and times of the solar cycles after subtracting a linear fit of the amplitudes. The best cosine fit shows overall properties (periods, maxima, minima, etc.) of Gleissberg cycles, but with large uncertainties. We obtain a pattern of the rising phase of the upcoming Gleissberg cycle, but there is considerable ambiguity. Using the epochs of violations of the Gnevyshev-Ohl rule (G-O rule) and the `tentative inverse G-O rule' of solar cycles during the period 1610 - 2015, and also using the epochs where the orbital angular momentum of the Sun is steeply decreased during the period 1600 - 2099, we infer that Solar Cycle 25 will be weaker than Cycle 24. Cycles 25 and 26 will have almost same strength, and their epochs are at the minimum between the current and upcoming Gleissberg cycles. In addition, Cycle 27 is expected to be stronger than Cycle 26 and weaker than Cycle 28, and Cycle 29 is expected to be stronger than both Cycles 28 and 30. The maximum of Cycle 29 is expected to represent the next Gleissberg maximum. Our analysis also suggests a much lower value (30 - 40) for the maximum amplitude of the upcoming Cycle 25.

  13. Dynamic tests and adaptive control of a bottoming organic Rankine cycle of IC engine using swash-plate expander

    International Nuclear Information System (INIS)

    Torregrosa, A.; Galindo, J.; Dolz, V.; Royo-Pascual, L.; Haller, R.; Melis, J.

    2016-01-01

    Highlights: • An experimental testing of a bottoming Rankine Cycle is presented and applied to a 2 l turbocharged gasoline engine. • Both stationary and transient tests were performed, including the NEDC cycle. • Indicated diagrams of the swash-plate expander during these transients were presented and analyzed. - Abstract: This paper deals with the experimental testing of a bottoming Organic Rankine Cycle (ORC) integrate in a 2 l turbocharged gasoline engine using ethanol as working fluid. The main components of the cycle are a boiler, a condenser, a pump and a swash-plate expander. Both steady and transient tests were performed in three engine operating points to understand the behavior and inertia of the system. Pressure-Volume diagram during these transients were presented and analyzed. Operating parameters of the expander, such as expander speed and boiler power, were shifted. The objective of these tests is to understand the inertia of the system and to have a robust control in all the possible transient tests. New European Driving Cycle was tested with and without the expander because it is supposed to represent the typical usage of a car in Europe. It was used to validate the control of the ORC in realistic dynamic conditions of the engine. The importance of each parameter was analyzed by fixing all the parameters, changing each time one specific value. The main result of this paper is that using a slightly simple and robust control based on adaptive PIDs, the two dynamic effects of an ORC could be taken into account, i.e. high inertia effects (boiler and condenser) and low inertia effects (pump and volumetric expander).

  14. Investigation of attosecond ionization dynamics in gases and solids with intense few-cycle laser pulses

    International Nuclear Information System (INIS)

    Mitrofanov, A. V.

    2011-01-01

    Interaction of intense light fields with dielectric materials has fascinated scientists since the invention of pulsed lasers in the early sixties. Despite the many decades of research, the interest in the field keeps growing because of the potential technological applications of optical (meta-) materials and the prospects of light-controlled peta-Hertz electronics as well as the improving understanding of the fundamental processes behind light-matter interactions. The progress in the short-pulse laser technology that delivered ever-shorter light pulses was echoed by the discoveries of different progressively shorter time scales in the cycle of excitation and energy/charge relaxation in transparent solids, many parts of which are now well understood. The ultimate challenge lies in recovering the earliest stages of the dynamics which are linked to optical-field-ionization that proceeds within a fraction of an optical cycle. One of the complications of advancing the attosecond science to the bulk media is the problem of inducing and detecting a synchronized attosecond response. The charged particles spectroscopy, well developed in gaseous media during last decade and capable of reaching an attosecond temporal resolution cannot be used as an experimental tool for investigation since direct detection of charged particles is impossible in the volume of a solid material. However, solids are the natural place where electronic processes on the sub-femtosecond or attosecond time scale are expected. Very recently several methods for measuring attosecond dynamics in condensed media have been proposed utilizing optical fields in the transparency range of the material. In this thesis a method, suggested in our scientific group is presented. It is an all-optical method based on the detection of optical harmonics originating from ultrafast modulation of a free electron current due to ionization in the field of intense few-cycle laser pulses. This technique will allow retrieving

  15. In-situ grown CNTs modified SiO2/C composites as anode with improved cycling stability and rate capability for lithium storage

    Science.gov (United States)

    Wang, Siqi; Zhao, Naiqin; Shi, Chunsheng; Liu, Enzuo; He, Chunnian; He, Fang; Ma, Liying

    2018-03-01

    Silica (SiO2) is regarded as one of the most promising anode materials for lithium ion batteries owing to its high theoretical specific capacity, relatively low operation potentials, abundance, environmental benignity and low cost. However, the low intrinsic electrical conductivity and large volume change of SiO2 during the discharge/charge cycles usually results in poor electrochemical performance. In this work, carbon nanotubes (CNTs) modified SiO2/C composites have been fabricated through an in-situ chemical vapor deposition method. The results show that the electrical conductivity of the SiO2/C/CNTs is visibly enhanced through a robust connection between the CNTs and SiO2/C particles. Compared with the pristine SiO2 and SiO2/C composites, the SiO2/C/CNTs composites display a high initial capacity of 1267.2 mA h g-1. Besides, an excellent cycling stability with the capacity of 315.7 mA h g-1 is achieved after 1000th cycles at a rate of 1 A g-1. The significantly improved electrochemical properties of the SiO2/C/CNTs composites are mainly attributed to the formation of three dimensional CNT networks in the SiO2/C substrate, which can not only shorten the Li-ion diffusion path but also relieve the volume change during the lithium-ion insertion/extraction processes.

  16. Dynamics of a delayed business cycle model with general investment function

    International Nuclear Information System (INIS)

    Riad, Driss; Hattaf, Khalid; Yousfi, Noura

    2016-01-01

    Highlights: • A delayed business cycle model is formulated and rigorously analyzed. • Well-posedness of the model and local stability of the economic equilibrium are determined. • Direction and stability of the Hopf bifurcation are investigated. • Global existence of bifurcating periodic solutions is established. • Numerical simulations are presented to illustrate our theoretical results. - Abstract: The aim of this paper is to study the dynamics of a delayed business cycle model with general investment function. The model describes the interaction of the gross product and capital stock. Furthermore, the delay represents the time between the decision of investment and implementation. Firstly, we show that the model is well posed by proving the global existence and boundedness of solutions. Secondly, we determine the economic equilibrium of the model. By analyzing the characteristic equation, we investigate the stability of the economic equilibrium and the local existence of Hopf bifurcation. Also, the direction of the Hopf bifurcation and the stability of the bifurcating periodic solutions are derived by applying the normal form method and center manifold theory. Moreover, the global existence of bifurcating periodic solutions is established by using the global Hopf bifurcation theory. Finally, our theoretical results are illustrated with some numerical simulations.

  17. Dynamics of ZnO laser produced plasma in high pressure argon

    International Nuclear Information System (INIS)

    Kaydashev, V.E.; Lunney, J.G.

    2011-01-01

    Pulsed laser deposition of ZnO in high pressure gas offers a route for the catalyst-free preparation of ZnO nanorods less than 10 nm in diameter. This paper describes the results of some experiments to investigate the laser plume dynamics in the high gas pressure (5 x 10 3 -10 4 Pa) regime used for PLD of ZnO nanorods. In this regime the ablation plume is strongly coupled to the gas and the plume expansion is brought to a halt within about 1 cm from the target. A 248 nm excimer laser was used to ablate a ceramic ZnO target in various pressures of argon. Time- and space-resolved UV/vis emission spectroscopy and Langmuir probe measurements were used to diagnose the plasma and follow the plume dynamics. By measuring the spatial profiles of Zn I and Zn II spectral lines it was possible to follow the propagation of the external and internal shock waves associated with the interaction of the ablation plume with the gas. The Langmuir probe measurements showed that the electron density was 10 9 -10 10 cm -3 and the electron temperature was several eV. At these conditions the ionization equilibrium is described by the collisional-radiative model. The plume dynamics was also studied for ZnO targets doped with elements which are lighter (Mg), comparable to (Ga), and heavier (Er) than Zn, to see if there is any elemental segregation in the plume.

  18. Contribuição da Abordagem System Dynamics na Compreensão da Competitividade de Clusters de Negócios

    Directory of Open Access Journals (Sweden)

    André Alarcon de Almeida Prado

    2013-12-01

    Full Text Available O presente trabalho teve como objetivo a constituição de um modelamento exploratório da operação de clusters de negócios por meio da abordagem System Dynamics, considerando, como fatores intervenientes do processo, os fundamentos da performance competitiva de clusters, proposto por Zaccarelli, Telles, Siqueira, Boaventura e Donaire (2008. Por meio da estruturação, segundo a metodologia system dynamics, da interação dos efeitos sistêmicos, responsáveis pelo estágio competitivo desses arranjos inter-organizacionais, segundo os autores, foram desenvolvidos diagramas causais para cada fundamento. Como principais resultados, o mapeamento das interações dinâmicas ofereceu uma nova perspectiva teórica e gerencial sobre operação e competitividade de clusters de negócios. DOI:10.5585/riae.v12i4.2011

  19. Thermal cycling behavior of La{sub 2}Zr{sub 2}O{sub 7} coating with the addition of Y{sub 2}O{sub 3} by EB-PVD

    Energy Technology Data Exchange (ETDEWEB)

    Xu Zhenhua [State Key Laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China); Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China); He Limin, E-mail: he_limin@yahoo.co [Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China); Chen Xiaolong; Zhao Yu [State Key Laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Mu Rende; He Shimei [Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China); Cao Xueqiang, E-mail: xcao@ciac.jl.c [State Key Laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2010-10-15

    Thermal barrier coatings (TBCs) of La{sub 2}Zr{sub 2}O{sub 7} (LZ) with the addition of 3 wt.% Y{sub 2}O{sub 3} (LZ3Y) were deposited by electron beam-physical vapor deposition (EB-PVD). The phase structures, surface and cross-sectional morphologies, cyclic oxidation behaviors of these coatings were studied in detail. The thermal cycling test at 1373 K in an air furnace indicates that the LZ3Y coating has a lifetime of 617 cycles which is about 10% longer than that of LZ coating. The improvement of chemical homogeneity of the coating, the superior growth behavior of columns and the favorable mechanical properties are all very helpful to the prolongation of thermal cycling life of LZ3Y coating. The failure of LZ and LZ3Y coatings is mainly a result of the excess La{sub 2}O{sub 3}, the chemical incompatibility of ceramic coatings with TGO layer, the thermal expansion mismatch between ceramic coatings and bond coat, and the outward diffusion of alloying elements into the ceramic coatings.

  20. Interfacial effects revealed by ultrafast relaxation dynamics in BiFeO 3 / YBa 2 Cu 3 O 7 bilayers

    KAUST Repository

    Springer, D.

    2016-02-12

    The temperature dependence of the relaxation dynamics in the bilayer thin film heterostructure composed of multiferroic BiFeO3 (BFO) and superconducting YBa2Cu3O7 (YBCO) grown on a (001) SrTiO3 substrate is studied by a time-resolved pump-probe technique, and compared with that of pure YBCO thin film grown under the same growth conditions. The superconductivity of YBCO is found to be retained in the heterostructure. We observe a speeding up of the YBCO recombination dynamics in the superconducting state of the heterostructure, and attribute it to the presence of weak ferromagnetism at the BFO/YBCO interface as observed in magnetization data. An extension of the Rothwarf-Taylor model is used to fit the ultrafast dynamics of BFO/YBCO, that models an increased quasiparticle occupation of the ferromagnetic interfacial layer in the superconducting state of YBCO.

  1. Interfacial effects revealed by ultrafast relaxation dynamics in BiFeO 3 / YBa 2 Cu 3 O 7 bilayers

    KAUST Repository

    Springer, D.; Nair, Saritha K.; He, Mi; Lu, C. L.; Cheong, S. A.; Wu, Tao; Panagopoulos, C.; Chia, Elbert E. M.; Zhu, Jian-Xin

    2016-01-01

    The temperature dependence of the relaxation dynamics in the bilayer thin film heterostructure composed of multiferroic BiFeO3 (BFO) and superconducting YBa2Cu3O7 (YBCO) grown on a (001) SrTiO3 substrate is studied by a time-resolved pump-probe technique, and compared with that of pure YBCO thin film grown under the same growth conditions. The superconductivity of YBCO is found to be retained in the heterostructure. We observe a speeding up of the YBCO recombination dynamics in the superconducting state of the heterostructure, and attribute it to the presence of weak ferromagnetism at the BFO/YBCO interface as observed in magnetization data. An extension of the Rothwarf-Taylor model is used to fit the ultrafast dynamics of BFO/YBCO, that models an increased quasiparticle occupation of the ferromagnetic interfacial layer in the superconducting state of YBCO.

  2. Dynamic life cycle assessment (LCA) of renewable energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Pehnt, M. [Institut for Energy and Environmental Research, Heidelberg (Germany)

    2006-01-01

    Before new technologies enter the market, their environmental superiority over competing options must be asserted based on a life cycle approach. However, when applying the prevailing status-quo Life Cycle Assessment (LCA) approach to future renewable energy systems, one does not distinguish between impacts which are 'imported' into the system due to the 'background system' (e.g. due to supply of materials or final energy for the production of the energy system), and what is the improvement potential of these technologies compared to competitors (e.g. due to process and system innovations or diffusion effects). This paper investigates a dynamic approach towards the LCA of renewable energy technologies and proves that for all renewable energy chains, the inputs of finite energy resources and emissions of greenhouse gases are extremely low compared with the conventional system. With regard to the other environmental impacts the findings do not reveal any clear verdict for or against renewable energies. Future development will enable a further reduction of environmental impacts of renewable energy systems. Different factors are responsible for this development, such as progress with respect to technical parameters of energy converters, in particular, improved efficiency; emissions characteristics; increased lifetime, etc.; advances with regard to the production process of energy converters and fuels; and advances with regard to 'external' services originating from conventional energy and transport systems, for instance, improved electricity or process heat supply for system production and ecologically optimized transport systems for fuel transportation. The application of renewable energy sources might modify not only the background system, but also further downstream aspects, such as consumer behavior. This effect is, however, strongly context and technology dependent. (author)

  3. Resurrecting Equilibria Through Cycles

    DEFF Research Database (Denmark)

    Barnett, Richard C.; Bhattacharya, Joydeep; Bunzel, Helle

    equilibria because they asymptotically violate some economic restriction of the model. The literature has always ruled out such paths. This paper studies a pure-exchange monetary overlapping generations economy in which real balances cycle forever between momentary equilibrium points. The novelty is to show...... that segments of the offer curve that have been previously ignored, can in fact be used to produce asymptotically valid cyclical paths. Indeed, a cycle can bestow dynamic validity on momentary equilibrium points that had erstwhile been classified as dynamically invalid....

  4. Charge-transfer modified embedded atom method dynamic charge potential for Li-Co-O system.

    Science.gov (United States)

    Kong, Fantai; Longo, Roberto C; Liang, Chaoping; Nie, Yifan; Zheng, Yongping; Zhang, Chenxi; Cho, Kyeongjae

    2017-11-29

    To overcome the limitation of conventional fixed charge potential methods for the study of Li-ion battery cathode materials, a dynamic charge potential method, charge-transfer modified embedded atom method (CT-MEAM), has been developed and applied to the Li-Co-O ternary system. The accuracy of the potential has been tested and validated by reproducing a variety of structural and electrochemical properties of LiCoO 2 . A detailed analysis on the local charge distribution confirmed the capability of this potential for dynamic charge modeling. The transferability of the potential is also demonstrated by its reliability in describing Li-rich Li 2 CoO 2 and Li-deficient LiCo 2 O 4 compounds, including their phase stability, equilibrium volume, charge states and cathode voltages. These results demonstrate that the CT-MEAM dynamic charge potential could help to overcome the challenge of modeling complex ternary transition metal oxides. This work can promote molecular dynamics studies of Li ion cathode materials and other important transition metal oxides systems that involve complex electrochemical and catalytic reactions.

  5. Experimental research of the impact of the dosing of chemical reagents on the dynamic behavior of regulation system of cycle chemistry

    Science.gov (United States)

    Yegoshina, O. V.; Bolshakova, N. A.

    2017-11-01

    Organization of reliable chemical control for maintaining cycle chemistry is one of the most important problems to be solved at the present time the design and operation of thermal power plants. To maintain optimal parameters of cycle chemistry are used automated chemical control system and regulation system of dosing chemical reagents. Reliability and stability analyzer readings largely determine the reliability of the water cycle chemistry. Now the most common reagents are ammonia, alkali and film-forming amines. In this paper are presented the results of studies of the impact of concentration and composition of chemical reagents for readings stability of automatic analyzers and transients time of control systems for cycles chemistry. Research of the impact of chemical reagents on the dynamic behavior of regulation system for cycle chemistry was conducted at the experimental facility of the Department of thermal power stations of the Moscow Engineering Institute. This experimental facility is model of the work of regulation system for cycle chemistry close to the actual conditions on the energy facilities CHP. Analysis of results of the impact of chemical reagent on the dynamic behavior of ammonia and film forming amines dosing systems showed that the film-forming amines dosing system is more inertia. This emphasizes the transition process of the system, in which a half times longer dosing of ammonia. Results of the study can be used to improve the monitoring systems of water chemical treatment.

  6. Dynamic performance of a combined gas turbine and air bottoming cycle plant for off-shore applications

    DEFF Research Database (Denmark)

    Benato, Alberto; Pierobon, Leonardo; Haglind, Fredrik

    2014-01-01

    and a combined gas turbine coupled with an air bottoming cycle plant. The case study is the Draugen off-shore oil and gas platform, located in the North Sea, Norway. The normal electricity demand is 19 MW, currently covered by two gas turbines generating each 50% of the power demand, while the third turbine......When the Norwegian government introduced the CO2 tax for hydrocarbon fuels, the challenge became to improve the performance of off-shore power systems. An oil and gas platform typically operates on an island (stand-alone system) and the power demand is covered by two or more gas turbines. In order...... to improve the plant performance, a bottoming cycle unit can be added to the gas turbine topping module, thus constituting a combined cycle plant. This paper aims at developing and testing the numerical model simulating the part-load and dynamic behavior of a novel power system, composed of two gas turbines...

  7. Quantifying the Adaptive Cycle.

    Directory of Open Access Journals (Sweden)

    David G Angeler

    Full Text Available The adaptive cycle was proposed as a conceptual model to portray patterns of change in complex systems. Despite the model having potential for elucidating change across systems, it has been used mainly as a metaphor, describing system dynamics qualitatively. We use a quantitative approach for testing premises (reorganisation, conservatism, adaptation in the adaptive cycle, using Baltic Sea phytoplankton communities as an example of such complex system dynamics. Phytoplankton organizes in recurring spring and summer blooms, a well-established paradigm in planktology and succession theory, with characteristic temporal trajectories during blooms that may be consistent with adaptive cycle phases. We used long-term (1994-2011 data and multivariate analysis of community structure to assess key components of the adaptive cycle. Specifically, we tested predictions about: reorganisation: spring and summer blooms comprise distinct community states; conservatism: community trajectories during individual adaptive cycles are conservative; and adaptation: phytoplankton species during blooms change in the long term. All predictions were supported by our analyses. Results suggest that traditional ecological paradigms such as phytoplankton successional models have potential for moving the adaptive cycle from a metaphor to a framework that can improve our understanding how complex systems organize and reorganize following collapse. Quantifying reorganization, conservatism and adaptation provides opportunities to cope with the intricacies and uncertainties associated with fast ecological change, driven by shifting system controls. Ultimately, combining traditional ecological paradigms with heuristics of complex system dynamics using quantitative approaches may help refine ecological theory and improve our understanding of the resilience of ecosystems.

  8. Superior cycle performance and high reversible capacity of SnO2/graphene composite as an anode material for lithium-ion batteries.

    Science.gov (United States)

    Liu, Lilai; An, Maozhong; Yang, Peixia; Zhang, Jinqiu

    2015-03-12

    SnO2/graphene composite with superior cycle performance and high reversible capacity was prepared by a one-step microwave-hydrothermal method using a microwave reaction system. The SnO2/graphene composite was characterized by X-ray diffraction, thermogravimetric analysis, Fourier-transform infrared spectroscopy, Raman spectroscopy, scanning electron microscope, X-ray photoelectron spectroscopy, transmission electron microscopy and high resolution transmission electron microscopy. The size of SnO2 grains deposited on graphene sheets is less than 3.5 nm. The SnO2/graphene composite exhibits high capacity and excellent electrochemical performance in lithium-ion batteries. The first discharge and charge capacities at a current density of 100 mA g(-1) are 2213 and 1402 mA h g(-1) with coulomb efficiencies of 63.35%. The discharge specific capacities remains 1359, 1228, 1090 and 1005 mA h g(-1) after 100 cycles at current densities of 100, 300, 500 and 700 mA g(-1), respectively. Even at a high current density of 1000 mA g(-1), the first discharge and charge capacities are 1502 and 876 mA h g(-1), and the discharge specific capacities remains 1057 and 677 mA h g(-1) after 420 and 1000 cycles, respectively. The SnO2/graphene composite demonstrates a stable cycle performance and high reversible capacity for lithium storage.

  9. Dynamic Contractility and Efficiency Impairments in Stretch-Shortening Cycle Are Stretch-Load-Dependent After Training-Induced Muscle Damage

    NARCIS (Netherlands)

    Vaczi, Mark; Racz, Levente; Hortobagyi, Tibor; Tihanyi, Jozsef

    Vaczi, M, Racz, L, Hortobagyi, T, and Tihanyi, J. Dynamic contractility and efficiency impairments in stretch-shortening cycle are stretch-load-dependent after training-induced muscle damage. J Strength Cond Res 27(8): 2171-2179, 2013To determine the acute task and stretch-load dependency of

  10. A Dynamic Control Strategy for Hybrid Electric Vehicles Based on Parameter Optimization for Multiple Driving Cycles and Driving Pattern Recognition

    Directory of Open Access Journals (Sweden)

    Zhenzhen Lei

    2017-01-01

    Full Text Available The driving pattern has an important influence on the parameter optimization of the energy management strategy (EMS for hybrid electric vehicles (HEVs. A new algorithm using simulated annealing particle swarm optimization (SA-PSO is proposed for parameter optimization of both the power system and control strategy of HEVs based on multiple driving cycles in order to realize the minimum fuel consumption without impairing the dynamic performance. Furthermore, taking the unknown of the actual driving cycle into consideration, an optimization method of the dynamic EMS based on driving pattern recognition is proposed in this paper. The simulation verifications for the optimized EMS based on multiple driving cycles and driving pattern recognition are carried out using Matlab/Simulink platform. The results show that compared with the original EMS, the former strategy reduces the fuel consumption by 4.36% and the latter one reduces the fuel consumption by 11.68%. A road test on the prototype vehicle is conducted and the effectiveness of the proposed EMS is validated by the test data.

  11. Visualization of endothelial cell cycle dynamics in mouse using the Flt-1/eGFP-anillin system.

    Science.gov (United States)

    Herz, Katia; Becker, Alexandra; Shi, Chenyue; Ema, Masatsugo; Takahashi, Satoru; Potente, Michael; Hesse, Michael; Fleischmann, Bernd K; Wenzel, Daniela

    2018-05-01

    Endothelial cell proliferation is a key process during vascular growth but its kinetics could only be assessed in vitro or ex vivo so far. To enable the monitoring and quantification of cell cycle kinetics in vivo, we have generated transgenic mice expressing an eGFP-anillin construct under control of the endothelial-specific Flt-1 promoter. This construct labels the nuclei of endothelial cells in late G1, S and G2 phase and changes its localization during the different stages of M phase, thereby enabling the monitoring of EC proliferation and cytokinesis. In Flt-1/eGFP-anillin mice, we found eGFP + signals specifically in Ki67 + /PECAM + endothelial cells during vascular development. Quantification using this cell cycle reporter in embryos revealed a decline in endothelial cell proliferation between E9.5 to E12.5. By time-lapse microscopy, we determined the length of different cell cycle phases in embryonic endothelial cells in vivo and found a M phase duration of about 80 min with 2/3 covering karyokinesis and 1/3 cytokinesis. Thus, we have generated a versatile transgenic system for the accurate assessment of endothelial cell cycle dynamics in vitro and in vivo.

  12. A comparative analysis of rankine and absorption power cycles from exergoeconomic viewpoint

    International Nuclear Information System (INIS)

    Shokati, Naser; Ranjbar, Faramarz; Yari, Mortaza

    2014-01-01

    Highlights: • The Rankine and absorption power cycles are compared from exergoeconomic viewpoint. • The LiBr–H 2 O cycle has the highest unit cost of electricity produced by turbine. • The LiBr–H 2 O cycle has the lowest exergy destruction cost rate. • In LiBr–H 2 O cycle, the generator has the maximum value regarding (C-dot) D,k +(C-dot) L,k +(Z-dot) k . - Abstract: In this paper LiBr–H 2 O and NH 3 –H 2 O absorption power cycles and Rankine cycle which produce 1 MW electrical power in same conditions of heat sources are compared from exergoeconomic point of view. Exergoeconomic analysis is performed using the specific exergy costing (SPECO) method. The results show that among these cycles, although the LiBr–H 2 O cycle has the highest first law efficiency, but unit cost of electricity produced by turbine for LiBr–H 2 O cycle is more than that for Rankine cycle. This value is lowest for the NH 3 –H 2 O cycle. Moreover, the NH 3 –H 2 O cycle has the highest and the LiBr–H 2 O cycle has the lowest exergy destruction cost rate. The generator, the absorber and the boiler in all considered cycles have the maximum value of sum of cost rate associated with capital investment, operating and maintenance, exergy destruction and exergy losses. Therefore, these components should be taken into consideration from exergoeconomic viewpoint. In parametric study, it is observed that in the constant generator temperature, as the generator pressure increases, unit cost of power produced by turbine for LiBr–H 2 O and Rankine cycles decreases. This value for Rankine cycle is lower than for LiBr–H 2 O cycle whereas Rankine cycle efficiency is less than the efficiency of LiBr–H 2 O cycle. Also, in LiBr–H 2 O cycle, at constant temperature of the generator, the value of exergy destruction cost rate is minimized and exergoeconomic factor is maximized at particular values of generator pressure and the more absorber pressure results the minimum value of

  13. Dynamic tuning by hydrostatic pressure of magnetocaloric properties to Ericsson like cycles

    Science.gov (United States)

    Gaztañaga, P.; Sacanell, J.; Leyva, A. G.; Quintero, M.

    2018-03-01

    A method to increase the relative cooling power to be used in Ericsson like refrigeration cycles is presented. The technique is based in the modification of the magnetic properties by the application of hydrostatic pressure on magnetic samples. The main advantage is to reach larger values of the magnetic entropy change in a wider temperature region (the so-called "table like" behavior). The study was carried out in a manganite belonging to the family of La0.625-yNdyCa0.375MnO3, and some conclusions were compared with the expected behavior in other materials extracted from literature.

  14. Robust electrodes based on coaxial TiC/C-MnO2 core/shell nanofiber arrays with excellent cycling stability for high-performance supercapacitors.

    Science.gov (United States)

    Zhang, Xuming; Peng, Xiang; Li, Wan; Li, Limin; Gao, Biao; Wu, Guosong; Huo, Kaifu; Chu, Paul K

    2015-04-17

    A coaxial electrode structure composed of manganese oxide-decorated TiC/C core/shell nanofiber arrays is produced hydrothermally in a KMnO4 solution. The pristine TiC/C core/shell structure prepared on the Ti alloy substrate provides the self-sacrificing carbon shell and highly conductive TiC core, thus greatly simplifying the fabrication process without requiring an additional reduction source and conductive additive. The as-prepared electrode exhibits a high specific capacitance of 645 F g(-1) at a discharging current density of 1 A g(-1) attributable to the highly conductive TiC/C and amorphous MnO2 shell with fast ion diffusion. In the charging/discharging cycling test, the as-prepared electrode shows high stability and 99% capacity retention after 5000 cycles. Although the thermal treatment conducted on the as-prepared electrode decreases the initial capacitance, the electrode undergoes capacitance recovery through structural transformation from the crystalline cluster to layered birnessite type MnO2 nanosheets as a result of dissolution and further electrodeposition in the cycling. 96.5% of the initial capacitance is retained after 1000 cycles at high charging/discharging current density of 25 A g(-1). This study demonstrates a novel scaffold to construct MnO2 based SCs with high specific capacitance as well as excellent mechanical and cycling stability boding well for future design of high-performance MnO2-based SCs. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Stable Density and Dynamics of Dendritic Spines of Cortical Neurons Across the Estrous Cycle While Expressing Differential Levels of Sensory-Evoked Plasticity

    Directory of Open Access Journals (Sweden)

    Bailin H. Alexander

    2018-03-01

    Full Text Available Periodic oscillations of gonadal hormone levels during the estrous cycle exert effects on the female brain, impacting cognition and behavior. While previous research suggests that changes in hormone levels across the cycle affect dendritic spine dynamics in the hippocampus, little is known about the effects on cortical dendritic spines and previous studies showed contradictory results. In this in vivo imaging study, we investigated the impact of the estrous cycle on the density and dynamics of dendritic spines of pyramidal neurons in the primary somatosensory cortex of mice. We also examined if the induction of synaptic plasticity during proestrus, estrus, and metestrus/diestrus had differential effects on the degree of remodeling of synapses in this brain area. We used chronic two-photon excitation (2PE microscopy during steady-state conditions and after evoking synaptic plasticity by whisker stimulation at the different stages of the cycle. We imaged apical dendritic tufts of layer 5 pyramidal neurons of naturally cycling virgin young female mice. Spine density, turnover rate (TOR, survival fraction, morphology, and volume of mushroom spines remained unaltered across the estrous cycle, and the values of these parameters were comparable with those of young male mice. However, while whisker stimulation of female mice during proestrus and estrus resulted in increases in the TOR of spines (74.2 ± 14.9% and 75.1 ± 12.7% vs. baseline, respectively, sensory-evoked plasticity was significantly lower during metestrus/diestrus (32.3 ± 12.8%. In males, whisker stimulation produced 46.5 ± 20% increase in TOR compared with baseline—not significantly different from female mice at any stage of the cycle. These results indicate that, while steady-state density and dynamics of dendritic spines of layer 5 pyramidal neurons in the primary somatosensory cortex of female mice are constant during the estrous cycle, the susceptibility of these neurons to

  16. Dynamic shock compaction of a ZrO2-RuO2 electronic nanocomposite: toward functionally graded materials

    NARCIS (Netherlands)

    van Zyl, W.E.; Carton, Erik P.; Raming, T.P.; ten Elshof, Johan E.; Verweij, H.

    2005-01-01

    An electronic ZrO2-RuO2 nanocomposite was fabricated by dynamic compaction (DC) at 1.5 GPa resulting in a maximum relative density of 88% in the material. The DC process formed pristine elongated conical-shaped compacts 3 cm in length. The compacts retained their original nanometer-sized grains (~20

  17. Environments of ocean and primary productivity during the late Quaternary. Millenial-scale large and abrupt climatic changes (global system dynamics in response to Dansgaard-Oeschger cycles); Daiyonki koki no kaiyo kankyo to seibutsu seisan. Suhyaku-susennen scale no kyugekina kiko hendo (Dansgaard-Oeschger cycle ni taisuru chikyu system no oto)

    Energy Technology Data Exchange (ETDEWEB)

    Tada, R. [The University of Tokyo, Tokyo (Japan)

    1998-04-25

    Abrupt and steep climate changes of the millennial scale as represented by the Dansgaard-Oeschger cycle (D-O cycle) and the behavior of the global surface layer system in their wake are outlined. The D-DO cycle is the abrupt and steep climate changes that are recorded in the Greenland continental ice sheet, and is grasped most typically as changes in the oxygen isotopic ratio in the ice. Studies reveal that the D-O cycle is a global episode that accompanied interaction between various subsystems constituting the global surface layer system. It is believed that in the D-O cycle there were changes not only in temperature but also in aridity/moisture and in the sea level, and probabilities are high that there was a great local variation in the way the changes took effect. The possibility has now become lower that the D-O cycle occurred in the interglacial epoch in the high latitude belt in the northern hemisphere, yet it remains likely that the climate changes driving the D-O cycle continued in the low latitude belt. 57 refs., 8 figs.

  18. Interfacial Engineered Polyaniline/Sulfur-doped TiO2 Nanotube Arrays for Ultralong Cycle Lifetime Fiber-Shaped, Solid-State Supercapacitors.

    Science.gov (United States)

    Li, Chun; Wang, Zhuanpei; Li, Shengwen; Cheng, Jianli; Zhang, Yanning; Zhou, Jingwen; Yang, Dan; Tong, Dong-Ge; Wang, Bin

    2018-05-04

    Fiber-shaped supercapacitors (FSCs) have great potential in wearable electronics applications. However, the limited specific surface area and inadequate structural stability caused by the weak interfacial interactions of the electrodes result in relatively low specific capacitance and unsatisfactory cycle lifetime. Herein, solid-state FSCs with high energy density and ultralong cycle lifetime based on polyaniline (PANI)/sulfur-doped TiO2 nanotubes array (PANI/S-TiO2) are fabricated by interfacial engineering. The experimental results and ab initio calculations reveal that S doping can effectively promote the conductivity of titania nanotubes and increase the binding energy of PANI anchored on the electrode surface, leading to much stronger binding of PANI on the surface of the electrode and excellent electrode structure stability. As a result, the FSCs using the PANI/S-TiO2 electrodes deliver a high specific capacitance of 91.9 mF cm-2, a capacitance retention of 93.78% after 12,000 charge/discharge cycles, and an areal energy density of 3.2 µWh cm-2, respectively. Meanwhile, the all-solid-state FSC device retains its excellent flexibility and stable electrochemical capacitance even after bending 150 cycles. The enhanced performances of FSCs could be attributed to the large surface area, short ion diffusion path, high electrical conductivity and engineered interfacial interaction of the rationally designed electrodes.

  19. Thermodynamic analysis of a nuclear-hydrogen power system using H2/O2 direct combustion product as a working substance in the bottom cycle

    International Nuclear Information System (INIS)

    Chen, D.Z.; Yu, C.P.

