WorldWideScience

Sample records for dynamic neurophysiological function

  1. Functional Neuroanatomy and Neurophysiology of Functional Neurological Disorders (Conversion Disorder).

    Science.gov (United States)

    Voon, Valerie; Cavanna, Andrea E; Coburn, Kerry; Sampson, Shirlene; Reeve, Alya; LaFrance, W Curt

    2016-01-01

    Much is known regarding the physical characteristics, comorbid symptoms, psychological makeup, and neuropsychological performance of patients with functional neurological disorders (FNDs)/conversion disorders. Gross neurostructural deficits do not account for the patients' deficits or symptoms. This review describes the literature focusing on potential neurobiological (i.e. functional neuroanatomic/neurophysiological) findings among individuals with FND, examining neuroimaging and neurophysiological studies of patients with the various forms of motor and sensory FND. In summary, neural networks and neurophysiologic mechanisms may mediate "functional" symptoms, reflecting neurobiological and intrapsychic processes.

  2. Functional MRI of swallowing: from neurophysiology to neuroplasticity.

    Science.gov (United States)

    Malandraki, Georgia A; Johnson, Sterling; Robbins, Joanne

    2011-10-01

    Swallowing is a complex neurogenic sensorimotor process involving all levels of the neuraxis and a vast number of muscles and anatomic structures. Disruption of any of these anatomic or functional components can lead to swallowing disorders (also known as dysphagia). Understanding the neural pathways that govern swallowing is necessary in diagnosing and treating patients with dysphagia. Functional MRI (fMRI) is a prevalent and effective neuroimaging method that has been used to study the complex neurophysiologic control of swallowing in vivo. This article presents a summary of the research studies that have used fMRI to study the neural control of swallowing in normal subjects and dysphagic patients, and to investigate the effects of swallowing treatments on neuroplasticity. Methodologic challenges and caveats are discussed, and a case study of a pre-posttreatment paradigm is presented to highlight potential future directions of fMRI applications in swallowing research and clinical practice. Copyright © 2011 Wiley Periodicals, Inc.

  3. Optical imaging of fast, dynamic neurophysiological function.

    Energy Technology Data Exchange (ETDEWEB)

    Rector, D. M. (David M.); Carter, K. M. (Kathleen M.); Yao, X. (Xincheng); George, J. S. (John S.)

    2002-01-01

    Fast evoked responses were imaged from rat dorsal medulla and whisker barrel cortex. To investigate the biophysical mechanisms involved, fast optical responses associated with isolated crustacean nerve stimulation were recorded using birefringence and scattered light. Such studies allow optimization of non-invasive imaging techniques being developed for use in humans.

  4. NEUROPHYSIOLOGICAL CONSEQUENCES IN HIPPOCAMPUS AS A FUNCTION OF DEVELOPMENTAL HYPOTHYROIDISM.

    Science.gov (United States)

    Thyroid hormones are essential for maturation and function of the mammalian central nervous system. Severe congenital hypothyroidism results in irreversible structural damage and mental retardation in children. Although a variety of environmental contaminants have been demonstrat...

  5. Neurophysiological aspects and their relationship to clinical and functional impairment in patients with chronic obstructive pulmonary disease

    Directory of Open Access Journals (Sweden)

    Carolina Chiusoli de Miranda Rocco

    2011-01-01

    Full Text Available OBJECTIVE: The purpose was to assess functional (balance L-L and A-P displacement, sit-to-stand test (SST and Tinetti scale - balance and gait and neurophysiological aspects (patellar and Achilles reflex and strength relating these responses to the BODE Index. INTRODUCTION: The neurophysiological alterations found in patients with chronic obstructive pulmonary disease (COPD are associated with the severity of the disease. There is also involvement of peripheral muscle which, in combination with neurophysiological impairment, may further compromise the functional activity of these patients. METHODS: A cross-sectional study design was used. Twenty-two patients with moderate to very severe COPD (>60 years and 16 age-matched healthy volunteers served as the control group (CG. The subjects performed spirometry and several measures of static and dynamic balance, monosynaptic reflexes, peripheral muscle strength, SST and the 6-minute walk test. RESULTS: The individuals with COPD had a reduced reflex response, 36.77±3.23 (p<0.05 and 43.54±6.60 (p<0.05, achieved a lower number repetitions on the SST 19.27±3.88 (p<0.05, exhibited lesser peripheral muscle strength on the femoral quadriceps muscle, 24.98±6.88 (p<0.05 and exhibited deficits in functional balance and gait on the Tinetti scale, 26.86±1.69 (p<0.05, compared with the CG. The BODE Index demonstrated correlations with balance assessment (determined by the Tinetti scale, r = 0.59 (p<0.05 and the sit-to-stand test, r = 0.78 (p<0.05. CONCLUSIONS: The individuals with COPD had functional and neurophysiological alterations in comparison with the control group. The BODE Index was correlated with the Tinetti scale and the SST. Both are functional tests, easy to administer, low cost and feasible, especially the SST. These results suggest a worse prognosis; however, more studies are needed to identify the causes of these changes and the repercussions that could result in their activities of daily

  6. Unihemispheric sleep and asymmetrical sleep: behavioral, neurophysiological, and functional perspectives

    Directory of Open Access Journals (Sweden)

    Mascetti GG

    2016-07-01

    Full Text Available Gian Gastone Mascetti Department of General Psychology, University of Padova, Padova, Italy Abstract: Sleep is a behavior characterized by a typical body posture, both eyes' closure, raised sensory threshold, distinctive electrographic signs, and a marked decrease of motor activity. In addition, sleep is a periodically necessary behavior and therefore, in the majority of animals, it involves the whole brain and body. However, certain marine mammals and species of birds show a different sleep behavior, in which one cerebral hemisphere sleeps while the other is awake. In dolphins, eared seals, and manatees, unihemispheric sleep allows them to have the benefits of sleep, breathing, thermoregulation, and vigilance. In birds, antipredation vigilance is the main function of unihemispheric sleep, but in domestic chicks, it is also associated with brain lateralization or dominance in the control of behavior. Compared to bihemispheric sleep, unihemispheric sleep would mean a reduction of the time spent sleeping and of the associated recovery processes. However, the behavior and health of aquatic mammals and birds does not seem at all impaired by the reduction of sleep. The neural mechanisms of unihemispheric sleep are unknown, but assuming that the neural structures involved in sleep in cetaceans, seals, and birds are similar to those of terrestrial mammals, it is suggested that they involve the interaction of structures of the hypothalamus, basal forebrain, and brain stem. The neural mechanisms promoting wakefulness dominate one side of the brain, while those promoting sleep predominates the other side. For cetaceans, unihemispheric sleep is the only way to sleep, while in seals and birds, unihemispheric sleep events are intermingled with bihemispheric and rapid eye movement sleep events. Electroencephalogram hemispheric asymmetries are also reported during bihemispheric sleep, at awakening, and at sleep onset, as well as being associated with a use

  7. Unihemispheric sleep and asymmetrical sleep: behavioral, neurophysiological, and functional perspectives

    Science.gov (United States)

    Mascetti, Gian Gastone

    2016-01-01

    Sleep is a behavior characterized by a typical body posture, both eyes’ closure, raised sensory threshold, distinctive electrographic signs, and a marked decrease of motor activity. In addition, sleep is a periodically necessary behavior and therefore, in the majority of animals, it involves the whole brain and body. However, certain marine mammals and species of birds show a different sleep behavior, in which one cerebral hemisphere sleeps while the other is awake. In dolphins, eared seals, and manatees, unihemispheric sleep allows them to have the benefits of sleep, breathing, thermoregulation, and vigilance. In birds, antipredation vigilance is the main function of unihemispheric sleep, but in domestic chicks, it is also associated with brain lateralization or dominance in the control of behavior. Compared to bihemispheric sleep, unihemispheric sleep would mean a reduction of the time spent sleeping and of the associated recovery processes. However, the behavior and health of aquatic mammals and birds does not seem at all impaired by the reduction of sleep. The neural mechanisms of unihemispheric sleep are unknown, but assuming that the neural structures involved in sleep in cetaceans, seals, and birds are similar to those of terrestrial mammals, it is suggested that they involve the interaction of structures of the hypothalamus, basal forebrain, and brain stem. The neural mechanisms promoting wakefulness dominate one side of the brain, while those promoting sleep predominates the other side. For cetaceans, unihemispheric sleep is the only way to sleep, while in seals and birds, unihemispheric sleep events are intermingled with bihemispheric and rapid eye movement sleep events. Electroencephalogram hemispheric asymmetries are also reported during bihemispheric sleep, at awakening, and at sleep onset, as well as being associated with a use-dependent process (local sleep). PMID:27471418

  8. Neurophysiological assessment of craniofacial pain

    OpenAIRE

    Galeotti, F; Truini, A.; Cruccu, G.

    2006-01-01

    This review deals with the diagnostic usefulness of neurophysiological testing in patients with craniofacial pain. Neurophysiological testing of trigeminal nerve function relies on trigeminal reflexes and laser–evoked potentials (LEPs). This review briefly describes the physiology of trigeminal reflexes and LEPs, reports normal values and highlights the neurophysiological abnormalities in the main clinical conditions.

  9. Neurophysiological assessment of craniofacial pain.

    Science.gov (United States)

    Galeotti, Francesca; Truini, Andrea; Cruccu, Giorgio

    2006-04-01

    This review deals with the diagnostic usefulness of neurophysiological testing in patients with craniofacial pain. Neurophysiological testing of trigeminal nerve function relies on trigeminal reflexes and laser-evoked potentials (LEPs). This review briefly describes the physiology of trigeminal reflexes and LEPs, reports normal values and highlights the neurophysiological abnormalities in the main clinical conditions.

  10. Functional MRI, DTI and neurophysiology in horizontal gaze palsy with progressive scoliosis

    Energy Technology Data Exchange (ETDEWEB)

    Haller, Sven; Wetzel, Stephan G. [University Hospital Basel, Institute of Radiology, Department of Neuroradiology, Basel (Switzerland); Luetschg, Juerg [University Children' s Hospital (UKBB), Basel (Switzerland)

    2008-05-15

    Horizontal gaze palsy with progressive scoliosis (HGPPS) is an autosomal recessive disease due to a mutation in the ROBO3 gene. This rare disease is of particular interest because the absence, or at least reduction, of crossing of the ascending lemniscal and descending corticospinal tracts in the medulla predicts abnormal ipsilateral sensory and motor systems. We evaluated the use of functional magnetic resonance imaging (fMRI) for the first time in this disease and compared it to diffusion tensor imaging (DTI) tractography and neurophysiological findings in the same patient with genetically confirmed ROBO3 mutation. As expected, motor fMRI, somatosensory evoked potentials (SSEP) and motor evoked potentials (MEP) were dominantly ipsilateral to the stimulation side. DTI tractography revealed ipsilateral ascending and descending connectivity in the brainstem yet normal interhemispheric connections in the corpus callosum. Auditory fMRI revealed bilateral auditory activation to monaural left-sided auditory stimulation. No significant cortical activation was observed after monaural right-sided stimulation, a hearing defect having been excluded. Prosaccades fMRI showed no activations in the eye-movement network. Motor fMRI confirmed the established findings of DTI and neurophysiology in the same patient. In suspected HGPPS, any technique appears appropriate for further investigation. Auditory fMRI suggests that a monaural auditory system with bilateral auditory activations might be a physiological advantage as compared to a binaural yet only unilateral auditory system, in analogy to anisometropic amblyopia. Moving-head fMRI studies in the future might show whether the compensatory head movements instead of normal eye movements activate the eye-movement network. (orig.)

  11. Mechanism of Neurophysiological Treatment of Amblyopia Using Functional Magnetic Resonance Imaging

    Institute of Scientific and Technical Information of China (English)

    Guangming Lu; Zhiqiang Zhang; Ping Liang; Wenzhen Zhou; Lin Li

    2006-01-01

    Purpose: To research the mechanism of neurophysiological treatment of amblyopia by observing the visual cortex activation under rotating grating stimulus with functional magnetic resonance imaging (MRI), and identify the components of the activation.Methods: Nine healthy volunteers were examined using gradient-recalled echo and echo-planar imaging (GRE-EPI) pulse sequence performed at the 1.5 Tesla MRI scanner. In the block designing, rotating grating, stationary grating and luminance were plotted as task states, stationary grating, luminance and darkness as control states, respectively. The tasks of stimuli included 6 steps. Imaging processing and statistical analysis were carried out off-line using statistical parametric mapping (SPM99) software in single-subject.Results: Some individual areas of visual cortex were activated by various stimuli information supplied by rotating grating. The strong activation in the middle of occipital lobe related to the stimuli of luminance, bilateral activation of Brodmann's 19th area related to visual motion perception, and the mild activation in the middle of occipital lobe related to form perception.Conclusion: The plotting of control state is important in bock design. The effective visual information of rotating grating includes components of luminance, visual motion perception and form perception. Functional MRI has potential as a tool for studying the physiological mechanism of visual cortex.

  12. Hydrogen sulfide and reduced-sulfur gases adversely affect neurophysiological functions.

    Science.gov (United States)

    Kilburn, K H; Warshaw, R H

    1995-01-01

    Hydrogen sulfide (H2S) above 50 parts per million (ppm) causes unconsciousness and death. Lower doses of H2S and related gases have been regarded as innocuous, but the effects of prolonged exposure have not been studied. This study was designed to determine whether people exposed to sulfide gases as a result of working at or living downwind from the processing of "sour" crude oil demonstrate persistent neurobehavioral dysfunction. Thirteen former workers and 22 neighbors of a refinery complained of headaches, nausea, vomiting, depression, personality changes, nosebleeds, and breathing difficulties. Their neurobehavioral functions and a profile of mood states (POMS) were compared to 32 controls, matched for age and educational level. The exposed subjects' mean values were statistically significantly abnormal compared to controls for two-choice reaction time, balance (as speed of sway), color discrimination, digit symbol, trail-making A and B, and immediate recall of a story. Their POMS scores were much higher than those of controls. Visual recall was significantly impaired in neighbors, but not in exworkers. It was concluded that neurophysiological abnormalities were associated with exposure to reduced sulfur gases, including H2S from crude oil desulfurization.

  13. Neurophysiological mechanisms and functional impact of mirror movements in children with unilateral spastic cerebral palsy.

    Science.gov (United States)

    Kuo, Hsing-Ching; Friel, Kathleen M; Gordon, Andrew M

    2017-09-08

    Children with unilateral spastic cerebral palsy (CP) often have mirror movements, i.e. involuntary imitations of unilateral voluntary movements of the contralateral upper extremity. The pathophysiology of mirror movements has been investigated in small and heterogeneous cohorts in the literature. Specific pathophysiology of mirror movements and their impact on upper extremity function require systematic investigation in larger and homogeneous cohorts of children with unilateral spastic CP. Here we review two possible neurophysiological mechanisms underlying mirror movements in children with CP and those with typical development: (1) an ipsilateral corticospinal tract projecting from the contralesional motor cortex (M1) to both upper extremities; (2) insufficient interhemispheric inhibition between the two M1s. We also discuss clinical implications of mirror movements in children with unilateral CP and suggest that a thorough examination of the relationship between the pathophysiology and clinical manifestations of mirror movements is warranted. We suggest two premises: (1) the presence of mirror movements is indicative of an ipsilateral corticospinal tract reorganization; and (2) the corticospinal tract organization may affect patients' responses to certain treatment. If these premises are supported through future research, mirror movements should be clinically evaluated for patient selection to maximize benefits of therapy, hence promoting individualized medicine in this population. © 2017 Mac Keith Press.

  14. Clinical, genetic, neurophysiological and functional study of new mutations in episodic ataxia type 1.

    Science.gov (United States)

    Tomlinson, Susan Elizabeth; Rajakulendran, Sanjeev; Tan, Stella Veronica; Graves, Tracey Dawn; Bamiou, Doris-Eva; Labrum, Robyn W; Burke, David; Sue, Carolyn M; Giunti, Paola; Schorge, Stephanie; Kullmann, Dimitri M; Hanna, Michael G

    2013-10-01

    Heterozygous mutations in KCNA1 cause episodic ataxia type 1 (EA1), an ion channel disorder characterised by brief paroxysms of cerebellar dysfunction and persistent neuromyotonia. This paper describes four previously unreported families with EA1, with the aim of understanding the phenotypic spectrum associated with different mutations. 15 affected individuals from four families underwent clinical, genetic and neurophysiological evaluation. The functional impact of new mutations identified in the KCNA1 gene was investigated with in vitro electrophysiology and immunocytochemistry. Detailed clinical documentation, dating back to 1928 in one family, indicates that all patients manifested episodic ataxia of varying severity. Four subjects from three families reported hearing impairment, which has not previously been reported in association with EA1. New mutations (R167M, C185W and I407M) were identified in three out of the four families. When expressed in human embryonic kidney cells, all three new mutations resulted in a loss of K(v)1.1 channel function. The fourth family harboured a previously reported A242P mutation, which has not been previously described in association with ataxia. The genetic basis of EA1 in four families is established and this report presents the earliest documented case from 1928. All three new mutations caused a loss of K(v)1.1 channel function. The finding of deafness in four individuals raises the possibility of a link between K(v)1.1 dysfunction and hearing impairment. Our findings broaden the phenotypic range associated with mutations in KCNA1.

  15. The independent influence of concussive and sub-concussive impacts on soccer players' neurophysiological and neuropsychological function.

    Science.gov (United States)

    Moore, R Davis; Lepine, Julien; Ellemberg, Dave

    2017-02-01

    Accumulating research demonstrates that repetitive sub-concussive impacts can alter the structure, function and connectivity of the brain. However, the functional significance of these alterations as well as the independent contribution of concussive and sub-concussive impacts to neurophysiological and neuropsychological health are unclear. Accordingly, we compared the neurophysiological and neuropsychological function of contact athletes with (concussion group) and without (sub-concussion group) a history of concussion, to non-contact athletes. We evaluated event-related brain potentials (ERPs) elicited during an oddball task and performance on a targeted battery of neuropsychological tasks. Athletes in the sub-concussion and concussion groups exhibited similar amplitude reductions in the ERP indices of attentional resource allocation (P3b) and attentional orienting (P3a) relative to non-contact athletes. However, only athletes in the concussion group exhibited reduced amplitude in the ERP index of perceptual attention (N1). Athletes in the sub-concussion and concussion groups also exhibited deficits in memory recall relative to non-contact athletes, but athletes in the concussion group also exhibited significantly more recall errors than athletes in the sub-concussion group. Additionally, only athletes in the concussion group exhibited response delays during the oddball task. The current findings suggest that sub-concussive impacts are associated with alterations in the neurophysiological and neuropsychological indices of essential cognitive functions, albeit to a lesser degree than the combination of sub-concussive and concussive impacts.

  16. Clinical neurophysiology and quantitative sensory testing in the investigation of orofacial pain and sensory function.

    Science.gov (United States)

    Jääskeläinen, Satu K

    2004-01-01

    Chronic orofacial pain represents a diagnostic and treatment challenge for the clinician. Some conditions, such as atypical facial pain, still lack proper diagnostic criteria, and their etiology is not known. The recent development of neurophysiological methods and quantitative sensory testing for the examination of the trigeminal somatosensory system offers several tools for diagnostic and etiological investigation of orofacial pain. This review presents some of these techniques and the results of their application in studies on orofacial pain and sensory dysfunction. Clinical neurophysiological investigation has greater diagnostic accuracy and sensitivity than clinical examination in the detection of the neurogenic abnormalities of either peripheral or central origin that may underlie symptoms of orofacial pain and sensory dysfunction. Neurophysiological testing may also reveal trigeminal pathology when magnetic resonance imaging has failed to detect it, so these methods should be considered complementary to each other in the investigation of orofacial pain patients. The blink reflex, corneal reflex, jaw jerk, sensory neurography of the inferior alveolar nerve, and the recording of trigeminal somatosensory-evoked potentials with near-nerve stimulation have all proved to be sensitive and reliable in the detection of dysfunction of the myelinated sensory fibers of the trigeminal nerve or its central connections within the brainstem. With appropriately small thermodes, thermal quantitative sensory testing is useful for the detection of trigeminal small-fiber dysfunction (Adelta and C). In neuropathic conditions, it is most sensitive to lesions causing axonal injury. By combining different techniques for investigation of the trigeminal system, an accurate topographical diagnosis and profile of sensory fiber pathology can be determined. Neurophysiological and quantitative sensory tests have already highlighted some similarities among various orofacial pain conditions

  17. History of neurophysiology in Japan.

    Science.gov (United States)

    Oomura, Y

    1991-01-01

    The progress of the neurophysiological research in Japan during the past 45 years is related. Modern Japanese neurophysiology started immediately after the end of World War 2. The introduction of microelectrode techniques contributed greatly to most fields of Japanese neurophysiology. These techniques were used to study most neurophysiological phenomena: sensory physiology including vision, audition, chemical sensitivity, and other modalities; learning and memory. These techniques plus lesions, transplants, and behavioral physiology were used to study circadian rhythm, posture and motor control, and sex. These and other techniques were used to study neural plasticity, immunity, membrane excitability, pain and other psychophysiological functions. The disciplines advanced quickly into multidiscipline approaches into not only electrophysiological, but biophysical, biochemical and immunological research fields. From the past research results our neurophysiologists can be expected to advance rapidly toward further development in the future of Japanese neurophysiology.

  18. NEUROPHYSIOLOGICAL BASIS OF FUNCTIONAL DE-AFFERENTATION OF THE NERVOUS SYSTEM CAUSED BY WEAK OR ABSENT MUSCLE CONTRACTIONS

    Directory of Open Access Journals (Sweden)

    Nejc Sarabon

    2004-12-01

    Full Text Available In this short article we discuss putative effect of decreased ability for movement in the progressive neuromuscular disorders on the central state of brain activity. We propose possibility that such reduced activation of proprioreceptors can lead to partial ‘functional de-afferentation’.Furthermore, we briefly reviewed neurophysiological evidences of peripheral inputs to the central projections. We discussed contribution of the proprioceptive input after passive, active movements and movement induced by vibration of muscles tendons.Finally we are proposing to introduce simple vibratory protocols in daily life of people with progressive neuromuscular disorders in order to prevent central effects of reduced proprioception to endurance of brain activity of people with intact mental functions.

  19. GABA FUNCTION IS ALTERED FOLLOWING DEVELOPMENTAL HYPOTHYROIDISM: NEUROANATOMICAL AND NEUROPHYSIOLOGICAL EVIDENCE.

    Science.gov (United States)

    Thyroid hormone deficiency during development produces changes in the structure of neurons and glial cells and alters synaptic function in the hippocampus. GABAergic interneurons comprise the bulk of local inhibitory neuronal circuitry and a subpopulation of these interneurons ...

  20. Discrete Wigner function dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Klimov, A B; Munoz, C [Departamento de Fisica, Universidad de Guadalajara, Revolucion 1500, 44410, Guadalajara, Jalisco (Mexico)

    2005-12-01

    We study the evolution of the discrete Wigner function for prime and the power of prime dimensions using the discrete version of the star-product operation. Exact and semiclassical dynamics in the limit of large dimensions are considered.

  1. Neurophysiological correlates of increased verbal working memory in high-dissociative participants: a functional MRI study

    NARCIS (Netherlands)

    Veltman, D.J.; de Ruiter, M.B.; Rombouts, S.A.R.B.; Lazeron, R.H.C.; Barkhof, F.; van Dyck, R.; Dolan, R.J.; Phaf, R.H.

    2005-01-01

    Background Dissociation, defined as a disruption in usually integrated mental functions, is found not only in DSM-IV dissociative disorders, but also in post-traumatic stress disorder and eating disorders. Dissociative phenomena are also common in the general population, and may reflect a

  2. Neurophysiological correlates of increased verbal working memory in high-dissociative participants: A functional MRI study.

    NARCIS (Netherlands)

    Veltman, D.J.; de Ruiter, M.B.; Rombouts, S.A.R.B.; Lazeron, R.H.C.; Barkhof, F.; van Dyck, R.; Dolan, R.J.; Phaf, R.H.

    2005-01-01

    Background. Dissociation, defined as a disruption in usually integrated mental functions, is found not only in DSM-IV dissociative disorders, but also in post-traumatic stress disorder and eating disorders. Dissociative phenomena are also common in the general population, and may reflect a

  3. What neurophysiological recordings tell us about cognitive and behavioral functions of the human subthalamic nucleus.

    Science.gov (United States)

    Marceglia, Sara; Fumagalli, Manuela; Priori, Alberto

    2011-01-01

    The behavioral implications of deep brain stimulation (DBS) observed in Parkinson's disease patients provided evidence for a possible nonexclusively motor role of the subthalamic nucleus (STN) in basal ganglia circuitry. Basal ganglia pathophysiology can be studied directly by the analysis of neural rhythms measured in local field potentials recorded through DBS electrodes. Recent studies demonstrated that specific oscillations in the STN are involved in cognitive and behavioral information processing: action representation is mediated through β oscillations (13-35 Hz); cognitive information related to decision-making processes is mediated through the low-frequency oscillation (5-12 Hz); and limbic and emotional information is mediated through the α oscillation (8-12 Hz). These results revealed an important involvement of STN in decisional processes, cognitive functions, emotion control and conflict that could explain the post-DBS occurrence of behavioral disturbances.

  4. Stimulus set meaningfulness and neurophysiological differentiation: a functional magnetic resonance imaging study.

    Directory of Open Access Journals (Sweden)

    Melanie Boly

    Full Text Available A meaningful set of stimuli, such as a sequence of frames from a movie, triggers a set of different experiences. By contrast, a meaningless set of stimuli, such as a sequence of 'TV noise' frames, triggers always the same experience--of seeing 'TV noise'--even though the stimuli themselves are as different from each other as the movie frames. We reasoned that the differentiation of cortical responses underlying the subject's experiences, as measured by Lempel-Ziv complexity (incompressibility of functional MRI images, should reflect the overall meaningfulness of a set of stimuli for the subject, rather than differences among the stimuli. We tested this hypothesis by quantifying the differentiation of brain activity patterns in response to a movie sequence, to the same movie scrambled in time, and to 'TV noise', where the pixels from each movie frame were scrambled in space. While overall cortical activation was strong and widespread in all conditions, the differentiation (Lempel-Ziv complexity of brain activation patterns was correlated with the meaningfulness of the stimulus set, being highest in the movie condition, intermediate in the scrambled movie condition, and minimal for 'TV noise'. Stimulus set meaningfulness was also associated with higher information integration among cortical regions. These results suggest that the differentiation of neural responses can be used to assess the meaningfulness of a given set of stimuli for a given subject, without the need to identify the features and categories that are relevant to the subject, nor the precise location of selective neural responses.

  5. Neurophysiology of motor function following cannabis discontinuation in chronic cannabis smokers: an fMRI study.

    Science.gov (United States)

    Pillay, Srinivasan S; Rogowska, Jadwiga; Kanayama, Gen; Jon, Duk-In; Gruber, Staci; Simpson, Norah; Cherayil, Monisha; Pope, Harrison G; Yurgelun-Todd, Deborah A

    2004-12-07

    The objective of this study was to identify the differences in cerebral activation between chronic cannabis smokers and controls in response to finger sequencing. We hypothesized that attentional areas related to motor function as well as primary and supplementary motor cortices would show diminished activation in chronic cannabis smokers. Nine cannabis smokers and 16 controls were included in these analyses. Scanning was performed on a GE 1.5T scanner. Echo planar images and high-resolution MR images were acquired. The challenge paradigm included left and right finger sequencing. Group differences in cerebral activation were examined for Brodmann areas (BA) 4, 6, 24, and 32 using ROI analyses in SPM. Cannabis users, tested within 4-36 h of discontinuation, exhibited significantly less activation than controls in BA 24 and 32 bilaterally during right- and left-sided sequencing and for BA 6 in all tasks except for left-sided sequencing in the left hemisphere. There were no statistically significant differences for BA 4. None of these regional activations correlated with urinary cannabis concentration and verbal IQ for smokers. These results suggest that recently abstinent chronic cannabis smokers produce reduced activation in motor cortical areas in response to finger sequencing compared to controls.

  6. Neurophysiological marker of inhibition distinguishes language groups on a non-linguistic executive function test.

    Science.gov (United States)

    Fernandez, M; Tartar, J L; Padron, D; Acosta, J

    2013-12-01

    Successful interaction with the environment depends on flexible behaviors which require shifting attention, inhibiting primed responses, ignoring distracting information, and withholding motor responses. These abilities, termed executive function (EF), are believed to be mediated by inhibitory processes in the frontal lobes. Superior performance on EF tests (i.e., faster reaction times (RT), and fewer errors) has been shown in bilinguals compared to monolingual speakers. However, findings are inconsistent, and no study has directly linked this bilingual advantage to frontal lobe inhibitory processes. To clarify this uncertainty, we concomitantly tested neural inhibitory processes and behavioral responses on an EF test in bilinguals and monolinguals. Specifically, we compared English monolinguals (N=15) to Spanish/English bilinguals (N=13) on event-related brain potentials (ERP) during a non-linguistic, auditory Go/NoGo task, a task linked to non-motor, cognitive inhibition in monolinguals. Participants responded with a button press on trials in which target tone-pairs (Go trials) were presented and withheld their responses on non-target trials (NoGo trials). Results revealed significantly greater inhibition (i.e., greater mean N2 amplitude) in bilinguals compared to monolinguals during NoGo trials even though both groups performed the task equally well (i.e., withheld a motor response). On Go trials where participants pressed a response button, neither ERPs nor RT distinguished the groups. Additionally, scores on a second language proficiency test (i.e., English in our bilingual group) were positively correlated with N2 amplitude. These findings are the first to directly link this bilingual advantage to a neural correlate of inhibition and to reveal that inhibition in bilinguals is moderated by second language proficiency. Results are discussed in the context of plasticity, and we propose that evaluating bilinguals at varying levels of second-language proficiency

  7. Functional MRI and neurophysiological aspects of obesity; Funktionelle MRT und neurophysiologische Aspekte der Adipositas

    Energy Technology Data Exchange (ETDEWEB)

    Sztrokay, A.; Reiser, M.; Meindl, T. [Klinikum der Ludwig-Maximilians-Universitaet Muenchen, Campus Grosshadern, Institut fuer Klinische Radiologie, Muenchen (Germany); Gutyrchik, E. [Klinikum der Ludwig-Maximilians-Universitaet Muenchen, Institut fuer Medizinische Psychologie, Muenchen (Germany)

    2011-05-15

    Functional magnetic resonance imaging studies have revealed that metabolic signals and food stimuli activate the mesocorticolimbic neural network involved in processing the reward system. Activation is influenced by obesity and hunger and many recent brain imaging studies have detected that food and drug stimuli activate many of the same reward circuits. These findings have implications for obesity prevention and therapy. Educational efforts need to be directed towards those at increased risk of becoming obese and the food industry has to be involved in providing and promoting healthier food options. Given that visual food stimuli are potent triggers of desire, seductive advertising of high calorie foods directed towards children should be curtailed. The application of non-invasive brain imaging methodologies to the study of hedonic and homeostatic eating behavior represents a novel and important experimental approach. Further advances in imaging technology and improved experimental designs will provide new and important insights into human ingestive behavior that may lead to new developments in behavioral and pharmacological therapies. (orig.) [German] Bildgebende Studien zeigen, dass Nahrungsreize und metabolische Stimuli das mesokortikolimbische System und somit das Belohnungssystem aktivieren. Die Aktivierung dieses Systems wird sowohl von Hunger als auch Uebergewicht beeinflusst. In bildgebenden Studien wurde nachgewiesen, dass Reize in Form von Essen aehnlich wie Suchtmittel den Belohnungskreislauf aktivieren. Diese Erkenntnis hat Auswirkungen auf die Praevention und Therapie der Adipositas. Die Nahrungsmittelindustrie ist gefordert, gesuenderes Essen zu produzieren und entsprechend zu bewerben. Vor dem Hintergrund, dass die visuelle Stimulation durch Nahrungsmittel ein potenzieller Trigger fuer das Verlangen nach Essen ist, sollte die direkt auf Kinder ausgerichtete Bewerbung hochkalorischer Nahrungsmittel reduziert werden. Die Anwendung nichtinvasiver

  8. Incorporating neurophysiological concepts in mathematical thermoregulation models

    Science.gov (United States)

    Kingma, Boris R. M.; Vosselman, M. J.; Frijns, A. J. H.; van Steenhoven, A. A.; van Marken Lichtenbelt, W. D.

    2014-01-01

    Skin blood flow (SBF) is a key player in human thermoregulation during mild thermal challenges. Various numerical models of SBF regulation exist. However, none explicitly incorporates the neurophysiology of thermal reception. This study tested a new SBF model that is in line with experimental data on thermal reception and the neurophysiological pathways involved in thermoregulatory SBF control. Additionally, a numerical thermoregulation model was used as a platform to test the function of the neurophysiological SBF model for skin temperature simulation. The prediction-error of the SBF-model was quantified by root-mean-squared-residual (RMSR) between simulations and experimental measurement data. Measurement data consisted of SBF (abdomen, forearm, hand), core and skin temperature recordings of young males during three transient thermal challenges (1 development and 2 validation). Additionally, ThermoSEM, a thermoregulation model, was used to simulate body temperatures using the new neurophysiological SBF-model. The RMSR between simulated and measured mean skin temperature was used to validate the model. The neurophysiological model predicted SBF with an accuracy of RMSR temperature. This study shows that (1) thermal reception and neurophysiological pathways involved in thermoregulatory SBF control can be captured in a mathematical model, and (2) human thermoregulation models can be equipped with SBF control functions that are based on neurophysiology without loss of performance. The neurophysiological approach in modelling thermoregulation is favourable over engineering approaches because it is more in line with the underlying physiology.

  9. A Neurophysiological Approach for Evaluating Noise-Induced Sleep Disturbance: Calculating the Time Constant of the Dynamic Characteristics in the Brainstem.

    Science.gov (United States)

    Tagusari, Junta; Matsui, Toshihito

    2016-03-25

    Chronic sleep disturbance induced by traffic noise is considered to cause environmental sleep disorder, which increases the risk of cardiovascular disease, stroke, diabetes and other stress-related diseases. However, noise indices for the evaluation of sleep disturbance are not based on the neurophysiological process of awakening regulated by the brainstem. In this study, through the neurophysiological approach, we attempted (1) to investigate the thresholds of awakening due to external stimuli in the brainstem; (2) to evaluate the dynamic characteristics in the brainstem and (3) to verify the validity of existing noise indices. Using the mathematical Phillips-Robinson model, we obtained thresholds of awakening in the brainstem for different durations of external stimuli. The analysis revealed that the brainstem seemed insensitive to short stimuli and that the response to external stimuli in the brainstem could be approximated by a first-order lag system with a time constant of 10-100 s. These results suggest that the brainstem did not integrate sound energy as external stimuli, but neuroelectrical signals from auditory nerve. To understand the awakening risk accumulated in the brainstem, we introduced a new concept of "awakening potential" instead of sound energy.

  10. Evaluation of the effect of structured exercise therapy on neurophysiological and cognitive functions of young adults with type 2 diabetes mellitus: Study protocol

    Directory of Open Access Journals (Sweden)

    Harpreet Kour

    2015-01-01

    Full Text Available Background: This randomized controlled trial (RCT aims to evaluate the effect of structured exercise therapy on different mentioned neurophysiological and cognitive functions of patients diagnosed with type 2 diabetes mellitus (T2DM. It is well known from the literature that neurophysiological and cognitive disturbances are of the complications of diabetes mellitus. Although studies have shown that exercise enhances cognitive abilities in normal individuals, previous studies that have found improvement in cognitive dysfunctions in older T2DM patients with exercise regimens were not conclusive. The earlier studies were limited to a single measure of cognitive function or short follow-up times; also there is almost no evidence of the effect of exercise on cognitive function in young adult T2DM patients. Methods/Design: This is an RCT that has enrolled a total of 146 patients with T2DM divided equally into a diabetic group and an interventional group. Seventy-three sex-, age-, and mean education level-matched subjects have been enrolled as healthy controls, comparing mentioned parameters evaluating neurophysiological and cognitive functions. The intervention therapy will be delivered at the Physiology Research Laboratory as an individually designed program of regular exercise consisting of aerobic and resistance exercises. Discussion: The results of this trial will provide novel data to indicate whether exercise improves cognition for a vulnerable group of young adults, and will set the stage for larger trials to further examine potential protective and disease-modifying effects of exercise on the brain. Ethical Clearance No: Ref. No.KLEU/Ethic/2012-13/D-4570

  11. Neurophysiology of delirium

    NARCIS (Netherlands)

    van der Kooi, A.W.

    2014-01-01

    The objective of this thesis was to characterize the neurophysiology of delirium and to assess whether alterations in the neurophysiology of delirium, could provide opportunities for delirium detection. In the first part of the thesis, it is shown that by the analysis of the electroencephalogram

  12. Neurophysiology of delirium

    NARCIS (Netherlands)

    van der Kooi, A.W.

    2014-01-01

    The objective of this thesis was to characterize the neurophysiology of delirium and to assess whether alterations in the neurophysiology of delirium, could provide opportunities for delirium detection. In the first part of the thesis, it is shown that by the analysis of the electroencephalogram (EE

  13. Functional clustering algorithm for the analysis of dynamic network data

    Science.gov (United States)

    Feldt, S.; Waddell, J.; Hetrick, V. L.; Berke, J. D.; Żochowski, M.

    2009-05-01

    We formulate a technique for the detection of functional clusters in discrete event data. The advantage of this algorithm is that no prior knowledge of the number of functional groups is needed, as our procedure progressively combines data traces and derives the optimal clustering cutoff in a simple and intuitive manner through the use of surrogate data sets. In order to demonstrate the power of this algorithm to detect changes in network dynamics and connectivity, we apply it to both simulated neural spike train data and real neural data obtained from the mouse hippocampus during exploration and slow-wave sleep. Using the simulated data, we show that our algorithm performs better than existing methods. In the experimental data, we observe state-dependent clustering patterns consistent with known neurophysiological processes involved in memory consolidation.

  14. Adrenoleucodystrophy: neurophysiological aspects.

    OpenAIRE

    Battaglia, A.; Harden, A; Pampiglione, G.; Walsh, P J

    1981-01-01

    Neurophysiological investigations (EEG, ERG, VEP) were carried out in 14 boys with adrenoleucodystrophy, and in two siblings with adrenocortical deficiency, but without neurological symptoms. Irregular large amplitude (200-800 microvolts) slow activity was found in the EEG of all adrenoleucodystrophy patients, usually more prominent over the posterior regions of the brain. No short duration spikes or complex wave were seen in any of the EEGs, even in those patients who had had seizures. Clini...

  15. Prevalence of spina bifida occulta in patients with functional disorders of the lower urinary tract and its relation to urodynamic and neurophysiological measurements.

    Science.gov (United States)

    Fidas, A.; MacDonald, H. L.; Elton, R. A.; McInnes, A.; Wild, S. R.; Chisholm, G. D.

    1989-01-01

    OBJECTIVE--To determine the relation between neurophysiological abnormalities and the radiological detection of spina bifida occulta in patients with dysfunction of the lower urinary tract. DESIGN--Blind assessment and subsequent decoding of mixed batch of abdominal radiographs from patients with and without urological symptoms for evidence of spina bifida occulta and comparison of results with those of previous control series. SETTING--Review study among tertiary referrals to an incontinence clinic of a city hospital. PATIENTS--One hundred and thirty eight adults with proved urodynamic abnormalities in whom neurophysiological measurements were available. INTERVENTIONS--None. END POINT--Correlation of neurophysiological abnormalities in lower urinary tract dysfunction with presence and type of spina bifida occulta and level of opening of posterior sacral arcs. MEASUREMENTS AND MAIN RESULTS--On decoding radiographs those from patients without urological symptoms showed a similar prevalence of spina bifida occulta to that in the control series (631/2707 controls; 23%). By contrast, patients with urological symptoms had a significantly increased prevalence of spina bifida occulta at S1 and S2 and a higher level of opening of posterior sacral arcs. The increased prevalence of the bony defect was particularly striking in men with urgency and instability and in women with stress incontinence. No significant correlation was found between any particular neurophysiological abnormality and the presence of spina bifida. CONCLUSIONS--In patients with dysfunction of the lower urinary tract neurophysiological abnormalities may be associated with congenital dysraphic lesions in the lower lumbar spine and sacrum. There appears to be no direct causal relation between the radiological and neurophysiological abnormalities but the findings suggest a common aetiological factor. PMID:2493933

  16. Neurophysiological evaluation of patients with degenerative diseases of the cervical spine

    Directory of Open Access Journals (Sweden)

    Ilić Tihomir V.

    2011-01-01

    Full Text Available Bacground/Aim. Diagnostic protocol for patients with degenerative diseases of the cervical spine demands, in parallel with neuroimaging methods, functional evaluation through neurophysiological methods (somatosensitive and motor evoked potentials and electromyoneurography aiming to evaluate possible subclinical affection of spinal medula resulting in neurological signs of long tract abnormalities. Considering diversities of clinical outcomes for these patients, complex diagnostic evaluation provides a prognosis of the disease progression. Methods. The study included 21 patients (48.24 ± 11.01 years of age with clinical presentation of cervical spondylarthropathy, without neuroradiological signs of myelopathy. For each patient, in addition to conventional neurophysiological tests (somatisensory evoked potentials - SSEP, motor evoked potentials - MEP, electromyoneurography - EMG, nerve conduction studies, we calculated central motor conduction time (CMCTF, as well the same parameter in relation to a different position of the head (maximal anteflexion and retroflexion, so-called dynamic tests. Results. Abnormalities of the peripheral motor neurone by conventional EMNeG was established in 2/3 of the patients, correponding to the findings of root condution time. Prolonged conventional CVMPF were found in 29% of the patients, comparing to 43% CVMPF abnormalities found with the dynamic tests. In addition, the SSEP findings were abnormal in 38% of the patients with degenerative diseases of the cervical spine. Conclusion. An extended neurophysiological protocol of testing corticospinal functions, including dynamic tests of central and periheral motor neurons are relevant for detection of subclinical forms of cervical spondylothic myelopathy, even at early stages. In addition to the conventional neurophysiological tests, we found usefull to include the dynamic motor tests and root conduction time measurement in diagnostic evaluation.

  17. Neurophysiological imaging techniques in dementia.

    Science.gov (United States)

    Comi, G; Leocani, L

    1999-01-01

    Neurophysiological methods, such as electroencephalography (EEG) and event-related potentials, are useful tools in the investigation of brain cognitive function in normal and pathological conditions, with an excellent time resolution when compared to that of other functional imaging techniques. Advanced techniques using a high number of EEG channels also enable a good spatial resolution to be achieved. This, together with the possibility of integration with other anatomical and functional images, may increase the ability to localize brain functions. Spectral analysis of the resting EEG, which gives information on the integrity of the cortical and subcortical networks involved in the generation of cortical rhythms, has the limitation of low sensitivity and specificity for the type of cognitive impairment. In almost all types of dementia, decreased power of the high frequencies is indeed observed in mild stages, accompanied by increased power of the slow rhythms in the more advanced phases. The sensitivity for the detection of spectral abnormalities is improved by studying centroid modifications. More specific information on the type of dementia can be provided by coherence analysis of the resting EEG, a measure of functional cortico-cortical connections, which has different abnormal patterns in Alzheimer's disease, cerebrovascular dementia and dementia associated with multiple sclerosis. Another tool for improving the assessment of demented patients is the study of EEG activity related to particular tasks, such as event-related potentials and event-related desynchronization/synchronization of the EEG, which allow the study of brain activation during cognitive and motor tasks.

  18. [Deterministic and stochastic identification of neurophysiologic systems].

    Science.gov (United States)

    Piatigorskiĭ, B Ia; Kostiukov, A I; Chinarov, V A; Cherkasskiĭ, V L

    1984-01-01

    The paper deals with deterministic and stochastic identification methods applied to the concrete neurophysiological systems. The deterministic identification was carried out for the system: efferent fibres-muscle. The obtained transition characteristics demonstrated dynamic nonlinearity of the system. Identification of the neuronal model and the "afferent fibres-synapses-neuron" system in mollusc Planorbis corneus was carried out using the stochastic methods. For these purpose the Wiener method of stochastic identification was expanded for the case of pulse trains as input and output signals. The weight of the nonlinear component in the Wiener model and accuracy of the model prediction were quantitatively estimated. The results obtained proves the possibility of using these identification methods for various neurophysiological systems.

  19. Prevalence of spina bifida occulta in patients with functional disorders of the lower urinary tract and its relation to urodynamic and neurophysiological measurements.

    OpenAIRE

    Fidas, A.; MacDonald, H. L.; Elton, R A; McInnes, A.; Wild, S. R.; Chisholm, G D

    1989-01-01

    OBJECTIVE--To determine the relation between neurophysiological abnormalities and the radiological detection of spina bifida occulta in patients with dysfunction of the lower urinary tract. DESIGN--Blind assessment and subsequent decoding of mixed batch of abdominal radiographs from patients with and without urological symptoms for evidence of spina bifida occulta and comparison of results with those of previous control series. SETTING--Review study among tertiary referrals to an incontinence...

  20. Alpha Theta Meditation: Phenomenological, neurophysiologic ...

    African Journals Online (AJOL)

    African Journal for Physical Activity and Health Sciences ... neurophysiologic, mindfulness, mood, health and sport implications ... Integrated findings are in line with other studies which support the psychological value of alpha theta training.

  1. Neurophysiological evidence of methylmercury neurotoxicity

    DEFF Research Database (Denmark)

    Murata, Katsuyuki; Grandjean, Philippe; Dakeishi, Miwako

    2007-01-01

    BACKGROUND: A variety of neurophysiological measures are useful in hospital settings for diagnostic and other clinical purposes. Previously, abnormal changes in various sensory evoked potentials (EPs), and heart rate variability (HRV) were observed in patients with acquired and fetal Minamata...

  2. Neurophysiological characterization of postherniotomy pain

    DEFF Research Database (Denmark)

    Aasvang, Eske Kvanner; Brandsborg, Birgitte; Christensen, Bente;

    2008-01-01

    Inguinal herniotomy is one of the most frequent surgical procedures and chronic pain affecting everyday activities is reported in approximately 10% of patients. However, the neurophysiological changes and underlying pathophysiological mechanisms of postherniotomy pain are not known in detail, the...

  3. The influence of low and moderate carotid stenosis on neurophysiologic status of patients undergoing on-pump coronary artery bypass grafting

    Directory of Open Access Journals (Sweden)

    Olga eTrubnikova

    2012-01-01

    Full Text Available Background: Significant (>70% extracranial stenosis of the internal carotid artery (ICA is a known risk factor for brain damage in patients with coronary heart disease (CHD undergoing coronary artery bypass grafting (CABG. There is no clear evidence of the low and moderate ICA stenoses influence on the neurophysiologic status of patients after CABG. This work was aimed at studying the influence ICA stenoses (<50% on the dynamics of neurophysiologic status in patients undergone CABG. Methods: We examined neurophysiologic functions and EEG in CHD patients (N=45 aged from 45 to 70 years. All patients were divided into two groups: with ICA stenosis (n=20 and without one (n= 25. Results: It was established that the group ICA stenosis had a negative dynamics of neurophysiologic status 6 months follow-up after CABG compared with patients without stenosis. Conclusions: Our results suggest that the presence of low and moderate ICA stenosis is one of the factors affecting the neurophysiologic status of CHD patients. It has been assumed that the patients with ≤50% ICA stenoses constitute a high-risk group for cerebral complications after on-pump CABG.

  4. [The links between neuropsychology and neurophysiology].

    Science.gov (United States)

    Stolarska-Weryńska, Urszula; Biedroń, Agnieszka; Kaciński, Marek

    2016-01-01

    The aim of the study was to establish current scope of knowledge regarding associations between neurophysiological functioning, neuropsychology and psychoterapy. A systematic review was performed including 93 publications from Science Server, which contains the collections of Elsevier, Springer Journals, SCI-Ex/ICM, MEDLINE/PubMed, and SCOPUS. The works have been selected basing on following key words: 'neuropsychology, neurocognitive correlates, electrodermal response, event related potential, EEG, pupillography, electromiography' out of papers published between 2004-2015. Present reports on the use of neurophysiological methods in psychology can be divided into two areas: experimental research and research of the practical use of conditioning techniques and biofeedback in the treatment of somatic disease. Among the experimental research the following have been distinguished: research based on the startle reflex, physiological reaction to novelty, stress, type/amount of cognitive load and physiological correlates of emotion; research on the neurophysiological correlates of mental disorders, mostly mood and anxiety disorders, and neurocognitive correlates: of memory, attention, learning and intelligence. Among papers regarding the use of neurophysiological methods in psychology two types are the most frequent: on the mechanisms of biofeedback, related mainly to neuro- feedback, which is a quickly expanding method of various attention and mental disorders'treatment, and also research of the use of conditioning techniques in the treatment of mental disorders, especially depression and anxiety. A special place among all the above is taken by the research on electrophysiological correlates of psychotherapy, aiming to differentiate between the efficacy of various psychotherapeutic schools (the largest amount of publications regard the efficacy of cognitive-behavioral psychotherapy) in patients of different age groups and different diagnosis.

  5. Neurophysiological basis of creativity in healthy elderly people: a multiscale entropy approach.

    Science.gov (United States)

    Ueno, Kanji; Takahashi, Tetsuya; Takahashi, Koichi; Mizukami, Kimiko; Tanaka, Yuji; Wada, Yuji

    2015-03-01

    Creativity, which presumably involves various connections within and across different neural networks, reportedly underpins the mental well-being of older adults. Multiscale entropy (MSE) can characterize the complexity inherent in EEG dynamics with multiple temporal scales. It can therefore provide useful insight into neural networks. Given that background, we sought to clarify the neurophysiological bases of creativity in healthy elderly subjects by assessing EEG complexity with MSE, with emphasis on assessment of neural networks. We recorded resting state EEG of 20 healthy elderly subjects. MSE was calculated for each subject for continuous 20-s epochs. Their relevance to individual creativity was examined concurrently with intellectual function. Higher individual creativity was linked closely to increased EEG complexity across higher temporal scales, but no significant relation was found with intellectual function (IQ score). Considering the general "loss of complexity" theory of aging, our finding of increased EEG complexity in elderly people with heightened creativity supports the idea that creativity is associated with activated neural networks. Results reported here underscore the potential usefulness of MSE analysis for characterizing the neurophysiological bases of elderly people with heightened creativity. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  6. DNA functionalization by dynamic chemistry

    Directory of Open Access Journals (Sweden)

    Zeynep Kanlidere

    2016-10-01

    Full Text Available Dynamic combinatorial chemistry (DCC is an attractive method to efficiently generate libraries of molecules from simpler building blocks by reversible reactions under thermodynamic control. Here we focus on the chemical modification of DNA oligonucleotides with acyclic diol linkers and demonstrate their potential for the deoxyribonucleic acid functionalization and generation of libraries of reversibly interconverting building blocks. The syntheses of phosphoramidite building blocks derived from D-threoninol are presented in two variants with protected amino or thiol groups. The threoninol building blocks were successfully incorporated via automated solid-phase synthesis into 13mer oligonucleotides. The amino group containing phosphoramidite was used together with complementary single-strand DNA templates that influenced the Watson–Crick base-pairing equilibrium in the mixture with a set of aldehyde modified nucleobases. A significant fraction of all possible base-pair mismatches was obtained, whereas, the highest selectivity (over 80% was found for the guanine aldehyde templated by the complementary cytosine containing DNA. The elevated occurrence of mismatches can be explained by increased backbone plasticity derived from the linear threoninol building block as a cyclic deoxyribose analogue.

  7. Real-time imaging of amygdalar network dynamics in vitro reveals a neurophysiological link to behavior in a mouse model of extremes in trait anxiety.

    Science.gov (United States)

    Avrabos, Charilaos; Sotnikov, Sergey V; Dine, Julien; Markt, Patrick O; Holsboer, Florian; Landgraf, Rainer; Eder, Matthias

    2013-10-09

    In humans and numerous other mammalian species, individuals considerably vary in their level of trait anxiety. This well known phenomenon is closely related to the etiology of several psychiatric disorders, but its neurophysiological basis remains poorly understood. Here, we applied voltage-sensitive dye imaging to brain slices from animals of the high (HAB), normal (NAB), and low (LAB) trait anxiety mouse model and investigated whether evoked neuronal activity propagations from the lateral (LA) to the central (CeA) amygdala differ in their relative strength among HAB, NAB, and LAB mice. For this purpose, we divided a real-time measure of neuronal population activity in the CeA by a respective measure obtained for the LA. This calculation yielded the metric "CeA/LA activity." Our data clearly demonstrate a positive correlation between trait anxiety levels evaluated by the elevated plus-maze test and CeA/LA activity. Moreover, we found reduced CeA/LA activity in HAB mice, which responded with decreased anxiety levels to an environmental enrichment and, inversely, detected increased anxiety levels and CeA/LA activity in LAB mice that experienced chronic mild stress. We did not observe differences in the spread of neuronal activity in the motor and visual cortex among HAB, NAB, and LAB animals. Collectively, these findings provide evidence that, in mammals, interindividual variability in trait anxiety is causally linked to individual variations in the physiological constitution of the LA-to-CeA circuitry that give rise to a differential regulation of neuronal signal flow through this fundamental input-output network of the amygdala.

  8. Molecular Dynamics and Protein Function

    National Research Council Canada - National Science Library

    M. Karplus; J. Kuriyan; Bruce J. Berne

    2005-01-01

    .... Molecular dynamics simulations provide powerful tools for the exploration of the conformational energy landscape accessible to these molecules, and the rapid increase in computational power coupled...

  9. Neurophysiological evidence for cerebellar dysfunction in primary focal dystonia.

    NARCIS (Netherlands)

    Teo, J.T.; Warrenburg, B.P.C. van de; Schneider, S.A.; Rothwell, J.C.; Bhatia, K.P.