    1990-01-01

    A combined thermodynamic cycle using nuclear and hydrogen energy as heat sources was investigated in this paper. The cycle is composed of top cycle using HTGR as energy source and helium as working medium and a bottom cycle with H 2 /O 2 direct combustion product as working substance. hydrogen and oxygen are thermochemically by splitting of water produced through a part of nuclear heat recovered from the top cycle. They may be delivered to the O 2 /H 2 users or used as fuels for the high temperature bottom Rankine steam cycle. The combined cycle not only uses the new energy sources instead of conventional fossil fuels but it possess the advantages of both helium and steam cycle. It has a high thermal efficiency, large unit capacity, many-sided usage and less pollution. It may represent a new type of combined cycles for future energy conversion and power generation. Using computer diagram, a variety of schemes were calculated and analyzed. The influence of some main parameters upon the cycle performance were also studied

  20. Structural analysis of molten Na2O-NaF-SiO2 system by Raman spectroscopy and molecular dynamics simulation

    International Nuclear Information System (INIS)

    Sasaki, Yasushi; Urata, Hidehiro; Ishii, Kuniyoshi

    2003-01-01

    To determine the effect of F ions on the structure of the molten alkali silicate systems, quenched Na 2 O-SiO 2 -NaF systems were investigated by Raman spectroscopy and molecular dynamics simulation. The systematic increase of 1100cm -1 band intensity in the Raman spectra of the silicate melts accompanying the replacement of O by F provides the evidence for concomitant polymerization of melts. From the molecular dynamics simulation, it was confirmed that most of substituted F was mainly coordinated to Na + ions but not Si 4+ ions at least up to 12.5 mol% of F ion content. A small amount of F was found to be coordinated to Si as a non-bridging ion from the molecular dynamics simulation, although there was no recognizable evidence from Raman Spectroscopy. These results were consistent with the mechanism in which F associated with otherwise network-modifying Na rather than with network-forming Si. Since F was associated to Na + ions, the replace of O ion by two F ions promote the polymerization of silicate melts. (author)

  1. HCl removal using cycled carbide slag from calcium looping cycles

    International Nuclear Information System (INIS)

    Xie, Xin; Li, Yingjie; Wang, Wenjing; Shi, Lei

    2014-01-01

    Highlights: • Cycled carbide slag from calcium looping cycles is used to remove HCl. • The optimum temperature for HCl removal of cycled carbide slag is 700 °C. • The presence of CO 2 restrains HCl removal of cycled carbide slag. • CO 2 capture conditions have important effects on HCl removal of cycled carbide slag. • HCl removal capacity of carbide slag drops with cycle number rising from 1 to 50. - Abstract: The carbide slag is an industrial waste from chlor-alkali plants, which can be used to capture CO 2 in the calcium looping cycles, i.e. carbonation/calcination cycles. In this work, the cycled carbide slag from the calcium looping cycles for CO 2 capture was proposed to remove HCl in the flue gas from the biomass-fired and RDFs-fired boilers. The effects of chlorination temperature, HCl concentration, particle size, presence of CO 2 , presence of O 2 , cycle number and CO 2 capture conditions in calcium looping cycles on the HCl removal behavior of the carbide slag experienced carbonation/calcination cycles were investigated in a triple fixed-bed reactor. The chlorination product of the cycled carbide slag from the calcium looping after absorbing HCl is not CaCl 2 but CaClOH. The optimum temperature for HCl removal of the cycled carbide slag from the carbonation/calcination cycles is 700 °C. The chlorination conversion of the cycled carbide slag increases with increasing the HCl concentration. The cycled carbide slag with larger particle size exhibits a lower chlorination conversion. The presence of CO 2 decreases the chlorination conversions of the cycled carbide slag and the presence of O 2 has a trifling impact. The chlorination conversion of the carbide slag experienced 1 carbonation/calcination cycle is higher than that of the uncycled calcined sorbent. As the number of carbonation/calcination cycles increases from 1 to 50, the chlorination conversion of carbide slag drops gradually. The high calcination temperature and high CO 2

  2. Environmental impact efficiency of natural gas combined cycle power plants: A combined life cycle assessment and dynamic data envelopment analysis approach.

    Science.gov (United States)

    Martín-Gamboa, Mario; Iribarren, Diego; Dufour, Javier

    2018-02-15

    The energy sector is still dominated by the use of fossil resources. In particular, natural gas represents the third most consumed resource, being a significant source of electricity in many countries. Since electricity production in natural gas combined cycle (NGCC) plants provides some benefits with respect to other non-renewable technologies, it is often seen as a transitional solution towards a future low‑carbon power generation system. However, given the environmental profile and operational variability of NGCC power plants, their eco-efficiency assessment is required. In this respect, this article uses a novel combined Life Cycle Assessment (LCA) and dynamic Data Envelopment Analysis (DEA) approach in order to estimate -over the period 2010-2015- the environmental impact efficiencies of 20 NGCC power plants located in Spain. A three-step LCA+DEA method is applied, which involves data acquisition, calculation of environmental impacts through LCA, and the novel estimation of environmental impact efficiency (overall- and term-efficiency scores) through dynamic DEA. Although only 1 out of 20 NGCC power plants is found to be environmentally efficient, all plants show a relatively good environmental performance with overall eco-efficiency scores above 60%. Regarding individual periods, 2011 was -on average- the year with the highest environmental impact efficiency (95%), accounting for 5 efficient NGCC plants. In this respect, a link between high number of operating hours and high environmental impact efficiency is observed. Finally, preliminary environmental benchmarks are presented as an additional outcome in order to further support decision-makers in the path towards eco-efficiency in NGCC power plants. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Experimental studies on cycling stable characteristics of inorganic phase change material CaCl2·6H2O-MgCl2·6H2O modified with SrCl2·6H2O and CMC

    Science.gov (United States)

    He, Meizhi; Yang, Luwei; Zhang, Zhentao

    2018-01-01

    By means of mass ratio method, binary eutectic hydrated salts inorganic phase change thermal energy storage system CaCl2·6H2O-20wt% MgCl2·6H2O was prepared, and through adding nucleating agent 1wt% SrCl2·6H2O and thickening agent 0.5wt% carboxy methyl cellulose (CMC), inoganic phase change material (PCM) modified was obtained. With recording cooling-melting curves simultaneously, this PCM was frozen and melted for 100 cycles under programmable temperature control. After per 10 cycles, the PCM was charaterized by differential scanning calorimeter (DSC), X-ray diffraction (XRD) and density meter, then analysing variation characteristics of phase change temperature, supercooling degree, superheat degree, latent heat, crystal structure and density with the increase of cycle index. The results showed that the average values of average phase change temperature for cooling and heating process were 25.70°C and 27.39°C respectively with small changes. The average values of average supercooling and superheat degree were 0.59°C and 0.49°C respectively, and the maximum value was 1.10°C. The average value and standard deviation of latent heat of fusion were 120.62 J/g and 1.90 J/g respectively. Non-molten white solid sediments resulted from phase separation were tachyhydrite (CaMg2Cl6·12H2O), which was characterized by XRD. Measuring density of the PCM after per 10 cycles, and the results suggested that the total mass of tachyhydrite was limited. In summary, such modified inoganic PCM CaCl2·6H2O-20wt% MgCl2·6H2O-1wt% SrCl2·6H2O-0.5wt% CMC could stay excellent circulation stability within 100 cycles, and providing reference value in practical use.

  4. Uncovering SUMOylation Dynamics during Cell-Cycle Progression Reveals FoxM1 as a Key Mitotic SUMO Target Protein

    DEFF Research Database (Denmark)

    Schimmel, Joost; Eifler, Karolin; Sigurdsson, Jón Otti

    2014-01-01

    Loss of small ubiquitin-like modification (SUMOylation) in mice causes genomic instability due to the missegregation of chromosomes. Currently, little is known about the identity of relevant SUMO target proteins that are involved in this process and about global SUMOylation dynamics during cell......-cycle progression. We performed a large-scale quantitative proteomics screen to address this and identified 593 proteins to be SUMO-2 modified, including the Forkhead box transcription factor M1 (FoxM1), a key regulator of cell-cycle progression and chromosome segregation. SUMOylation of FoxM1 peaks during G2 and M...... relieving FoxM1 autorepression. Cells deficient for FoxM1 SUMOylation showed increased levels of polyploidy. Our findings contribute to understanding the role of SUMOylation during cell-cycle progression....

  5. Purification and properties of the glycoprotein processing N-acetylglucosaminyltransferase II from plants

    International Nuclear Information System (INIS)

    Szumilo, T.; Kaushal, G.P.; Elbein, A.D.

    1987-01-01

    The presence of an N-acetylglucosaminyltransferase (GlcNAc-transferase) capable of adding a GlcNAc residue to GlcNAcMan3GlcNAc was demonstrated in mung bean seedlings. This enzyme was purified about 3400-fold by using (diethylaminoethyl)cellulose and phosphocellulose chromatographies and chromatography on Concanavalin A-Sepharose. The transferase was assayed by following the change in the migration of the [ 3 H]mannose-labeled GlcNAc beta 1,2Man alpha 1,3(Man alpha 1,6)Man beta 1,4GlcNAc on Bio-Gel P-4, or by incorporation of [ 3 H]GlcNAc from UDP-[3H]GlcNAc into a neutral product, (GlcNAc)2Man3GlcNAc. Thus, the purified enzyme catalyzed the addition of a GlcNAc to that mannose linked in alpha 1,6 linkage to the beta-linked mannose. GlcNAc beta 1,2Man alpha 1,3(Man alpha 1,6)Man beta 1,4GlcNAc was an excellent acceptor while Man alpha 1,6(Man alpha 1,3)Man beta 1,4GlcNAc, Man alpha 1,6(Man alpha 1,3)Man alpha 1,6(Man alpha 1,3)Man beta 1,4GlcNAc, and Man alpha 1,6(Man apha 1,3)Man alpha 1,6[GlcNAcMan alpha 1,3]Man beta 1,4GlcNAc were not acceptors. Methylation analysis and enzymatic digestions showed that both terminal GlcNAc residues on (GlcNAc)2Man3GlcNAc were attached to the mannoses in beta 1,2 linkages. The GlcNAc transferase had an almost absolute requirement for divalent cation, with Mn2+ being best at 2-3 mM. Mn2+ could not be replaced by Mg2+ or Ca2+, but Cd2+ showed some activity. The enzyme was also markedly stimulated by the presence of detergent and showed optimum activity at 0.15% Triton X-100. The Km for UDP-GlcNAc was found to be 18 microM and that for GlcNAcMan3GlcNAc about 16 microM

  6. Salient Features of the 2015 Gorkha, Nepal Earthquake in Relation to Earthquake Cycle and Dynamic Rupture Models

    Science.gov (United States)

    Ampuero, J. P.; Meng, L.; Hough, S. E.; Martin, S. S.; Asimaki, D.

    2015-12-01

    Two salient features of the 2015 Gorkha, Nepal, earthquake provide new opportunities to evaluate models of earthquake cycle and dynamic rupture. The Gorkha earthquake broke only partially across the seismogenic depth of the Main Himalayan Thrust: its slip was confined in a narrow depth range near the bottom of the locked zone. As indicated by the belt of background seismicity and decades of geodetic monitoring, this is an area of stress concentration induced by deep fault creep. Previous conceptual models attribute such intermediate-size events to rheological segmentation along-dip, including a fault segment with intermediate rheology in between the stable and unstable slip segments. We will present results from earthquake cycle models that, in contrast, highlight the role of stress loading concentration, rather than frictional segmentation. These models produce "super-cycles" comprising recurrent characteristic events interspersed by deep, smaller non-characteristic events of overall increasing magnitude. Because the non-characteristic events are an intrinsic component of the earthquake super-cycle, the notion of Coulomb triggering or time-advance of the "big one" is ill-defined. The high-frequency (HF) ground motions produced in Kathmandu by the Gorkha earthquake were weaker than expected for such a magnitude and such close distance to the rupture, as attested by strong motion recordings and by macroseismic data. Static slip reached close to Kathmandu but had a long rise time, consistent with control by the along-dip extent of the rupture. Moreover, the HF (1 Hz) radiation sources, imaged by teleseismic back-projection of multiple dense arrays calibrated by aftershock data, was deep and far from Kathmandu. We argue that HF rupture imaging provided a better predictor of shaking intensity than finite source inversion. The deep location of HF radiation can be attributed to rupture over heterogeneous initial stresses left by the background seismic activity

  7. Utilizing the effective xanthophyll cycle for blooming of Ochromonas smithii and O. itoi (Chrysophyceae on the snow surface.

    Directory of Open Access Journals (Sweden)

    Yukiko Tanabe

    Full Text Available Snow algae inhabit unique environments such as alpine and high latitudes, and can grow and bloom with visualizing on snow or glacier during spring-summer. The chrysophytes Ochromonas smithii and Ochromonas itoi are dominant in yellow-colored snow patches in mountainous heavy snow areas from late May to early June. It is considered to be effective utilizing the xanthophyll cycle and holding sunscreen pigments as protective system for snow algae blooming in the vulnerable environment such as low temperature and nutrients, and strong light, however the study on the photoprotection of chrysophytes snow algae has not been shown. To dissolve how the chrysophytes snow algae can grow and bloom under such an extreme environment, we studied with the object of light which is one point of significance to this problem. We collected the yellow snows and measured photosynthetically active radiation at Mt. Gassan in May 2008 when the bloom occurred, then tried to establish unialgal cultures of O. smithii and O. itoi, and examined their photosynthetic properties by a PAM chlorophyll fluorometer and analyzed the pigment compositions before and after illumination with high-light intensities to investigate the working xanthophyll cycle. This experimental study using unialgal cultures revealed that both O. smithii and O. itoi utilize only the efficient violaxanthin cycle for photoprotection as a dissipation system of surplus energy under prolonged high-light stress, although they possess chlorophyll c with diadinoxanthin.

  8. Efficiency of an air-cooled thermodynamic cycle

    International Nuclear Information System (INIS)

    Bezborodov, Yu.A.; Bubnov, V.P.; Nesterenko, V.B.

    1979-01-01

    The application of air, nitrogen, helium and the chemically reacting N 2 O 4 reversible 2NO 2 reversible 2NO + O 2 system as working agents and coolants for a low capacity nuclear power plant is investigated. The above system due to its physico-chemical and thermo-physical properties allows both a gaseous cycle and a cycle with condensation. The analysis has shown that a thermodynamic air-cooled cycle with the dissociating nitrogen tetroxide in the temperature range from 500 to 600 deg C has an advantage over cycles with air and nitrogen. To identify the chemical reaction kinetics in the thermodynamic processes, thermodynamic calculations of the gas-liquid cycle with N 2 O 4 both with simple and intermediate heat regeneration at different pressures over hot side were performed. At gas pressures lower than 12 - 15 atm, the cycle with a simple regeneration is more effective, and at pressure increase, the cycle with an intermediate regeneration is preferable

  9. Internal cycle modeling and environmental assessment of multiple cycle consumer products

    International Nuclear Information System (INIS)

    Tsiliyannis, C.A.

    2012-01-01

    Highlights: ► Dynamic flow models are presented for remanufactured, reused or recycled products. ► Early loss and stochastic return are included for fast and slow cycling products. ► The reuse-to-input flow ratio (Internal Cycle Factor, ICF) is determined. ► The cycle rate, which is increasing with the ICF, monitors eco-performance. ► Early internal cycle losses diminish the ICF, the cycle rate and performance. - Abstract: Dynamic annual flow models incorporating consumer discard and usage loss and featuring deterministic and stochastic end-of-cycle (EOC) return by the consumer are developed for reused or remanufactured products (multiple cycle products, MCPs), including fast and slow cycling, short and long-lived products. It is shown that internal flows (reuse and overall consumption) increase proportionally to the dimensionless internal cycle factor (ICF) which is related to environmental impact reduction factors. The combined reuse/recycle (or cycle) rate is shown capable for shortcut, albeit effective, monitoring of environmental performance in terms of waste production, virgin material extraction and manufacturing impacts of all MCPs, a task, which physical variables (lifetime, cycling frequency, mean or total number of return trips) and conventional rates, via which environmental policy has been officially implemented (e.g. recycling rate) cannot accomplish. The cycle rate is shown to be an increasing (hyperbolic) function of ICF. The impact of the stochastic EOC return characteristics on total reuse and consumption flows, as well as on eco-performance, is assessed: symmetric EOC return has a small, positive effect on performance compared to deterministic, while early shifted EOC return is more beneficial. In order to be efficient, environmental policy should set higher minimum reuse targets for higher trippage MCPs. The results may serve for monitoring, flow accounting and comparative eco-assessment of MCPs. They may be useful in identifying

  10. SO{sub 2} Retention by CaO-Based Sorbent Spent in CO{sub 2} Looping Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Manovic, V.; Anthony, E.J.; Loncarevic, D.

    2009-07-15

    CaO-based looping cycles are promising processes for CO{sub 2} Capture from both syngas and flue gas. The technology is based on cyclical carbonation of CaO and regeneration of CaCO{sub 3} in a dual fluidized-bed reactor to produce a pure CO{sub 2} stream suitable for sequestration. Use of spent sorbent from CO{sub 2} looping cycles for SO{sub 2} capture is investigated. Three limestones were investigated: Kelly Rock (Canada), La Blanca (Spain), and Katowice (Poland, Upper Silesia). Carbonation/calcination cycles were performed in a tube furnace with both the original limestones and samples thermally pretreated for different times (i.e., sintered). The spent sorbent samples were sulfated in a thermogravimetric analyzer (TGA). The changes in the resulting sorbent pore structure were then investigated using mercury porosimetry. It has been shown that the sulfation rates of both thermally pretreated and spent sorbent samples are lower in comparison with those of the original samples. However, final conversions of both spent and pretreated sorbents after longer sulfation time were comparable or higher than those observed for the original sorbents under comparable conditions. Maximum sulfation levels strongly depend on sorbent porosity and pore surface area. The results showed that spent sorbent samples from CO{sub 2} looping cycles can be used as sorbents for SO{sub 2} retention in cases where significant porosity loss does not occur during CO{sub 2} reaction cycles. In the case of spent Kelly Rock and Katowice samples, sorbent particles are practically uniformly sulfated, achieving final conversions that are determined by the total pore volume available for the bulky CaSO{sub 4} product.

  11. Crystallographic origin of cycle decay of the high-voltage LiNi0.5Mn1.5O4 spinel lithium-ion battery electrode.

    Science.gov (United States)

    Pang, Wei Kong; Lu, Cheng-Zhang; Liu, Chia-Erh; Peterson, Vanessa K; Lin, Hsiu-Fen; Liao, Shih-Chieh; Chen, Jin-Ming

    2016-06-29

    High-voltage spinel LiNi0.5Mn1.5O4 (LNMO) is considered a potential high-power-density positive electrode for lithium-ion batteries, however, it suffers from capacity decay after extended charge-discharge cycling, severely hindering commercial application. Capacity fade is thought to occur through the significant volume change of the LNMO electrode occurring on cycling, and in this work we use operando neutron powder diffraction to compare the structural evolution of the LNMO electrode in an as-assembled 18650-type battery containing a Li4Ti5O12 negative electrode with that in an identical battery following 1000 cycles at high-current. We reveal that the capacity reduction in the battery post cycling is directly proportional to the reduction in the maximum change of the LNMO lattice parameter during its evolution. This is correlated to a corresponding reduction in the MnO6 octahedral distortion in the spinel structure in the cycled battery. Further, we find that the rate of lattice evolution, which reflects the rate of lithium insertion and removal, is ∼9 and ∼10% slower in the cycled than in the as-assembled battery during the Ni(2+)/Ni(3+) and Ni(3+)/Ni(4+) transitions, respectively.

  12. Life-cycle based dynamic assessment of mineral wool insulation in a Danish residential building application

    DEFF Research Database (Denmark)

    Sohn, Joshua L.; Kalbar, Pradip; Banta, Gary T.

    2017-01-01

    There has been significant change in the way buildings are constructed and the way building energy performance is evaluated. Focus on solely the use phase of a building is beginning to be replaced by a life-cycle based performance assessment. This study assesses the environmental impact trade......-offs between the heat produced to meet a building's space heating load and insulation produced to reduce its space heating load throughout the whole life-cycle of a building. To obtain a more realistic valuation of this tradeoff, a dynamic heat production model, which accounts for political projections...... grid, which is potentially promoted at present in Danish regulation. It is further concluded that improvement of the mineral wool insulation production process could allow for greater levels of environmentally beneficial insulation and would also help in reducing the overall environmental burden from...

  13. Cell cycle-dependent Rho GTPase activity dynamically regulates cancer cell motility and invasion in vivo.

    Science.gov (United States)

    Kagawa, Yoshinori; Matsumoto, Shinji; Kamioka, Yuji; Mimori, Koshi; Naito, Yoko; Ishii, Taeko; Okuzaki, Daisuke; Nishida, Naohiro; Maeda, Sakae; Naito, Atsushi; Kikuta, Junichi; Nishikawa, Keizo; Nishimura, Junichi; Haraguchi, Naotsugu; Takemasa, Ichiro; Mizushima, Tsunekazu; Ikeda, Masataka; Yamamoto, Hirofumi; Sekimoto, Mitsugu; Ishii, Hideshi; Doki, Yuichiro; Matsuda, Michiyuki; Kikuchi, Akira; Mori, Masaki; Ishii, Masaru

    2013-01-01

    The mechanism behind the spatiotemporal control of cancer cell dynamics and its possible association with cell proliferation has not been well established. By exploiting the intravital imaging technique, we found that cancer cell motility and invasive properties were closely associated with the cell cycle. In vivo inoculation of human colon cancer cells bearing fluorescence ubiquitination-based cell cycle indicator (Fucci) demonstrated an unexpected phenomenon: S/G2/M cells were more motile and invasive than G1 cells. Microarray analyses showed that Arhgap11a, an uncharacterized Rho GTPase-activating protein (RhoGAP), was expressed in a cell-cycle-dependent fashion. Expression of ARHGAP11A in cancer cells suppressed RhoA-dependent mechanisms, such as stress fiber formation and focal adhesion, which made the cells more prone to migrate. We also demonstrated that RhoA suppression by ARHGAP11A induced augmentation of relative Rac1 activity, leading to an increase in the invasive properties. RNAi-based inhibition of Arhgap11a reduced the invasion and in vivo expansion of cancers. Additionally, analysis of human specimens showed the significant up-regulation of Arhgap11a in colon cancers, which was correlated with clinical invasion status. The present study suggests that ARHGAP11A, a cell cycle-dependent RhoGAP, is a critical regulator of cancer cell mobility and is thus a promising therapeutic target in invasive cancers.

  14. Cell cycle-dependent Rho GTPase activity dynamically regulates cancer cell motility and invasion in vivo.

    Directory of Open Access Journals (Sweden)

    Yoshinori Kagawa

    Full Text Available The mechanism behind the spatiotemporal control of cancer cell dynamics and its possible association with cell proliferation has not been well established. By exploiting the intravital imaging technique, we found that cancer cell motility and invasive properties were closely associated with the cell cycle. In vivo inoculation of human colon cancer cells bearing fluorescence ubiquitination-based cell cycle indicator (Fucci demonstrated an unexpected phenomenon: S/G2/M cells were more motile and invasive than G1 cells. Microarray analyses showed that Arhgap11a, an uncharacterized Rho GTPase-activating protein (RhoGAP, was expressed in a cell-cycle-dependent fashion. Expression of ARHGAP11A in cancer cells suppressed RhoA-dependent mechanisms, such as stress fiber formation and focal adhesion, which made the cells more prone to migrate. We also demonstrated that RhoA suppression by ARHGAP11A induced augmentation of relative Rac1 activity, leading to an increase in the invasive properties. RNAi-based inhibition of Arhgap11a reduced the invasion and in vivo expansion of cancers. Additionally, analysis of human specimens showed the significant up-regulation of Arhgap11a in colon cancers, which was correlated with clinical invasion status. The present study suggests that ARHGAP11A, a cell cycle-dependent RhoGAP, is a critical regulator of cancer cell mobility and is thus a promising therapeutic target in invasive cancers.

  15. High-intensity cycle interval training improves cycling and running performance in triathletes.

    Science.gov (United States)

    Etxebarria, Naroa; Anson, Judith M; Pyne, David B; Ferguson, Richard A

    2014-01-01

    Effective cycle training for triathlon is a challenge for coaches. We compared the effects of two variants of cycle high-intensity interval training (HIT) on triathlon-specific cycling and running. Fourteen moderately-trained male triathletes ([Formula: see text]O2peak 58.7 ± 8.1 mL kg(-1) min(-1); mean ± SD) completed on separate occasions a maximal incremental test ([Formula: see text]O2peak and maximal aerobic power), 16 × 20 s cycle sprints and a 1-h triathlon-specific cycle followed immediately by a 5 km run time trial. Participants were then pair-matched and assigned randomly to either a long high-intensity interval training (LONG) (6-8 × 5 min efforts) or short high-intensity interval training (SHORT) (9-11 × 10, 20 and 40 s efforts) HIT cycle training intervention. Six training sessions were completed over 3 weeks before participants repeated the baseline testing. Both groups had an ∼7% increase in [Formula: see text]O2peak (SHORT 7.3%, ±4.6%; mean, ±90% confidence limits; LONG 7.5%, ±1.7%). There was a moderate improvement in mean power for both the SHORT (10.3%, ±4.4%) and LONG (10.7%, ±6.8%) groups during the last eight 20-s sprints. There was a small to moderate decrease in heart rate, blood lactate and perceived exertion in both groups during the 1-h triathlon-specific cycling but only the LONG group had a substantial decrease in the subsequent 5-km run time (64, ±59 s). Moderately-trained triathletes should use both short and long high-intensity intervals to improve cycling physiology and performance. Longer 5-min intervals on the bike are more likely to benefit 5 km running performance.

  16. Reversible and irreversible heat engine and refrigerator cycles

    Science.gov (United States)

    Leff, Harvey S.

    2018-05-01

    Although no reversible thermodynamic cycles exist in nature, nearly all cycles covered in textbooks are reversible. This is a review, clarification, and extension of results and concepts for quasistatic, reversible and irreversible processes and cycles, intended primarily for teachers and students. Distinctions between the latter process types are explained, with emphasis on clockwise (CW) and counterclockwise (CCW) cycles. Specific examples of each are examined, including Carnot, Kelvin and Stirling cycles. For the Stirling cycle, potentially useful task-specific efficiency measures are proposed and illustrated. Whether a cycle behaves as a traditional refrigerator or heat engine can depend on whether it is reversible or irreversible. Reversible and irreversible-quasistatic CW cycles both satisfy Carnot's inequality for thermal efficiency, η ≤ η C a r n o t . Irreversible CCW cycles with two reservoirs satisfy the coefficient of performance inequality K ≤ K C a r n o t . However, an arbitrary reversible cycle satisfies K ≥ K C a r n o t when compared with a reversible Carnot cycle operating between its maximum and minimum temperatures, a potentially counterintuitive result.

  17. Initial investigation of glucose metabolism in mouse brain using enriched 17 O-glucose and dynamic 17 O-MRS.

    Science.gov (United States)

    Borowiak, Robert; Reichardt, Wilfried; Kurzhunov, Dmitry; Schuch, Christian; Leupold, Jochen; Krafft, Axel Joachim; Reisert, Marco; Lange, Thomas; Fischer, Elmar; Bock, Michael

    2017-08-01

    In this initial work, the in vivo degradation of 17 O-labeled glucose was studied during cellular glycolysis. To monitor cellular glucose metabolism, direct 17 O-magnetic resonance spectroscopy (MRS) was used in the mouse brain at 9.4 T. Non-localized spectra were acquired with a custom-built transmit/receive (Tx/Rx) two-turn surface coil and a free induction decay (FID) sequence with a short TR of 5.4 ms. The dynamics of labeled oxygen in the anomeric 1-OH and 6-CH 2 OH groups was detected using a Hankel-Lanczos singular value decomposition (HLSVD) algorithm for water suppression. Time-resolved 17 O-MRS (temporal resolution, 42/10.5 s) was performed in 10 anesthetized (1.25% isoflurane) mice after injection of a 2.2 M solution containing 2.5 mg/g body weight of differently labeled 17 O-glucose dissolved in 0.9% physiological saline. From a pharmacokinetic model fit of the H 2 17 O concentration-time course, a mean apparent cerebral metabolic rate of 17 O-labeled glucose in mouse brain of CMR Glc  = 0.07 ± 0.02 μmol/g/min was extracted, which is of the same order of magnitude as a literature value of 0.26 ± 0.06 μmol/g/min reported by 18 F-fluorodeoxyglucose ( 18 F-FDG) positron emission tomography (PET). In addition, we studied the chemical exchange kinetics of aqueous solutions of 17 O-labeled glucose at the C1 and C6 positions with dynamic 17 O-MRS. In conclusion, the results of the exchange and in vivo experiments demonstrate that the C6- 17 OH label in the 6-CH 2 OH group is transformed only glycolytically by the enzyme enolase into the metabolic end-product H 2 17 O, whereas C1- 17 OH ends up in water via direct hydrolysis as well as glycolysis. Therefore, dynamic 17 O-MRS of highly labeled 17 O-glucose could provide a valuable non-radioactive alternative to FDG PET in order to investigate glucose metabolism. Copyright © 2017 John Wiley & Sons, Ltd.

  18. Transmutation Dynamics: Impacts of Multi-Recycling on Fuel Cycle Performances

    Energy Technology Data Exchange (ETDEWEB)

    S. Bays; S. Piet; M. Pope; G. Youinou; A. Dumontier; D. Hawn

    2009-09-01

    From a physics standpoint, it is feasible to sustain continuous multi-recycle in either thermal or fast reactors. In Fiscal Year 2009, transmutaton work at INL provided important new insight, caveats, and tools on multi-recycle. Multi-recycle of MOX, even with all the transuranics, is possible provided continuous enrichment of the uranium phase to ~6.5% and also limitting the transuranic enrichment to slightly less than 8%. Multi-recycle of heterogeneous-IMF assemblies is possible with continuous enrichment of the UOX pins to ~4.95% and having =60 of the 264 fuel pins being inter-matrix. A new tool enables quick assessment of the impact of different cooling times on isotopic evolution. The effect of cooling time was found to be almost as controlling on higher mass actinide concentrations in fuel as the selection of thermal versus fast neutron spectra. A new dataset was built which provides on-the-fly estimates of gamma and neutron dose in MOX fuels as a function of the isotopic evolution. All studies this year focused on the impact of dynamic feedback due to choices made in option space. Both the equilibrium fuel cycle concentrations and the transient time to reach equilibrium for each isotope were evaluated over a range of reactor, reprocessing and cooling time combinations. New bounding cases and analysis methods for evaluating both reactor safety and radiation worker safety were established. This holistic collection of physics analyses and methods gives improved resolution of fuel cycle options, and impacts thereof, over that of previous ad-hoc and single-point analyses.

  19. Large and stable reversible lithium-ion storages from mesoporous SnO2 nanosheets with ultralong lifespan over 1000 cycles

    Science.gov (United States)

    Zhang, Xiao; Jiang, Bin; Guo, Jinxue; Xie, Yaping; Tang, Lin

    2014-12-01

    The major challenge to promote the commercialization of SnO2 anode materials is to construct unique structures and/or composites that could alleviate the volume effect and extend the lifespan. This study develops an efficient synthetic solution for the preparation of mesoporous SnO2 nanosheets, which involves an evaporation-induced selfassembly process and the following thermal treatment. Surfactant F127 is used as the soft template to form abundant cores. The as-prepared sample intrinsically inherits flexible sheet-like structure and porous features, as characterized with XRD, SEM, TEM and BET techniques. Based on these combining structural benefits, the sample is utilized as anode materials for lithium-ion batteries and exhibits excellent Li+ storage performance such as large and stable reversible capacity, good rate capability, and especially the outstanding durable cycling life of over 1000 cycles, which meets the demands of practical applications. The structural changes of SnO2 nanosheets are observed from the decomposed electrodes after different electrochemical cycles. Moreover, this synthesis strategy may offer an alternative and universal approach for synthesis of other transitional metal oxides or their binary composites as high-performance anode materials for lithium-ion batteries.

  20. Resonant elastic scattering of 15O and a new reaction path in the CNO cycle

    International Nuclear Information System (INIS)

    Stefan, Gheorghe Iulian

    2006-12-01

    the reaction products from beam particles. The separation is based on the magnetic rigidity values different for the nuclei composing the beam from the ones of the reaction products under study. The new results obtained were confronted with the computed rate of the reaction 15 O(p,β + ) 16 O in comparison with the rate estimations for 15 O(α,γ) 19 Ne. For the first time one underlines the significance of the low energy tail of a resonance in an unbound nucleus. The effect would be an enhancement of the beta decay of 16 F. The consequences for astrophysical processes are underlined. New sequential reactions are suggested and two new reaction cycles from 15 O trough again 15 O are described on this basis. These newly suggested cycles can enhance the energy generation in an explosive environment. To study thoroughly their influence these two new cycles should be introduced in advanced simulation astrophysical codes particularly into those simulating the X bursts

  1. Modeling interactions of soil hydrological dynamics and soil thermal and permafrost dynamics and their effects on carbon cycling in northern high latitudes

    Science.gov (United States)

    Zhuang, Q.; Tang, J.

    2008-12-01

    Large areas of northern high latitude ecosystems are underlain with permafrost. The warming temperature and fires deteriorate the stability of those permafrost, altering hydrological cycle, and consequently soil temperature and active layer depth. These changes will determine the fate of large carbon pools in soils and permafrost over the region. We developed a modeling framework of hydrology, permafrost, and biogeochemical dynamics based on our existing modules of these components. The framework was incorporated with a new snow dynamics module and the effects of soil moisture on soil thermal properties. The framework was tested for tundra and boreal forest ecosystems at field sites with respect to soil thermal and hydrological regimes in Alaska and was then applied to the whole Alaskan ecosystems for the period of 1923-2000 at a daily time step. Our two sets of simulations with and without considering soil moisture effects indicated that the soil temperature profile and active layer depth between two simulations are significant different. The differences of soil thermal regime would expect to result in different carbon dynamics. Next, we will verify the framework with the observed data of soil moisture and soil temperature at poor-drain, moderate-drain, and well-drain boreal forest sites in Alaska. With the verified framework, we will evaluate the effects of interactions of soil thermal and hydrological dynamics on carbon dynamics for the whole northern high latitudes.

  2. Empowerment: ciclo de implementação, dimensões e tipologia Empowerment: implementation cycle, dimensions and typology

    Directory of Open Access Journals (Sweden)

    Claudia Heloisa Ribeiro Rodrigues

    2001-12-01

    Full Text Available O empowerment é uma abordagem de projeto de trabalho que objetiva a delegação de poder de decisão, autonomia e participação dos funcionários na administração das empresas. Este artigo mostra as especificidades do empowerment em termos de suas dimensões, ciclo de implementação e tipologia. Discutem-se as etapas do ciclo de implementação do empowerment com o objetivo de enfatizar sua complexidade e sua natureza estratégica. Como dimensões tratadas têm-se: a visão compartilhada, a estrutura organizacional e o gerenciamento, a responsabilidade pela gestão do conhecimento e aprendizagem, e o reconhecimento institucional dos funcionários. A diversidade do empowerment é analisada em função de dois tipos de autoridade para tomada de decisão: sobre o conteúdo do trabalho e a sobre o contexto do trabalho. Com base nesta análise, os seguintes tipos de empowerment são apresentados: nulo, estabelecimento de atividades, participativo, definição de missão e auto-gerenciamento. Estabelecem-se também relações do empowerment com as configurações organizacionais, os estágios evolutivos das áreas funcionais e a administração de recursos humanos.Empowerment is an approach of work design which aims at delegating decision power, autonomy and employees’ participation in managing the company. This paper shows the peculiarities of empowerment in terms of its dimension, implementation cycle and typology. The steps of its implementation cycle are discussed in order to highlight its complexity and strategic nature. The following dimensions are presented: shared vision, organizational structure and management, responsibility for knowledge management and learning, and employees’ institutional recognition. The diversity of empowerment is analyzed in function of two types of authority for decision-making: over job content and over job context. Based on this analysis, the following typology of empowerment is presented: no discretion

  3. Microstructure and kinetics evolution in MgH{sub 2}–TiO{sub 2} pellets after hydrogen cycling

    Energy Technology Data Exchange (ETDEWEB)

    Mirabile Gattia, D., E-mail: daniele.mirabile@enea.it; Di Girolamo, G.; Montone, A.

    2014-12-05

    Highlights: • MgH{sub 2} was ball milled with TiO{sub 2} anatase phase and expanded graphite to prepare pellets. • Different pellets have been prepared at different compression load. • Pellets were repeatedly cycled under hydrogen pressure to simulate tank exercise and verify their stability. • The compression load highly affects the stability of the pellets to cycling. • Microstructural evolution of the particles due to cycling have been observed. - Abstract: The interest in Mg-based hydrides for solid state hydrogen storage is associated to their capability to reversibly absorb and desorb large amounts of hydrogen. In this work MgH{sub 2} powder with 5 wt.% TiO{sub 2} was ball milled for 10 h. The as-milled nanostructured powder was enriched with 5 wt.% of Expanded Natural Graphite (ENG) and then compacted in cylindrical pellets by cold pressing using different loads. Both the powder and the pellets were subjected to kinetic and thermodynamic tests using a Sievert’s type gas reaction controller, in order to study the microstructural and kinetic changes which took place during repeated H{sub 2} absorption and desorption cycles. The pellets exhibited good kinetic performance and durability, even if the pressure of compaction revealed to be an important parameter for their mechanical stability. Scanning Electron Microscopy observations of as-prepared and cycled pellets were carried out to investigate the evolution of their microstructure. In turn the phase composition before and after cycling was analyzed by X-ray diffraction.

  4. Multishelled NiO Hollow Microspheres for High-performance Supercapacitors with Ultrahigh Energy Density and Robust Cycle Life

    Science.gov (United States)

    Qi, Xinhong; Zheng, Wenji; Li, Xiangcun; He, Gaohong

    2016-09-01

    Multishelled NiO hollow microspheres for high-performance supercapacitors have been prepared and the formation mechanism has been investigated. By using resin microspheres to absorb Ni2+ and subsequent proper calcinations, the shell numbers, shell spacing and exterior shell structure were facilely controlled via varying synthetic parameters. Particularly, the exterior shell structure that accurately associated with the ion transfer is finely controlled by forming a single shell or closed exterior double-shells. Among multishelled NiO hollow microspheres, the triple-shelled NiO with an outer single-shelled microspheres show a remarkable capacity of 1280 F g-1 at 1 A g-1, and still keep a high value of 704 F g-1 even at 20 A g-1. The outstanding performances are attributed to its fast ion/electron transfer, high specific surface area and large shell space. The specific capacitance gradually increases to 108% of its initial value after 2500 cycles, demonstrating its high stability. Importantly, the 3S-NiO-HMS//RGO@Fe3O4 asymmetric supercapacitor shows an ultrahigh energy density of 51.0 Wh kg-1 at a power density of 800 W kg-1, and 78.8% capacitance retention after 10,000 cycles. Furthermore, multishelled NiO can be transferred into multishelled Ni microspheres with high-efficient H2 generation rate of 598.5 mL H2 min-1 g-1Ni for catalytic hydrolysis of NH3BH3 (AB).

  5. Next Generation Carbon-Nitrogen Dynamics Model

    Science.gov (United States)

    Xu, C.; Fisher, R. A.; Vrugt, J. A.; Wullschleger, S. D.; McDowell, N. G.

    2012-12-01

    Nitrogen is a key regulator of vegetation dynamics, soil carbon release, and terrestrial carbon cycles. Thus, to assess energy impacts on the global carbon cycle and future climates, it is critical that we have a mechanism-based and data-calibrated nitrogen model that simulates nitrogen limitation upon both above and belowground carbon dynamics. In this study, we developed a next generation nitrogen-carbon dynamic model within the NCAR Community Earth System Model (CESM). This next generation nitrogen-carbon dynamic model utilized 1) a mechanistic model of nitrogen limitation on photosynthesis with nitrogen trade-offs among light absorption, electron transport, carboxylation, respiration and storage; 2) an optimal leaf nitrogen model that links soil nitrogen availability and leaf nitrogen content; and 3) an ecosystem demography (ED) model that simulates the growth and light competition of tree cohorts and is currently coupled to CLM. Our three test cases with changes in CO2 concentration, growing temperature and radiation demonstrate the model's ability to predict the impact of altered environmental conditions on nitrogen allocations. Currently, we are testing the model against different datasets including soil fertilization and Free Air CO2 enrichment (FACE) experiments across different forest types. We expect that our calibrated model will considerably improve our understanding and predictability of vegetation-climate interactions.itrogen allocation model evaluations. The figure shows the scatter plots of predicted and measured Vc,max and Jmax scaled to 25 oC (i.e.,Vc,max25 and Jmax25) at elevated CO2 (570 ppm, test case one), reduced radiation in canopy (0.1-0.9 of the radiation at the top of canopy, test case two) and reduced growing temperature (15oC, test case three). The model is first calibrated using control data under ambient CO2 (370 ppm), radiation at the top of the canopy (621 μmol photon/m2/s), the normal growing temperature (30oC). The fitted model

  6. Resultados das técnicas de reprodução assistida em mulheres doadoras de oócitos no ciclo de tratamento Outcome of assisted reproductive technologies in women with oocyte donation in the treatment cycle

    Directory of Open Access Journals (Sweden)

    Edvaldo Cavalcante

    2005-11-01

    Full Text Available OBJETIVO: comparar os resultados de ciclos de reprodução assistida em mulheres doadoras de oócitos no ciclo de tratamento com o de mulheres não doadoras. MÉTODOS: foram avaliadas, retrospectivamente, as taxas de gravidez, implantação e abortamento de 50 pacientes que doaram oócitos durante o ciclo de reprodução assistida (grupo de doadoras e de 50 pacientes que não doaram oócitos (grupo de não-doadoras, em clínica privada de reprodução assistida em São Paulo, entre os anos de 2001 e 2003. Os critérios de inclusão no estudo foram os seguintes: idade menor que 35 anos; ciclos menstruais regulares; dosagem basal de FSH0,05. CONCLUSÃO: em pacientes que recuperam mais de seis oócitos, a doação de oócitos no ciclo de tratamento não prejudica os resultados dos ciclos de reprodução assistida e não eleva as taxas de abortamento.PURPOSE: to compare the outcome of treatment in patients undergoing assisted reproductive technology (ART cycles who donated eggs during their own ART treatment with the outcome of patients undergoing ART without egg donation. METHODS: we studied retrospectively the pregnancy and implantation rates of 50 patients who donated eggs during the course of their ART treatment (donor group, and the pregnancy and implantation rates of 50 patients who underwent ART cycles and kept all their eggs (non-donor group. between the years 2001-2003. The inclusion criteria used were as follows: age 0.05. CONCLUSION: this study suggests that in patients who produce more than 6 oocytes, egg donation in the treatment cycle does not influence adversely the outcome of ART cycles and does not increase the miscarriage rate.

  7. Dynamic Wnt5a expression in murine hair follicle cycle and its inhibitory effects on follicular.

    Science.gov (United States)

    Fang, De-Ren; Lv, Zhong-Fa; Qiao, Gang

    2014-04-01

    To analyze the dynamic expression of Wnt family member 5A (Wingless-type MMTV integration Wnt site family, member 5a) in murine hair cycle and its inhibitory effects on follicle in vivo. Situ hybridization in full-thickness skin was used to observe the change of mouse protein expression in different growth stages, and Ad-Wnt5a was injected after defeathering to observe the hair follicle growth in vivo. The Wnt5a mRNA was expressed at birth, and was firstly increased then decreased along with the progress of the hair cycle. It reached the peak in advanced stage of growth cycle (P<0.05). Rhoa and β-catenin expression levels were significantly decreased in three groups. Rac2 expression was significantly up-regulated, and the expression level of Wnt5a, Shh and Frizzled2 was increased, but less significantly than group 2. The expression of Wnt5a mRNA is consistent with change of murine follicle cycle, and has obvious inhibitory effects on the growth of hair follicle in vivo, indicating that it is antagonistic to Wnts pathway and interferes the growth of follicle together. Copyright © 2014 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  8. Life cycle based dynamic assessment coupled with multiple criteria decision analysis

    DEFF Research Database (Denmark)

    Sohn, Joshua; Kalbar, Pradip; Birkved, Morten

    2017-01-01

    the service life of the building. This case study uses both the established and the coupled MCDA assessment methods to quantify and assess the balance of impacts between the production of mineral wool insulation versus the production of space heat. The use of TOPSIS method for calculating single scores......This work looks at coupling Life cycle assessment (LCA) with a dynamic inventory and multiple criteria decision analysis (MCDA) to improve the validity and reliability of single score results for complex systems. This is done using the case study of a representative Danish single family home over...... not matter which impact assessment is applied. However, for the scenarios where other impact categories vary inversely or independently from the climate change impact indicator, such as with renewable energy production, there is need for a more unconventional method, such as the TOPSIS method...

  9. Aspectos determinantes do posicionamento corporal no ciclismo: uma revisão sistemática Aspects determinants of body positioning for cycling: a systematic review

    Directory of Open Access Journals (Sweden)

    Julio Francisco Kleinpaul

    2010-12-01

    Full Text Available Através de revisão sistemática, fez-se um levantamento de estudos que tratam do posicionamento corporal adequado para o ciclismo. Para isso, buscou-se por referências em língua Portuguesa e Inglesa, nas bases de dados LILACS, ScienceDirect, SciELO e MEDLINE. Os descritores utilizados para a busca dos artigos foram: posicionamento corporal + ciclismo; ajuste + bicicleta; postura + ciclismo; body positioning + cycling; bicycle fitting; cycling posture. Foram considerados artigos originais, de revisão simples, dissertações de mestrado e livros que tratassem de forma clara e objetiva o assunto, desde que publicados entre 1993 e 2009 (outubro. No total 20 estudos atenderam esses requisitos. De modo geral, estes sugerem que o conhecimento e habilidade para ajustar a bicicleta são úteis, no entanto, mesmo existindo protocolos para o ajuste adequado da bicicleta ao ciclista, os estudos denotam que a maioria dos ciclistas ainda as utiliza de forma errônea. Isso sugere a dificuldade de acesso aos estudos.By means of systematic review a surveying of English and Portuguese language studies concerning the expected body positioning for improvement of cycling. Search engines used were LILACS, ScienceDirect, SciELO and MEDLINE. The keywords used to find relevant papers were: posicionamento corporal + ciclismo; ajuste + bicicleta; postura + ciclismo; body positioning + cycling; bicycle fitting; cycling posture. Original papers, short review papers, master thesis and books published from 1993 to 2009 (October were considered when the main subject of discussion was the topic of interest. A total of 20 studies were considered. In general, the studies suggest that is will be useful to know about the bicycle fitting. Even so protocols for body positioning evaluation are available, most of studies concluded that cyclists are not able to use this protocol correctly. It suggests the difficult to access studies.

  10. The sensitivity and dynamic response of field ionization gas sensor based on ZnO nanorods

    International Nuclear Information System (INIS)

    Min Jiahua; Liang Xiaoyan; Wang Bin; Wang Linjun; Zhao Yue; Shi Weimin; Xia Yiben

    2011-01-01

    Field ionization gas sensors based on ZnO nanorods (50–300 nm in diameter, and 3–8 μm in length) with and without a buffer layer were fabricated, and the influence of the orientation of nano-ZnO on the ionization response of devices was discussed, including the sensitivity and dynamic response of the ZnO nanorods with preferential orientation. The results indicated that ZnO nanorods as sensor anode could dramatically decrease the breakdown voltage. The XRD and SEM images illustrated that nano-ZnO with a ZnO buffer layer displayed high c-axis orientation, which helps to significantly reduce the breakdown voltage. Device A based on ZnO nanorods with a ZnO buffer layer could distinguish toluene and acetone. The dynamic responses of device A to the NO x compounds presented the sensitivity of 0.045 ± 0.007 ppm/pA and the response speed within 17–40 s, and indicated a linear relationship between NO x concentration and current response at low NO x concentrations. In addition, the dynamic responses to benzene, isopropyl alcohol, ethanol, and methanol reveals that the device has higher sensitivity to gas with larger static polarizability and lower ionization energy.

  11. Progressive damage during thermal shock cycling of D-gun sprayed thermal barrier coatings with hollow spherical ZrO{sub 2}-8Y{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Ke, P.L. [State Key Lab for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China) and School of Metallurgy and Materials, University of Birmingham, Birmingham B15 2TT (United Kingdom)]. E-mail: csun@imr.ac.cn; Wang, Q.M. [State Key Lab for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Gong, J. [State Key Lab for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Sun, C. [State Key Lab for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Zhou, Y.C. [State Key Lab for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China)

    2006-11-05

    Thermal shock cycling behaviors of D-gun sprayed TBCs with a hollow spherical ZrO{sub 2}-8Y{sub 2}O{sub 3} (HSP-YSZ) top coat and NiCrAlY bond coat on directionally solidified Ni-base superalloys DZ125 were investigated at high temperature (1100 deg. C) {r_reversible} room temperature (RT) repeatedly by water quenching. Scanning electron microscopy (SEM) was used to characterize the coating microstructure and failure morphology. The results showed that failure of the D-gun sprayed TBC starts with crack initiation along the splats boundary in the ceramic top coat and the non-alumina oxides. The cracks propagate and coalesce with the increasing thermal cycling. The extensive cracking of the rapidly formed non-alumina oxides, resulting from the depletion of aluminum in the bond coat, aids to delamination of the outer ceramic layer. The stress distributions in TGO layer at different thermal shock cycles was measured by luminescence spectroscopy to investigate the failure mechanism of TBC system.

  12. The effect of thermal cycling on tetragonal to monoclinic transformation in ZrO2(2%Y2O3) ceramic studied by high temperature X-ray diffraction

    International Nuclear Information System (INIS)

    Zhu, W.Z.; Lei, T.C.; Zhou, Y.

    1993-01-01

    It has been established that brittleness and reliability of ceramics can be improved by a stress-triggered tetragonal (T) to monoclinic (M) transformation in zirconia termed transformation toughening. The T → M transformation is not only influenced by such intrinsic factors as the variety and amount of stabilizers, grain size and morphology of T phase, but can be affected by the cooling rate as well. A previous study by Tsubadin, using a dilation experiment to determine the effect of thermal cycling on the T → M transformation in partially stabilized zirconia suggested that sintering temperature determined the role of thermal cycling, while the underlying cause still remains ambiguous. The intent of the present paper is to reinvestigate the effect of thermal cycling on the T → M transition in a hot pressed ZrO 2 (2%y 2 O 3 ) ceramic, using a high temperature x-ray diffractometer, and rationalize the experimental results from the viewpoint of thermodynamics

  13. N2O emissions from the global agricultural nitrogen cycle – current state and future scenarios

    Directory of Open Access Journals (Sweden)

    H. Lotze-Campen

    2012-10-01

    Full Text Available Reactive nitrogen (Nr is not only an important nutrient for plant growth, thereby safeguarding human alimentation, but it also heavily disturbs natural systems. To mitigate air, land, aquatic, and atmospheric pollution caused by the excessive availability of Nr, it is crucial to understand the long-term development of the global agricultural Nr cycle. For our analysis, we combine a material flow model with a land-use optimization model. In a first step we estimate the state of the Nr cycle in 1995. In a second step we create four scenarios for the 21st century in line with the SRES storylines. Our results indicate that in 1995 only half of the Nr applied to croplands was incorporated into plant biomass. Moreover, less than 10 per cent of all Nr in cropland plant biomass and grazed pasture was consumed by humans. In our scenarios a strong surge of the Nr cycle occurs in the first half of the 21st century, even in the environmentally oriented scenarios. Nitrous oxide (N2O emissions rise from 3 Tg N2O-N in 1995 to 7–9 in 2045 and 5–12 Tg in 2095. Reinforced Nr pollution mitigation efforts are therefore required.

  14. Dynamic of biogeochemical selenium cycle in terrestrial ecosystems: retention and reactivity in soil; role of vegetation

    International Nuclear Information System (INIS)

    Di Tullo, Pamela

    2015-01-01

    This work was performed in the frame of the safety assessment program prior to the possible construction of an underground repository for nuclear waste (HAVL). To consolidate risk assessment models associated to a potential 79 Se biosphere contamination, biogeochemistry of stable selenium was investigated, aiming firstly to highlight the dynamics of Se cycling in a forest ecosystem, in terms of inventories and annual fluxes. Consequently to these first results, which suggest a clay role of soil and its organic pool in the global Se cycle, two studies based on the use of isotopically enriched tracers were further carried out in order to clarify the processes involved in (i) Se retention and reactivity in soils and (ii) incorporation of inorganic Se within organic pool of vegetal biomass. (author) [fr

  15. Transcriptome and proteome dynamics of a light-dark synchronized bacterial cell cycle.

    Directory of Open Access Journals (Sweden)

    Jacob R Waldbauer

    Full Text Available BACKGROUND: Growth of the ocean's most abundant primary producer, the cyanobacterium Prochlorococcus, is tightly synchronized to the natural 24-hour light-dark cycle. We sought to quantify the relationship between transcriptome and proteome dynamics that underlie this obligate photoautotroph's highly choreographed response to the daily oscillation in energy supply. METHODOLOGY/PRINCIPAL FINDINGS: Using RNA-sequencing transcriptomics and mass spectrometry-based quantitative proteomics, we measured timecourses of paired mRNA-protein abundances for 312 genes every 2 hours over a light-dark cycle. These temporal expression patterns reveal strong oscillations in transcript abundance that are broadly damped at the protein level, with mRNA levels varying on average 2.3 times more than the corresponding protein. The single strongest observed protein-level oscillation is in a ribonucleotide reductase, which may reflect a defense strategy against phage infection. The peak in abundance of most proteins also lags that of their transcript by 2-8 hours, and the two are completely antiphase for some genes. While abundant antisense RNA was detected, it apparently does not account for the observed divergences between expression levels. The redirection of flux through central carbon metabolism from daytime carbon fixation to nighttime respiration is associated with quite small changes in relative enzyme abundances. CONCLUSIONS/SIGNIFICANCE: Our results indicate that expression responses to periodic stimuli that are common in natural ecosystems (such as the diel cycle can diverge significantly between the mRNA and protein levels. Protein expression patterns that are distinct from those of cognate mRNA have implications for the interpretation of transcriptome and metatranscriptome data in terms of cellular metabolism and its biogeochemical impact.

  16. Hydrological cycle research by D & 18 O tracing in small watershed in the loess hilly region

    Directory of Open Access Journals (Sweden)

    Xu Xuexuan

    2013-12-01

    Full Text Available The objective of this study was to determine the mechanisms of the hydrologic cycle in the loess area in China. Sixty eight water samples from precipitation, soil water of the 0 – 4 m layer, surface water in the valley, ground water (spring and well were collected and the Deuterium (D and Oxygen – 18 (O of these water samples were analyzed to interpret the relationship among those waters in the watershed in the loess hilly region during 2005 – 2009. The results show that: the D & 18O of precipitation in Yangou was consistent with that of Xi'an, apparently the north migration of water vapor in Xi'an; according to the correlations among the differential waters in D & 18 O, confirmed that precipitation recharge could account for most of the sources of valley flow, with part of the recharge water going to soil water recharge. The D & 18O of groundwater were very close to that of precipitation, likely the soil preferential flow was dominant in groundwater recharge although the infiltration had a certain lag. Under the influence of rainfall and evaporation, the response of the soil moisture profile, and its D & 18O profile were different. The soil moisture had the strong influenced layer in the 0 60 cm range, a weak impacted layer in 60 160 cm, and a stable layer below 160 cm. It was shown that the soil evaporation depth could be up to 160 cm because the D & 18O changed in that depth. The study could increase our understanding of the magnitude and pattern of the hydrologic cycle, which should improve water resources management in the watershed scale.

  17. Carrier recombination dynamics in anatase TiO 2 nanoparticles

    Science.gov (United States)

    Cavigli, Lucia; Bogani, Franco; Vinattieri, Anna; Cortese, Lorenzo; Colocci, Marcello; Faso, Valentina; Baldi, Giovanni

    2010-11-01

    We present an experimental study of the radiative recombination dynamics in size-controlled TiO 2 nanoparticles in the range 20-130 nm. Time-integrated photoluminescence spectra clearly show a dominance of self-trapped exciton (STE) emission, with main features not dependent on the nanoparticle size and on its environment. From picosecond time-resolved experiments as a function of the excitation density and the nanoparticle size we address the STE recombination dynamics as the result of two main processes related to the direct STE formation and to the indirect STE formation mediated by non-radiative surface states.

  18. Identification of GIG1, a GlcNAc-induced gene in Candida albicans needed for normal sensitivity to the chitin synthase inhibitor nikkomycin Z.

    Science.gov (United States)

    Gunasekera, Angelo; Alvarez, Francisco J; Douglas, Lois M; Wang, Hong X; Rosebrock, Adam P; Konopka, James B

    2010-10-01

    The amino sugar N-acetylglucosamine (GlcNAc) is known to be an important structural component of cells from bacteria to humans, but its roles in cell signaling are less well understood. GlcNAc induces two pathways in the human fungal pathogen Candida albicans. One activates cyclic AMP (cAMP) signaling, which stimulates the formation of hyphal cells and the expression of virulence genes, and the other pathway induces genes needed to catabolize GlcNAc. Microarray analysis of gene expression was carried out under four different conditions in order to characterize the transcriptional changes induced by GlcNAc. The most highly induced genes include those that encode a GlcNAc transporter (NGT1) and the GlcNAc catabolic enzymes (HXK1, DAC1, and NAG1). GlcNAc also activated most of the genes whose expression is increased when cells are triggered with other stimuli to form hyphae. Surprisingly, GlcNAc also induced a subset of genes that are regulated by galactose (GAL1, GAL7, and GAL10), which may be due to cross talk between signaling pathways. A novel GlcNAc-induced gene, GIG1, which is not essential for GlcNAc catabolism or the induction of hyphae, was identified. However, a Gig1-green fluorescent protein (GFP) fusion protein was specifically induced by GlcNAc, and not by other sugars. Gig1-GFP localized to the cytoplasm, where GlcNAc metabolism occurs. Significantly, a gig1Δ mutant displayed increased resistance to nikkomycin Z, which inhibits chitin synthase from converting UDP-GlcNAc into cell wall chitin. Gig1 is highly conserved in fungi, especially those that contain GlcNAc catabolic genes. These results implicate Gig1 in GlcNAc metabolism.

  19. Identification of GIG1, a GlcNAc-Induced Gene in Candida albicans Needed for Normal Sensitivity to the Chitin Synthase Inhibitor Nikkomycin Z▿§

    Science.gov (United States)

    Gunasekera, Angelo; Alvarez, Francisco J.; Douglas, Lois M.; Wang, Hong X.; Rosebrock, Adam P.; Konopka, James B.

    2010-01-01

    The amino sugar N-acetylglucosamine (GlcNAc) is known to be an important structural component of cells from bacteria to humans, but its roles in cell signaling are less well understood. GlcNAc induces two pathways in the human fungal pathogen Candida albicans. One activates cyclic AMP (cAMP) signaling, which stimulates the formation of hyphal cells and the expression of virulence genes, and the other pathway induces genes needed to catabolize GlcNAc. Microarray analysis of gene expression was carried out under four different conditions in order to characterize the transcriptional changes induced by GlcNAc. The most highly induced genes include those that encode a GlcNAc transporter (NGT1) and the GlcNAc catabolic enzymes (HXK1, DAC1, and NAG1). GlcNAc also activated most of the genes whose expression is increased when cells are triggered with other stimuli to form hyphae. Surprisingly, GlcNAc also induced a subset of genes that are regulated by galactose (GAL1, GAL7, and GAL10), which may be due to cross talk between signaling pathways. A novel GlcNAc-induced gene, GIG1, which is not essential for GlcNAc catabolism or the induction of hyphae, was identified. However, a Gig1-green fluorescent protein (GFP) fusion protein was specifically induced by GlcNAc, and not by other sugars. Gig1-GFP localized to the cytoplasm, where GlcNAc metabolism occurs. Significantly, a gig1Δ mutant displayed increased resistance to nikkomycin Z, which inhibits chitin synthase from converting UDP-GlcNAc into cell wall chitin. Gig1 is highly conserved in fungi, especially those that contain GlcNAc catabolic genes. These results implicate Gig1 in GlcNAc metabolism. PMID:20675577

  20. The evolving nuclear fuel cycle

    International Nuclear Information System (INIS)

    Gale, J.D.; Hanson, G.E.; Coleman, T.A.

    1993-01-01

    Various economics and political pressures have shaped the evolution of nuclear fuel cycles over the past 10 to 15 yr. Future trends will no doubt be similarly driven. This paper discusses the influences that long cycles, high discharge burnups, fuel reliability, and costs will have on the future nuclear cycle. Maintaining the economic viability of nuclear generation is a key issue facing many utilities. Nuclear fuel has been a tremendous bargain for utilities, helping to offset major increases in operation and maintenance (O ampersand M) expenses. An important factor in reducing O ampersand M costs is increasing capacity factor by eliminating outages

  1. Evolução da anatomia radicular do milho 'Saracura' em ciclos de seleção sucessivos Evolution of the root anatomy of 'Saracura' maize in successive selection cycles

    Directory of Open Access Journals (Sweden)

    Fabricio José Pereira

    2008-12-01

    Full Text Available Este trabalho teve como objetivo verificar as modificações nas características anatômicas radiculares relacionadas à hipoxia, durante 18 ciclos de seleção da variedade de milho (Zea mays BRS 4154 Saracura, adaptada a áreas sujeitas a alagamento. A variedade BR 107 e o híbrido simples BRS 1010, suscetíveis ao alagamento, foram utilizados como controle. As diferentes cultivares foram submetidas a alagamentos intermitentes, a cada dois dias, durante dois meses. As amostras radiculares foram preparadas e analisadas em microscopiaóptica. Em relação ao grupo controle e aos ciclos anteriores de seleção, a BRS 4154 teve aumento na formação de aerênquima, diminuição do córtex, diminuição do diâmetro dos vasos, diminuição da camada subepidérmica, aumento na espessura do floema e epiderme. Os sucessivos ciclos de seleção melhoraram as características do milho 'Saracura' e sua tolerância a ambientes alagados.This work aimed to verify the modifications in the root anatomical characteristics related to hypoxia, along 18 selection cycles of the maize (Zea mays cultivar BRS 4154 Saracura, adapted to areas subject to flooding. Cultivars not tolerant to fooding, BR 107 and the simple hybrid BRS 1010, were used as controls. The different cultivars were subjected to intermittent soil waterlogging every two days for two months. The root samples were prepared and analyzed through light microscopy. Compared to the controls group and to early selection cycles, BRS 4154 had increased development of aerenchyma, decreased cortex thickness, decreased metaxylem diameter, decreased subepidermal layer, and increased epidermis and phloem thickness. The successive selection cycles improved 'Saracura' maize characteristics and its tolerance to flooding environments.

  2. Dynamic and Thermodynamic Examination of a Two-Stroke Internal Combustion Engine

    OpenAIRE

    İPCİ, Duygu; KARABULUT, Halit

    2016-01-01

    In this study the combined dynamic and thermodynamic analysis of a two-stroke internal combustion engine was carried out. The variation of the heat, given to the working fluid during the heating process of the thermodynamic cycle, was modeled with the Gaussian function. The dynamic model of the piston driving mechanism was established by means of nine equations, five of them are motion equations and four of them are kinematic relations. Equations are solved by using a numerical method based o...

  3. Quasi-dynamic model for an organic Rankine cycle

    International Nuclear Information System (INIS)

    Bamgbopa, Musbaudeen O.; Uzgoren, Eray

    2013-01-01

    Highlights: • Study presents a simplified transient modeling approach for an ORC under variable heat input. • The ORC model is presented as a synthesis of its models of its sub-components. • The model is compared to benchmark numerical simulations and experimental data at different stages. - Abstract: When considering solar based thermal energy input to an organic Rankine cycle (ORC), intermittent nature of the heat input does not only adversely affect the power output but also it may prevent ORC to operate under steady state conditions. In order to identify reliability and efficiency of such systems, this paper presents a simplified transient modeling approach for an ORC operating under variable heat input. The approach considers that response of the system to heat input variations is mainly dictated by the evaporator. Consequently, overall system is assembled using dynamic models for the heat exchangers (evaporator and condenser) and static models of the pump and the expander. In addition, pressure drop within heat exchangers is neglected. The model is compared to benchmark numerical and experimental data showing that the underlying assumptions are reasonable for cases where thermal input varies in time. Furthermore, the model is studied on another configuration and mass flow rates of both the working fluid and hot water and hot water’s inlet temperature to the ORC unit are shown to have direct influence on the system’s response

  4. O-GlcNAcase Fragment Discovery with Fluorescence Polarimetry.

    Science.gov (United States)

    Borodkin, Vladimir S; Rafie, Karim; Selvan, Nithya; Aristotelous, Tonia; Navratilova, Iva; Ferenbach, Andrew T; van Aalten, Daan M F

    2018-05-18

    The attachment of the sugar N-acetyl-D-glucosamine (GlcNAc) to specific serine and threonine residues on proteins is referred to as protein O-GlcNAcylation. O-GlcNAc transferase (OGT) is the enzyme responsible for carrying out the modification, while O-GlcNAcase (OGA) reverses it. Protein O-GlcNAcylation has been implicated in a wide range of cellular processes including transcription, proteostasis, and stress response. Dysregulation of O-GlcNAc has been linked to diabetes, cancer, and neurodegenerative and cardiovascular disease. OGA has been proposed to be a drug target for the treatment of Alzheimer's and cardiovascular disease given that increased O-GlcNAc levels appear to exert a protective effect. The search for specific, potent, and drug-like OGA inhibitors with bioavailability in the brain is therefore a field of active research, requiring orthogonal high-throughput assay platforms. Here, we describe the synthesis of a novel probe for use in a fluorescence polarization based assay for the discovery of inhibitors of OGA. We show that the probe is suitable for use with both human OGA, as well as the orthologous bacterial counterpart from Clostridium perfringens, CpOGA, and the lysosomal hexosaminidases HexA/B. We structurally characterize CpOGA in complex with a ligand identified from a fragment library screen using this assay. The versatile synthesis procedure could be adapted for making fluorescent probes for the assay of other glycoside hydrolases.

  5. The impact of science on economic growth and its cycles the mathematical dynamics determined by the basic macroeconomic facts

    CERN Document Server

    Aulin, Arvid

    1998-01-01

    The author shows that the enormous gap between theory and facts in modern macroeconomics can only be eliminated by nonlinear macroeconomic dynamics with the following special characteristics: First of all, only certain group-theoretical invariants generate the correct growth cycles with irregularly varying lengths, not any stochastic process as usually applied for this purpose. Furthermore, a special extended value function and generalized human capital are needed for a correct representation of scientific and technological innovation. Finally, the correct nonlinear macroeconomic dynamics are not reducible to microeconomics, for both of the above mentioned reasons.

  6. Dynamic characteristics of nanoindentation using atomistic simulation

    International Nuclear Information System (INIS)

    Fang, Te-Hua; Chang, Wen-Yang; Huang, Jian-Jin

    2009-01-01

    Atomistic simulations are used to investigate how the nanoindentation mechanism influences dislocation nucleation under molecular dynamic behavior on the aluminum (0 0 1) surface. The characteristics of molecular dynamics in terms of various nucleation criteria are explored, including various molecular models, a multi-step load/unload cycle, deformation mechanism of atoms, tilt angle of the indenter, and slip vectors. Simulation results show that both the plastic energy and the adhesive force increase with increasing nanoindentation depths. The maximum forces for all indentation depths decrease with increasing multi-step load/unload cycle time. Dislocation nucleation, gliding, and interaction occur along Shockley partials on (1 1 1) slip planes. The indentation force applied along the normal direction, a tilt angle of 0 o , is smaller than the force component that acts on the surface atoms. The corresponding slip vector of the atoms in the (1 1 1) plane has low-energy sessile stair-rod dislocations in the pyramid of intrinsic stacking faults.