    2009-01-01

    Recent studies have suggested that there may be functional and structural changes in the cerebellum of patients with adult onset primary focal dystonia. The aim of this study was to establish whether there is any neurophysiological indicator of abnormal cerebellar function, using the classic eyeblin

  10. Neurophysiological correlates of musical creativity: The example of improvisation.

    Directory of Open Access Journals (Sweden)

    Skirtach I.A.

    2015-07-01

    Full Text Available Since the turn of this century, a substantial body of research has been published on the neuroscience of creativity. Now, it is necessary to study the neurophysiological correlates in true-to-life, professionally specific situations. The aim of our empirical research was to study the neurophysiological correlates of musical improvisation, a spontaneous creative activity. The participants were 136 right-handed practicing musicians aged 19 to 36 (102 males and 34 females, divided into two groups—professionals (56 people and amateurs (80 people. EEG signals were recorded in a resting state (eyes closed and during three types of internal musical activity (perceiving, mentally reproducing, and mentally improvising from 21 scalp electrodes according to the International 10-20 System. For statistical analysis, we used ANOVA and post hoc analysis. For the main neurophysiological correlates of musical creativity, we revealed higher values of EEG spectral power in the delta band and the dominance of long-distance functional cortical connections in the high-frequency bands. Variable neurophysiological correlates were differentiated according to emotions and the professional level of the musicians. The distinguishing EEG pattern in the professional musicians during improvisation was the predominant activation of the left- hemisphere cortical regions simultaneously with high interhemispheric integration in the high-frequency band along the “creativity axis.” The revealed neurophysiological correlates of musical creativity during improvisation included basic and variable components and were characterized by a specific frequency-spatial organization of bioelectric cortical activity in the musicians.

  11. Dynamics and computation in functional shifts

    Science.gov (United States)

    Namikawa, Jun; Hashimoto, Takashi

    2004-07-01

    We introduce a new type of shift dynamics as an extended model of symbolic dynamics, and investigate the characteristics of shift spaces from the viewpoints of both dynamics and computation. This shift dynamics is called a functional shift, which is defined by a set of bi-infinite sequences of some functions on a set of symbols. To analyse the complexity of functional shifts, we measure them in terms of topological entropy, and locate their languages in the Chomsky hierarchy. Through this study, we argue that considering functional shifts from the viewpoints of both dynamics and computation gives us opposite results about the complexity of systems. We also describe a new class of shift spaces whose languages are not recursively enumerable.

  12. Elements and modulation of functional dynamics.

    Science.gov (United States)

    Gibbs, Alan C

    2014-10-09

    The existing structure-function paradigm of drug discovery has been evolving toward the essential incorporation of dynamics data. This new functional dynamics paradigm emphasizes conformational entropy as a driving force of protein function and intermolecular recognition. Conformational dynamics (a proxy of conformational entropy) impacts the degree of protein (dis)order and the constitution of the conformational ensemble, the mechanisms of allostery and drug resistance, and the free energy of ligand binding. Specific protein and ligand conformations facilitate favorable, reciprocal interactions. The number of protein and ligand conformers that exhibit favorable binding interactions will vary from system to system. All binding scenarios can modulate protein dynamics by various levels of enthalpic and entropic contribution, with significant influence on the functional dynamics of the system. Analysis and consideration of resulting changes of activity, signaling, catalysis, and subsequent phenotypic outcome are powerful motivations in the drug design process.

  13. Neuropsychological and neurophysiological insights into hoarding disorder

    Directory of Open Access Journals (Sweden)

    Grisham JR

    2015-04-01

    Full Text Available Jessica R Grisham, Peter A Baldwin School of Psychology, University of New South Wales, Sydney, Australia Abstract: Hoarding disorder (HD is associated with significant personal impairment in function and constitutes a severe public health burden. Individuals who hoard experience intense distress in discarding a large number of objects, which results in extreme clutter. Research and theory suggest that hoarding may be associated with specific deficits in information processing, particularly in the areas of attention, memory, and executive functioning. There is also growing interest in the neural underpinnings of hoarding behavior. Thus, the primary aim of this review is to summarize the current state of evidence regarding neuropsychological deficits associated with hoarding and review research on its neurophysiological underpinnings. We also outline the prominent theoretical model of hoarding and provide an up-to-date description of empirically based psychological and medical treatment approaches for HD. Finally, we discuss important future avenues for elaborating our model of HD and improving treatment access and outcomes for this disabling disorder. Keywords: hoarding, information processing, neuropsychology, neurophysiology, treatment

  14. Separating Fractal and Oscillatory Components in the Power Spectrum of Neurophysiological Signal.

    Science.gov (United States)

    Wen, Haiguang; Liu, Zhongming

    2016-01-01

    Neurophysiological field-potential signals consist of both arrhythmic and rhythmic patterns indicative of the fractal and oscillatory dynamics arising from likely distinct mechanisms. Here, we present a new method, namely the irregular-resampling auto-spectral analysis (IRASA), to separate fractal and oscillatory components in the power spectrum of neurophysiological signal according to their distinct temporal and spectral characteristics. In this method, we irregularly resampled the neural signal by a set of non-integer factors, and statistically summarized the auto-power spectra of the resampled signals to separate the fractal component from the oscillatory component in the frequency domain. We tested this method on simulated data and demonstrated that IRASA could robustly separate the fractal component from the oscillatory component. In addition, applications of IRASA to macaque electrocorticography and human magnetoencephalography data revealed a greater power-law exponent of fractal dynamics during sleep compared to wakefulness. The temporal fluctuation in the broadband power of the fractal component revealed characteristic dynamics within and across the eyes-closed, eyes-open and sleep states. These results demonstrate the efficacy and potential applications of this method in analyzing electrophysiological signatures of large-scale neural circuit activity. We expect that the proposed method or its future variations would potentially allow for more specific characterization of the differential contributions of oscillatory and fractal dynamics to distributed neural processes underlying various brain functions.

  15. Neurophysiologic correlates of fMRI in human motor cortex.

    Science.gov (United States)

    Hermes, Dora; Miller, Kai J; Vansteensel, Mariska J; Aarnoutse, Erik J; Leijten, Frans S S; Ramsey, Nick F

    2012-07-01

    The neurophysiological underpinnings of functional magnetic resonance imaging (fMRI) are not well understood. To understand the relationship between the fMRI blood oxygen level dependent (BOLD) signal and neurophysiology across large areas of cortex, we compared task related BOLD change during simple finger movement to brain surface electric potentials measured on a similar spatial scale using electrocorticography (ECoG). We found that spectral power increases in high frequencies (65-95 Hz), which have been related to local neuronal activity, colocalized with spatially focal BOLD peaks on primary sensorimotor areas. Independent of high frequencies, decreases in low frequency rhythms (neurophysiological mechanisms, one being spatially focal neuronal processing and the other spatially distributed low frequency rhythms. Copyright © 2011 Wiley-Liss, Inc.

  16. Neurophysiology of synesthesia.

    Science.gov (United States)

    Hubbard, Edward M

    2007-06-01

    Synesthesia is an experience in which stimulation in one sensory or cognitive stream leads to associated experiences in a second, unstimulated stream. Although synesthesia is often referred to as a "neurological condition," it is not listed in the DSM IV or the ICD classifications, as it generally does not interfere with normal daily functioning. However, its high prevalence rate (one in 23) means that synesthesia may be reported by patients who present with other psychiatric symptoms. In this review, I focus on recent research examining the neural basis of the two most intensively studied forms of synesthesia, grapheme --> color synesthesia and tone --> color synesthesia. These data suggest that these forms of synesthesia are elicited through anomalous activation of color-selective areas, perhaps in concert with hyperbinding mediated by the parietal cortex. I then turn to questions for future research and the implications of these models for other forms of synesthesia.

  17. Dynamical Functional Theory for Compressed Sensing

    DEFF Research Database (Denmark)

    Cakmak, Burak; Opper, Manfred; Winther, Ole

    2017-01-01

    the Thouless Anderson-Palmer (TAP) equations corresponding to the ensemble. Using a dynamical functional approach we are able to derive an effective stochastic process for the marginal statistics of a single component of the dynamics. This allows us to design memory terms in the algorithm in such a way...

  18. Symbolic Tensor Calculus -- Functional and Dynamic Approach

    CERN Document Server

    Woszczyna, A; Czaja, W; Golda, Z A

    2016-01-01

    In this paper, we briefly discuss the dynamic and functional approach to computer symbolic tensor analysis. The ccgrg package for Wolfram Language/Mathematica is used to illustrate this approach. Some examples of applications are attached.

  19. Understanding Microbial Communities: Function, Structure and Dynamics

    Science.gov (United States)

    2015-02-11

    microbial communities: Function, structure and dynamics’, at the Isaac Newton Institute, University of Cambridge, United Kingdom, from August to...dynamics’, at the Isaac Newton Institute, University of Cambridge, United Kingdom, from August to December 2014. The programme involved over 150...Communities: Function, Structure and Dynamics’, at the Isaac Newton Institute, Cambridge University, UK, from 19th August 2014 – 19th December 2014

  20. Neuropsychological and neurophysiological insights into hoarding disorder.

    Science.gov (United States)

    Grisham, Jessica R; Baldwin, Peter A

    2015-01-01

    Hoarding disorder (HD) is associated with significant personal impairment in function and constitutes a severe public health burden. Individuals who hoard experience intense distress in discarding a large number of objects, which results in extreme clutter. Research and theory suggest that hoarding may be associated with specific deficits in information processing, particularly in the areas of attention, memory, and executive functioning. There is also growing interest in the neural underpinnings of hoarding behavior. Thus, the primary aim of this review is to summarize the current state of evidence regarding neuropsychological deficits associated with hoarding and review research on its neurophysiological underpinnings. We also outline the prominent theoretical model of hoarding and provide an up-to-date description of empirically based psychological and medical treatment approaches for HD. Finally, we discuss important future avenues for elaborating our model of HD and improving treatment access and outcomes for this disabling disorder.

  1. Particle conservation in dynamical density functional theory.

    Science.gov (United States)

    de Las Heras, Daniel; Brader, Joseph M; Fortini, Andrea; Schmidt, Matthias

    2016-06-22

    We present the exact adiabatic theory for the dynamics of the inhomogeneous density distribution of a classical fluid. Erroneous particle number fluctuations of dynamical density functional theory are absent, both for canonical and grand canonical initial conditions. We obtain the canonical free energy functional, which yields the adiabatic interparticle forces of overdamped Brownian motion. Using an exact and one of the most advanced approximate hard core free energy functionals, we obtain excellent agreement with simulations. The theory applies to finite systems in and out of equilibrium.

  2. Efficacy of intraoperative neurophysiological monitoring.

    Science.gov (United States)

    Fisher, R S; Raudzens, P; Nunemacher, M

    1995-01-01

    Intraoperative neurophysiological monitoring is of benefit in protecting tissue at risk for trauma or ischemia during surgical procedures. Monitoring modalities include EEG, computer processed EEG, somatosensory (SEP), auditory (BAEP), and visual evoked potentials (VEP), and cranial nerve monitoring. The efficacy of monitoring is controversial, because no properly controlled prospective study of outcome with and without monitoring has been done. The weight of evidence suggests that loss of spontaneous EEG and SEP correlate well with critical reductions of cerebral blood flow. Meta-analysis of series comprising 3,028 patients undergoing carotid endarterectomies shows that SEP deteriorated in 5.6% of cases, with 20% of these having postoperative deficits, but more might have had deficits if they had not been shunted. SEP monitoring can be useful in surgery affecting brain and cord vasculature. Monitoring is not indicated for routine lumbosacral spine surgery. BAEPs have predictive value for preservation of hearing after acoustic neuroma surgery, and other surgery near the brainstem. VEPs have been too variable to be of major use in the operating room. For neurophysiologic monitoring to be useful, it must be performed by an experienced team, and the surgeon must be willing to act on the findings. Under these circumstances, monitoring can reduce surgical complications in selected cases.

  3. Cognitive and neurophysiological evaluation of Japanese dyslexia.

    Science.gov (United States)

    Shiota, M; Koeda, T; Takeshita, K

    2000-10-01

    Seven Japanese dyslexic boys were evaluated as to their pedagogic performance on the pupil rating scale (PRS), and psychological and neurophysiological characteristics. One of them suffered from severe English dyslexia despite that his Japanese dyslexia was feeble. PRS did not successfully reveal their reading difficulties. Psychological examination (WISC-R and K-ABC) revealed their cognitive dysfunction, but the results were heterogeneous. The Token test was most useful for detecting their poor reading comprehension. Electroencephalogram (EEG) coherence analysis showed high inter- and intra-hemispheric values. These findings may imply hyperconnectivity of the cerebral white matter in dyslexia. We assumed that the Token test demonstrates the discrepancy between reading and hearing comprehension best of all among these psychological tests and that connectivity between non-functional cortical lesions remains in dyslexic children.

  4. Dynamics of inequalities in geometric function theory

    Directory of Open Access Journals (Sweden)

    Reich Simeon

    2001-01-01

    Full Text Available A domain in the complex plane which is star-like with respect to a boundary point can be approximated by domains which are star-like with respect to interior points. This approximation process can be viewed dynamically as an evolution of the null points of the underlying holomorphic functions from the interior of the open unit disk towards a boundary point. We trace these dynamics analytically in terms of the Alexander–Nevanlinna and Robertson inequalities by using the framework of complex dynamical systems and hyperbolic monotonicity.

  5. Dynamics of cavitating cascades. [transfer functions

    Science.gov (United States)

    Brennen, C. E.; Acosta, A. J.

    1980-01-01

    The unsteady dynamics of cavitating cascades and inducer pumps were studied with a view to understanding (and possibly predicting) the dynamic characteristics of these devices. The chronology of the research is summarized as well as the final conculsions for each task. The construction of a dynamic pump test facility and its use in making experimental measurements of the transfer function is described as well as tests conducted using a scale model of the low pressure liquid oxygen turbopump inducer in the shuttle main engine. Auto-oscillation and unsteady inlet flow characteristics are discussed in addition to blade cavity influence and bubbly cavitation.

  6. The role of the circadian system in fractal neurophysiological control.

    Science.gov (United States)

    Pittman-Polletta, Benjamin R; Scheer, Frank A J L; Butler, Matthew P; Shea, Steven A; Hu, Kun

    2013-11-01

    Many neurophysiological variables such as heart rate, motor activity, and neural activity are known to exhibit intrinsic fractal fluctuations - similar temporal fluctuation patterns at different time scales. These fractal patterns contain information about health, as many pathological conditions are accompanied by their alteration or absence. In physical systems, such fluctuations are characteristic of critical states on the border between randomness and order, frequently arising from nonlinear feedback interactions between mechanisms operating on multiple scales. Thus, the existence of fractal fluctuations in physiology challenges traditional conceptions of health and disease, suggesting that high levels of integrity and adaptability are marked by complex variability, not constancy, and are properties of a neurophysiological network, not individual components. Despite the subject's theoretical and clinical interest, the neurophysiological mechanisms underlying fractal regulation remain largely unknown. The recent discovery that the circadian pacemaker (suprachiasmatic nucleus) plays a crucial role in generating fractal patterns in motor activity and heart rate sheds an entirely new light on both fractal control networks and the function of this master circadian clock, and builds a bridge between the fields of circadian biology and fractal physiology. In this review, we sketch the emerging picture of the developing interdisciplinary field of fractal neurophysiology by examining the circadian system's role in fractal regulation.

  7. Study of the Neurophysiology of Central Fatigue

    Science.gov (United States)

    2014-11-05

    objective cognitive fatigue using event related potentials ( ERPs ). 2) To determine the neurophysiologic mechanisms underlying objective cognitive fatigue...with objective cognitive fatigue using event related potentials ( ERPs ). 2) To determine the neurophysiologic mechanisms underlying objective...performance changes. (Abstract published, manuscript under review) 4) Single trial ERP analyses reveal that noise (jitter) and amplitude changes

  8. Robot Cognitive Control with a Neurophysiologically Inspired Reinforcement Learning Model

    Science.gov (United States)

    Khamassi, Mehdi; Lallée, Stéphane; Enel, Pierre; Procyk, Emmanuel; Dominey, Peter F.

    2011-01-01

    A major challenge in modern robotics is to liberate robots from controlled industrial settings, and allow them to interact with humans and changing environments in the real-world. The current research attempts to determine if a neurophysiologically motivated model of cortical function in the primate can help to address this challenge. Primates are endowed with cognitive systems that allow them to maximize the feedback from their environment by learning the values of actions in diverse situations and by adjusting their behavioral parameters (i.e., cognitive control) to accommodate unexpected events. In such contexts uncertainty can arise from at least two distinct sources – expected uncertainty resulting from noise during sensory-motor interaction in a known context, and unexpected uncertainty resulting from the changing probabilistic structure of the environment. However, it is not clear how neurophysiological mechanisms of reinforcement learning and cognitive control integrate in the brain to produce efficient behavior. Based on primate neuroanatomy and neurophysiology, we propose a novel computational model for the interaction between lateral prefrontal and anterior cingulate cortex reconciling previous models dedicated to these two functions. We deployed the model in two robots and demonstrate that, based on adaptive regulation of a meta-parameter β that controls the exploration rate, the model can robustly deal with the two kinds of uncertainties in the real-world. In addition the model could reproduce monkey behavioral performance and neurophysiological data in two problem-solving tasks. A last experiment extends this to human–robot interaction with the iCub humanoid, and novel sources of uncertainty corresponding to “cheating” by the human. The combined results provide concrete evidence for the ability of neurophysiologically inspired cognitive systems to control advanced robots in the real-world. PMID:21808619

  9. LOCAL ENTROPY FUNCTION OF DYNAMICAL SYSTEM

    Directory of Open Access Journals (Sweden)

    İsmail TOK

    2013-05-01

    Full Text Available In this work, we first,define the entropy function of the topological dynamical system and investigate basic properties of this function without going into details. Let (X,A,T be a probability measure space and consider P = { pl5p2,...,pn} a finite measurable partition of all sub-sets of topological dynamical system (X,T.Then,the quantity H (P = ^ zpt is called the i=1 entropy function of finite measurable partition P.Where f-1 log t if 0 0.If diam(P < s,then the quantity L^ (T = h^ (T - h^ (T,P is called a local entropy function of topological dynamical system (X,T . In conclusion, Let (X,T and (Y,S be two topological dynamical system. If TxS is a transformation defined on the product space (XxY,TxS with (TxS(x , y = (Tx,Sy for all (x,y X x Y.Then L ^^ (TxS = L^d(T + L (S .and, we prove some fundamental properties of this function.

  10. Dynamic Blowout Risk Analysis Using Loss Functions.

    Science.gov (United States)

    Abimbola, Majeed; Khan, Faisal

    2017-08-11

    Most risk analysis approaches are static; failing to capture evolving conditions. Blowout, the most feared accident during a drilling operation, is a complex and dynamic event. The traditional risk analysis methods are useful in the early design stage of drilling operation while falling short during evolving operational decision making. A new dynamic risk analysis approach is presented to capture evolving situations through dynamic probability and consequence models. The dynamic consequence models, the focus of this study, are developed in terms of loss functions. These models are subsequently integrated with the probability to estimate operational risk, providing a real-time risk analysis. The real-time evolving situation is considered dependent on the changing bottom-hole pressure as drilling progresses. The application of the methodology and models are demonstrated with a case study of an offshore drilling operation evolving to a blowout. © 2017 Society for Risk Analysis.

  11. Circadian Rhythm Control: Neurophysiological Investigations

    Science.gov (United States)

    Glotzbach, S. F.

    1985-01-01

    The suprachiasmatic nucleus (SCN) was implicated as a primary component in central nervous system mechanisms governing circadian rhythms. Disruption of the normal synchronization of temperature, activity, and other rhythms is detrimental to health. Sleep wake disorders, decreases in vigilance and performance, and certain affective disorders may result from or be exacerbated by such desynchronization. To study the basic neurophysiological mechanisms involved in entrainment of circadian systems by the environment, Parylene-coated, etched microwire electrode bundles were used to record extracellular action potentials from the small somata of the SCN and neighboring hypothalamic nuclei in unanesthetized, behaving animals. Male Wistar rats were anesthetized and chronically prepared with EEG ane EMG electrodes in addition to a moveable microdrive assembly. The majority of cells had firing rates 10 Hz and distinct populations of cells which had either the highest firing rate or lowest firing rate during sleep were seen.

  12. The Neurophysiological and Neuroanatomical Organization of the Subcortical Motor System, with Special Reference to the Functional Organization of Peptides within the Basal Ganglia

    Science.gov (United States)

    1989-01-31

    including dopaminergic terminals (Groves et al., 1988b) as well as 0 heteroreceptors on the terminals of other systems projecting into the fL neostriatum...processing functions of the neostriatum rely in significant ways on the modulation of incoming information by presynptic autoreceptors and heteroreceptors

  13. Exact four-spinon dynamical correlation function

    CERN Document Server

    Abada, A; Si-Lakhal, B; Seba, S; Abada, As

    1998-01-01

    We discuss some properties of the exact four-spinon dynamical correlation function in the antiferromagnetic spin 1/2 XXX-model the expression of which we derived recently. We show that the region in which it is not identically zero is different from and larger than the spin-wave continuum. We discuss its behavior as a function of the neutron momentum transfer $k$ for fixed values of the neutron energy $\\omega$ and compare it to the one corresponding to the exact two-spinon dynamical correlation function. We show that the overall shapes are quite similar but there are differences that we discuss. Particular is the fact that the symmetry about the axis $k=\\pi$ present in the two-spinon case seems to be lost in the four-spinon one. We finish with concluding remarks.

  14. Robust transient dynamics and brain functions

    Directory of Open Access Journals (Sweden)

    Mikhail I Rabinovich

    2011-06-01

    Full Text Available In the last few decades several concepts of Dynamical Systems Theory (DST have guided psychologists, cognitive scientists, and neuroscientists to rethink about sensory motor behavior and embodied cognition. A critical step in the progress of DST application to the brain (supported by modern methods of brain imaging and multi-electrode recording techniques has been the transfer of its initial success in motor behavior to mental function, i.e., perception, emotion, and cognition. Open questions from research in genetics, ecology, brain sciences, etc. have changed DST itself and lead to the discovery of a new dynamical phenomenon, i.e., reproducible and robust transients that are at the same time sensitive to informational signals. The goal of this review is to describe a new mathematical framework -heteroclinic sequential dynamics- to understand self-organized activity in the brain that can explain certain aspects of robust itinerant behavior. Specifically, we discuss a hierarchy of coarse-grain models of mental dynamics in the form of kinetic equations of modes. These modes compete for resources at three levels: (i within the same modality, (ii among different modalities from the same family (like perception, and (iii among modalities from different families (like emotion and cognition. The analysis of the conditions for robustness, i.e., the structural stability of transient (sequential dynamics, give us the possibility to explain phenomena like the finite capacity of our sequential working memory -a vital cognitive function-, and to find specific dynamical signatures -different kinds of instabilities- of several brain functions and mental diseases.

  15. Actin dynamics shape microglia effector functions.

    Science.gov (United States)

    Uhlemann, Ria; Gertz, Karen; Boehmerle, Wolfgang; Schwarz, Tobias; Nolte, Christiane; Freyer, Dorette; Kettenmann, Helmut; Endres, Matthias; Kronenberg, Golo

    2016-06-01

    Impaired actin filament dynamics have been associated with cellular senescence. Microglia, the resident immune cells of the brain, are emerging as a central pathophysiological player in neurodegeneration. Microglia activation, which ranges on a continuum between classical and alternative, may be of critical importance to brain disease. Using genetic and pharmacological manipulations, we studied the effects of alterations in actin dynamics on microglia effector functions. Disruption of actin dynamics did not affect transcription of genes involved in the LPS-triggered classical inflammatory response. By contrast, in consequence of impaired nuclear translocation of phospho-STAT6, genes involved in IL-4 induced alternative activation were strongly downregulated. Functionally, impaired actin dynamics resulted in reduced NO secretion and reduced release of TNFalpha and IL-6 from LPS-stimulated microglia and of IGF-1 from IL-4 stimulated microglia. However, pathological stabilization of the actin cytoskeleton increased LPS-induced release of IL-1beta and IL-18, which belong to an unconventional secretory pathway. Reduced NO release was associated with decreased cytoplasmic iNOS protein expression and decreased intracellular arginine uptake. Furthermore, disruption of actin dynamics resulted in reduced microglia migration, proliferation and phagocytosis. Finally, baseline and ATP-induced [Ca(2+)]int levels were significantly increased in microglia lacking gelsolin, a key actin-severing protein. Together, the dynamic state of the actin cytoskeleton profoundly and distinctly affects microglia behaviours. Disruption of actin dynamics attenuates M2 polarization by inhibiting transcription of alternative activation genes. In classical activation, the role of actin remodelling is complex, does not relate to gene transcription and shows a major divergence between cytokines following conventional and unconventional secretion.

  16. Functional and neurophysiological evidence of the efficacy of trophic pharmacotherapy using an adrenocorticotrophic hormone4-9 analog in experimental allergic encephalomyelitis, an animal model of multiple sclerosis.

    Science.gov (United States)

    Duckers, H J; van Dokkum, R P; Verhaagen, J; Lopes da Silva, F H; Gispen, W H

    1996-03-01

    Chronic experimental allergic encephalomyelitis (CEAE) is a well-established animal model for the human syndrome, multiple sclerosis. CEAE has striking histological, electrophysiological and clinical analogies with multiple sclerosis and is a valuable animal model for the preclinical pharmacotherapeutical development of new putative therapeutic agents. In this paper, we describe a neurotrophic repair approach in Lewis rats suffering from CEAE. The neurotrophic peptide used is a degradation resistant adrenocorticotrophic hormone4-9 analog. The development of CEAE was examined using a combination of clinical, functional and electrophysiological parameters including somatosensory and motor evoked potentials. The latencies and amplitudes of the various evoked potentials can provide quantitative, objective data regarding the involvement of different nerve tracts in CEAE and the effectiveness of the neurotrophic peptide. Repeated subcutaneous injections of the neurotrophic peptide suppressed the development of CEAE-related clinical symptoms, markedly improved motor performance and reduced the reaction time upon thermal stimulation as compared to saline-treated CEAE animals during a 17 week follow-up study. Prolonged onset latencies of corticomotor evoked potentials and peak latencies of somatosensory evoked potentials due to the demyelination were normalized upon peptide treatment. In addition, peptide treatment substantially prevented total blocking of the corticomotor pathway in CEAE-animals and reduced the attenuation of sensory evoked potentials-related peak amplitudes as compared to saline-treated animals. The functional and electrophysiological improvements observed in CEAE-animals treated with the adrenocorticotrophic hormone4-9 analog, suggest that a neurotrophic repair approach could be of great value to promote the restoration of function in a disabling demyelinating disorder.

  17. A functional calculus for the magnetization dynamics

    CERN Document Server

    Tranchida, Julien; Nicolis, Stam

    2016-01-01

    A functional calculus approach is applied to the derivation of evolution equations for the moments of the magnetization dynamics of systems subject to stochastic fields. It allows us to derive a general framework for obtaining the master equation for the stochastic magnetization dynamics, that is applied to both, Markovian and non-Markovian dynamics. The formalism is applied for studying different kinds of interactions, that are of practical relevance and hierarchies of evolution equations for the moments of the distribution of the magnetization are obtained. In each case, assumptions are spelled out, in order to close the hierarchies. These closure assumptions are tested by extensive numerical studies, that probe the validity of Gaussian or non--Gaussian closure Ans\\"atze.

  18. Measuring Dynamic Transfer Functions of Cavitating Pumps

    Science.gov (United States)

    Baun, Daniel

    2007-01-01

    A water-flow test facility has been built to enable measurement of dynamic transfer functions (DTFs) of cavitating pumps and of inducers in such pumps. Originally, the facility was intended for use in an investigation of the effects of cavitation in a rocket-engine low-pressure oxygen turbopump. The facility can also be used to measure DTFs of cavitating pumps in general

  19. [Medical, educational and neurophysiological prerequisites to the formation of the motivation to exercises in students].

    Science.gov (United States)

    Khramtsov, P I; Sedova, A S; Berezina, N O; Viatleva, O A

    2015-01-01

    A characteristic feature of the life activity of modern children and adolescents is the couch potato, mostly "sedentary" lifestyle. Biomedical and psychosocial significance of motor activity (MA) stipulates the necessity of the substantiation of scientific and methodological approaches to the formation of the motivation to exercises and sports in children. The purpose of the study was in the scientific substantiation and the delivery of medical, pedagogical and neurophysiological prerequisites for the formation of the motivation to increase MA in students in current conditions of their life activity. There were examined 189 students from 2-5th and 9th classes, out of them 65 students were observed in the dynamics of the school year; 585 students from the 1st-11th classes participated in the survey. Results of the study allowed to reveal the relation of students to the lessons of physical training, to evaluate the impact of a new educational program on the functional possibilities of the body of children from the special medical group "A" and to reveal the neurophysiological features of adolescents with different needs in motion.

  20. Neurophysiological conception of pain in craniomandibular disfunction

    Directory of Open Access Journals (Sweden)

    Stanković Saša

    2008-01-01

    Full Text Available Introduction. Ethiopathogenesis of dysfunction and pain in temporomandibular joints has been the subject of passionate discussions between supporters of purely mechanical conception and the ones who are supporters of psyhosomatic conception. The aim of the study: Relying on neurophysiological data, the authors are trying to reveal the main role of reticular mesencephalical formation in mechanisms which provoke craniomandibular dysfunctions and confront the influence of emotional factors from neocortex and painful stimuli from oral structures. Discussion. From dynamical point of view, not only the morphological aspects of teeth and arcades, but also sensitive-sensorial mechanisms connected to masticatory muscles, periodontal structures and oral structures, should be considered. The ideal bite and perfect morphology of tooth arcades are not enough for reconstitution of correct occlusion, if there are no neuromuscular system, temporomandibular joint, and especially central nervous system. Conclusion. The presence of pain is just one of the craniomandibular dysfunction symptoms, but if it is added to the other clinical signs and emotional or affect - provoking factor, it will provoke dysfunctional syndrome.

  1. Intraoperative neurophysiological monitoring for the anaesthetist ...

    African Journals Online (AJOL)

    ... of the theory and practice of intraoperative neurophysiological monitoring. ... the incidence of postoperative neurological deficit and allowed radical resection of ... present with decreased myelination and morphological changes to the EPs.

  2. Phenomenology and neurophysiological correlations: two approaches to perception research.

    Science.gov (United States)

    Spillmann, Lothar

    2009-06-01

    This article argues that phenomenological description and neurophysiological correlation complement each other in perception research. Whilst phenomena constitute the material, neuronal mechanisms are indispensable for their explanation. Numerous examples of neurophysiological correlates show that the correlation of phenomenology and neurophysiology is fruitful. Phenomena for which neuronal mechanism have been found include: (in area V1) filling-in of real and artificial scotomata, contour integration, figure-ground segregation by orientation contrast, amodal completion, and motion transparency; (in V2) modal completion, border ownership, surface transparency, and cyclopean perception; (in V3) alignment in dotted contours, and filling-in with dynamic texture; (in V4) colour constancy; (in MT) shape by accretion/deletion, grouping by coherent motion, apparent motion in motion quartets, motion in apertures, and biological motion. Results suggest that in monkey visual cortex, occlusion cues, including stereo depth, are predominantly processed in lower areas, whereas mechanisms for grouping and motion are primarily represented in higher areas. More correlations are likely to emerge as neuroscientists strive for a better understanding of visual perception. The paper concludes with a review of major achievements in visual neuroscience pertinent to the study of the phenomena under consideration.

  3. Neurophysiological aspects of musical auditory stimulation on the cardiovascular system

    Directory of Open Access Journals (Sweden)

    Lucas Lima Ferreira

    2013-12-01

    Full Text Available Introduction: The literature has shown that musical stimulation can influence the cardiovascular system, however, the neurophysiological aspects of this influence are not yet fully elucidated. Objective: This study describes the influence of music on the neurophysiological mechanisms in the human body, specifically the variable blood pressure, as well as the neural mechanisms of music processing. Methods: Searches were conducted in Medline, PEDro, Lilacs and SciELO using the intersection of the keyword “music” with the keyword descriptors “blood pressure” and “neurophysiology”. Results: There were selected 11 articles, which indicated that music interferes in some aspects of physiological variables. Conclusion: Studies have indicated that music interferes on the control of blood pressure, heart and respiratory rate, through possible involvement of limbic brain areas which modulate hypothalamic-pituitary functions. Further studies are needed in order to identify the mechanisms by which this influence occurs.

  4. Individual neurophysiological profile in external effects investigation

    Science.gov (United States)

    Schastlivtseva, Daria; Tatiana Kotrovskaya, D..

    Cortex biopotentials are the significant elements in human psychophysiological individuality. Considered that cortical biopotentials are diverse and individually stable, therefore there is the existence of certain dependence between the basic properties of higher nervous activity and cerebral bioelectric activity. The main purpose of the study was to reveal the individual neurophysiological profile and CNS initial functional state manifestation in human electroencephalogram (EEG) under effect of inert gases (argon, xenon, helium), hypoxia, pressure changes (0.02 and 0.2 MPa). We obtained 5-minute eyes closed background EEG on 19 scalp positions using Ag/AgCl electrodes mounted in an electrode cap. All EEG signals were re-referenced to average earlobes; Fast Furies Transformation analysis was used to calculate the relative power spectrum of delta-, theta-, alpha- and beta frequency band in artifact-free EEG. The study involved 26 healthy men who provided written informed consent, aged 20 to 35 years. Data obtained depend as individual EEG type and initial central nervous functional state as intensity, duration and mix of factors. Pronounced alpha rhythm in the raw EEG correlated with their adaptive capacity under studied factor exposure. Representation change and zonal distribution perversion of EEG alpha rhythm were accompanied by emotional instability, increased anxiety and difficulty adapting subjects. High power factor or combination factor with psychological and emotional or physical exertion minimizes individual EEG pattern.

  5. Advancing the Neurophysiological Understanding of Delirium.

    Science.gov (United States)

    Shafi, Mouhsin M; Santarnecchi, Emiliano; Fong, Tamara G; Jones, Richard N; Marcantonio, Edward R; Pascual-Leone, Alvaro; Inouye, Sharon K

    2017-06-01

    Delirium is a common problem associated with substantial morbidity and increased mortality. However, the brain dysfunction that leads some individuals to develop delirium in response to stressors is unclear. In this article, we briefly review the neurophysiologic literature characterizing the changes in brain function that occur in delirium, and in other cognitive disorders such as Alzheimer's disease. Based on this literature, we propose a conceptual model for delirium. We propose that delirium results from a breakdown of brain function in individuals with impairments in brain connectivity and brain plasticity exposed to a stressor. The validity of this conceptual model can be tested using Transcranial Magnetic Stimulation in combination with Electroencephalography, and, if accurate, could lead to the development of biomarkers for delirium risk in individual patients. This model could also be used to guide interventions to decrease the risk of cerebral dysfunction in patients preoperatively, and facilitate recovery in patients during or after an episode of delirium. © 2017, Copyright the Authors Journal compilation © 2017, The American Geriatrics Society.

  6. GPU accelerated dynamic functional connectivity analysis for functional MRI data.

    Science.gov (United States)

    Akgün, Devrim; Sakoğlu, Ünal; Esquivel, Johnny; Adinoff, Bryon; Mete, Mutlu

    2015-07-01

    Recent advances in multi-core processors and graphics card based computational technologies have paved the way for an improved and dynamic utilization of parallel computing techniques. Numerous applications have been implemented for the acceleration of computationally-intensive problems in various computational science fields including bioinformatics, in which big data problems are prevalent. In neuroimaging, dynamic functional connectivity (DFC) analysis is a computationally demanding method used to investigate dynamic functional interactions among different brain regions or networks identified with functional magnetic resonance imaging (fMRI) data. In this study, we implemented and analyzed a parallel DFC algorithm based on thread-based and block-based approaches. The thread-based approach was designed to parallelize DFC computations and was implemented in both Open Multi-Processing (OpenMP) and Compute Unified Device Architecture (CUDA) programming platforms. Another approach developed in this study to better utilize CUDA architecture is the block-based approach, where parallelization involves smaller parts of fMRI time-courses obtained by sliding-windows. Experimental results showed that the proposed parallel design solutions enabled by the GPUs significantly reduce the computation time for DFC analysis. Multicore implementation using OpenMP on 8-core processor provides up to 7.7× speed-up. GPU implementation using CUDA yielded substantial accelerations ranging from 18.5× to 157× speed-up once thread-based and block-based approaches were combined in the analysis. Proposed parallel programming solutions showed that multi-core processor and CUDA-supported GPU implementations accelerated the DFC analyses significantly. Developed algorithms make the DFC analyses more practical for multi-subject studies with more dynamic analyses.

  7. Dynamic Responsive Systems for Catalytic Function.

    Science.gov (United States)

    Vlatković, Matea; Collins, Beatrice S L; Feringa, Ben L

    2016-11-21

    Responsive systems have recently gained much interest in the scientific community in attempts to mimic dynamic functions in biological systems. One of the fascinating potential applications of responsive systems lies in catalysis. Inspired by nature, novel responsive catalytic systems have been built that show analogy with allosteric regulation of enzymes. The design of responsive catalytic systems allows control of catalytic activity and selectivity. In this Review, advances in the field over the last four decades are discussed and a comparison is made amongst the dynamic responsive systems based on the principles underlying their catalytic mechanisms. The catalyst systems are sorted according to the triggers used to achieve control of the catalytic activity and the distinct catalytic reactions illustrated. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Proteins with Novel Structure, Function and Dynamics

    Science.gov (United States)

    Pohorille, Andrew

    2014-01-01

    Recently, a small enzyme that ligates two RNA fragments with the rate of 10(exp 6) above background was evolved in vitro (Seelig and Szostak, Nature 448:828-831, 2007). This enzyme does not resemble any contemporary protein (Chao et al., Nature Chem. Biol. 9:81-83, 2013). It consists of a dynamic, catalytic loop, a small, rigid core containing two zinc ions coordinated by neighboring amino acids, and two highly flexible tails that might be unimportant for protein function. In contrast to other proteins, this enzyme does not contain ordered secondary structure elements, such as alpha-helix or beta-sheet. The loop is kept together by just two interactions of a charged residue and a histidine with a zinc ion, which they coordinate on the opposite side of the loop. Such structure appears to be very fragile. Surprisingly, computer simulations indicate otherwise. As the coordinating, charged residue is mutated to alanine, another, nearby charged residue takes its place, thus keeping the structure nearly intact. If this residue is also substituted by alanine a salt bridge involving two other, charged residues on the opposite sides of the loop keeps the loop in place. These adjustments are facilitated by high flexibility of the protein. Computational predictions have been confirmed experimentally, as both mutants retain full activity and overall structure. These results challenge our notions about what is required for protein activity and about the relationship between protein dynamics, stability and robustness. We hypothesize that small, highly dynamic proteins could be both active and fault tolerant in ways that many other proteins are not, i.e. they can adjust to retain their structure and activity even if subjected to mutations in structurally critical regions. This opens the doors for designing proteins with novel functions, structures and dynamics that have not been yet considered.

  9. Neurophysiology of Drosophila models of Parkinson's disease.

    Science.gov (United States)

    West, Ryan J H; Furmston, Rebecca; Williams, Charles A C; Elliott, Christopher J H

    2015-01-01

    We provide an insight into the role Drosophila has played in elucidating neurophysiological perturbations associated with Parkinson's disease- (PD-) related genes. Synaptic signalling deficits are observed in motor, central, and sensory systems. Given the neurological impact of disease causing mutations within these same genes in humans the phenotypes observed in fly are of significant interest. As such we observe four unique opportunities provided by fly nervous system models of Parkinson's disease. Firstly, Drosophila models are instrumental in exploring the mechanisms of neurodegeneration, with several PD-related mutations eliciting related phenotypes including sensitivity to energy supply and vesicular deformities. These are leading to the identification of plausible cellular mechanisms, which may be specific to (dopaminergic) neurons and synapses rather than general cellular phenotypes. Secondly, models show noncell autonomous signalling within the nervous system, offering the opportunity to develop our understanding of the way pathogenic signalling propagates, resembling Braak's scheme of spreading pathology in PD. Thirdly, the models link physiological deficits to changes in synaptic structure. While the structure-function relationship is complex, the genetic tractability of Drosophila offers the chance to separate fundamental changes from downstream consequences. Finally, the strong neuronal phenotypes permit relevant first in vivo drug testing.

  10. Primary headache pathophysiology in children: the contribution of clinical neurophysiology.

    Science.gov (United States)

    Pro, S; Tarantino, S; Capuano, A; Vigevano, F; Valeriani, M

    2014-01-01

    Although primary headaches are very prevalent also in pediatric age, most neurophysiologic studies in these diseases concerned only the adulthood. The neurophysiologic investigation of the pathophysiological mechanisms subtending migraine and tension-type headache in children and adolescents could be particularly interesting, since during the developmental age the migrainous phenotype is scarcely influenced by many environmental factors that can typically act on adult headache patients. The neurophysiologic abnormality most frequently found in adult migraineurs, that is the reduced habituation of evoked potentials, was confirmed also in migraine children, although it was shown to involve also children with tension-type headache. Some studies showed abnormalities in the maturation of brain functions in migraine children and adolescents. While the visual system maturation seems slowed in young migraineurs, the psychophysiological mechanisms subtending somatosensory spatial attention in migraine children are more similar to those of healthy adults than to those of age-matched controls. There are some still unexplored fields that will have to be subjects of future studies. The nociceptive modality, which has been investigated in adult patients with primary headaches, should be studied also in pediatric migraine. Moreover, the technique of transcranial magnetic stimulation, not yet used in young migraineurs, will possibly provide further elements about brain excitability in migraine children.

  11. Combining Molecular Dynamics and Density Functional Theory

    Science.gov (United States)

    Kaxiras, Efthimios

    2015-03-01

    The time evolution of a system consisting of electrons and ions is often treated in the Born-Oppenheimer approximation, with electrons in their instantaneous ground state. This approach cannot capture many interesting processes that involved excitation of electrons and its effects on the coupled electron-ion dynamics. The time scale needed to accurately resolve the evolution of electron dynamics is atto-seconds. This poses a challenge to the simulation of important chemical processes that typically take place on time scales of pico-seconds and beyond, such as reactions at surfaces and charge transport in macromolecules. We will present a methodology based on time-dependent density functional theory for electrons, and classical (Ehrenfest) dynamics for the ions, that successfully captures such processes. We will give a review of key features of the method and several applications. These illustrate how the atomic and electronic structure evolution unravels the elementary steps that constitute a chemical reaction. In collaboration with: G. Kolesov, D. Vinichenko, G. Tritsaris, C.M. Friend, Departments of Physics and of Chemistry and Chemical Biology.

  12. Biodiversity and ecosystem functioning in dynamic landscapes.

    Science.gov (United States)

    Brose, Ulrich; Hillebrand, Helmut

    2016-05-19

    The relationship between biodiversity and ecosystem functioning (BEF) and its consequence for ecosystem services has predominantly been studied by controlled, short-term and small-scale experiments under standardized environmental conditions and constant community compositions. However, changes in biodiversity occur in real-world ecosystems with varying environments and a dynamic community composition. In this theme issue, we present novel research on BEF in such dynamic communities. The contributions are organized in three sections on BEF relationships in (i) multi-trophic diversity, (ii) non-equilibrium biodiversity under disturbance and varying environmental conditions, and (iii) large spatial and long temporal scales. The first section shows that multi-trophic BEF relationships often appear idiosyncratic, while accounting for species traits enables a predictive understanding. Future BEF research on complex communities needs to include ecological theory that is based on first principles of species-averaged body masses, stoichiometry and effects of environmental conditions such as temperature. The second section illustrates that disturbance and varying environments have direct as well as indirect (via changes in species richness, community composition and species' traits) effects on BEF relationships. Fluctuations in biodiversity (species richness, community composition and also trait dominance within species) can severely modify BEF relationships. The third section demonstrates that BEF at larger spatial scales is driven by different variables. While species richness per se and community biomass are most important, species identity effects and community composition are less important than at small scales. Across long temporal scales, mass extinctions represent severe changes in biodiversity with mixed effects on ecosystem functions. Together, the contributions of this theme issue identify new research frontiers and answer some open questions on BEF relationships

  13. Neurophysiological evaluation of the pedunculopontine nucleus in humans.

    Science.gov (United States)

    Profice, P; Mazzone, P; Pilato, F; Dileone, M; Insola, A; Ranieri, F; Di Lazzaro, V

    2011-10-01

    The pedunculopontine nucleus (PPTg) is constituted by a heterogeneous cluster of neurons located in caudal mesencephalic tegmentum which projects to the thalamus to trigger thalamocortical rhythms and the brainstem to modulate muscle tone and locomotion. It has been investigated as potential deep brain stimulation (DBS) target for treating Parkinson's disease (PD) symptoms. Neurophysiological studies conducted in humans using DBS electrodes for exploring functional properties of PPTg in vivo, reviewed in this paper, demonstrated that the functional connections between PPTg and cortex, basal ganglia, brainstem network involved in sleep/wake control, and spinal cord can be explored in vivo and provided useful insights about the physiology of this nucleus and pathophysiology of PD.

  14. Functional thermo-dynamics: a generalization of dynamic density functional theory to non-isothermal situations.

    Science.gov (United States)

    Anero, Jesús G; Español, Pep; Tarazona, Pedro

    2013-07-21

    We present a generalization of Density Functional Theory (DFT) to non-equilibrium non-isothermal situations. By using the original approach set forth by Gibbs in his consideration of Macroscopic Thermodynamics (MT), we consider a Functional Thermo-Dynamics (FTD) description based on the density field and the energy density field. A crucial ingredient of the theory is an entropy functional, which is a concave functional. Therefore, there is a one to one connection between the density and energy fields with the conjugate thermodynamic fields. The connection between the three levels of description (MT, DFT, FTD) is clarified through a bridge theorem that relates the entropy of different levels of description and that constitutes a generalization of Mermin's theorem to arbitrary levels of description whose relevant variables are connected linearly. Although the FTD level of description does not provide any new information about averages and correlations at equilibrium, it is a crucial ingredient for the dynamics in non-equilibrium states. We obtain with the technique of projection operators the set of dynamic equations that describe the evolution of the density and energy density fields from an initial non-equilibrium state towards equilibrium. These equations generalize time dependent density functional theory to non-isothermal situations. We also present an explicit model for the entropy functional for hard spheres.

  15. Cardiac mitochondria exhibit dynamic functional clustering

    Directory of Open Access Journals (Sweden)

    Felix Tobias Kurz

    2014-09-01

    Full Text Available Multi-oscillatory behavior of mitochondrial inner membrane potential ΔΨm in self-organized cardiac mitochondrial networks can be triggered by metabolic or oxidative stress. Spatio-temporal analyses of cardiac mitochondrial networks have shown that mitochondria are heterogeneously organized in synchronously oscillating clusters in which the mean cluster frequency and size are inversely correlated, thus suggesting a modulation of cluster frequency through local inter-mitochondrial coupling. In this study, we propose a method to examine the mitochondrial network's topology through quantification of its dynamic local clustering coefficients. Individual mitochondrial ΔΨm oscillation signals were identified for each cardiac myocyte and cross-correlated with all network mitochondria using previously described methods (Kurz et al., 2010. Time-varying inter-mitochondrial connectivity, defined for mitochondria in the whole network whose signals are at least 90% correlated at any given time point, allowed considering functional local clustering coefficients. It is shown that mitochondrial clustering in isolated cardiac myocytes changes dynamically and is significantly higher than for random mitochondrial networks that are constructed using the Erdös-Rényi model based on the same sets of vertices. The network's time-averaged clustering coefficient for cardiac myocytes was found to be 0.500 ± 0.051 (N=9 versus 0.061 ± 0.020 for random networks, respectively. Our results demonstrate that cardiac mitochondria constitute a network with dynamically connected constituents whose topological organization is prone to clustering. Cluster partitioning in networks of coupled oscillators has been observed in scale-free and chaotic systems and is therefore in good agreement with previous models of cardiac mitochondrial networks (Aon et al., 2008.

  16. Relativistic dynamics, Green function and pseudodifferential operators

    CERN Document Server

    Cirilo-Lombardo, Diego Julio

    2016-01-01

    The central role played by pseudodifferential operators in relativistic dynamics is very well know. In this work, operators as the Schrodinger one (e.g: square root) are treated from the point of view of the non-local pseudodifferential Green functions. Starting from the explicit construction of the Green (semigroup) theoretical kernel, a theorem linking the integrability conditions and their dependence on the spacetime dimensions is given. Relativistic wave equations with arbitrary spin and the causality problem are discussed with the algebraic interpretation of the radical operator and their relation with coherent and squeezed states. Also we perform by mean of pure theoretical procedures (based in physical concepts and symmetry) the relativistic position operator which satisfies the conditions of integrability : it is non-local, Lorentz invariant and does not have the same problems as the "local"position operator proposed by Newton and Wigner. Physical examples, as Zitterbewegung and rogue waves, are prese...

  17. Clinical differentiation and outcome evaluation in vegetative and minimally conscious state patients: the neurophysiological approach

    Science.gov (United States)

    De Salvo, Simona; Bramanti, Placido; Marino, Silvia

    2012-01-01

    Summary The neurophysiological approach to patients with disorders of consciousness allows recording of both central and peripheral nervous system electrical activities and provides a functional assessment. Data obtained using this approach can supplement information from clinical neurological examination, but also from the use of morphological neuroimaging techniques: computed tomography and magnetic resonance imaging. Neurophysiological techniques, such as electroencephalography (EEG), evoked potentials, transcranial magnetic stimulation, and EEG in association with functional magnetic resonance imaging, allow monitoring of clinical conditions and can help in the formulation of a prognosis. The aim of this review is to describe the main neurophysiological techniques used in disorders of consciousness to evaluate residual cerebral function, to provide information on the neuronal dysfunction for outcome evaluation, and to differentiate clinically between the vegetative and minimally conscious states. PMID:23402676

  18. Microtransitions and the dynamics of family functioning.

    Science.gov (United States)

    Everri, Marina; Fruggeri, Laura; Molinari, Luisa

    2014-03-01

    This paper presents a qualitative observational study aimed at exploring microtransitions in the relational dynamics of family functioning when the children are adolescents. Three concurrent levels were considered central for family functioning in this period: the acknowledgment of emerging competences, the redefinition of the power structure, and the regulation of interpersonal distances. Twenty-eight non-clinical Italian families with at least one adolescent child were interviewed and video-recorded in their homes. A stance-taking process analysis was carried out on the family interactive sequences arising in the course of the interviews. This analysis was based on the stances taken by all family members in relation to their reciprocal evaluations, positions, and alignments, which allowed us to point out the interlocking of competences, power and distances. Out of all the possible theoretical combinations of these three dimensions, we identified four forms of interaction. In two forms, the emerging changes were not incorporated in the families' interactive repertoires by either reconfirming family stability or resisting family changes. In these ways of interacting competences, power, and distances were not reorganized. In the other two forms, instead, family microtransitions were observable in the extent to which family members either explored family changes or legitimated family reorganizations. In these processes, they could redefine and readdress their ways of interacting.

  19. Neurophysiologic effect of GWAS derived schizophrenia and bipolar risk variants.

    Science.gov (United States)

    Hall, Mei-Hua; Levy, Deborah L; Salisbury, Dean F; Haddad, Steve; Gallagher, Patience; Lohan, Mary; Cohen, Bruce; Ongür, Dost; Smoller, Jordan W

    2014-01-01

    Genome-wide association studies (GWAS) have identified multiple single nucleotide polymorphisms (SNPs) as disease associated variants for schizophrenia (SCZ), bipolar disorder (BPD), or both. Although these results are statistically robust, the functional effects of these variants and their role in the pathophysiology of SCZ or BPD remain unclear. Dissecting the effects of risk genes on distinct domains of brain function can provide important biological insights into the mechanisms by which these genes may confer illness risk. This study used quantitative event related potentials to characterize the neurophysiological effects of well-documented GWAS-derived SCZ/BPD susceptibility variants in order to map gene effects onto important domains of brain function. We genotyped 199 patients with DSM-IV diagnoses of SCZ or BPD and 74 healthy control subjects for 19 risk SNPs derived from previous GWAS findings and tested their association with five neurophysiologic traits (P3 amplitude, P3 latency, N1 amplitude, P2 amplitude, and P50 sensory gating responses) known to be abnormal in psychosis. The TCF4 SNP rs17512836 risk allele showed a significant association with reduced auditory P3 amplitude (P = 0.00016) after correction for multiple testing. The same allele was also associated with delayed P3 latency (P = 0.005). Our results suggest that a SCZ risk variant in TCF4 is associated with neurophysiologic traits thought to index attention and working memory abnormalities in psychotic disorders. These findings suggest a mechanism by which TCF4 may contribute to the neurobiological basis of psychotic illness.

  20. Dynamics of biomolecules, ligand binding & biological functions

    Science.gov (United States)

    Yi, Myunggi

    Proteins are flexible and dynamic. One static structure alone does not often completely explain biological functions of the protein, and some proteins do not even have high resolution structures. In order to provide better understanding to the biological functions of nicotinic acetylcholine receptor, Diphtheria toxin repressor and M2 proton channel, the dynamics of these proteins are investigated using molecular modeling and molecular dynamics (MD) simulations. With absence of high resolution structure of alpha7 receptor, the homology models of apo and cobra toxin bound forms have been built. From the MD simulations of these model structures, we observed one subunit of apo simulation moved away from other four subunits. With local movement of flexible loop regions, the whole subunit tilted clockwise. These conformational changes occurred spontaneously, and were strongly correlated with the conformational change when the channel is activated by agonists. Unlike other computational studies, we directly compared our model of open conformation with the experimental data. However, the subunits of toxin bound form were stable, and conformational change is restricted by the bound cobra toxin. These results provide activation and inhibition mechanisms of alpha7 receptors and a possible explanation for intermediate conductance of the channel. Intramolecular complex of SH3-like domain with a proline-rich (Pr) peptide segment in Diphtheria toxin repressor (DtxR) is stabilized in inactive state. Upon activation of DtxR by transition metal binding, this intramolecular complex should be dissociated. The dynamics of this intramolecular complex is investigated using MD simulations and NMR spectroscopy. We observed spontaneous opening and closing motions of the Pr segment binding pockets in both Pr-SH3 and SH3 simulations. The MD simulation results and NMR relaxation data suggest that the Pr segment exhibits a binding ↔ unbinding equilibrium. Despite a wealth of experimental

  1. Dynamics and zeta functions on conformally compact manifolds

    CERN Document Server

    Rowlett, Julie; Tapie, Samuel

    2011-01-01

    In this note, we study the dynamics and associated zeta functions of conformally compact manifolds with variable negative sectional curvatures. We begin with a discussion of a larger class of manifolds known as convex co-compact manifolds with variable negative curvature. Applying results from dynamics on these spaces, we obtain optimal meromorphic extensions of weighted dynamical zeta functions and asymptotic counting estimates for the number of weighted closed geodesics. A meromorphic extension of the standard dynamical zeta function and the prime orbit theorem follow as corollaries. Finally, we investigate interactions between the dynamics and spectral theory of these spaces.