  7. Dynamic characteristics of nanoindentation using atomistic simulation

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Te-Hua, E-mail: fang.tehua@msa.hinet.net [Institute of Mechanical and Electromechanical Engineering, National Formosa University, Yunlin 632, Taiwan (China); Chang, Wen-Yang [Microsystems Technology Center, Industrial Technology Research Institute, Tainan 709, Taiwan (China); Huang, Jian-Jin [Institute of Mechanical and Electromechanical Engineering, National Formosa University, Yunlin 632, Taiwan (China)

    2009-06-15

    Atomistic simulations are used to investigate how the nanoindentation mechanism influences dislocation nucleation under molecular dynamic behavior on the aluminum (0 0 1) surface. The characteristics of molecular dynamics in terms of various nucleation criteria are explored, including various molecular models, a multi-step load/unload cycle, deformation mechanism of atoms, tilt angle of the indenter, and slip vectors. Simulation results show that both the plastic energy and the adhesive force increase with increasing nanoindentation depths. The maximum forces for all indentation depths decrease with increasing multi-step load/unload cycle time. Dislocation nucleation, gliding, and interaction occur along Shockley partials on (1 1 1) slip planes. The indentation force applied along the normal direction, a tilt angle of 0{sup o}, is smaller than the force component that acts on the surface atoms. The corresponding slip vector of the atoms in the (1 1 1) plane has low-energy sessile stair-rod dislocations in the pyramid of intrinsic stacking faults.

  8. Resonant elastic scattering of {sup 15}O and a new reaction path in the CNO cycle; Spectroscopie par diffusion elastique resonante d' {sup 15}O et nouveau chemin de reaction dans le cycle CNO

    Energy Technology Data Exchange (ETDEWEB)

    Stefan, Gheorghe Iulian [Ecole doctorale SIMEM, U.F.R. Sciences, Universite de Caen Basse-Normandie, 14032 Caen Cedex (France)

    2006-12-15

    direction. There are stressed the advantages of this approach and one gives details concerning the method of separation of the reaction products from beam particles. The separation is based on the magnetic rigidity values different for the nuclei composing the beam from the ones of the reaction products under study. The new results obtained were confronted with the computed rate of the reaction {sup 15}O(p,{beta}{sup +}){sup 16}O in comparison with the rate estimations for {sup 15}O({alpha},{gamma}){sup 19}Ne. For the first time one underlines the significance of the low energy tail of a resonance in an unbound nucleus. The effect would be an enhancement of the beta decay of {sup 16}F. The consequences for astrophysical processes are underlined. New sequential reactions are suggested and two new reaction cycles from {sup 15}O trough again {sup 15}O are described on this basis. These newly suggested cycles can enhance the energy generation in an explosive environment. To study thoroughly their influence these two new cycles should be introduced in advanced simulation astrophysical codes particularly into those simulating the X bursts.

  9. Establishment and prioritization of relevant factors to the safety of fuel cycle facilities non reactor through dynamics archetypes evaluation; Estabelecimento e priorizacao de fatores relevantes para a seguranca de instalacoes do ciclo do combustivel exceto o reator atraves da avaliacao da dinamica de arquetipos

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, Anna Leticia Barbosa de

    2012-07-01

    The present work aims to establish and prioritize factors that are important to the safety of nuclear fuel cycle facilities in order to model, analyze and design safety as a physical system, employing systemic models in an innovative way. This work takes into consideration the fact that models that use adaptations of methodologies for nuclear reactors will not properly work due to the specificities of fuel cycle facilities. Based on the fundamentals of the theory of systems, the four levels of system thinking, and the relationship of eight socio technical factors, a mental model has been developed for safety management in the nuclear fuel cycle context. From this conceptual model, safety archetypes were constructed in order to identify and highlight the processes of change and decision making that allow the system to migrate to a state of loss of safety. After that, stock and flow diagrams were created so that their behavior could be assessed by the system's dynamics. The results from the analysis using the model that simulates the dynamic behavior of the variables (socio technical factors) indicated, as expected, that the system's dynamics proved to be an appropriate and efficient tool for modeling fuel cycle safety as an emergent property. (author)

  10. Computational Fluid Dynamic Modeling of Rocket Based Combined Cycle Engine Flowfields

    Science.gov (United States)

    Daines, Russell L.; Merkle, Charles L.

    1994-01-01

    Computational Fluid Dynamic techniques are used to study the flowfield of a fixed geometry Rocket Based Combined Cycle engine operating in rocket ejector mode. Heat addition resulting from the combustion of injected fuel causes the subsonic engine flow to choke and go supersonic in the slightly divergent combustor-mixer section. Reacting flow computations are undertaken to predict the characteristics of solutions where the heat addition is determined by the flowfield. Here, adaptive gridding is used to improve resolution in the shear layers. Results show that the sonic speed is reached in the unheated portions of the flow first, while the heated portions become supersonic later. Comparison with results from another code show reasonable agreement. The coupled solutions show that the character of the combustion-based thermal choking phenomenon can be controlled reasonably well such that there is opportunity to optimize the length and expansion ratio of the combustor-mixer.

  11. Isothermal titration calorimetric and computational studies on the binding of chitooligosaccharides to pumpkin (Cucurbita maxima) phloem exudate lectin.

    Science.gov (United States)

    Narahari, Akkaladevi; Singla, Hitesh; Nareddy, Pavan Kumar; Bulusu, Gopalakrishnan; Surolia, Avadhesha; Swamy, Musti J

    2011-04-14

    The interaction of chitooligosaccharides [(GlcNAc)(2-6)] with pumpkin phloem exudate lectin (PPL) was investigated by isothermal titration calorimetry and computational methods. The dimeric PPL binds to (GlcNAc)(3-5) with binding constants of 1.26-1.53 × 10(5) M(-1) at 25 °C, whereas chitobiose exhibits approximately 66-fold lower affinity. Interestingly, chitohexaose shows nearly 40-fold higher affinity than chitopentaose with a binding constant of 6.16 × 10(6) M(-1). The binding stoichiometry decreases with an increase in the oligosaccharide size from 2.26 for chitobiose to 1.08 for chitohexaose. The binding reaction was essentially enthalpy driven with negative entropic contribution, suggesting that hydrogen bonds and van der Waals' interactions are the main factors that stabilize PPL-saccharide association. The three-dimensional structure of PPL was predicted by homology modeling, and binding of chitooligosaccharides was investigated by molecular docking and molecular dynamics simulations, which showed that the protein binding pocket can accommodate up to three GlcNAc residues, whereas additional residues in chitotetraose and chitopentaose did not exhibit any interactions with the binding pocket. Docking studies with chitohexaose indicated that the two triose units of the molecule could interact with different protein binding sites, suggesting formation of higher order complexes by the higher oligomers of GlcNAc by their simultaneous interaction with two protein molecules.

  12. Simulation of Cycle-to-Cycle Variation in Dual-Fuel Engines

    KAUST Repository

    Jaasim, Mohammed

    2017-03-13

    Standard practices of internal combustion (IC) engine experiments are to conduct the measurements of quantities averaged over a large number of cycles. Depending on the operating conditions, the cycle-to-cycle variation (CCV) of quantities, such as the indicated mean effective pressure (IMEP) are observed at different levels. Accurate prediction of CCV in IC engines is an important but challenging task. Computational fluid dynamics (CFD) simulations using high performance computing (HPC) can be used effectively to visualize such 3D spatial distributions. In the present study, a dual fuel large engine is considered, with natural gas injected into the manifold accompanied with direct injection of diesel pilot fuel to trigger ignition. Multiple engine cycles in 3D are simulated in series as in the experiments to investigate the potential of HPC based high fidelity simulations to accurately capture the cycle to cycle variation in dual fuel engines. Open cycle simulations are conducted to predict the combined effect of the stratification of fuel-air mixture, temperature and turbulence on the CCV of pressure. The predicted coefficient of variation (COV) of pressure compared to the results from closed cycle simulations and the experiments.

  13. A hybrid mammalian cell cycle model

    Directory of Open Access Journals (Sweden)

    Vincent Noël

    2013-08-01

    Full Text Available Hybrid modeling provides an effective solution to cope with multiple time scales dynamics in systems biology. Among the applications of this method, one of the most important is the cell cycle regulation. The machinery of the cell cycle, leading to cell division and proliferation, combines slow growth, spatio-temporal re-organisation of the cell, and rapid changes of regulatory proteins concentrations induced by post-translational modifications. The advancement through the cell cycle comprises a well defined sequence of stages, separated by checkpoint transitions. The combination of continuous and discrete changes justifies hybrid modelling approaches to cell cycle dynamics. We present a piecewise-smooth version of a mammalian cell cycle model, obtained by hybridization from a smooth biochemical model. The approximate hybridization scheme, leading to simplified reaction rates and binary event location functions, is based on learning from a training set of trajectories of the smooth model. We discuss several learning strategies for the parameters of the hybrid model.

  14. Development and comparison of different advanced absorption cycles

    Energy Technology Data Exchange (ETDEWEB)

    Arh, S; Gaspersic, B [Faculty of Mechanical Engineering, Ljubjana (YU)

    1990-01-01

    A method for the calculation of the coefficient of performance for any absorption cycle is described. This method was used for the evaluation of different advanced absorption cycles working between four temperature and two or three pressure levels. Similar cycles were compared in the same temperature range with regard to the coefficient of performance, exergy efficiency and two working fluid pairs, NH{sub 3}-H{sub 2}O and H{sub 2}O-LiBr. Cycles and numerical results are presented and a computer-aided absorption cycle development system described. (author).

  15. Photoinhibition and photosynthetic pigment reorganisation dynamics in light/darkness cycles as photoprotective mechanisms of Porphyra umbilicalis against damaging effects of UV radiation

    Directory of Open Access Journals (Sweden)

    José Aguilera

    2008-03-01

    Full Text Available Porphyra umbilicalis L. Kutzing collected from the upper intertidal zone at Helgoland, North Sea, was exposed to different spectral ranges of UV radiation under both 12/12 h light/dark cycles and continuous irradiation. In light/dark cycles, oscillations of the optimal quantum yield (Fv /Fm were observed during the experiments, reaching maximal values at the end of the light phase followed by lower values during the dark phase. Decreased Fv /Fm was observed in thalli illuminated with photosynthetic active radiation (PAR plus UV-A and PAR+UV-A+UV-B, compared with the PAR control, indicating a certain degree of UV-induced photoinhibition. In addition, a decrease in the percentage of change of the linear initial slope and maximum electron transport rate (ETR estimated from ETR vs. irradiance curves was induced by UV radiation during the light phase. Recovery during the 12 h dark phase was almost completed in UV-A treated plants. PAR+UV-A seemed not to affect the photosynthesis, measured as O2 production. However, a decrease in O2 production was observed in the PAR+UV-A+UV-B treatment, but it recovered to initial values after 48 h of culture. No changes in total content of photosynthetic pigments were observed. However, thallus absorptance and the in vivo absorption cross-section in the PAR range (400-700 nm normalised to Chl a (a* parameter fluctuated during light/dark cycles and were positively correlated with changes in the optimum quantum yield, thus indicating that daily pigment reorganisation in the light-harvesting complex may play a key role in the photosynthetic performance of the algae. Both UV-A and UV-B treatments under continuous irradiation induced a significant reduction in the optimal quantum yield, ETR efficiency and photosynthetic oxygen production during the first 36 h to values around 30% of the initial ones. Thus, different protective mechanisms against UV stress can be observed in P. umbilicalis: dynamic photoinhibition when

  16. Electronic structure and lattice dynamics of rhombohedral BiAlO_3 from first-principles

    International Nuclear Information System (INIS)

    Kaczkowski, J.

    2016-01-01

    The structural, elastic, electronic, dynamical (zone-center phonon modes and Born effective charge tensors), and ferroelectric properties of the rhombohedral BiAlO_3 were calculated within various exchange-correlation functionals. The standard local-density (LDA) and generalized gradient (GGA) approximations, and nonlocal hybrid Heyd-Scuseria-Ernzerhof (HSE) were used. We have also performed the electronic structure calculations with meta-GGA Tran-Blaha functional. BiAlO_3 is indirect band gap semiconductor with the value of band gap: 2.87 eV (GGA), 4.14 eV (HSE), and 3.78 eV (TB-mBJ). The calculated spontaneous polarization is 81 μC/cm"2 (87 μC/cm"2) for GGA (HSE). The vibrational spectrum including LO-TO splitting was calculated within GGA. The zone-center phonon modes with LO-TO splitting for BiAlO_3 were compared with those in isostructural BiFeO_3. - Highlights: • Electronic structure of the rhombohedral phase of BiAlO_3 were calculated. • Structural, elastic, dynamical, and ferroelectric properties were investigated. • Calculations were done within GGA, hybrid HSE, and TB-mBJ functionals. • The lattice dynamics with LO-TO splitting were investigated within GGA functional.

  17. Capacity fade of LiAlyNi1-x-yCoxO2 cathode for lithium-ion batteries during accelerated calendar and cycle life tests (surface analysis of LiAlyNi1-x-yCoxO2 cathode after cycle tests in restricted depth of discharge ranges)

    Science.gov (United States)

    Watanabe, Shoichiro; Kinoshita, Masahiro; Hosokawa, Takashi; Morigaki, Kenichi; Nakura, Kensuke

    2014-07-01

    Cycle performance at 60 °C for a Li Al0.10Ni0.76Co0.14O2 (NCA) cathode/graphite cell was greatly improved when a DOD range in charge-discharge cycling (ΔDOD) was restricted. The deterioration mechanism was analyzed by X-ray photoelectron spectroscopy (XPS), high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and scanning transmission electron microscopy-electron energy-loss spectroscopy (STEM-EELS). Only after the cycle test in the ΔDOD of 0-100%, many micro-cracks were generated in the inter-surface between the primary particles which aggregated to form the secondary particles, and a NiO-like resistance layer with Fm3m rock salt structure was formed on each primary particle which was contact with other primary particles and electrolyte. It can be concluded that the lack of contact between the primary particles with the micro-crack generation and the formation of the new resistance layer are responsible for the capacity fading and the rise in impedance during charge-discharge cycle in the wide ΔDOD.

  18. Low-temperature elastic anomalies in CaTiO3: dynamical characterization

    Science.gov (United States)

    Placeres-Jiménez, R.; Gonçalves, L. G. V.; Rino, J. P.; Fraygola, B.; Nascimento, W. J.; Eiras, J. A.

    2012-11-01

    Pulse-echo ultrasonic measurements of elastic coefficients of CaTiO3 show anomalous behavior around 200 K, with a notable rise in the attenuation coefficient. Molecular dynamics simulation is used to simulate the elastic response of a mono-domain (MDm) and a poly-domain (PDm) configuration of CaTiO3 using the Vashishta-Raman interatomic potential. The PDm is obtained by cooling the melt from 3600 to 300 K at a rate of 0.5 K ps-1, so that it recrystallizes to the PDm orthorhombic configuration. The elastic behavior is simulated in the temperature range from 300 to 20 K. In the MDm, it is observed that the bulk modulus varies linearly with temperature, while in the PDm an anomalous hardening is seen around 210 K. The bulk modulus of the PDm fluctuates strongly and is lower than that of the MDm. Neither the pair correlation function nor the Ti-Ti-O bonding angle indicate a true structural phase transition in this range of temperatures. Given the absence of any apparent change in the structure, a possible explanation for this phenomenon is the emergence of a certain class of dynamical instability associated with domain wall motion. Curiously, the pressure fluctuations in both the MDm and PDm configurations follow a power law distribution f ˜ P-α, with the exponent independent of applied strain and temperature. Time series for pressure are used to analyze the dynamics by time-delay reconstruction techniques. The calculus of embedding and correlation dimension indicates that in the polycrystalline configuration, low-dimension dynamics (<26) appears, which tend to disappear at higher temperatures.

  19. Biogeochemical Cycling and Sea Ice Dynamics in the Bering Sea across the Mid-Pleistocene Transition

    Science.gov (United States)

    Detlef, H.; Sosdian, S. M.; Belt, S. T.; Smik, L.; Lear, C. H.; Hall, I. R.; Kender, S.; Leng, M. J.; Husum, K.; Cabedo-Sanz, P.

    2017-12-01

    Today the Bering Sea is characterized by high primary productivity (PP) along the eastern shelf, maintained by CO2 and nutrient rich upwelled deep waters and nutrient release during spring sea ice melting. As such, low oxygen concentrations are pervasive in mid-depth waters. Changes in ventilation and export productivity in the past have been shown to impact this oxygen minimum zone. On glacial/interglacial (G/IG) timescales sea ice formation plays a pivotal role on intermediate water ventilation with evidence pointing to the formation of North Pacific Intermediate Water (NPIW) in the Bering Sea during Pleistocene glacial intervals. In addition, sea ice plays a significant role in both long- and short-term climate change via associated feedback mechanisms. Thus, records of sea ice dynamics and biogeochemical cycling in the Bering Sea are necessary to fully understand the interaction between PP, circulation patterns, and past G/IG climates with potential implications for the North Pacific carbon cycle. Here we use a multi-proxy approach to study sea ice dynamics and bottom water oxygenation, across three intervals prior to, across, and after the Mid-Pleistocene Transition (MPT, 1.2-0.7 Ma) from International Ocean Discovery Program Site U1343. The MPT, most likely driven by internal climate mechanisms, is ideal to study changes in sea ice dynamics and sedimentary redox conditions on orbital timescales and to investigate the implications for associated feedback mechanisms. The sea ice record, based on various biomarkers, including IP25, shows substantial increase in sea ice extent across the MPT and the occurrence of a late-glacial/deglacial sea ice spike, with consequences for glacial NPIW formation and land glacier retreat via the temperature-precipitation feedback. U/Mn of foraminiferal authigenic coatings, a novel proxy for bottom water oxygenation, also shows distinct variability on G/IG timescales across the MPT, most likely a result of PP and water mass

  20. Breakaway frictions of dynamic O-rings in mechanical seals

    Science.gov (United States)

    Lai, Tom; Kay, Peter

    1993-05-01

    Breakaway friction of a dynamic O-ring affects the mechanical seal's response to large axial shaft movement and face wear. However, little data exist to help designers. Therefore, a test rig was developed to measure breakaway friction. The research quantitatively shows the effects of lubrication with silicone grease and a change of surface finish. By using the Taguchi statistical experimental design method, the significance of test parameters was evaluated with a minimum number of tests. It was found that fluid pressure, dwell time, and O-ring percentage squeeze affect O-ring breakaway friction more than the O-ring cross sectional diameter and axial sliding speed within the range of values tested. The authors showed that breakaway friction increased linearly with pressure. However, O-rings made of different materials had significantly different increase rates, even if they had nominally the same durometer hardness. Breakaway friction also increased with logarithm of dwell time. Again, the increase rate depended strongly on the specific O-ring material tested. These observations led the authors to believe that the typical approach of generalizing data based on generic polymer type and durometer was inappropriate.

  1. Ab initio molecular dynamics simulations of low energy recoil events in MgO

    International Nuclear Information System (INIS)

    Petersen, B. A.; Liu, B.; Weber, W. J.; Oak Ridge National Laboratory; Zhang, Y.; Oak Ridge National Laboratory

    2017-01-01

    In this paper, low-energy recoil events in MgO are studied using ab initio molecular dynamics simulations to reveal the dynamic displacement processes and final defect configurations. Threshold displacement energies, E_d, are obtained for Mg and O along three low-index crystallographic directions, [100], [110], and [111]. The minimum values for E_d are found along the [110] direction consisting of the same element, either Mg or O atoms. Minimum threshold values of 29.5 eV for Mg and 25.5 eV for O, respectively, are suggested from the calculations. For other directions, the threshold energies are considerably higher, 65.5 and 150.0 eV for O along [111] and [100], and 122.5 eV for Mg along both [111] and [100] directions, respectively. These results show that the recoil events in MgO are partial-charge transfer assisted processes where the charge transfer plays an important role. Finally, there is a similar trend found in other oxide materials, where the threshold displacement energy correlates linearly with the peak partial-charge transfer, suggesting this behavior might be universal in ceramic oxides.

  2. Molecular biological and isotopic biogeochemical prognoses of the nitrification-driven dynamic microbial nitrogen cycle in hadopelagic sediments.

    Science.gov (United States)

    Nunoura, Takuro; Nishizawa, Manabu; Kikuchi, Tohru; Tsubouchi, Taishi; Hirai, Miho; Koide, Osamu; Miyazaki, Junichi; Hirayama, Hisako; Koba, Keisuke; Takai, Ken

    2013-11-01

    There has been much progress in understanding the nitrogen cycle in oceanic waters including the recent identification of ammonia-oxidizing archaea and anaerobic ammonia oxidizing (anammox) bacteria, and in the comprehensive estimation in abundance and activity of these microbial populations. However, compared with the nitrogen cycle in oceanic waters, there are fewer studies concerning the oceanic benthic nitrogen cycle. To further elucidate the dynamic nitrogen cycle in deep-sea sediments, a sediment core obtained from the Ogasawara Trench at a water depth of 9760 m was analysed in this study. The profiles obtained for the pore-water chemistry, and nitrogen and oxygen stable isotopic compositions of pore-water nitrate in the hadopelagic sediments could not be explained by the depth segregation of nitrifiers and nitrate reducers, suggesting the co-occurrence of nitrification and nitrate reduction in the shallowest nitrate reduction zone. The abundance of SSU rRNA and functional genes related to nitrification and denitrification are consistent with the co-occurrence of nitrification and nitrate reduction observed in the geochemical analyses. This study presents the first example of cooperation between aerobic and anaerobic nitrogen metabolism in the deep-sea sedimentary environments. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  3. Solar cycle variation of interstellar neutral He, Ne, O density and pick-up ions along the Earth's orbit

    OpenAIRE

    Sokół, Justyna M.; Bzowski, Maciej; Kubiak, Marzena A.; Möbius, Eberhard

    2016-01-01

    We simulated the modulation of the interstellar neutral (ISN) He, Ne, and O density and pick-up ion (PUI) production rate and count rate along the Earth's orbit over the solar cycle from 2002 to 2013 to verify if solar cycle-related effects may modify the inferred ecliptic longitude of the ISN inflow direction. We adopted the classical PUI model with isotropic distribution function and adiabatic cooling, modified by time- and heliolatitude-dependent ionization rates and non-zero injection spe...

  4. 700 F hybrid capacitors cells composed of activated carbon and Li4Ti5O12 microspheres with ultra-long cycle life

    Science.gov (United States)

    Ruan, Dianbo; Kim, Myeong-Seong; Yang, Bin; Qin, Jun; Kim, Kwang-Bum; Lee, Sang-Hyun; Liu, Qiuxiang; Tan, Lei; Qiao, Zhijun

    2017-10-01

    To address the large-scale application demands of high energy density, high power density, and long cycle lifetime, 700-F hybrid capacitor pouch cells have been prepared, comprising ∼240-μm-thick activated carbon cathodes, and ∼60-μm-thick Li4Ti5O12 anodes. Microspherical Li4Ti5O12 (M-LTO) synthesized by spray-drying features 200-400 nm primary particles and interconnected nanopore structures. M-LTO half-cells exhibits high specific capacities (175 mAhh g-1), good rate capabilities (148 mAhh g-1 at 20 C), and ultra-long cycling stabilities (90% specific capacity retention after 10,000 cycles). In addition, the obtained hybrid capacitors comprising activated carbon (AC) and M-LTO shows excellent cell performances, achieving a maximum energy density of 51.65 Wh kg-1, a maximum power density of 2466 W kg-1, and ∼92% capacitance retention after 10,000 cycles, thus meeting the demands for large-scale applications such as trolleybuses.

  5. Molecular Dynamics of Water in Wood Studied by Fast Field Cycling Nuclear Magnetic Resonance Relaxometry

    Directory of Open Access Journals (Sweden)

    Xinyu Li

    2016-01-01

    Full Text Available Water plays a very important role in wood and wood products. The molecular motion of water in wood is susceptible to thermal activation. Thermal energy makes water molecules more active and weakens the force between water and wood; therefore, the water molecules dynamic properties are greatly influenced. Molecular dynamics study is important for wood drying; this paper therefore focuses on water molecular dynamics in wood through fast field cycling nuclear magnetic resonance relaxometry techniques. The results show that the spin-lattice relaxation rate decreases with the Larmor frequency. Nuclear magnetic resonance dispersion profiles at different temperatures could separate the relaxation contribution of water in bigger pores and smaller pores. The T1 distribution from wide to narrow at 10 MHz Larmor frequency reflects the shrinkage of pore size with the higher temperature. The dependence of spin-lattice relaxation rate on correlation time for water molecular motion based on BPP (proposed by Bloembergen, Purcell, and Pound theory shows that water correlation time increases with higher temperature, and its activation energy, calculated using the Arrhenius transformation equation, is 9.06±0.53 kJ/mol.

  6. Role of conformational dynamics in kinetics of an enzymatic cycle in a nonequilibrium steady state

    Science.gov (United States)

    Min, Wei; Xie, X. Sunney; Bagchi, Biman

    2009-08-01

    Enzyme is a dynamic entity with diverse time scales, ranging from picoseconds to seconds or even longer. Here we develop a rate theory for enzyme catalysis that includes conformational dynamics as cycling on a two-dimensional (2D) reaction free energy surface involving an intrinsic reaction coordinate (X) and an enzyme conformational coordinate (Q). The validity of Michaelis-Menten (MM) equation, i.e., substrate concentration dependence of enzymatic velocity, is examined under a nonequilibrium steady state. Under certain conditions, the classic MM equation holds but with generalized microscopic interpretations of kinetic parameters. However, under other conditions, our rate theory predicts either positive (sigmoidal-like) or negative (biphasic-like) kinetic cooperativity due to the modified effective 2D reaction pathway on X-Q surface, which can explain non-MM dependence previously observed on many monomeric enzymes that involve slow or hysteretic conformational transitions. Furthermore, we find that a slow conformational relaxation during product release could retain the enzyme in a favorable configuration, such that enzymatic turnover is dynamically accelerated at high substrate concentrations. The effect of such conformation retainment in a nonequilibrium steady state is evaluated.

  7. Earthquake cycle modeling of multi-segmented faults: dynamic rupture and ground motion simulation of the 1992 Mw 7.3 Landers earthquake.

    Science.gov (United States)

    Petukhin, A.; Galvez, P.; Somerville, P.; Ampuero, J. P.

    2017-12-01

    We perform earthquake cycle simulations to study the characteristics of source scaling relations and strong ground motions and in multi-segmented fault ruptures. For earthquake cycle modeling, a quasi-dynamic solver (QDYN, Luo et al, 2016) is used to nucleate events and the fully dynamic solver (SPECFEM3D, Galvez et al., 2014, 2016) is used to simulate earthquake ruptures. The Mw 7.3 Landers earthquake has been chosen as a target earthquake to validate our methodology. The SCEC fault geometry for the three-segmented Landers rupture is included and extended at both ends to a total length of 200 km. We followed the 2-D spatial correlated Dc distributions based on Hillers et. al. (2007) that associates Dc distribution with different degrees of fault maturity. The fault maturity is related to the variability of Dc on a microscopic scale. Large variations of Dc represents immature faults and lower variations of Dc represents mature faults. Moreover we impose a taper (a-b) at the fault edges and limit the fault depth to 15 km. Using these settings, earthquake cycle simulations are performed to nucleate seismic events on different sections of the fault, and dynamic rupture modeling is used to propagate the ruptures. The fault segmentation brings complexity into the rupture process. For instance, the change of strike between fault segments enhances strong variations of stress. In fact, Oglesby and Mai (2012) show the normal stress varies from positive (clamping) to negative (unclamping) between fault segments, which leads to favorable or unfavorable conditions for rupture growth. To replicate these complexities and the effect of fault segmentation in the rupture process, we perform earthquake cycles with dynamic rupture modeling and generate events similar to the Mw 7.3 Landers earthquake. We extract the asperities of these events and analyze the scaling relations between rupture area, average slip and combined area of asperities versus moment magnitude. Finally, the

  8. Ultra-small Fe3O4 nanocrystals decorated on 2D graphene nanosheets with excellent cycling stability as anode materials for lithium ion batteries

    International Nuclear Information System (INIS)

    Ren, Manman; Yang, Mingzhi; Liu, Weiliang; Li, Mei; Su, Liwei; Qiao, Congde; Wu, Xianbin; Ma, Houyi

    2016-01-01

    Graphical abstract: Ultra-small Fe 3 O 4 nanocrystals decorated on 2D graphene nanosheets with excellent cycling stability as anode materials for lithium ion batteries Manman Ren, Mingzhi Yang, Weiliang Liu, Mei Li, Liwei Su, Congde Qiao, Xianbin Wu, Houyi Ma Ultra-small Fe 3 O 4 nanocrystals/graphene nanosheets composites demonstrate excellent long-term cycling stability at high-rate. - Abstract: Ultra-small Fe 3 O 4 nanocrystals (NCs)/garphene nanosheets (GNSs) composites have been synthesized through a facile gel-like film (GF) assisted method in this work. Fe 3 O 4 NCs with particle size ∼10 nm homogeneously dispersed on 2D GNSs. Profiting from the ultra-small Fe 3 O 4 NCs and GNSs, the composites demonstrate superior long-term and high-rate performance as anode materials for lithium ion batteries. Even at the current density of 5 A g −1 , the reversible capacity still maintains 323.4 mAh g −1 after 700 cycles. This work might enlighten us on exploring preferable strategies to develop advanced metal oxides NCs/GNSs composites anode materials for lithium ion batteries or other energy storage devices.

  9. Enhanced rate capability and cycling stability of core/shell structured CoFe{sub 2}O{sub 4}/onion-like C nanocapsules for lithium-ion battery anodes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xianguo, E-mail: liuxianguohugh@gmail.com [School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002 (China); Wu, Niandu; Cui, Caiyun; Zhou, Pingping [School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002 (China); Sun, Yuping [Center for Engineering Practice and Innovation Education, Anhui University of Technology, Maanshan 243032 (China)

    2015-09-25

    Highlights: • Core/shell-structured CoFe{sub 2}O{sub 4}/onion-like carbon nanocapsules have been prepared. • CoFe{sub 2}O{sub 4}/C nanocapsules possess good reversibility even when the current density is up to 4C. • CoFe{sub 2}O{sub 4}/C nanocapsules obtain a discharge capacity of 914.2 mA h g{sup −1} after 500 cycles at 0.1C. - Abstract: In this work, core/shell structured CoFe{sub 2}O{sub 4}/onion-like C nanocapsules have been successfully fabricated by the arc discharge method and air-annealing process and confirmed by X-ray diffraction and high-resolution transmission electron microscopy. The core/shell structure effectively withstands the volume change of CoFe{sub 2}O{sub 4} nanoparticles during the cycling process. Moreover, the onion-like C shells reduce the charge transfer resistance and facilitate electron and ion transport throughout the electrode. As a result, CoFe{sub 2}O{sub 4}/onion-like C nanocapsules exhibit excellent performance as a potential anode material for lithium ion batteries and deliver a reversible capacity of 914.2 mA h g{sup −1} at 0.1C, even after 500 cycles and recover its original capacity when the rate returns from 4C to the initial 0.1C after 120 cycles.

  10. Quantification of myocardial blood flow using dynamic 320-row multi-detector CT as compared with 15O-H2O PET

    International Nuclear Information System (INIS)

    Kikuchi, Yasuka; Oyama-Manabe, Noriko; Kudo, Kohsuke; Naya, Masanao; Manabe, Osamu; Tomiyama, Yuuki; Tamaki, Nagara; Sasaki, Tsukasa; Katoh, Chietsugu; Shirato, Hiroki

    2014-01-01

    This study introduces a method to calculate myocardium blood flow (MBF) and coronary flow reserve (CFR) using the relatively low-dose dynamic 320-row multi-detector computed tomography (MDCT), validates the method against 15 O-H 2 O positron-emission tomography (PET) and assesses the CFRs of coronary artery disease (CAD) patients. Thirty-two subjects underwent both dynamic CT perfusion (CTP) and PET perfusion imaging at rest and during pharmacological stress. In 12 normal subjects (pilot group), the calculation method for MBF and CFR was established. In the other 13 normal subjects (validation group), MBF and CFR obtained by dynamic CTP and PET were compared. Finally, the CFRs obtained by dynamic CTP and PET were compared between the validation group and CAD patients (n = 7). Correlation between MBF of MDCT and PET was strong (r = 0.95, P CT in the CAD group (2.3 ± 0.8) was significantly lower than that in the validation group (5.2 ± 1.8) (P = 0.0011). We established a method for measuring MBF and CFR with the relatively low-dose dynamic MDCT. Lower CFR was well demonstrated in CAD patients by dynamic CTP. (orig.)

  11. Integrated earth system dynamic modeling for life cycle impact assessment of ecosystem services.

    Science.gov (United States)

    Arbault, Damien; Rivière, Mylène; Rugani, Benedetto; Benetto, Enrico; Tiruta-Barna, Ligia

    2014-02-15

    Despite the increasing awareness of our dependence on Ecosystem Services (ES), Life Cycle Impact Assessment (LCIA) does not explicitly and fully assess the damages caused by human activities on ES generation. Recent improvements in LCIA focus on specific cause-effect chains, mainly related to land use changes, leading to Characterization Factors (CFs) at the midpoint assessment level. However, despite the complexity and temporal dynamics of ES, current LCIA approaches consider the environmental mechanisms underneath ES to be independent from each other and devoid of dynamic character, leading to constant CFs whose representativeness is debatable. This paper takes a step forward and is aimed at demonstrating the feasibility of using an integrated earth system dynamic modeling perspective to retrieve time- and scenario-dependent CFs that consider the complex interlinkages between natural processes delivering ES. The GUMBO (Global Unified Metamodel of the Biosphere) model is used to quantify changes in ES production in physical terms - leading to midpoint CFs - and changes in human welfare indicators, which are considered here as endpoint CFs. The interpretation of the obtained results highlights the key methodological challenges to be solved to consider this approach as a robust alternative to the mainstream rationale currently adopted in LCIA. Further research should focus on increasing the granularity of environmental interventions in the modeling tools to match current standards in LCA and on adapting the conceptual approach to a spatially-explicit integrated model. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Gaseous Nitrogen Losses from Tropical Savanna Soils of Northern Australia: Dynamics, Controls and Magnitude of N2O, NO, and N2 emissions

    Science.gov (United States)

    Werner, C.; Hickler, T.; Hutley, L. B.; Butterbach-Bahl, K.