  2. Neurophysiology and Neuroanatomy of Reflexive and Voluntary Saccades in Non-Human Primates

    Science.gov (United States)

    Johnston, Kevin; Everling, Stefan

    2008-01-01

    A multitude of cognitive functions can easily be tested by a number of relatively simple saccadic eye movement tasks. This approach has been employed extensively with patient populations to investigate the functional deficits associated with psychiatric disorders. Neurophysiological studies in non-human primates performing the same tasks have…

  3. The Dynamics of Semigroups of Transcendental Meromorphic Functions

    Institute of Scientific and Technical Information of China (English)

    黄志刚

    2004-01-01

    This paper considers the dynamics associated with an arbitrary semigroup of transcendental meromorphic functions.Fatou-Julia theory was used to investigate the dynamics of these semigroups.Some results of the dynamics of a rational mapping on the Riemann sphere were extended to the case.

  4. KIDNEY TRANSPLANT URODYNAMICS: NEUROPHYSIOLOGIC CONSIDERATIONS

    Directory of Open Access Journals (Sweden)

    V. B. Berdichevskiy

    2014-01-01

    Full Text Available By analyzing data from the literature and the results of own clinical the authors suggest the presence of its own physiological rhythmogenesis motility of the urinary system to ensure its functional viability after denervation in the process of donor kidney recоvery and its transplantation to the recipient. 

  5. Time evolution of the autocorrelation function in dynamical replica theory

    Science.gov (United States)

    Sakata, A.

    2013-04-01

    Asynchronous dynamics given by the master equation in the Sherrington-Kirkpatrick (SK) spin-glass model is studied based on dynamical replica theory (DRT) with an extension to take into account the autocorrelation function. The dynamical behaviour of the system is approximately described by dynamical equations of the macroscopic quantities: magnetization, energy contributed by randomness and the autocorrelation function. The dynamical equations under the replica symmetry assumption are derived by introducing the subshell equipartitioning assumption and exploiting the replica method. The obtained dynamical equations are compared with Monte Carlo simulations, and it is demonstrated that the proposed formula describes well the time evolution of the autocorrelation function in some parameter regions. The study offers a reasonable description of the autocorrelation function in the SK spin-glass system.

  6. The effect of placebo and neurophysiological involvements

    OpenAIRE

    Galli, Federica; Riccio, Barbara; Guidetti, Vincenzo

    2004-01-01

    Placebo and placebo effect are important issues related to the drug therapy for clinical and scientific meanings. The rates of placebo may get as many as 50% for analgesic drugs in headache. The high answer to placebo brings questions on pathophysiology of headache. Answers may offer a new strategy in the implementation of trials and new insight in neurophysiology of headache. Current knowledge on placebo and placebo effect will be analysed and dicussed looking for new direction in headache f...

  7. [Mixed depressions: clinical and neurophysiological biomarkers].

    Science.gov (United States)

    Micoulaud Franchi, J-A; Geoffroy, P-A; Vion-Dury, J; Balzani, C; Belzeaux, R; Maurel, M; Cermolacce, M; Fakra, E; Azorin, J-M

    2013-12-01

    Epidemiological studies of major depressive episodes (MDE) highlighted the frequent association of symptoms or signs of mania or hypomania with depressive syndrome. Beyond the strict definition of DSM-IV, epidemiological recognition of a subset of MDE characterized by the presence of symptoms or signs of the opposite polarity is clinically important because it is associated with pejorative prognosis and therapeutic response compared to the subgroup of "typical MDE". The development of DSM-5 took into account the epidemiological data. DSM-5 opted for a more dimensional perspective in implementing the concept of "mixed features" from an "episode" to a "specification" of mood disorder. As outlined in the DSM-5: "Mixed features associated with a major depressive episode have been found to be a significant risk factor for the development of bipolar I and II disorder. As a result, it is clinically useful to note the presence of this specifier for treatment planning and monitoring of response to therapeutic". However, the mixed features are sometimes difficult to identify, and neurophysiological biomarkers would be useful to make a more specific diagnosis. Two neurophysiological models make it possible to better understand MDE with mixed features : i) the emotional regulation model that highlights a tendency to hyper-reactive and unstable emotion response, and ii) the vigilance regulation model that highlights, through EEG recording, a tendency to unstable vigilance. Further research is required to better understand relationships between these two models. These models provide the opportunity of a neurophysiological framework to better understand the mixed features associated with MDE and to identify potential neurophysiological biomarkers to guide therapeutic strategies. Copyright © 2013 L’Encéphale. Published by Elsevier Masson SAS.. All rights reserved.

  8. SOME THOUGHTS ON NEUROPHYSIOLOGICAL BASIS OF YOGA

    OpenAIRE

    Ramamurthi, B.

    1981-01-01

    Yoga presents the culmination of efforts made by mankind till now control mind and behaviour. It is living science, practiced in an elementary fashion by many in India. While a few perhaps are there who have attained mastery of this science. The background of the derivation and concept of yoga in India is presented followed by a simple exposition of yogic practices and some possible neurophysiologic explanations. Research in yoga will be rewarding as it gives means of exploring and enlarging ...

  9. Functional evolutions for homogeneous stationary death-immigration spatial dynamics

    CERN Document Server

    Finkelshtein, Dmitri

    2011-01-01

    We discover death-immigration non-equilibrium stochastic dynamics in the continuum also known as the Surgailis process. Explicit expression for the correlation functions is presented. Dynamics of states and their generating functionals are studied. Ergodic properties for the evolutions are considered.

  10. [Functional magnetic resonance imaging and dynamic neuroanatomy of addictive disorders].

    Science.gov (United States)

    Mel'nikov, M E; Shtark, M B

    2014-01-01

    Research into the cerebral patterns that govern the formation and development of addictive behavior is one of the most interesting goals of neurophysiology. Authors of contemporary papers on the matter define a number of symptoms that are all part of substance or non-substance dependence, each one of them leading to abnormalities in the corresponding system of the brain. During the last twenty years the functional magnetic resonance imaging (fMR1) technology has been instrumental in locating such abnormalities, identifying specific parts of the brain that, when dysfunctional, may enhance addiction and cause its positive or negative symptoms. This article reviews fMRI studies aimed toward locating areas in the brain that are responsible for cognitive, emotional, and motivational dysfunction. Cerebral correlatives of impulsiveness, behavior control, and drug cravings are reviewed separately. The article also contains an overview of possibilities to further investigate the Selves of those dependent on substances, identify previously unknown diagnostic markers of substance dependence, and evaluate the effectiveness of therapy. The research under review in this article provides data that points to a special role of the nucleus caudatus as well as the nucleus accumbens, the thalamus, the insular cortex (IC), the anterior cingulate, prefrontal and orbitofrontal areas in psychological disorders that are part of substance dependence. General findings of the article are in accordance with contemporary models of addictive pattern.

  11. Bipolar disorder and neurophysiologic mechanisms.

    Science.gov (United States)

    McCrea, Simon M

    2008-12-01

    Recent studies have suggested that some variants of bipolar disorder (BD) may be due to hyperconnectivity between orbitofrontal (OFC) and temporal pole (TP) structures in the dominant hemisphere. Some initial MRI studies noticed that there were corpus callosum abnormalities within specific regional areas and it was hypothesized that developmentally this could result in functional or effective connectivity changes within the orbitofrontal-basal ganglia-thalamocortical circuits. Recent diffusion tensor imaging (DTI) white matter fiber tractography studies may well be superior to region of interest (ROI) DTI in understanding BD. A "ventral semantic stream" has been discovered connecting the TP and OFC through the uncinate and inferior longitudinal fasciculi and the elusive TP is known to be involved in theory of mind and complex narrative understanding tasks. The OFC is involved in abstract valuation in goal and sub-goal structures and the TP may be critical in binding semantic memory with person-emotion linkages associated with narrative. BD patients have relative attenuation of performance on visuoconstructional praxis consistent with an atypical localization of cognitive functions. Multiple lines of evidence suggest that some BD alleles are being selected for which could explain the enhanced creativity in higher-ability probands. Associations between ROI's that are not normally connected could explain the higher incidence of artistic aptitude, writing ability, and scientific achievements among some mood disorder subjects.

  12. Grounding language processing on basic neurophysiological principles.

    Science.gov (United States)

    Friederici, Angela D; Singer, Wolf

    2015-06-01

    In animal models the neural basis of cognitive and executive processes has been studied extensively at various hierarchical levels from microcircuits to distributed functional networks. This work already provides compelling evidence that diverse cognitive functions are based on similar basic neuronal mechanisms. More recent data suggest that even cognitive functions realized only in human brains rely on these canonical neuronal mechanisms. Here we argue that language, like other cognitive functions, depends on distributed computations in specialized cortical areas forming large-scale dynamic networks and examine to what extent empirical results support this view.

  13. Bipolar disorder and neurophysiologic mechanisms

    Directory of Open Access Journals (Sweden)

    Simon M McCrea

    2008-11-01

    Full Text Available Simon M McCreaDepartments of Neurology and Neuroophthalmology, University of British Columbia, 2550 Willow Street, Vancouver, British Columbia, Canada V5Z 3N9Abstract: Recent studies have suggested that some variants of bipolar disorder (BD may be due to hyperconnectivity between orbitofrontal (OFC and temporal pole (TP structures in the dominant hemisphere. Some initial MRI studies noticed that there were corpus callosum abnormalities within specific regional areas and it was hypothesized that developmentally this could result in functional or effective connectivity changes within the orbitofrontal-basal ganglia-thalamocortical circuits. Recent diffusion tensor imaging (DTI white matter fiber tractography studies may well be superior to region of interest (ROI DTI in understanding BD. A “ventral semantic stream” has been discovered connecting the TP and OFC through the uncinate and inferior longitudinal fasciculi and the elusive TP is known to be involved in theory of mind and complex narrative understanding tasks. The OFC is involved in abstract valuation in goal and sub-goal structures and the TP may be critical in binding semantic memory with person–emotion linkages associated with narrative. BD patients have relative attenuation of performance on visuoconstructional praxis consistent with an atypical localization of cognitive functions. Multiple lines of evidence suggest that some BD alleles are being selected for which could explain the enhanced creativity in higher-ability probands. Associations between ROI’s that are not normally connected could explain the higher incidence of artistic aptitude, writing ability, and scientific achievements among some mood disorder subjects.Keywords: bipolar disorder, diffusion tensor imaging, white matter tractography, inferior longitudinal fasciculus, inferior fronto-occipital fasciculus, uncinate fasciculus, mood dysphoria, creativity, ventral semantic stream, writing ability, artistic aptitude

  14. Automatically Discovering Relaxed Lyapunov Functions for Polynomial Dynamical Systems

    CERN Document Server

    Liu, Jiang; Zhao, Hengjun

    2011-01-01

    The notion of Lyapunov function plays a key role in design and verification of dynamical systems, as well as hybrid and cyber-physical systems. In this paper, to analyze the asymptotic stability of a dynamical system, we generalize standard Lyapunov functions to relaxed Lyapunov functions (RLFs), by considering higher order Lie derivatives of certain functions along the system's vector field. Furthermore, we present a complete method to automatically discovering polynomial RLFs for polynomial dynamical systems (PDSs). Our method is complete in the sense that it is able to discover all polynomial RLFs by enumerating all polynomial templates for any PDS.

  15. Chapter 13: the contributions of neurophysiology to clinical neurology an exercise in contemporary history.

    Science.gov (United States)

    Berlucchi, Giovanni

    2010-01-01

    This chapter reviews a number of historical contributions of neurophysiology to clinical neurology in the hundred years that have elapsed since the publication of Sherrington's The Integrative Action of the Nervous System, a book generally considered the neurophysiologist's bible. In the past, many normal nervous functions have been inferred from disorderly functions in animals by neurophysiologists and in humans by clinical neurologists. If neurophysiologists have undoubtedly learned much from experimental lesions in animals, it has been the clinical neurologists who have obtained first-hand information on the effects of pathology on the functioning of the most complex and interesting of all nervous systems, that of man. Currently this division of labor is less clear, and convergent evidence from neurophysiology and clinical neurology alike has set our current knowledge about brain functions on a firm comparative foundation. This review of the relations between neurophysiology and clinical neurology reports contributions that have been recognized as "historical" by the scientific community because of their documented impact on the development of the entire field of neurosciences. The inclusion of further less famous neurophysiological achievements is justified by their potential influence on the advancement of neuroscience, as seen from the author's personal viewpoint.

  16. Dynamics and function of compact nucleosome arrays.

    Science.gov (United States)

    Poirier, Michael G; Oh, Eugene; Tims, Hannah S; Widom, Jonathan

    2009-09-01

    The packaging of eukaryotic DNA into chromatin sterically occludes polymerases, recombinases and repair enzymes. How chromatin structure changes to allow their actions is unknown. We constructed defined fluorescently labeled trinucleosome arrays, allowing analysis of chromatin conformational dynamics via fluorescence resonance energy transfer (FRET). The arrays undergo reversible Mg2+-dependent folding similar to that of longer arrays studied previously. We define two intermediate conformational states in the reversible folding of the nucleosome arrays and characterize the microscopic rate constants. Nucleosome arrays are highly dynamic even when compact, undergoing conformational fluctuations on timescales in the second to microsecond range. Compact states of the arrays allow binding to DNA within the central nucleosome via site exposure. Protein binding can also drive decompaction of the arrays. Thus, our results reveal multiple modes by which spontaneous chromatin fiber dynamics allow for the invasion and action of DNA-processing protein complexes.

  17. Semigroups of transcendental entire functions and their dynamics

    Indian Academy of Sciences (India)

    DINESH KUMAR; SANJAY KUMAR

    2017-04-01

    We investigate the dynamics of semigroups of transcendental entire functions using Fatou–Julia theory. Several results of the dynamics associated with iteration of a transcendental entire function have been extended to transcendental semigroups. We provide some condition for connectivity of the Julia set of the transcendental semigroups. We also study finitely generated transcendental semigroups, abelian transcendental semigroups and limit functions of transcendental semigroups on its invariant Fatou components.

  18. Dynamic critical phenomena from spectral functions on the lattice

    CERN Document Server

    Berges, J; Sexty, D

    2009-01-01

    We investigate spectral functions in the vicinity of the critical temperature of a second-order phase transition. Since critical phenomena in quantum field theories are governed by classical dynamics, universal properties can be computed using real-time lattice simulations. For the example of a relativistic single-component scalar field theory in 2+1 dimensions, we compute the spectral function described by universal scaling functions and extract the dynamic critical exponent z. Together with exactly known static properties of this theory, we obtain a verification from first principles that the relativistic theory is well described by the dynamic universality class of relaxational models with conserved density (Model C).

  19. Functional connectivity change as shared signal dynamics

    Science.gov (United States)

    Cole, Michael W.; Yang, Genevieve J.; Murray, John D.; Repovš, Grega; Anticevic, Alan

    2015-01-01

    Background An increasing number of neuroscientific studies gain insights by focusing on differences in functional connectivity – between groups, individuals, temporal windows, or task conditions. We found using simulations that additional insights into such differences can be gained by forgoing variance normalization, a procedure used by most functional connectivity measures. Simulations indicated that these functional connectivity measures are sensitive to increases in independent fluctuations (unshared signal) in time series, consistently reducing functional connectivity estimates (e.g., correlations) even though such changes are unrelated to corresponding fluctuations (shared signal) between those time series. This is inconsistent with the common notion of functional connectivity as the amount of inter-region interaction. New Method Simulations revealed that a version of correlation without variance normalization – covariance – was able to isolate differences in shared signal, increasing interpretability of observed functional connectivity change. Simulations also revealed cases problematic for non-normalized methods, leading to a “covariance conjunction” method combining the benefits of both normalized and non-normalized approaches. Results We found that covariance and covariance conjunction methods can detect functional connectivity changes across a variety of tasks and rest in both clinical and non-clinical functional MRI datasets. Comparison with Existing Method(s) We verified using a variety of tasks and rest in both clinical and non-clinical functional MRI datasets that it matters in practice whether correlation, covariance, or covariance conjunction methods are used. Conclusions These results demonstrate the practical and theoretical utility of isolating changes in shared signal, improving the ability to interpret observed functional connectivity change. PMID:26642966

  20. Biological oscillations for learning walking coordination: dynamic recurrent neural network functionally models physiological central pattern generator.

    Science.gov (United States)

    Hoellinger, Thomas; Petieau, Mathieu; Duvinage, Matthieu; Castermans, Thierry; Seetharaman, Karthik; Cebolla, Ana-Maria; Bengoetxea, Ana; Ivanenko, Yuri; Dan, Bernard; Cheron, Guy

    2013-01-01

    The existence of dedicated neuronal modules such as those organized in the cerebral cortex, thalamus, basal ganglia, cerebellum, or spinal cord raises the question of how these functional modules are coordinated for appropriate motor behavior. Study of human locomotion offers an interesting field for addressing this central question. The coordination of the elevation of the 3 leg segments under a planar covariation rule (Borghese et al., 1996) was recently modeled (Barliya et al., 2009) by phase-adjusted simple oscillators shedding new light on the understanding of the central pattern generator (CPG) processing relevant oscillation signals. We describe the use of a dynamic recurrent neural network (DRNN) mimicking the natural oscillatory behavior of human locomotion for reproducing the planar covariation rule in both legs at different walking speeds. Neural network learning was based on sinusoid signals integrating frequency and amplitude features of the first three harmonics of the sagittal elevation angles of the thigh, shank, and foot of each lower limb. We verified the biological plausibility of the neural networks. Best results were obtained with oscillations extracted from the first three harmonics in comparison to oscillations outside the harmonic frequency peaks. Physiological replication steadily increased with the number of neuronal units from 1 to 80, where similarity index reached 0.99. Analysis of synaptic weighting showed that the proportion of inhibitory connections consistently increased with the number of neuronal units in the DRNN. This emerging property in the artificial neural networks resonates with recent advances in neurophysiology of inhibitory neurons that are involved in central nervous system oscillatory activities. The main message of this study is that this type of DRNN may offer a useful model of physiological central pattern generator for gaining insights in basic research and developing clinical applications.

  1. Biological oscillations for learning walking coordination: dynamic recurrent neural network functionally models physiological central pattern generator

    Directory of Open Access Journals (Sweden)

    Thomas eHoellinger

    2013-05-01

    Full Text Available The existence of dedicated neuronal modules such as those organized in the cerebral cortex, thalamus, basal ganglia, cerebellum or spinal cord raises the question of how these functional modules are coordinated for appropriate motor behavior. Study of human locomotion offers an interesting field for addressing this central question. The coordination of the elevation of the 3 leg segments under a planar covariation rule (Borghese et al., 1996 was recently modeled (Barliya et al., 2009 by phase-adjusted simple oscillators shedding new light on the understanding of the central pattern generator processing relevant oscillation signals. We describe the use of a dynamic recurrent neural network (DRNN mimicking the natural oscillatory behavior of human locomotion for reproducing the planar covariation rule in both legs at different walking speeds. Neural network learning was based on sinusoid signals integrating frequency and amplitude features of the first three harmonics of the sagittal elevation angles of the thigh, shank and foot of each lower limb. We verified the biological plausibility of the neural networks. Best results were obtained with oscillations extracted from the first three harmonics in comparison to oscillations outside the harmonic frequency peaks. Physiological replication steadily increased with the number of neuronal units from 1 to 80, where similarity index reached 0.99. Analysis of synaptic weighting showed that the proportion of inhibitory connections consistently increased with the number of neuronal units in the DRNN. This emerging property in the artificial neural networks resonates with recent advances in neurophysiology of inhibitory neurons that are involved in central nervous system oscillatory activities. The main message of this study is that this type of DRNN may offer a useful model of physiological central pattern generator for gaining insights in basic research and developing clinical applications.

  2. Characterization of neurophysiologic and neurocognitive biomarkers for use in genomic and clinical outcome studies of schizophrenia.

    Directory of Open Access Journals (Sweden)

    Gregory A Light

    Full Text Available BACKGROUND: Endophenotypes are quantitative, laboratory-based measures representing intermediate links in the pathways between genetic variation and the clinical expression of a disorder. Ideal endophenotypes exhibit deficits in patients, are stable over time and across shifts in psychopathology, and are suitable for repeat testing. Unfortunately, many leading candidate endophenotypes in schizophrenia have not been fully characterized simultaneously in large cohorts of patients and controls across these properties. The objectives of this study were to characterize the extent to which widely-used neurophysiological and neurocognitive endophenotypes are: 1 associated with schizophrenia, 2 stable over time, independent of state-related changes, and 3 free of potential practice/maturation or differential attrition effects in schizophrenia patients (SZ and nonpsychiatric comparison subjects (NCS. Stability of clinical and functional measures was also assessed. METHODS: Participants (SZ n = 341; NCS n = 205 completed a battery of neurophysiological (MMN, P3a, P50 and N100 indices, PPI, startle habituation, antisaccade, neurocognitive (WRAT-3 Reading, LNS-forward, LNS-reorder, WCST-64, CVLT-II. In addition, patients were rated on clinical symptom severity as well as functional capacity and status measures (GAF, UPSA, SOF. 223 subjects (SZ n = 163; NCS n = 58 returned for retesting after 1 year. RESULTS: Most neurophysiological and neurocognitive measures exhibited medium-to-large deficits in schizophrenia, moderate-to-substantial stability across the retest interval, and were independent of fluctuations in clinical status. Clinical symptoms and functional measures also exhibited substantial stability. A Longitudinal Endophenotype Ranking System (LERS was created to rank neurophysiological and neurocognitive biomarkers according to their effect sizes across endophenotype criteria. CONCLUSIONS: The majority of neurophysiological and

  3. Analysis of Uncertainty in Dynamic Processes Development of Banks Functioning

    Directory of Open Access Journals (Sweden)

    Aleksei V. Korovyakovskii

    2013-01-01

    Full Text Available The paper offers the approach to measure of uncertainty estimation in dynamic processes of banks functioning, using statistic data of different banking operations indicators. To calculate measure of uncertainty in dynamic processes of banks functioning the phase images of relevant sets of statistic data are considered. Besides, it is shown that the form of phase image of the studied sets of statistic data can act as a basis of measure of uncertainty estimation in dynamic processes of banks functioning. The set of analytical characteristics are offered to formalize the form of phase image definition of the studied sets of statistic data. It is shown that the offered analytical characteristics consider inequality of changes in values of the studied sets of statistic data, which is one of the ways of uncertainty display in dynamic processes development. The invariant estimates of measure of uncertainty in dynamic processes of banks functioning, considering significant changes in absolute values of the same indicators for different banks were obtained. The examples of calculation of measure of uncertainty in dynamic processes of concrete banks functioning were cited.

  4. Dynamic reorganization of intrinsic functional networks in the mouse brain.

    Science.gov (United States)

    Grandjean, Joanes; Preti, Maria Giulia; Bolton, Thomas A W; Buerge, Michaela; Seifritz, Erich; Pryce, Christopher R; Van De Ville, Dimitri; Rudin, Markus

    2017-03-14

    Functional connectivity (FC) derived from resting-state functional magnetic resonance imaging (rs-fMRI) allows for the integrative study of neuronal processes at a macroscopic level. The majority of studies to date have assumed stationary interactions between brain regions, without considering the dynamic aspects of network organization. Only recently has the latter received increased attention, predominantly in human studies. Applying dynamic FC (dFC) analysis to mice is attractive given the relative simplicity of the mouse brain and the possibility to explore mechanisms underlying network dynamics using pharmacological, environmental or genetic interventions. Therefore, we have evaluated the feasibility and research potential of mouse dFC using the interventions of social stress or anesthesia duration as two case-study examples. By combining a sliding-window correlation approach with dictionary learning, several dynamic functional states (dFS) with a complex organization were identified, exhibiting highly dynamic inter- and intra-modular interactions. Each dFS displayed a high degree of reproducibility upon changes in analytical parameters and across datasets. They fluctuated at different degrees as a function of anesthetic depth, and were sensitive indicators of pathology as shown for the chronic psychosocial stress mouse model of depression. Dynamic functional states are proposed to make a major contribution to information integration and processing in the healthy and diseased brain.

  5. Asymmetric activation of the anterior cerebral cortex in recipients of IRECA: Preliminary evidence for the energetic effects of an intention-based biofield treatment modality on human neurophysiology

    NARCIS (Netherlands)

    Pike, C.; Vernon, D.; Hald, L.A.

    2014-01-01

    Neurophysiologic studies of mindfulness link the health benefits of meditation to activation of the left-anterior cerebral cortex. The similarity and functional importance of intention and attentional stance in meditative and biofield therapeutic practices suggest that modulation of recipient

  6. Dynamic requirements for a functional protein hinge.

    Science.gov (United States)

    Kempf, James G; Jung, Ju-Yeon; Ragain, Christina; Sampson, Nicole S; Loria, J Patrick

    2007-04-20

    The enzyme triosephosphate isomerase (TIM) is a model of catalytic efficiency. The 11 residue loop 6 at the TIM active site plays a major role in this enzymatic prowess. The loop moves between open and closed states, which facilitate substrate access and catalysis, respectively. The N and C-terminal hinges of loop 6 control this motion. Here, we detail flexibility requirements for hinges in a comparative solution NMR study of wild-type (WT) TIM and a quintuple mutant (PGG/GGG). The latter contained glycine substitutions in the N-terminal hinge at Val167 and Trp168, which follow the essential Pro166, and in the C-terminal hinge at Lys174, Thr175, and Ala176. Previous work demonstrated that PGG/GGG has a tenfold higher Km value and 10(3)-fold reduced k(cat) relative to WT with either d-glyceraldehyde 3-phosphate or dihyrdroxyacetone phosphate as substrate. Our NMR results explain this in terms of altered loop-6 dynamics in PGG/GGG. In the mutant, loop 6 exhibits conformational heterogeneity with corresponding motional rates hinge design in proteins: structural rigidity is essential for focused motional freedom of active-site loops.

  7. Measurement of dynamic efficiency: a directional distance function parametric approach

    NARCIS (Netherlands)

    Serra, T.; Oude Lansink, A.G.J.M.; Stefanou, S.E.

    2011-01-01

    This research proposes a parametric estimation of the structural dynamic efficiency measures proposed by Silva and Oude Lansink (2009). Overall, technical and allocative efficiency measurements are derived based on a directional distance function and the duality between this function and the optimal

  8. Neurophysiological mechanisms involved in auditory perceptual organization

    Directory of Open Access Journals (Sweden)

    Aurélie Bidet-Caulet

    2009-09-01

    Full Text Available In our complex acoustic environment, we are confronted with a mixture of sounds produced by several simultaneous sources. However, we rarely perceive these sounds as incomprehensible noise. Our brain uses perceptual organization processes to independently follow the emission of each sound source over time. If the acoustic properties exploited in these processes are well-established, the neurophysiological mechanisms involved in auditory scene analysis have raised interest only recently. Here, we review the studies investigating these mechanisms using electrophysiological recordings from the cochlear nucleus to the auditory cortex, in animals and humans. Their findings reveal that basic mechanisms such as frequency selectivity, forward suppression and multi-second habituation shape the automatic brain responses to sounds in a way that can account for several important characteristics of perceptual organization of both simultaneous and successive sounds. One challenging question remains unresolved: how are the resulting activity patterns integrated to yield the corresponding conscious perceptsµ

  9. Neuropsychological and neurophysiological effects of strengthening exercise for early dementia: a pilot study.

    Science.gov (United States)

    Yerokhin, Vadim; Anderson-Hanley, Cay; Hogan, Michael J; Dunnam, Mina; Huber, Daniel; Osborne, Sandra; Shulan, Mollie

    2012-01-01

    Research demonstrates a positive effect of aerobic exercise on cognitive functioning in older adults. Unfortunately, aerobic exercise is often contraindicated for older adults due to cardiovascular and functional limitations. Low-intensity strengthening exercise may offer a practical alternative, but the neuropsychological benefits and potential neurophysiological mechanisms are less well understood. The current study evaluated the effects of a 10-week strengthening exercise intervention on cognitive functioning and EEG in a sample of 13 older adults with early dementia, and 9 normative controls. Results revealed beneficial effects of strengthening exercise on verbal memory coupled with frontal beta and delta power asymmetries and N200 amplitude asymmetry. Results point to increased cognitive efficiency following 10 weeks of strengthening exercise. The findings suggest it is feasible to conduct a strengthening intervention with early dementia patients, and to gather neuropsychological and neurophysiological data to evaluate outcomes. Strengthening exercise may serve as a useful alternative to aerobic exercise.

  10. Intrinsically disordered proteins: structural and functional dynamics

    Directory of Open Access Journals (Sweden)

    Wallin S

    2017-02-01

    Full Text Available Stefan Wallin Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John’s, NL, Canada Abstract: The classical view holds that proteins fold into essentially unique three-dimensional structures before becoming biologically active. However, studies over the last several years have provided broad and convincing evidence that some proteins do not adopt a single structure and yet are fully functional. These intrinsically disordered proteins (IDPs have been found to be highly prevalent in many genomes, including human, and play key roles in central cellular processes, such as regulation of transcription and translation, cell cycle, and cell signaling. Moreover, IDPs are overrepresented among proteins implicated in disease, including various cancers and neurodegenerative disorders. Intense efforts, by using both experimental and computational approaches, are consequently under way to uncover the molecular mechanisms that underpin the roles of IDPs in biology and disease. This review provides an introduction to the general biophysical properties of IDPs and discusses some of the recent emerging areas in IDP research, including the roles of IDPs in allosteric regulation, regulatory unfolding, and formation of intracellular membrane-less organelles. In addition, recent attempts at therapeutic targeting of IDPs by small molecules, noting in particular that IDPs represent a potentially important source of new drug targets in light of their central role in protein–protein interaction networks, are also reviewed. Keywords: natively unfolded proteins, unstructured proteins, protein folding, protein–protein interaction, cell regulation, signaling, drug development, inhibitors

  11. Detectability of Granger causality for subsampled continuous-time neurophysiological processes.

    Science.gov (United States)

    Barnett, Lionel; Seth, Anil K

    2017-01-01

    Granger causality is well established within the neurosciences for inference of directed functional connectivity from neurophysiological data. These data usually consist of time series which subsample a continuous-time biophysiological process. While it is well known that subsampling can lead to imputation of spurious causal connections where none exist, less is known about the effects of subsampling on the ability to reliably detect causal connections which do exist. We present a theoretical analysis of the effects of subsampling on Granger-causal inference. Neurophysiological processes typically feature signal propagation delays on multiple time scales; accordingly, we base our analysis on a distributed-lag, continuous-time stochastic model, and consider Granger causality in continuous time at finite prediction horizons. Via exact analytical solutions, we identify relationships among sampling frequency, underlying causal time scales and detectability of causalities. We reveal complex interactions between the time scale(s) of neural signal propagation and sampling frequency. We demonstrate that detectability decays exponentially as the sample time interval increases beyond causal delay times, identify detectability "black spots" and "sweet spots", and show that downsampling may potentially improve detectability. We also demonstrate that the invariance of Granger causality under causal, invertible filtering fails at finite prediction horizons, with particular implications for inference of Granger causality from fMRI data. Our analysis emphasises that sampling rates for causal analysis of neurophysiological time series should be informed by domain-specific time scales, and that state-space modelling should be preferred to purely autoregressive modelling. On the basis of a very general model that captures the structure of neurophysiological processes, we are able to help identify confounds, and offer practical insights, for successful detection of causal connectivity

  12. Role of clinical neurophysiological tests in evaluation of erectile dysfunction in people with spinal cord disorders

    Directory of Open Access Journals (Sweden)

    Ashraf V

    2005-01-01

    Full Text Available BACKGROUND: While erectile dysfunction is frequent among people with disorders of the spinal cord, the role of various clinical neurophysiological tests in assessment is not clear. AIMS: To study the role of clinical neurophysiological investigations in assessing erectile dysfunction among men with spinal cord disorders. SETTING: National Institute of Mental Health and Neurosciences, India. DESIGN: Survey. MATERIALS AND METHODS: Subjects with a score of 21 or less on the International Index of Erectile Function-5 were classified as with erectile dysfunction and with a score of more than 21 as without erectile dysfunction. Clinical neurophysiological studies done were Sympathetic Skin Response from limbs, posterior tibial sensory evoked potential, pudendal sensory potential and bulbocavernous reflex. STATISTICAL ANALYSES: Chi-square test. RESULTS: Among 40 subjects 26 had erectile dysfunction. The frequency of abnormalities in clinical neurophysiological studies were: pudendal sensory evoked potentials - 16, posterior tibial sensory evoked potentials - 26, bulbocavernous reflex - 5, sympathetic skin response from sole - 24 and, sympathetic skin response from palm - 18. Significant associations were noted between erectile dysfunction and abnormal pudendal sensory evoked potentials (P=0.0479, and absent sympathetic skin response from palm (P=0.0279 and sole (PP=0.133 or bulbocavernous reflex (P=0.418. Sympathetic skin response from sole was most sensitive (80.8% and had best positive (87.5% and negative predictive (68.8% values. The specificity of these three tests was 78.6%. CONCLUSIONS: Sympathetic skin response from the sole of the foot was the most sensitive and specific clinical neurophysiological test for erectile dysfunction in spinal cord disorders.

  13. Abstraction of Continuous Dynamical Systems Utilizing Lyapunov Functions

    DEFF Research Database (Denmark)

    Sloth, Christoffer; Wisniewski, Rafal

    2010-01-01

    This paper considers the development of a method for abstracting continuous dynamical systems by timed automata. The method is based on partitioning the state space of dynamical systems with invariant sets, which form cells representing locations of the timed automata. To enable verification...... of the dynamical system based on the abstraction, conditions for obtaining sound, complete, and refinable abstractions are set up. It is proposed to partition the state space utilizing sub-level sets of Lyapunov functions, since they are positive invariant sets. The existence of sound abstractions for Morse......-Smale systems and complete and refinable abstractions for linear systems are shown....

  14. The dynamic transfer function for a cavitating inducer

    Science.gov (United States)

    Brennen, C.; Acosta, A. J.

    1975-01-01

    Knowledge of the dynamic performance of pumps is essential for the prediction of transient behavior and instabilities in hydraulic systems; the necessary information is in the form of a transfer function which relates the instantaneous or fluctuating pressure and mass flow rate at inlet to the same quantities in the discharge from the pump. The presence of cavitation within the pump can have a major effect on this transfer function since dynamical changes in the volume of cavitation contribute to the difference in the instantaneous inlet and discharge mass flow rates. The present paper utilizes results from free streamline cascade theory to evaluate the elements in the transfer function for a cavitating inducer and shows that the numerical results are consistent with the characteristics observed in some dynamic tests on rocket engine turbopumps.

  15. An information theory framework for dynamic functional domain connectivity.

    Science.gov (United States)

    Vergara, Victor M; Miller, Robyn; Calhoun, Vince

    2017-06-01

    Dynamic functional network connectivity (dFNC) analyzes time evolution of coherent activity in the brain. In this technique dynamic changes are considered for the whole brain. This paper proposes an information theory framework to measure information flowing among subsets of functional networks call functional domains. Our method aims at estimating bits of information contained and shared among domains. The succession of dynamic functional states is estimated at the domain level. Information quantity is based on the probabilities of observing each dynamic state. Mutual information measurement is then obtained from probabilities across domains. Thus, we named this value the cross domain mutual information (CDMI). Strong CDMIs were observed in relation to the subcortical domain. Domains related to sensorial input, motor control and cerebellum form another CDMI cluster. Information flow among other domains was seldom found. Other methods of dynamic connectivity focus on whole brain dFNC matrices. In the current framework, information theory is applied to states estimated from pairs of multi-network functional domains. In this context, we apply information theory to measure information flow across functional domains. Identified CDMI clusters point to known information pathways in the basal ganglia and also among areas of sensorial input, patterns found in static functional connectivity. In contrast, CDMI across brain areas of higher level cognitive processing follow a different pattern that indicates scarce information sharing. These findings show that employing information theory to formally measured information flow through brain domains reveals additional features of functional connectivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Crystallization induced by multiple seeds: dynamical density functional approach.

    Science.gov (United States)

    Neuhaus, T; Schmiedeberg, M; Löwen, H

    2013-12-01

    Using microscopic dynamical density functional theory, we calculate the dynamical formation of polycrystals by following the crystal growth around multiple crystalline seeds imposed to an undercooled fluid. Depending on the undercooling and the size ratio as well as the relative crystal orientation of two neighboring seeds, three possibilities of the final state emerge, namely no crystallization at all, formation of a monocrystal, or two crystallites separated by a curved grain boundary. Our results, which are obtained for two-dimensional hard disk systems using a fundamental-measure density functional, shed new light on the particle-resolved structure and growth of polycrystalline material in general.

  17. Quantitative evaluation of the reticuloendothelial system function with dynamic MRI.

    Directory of Open Access Journals (Sweden)

    Ting Liu

    Full Text Available PURPOSE: To evaluate the reticuloendothelial system (RES function by real-time imaging blood clearance as well as hepatic uptake of superparamagnetic iron oxide nanoparticle (SPIO using dynamic magnetic resonance imaging (MRI with two-compartment pharmacokinetic modeling. MATERIALS AND METHODS: Kinetics of blood clearance and hepatic accumulation were recorded in young adult male 01b74 athymic nude mice by dynamic T2* weighted MRI after the injection of different doses of SPIO nanoparticles (0.5, 3 or 10 mg Fe/kg. Association parameter, Kin, dissociation parameter, Kout, and elimination constant, Ke, derived from dynamic data with two-compartment model, were used to describe active binding to Kupffer cells and extrahepatic clearance. The clodrosome and liposome were utilized to deplete macrophages and block the RES function to evaluate the capability of the kinetic parameters for investigation of macrophage function and density. RESULTS: The two-compartment model provided a good description for all data and showed a low sum squared residual for all mice (0.27±0.03. A lower Kin, a lower Kout and a lower Ke were found after clodrosome treatment, whereas a lower Kin, a higher Kout and a lower Ke were observed after liposome treatment in comparison to saline treatment (P<0.005. CONCLUSION: Dynamic SPIO-enhanced MR imaging with two-compartment modeling can provide information on RES function on both a cell number and receptor function level.

  18. Ab initio molecular dynamics using hybrid density functionals

    Science.gov (United States)

    Guidon, Manuel; Schiffmann, Florian; Hutter, Jürg; Vandevondele, Joost

    2008-06-01

    Ab initio molecular dynamics simulations with hybrid density functionals have so far found little application due to their computational cost. In this work, an implementation of the Hartree-Fock exchange is presented that is specifically targeted at ab initio molecular dynamics simulations of medium sized systems. We demonstrate that our implementation, which is available as part of the CP2K/Quickstep program, is robust and efficient. Several prescreening techniques lead to a linear scaling cost for integral evaluation and storage. Integral compression techniques allow for in-core calculations on systems containing several thousand basis functions. The massively parallel implementation respects integral symmetry and scales up to hundreds of CPUs using a dynamic load balancing scheme. A time-reversible multiple time step scheme, exploiting the difference in computational efficiency between hybrid and local functionals, brings further time savings. With extensive simulations of liquid water, we demonstrate the ability to perform, for several tens of picoseconds, ab initio molecular dynamics based on hybrid functionals of systems in the condensed phase containing a few thousand Gaussian basis functions.

  19. Short-term effect on pain and function of neurophysiological education and sensorimotor retraining compared to usual physiotherapy in patients with chronic or recurrent non-specific low back pain, a pilot randomized controlled trial.

    Science.gov (United States)

    Wälti, Philipp; Kool, Jan; Luomajoki, Hannu

    2015-04-10

    Non-specific chronic low back pain (NSCLBP) is a major health problem. Identification of subgroups and appropriate treatment regimen was proposed as a key priority by the Cochrane Back Review Group. We developed a multimodal treatment (MMT) for patients with moderate to severe disability and medium risk of poor outcome. MMT includes a) neurophysiological education on the perception of pain to decrease self-limitation due to catastrophizing believes about the nature of NSCLBP, b) sensory training of the lower trunk because these patients predominantly show poor sensory acuity of the trunk, and c) motor training to regain definite movement control of the trunk. A pilot study was conducted to investigate the feasibility of MMT, prior to a larger RCT, with focus on patients' adherence and the evaluation of short-term effects on pain and disability of MMT when compared to usual physiotherapy. We conducted a randomised controlled trial (RCT) in a primary care physiotherapy centre in Switzerland. Outcome assessment was 12 weeks after baseline. Patients with NSCLBP, considerable disability (five or more points on the Roland and Morris Disability Questionnaire (RMDQ) and medium or high risk of poor outcome on the Keele Start Back Tool (KSBT) were randomly allocated to either MMT or usual physiotherapy treatment (UPT) by an independent research assistant. Treatment included up to 16 sessions over 8 to 12 weeks. Both groups were given additional home training of 10 to 30 minutes to be performed five times per week. Adherence to treatment was evaluated in order to assess the feasibility of the treatment. Assessments were conducted by an independent blinded person. The primary outcome was pain (NRS 0-10) and the secondary outcome was disability (RMDQ). Between-group effects with Student's t-test or the Mann-Whitney U test and the standardized mean difference of the primary outcome were calculated. Twenty-eight patients (46% male, mean age 41.5 years (SD 10.6)) were randomized

  20. Development of a transfer function method for dynamic stability measurement

    Science.gov (United States)

    Johnson, W.

    1977-01-01

    Flutter testing method based on transfer function measurements is developed. The error statistics of several dynamic stability measurement methods are reviewed. It is shown that the transfer function measurement controls the error level by averaging the data and correlating the input and output. The method also gives a direct estimate of the error in the response measurement. An algorithm is developed for obtaining the natural frequency and damping ratio of low damped modes of the system, using integrals of the transfer function in the vicinity of a resonant peak. Guidelines are given for selecting the parameters in the transfer function measurement. Finally, the dynamic stability measurement technique is applied to data from a wind tunnel test of a proprotor and wing model.

  1. Intraoperative Neurophysiological Monitoring for Endoscopic Endonasal Approaches to the Skull Base: A Technical Guide

    OpenAIRE

    Harminder Singh; Vogel, Richard W.; Lober, Robert M.; Doan, Adam T.; Matsumoto, Craig I.; Kenning, Tyler J.; Evans, James J.

    2016-01-01

    Intraoperative neurophysiological monitoring during endoscopic, endonasal approaches to the skull base is both feasible and safe. Numerous reports have recently emerged from the literature evaluating the efficacy of different neuromonitoring tests during endonasal procedures, making them relatively well-studied. The authors report on a comprehensive, multimodality approach to monitoring the functional integrity of at risk nervous system structures, including the cerebral cortex, brainstem, cr...

  2. Neuropsychological and neurophysiological benefits from white noise in children with and without ADHD

    OpenAIRE

    Baijot, Simon; Slama, Hichem; Söderlund, Göran; Dan, Bernard; Deltenre, Paul; Colin, Cécile; Deconinck, Nicolas

    2016-01-01

    Background Optimal stimulation theory and moderate brain arousal (MBA) model hypothesize that extra-task stimulation (e.g. white noise) could improve cognitive functions of children with attention-deficit/hyperactivity disorder (ADHD). We investigate benefits of white noise on attention and inhibition in children with and without ADHD (7–12 years old), both at behavioral and at neurophysiological levels. Methods Thirty children with and without ADHD performed a visual cued Go/Nogo task in two...

  3. Dynamics Model Abstraction Scheme Using Radial Basis Functions

    Directory of Open Access Journals (Sweden)

    Silvia Tolu

    2012-01-01

    Full Text Available This paper presents a control model for object manipulation. Properties of objects and environmental conditions influence the motor control and learning. System dynamics depend on an unobserved external context, for example, work load of a robot manipulator. The dynamics of a robot arm change as it manipulates objects with different physical properties, for example, the mass, shape, or mass distribution. We address active sensing strategies to acquire object dynamical models with a radial basis function neural network (RBF. Experiments are done using a real robot’s arm, and trajectory data are gathered during various trials manipulating different objects. Biped robots do not have high force joint servos and the control system hardly compensates all the inertia variation of the adjacent joints and disturbance torque on dynamic gait control. In order to achieve smoother control and lead to more reliable sensorimotor complexes, we evaluate and compare a sparse velocity-driven versus a dense position-driven control scheme.

  4. Light-Front Dynamics and the 3He Spectral Function

    CERN Document Server

    Pace, Emanuele; Kaptari, Leonid; Rinaldi, Matteo; Salme', Giovanni; Scopetta, Sergio

    2016-01-01

    Two topics are presented. The first one is a novel approach for a Poincare' covariant description of nuclear dynamics based on light-front Hamiltonian dynamics. The key quantity is the light-front spectral function, where both normalization and momentum sum rule can be satisfied at the same time. Preliminary results are discussed for an initial analysis of the role of relativity in the EMC effect in 3He. A second issue, very challenging, is considered in a non-relativistic framework, namely a distorted spin-dependent spectral function for 3He in order to take care of the final state interaction between the observed pion and the remnant in semi-inclusive deep inelastic electron scattering off polarized 3He. The generalization of the analysis within the light-front dynamics is outlined.

  5. Population dynamics and mutualism: Functional responses of benefits and costs

    Science.gov (United States)

    Holland, J. Nathaniel; DeAngelis, Donald L.; Bronstein, Judith L.

    2002-01-01

    We develop an approach for studying population dynamics resulting from mutualism by employing functional responses based on density‐dependent benefits and costs. These functional responses express how the population growth rate of a mutualist is modified by the density of its partner. We present several possible dependencies of gross benefits and costs, and hence net effects, to a mutualist as functions of the density of its partner. Net effects to mutualists are likely a monotonically saturating or unimodal function of the density of their partner. We show that fundamental differences in the growth, limitation, and dynamics of a population can occur when net effects to that population change linearly, unimodally, or in a saturating fashion. We use the mutualism between senita cactus and its pollinating seed‐eating moth as an example to show the influence of different benefit and cost functional responses on population dynamics and stability of mutualisms. We investigated two mechanisms that may alter this mutualism's functional responses: distribution of eggs among flowers and fruit abortion. Differences in how benefits and costs vary with density can alter the stability of this mutualism. In particular, fruit abortion may allow for a stable equilibrium where none could otherwise exist.

  6. From dynamics to structure and function of model biomolecular systems

    NARCIS (Netherlands)

    Fontaine-Vive-Curtaz, F.

    2007-01-01

    The purpose of this thesis was to extend recent works on structure and dynamics of hydrogen bonded crystals to model biomolecular systems and biological processes. The tools that we have used are neutron scattering (NS) and density functional theory (DFT) and force field (FF) based simulation method

  7. Neurophysiological monitoring for preservation of facial nerve function in microsurgery for acoustic neuroma%听神经瘤显微切除术中神经电生理监测保护面神经的效果观察

    Institute of Scientific and Technical Information of China (English)

    苏杰; 严畅; 陈伟强; 杨光

    2011-01-01

    目的:探讨听神经瘤显微切除术中的电生理监测对面神经功能的保护作用.方法:46例听神经瘤患者分别行单纯显微镜下切除肿瘤(非监测组,22例),显微镜下切除肿瘤过程中应用术中神经监测仪对面神经进行监测(监测组,24例),观察术中面神经实时监测情况,随访所有患者术后面神经功能.结果:术后3个月根据House-Brackmann面神经功能分级对病例面瘫情况进行评价,监测组Ⅰ级21例,Ⅱ级2例,Ⅲ级1例;非监测组Ⅰ级13例,Ⅱ级5例,Ⅲ级2例,Ⅴ级2例,差异有统计学意义(P<0.05).结论:听神经瘤手术中行神经电生理监测可有效保护面神经.%Objective:To assess the value of neurophysiological monitoring in preserving the facial nerve in microsurgery for acoustic neuroma. Methods: Forty-six patients with acoustic neuroma were divided into monitoring group and non-monitoring group. The tumor was removed under the microscope without intraoperative facial nerve monitoring in 22 cases and with intraoperative monitoring in 24 cases. All the patients were followed up. Results: House-Brackmann system was used to evaluate the function of the facial nerve 3 months after the operation. Among the 24 cases in monitoring group,grade Ⅰ was observed in 21 cases,grade Ⅱ in 2 cases and grade Ⅲ in 1 case;among the 22 cases in non monitoring group,grade Ⅰ was observed in 13 cases,grade Ⅱ in 5 cases,grade Ⅲ in 2 cases and grade Ⅴ in 2 cases. The difference was significant( P < 0.05 ). Conclusions: Neurophysiological monitoring may effectively preserve the facial nerve function in microsurgery for acoustic neuroma.

  8. Connexons and pannexons: newcomers in neurophysiology

    Directory of Open Access Journals (Sweden)

    Giselle eCheung

    2014-11-01

    Full Text Available Connexin hemichannels are single membrane channels which have been traditionally thought to work in pairs to form gap junction channels across two opposing cells. In astrocytes, gap junction channels allow direct intercellular communication and greatly facilitate the transmission of signals. Recently, there has been growing evidence demonstrating that connexin hemichannels, as well as pannexin channels, on their own are open in various conditions. They allow bidirectional flow of ions and signaling molecules and act as release sites for transmitters like ATP and glutamate into the extracellular space. While much attention has focused on the function of connexin hemichannels and pannexons during pathological situations like epilepsy, inflammation, neurodegeneration or ischemia, their potential roles in physiology is often ignored. In order to fully understand the dynamic properties and roles of connexin hemichannels and pannexons in the brain, it is essential to decipher whether they also have some physiological functions and contribute to normal cerebral processes. Here, we present recent studies in the CNS suggesting emerging physiological functions of connexin hemichannels and pannexons in normal neuronal activity and behavior. We also discuss how these pioneer studies pave the way for future research to extend the physiological relevance of connexons and pannexons, and some fundamental issues yet to be addressed.

  9. Connexons and pannexons: newcomers in neurophysiology.

    Science.gov (United States)

    Cheung, Giselle; Chever, Oana; Rouach, Nathalie

    2014-01-01

    Connexin hemichannels are single membrane channels which have been traditionally thought to work in pairs to form gap junction channels across two opposing cells. In astrocytes, gap junction channels allow direct intercellular communication and greatly facilitate the transmission of signals. Recently, there has been growing evidence demonstrating that connexin hemichannels, as well as pannexin channels, on their own are open in various conditions. They allow bidirectional flow of ions and signaling molecules and act as release sites for transmitters like ATP and glutamate into the extracellular space. While much attention has focused on the function of connexin hemichannels and pannexons during pathological situations like epilepsy, inflammation, neurodegeneration or ischemia, their potential roles in physiology is often ignored. In order to fully understand the dynamic properties and roles of connexin hemichannels and pannexons in the brain, it is essential to decipher whether they also have some physiological functions and contribute to normal cerebral processes. Here, we present recent studies in the CNS suggesting emerging physiological functions of connexin hemichannels and pannexons in normal neuronal activity and behavior. We also discuss how these pioneer studies pave the way for future research to extend the physiological relevance of connexons and pannexons, and some fundamental issues yet to be addressed.

  10. Clinical neurophysiological correlates of histopathological abnormalities in epilepsy surgery

    NARCIS (Netherlands)

    Ferrier, C.H.

    2006-01-01

    In search for variables that determine outcome in patients with pharmacoresistant epilepsy who undergo epilepsy surgery, we identified specific combinations of clinical neurophysiological findings with their underlying histopathology. These findings may have important surgical consequences. In a

  11. Muscle relaxant use during intraoperative neurophysiologic monitoring.

    Science.gov (United States)

    Sloan, Tod B

    2013-02-01

    Neuromuscular blocking agents have generally been avoided during intraoperative neurophysiological monitoring (IOM) where muscle responses to nerve stimulation or transcranial stimulation are monitored. However, a variety of studies and clinical experience indicate partial neuromuscular blockade is compatible with monitoring in some patients. This review presents these experiences after reviewing the currently used agents and the methods used to assess the blockade. A review was conducted of the published literature regarding neuromuscular blockade during IOM. A variety of articles have been published that give insight into the use of partial pharmacological paralysis during monitoring. Responses have been recorded from facial muscles, vocalis muscles, and peripheral nerve muscles from transcranial or neural stimulation with neuromuscular blockade measured in the muscle tested or in the thenar muscles from ulnar nerve stimulation. Preconditioning of the nervous system with tetanic or sensory stimulation has been used. In patients without neuromuscular pathology intraoperative monitoring using peripheral muscle responses from neural stimulation is possible with partial neuromuscular blockade. Monitoring of muscle responses from cranial nerve stimulation may require a higher degree of stimulation and less neuromuscular blockade. The role of tetanic or sensory conditioning of the nervous system is not fully characterized. The impact of neuromuscular pathology or the effect of partial blockade on monitoring muscle responses from spontaneous neural activity or mechanical nerve stimulation has not been described.

  12. Neurophysiological effects of exercise in the heat.

    Science.gov (United States)

    Roelands, B; De Pauw, K; Meeusen, R

    2015-06-01

    Fatigue during prolonged exercise is a multifactorial phenomenon. The complex interplay between factors originating from both the periphery and the brain will determine the onset of fatigue. In recent years, electrophysiological and imaging tools have been fine-tuned, allowing for an improved understanding of what happens in the brain. In the first part of the review, we present literature that studied the changes in electrocortical activity during and after exercise in normal and high ambient temperature. In general, exercise in a thermo-neutral environment or at light to moderate intensity increases the activity in the β frequency range, while exercising at high intensity or in the heat reduces β activity. In the second part, we review literature that manipulated brain neurotransmission, through either pharmacological or nutritional means, during exercise in the heat. The dominant outcomes were that manipulations changing brain dopamine concentration have the potential to delay fatigue, while the manipulation of serotonin had no effect and noradrenaline reuptake inhibition was detrimental for performance in the heat. Research on the effects of neurotransmitter manipulations on brain activity during or after exercise is scarce. The combination of brain imaging techniques with electrophysiological measures presents one of the major future challenges in exercise physiology/neurophysiology.

  13. Posterior cingulate epilepsy: clinical and neurophysiological analysis.

    Science.gov (United States)

    Enatsu, Rei; Bulacio, Juan; Nair, Dileep R; Bingaman, William; Najm, Imad; Gonzalez-Martinez, Jorge

    2014-01-01

    Posterior cingulate epilepsy (PCE) is misleading because the seizure onset is located in an anatomically deep and semiologically silent area. This type of epilepsy is rare and has not been well described yet. Knowledge of the characteristics of PCE is important for the interpretation of presurgical evaluation and better surgical strategy. The purpose of this study was to better characterise the clinical and neurophysiological features of PCE. This retrospective analysis included seven intractable PCE patients. Six patients had postcingulate ictal onset identified by stereotactic EEG (SEEG) evaluations. One patient had a postcingulate tumour. We analysed clinical semiology, the scalp EEG/SEEG findings and cortico-cortical evoked potential (CCEP). The classifications of scalp EEG were various, including non-localisible, lateralised to the seizure onset side, regional parieto-occipital, regional frontocentral and regional temporal. Three of seven patients showed motor manifestations, including bilateral asymmetric tonic seizures and hypermotor seizures. In these patients, ictal activities spread to frontal (lateral premotor area, orbitofrontal cortex, supplementary motor area, anteior cingulate gyrus) and parietal (precuneus, posterior cingulate gyrus, inferior parietal lobule (IPL), postcentral gyrus) areas. Four patients showed dialeptic seizures or automotor seizures, with seizure spread to medial temporal or IPL areas. CCEP was performed in four patients, suggesting electrophysiological connections from the posterior cingulate gyrus to parietal, temporal, mesial occipital and mesial frontal areas. This study revealed that the network from the posterior cingulate gyrus and the semiology of PCE (motor manifestation vs dialeptic/automotor seizure) varies depending upon the seizure spread patterns.

  14. Quantum Dynamics in Classical Time Evolution of Correlation Functions

    CERN Document Server

    Wetterich, C

    1997-01-01

    The time-dependence of correlation functions under the influence of cla= ssical equations of motion is described by an exact evolution equation. For conservative systems thermodynamic equilibrium is a fixed point of these equations. We show that this fixed point is not universally stable, since infinitely many conserved correlation functions obstruct the approach to equilibrium. Equilibrium can therefore be reached at most for suitably av= eraged quantities or for subsystems, similar to quantum statistics. The classica= l time evolution of correlation functions shows many dynamical features of quant= um mechanics.

  15. Comparison Criteria for Nonlinear Functional Dynamic Equations of Higher Order

    Directory of Open Access Journals (Sweden)

    Taher S. Hassan

    2016-01-01

    Full Text Available We will consider the higher order functional dynamic equations with mixed nonlinearities of the form xnt+∑j=0Npjtϕγjxφjt=0, on an above-unbounded time scale T, where n≥2, xi(t≔ri(tϕαixi-1Δ(t,  i=1,…,n-1,   with  x0=x,  ϕβ(u≔uβsgn⁡u, and α[i,j]≔αi⋯αj. The function φi:T→T is a rd-continuous function such that limt→∞φi(t=∞ for j=0,1,…,N. The results extend and improve some known results in the literature on higher order nonlinear dynamic equations.

  16. Neurophysiological correlates of musical creativity: The example of improvisation.

    OpenAIRE

    Skirtach I.A.

    2015-01-01

    Since the turn of this century, a substantial body of research has been published on the neuroscience of creativity. Now, it is necessary to study the neurophysiological correlates in true-to-life, professionally specific situations. The aim of our empirical research was to study the neurophysiological correlates of musical improvisation, a spontaneous creative activity. The participants were 136 right-handed practicing musicians aged 19 to 36 (102 males and 34 females), divided into two grou...

  17. Neurophysiological correlates of musical creativity: the example of improvisation

    OpenAIRE

    2015-01-01

    Since the turn of this century, a substantial body of research has been published on the neuroscience of creativity. Now, it is necessary to study the neurophysiological correlates in true-to-life, professionally specific situations. The aim of our empirical research was to study the neurophysiological correlates of musical improvisation, a spontaneous creative activity. The participants were 136 right-handed practicing musicians aged 19 to 36 (102 males and 34 females), divided into two grou...

  18. Auditory-neurophysiological responses to speech during early childhood: Effects of background noise.

    Science.gov (United States)

    White-Schwoch, Travis; Davies, Evan C; Thompson, Elaine C; Woodruff Carr, Kali; Nicol, Trent; Bradlow, Ann R; Kraus, Nina

    2015-10-01

    Early childhood is a critical period of auditory learning, during which children are constantly mapping sounds to meaning. But this auditory learning rarely occurs in ideal listening conditions-children are forced to listen against a relentless din. This background noise degrades the neural coding of these critical sounds, in turn interfering with auditory learning. Despite the importance of robust and reliable auditory processing during early childhood, little is known about the neurophysiology underlying speech processing in children so young. To better understand the physiological constraints these adverse listening scenarios impose on speech sound coding during early childhood, auditory-neurophysiological responses were elicited to a consonant-vowel syllable in quiet and background noise in a cohort of typically-developing preschoolers (ages 3-5 yr). Overall, responses were degraded in noise: they were smaller, less stable across trials, slower, and there was poorer coding of spectral content and the temporal envelope. These effects were exacerbated in response to the consonant transition relative to the vowel, suggesting that the neural coding of spectrotemporally-dynamic speech features is more tenuous in noise than the coding of static features-even in children this young. Neural coding of speech temporal fine structure, however, was more resilient to the addition of background noise than coding of temporal envelope information. Taken together, these results demonstrate that noise places a neurophysiological constraint on speech processing during early childhood by causing a breakdown in neural processing of speech acoustics. These results may explain why some listeners have inordinate difficulties understanding speech in noise. Speech-elicited auditory-neurophysiological responses offer objective insight into listening skills during early childhood by reflecting the integrity of neural coding in quiet and noise; this paper documents typical response

  19. Neurophysiological indices of strategy development and skill acquisition.

    Science.gov (United States)

    Smith, M E; McEvoy, L K; Gevins, A

    1999-01-01

    In order to examine neurophysiological changes associated with the development of cognitive and visuomotor strategies and skills, spectral features of the EEG were measured as participants learned to perform new tasks. In one experiment eight individuals practiced working memory tasks that required development of either spatial or verbal rehearsal and updating strategies. In a second experiment six individuals practiced a video game with a difficult visuomotor tracking component. The alpha rhythm, which is attenuated by functional cortical activation, was affected by task practice. In both experiments, a lower-frequency, centrally distributed alpha component increased between practice sessions in a task-independent fashion, reflecting an overall decrease in the extent of cortical activation after practice. A second, higher-frequency, posterior component of the alpha rhythm displayed task-specific practice effects. Practice in the verbal working memory task resulted in an increase of this signal over right posterior regions, an effect not seen after practice with the spatial working memory task or with the video game. This between-task difference presumably reflects a continued involvement of the posterior region of the right hemisphere in tasks that invoke visuospatial processes. This finding thus provides neurophysiological evidence for the formation of a task-specific neurocognitive strategy. In the second experiment a third component of the alpha rhythm, localized over somatomotor cortex, was enhanced in conjunction with acquisition of tracking skill. These alpha band results suggest that cortical regions not necessary for task performance become less active as skills develop. In both experiments the frontal midline (Fm) theta rhythm also displayed increases over the course of test sessions. This signal is associated with states of focused concentration, and its enhancement might reflect the conscious control over attention associated with maintenance of a task

  20. Concoradance of clinical and neurophysiologic diagnoses of carpal tunnel syndrome

    Directory of Open Access Journals (Sweden)

    Martić Vesna

    2015-01-01

    Full Text Available Introduction/Aim. Clinical presentation and neurophysiological examination are crucial in diagnosing carpal tunnel syndrome (CTS. The aim of this study was to determine sensitivity and specificity of clinical examination for diagnosing of CTS in relation to neurophysiological evaluation. Methods. The sample included 181 patients referred to the neurologist for further diagnosis of pain and parestesias in the arm (81 women and 100 men mean age 42 ± 14 years and 52 ± 16 years, respectively. All the patients were neurophysiologicly tested. Results. Out of 181 patients, clinical findings were considered positive for CTS in 37 patients. The neurophysiological findings for CTS were positive in 60 patients. Both clinical and neurophysiological findings were positive in 31 patients and both findings were negative in 115 patients (sensitivity 0,51; specificity 0,95. Conclusion. Low sensitivity and high specificity suggest that it is easier to exclude rather than to accurately diagnose CTS based on clinical examination alone. Thus, there is the need for neurophysiological evaluation of patients with complains in the arm.

  1. Learning clinical neurophysiology: gaming is better than lectures.

    Science.gov (United States)

    Schuh, Lori; Burdette, David E; Schultz, Lonni; Silver, Brian

    2008-06-01

    We sought to find evidence for generalizability of a game and team oriented educational intervention in clinical neurophysiology in a neurology residency program. A prospective educational intervention was studied in a single neurology residency program and compared with a historical control. Seventeen PGY 2-4 residents studied neurophysiology in 2004-2005. The historical control was 20 PGY 2-4 residents from 1998 to 2002. The neurophysiology educational intervention consisted of weekly presentations, followed by a game show-type oral quiz which was team-based and required all residents to participate. The control group attended faculty-prepared didactic lectures. Outcome measures were percent correct subset neurophysiology Residency Inservice Training Examination scores. United States Medical Licensing Examination step 1 scores were also compared between the groups. Data were analyzed with analysis of variance methods accounting for multiple measurements. The mean+/-standard error neurophysiology subset percent correct Residency Inservice Training Examination score was 63.6+/-4.12 for the intervention group and 49.4+/-2.35 for the control (P=0.002). There was no difference in United States Medical Licensing Examination step 1 scores between the two groups (P=0.11). We found evidence for generalizability of the effectiveness of a team-oriented educational intervention in clinical neurophysiology with gaming and oral quizzing in improving subset Residency Inservice Training Examination performance compared with faculty prepared didactics.

  2. Dynamical density functional theory with hydrodynamic interactions in confined geometries

    Science.gov (United States)

    Goddard, B. D.; Nold, A.; Kalliadasis, S.

    2016-12-01

    We study the dynamics of colloidal fluids in both unconfined geometries and when confined by a hard wall. Under minimal assumptions, we derive a dynamical density functional theory (DDFT) which includes hydrodynamic interactions (HI; bath-mediated forces). By using an efficient numerical scheme based on pseudospectral methods for integro-differential equations, we demonstrate its excellent agreement with the full underlying Langevin equations for systems of hard disks in partial confinement. We further use the derived DDFT formalism to elucidate the crucial effects of HI in confined systems.

  3. Crossing the entropy barrier of dynamical zeta functions

    Energy Technology Data Exchange (ETDEWEB)

    Aurich, R.; Bolte, J.; Matthies, C.; Sieber, M.; Steiner, F. (Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik)

    1992-01-01

    Dynamical zeta functions are an important tool to quantize chaotic dynamical systems. The basic quantization rules require the computation of the zeta functions on the real energy axis, where the Euler product representations running over the classical periodic orbits usually do not converge due to the existence of the so-called entropy barrier determined by the topological entropy of the classical system. We shown that the convergence properties of the dynamical zeta functions rewritten as Dirichlet series are governed not only by the well-known topological and metric entropy, but depend crucially on subtle statistical properties of the Maslow indices and of the multiplicities of the periodic orbits that are measured by a new parameter for which we introduce the notion of a third entropy. If and only if the third entropy is nonvanishing, one can cross the entropy barrier; if it exceeds a certain value, one can even compute the zeta function in the physical region by means of a convergent Dirichlet series. A simple statistical model is presented which allows to compute the third entropy. Four examples of chaotic systems are studied in detail to test the model numerically. (orig.).

  4. Sexual dysfunction following surgery for rectal cancer - a clinical and neurophysiological study

    Directory of Open Access Journals (Sweden)

    Sperduti Isabella

    2009-09-01

    Full Text Available Abstract Background Sexual dysfunction following surgery for rectal cancer may be frequent and often severe. The aim of the present study is to evaluate the occurrence of this complication from both a clinical point of view and by means of neurophysiological tests. Methods We studied a group of 57 patients submitted to rectal resection for adenocarcinoma. All the patients underwent neurological, psychological and the following neurophysiological tests: sacral reflex (SR, pudendal somatosensory evoked potentials (PEPs, motor evoked potential (MEPs and sympathetic skin responses (SSRs. The results were compared with a control group of 67 rectal cancer patients studied before surgery. Only 10 of these patients could be studied both pre- and postoperatively. 10 patients submitted to high dose preoperative chemoradiation were studied to evaluate the effect of this treatment on sexual function. Statistical analysis was performed by means of the two-tailed Student's t test for paired observations and k concordance test. Results 59.6% of patients operated reported sexual dysfunction, while this symptom occurred in 16.4% in the control group. Moreover, a significantly higher rate of alterations of the neurophysiological tests and longer mean latencies of the SR, PEPs, MEPs and SSRs were observed in the patients who had undergone resection. In the 10 patients studied both pre and post-surgery impotence occurred in 6 of them and the mean latencies of SSRs were longer after operation. In the 10 patients studied pre and post chemoradiation impotence occurred in 1 patient only, showing the mild effect of these treatments on sexual function. Conclusion Patients operated showed severe sexual dysfunctions. The neurophysiological test may be a useful tool to investigate this complication. The neurological damage could be monitored to decide the rehabilitation strategy.

  5. Sexual dysfunction following surgery for rectal cancer - a clinical and neurophysiological study.

    Science.gov (United States)

    Pietrangeli, Alberto; Pugliese, Patrizia; Perrone, Maria; Sperduti, Isabella; Cosimelli, Maurizio; Jandolo, Bruno

    2009-09-17

    Sexual dysfunction following surgery for rectal cancer may be frequent and often severe. The aim of the present study is to evaluate the occurrence of this complication from both a clinical point of view and by means of neurophysiological tests. We studied a group of 57 patients submitted to rectal resection for adenocarcinoma. All the patients underwent neurological, psychological and the following neurophysiological tests: sacral reflex (SR), pudendal somatosensory evoked potentials (PEPs), motor evoked potential (MEPs) and sympathetic skin responses (SSRs). The results were compared with a control group of 67 rectal cancer patients studied before surgery. Only 10 of these patients could be studied both pre- and postoperatively. 10 patients submitted to high dose preoperative chemoradiation were studied to evaluate the effect of this treatment on sexual function. Statistical analysis was performed by means of the two-tailed Student's t test for paired observations and k concordance test. 59.6% of patients operated reported sexual dysfunction, while this symptom occurred in 16.4% in the control group. Moreover, a significantly higher rate of alterations of the neurophysiological tests and longer mean latencies of the SR, PEPs, MEPs and SSRs were observed in the patients who had undergone resection. In the 10 patients studied both pre and post-surgery impotence occurred in 6 of them and the mean latencies of SSRs were longer after operation. In the 10 patients studied pre and post chemoradiation impotence occurred in 1 patient only, showing the mild effect of these treatments on sexual function. Patients operated showed severe sexual dysfunctions. The neurophysiological test may be a useful tool to investigate this complication. The neurological damage could be monitored to decide the rehabilitation strategy.

  6. Enzymes: An integrated view of structure, dynamics and function

    Directory of Open Access Journals (Sweden)

    Agarwal Pratul K

    2006-01-01

    Full Text Available Abstract Microbes utilize enzymes to perform a variety of functions. Enzymes are biocatalysts working as highly efficient machines at the molecular level. In the past, enzymes have been viewed as static entities and their function has been explained on the basis of direct structural interactions between the enzyme and the substrate. A variety of experimental and computational techniques, however, continue to reveal that proteins are dynamically active machines, with various parts exhibiting internal motions at a wide range of time-scales. Increasing evidence also indicates that these internal protein motions play a role in promoting protein function such as enzyme catalysis. Moreover, the thermodynamical fluctuations of the solvent, surrounding the protein, have an impact on internal protein motions and, therefore, on enzyme function. In this review, we describe recent biochemical and theoretical investigations of internal protein dynamics linked to enzyme catalysis. In the enzyme cyclophilin A, investigations have lead to the discovery of a network of protein vibrations promoting catalysis. Cyclophilin A catalyzes peptidyl-prolyl cis/trans isomerization in a variety of peptide and protein substrates. Recent studies of cyclophilin A are discussed in detail and other enzymes (dihydrofolate reductase and liver alcohol dehydrogenase where similar discoveries have been reported are also briefly discussed. The detailed characterization of the discovered networks indicates that protein dynamics plays a role in rate-enhancement achieved by enzymes. An integrated view of enzyme structure, dynamics and function have wide implications in understanding allosteric and co-operative effects, as well as protein engineering of more efficient enzymes and novel drug design.

  7. Dynamic density functional theory of solid tumor growth: Preliminary models

    Directory of Open Access Journals (Sweden)

    Arnaud Chauviere

    2012-03-01

    Full Text Available Cancer is a disease that can be seen as a complex system whose dynamics and growth result from nonlinear processes coupled across wide ranges of spatio-temporal scales. The current mathematical modeling literature addresses issues at various scales but the development of theoretical methodologies capable of bridging gaps across scales needs further study. We present a new theoretical framework based on Dynamic Density Functional Theory (DDFT extended, for the first time, to the dynamics of living tissues by accounting for cell density correlations, different cell types, phenotypes and cell birth/death processes, in order to provide a biophysically consistent description of processes across the scales. We present an application of this approach to tumor growth.

  8. A Bayesian Algorithm for Functional Mapping of Dynamic Complex Traits

    Directory of Open Access Journals (Sweden)

    Rongling Wu

    2009-04-01

    Full Text Available Functional mapping of dynamic traits measured in a longitudinal study was originally derived within the maximum likelihood (ML context and implemented with the EM algorithm. Although ML-based functional mapping possesses many favorable statistical properties in parameter estimation, it may be computationally intractable for analyzing longitudinal data with high dimensions and high measurement errors. In this article, we derive a general functional mapping framework for quantitative trait locus mapping of dynamic traits within the Bayesian paradigm. Markov chain Monte Carlo techniques were implemented for functional mapping to estimate biologically and statistically sensible parameters that model the structures of time-dependent genetic effects and covariance matrix. The Bayesian approach is useful to handle difficulties in constructing confidence intervals as well as the identifiability problem, enhancing the statistical inference of functional mapping. We have undertaken simulation studies to investigate the statistical behavior of Bayesian-based functional mapping and used a real example with F2 mice to validate the utilization and usefulness of the model.

  9. Neurophysiological Correlates of Various Mental Perspectives

    Directory of Open Access Journals (Sweden)

    Thilo eHinterberger

    2014-08-01

    Full Text Available A common view of consciousness is that our mind presents emotions, experiences and images in an internal mental (re-presentation space which in a state of wakefulness is triggered by the world outside. Consciousness can be defined as the observation of this inner mental space. We propose a new model, in which the state of the conscious observer is defined by the observer’s mental position and focus of attention. The mental position of the observer can either be within the mental self (intrapersonal space, in the mental outer world (extrapersonal space or in an empathic connection, i.e. within the intrapersonal space of another person (perspective taking. The focus of attention can be directed towards the self or towards the outside world. This mental space model can help us to understand the patterns of relationships and interactions with other persons as they occur in social life.To investigate the neurophysiological correlates and discriminability of the different mental states, we conducted an EEG experiment measuring the brain activity of 16 subjects via 64 electrodes while they engaged in different mental positions (intrapersonal, extrapersonal, perspective taking with different attentional foci (self, object. Compared to external mental locations, internal ones showed significantly increased alpha2 power, especially when the observer was focusing on an object. Alpha2 and beta2 were increased in the empathic condition compared to the extrapersonal perspective. Delta power was significantly higher when the attentional focus was directed towards an object in comparison to the participant’s own self. This exploratory study demonstrates highly significant differences between various mental locations and foci, suggesting that the proposed categories of mental location and intra- and interpersonal attentional foci are not only helpful theoretical concepts but are also physiologically relevant and therefore may relate to basic brain processing

  10. Neurophysiological correlates of various mental perspectives.

    Science.gov (United States)

    Hinterberger, Thilo; Zlabinger, Milena; Blaser, Klaus

    2014-01-01

    A common view of consciousness is that our mind presents emotions, experiences, and images in an internal mental (re-)presentation space which in a state of wakefulness is triggered by the world outside. Consciousness can be defined as the observation of this inner mental space. We propose a new model, in which the state of the conscious observer is defined by the observer's mental position and focus of attention. The mental position of the observer can either be within the mental self (intrapersonal space), in the mental outer world (extrapersonal space) or in an empathic connection, i.e., within the intrapersonal space of another person (perspective taking). The focus of attention can be directed toward the self or toward the outside world. This mental space model can help us to understand the patterns of relationships and interactions with other persons as they occur in social life. To investigate the neurophysiological correlates and discriminability of the different mental states, we conducted an EEG experiment measuring the brain activity of 16 subjects via 64 electrodes while they engaged in different mental positions (intrapersonal, extrapersonal, perspective taking) with different attentional foci (self, object). Compared to external mental locations, internal ones showed significantly increased alpha2 power, especially when the observer was focusing on an object. Alpha2 and beta2 were increased in the empathic condition compared to the extrapersonal perspective. Delta power was significantly higher when the attentional focus was directed toward an object in comparison to the participant's own self. This exploratory study demonstrates highly significant differences between various mental locations and foci, suggesting that the proposed categories of mental location and intra- and interpersonal attentional foci are not only helpful theoretical concepts but are also physiologically relevant and therefore may relate to basic brain processing mechanisms.

  11. Neurophysiological correlates of sevoflurane-induced unconsciousness.

    Science.gov (United States)

    Blain-Moraes, Stefanie; Tarnal, Vijay; Vanini, Giancarlo; Alexander, Amir; Rosen, Derek; Shortal, Brenna; Janke, Ellen; Mashour, George A

    2015-02-01

    Recent studies of anesthetic-induced unconsciousness in humans have focused predominantly on the intravenous drug propofol and have identified anterior dominance of alpha rhythms and frontal phase-amplitude coupling patterns as neurophysiological markers. However, it is unclear whether the correlates of propofol-induced unconsciousness are generalizable to inhaled anesthetics, which have distinct molecular targets and which are used more commonly in clinical practice. The authors recorded 64-channel electroencephalograms in healthy human participants during consciousness, sevoflurane-induced unconsciousness, and recovery (n = 10; n = 7 suitable for analysis). Spectrograms and scalp distributions of low-frequency (1 Hz) and alpha (10 Hz) power were analyzed, and phase-amplitude modulation between these two frequencies was calculated in frontal and parietal regions. Phase lag index was used to assess phase relationships across the cortex. At concentrations sufficient for unconsciousness, sevoflurane did not result in a consistent anteriorization of alpha power; the relationship between low-frequency phase and alpha amplitude in the frontal cortex did not undergo characteristic transitions. By contrast, there was significant cross-frequency coupling in the parietal region during consciousness that was not observed after loss of consciousness. Furthermore, a reversible disruption of anterior-posterior phase relationships in the alpha bandwidth was identified as a correlate of sevoflurane-induced unconsciousness. In humans, sevoflurane-induced unconsciousness is not correlated with anteriorization of alpha and related cross-frequency patterns, but rather by a disruption of phase-amplitude coupling in the parietal region and phase-phase relationships across the cortex.

  12. Dynamic Behavior of Axially Functionally Graded Pipes Conveying Fluid

    Directory of Open Access Journals (Sweden)

    Chen An

    2017-01-01

    Full Text Available Dynamic behavior of axially functionally graded (FG pipes conveying fluid was investigated numerically by using the generalized integral transform technique (GITT. The transverse vibration equation was integral transformed into a coupled system of second-order differential equations in the temporal variable. The Mathematica’s built-in function, NDSolve, was employed to numerically solve the resulting transformed ODE system. Excellent convergence of the proposed eigenfunction expansions was demonstrated for calculating the transverse displacement at various points of axially FG pipes conveying fluid. The proposed approach was verified by comparing the obtained results with the available solutions reported in the literature. Moreover, parametric studies were performed to analyze the effects of Young’s modulus variation, material distribution, and flow velocity on the dynamic behavior of axially FG pipes conveying fluid.

  13. Dynamic Regulation and Function of Histone Monoubiquitination in Plants

    Directory of Open Access Journals (Sweden)

    Jing eFeng

    2014-03-01

    Full Text Available Polyubiquitin chain deposition on a target protein frequently leads to proteasome-mediated degradation whereas monoubiquitination modifies target protein property and function independent of proteolysis. Histone monoubiquitination occurs in chromatin and is in nowadays recognized as one critical type of epigenetic marks in eukaryotes. While H2A monoubiquitination (H2Aub1 is generally associated with transcription repression mediated by the Polycomb pathway, H2Bub1 is involved in transcription activation. H2Aub1 and H2Bub1 levels are dynamically regulated via deposition and removal by specific enzymes. We review knows and unknowns of dynamic regulation of H2Aub1 and H2Bub1 deposition and removal in plants and highlight the underlying crucial functions in gene transcription, cell proliferation/differentiation, and plant growth and development. We also discuss crosstalks existing between H2Aub1 or H2Bub1 and different histone methylations for an ample mechanistic understanding.

  14. Unveiling protein functions through the dynamics of the interaction network.

    Directory of Open Access Journals (Sweden)

    Irene Sendiña-Nadal

    Full Text Available Protein interaction networks have become a tool to study biological processes, either for predicting molecular functions or for designing proper new drugs to regulate the main biological interactions. Furthermore, such networks are known to be organized in sub-networks of proteins contributing to the same cellular function. However, the protein function prediction is not accurate and each protein has traditionally been assigned to only one function by the network formalism. By considering the network of the physical interactions between proteins of the yeast together with a manual and single functional classification scheme, we introduce a method able to reveal important information on protein function, at both micro- and macro-scale. In particular, the inspection of the properties of oscillatory dynamics on top of the protein interaction network leads to the identification of misclassification problems in protein function assignments, as well as to unveil correct identification of protein functions. We also demonstrate that our approach can give a network representation of the meta-organization of biological processes by unraveling the interactions between different functional classes.

  15. Subdiffusive dynamics of bump attractors: mechanisms and functional roles.

    Science.gov (United States)

    Qi, Yang; Breakspear, Michael; Gong, Pulin

    2015-02-01

    Bump attractors are localized activity patterns that can self-sustain after stimulus presentation, and they are regarded as the neural substrate for a host of perceptual and cognitive processes. One of the characteristic features of bump attractors is that they are neutrally stable, so that noisy inputs cause them to drift away from their initial locations, severely impairing the accuracy of bump location-dependent neural coding. Previous modeling studies of such noise-induced drifting activity of bump attractors have focused on normal diffusive dynamics, often with an assumption that noisy inputs are uncorrelated. Here we show that long-range temporal correlations and spatial correlations in neural inputs generated by multiple interacting bumps cause them to drift in an anomalous subdiffusive way. This mechanism for generating subdiffusive dynamics of bump attractors is further analyzed based on a generalized Langevin equation. We demonstrate that subdiffusive dynamics can significantly improve the coding accuracy of bump attractors, since the variance of the bump displacement increases sublinearly over time and is much smaller than that of normal diffusion. Furthermore, we reanalyze existing psychophysical data concerning the spread of recalled cue position in spatial working memory tasks and show that its variance increases sublinearly with time, consistent with subdiffusive dynamics of bump attractors. Based on the probability density function of bump position, we also show that the subdiffusive dynamics result in a long-tailed decay of firing rate, greatly extending the duration of persistent activity.

  16. Infimal convolution of total generalized variation functionals for dynamic MRI.

    Science.gov (United States)

    Schloegl, Matthias; Holler, Martin; Schwarzl, Andreas; Bredies, Kristian; Stollberger, Rudolf

    2017-07-01

    To accelerate dynamic MR applications using infimal convolution of total generalized variation functionals (ICTGV) as spatio-temporal regularization for image reconstruction. ICTGV comprises a new image prior tailored to dynamic data that achieves regularization via optimal local balancing between spatial and temporal regularity. Here it is applied for the first time to the reconstruction of dynamic MRI data. CINE and perfusion scans were investigated to study the influence of time dependent morphology and temporal contrast changes. ICTGV regularized reconstruction from subsampled MR data is formulated as a convex optimization problem. Global solutions are obtained by employing a duality based non-smooth optimization algorithm. The reconstruction error remains on a low level with acceleration factors up to 16 for both CINE and dynamic contrast-enhanced MRI data. The GPU implementation of the algorithm suites clinical demands by reducing reconstruction times of one dataset to less than 4 min. ICTGV based dynamic magnetic resonance imaging reconstruction allows for vast undersampling and therefore enables for very high spatial and temporal resolutions, spatial coverage and reduced scan time. With the proposed distinction of model and regularization parameters it offers a new and robust method of flexible decomposition into components with different degrees of temporal regularity. Magn Reson Med 78:142-155, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  17. The dynamic mechanism of presenilin-function: Sensitive gate dynamics and loop unplugging control protein access

    DEFF Research Database (Denmark)

    Somavarapu, Arun Kumar; Kepp, Kasper Planeta

    2016-01-01

    molecular dynamics in an explicit membrane with particular account of the as yet unexplored loop dynamics. We find that mature PSEN1 contains multiple distinct conformational states whereas non-mature PSEN1 is a typical one-state protein. We confirm a previously suggested gating mechanism, and find......There is no molecular explanation for the many presenilin 1 (PSEN1) mutations causing Alzheimer's disease, but both gain of function relating to amyloid production and loss of isolated PSEN1 function have been implied. We report here the first detailed dynamic all-atom model of mature PSEN1 from...... that the 106-131 loop acts as a "hinge" for the TM2 and TM6 "doors". More importantly, we identify an unplugging mechanism of the Exon 9 loop associated only with mature PSEN1. Proper opening of both the "gate" and "plug" in the membrane produces channel-like morphologies and access to the catalytic aspartates...

  18. The 3He spectral function in light-front dynamics

    Directory of Open Access Journals (Sweden)

    Rinaldi Matteo

    2016-01-01

    Full Text Available A distorted spin-dependent spectral function for 3He is considered for the extraction of the transverse-momentum dependent parton distributions in the neutron from semi-inclusive deep inelastic electron scattering off polarized 3He at finite momentum transfers, where final state interactions are taken into account. The generalization of the analysis to a Poincaré covariant framework within the light-front dynamics is outlined.

  19. The 3He spectral function in light-front dynamics

    CERN Document Server

    Rinaldi, Matteo; Kaptari, Leonid; Pace, Emanuele; Salmè, Giovanni; Scopetta, Sergio

    2016-01-01

    A distorted spin-dependent spectral function for 3He is considered for the extraction of the transverse-momentum dependent parton distributions in the neutron from semi-inclusive deep inelastic electron scattering off polarized 3He at finite momentum transfers, where final state interactions are taken into account. The generalization of the analysis to a Poincar\\'e covariant framework within the light-front dynamics is outlined.

  20. Intraoperative magnetic resonance imaging-guided functional neuronavigation plus intraoperative neurophysiological monitoring for microsurgical resection of lesions involving hand motor area%术中磁共振功能导航联合神经电生理监测指导手运动区病灶切除

    Institute of Scientific and Technical Information of China (English)

    苗兴路; 陈旨娟; 杨卫东; 王增光; 毓青; 岳树源; 张建宁

    2013-01-01

    Objective To explore the methods and applications of intraoperative magnetic resonance imaging (iMRI)-guided functional neuronavigation plus intraoperative neurophysiological monitoring (IONM) for microsurgical resection of lesions involving hand motor area.Methods A total of 16 patients with brain lesions adjacent to hand motor area were recruited from January 2011 to April 2012.All of them underwent neuronavigator-assisted microsurgery.Also IONM was conducted to further map hand motor area and epileptogenic focus.High-field iMRI was employed to update the anatomical and functional imaging date and verify the extent of lesion resection.Results Brain shifting during the functional neuronavigation was corrected by iMRI in 5 patients.Finally,total lesion resection was achieved in 13 cases and subtotal resection in 3 cases.At Months 3-12 post-operation,hand motor function improved (n =10) or remained unchanged (n =6).None of them had persistent neurological deficit.The postoperative seizure improvement achieved Enge Ⅱ level or above in 9 cases of brain lesions complicated with secondary epilepsy.Conclusion Intraoperative MRI,functional neuronavigation and neurophysiological monitoring technique are complementary in microsurgery of brain lesions involving hand motor area.Combined use of these techniques can obtain precise location of lesions and hand motor functional structures and allow a maximum resection of lesion and minimization of postoperative neurological deficits.%目的 探讨高场强术中磁共振(iMRI)和功能神经导航联合术中神经电生理监测技术(IONM)指导手运动区病灶切除的方法和应用价值.方法 天津医科大学总医院神经外科自2011年1月至2012年4月手术治疗16例手运动区附近病灶的患者,术中实时导航病灶、皮质脊髓束(CST)与手运动激活区,联合IONM进一步界定手运动区和病灶周围致痫灶,并通过iMRI及时更新影像,评估病灶切除程度.结果 5例因为术中

  1. Stratum corneum dynamic function measurements after moisturizer or irritant application.

    Science.gov (United States)

    Treffel, P; Gabard, B

    1995-01-01

    Two simple tests were conducted which allowed the quantification of parameters that characterize the stratum corneum (SC) dynamic functions in vivo under physiological conditions after moisturizer applications for 1 h and after irritation with different concentrations of sodium lauryl sulphate (SLS; 0.5-4%) applied under occlusion for 15 min or 24 h. Both tests, the sorption-desorption test (SDT) and the moisture accumulation test (MAT), were performed with a Nova Dermal Phase Meter 9003. The following parameters were quantified: prehydration state (SDT, MAT), hygroscopicity, water-holding capacity (SDT), water accumulation velocity and water accumulation (MAT). These procedures allowed the demonstration of the water-holding effect of urea contained in moisturizers. Differences between the long and the short application time of SLS were characterized by differences in SC dynamic functions while the hydration state was not changed. An effect on transepidermal water loss (TEWL) was noted only after the long application time, although the MAT clearly showed dynamic parameters to be changed after 15 min of treatment. These tests were simple in practice and allowed the demonstration of functional modifications of the SC while other parameters remained unchanged. They gave insight into possible action mechanisms of urea and SLS in the SC.

  2. Dynamic reorganization of brain functional networks during cognition.

    Science.gov (United States)

    Bola, Michał; Sabel, Bernhard A

    2015-07-01

    How does cognition emerge from neural dynamics? The dominant hypothesis states that interactions among distributed brain regions through phase synchronization give basis for cognitive processing. Such phase-synchronized networks are transient and dynamic, established on the timescale of milliseconds in order to perform specific cognitive operations. But unlike resting-state networks, the complex organization of transient cognitive networks is typically not characterized within the graph theory framework. Thus, it is not known whether cognitive processing merely changes the strength of functional connections or, conversely, requires qualitatively new topological arrangements of functional networks. To address this question, we recorded high-density EEG while subjects performed a visual discrimination task. We conducted an event-related network analysis (ERNA) where source-space weighted functional networks were characterized with graph measures. ERNA revealed rapid, transient, and frequency-specific reorganization of the network's topology during cognition. Specifically, cognitive networks were characterized by strong clustering, low modularity, and strong interactions between hub-nodes. Our findings suggest that dense and clustered connectivity between the hub nodes belonging to different modules is the "network fingerprint" of cognition. Such reorganization patterns might facilitate global integration of information and provide a substrate for a "global workspace" necessary for cognition and consciousness to occur. Thus, characterizing topology of the event-related networks opens new vistas to interpret cognitive dynamics in the broader conceptual framework of graph theory. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Dynamics of learning near singularities in radial basis function networks.

    Science.gov (United States)

    Wei, Haikun; Amari, Shun-Ichi

    2008-09-01

    The radial basis function (RBF) networks are one of the most widely used models for function approximation in the regression problem. In the learning paradigm, the best approximation is recursively or iteratively searched for based on observed data (teacher signals). One encounters difficulties in such a process when two component basis functions become identical, or when the magnitude of one component becomes null. In this case, the number of the components reduces by one, and then the reduced component recovers as the learning process proceeds further, provided such a component is necessary for the best approximation. Strange behaviors, especially the plateau phenomena, have been observed in dynamics of learning when such reduction occurs. There exist singularities in the space of parameters, and the above reduction takes place at the singular regions. This paper focuses on a detailed analysis of the dynamical behaviors of learning near the overlap and elimination singularities in RBF networks, based on the averaged learning equation that is applicable to both on-line and batch mode learning. We analyze the stability on the overlap singularity by solving the eigenvalues of the Hessian explicitly. Based on the stability analysis, we plot the analytical dynamic vector fields near the singularity, which are then compared to those real trajectories obtained by a numeric method. We also confirm the existence of the plateaus in both batch and on-line learning by simulation.

  4. Operators versus functions: from quantum dynamical semigroups to tomographic semigroups

    Science.gov (United States)

    Aniello, Paolo

    2013-11-01

    Quantum mechanics can be formulated in terms of phase-space functions, according to Wigner's approach. A generalization of this approach consists in replacing the density operators of the standard formulation with suitable functions, the so-called generalized Wigner functions or (group-covariant) tomograms, obtained by means of group-theoretical methods. A typical problem arising in this context is to express the evolution of a quantum system in terms of tomograms. In the case of a (suitable) open quantum system, the dynamics can be described by means of a quantum dynamical semigroup 'in disguise', namely, by a semigroup of operators acting on tomograms rather than on density operators. We focus on a special class of quantum dynamical semigroups, the twirling semigroups, that have interesting applications, e.g., in quantum information science. The 'disguised counterparts' of the twirling semigroups, i.e., the corresponding semigroups acting on tomograms, form a class of semigroups of operators that we call tomographic semigroups. We show that the twirling semigroups and the tomographic semigroups can be encompassed in a unique theoretical framework, a class of semigroups of operators including also the probability semigroups of classical probability theory, so achieving a deeper insight into both the mathematical and the physical aspects of the problem.

  5. Artificial gravity exposure impairs exercise-related neurophysiological benefits.

    Science.gov (United States)

    Vogt, Tobias; Abeln, Vera; Strüder, Heiko K; Schneider, Stefan

    2014-01-17

    Artificial gravity (AG) exposure is suggested to counteract health deconditioning, theoretically complementing exercise during space habitations. Exercise-benefits on mental health are well documented (i.e. well-being, enhanced executive functions). Although AG is coherent for the integrity of fundamental physiological systems, the effects of its exposure on neurophysiological processes related to cognitive performance are poorly understood and therefore characterize the primary aim of this study. 16 healthy males participated in two randomly assigned sessions, AG and exercise (30minute each). Participants were exposed to AG at continuous +2Gz in a short-arm human centrifuge and performed moderate exercise (cycling ergometer). Using 64 active electrodes, resting EEG was recorded before (pre), immediately after (post), and 15min after (post15) each session. Alpha (7.5-12.5Hz) and beta frequencies (12.5-35.0Hz) were exported for analysis. Cognitive performance and mood states were assessed before and after each session. Cognitive performance improved after exercise (pexercise, however not after AG. Frontal alpha (post pexercise. Relaxed cortical states were indicated after exercise, but were less apparent after AG. Changes in mood states failed significance after both sessions. Summarized, the benefits to mental health, recorded after exercise, were absent after AG, indicating that AG might cause neurocognitive deconditioning.

  6. Psychological pain interventions and neurophysiology: implications for a mechanism-based approach.

    Science.gov (United States)

    Flor, Herta

    2014-01-01

    This article provides an illustrative overview of neurophysiological changes related to acute and chronic pain involving structural and functional brain changes, which might be the targets of psychological interventions. A number of psychological pain treatments have been examined with respect to their effects on brain activity, ranging from cognitive- and operant behavioral interventions, meditation and hypnosis, to neuro- and biofeedback, discrimination training, imagery and mirror treatment, as well as virtual reality and placebo applications. These treatments affect both ascending and descending aspects of pain processing and act through brain mechanisms that involve sensorimotor areas as well as those involved in affective-motivational and cognitive-evaluative aspects. The analysis of neurophysiological changes related to effective psychological pain treatment can help to identify subgroups of patients with chronic pain who might profit from different interventions, can aid in predicting treatment outcome, and can assist in identifying responders and nonresponders, thus enhancing the efficacy and efficiency of psychological interventions. Moreover, new treatment targets can be developed and tested. Finally, the use of neurophysiological measures can also aid in motivating patients to participate in psychological interventions and can increase their acceptance in clinical practice. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  7. Dynamics of Microbial Functional Groups in Rhizosphere of Spring Barley

    Directory of Open Access Journals (Sweden)

    Vlad Stoian

    2016-11-01

    Full Text Available Plant rhizosphere is the portion of soil which is in direct contact with the plant roots. From the microbiological point of view, this area is characterized by strong dynamic of functional groups with high specificity towards the substrate available. Spring barley is a crop with high requirements to the composition of the microflora in the rhizosphere, disturbances produced by agronomic inputs affecting the stability of rhizospheric contact interfaces and ultimately the plant growth. Analysis of changes within the microbial community was carried out with the purpose of defining the disruptive impact of mineral inputs and potential of zeolite to reduce these disruptions. Microbial functional groups were analyzed on the basis of the CO2 export under the specific conditions of soil inoculation on specific substrates over a time period of incubation. Microresp detection plates allow evaluation of a large number of samples under identical conditions of inoculation and the establishment of dynamics of the entire microbial community. The dynamics of the entire microbial communities (basal respiration is stimulated to increase in case of unilateral application of zeolite and zeolite as a buffer for urea fertilization. General growth trend of microbial communities follows proportional the associated application of zeolite with urea, the most powerful non-symbiotic nitrogen fixation processes being stimulated by this combination of fertilizers. Simultaneously, an increase in the dynamics of denitrifiers was observed, also the decomposition of lignin and cellulose and biological crust formation due to the proliferation of cyanobacteria. Rhizosphere of barley plants is characterized by the presence of actinomycetes as dominant in functional microbial community of all experimental variants analyzed with a high capacity for biological degradation and raised mineralization of organic matter.

  8. Real-time estimation of dynamic functional connectivity networks.

    Science.gov (United States)

    Monti, Ricardo Pio; Lorenz, Romy; Braga, Rodrigo M; Anagnostopoulos, Christoforos; Leech, Robert; Montana, Giovanni

    2017-01-01

    Two novel and exciting avenues of neuroscientific research involve the study of task-driven dynamic reconfigurations of functional connectivity networks and the study of functional connectivity in real-time. While the former is a well-established field within neuroscience and has received considerable attention in recent years, the latter remains in its infancy. To date, the vast majority of real-time fMRI studies have focused on a single brain region at a time. This is due in part to the many challenges faced when estimating dynamic functional connectivity networks in real-time. In this work, we propose a novel methodology with which to accurately track changes in time-varying functional connectivity networks in real-time. The proposed method is shown to perform competitively when compared to state-of-the-art offline algorithms using both synthetic as well as real-time fMRI data. The proposed method is applied to motor task data from the Human Connectome Project as well as to data obtained from a visuospatial attention task. We demonstrate that the algorithm is able to accurately estimate task-related changes in network structure in real-time. Hum Brain Mapp 38:202-220, 2017. © 2016 Wiley Periodicals, Inc.

  9. Dynamical zeta functions for piecewise monotone maps of the interval

    CERN Document Server

    Ruelle, David

    2004-01-01

    Consider a space M, a map f:M\\to M, and a function g:M \\to {\\mathbb C}. The formal power series \\zeta (z) = \\exp \\sum ^\\infty _{m=1} \\frac {z^m}{m} \\sum _{x \\in \\mathrm {Fix}\\,f^m} \\prod ^{m-1}_{k=0} g (f^kx) yields an example of a dynamical zeta function. Such functions have unexpected analytic properties and interesting relations to the theory of dynamical systems, statistical mechanics, and the spectral theory of certain operators (transfer operators). The first part of this monograph presents a general introduction to this subject. The second part is a detailed study of the zeta functions associated with piecewise monotone maps of the interval [0,1]. In particular, Ruelle gives a proof of a generalized form of the Baladi-Keller theorem relating the poles of \\zeta (z) and the eigenvalues of the transfer operator. He also proves a theorem expressing the largest eigenvalue of the transfer operator in terms of the ergodic properties of (M,f,g).

  10. Lattice dynamics and disorder-induced contraction in functionalized graphene

    Science.gov (United States)

    Feng Huang, Liang; Zeng, Zhi

    2013-02-01

    The lattice dynamics and disorder-induced contraction in hydrogenated, fluorinated, and chlorinated graphene are studied by first-principles simulation. The effects of the functionalization on the phonon dispersions, Grüneissen constants, vibrational thermodynamic functions (free energy, internal energy, entropy, and heat capacity), thermal-expansion coefficients, and bulk moduli are systematically investigated. Functionalization changes the chemical-bond length, mass, thickness, vibrational-mode symmetry, and mode number, and subsequently has significant effects on the phonon dispersions and Grüneissen constants. Functionalization generally increases the vibrational thermodynamic functions, and their temperature dependences all present conventional isotope effects. Functionalization suppresses (enhances) the thermal contraction (expansion) of the lattice, due to the increases in the system mass, membrane thickness, and the compressibility of the phonons. Both the lattice-constant variation and the phonon thermalization contribute to the temperature dependence of the bulk modulus. Both pristine and hydrogenated graphene can be viewed as two kinds of materials having the Invar and Elinvar properties. The contribution to the lattice contraction in functionalized graphene from the conformation disorder (about 2.0%) is much larger than that by thermalization (<0.1% at 300 K), which explains the mismatch between the experimental and theoretical lattice constants.

  11. Functional data analysis for dynamical system identification of behavioral processes.

    Science.gov (United States)

    Trail, Jessica B; Collins, Linda M; Rivera, Daniel E; Li, Runze; Piper, Megan E; Baker, Timothy B

    2014-06-01

    Efficient new technology has made it straightforward for behavioral scientists to collect anywhere from several dozen to several thousand dense, repeated measurements on one or more time-varying variables. These intensive longitudinal data (ILD) are ideal for examining complex change over time but present new challenges that illustrate the need for more advanced analytic methods. For example, in ILD the temporal spacing of observations may be irregular, and individuals may be sampled at different times. Also, it is important to assess both how the outcome changes over time and the variation between participants' time-varying processes to make inferences about a particular intervention's effectiveness within the population of interest. The methods presented in this article integrate 2 innovative ILD analytic techniques: functional data analysis and dynamical systems modeling. An empirical application is presented using data from a smoking cessation clinical trial. Study participants provided 42 daily assessments of pre-quit and post-quit withdrawal symptoms. Regression splines were used to approximate smooth functions of craving and negative affect and to estimate the variables' derivatives for each participant. We then modeled the dynamics of nicotine craving using standard input-output dynamical systems models. These models provide a more detailed characterization of the post-quit craving process than do traditional longitudinal models, including information regarding the type, magnitude, and speed of the response to an input. The results, in conjunction with standard engineering control theory techniques, could potentially be used by tobacco researchers to develop a more effective smoking intervention.

  12. Brownian dynamics without Green's functions

    Energy Technology Data Exchange (ETDEWEB)

    Delong, Steven; Donev, Aleksandar, E-mail: donev@courant.nyu.edu [Courant Institute of Mathematical Sciences, New York University, New York, New York 10012 (United States); Usabiaga, Florencio Balboa; Delgado-Buscalioni, Rafael [Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Univeridad Autónoma de Madrid, Madrid 28049 (Spain); Griffith, Boyce E. [Courant Institute of Mathematical Sciences, New York University, New York, New York 10012 (United States); Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, New York 10016 (United States)

    2014-04-07

    We develop a Fluctuating Immersed Boundary (FIB) method for performing Brownian dynamics simulations of confined particle suspensions. Unlike traditional methods which employ analytical Green's functions for Stokes flow in the confined geometry, the FIB method uses a fluctuating finite-volume Stokes solver to generate the action of the response functions “on the fly.” Importantly, we demonstrate that both the deterministic terms necessary to capture the hydrodynamic interactions among the suspended particles, as well as the stochastic terms necessary to generate the hydrodynamically correlated Brownian motion, can be generated by solving the steady Stokes equations numerically only once per time step. This is accomplished by including a stochastic contribution to the stress tensor in the fluid equations consistent with fluctuating hydrodynamics. We develop novel temporal integrators that account for the multiplicative nature of the noise in the equations of Brownian dynamics and the strong dependence of the mobility on the configuration for confined systems. Notably, we propose a random finite difference approach to approximating the stochastic drift proportional to the divergence of the configuration-dependent mobility matrix. Through comparisons with analytical and existing computational results, we numerically demonstrate the ability of the FIB method to accurately capture both the static (equilibrium) and dynamic properties of interacting particles in flow.

  13. Dynamic fracture of functionally graded magnetoelectroelastic composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Stoynov, Y. [Faculty of Applied Mathematics and Informatics, Technical University of Sofia (Bulgaria); Dineva, P. [Institute of Mechanics, Bulgarian Academy of Sciences, Sofia (Bulgaria)

    2014-11-12

    The stress, magnetic and electric field analysis of multifunctional composites, weakened by impermeable cracks, is of fundamental importance for their structural integrity and reliable service performance. The aim is to study dynamic behavior of a plane of functionally graded magnetoelectroelastic composite with more than one crack. The coupled material properties vary exponentially in an arbitrary direction. The plane is subjected to anti-plane mechanical and in-plane electric and magnetic load. The boundary value problem described by the partial differential equations with variable coefficients is reduced to a non-hypersingular traction boundary integral equation based on the appropriate functional transform and frequency-dependent fundamental solution derived in a closed form by Radon transform. Software code based on the boundary integral equation method (BIEM) is developed, validated and inserted in numerical simulations. The obtained results show the sensitivity of the dynamic stress, magnetic and electric field concentration in the cracked plane to the type and characteristics of the dynamic load, to the location and cracks disposition, to the wave-crack-crack interactions and to the magnitude and direction of the material gradient.

  14. Multiscale functions, scale dynamics, and applications to partial differential equations

    Science.gov (United States)

    Cresson, Jacky; Pierret, Frédéric

    2016-05-01

    Modeling phenomena from experimental data always begins with a choice of hypothesis on the observed dynamics such as determinism, randomness, and differentiability. Depending on these choices, different behaviors can be observed. The natural question associated to the modeling problem is the following: "With a finite set of data concerning a phenomenon, can we recover its underlying nature? From this problem, we introduce in this paper the definition of multi-scale functions, scale calculus, and scale dynamics based on the time scale calculus [see Bohner, M. and Peterson, A., Dynamic Equations on Time Scales: An Introduction with Applications (Springer Science & Business Media, 2001)] which is used to introduce the notion of scale equations. These definitions will be illustrated on the multi-scale Okamoto's functions. Scale equations are analysed using scale regimes and the notion of asymptotic model for a scale equation under a particular scale regime. The introduced formalism explains why a single scale equation can produce distinct continuous models even if the equation is scale invariant. Typical examples of such equations are given by the scale Euler-Lagrange equation. We illustrate our results using the scale Newton's equation which gives rise to a non-linear diffusion equation or a non-linear Schrödinger equation as asymptotic continuous models depending on the particular fractional scale regime which is considered.

  15. Hash function construction using weighted complex dynamical networks

    Institute of Scientific and Technical Information of China (English)

    Song Yu-Rong; Jiang Guo-Ping

    2013-01-01

    A novel scheme to construct a hash function based on a weighted complex dynamical network (WCDN) generated from an original message is proposed in this paper.First,the original message is divided into blocks.Then,each block is divided into components,and the nodes and weighted edges are well defined from these components and their relations.Namely,the WCDN closely related to the original message is established.Furthermore,the node dynamics of the WCDN are chosen as a chaotic map.After chaotic iterations,quantization and exclusive-or operations,the fixed-length hash value is obtained.This scheme has the property that any tiny change in message can be diffused rapidly through the WCDN,leading to very different hash values.Analysis and simulation show that the scheme possesses good statistical properties,excellent confusion and diffusion,strong collision resistance and high efficiency.

  16. Multiscale simulations of anisotropic particles combining Brownian Dynamics and Green's Function Reaction Dynamics

    CERN Document Server

    Vijaykumar, Adithya; Wolde, Pieter Rein ten; Bolhuis, Peter G

    2016-01-01

    The modeling of complex reaction-diffusion processes in, for instance, cellular biochemical networks or self-assembling soft matter can be tremendously sped up by employing a multiscale algorithm which combines the mesoscopic Green's Function Reaction Dynamics (GFRD) method with explicit stochastic Brownian, Langevin, or deterministic Molecular Dynamics to treat reactants at the microscopic scale [A. Vijaykumar, P.G. Bolhuis and P.R. ten Wolde, J. Chem. Phys. {\\bf 43}, 21: 214102 (2015)]. Here we extend this multiscale BD-GFRD approach to include the orientational dynamics that is crucial to describe the anisotropic interactions often prevalent in biomolecular systems. We illustrate the novel algorithm using a simple patchy particle model. After validation of the algorithm we discuss its performance. The rotational BD-GFRD multiscale method will open up the possibility for large scale simulations of e.g. protein signalling networks.