    2014-12-01

    Tropical savanna covers a large fraction of the global land area and thus may have a substantial effect on the global soil-atmosphere exchange of nitrogen. The pronounced seasonality of hygric conditions in this ecosystem affects strongly microbial process rates in the soil. As these microbial processes control the uptake, production, and release of nitrogen compounds, it is thought that this seasonality finally leads to strong temporal dynamics and varying magnitudes of gaseous losses to the atmosphere. However, given their areal extent and in contrast to other ecosystems, still few in-situ or laboratory studies exist that assess the soil-atmosphere exchange of nitrogen. We present laboratory incubation results from intact soil cores obtained from a natural savanna site in Northern Australia, where N2O, NO, and N2 emissions under controlled environmental conditions were investigated. Furthermore, in-situ measurements of high temporal resolution at this site recorded with automated static and dynamic chamber systems are discussed (N2O, NO). This data is then used to assess the performance of a process-based biogeochemical model (LandscapeDNDC), and the potential magnitude and dynamics of components of the site-scale nitrogen cycle where no measurements exist (biological nitrogen fixation and nitrate leaching). Our incubation results show that severe nutrient limitation of the soil only allows for very low N2O emissions (0.12 kg N ha-1 yr-1) and even a periodic N2O uptake. Annual NO emissions were estimated at 0.68 kg N ha-1 yr-1, while the release of inert nitrogen (N2) was estimated at 6.75 kg N ha-1 yr-1 (data excl. contribution by pulse emissions). We observed only minor N2O pulse emissions after watering the soil cores and initial rain events of the dry to wet season transition in-situ, but short-lived NO pulse emissions were substantial. Interestingly, some cores exhibited a very different N2O emission potential, indicating a substantial spatial variability of

  13. Ongoing Analyses of Rocket Based Combined Cycle Engines by the Applied Fluid Dynamics Analysis Group at Marshall Space Flight Center

    Science.gov (United States)

    Ruf, Joseph H.; Holt, James B.; Canabal, Francisco

    2001-01-01

    This paper presents the status of analyses on three Rocket Based Combined Cycle (RBCC) configurations underway in the Applied Fluid Dynamics Analysis Group (TD64). TD64 is performing computational fluid dynamics (CFD) analysis on a Penn State RBCC test rig, the proposed Draco axisymmetric RBCC engine and the Trailblazer engine. The intent of the analysis on the Penn State test rig is to benchmark the Finite Difference Navier Stokes (FDNS) code for ejector mode fluid dynamics. The Draco analysis was a trade study to determine the ejector mode performance as a function of three engine design variables. The Trailblazer analysis is to evaluate the nozzle performance in scramjet mode. Results to date of each analysis are presented.

  14. Ongoing Analysis of Rocket Based Combined Cycle Engines by the Applied Fluid Dynamics Analysis Group at Marshall Space Flight Center

    Science.gov (United States)

    Ruf, Joseph; Holt, James B.; Canabal, Francisco

    1999-01-01

    This paper presents the status of analyses on three Rocket Based Combined Cycle configurations underway in the Applied Fluid Dynamics Analysis Group (TD64). TD64 is performing computational fluid dynamics analysis on a Penn State RBCC test rig, the proposed Draco axisymmetric RBCC engine and the Trailblazer engine. The intent of the analysis on the Penn State test rig is to benchmark the Finite Difference Navier Stokes code for ejector mode fluid dynamics. The Draco engine analysis is a trade study to determine the ejector mode performance as a function of three engine design variables. The Trailblazer analysis is to evaluate the nozzle performance in scramjet mode. Results to date of each analysis are presented.

  15. Aggregation of an Oxisol in relation to different cultivation cycles of sugarcane under mechanized harvesting = Agregação de um Latossolo em função de diferentes ciclos de cultivo de cana-de-açúcar sob colheita mecanizada

    Directory of Open Access Journals (Sweden)

    Karina de Vares Rossetti

    2014-04-01

    Full Text Available The size of aggregates and the aggregation state can modify the soil structure, especially when there is the intensive management of that with the sugarcane cultivation. The objective was to evaluate the influence cultivation cycles of sugarcane in the aggregation in the different layers of a typical Oxisol, located in Bebedouro, São Paulo State, Brazil. Three plots have been selected on March 2012 with sugarcane cycles harvested mechanically without previous sugarcane burning: sugarcane ratoon of one cycle (C1, sugarcane ratoon of seven cycles (C7 and sugarcane ratoon of eight cycles (C8, and an adjacent area of native forest (NF. The experimental design was a randomized block with split plot with four replications. Areas consisted of plots and subplots being formed by the depths 0-0.10, 0.10-0.20 and 0.20-0.30 m. The evaluated variables: mean geometric diameter (MGD, mean weight diameter (MWD, sensitivity index of the aggregates (IS and organic matter content of soil (OM. The C8 cycle showed the highest MWD and MGD, similar levels of OM compared to the sugarcane ratoon cycles, it indicates that this treatment was not result in adverse effect to the soil structure even that has longer sugarcane ratoon cycles. Resumo - O tamanho dos agregados e o estado de agregação podem modificar a estrutura do solo, principalmente quando ocorre o manejo intensivo desse com o cultivo da cana-de-açúcar. Objetivou-se com esse estudo avaliar a influência de ciclos de cultivos de um canavial na agregação em diferentes profundidades de um Latossolo Vermelho distrófico típico, situado em Bebedouro (SP. Foram selecionados em março de 2012, três talhões de cana-de-açúcar colhida mecanicamente, sem queima, sendo: cana soca de um ciclo (C1, cana soca com sete ciclos (C7 e cana soca com oito ciclos (C8, e uma área adjacente de mata nativa (MN. O delineamento experimental foi em blocos casualizados com parcelas subdivididas, com quatro repetições. As

  16. Red fluorescent probes for real-time imaging of the cell cycle by dynamic monitoring of the nucleolus and chromosome.

    Science.gov (United States)

    Wang, Kang-Nan; Chao, Xi-Juan; Liu, Bing; Zhou, Dan-Jie; He, Liang; Zheng, Xiao-Hui; Cao, Qian; Tan, Cai-Ping; Zhang, Chen; Mao, Zong-Wan

    2018-03-08

    Two cationic molecular rotors, 1 and 2, capable of real-time cell-cycle imaging by specifically dynamic monitoring of nucleolus and chromosome changes were developed. A further study shows that fluorescence enhancements in the nucleolus and chromosome are attributed to a combination effect of interaction with nucleic acid and high condensation of the nucleolus and chromosome.

  17. Padrão do ciclo sono-vigília e sua relação com a ansiedade em estudantes universitários Sleep/wake cycle pattern and its relationship with anxiety in college students

    Directory of Open Access Journals (Sweden)

    Katie Moraes de Almondes

    2003-04-01

    Full Text Available Neste trabalho, foram investigadas as relações entre o ciclo sono-vigília e a ansiedade. O ciclo sono-vigília e traço e estado de ansiedade foram avaliados em 37 estudantes do segundo ano do curso médico. Os estudantes responderam ao Índice de Qualidade de Sono de Pittsburgh - IQSP, ao Inventário de Estado e Traço de Ansiedade - IDATE e a um questionário de matutinidade - vespertinidade (cronotipo. Todos registraram seu sono em um diário durante duas semanas. Os resultados mostraram que os estudantes de medicina tinham altos escores de traço e estado de ansiedade. Aqueles que tinham maiores escores de traço de ansiedade acordavam mais cedo nos dias de semana e finais de semana enquanto os que apresentavam irregularidade do seu ciclo sono-vigília apresentaram maior estado de ansiedade. Sugere-se que há uma relação entre o ciclo sono-vigília e a ansiedade.This paper examines the relationship between the sleep/wake cycle and anxiety in medical students. The sleep/wake cycle and anxiety were evaluated in 37 second year medical school students. The volunteers answered a morningness-eveningness questionnaire, Pittsburgh Sleep Quality Index - PSQI and state and trait of anxiety inventory - STAI; all kept a sleep/wake diary for two weeks. The results showed that the students had high anxiety trait and state. Students who had high anxiety trait had an earlier sleep offset on weekdays and weekend, and students who displayed irregularity in the sleep/wake cycle had high anxiety state. These results suggest a relationship between the sleep/wake cycle and anxiety.

  18. Response of Soil Biogeochemistry to Freeze-thaw Cycles: Impacts on Greenhouse Gas Emission and Nutrient Fluxes

    Science.gov (United States)

    Rezanezhad, F.; Parsons, C. T.; Smeaton, C. M.; Van Cappellen, P.

    2014-12-01

    Freeze-thaw is an abiotic stress applied to soils and is a natural process at medium to high latitudes. Freezing and thawing processes influence not only the physical properties of soil, but also the metabolic activity of soil microorganisms. Fungi and bacteria play a crucial role in soil organic matter degradation and the production of greenhouse gases (GHG) such as CO2, CH4 and N2O. Production and consumption of these atmospheric trace gases are the result of biological processes such as photosynthesis, aerobic respiration (CO2), methanogenesis, methanotrophy (CH4), nitrification and denitrification (N2O). To enhance our understanding of the effects of freeze-thaw cycles on soil biogeochemical transformations and fluxes, a highly instrumented soil column experiment was designed to realistically simulate freeze-thaw dynamics under controlled conditions. Pore waters collected periodically from different depths of the column and solid-phase analyses on core material obtained at the initial and end of the experiment highlighted striking geochemical cycling. CO2, CH4 and N2O production at different depths within the column were quantified from dissolved gas concentrations in pore water. Subsequent emissions from the soil surface were determined by direct measurement in the head space. Pulsed CO2 emission to the headspace was observed at the onset of thawing, however, the magnitude of the pulse decreased with each subsequent freeze-thaw cycle indicating depletion of a "freeze-thaw accessible" carbon pool. Pulsed CO2 emission was due to a combination of physical release of gases dissolved in porewater and entrapped below the frozen zone and changing microbial respiration in response to electron acceptor variability (O2, NO3-, SO42-). In this presentation, we focus on soil-specific physical, chemical, microbial factors (e.g. redox conditions, respiration, fermentation) and the mechanisms that drive GHG emission and nutrient cycling in soils under freeze-thaw cycles.

  19. Stochastic sensitivity analysis of the variability of dynamics and transition to chaos in the business cycles model

    Science.gov (United States)

    Bashkirtseva, Irina; Ryashko, Lev; Ryazanova, Tatyana

    2018-01-01

    A problem of mathematical modeling of complex stochastic processes in macroeconomics is discussed. For the description of dynamics of income and capital stock, the well-known Kaldor model of business cycles is used as a basic example. The aim of the paper is to give an overview of the variety of stochastic phenomena which occur in Kaldor model forced by additive and parametric random noise. We study a generation of small- and large-amplitude stochastic oscillations, and their mixed-mode intermittency. To analyze these phenomena, we suggest a constructive approach combining the study of the peculiarities of deterministic phase portrait, and stochastic sensitivity of attractors. We show how parametric noise can stabilize the unstable equilibrium and transform dynamics of Kaldor system from order to chaos.

  20. O-2 dynamics in the rhizosphere of young rice plants (Oryza sativa L.) as studied by planar optodes

    DEFF Research Database (Denmark)

    Larsen, Morten; Santner, Jakob; Oburger, Eva

    2015-01-01

    dynamics in the rice rhizosphere. Applying high-resolution planar optode imaging, we investigated the O-2 dynamics of plants grown in water saturated soil, as a function of ambient O-2 level, irradiance and plant development, for submerged and emerged plants. O-2 leakage was heterogeneously distributed...... with zones of intense leakage around roots tips and young developing roots. While the majority of roots exhibited high ROL others remained surrounded by anoxic soil. ROL was affected by ambient O-2 levels around the plant, as well as irradiance, indicating a direct influence of photosynthetic activity on ROL...... of the rhizosphere. The work documents that spatio-temporal measurements are important to fully understand and account for the highly variable O-2 dynamics and associated biogeochemical processes and pathways in the rice rhizosphere....

  1. Comparison of Engine Cycle Codes for Rocket-Based Combined Cycle Engines

    Science.gov (United States)

    Waltrup, Paul J.; Auslender, Aaron H.; Bradford, John E.; Carreiro, Louis R.; Gettinger, Christopher; Komar, D. R.; McDonald, J.; Snyder, Christopher A.

    2002-01-01

    This paper summarizes the results from a one day workshop on Rocket-Based Combined Cycle (RBCC) Engine Cycle Codes held in Monterey CA in November of 2000 at the 2000 JANNAF JPM with the authors as primary participants. The objectives of the workshop were to discuss and compare the merits of existing Rocket-Based Combined Cycle (RBCC) engine cycle codes being used by government and industry to predict RBCC engine performance and interpret experimental results. These merits included physical and chemical modeling, accuracy and user friendliness. The ultimate purpose of the workshop was to identify the best codes for analyzing RBCC engines and to document any potential shortcomings, not to demonstrate the merits or deficiencies of any particular engine design. Five cases representative of the operating regimes of typical RBCC engines were used as the basis of these comparisons. These included Mach 0 sea level static and Mach 1.0 and Mach 2.5 Air-Augmented-Rocket (AAR), Mach 4 subsonic combustion ramjet or dual-mode scramjet, and Mach 8 scramjet operating modes. Specification of a generic RBCC engine geometry and concomitant component operating efficiencies, bypass ratios, fuel/oxidizer/air equivalence ratios and flight dynamic pressures were provided. The engine included an air inlet, isolator duct, axial rocket motor/injector, axial wall fuel injectors, diverging combustor, and exit nozzle. Gaseous hydrogen was used as the fuel with the rocket portion of the system using a gaseous H2/O2 propellant system to avoid cryogenic issues. The results of the workshop, even after post-workshop adjudication of differences, were surprising. They showed that the codes predicted essentially the same performance at the Mach 0 and I conditions, but progressively diverged from a common value (for example, for fuel specific impulse, Isp) as the flight Mach number increased, with the largest differences at Mach 8. The example cases and results are compared and discussed in this paper.

  2. Non-Destructive Analysis of Degradation Mechanisms in Cycle-Aged Graphite/LiCoO2 Batteries

    Directory of Open Access Journals (Sweden)

    Liqiang Zhang

    2014-09-01

    Full Text Available Non-destructive analysis of degradation mechanisms can be very beneficial for the prognostics and health management (PHM study of lithium-ion batteries. In this paper, a type of graphite/LiCoO2 battery was cycle aged at high ambient temperature, then 25 parameters of the multi-physics model were identified. Nine key parameters degraded with the cycle life, and they were treated as indicators of battery degradation. Accordingly, the degradation mechanism was discussed by using the multi-physics model and key parameters, and the reasons for capacity fade and the internal resistance increase were analyzed in detail. All evidence indicates that the formation reaction of the solid electrolyte interface (SEI film is the main cause of battery degradation at high ambient temperature.

  3. Material Cycles and Chemicals: Dynamic Material Flow Analysis of Contaminants in Paper Recycling

    DEFF Research Database (Denmark)

    Pivnenko, Kostyantyn; Laner, David; Astrup, Thomas Fruergaard

    2016-01-01

    material source-segregation and collection was the least effective strategy for reducing chemical contamination, if the overall recycling rates should be maintained at the current level (approximately 70% for Europe). The study provides a consistent approach for evaluating contaminant levels in material......This study provides a systematic approach for assessment of contaminants in materials for recycling. Paper recycling is used as an illustrative example. Three selected chemicals, bisphenol A (BPA), diethylhexyl phthalate (DEHP) and mineral oil hydrocarbons (MOHs), are evaluated within the paper...... cycle. The approach combines static material flow analysis (MFA) with dynamic material and substance flow modeling. The results indicate that phasing out of chemicals is the most effective measure for reducing chemical contamination. However, this scenario was also associated with a considerable lag...

  4. Variations on the Zilch Cycle

    Science.gov (United States)

    Binder, P.-M.; Tanoue, C. K. S.

    2013-01-01

    Thermo dynamic cycles in introductory physics courses are usually made up from a small number of permutations of isothermal, adiabatic, and constant-pressure and volume quasistatic strokes, with the working fluid usually being an ideal gas. Among them we find the Carnot, Stirling, Otto, Diesel, and Joule-Brayton cycles; in more advanced courses,…

  5. Ab initio molecular dynamics simulations reveal localization and time evolution dynamics of an excess electron in heterogeneous CO2-H2O systems.

    Science.gov (United States)

    Liu, Ping; Zhao, Jing; Liu, Jinxiang; Zhang, Meng; Bu, Yuxiang

    2014-01-28

    In view of the important implications of excess electrons (EEs) interacting with CO2-H2O clusters in many fields, using ab initio molecular dynamics simulation technique, we reveal the structures and dynamics of an EE associated with its localization and subsequent time evolution in heterogeneous CO2-H2O mixed media. Our results indicate that although hydration can increase the electron-binding ability of a CO2 molecule, it only plays an assisting role. Instead, it is the bending vibrations that play the major role in localizing the EE. Due to enhanced attraction of CO2, an EE can stably reside in the empty, low-lying π(*) orbital of a CO2 molecule via a localization process arising from its initial binding state. The localization is completed within a few tens of femtoseconds. After EE trapping, the ∠OCO angle of the core CO2 (-) oscillates in the range of 127°∼142°, with an oscillation period of about 48 fs. The corresponding vertical detachment energy of the EE is about 4.0 eV, which indicates extreme stability of such a CO2-bound solvated EE in [CO2(H2O)n](-) systems. Interestingly, hydration occurs not only on the O atoms of the core CO2 (-) through formation of O⋯H-O H-bond(s), but also on the C atom, through formation of a C⋯H-O H-bond. In the latter binding mode, the EE cloud exhibits considerable penetration to the solvent water molecules, and its IR characteristic peak is relatively red-shifted compared with the former. Hydration on the C site can increase the EE distribution at the C atom and thus reduce the C⋯H distance in the C⋯H-O H-bonds, and vice versa. The number of water molecules associated with the CO2 (-) anion in the first hydration shell is about 4∼7. No dimer-core (C2O4 (-)) and core-switching were observed in the double CO2 aqueous media. This work provides molecular dynamics insights into the localization and time evolution dynamics of an EE in heterogeneous CO2-H2O media.

  6. Metabolomic Analysis of Blood Plasma after Oral Administration of N-acetyl-d-Glucosamine in Dogs

    Directory of Open Access Journals (Sweden)

    Tomohiro Osaki

    2015-08-01

    Full Text Available N-acetyl-d-glucosamine (GlcNAc is a monosaccharide that polymerizes linearly through (1,4-β-linkages. GlcNAc is the monomeric unit of the polymer chitin. GlcNAc is a basic component of hyaluronic acid and keratin sulfate found on the cell surface. The aim of this study was to examine amino acid metabolism after oral GlcNAc administration in dogs. Results showed that plasma levels of ectoine were significantly higher after oral administration of GlcNAc than prior to administration (p < 0.001. To our knowledge, there have been no reports of increased ectoine concentrations in the plasma. The mechanism by which GlcNAc administration leads to increased ectoine plasma concentration remains unclear; future studies are required to clarify this mechanism.

  7. Cycle expansions: From maps to turbulence

    Science.gov (United States)

    Lan, Y.

    2010-03-01

    We present a derivation, a physical explanation and applications of cycle expansions in different dynamical systems, ranging from simple one-dimensional maps to turbulence in fluids. Cycle expansion is a newly devised powerful tool for computing averages of physical observables in nonlinear chaotic systems which combines many innovative ideas developed in dynamical systems, such as hyperbolicity, invariant manifolds, symbolic dynamics, measure theory and thermodynamic formalism. The concept of cycle expansion has a deep root in theoretical physics, bearing a close analogy to cumulant expansion in statistical physics and effective action functional in quantum field theory, the essence of which is to represent a physical system in a hierarchical way by utilizing certain multiplicative structures such that the dominant parts of physical observables are captured by compact, maneuverable objects while minor detailed variations are described by objects with a larger space and time scale. The technique has been successfully applied to many low-dimensional dynamical systems and much effort has recently been made to extend its use to spatially extended systems. For one-dimensional systems such as the Kuramoto-Sivashinsky equation, the method turns out to be very effective while for more complex real-world systems including the Navier-Stokes equation, the method is only starting to yield its first fruits and much more work is needed to enable practical computations. However, the experience and knowledge accumulated so far is already very useful to a large set of research problems. Several such applications are briefly described in what follows. As more research effort is devoted to the study of complex dynamics of nonlinear systems, cycle expansion will undergo a fast development and find wide applications.

  8. International Real Business Cycles

    OpenAIRE

    Mario J. Crucini

    2006-01-01

    This paper is a non-technical review of research developments in the international real business cycle literature. International business cycle facts are summarize with particular attention to the sources of output variance from the expenditure side of the NIPA and the production side, using a familiar neoclassical production function. Theoretical developments focus on the how consumption smoothing and investment dynamics shape the current account; the search for sources and propagation mecha...

  9. Development of the ANL plant dynamics code and control strategies for the supercritical carbon dioxide Brayton cycle and code validation with data from the Sandia small-scale supercritical carbon dioxide Brayton cycle test loop.

    Energy Technology Data Exchange (ETDEWEB)

    Moisseytsev, A.; Sienicki, J. J. (Nuclear Engineering Division)

    2011-11-07

    Significant progress has been made in the ongoing development of the Argonne National Laboratory (ANL) Plant Dynamics Code (PDC), the ongoing investigation and development of control strategies, and the analysis of system transient behavior for supercritical carbon dioxide (S-CO{sub 2}) Brayton cycles. Several code modifications have been introduced during FY2011 to extend the range of applicability of the PDC and to improve its calculational stability and speed. A new and innovative approach was developed to couple the Plant Dynamics Code for S-CO{sub 2} cycle calculations with SAS4A/SASSYS-1 Liquid Metal Reactor Code System calculations for the transient system level behavior on the reactor side of a Sodium-Cooled Fast Reactor (SFR) or Lead-Cooled Fast Reactor (LFR). The new code system allows use of the full capabilities of both codes such that whole-plant transients can now be simulated without additional user interaction. Several other code modifications, including the introduction of compressor surge control, a new approach for determining the solution time step for efficient computational speed, an updated treatment of S-CO{sub 2} cycle flow mergers and splits, a modified enthalpy equation to improve the treatment of negative flow, and a revised solution of the reactor heat exchanger (RHX) equations coupling the S-CO{sub 2} cycle to the reactor, were introduced to the PDC in FY2011. All of these modifications have improved the code computational stability and computational speed, while not significantly affecting the results of transient calculations. The improved PDC was used to continue the investigation of S-CO{sub 2} cycle control and transient behavior. The coupled PDC-SAS4A/SASSYS-1 code capability was used to study the dynamic characteristics of a S-CO{sub 2} cycle coupled to a SFR plant. Cycle control was investigated in terms of the ability of the cycle to respond to a linear reduction in the electrical grid demand from 100% to 0% at a rate of 5

  10. Bioinspired Design of Alcohol Dehydrogenase@nano TiO2 Microreactors for Sustainable Cycling of NAD+/NADH Coenzyme

    Directory of Open Access Journals (Sweden)

    Sen Lin

    2018-02-01

    Full Text Available The bioinspired design and construction of enzyme@capsule microreactors with specific cell-like functionality has generated tremendous interest in recent years. Inspired by their fascinating complexity, scientists have endeavored to understand the essential aspects of a natural cell and create biomimicking microreactors so as to immobilize enzymes within the hierarchical structure of a microcapsule. In this study, simultaneous encapsulation of alcohol dehydrogenase (ADH was achieved during the preparation of microcapsules by the Pickering emulsion method using amphiphilic modified TiO2 nanoparticles (NPs as building blocks for assembling the photocatalytic microcapsule membrane. The ADH@TiO2 NP microreactors exhibited dual catalytic functions, i.e., spatially confined enzymatic catalysis and the membrane-associated photocatalytic oxidation under visible light. The sustainable cycling of nicotinamide adenine dinucleotide (NAD coenzyme between NADH and NAD+ was realized by enzymatic regeneration of NADH from NAD+ reduction, and was provided in a form that enabled further photocatalytic oxidation to NAD+ under visible light. This bioinspired ADH@TiO2 NP microreactor allowed the linking of a semiconductor mineral-based inorganic photosystem to enzymatic reactions. This is a first step toward the realization of sustainable biological cycling of NAD+/NADH coenzyme in synthetic functional microsystems operating under visible light irradiation.

  11. Synthetic Receptors for the High-Affinity Recognition of O-GlcNAc Derivatives

    NARCIS (Netherlands)

    Rios, Pablo; Carter, Tom S; Mooibroek, Tiddo J; Crump, Matthew P; Lisbjerg, Micke; Pittelkow, Michael; Supekar, Nitin T; Boons, Geert-Jan|info:eu-repo/dai/nl/088245489; Davis, Anthony P

    2016-01-01

    The combination of a pyrenyl tetraamine with an isophthaloyl spacer has led to two new water-soluble carbohydrate receptors ("synthetic lectins"). Both systems show outstanding affinities for derivatives of N-acetylglucosamine (GlcNAc) in aqueous solution. One receptor binds the methyl glycoside

  12. Photodissociation dynamics of CH3C(O)SH in argon matrix: A QM/MM nonadiabatic dynamics simulation

    Science.gov (United States)

    Xia, Shu-Hua; Liu, Xiang-Yang; Fang, Qiu; Cui, Ganglong

    2015-11-01

    In this work, we have first employed the combined quantum mechanics/molecular mechanics (QM/MM) method to study the photodissociation mechanism of thioacetic acid CH3C(O)SH in the S1, T1, and S0 states in argon matrix. CH3C(O)SH is treated quantum mechanically using the complete active space self-consistent field and complete active space second-order perturbation theory methods; argon matrix is described classically using Lennard-Jones potentials. We find that the C-S bond fission is predominant due to its small barriers of ca. 3.0 and 1.0 kcal/mol in the S1 and T1 states. It completely suppresses the nearby C—C bond fission. After the bond fission, the S1 radical pair of CH3CO and SH can decay to the S0 and T1 states via internal conversion and intersystem crossing, respectively. In the S0 state, the radical pair can either recombine to form CH3C(O)SH or proceed to form molecular products of CH2CO and H2S. We have further employed our recently developed QM/MM generalized trajectory-based surface-hopping method to simulate the photodissociation dynamics of CH3C(O)SH. In 1 ps dynamics simulation, 56% trajectories stay at the Franck-Condon region; the S1 C—S bond fission takes place in the remaining 44% trajectories. Among all nonadiabatic transitions, the S1 → S0 internal conversion is major (55%) but the S1 → T1 intersystem crossing is still comparable and cannot be ignored, which accounts for 28%. Finally, we have found a radical channel generating the molecular products of CH2CO and H2S, which is complementary to the concerted molecular channel. The present work sets the stage for simulating photodissociation dynamics of similar thio-carbonyl systems in matrix.

  13. V.S.O.P.-computer code system for reactor physics and fuel cycle simulation

    International Nuclear Information System (INIS)

    Teuchert, E.; Hansen, U.; Haas, K.A.

    1980-03-01

    V.S.O.P. (Very Superior Old Programs) is a system of codes linked together for the simulation of reactor life histories. It comprises neutron cross section libraries and processing routines, repeated neutron spectrum evaluation, 2-D diffusion calculation based on neutron flux synthesis with depletion and shutdown features, incore and out-of-pile fuel management, fuel cycle cost analysis, and thermal hydraulics (at present restricted to Pebble Bed HTRs). Various techniques have been employed to accelerate the iterative processes and to optimize the internal data transfer. A limitation of the storage requirement to 360 K-bites is achieved by an overlay structure. The code system has been used extensively for comparison studies of reactors, their fuel cycles, and related detailed features. Beside its use in research and development work for the high temperature reactor the system has been applied successfully to LWR and Heavy Water Reactors. (orig.) [de

  14. SO{sub 2} retention by reactivated CaO-based sorbent from multiple CO{sub 2} capture cycles

    Energy Technology Data Exchange (ETDEWEB)

    Vasilije Manovic; Edward J. Anthony [CANMET Energy Technology Centre-Ottawa, Ottawa, ON (Canada). Natural Resources Canada

    2007-06-15

    This paper examines the reactivation of spent sorbent, produced from multiple CO{sub 2} capture cycles, for use in SO{sub 2} capture. CaO-based sorbent samples were obtained from Kelly Rock limestone using three particle size ranges, each containing different impurities levels. Using a thermogravimetric analyzer (TGA), the sulfation behavior of partially sulfated and unsulfated samples obtained after multiple calcination-carbonation cycles in a tube furnace (TF), following steam reactivation in a pressurized reactor, is examined. In addition, samples calcined/sintered under different conditions after hydration are also examined. The results show that suitably treated spent sorbent has better sulfation characteristics than that of the original sorbent. Thus for example, after 2 h sulfation, {gt} 80% of the CaO was sulfated. In addition, the sorbent showed significant activity even after 4 h when {gt} 95% CaO was sulfated. The results were confirmed by X-ray diffraction (XRD) analysis, which showed that, by the end of the sulfation process, samples contained CaSO{sub 4} with only traces of unreacted CaO. The superior behavior of spent reactivated sorbent appears to be due to swelling of the sorbent particles during steam hydration. The surface area morphology of sorbent after reactivation was examined by scanning electron microscopy (SEM). Ca(OH){sub 2} crystals were seen, which displayed their regular shape, and their elemental composition was confirmed by energy-dispersive X-ray (EDX) analysis. These results allow the proposal of a new process for the use of CaO-based sorbent in fluidized bed combustion (FBC) systems, which incorporates CO{sub 2} capture, sorbent reactivation, and SO{sub 2} retention. 26 refs., 4 figs., 2 tabs.

  15. Dynamic Testing of the NASA Hypersonic Project Combined Cycle Engine Testbed for Mode Transition Experiments

    Science.gov (United States)

    2011-01-01

    NASA is interested in developing technology that leads to more routine, safe, and affordable access to space. Access to space using airbreathing propulsion systems has potential to meet these objectives based on Airbreathing Access to Space (AAS) system studies. To this end, the NASA Fundamental Aeronautics Program (FAP) Hypersonic Project is conducting fundamental research on a Turbine Based Combined Cycle (TBCC) propulsion system. The TBCC being studied considers a dual flow-path inlet system. One flow-path includes variable geometry to regulate airflow to a turbine engine cycle. The turbine cycle provides propulsion from take-off to supersonic flight. The second flow-path supports a dual-mode scramjet (DMSJ) cycle which would be initiated at supersonic speed to further accelerate the vehicle to hypersonic speed. For a TBCC propulsion system to accelerate a vehicle from supersonic to hypersonic speed, a critical enabling technology is the ability to safely and effectively transition from the turbine to the DMSJ-referred to as mode transition. To experimentally test methods of mode transition, a Combined Cycle Engine (CCE) Large-scale Inlet testbed was designed with two flow paths-a low speed flow-path sized for a turbine cycle and a high speed flow-path designed for a DMSJ. This testbed system is identified as the CCE Large-Scale Inlet for Mode Transition studies (CCE-LIMX). The test plan for the CCE-LIMX in the NASA Glenn Research Center (GRC) 10- by 10-ft Supersonic Wind Tunnel (10x10 SWT) is segmented into multiple phases. The first phase is a matrix of inlet characterization (IC) tests to evaluate the inlet performance and establish the mode transition schedule. The second phase is a matrix of dynamic system identification (SysID) experiments designed to support closed-loop control development at mode transition schedule operating points for the CCE-LIMX. The third phase includes a direct demonstration of controlled mode transition using a closed loop control

  16. Dynamic simulation of natural convection bypass two-circuit cycle refrigerator-freezer and its application Part I: Component models

    International Nuclear Information System (INIS)

    Ding Guoliang; Zhang Chunlu; Lu Zhili

    2004-01-01

    In order to reduce the greenhouse gas emissions, efficient household refrigerator/freezers (RFs) are required. Bypass two-circuit cycle RFs with one compressor are proved to be more efficient than two-evaporator in series cycle RFs. In order to study the characteristics and improve the design of bypass two-circuit cycle RFs, a dynamic model is developed in this paper. In part I, the mathematic models of all components are presented, considering not only the accuracy of the models but also the computation stability and speed to solve the models. An efficiency model that requires a single calorimeter data point at the standard test condition is employed for compressor. A multi-zone model is employed for condenser and for evaporator, with its wall thermal capacity considered by effective metal method. The approximate integral analytic model is employed for adiabatic capillary tube, and the effective inlet enthalpy method is used to transfer the non-adiabatic capillary tube to adiabatic capillary tube. The z-transfer function model is employed for cabinet load calculation

  17. Molecular dynamics simulations of oxygen vacancy diffusion in SrTiO3

    International Nuclear Information System (INIS)

    Schie, Marcel; Marchewka, Astrid; Waser, Rainer; Müller, Thomas; De Souza, Roger A

    2012-01-01

    A classical force-field model with partial ionic charges was applied to study the behaviour of oxygen vacancies in the perovskite oxide strontium titanate (SrTiO 3 ). The dynamical behaviour of these point defects was investigated as a function of temperature and defect concentration by means of molecular dynamics (MD) simulations. The interaction between oxygen vacancies and an extended defect, here a Σ3(111) grain boundary, was also examined by means of MD simulations. Analysis of the vacancy distribution revealed considerable accumulation of vacancies in the envelope of the grain boundary. The possible clustering of oxygen vacancies in bulk SrTiO 3 was studied by means of static lattice calculations within the Mott-Littleton approach. All binary vacancy-vacancy configurations were found to be energetically unfavourable.

  18. Molecular dynamics simulations of oxygen vacancy diffusion in SrTiO3.

    Science.gov (United States)

    Schie, Marcel; Marchewka, Astrid; Müller, Thomas; De Souza, Roger A; Waser, Rainer

    2012-12-05

    A classical force-field model with partial ionic charges was applied to study the behaviour of oxygen vacancies in the perovskite oxide strontium titanate (SrTiO(3)). The dynamical behaviour of these point defects was investigated as a function of temperature and defect concentration by means of molecular dynamics (MD) simulations. The interaction between oxygen vacancies and an extended defect, here a Σ3(111) grain boundary, was also examined by means of MD simulations. Analysis of the vacancy distribution revealed considerable accumulation of vacancies in the envelope of the grain boundary. The possible clustering of oxygen vacancies in bulk SrTiO(3) was studied by means of static lattice calculations within the Mott-Littleton approach. All binary vacancy-vacancy configurations were found to be energetically unfavourable.