  17. Neuropsychological and neurophysiological approaches to study of variants of Attention Deficit Hyperactivity Disorder

    Directory of Open Access Journals (Sweden)

    Matveyeva E. Yu.

    2012-06-01

    Full Text Available The present review carries out analysis of empirical studies concerning neuropsychological and neurophysiological mechanisms of Attention Deficit Hyperactivity Disorder (ADHD. The current data, regarding malfunctions of brain systems at various levels of aetiopathogenesis (genetic, neurotrasmitting, functioning of separate brain structure, are discussed. The article regards the character of deficit in various components of psychic activity in people with ADHD, namely, executive functions and temporary storage (working memory, activating and neurodynamic components of activity, separate operational characteristics, and motivational impairments of patients with ADHD. The possibility of disclosing some clinical variants of the ADHD syndrome, differing in mechanisms, is also discussed in the article.

  18. Dynamics of localized particles from density functional theory

    Science.gov (United States)

    Reinhardt, J.; Brader, J. M.

    2012-01-01

    A fundamental assumption of the dynamical density functional theory (DDFT) of colloidal systems is that a grand-canonical free-energy functional may be employed to generate the thermodynamic driving forces. Using one-dimensional hard rods as a model system, we analyze the validity of this key assumption and show that unphysical self-interactions of the tagged particle density fields, arising from coupling to a particle reservoir, are responsible for the excessively fast relaxation predicted by the theory. Moreover, our findings suggest that even employing a canonical functional would not lead to an improvement for many-particle systems, if only the total density is considered. We present several possible schemes to suppress these effects by incorporating tagged densities. When applied to confined systems, we demonstrate, using a simple example, that DDFT necessarily leads to delocalized tagged particle density distributions, which do not respect the fundamental geometrical constraints apparent in Brownian dynamics simulation data. The implication of these results for possible applications of DDFT to treat the glass transition are discussed.

  19. Dynamic density functional theory with hydrodynamic interactions and fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Donev, Aleksandar, E-mail: donev@courant.nyu.edu; Vanden-Eijnden, Eric, E-mail: eve2@courant.nyu.edu [Courant Institute of Mathematical Sciences, New York University, New York, New York 10012 (United States)

    2014-06-21

    We derive a closed equation for the empirical concentration of colloidal particles in the presence of both hydrodynamic and direct interactions. The ensemble average of our functional Langevin equation reproduces known deterministic Dynamic Density Functional Theory (DDFT) [M. Rex and H. Löwen, “Dynamical density functional theory with hydrodynamic interactions and colloids in unstable traps,” Phys. Rev. Lett. 101(14), 148302 (2008)], and, at the same time, it also describes the microscopic fluctuations around the mean behavior. We suggest separating the ideal (non-interacting) contribution from additional corrections due to pairwise interactions. We find that, for an incompressible fluid and in the absence of direct interactions, the mean concentration follows Fick's law just as for uncorrelated walkers. At the same time, the nature of the stochastic terms in fluctuating DDFT is shown to be distinctly different for hydrodynamically-correlated and uncorrelated walkers. This leads to striking differences in the behavior of the fluctuations around Fick's law, even in the absence of pairwise interactions. We connect our own prior work [A. Donev, T. G. Fai, and E. Vanden-Eijnden, “A reversible mesoscopic model of diffusion in liquids: from giant fluctuations to Fick's law,” J. Stat. Mech.: Theory Exp. (2014) P04004] on fluctuating hydrodynamics of diffusion in liquids to the DDFT literature, and demonstrate that the fluid cannot easily be eliminated from consideration if one wants to describe the collective diffusion in colloidal suspensions.

  20. Bacterial dynamics in steady-state biofilters: beyond functional stability.

    Science.gov (United States)

    Cabrol, Léa; Malhautier, Luc; Poly, Franck; Lepeuple, Anne-Sophie; Fanlo, Jean-Louis

    2012-01-01

    The spatial and temporal dynamics of microbial community structure and function were surveyed in duplicated woodchip-biofilters operated under constant conditions for 231 days. The contaminated gaseous stream for treatment was representative of composting emissions, included ammonia, dimethyl disulfide and a mixture of five oxygenated volatile organic compounds. The community structure and diversity were investigated by denaturing gradient gel electrophoresis on 16S rRNA gene fragments. During the first 42 days, microbial acclimatization revealed the influence of operating conditions and contaminant loading on the biofiltration community structure and diversity, as well as the limited impact of inoculum compared to the greater persistence of the endogenous woodchip community. During long-term operation, a high and stable removal efficiency was maintained despite a highly dynamic microbial community, suggesting the probable functional redundancy of the community. Most of the contaminant removal occurred in the first compartment, near the gas inlet, where the microbial diversity was the highest. The stratification of the microbial structures along the filter bed was statistically correlated to the longitudinal distribution of environmental conditions (selective pressure imposed by contaminant concentrations) and function (contaminant elimination capacity), highlighting the central role of the bacterial community. The reproducibility of microbial succession in replicates suggests that the community changes were presumably driven by a deterministic process.

  1. Moments of meson distribution functions with dynamical twisted mass fermions

    CERN Document Server

    Baron, R; Carbonell, J; Jansen, K; Liu, Z; Pène, O; Urbach, C

    2007-01-01

    We present our preliminary results on the lowest moment of quark distribution functions of the pion using two flavor dynamical simulations with Wilson twisted mass fermions at maximal twist. The calculation is done in a range of pion masses from 300 to 500 MeV. A stochastic source method is used to reduce inversions in calculating propagators. Finite volume effects at the lowest quark mass are examined by using two different lattice volumes. Our results show that we achieve statistical errors of only a few percent. We plan to compute renormalization constants non-perturbatively and extend the calculation to two more lattice spacings and to the nucleons.

  2. Dynamically Consistent Nonlinear Evaluations with Their Generating Functions in Lp

    Institute of Scientific and Technical Information of China (English)

    Feng HU

    2013-01-01

    In this paper,we study dynamically consistent nonlinear evaluations in Lp (1 < p < 2).One of our aim is to obtain the following result:under a domination condition,an Ft-consistent evaluation is an ∑g-evaluation in Lp.Furthermore,without the assumption that the generating function g(t,ω,y,z) is continuous with respect to t,we provide some useful characterizations of an εg-evaluation by g and give some applications.These results include and extend some existing results.

  3. Neurophysiological Problems in Snow Bound High Altitude Areas

    Directory of Open Access Journals (Sweden)

    W. Selvamurthy

    1984-10-01

    Full Text Available A series of studies have been conducted to evaluate the neurophysiological responses in young healthy soldiers during acclimatization at 3,500m altitude in Western Himalayas. The responses of autonomic nervous system, electroencephalogram hypothalamic thermoregulatory efficiency, orthostatic tolerance, sleep profile and effects of sleep deprivation have been studied in fresh inductees during three to five weeks of acclimatization at high altitude and compared with those of one year acclimatized lowlanders and high altitude natives. Physiological significance of these neurophysiological responses in the process of altitude adaptation is discussed in the light of current knowledge in the field.

  4. Mining dynamic noteworthy functions in software execution sequences.

    Science.gov (United States)

    Zhang, Bing; Huang, Guoyan; Wang, Yuqian; He, Haitao; Ren, Jiadong

    2017-01-01

    As the quality of crucial entities can directly affect that of software, their identification and protection become an important premise for effective software development, management, maintenance and testing, which thus contribute to improving the software quality and its attack-defending ability. Most analysis and evaluation on important entities like codes-based static structure analysis are on the destruction of the actual software running. In this paper, from the perspective of software execution process, we proposed an approach to mine dynamic noteworthy functions (DNFM)in software execution sequences. First, according to software decompiling and tracking stack changes, the execution traces composed of a series of function addresses were acquired. Then these traces were modeled as execution sequences and then simplified so as to get simplified sequences (SFS), followed by the extraction of patterns through pattern extraction (PE) algorithm from SFS. After that, evaluating indicators inner-importance and inter-importance were designed to measure the noteworthiness of functions in DNFM algorithm. Finally, these functions were sorted by their noteworthiness. Comparison and contrast were conducted on the experiment results from two traditional complex network-based node mining methods, namely PageRank and DegreeRank. The results show that the DNFM method can mine noteworthy functions in software effectively and precisely.

  5. Mining dynamic noteworthy functions in software execution sequences

    Science.gov (United States)

    Huang, Guoyan; Wang, Yuqian; He, Haitao; Ren, Jiadong

    2017-01-01

    As the quality of crucial entities can directly affect that of software, their identification and protection become an important premise for effective software development, management, maintenance and testing, which thus contribute to improving the software quality and its attack-defending ability. Most analysis and evaluation on important entities like codes-based static structure analysis are on the destruction of the actual software running. In this paper, from the perspective of software execution process, we proposed an approach to mine dynamic noteworthy functions (DNFM)in software execution sequences. First, according to software decompiling and tracking stack changes, the execution traces composed of a series of function addresses were acquired. Then these traces were modeled as execution sequences and then simplified so as to get simplified sequences (SFS), followed by the extraction of patterns through pattern extraction (PE) algorithm from SFS. After that, evaluating indicators inner-importance and inter-importance were designed to measure the noteworthiness of functions in DNFM algorithm. Finally, these functions were sorted by their noteworthiness. Comparison and contrast were conducted on the experiment results from two traditional complex network-based node mining methods, namely PageRank and DegreeRank. The results show that the DNFM method can mine noteworthy functions in software effectively and precisely. PMID:28278276

  6. Mindfulness and dynamic functional neural connectivity in children and adolescents.

    Science.gov (United States)

    Marusak, Hilary A; Elrahal, Farrah; Peters, Craig A; Kundu, Prantik; Lombardo, Michael V; Calhoun, Vince D; Goldberg, Elimelech K; Cohen, Cindy; Taub, Jeffrey W; Rabinak, Christine A

    2017-09-05

    Interventions that promote mindfulness consistently show salutary effects on cognition and emotional wellbeing in adults, and more recently, in children and adolescents. However, we lack understanding of the neurobiological mechanisms underlying mindfulness in youth that should allow for more judicious application of these interventions in clinical and educational settings. Using multi-echo multi-band fMRI, we examined dynamic (i.e., time-varying) and conventional static resting-state connectivity between core neurocognitive networks (i.e., salience/emotion, default mode, central executive) in 42 children and adolescents (ages 6-17). We found that trait mindfulness in youth relates to dynamic but not static resting-state connectivity. Specifically, more mindful youth transitioned more between brain states over the course of the scan, spent overall less time in a certain connectivity state, and showed a state-specific reduction in connectivity between salience/emotion and central executive networks. The number of state transitions mediated the link between higher mindfulness and lower anxiety, providing new insights into potential neural mechanisms underlying benefits of mindfulness on psychological health in youth. Our results provide new evidence that mindfulness in youth relates to functional neural dynamics and interactions between neurocognitive networks, over time. Copyright © 2017. Published by Elsevier B.V.

  7. Functional Loop Dynamics of the Streptavidin-Biotin Complex

    Science.gov (United States)

    Song, Jianing; Li, Yongle; Ji, Changge; Zhang, John Z. H.

    2015-01-01

    Accelerated molecular dynamics (aMD) simulation is employed to study the functional dynamics of the flexible loop3-4 in the strong-binding streptavidin-biotin complex system. Conventional molecular (cMD) simulation is also performed for comparison. The present study reveals the following important properties of the loop dynamics: (1) The transition of loop3-4 from open to closed state is observed in 200 ns aMD simulation. (2) In the absence of biotin binding, the open-state streptavidin is more stable, which is consistent with experimental evidences. The free energy (ΔG) difference is about 5 kcal/mol between two states. But with biotin binding, the closed state is more stable due to electrostatic and hydrophobic interactions between the loop3-4 and biotin. (3) The closure of loop3-4 is concerted to the stable binding of biotin to streptavidin. When the loop3-4 is in its open-state, biotin moves out of the binding pocket, indicating that the interactions between the loop3-4 and biotin are essential in trapping biotin in the binding pocket. (4) In the tetrameric streptavidin system, the conformational change of the loop3-4 in each monomer is independent of each other. That is, there is no cooperative binding for biotin bound to the four subunits of the tetramer.

  8. [Anaesthetic management of excision of a cervical intraspinal tumor with intraoperative neurophysiologic monitoring in a pregnant woman at 29 weeks].

    Science.gov (United States)

    Guerrero-Domínguez, R; González-González, G; Rubio-Romero, R; Federero-Martínez, F; Jiménez, I

    2016-05-01

    The intraoperative neurophysiological monitoring is a technique used to test and monitor nervous function. This technique has become essential in some neurosurgery interventions, since it avoids neurological injuries during surgery and reduces morbidity. The experience of intraoperative neurophysiological monitoring is limited in some clinical cases due to the low incidence of pregnant women undergoing a surgical procedure. A case is presented of a 29-weeks pregnant woman suffering from a cervical intraspinal tumour with intense pain, which required surgery. The collaboration of a multidisciplinary team composed of anaesthesiologists, neurosurgeons, neurophysiologists and obstetricians, the continuous monitoring of the foetus, the intraoperative neurophysiological monitoring, and maintaining the neurophysiological and utero-placental variables were crucial for the proper development of the surgery. According to our experience and the limited publications in the literature, no damaging effects of this technique were detected at maternal-foetal level. On the contrary, it brings important benefits during the surgery and for the final result. Copyright © 2015 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.

  9. Ephemeral penalty functions for contact-impact dynamics

    Science.gov (United States)

    De La Fuente, Horacio M.; Felippa, Carlos A.

    1991-01-01

    The use of penalty functions to treat a class of structural contact-impact problems is investigated, with emphasis on ones in which the impact phenomena are primarily nondestructive in nature and in which only the gross characterization of the response is required. The dynamic equations of motion are integrated by the difference method. The penalty is represented as an ephemeral fictitious nonlinear spring that is inserted on anticipation of contact. The magnitude and variation of the penalty force is determined through energy balancing considerations. The 'bell shape' of the penalty force function for positive gap was found to be satisfactory, as it depends on only two parameters that can be directly assigned the physical meaning of force and distance. The determination of force law parameters by energy balance worked well. The incorporation of restitution coefficients by the area balancing method yielded excellent results, and no substantial modifications are anticipated. Extensional penalty springs are obviously sufficient for the simple examples treated.

  10. Diffusion of innovations dynamics, biological growth and catenary function

    Science.gov (United States)

    Guseo, Renato

    2016-12-01

    The catenary function has a well-known role in determining the shape of chains and cables supported at their ends under the force of gravity. This enables design using a specific static equilibrium over space. Its reflected version, the catenary arch, allows the construction of bridges and arches exploiting the dual equilibrium property under uniform compression. In this paper, we emphasize a further connection with well-known aggregate biological growth models over time and the related diffusion of innovation key paradigms (e.g., logistic and Bass distributions over time) that determine self-sustaining evolutionary growth dynamics in naturalistic and socio-economic contexts. Moreover, we prove that the 'local entropy function', related to a logistic distribution, is a catenary and vice versa. This special invariance may be explained, at a deeper level, through the Verlinde's conjecture on the origin of gravity as an effect of the entropic force.

  11. Time-dependent density-functional description of nuclear dynamics

    CERN Document Server

    Nakatsukasa, Takashi; Matsuo, Masayuki; Yabana, Kazuhiro

    2016-01-01

    We present the basic concepts and recent developments in the time-dependent density functional theory (TDDFT) for describing nuclear dynamics at low energy. The symmetry breaking is inherent in nuclear energy density functionals (EDFs), which provides a practical description of important correlations at the ground state. Properties of elementary modes of excitation are strongly influenced by the symmetry breaking and can be studied with TDDFT. In particular, a number of recent developments in the linear response calculation have demonstrated their usefulness in description of collective modes of excitation in nuclei. Unrestricted real-time calculations have also become available in recent years, with new developments for quantitative description of nuclear collision phenomena. There are, however, limitations in the real-time approach; for instance, it cannot describe the many-body quantum tunneling. Thus, we treat the quantum fluctuations associated with slow collective motions assuming that time evolution of...

  12. Scale effects in the dynamic transfer functions for cavitating inducers

    Science.gov (United States)

    Brennen, C. E.; Meissner, C.; Lo, E. Y.; Hoffman, G. S.

    1980-01-01

    Dynamic transfer functions for two cavitating inducers of the same geometry but different size are presented, compared and discussed. The transfer functions for each inducer indicate similar trends as the cavitation number is decreased; only minor changes are noted with changes in the flow coefficient, the uniformity of the inlet flow or the temperature of the water (21-74 C). The non-dimensional results for the two sizes are compared with themselves and with theoretical calculations based on the bubbly flow model. All three sets of results compare well and lend further credence to the theoretical model. The best values of the two parameters in the model are evaluated and recommended for use in applications.

  13. Method and apparatus for monitoring dynamic cardiovascular function using n-dimensional representatives of critical functions

    Science.gov (United States)

    Westinskow, Dwayne (Inventor); Agutter, James (Inventor); Syroid, Noah (Inventor); Strayer, David (Inventor); Albert, Robert (Inventor); Wachter, S. Blake (Inventor); Drews, Frank (Inventor)

    2010-01-01

    A method, system, apparatus and device for the monitoring, diagnosis and evaluation of the state of a dynamic pulmonary system is disclosed. This method and system provides the processing means for receiving sensed and/or simulated data, converting such data into a displayable object format and displaying such objects in a manner such that the interrelationships between the respective variables can be correlated and identified by a user. This invention provides for the rapid cognitive grasp of the overall state of a pulmonary critical function with respect to a dynamic system.

  14. A Comparative Study on Optimal Structural Dynamics Using Wavelet Functions

    Directory of Open Access Journals (Sweden)

    Seyed Hossein Mahdavi

    2015-01-01

    Full Text Available Wavelet solution techniques have become the focus of interest among researchers in different disciplines of science and technology. In this paper, implementation of two different wavelet basis functions has been comparatively considered for dynamic analysis of structures. For this aim, computational technique is developed by using free scale of simple Haar wavelet, initially. Later, complex and continuous Chebyshev wavelet basis functions are presented to improve the time history analysis of structures. Free-scaled Chebyshev coefficient matrix and operation of integration are derived to directly approximate displacements of the corresponding system. In addition, stability of responses has been investigated for the proposed algorithm of discrete Haar wavelet compared against continuous Chebyshev wavelet. To demonstrate the validity of the wavelet-based algorithms, aforesaid schemes have been extended to the linear and nonlinear structural dynamics. The effectiveness of free-scaled Chebyshev wavelet has been compared with simple Haar wavelet and two common integration methods. It is deduced that either indirect method proposed for discrete Haar wavelet or direct approach for continuous Chebyshev wavelet is unconditionally stable. Finally, it is concluded that numerical solution is highly benefited by the least computation time involved and high accuracy of response, particularly using low scale of complex Chebyshev wavelet.

  15. Multiscale functions, Scale dynamics and Applications to partial differential equations

    CERN Document Server

    Cresson, Jacky

    2015-01-01

    Modeling phenomena from experimental data, always begin with a \\emph{choice of hypothesis} on the observed dynamics such as \\emph{determinism}, \\emph{randomness}, \\emph{derivability} etc. Depending on these choices, different behaviors can be observed. The natural question associated to the modeling problem is the following : \\emph{"With a finite set of data concerning a phenomenon, can we recover its underlying nature ?} From this problem, we introduce in this paper the definition of \\emph{multi-scale functions}, \\emph{scale calculus} and \\emph{scale dynamics} based on the \\emph{time-scale calculus} (see \\cite{bohn}). These definitions will be illustrated on the \\emph{multi-scale Okamoto's functions}. The introduced formalism explains why there exists different continuous models associated to an equation with different \\emph{scale regimes} whereas the equation is \\emph{scale invariant}. A typical example of such an equation, is the \\emph{Euler-Lagrange equation} and particularly the \\emph{Newton's equation} ...

  16. Using neurophysiological signals that reflect cognitive or affective state: six recommendations to avoid common pitfalls

    NARCIS (Netherlands)

    Brouwer, A.M.; Zander, T.O.; Erp, J.B.F. van; Korteling, J.E.; Bronkhorst, A.W.

    2015-01-01

    Estimating cognitive or affective state from neurophysiological signals and designing applications that make use of this information requires expertise in many disciplines such as neurophysiology, machine learning, experimental psychology, and human factors. This makes it difficult to perform resear

  17. Neuroanatomy, neurophysiology, and dysfunction of the female lower urinary tract: a review.

    Science.gov (United States)

    Unger, Cécile A; Tunitsky-Bitton, Elena; Muffly, Tyler; Barber, Matthew D

    2014-01-01

    The 2 major functions of the lower urinary tract are the storage and emptying of urine. These processes are controlled by complex neurophysiologic mechanisms and are subject to injury and disease. When there is disruption of the neurologic control centers, dysfunction of the lower urinary tract may occur. This is sometimes referred to as the "neurogenic bladder." The manifestation of dysfunction depends on the level of injury and severity of disruption. Patients with lesions above the spinal cord often have detrusor overactivity with no disruption in detrusor-sphincter coordination. Patients with well-defined suprasacral spinal cord injuries usually present with intact reflex detrusor activity but have detrusor sphincter dyssynergia, whereas injuries to or below the sacral spinal cord usually lead to persistent detrusor areflexia. A complete gynecologic, urologic, and neurologic examination should be performed when evaluating patients with neurologic lower urinary tract dysfunction. In addition, urodynamic studies and neurophysiologic testing can be used in certain circumstances to help establish diagnosis or to achieve better understanding of a patient's vesicourethral functioning. In the management of neurogenic lower urinary tract dysfunction, the primary goal is improvement of a patient's quality of life. Second to this is the prevention of chronic damage to the bladder and kidneys, which can lead to worsening impairment and symptoms. Treatment is often multifactorial, including behavioral modifications, bladder training programs, and pharmacotherapy. Surgical procedures are often a last resort option for management. An understanding of the basic neurophysiologic mechanisms of the lower urinary tract can guide providers in their evaluation and treatment of patients who present with lower urinary tract disorders. As neurologic diseases progress, voiding function often changes or worsens, necessitating a good understanding of the underlying physiology in question.

  18. Neurophysiological characterization of persistent pain after laparoscopic inguinal hernia repair

    DEFF Research Database (Denmark)

    Linderoth, G; Kehlet, H; Aasvang, E K;

    2011-01-01

    About 2-5% of patients undergoing laparoscopic inguinal repair experience persistent pain influencing everyday activities. However, compared with persistent pain after open repair, the combined clinical and neurophysiological characteristics have not been described in detail. Thus, the aim...... of the study was to describe and classify patients with severe persistent pain after laparoscopic herniorrhaphy....

  19. The OMPAT Level I Neurophysiological Performance Assessment Battery: NPPAB.

    Science.gov (United States)

    1991-12-01

    24 11. HEARTRATE ........................................................... 26 AooeIsson For / DT10 TAB El...Electroencephalogram (EEG) Recording 8. Selective attention task 9. Heartrate The OMPAT’s recommended procedures for administering these tests are outlined...Selective Auditory Attention." Electroencephalography and Clinical Neurophysiology, Vol. 49, pp. 277-290, 1980. 25 11. HEARTRATE TASK DESCRIPTION An

  20. At the Root of Embodied Cognition: Cognitive Science Meets Neurophysiology

    Science.gov (United States)

    Garbarini, Francesca; Adenzato, Mauro

    2004-01-01

    Recent experimental research in the field of neurophysiology has led to the discovery of two classes of visuomotor neurons: canonical neurons and mirror neurons. In light of these studies, we propose here an overview of two classical themes in the cognitive science panorama: James Gibson's theory of affordances and Eleanor Rosch's principles of…

  1. Is There a Link between Learning Style and Neurophysiology?

    Science.gov (United States)

    Garger, Stephen

    1990-01-01

    To succeed in traditional classrooms, students must first learn not to talk, fidget, or move around. The neurophysiology field suggests that some students who do not succeed in school fail initially because their physiological needs are being controverted. This article explores the relationship between learning style and the field of…

  2. Neurophysiological characterization of persistent pain after laparoscopic inguinal hernia repair

    DEFF Research Database (Denmark)

    Linderoth, G; Kehlet, H; Aasvang, E K

    2011-01-01

    About 2-5% of patients undergoing laparoscopic inguinal repair experience persistent pain influencing everyday activities. However, compared with persistent pain after open repair, the combined clinical and neurophysiological characteristics have not been described in detail. Thus, the aim...... of the study was to describe and classify patients with severe persistent pain after laparoscopic herniorrhaphy....

  3. Unihemispheric sleep and asymmetrical sleep: behavioral, neurophysiological, and functional perspectives

    OpenAIRE

    Mascetti GG

    2016-01-01

    Gian Gastone Mascetti Department of General Psychology, University of Padova, Padova, Italy Abstract: Sleep is a behavior characterized by a typical body posture, both eyes' closure, raised sensory threshold, distinctive electrographic signs, and a marked decrease of motor activity. In addition, sleep is a periodically necessary behavior and therefore, in the majority of animals, it involves the whole brain and body. However, certain marine mammals and species of birds show a differe...

  4. Computational approaches to spatial orientation: from transfer functions to dynamic Bayesian inference.

    Science.gov (United States)

    MacNeilage, Paul R; Ganesan, Narayan; Angelaki, Dora E

    2008-12-01

    Spatial orientation is the sense of body orientation and self-motion relative to the stationary environment, fundamental to normal waking behavior and control of everyday motor actions including eye movements, postural control, and locomotion. The brain achieves spatial orientation by integrating visual, vestibular, and somatosensory signals. Over the past years, considerable progress has been made toward understanding how these signals are processed by the brain using multiple computational approaches that include frequency domain analysis, the concept of internal models, observer theory, Bayesian theory, and Kalman filtering. Here we put these approaches in context by examining the specific questions that can be addressed by each technique and some of the scientific insights that have resulted. We conclude with a recent application of particle filtering, a probabilistic simulation technique that aims to generate the most likely state estimates by incorporating internal models of sensor dynamics and physical laws and noise associated with sensory processing as well as prior knowledge or experience. In this framework, priors for low angular velocity and linear acceleration can explain the phenomena of velocity storage and frequency segregation, both of which have been modeled previously using arbitrary low-pass filtering. How Kalman and particle filters may be implemented by the brain is an emerging field. Unlike past neurophysiological research that has aimed to characterize mean responses of single neurons, investigations of dynamic Bayesian inference should attempt to characterize population activities that constitute probabilistic representations of sensory and prior information.

  5. Functional dynamic factor models with application to yield curve forecasting

    KAUST Repository

    Hays, Spencer

    2012-09-01

    Accurate forecasting of zero coupon bond yields for a continuum of maturities is paramount to bond portfolio management and derivative security pricing. Yet a universal model for yield curve forecasting has been elusive, and prior attempts often resulted in a trade-off between goodness of fit and consistency with economic theory. To address this, herein we propose a novel formulation which connects the dynamic factor model (DFM) framework with concepts from functional data analysis: a DFM with functional factor loading curves. This results in a model capable of forecasting functional time series. Further, in the yield curve context we show that the model retains economic interpretation. Model estimation is achieved through an expectation- maximization algorithm, where the time series parameters and factor loading curves are simultaneously estimated in a single step. Efficient computing is implemented and a data-driven smoothing parameter is nicely incorporated. We show that our model performs very well on forecasting actual yield data compared with existing approaches, especially in regard to profit-based assessment for an innovative trading exercise. We further illustrate the viability of our model to applications outside of yield forecasting.

  6. Structure/Function/Dynamics of Photosystem II Plastoquinone Binding Sites

    Science.gov (United States)

    Lambreva, Maya D.; Russo, Daniela; Polticelli, Fabio; Scognamiglio, Viviana; Antonacci, Amina; Zobnina, Veranika; Campi, Gaetano; Rea, Giuseppina

    2014-01-01

    Photosystem II (PSII) continuously attracts the attention of researchers aiming to unravel the riddle of its functioning and efficiency fundamental for all life on Earth. Besides, an increasing number of biotechnological applications have been envisaged exploiting and mimicking the unique properties of this macromolecular pigment-protein complex. The PSII organization and working principles have inspired the design of electrochemical water splitting schemes and charge separating triads in energy storage systems as well as biochips and sensors for environmental, agricultural and industrial screening of toxic compounds. An intriguing opportunity is the development of sensor devices, exploiting native or manipulated PSII complexes or ad hoc synthesized polypeptides mimicking the PSII reaction centre proteins as bio-sensing elements. This review offers a concise overview of the recent improvements in the understanding of structure and function of PSII donor side, with focus on the interactions of the plastoquinone cofactors with the surrounding environment and operational features. Furthermore, studies focused on photosynthetic proteins structure/function/dynamics and computational analyses aimed at rational design of high-quality bio-recognition elements in biosensor devices are discussed. PMID:24678671

  7. Function-valued adaptive dynamics and optimal control theory.

    Science.gov (United States)

    Parvinen, Kalle; Heino, Mikko; Dieckmann, Ulf

    2013-09-01

    In this article we further develop the theory of adaptive dynamics of function-valued traits. Previous work has concentrated on models for which invasion fitness can be written as an integral in which the integrand for each argument value is a function of the strategy value at that argument value only. For this type of models of direct effect, singular strategies can be found using the calculus of variations, with singular strategies needing to satisfy Euler's equation with environmental feedback. In a broader, more mechanistically oriented class of models, the function-valued strategy affects a process described by differential equations, and fitness can be expressed as an integral in which the integrand for each argument value depends both on the strategy and on process variables at that argument value. In general, the calculus of variations cannot help analyzing this much broader class of models. Here we explain how to find singular strategies in this class of process-mediated models using optimal control theory. In particular, we show that singular strategies need to satisfy Pontryagin's maximum principle with environmental feedback. We demonstrate the utility of this approach by studying the evolution of strategies determining seasonal flowering schedules.

  8. Multimodal neurophysiological and psychometric evaluation among patients with systemic lupus erythematosus

    Directory of Open Access Journals (Sweden)

    Shehata GA

    2011-04-01

    Full Text Available Ghaydaa A Shehata1, Yasser MB Elserogy2, Hossam Eddin K Ahmad2, Mohamed I Abdel-Kareem3, Ashraf M Al-kabeer4, Mohamed M Rayan2, Mohamed ES Abd El-Baky 1Department of Neurology; 2Department of Psychiatry, Assiut University, Egypt; 3Department of Rheumatology, Physical Medicine and Rehabilitation; 4Department of Internal Medicine, Faculty of Medicine, Al-Azhar University, Assiut, EgyptObjective: To determine some of the neuropsychiatric manifestations of systemic lupus erythematosus (SLE by applying multimodal neurophysiological and psychometric studies.Patients and methods: Twenty-six SLE patients were evaluated for neurological and psychiatric disorders and compared with 26 healthy controls matched for age, sex, education, and social class. The severity of SLE disease was assessed. Each subject was subjected to the following examinations: laboratory, neurophysiology, magnetic resonance imaging of the brain, transcranial duplex, Modified Mini-mental State Examination, Cognitive Assessment Scale Inventory, Hamilton Depression Scale, and Hamilton Anxiety Scale.Results: The mean age of subjects was 25.9 ± 8.9 years. The most prevalent neurological manifestations were (in order of frequency anxiety in 17 cases (65.4%, depression in 15 cases (57.7%, headache in 10 cases (38.5%, peripheral neuropathy in 7 cases (26.9%, seizures in 6 cases (23.1%, psychosis in 5 cases (19.2%, dementia in 4 cases (15.4%, radiculopathy in 4 cases (15.4%, myositis in 3 cases (11.5%, and stroke in 2 cases (7.7%. There was a significant affection in amplitude of the ulnar nerve, cognitive function impairment, and electroencephalography changes. There was a significant increased mean velocity and decreased Pulsatility Index of the most studied intracranial vessels in the patients.Conclusion: The use of multimodal neurophysiological, transcranial duplex, and psychometric scales increases the sensitivity for detecting nervous system involvement.Keywords: SLE, SLEDAI

  9. Aircraft path planning for optimal imaging using dynamic cost functions

    Science.gov (United States)

    Christie, Gordon; Chaudhry, Haseeb; Kochersberger, Kevin

    2015-05-01

    Unmanned aircraft development has accelerated with recent technological improvements in sensing and communications, which has resulted in an "applications lag" for how these aircraft can best be utilized. The aircraft are becoming smaller, more maneuverable and have longer endurance to perform sensing and sampling missions, but operating them aggressively to exploit these capabilities has not been a primary focus in unmanned systems development. This paper addresses a means of aerial vehicle path planning to provide a realistic optimal path in acquiring imagery for structure from motion (SfM) reconstructions and performing radiation surveys. This method will allow SfM reconstructions to occur accurately and with minimal flight time so that the reconstructions can be executed efficiently. An assumption is made that we have 3D point cloud data available prior to the flight. A discrete set of scan lines are proposed for the given area that are scored based on visibility of the scene. Our approach finds a time-efficient path and calculates trajectories between scan lines and over obstacles encountered along those scan lines. Aircraft dynamics are incorporated into the path planning algorithm as dynamic cost functions to create optimal imaging paths in minimum time. Simulations of the path planning algorithm are shown for an urban environment. We also present our approach for image-based terrain mapping, which is able to efficiently perform a 3D reconstruction of a large area without the use of GPS data.

  10. High-speed imaging reveals neurophysiological links to behavior in an animal model of depression.

    Science.gov (United States)

    Airan, Raag D; Meltzer, Leslie A; Roy, Madhuri; Gong, Yuqing; Chen, Han; Deisseroth, Karl

    2007-08-10

    The hippocampus is one of several brain areas thought to play a central role in affective behaviors, but the underlying local network dynamics are not understood. We used quantitative voltage-sensitive dye imaging to probe hippocampal dynamics with millisecond resolution in brain slices after bidirectional modulation of affective state in rat models of depression. We found that a simple measure of real-time activity-stimulus-evoked percolation of activity through the dentate gyrus relative to the hippocampal output subfield-accounted for induced changes in animal behavior independent of the underlying mechanism of action of the treatments. Our results define a circuit-level neurophysiological endophenotype for affective behavior and suggest an approach to understanding circuit-level substrates underlying psychiatric disease symptoms.

  11. [Current neurophysiological tests and revised JSCN technical standards for clinical EEG].

    Science.gov (United States)

    Ishiyama, Yoji

    2003-06-01

    The purpose of this lecture is to review the development of current neurophysiology and the revised standard of society for clinical EEG. 1. The improvement of neurophysiological tests. 1) EEG and evoked potential: EEG and evoked potential testing includes the routine EEG recording, EEG monitoring in surgical operation, all night sleep polygraph for the diagnosis of sleep apnea syndrome and many kinds of brain evoked potentials. Especially, the P300 component in the ERP(event-related evoked potential) is useful for the testing of essential brain functions. 2) EMG and evoked EMG: These tests are applied for the diagnosis of neurogenic, myogenic and neuromuscular junction disorder, and also the single fiber EMG using micro needle electrode is useful for the diagnosis of myasthenia gravis. Motor and sensory nerve conduction velocity are calculated from the latency of evoked EMGs. Furthermore, the distribution of these conduction velocities in many nerve fibers is measured by the collision technique. 3) Other tests: Near-infrared spectroscopy for the testing of brain functions has made rapid progress, and the transcranial magnetic stimulation method has come to be used for evaluation of functional diseases in the pyramidal tract, cerebellum and the spinal cord. 2. The revised JSCN technical standards for clinical EEG. The revised recording conditions of ECI(electro cerebral inactivity: flat EEG) in brain death are the focus of this lecture.

  12. The influence of cholesterol on membrane protein structure, function, and dynamics studied by molecular dynamics simulations.

    Science.gov (United States)

    Grouleff, Julie; Irudayam, Sheeba Jem; Skeby, Katrine K; Schiøtt, Birgit

    2015-09-01

    The plasma membrane, which encapsulates human cells, is composed of a complex mixture of lipids and embedded proteins. Emerging knowledge points towards the lipids as having a regulating role in protein function. Furthermore, insight from protein crystallography has revealed several different types of lipids intimately bound to membrane proteins and peptides, hereby possibly pointing to a site of action for the observed regulation. Cholesterol is among the lipid membrane constituents most often observed to be co-crystallized with membrane proteins, and the cholesterol levels in cell membranes have been found to play an essential role in health and disease. Remarkably little is known about the mechanism of lipid regulation of membrane protein function in health as well as in disease. Herein, we review molecular dynamics simulation studies aimed at investigating the effect of cholesterol on membrane protein and peptide properties. This article is part of a Special Issue entitled: Lipid-protein interactions. Copyright © 2015. Published by Elsevier B.V.

  13. Animal diversity and ecosystem functioning in dynamic food webs

    Science.gov (United States)

    Schneider, Florian D.; Brose, Ulrich; Rall, Björn C.; Guill, Christian

    2016-10-01

    Species diversity is changing globally and locally, but the complexity of ecological communities hampers a general understanding of the consequences of animal species loss on ecosystem functioning. High animal diversity increases complementarity of herbivores but also increases feeding rates within the consumer guild. Depending on the balance of these counteracting mechanisms, species-rich animal communities may put plants under top-down control or may release them from grazing pressure. Using a dynamic food-web model with body-mass constraints, we simulate ecosystem functions of 20,000 communities of varying animal diversity. We show that diverse animal communities accumulate more biomass and are more exploitative on plants, despite their higher rates of intra-guild predation. However, they do not reduce plant biomass because the communities are composed of larger, and thus energetically more efficient, plant and animal species. This plasticity of community body-size structure reconciles the debate on the consequences of animal species loss for primary productivity.

  14. Functional diversity and evolutionary dynamics of thermoTRP channels.

    Science.gov (United States)

    Saito, Shigeru; Tominaga, Makoto

    2015-03-01

    Animals have evolved sophisticated physiological systems for sensing ambient temperature since changes in environmental temperatures affect various biological processes. Thermosensitive transient receptor potential (thermoTRP) channels serve as thermal sensors in diverse animal species. They are multimodal receptors that are activated by temperature as well as other physical and chemical stimuli. Since thermoTRP channels are calcium permeable non-selective cation channels, their activation leads to an influx of calcium and sodium ions into the cell and triggers downstream signal transduction. ThermoTRP channels have been characterized in diverse animal species over the past several years, illuminating the diversification of thermoTRP channels in the course of evolution. The gene repertoires of thermoTRP channels differ among animal species. Additionally, in some cases, the temperature and chemical sensitivities among orthologous thermoTRP channels vary among species. The evolutionary flexibility of thermoTRP channels enabled them to contribute to unique physiological systems such as infrared sensation in snakes and bats and seasonal adaptation in silk moth. On the other hand, the functional differences of thermoTRP channels among species have been utilized for understanding the molecular basis for their activation (or inhibition) mechanisms, and amino acid residues (or domains) responsible for the respective channel properties have been identified in various thermoTRP channels. Here we summarize the current understanding of the functional diversity and evolutionary dynamics of thermoTRP channels.

  15. Green’s function molecular dynamics meets discrete dislocation plasticity

    Science.gov (United States)

    Venugopalan, Syam P.; Müser, Martin H.; Nicola, Lucia

    2017-09-01

    Metals deform plastically at the asperity level when brought in contact with a counter body even when the nominal contact pressure is small. Modeling the plasticity of solids with rough surfaces is challenging due to the multi-scale nature of surface roughness and the length-scale dependence of plasticity. While discrete-dislocation plasticity (DDP) simulations capture size-dependent plasticity by keeping track of the motion of individual dislocations, only simple two-dimensional surface geometries have so far been studied with DDP. The main computational bottleneck in contact problems modeled by DDP is the calculation of the dislocation image fields. We address this issue by combining two-dimensional DDP with Green’s function molecular dynamics. The resulting method allows for an efficient boundary-value-method based treatment of elasticity in the presence of dislocations. We demonstrate that our method captures plasticity quantitatively from single to many dislocations and that it scales more favorably with system size than conventional methods. We also derive the relevant Green’s functions for elastic slabs of finite width allowing arbitrary boundary conditions on top and bottom surface to be simulated.

  16. Quantification of functional dynamics of membrane proteins reconstituted in nanodiscs membranes by single turnover functional readout

    DEFF Research Database (Denmark)

    Moses, Matias Emil; Hedegård, Per; Hatzakis, Nikos

    2016-01-01

    and quantification of the activity, abundance, and lifetime of multiple states and transient intermediates in the energy landscape that are typically averaged out in nonsynchronized ensemble measurements. Studying the function of membrane proteins at the single-molecule level remains a formidable challenge......, and to date there is limited number of available functional assays. In this chapter, we describe in detail our recently developed methodology to reconstitute membrane proteins such as the integral membrane protein cytochrome P450 oxidoreductase on membrane systems such as Nanodiscs and study their functional...... dynamics by recordings at the fundamental resolution of individual catalytic turnovers using prefluorescent substrate analogues. We initially describe the methodology for reconstitution, surface immobilization, and data acquisition of individual enzyme catalytic turnovers. We then explain in detail...

  17. Evaluation of Neurophysiologic and Systematic Changes during Aeromedical Evacuation and en Route Care of Combat Casualties in a Swine Polytrauma

    Science.gov (United States)

    2016-02-01

    and en Route Care of Combat Casualties in a Swine Polytrauma PRINCIPAL INVESTIGATOR: Richard McCarron, PhD CONTRACTING ORGANIZATION: Henry M...Aeromedical Evacuation and en Route Care of Combat Casualties in a Swine Polytrauma Award Number: W81XWH-13-2-0022, 3rd Annual Report JAN2016 3...models of neurotrauma and polytrauma . We plan to investigate the effects of aero-medical evacuation on neurophysiology and lung function in swine

  18. Intraoperative neurophysiologic monitoring in spine surgery. Developments and state of the art in France in 2011.

    Science.gov (United States)

    Gavaret, M; Jouve, J L; Péréon, Y; Accadbled, F; André-Obadia, N; Azabou, E; Blondel, B; Bollini, G; Delécrin, J; Farcy, J-P; Fournet-Fayard, J; Garin, C; Henry, P; Manel, V; Mutschler, V; Perrin, G; Sales de Gauzy, J

    2013-10-01

    Intraoperative spinal cord monitoring consists in a subcontinuous evaluation of spinal cord sensory-motor functions and allows the reduction the incidence of neurological complications resulting from spinal surgery. A combination of techniques is used: somatosensory evoked potentials (SSEP), motor evoked potentials (MEP), neurogenic motor evoked potentials (NMEP), D waves, and pedicular screw testing. In absence of intraoperative neurophysiological testing, the intraoperative wake-up test is a true form of monitoring even if its latency long and its precision variable. A 2011 survey of 117 French spinal surgeons showed that only 36% had neurophysiological monitoring available (public healthcare facilities, 42%; private facilities, 27%). Monitoring can be performed by a neurophysiologist in the operating room, remotely using a network, or directly by the surgeon. Intraoperative alerts allow real-time diagnosis of impending neurological injury. Use of spinal electrodes, moved along the medullary canal, can determine the lesion level (NMEP, D waves). The response to a monitoring alert should take into account the phase of the surgical intervention and does not systematically lead to interruption of the intervention. Multimodal intraoperative monitoring, in presence of a neurophysiologist, in collaboration with the anesthesiologist, is the most reliable technique available. However, no monitoring technique can predict a delayed-onset paraplegia that appears after the end of surgery. In cases of preexisting neurological deficit, monitoring contributes little. Monitoring of the L1-L4 spinal roots also shows low reliability. Therefore, monitoring has no indication in discal and degenerative surgery of the spinal surgery. However, testing pedicular screws can be useful. All in all, thoracic and thoracolumbar vertebral deviations, with normal preoperative neurological examination are currently the essential indication for spinal cord monitoring. Its absence in this

  19. Behavioural and neurophysiological study of olfactory perception and learning in honeybees

    Directory of Open Access Journals (Sweden)

    Jean-Christophe eSandoz

    2011-12-01

    Full Text Available The honeybee Apis mellifera has been a central insect model in the study of olfactory perception and learning for more than a century, starting with pioneer work by Karl von Frisch. Research on olfaction in honeybees has greatly benefited from the advent of a range of behavioural and neurophysiological paradigms in the Lab. Here I review major findings about how the honeybee brain detects, processes, and learns odours, based on behavioural, neuroanatomical and neurophysiological approaches. I first address the behavioural study of olfactory learning, from experiments on free-flying workers visiting artificial flowers to laboratory-based conditioning protocols on restrained individuals. I explain how the study of olfactory learning has allowed understanding the discrimination and generalization ability of the honeybee olfactory system, its capacity to grant special properties to olfactory mixtures as well as to retain individual component information. Next, based on the impressive amount of anatomical and immunochemical studies of the bee brain, I detail our knowledge of olfactory pathways. I then show how functional recordings of odour-evoked activity in the brain allow following the transformation of the olfactory message from the periphery until higher-order central structures. Data from extra- and intracellular electrophysiological approaches as well as from the most recent optical imaging developments are described. Lastly, I discuss results addressing how odour representation changes as a result of experience. This impressive ensemble of behavioural, neuroanatomical and neurophysiological data available in the bee make it an attractive model for future research aiming to understand olfactory perception and learning in an integrative fashion.

  20. Neurophysiological changes induced by the botulinum toxin type A injection in children with cerebral palsy.

    Science.gov (United States)

    Frascarelli, Flaminia; Di Rosa, Giuseppe; Bisozzi, Eleonora; Castelli, Enrico; Santilli, Valter

    2011-01-01

    In the last few years botulinum toxin type A (BTX-A) has been widely used in the management of spasticity in children with cerebral palsy in order to reduce hypertonicity and improve functional outcomes enhancing motor skill development. The botulinum toxin injection seems to interact with intrafusal and extrafusal fibers producing a reduction of hypertone both through synaptic blockade and inhibition of stretch reflex loop and these changes may influence not only the spinal cord but also the central nervous system (CNS). The purpose of our study was to determine the neurophysiological changes induced by the BTX-A through an evaluation of cortical somatosensory Evoked Potential (SEP) and Soleus H wave, that is the index of excitability of stretch reflex loop. Eighteen children with Cerebral Palsy (CP), aged between 5 and 12, were recruited at Children's Hospital "Bambino Gesù" of Rome. All children were evaluated with appropriate clinical scales before and 1 month after the BTX-A injection. Neurophysiological measurements were performed before, and 1 month after botulinum toxin injection through lower limb SEPs, M-wave and Soleus H wave recording. After the injection the results showed a statistically significant improvement both of clinical scales and the neurophysiological variables. These findings suggest that spasticity itself can be considered as a factor affecting the cortical SEPs. And even though it seems that BTX-A does not have any direct central effect on sensory pathways we suppose an indirect mechanism on modulation of afferent fibers Ia due to the modification induced by BTX-A to central loop reflex.

  1. A Frame Work for Frequent Pattern Mining Using Dynamic Function

    Directory of Open Access Journals (Sweden)

    Sunil Joshi

    2011-05-01

    Full Text Available Discovering frequent objects (item sets, sequential patterns is one of the most vital fields in data mining. It is well understood that it require running time and memory for defining candidates and this is the motivation for developing large number of algorithm. Frequent patterns mining is the paying attention research issue in association rules analysis. Apriori algorithm is a standard algorithm of association rules mining. Plenty of algorithms for mining association rules and their mutations are projected on the foundation of Apriori Algorithm. Most of the earlier studies adopted Apriori-like algorithms which are based on generate-and-test candidates theme and improving algorithm approach and formation but no one give attention to the structure of database. Several modifications on apriori algorithms are focused on algorithm Strategy but no one-algorithm emphasis on least transaction and more attribute representation of database. We presented a new research trend on frequent pattern mining in which generate Transaction pair to lighten current methods from the traditional blockage, providing scalability to massive data sets and improving response time. In order to mine patterns in database with more columns than rows, we proposed a complete framework for the frequent pattern mining. A simple approach is if we generate pair of transaction instead of item id where attributes are much larger then transaction so result is very fast. Newly, different works anticipated a new way to mine patterns in transposed databases where there is a database with thousands of attributes but merely tens of stuff. We suggest a novel dynamic algorithm for frequent pattern mining in which generate transaction pair and for generating frequent pattern we find out by longest common subsequence using dynamic function. Our solutions give result more rapidly. A quantitative investigation of these tradeoffs is conducted through a wide investigational study on artificial and

  2. Neurophysiology of Grasping Actions: Evidence from ERPs

    Science.gov (United States)

    Koester, Dirk; Schack, Thomas; Westerholz, Jan

    2016-01-01

    We use our hands very frequently to interact with our environment. Neuropsychology together with lesion models and intracranial recordings and imaging work yielded important insights into the functional neuroanatomical correlates of grasping, one important function of our hands, pointing toward a functional parietofrontal brain network. Event-related potentials (ERPs) register directly electrical brain activity and are endowed with high temporal resolution but have long been assumed to be susceptible to movement artifacts. Recent work has shown that reliable ERPs can be obtained during movement execution. Here, we review the available ERP work on (uni) manual grasping actions. We discuss various ERP components and how they may be related to functional components of grasping according to traditional distinctions of manual actions such as planning and control phases. The ERP results are largely in line with the assumption of a parietofrontal network. But other questions remain, in particular regarding the temporal succession of frontal and parietal ERP effects. With the low number of ERP studies on grasping, not all ERP effects appear to be coherent with one another. Understanding the control of our hands may help to develop further neurocognitive theories of grasping and to make progress in prosthetics, rehabilitation or development of technical systems for support of human actions. PMID:28066310

  3. Transcranial magnetic stimulation as a tool for understanding neurophysiology in Huntington's disease: a review.

    Science.gov (United States)

    Philpott, April L; Fitzgerald, Paul B; Cummins, Tarrant D R; Georgiou-Karistianis, Nellie

    2013-09-01

    Structural and functional magnetic resonance imaging modalities have been critical in advancing our understanding of the neuroanatomical and pathophysiological changes that emerge during the premanifest and symptomatic stages of Huntington's disease (HD). However, the relationship between underlying neuropathology and the motor, cognitive and behavioural changes associated with the disorder still remain poorly understood. Less conventional technologies, such as transcranial magnetic stimulation (TMS) and electroencephalography (EEG), provide a unique opportunity to further investigate the causal relationships between targeted neural circuits and objective neurophysiological responses together with overt behaviours. In this review, we discuss previous successful applications of TMS in other neurological disorders and its prospective use in HD. We also address the added value of multimodal TMS techniques, such as TMS-EEG, in investigating the integrity of neural networks in non-motor regions in HD. We conclude that neurophysiological outcome measures are likely to contribute towards characterising further the trajectory of decline across functional domains in HD, enhance understanding of underlying neural mechanisms, and offer new avenues for elucidating sensitive endophenotypic biomarkers of disease progression. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Perceptual conflict during sensorimotor integration processes - a neurophysiological study in response inhibition.

    Science.gov (United States)

    Chmielewski, Witold X; Beste, Christian

    2016-05-25

    A multitude of sensory inputs needs to be processed during sensorimotor integration. A crucial factor for detecting relevant information is its complexity, since information content can be conflicting at a perceptual level. This may be central to executive control processes, such as response inhibition. This EEG study aims to investigate the system neurophysiological mechanisms behind effects of perceptual conflict on response inhibition. We systematically modulated perceptual conflict by integrating a Global-local task with a Go/Nogo paradigm. The results show that conflicting perceptual information, in comparison to non-conflicting perceptual information, impairs response inhibition performance. This effect was evident regardless of whether the relevant information for response inhibition is displayed on the global, or local perceptual level. The neurophysiological data suggests that early perceptual/ attentional processing stages do not underlie these modulations. Rather, processes at the response selection level (P3), play a role in changed response inhibition performance. This conflict-related impairment of inhibitory processes is associated with activation differences in (inferior) parietal areas (BA7 and BA40) and not as commonly found in the medial prefrontal areas. This suggests that various functional neuroanatomical structures may mediate response inhibition and that the functional neuroanatomical structures involved depend on the complexity of sensory integration processes.

  5. Neurophysiological assessment for evaluating residual cognition in vegetative and minimally conscious state patients: a pilot study.

    Science.gov (United States)

    De Salvo, Simona; Caminiti, Fabrizia; Bonanno, Lilla; De Cola, Maria Cristina; Corallo, Francesco; Caizzone, Antonio; Rifici, Carmela; Bramanti, Placido; Marino, Silvia

    2015-01-01

    The aim of this study was to assess residual cognitive function and perform outcome evaluation in vegetative state (VS) and minimally conscious state (MCS) patients, using Neurowave, a system able to monitor event-related potentials (ERPs) induced by neurosensory stimulation. Eleven VS and five MCS patients underwent neurological examination and clinical evaluation performed using validated clinical and behavioral scales; they also underwent neurosensory stimulation, which consisted of administration of target images (rare stimuli), relevant to the patient's personal history and having emotional significance, alternated with nontarget images ("standard" stimuli), which had no emotional significance. All simultaneous ERP responses at baseline (T0) and at three months from T0 (T1) were recorded. At T0 we found significant differences between the VS and MCS patients for the N200 (p=0.02) and P300 (p=0.04) waves. The neurophysiological analysis at T1 showed a significant difference only for P300 (p=0.02), probably due to the improvements observed in the VS subjects for the N100 (p=0.009) and N200 (p=0.02) sensory components. Neurophysiological assessment for evaluating residual cognition in vegetative and minimally conscious state patients: a pilot study Our findings seem to show the value of ERP monitoring in VS and MCS patients as a means of investigating residual cognitive function. This approach could guide early therapeutic and rehabilitation interventions, and contribute to identifying better diagnostic and prognostic markers for use in unresponsive or low-responsive patients.

  6. EEG INTERFACE MODULE FOR COGNITIVE ASSESSMENT THROUGH NEUROPHYSIOLOGIC TESTS

    Directory of Open Access Journals (Sweden)

    Kundan Lal Verma

    2014-12-01

    Full Text Available The cognitive signal processing is one of the important interdisciplinary field came from areas of life sciences, psychology, psychiatry, engi-neering, mathematics, physics, statistics and many other fields of research. Neurophysiologic tests are utilized to assess and treat brain injury, dementia, neurological conditions, and useful to investigate psychological and psychiatric disorders. This paper presents an ongoing research work on development of EEG interface device based on the principles of cognitive assessments and instrumentation. The method proposed engineering and science of cogni-tive signal processing in case of brain computer in-terface based neurophysiologic tests. The future scope of this study is to build a low cost EEG device for various clinical and pre-clinical applications with specific emphasis to measure the effect of cognitive action on human brain.