  19. Dynamic simulation of a sorption machine : application to a two-stage waterfall cycle; Simulation dynamique d'une machine a adsorption : application a un cycle cascade bi-etage

    Energy Technology Data Exchange (ETDEWEB)

    Lachance, D.; Bernier, M. [Ecole Polytechnique, Montreal, PQ (Canada). Dept. de Genie Mecanique; Castaing-Lasvignottes, J.; Meunier, F. [Laboratoire du Froid, CNAM, Paris (France)

    2002-07-01

    Trithermal sorption machines are an alternative solution to replace conventional refrigeration and air conditioning systems. This paper completed and followed other work concerning the study of the performance of a two-stage waterfall cycle, coupling a water/zeolite adsorption machine to a water/lithium bromide absorption machine. The objective of the coupling was to increase the global coefficient of performance of the installation. A dynamic model of the behaviour of the water/zeolite adsorption machine simple effect was described and validated using experimental data. The model was then adapted to the double effect cycle heat recovery in order to perform its energy analysis. The originality of this system stems from its functioning at relatively high condensation and regeneration temperatures of 100 Celsius and 300 Celsius respectively, leading to a high compression rate of 100 to 1. 6 refs., 12 figs.

  20. Computational Fluid Dynamics Analysis Method Developed for Rocket-Based Combined Cycle Engine Inlet

    Science.gov (United States)

    1997-01-01

    Renewed interest in hypersonic propulsion systems has led to research programs investigating combined cycle engines that are designed to operate efficiently across the flight regime. The Rocket-Based Combined Cycle Engine is a propulsion system under development at the NASA Lewis Research Center. This engine integrates a high specific impulse, low thrust-to-weight, airbreathing engine with a low-impulse, high thrust-to-weight rocket. From takeoff to Mach 2.5, the engine operates as an air-augmented rocket. At Mach 2.5, the engine becomes a dual-mode ramjet; and beyond Mach 8, the rocket is turned back on. One Rocket-Based Combined Cycle Engine variation known as the "Strut-Jet" concept is being investigated jointly by NASA Lewis, the U.S. Air Force, Gencorp Aerojet, General Applied Science Labs (GASL), and Lockheed Martin Corporation. Work thus far has included wind tunnel experiments and computational fluid dynamics (CFD) investigations with the NPARC code. The CFD method was initiated by modeling the geometry of the Strut-Jet with the GRIDGEN structured grid generator. Grids representing a subscale inlet model and the full-scale demonstrator geometry were constructed. These grids modeled one-half of the symmetric inlet flow path, including the precompression plate, diverter, center duct, side duct, and combustor. After the grid generation, full Navier-Stokes flow simulations were conducted with the NPARC Navier-Stokes code. The Chien low-Reynolds-number k-e turbulence model was employed to simulate the high-speed turbulent flow. Finally, the CFD solutions were postprocessed with a Fortran code. This code provided wall static pressure distributions, pitot pressure distributions, mass flow rates, and internal drag. These results were compared with experimental data from a subscale inlet test for code validation; then they were used to help evaluate the demonstrator engine net thrust.

  1. P-type single-crystalline ZnO films obtained by (N,O) dual implantation through dynamic annealing process

    Science.gov (United States)

    Zhang, Zhiyuan; Huang, Jingyun; Chen, Shanshan; Pan, Xinhua; Chen, Lingxiang; Ye, Zhizhen

    2016-12-01

    Single-crystalline ZnO films were grown on a-plane sapphire substrates by plasma-assisted molecular beam epitaxy technique. The films have been implanted with fixed fluence of 120 keV N and 130 keV O ions at 460 °C. Hall measurements show that the dually-implanted single-crystalline ZnO films exhibit p-type characteristics with hole concentration in the range of 2.1 × 1018-1.1 × 1019 cm-3, hole mobilities between 1.6 and 1.9 cm2 V-1 s-1, and resistivities in the range of 0.353-1.555 Ω cm. The ZnO films exhibit (002) (c-plane) orientation as identified by the X-ray diffraction pattern. It is confirmed that N ions were effectively implanted by SIMS results. Raman spectra, polarized Raman spectra, and X-ray photoelectron spectroscopy results reflect that the concentration of oxygen vacancies is reduced, which is attributed to O ion implantation. It is concluded that N and O implantation and dynamic annealing play a critical role in forming p-type single-crystalline ZnO films.

  2. Nitrogen cycling and bacterial community structure of sinking and aging diatom aggregates

    DEFF Research Database (Denmark)

    Lundgaard, Ann Sofie Birch; Treusch, Alexander H.; Stief, Peter

    2017-01-01

    ABSTRACT: Sinking phycodetrital aggregates can contribute to anaerobic nitrogen turnover as they may represent oxygen-depleted microbial hot spots in otherwise oxygenated waters. However, the dynamics of anaerobic nitrogen cycling during the long descent of aggregates through oxic or hypoxic waters...... are unknown. Thus, model aggregates prepared from the diatom Skeletonema marinoi were allowed to age for 4 d at high and low ambient O2 levels (70 and 15% air saturation, respectively), and changes in nitrogen transformations and microbial community structure were followed. At both O2 levels, denitrification...... at average production rates of 0.66 nmol N2-N aggregate (aggr.)–1 h–1 and 0.26 nmol NO2– aggr.–1 h–1. At both O2 levels, but more pronouncedly at 70% air saturation, the microbial community underwent succession as expressed by an increase in (1) relative abundance of specific bacterial taxonomic units; (2...

  3. Questions, Curiosity and the Inquiry Cycle

    Science.gov (United States)

    Casey, Leo

    2014-01-01

    This article discusses the conceptual relationship between questions, curiosity and learning as inquiry elaborated in the work of Chip Bruce and others as the Inquiry Cycle. The Inquiry Cycle describes learning in terms of a continuous dynamic of ask, investigate, create, discuss and reflect. Of these elements "ask" has a privileged…

  4. Linking N2O emissions from biochar-amended soil to the structure and function of the N-cycling microbial community

    Science.gov (United States)

    Harter, Johannes; Krause, Hans-Martin; Schuettler, Stefanie; Ruser, Reiner; Fromme, Markus; Scholten, Thomas; Kappler, Andreas; Behrens, Sebastian

    2014-01-01

    Nitrous oxide (N2O) contributes 8% to global greenhouse gas emissions. Agricultural sources represent about 60% of anthropogenic N2O emissions. Most agricultural N2O emissions are due to increased fertilizer application. A considerable fraction of nitrogen fertilizers are converted to N2O by microbiological processes (that is, nitrification and denitrification). Soil amended with biochar (charcoal created by pyrolysis of biomass) has been demonstrated to increase crop yield, improve soil quality and affect greenhouse gas emissions, for example, reduce N2O emissions. Despite several studies on variations in the general microbial community structure due to soil biochar amendment, hitherto the specific role of the nitrogen cycling microbial community in mitigating soil N2O emissions has not been subject of systematic investigation. We performed a microcosm study with a water-saturated soil amended with different amounts (0%, 2% and 10% (w/w)) of high-temperature biochar. By quantifying the abundance and activity of functional marker genes of microbial nitrogen fixation (nifH), nitrification (amoA) and denitrification (nirK, nirS and nosZ) using quantitative PCR we found that biochar addition enhanced microbial nitrous oxide reduction and increased the abundance of microorganisms capable of N2-fixation. Soil biochar amendment increased the relative gene and transcript copy numbers of the nosZ-encoded bacterial N2O reductase, suggesting a mechanistic link to the observed reduction in N2O emissions. Our findings contribute to a better understanding of the impact of biochar on the nitrogen cycling microbial community and the consequences of soil biochar amendment for microbial nitrogen transformation processes and N2O emissions from soil. PMID:24067258

  5. Regional Business Cycles in East Asia: Synchronization and its Determinants

    OpenAIRE

    Young-Joon Park

    2013-01-01

    This paper analyzes the dynamics and nature of regional business cycle synchronization for East Asian countries in the period of 2000:Q1-2011:Q4. Estimating a dynamic two-factor model extracts the common factor and the nation- specific factor from both the macroeconomic aggregates and plausible driving forces of regional business cycles. Evidence for regional business cycle synchronization is particularly strong for Korea, Malaysia and the Philippines, while Japan shows weak evidence of regio...

  6. The recognition of three different epitopes for the H-type 2 human blood group determinant by lectins of Ulex europaeus, Galactia tenuiflora and Psophocarpus tetragonolobus (winged bean).

    Science.gov (United States)

    Du, M H; Spohr, U; Lemieux, R U

    1994-10-01

    The chemical mapping of the regions of H-type 2 human blood group-related trisaccharide (Fuc alpha (1-2)Gal beta (1-4)GlcNAc beta Me) that are recognized by three different lectins, the so-called epitopes, are reviewed together with an account of how and why oligosaccharides form specific complexes with proteins as presently viewed in this laboratory. The occasion is used to report the synthesis of the various mono-O-methyl derivatives of the above trisaccharide that were used in these investigations. Also, Fuc alpha (1-2)Gal beta (1-4)Xyl beta Me was synthesized in order to examine whether or not the hydroxymethyl group of the GlcNAc residue participates in the binding reaction.

  7. Thermal conductivities of ThO{sub 2}, NpO{sub 2} and their related oxides: Molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Arima, Tatsumi, E-mail: arima@nucl.kyushu-u.ac.jp; Yoshida, Keita; Matsumoto, Taku; Inagaki, Yaohiro; Idemitsu, Kazuya

    2014-02-01

    The thermal conductivities of ThO{sub 2}, NpO{sub 2}, (Th, U)O{sub 2}, (Th, Pu)O{sub 2} and (U, Np)O{sub 2} have been investigated by molecular dynamics (MD) simulation up to 2000 K using the Busing–Ida potential function with partial ionic charges. In the present study, the thermal conductivity was calculated mainly by the Green–Kubo formula in the equilibrium MD scheme. The thermal conductivities of above actinide dioxides decreased with the increase of temperature due to the phonon–phonon interaction (Umklapp process). Concerning the composition of solid solutions, the decrease in thermal conductivity of (Th, Pu)O{sub 2} is great as compared to other ones. Various MD calculations elucidated that this result was caused by phonon scattering by lattice defects as additives rather than the phonon–phonon interaction, and that the lattice strain dominantly contributed to it.

  8. Structure and Dynamics in Formamide-(H2O)3: A Water Pentamer Analogue.

    Science.gov (United States)

    Blanco, Susana; Pinacho, Pablo; López, Juan Carlos

    2017-12-21

    Water self-association dominates the formation of microsolvated molecular clusters which may give rise to complex structures resembling those of pure water clusters. We present a rotational study of the complex formamide-(H 2 O) 3 formed in a supersonic jet and several monosubstituted isotopologues. Formamide and water molecules form a four-body sequential cycle through N-H···O, O-H···O, and O-H···O═C hydrogen bonds, resulting in a chiral structure with a nonplanar skeleton that can be overlapped to that of water pentamer. The analysis of the 14 N-nucleus quadrupole coupling effects shows the depletion of the electron density of the N atom lone pair with respect to the bare formamide that affects the amide group C-N and C═O distances. The study of the observed tunneling doublets shows that formamide-(H 2 O) 3 follows a path to invert its structure driven by the flipping of water subunits and passing through successive nonplanar configurations, a motion reminiscent of the pseudorotation of water pentamer.

  9. N-acetylglucosamine increases symptoms and fungal burden in a murine model of oral candidiasis.

    Science.gov (United States)

    Ishijima, Sanae A; Hayama, Kazumi; Takahashi, Miki; Holmes, Ann R; Cannon, Richard D; Abe, Shigeru

    2012-04-01

    The amino sugar N-acetylglucosamine (GlcNAc) is an in vitro inducer of the hyphal mode of growth of the opportunistic pathogen Candida albicans. The development of hyphae by C. albicans is considered to contribute to the pathogenesis of mucosal oral candidiasis. GlcNAc is also a commonly used nutritional supplement for the self-treatment of conditions such as arthritis. To date, no study has investigated whether ingestion of GlcNAc has an effect on the in vivo growth of C. albicans or the pathogenesis of a C. albicans infection. Using a murine model of oral candidiasis, we have found that administration of GlcNAc, but not glucose, increased oral symptoms of candidiasis and fungal burden. Groups of mice were given GlcNAc in either water or in a viscous carrier, i.e., 1% methylcellulose. There was a dose-dependent relationship between GlcNAc concentration and the severity of oral symptoms. Mice given the highest dose of GlcNAc, 45.2 mM, also showed a significant increase in fungal burden, and increased histological evidence of infection compared to controls given water alone. We propose that ingestion of GlcNAc, as a nutritional supplement, may have an impact on oral health in people susceptible to oral candidiasis.

  10. Quantification of myocardial blood flow using dynamic 320-row multi-detector CT as compared with ¹⁵O-H₂O PET.

    Science.gov (United States)

    Kikuchi, Yasuka; Oyama-Manabe, Noriko; Naya, Masanao; Manabe, Osamu; Tomiyama, Yuuki; Sasaki, Tsukasa; Katoh, Chietsugu; Kudo, Kohsuke; Tamaki, Nagara; Shirato, Hiroki

    2014-07-01

    This study introduces a method to calculate myocardium blood flow (MBF) and coronary flow reserve (CFR) using the relatively low-dose dynamic 320-row multi-detector computed tomography (MDCT), validates the method against (15)O-H₂O positron-emission tomography (PET) and assesses the CFRs of coronary artery disease (CAD) patients. Thirty-two subjects underwent both dynamic CT perfusion (CTP) and PET perfusion imaging at rest and during pharmacological stress. In 12 normal subjects (pilot group), the calculation method for MBF and CFR was established. In the other 13 normal subjects (validation group), MBF and CFR obtained by dynamic CTP and PET were compared. Finally, the CFRs obtained by dynamic CTP and PET were compared between the validation group and CAD patients (n = 7). Correlation between MBF of MDCT and PET was strong (r = 0.95, P dynamic CTP and PET (r = 0.67, P = 0.0126). CFRCT in the CAD group (2.3 ± 0.8) was significantly lower than that in the validation group (5.2 ± 1.8) (P = 0.0011). We established a method for measuring MBF and CFR with the relatively low-dose dynamic MDCT. Lower CFR was well demonstrated in CAD patients by dynamic CTP. • MBF and CFR can be calculated using dynamic CTP with 320-row MDCT. • MBF and CFR showed good correlation between dynamic CTP and PET. • Lower CFR was well demonstrated in CAD patients by dynamic CTP.

  11. Dynamic Displacement Disorder of Cubic BaTiO3

    Science.gov (United States)

    Paściak, M.; Welberry, T. R.; Kulda, J.; Leoni, S.; Hlinka, J.

    2018-04-01

    The three-dimensional distribution of the x-ray diffuse scattering intensity of BaTiO3 has been recorded in a synchrotron experiment and simultaneously computed using molecular dynamics simulations of a shell model. Together, these have allowed the details of the disorder in paraelectric BaTiO3 to be clarified. The narrow sheets of diffuse scattering, related to the famous anisotropic longitudinal correlations of Ti ions, are shown to be caused by the overdamped anharmonic soft phonon branch. This finding demonstrates that the occurrence of narrow sheets of diffuse scattering agrees with a displacive picture of the cubic phase of this textbook ferroelectric material. The presented methodology allows one to go beyond the harmonic approximation in the analysis of phonons and phonon-related scattering.

  12. Duty cycle dependence of a periodically poled LiNbO3-based electro-optic Solc filter.

    Science.gov (United States)

    Rabia, Eyal; Arie, Ady

    2006-01-20

    We demonstrate that the performance of a periodically poled LiNbO3- (PPLN-) based electro-optic Solc filter is dependent on the duty cycle of the crystal. This may limit the performance of the device for applications such as add-drop filtering and switching, owing to the deterioration of the extinction ratio. It is shown that by adding a retarder to the Solc filter it is possible to improve the extinction ratio; thus the dependence of the filter on the duty cycle can be reduced. Using Jones calculus, we analyzed the effect of a variable retarder that can also be rotated on the extinction ratio. We experimentally observed a 6 dB increase in the extinction ratio when we used a half-wavelength retarder.

  13. Incipient plasticity and indentation response of MgO surfaces using molecular dynamics

    Science.gov (United States)

    Tran, Anh-Son; Hong, Zheng-Han; Chen, Ming-Yuan; Fang, Te-Hua

    2018-05-01

    The mechanical characteristics of magnesium oxide (MgO) based on nanoindentation are studied using molecular dynamics (MD) simulation. The effects of indenting speed and temperature on the structural deformation and loading-unloading curve are investigated. Results show that the strained surface of the MgO expands to produce a greater relaxation of atoms in the surroundings of the indent. The dislocation propagation and pile-up for MgO occur more significantly with the increasing temperature from 300 K to 973 K. In addition, with increasing temperature, the high strained atoms with a great perturbation appearing at the groove location.

  14. Population cycles and species diversity in dynamic Kill-the-Winner model of microbial ecosystems

    Science.gov (United States)

    Maslov, Sergei; Sneppen, Kim

    2017-01-01

    Determinants of species diversity in microbial ecosystems remain poorly understood. Bacteriophages are believed to increase the diversity by the virtue of Kill-the-Winner infection bias preventing the fastest growing organism from taking over the community. Phage-bacterial ecosystems are traditionally described in terms of the static equilibrium state of Lotka-Volterra equations in which bacterial growth is exactly balanced by losses due to phage predation. Here we consider a more dynamic scenario in which phage infections give rise to abrupt and severe collapses of bacterial populations whenever they become sufficiently large. As a consequence, each bacterial population in our model follows cyclic dynamics of exponential growth interrupted by sudden declines. The total population of all species fluctuates around the carrying capacity of the environment, making these cycles cryptic. While a subset of the slowest growing species in our model is always driven towards extinction, in general the overall ecosystem diversity remains high. The number of surviving species is inversely proportional to the variation in their growth rates but increases with the frequency and severity of phage-induced collapses. Thus counter-intuitively we predict that microbial communities exposed to more violent perturbations should have higher diversity. PMID:28051127

  15. Avaliação assistida e comunicação alternativa: procedimentos para a educação inclusiva Dynamic assessment and augmentative and alternative communication: procedures for inclusive education

    Directory of Open Access Journals (Sweden)

    Kely Maria Pereira de Paula

    2007-04-01

    Full Text Available As pesquisas sobre a avaliação assistida vêm delineando um campo promissor dada as suas características inovadoras que a distinguem de uma avaliação tradicional, favorecendo a população que apresenta dificuldades no processo de aprendizagem ou em situação de desvantagem social. Crianças que necessitam de recursos alternativos para a linguagem expressiva constituem um significativo grupo que pode se beneficiar de uma avaliação diferenciada. Neste estudo, participaram sete crianças com necessidades especiais em situação de avaliação assistida, utilizando o Children's Analogical Thinking Modifiability Test-CATM, acrescida da avaliação psicométrica, realizada pelos testes Raven, Columbia e Peabody, estes últimos em versão computadorizada, antes e após intervenção com sistema de Comunicação Alternativa e Ampliada-CAA. Além dos processos de pensamento, foram considerados aspectos não estritamente cognitivos, mas de grande importância: reação da criança ao contexto de avaliação e ao tipo de tarefa, variáveis pessoais e situacionais como motivação e fadiga, além da acessibilidade à mediação. Tais variáveis foram sistematizadas em categorias cognitivas, comportamentais e afetivo-motivacionais nos contextos de ensino e intervenção, compondo um mosaico de indicadores sobre o perfil da amostra nas diferentes etapas do estudo. Apesar da situação de avaliação - tradicional e assistida - ter se configurado como cansativa, foi possível identificar as operações e disfunções cognitivas nas provas tradicionais e assistida e na intervenção, além de fatores não-intelectuais que afetaram o desempenho, delineando um perfil intragrupo de aprendizagem na resolução de problemas. A avaliação assistida é reconhecidamente uma relevante ferramenta de diagnóstico psicológico, complementar à abordagem psicométrica tradicional, para crianças com déficits comunicativos.Research on dynamic assessment points to

  16. Aplicação da programação dinâmica na substituição de equipamentos Application of dynamic programming in equipment substitution

    Directory of Open Access Journals (Sweden)

    Gláucio Marcelino Marques

    2005-10-01

    Full Text Available Este trabalho teve como objetivo desenvolver um modelo de programação dinâmica, para determinar o momento ótimo de substituição de equipamentos, incorporando-se as receitas geradas pelo uso e descarte da máquina. Tal modelo deverá procurar maximizar os lucros através de uma relação de recorrência referente às receitas e aos custos ao longo dos anos. Desse modo, comparou-se o modelo proposto com um tradicional de substituição, que inclui apenas custos, utilizado por Filgueiras (1997. O modelo proposto foi satisfatório, de acordo com o objetivo do trabalho, pois com o seu desenvolvimento foi possível oferecer decisões ótimas de substituir ou reter o equipamento. Tal modelo se apresentou mais flexível, podendo ser utilizado em situações em que o equipamento gera receitas diretas (como no caso de aluguel ou receitas de fretes ou não. Quando não se utilizam receitas, os resultados são idênticos aos do modelo tradicional. Constatou-se, também, que o modelo proposto é mais suscetível a aumentos no valor de aquisição do equipamento, enquanto o modelo sem receita é mais sensível a variações na taxa de juros. Observou-se que a aplicação da Programação Dinâmica oferece ao planejador uma gama de alternativas bem maior para auxiliar a tomada de decisão.The objective of this work was to develop a dynamic programming model to determine the optimal time to replace equipment, including the incomes generated by the use and removal of the machine, aiming at the maximization of profits through a recurrence relation related to the incomes and costs along the years. Thus, the proposed model was compared to the traditional replacement model using the dynamic programming that does not include the income generated by the equipment, used by Filgueiras (1997. The model proposed was satisfactory according to the objective of the work, as its development made it possible to offer optimal decisions to replace or maintain the equipment

  17. Expanding the substrate scope of chitooligosaccharide oxidase from Fusarium graminearum by structure-inspired mutagenesis

    NARCIS (Netherlands)

    Ferrari, Alessandro; Lee, Misun; Fraaije, Marco

    2015-01-01

    Chitooligosaccharide oxidase from Fusarium graminearum (ChitO) oxidizes N-acetyl-D-glucosamine (GlcNAc) and its oligomers with high efficiency at the C1-hydroxyl moiety while it shows poor or no activity with other carbohydrates. By sequence and structural comparison with other known carbohydrate

  18. Photodissociation dynamics of CH{sub 3}C(O)SH in argon matrix: A QM/MM nonadiabatic dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Shu-Hua; Liu, Xiang-Yang; Fang, Qiu; Cui, Ganglong, E-mail: ganglong.cui@bnu.edu.cn [Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875 (China)

    2015-11-21

    In this work, we have first employed the combined quantum mechanics/molecular mechanics (QM/MM) method to study the photodissociation mechanism of thioacetic acid CH{sub 3}C(O)SH in the S{sub 1}, T{sub 1}, and S{sub 0} states in argon matrix. CH{sub 3}C(O)SH is treated quantum mechanically using the complete active space self-consistent field and complete active space second-order perturbation theory methods; argon matrix is described classically using Lennard-Jones potentials. We find that the C-S bond fission is predominant due to its small barriers of ca. 3.0 and 1.0 kcal/mol in the S{sub 1} and T{sub 1} states. It completely suppresses the nearby C—C bond fission. After the bond fission, the S{sub 1} radical pair of CH{sub 3}CO and SH can decay to the S{sub 0} and T{sub 1} states via internal conversion and intersystem crossing, respectively. In the S{sub 0} state, the radical pair can either recombine to form CH{sub 3}C(O)SH or proceed to form molecular products of CH{sub 2}CO and H{sub 2}S. We have further employed our recently developed QM/MM generalized trajectory-based surface-hopping method to simulate the photodissociation dynamics of CH{sub 3}C(O)SH. In 1 ps dynamics simulation, 56% trajectories stay at the Franck-Condon region; the S{sub 1} C—S bond fission takes place in the remaining 44% trajectories. Among all nonadiabatic transitions, the S{sub 1} → S{sub 0} internal conversion is major (55%) but the S{sub 1} → T{sub 1} intersystem crossing is still comparable and cannot be ignored, which accounts for 28%. Finally, we have found a radical channel generating the molecular products of CH{sub 2}CO and H{sub 2}S, which is complementary to the concerted molecular channel. The present work sets the stage for simulating photodissociation dynamics of similar thio-carbonyl systems in matrix.

  19. O-acetylation of the serine-rich repeat glycoprotein GspB is coordinated with accessory Sec transport.

    Directory of Open Access Journals (Sweden)

    Ravin Seepersaud

    2017-08-01

    Full Text Available The serine-rich repeat (SRR glycoproteins are a family of adhesins found in many Gram-positive bacteria. Expression of the SRR adhesins has been linked to virulence for a variety of infections, including streptococcal endocarditis. The SRR preproteins undergo intracellular glycosylation, followed by export via the accessory Sec (aSec system. This specialized transporter is comprised of SecA2, SecY2 and three to five accessory Sec proteins (Asps that are required for export. Although the post-translational modification and transport of the SRR adhesins have been viewed as distinct processes, we found that Asp2 of Streptococcus gordonii also has an important role in modifying the SRR adhesin GspB. Biochemical analysis and mass spectrometry indicate that Asp2 is an acetyltransferase that modifies N-acetylglucosamine (GlcNAc moieties on the SRR domains of GspB. Targeted mutations of the predicted Asp2 catalytic domain had no effect on transport, but abolished acetylation. Acetylated forms of GspB were only detected when the protein was exported via the aSec system, but not when transport was abolished by secA2 deletion. In addition, GspB variants rerouted to export via the canonical Sec pathway also lacked O-acetylation, demonstrating that this modification is specific to export via the aSec system. Streptococci expressing GspB lacking O-acetylated GlcNAc were significantly reduced in their ability bind to human platelets in vitro, an interaction that has been strongly linked to virulence in the setting of endocarditis. These results demonstrate that Asp2 is a bifunctional protein involved in both the post-translational modification and transport of SRR glycoproteins. In addition, these findings indicate that these processes are coordinated during the biogenesis of SRR glycoproteins, such that the adhesin is optimally modified for binding. This requirement for the coupling of modification and export may explain the co-evolution of the SRR

  20. Dynamic modeling of Shell entrained flow gasifier in an integrated gasification combined cycle process

    International Nuclear Information System (INIS)

    Lee, Hyeon-Hui; Lee, Jae-Chul; Joo, Yong-Jin; Oh, Min; Lee, Chang-Ha

    2014-01-01

    Highlights: • Detailed dynamic model for the Shell entrained flow gasifier was developed. • The model included sub-models of reactor, membrane wall, gas quench and slag flow. • The dynamics of each zone including membrane wall in the gasifier were analyzed. • Cold gas efficiency (81.82%), gas fraction and temperature agreed with Shell data. • The model could be used as part of the overall IGCC simulation. - Abstract: The Shell coal gasification system is a single-stage, up-flow, oxygen-blown gasifier which utilizes dry pulverized coal with an entrained flow mechanism. Moreover, it has a membrane wall structure and operates in the slagging mode. This work provides a detailed dynamic model of the 300 MW Shell gasifier developed for use as part of an overall IGCC (integrated gasification combined cycle) process simulation. The model consists of several sub-models, such as a volatilization zone, reaction zone, quench zone, slag zone, and membrane wall zone, including heat transfers between the wall layers and steam generation. The dynamic results were illustrated and the validation of the gasifier model was confirmed by comparing the results in the steady state with the reference data. The product gases (H 2 and CO) began to come out from the exit of the reaction zone within 0.5 s, and nucleate boiling heat transfer was dominant in the water zone of the membrane wall due to high heat fluxes. The steady state of the process was reached at nearly t = 500 s, and our simulation data for the steady state, such as the temperature and composition of the syngas, the cold gas efficiency (81.82%), and carbon conversion (near 1.0) were in good agreement with the reference data

  1. Understanding bicycling in cities using system dynamics modelling.

    Science.gov (United States)

    Macmillan, Alexandra; Woodcock, James

    2017-12-01

    Increasing urban bicycling has established net benefits for human and environmental health. Questions remain about which policies are needed and in what order, to achieve an increase in cycling while avoiding negative consequences. Novel ways of considering cycling policy are needed, bringing together expertise across policy, community and research to develop a shared understanding of the dynamically complex cycling system. In this paper we use a collaborative learning process to develop a dynamic causal model of urban cycling to develop consensus about the nature and order of policies needed in different cycling contexts to optimise outcomes. We used participatory system dynamics modelling to develop causal loop diagrams (CLDs) of cycling in three contrasting contexts: Auckland, London and Nijmegen. We combined qualitative interviews and workshops to develop the CLDs. We used the three CLDs to compare and contrast influences on cycling at different points on a "cycling trajectory" and drew out policy insights. The three CLDs consisted of feedback loops dynamically influencing cycling, with significant overlap between the three diagrams. Common reinforcing patterns emerged: growing numbers of people cycling lifts political will to improve the environment; cycling safety in numbers drives further growth; and more cycling can lead to normalisation across the population. By contrast, limits to growth varied as cycling increases. In Auckland and London, real and perceived danger was considered the main limit, with added barriers to normalisation in London. Cycling congestion and "market saturation" were important in the Netherlands. A generalisable, dynamic causal theory for urban cycling enables a more ordered set of policy recommendations for different cities on a cycling trajectory. Participation meant the collective knowledge of cycling stakeholders was represented and triangulated with research evidence. Extending this research to further cities, especially in low

  2. Analysis of hyaluronic acid concentration in rat vocal folds during estral and gravidic puerperal cycles Análise da concentração do ácido hialurônico nas pregas vocais de ratas durante o ciclo estral e ciclo gravídico-puerperal

    Directory of Open Access Journals (Sweden)

    José Eduardo de Sá Pedroso

    2009-10-01

    Full Text Available Hormone plays an important role in the larynx. Among other substances, vocal folds contain hyaluronic acid, which tissue concentration may vary according to hormone action. AIM: the objective of this study is to analyze hyaluronic acid concentration in the vocal folds during estral and gravidic-puerperal cycles. MATERIALS AND METHODS: Experimental study. 40 adult rats were divided into two groups. In the first group we used 20 rats to establish the concentration of hyaluronic acid during the estral cycle and in the second group, 20 animals were submitted to the same procedure but during the gravidic-puerperal cycle. RESULTS: Variations in hyaluronic acid concentration was not observed during the estral cycle. In the gravidic puerperal cycle group, an increase in hyaluronic acid concentration was observed in the puerperal subgroup. Comparing the two groups of estral and gravidic-puerperal cycles, no difference was observed. CONCLUSIONS: In comparing all subgroups of estral and gravidic-puerperal cycles, an increase in hyaluronic acid concentration was noticed only in the puerperal phase.Os hormônios exercem importante influência sobre a laringe. A prega vocal contém, entre outras substâncias, o ácido hialurônico, cuja concentração nos tecidos pode variar com a ação dos hormônios. OBJETIVO: O objetivo deste trabalho é analisar comparativamente a concentração do ácido hialurônico nas pregas vocais de ratas durante o ciclo estral e ciclo gravídico-puerperal. FORMA DE ESTUDO: Experimental. MATERIAL E MÉTODO: Foram utilizadas 40 ratas adultas, divididas em dois grupos, no primeiro grupo utilizamos 20 ratas para determinação da concentração do ácido hialurônico no ciclo estral, no segundo grupo, também de 20 animais, foi realizado o mesmo experimento no ciclo gravídico-puerperal. RESULTADOS: No grupo do ciclo estral não observou-se variação da concentração do ácido hialurônico. No grupo do ciclo grav

  3. Interactions and Feedbacks Between Biomass Burning and Water Cycle Dynamics Across the Northern Sub-Saharan African Region

    Science.gov (United States)

    Ichoku, Charles

    2012-01-01

    The northern sub-Saharan African (NSSA) region, bounded on the north and south by the Sahara and the Equator, respectively, and stretching from the West to the East African coastlines, has one of the highest biomass-burning rates per unit land area among all regions of the world. Because of the high concentration and frequency of fires in this region, with the associated abundance of heat release and gaseous and particulate smoke emissions, biomass-burning activity is believed to be one of the drivers of the regional carbon and energy cycles, with serious implications for the water cycle. A new interdisciplinary research effort sponsored by NASA is presently being focused on the NSSA region, to better understand the possible connection between the intense biomass burning observed from satellite year after year across the region and the rapid depletion of the regional water resources, as exemplified by the dramatic drying of Lake Chad. A combination of remote sensing and modeling approaches is being utilized in investigating multiple regional surface, atmospheric, and water-cycle processes, and inferring possible links between them. In this presentation, we will discuss preliminary results as well as the path toward improved understanding of the interrelationships and feedbacks between the biomass burning and the environmental change dynamics in the NSSA region.

  4. A New HPLC-ELSD Method for Simultaneous Determination of N-Acetylglucosamine and N-Acetylgalactosamine in Dairy Foods

    Directory of Open Access Journals (Sweden)

    Ho Jin Kim

    2015-01-01

    Full Text Available A rapid high performance liquid chromatographic method with evaporative light scattering detection (HPLC-ELSD, using a carbohydrate column, was developed for simultaneous determination of N-acetylglucosamine (GlcNAc and N-acetylgalactosamine (GalNAc in dairy foods. Sample preparation was performed by precipitation using acetonitrile. The limits of detection were 2.097 mg/L for GlcNAc and 3.247 mg/L for GalNAc. The limits of quantification were 6.043 mg/L for GlcNAc and 9.125 mg/L for GalNAc. Accuracy ranged from 96.4 to 105.7% for GlcNAc and from 97.1 to 104.1% for GalNAc. The precision of the method was <1.7% for GlcNAc and <2.2% for GalNAc. The mean recovery of the method was measured by spiking samples with 30.0–120.0 mg/L GlcNAc or 12.5–50.0 mg/L GalNAc and was found to be 95.1–105.5% for GlcNAc and 99.5–105.9% for GalNAc. The stability test results of standard solutions stored at 4, 20, and 40°C were 96.2–104.7% for GlcNAc and 98.0–106.5% for GalNAc. This study determined GlcNAc and GalNAc in dairy foods using HPLC-ELSD method. This rapid, simultaneous quantitation method might be useful as a mean of convenient quality control of dairy foods.

  5. A pore-scale study of fracture dynamics in rock using X-ray micro-CT under ambient freeze-thaw cycling.

    Science.gov (United States)

    De Kock, Tim; Boone, Marijn A; De Schryver, Thomas; Van Stappen, Jeroen; Derluyn, Hannelore; Masschaele, Bert; De Schutter, Geert; Cnudde, Veerle

    2015-03-03

    Freeze-thaw cycling stresses many environments which include porous media such as soil, rock and concrete. Climate change can expose new regions and subject others to a changing freeze-thaw frequency. Therefore, understanding and predicting the effect of freeze-thaw cycles is important in environmental science, the built environment and cultural heritage preservation. In this paper, we explore the possibilities of state-of-the-art micro-CT in studying the pore scale dynamics related to freezing and thawing. The experiments show the development of a fracture network in a porous limestone when cooling to -9.7 °C, at which an exothermal temperature peak is a proxy for ice crystallization. The dynamics of the fracture network are visualized with a time frame of 80 s. Theoretical assumptions predict that crystallization in these experiments occurs in pores of 6-20.1 nm under transient conditions. Here, the crystallization-induced stress exceeds rock strength when the local crystal fraction in the pores is 4.3%. The location of fractures is strongly related to preferential water uptake paths and rock texture, which are visually identified. Laboratory, continuous X-ray micro-CT scanning opens new perspectives for the pore-scale study of ice crystallization in porous media as well as for environmental processes related to freeze-thaw fracturing.

  6. Dynamic nonlinearity in epitaxial BaTiO.sub.3./sub. films

    Czech Academy of Sciences Publication Activity Database

    Tyunina, Marina; Savinov, Maxim

    2016-01-01

    Roč. 94, č. 5 (2016), 1-6, č. článku 054109. ISSN 2469-9950 R&D Projects: GA ČR GA15-15123S Institutional support: RVO:68378271 Keywords : dynamic nonlinearity * epitaxial * BaTiO 3 films Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.836, year: 2016

  7. Solar-cycle period-amplitude relation as evidence of hysteresis of the solar-cycle nonlinear magnetic oscillation and the long-term (55 year) cyclic modulation

    International Nuclear Information System (INIS)

    Yoshimura, H.

    1979-01-01

    A new dynamical model of the solar cycle has predicted that the cycle should have a hysteretic nature: the behavior of each 11 year cycle should depend on previous cycles. In the light of this new understanding of the dynamical mechanism of the solar cycle, Waldmeier's (hypothetical) law was examined as a yet unexplained characteristic of the cycle by studying the observed sunspot frequency curve. Contrary to this hypothetical law, however, it was found that sunspot cycle curves did not form a single-parameter family characterized by the maximum amplitude of the cycle. The evolutionary trajectories in period-amplitude phase space verified the hysteretic nature of the observed cycle and revealed long-term (55 year instead of the previously claimed 80 year) periodic modulations, called here 55 year grand cycles. Each 55 year grand cycle forms a loop in the phase space, and the characteristics of each 11 year cycle depend on its position in the ascending or descending phase of the grand cycle. This new law was analyzed by the nonlinear multiple-period dynamo oscillation model which has predicted the hysteretic nature. The era from cycle 11 to cycle 15 turned out to be an anomalous one characterized by alternating amplitudes for odd and even cycles. Cycles 16--20 seem to constitute one grand cycle. If this is true, cycle 21 would be the beginning of another grand maximum and the model predicts that its duration would be short

  8. A flexible 3D nitrogen-doped carbon foam@CNTs hybrid hosting TiO2 nanoparticles as free-standing electrode for ultra-long cycling lithium-ion batteries

    Science.gov (United States)

    Yuan, Wei; Wang, Boya; Wu, Hao; Xiang, Mingwu; Wang, Qiong; Liu, Heng; Zhang, Yun; Liu, Huakun; Dou, Shixue

    2018-03-01

    Free-standing electrodes have stood out from the electrode pack, owing to their advantage of abandoning the conventional polymeric binder and conductive agent, thus increasing the specific capacity of lithium-ion batteries. Nevertheless, their practical application is hampered by inferior electrical conductivity and complex manufacturing process. To this end, we report here a facile approach to fabricate a flexible 3D N-doped carbon foam/carbon nanotubes (NCF@CNTs) hybrid to act as the current collector and host scaffold for TiO2 particles, which are integrated into a lightweight free-standing electrode (NCF@CNTs-TiO2). In the resulting architecture, ultra-fine TiO2 nanoparticles are homogeneously anchored in situ into the N-doped NCF@CNTs framework with macro- and meso-porous structure, wrapped by a dense CNT layer, cooperatively enhances the electrode flexibility and forms an interconnected conductive network for electron/ion transport. As a result, the as-prepared NCF@CNTs-TiO2 electrode exhibits excellent lithium storage performance with high specific capacity of 241 mAh g-1 at 1 C, superb rate capability of 145 mAh g-1 at 20 C, ultra-long cycling stability with an ultra-low capacity decay of 0.0037% per cycle over 2500 cycles, and excellent thermal stability with ∼94% capacity retention over 100 cycles at 55 °C.

  9. Definición de un ciclo de movimiento básico para camiones diesel. // Definition of a basic driving cycle for diesel trucks.

    Directory of Open Access Journals (Sweden)

    V. Millo Carmenate

    2004-05-01

    Full Text Available Se define un ciclo básico de movimiento, cuya modelación matemática posibilite la determinación de indicadoresdinámicos básicos y de consumo de combustible para poder comparar vehículos con iguales fines pero con diferenteprocedencia, marca o parámetros constructivos, bajo similares condiciones a los fines de la selección.Palabras claves: Dinámica de vehículos, selección, ciclos de viaje._____________________________________________________________________________Abstract.A basic driving cycle is defined, whose mathematical modeling enable the determination of basic dynamic indicators andfuel consumption in order to compare vehicles with the same purpose but with different origin, brands or constructiveparameters, under similar operating conditions for the selection.Key words: Vehicle dynamics, selection, driving cycle.

  10. Facile synthesis of LiAl0.1Mn1.9O4 as cathode material for lithium ion batteries: towards rate and cycling capabilities at an elevated temperature

    International Nuclear Information System (INIS)

    Guo, Donglei; Li, Bao; Chang, Zhaorong; Tang, Hongwei; Xu, Xinhong; Chang, Kun; Shangguan, Enbao; Yuan, Xiao-Zi; Wang, Haijiang

    2014-01-01

    To improve the cycling performance of spinel LiMn 2 O 4 , Al-doped LiMn 2 O 4 , LiAl 0.1 Mn 1.9 O 4 , is synthesized using Mn 1.9 Al 0.1 O 3 precursor and LiOH·H 2 O via a low temperature solid-phase reaction. The Mn 1.9 Al 0.1 O 3 precursor, prepared from the electrolytic manganese dioxide (EMD) and Al(OH) 3 , is composed of spherical particles with an average diameter of 300 nm, and has a large interspace. Energy dispersive spectrometer (EDS) indicates the Al element is well distributed in Mn 1.9 Al 0.1 O 3 and LiAl 0.1 Mn 1.9 O 4 . The scanning electron microscopy (SEM) and transmission electron microscope (TEM) images show that the LiAl 0.1 Mn 1.9 O 4 sample has a high crystallinity with sizes ranging from 300 to 500 nm. Electrochemical properties of LiAl 0.1 Mn 1.9 O 4 are studied by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and galvanostatic charge-discharge. The results show that LiAl 0.1 Mn 1.9 O 4 possesses better rate and cycling capabilities than LiMn 2 O 4 at both 25 °C and 55 °C. At a rate of 5 C, the capacity retention ratio of the LiMn 1.9 Al 0.1 O 4 electrode after 100 cycles is about 95% at 25 °C and about 90% at 55 °C

  11. Dynamic recovery and optical properties changes in He-implanted ZnO nanoparticles

    International Nuclear Information System (INIS)

    Lee, J.-K.; Harriman, T.A.; Lucca, D.A.; Jung, H.S.; Ryan, D.B.; Nastasi, M.

    2007-01-01

    A study of the effects of ion-implanted He + on the photoluminescence (PL) of ZnO nanoparticles is presented. This investigation is motivated by the need to further understand the effects of damage resulting from the implantation process on the luminescence response of the nanoparticles. ZnO nanoparticles were synthesized by reacting zinc acetate with lithium hydroxide. The nanoparticle suspension was then dip coated on SiO 2 substrates producing thin films of ZnO nanoparticles, which were then implanted with He + ions at either room temperature or 400 deg. C. Following implantation, the PL spectrum of the ZnO nanoparticles was investigated and compared to that obtained from He-implanted bulk ZnO. Change in the overall luminescence efficiency was found to depend on both the size of the nanoparticles and the implantation temperature, and is attributed to the dynamic recovery of collision cascades in the ZnO nanoparticles. In addition, a comparison of He + -implanted ZnO nanoparticles with He + -implanted ZnO single crystals indicates that the origin of the green luminescence occurring from the ZnO nanoparticles is near-surface complex defects

  12. Dynamic expression of the translational machinery during Bacillus subtilis life cycle at a single cell level.

    Directory of Open Access Journals (Sweden)

    Alex Rosenberg

    Full Text Available The ability of bacteria to responsively regulate the expression of translation components is crucial for rapid adaptation to fluctuating environments. Utilizing Bacillus subtilis (B. subtilis as a model organism, we followed the dynamics of the translational machinery at a single cell resolution during growth and differentiation. By comprehensive monitoring the activity of the major rrn promoters and ribosomal protein production, we revealed diverse dynamics between cells grown in rich and poor medium, with the most prominent dissimilarities exhibited during deep stationary phase. Further, the variability pattern of translational activity varied among the cells, being affected by nutrient availability. We have monitored for the first time translational dynamics during the developmental process of sporulation within the two distinct cellular compartments of forespore and mother-cell. Our study uncovers a transient forespore specific increase in expression of translational components. Finally, the contribution of each rrn promoter throughout the bacterium life cycle was found to be relatively constant, implying that differential expression is not the main purpose for the existence of multiple rrn genes. Instead, we propose that coordination of the rrn operons serves as a strategy to rapidly fine tune translational activities in a synchronized fashion to achieve an optimal translation level for a given condition.

  13. Biogenesis and dynamics of mitochondria during the cell cycle: significance of 3'UTRs.

    Directory of Open Access Journals (Sweden)

    Marta Martínez-Diez

    Full Text Available Nowadays, we are facing a renaissance of mitochondria in cancer biology. However, our knowledge of the basic cell biology and on the timing and mechanisms that control the biosynthesis of mitochondrial constituents during progression through the cell cycle of mammalian cells remain largely unknown. Herein, we document the in vivo changes on mitochondrial morphology and dynamics that accompany cellular mitosis, and illustrate the following key points of the biogenesis of mitochondria during progression of liver cells through the cycle: (i the replication of nuclear and mitochondrial genomes is synchronized during cellular proliferation, (ii the accretion of OXPHOS proteins is asynchronously regulated during proliferation being the synthesis of beta-F1-ATPase and Hsp60 carried out also at G2/M and, (iii the biosynthesis of cardiolipin is achieved during the S phase, although full development of the mitochondrial membrane potential (DeltaPsim is attained at G2/M. Furthermore, we demonstrate using reporter constructs that the mechanism regulating the accretion of beta-F1-ATPase during cellular proliferation is controlled at the level of mRNA translation by the 3'UTR of the transcript. The 3'UTR-driven synthesis of the protein at G2/M is essential for conferring to the daughter cells the original phenotype of the parental cell. Our findings suggest that alterations on this process may promote deregulated beta-F1-ATPase expression in human cancer.

  14. Superior cycle performance and high reversible capacity of SnO2/graphene composite as an anode material for lithium-ion batteries

    OpenAIRE

    Liu, Lilai; An, Maozhong; Yang, Peixia; Zhang, Jinqiu

    2015-01-01

    SnO2/graphene composite with superior cycle performance and high reversible capacity was prepared by a one-step microwave-hydrothermal method using a microwave reaction system. The SnO2/graphene composite was characterized by X-ray diffraction, thermogravimetric analysis, Fourier-transform infrared spectroscopy, Raman spectroscopy, scanning electron microscope, X-ray photoelectron spectroscopy, transmission electron microscopy and high resolution transmission electron microscopy. The size of ...

  15. Effects of cattle slurry and nitrification inhibitor application on spatial soil O2 dynamics and N2O production pathways

    DEFF Research Database (Denmark)

    Quan, Nguyen Van; Wu, Di; Kong, Xianwang

    2017-01-01

    decomposition. Here, we applied O2 planar optode and N2O isotopomer techniques to investigate the linkage between soil O2 dynamics and N2O production pathways in soils treated with cattle slurry (treatment CS) and tested the effect of the nitrification inhibitor 3,4-dimethyl pyrazole phosphate, DMPP (treatment......Application of cattle slurry to grassland soil has environmental impacts such as ammonia volatilization and greenhouse gas emissions. The extent, however, depends on application method and soil conditions through their effects on infiltration and oxygen (O2) availability during subsequent...... CSD). Twodimensional planar optode images of soil O2 over time revealed that O2 depletion ultimately extended to 1.5 cm depth in CS, as opposed to 1.0 cm in CSD. The 15N site preference (SP) and d18O of emitted N2O varied between 11-25‰and 35e47‰, respectively, indicating a mixture of production...

  16. Dynamic Planar Convex Hull with Optimal Query Time and O(log n · log log n ) Update Time

    DEFF Research Database (Denmark)

    Brodal, Gerth Stølting; Jakob, Riko

    2000-01-01

    The dynamic maintenance of the convex hull of a set of points in the plane is one of the most important problems in computational geometry. We present a data structure supporting point insertions in amortized O(log n · log log log n) time, point deletions in amortized O(log n · log log n) time......, and various queries about the convex hull in optimal O(log n) worst-case time. The data structure requires O(n) space. Applications of the new dynamic convex hull data structure are improved deterministic algorithms for the k-level problem and the red-blue segment intersection problem where all red and all...

  17. Nanoindentation of ZrO{sub 2} and ZrO{sub 2}/Zr systems by molecular dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Zizhe; Chernatynskiy, Aleksandr; Noordhoek, Mark J.; Sinnott, Susan B.; Phillpot, Simon R., E-mail: sphil@mse.ufl.edu

    2017-04-01

    The deformation behaviors of cubic zirconia and a cubic zirconia thin film on top of an hcp zirconium substrate are investigated using molecular dynamics nanoindentation simulation. Interatomic interactions are described by the previously developed Charge Optimized Many Body (COMB) potential for the Zr-ZrO{sub 2}-O{sub 2} system. The load-displacement curves, deformation processes and hardnesses of zirconia and the zirconia/zirconium systems are characterized. In addition, by comparing with a previous nanoindentation simulation on zirconium, the effects of the zirconia layer on top on the mechanical properties of the zirconium substrate are determined.

  18. A multi-fluid PSO-based algorithm for the search of the best performance of sub-critical Organic Rankine Cycles

    International Nuclear Information System (INIS)

    Cavazzini, G.; Bari, S.; Pavesi, G.; Ardizzon, G.

    2017-01-01

    The present paper focuses on the thermodynamic optimization of a sub-critical ORC for heat source temperatures in the range between 80 and 150 °C. The most significant novelty of the optimization procedure is that the optimization algorithm was modified for this particular application in order to allow the swarm particles to dynamically choose the working fluid among a list of 37 candidates during their heuristic movement, by continuously and dynamically modifying the search domain of each particle iteration-by-iteration due to the different vapour saturation lines of the chosen working fluid. The significant amount of data obtained by the optimization procedure highlighted the dependency of the system efficiency on two main parameters: the Jakob number related to the optimized cycle (Ja_o_p_t) and the ratio between the critical temperature of the working fluid and the inlet heat source temperature. At closer inspection, a third new parameter Ω was identified, resulting from the combination of the previous two, whose minimization is correlated to the maximization of system efficiency. A procedure for the preliminary estimation of the optimal cycle allowing to estimate with good accuracy the Jakob number Ja_o_p_t and the corresponding value of Ω was also developed. - Highlights: • An PSO algorithm allowing for the dynamic choice of the working fluid is presented. • Thermodynamic optimizations for several heat source temperatures were carried out. • An effective parameter for choosing the best performing working fluids is presented.

  19. Utilização da contagem de folículos antrais para predição do padrão de resposta em ciclos de hiperestimulação controlada com antagonista de GnRH Use of antral follicle count to predict the response pattern in controlled ovarian hyperstimulation cycles with GnRH antagonist

    Directory of Open Access Journals (Sweden)

    Maria do Carmo Borges de Souza

    2008-01-01

    Full Text Available OBJETIVO: verificar se existe relação preditiva entre a contagem de folículos antrais (CFA no segundo dia do ciclo com o padrão de resposta em ciclos de hiperestimulação ovariana controlada para injeção intracitoplasmática de espermatozóide (ICSI. MÉTODOS: estudo prospectivo, desenvolvido de maio de 2004 a maio de 2005, no qual 51 pacientes com idade 15 mm no dia do desencadeamento da ovulação, número total e em metáfase II de oócitos captados, número de embriões de boa qualidade transferidos e taxa de gestação. A análise estatística foi realizada pelos testes t de Student e de Mann-Whitney, com significância estatística de 5% (pPURPOSE: to establish whether there is a predictive relationship between the antral follicle count (AFC on the second day of the cycle and the response pattern in controlled ovarian hyperstimulation cycles for intracytoplasmic sperm injection (ICSI. METHODS: a prospective study developed from May 2004 to May 2005, in which 51 patients aged 15 mm on the day of ovulation triggering, the total number of oocytes retrieved and in metaphases II, the number of good quality embryos transferred and pregnancy rate. The statistical analysis was performed by the t-Student test and the Mann-Whitney test, with statistical significance of 5% (p15 mm on the day of ovulation triggering (p=0.0001, the total number of oocytes retrieved (p=0.0001 and those in metaphases II (p=0.0001. Such correlation between AFC and pregnancy was not observed (p=0.43. There was no significant correlation between AFC and the number of good quality embryos transferred (p=0.081. CONCLUSIONS: AFC on the second day of the stimulated cycle can be used to predict the quality of ovarian stimulation, the number of oocytes retrieved and the number of mature oocytes in in vitro fertilization cycles using GnRH antagonist.

  20. Effect of Gaseous Impurities on Long-Term Thermal Cycling and Aging Properties of Complex Hydrides for Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, Dhanesh [Primary Contact; Lamb, Joshua; Chien, Wen-Ming; Talekar, Anjali; and Pal, Narendra

    2011-03-28

    This program was dedicated to understanding the effect of impurities on Long-Term Thermal Cycling and aging properties of Complex Hydrides for Hydrogen Storage. At the start of the program we found reversibility between Li2NH+LiH LiH+LiNH2 (yielding ~5.8 wt.%H capacity). Then we tested the effect of impurity in H2 gas by pressure cycling at 255°C; first with industrial gas containing ppm levels of O2 and H2O as major impurities. Both these impurities had a significant impact on the reversibility and decreased the capacity by 2.65 wt.%H. Further increase in number of cycles from 500 to 1100 showed only a 0.2 wt%H more weight loss, showing some capacity is still maintained after a significant number of cycles. The loss of capacity is attributed to the formation of ~55 wt% LiH and ~30% Li2O, as major contaminant phases, along with the hydride Li2NH phase; suggesting loss of nitrogen during cycling. The effect of 100 ppm H2O in H2 also showed a decrease of ~2.5 wt.%H (after 560 cycles), and 100ppm O2 in H2; a loss of ~4.1 wt.%. Methane impurity (100 ppm, 100cycles), showed a very small capacity loss of 0.9 wt.%H under similar conditions. However, when Li3N was pressure cycled with 100ppmN2-H2 there were beneficial effects were observed (255oC); the reversible capacity increased to 8.4wt.%H after 853 cycles. Furthermore, with 20 mol.%N2-H2 capacity increased to ~10 wt.%H after 516 cycles. We attribute this enhancement to the reaction of nitrogen with liquid lithium during cycling as the Gibbs free energy of formation of Li3N (Go = -98.7 kJ/mol) is more negative than that of LiH (Go = -50.3 kJ/mol). We propose that the mitigation of hydrogen capacity losses is due to the destabilization of the LiH phase that tends to accumulate during cycling. Also more Li2NH phase was found in the cycled product. Mixed Alanates (3LiNH2:Li3AlH6) showed that 7 wt% hydrogen desorbed under dynamic vacuum. Equilibrium experiments (maximum 12 bar H2) showed up to 4wt% hydrogen reversibly

  1. Ciclo de greves, transição política e estabilização: Brasil, 1978-2007 Cycle of strikes, political transition and stabilization: Brazil, 1978-2007

    Directory of Open Access Journals (Sweden)

    Eduardo G. Noronha

    2009-01-01

    Full Text Available Este artigo analisa o início, o apogeu e o declínio de um ciclo de greves sem precedentes na história brasileira devido às suas características e intensidade, tendo atingido entre 1985 e 1992 um dos maiores níveis de paralisações da história dos países ocidentais. Por meio de estatísticas atualizadas, analisa-se o primeiro grande ciclo de greves no Brasil (1978-1997 em todas as suas fases, incluindo a de normalização das greves (1998-2007, durante o segundo mandato de Fernando Henrique Cardoso e mantida nos governos de Luiz Inácio Lula da Silva. Neste estudo, argumenta-se que a natureza do ciclo esteve, acima de tudo, vinculada às etapas da transição para urbanização a democracia e às mudanças socioeconômicas derivadas dos processos de industrialização. A variação no volume de conflitos esteve também associada a variáveis econômicas (especialmente a inflação, mas de forma secundária. Nos últimos 30 anos, a inclusão de diversos segmentos sociais no âmbito da esfera política, em sentido lato, redesenhou o mapa dos "incluídos". Esse processo começou com a liberalização política em meados dos anos de 1970, foi reforçado pelas primeiras greves no ABC paulista em 1978 e teve continuidade pelas mais diversas formas de transformação do Estado nos vários governos subsequentes, de Sarney a Lula.The article analyzes the beginning, peak and decline of a cycle of strikes in Brazil which can be considered as the most important one in the country's history due to its characteristics and intensity, reaching one of the highest levels compared to other western countries between 1985 and 1992. The cycle of strikes (1978-1997 is examined in all its phases, as well as the following period of strikes normalization (1998-2007 during the governments of Fernando Henrique Cardoso and Luiz Inácio Lula da Silva. The nature of this cycle is clearly linked to the steps of the political liberalization and transition to democracy

  2. Evaluating the N-cycle module of LPJ-GUESS at the site-scale

    NARCIS (Netherlands)

    Fleischer, Katrin; Warlind, David; van der Molen, Michiel; Rebel, Karin; Willem Erisman, Jan; Arneth, Almut; Wassen, Martin; Smith, Ben; Dolman, Han

    Global scale dynamic vegetation models simulate the global C cycle and atmosphere-vegetation interactions, an essential component in the global climate system. The important role of the N-cycle in determining fluxes of carbon and climate dynamics is unequivocally evident. The current generation of

  3. The influence of cycling temperature and cycling rate on the phase specific degradation of a positive electrode in lithium ion batteries: A post mortem analysis

    Science.gov (United States)

    Darma, Mariyam Susana Dewi; Lang, Michael; Kleiner, Karin; Mereacre, Liuda; Liebau, Verena; Fauth, Francois; Bergfeldt, Thomas; Ehrenberg, Helmut

    2016-09-01

    The influence of cycling temperatures and cycling rates on the cycling stability of the positive electrode (cathode) of commercial batteries are investigated. The cathode is a mixture of LiMn2O4 (LMO), LiNi0.5Co0.2Mn0.3O2 (NCM) and LiNi0.8Co0.15Al0.05O2 (NCA). It is found that increasing the cycling temperature from 25 °C to 40 °C is detrimental to the long term cycling stability of the cathode. Contrastingly, the improved cycling stability is observed for the cathodes cycled at higher charge/discharge rate (2C/3C instead of 1C/2C). The microstructure analysis by X-ray powder diffraction reveals that a significant capacity fading and an increased overvoltage is observed for NCM and NCA in all the fatigued cathodes. After high number of cycling (above 1500 cycles), NCM becomes partially inactive. In contrast to NCM and NCA, LMO shows a good cycling stability at 25 °C. A pronounced degradation of LMO is only observed for the fatigued cathodes cycled at 40 °C. The huge capacity losses of NCM and NCA are most likely because the blended cathodes were cycled up to 4.12 V vs. the graphite anode during the cycle-life test (corresponds to 4.16 V vs. Li+/Li); which is beyond the stability limit of the layered oxides below 4.05 V vs. Li+/Li.

  4. State-to-state photodissociation dynamics of triatomic molecules: H2O in the B band

    International Nuclear Information System (INIS)

    Jiang Bin; Xie Daiqian; Guo Hua

    2012-01-01

    State-to-state photodissociation dynamics of H 2 O in its B band has been investigated quantum mechanically on a new set of non-adiabatically coupled potential energy surfaces for the lowest two 1 A' states of H 2 O, which are developed at the internally contracted multi-reference configuration interaction level with the aug-cc-pVQZ basis set. Quantum dynamical calculations carried out using the Chebyshev propagator yield absorption spectra, product state distributions, branching ratios, and differential cross sections, which are in reasonably good agreement with the latest experimental results. Particular focus is placed here on the dependence of various dynamical observables on the photon energy. Detailed analyses of the dynamics have assigned the diffuse structure in absorption spectrum to short-time recurring dynamics near the HOH conical intersection. The non-adiabatic dissociation to the ground state OH product via the HOH conical intersection is facile, direct, fast, and produces rotationally hot OH(X-tilde) products. On the other hand, the adiabatic channel on the excited state leading to the OH(A-tilde) product is dominated by long-lived resonances, which depend sensitively on the potential energy surfaces.

  5. Embedding Co3O4 nanoparticles into graphene nanoscrolls as anode for lithium ion batteries with superior capacity and outstanding cycling stability

    Directory of Open Access Journals (Sweden)

    Zhigang Zhang

    2018-04-01

    Full Text Available Co3O4 is a promising high-performance anode for lithium ion batteries (LIBs, but suffers from unsatisfied cyclability originating duo to low electrical conductivity and large volume expansion during charge and discharge process. Herein, we successfully constructed the Co3O4 nanoparticles embedded into graphene nanoscrolls (GNSs as advanced anode for high-performance LIBs with large capacity and exceptional cyclability. The one-dimensional (1D Co3O4/GNSs were synthesized via liquid nitrogen cold quenching of large-size graphene oxide nanosheets and sodium citrate (SC modified Co3O4 nanoparticles, followed by freeze drying and annealing at 400 °C for 2 h in nitrogen atmosphere. Benefiting from the interconnected porous network constructed by 1D Co3O4/GNSs for fast electron transfer and rapid ion diffusion, and wrinkled graphene shell for significantly alleviating the huge volume expansion of Co3O4 during lithiation and delithiation. The resultant Co3O4/GNSs exhibited ultrahigh reversible capacity of 1200 mAh g−1 at 0.1 C, outperforming most reported Co3O4 anodes. Moreover, they showed high rate capability of 600 mAh g−1 at 5 C, and outstanding cycling stability with a high capacity retention of 90% after 500 cycles. Therefore, this developed strategy could be extended as an universal and scalable approach for intergrating various metal oxide materials into GNSs for energy storage and conversion applications. Keywords: Graphene nanoscrolls, Co3O4, Anode, Lithium ion batteries, Energy storage

  6. Dynamic Confinement of ITER Plasma by O-Mode Driver at Electron Cyclotron Frequency Range

    Science.gov (United States)

    Stefan, V. Alexander

    2009-05-01

    A low B-field side launched electron cyclotron O-Mode driver leads to the dynamic rf confinement, in addition to rf turbulent heating, of ITER plasma. The scaling law for the local energy confinement time τE is evaluated (τE ˜ 3neTe/2Q, where (3/2) neTe is the local plasma thermal energy density and Q is the local rf turbulent heating rate). The dynamics of unstable dissipative trapped particle modes (DTPM) strongly coupled to Trivelpiece-Gould (T-G) modes is studied for gyrotron frequency 170GHz; power˜24 MW CW; and on-axis B-field ˜ 10T. In the case of dynamic stabilization of DTPM turbulence and for the heavily damped T-G modes, the energy confinement time scales as τE˜(I0)-2, whereby I0(W/m^2) is the O-Mode driver irradiance. R. Prater et. al., Nucl. Fusion 48, No 3 (March 2008). E. P. Velikhov, History of the Russian Tokamak and the Tokamak Thermonuclear Fusion Research Worldwide That Led to ITER (Documentary movie; Stefan Studios Int'l, La Jolla, CA, 2008; E. P. Velikhov, V. Stefan.) M N Rosenbluth, Phys. Scr. T2A 104-109 1982 B. B. Kadomtsev and O. P. Pogutse, Nucl. Fusion 11, 67 (1971).

  7. Structural phase transition and dynamical properties of PbTiO3 simulated by molecular dynamics

    International Nuclear Information System (INIS)

    Costa, S C; Pizani, P S; Rino, J P; Borges, D S

    2005-01-01

    The temperature- and pressure-induced structural phase transition in PbTiO 3 is studied with the isoenthalpic-isobaric molecular-dynamics method, using an effective two-body interaction potential. The tetragonal to cubic transformation is successfully reproduced with both temperature and pressure. The behaviour of lattice parameters, vibrational density of states, and phonon anharmonicity with temperature and pressure are in very good agreement with experimental data. Two- and three-body correlations were analysed through pair distribution functions, coordination numbers and bond-angle distributions

  8. Disruption of O-GlcNAc cycling in C. elegans perturbs Nucleotide Sugar pools and Complex Glycans

    Directory of Open Access Journals (Sweden)

    Salil K Ghosh

    2014-11-01

    Full Text Available The carbohydrate modification of serine and threonine residues with O-linked beta-N-acetylglucosamine (O-GlcNAc is ubiquitous and governs cellular processes ranging from cell signaling to apoptosis. The O-GlcNAc modification along with other carbohydrate modifications, including N-linked and O-linked glycans, glycolipids, and sugar polymers, all require the use of the nucleotide sugar UDP-GlcNAc, the end product of the hexosamine biosynthetic pathway. In this paper, we describe the biochemical consequences resulting from perturbation of the O-GlcNAc pathway in C. elegans lacking O-GlcNAc transferase and O-GlcNAcase activities. In ogt-1 null animals, steady-state levels of UDP-GlcNAc/UDP-GalNAc and UDP-glucose were substantially elevated. Transcripts of genes encoding for key members in the Hexosamine Biosynthetic Pathway (gfat-2, gna-2, C36A4.4 and trehalose metabolism (tre-1, tre-2, and tps-2 were elevated in ogt-1 null animals. While there is no evidence to suggest changes in the profile of N-linked glycans in the ogt-1 and oga-1 mutants, glycans insensitive to PNGase digestion (including O-linked glycans, glycolipids, and glycopolymers were altered in these strains. Our data supports that changes in O-GlcNAcylation alters nucleotide sugar production, overall glycan composition, and transcription of genes encoding glycan processing enzymes. These data along with our previous findings that disruption in O-GlcNAc cycling alters macronutrient storage underscores the noteworthy influence this posttranslational modification plays in nutrient sensing.

  9. Dynamic tritium inventory of a NET/ITER fuel cycle with lithium salt solution blanket

    International Nuclear Information System (INIS)

    Spannagel, G.; Gierszewski, P.

    1991-01-01

    At the Karlsruhe Nuclear Research Center (KfK) a flexible tool is being developed to simulate the dynamics of tritium inventories. This tool can be applied to any tritium handling system, especially to the fuel cycle components of future nuclear fusion devices. This instrument of simulation will be validated in equipment to be operated at the Karlsruhe Tritium Laboratory. In this study tritium inventories in a NET/ITER type fuel cycle involving a lithium salt solution blanket are investigated. The salt solution blanket serves as an example because it offers technological properties which are attractive in modeling the process; the example does not impair the general validity of the tool. Usually, the operation strategy of complex structures will deteriorate due to failures of the subsystems involved. These failures together with the reduced availability ensuing from them will be simulated. The example of this study is restricted to reduced availabilities of two subsystems, namely the reactor and the tritium recovery system. For these subsystems the influence of statistically varying intervals of operation is considered. Strategies we selected which are representative of expected modes of operation. In the design of a fuel cycle, care will be taken that prescribed availabilities of the subsystems can be achieved; however, the description of reactor operation is a complex task since operation breaks down into several campaigns for which rules have been specified which enable determination of whether a campaign has been successful and can be stopped. Thus, it is difficult to predict the overall behavior prior to a simulation which includes stochastic elements. Using the example mentioned above the capabilities of the tool will be illustrated; besides the presentation of results of inventory simulation, the applicability of these data will be discussed. (orig.)

  10. Dynamic strain ageing in Inconel® Alloy 783 under tension and low cycle fatigue

    International Nuclear Information System (INIS)

    Nagesha, A.; Goyal, Sunil; Nandagopal, M.; Parameswaran, P.; Sandhya, R.; Mathew, M.D.; Mannan, Sarwan K.

    2012-01-01

    Highlights: ► Low cycle fatigue (LCF) and tensile tests were performed on Inconel ® Alloy 783. ► A stable cyclic stress response followed by continuous softening was noted under LCF. ► Material exhibited DSA in the temperature range, 573–723 K. ► Occurrence of DSA reduced the extent of cycling softening in LCF. ► Both interstitial and substitutional atoms were found to be responsible for DSA. - Abstract: Low cycle fatigue (LCF) tests were performed on Inconel ® Alloy 783 at a strain rate of 3 × 10 −3 s −1 and a strain amplitude of ±0.6%, employing various temperatures in the range 300–923 K. A continuous reduction in the LCF life was observed with increase in the test temperature. The material generally showed a stable stress response followed by a region of continuous softening up to failure. However, in the temperature range of 573–723 K, the alloy was seen to exhibit dynamic strain ageing (DSA) which was observed to reduce the extent of cyclic softening. With a view to identifying the operative mechanisms responsible for DSA, tensile tests were conducted at temperatures in the range, 473–798 K with strain rates varying from 3 × 10 −5 s −1 to 3 × 10 −3 s −1 . Interaction of dislocations with interstitial (C) and substitutional (Cr) atoms respectively, in the lower and higher temperature regimes was found to be responsible for DSA. Further, the friction stress, as determined using the stabilised stress–strain hysteresis loops, was seen to show a more prominent peak in the DSA range, compared to the maximum tensile stress.