  7. Neurophysiologic correlates of psychiatric disorders and potential applications in epilepsy.

    Science.gov (United States)

    Halford, J J

    2003-08-01

    There is increasing interest in psychiatric assessment using neurophysiologic tools such as electroencephalography (EEG), magnetoencephalography (MEG), and transcranial magnetic stimulation (TMS). This is because these technologies have good temporal resolution, are relatively noninvasive, and (with the exception of MEG) are economical. Many different experimental paradigms and analysis techniques for the assessment of psychiatric patients involving these technologies are reviewed including conventional quantitative electroencephalography (QEEG), EEG cordance, low-resolution electromagnetic tomography (LORETA), frontal midline theta, midlatency auditory evoked potentials (P50, N100, P300), loudness dependency of the auditory evoked potential (LDAEP), mismatch negativity (MMN), contingent negative variation (CNV), and transcranial magnetic stimulation (TMS). Many of these neurophysiologic stimulus paradigms hold the promise of improving psychiatric patient care by improving diagnostic precision, predicting treatment response, and providing new phenotypes for genetic studies. Large cooperative multisite studies need to be designed to test and validate a few of these paradigms so that they might find use in routine clinical practice.

  8. Neurophysiological investigation of idiopathic acquired auditory-visual synesthesia.

    Science.gov (United States)

    Afra, Pegah; Anderson, Jeffrey; Funke, Michael; Johnson, Michael; Matsuo, Fumisuke; Constantino, Tawnya; Warner, Judith

    2012-01-01

    We present a case of acquired auditory-visual synesthesia and its neurophysiological investigation in a healthy 42-year-old woman. She started experiencing persistent positive and intermittent negative visual phenomena at age 37 followed by auditory-visual synesthesia. Her neurophysiological investigation included video-EEG, fMRI, and MEG. Auditory stimuli (700 Hz, 50 ms duration, 0.5 s ISI) were presented binaurally at 60 db above the hearing threshold in a dark room. The patient had bilateral symmetrical auditory-evoked neuromagnetic responses followed by an occipital-evoked field 16.3 ms later. The activation of occipital cortex following auditory stimuli may represent recruitment of existing cross-modal sensory pathways.

  9. Leaf and stem economics spectra drive diversity of functional plant traits in a dynamic global vegetation model

    NARCIS (Netherlands)

    Sakschewski, B.; Bloh, von W.; Boit, A.; Rammig, A.; Kattge, J.; Poorter, L.; Peñualeas, J.; Thonicke, K.

    2015-01-01

    Functional diversity is critical for ecosystem dynamics, stability and productivity. However, dynamic global vegetation models (DGVMs) which are increasingly used to simulate ecosystem functions under global change, condense functional diversity to plant functional types (PFTs) with constant paramet

  10. Neuropsychological and neurophysiological insights into hoarding disorder

    OpenAIRE

    2015-01-01

    Jessica R Grisham, Peter A Baldwin School of Psychology, University of New South Wales, Sydney, Australia Abstract: Hoarding disorder (HD) is associated with significant personal impairment in function and constitutes a severe public health burden. Individuals who hoard experience intense distress in discarding a large number of objects, which results in extreme clutter. Research and theory suggest that hoarding may be associated with specific deficits in information processing, pa...

  11. Neurophysiology training in the Neurology Specialist Education Program in Spain.

    Science.gov (United States)

    Rodríguez-Antigüedad, A; Matías-Guiu, J; Hernández-Pérez, M A; Jiménez Hernández, M D; Martín González, M R; Morales Ortiz, A; Delgado, G; Frank, A; López de Silanes, C; Martínez-Vila, E

    2011-06-01

    The training period in neurophysiology is a substantial part of the Neurology Specialist Program in Spain. The National Neurology Committee (La Comisión Nacional de Neurología (CNN), which is the body reporting to the Ministries of Health and Education, must ensure compliance to the Program. During the first trimester of 2008, the CNN sent a questionnaire, in which there was a question asking about this training period, to each of the managers of the 69 teaching units accredited for neurology training in Spain, for them to answer. Of the 69 questionnaires issued, 49 were received completed, which was a response rate of 71%. The neurophysiology training period of the neurology specialist program in Spain was carried out in the same hospital in 44 teaching unit (90%): the remaining 5 sent their neurology trainees to 4 different hospitals. The Unit that carried out the neurophysiology training period was incorporated into the Neurology Department in 27 (55%) cases, and the formula was mixed in 3 (6%). A total of 69% of tutors were satisfied with the training, but was 90% in the hospitals where the unit was integrated into Neurology, and was 65% where this relationship did not exist. The neurologists in training were informed about EEG in 49% of education units, performed EMG/ENG 57%, and informed about evoked potentials in 35% after their training period. Although the level of satisfaction is high, the level of responsibility assumed by the neurologists in training during their rotation into neurophysiology does not appear to comply to the demands laid out in the training program, particularly in these units not integrated into Neurology Departments. Copyright © 2010 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.

  12. Neurophysiological maturation in adolescence - vulnerability and counteracting addiction to alcohol.

    Science.gov (United States)

    Chwedorowicz, Roman; Skarżyński, Henryk; Pucek, Weronika; Studziński, Tadeusz

    2017-03-22

    The results of contemporary studies confirm the formation of two neural networks in the brain during the period of adolescence. The first is defined as emotional, located in the limbic system, develops earlier, quicker, and more intensively than the second one in the prefrontal cortex, called the judgement network, which fulfils the role of control and inhibition of emotional reactions. The domination of the emotional network in adolescence is manifested by hyperactivity of the limbic system, accompanied by intensified undertaking of courageous, reckless, risky, or even sometimes dangerous actions, so very characteristic in the maturation. The aim of the article is to present the state of the art in the field of latest achievements in experimental neurophysiology related to the maturation of the structural end functional processes in adolescents, and to alcohol vulnerability. Alcohol effect initiation starts in early adolescence, and therefore is connected with alcohol abuse and addiction in adulthood, which confirms the necessity for provision of an early prophylactic protection for juveniles, even before entering the phase of early adolescence. Some electrophysiological characteristics, such as low P3 amplitude of the Event-Related Potential (ERP) and Event-Related Oscillations (EROs), are manifested by their high risk offspring, and are considered to be biological markers (endophenotypes) of a predisposition to develop alcohol use disorders. Electroencephalographic oscillations induced within the range of the theta and delta waves (Event-Related Oscillation- ERO), considered as endophenotypes and markers of increased vulnerability for addiction, present three groups of genes and three types of neurotransmitters, with gamma aminobutyric acid, acetylcholine and glutamate as neurotransmitters in the central nervous system. A new research approach consisting in the application of electroencephalographic methods and techniques in developmental and genetic studies of

  13. Developmental and neurophysiologic deficits in iron deficiency in children.

    Science.gov (United States)

    Madan, Nishi; Rusia, Usha; Sikka, Meera; Sharma, Satendra; Shankar, Nilima

    2011-01-01

    Several studies in animals and humans have clearly demonstrated the effect of ID on development, cognition, behavior and neurophysiology. The effect of ID have been shown: on brain metabolism, neurotransmitter function, and myelination. Changes in brain iron content caused by early ID in animals are not reversible by iron therapy, inspite of correction of anemia and other tissue deficits and result in changes in behavior which continue into adulthood. ID has repercussions in the perinatal period, infancy and childhood. Some effects are irreversible while other defects may be corrected: timing of ID in a child may be critical. Children (6-23 months) with moderate to severe anemia (ID) or chronic anemia (>3 months) had lower mental and psychomotor development scores than the nonanemic, and except for some continued to have lower scores in spite of iron therapy for 3 months although anemia was corrected. The deficits persisted on re-evaluation at 5, 11-14, and at 19 years. Scholastic achievement is lower and ID children are twice more likely to have problems with mathematics. Ten year follow-up indicated special educational assistance was required for initially anemic children. ID affects WICS items of information, comprehension and verbal performance and full scale IQ. EEG power spectrum had a slower activity suggesting developmental lag compared to iron sufficient children. Treatment with iron improved IQ scores significantly; other studies found differential effects: improvement in cognition and mental scores in older but not in younger children. IQ levels are affected by ID: IQ at 4 years may be predicted by hemoglobin at 5 and 36 months. Abnormal Evoked Response Potentials (ERPs):ABRs and VEPs are seen in ID, which persist in children who were anemic in infancy on retesting at 4 years. Differences have been consistently found in ID infants and in older children. Iron supplementation may significantly reduce latencies of some ERPs. ID affects newborn temperament

  14. Unravelling the neurophysiological basis of aggression in a fish model

    Directory of Open Access Journals (Sweden)

    Hickmore Tamsin FA

    2010-09-01

    Full Text Available Abstract Background Aggression is a near-universal behaviour with substantial influence on and implications for human and animal social systems. The neurophysiological basis of aggression is, however, poorly understood in all species and approaches adopted to study this complex behaviour have often been oversimplified. We applied targeted expression profiling on 40 genes, spanning eight neurological pathways and in four distinct regions of the brain, in combination with behavioural observations and pharmacological manipulations, to screen for regulatory pathways of aggression in the zebrafish (Danio rerio, an animal model in which social rank and aggressiveness tightly correlate. Results Substantial differences occurred in gene expression profiles between dominant and subordinate males associated with phenotypic differences in aggressiveness and, for the chosen gene set, they occurred mainly in the hypothalamus and telencephalon. The patterns of differentially-expressed genes implied multifactorial control of aggression in zebrafish, including the hypothalamo-neurohypophysial-system, serotonin, somatostatin, dopamine, hypothalamo-pituitary-interrenal, hypothalamo-pituitary-gonadal and histamine pathways, and the latter is a novel finding outside mammals. Pharmacological manipulations of various nodes within the hypothalamo-neurohypophysial-system and serotonin pathways supported their functional involvement. We also observed differences in expression profiles in the brains of dominant versus subordinate females that suggested sex-conserved control of aggression. For example, in the HNS pathway, the gene encoding arginine vasotocin (AVT, previously believed specific to male behaviours, was amongst those genes most associated with aggression, and AVT inhibited dominant female aggression, as in males. However, sex-specific differences in the expression profiles also occurred, including differences in aggression-associated tryptophan hydroxylases

  15. Fast dynamics perturbation analysis for prediction of protein functional sites

    Directory of Open Access Journals (Sweden)

    Cohn Judith D

    2008-01-01

    Full Text Available Abstract Background We present a fast version of the dynamics perturbation analysis (DPA algorithm to predict functional sites in protein structures. The original DPA algorithm finds regions in proteins where interactions cause a large change in the protein conformational distribution, as measured using the relative entropy Dx. Such regions are associated with functional sites. Results The Fast DPA algorithm, which accelerates DPA calculations, is motivated by an empirical observation that Dx in a normal-modes model is highly correlated with an entropic term that only depends on the eigenvalues of the normal modes. The eigenvalues are accurately estimated using first-order perturbation theory, resulting in a N-fold reduction in the overall computational requirements of the algorithm, where N is the number of residues in the protein. The performance of the original and Fast DPA algorithms was compared using protein structures from a standard small-molecule docking test set. For nominal implementations of each algorithm, top-ranked Fast DPA predictions overlapped the true binding site 94% of the time, compared to 87% of the time for original DPA. In addition, per-protein recall statistics (fraction of binding-site residues that are among predicted residues were slightly better for Fast DPA. On the other hand, per-protein precision statistics (fraction of predicted residues that are among binding-site residues were slightly better using original DPA. Overall, the performance of Fast DPA in predicting ligand-binding-site residues was comparable to that of the original DPA algorithm. Conclusion Compared to the original DPA algorithm, the decreased run time with comparable performance makes Fast DPA well-suited for implementation on a web server and for high-throughput analysis.

  16. Neurophysiological symptoms and aspartame: What is the connection?

    Science.gov (United States)

    Choudhary, Arbind Kumar; Lee, Yeong Yeh

    2017-02-15

    Aspartame (α-aspartyl-l-phenylalanine-o-methyl ester), an artificial sweetener, has been linked to behavioral and cognitive problems. Possible neurophysiological symptoms include learning problems, headache, seizure, migraines, irritable moods, anxiety, depression, and insomnia. The consumption of aspartame, unlike dietary protein, can elevate the levels of phenylalanine and aspartic acid in the brain. These compounds can inhibit the synthesis and release of neurotransmitters, dopamine, norepinephrine, and serotonin, which are known regulators of neurophysiological activity. Aspartame acts as a chemical stressor by elevating plasma cortisol levels and causing the production of excess free radicals. High cortisol levels and excess free radicals may increase the brains vulnerability to oxidative stress which may have adverse effects on neurobehavioral health. We reviewed studies linking neurophysiological symptoms to aspartame usage and conclude that aspartame may be responsible for adverse neurobehavioral health outcomes. Aspartame consumption needs to be approached with caution due to the possible effects on neurobehavioral health. Whether aspartame and its metabolites are safe for general consumption is still debatable due to a lack of consistent data. More research evaluating the neurobehavioral effects of aspartame are required.

  17. Hypno-analgesia and acupuncture analgesia: a neurophysiological reality?

    Science.gov (United States)

    Saletu, B; Saletu, M; Brown, M; Stern, J; Sletten, I; Ulett, G

    1975-01-01

    The effects of hypnosis, acupuncture and analgesic drugs on the subjective experience of pain and on objective neurophysiological parameters were investigated. Pain was produced by brief electric stimuli on the wrist. Pain challengers were: hypnosis (induced by two different video tapes), acupuncture (at specific and unspecific loci, with and without electrical stimulation of the needles), morphine and ketamine. Evaluation of clinical parameters included the subjective experience of pain intensity, blood pressure, puls, temperature, psychosomatic symptoms and side effects. Neurophysiological parameters consisted of the quantitatively analyzed EEG and somatosensory evlked potential (SEP). Pain was significantly reduced by hypnosis, morphine and ketamine, but not during the control seesion. Of the four acupuncture techniques, only electro-acupuncture at specific loci significantly decreased pain. The EEG changes during hypnosis were dependent on the wording of the suggestion and were characterized by an increase of slow and a decrease of fast waves. Acupuncture induced just the opposite changes, which were most significant when needles were inserted at traditional specific sites and stimulated electrically. The evoked potential findings suggested that ketamine attenuates pain in the thalamo-cortical pathways, while hypnosis, acupuncture and morphine induce analgesia at the later CNS stage of stimulus processing. Finally some clinical-neurophysiological correlations were explored.

  18. Neurophysiological basis of rehabilitation of adolescent idiopathic scoliosis.

    Science.gov (United States)

    Smania, Nicola; Picelli, Alessandro; Romano, Michele; Negrini, Stefano

    2008-01-01

    Knowledge on mechanisms of neurophysiological control of trunk movement and posture could help in the development of rehabilitation programs and brace treatment in adolescent idiopathic scoliosis (AIS). Reviewing up-to-date research on neurophysiology of movement and posture control with the aim of providing basis for new researches in the field of AIS rehabilitation and background understanding for clinicians engaged in management of AIS. Review of literature. We considered several neurophysiological issues relevant for AIS rehabilitation, namely, the peculiar organization of patterns of trunk muscle recruitment, the structure of the neural hardware subserving axial and arm muscle control, and the relevance of cognitive systems allowing mapping of spatial coordinates and building of body schema. We made clear the reason why trunk control is generally carried out by means of very fast, feedforward or feedback driven patterns of muscle activation which are deeply rooted in our neural control system and very difficult to modify by training. We hypothesized that augmented sensory feedback and strength exercises could be an important stage in a rehabilitation program aimed at hindering, or possibly reversing, scoliosis progression. In this context we considered bracing not only as a corrective biomechanical device but also as a tool for continuous sensory stimulation that could help awareness of body misalignment. Future research aimed at developing strategies of trunk postural control learning is essential in the rehabilitation of adolescent idiopathic scoliosis.

  19. Boltzmann-conserving classical dynamics in quantum time-correlation functions: Matsubara dynamics

    CERN Document Server

    Hele, Timothy J H; Muolo, Andrea; Althorpe, Stuart C

    2015-01-01

    We show that a single change in the derivation of the linearized semiclassical-initial value representation (LSC-IVR or classical Wigner approximation) results in a classical dynamics which conserves the quantum Boltzmann distribution. We rederive the (standard) LSC-IVR approach by writing the (exact) quantum time-correlation function in terms of the normal modes of a free ring-polymer (i.e. a discrete imaginary-time Feynman path), taking the limit that the number of polymer beads $N \\to \\infty$, such that the lowest normal-mode frequencies take their Matsubara values. The change we propose is to truncate the quantum Liouvillian, not explicitly in powers of $\\hbar^2$ at $\\hbar^0$ (which gives back the standard LSC-IVR approximation), but in the normal-mode derivatives corresponding to the lowest Matsubara frequencies. The resulting Matsubara dynamics is inherently classical (since all terms $\\mathcal{O}\\left(\\hbar^{2}\\right)$ disappear from the Matsubara Liouvillian in the limit $N \\to \\infty$), and conserves...

  20. A lagrangian dynamical theory for the mass function of cosmic structures; 1, dynamics

    CERN Document Server

    Monaco, P

    1996-01-01

    A new theory for determining the mass function of cosmic structures is presented. It relies on a realistic treatment of collapse dynamics. Gravitational collapse is analyzed in the Lagrangian perturbative framework. Lagrangian perturbations provide an approximation of truncated type, i.e. small-scale structure is filtered out. The collapse time is suitably defined as the instant at which orbit crossing takes place. The convergence of the Lagrangian series in predicting the collapse time of a homogeneous ellipsoid is demonstrated; it is also shown that third-order calculations are necessary in predicting collapse. Then, the Lagrangian prediction, with a correction for quasi-spherical perturbations, can be used to determine the collapse time of a homogeneous ellipsoid in a very fast and precise way. Furthermore, ellipsoidal collapse can be considered as a particular truncation of the Lagrangian series. Gaussian fields with scale-free power spectra are then considered. The Lagrangian series for the collapse time...

  1. High-density electroencephalography developmental neurophysiological trajectories.

    Science.gov (United States)

    Dan, Bernard; Pelc, Karine; Cebolla, Ana M; Cheron, Guy

    2015-04-01

    Efforts to document early changes in the developing brain have resulted in the construction of increasingly accurate structural images based on magnetic resonance imaging (MRI) in newborn infants. Tractography diagrams obtained through diffusion tensor imaging have focused on white matter microstructure, with particular emphasis on neuronal connectivity at the level of fibre tract systems. Electroencephalography (EEG) provides a complementary approach with more direct access to brain electrical activity. Its temporal resolution is excellent, and its spatial resolution can be enhanced to physiologically relevant levels, through the combination of high-density recordings (e.g. by using 64 channels in newborn infants) and mathematical models (e.g. inverse modelling computation), to identify generators of different oscillation bands and synchrony patterns. The integration of functional and structural topography of the neonatal brain provides insights into typical brain organization, and the deviations seen in particular contexts, for example the effect of hypoxic-ischaemic insult in terms of damage, eventual reorganization, and functional changes. Endophenotypes can then be used for pathophysiological reasoning, management planning, and outcome measurements, and allow a longitudinal approach to individual developmental trajectories. © The Authors. Journal compilation © 2015 Mac Keith Press.

  2. Customer needs, expectations, and satisfaction with clinical neurophysiology services in Ireland: a case for tele-neurophysiology development.

    Science.gov (United States)

    Fitzsimons, M; Ronan, L; Murphy, K; Browne, G; Connolly, S; McMenamin, J; Delanty, N

    2004-01-01

    Although equitable access to services should be based on need, geographical location of patients and their clinicians can give rise to inequalities in healthcare delivery. Development of tele-medicine services can improve equity of access. The specialty of Clinical Neurophysiology (CN), currently under-developed in Ireland provides an example of such potential. This study aimed to determine the needs, expectations, and satisfaction of CN customers, namely patients and referring clinicians. The goal was to examine geographical impediments to access that might be addressed by the introduction of tele-neurophysiology. Two customer surveys were conducted: CN referring clinicians and CN patients. Thirty-one North Western Health Board (NWHB) consultant clinicians responded to a postal survey. Distance and delays caused by long waiting lists were felt to deter or make CN referral irrelevant. Ninety-seven percent believed the lack of a local service negatively impacts on patient management and 93% would welcome the introduction of a tele-neurophysiology service. The geographical location of patient's residence and/or the location of the referring clinician's practice influenced waiting lists for CN. Fifty-eight (105/182) percent of patients living in a region with a CN service compared to 39% (50/128) of those living in a region with no service received an appointment within one month. In addition to the current insufficient CN service capacity in Ireland, these surveys highlighted geographical inequities. Tele-neurophysiology has the potential to speed-up diagnosis, result in more patients being appropriately investigated and be fairer to patients.

  3. Dynamic behavior of chemical reactivity indices in density functional theory: A Bohn-Oppenheimer quantum molecular dynamics study

    Indian Academy of Sciences (India)

    Shubin Liu

    2005-09-01

    Dynamic behaviors of chemical concepts in density functional theory such as frontier orbitals (HOMO/LUMO), chemical potential, hardness, and electrophilicity index have been investigated in this work in the context of Bohn-Oppenheimer quantum molecular dynamics in association with molecular conformation changes. Exemplary molecular systems like CH$^{+}_{5}$ , Cl- (H2O)30 and Ca2+ (H2O)15 are studied at 300 K in the gas phase, demonstrating that HOMO is more dynamic than LUMO, chemical potential and hardness often fluctuate concurrently. It is argued that DFT concepts and indices may serve as a good framework to understand molecular conformation changes as well as other dynamic phenomena.

  4. Asymmetric activation of the anterior cerebral cortex in recipients of IRECA: Preliminary evidence for the energetic effects of an intention-based biofield treatment modality on human neurophysiology

    NARCIS (Netherlands)

    Pike, C.; Vernon, D.; Hald, L.A.

    2014-01-01

    Neurophysiologic studies of mindfulness link the health benefits of meditation to activation of the left-anterior cerebral cortex. The similarity and functional importance of intention and attentional stance in meditative and biofield therapeutic practices suggest that modulation of recipient anteri

  5. Neurophysiology and Neuroanatomy of Reflexive and Volitional Saccades as Revealed by Lesion Studies with Neurological Patients and Transcranial Magnetic Stimulation (TMS)

    Science.gov (United States)

    Muri, Rene M.; Nyffeler, Thomas

    2008-01-01

    This review discusses the neurophysiology and neuroanatomy of the cortical control of reflexive and volitional saccades in humans. The main focus is on classical lesion studies and studies using the interference method of transcranial magnetic stimulation (TMS). To understand the behavioural function of a region, it is essential to assess…

  6. ACQ4: an open-source software platform for data acquisition and analysis in neurophysiology research

    Directory of Open Access Journals (Sweden)

    Luke eCampagnola

    2014-01-01

    Full Text Available The complexity of modern neurophysiology experiments requires specialized software to coordinate multiple acquisition devices and analyze the collected data. We have developed ACQ4, an open-source software platform for performing data acquisition and analysis in experimental neurophysiology. This software integrates the tasks of acquiring, managing, and analyzing experimental data. ACQ4 has been used primarily for standard patch-clamp electrophysiology, laser scanning photostimulation, multiphoton microscopy, intrinsic imaging, and calcium imaging. The system is highly modular, which facilitates the addition of new devices and functionality. The modules included with ACQ4 provide for rapid construction of acquisition protocols, live video display, and customizable analysis tools. Position-aware data collection allows automated construction of image mosaics and registration of images with 3-dimensional anatomical atlases. ACQ4 uses free and open-source tools including Python, NumPy/SciPy for numerical computation, PyQt for the user interface, and PyQtGraph for scientific graphics. Supported hardware includes cameras, patch clamp amplifiers, scanning mirrors, lasers, shutters, Pockels cells, motorized stages, and more. ACQ4 is available for download at http://www.acq4.org.

  7. Transcranial direct current stimulation in Parkinson's disease: Neurophysiological mechanisms and behavioral effects.

    Science.gov (United States)

    Broeder, Sanne; Nackaerts, Evelien; Heremans, Elke; Vervoort, Griet; Meesen, Raf; Verheyden, Geert; Nieuwboer, Alice

    2015-10-01

    Recent research has highlighted the potential of transcranial direct current stimulation (tDCS) to complement rehabilitation effects in the elderly and in patients with neurological diseases, including Parkinson's disease (PD). TDCS can modulate cortical excitability and enhance neurophysiological mechanisms that compensate for impaired learning in PD. The objective of this systematic review is to provide an overview of the effects of tDCS on neurophysiological and behavioral outcome measures in PD patients, both as a stand-alone and as an adjunctive therapy. We systematically reviewed the literature published throughout the last 10 years. Ten studies were included, most of which were sham controlled. Results confirmed that tDCS applied to the motor cortex had significant results on motor function and to a lesser extent on cognitive tests. However, the physiological mechanism underlying the long-term effects of tDCS on cortical excitability in the PD brain are still unclear and need to be clarified in order to apply this technique optimally to a wider population in the different disease stages and with different medication profiles.

  8. ACQ4: an open-source software platform for data acquisition and analysis in neurophysiology research.

    Science.gov (United States)

    Campagnola, Luke; Kratz, Megan B; Manis, Paul B

    2014-01-01

    The complexity of modern neurophysiology experiments requires specialized software to coordinate multiple acquisition devices and analyze the collected data. We have developed ACQ4, an open-source software platform for performing data acquisition and analysis in experimental neurophysiology. This software integrates the tasks of acquiring, managing, and analyzing experimental data. ACQ4 has been used primarily for standard patch-clamp electrophysiology, laser scanning photostimulation, multiphoton microscopy, intrinsic imaging, and calcium imaging. The system is highly modular, which facilitates the addition of new devices and functionality. The modules included with ACQ4 provide for rapid construction of acquisition protocols, live video display, and customizable analysis tools. Position-aware data collection allows automated construction of image mosaics and registration of images with 3-dimensional anatomical atlases. ACQ4 uses free and open-source tools including Python, NumPy/SciPy for numerical computation, PyQt for the user interface, and PyQtGraph for scientific graphics. Supported hardware includes cameras, patch clamp amplifiers, scanning mirrors, lasers, shutters, Pockels cells, motorized stages, and more. ACQ4 is available for download at http://www.acq4.org.

  9. Targeting the neurophysiology of cognitive systems with transcranial alternating current stimulation.

    Science.gov (United States)

    Fröhlich, Flavio; Sellers, Kristin K; Cordle, Asa L

    2015-02-01

    Cognitive impairment represents one of the most debilitating and most difficult symptom to treat of many psychiatric illnesses. Human neurophysiology studies have suggested that specific pathologies of cortical network activity correlate with cognitive impairment. However, we lack demonstration of causal relationships between specific network activity patterns and cognitive capabilities and treatment modalities that directly target impaired network dynamics of cognition. Transcranial alternating current stimulation (tACS), a novel non-invasive brain stimulation approach, may provide a crucial tool to tackle these challenges. Here, we propose that tACS can be used to elucidate the causal role of cortical synchronization in cognition and, eventually, to enhance pathologically weakened synchrony that may underlie cognitive deficits. To accelerate such development of tACS as a treatment for cognitive deficits, we discuss studies on tACS and cognition performed in healthy participants, according to the Research Domain Criteria of the National Institute of Mental Health.

  10. Tinnitus: development of a neurophysiologic correlate

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, C.T.; Babitz, L.; Kauer, J.S.

    1981-12-01

    Although tinnitus severely afflicts 7.2 million Americans, the pathophysiology of this problem remains obscure because there presently exists no good animal model in which to study the phenomenon. We have examined changes in activity in the guinea pig auditory pathway using an autoradiographic method of functional brain mapping after short-term and long-term cochlear ablations which can, in humans, initiate the occurrence of tinnitus. With this method we have observed a reduction in activity in various nuclei in the auditory pathway between 4 hrs and 10 days after unilateral cochlear ablation. In contrast to these findings we have found a return of activity in these same nuclei if they are observed from 12 to 48 days following the lesion. These preliminary data suggest that this return of activity in the absence of sensory input may be a valid experimental analogue for tinnitus in humans. Such evidence for auditory plasticity may represent a significant first step toward understanding this common and profound otologic symptom.

  11. Dynamic heart phantom with functional mitral and aortic valves

    Science.gov (United States)

    Vannelli, Claire; Moore, John; McLeod, Jonathan; Ceh, Dennis; Peters, Terry

    2015-03-01

    Cardiac valvular stenosis, prolapse and regurgitation are increasingly common conditions, particularly in an elderly population with limited potential for on-pump cardiac surgery. NeoChord©, MitraClipand numerous stent-based transcatheter aortic valve implantation (TAVI) devices provide an alternative to intrusive cardiac operations; performed while the heart is beating, these procedures require surgeons and cardiologists to learn new image-guidance based techniques. Developing these visual aids and protocols is a challenging task that benefits from sophisticated simulators. Existing models lack features needed to simulate off-pump valvular procedures: functional, dynamic valves, apical and vascular access, and user flexibility for different activation patterns such as variable heart rates and rapid pacing. We present a left ventricle phantom with these characteristics. The phantom can be used to simulate valvular repair and replacement procedures with magnetic tracking, augmented reality, fluoroscopy and ultrasound guidance. This tool serves as a platform to develop image-guidance and image processing techniques required for a range of minimally invasive cardiac interventions. The phantom mimics in vivo mitral and aortic valve motion, permitting realistic ultrasound images of these components to be acquired. It also has a physiological realistic left ventricular ejection fraction of 50%. Given its realistic imaging properties and non-biodegradable composition—silicone for tissue, water for blood—the system promises to reduce the number of animal trials required to develop image guidance applications for valvular repair and replacement. The phantom has been used in validation studies for both TAVI image-guidance techniques1, and image-based mitral valve tracking algorithms2.

  12. Abstraction of Continuous Dynamical Systems Utilizing Lyapunov Functions

    DEFF Research Database (Denmark)

    Sloth, Christoffer; Wisniewski, Rafal

    2010-01-01

    This paper considers the development of a method for abstracting continuous dynamical systems by timed automata. The method is based on partitioning the state space of dynamical systems with invariant sets, which form cells representing locations of the timed automata. To enable verification of t...

  13. Estimation of Response Functions Based on Variational Bayes Algorithm in Dynamic Images Sequences

    Directory of Open Access Journals (Sweden)

    Bowei Shan

    2016-01-01

    Full Text Available We proposed a nonparametric Bayesian model based on variational Bayes algorithm to estimate the response functions in dynamic medical imaging. In dynamic renal scintigraphy, the impulse response or retention functions are rather complicated and finding a suitable parametric form is problematic. In this paper, we estimated the response functions using nonparametric Bayesian priors. These priors were designed to favor desirable properties of the functions, such as sparsity or smoothness. These assumptions were used within hierarchical priors of the variational Bayes algorithm. We performed our algorithm on the real online dataset of dynamic renal scintigraphy. The results demonstrated that this algorithm improved the estimation of response functions with nonparametric priors.

  14. Thermodynamic laws apply to brain function.

    Science.gov (United States)

    Salerian, Alen J

    2010-02-01

    Thermodynamic laws and complex system dynamics govern brain function. Thus, any change in brain homeostasis by an alteration in brain temperature, neurotransmission or content may cause region-specific brain dysfunction. This is the premise for the Salerian Theory of Brain built upon a new paradigm for neuropsychiatric disorders: the governing influence of neuroanatomy, neurophysiology, thermodynamic laws. The principles of region-specific brain function thermodynamics are reviewed. The clinical and supporting evidence including the paradoxical effects of various agents that alter brain homeostasis is demonstrated.

  15. Intraoperative Neurophysiological Monitoring for Endoscopic Endonasal Approaches to the Skull Base: A Technical Guide.

    Science.gov (United States)

    Singh, Harminder; Vogel, Richard W; Lober, Robert M; Doan, Adam T; Matsumoto, Craig I; Kenning, Tyler J; Evans, James J

    2016-01-01

    Intraoperative neurophysiological monitoring during endoscopic, endonasal approaches to the skull base is both feasible and safe. Numerous reports have recently emerged from the literature evaluating the efficacy of different neuromonitoring tests during endonasal procedures, making them relatively well-studied. The authors report on a comprehensive, multimodality approach to monitoring the functional integrity of at risk nervous system structures, including the cerebral cortex, brainstem, cranial nerves, corticospinal tract, corticobulbar tract, and the thalamocortical somatosensory system during endonasal surgery of the skull base. The modalities employed include electroencephalography, somatosensory evoked potentials, free-running and electrically triggered electromyography, transcranial electric motor evoked potentials, and auditory evoked potentials. Methodological considerations as well as benefits and limitations are discussed. The authors argue that, while individual modalities have their limitations, multimodality neuromonitoring provides a real-time, comprehensive assessment of nervous system function and allows for safer, more aggressive management of skull base tumors via the endonasal route.

  16. Intraoperative Neurophysiological Monitoring for Endoscopic Endonasal Approaches to the Skull Base: A Technical Guide

    Directory of Open Access Journals (Sweden)

    Harminder Singh

    2016-01-01

    Full Text Available Intraoperative neurophysiological monitoring during endoscopic, endonasal approaches to the skull base is both feasible and safe. Numerous reports have recently emerged from the literature evaluating the efficacy of different neuromonitoring tests during endonasal procedures, making them relatively well-studied. The authors report on a comprehensive, multimodality approach to monitoring the functional integrity of at risk nervous system structures, including the cerebral cortex, brainstem, cranial nerves, corticospinal tract, corticobulbar tract, and the thalamocortical somatosensory system during endonasal surgery of the skull base. The modalities employed include electroencephalography, somatosensory evoked potentials, free-running and electrically triggered electromyography, transcranial electric motor evoked potentials, and auditory evoked potentials. Methodological considerations as well as benefits and limitations are discussed. The authors argue that, while individual modalities have their limitations, multimodality neuromonitoring provides a real-time, comprehensive assessment of nervous system function and allows for safer, more aggressive management of skull base tumors via the endonasal route.

  17. Characteristics of fMRI BOLD signal and its neurophysiological mechanism

    Institute of Scientific and Technical Information of China (English)

    Zhao Xiaohu; Wu Yigen; Guo Shengli

    2007-01-01

    The functional magnetic resonance imaging (fMRI) based on blood oxygen level dependent (BOLD) contrast has emerged as one of the most potent noninvasive tools for mapping brain function and has been widely used to explore physiological, pathological changes and mental activity in the brain. Exploring the nature and property of BOLD signal has recently attracted more attentions. Despite that great progress has been made in investigation of the characteristics and neurophysiological basis, the exact nature of BOLD signal remains unclear. In this paper we discuss the characteristics of BOLD signals, the nonlinear BOLD response to external stimuli and the relation between BOLD signals and neural electrophysiological recordings. Furthermore, we develop our new opinions regarding nonlinear BOLD response and make some perspectives on future study.

  18. Dynamics of homegarden structure and function in Kerala, India

    NARCIS (Netherlands)

    Peyre, A.; Guidal, A.; Wiersum, K.F.; Bongers, F.J.J.M.

    2006-01-01

    Homegardens in Kerala have long been important multi-purpose agroforestry systems that combine ecological and socioeconomical sustainability. However, traditional homegardens are subject to different conversion processes linked to socioeconomic changes. These dynamics were studied in a survey of 30

  19. Dynamical model for biological functions of DNA molecules

    Institute of Scientific and Technical Information of China (English)

    PANGXiao-fengI; YANGYao

    2004-01-01

    We proposed a dynamic model of DNA to study its nonlinear excitation and duplication and transcription in the basis of molecular structure and changes of conformation of DNA under influence of bioenergy.

  20. Preliminary report: Dynamic stereopsis in patients with impaired binocular function.

    Science.gov (United States)

    Mollenhauer, K A; Haase, W

    2000-12-01

    In this study, 46 strabismic patients aged between 9 and 58 years were tested for dynamic stereopsis in the peripheral visual field with up to 20 degrees eccentricity. Squint angles ranged from +30 to -36 degrees. The effect of surgical realignment of the visual axes on dynamic stereopsis was tested before and after surgery in 40 of these patients. Of the 46 patients, 23 had esotropia and 23 exotropia. A test device was used which presented two projected squares in polarized light (each square being perceived monocularly through a polarization filter) in horizontal motion, thus creating a three-dimensional impression. Patients were tested qualitatively for dynamically stereoactive fields of vision and quantitatively for the threshold value needed to create a three-dimensional impression. We found residual dynamic stereopsis in 30% of patients who had no central static stereopsis. 56% of the patients improved after surgery, either through a significant (p traffic and sports medicine, regardless of the effect on classical tests.

  1. Structural dynamics flexibility informs function and evolution at a proteome scale

    Science.gov (United States)

    Nevin Gerek, Zeynep; Kumar, Sudhir; Banu Ozkan, Sefika

    2013-01-01

    Protein structures are dynamic entities with a myriad of atomic fluctuations, side-chain rotations, and collective domain movements. Although the importance of these dynamics to proper functioning of proteins is emerging in the studies of many protein families, there is a lack of broad evidence for the critical role of protein dynamics in shaping the biological functions of a substantial fraction of residues for a large number of proteins in the human proteome. Here, we propose a novel dynamic flexibility index (dfi) to quantify the dynamic properties of individual residues in any protein and use it to assess the importance of protein dynamics in 100 human proteins. Our analyses involving functionally critical positions, disease-associated and putatively neutral population variations, and the rate of interspecific substitutions per residue produce concordant patterns at a proteome scale. They establish that the preservation of dynamic properties of residues in a protein structure is critical for maintaining the protein/biological function. Therefore, structural dynamics needs to become a major component of the analysis of protein function and evolution. Such analyses will be facilitated by the dfi, which will also enable the integrative use of structural dynamics with evolutionary conservation in genomic medicine as well as functional genomics investigations. PMID:23745135

  2. Rhythm in joint action: psychological and neurophysiological mechanisms for real-time interpersonal coordination

    National Research Council Canada - National Science Library

    Keller, Peter E; Novembre, Giacomo; Hove, Michael J

    2014-01-01

    .... Second, the neurophysiological mechanisms that underpin rhythmic interpersonal coordination are sought in studies of sensorimotor and cognitive processes that play a role in the representation...

  3. [Clinical and neurophysiologic aspects of surgical treatment of pharmacoresistant forms of epilepsy].

    Science.gov (United States)

    Bersnev, V P; Stepanova, T S; Zotov, Iu V; Kasumov, R D; Iatsuk, S L; Grachev, K V

    2004-01-01

    Surgical treatment of pharmacoresistant forms of epilepsy under neurophysiological monitoring is a key problem studied in A.L. Polenov Russian Neurosurgical Institute (Saint-Petersburg). A summary of long-term studies and main stages of surgical treatment development are presented. The indications and contra-indications, along with basic neurophysiologic strategic and tactic arguments of open and stereotaxic treatment of focal and generalized epilepsy based on neurophysiologic model which determines a role of epileptic focus, epileptic and inhibiting brain systems in spreading and arresting of seizure discharge at each disease stage are formulated. A program of clinico-neurophysiologic monitoring of temporal epilepsy in pre- and intraoperative periods is considered.

  4. Neurophysiology versus clinical genetics in Rett syndrome: A multicenter study.

    Science.gov (United States)

    Halbach, Nicky; Smeets, Eric E; Julu, Peter; Witt-Engerström, Ingegerd; Pini, Giorgio; Bigoni, Stefania; Hansen, Stig; Apartopoulos, Flora; Delamont, Robert; van Roozendaal, Kees; Scusa, Maria F; Borelli, Paolo; Candel, Math; Curfs, Leopold

    2016-09-01

    Many studies have attempted to establish the genotype-phenotype correlation in Rett syndrome (RTT). Cardiorespiratory measurements provide robust objective data, to correlate with each of the different clinical phenotypes. It has important implications for the management and treatment of this syndrome. The aim of this study was to correlate the genotype with the quantitative cardiorespiratory data obtained by neurophysiological measurement combined with a clinical severity score. This international multicenter study was conducted in four European countries from 1999 to 2012. The study cohort consisted of a group of 132 well-defined RTT females aged between 2 and 43 years with extended clinical, molecular, and neurophysiological assessments. Diagnosis of RTT was based on the consensus criteria for RTT and molecular confirmation. Genotype-phenotype analyses of clinical features and cardiorespiratory data were performed after grouping mutations by the same type and localization or having the same putative biological effect on the MeCP2 protein, and subsequently on eight single recurrent mutations. A less severe phenotype was seen in females with CTS, p.R133C, and p.R294X mutations. Autonomic disturbances were present in all females, and not restricted to nor influenced by one specific group or any single recurrent mutation. The objective information from non-invasive neurophysiological evaluation of the disturbed central autonomic control is of great importance in helping to organize the lifelong care for females with RTT. Further research is needed to provide insights into the pathogenesis of autonomic dysfunction, and to develop evidence-based management in RTT. © 2016 Wiley Periodicals, Inc.

  5. Physiological and neurophysiological determinants of postcancer fatigue: design of a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Prinsen Hetty

    2012-06-01

    Full Text Available Abstract Background Postcancer fatigue is a frequently occurring, severe, and invalidating problem, impairing quality of life. Although it is possible to effectively treat postcancer fatigue with cognitive behaviour therapy, the nature of the underlying (neurophysiology of postcancer fatigue remains unclear. Physiological aspects of fatigue include peripheral fatigue, originating in muscle or the neuromuscular junction; central fatigue, originating in nerves, spinal cord, and brain; and physical deconditioning, resulting from a decreased cardiopulmonary function. Studies on physiological aspects of postcancer fatigue mainly concentrate on deconditioning. Peripheral and central fatigue and brain morphology and function have been studied for patients with fatigue in the context of chronic fatigue syndrome and neuromuscular diseases and show several characteristic differences with healthy controls. Methods/design Fifty seven severely fatigued and 21 non-fatigued cancer survivors will be recruited from the Radboud University Nijmegen Medical Centre. Participants should have completed treatment of a malignant, solid tumour minimal one year earlier and should have no evidence of disease recurrence. Severely fatigued patients are randomly assigned to either the intervention condition (cognitive behaviour therapy or the waiting list condition (start cognitive behaviour therapy after 6 months. All participants are assessed at baseline and the severely fatigued patients also after 6 months follow-up (at the end of cognitive behaviour therapy or waiting list. Primary outcome measures are fatigue severity, central and peripheral fatigue, brain morphology and function, and physical condition and activity. Discussion This study will be the first randomized controlled trial that characterizes (neurophysiological factors of fatigue in disease-free cancer survivors and evaluates to which extent these factors can be influenced by cognitive behaviour therapy

  6. The van Hove distribution function for brownian hard spheres: dynamical test particle theory and computer simulations for bulk dynamics.

    Science.gov (United States)

    Hopkins, Paul; Fortini, Andrea; Archer, Andrew J; Schmidt, Matthias

    2010-12-14

    We describe a test particle approach based on dynamical density functional theory (DDFT) for studying the correlated time evolution of the particles that constitute a fluid. Our theory provides a means of calculating the van Hove distribution function by treating its self and distinct parts as the two components of a binary fluid mixture, with the "self " component having only one particle, the "distinct" component consisting of all the other particles, and using DDFT to calculate the time evolution of the density profiles for the two components. We apply this approach to a bulk fluid of Brownian hard spheres and compare to results for the van Hove function and the intermediate scattering function from Brownian dynamics computer simulations. We find good agreement at low and intermediate densities using the very simple Ramakrishnan-Yussouff [Phys. Rev. B 19, 2775 (1979)] approximation for the excess free energy functional. Since the DDFT is based on the equilibrium Helmholtz free energy functional, we can probe a free energy landscape that underlies the dynamics. Within the mean-field approximation we find that as the particle density increases, this landscape develops a minimum, while an exact treatment of a model confined situation shows that for an ergodic fluid this landscape should be monotonic. We discuss possible implications for slow, glassy, and arrested dynamics at high densities.

  7. Students' Conceptions of Function Transformation in a Dynamic Mathematical Environment

    Science.gov (United States)

    Daher, Wajeeh; Anabousy, Ahlam

    2015-01-01

    The study of function transformations helps students understand the function concept which is a basic and main concept in mathematics, but this study is problematic to school students as well as college students, especially when transformations are performed on non-basic functions. The current research tried to facilitate grade 9 students'…

  8. GROUP DYNAMICS AND TEAM FUNCTIONING IN ORGANIZATIONAL CONTEXT

    Directory of Open Access Journals (Sweden)

    Raluca ZOLTAN

    2015-07-01

    Full Text Available In all kind of organization many activities are done by groups and teams. But how are they formed? What factors influence their existence and development? How members of groups and teams are selected? Which are the consequences in organizational context? In order to answer these questions, in the present paper we describe and analyze the main approaches regarding the formation of work groups and work teams (sociometric approach and group dynamics approach, the main factors that affects group dynamics and the FIRO model for evaluation the team members’ needs.

  9. Dynamic modelling of pectin extraction describing yield and functional characteristics

    DEFF Research Database (Denmark)

    Andersen, Nina Marianne; Cognet, T.; Santacoloma, P. A.

    2017-01-01

    A dynamic model of pectin extraction is proposed that describes pectin yield, degree of esterification and intrinsic viscosity. The dynamic model is one dimensional in the peel geometry and includes mass transport of pectin by diffusion and reaction kinetics of hydrolysis, degradation and de-esterification....... The model takes into account the effects of the process conditions such as temperature and acid concentration on extraction kinetics. It is shown that the model describes pectin bulk solution concentration, degree of esterification and intrinsic viscosity in pilot scale extractions from lime peel...

  10. Neurophysiological characteristics in infants and young children with auditory neuropathy

    Institute of Scientific and Technical Information of China (English)

    Guangqian Xing; Xingkuan Bu; Dengyuan Wang; Ling Lu

    2005-01-01

    Objective: To analyze neurophysiological characteristics in infants and young children with auditory neuropathy (AN) and explore their clinical significance. Methods: Audiological measurements(acoustic immittance, EOAEs, ABR, CM, MLR and ERPs) and peripheral neurological tests were conducted and evaluated in 13 infants and young children with AN. Six of them received highresolution temporal bone CT scans and/or cerebral MRI examinations. Results: All of the children showed type "A" tympanograms with abseatation of stapedial reflexes. EOAEs were normal in 12 of 13 subjects. In one child who had a history of anoxia during the birth, the EOAEs were not elicited. Click-evoked ABRs were absent in 12 of 13 subjects when maximum output of the instrument was reached. The CM potentials were presented bilaterally in all individuals, which were independent of the EOAEs and ABR. Of eight cases tested, all had clear MLR and six showed normal ERPs(P300 and MMN). Peripheral neurological tests and radiological findings were within the normal ranges. Conclusion: The diagnosis of AN in infants and young children should focus on analyzing their neurophysiological characteristics,especially on CM,MLR and ERPs. Combined use of EOAEs, ABR and CM was recommended for hearing screening on newborns with high risk factors.

  11. Neurophysiological Differences between Flail Arm Syndrome and Amyotrophic Lateral Sclerosis.

    Directory of Open Access Journals (Sweden)

    Hecheng Yang

    Full Text Available There are many clinical features of flail arm syndrome (FAS that are different from amyotrophic lateral sclerosis (ALS, suggesting they are probably different entities. Studies on electrophysiological differences between them are limited at present, and still inconclusive. Therefore, we aimed to find clinical and neurophysiological differences between FAS and ALS. Eighteen healthy control subjects, six FAS patients and forty-one ALS patients were recruited. The upper motor neuron signs (UMNS, split-hand index (SI, resting motor threshold (RMT, central motor conduction time (CMCT were evaluated and compared. There was no obvious upper motor neuron signs in FAS. The SI and RMT level in FAS was similar to control subjects, but significantly lower than that of in ALS. Compared with control group, the RMT and SI in ALS group were both significantly increased to higher level. However, no significant difference of CMCT was found between any two of these three groups. The differences in clinical and neurophysiological findings between FAS and ALS, argue against they are the same disease entity. Since there was no obvious UMNS, no split-hand phenomenon, and no obvious changes of RMT and CMCT in FAS patients, the development of FAS might be probably not originated from motor cortex.

  12. The spectrum of borderline personality disorder: a neurophysiological view.

    Science.gov (United States)

    Stone, Michael H

    2014-01-01

    Borderline Personality Disorder (BPD) has been defined as a personality disorder in all editions of DSM since 1980; namely, DSM III through V. The criteria are a mixture of symptoms and traits; the etiology, a heterogeneous array of genetic, constitutional, and environmental factors. Until recently the diagnosis relied on clinical descriptions. In the last two decades, neurophysiological data, including MRI and fMRI, have established correlates in various brain regions, particularly those involving the frontal lobes and various limbic structures, that show promise of providing a more substantial basis for diagnosis-relying primarily on (internal) brain changes, rather than on (external) clinical observation. Some of the changes in BPD consist of decreased volume in the orbitofrontal and dorsolateral prefrontal cortices and smaller volume in both the amygdala and hippocampus, though with heightened reactivity in the amygdala. Similar abnormalities have been noted in bipolar disorders (BDs) and in ADHD, both of which often accompany BPD and share certain clinical features. Persons with strong genetic predisposition to BDs can develop BPD even in the absence of adverse environmental factors; those with extreme adverse environmental factors (chiefly, early sexual molestation) can develop BPD in the absence of bipolar vulnerability. In some BPD patients, both sets of factors are present. As ideal treatment depends on careful analysis of these factors, neurophysiological testing may permit both more rational, brain-based diagnostic decisions and more appropriate therapeutic strategies.

  13. Early neurophysiological indices of second language morphosyntax learning.

    Science.gov (United States)

    Hanna, Jeff; Shtyrov, Yury; Williams, John; Pulvermüller, Friedemann

    2016-02-01

    Humans show variable degrees of success in acquiring a second language (L2). In many cases, morphological and syntactic knowledge remain deficient, although some learners succeed in reaching nativelike levels, even if they begin acquiring their L2 relatively late. In this study, we use psycholinguistic, online language proficiency tests and a neurophysiological index of syntactic processing, the syntactic mismatch negativity (sMMN) to local agreement violations, to compare behavioural and neurophysiological markers of grammar processing between native speakers (NS) of English and non-native speakers (NNS). Variable grammar proficiency was measured by psycholinguistic tests. When NS heard ungrammatical word sequences lacking agreement between subject and verb (e.g. *we kicks), the MMN was enhanced compared with syntactically legal sentences (e.g. he kicks). More proficient NNS also showed this difference, but less proficient NNS did not. The main cortical sources of the MMN responses were localised in bilateral superior temporal areas, where, crucially, source strength of grammar-related neuronal activity correlated significantly with grammatical proficiency of individual L2 speakers as revealed by the psycholinguistic tests. As our results show similar, early MMN indices to morpho-syntactic agreement violations among both native speakers and non-native speakers with high grammar proficiency, they appear consistent with the use of similar brain mechanisms for at least certain aspects of L1 and L2 grammars.

  14. The musical brain: brain waves reveal the neurophysiological basis of musicality in human subjects.

    Science.gov (United States)

    Tervaniemi, M; Ilvonen, T; Karma, K; Alho, K; Näätänen, R

    1997-04-18

    To reveal neurophysiological prerequisites of musicality, auditory event-related potentials (ERPs) were recorded from musical and non-musical subjects, musicality being here defined as the ability to temporally structure auditory information. Instructed to read a book and to ignore sounds, subjects were presented with a repetitive sound pattern with occasional changes in its temporal structure. The mismatch negativity (MMN) component of ERPs, indexing the cortical preattentive detection of change in these stimulus patterns, was larger in amplitude in musical than non-musical subjects. This amplitude enhancement, indicating more accurate sensory memory function in musical subjects, suggests that even the cognitive component of musicality, traditionally regarded as depending on attention-related brain processes, in fact, is based on neural mechanisms present already at the preattentive level.

  15. Multi-functional stage-scanning fluorescence micro/nanoscope for single-lipid dynamics

    Science.gov (United States)

    Yang, Li-Ling; Hsieh, Chia-Fen; Chang, Yi-Ren; Shen, Jie-Pan; Chang, Yu-Chung; Chou, Chia-Fu

    2012-02-01

    We combine pulsed laser, supercontinuum radiation source and fast single-photon counting peripherals to obtain a multifunctional micro/nano-scope. This provides us with better spatial and temporal resolution to observe fast dynamics. Performing fluorescence correlation spectroscopy for fast dynamics (lipid dynamics in supported lipid bilayers and living cells is our goal. Lipid raft serves as a platform for recruiting signaling components of effective signal transduction. However, the dynamics of sub-200nm rapidly aggregated lipid rafts are still not elucidated in living cells. We here report our recent progress on the construction of this multi-functional stage-scanning fluorescence micro/nanoscope for single-lipid dynamics study.

  16. Nonparametric modeling of dynamic functional connectivity in fmri data

    DEFF Research Database (Denmark)

    Nielsen, Søren Føns Vind; Madsen, Kristoffer H.; Røge, Rasmus

    2015-01-01

    in Bayesian statistical modeling we use the predictive likelihood to investigate if the model can discriminate between a motor task and rest both within and across subjects. We further investigate what drives dynamic states using the model on the entire data collated across subjects and task/rest. We find...