  11. Business Cycle Theory and Econometrics.

    OpenAIRE

    Gregory, Allan W; Smith, Gregor W

    1995-01-01

    We outline in turn criticisms made by econometricians of the methods used in empirical business-cycle research and then criticisms made by business-cycle researchers of some methods used by econometricians. The aim is to clarify and in some cases correct these criticisms. Overall there is no conflict in using rigourous statistical procedures to study modern dynamic stochastic general equilibrium models. We also provide a concise bibliography of recent research on statistical methods for busin...

  12. Gadolinia experience and design for PWR fuel cycles

    International Nuclear Information System (INIS)

    Stephenson, L. C.

    2000-01-01

    The purpose of this paper is to describe Siemens Power Corporation's (SPC) current experience with the burnable absorber gadolinia in PWR fuel assemblies, including optimized features of SPC's PWR gadolinia designs, and comparisons with other burnable absorbers. Siemens is the world leader in PWR gadolinia experience. More than 5,900 Siemens PWR gadolinia-bearing fuel assemblies have been irradiated. The use of gadolinia-bearing fuel provides significant flexibility in fuel cycle designs, allows for low radial leakage fuel management and extended operating cycles, and reduces BOC (beginning-of-cycle) soluble boron concentrations. The optimized use of an integral burnable neutron absorber is a design feature which provides improved economic performance for PWR fuel assemblies. This paper includes a comparison between three different types of integral burnable absorbers: gadolinia, Zirconium diboride and erbia. Fuel cycle design studies performed by Siemens have shown that the enrichment requirements for 18-24 month fuel cycles utilizing gadolinia or zirconium diboride integral fuel burnable absorbers can be approximately the same. Although a typical gadolinia residual penalty for a cycle design of this length is as low as 0.02-0.03 wt% U-235, the design flexibility of gadolinia allows for very aggressive low-leakage core loading plans which reduces the enrichment requirements for gadolinia-bearing fuel. SPC has optimized its use of gadolinia in PWR fuel cycles. Typically, low (2-4) weight percent Gd 2 O 3 is used for beginning to middle of cycle reactivity hold down as well as soluble boron concentration holddown at BOC. Higher concentrations of Gd 2 O 3 , such as 6 and 8 wt%, are used to control power peaking in assemblies later in the cycle. SPC has developed core strategies that maximize the use of lower gadolinia concentrations which significantly reduces the gadolinia residual reactivity penalty. This optimization includes minimizing the number of rods with

  13. Magnetic stability under magnetic cycling of MgO-based magnetic tunneling junctions with an exchange-biased synthetic antiferromagnetic pinned layer

    Directory of Open Access Journals (Sweden)

    Qiang Hao

    2016-02-01

    Full Text Available We investigate the magnetic stability and endurance of MgO-based magnetic tunnel junctions (MTJs with an exchange-biased synthetic antiferromagnetic (SAF pinned layer. When a uniaxially cycling switching field is applied along the easy axis of the free magnetic layer, the magnetoresistance varies only by 1.7% logarithmically with the number of cycles, while no such change appears in the case of a rotating field. This observation is consistent with the effect of the formation and motion of domain walls in the free layer, which create significant stray fields within the pinned hard layer. Unlike in previous studies, the decay we observed only occurs during the first few starting cycles (<20, at which point there is no further variance in all performance parameters up to 107 cycles. Exchange-biased SAF structure is ideally suited for solid-state magnetic sensors and magnetic memory devices.

  14. Dynamic behavior of Rankine cycle system for waste heat recovery of heavy duty diesel engines under driving cycle

    International Nuclear Information System (INIS)

    Xie, Hui; Yang, Can

    2013-01-01

    Highlights: • Waste heat recovery behavior of the RCS during driving cycle was investigated. • Four operating modes were defined to describe the operating process of the RCS under driving cycle. • The operating mode switching is the crucial reason for on-road inefficiency. • The dry and isentropic fluids are superior to the wet ones on the adaptability to unsteady ExGE. • The effects of the vapor parameters on RCT-E and power mode percentage are opposite. - Abstract: The RCS (Rankine cycle system) used to recover the WHE (waste heat energy) from engines has been regarded as one of the most potential ways of achieving higher efficiency. However, it is of great challenge to keep the RCS still in good performance under driving cycle. This paper tries to reveal and explain its on-road inefficiency. The operating process of the RCS under driving cycle was analyzed in advance. Afterwards, four basic operating modes were defined, including startup mode, turbine turning mode, power mode and protection mode. Then, a RCS model was established and operating performances of the RCS under an actual driving cycle were discussed based on this model. The results indicate that the on-road RCS-E (Rankine cycle system efficiency) is as low as 3.63%, which is less than half of the design RCS-E (7.77%) at the rated operating point. Despite the inevitable vapor state fluctuation, it is the operating mode switching during the driving cycle that leads to the on-road inefficiency. Further investigations indicate that the expander safety temperature and its safety margin affected by the working fluids, designed superheat degree and evaporating pressure are the main factors determining the operating mode switching. Finally, the effects of the working fluids, designed superheat degree and evaporating pressure on the operating mode switching and RC (Rankine cycle) efficiencies were profoundly investigated. The study shows that the dry and isentropic fluids are superior to the wet

  15. Fuel cycle economics of HTRs

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, U.

    1975-06-15

    The High Temperature Reactor commands a unique fuel cycle flexibility and alternative options are open to the utilities. The reference thorium reactor operating in the U-233 recycle mode is 10 to 20% cheaper than the low-enriched reactor; however, the thorium cycle depends on the supply of 93% enriched uranium and the availability of reprocessing and refabrication facilities to utilize its bred fissile material. The economic landscape towards the end of the 20th Century will presumably be dominated by pronounced increases in the costs of natural resources. In the case of nuclear energy, resource considerations are reflected in the price of uranium, which is expected Lo have reached 50 $/lbm U3O8 in the early 1990s and around 100 $/lbm U3O8 around 2010. In this economic environment the fuel cycle advantage of the thorium system amounts to some 20% and is capable of absorbing substantial expenses in bringing about the closing of the out-of-pile cycle. A most attractive aspect of the HTR fuel cycle flexibility is for the utility to start operating the reactor on the low enriched uranium cycle and at a later date switch over to the thorium cycle as this becomes economically more and more attractive. The incentive amounts to some 50 M$ in terms of present worth money at the time of decision making, assumed to take place 10 years after start-up. The closing of the thorium cycle is of paramount importance and a step to realize this objective lies in simplifying the head-end reprocessing technology by abandoning the segregation concept of feed and breed coated particles in the reference cycle. A one-coated-particle scheme in which all discharged uranium isotopes are recycled in mixed oxide particles is feasible and suffers a very minor economic penalty only.

  16. Assessment of watershed scale nitrogen cycling and dynamics by hydrochemical modeling

    Science.gov (United States)

    Onishi, T.; Hiramatsu, K.; Somura, H.

    2017-12-01

    Nitrogen cycling in terrestrial areas is affecting water quality and ecosystem of aquatic area such as lakes and oceans through rivers. Owing to the intensive researches on nitrogen cycling in each different type of ecosystem, we acquired rich knowledge on nitrogen cycling of each ecosystem. On the other hand, since watershed are composed of many different kinds of ecosystems, nitrogen cycling in a watershed as a complex of these ecosystems is not well quantified. Thus, comprehensive understanding of nitrogen cycling of watersheds by modelling efforts are required. In this study, we attempted to construct hydrochemical model of the Ise Bay watershed to reproduce discharge, TN, and NO3 concentration. The model is based on SWAT (Soil and Water Assessment Tools) model. As anthropogenic impacts related to both hydrological cycling and nitrogen cycling, agricultural water intake/drainage, and domestic water intake/drainage were considered. In addition, fertilizer input to agricultural lands were also considered. Calibration period and validation period are 2004-2006, and 2007-2009, respectively. As a result of calibration using 2000 times LCS (Latin Cubic Sampling) method, discharge of rivers were reproduced fairly well with NS of 0.6-0.8. In contrast, the calibration result of TN and NO3 concentration tended to show overestimate values in spite of considering parameter uncertainties. This implies that unimplemented denitrification processes in the model. Through exploring the results, it is indicated that riparian areas, and agricultural drainages might be important spots for denitrification. Based on the result, we also attempted to evaluate the impact of climate change on nitrogen cycling. Though it is fully explored, this result will also be reported.

  17. Quasi-dynamic Material Flow Analysis applied to the Austrian Phosphorus cycle

    Science.gov (United States)

    Zoboli, Ottavia; Rechberger, Helmut

    2013-04-01

    Phosphorus (P) is one of the key elements that sustain life on earth and that allow achieving the current high levels of food production worldwide. It is a non-renewable resource, without any existing substitute. Because of its current dissipative use by mankind and to its very slow geochemical cycle, this resource is rapidly depleting and it is strongly connected to the problem of ensuring food security. Moreover P is also associated to important environmental problems. Its extraction often generates hazardous wastes, while its accumulation in water bodies can lead to eutrophication, with consequent severe ecological damages. It is therefore necessary to analyze and understand in detail the system of P, in regard to its use and management, to identify the processes that should be targeted in order to reduce the overall consumption of this resource. This work aims at establishing a generic quasi-dynamic model, which describes the Austrian P-budget and which allows investigating the trends of P use in the past, but also selected future scenarios. Given the importance of P throughout the whole anthropogenic metabolism, the model is based on a comprehensive system that encompasses several economic sectors, from agriculture and animal husbandry to industry, consumption and waste and wastewater treatment. Furthermore it includes the hydrosphere, to assess the losses of P into water bodies, due to the importance of eutrophication problems. The methodology applied is Material Flow Analysis (MFA), which is a systemic approach to assess and balance the stocks and flows of a material within a system defined in space and time. Moreover the model is integrated in the software STAN, a freeware tailor-made for MFA. Particular attention is paid to the characteristics and the quality of the data, in order to include data uncertainty and error propagation in the dynamic balance.

  18. Study of characteristics of Th-U cycle in CANDU SCWR

    International Nuclear Information System (INIS)

    Shi, J.; Shi, G.

    2010-01-01

    The flexibility of CANDU technology allows the use of different fuel cycles including various uranium-driven thorium cycles. Direct self-recycle method and heterogeneous cycle modes with supercritical water as coolant were studied for (U,Th)O 2 CANFLEX fuel bundle. Lattice pitch and enrichment of driver fuel were treated as independent variables, taking account of coolant void reactivity, fuel burnup, and linear power uneven factor. In the end, appropriate cycle mode and parameters of bundle were chosen for (U,Th)O 2 cycle in CANDU SCWR. Calculations were processed by the two-dimensional multigroup neutron transport code WIMS-AECL release 3.1.2.1. (author)

  19. Ecohydrological Interfaces as Dynamic Hotspots of Biogeochemical Cycling

    Science.gov (United States)

    Krause, Stefan; Lewandowski, Joerg; Hannah, David; McDonald, Karlie; Folegot, Silvia; Baranov, Victor

    2016-04-01

    Ecohydrological interfaces, represent the boundaries between water-dependent ecosystems that can alter substantially the fluxes of energy and matter. There is still a critical gap of understanding the organisational principles of the drivers and controls of spatially and temporally variable ecohydrological interface functions. This knowledge gap limits our capacity to efficiently quantify, predict and manage the services provided by complex ecosystems. Many ecohydrological interfaces are characterized by step changes in microbial metabolic activity, steep redox gradients and often even thermodynamic phase shifts, for instance at the interfaces between atmosphere and water or soil matrix and macro-pores interfaces. This paper integrates investigations from point scale laboratory microcosm experiments with reach and subcatchment scale tracer experiments and numerical modeling studies to elaborate similarities in the drivers and controls that constitute the enhanced biogeochemical activity of different types of ecohydrologica interfaces across a range of spatial and temporal scales. We therefore combine smart metabolic activity tracers to quantify the impact of bioturbating benthic fauna onto ecosystem respiration and oxygen consumption and investigate at larger scale, how microbial metabolic activity and carbon turnover at the water-sediment interface are controlled by sediment physical and chemical properties as well as water temperatures. Numerical modeling confirmed that experimentally identified hotspots of streambed biogeochemical cycling were controlled by patterns of physical properties such as hydraulic conductivities or bioavailability of organic matter, impacting on residence time distributions and hence reaction times. In contrast to previous research, our investigations thus confirmed that small-scale variability of physical and chemical interface properties had a major impact on biogeochemical processing at the investigated ecohydrological interfaces

  20. Fuel cycle optimization in PWR'S

    International Nuclear Information System (INIS)

    Castro Lobo, P.D. de; Amorim, E.S. do.

    1979-08-01

    Neutronics aspects of a reactor core throughout its cycle were investigated in a search for increasing in-core utilization of the residual fissile isotopes content in the cycle discharged disposal. The effects due to design modifications introduced at burnup levels near the end-of-cycle, in an equilibrium cycle condition, have indicated the possibility of a better in-core utilization of the residual fissile isotopes existing in the cycle discharged disposal. The potential benefits are significant to warranty an examination of the mechanical and thermal hydraulic involved. At convenient burnup levels, change in H 2 O/UO 2 volume ratio were introduced allowing an intense depletion of the residual fissile isotopes existing in assemblies with high exposures levels. (Author) [pt

  1. Ferroelectric domain switching dynamics and memristive behaviors in BiFeO3-based magnetoelectric heterojunctions

    Science.gov (United States)

    Huang, Weichuan; Liu, Yukuai; Luo, Zhen; Hou, Chuangming; Zhao, Wenbo; Yin, Yuewei; Li, Xiaoguang

    2018-06-01

    The ferroelectric domain reversal dynamics and the corresponding resistance switching as well as the memristive behaviors in epitaxial BiFeO3 (BFO, ~150 nm) based multiferroic heterojunctions were systematically investigated. The ferroelectric domain reversal dynamics could be described by the nucleation-limited-switching model with the Lorentzian distribution of logarithmic domain-switching times. By engineering the domain states, multi and even continuously tunable resistances states, i.e. memristive states, could be non-volatilely achieved. The resistance switching speed can be as fast as 30 ns in the BFO-based multiferroic heterojunctions with a write voltage of ~20 V. By reducing the thickness of BFO, the La0.6Sr0.4MnO3/BFO (~5 nm)/La0.6Sr0.4MnO3 multiferroic tunnel junction (MFTJ) shows an even a quicker switching speed (20 ns) with a much lower operation voltage (~4 V). Importantly, the MFTJ exhibits a tunable interfacial magnetoelectric coupling related to the ferroelectric domain switching dynamics. These findings enrich the potential applications of multiferroic BFO based devices in high-speed, low-power, and high-density memories as well as future neuromorphic computational architectures.

  2. Rapid nitrous oxide cycling in the suboxic ocean

    Science.gov (United States)

    Babbin, Andrew R.; Bianchi, Daniele; Jayakumar, Amal; Ward, Bess B.

    2015-06-01

    Nitrous oxide (N2O) is a powerful greenhouse gas and a major cause of stratospheric ozone depletion, yet its sources and sinks remain poorly quantified in the oceans. We used isotope tracers to directly measure N2O reduction rates in the eastern tropical North Pacific. Because of incomplete denitrification, N2O cycling rates are an order of magnitude higher than predicted by current models in suboxic regions, and the spatial distribution suggests strong dependence on both organic carbon and dissolved oxygen concentrations. Furthermore, N2O turnover is 20 times higher than the net atmospheric efflux. The rapid rate of this cycling coupled to an expected expansion of suboxic ocean waters implies future increases in N2O emissions.

  3. Cycling of conventional power plants: Technical limits and actual costs

    International Nuclear Information System (INIS)

    Van den Bergh, Kenneth; Delarue, Erik

    2015-01-01

    Highlights: • Literature reports a wide range of cycling parameters (technical and cost-related). • The impact of different cycling parameters is assessed. • The German 2013 system is studied as a case study. • Even for stringent parameters, the dynamic limit of the portfolio is not reached. • Cycling costs can be reduced with 40% when taken into account in the scheduling. - Abstract: Cycling of conventional generation units is an important source of operational flexibility in the electricity generation system. Cycling is changing the power output of conventional units by means of ramping and switching (starting up and shutting down). In the literature, a wide range of technical and cost-related cycling parameters can be found. Different studies allocate different cycling parameters to similar generation units. This paper assesses the impact of different cycling parameters allocated to a conventional generation portfolio. Both the technical limitations of power plants and all costs related to cycling are considered. The results presented in this paper follow from a unit commitment model, used for a case study based on the German 2013 system. The conventional generation portfolio has to deliver different residual load time series, corresponding to different levels of renewables penetration. The study shows, under the assumptions made, that although the dynamic limits of some units are reached, the limits of the conventional generation portfolio as a whole are not reached, even if stringent dynamic parameters are assigned to the generation portfolio and a highly variable residual load is imposed to the system. The study shows also the importance of including full cycling costs in the unit commitment scheduling. The cycling cost can be reduced by up to 40% when fully taken into account

  4. Nitrogen cycling models and their application to forest harvesting

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.W.; Dale, V.H.

    1986-01-01

    The characterization of forest nitrogen- (N-) cycling processes by several N-cycling models (FORCYTE, NITCOMP, FORTNITE, and LINKAGES) is briefly reviewed and evaluated against current knowledge of N cycling in forests. Some important processes (e.g., translocation within trees, N dynamics in decaying leaf litter) appear to be well characterized, whereas others (e.g., N mineralization from soil organic matter, N fixation, N dynamics in decaying wood, nitrification, and nitrate leaching) are poorly characterized, primarily because of a lack of knowledge rather than an oversight by model developers. It is remarkable how well the forest models do work in the absence of data on some key processes. For those systems in which the poorly understood processes could cause major changes in N availability or productivity, the accuracy of model predictions should be examined. However, the development of N-cycling models represents a major step beyond the much simpler, classic conceptual models of forest nutrient cycling developed by early investigators. The new generation of computer models will surely improve as research reveals how key nutrient-cycling processes operate.

  5. Managed grassland alters soil N dynamics and N2O emissions in temperate steppe.

    Science.gov (United States)

    Xu, Lijun; Xu, Xingliang; Tang, Xuejuan; Xin, Xiaoping; Ye, Liming; Yang, Guixia; Tang, Huajun; Lv, Shijie; Xu, Dawei; Zhang, Zhao

    2018-04-01

    Reclamation of degraded grasslands as managed grasslands has been increasingly accelerated in recent years in China. Land use change affects soil nitrogen (N) dynamics and nitrous oxide (N 2 O) emissions. However, it remains unclear how large-scale grassland reclamation will impact the grassland ecosystem as a whole. Here, we investigated the effects of the conversion from native to managed grasslands on soil N dynamics and N2O emissions by field experiments in Hulunber in northern China. Soil (0-10cm), nitrate (NO 3 - ), ammonium (NH 4 + ), and microbial N were measured in plots in a temperate steppe (Leymus chinensis grassland) and two managed grasslands (Medicago sativa and Bromus inermis grasslands) in 2011 and 2012. The results showed conversion of L. chinensis grassland to M. sativa or B. inermis grasslands decreased concentrations of NO 3 - -N, but did not change NH 4 + -N. Soil microbial N was slightly decreased by the conversion of L. chinensis grassland to M. sativa, but increased by the conversion to B. inermis. The conversion of L. chinensis grassland to M. sativa (i.e., a legume grass) increased N 2 O emissions by 26.2%, while the conversion to the B. inermis (i.e., a non-legume grass) reduced N 2 O emissions by 33.1%. The conversion from native to managed grasslands caused large created variations in soil NO 3 - -N and NH 4 + -N concentrations. Net N mineralization rates did not change significantly in growing season or vegetation type, but to net nitrification rate. These results provide evidence on how reclamation may impact the grassland ecosystem in terms of N dynamics and N 2 O emissions. Copyright © 2017. Published by Elsevier B.V.

  6. Transformation dynamics of Ni clusters into NiO rings under electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Knez, Daniel, E-mail: daniel.knez@felmi-zfe.at [Institute of Electron Microscopy and Nanoanalysis, Graz University of Technology, Steyrergasse 17, 8010 Graz (Austria); Graz Centre for Electron Microscopy, Steyrergasse 17, 8010 Graz (Austria); Thaler, Philipp; Volk, Alexander [Institute of Experimental Physics, Graz University of Technology, Petersgasse 16, 8010 Graz (Austria); Kothleitner, Gerald [Institute of Electron Microscopy and Nanoanalysis, Graz University of Technology, Steyrergasse 17, 8010 Graz (Austria); Graz Centre for Electron Microscopy, Steyrergasse 17, 8010 Graz (Austria); Ernst, Wolfgang E. [Institute of Experimental Physics, Graz University of Technology, Petersgasse 16, 8010 Graz (Austria); Hofer, Ferdinand [Institute of Electron Microscopy and Nanoanalysis, Graz University of Technology, Steyrergasse 17, 8010 Graz (Austria); Graz Centre for Electron Microscopy, Steyrergasse 17, 8010 Graz (Austria)

    2017-05-15

    We report the transformation of nickel clusters into NiO rings by an electron beam induced nanoscale Kirkendall effect. High-purity nickel clusters consisting of a few thousand atoms have been used as precursors and were synthesized with the superfluid helium droplet technique. Aberration-corrected, analytical scanning transmission electron microscopy was applied to oxidise and simultaneously analyse the nanostructures. The transient dynamics of the oxidation could be documented by time lapse series using high-angle annular dark-field imaging and electron energy-loss spectroscopy. A two-step Cabrera-Mott oxidation mechanism was identified. It was found that water adsorbed adjacent to the clusters acts as oxygen source for the electron beam induced oxidation. The size-dependent oxidation rate was estimated by quantitative EELS measurements combined with molecular dynamics simulations. Our findings could serve to better control sample changes during examination in an electron microscope, and might provide a methodology to generate other metal oxide nanostructures. - Highlights: • Beam induced conversion of Ni clusters into crystalline NiO rings has been observed. • Ni clusters were grown with the superfluid He-droplet technique. • oxidizeSTEM was utilized to investigate and simultaneously oxidize these clusters. • Oxidation dynamics was captured in real-time. • Cluster sizes and the oxidation rate were estimated via EELS and molecular dynamics.

  7. Breakout from the hot CNO cycle: the {sup 15}O({alpha},{gamma}) and {sup 18}Ne({alpha},p) reactions

    Energy Technology Data Exchange (ETDEWEB)

    Bradfield-Smith, W; Laird, A M; Davinson, T; Pietro, A di; Ostrowski, A N; Shotter, A C; Woods, P J [Dept. of Physics and Astronomy, Univ. of Edinburgh (United Kingdom); Cherubini, S; Galster, W; Graulich, J S; Leleux, P; Michel, L; Ninane, A; Vervier, J [Inst. de Physique Nucleaire, UCL, Louvain-la-Neuve (Belgium); Aliotta, M; Cali, D; Cappussello, F; Cunsolo, A; Spitaleri, C [INFN, Catania (Italy); Gorres, J; Wiescher, M [Notre Dame Univ. (United States); Rahighi, J [Van de Graaf Lab., Tehran (Iran, Islamic Republic of); Hinnefeld, J [Indiana Univ., South Bend (United States)

    1998-06-01

    One of the most important reactions which determines the rate of breakout from the hot CNO cycle is the {sup 15}O({alpha},{gamma}){sup 19}Ne. The reaction {sup 18}Ne({alpha},p){sup 21}Na may also provide an alternative breakout route. Experiments are being undertaken at Louvain-La-Neuve using the radioactive {sup 18}Ne beam to study these reactions by measurement of {alpha}({sup 18}Ne,p){sup 21}Na and d({sup 18}Ne,p){sup 19}Ne{sup *} {yields} {sup 15}O + {alpha} (orig.)

  8. Cycle to Cycle Variation Study in a Dual Fuel Operated Engine

    KAUST Repository

    Pasunurthi, Shyamsundar

    2017-03-28

    The standard capability of engine experimental studies is that ensemble averaged quantities like in-cylinder pressure from multiple cycles and emissions are reported and the cycle to cycle variation (CCV) of indicated mean effective pressure (IMEP) is captured from many consecutive combustion cycles for each test condition. However, obtaining 3D spatial distribution of all the relevant quantities such as fuel-air mixing, temperature, turbulence levels and emissions from such experiments is a challenging task. Computational Fluid Dynamics (CFD) simulations of engine flow and combustion can be used effectively to visualize such 3D spatial distributions. A dual fuel engine is considered in the current study, with manifold injected natural gas (NG) and direct injected diesel pilot for ignition. Multiple engine cycles in 3D are simulated in series like in the experiments to investigate the potential of high fidelity RANS simulations coupled with detailed chemistry, to accurately predict the CCV. Cycle to cycle variation (CCV) is expected to be due to variabilities in operating and boundary conditions, in-cylinder stratification of diesel and natural gas fuels, variation in in-cylinder turbulence levels and velocity flow-fields. In a previous publication by the authors [1], variabilities in operating and boundary conditions are incorporated into several closed cycle simulations performed in parallel. Stochastic variations/stratifications of fuel-air mixture, turbulence levels, temperature and internal combustion residuals cannot be considered in such closed cycle simulations. In this study, open cycle simulations with port injection of natural gas predicted the combined effect of the stratifications on the CCV of in-cylinder pressure. The predicted Coefficient of Variation (COV) of cylinder pressure is improved compared to the one captured by closed cycle simulations in parallel.

  9. Changing credit limits, changing business cycles

    DEFF Research Database (Denmark)

    Jensen, Henrik; Ravn, Søren Hove; Santoro, Emiliano

    2017-01-01

    In the last half-century, capital markets across the industrialized world have undergone massive deregulation, involving large increases in the loan-to-value (LTV) ratios of house- holds and firms. We study the business-cycle implications of this phenomenon in an es- timated dynamic general...... macroeconomic volatility, a countercyclical LTV ratio proves to be successful in dampening business cycle fluctuations and, most importantly, avoiding dramatic output drops....

  10. Effects of Electrodeposition Mode and Deposition Cycle on the Electrochemical Performance of MnO2-NiO Composite Electrodes for High-Energy-Density Supercapacitors.

    Science.gov (United States)

    Rusi; Majid, S R

    2016-01-01

    Nanostructured network-like MnO2-NiO composite electrodes were electrodeposited onto stainless steel substrates via different electrodeposition modes, such as chronopotentiometry, chronoamperometry, and cyclic voltammetry, and then subjected to heat treatment at 300°C for metal oxide conversion. X-ray diffraction, field emission scanning electron microscopy, and transmission electron microscopy were used to study the crystalline natures and morphologies of the deposited films. The electrochemical properties were investigated using cyclic voltammetry and charge/discharge tests. The results revealed that the electrochemical performance of the as-obtained composite electrodes depended on the electrodeposition mode. The electrochemical properties of MnO2-NiO composite electrodes prepared using cyclic voltammetry exhibited the highest capacitance values and were most influenced by the deposition cycle number. The optimum specific capacitance was 3509 Fg-1 with energy and power densities of 1322 Wh kg-1 and 110.5 kW kg-1, respectively, at a current density of 20 Ag-1 in a mixed KOH/K3Fe(CN)6 electrolyte.

  11. Effects of Electrodeposition Mode and Deposition Cycle on the Electrochemical Performance of MnO2-NiO Composite Electrodes for High-Energy-Density Supercapacitors.

    Directory of Open Access Journals (Sweden)

    Rusi

    Full Text Available Nanostructured network-like MnO2-NiO composite electrodes were electrodeposited onto stainless steel substrates via different electrodeposition modes, such as chronopotentiometry, chronoamperometry, and cyclic voltammetry, and then subjected to heat treatment at 300°C for metal oxide conversion. X-ray diffraction, field emission scanning electron microscopy, and transmission electron microscopy were used to study the crystalline natures and morphologies of the deposited films. The electrochemical properties were investigated using cyclic voltammetry and charge/discharge tests. The results revealed that the electrochemical performance of the as-obtained composite electrodes depended on the electrodeposition mode. The electrochemical properties of MnO2-NiO composite electrodes prepared using cyclic voltammetry exhibited the highest capacitance values and were most influenced by the deposition cycle number. The optimum specific capacitance was 3509 Fg-1 with energy and power densities of 1322 Wh kg-1 and 110.5 kW kg-1, respectively, at a current density of 20 Ag-1 in a mixed KOH/K3Fe(CN6 electrolyte.

  12. Gender differences and dynamics shaping the adoption life cycle: review of the literature and recommendations.

    Science.gov (United States)

    Freeark, Kristine; Rosenberg, Elinor B; Bornstein, Jane; Jozefowicz-Simbeni, Debra; Linkevich, Michael; Lohnes, Kelly

    2005-01-01

    The role of gender in the experiences of adoptive family members has received little systematic attention. Gender differences in response to different tasks and phases of the adoption life cycle are described. Gendered dynamics within the adoptive family, for birth parents, and in the field of adoption are highlighted. Birth fathers and adoptive fathers are typically marginalized, which leaves women to address emotion, connection, and communication, and family dialogues about adoption may engage daughters more successfully than sons. The article reviews reasons why differential rates of problem behavior for adopted boys and girls may result from gender differences in emotional expressiveness, social support seeking, and identity formation. Implications of the feminization of adoption are explored, and recommendations for practice and research are proposed.

  13. Solar Metal Sulfate-Ammonia Based Thermochemical Water Splitting Cycle for Hydrogen Production

    Science.gov (United States)

    Huang, Cunping (Inventor); T-Raissi, Ali (Inventor); Muradov, Nazim (Inventor)

    2014-01-01

    Two classes of hybrid/thermochemical water splitting processes for the production of hydrogen and oxygen have been proposed based on (1) metal sulfate-ammonia cycles (2) metal pyrosulfate-ammonia cycles. Methods and systems for a metal sulfate MSO.sub.4--NH3 cycle for producing H2 and O2 from a closed system including feeding an aqueous (NH3)(4)SO3 solution into a photoctalytic reactor to oxidize the aqueous (NH3)(4)SO3 into aqueous (NH3)(2)SO4 and reduce water to hydrogen, mixing the resulting aqueous (NH3)(2)SO4 with metal oxide (e.g. ZnO) to form a slurry, heating the slurry of aqueous (NH4)(2)SO4 and ZnO(s) in the low temperature reactor to produce a gaseous mixture of NH3 and H2O and solid ZnSO4(s), heating solid ZnSO4 at a high temperature reactor to produce a gaseous mixture of SO2 and O2 and solid product ZnO, mixing the gaseous mixture of SO2 and O2 with an NH3 and H2O stream in an absorber to form aqueous (NH4)(2)SO3 solution and separate O2 for aqueous solution, recycling the resultant solution back to the photoreactor and sending ZnO to mix with aqueous (NH4)(2)SO4 solution to close the water splitting cycle wherein gaseous H2 and O2 are the only products output from the closed ZnSO4--NH3 cycle.

  14. Porous carbon-coated ZnO nanoparticles derived from low carbon content formic acid-based Zn(II) metal-organic frameworks towards long cycle lithium-ion anode material

    International Nuclear Information System (INIS)

    Gao, Song; Fan, Ruiqing; Li, Bingjiang; Qiang, Liangsheng; Yang, Yulin

    2016-01-01

    Graphical abstract: The nanocomposites constructed from Zn-based MOFs exhibit low carbon content with super-high rate capability and long cycling life. - Highlights: • Novel ZnO@porous carbon matrix nanocomposites are constructed by pyrolysis of Zn-based MOFs. • The nanocomposites constructed with Zn-based MOFs show low carbon content. • The constructed nanocomposites exhibit high energy density, super-high rate capability and long cycling life. - Abstract: Single-C formic acid-based metal-organic frameworks (MOFs) are used to construct novel ZnO@porous carbon matrix nanocomposites by controlled pyrolysis. In the constructed nanocomposites, the porous carbon matrices act as a confined support to prevent agglomeration of the ZnO nanoparticles and create a rapid electron conductive network. Meanwhile, the well-defined, continuous porous structured MOFs provide a large specific surface area, which increases the contact of electrolyte-electrode and improves the penetration of electrolyte. Especially, the reasonable choice of formic acid-based MOFs construct the low carbon content composite, which contribute to the high energy density and long cycle life. The constructed nanocomposites show stable, ultrahigh rate lithium ion storage properties of 650 mAh g −1 at charge/discharge rate of 1 C even after 200 cycles.

  15. Cycle energy control of magnetorheological dampers on cables

    International Nuclear Information System (INIS)

    Weber, F; Feltrin, G; Motavalli, M; Distl, H

    2009-01-01

    The dissipated cycle energy of magnetorheological (MR) dampers operated at constant current results from controllable hysteretic damping and from almost current independent, small viscous damping. Thus, the emulation of Coulomb friction and linear viscous damping necessitates current modulation during one vibration cycle and therefore current drivers. To avoid this drawback, a cycle energy control (CEC) approach is presented which controls the hysteretic MR damper part such that the total MR damper energy equals the energy of optimal linear viscous damping by constant current during one cycle. The excited higher modes due to the hysteretic damping part are partially damped by the MR damper viscous part. Simulations show that CEC copes better with damper force dynamics and constraints than emulated linear viscous damping due to the slow control force dynamics of CEC which are given by cable amplitude dynamics. It is demonstrated that CEC of MR dampers with viscosity of approximately 4.65% of the optimal modal viscosity performs better than optimal linear viscous damping. The reason is that this damper viscosity represents an optimal compromise between maximum energy spillover to higher modes due to the controllable hysteretic part which produces more cable damping and maximum viscous damping of these higher modes. Damping tests on a cable with an MR damper validate the CEC approach

  16. Nutrient cycle benchmarks for earth system land model

    Science.gov (United States)

    Zhu, Q.; Riley, W. J.; Tang, J.; Zhao, L.

    2017-12-01

    Projecting future biosphere-climate feedbacks using Earth system models (ESMs) relies heavily on robust modeling of land surface carbon dynamics. More importantly, soil nutrient (particularly, nitrogen (N) and phosphorus (P)) dynamics strongly modulate carbon dynamics, such as plant sequestration of atmospheric CO2. Prevailing ESM land models all consider nitrogen as a potentially limiting nutrient, and several consider phosphorus. However, including nutrient cycle processes in ESM land models potentially introduces large uncertainties that could be identified and addressed by improved observational constraints. We describe the development of two nutrient cycle benchmarks for ESM land models: (1) nutrient partitioning between plants and soil microbes inferred from 15N and 33P tracers studies and (2) nutrient limitation effects on carbon cycle informed by long-term fertilization experiments. We used these benchmarks to evaluate critical hypotheses regarding nutrient cycling and their representation in ESMs. We found that a mechanistic representation of plant-microb