  17. Simultaneous dynamic electrical and structural measurements of functional materials

    Energy Technology Data Exchange (ETDEWEB)

    Vecchini, C.; Stewart, M.; Muñiz-Piniella, A.; Wooldridge, J. [National Physical Laboratory, Hampton Road, Teddington TW11 0LW (United Kingdom); Thompson, P.; McMitchell, S. R. C.; Bouchenoire, L.; Brown, S.; Wermeille, D.; Lucas, C. A. [XMaS, The UK-CRG, ESRF-The European Synchrotron, CS40220, F-38043, Grenoble Cedex 09 (France); Department of Physics, University of Liverpool, Liverpool L69 3BX (United Kingdom); Lepadatu, S. [National Physical Laboratory, Hampton Road, Teddington TW11 0LW (United Kingdom); Jeremiah Horrocks Institute, University of Central Lancashire, Preston PR1 2HE (United Kingdom); Bikondoa, O.; Hase, T. P. A. [XMaS, The UK-CRG, ESRF-The European Synchrotron, CS40220, F-38043, Grenoble Cedex 09 (France); Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Lesourd, M. [ESRF-The European Synchrotron, CS40220, F-38043, Grenoble Cedex 09 (France); Dontsov, D. [SIOS Meßtechnik GmbH, Am Vogelherd 46, 98693 Ilmenau (Germany); Cain, M. G. [National Physical Laboratory, Hampton Road, Teddington TW11 0LW (United Kingdom); Electrosciences Ltd., Farnham, Surrey GU9 9QT (United Kingdom)

    2015-10-15

    A new materials characterization system developed at the XMaS beamline, located at the European Synchrotron Radiation Facility in France, is presented. We show that this new capability allows to measure the atomic structural evolution (crystallography) of piezoelectric materials whilst simultaneously measuring the overall strain characteristics and electrical response to dynamically (ac) applied external stimuli.

  18. Modeling dynamic functional connectivity using a wishart mixture model

    DEFF Research Database (Denmark)

    Nielsen, Søren Føns Vind; Madsen, Kristoffer Hougaard; Schmidt, Mikkel Nørgaard

    2017-01-01

    .e. the window length. In this work we use the Wishart Mixture Model (WMM) as a probabilistic model for dFC based on variational inference. The framework admits arbitrary window lengths and number of dynamic components and includes the static one-component model as a special case. We exploit that the WMM...

  19. Comparison of the Internal Dynamics of Metalloproteases Provides New Insights on Their Function and Evolution.

    Directory of Open Access Journals (Sweden)

    Henrique F Carvalho

    Full Text Available Metalloproteases have evolved in a vast number of biological systems, being one of the most diverse types of proteases and presenting a wide range of folds and catalytic metal ions. Given the increasing understanding of protein internal dynamics and its role in enzyme function, we are interested in assessing how the structural heterogeneity of metalloproteases translates into their dynamics. Therefore, the dynamical profile of the clan MA type protein thermolysin, derived from an Elastic Network Model of protein structure, was evaluated against those obtained from a set of experimental structures and molecular dynamics simulation trajectories. A close correspondence was obtained between modes derived from the coarse-grained model and the subspace of functionally-relevant motions observed experimentally, the later being shown to be encoded in the internal dynamics of the protein. This prompted the use of dynamics-based comparison methods that employ such coarse-grained models in a representative set of clan members, allowing for its quantitative description in terms of structural and dynamical variability. Although members show structural similarity, they nonetheless present distinct dynamical profiles, with no apparent correlation between structural and dynamical relatedness. However, previously unnoticed dynamical similarity was found between the relevant members Carboxypeptidase Pfu, Leishmanolysin, and Botulinum Neurotoxin Type A, despite sharing no structural similarity. Inspection of the respective alignments shows that dynamical similarity has a functional basis, namely the need for maintaining proper intermolecular interactions with the respective substrates. These results suggest that distinct selective pressure mechanisms act on metalloproteases at structural and dynamical levels through the course of their evolution. This work shows how new insights on metalloprotease function and evolution can be assessed with comparison schemes that

  20. Neurophysiological correlates of artistic image creation by representatives of artistic professions

    Directory of Open Access Journals (Sweden)

    Dikaya L. A.

    2016-12-01

    Full Text Available The steadily increasing demand for artistic professions brings to the fore the task of studying the phenomenon of art by researching the unique capacity of the human brain to create works of art in different spheres of creative activity. So far, only a few studies have investigated creativity-related brain activity in representatives of the creative professions. The aim of the empirical research was to study the neurophysiological correlates of artistic image creation by representatives of the artistic professions. The participants were 60 right-handed females aged 23-27, divided into three groups— artists (23 people, actors (17 people, and specialists who do not work in an artistic field (20 people. The mono-typing technique was used to model the creative artistic process. EEG signals were recorded in a resting state, and during four stages of the creation of an artistic image (viewing of monotypes, frustration, image creation, and thinking over the details from 21 electrodes set on the scalp according to the International 10-20 System. We analyzed EEG coherence for each functional trial at theta (4.00–8.00 Hz, alpha1 (8.00–10.5 Hz, alpha2 (10.5–13.00 Hz, and beta (13.00– 35.00 Hz frequency bands. For statistical analysis, we used MANOVA and post hoc analysis. We found that the neurophysiological correlates of creating an artistic image are different at different stages of the creative process, and have different features for artists and actors. The actors primarily show dominance of right hemisphere activity, while close interaction of the hemispheres distinguishes the brains of the artists. The differences revealed in brain cortex functioning when artists or actors create an artistic image reflect different strategies of imaginative creative work by representatives of these professions.

  1. Functional Nanostructures and Dynamic Materials through Self-Organization

    Institute of Scientific and Technical Information of China (English)

    Jean-Marie; LEHN

    2007-01-01

    1 Results Supramolecular chemistry is actively exploring systems undergoing self-organization.The design of molecular information controlled,"programmed"and functional self-organizing systems provides an original approach to nanoscience and nanotechnology.The spontaneous but controlled generation of well-defined,functional molecular and supramolecular architectures of nanometric size through self-organization represents a means of performing programmed engineering and processing of functional nanostruct...

  2. Dynamics of homegarden structure and function in Kerala, India

    OpenAIRE

    PEYRE, A.; Guidal, A.; Wiersum, K.F.; Bongers, F.J.J.M.

    2006-01-01

    Homegardens in Kerala have long been important multi-purpose agroforestry systems that combine ecological and socioeconomical sustainability. However, traditional homegardens are subject to different conversion processes linked to socioeconomic changes. These dynamics were studied in a survey of 30 homegardens. On the basis of a cluster analysis of tree/shrub species density and subsequent further grouping using homegarden size as additional characteristic, six homegarden types were different...

  3. Simulation study and function analysis of the dynamic aortic valve

    Institute of Scientific and Technical Information of China (English)

    XIA Dongdong; BAI Jing

    2006-01-01

    The dynamic aortic valve (DAV) is a new left ventricular assist device, a micro-axial blood pump implemented at the position of the aortic valve, pumping blood from the left ventricle into the aortic artery. The present dynamic aortic valve operates at 7 different rotation speeds, ranging from 3000 r/min (speed 1) to 9000 r/min (speed 7). Because in vivo experiments need a lot of live animals and take a long period of time, modeling and simulation have been widely used to simulate and analyze hydra-dynamic property of the DAV and its assisting effects. With the measurements from the mock circulatory loop, a mathematic model of the DAV is established and embedded into the previously developed canine circulatory system. Using this model, the effect of the DAV on the failing heart at each rotation speed level is investigated. The vital cardiac variables are computed and compared with in vivo experimental results, which are in good agreement with an acceptable difference mostly 15 %. The establishment of the DAV model and its simulation are useful for further improvement of the DAV device.

  4. Dynamic Colour Possibilities and Functional Properties of Thermochromic Printing Inks

    Directory of Open Access Journals (Sweden)

    Rahela Kulcar

    2012-07-01

    Full Text Available Thermochromic printing inks change their colour regarding the change in temperature and they are one of the major groups of colour-changing inks. One of the most frequently used thermochromic material in printing inks are leuco dyes. The colour of thermochromic prints is dynamic, it is not just temperature-dependent, but it also depends on thermal history. The effect is described by colour hysteresis. This paper aims at discussing general aspects of thermochromic inks, dynamic colorimetric properties of leuco dye-based thermochromic inks, their stability and principle of variable-temperature colour measurement. Thermochromic material is protected in round-shaped capsules. They are much larger than pigments in conventional inks. The polymer envelopes of pigment capsules are more stable against oxidation than the binder. If these envelopes are damaged, the dynamic colour is irreversibly lost. Our aim is to analyse the colorimetric properties of several reversible screen-printed UV-curing leuco dye thermochromic inks with different activation temperatures printed on paper. A small analysis of irreversible thermochromic inks will be presented for comparison with reversible thermochromic inks. Moreover, so as to show interesting possibilities, a combination of different inks was made, an irreversible thermochromic ink was printed on top of the red and blue reversible thermochromic inks. Special attention was given to the characterization of colour hysteresis and the meaning of activation temperature.

  5. Poisson structure and Casimir functions for a noncentral dynamical system in four-dimensional phase space

    Institute of Scientific and Technical Information of China (English)

    Lou Zhi-Mei; Chen Zi-Dong; Wang Wen-Long

    2005-01-01

    In this paper, we express the differential equations of a noncentral dynamical system in Ermakov formalism to obtain the Ermakov invariant. In term of Hamiltonian theories and using the Ermakov invariant as the Hamiltonian,the Poisson structure of a noncentral dynamical system in four-dimensional phase space are constructed. The result indicates that the Poisson structure is degenerate and the noncentral dynamical system possesses four invariants: the Hamiltonian, the Ermakov invariant and two Casimir functions.

  6. Dynamic Function of the Alkyl Spacer of Acetogenins as Potent Inhibitors of Mitochondrial Complex I. A Molecular Dynamics Simulation Approach

    NARCIS (Netherlands)

    Abel Bombasaro, Jose; Barrera Guisasola, Exequiel Ernesto; Masman, Marcelo Fabricio; Angel Zamora, Miguel; Maria Rodriguez, Ana

    2013-01-01

    Acetogenins are among the most potent of the known inhibitors of complex I (NADH-ubiquinone oxidoreductase) in mitochondrial electron transfer system. Elucidation of the dynamic function of the alkyl spacer linking the two toxophores (i.e., the hydroxylated tetrahydrofuran and the gamma-lactone

  7. Differences in dynamic and static functional connectivity between young and elderly healthy adults.

    Science.gov (United States)

    Park, Ji Eun; Jung, Seung Chai; Ryu, Kyeoung Hwa; Oh, Joo Young; Kim, Ho Sung; Choi, Choong-Gon; Kim, Sang Joon; Shim, Woo Hyun

    2017-08-01

    Brain connectivity is highly dynamic, but functional connectivity (FC) studies using resting-state functional magnetic resonance imaging (rs-fMRI) assume it to be static. This study assessed differences in dynamic FC between young healthy adults (YH) and elderly healthy adults (EH) compared to static FC. Using rs-fMRI data from 12 YH and 31 EH, FC was assessed in six functional regions (subcortical, auditory [AUD], sensorimotor [SM], visuospatial [VS], cognitive control [CC], and default mode network [DMN]). Static FC was calculated as Fisher's z-transformed correlation coefficient. The sliding time window correlation (window size 30 s, step size 3 s) was applied for dynamic FC, and the standard deviation across sliding windows was calculated. Differences in static and dynamic FC between EH and YH were calculated and compared by region. EH showed decreased static FC in the subcortical, CC, and DMN regions (FDR corrected p = 0.0013; 74 regions), with no regions showing static FC higher than that in YH. EH showed increased dynamic FC in the subcortical, CC, and DMN regions, whereas decreased dynamic FC in CC and DMN regions (p static and dynamic FC. Dynamic FC exhibited differences from static FC in EH and YH, mainly in regions involved in cognitive control and the DMN. Altered dynamic FC demonstrated both qualitatively and quantitatively distinct patterns of transient brain activity and needs to be studied as an imaging biomarker in the aging process.

  8. Behavioral and neurophysiological signatures of benzodiazepine-related driving impairments

    Directory of Open Access Journals (Sweden)

    Bradly T Stone

    2015-11-01

    Full Text Available Impaired driving due to drug use is a growing problem, worldwide; estimates show that 18-23.5% of fatal accidents, and up to 34% of injury accidents may be caused by drivers under the influence of drugs (Drummer et al., 2003; NHTSA, 2010; Walsh et al., 2004. Furthermore, at any given time, up to 16% of drivers may be using drugs that can impair one’s driving abilities (NHTSA, 2009. Currently, drug recognition experts (law enforcement officers with specialized training to identify drugged driving, have the most difficult time with identifying drivers potentially impaired on central nervous system (CNS depressants (Smith, Hayes, Yolton, Rutledge, & Citek, 2002. The fact that the use of benzodiazepines, a type of CNS depressant, is also associated with the greatest likelihood of causing accidents (Dassanayake, Michie, Carter, & Jones, 2011, further emphasizes the need to improve research tools in this area which can facilitate the refinement of, or additions to, current assessments of impaired driving. Our laboratories collaborated to evaluate both the behavioral and neurophysiological effects of a benzodiazepine, alprazolam, in a driving simulation (miniSim™. This drive was combined with a neurocognitive assessment utilizing time synched neurophysiology (EEG, ECG. While the behavioral effects of benzodiazepines are well characterized (Rapoport et al., 2009, we hypothesized that, with the addition of real-time neurophysiology and the utilization of simulation and neurocognitive assessment, we could find objective assessments of drug impairment that could improve the detection capabilities of drug recognition experts. Our analyses revealed that 1 specific driving conditions were significantly more difficult for benzodiazepine impaired drivers and; 2 the neurocognitive tasks’ metrics were able to classify impaired vs. unimpaired with up to 80% accuracy based on lane position deviation and lane departures. While this work requires replication in

  9. COVER CROPS ENHANCE SOIL ORGANIC MATTER, CARBON DYNAMICS AND MICROBIOLOGICAL FUNCTION IN A MEDITERRANEAN VINEYARD AGROECOSYSTEM

    Science.gov (United States)

    Impacts of soil tillage and cover crops on soil carbon (C) dynamics and microbiological function were investigated in a vineyard grown in California’s Mediterranean climate. We 1) compared soil organic matter (SOM), C dynamics and microbiological activity of two cover crops [Trios 102 (Triticale x T...

  10. Transfer function analysis of dynamic cerebral autoregulation in humans

    Science.gov (United States)

    Zhang, R.; Zuckerman, J. H.; Giller, C. A.; Levine, B. D.; Blomqvist, C. G. (Principal Investigator)

    1998-01-01

    To test the hypothesis that spontaneous changes in cerebral blood flow are primarily induced by changes in arterial pressure and that cerebral autoregulation is a frequency-dependent phenomenon, we measured mean arterial pressure in the finger and mean blood flow velocity in the middle cerebral artery (VMCA) during supine rest and acute hypotension induced by thigh cuff deflation in 10 healthy subjects. Transfer function gain, phase, and coherence function between changes in arterial pressure and VMCA were estimated using the Welch method. The impulse response function, calculated as the inverse Fourier transform of this transfer function, enabled the calculation of transient changes in VMCA during acute hypotension, which was compared with the directly measured change in VMCA during thigh cuff deflation. Beat-to-beat changes in VMCA occurred simultaneously with changes in arterial pressure, and the autospectrum of VMCA showed characteristics similar to arterial pressure. Transfer gain increased substantially with increasing frequency from 0.07 to 0.20 Hz in association with a gradual decrease in phase. The coherence function was > 0.5 in the frequency range of 0.07-0.30 Hz and transfer function with the quality of a high-pass filter in the frequency range of 0.07-0.30 Hz.

  11. Riemann zeta function from wave-packet dynamics

    DEFF Research Database (Denmark)

    Mack, R.; Dahl, Jens Peder; Moya-Cessa, H.

    2010-01-01

    is governed by the temperature of the thermal phase state and tau is proportional to t. We use the JWKB method to solve the inverse spectral problem for a general logarithmic energy spectrum; that is, we determine a family of potentials giving rise to such a spectrum. For large distances, all potentials...... index of JWKB. We compare and contrast exact and approximate eigenvalues of purely logarithmic potentials. Moreover, we use a numerical method to find a potential which leads to exact logarithmic eigenvalues. We discuss possible realizations of Riemann zeta wave-packet dynamics using cold atoms...

  12. Vacuum energy as a c-function for theories with dynamically generated masses

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, A.C., E-mail: arlene.aguilar@ufabc.edu.b [Federal University of ABC, CCNH, Rua Santa Adelia 166, 09210-170, Santo Andre (Brazil); Doff, A. [Universidade Tecnologica Federal do Parana - UTFPR, COMAT, Via do Conhecimento Km 01, 85503-390, Pato Branco, PR (Brazil); Natale, A.A. [Instituto de Fisica Teorica, UNESP - Universidade Estadual Paulista, Rua Dr. Bento T. Ferraz, 271, Bloco II, 01140-070, Sao Paulo (Brazil)

    2011-01-24

    We argue that in asymptotically free non-Abelian gauge theories possessing the phenomenon of dynamical mass generation the {beta} function is negative up to a value of the coupling constant that corresponds to a non-trivial fixed point, in agreement with recent AdS/QCD analysis. This fixed point happens at the minimum of the vacuum energy ({Omega}), which, as a characteristic of theories with dynamical mass generation, has the properties of a c-function.

  13. Neurophysiological Endophenotypes, CNS Disinhibition, and Risk for Alcohol Dependence and Related Disorders

    Directory of Open Access Journals (Sweden)

    Bernice Porjesz

    2007-01-01

    Full Text Available Biological endophenotypes are more proximal to gene function than psychiatric diagnosis, providing a powerful strategy in searching for genes in psychiatric disorders. These intermediate phenotypes identify both affected and unaffected members of an affected family, including offspring at risk, providing a more direct connection with underlying biological vulnerability. The Collaborative Study on the Genetics of Alcoholism (COGA has employed heritable neurophysiological features (i.e., brain oscillations as endophenotypes, making it possible to identify susceptibility genes that may be difficult to detect with diagnosis alone. We found significant linkage and association between brain oscillations and genes involved with inhibitory neural networks (e.g., GABRA2, CHRM2, including frontal networks that are deficient in individuals with alcohol dependence, impulsivity, and related disinhibitory disorders. We reported significant linkage and linkage disequilibrium for the beta frequency of the EEG and GABRA2, a GABAA receptor gene on chromosome 4, which we found is also associated with diagnosis of alcohol dependence and related disorders. More recently, we found significant linkage and association with GABRA2 and interhemispheric theta coherence. We also reported significant linkage and linkage disequilibrium between the theta and delta event-related oscillations underlying P3 to target stimuli and GABRA2, a cholinergic muscarinic receptor gene on chromosome 7, which we found is also associated with diagnosis of alcohol dependence and related disorders. Thus, the identification of genes important for the expression of the endophenotypes (brain oscillations helps when identifying genes that increase the susceptibility for risk of alcohol dependence and related disorders. These findings underscore the utility of quantitative neurophysiological endophenotypes in the study of the genetics of complex disorders. We will present our recent genetic

  14. Neurophysiological endophenotypes, CNS disinhibition, and risk for alcohol dependence and related disorders.

    Science.gov (United States)

    Porjesz, Bernice; Rangaswamy, Madhavi

    2007-01-01

    Biological endophenotypes are more proximal to gene function than psychiatric diagnosis, providing a powerful strategy in searching for genes in psychiatric disorders. These intermediate phenotypes identify both affected and unaffected members of an affected family, including offspring at risk, providing a more direct connection with underlying biological vulnerability. The Collaborative Study on the Genetics of Alcoholism (COGA) has employed heritable neurophysiological features (i.e., brain oscillations) as endophenotypes, making it possible to identify susceptibility genes that may be difficult to detect with diagnosis alone. We found significant linkage and association between brain oscillations and genes involved with inhibitory neural networks (e.g., GABRA2, CHRM2), including frontal networks that are deficient in individuals with alcohol dependence, impulsivity, and related disinhibitory disorders. We reported significant linkage and linkage disequilibrium for the beta frequency of the EEG and GABRA2, a GABAA receptor gene on chromosome 4, which we found is also associated with diagnosis of alcohol dependence and related disorders. More recently, we found significant linkage and association with GABRA2 and interhemispheric theta coherence. We also reported significant linkage and linkage disequilibrium between the theta and delta event-related oscillations underlying P3 to target stimuli and CHRM2, a cholinergic muscarinic receptor gene on chromosome 7, which we found is also associated with diagnosis of alcohol dependence and related disorders. Thus, the identification of genes important for the expression of the endophenotypes (brain oscillations) helps when identifying genes that increase the susceptibility for risk of alcohol dependence and related disorders. These findings underscore the utility of quantitative neurophysiological endophenotypes in the study of the genetics of complex disorders. We will present our recent genetic findings related to

  15. Neurophysiological studies of thin myelinated (A delta) and unmyelinated (C) fibers: application to peripheral neuropathies.

    Science.gov (United States)

    Santiago, S; Ferrer, T; Espinosa, M L

    2000-02-01

    Dysfunction of small fibers may appear in isolation or associated with large fiber lesions. In some acute neuropathies, such as pandysautonomia, small-fiber impairment is relatively pure but it may also appear in disorders with prominent somatic damage, such as Guillain-Barré syndrome, in which autonomic failure worsens the prognosis. At the present time, chronic idiopathic distal small-fiber neuropathy is diagnosed more frequently, and in some prevalent disorders, such as diabetic or amyloidotic polyneuropathies, small-fiber dysfunction is very noticeable. In pure autonomic failure, a peripheral autonomic failure exists, distinguishing it from multiple-system atrophy. Complex regional pain syndrome is a severe condition in which small fibers are responsible for disabling signs and symptoms, and only instrumental recordings lead to the proper treatment. Standard neurophysiological techniques evaluate large myelinated fibers exclusively. Small-fiber polyneuropathy has been considered as a type of somatic neuropathy, but thin myelinated and unmyelinated fibers are responsible not only for temperature and pain perception but also autonomic function. For instance, full autonomic evaluation is needed in some clinical situations such as autonomic failure in the elderly or orthostatic intolerance syndrome. To evaluate small-fiber impairment we need a battery of sensitive, reproducible, specific and noninvasive tests covering somatic and autonomic systems. In this review, we describe and analyze a number of neurophysiological techniques used to diagnose and characterize small-fiber dysfunction in humans. These include cardiovascular monitoring, sudomotor testing, pupillary responses and quantitative sensory tests, and also to some extent thermography and laser evoked potentials. The use of such techniques has proven useful not only for diagnosis, but also to guide adequate therapy and optimize follow-up.

  16. Neurophysiological assessment of Alzheimer's disease individuals by a single electroencephalographic marker.

    Science.gov (United States)

    Lizio, Roberta; Del Percio, Claudio; Marzano, Nicola; Soricelli, Andrea; Yener, Görsev G; Başar, Erol; Mundi, Ciro; De Rosa, Salvatore; Triggiani, Antonio Ivano; Ferri, Raffaele; Arnaldi, Dario; Nobili, Flavio Mariano; Cordone, Susanna; Lopez, Susanna; Carducci, Filippo; Santi, Giulia; Gesualdo, Loreto; Rossini, Paolo M; Cavedo, Enrica; Mauri, Margherita; Frisoni, Giovanni B; Babiloni, Claudio

    2016-01-01

    Here we presented a single electroencephalographic (EEG) marker for a neurophysiological assessment of Alzheimer's disease (AD) patients already diagnosed by current guidelines. The ability of the EEG marker to classify 127 AD individuals and 121 matched cognitively intact normal elderly (Nold) individuals was tested. Furthermore, its relationship to AD patients' cognitive status and structural brain integrity was examined. Low-resolution brain electromagnetic tomography (LORETA) freeware estimated cortical sources of resting state eyes-closed EEG rhythms. The EEG marker was defined as the ratio between the activity of parieto-occipital cortical sources of delta (2-4 Hz) and low-frequency alpha (8-10.5 Hz) rhythms. Results showed 77.2% of sensitivity in the recognition of the AD individuals; 65% of specificity in the recognition of the Nold individuals; and 0.75 of area under the receiver-operating characteristic curve. Compared to the AD subgroup with the EEG maker within one standard deviation of the Nold mean (EEG-), the AD subgroup with EEG+ showed lower global cognitive status, as revealed by Mini-Mental State Evaluation score, and more abnormal values of white-matter and cerebrospinal fluid normalized volumes, as revealed by structural magnetic resonance imaging. We posit that cognitive and functional status being equal, AD patients with EEG+ should receive special clinical attention due to a neurophysiological "frailty". EEG+ label can be also used in clinical trials (i) to form homogeneous groups of AD patients diagnosed by current guidelines and (ii) as end-point to evaluate intervention effects.

  17. HANSENS DISEASE : STUDY OF CLINICAL, NEUROPATHOLOGICAL, NEUROPHYSIOLOGICAL PATTERN OF LEPROUS NEUROPATHY

    Directory of Open Access Journals (Sweden)

    Vijay Kumar

    2015-07-01

    Full Text Available A need still exists to determine the clinical and neurophysiological characteristics of leprosy neuropathy at distinct times of the disease by different methods that measure the various nerve fiber functions. A prospective clinical study was performed 100 patients of clinically proven Hansen’s will take in study and given diagnosis is made by dermatologist and neurologist. For Study of Clinical, Neuropathological , Neurophysiological Pattern of leprous neuropathy and results shows that Peripheral neuropath y is common neurological disorder, although population based studies are scarce. It is a diverse group of disorder with varying etiologies. Many of these are amenable to treatment while others are not. It affects all age groups are different etiologies in various age groups. Disorder is more common in males. Leprosy is still most common cause of peripheral neuropathy in this part of world. GBS is commonest cause in acutely presenting patients of peripheral neuropathy. Vacuities is also common especially in undiagnosed peripheral neuropathy patients and revealed by nerve biopsy. Tingling and numbness are two most common sensory complains. On objective sensory examination impairment of pain/temperature was most common. Evidence of large fiber dysfunction was less common. Almost half of leprous neuropathy had impaired joint position and vibration. Anesthetic patches and thickened nerve are two commonest indicators of leprous neuropathy. Among DTRs ankle jerk was most commonly affected. Almost half of GBS patie nts had history of preceding illness. Overall sensorimotor polyneuropathy was most common type of pattern after clinical - electrophysiological evaluation. Multiple mononeuropathy was most common in leprous neuropathy. Most patients had axonal type of invo lvement. In GBS patients predominantly motor neuropathy was found Skin smear examination is readily available and easy test to diagnosed leprosy, if done carefully. Sural nerve biopsy

  18. Modeling dynamic functional information flows on large-scale brain networks.

    Science.gov (United States)

    Lv, Peili; Guo, Lei; Hu, Xintao; Li, Xiang; Jin, Changfeng; Han, Junwei; Li, Lingjiang; Liu, Tianming

    2013-01-01

    Growing evidence from the functional neuroimaging field suggests that human brain functions are realized via dynamic functional interactions on large-scale structural networks. Even in resting state, functional brain networks exhibit remarkable temporal dynamics. However, it has been rarely explored to computationally model such dynamic functional information flows on large-scale brain networks. In this paper, we present a novel computational framework to explore this problem using multimodal resting state fMRI (R-fMRI) and diffusion tensor imaging (DTI) data. Basically, recent literature reports including our own studies have demonstrated that the resting state brain networks dynamically undergo a set of distinct brain states. Within each quasi-stable state, functional information flows from one set of structural brain nodes to other sets of nodes, which is analogous to the message package routing on the Internet from the source node to the destination. Therefore, based on the large-scale structural brain networks constructed from DTI data, we employ a dynamic programming strategy to infer functional information transition routines on structural networks, based on which hub routers that most frequently participate in these routines are identified. It is interesting that a majority of those hub routers are located within the default mode network (DMN), revealing a possible mechanism of the critical functional hub roles played by the DMN in resting state. Also, application of this framework on a post trauma stress disorder (PTSD) dataset demonstrated interesting difference in hub router distributions between PTSD patients and healthy controls.

  19. Energy drinks and the neurophysiological impact of caffeine.

    Science.gov (United States)

    Persad, Leeana Aarthi Bagwath

    2011-01-01

    Caffeine is the most widely used psychoactive stimulant with prevalent use across all age groups. It is a naturally occurring substance found in the coffee bean, tea leaf, the kola nut, cocoa bean. Recently there has been an increase in energy drink consumption leading to caffeine abuse, with aggressive marketing and poor awareness on the consequences of high caffeine use. With caffeine consumption being so common, it is vital to know the impact caffeine has on the body, as its effects can influence cardio-respiratory, endocrine, and perhaps most importantly neurological systems. Detrimental effects have being described especially since an over consumption of caffeine has being noted. This review focuses on the neurophysiological impact of caffeine and its biochemical pathways in the human body.

  20. Energy drinks and the neurophysiological impacts of caffeine

    Directory of Open Access Journals (Sweden)

    Leeana eBagwath Persad

    2011-10-01

    Full Text Available Caffeine is the most widely used psychoactive stimulant with prevalent use across all age groups. It is a naturally occurring substance found in the coffee bean, tea leaf, the kola nut, cocoa bean. Recently there has been an increase in energy drink consumption leading to caffeine abuse, with aggressive marketing and poor awareness on the consequences of high caffeine use. With caffeine consumption being so common, it is vital to know the impact caffeine has on the body, as its effects can influence cardio-respiratory, endocrine and perhaps most importantly neurological systems. Detrimental effects have being described especially since an over consumption of caffeine has being noted. This review focuses on the neurophysiological impact of caffeine and its biochemical pathways in the human body.

  1. Intra-operative neurophysiology during microvascular decompression for hemifacial spasm.

    Science.gov (United States)

    Fernández-Conejero, I; Ulkatan, S; Sen, C; Deletis, V

    2012-01-01

    There is evidence that primary hemifacial spasm (HFS) in the majority of patients is related to a vascular compression of the facial nerve at its root exit zone (REZ). As a consequence, the hyperexcitability of facial nerve generates spasms of the facial muscles. Microvascular decompression (MVD) of the facial nerve near its REZ has been established as an effective treatment of HFS. Intra-operative disappearance of abnormal muscle responses (lateral spread) elicited by stimulating one of the facial nerve branches has been used as a method to predict MVD effectiveness. Other neurophysiologic techniques, such as facial F-wave, blink reflex and facial corticobulbar motor evoked potentials (FCoMEP), are feasible to intra-operatively study changes in excitability of the facial nerve and its nucleus during MVDs. Intra-operative neuromonitoring with the mentioned techniques allows a better understanding of HFS pathophysiology and helps to optimise the MVD.

  2. Subclinical neurophysiological effects of manganese in welding workers.

    Science.gov (United States)

    He, S C; Niu, Q

    2004-01-01

    High-level occupational manganese (Mn) exposure has been reported to induce irreversible brain alterations determining a Parkinson-like disease. This study aimed to assess subclinical neurophysiological alterations in welding workers. They were employed in a machine building factory with an average Mn exposure rhythms significantly reduced, theta-waves markedly increased and abnormal wave activities of either localized or diffusive type. In the same workers BEAM revealed higher theta, delta and beta power values in the F7 area, lower d power values in the FP1, FP2 and C4 areas as well as dissymmetry in the central area, parietal region and occipital region. This study suggests that Mn impairs neuron activity within central nervous system. In this context, brainstem parasympathetic and sympathetic centers receiving axon projections from cortical and diencephalic areas, may reflect Mn effects on upper pathways. However, direct actions of Mn on these centers cannot be excluded.

  3. Quality assurance and performance improvement in intraoperative neurophysiologic monitoring programs.

    Science.gov (United States)

    Tamkus, Arvydas A; Rice, Kent S; McCaffrey, Michael T

    2013-03-01

    Quality assurance (QA) as it relates to intraoperative neurophysiological monitoring (IONM) can be defined as the systematic monitoring, evaluation, and modification of the IONM service to insure that desired standards of quality are being met. In practice, that definition is usually extended to include the concept that the quality of the IONM service will be improved wherever possible and, although there are some differences in the two terms, in this article the term QA will be understood to include quality improvement (QI) processes as well. The measurement and documentation of quality is becoming increasingly important to healthcare providers. This trend is being driven by pressures from accrediting agencies, payers, and patients. The essential elements of a QA program are described. A real-life example of QA techniques and management relevant to IONM providers is presented and discussed.

  4. Pixel detectors for use in retina neurophysiology studies

    CERN Document Server

    Cunningham, W; Chichilnisky, E J; Horn, M; Litke, A M; Mathieson, K; McEwan, F A; Melone, J; O'Shea, V; Rahman, M; Smith, K M

    2003-01-01

    One area of major inter-disciplinary co-operation is between the particle physics and bio-medical communities. The type of large detector arrays and fast electronics developed in laboratories like CERN are becoming used for a wide range of medical and biological experiments. In the present work fabrication technology developed for producing semiconductor radiation detectors has been applied to produce arrays which have been used in neuro-physiological experiments on retinal tissue. We have exploited UVIII, a low molecular weight resist, that has permitted large area electron beam lithography. This allows the resolution to go below that of conventional photolithography and hence the production of densely packed similar to 500 electrode arrays with feature sizes down to below 2 mum. The neural signals from significant areas of the retina may thus be captured.

  5. Neurophysiological findings in a newborn with chromosome 10 trisomy.

    Science.gov (United States)

    Vidale, Simone; Di Palma, Franco; Sironi, Luigi; Arnaboldi, Marco

    2014-01-01

    The trisomy of the short arm of chromosome 10 is a rare condition. The phenotypic expression of this genetic aberration is characterised by growth and mental retardation with several neurological signs. We report the neurophysiological findings in a newborn affected by 10p chromosome trisomy who developed seizures. Serial EEGs showed a progressive reduction in burst-suppression activity and a slow rhythmic basal activity. At 1 year of age the recording showed for the first time spikes of high amplitude (up to 800 μV) in bilateral frontal regions. These findings could be related to an asymmetrical cerebral maturation in the context of perinatal sufferance and brain malformation due to the genetic aberration.

  6. [Genes and neurophysiological indicators of cognitive processes: a review].

    Science.gov (United States)

    Alfimova, M V; Golimbet, V E

    2011-01-01

    This article provides an overview of the genetic association studies relating candidate genes with event-related potentials. This new and rapidly developing area may aid in elucidating the molecular basis of individual differences in cognitive abilities and broaden our knowledge ofneurocircuits underlying information processing. To date, among thousands of genes expressing in the human brain, only a few have been explored in relation to ERPs. Some of the associations found confirm and extend evidence for the involvement of particular neurotransmitter systems in specific cognitive operations. Others implicate genes of brain processes that have not been previously investigated in connection with ERPs and thus propose novel directions for further research of neurophysiologic mechanisms of cognition.

  7. Energy Drinks and the Neurophysiological Impact of Caffeine

    Science.gov (United States)

    Persad, Leeana Aarthi Bagwath

    2011-01-01

    Caffeine is the most widely used psychoactive stimulant with prevalent use across all age groups. It is a naturally occurring substance found in the coffee bean, tea leaf, the kola nut, cocoa bean. Recently there has been an increase in energy drink consumption leading to caffeine abuse, with aggressive marketing and poor awareness on the consequences of high caffeine use. With caffeine consumption being so common, it is vital to know the impact caffeine has on the body, as its effects can influence cardio-respiratory, endocrine, and perhaps most importantly neurological systems. Detrimental effects have being described especially since an over consumption of caffeine has being noted. This review focuses on the neurophysiological impact of caffeine and its biochemical pathways in the human body. PMID:22025909

  8. Season physical functioning dynamic of men with different physical condition

    Directory of Open Access Journals (Sweden)

    Prushva O.B.

    2015-10-01

    Full Text Available Purpose: study season peculiarities of physical functioning of men with different physical condition. Material: in the research 53 men of 41-55 years’ age without chronic disease, who practiced healthy life style, participated. It was assessed: daily physical functioning of different intensity with the help of bio-register BASIS B1; body mass index; adaptation potential of Bayevskiy. Results: we determined that men with normal adaptation potential have less quantity of highly intensive steps than men with excessively tensed adaptation potential of cardio-vascular system. Men with tensed adaptation potential have less expressed season changes in physical functioning. Conclusions: We found the following optimal correlations: total quantity of steps per day; quantity of steps with average intensity (80-86 steps per min.; total run steps of high intensity (140-145 steps per min.; quantity of low intensity steps (8-10 steps per min..

  9. The nucleon wave function in light-front dynamics

    CERN Document Server

    Karmanov, V A

    1998-01-01

    The general spin structure of the relativistic nucleon wave function in the $3q$-model is found. It contains 16 spin components, in contrast to 8 ones known previously, since in a many-body system the parity conservation does not reduce the number of the components. The explicitly covariant form of the wave function automatically takes into account the relativistic spin rotations, without introducing any Melosh rotation matrices. It also reduces the calculations to the standard routine of the Dirac matrices and of the trace techniques. In examples of the proton magnetic moment and of the axial nucleon form factor, with a particular wave function, we reproduce the results of the standard approach. Calculations beyond the standard assumptions give different results.

  10. Strong semiclassical approximation of Wigner functions for the Hartree dynamics

    KAUST Repository

    Athanassoulis, Agissilaos

    2011-01-01

    We consider the Wigner equation corresponding to a nonlinear Schrödinger evolution of the Hartree type in the semiclassical limit h → 0. Under appropriate assumptions on the initial data and the interaction potential, we show that the Wigner function is close in L 2 to its weak limit, the solution of the corresponding Vlasov equation. The strong approximation allows the construction of semiclassical operator-valued observables, approximating their quantum counterparts in Hilbert-Schmidt topology. The proof makes use of a pointwise-positivity manipulation, which seems necessary in working with the L 2 norm and the precise form of the nonlinearity. We employ the Husimi function as a pivot between the classical probability density and the Wigner function, which - as it is well known - is not pointwise positive in general.

  11. deFUME: Dynamic exploration of functional metagenomic sequencing data

    DEFF Research Database (Denmark)

    van der Helm, Eric; Geertz-Hansen, Henrik Marcus; Genee, Hans Jasper

    2015-01-01

    Functional metagenomic selections represent a powerful technique that is widely applied for identification of novel genes from complex metagenomic sources. However, whereas hundreds to thousands of clones can be easily generated and sequenced over a few days of experiments, analyzing the data...... to a comprehensive visual data overview that facilitates effortless inspection of gene function, clustering and distribution. The webserver is available at cbs.dtu.dk/services/deFUME/and the source code is distributed at github.com/EvdH0/deFUME....

  12. Quantum power functional theory for many-body dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Matthias, E-mail: Matthias.Schmidt@uni-bayreuth.de [Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95440 Bayreuth (Germany)

    2015-11-07

    We construct a one-body variational theory for the time evolution of nonrelativistic quantum many-body systems. The position- and time-dependent one-body density, particle current, and time derivative of the current act as three variational fields. The generating (power rate) functional is minimized by the true current time derivative. The corresponding Euler-Lagrange equation, together with the continuity equation for the density, forms a closed set of one-body equations of motion. Space- and time-nonlocal one-body forces are generated by the superadiabatic contribution to the functional. The theory applies to many-electron systems.

  13. Organizational dynamics, functions, and pathobiological dysfunctions of neurofilaments.

    Science.gov (United States)

    Shea, Thomas B; Chan, Walter K-H; Kushkuley, Jacob; Lee, Sangmook

    2009-01-01

    Neurofilament phosphorylation has long been considered to regulate their axonal transport rate, and in doing so it provides stability to mature axons. We evaluate the collective evidence to date regarding how neurofilament C-terminal phosphorylation may regulate axonal transport. We present a few suggestions for further experimentation in this area, and expand upon previous models for axonal NF dynamics. We present evidence that the NFs that display extended residence along axons are critically dependent upon the surrounding microtubules, and that simultaneous interaction with multiple microtubule motors provides the architectural force that regulates their distribution. Finally, we address how C-terminal phosphorylation is regionally and temporally regulated by a balance of kinase and phosphatase activities, and how misregulation of this balance might contribute to motor neuron disease.

  14. Measuring Dynamic Kidney Function in an Undergraduate Physiology Laboratory

    Science.gov (United States)

    Medler, Scott; Harrington, Frederick

    2013-01-01

    Most undergraduate physiology laboratories are very limited in how they treat renal physiology. It is common to find teaching laboratories equipped with the capability for high-resolution digital recordings of physiological functions (muscle twitches, ECG, action potentials, respiratory responses, etc.), but most urinary laboratories still rely on…

  15. Analysis of dynamic pulmonary functions in air conditioned work environment

    Directory of Open Access Journals (Sweden)

    Anu T. E.

    2016-07-01

    Conclusions: The results of the study indicate that the subjects working in AC environment for a long duration are prone to develop restrictive lung diseases. Hence, study concludes that periodic pulmonary function assessment should be made mandatory. Further, regular maintenance of ACs is also recommended. [Int J Res Med Sci 2016; 4(7.000: 2661-2664

  16. Assessing Sensorimotor Function Following ISS with Computerized Dynamic Posturography.

    Science.gov (United States)

    Wood, Scott J; Paloski, William H; Clark, Jonathan B

    2015-12-01

    Postflight postural ataxia reflects both the control strategies adopted for movement in microgravity and the direct effects of deconditioning. Computerized dynamic posturography (CDP) has been used during the first decade of the International Space Station (ISS) expeditions to quantify the initial postflight decrements and recovery of postural stability. The CDP data were obtained on 37 crewmembers as part of their pre- and postflight medical examinations. Sensory organization tests evaluated the ability to make effective use of (or suppress inappropriate) visual, vestibular, and somatosensory information for balance control. This report focuses on eyes closed conditions with either a fixed or sway-referenced base of support, with the head erect or during pitch-head tilts (± 20° at 0.33 Hz). Equilibrium scores were derived from peak-to-peak anterior-posterior sway. Motor-control tests were also used to evaluate a crewmember's ability to automatically recover from unexpected support-surface perturbations. The standard Romberg condition was the least sensitive. Dynamic head tilts led to increased incidence of falls and revealed significantly longer recovery than head-erect conditions. Improvements in postflight postural performance during the later expeditions may be attributable to higher preflight baselines and/or advanced exercise capabilities aboard the ISS. The diagnostic assessment of postural instability is more pronounced during unstable-support conditions requiring active head movements. In addition to supporting return-to-duty decisions by flight surgeons, the CDP provides a standardized sensorimotor measure that can be used to evaluate the effectiveness of countermeasures designed to either minimize deconditioning on orbit or promote reconditioning upon return to Earth.

  17. Pipeline for inferring protein function from dynamics using coarse-grained molecular mechanics forcefield.

    Science.gov (United States)

    Bhadra, Pratiti; Pal, Debnath

    2017-02-24

    Dynamics is integral to the function of proteins, yet the use of molecular dynamics (MD) simulation as a technique remains under-explored for molecular function inference. This is more important in the context of genomics projects where novel proteins are determined with limited evolutionary information. Recently we developed a method to match the query protein's flexible segments to infer function using a novel approach combining analysis of residue fluctuation-graphs and auto-correlation vectors derived from coarse-grained (CG) MD trajectory. The method was validated on a diverse dataset with sequence identity between proteins as low as 3%, with high function-recall rates. Here we share its implementation as a publicly accessible web service, named DynFunc (Dynamics Match for Function) to query protein function from ≥1 µs long CG dynamics trajectory information of protein subunits. Users are provided with the custom-developed coarse-grained molecular mechanics (CGMM) forcefield to generate the MD trajectories for their protein of interest. On upload of trajectory information, the DynFunc web server identifies specific flexible regions of the protein linked to putative molecular function. Our unique application does not use evolutionary information to infer molecular function from MD information and can, therefore, work for all proteins, including moonlighting and the novel ones, whenever structural information is available. Our pipeline is expected to be of utility to all structural biologists working with novel proteins and interested in moonlighting functions.

  18. Interacting relativistic quantum dynamics for multi-time wave functions

    Directory of Open Access Journals (Sweden)

    Lienert Matthias

    2016-01-01

    Full Text Available In this paper, we report on recent progress about a rigorous and manifestly covariant interacting model for two Dirac particles in 1+1 dimensions [9, 10]. It is formulated using the multi-time formalism of Dirac, Tomonaga and Schwinger. The mechanism of interaction is a relativistic generalization of contact interactions, and it is achieved going beyond the usual functional-analytic Hamiltonian method.

  19. Interacting relativistic quantum dynamics for multi-time wave functions

    Science.gov (United States)

    Lienert, Matthias

    2016-11-01

    In this paper, we report on recent progress about a rigorous and manifestly covariant interacting model for two Dirac particles in 1+1 dimensions [9, 10]. It is formulated using the multi-time formalism of Dirac, Tomonaga and Schwinger. The mechanism of interaction is a relativistic generalization of contact interactions, and it is achieved going beyond the usual functional-analytic Hamiltonian method.

  20. Recovery of methanotrophs from disturbance: population dynamics, evenness and functioning.

    Science.gov (United States)

    Ho, Adrian; Lüke, Claudia; Frenzel, Peter

    2011-04-01

    Biodiversity is claimed to be essential for ecosystem functioning, but is threatened by anthropogenic disturbances. Prokaryotes have been assumed to be functionally redundant and virtually inextinguishable. However, recent work indicates that microbes may well be sensitive to environmental disturbance. Focusing on methane-oxidizing bacteria as model organisms, we simulated disturbance-induced mortality by mixing native with sterilized paddy soil in two ratios, 1:4 and 1:40, representing moderate and severe die-offs. Disturbed microcosms were compared with an untreated control. Recovery of activity and populations was followed over 4 months by methane uptake measurements, pmoA-qPCR, pmoA-based terminal restriction fragment length polymorphism and a pmoA-based diagnostic microarray. Diversity and evenness of methanotrophs decreased in disturbed microcosms, but functioning was not compromised. We consistently observed distinctive temporal shifts between type I and type II methanotrophs, and a rapid population growth leading to even higher cell numbers comparing disturbed microcosms with the control. Overcompensating mortality suggested that population size in the control was limited by competition with other bacteria. Overall, methanotrophs showed a remarkable ability to compensate for die-offs.

  1. Linearization models for parabolic dynamical systems via Abel's functional equation

    CERN Document Server

    Elin, Mark; Reich, Simeon; Shoikhet, David

    2009-01-01

    We study linearization models for continuous one-parameter semigroups of parabolic type. In particular, we introduce new limit schemes to obtain solutions of Abel's functional equation and to study asymptotic behavior of such semigroups. The crucial point is that these solutions are univalent functions convex in one direction. In a parallel direction, we find analytic conditions which determine certain geometric properties of those functions, such as the location of their images in either a half-plane or a strip, and their containing either a half-plane or a strip. In the context of semigroup theory these geometric questions may be interpreted as follows: is a given one-parameter continuous semigroup either an outer or an inner conjugate of a group of automorphisms? In other words, the problem is finding a fractional linear model of the semigroup which is defined by a group of automorphisms of the open unit disk. Our results enable us to establish some new important analytic and geometric characteristics of t...

  2. Rhythms of the brain: An examination of mixed mode oscillation approaches to the analysis of neurophysiological data

    Science.gov (United States)

    Erchova, Irina; McGonigle, David J.

    2008-03-01

    In the nervous system many behaviorally relevant dynamical processes are characterized by episodes of complex oscillatory states, whose periodicity may be expressed over multiple temporal and spatial scales. In at least some of these instances the variability in oscillatory amplitude and frequency can be explained in terms of deterministic dynamics, rather than being purely noise-driven. Recently interest has increased in studying the application of mixed-mode oscillations (MMOs) to neurophysiological data. MMOs are complex periodic waveforms where each period is comprised of several maxima and minima of different amplitudes. While MMOs might be expected to occur in brain kinetics, only a few examples have been identified thus far. In this article, we review recent theoretical and experimental findings on brain oscillatory rhythms in relation to MMOs, focusing on examples at the single neuron level but also briefly touching on possible instances of the phenomenon across local and global brain networks.

  3. Microfluidic strategy to investigate dynamics of small blood vessel function

    Science.gov (United States)

    Yasotharan, Sanjesh; Bolz, Steffen-Sebastian; Guenther, Axel

    2010-11-01

    Resistance arteries (RAs, 30-300 microns in diameter) that are located within the terminal part of the vascular tree regulate the laminar perfusion of tissue with blood, via the peripheral vascular resistance, and hence controls the systemic blood pressure. The structure of RAs is adapted to actively controlling flow resistance by dynamically changing their diameter, which is non-linearly dependent on the temporal variation of the transmural pressure, perfusion flow rate and spatiotemporal changes in the chemical environment. Increases in systemic blood pressure (hypertension) resulting from pathologic changes in the RA response represent the primary risk factor for cardiovascular diseases. We use a microfluidic strategy to investigate small blood vessels by quantifying structural variations within the arterial wall, RA outer contour and diameter over time. First, we document the artery response to vasomotor drugs that were homogeneously applied at step-wise increasing concentration. Second, we investigate the response in the presence of well-defined axial and circumferential heterogeneities. Artery per- and superfusion is discussed based on microscale PIV measurements of the fluid velocity on both sides of the arterial wall. Structural changes in the arterial wall are quantified using cross-correlation and proper orthogonal decomposition analyses of bright-field micrographs.

  4. Functional verification of dynamically reconfigurable FPGA-based systems

    CERN Document Server

    Gong, Lingkan

    2015-01-01

    This book analyzes the challenges in verifying Dynamically Reconfigurable Systems (DRS) with respect to the user design and the physical implementation of such systems. The authors describe the use of a simulation-only layer to emulate the behavior of target FPGAs and accurately model the characteristic features of reconfiguration. Readers are enabled with this simulation-only layer to maintain verification productivity by abstracting away the physical details of the FPGA fabric.  Two implementations of the simulation-only layer are included: Extended ReChannel is a SystemC library that can be used to check DRS designs at a high level; ReSim is a library to support RTL simulation of a DRS reconfiguring both its logic and state. Through a number of case studies, the authors demonstrate how their approach integrates seamlessly with existing, mainstream DRS design flows and with well-established verification methodologies such as top-down modeling and coverage-driven verification. Provides researchers with an i...

  5. The dynamic dielectric at a brain functional site and an EM wave approach to functional brain imaging.

    Science.gov (United States)

    Li, X P; Xia, Q; Qu, D; Wu, T C; Yang, D G; Hao, W D; Jiang, X; Li, X M

    2014-11-04

    Functional brain imaging has tremendous applications. The existing methods for functional brain imaging include functional Magnetic Resonant Imaging (fMRI), scalp electroencephalography (EEG), implanted EEG, magnetoencephalography (MEG) and Positron Emission Tomography (PET), which have been widely and successfully applied to various brain imaging studies. To develop a new method for functional brain imaging, here we show that the dielectric at a brain functional site has a dynamic nature, varying with local neuronal activation as the permittivity of the dielectric varies with the ion concentration of the extracellular fluid surrounding neurons in activation. Therefore, the neuronal activation can be sensed by a radiofrequency (RF) electromagnetic (EM) wave propagating through the site as the phase change of the EM wave varies with the permittivity. Such a dynamic nature of the dielectric at a brain functional site provides the basis for an RF EM wave approach to detecting and imaging neuronal activation at brain functional sites, leading to an RF EM wave approach to functional brain imaging.

  6. Transcranial magnetic stimulation in developmental stuttering: Relations with previous neurophysiological research and future perspectives.

    Science.gov (United States)

    Busan, P; Battaglini, P P; Sommer, M

    2017-06-01

    Developmental stuttering (DS) is a disruption of the rhythm of speech, and affected people may be unable to execute fluent voluntary speech. There are still questions about the exact causes of DS. Evidence suggests there are differences in the structure and functioning of motor systems used for preparing, executing, and controlling motor acts, especially when they are speech related. Much research has been obtained using neuroimaging methods, ranging from functional magnetic resonance to diffusion tensor imaging and electroencephalography/magnetoencephalography. Studies using transcranial magnetic stimulation (TMS) in DS have been uncommon until recently. This is surprising considering the relationship between the functionality of the motor system and DS, and the wide use of TMS in motor-related disturbances such as Parkinson's Disease, Tourette's Syndrome, and dystonia. Consequently, TMS could shed further light on motor aspects of DS. The present work aims to investigate the use of TMS for understanding DS neural mechanisms by reviewing TMS papers in the DS field. Until now, TMS has contributed to the understanding of the excitatory/inhibitory ratio of DS motor functioning, also helping to better understand and critically review evidence about stuttering mechanisms obtained from different techniques, which allowed the investigation of cortico-basal-thalamo-cortical and white matter/connection dysfunctions. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  7. Probing molecular mechanisms of the Hsp90 chaperone: biophysical modeling identifies key regulators of functional dynamics.

    Directory of Open Access Journals (Sweden)

    Anshuman Dixit

    Full Text Available Deciphering functional mechanisms of the Hsp90 chaperone machinery is an important objective in cancer biology aiming to facilitate discovery of targeted anti-cancer therapies. Despite significant advances in understanding structure and function of molecular chaperones, organizing molecular principles that control the relationship between conformational diversity and functional mechanisms of the Hsp90 activity lack a sufficient quantitative characterization. We combined molecular dynamics simulations, principal component analysis, the energy landscape model and structure-functional analysis of Hsp90 regulatory interactions to systematically investigate functional dynamics of the molecular chaperone. This approach has identified a network of conserved regions common to the Hsp90 chaperones that could play a universal role in coordinating functional dynamics, principal collective motions and allosteric signaling of Hsp90. We have found that these functional motifs may be utilized by the molecular chaperone machinery to act collectively as central regulators of Hsp90 dynamics and activity, including the inter-domain communications, control of ATP hydrolysis, and protein client binding. These findings have provided support to a long-standing assertion that allosteric regulation and catalysis may have emerged via common evolutionary routes. The interaction networks regulating functional motions of Hsp90 may be determined by the inherent structural architecture of the molecular chaperone. At the same time, the thermodynamics-based "conformational selection" of functional states is likely to be activated based on the nature of the binding partner. This mechanistic model of Hsp90 dynamics and function is consistent with the notion that allosteric networks orchestrating cooperative protein motions can be formed by evolutionary conserved and sparsely connected residue clusters. Hence, allosteric signaling through a small network of distantly connected

  8. Structural and Dynamic Process Family Risk Factors: Consequences for Holistic Adolescent Functioning

    Science.gov (United States)

    Matjasko, Jennifer L.; Grunden, Leslie N.; Ernst, Jody L.

    2007-01-01

    This study utilized a dynamic cumulative family risk model to explain changes in adolescent functioning. We used a person-centered approach to detect patterns of academic, emotional, and behavioral functioning and the stability of these patterns using two waves of the National Longitudinal Study of Adolescent Health (N = 10,173). Four adjustment…

  9. Localized Template-Driven Functionalization of Nanoparticles by Dynamic Combinatorial Chemistry

    NARCIS (Netherlands)

    Nowak, Piotr; Saggiomo, Vittorio; Salehian, Fatemeh; Colomb-Delsuc, Mathieu; Han, Yang; Otto, Sijbren

    2015-01-01

    We have developed a method for the localized functionalization of gold nanoparticles using imine-based dynamic combinatorial chemistry. By using DNA templates, amines were grafted on the aldehyde-functionalized nanoparticles only if and where the nanoparticles interacted with the template molecules.

  10. Localized Template-Driven Functionalization of Nanoparticles by Dynamic Combinatorial Chemistry

    NARCIS (Netherlands)

    Nowak, Piotr; Saggiomo, Vittorio; Salehian, Fatemeh; Colomb-Delsuc, Mathieu; Han, Yang; Otto, Sijbren

    2015-01-01

    We have developed a method for the localized functionalization of gold nanoparticles using imine-based dynamic combinatorial chemistry. By using DNA templates, amines were grafted on the aldehyde-functionalized nanoparticles only if and where the nanoparticles interacted with the template molecules.

  11. Structural and functional dynamics of Excitatory Amino Acid Transporters (EAAT

    Directory of Open Access Journals (Sweden)

    Thomas Rauen

    2014-09-01

    Full Text Available Glutamate transporters control the glutamate homeostasis in the central nervous system, and, thus, are not only crucial for physiological excitatory synaptic signaling, but also for the prevention of a large number of neurodegenerative diseases that are associated with excessive and prolonged presence of the neurotransmitter glutamate in the extracellular space. Until now, five subtypes of high-affinity glutamate transporters (excitatory amino acid transporters, EAATs 1–5 have been identified. These 5 high-affinity glutamate transporter subtypes belong to the solute carrier 1 (SLC1 family of transmembrane proteins: EAAT1/GLAST (SLC1A3, EAAT2/GLT1 (SLC1A2, EAAT3/EAAC1 (SLC1A1, EAAT4 (SLC1A6 and EAAT5 (SLC1A7. EAATs are secondary-active transporters, taking up glutamate into the cell against a substantial concentration gradient. The driving force for concentrative uptake is provided by the co-transport of Na+ ions and the counter-transport of one K+ in a step independent of the glutamate translocation step. Due to the electrogenicity of transport, the transmembrane potential can also act as driving force. Glutamate transporters are also able to run in reverse, resulting in glutamate release from cells. Due to these important physiological functions, glutamate transporter expression and, therefore, the transport rate, are tightly regulated. The EAAT protein family are structurally expected to be highly similar, however, these transporters show a functional diversity that ranges from high capacity glutamate uptake systems (EAATs 1–3 to receptor-like glutamate activated anion channels (EAATs 4–5. Here, we provide an update on most recent progress made on EAAT’s molecular transport mechanism, structure-function relationships, pharmacology, and will add recent insights into mechanism of rapid membrane trafficking of glutamate transporters.

  12. Spontaneous Functional Network Dynamics and Associated Structural Substrates in the Human Brain

    Directory of Open Access Journals (Sweden)

    Xuhong eLiao

    2015-09-01

    Full Text Available Recent imaging connectomics studies have demonstrated that the spontaneous human brain functional networks derived from resting-state functional MRI (R-fMRI include many non-trivial topological properties, such as highly efficient small-world architecture and densely connected hub regions. However, very little is known about dynamic functional connectivity (D-FC patterns of spontaneous human brain networks during rest and about how these spontaneous brain dynamics are constrained by the underlying structural connectivity. Here, we combined sub-second multiband R-fMRI data with graph-theoretical approaches to comprehensively investigate the dynamic characteristics of the topological organization of human whole-brain functional networks, and then employed diffusion imaging data in the same participants to further explore the associated structural substrates. At the connection level, we found that human whole-brain D-FC patterns spontaneously fluctuated over time, while homotopic D-FC exhibited high connectivity strength and low temporal variability. At the network level, dynamic functional networks exhibited time-varying but evident small-world and assortativity architecture, with several regions (e.g., insula, sensorimotor cortex and medial prefrontal cortex emerging as functionally persistent hubs (i.e., highly connected regions while possessing large temporal variability in their degree centrality. Finally, the temporal characteristics (i.e., strength and variability of the connectional and nodal properties of the dynamic brain networks were significantly associated with their structural counterparts. Collectively, we demonstrate the economical, efficient and flexible characteristics of dynamic functional coordination in large-scale human brain networks during rest, and highlight their relationship with underlying structural connectivity, which deepens our understandings of spontaneous brain network dynamics in humans.

  13. Uniformly Almost Periodic Functions and Almost Periodic Solutions to Dynamic Equations on Time Scales

    Directory of Open Access Journals (Sweden)

    Yongkun Li

    2011-01-01

    Full Text Available Firstly, we propose a concept of uniformly almost periodic functions on almost periodic time scales and investigate some basic properties of them. When time scale T=ℝ or ℤ, our definition of the uniformly almost periodic functions is equivalent to the classical definitions of uniformly almost periodic functions and the uniformly almost periodic sequences, respectively. Then, based on these, we study the existence and uniqueness of almost periodic solutions and derive some fundamental conditions of admitting an exponential dichotomy to linear dynamic equations. Finally, as an application of our results, we study the existence of almost periodic solutions for an almost periodic nonlinear dynamic equations on time scales.

  14. Max-Sum Diversification, Monotone Submodular Functions and Dynamic Updates

    CERN Document Server

    Borodin, Allan; Ye, Yuli

    2012-01-01

    Result diversification has many important applications in databases, operations research, information retrieval, and finance. In this paper, we study and extend a particular version of result diversification, known as max-sum diversification. More specifically, we consider the setting where we are given a set of elements in a metric space and a set valuation function $f$ defined on every subset. For any given subset $S$, the overall objective is a linear combination of $f(S)$ and the sum of the distances induced by $S$. The goal is to find a subset $S$ satisfying some constraints that maximizes the overall objective. This problem is first studied by Gollapudi and Sharma for modular set functions and for sets satisfying a cardinality constraint. We consider an extension of the modular case to the monotone submodular case, for which the previous algorithm no longer applies. Interestingly, we are able to match the 2-approximation using a natural, but different greedy algorithm. We then further extend the problem...

  15. Dynamic functional brain networks involved in simple visual discrimination learning.

    Science.gov (United States)

    Fidalgo, Camino; Conejo, Nélida María; González-Pardo, Héctor; Arias, Jorge Luis

    2014-10-01

    Visual discrimination tasks have been widely used to evaluate many types of learning and memory processes. However, little is known about the brain regions involved at different stages of visual discrimination learning. We used cytochrome c oxidase histochemistry to evaluate changes in regional brain oxidative metabolism during visual discrimination learning in a water-T maze at different time points during training. As compared with control groups, the results of the present study reveal the gradual activation of cortical (prefrontal and temporal cortices) and subcortical brain regions (including the striatum and the hippocampus) associated to the mastery of a simple visual discrimination task. On the other hand, the brain regions involved and their functional interactions changed progressively over days of training. Regions associated with novelty, emotion, visuo-spatial orientation and motor aspects of the behavioral task seem to be relevant during the earlier phase of training, whereas a brain network comprising the prefrontal cortex was found along the whole learning process. This study highlights the relevance of functional interactions among brain regions to investigate learning and memory processes. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Effective model hierarchies for dynamic and static classical density functional theories

    Energy Technology Data Exchange (ETDEWEB)

    Majaniemi, S [Department of Applied Physics, Aalto University School of Science and Technology, PO Box 11100, FI-00076 Aalto (Finland); Provatas, N [Department of Materials Science and Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S-4L7 (Canada); Nonomura, M, E-mail: maj@fyslab.hut.f [Department of Physics, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522 (Japan)

    2010-09-15

    The origin and methodology of deriving effective model hierarchies are presented with applications to solidification of crystalline solids. In particular, it is discussed how the form of the equations of motion and the effective parameters on larger scales can be obtained from the more microscopic models. It will be shown that tying together the dynamic structure of the projection operator formalism with static classical density functional theories can lead to incomplete (mass) transport properties even though the linearized hydrodynamics on large scales is correctly reproduced. To facilitate a more natural way of binding together the dynamics of the macrovariables and classical density functional theory, a dynamic generalization of density functional theory based on the nonequilibrium generating functional is suggested.

  17. The dynamical system generated by the 3n+1 function

    CERN Document Server

    Wirsching, Günther J

    1998-01-01

    The 3n+1 function T is defined by T(n)=n/2 for n even, and T(n)=(3n+1)/2 for n odd. The famous 3n+1 conjecture, which remains open, states that, for any starting number n>0, iterated application of T to n eventually produces 1. After a survey of theorems concerning the 3n+1 problem, the main focus of the book are 3n+1 predecessor sets. These are analyzed using, e.g., elementary number theory, combinatorics, asymptotic analysis, and abstract measure theory. The book is written for any mathematician interested in the 3n+1 problem, and in the wealth of mathematical ideas employed to attack it.

  18. Behavior of the Escape Rate Function in Hyperbolic Dynamical Systems

    CERN Document Server

    Demers, Mark

    2011-01-01

    For a fixed initial reference measure, we study the dependence of the escape rate on the hole for a smooth or piecewise smooth hyperbolic map. First, we prove the existence and Holder continuity of the escape rate for systems with small holes admitting Young towers. Then we consider general holes for Anosov diffeomorphisms, without size or Markovian restrictions. We prove bounds on the upper and lower escape rates using the notion of pressure on the survivor set and show that a variational principle holds under generic conditions. However, we also show that the escape rate function forms a devil's staircase with jumps along sequences of regular holes and present examples to elucidate some of the difficulties involved in formulating a general theory.

  19. Neural network design for J function approximation in dynamic programming

    CERN Document Server

    Pang, X

    1998-01-01

    This paper shows that a new type of artificial neural network (ANN) -- the Simultaneous Recurrent Network (SRN) -- can, if properly trained, solve a difficult function approximation problem which conventional ANNs -- either feedforward or Hebbian -- cannot. This problem, the problem of generalized maze navigation, is typical of problems which arise in building true intelligent control systems using neural networks. (Such systems are discussed in the chapter by Werbos in K.Pribram, Brain and Values, Erlbaum 1998.) The paper provides a general review of other types of recurrent networks and alternative training techniques, including a flowchart of the Error Critic training design, arguable the only plausible approach to explain how the brain adapts time-lagged recurrent systems in real-time. The C code of the test is appended. As in the first tests of backprop, the training here was slow, but there are ways to do better after more experience using this type of network.

  20. Root structural and functional dynamics in terrestrial biosphere models--evaluation and recommendations.

    Science.gov (United States)

    Warren, Jeffrey M; Hanson, Paul J; Iversen, Colleen M; Kumar, Jitendra; Walker, Anthony P; Wullschleger, Stan D

    2015-01-01

    There is wide breadth of root function within ecosystems that should be considered when modeling the terrestrial biosphere. Root structure and function are closely associated with control of plant water and nutrient uptake from the soil, plant carbon (C) assimilation, partitioning and release to the soils, and control of biogeochemical cycles through interactions within the rhizosphere. Root function is extremely dynamic and dependent on internal plant signals, root traits and morphology, and the physical, chemical and biotic soil environment. While plant roots have significant structural and functional plasticity to changing environmental conditions, their dynamics are noticeably absent from the land component of process-based Earth system models used to simulate global biogeochemical cycling. Their dynamic representation in large-scale models should improve model veracity. Here, we describe current root inclusion in models across scales, ranging from mechanistic processes of single roots to parameterized root processes operating at the landscape scale. With this foundation we discuss how existing and future root functional knowledge, new data compilation efforts, and novel modeling platforms can be leveraged to enhance root functionality in large-scale terrestrial biosphere models by improving parameterization within models, and introducing new components such as dynamic root distribution and root functional traits linked to resource extraction.

  1. Transcranial direct current stimulation reverses neurophysiological and behavioural effects of focal inhibition of human pharyngeal motor cortex on swallowing.

    Science.gov (United States)

    Vasant, Dipesh H; Mistry, Satish; Michou, Emilia; Jefferson, Samantha; Rothwell, John C; Hamdy, Shaheen

    2014-02-15

    The human cortical swallowing system exhibits bilateral but functionally asymmetric representation in health and disease as evidenced by both focal cortical inhibition (pre-conditioning with 1 Hz repetitive transcranial magnetic stimulation; rTMS) and unilateral stroke, where disruption of the stronger (dominant) pharyngeal projection alters swallowing neurophysiology and behaviour. Moreover, excitatory neurostimulation protocols capable of reversing the disruptive effects of focal cortical inhibition have demonstrated therapeutic promise in post-stroke dysphagia when applied contralaterally. In healthy participants (n = 15, 8 males, mean age (±SEM) 35 ± 9 years), optimal parameters of transcranial direct current stimulation (tDCS) (anodal, 1.5 mA, 10 min) were applied contralaterally after 1 Hz rTMS pre-conditioning to the strongest pharyngeal projection. Swallowing neurophysiology was assessed in both hemispheres by intraluminal recordings of pharyngeal motor-evoked responses (PMEPs) to single-pulse TMS as a measure of cortical excitability. Swallowing behaviour was examined using a pressure-based reaction time protocol. Measurements were made before and for up to 60 min post intervention. Subjects were randomised to active or sham tDCS after 1 Hz rTMS on separate days and data were compared using repeated measures ANOVA. Active tDCS increased PMEPs bilaterally (F1,14 = 7.4, P = 0.017) reversing the inhibitory effects of 1 Hz rTMS in the pre-conditioned hemisphere (F1,14 = 10.1, P = 0.007). Active tDCS also enhanced swallowing behaviour, increasing the number of correctly timed challenge swallows compared to sham (F1,14 = 6.3, P = 0.025). Thus, tDCS to the contralateral pharyngeal motor cortex reverses the neurophysiological and behavioural effects of focal cortical inhibition on swallowing in healthy individuals and has therapeutic potential for dysphagia rehabilitation.

  2. A nonlinear correlation function for selecting the delay time in dynamical reconstructions

    Science.gov (United States)

    Aguirre, Luis Antonio

    1995-02-01

    Numerical results discussed in this paper suggest that a function which detects nonlinear correlations in time series usually indicates shorter correlation times than the linear autocorrelation function which is often used for this purpose. The nonlinear correlation function can also detect changes in the data which cannot be distinguished by the linear counterpart. This affects a number of approaches for the selection of the delay time used in the reconstruction of nonlinear dynamics from a single time series based on time delay coordinates.

  3. Neurophysiological analysis of target-related sympathetic pathways--from animal to human: similarities and differences.

    Science.gov (United States)

    Jänig, W; Häbler, H-J

    2003-03-01

    The sympathetic nervous system regulates many different target tissues in the somatic and visceral domains of the body in a differentiated manner, indicating that there exist separate sympathetic pathways that are functionally defined by their target cells. Signals generated by central integration and channelled through the preganglionic neurons into the final sympathetic pathways are precisely transmitted through the para- and prevertebral ganglia and at the neuroeffector junctions to the effector cells. Neurophysiological recordings of activity in postganglionic neurons in skin and muscle nerves using microneurography in human subjects and in skin, muscle and visceral nerves, using conventional recording techniques in anaesthetized animals, clearly show that each type of sympathetic neuron exhibits a discharge pattern that is characteristic for its target cells and, therefore, its function. These findings justify labelling the neurons as muscle vasoconstrictor, cutaneous vasoconstrictor, sudomotor, lipomotor, cardiomotor, secretomotor neurons, etc. The discharge patterns monitor aspects of the central organization of the respective sympathetic system in the neuraxis and forebrain. They can be dissected into several distinct reflexes (initiated by peripheral and central afferent inputs) and reactions connected to central signals (related to respiration, circadian and other rhythms, command signals generated in the forebrain, etc). They are functional markers for the sympathetic final pathways. These neurophysiological recordings of the discharge patterns from functionally identified neurons of sympathetic pathways in the human and in animals are the ultimate reference for all experimental investigations that aim to unravel the central organization of the sympathetic systems. The similarities of the results obtained in the in vivo studies in the human and in animals justify concluding that the principles of the central organization of sympathetic systems are

  4. Structural bases for neurophysiological investigations of amygdaloid complex of the brain

    Science.gov (United States)

    Kalimullina, Liliya B.; Kalkamanov, Kh. A.; Akhmadeev, Azat V.; Zakharov, Vadim P.; Sharafullin, Ildus F.

    2015-11-01

    Amygdala (Am) as a part of limbic system of the brain defines such important functions as adaptive behavior of animals, formation of emotions and memory, regulation of endocrine and visceral functions. We worked out, with the help of mathematic modelling of the pattern recognition theory, principles for organization of neurophysiological and neuromorphological studies of Am nuclei, which take into account the existing heterogeneity of its formations and optimize, to a great extent, the protocol for carrying out of such investigations. The given scheme of studies of Am’s structural-functional organization at its highly-informative sections can be used as a guide for precise placement of electrodes’, cannulae’s and microsensors into particular Am nucleus in the brain with the registration not only the nucleus itself, but also its extensions. This information is also important for defining the number of slices covering specific Am nuclei which must be investigated to reveal the physiological role of a particular part of amygdaloid complex.

  5. Structure, dynamics, and function of the monooxygenase P450 BM-3: insights from computer simulations studies

    Science.gov (United States)

    Roccatano, Danilo

    2015-07-01

    The monooxygenase P450 BM-3 is a NADPH-dependent fatty acid hydroxylase enzyme isolated from soil bacterium Bacillus megaterium. As a pivotal member of cytochrome P450 superfamily, it has been intensely studied for the comprehension of structure-dynamics-function relationships in this class of enzymes. In addition, due to its peculiar properties, it is also a promising enzyme for biochemical and biomedical applications. However, despite the efforts, the full understanding of the enzyme structure and dynamics is not yet achieved. Computational studies, particularly molecular dynamics (MD) simulations, have importantly contributed to this endeavor by providing new insights at an atomic level regarding the correlations between structure, dynamics, and function of the protein. This topical review summarizes computational studies based on MD simulations of the cytochrome P450 BM-3 and gives an outlook on future directions.

  6. Dynamic network participation of functional connectivity hubs assessed by resting-state fMRI

    Directory of Open Access Journals (Sweden)

    Alexander eSchaefer

    2014-05-01

    Full Text Available Network studies of large-scale brain connectivity have demonstrated that highly connected areas, or ‘hubs’, are a key feature of human functional and structural brain organization. We use resting-state functional MRI data and connectivity clustering to identify multi network hubs and show that while hubs can belong to multiple networks their degree of integration into these different networks varies dynamically over time. In addition, we found that these network dynamics were inversely related to positive self-generated thoughts reported by individuals and were further decreased with older age. Moreover, the left caudate varied its degree of participation between a default mode subnetwork and a limbic network. This variation was predictive of individual differences in the reports of past-related thoughts. These results support an association between ongoing thought processes and network dynamics and offer a new approach to investigate the brain dynamics underlying mental experience.

  7. Sea Surface Temperature Modeling using Radial Basis Function Networks With a Dynamically Weighted Particle Filter

    KAUST Repository

    Ryu, Duchwan

    2013-03-01

    The sea surface temperature (SST) is an important factor of the earth climate system. A deep understanding of SST is essential for climate monitoring and prediction. In general, SST follows a nonlinear pattern in both time and location and can be modeled by a dynamic system which changes with time and location. In this article, we propose a radial basis function network-based dynamic model which is able to catch the nonlinearity of the data and propose to use the dynamically weighted particle filter to estimate the parameters of the dynamic model. We analyze the SST observed in the Caribbean Islands area after a hurricane using the proposed dynamic model. Comparing to the traditional grid-based approach that requires a supercomputer due to its high computational demand, our approach requires much less CPU time and makes real-time forecasting of SST doable on a personal computer. Supplementary materials for this article are available online. © 2013 American Statistical Association.

  8. Dynamic functional connectivity analysis of Taichong (LR3) acupuncture effects in various brain regions

    Institute of Scientific and Technical Information of China (English)

    Wenjuan Qiu; Bin Yan; Hongjian He; Li Tong; Jianxin Li

    2012-01-01

    The present study conducted a multi-scale dynamic functional connectivity analysis to evaluate dynamic behavior of acupuncture at Taichong (LR3) and sham acupoints surrounding Taichong. Results showed differences in wavelet transform coherence characteristic curves in the declive, precuneus, postcentral gyrus, supramarginal gyrus, and occipital lobe between acupuncture at Taichong and acupuncture at sham acupoints. The differences in characteristic curves revealed that the specific effect of acupuncture existed during the post-acupuncture rest state and lasted for 5 minutes.

  9. STUDY ON DYNAMICS, STABILITY AND CONTROL OF MULTI-BODY FLEXIBLE STRUCTURE SYSTEM IN FUNCTIONAL SPACE

    Institute of Scientific and Technical Information of China (English)

    徐建国; 贾军国

    2001-01-01

    The dynamics, stability and control problem of a kind of infinite dimensional system are studied in the functional space with the method of modern mathematics. First,the dynamical control model of the distributed parameter system with multi-body flexible and multi-topological structure was established which has damping, gyroscopic parts and constrained damping. Secondly, the necessary and sufficient condition of controllability and observability, the stability theory and asymptotic property of the system were obtained.These results expand the theory of the field about the dynamics and control of the system with multi-body flexible structure, and have important engineering significance.

  10. Neurophysiological Traces of Interpersonal Pain: How Emotional Autobiographical Memories Affect Event-Related Potentials.

    Science.gov (United States)

    Rohde, Kristina B; Caspar, Franz; Koenig, Thomas; Pascual-Leone, Antonio; Stein, Maria

    2017-08-31

    The automatic, involuntary reactivation of disturbing emotional memories, for example, of interpersonal pain, causes psychological discomfort and is central to many psychopathologies. This study aimed at elucidating the automatic brain processes underlying emotional autobiographical memories by investigating the neurophysiological dynamics within the first second after memory reactivation. Pictures of different individualized familiar faces served as cues for different specific emotional autobiographical memories, for example, for memories of interpersonal pain and grievances or for memories of appreciation in interpersonal relationships. Nineteen subjects participated in a passive face-viewing task while multichannel electroencephalogram was recorded. Analyses of event-related potentials demonstrated that emotional memories elicited an early posterior negativity and a stronger late positive potential, which tended to be particularly enhanced for painful memories. Source estimations attributed this stronger activation to networks including the posterior cingulate and ventrolateral prefrontal cortices. The findings suggest that the reactivation of emotional autobiographical memories involves privileged automatic attention at perceptual processing stages, and an enhanced recruitment of neural network activity at a postperceptual stage sensitive to emotional-motivational processing. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  11. Neurophysiological Correlates of Featural and Spacing Processing for Face and Non-face Stimuli

    Science.gov (United States)

    Negrini, Marcello; Brkić, Diandra; Pizzamiglio, Sara; Premoli, Isabella; Rivolta, Davide

    2017-01-01

    The peculiar ability of humans to recognize hundreds of faces at a glance has been attributed to face-specific perceptual mechanisms known as holistic processing. Holistic processing includes the ability to discriminate individual facial features (i.e., featural processing) and their spatial relationships (i.e., spacing processing). Here, we aimed to characterize the spatio-temporal dynamics of featural- and spacing-processing of faces and objects. Nineteen healthy volunteers completed a newly created perceptual discrimination task for faces and objects (i.e., the “University of East London Face Task”) while their brain activity was recorded with a high-density (128 electrodes) electroencephalogram. Our results showed that early event related potentials at around 100 ms post-stimulus onset (i.e., P100) are sensitive to both facial features and spacing between the features. Spacing and features discriminability for objects occurred at circa 200 ms post-stimulus onset (P200). These findings indicate the existence of neurophysiological correlates of spacing vs. features processing in both face and objects, and demonstrate faster brain processing for faces. PMID:28348535

  12. Dynamic remodeling of microbial biofilms by functionally distinct exopolysaccharides.

    Science.gov (United States)

    Chew, Su Chuen; Kundukad, Binu; Seviour, Thomas; van der Maarel, Johan R C; Yang, Liang; Rice, Scott A; Doyle, Patrick; Kjelleberg, Staffan

    2014-08-05

    Biofilms are densely populated communities of microbial cells protected and held together by a matrix of extracellular polymeric substances. The structure and rheological properties of the matrix at the microscale influence the retention and transport of molecules and cells in the biofilm, thereby dictating population and community behavior. Despite its importance, quantitative descriptions of the matrix microstructure and microrheology are limited. Here, particle-tracking microrheology in combination with genetic approaches was used to spatially and temporally study the rheological contributions of the major exopolysaccharides Pel and Psl in Pseudomonas aeruginosa biofilms. Psl increased the elasticity and effective cross-linking within the matrix, which strengthened its scaffold and appeared to facilitate the formation of microcolonies. Conversely, Pel reduced effective cross-linking within the matrix. Without Psl, the matrix becomes more viscous, which facilitates biofilm spreading. The wild-type biofilm decreased in effective cross-linking over time, which would be advantageous for the spreading and colonization of new surfaces. This suggests that there are regulatory mechanisms to control production of the exopolysaccharides that serve to remodel the matrix of developing biofilms. The exopolysaccharides were also found to have profound effects on the spatial organization and integration of P. aeruginosa in a mixed-species biofilm model of P. aeruginosa-Staphylococcus aureus. Pel was required for close association of the two species in mixed-species microcolonies. In contrast, Psl was important for P. aeruginosa to form single-species biofilms on top of S. aureus biofilms. Our results demonstrate that Pel and Psl have distinct physical properties and functional roles during biofilm formation. Importance: Most bacteria grow as biofilms in the environment or in association with eukaryotic hosts. Removal of biofilms that form on surfaces is a challenge in clinical

  13. Effects of startle and laughter in cataplectic subjects : a neurophysiological study between attacks

    NARCIS (Netherlands)

    Lammers, GJ; Overeem, S; Tijssen, MAJ; van Dijk, JG

    2000-01-01

    Objectives: Cataplexy, when unequivocally present together with excessive daytime sleepiness, is diagnostic for narcolepsy. Unfortunately, it is difficult to induce cataplexy during consultation. In this study we tried to assess presumed subclinical expressions of cataplexy using neurophysiological

  14. Descartes' visit to the town library, or how Augustinian is Descartes' neurophysiology?

    Science.gov (United States)

    Smith, C U

    1998-08-01

    Rene Descartes was early accused of taking his central philosophical proposition from St Augustine. Did he also take his central neurophysiological concept from the same source? This is the question which this paper sets out to answer. It is concluded that the foundational neurophysiology propounded in L'Homme does indeed show strong and interesting resemblences to Augustine's largely Erasistratean version. Descartes, however, working within the new paradigm of seventeenth-century physical science, introduced a new principle: whereas Augustine's neurophysiology is pervaded throughout by a vital factor, the pneuma, Descartes' theory involved only inanimate material forces. It is concluded, further, that in spite of the interesting similarities between Augustinian and Cartesian neurophysiology there is no evidence for any direct plagiarism. It seems more likely that Augustine's influence was filtered through the Galenical physiologists of Descartes' own time and of the preceding century.

  15. May clinical neurophysiology help to predict the recovery of neurological early rehabilitation patients?

    National Research Council Canada - National Science Library

    Rollnik, Jens D

    2015-01-01

    .... Clinical and neurophysiological data of a large sample of 803 early rehabilitation cases of the BDH-Clinic Hessisch Oldendorf in Northern Germany have been carefully reviewed. Most patients (43.5...

  16. Neuroimaging and clinical neurophysiology in cluster headache and trigeminal autonomic cephalalgias

    DEFF Research Database (Denmark)

    Friberg, Lars; Sandrini, Giorgio; Perrotta, Armando

    2010-01-01

    Clinical neurophysiology and neuroimaging are two non-invasive approaches used to investigate the pathophysiological basis of primary headaches, including cluster headache (CH) and other trigeminal autonomic cephalalgias (TACs). Modern neuroimaging has revolutionized our understanding...

  17. Dynamic density functional theory of protein adsorption on polymer-coated nanoparticles

    CERN Document Server

    Angioletti-Uberti, Stefano; Dzubiella, Joachim

    2014-01-01

    We present a theoretical model for the description of the adsorption kinetics of globular proteins onto charged core-shell microgel particles based on Dynamic Density Functional Theory (DDFT). This model builds on a previous description of protein adsorption thermodynamics [Yigit \\textit{et al}, Langmuir 28 (2012)], shown to well interpret the available calorimetric experimental data of binding isotherms. In practice, a spatially-dependent free-energy functional including the same physical interactions is built, and used to study the kinetics via a generalised diffusion equation. To test this model, we apply it to the case study of Lysozyme adsorption on PNIPAM coated nanoparticles, and show that the dynamics obtained within DDFT is consistent with that extrapolated from experiments. We also perform a systematic study of the effect of various parameters in our model, and investigate the loading dynamics as a function of proteins' valence and hydrophobic adsorption energy, as well as their concentration and th...

  18. Statistical inference of dynamic resting-state functional connectivity using hierarchical observation modeling.

    Science.gov (United States)

    Sojoudi, Alireza; Goodyear, Bradley G

    2016-12-01

    Spontaneous fluctuations of blood-oxygenation level-dependent functional magnetic resonance imaging (BOLD fMRI) signals are highly synchronous between brain regions that serve similar functions. This provides a means to investigate functional networks; however, most analysis techniques assume functional connections are constant over time. This may be problematic in the case of neurological disease, where functional connections may be highly variable. Recently, several methods have been proposed to determine moment-to-moment changes in the strength of functional connections over an imaging session (so called dynamic connectivity). Here a novel analysis framework based on a hierarchical observation modeling approach was proposed, to permit statistical inference of the presence of dynamic connectivity. A two-level linear model composed of overlapping sliding windows of fMRI signals, incorporating the fact that overlapping windows are not independent was described. To test this approach, datasets were synthesized whereby functional connectivity was either constant (significant or insignificant) or modulated by an external input. The method successfully determines the statistical significance of a functional connection in phase with the modulation, and it exhibits greater sensitivity and specificity in detecting regions with variable connectivity, when compared with sliding-window correlation analysis. For real data, this technique possesses greater reproducibility and provides a more discriminative estimate of dynamic connectivity than sliding-window correlation analysis. Hum Brain Mapp 37:4566-4580, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. American neurophysiology and two nineteenth-century American Physiological Societies.

    Science.gov (United States)

    Lazar, J Wayne

    2017-01-01

    This article contrasts two American Physiological Societies, one founded near the beginning of the nineteenth century in 1837 and the other founded near its end in 1887. The contrast allows a perspective on how much budding neuroscience had developed during the nineteenth century in America. The contrast also emphasizes the complicated structure needed in both medicine and physiology to allow neurophysiology to flourish. The objectives of the American Physiological Society of 1887 were (and are) to promote physiological research and to codify physiology as a discipline. These would be accomplished by making physiology much more inclusive than traditionally accepted by raising research standards, by giving prestige to its members, by providing members a source of professional interchange, by protecting its members from antivivisectionists, and by promoting physiology as fundamental to medicine. The quantity of neuroscientific experiments by its members was striking. The main organizers of the society were Silas Weir Mitchell, John Call Dalton, Henry Pickering Bowditch, and Henry Newell Martin. The objective of the American Physiological Society of 1837 was to disperse knowledge of the "laws of life" and to promote human health and longevity. The primary organizers were William Andrus Alcott and Sylvester Graham with the encouragement of John Benson. Its technique was to use physiological information, not create it as was the case in 1887. Its object was to disseminate the word that healthy eating will improve the quality of life.

  20. [Neurophysiological methods in evaliuation of neurorehabiltation in children].

    Science.gov (United States)

    Świerczyńska, Anna; Kłusek, Renata; Kaciński, Marek

    2016-01-01

    The authors reviewed neurophysiological methods, which are used in the evaluation of children referred for neurorehabilitation. Rehabilitation techniques which may stimulate or provoke pathological changes in EEG must be ruled out. Electrophysiological and clinical improvement allow for the extension and intensification of rehabilitation. Normal EEG pattern ensures the safe use of techniques consisting of neuromuscular re-education or passive verticalisation, electrotherapy and thermotherapy. Quantitative and qualitative assessment of cognitive impairment is based on neuropsychological tests and endogenous evoked potentials (most often P300). Presence of cognitive dysfunction needs the use of neuropsychological and neurologopedic therapy. Based on results of exogenous evoked potentials appropriate neurorehabilitation program (physiotherapy, kinezytherapy) can be determined and clinical outcome predicted. EMG allows appropriate usage of applications, patterns and principles in the PNF method (such as compression, stretching, resistance), adapting them optimally to the possibility of a child. ENG estimates conduction in motor and sensory nerves. Based on the results nerve impairment can be localized, severity and character of damage estimated (demyelinating, axonal or complex) and course of the disease and treatment monitored. Short characteristics of 37 children with Guillain-Barre syndrome referred for rehabilitation was presented. Special attention was drawn to floppy infants. Results of neuroelectrophysiological examinations determine suitable rehabilitation program adjusted to the course of central nervous system impairment.

  1. Neurophysiological Correlates of Visual Dominance: A Lateralized Readiness Potential Investigation

    Science.gov (United States)

    Li, You; Liu, Mingxin; Zhang, Wei; Huang, Sai; Zhang, Bao; Liu, Xingzhou; Chen, Qi

    2017-01-01

    When multisensory information concurrently arrives at our receptors, visual information often receives preferential processing and eventually dominates awareness and behavior. Previous research suggested that the visual dominance effect implicated the prioritizing of visual information into the motor system. In order to further reveal the underpinning neurophysiological mechanism of how visual information is prioritized into the motor system when vision dominates audition, the present study examined the time course of a particular motor activation ERP component, the lateralized readiness potential (LRP), during multisensory competition. The onsets of both stimulus-locked LRP (S-LRP) and response-locked LRP (R-LRP) were measured. Results showed that, the R-LRP onset to the auditory target was delayed about 91 ms when it was paired with a simultaneous presented visual target, compared to that when it was presented by itself. For the visual target, however, the R-LRP onset was comparable irrespective of whether it was paired with an auditory target or not. No significant difference was obtained for the onset of S-LRP. Taken together, the time courses of LRPs indicated that visual information was preferentially processed within the motor system, which coincides with the previous finding that the dorsal visual stream prioritizes the flow of visual information into the motor system.

  2. Neurophysiological predictor of SMR-based BCI performance.

    Science.gov (United States)

    Blankertz, Benjamin; Sannelli, Claudia; Halder, Sebastian; Hammer, Eva M; Kübler, Andrea; Müller, Klaus-Robert; Curio, Gabriel; Dickhaus, Thorsten

    2010-07-15

    Brain-computer interfaces (BCIs) allow a user to control a computer application by brain activity as measured, e.g., by electroencephalography (EEG). After about 30years of BCI research, the success of control that is achieved by means of a BCI system still greatly varies between subjects. For about 20% of potential users the obtained accuracy does not reach the level criterion, meaning that BCI control is not accurate enough to control an application. The determination of factors that may serve to predict BCI performance, and the development of methods to quantify a predictor value from psychological and/or physiological data serve two purposes: a better understanding of the 'BCI-illiteracy phenomenon', and avoidance of a costly and eventually frustrating training procedure for participants who might not obtain BCI control. Furthermore, such predictors may lead to approaches to antagonize BCI illiteracy. Here, we propose a neurophysiological predictor of BCI performance which can be determined from a two minute recording of a 'relax with eyes open' condition using two Laplacian EEG channels. A correlation of r=0.53 between the proposed predictor and BCI feedback performance was obtained on a large data base with N=80 BCI-naive participants in their first session with the Berlin brain-computer interface (BBCI) system which operates on modulations of sensory motor rhythms (SMRs). Copyright 2010 Elsevier Inc. All rights reserved.

  3. [Neurophysiological markers of generalized and focal epileptic seizures].

    Science.gov (United States)

    Kravtsova, E Yu; Shulakova, K V

    To identify neurophysiological markers of focal and generalized epileptic seizures in the inter-epileptic period. Sixty-four patients, including 36 with isolated generalized tonic-clonic seizures and 28 with focal seizures, were examined. The control group consisted of 27 healthy people. EEG-video monitoring and bioelectric activity analysis of the brain during wakefulness and day sleep, spectral EEG analysis, quantitative and quality indicators of sleep were used. In generalized epileptic seizures, alpha rhythm is predominantly recorded in the left hemisphere. In wakefulness, the focal epileptiform activity develops during the first two stages of day sleep. In focal epileptic seizures, delta and beta-2 rhythms were recorded in the left hemisphere, regional epileptiform changes are aggravated during the 1st and 2nd stages of slow sleep initiated in the frontal regions. A focal component of the epileptiform activity in the inter-epileptic period in patients with different types of seizures should be taken into account in examination and treatment planning of patients who had difficulties with the diagnosis of epilepsy type.

  4. Cough: neurophysiology, methods of research, pharmacological therapy and phonoaudiology

    Directory of Open Access Journals (Sweden)

    Balbani, Aracy Pereira Silveira

    2012-01-01

    Full Text Available Introduction: The cough is the more common respiratory symptom in children and adults. Objective: To present a revision on the neurophysiology and the methods for study of the consequence of the cough, as well as the pharmacotherapy and phonoaudiology therapy of the cough, based on the works published between 2005 and 2010 and indexed in the bases Medline, Lilacs and Library Cochrane under them to keywords "cough" or "anti-cough". Synthesis of the data: The consequence of the cough involves activation of receiving multiples becomes vacant in the aerial ways and of neural projections of the nucleus of the solitary treatment for other structures of the central nervous system. Experimental techniques allow studying the consequence of the cough to the cellular and molecular level to develop new anti-cough agents. It does not have evidences of that anti-cough exempt of medical lapsing they have superior effectiveness to the one of placebo for the relief of the cough. The phonoaudiology therapy can benefit patients with refractory chronic cough to the pharmacological treatment, over all when paradoxical movement of the vocal folds coexists. Final Comments: The boarding to multidiscipline has basic paper in the etiological diagnosis and treatment of the cough. The otolaryngologist must inform the patients on the risks of the anti-cough of free sales in order to prevent adverse poisonings and effect, especially in children.

  5. Neurophysiological Correlates of Visual Dominance: A Lateralized Readiness Potential Investigation.

    Science.gov (United States)

    Li, You; Liu, Mingxin; Zhang, Wei; Huang, Sai; Zhang, Bao; Liu, Xingzhou; Chen, Qi

    2017-01-01

    When multisensory information concurrently arrives at our receptors, visual information often receives preferential processing and eventually dominates awareness and behavior. Previous research suggested that the visual dominance effect implicated the prioritizing of visual information into the motor system. In order to further reveal the underpinning neurophysiological mechanism of how visual information is prioritized into the motor system when vision dominates audition, the present study examined the time course of a particular motor activation ERP component, the lateralized readiness potential (LRP), during multisensory competition. The onsets of both stimulus-locked LRP (S-LRP) and response-locked LRP (R-LRP) were measured. Results showed that, the R-LRP onset to the auditory target was delayed about 91 ms when it was paired with a simultaneous presented visual target, compared to that when it was presented by itself. For the visual target, however, the R-LRP onset was comparable irrespective of whether it was paired with an auditory target or not. No significant difference was obtained for the onset of S-LRP. Taken together, the time courses of LRPs indicated that visual information was preferentially processed within the motor system, which coincides with the previous finding that the dorsal visual stream prioritizes the flow of visual information into the motor system.

  6. Linking Behavioral and Neurophysiological Indicators of Perceptual Tuning to Language

    Directory of Open Access Journals (Sweden)

    Eswen eFava

    2011-08-01

    Full Text Available Little is known about the neural mechanisms that underlie tuning to the native language(s in early infancy. Here we review language tuning through the lens of language experience and introduce a new manner in which to conceptualize the phenomenon of language tuning: the relative speed of tuning hypothesis. This hypothesis has as its goal a characterization of the unique time course of the tuning process, given the different components (e.g., phonology, prosody, syntax, semantics of one or more languages as they become available to infants. In this review, we first examine the established behavioral findings and integrate more recent neurophysiological data on neonatal development, which together demonstrate evidence of early language tuning given differential language exposure in utero. Next, we examine traditional accounts of sensitive and critical periods to determine how these constructs complement current data on the neural mechanisms underlying language tuning. We then synthesize the extant infant behavioral and imaging literatures on monolingual, bilingual, and sensory deprived tuning experience, thereby scrutinizing the effect of these three different language profiles on the specific timing, progression, and outcomes of language tuning. Finally, we discuss future directions researchers might pursue on this aspect of development, advocating our relative speed of tuning hypothesis as a useful framework for conceptualizing the complex process by which language experience shapes language sensitivity.

  7. Athletes in a Slump: Neurophysiological Evidence from Frontal Theta Activity

    Directory of Open Access Journals (Sweden)

    Jingu Kim

    2014-01-01

    Full Text Available The purpose of this study is to investigate the neurophysiological differences in athletes who suffer from a slump and other athletes who do not. Eighteen high school student athletes participated in this experiment. A subjective questionnaire was conducted to identify athletes in a slump (i.e., the slump group and not in a slump (i.e., the no-slump group. EEG data was recorded at 4 regions (left prefrontal, right prefrontal, left frontal, and right frontal. A two-way (2 groups x 4 regions ANOVA was performed on the dependent variable (i.e., frontal theta power. The findings of this study demonstrated that participants in the no-slump group showed higher frontal theta activity than their counterparts in the slump group. From the findings of this study, it is suggested that mental fatigue may cause low frontal theta activity in athletes who experience a slump. The present study makes an important contribution to the current literature by being the first to report that EEG theta power over frontal regions can be used as a marker of athletes suffering from a slump.

  8. Effective Boolean dynamics analysis to identify functionally important genes in large-scale signaling networks.

    Science.gov (United States)

    Trinh, Hung-Cuong; Kwon, Yung-Keun

    2015-11-01

    Efficiently identifying functionally important genes in order to understand the minimal requirements of normal cellular development is challenging. To this end, a variety of structural measures have been proposed and their effectiveness has been investigated in recent literature; however, few studies have shown the effectiveness of dynamics-based measures. This led us to investigate a dynamic measure to identify functionally important genes, and the effectiveness of which was verified through application on two large-scale human signaling networks. We specifically consider Boolean sensitivity-based dynamics against an update-rule perturbation (BSU) as a dynamic measure. Through investigations on two large-scale human signaling networks, we found that genes with relatively high BSU values show slower evolutionary rate and higher proportions of essential genes and drug targets than other genes. Gene-ontology analysis showed clear differences between the former and latter groups of genes. Furthermore, we compare the identification accuracies of essential genes and drug targets via BSU and five well-known structural measures. Although BSU did not always show the best performance, it effectively identified the putative set of genes, which is significantly different from the results obtained via the structural measures. Most interestingly, BSU showed the highest synergy effect in identifying the functionally important genes in conjunction with other measures. Our results imply that Boolean-sensitive dynamics can be used as a measure to effectively identify functionally important genes in signaling networks.

  9. Toe functions have little effect on dynamic balance ability in elderly people.

    Science.gov (United States)

    Yoshimoto, Yoshinobu; Oyama, Yukitsuna; Tanaka, Mamoru; Sakamoto, Asuka

    2017-01-01

    [Purpose] The purpose of this study was to examine the toe function of elderly people and the association with the dynamic balance ability for the developing effective fall-prevention measures. [Subjects and Methods] Seventy-eight participants in a community health service were included in this cross-sectional study. The Timed Up and Go Test and Four Square Step Test were used to test dynamic balance ability. The toe functions related to dynamic balance ability were toe flexion strength, presence or absence of restricted range of motion of the hallux, presence or absence of hallux pain, and hallux valgus angle. [Results] Factors related to the Timed Up and Go Test results were toe flexion strength, age, and presence or absence of hallux pain. Their standard partial regression coefficients were -0.400, 0.277, and -0.218, respectively. Factors related to the Four Square Step Test results were toe flexion strength and age. Their standard partial regression coefficients were -0.334 and 0.277, respectively. [Conclusion] Toe functions appear to have little impact on dynamic balance ability in elderly people who have mild toe dysfunction. Approaches that address not only the toes, but trunk functions, and other leg joints should be investigated for improving the dynamic balance ability.

  10. High transition frequencies of dynamic functional connectivity states in the creative brain

    Science.gov (United States)

    Li, Junchao; Zhang, Delong; Liang, Aiying; Liang, Bishan; Wang, Zengjian; Cai, Yuxuan; Gao, Mengxia; Gao, Zhenni; Chang, Song; Jiao, Bingqing; Huang, Ruiwang; Liu, Ming

    2017-01-01

    Creativity is thought to require the flexible reconfiguration of multiple brain regions that interact in transient and complex communication patterns. In contrast to prior emphases on searching for specific regions or networks associated with creative performance, we focused on exploring the association between the reconfiguration of dynamic functional connectivity states and creative ability. We hypothesized that a high frequency of dynamic functional connectivity state transitions will be associated with creative ability. To test this hypothesis, we recruited a high-creative group (HCG) and a low-creative group (LCG) of participants and collected resting-state fMRI (R-fMRI) data and Torrance Tests of Creative Thinking (TTCT) scores from each participant. By combining an independent component analysis with a dynamic network analysis approach, we discovered the HCG had more frequent transitions between dynamic functional connectivity (dFC) states than the LCG. Moreover, a confirmatory analysis using multiplication of temporal derivatives also indicated that there were more frequent dFC state transitions in the HCG. Taken together, these results provided empirical evidence for a linkage between the flexible reconfiguration of dynamic functional connectivity states and creative ability. These findings have the potential to provide new insights into the neural basis of creativity. PMID:28383052

  11. High transition frequencies of dynamic functional connectivity states in the creative brain.

    Science.gov (United States)

    Li, Junchao; Zhang, Delong; Liang, Aiying; Liang, Bishan; Wang, Zengjian; Cai, Yuxuan; Gao, Mengxia; Gao, Zhenni; Chang, Song; Jiao, Bingqing; Huang, Ruiwang; Liu, Ming

    2017-04-06

    Creativity is thought to require the flexible reconfiguration of multiple brain regions that interact in transient and complex communication patterns. In contrast to prior emphases on searching for specific regions or networks associated with creative performance, we focused on exploring the association between the reconfiguration of dynamic functional connectivity states and creative ability. We hypothesized that a high frequency of dynamic functional connectivity state transitions will be associated with creative ability. To test this hypothesis, we recruited a high-creative group (HCG) and a low-creative group (LCG) of participants and collected resting-state fMRI (R-fMRI) data and Torrance Tests of Creative Thinking (TTCT) scores from each participant. By combining an independent component analysis with a dynamic network analysis approach, we discovered the HCG had more frequent transitions between dynamic functional connectivity (dFC) states than the LCG. Moreover, a confirmatory analysis using multiplication of temporal derivatives also indicated that there were more frequent dFC state transitions in the HCG. Taken together, these results provided empirical evidence for a linkage between the flexible reconfiguration of dynamic functional connectivity states and creative ability. These findings have the potential to provide new insights into the neural basis of creativity.

  12. Dynamical density functional theory for molecular and colloidal fluids: a microscopic approach to fluid mechanics.

    Science.gov (United States)

    Archer, A J

    2009-01-07

    In recent years, a number of dynamical density functional theories (DDFTs) have been developed for describing the dynamics of the one-body density of both colloidal and atomic fluids. In the colloidal case, the particles are assumed to have stochastic equations of motion and theories exist for both the case when the particle motion is overdamped and also in the regime where inertial effects are relevant. In this paper, we extend the theory and explore the connections between the microscopic DDFT and the equations of motion from continuum fluid mechanics. In particular, starting from the Kramers equation, which governs the dynamics of the phase space probability distribution function for the system, we show that one may obtain an approximate DDFT that is a generalization of the Euler equation. This DDFT is capable of describing the dynamics of the fluid density profile down to the scale of the individual particles. As with previous DDFTs, the dynamical equations require as input the Helmholtz free energy functional from equilibrium density functional theory (DFT). For an equilibrium system, the theory predicts the same fluid one-body density profile as one would obtain from DFT. Making further approximations, we show that the theory may be used to obtain the mode coupling theory that is widely used for describing the transition from a liquid to a glassy state.

  13. Preliminary evidence of a neurophysiological basis for individual discrimination in filial imprinting.

    Science.gov (United States)

    Town, Stephen Michael

    2011-12-01

    Filial imprinting involves a predisposition for biologically important stimuli and a learning process directing preferences towards a particular stimulus. Learning underlies discrimination between imprinted and unfamiliar individuals and depends upon the IMM (intermediate and medial mesopallium). Here, IMM neurons responded differentially to familiar and unfamiliar conspecifics following socialization and the neurophysiological effects of social experience differed between hemispheres. Such findings may provide a neurophysiological basis for individual discrimination in imprinting. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. The neurophysiological response to manual therapy and its analgesic implications: A narrative review

    OpenAIRE

    Andrew D. Vigotsky; Bruhns, Ryan P.

    2015-01-01

    Manual therapy has long been a component of physical rehabilitation programs, especially to treat those in pain. The mechanisms of manual therapy, however, are not fully understood, and it has been suggested that its pain modulatory effects are of neurophysiological origin, and may be mediated by the descending modulatory circuit. Therefore, the purpose of this review is to examine the neurophysiological response of different types of manual therapy, in order to better understand the neurophy...

  15. Role of clinical neurophysiological tests in evaluation of erectile dysfunction in people with spinal cord disorders

    OpenAIRE

    Ashraf V; Taly Arun Kumar; Sivaraman Nair K; Rao Shivaji; Sridhar

    2005-01-01

    BACKGROUND: While erectile dysfunction is frequent among people with disorders of the spinal cord, the role of various clinical neurophysiological tests in assessment is not clear. AIMS: To study the role of clinical neurophysiological investigations in assessing erectile dysfunction among men with spinal cord disorders. SETTING: National Institute of Mental Health and Neurosciences, India. DESIGN: Survey. MATERIALS AND METHODS: Subjects with a score of 21 or less on the International Index ...

  16. "面口合谷收"神经生理机制的fMRI研究%The neurophysiological mechanism of traditional chinese medical theory of "Link of Hegu(LI4)with the face and mouth":a functional MRI study

    Institute of Scientific and Technical Information of China (English)

    李落意; 赵斌; 杨骏; 李传富; 徐春生; 朱一芳

    2012-01-01

    Objective: To explore the neurophysiological mechanism of Traditional Chinese Medical Theory of "Link of Hegu (LI4)with the face and mouth" with the methodology of fMRI. Methods :Twenty healthy volunteers were acupunctured at left Hegu point(LI4)and task-state fMRI data was acquired with the same sequence of acquisition. All fMRI data was analysis with AFNI program. Group analysis was done and the analysis results was corrected with Monte Carlo method ( P = 0. 05 ,α<0. 05) . Results :Multiple activativations were demonstrated. Increased signal was found in precentral gyrus ,posterior central gyrus ,infe-rior parietal lobule,transverse temporal gyrus ,insular cortex ,thalamus ,lenticular nucleus ,putamen,bilateral cerebellum ,while decreased signal was in left superior frontal gyrus , frontal gyrus , precentral gyrus , cingulate gyrus , middle temporal gyrus. Among the activations ,both the middle and lower part of right posterior central gyrus was activated. Conclusion: It was demonstrated that somatotopic area of both hand and face in primary somatic sensory cortex was activated by acupuncture of Hegu(LI4),which directly illustrated the link of Hegu (LI4)with the face and mouth and was the possible neurophysiological mechanism of the traditional chinese medical theory.%目的:利用功能性磁共振(fMRI)探讨"面口合谷收"的神经生理机制.方法:研究对象为20例健康志愿者,均针刺左侧合谷穴,采用相同的磁共振扫描序列采集针刺任务态fMRI数据.利用AFNI程序分析任务态fMRI的针刺脑激活区,对所有的功能数据进行组分析,并利用Monte Carlo方法对分析结果进行多重比较校正(P=0.05,α<0.05).结果:针刺左侧合谷穴引起多个脑区激活,信号增高区域包括右侧中央前回、中央后回、顶下小叶、颞横回、岛叶、丘脑、豆状核、壳核及双侧小脑;信号降低的脑区包括左侧额上回、额中回、中央前回、扣带回、颞中回等.其中,右侧中

  17. Neurophysiology of robot-mediated training and therapy: A perspective for future use in clinical populations.

    Directory of Open Access Journals (Sweden)

    Duncan L Turner

    2013-11-01

    Full Text Available The recovery of functional movements following injury to the central nervous system (CNS is multifaceted and is accompanied by processes occurring in the injured and non-injured hemispheres of the brain or above/below a spinal cord lesion. The changes in the CNS are the consequence of functional and structural processes collectively termed neuroplasticity and these may occur spontaneously and/or be induced by movement practice. The neurophysiological mechanisms underlying such brain plasticity may take different forms in different types of injury, for example stroke vs. spinal cord injury (SCI. Recovery of movement can be enhanced by intensive, repetitive, variable and rewarding motor practice. To this end, robots that enable or facilitate repetitive movements have been developed to assist recovery and rehabilitation. Here, we suggest some elements of robot-mediated training such as assistance, perturbation and unloading may have the potential to enhance neuroplasticity. Together the elemental components for developing integrated robot-mediated training protocols may form part of a neurorehabilitation framework alongside those methods already employed by therapists. Robots could thus open up a wider choice of options for delivering movement rehabilitation grounded on the principles underpinning neuroplasticity in the human CNS.

  18. Neurophysiology of robot-mediated training and therapy: a perspective for future use in clinical populations.

    Science.gov (United States)

    Turner, Duncan L; Ramos-Murguialday, Ander; Birbaumer, Niels; Hoffmann, Ulrich; Luft, Andreas

    2013-11-13

    The recovery of functional movements following injury to the central nervous system (CNS) is multifaceted and is accompanied by processes occurring in the injured and non-injured hemispheres of the brain or above/below a spinal cord lesion. The changes in the CNS are the consequence of functional and structural processes collectively termed neuroplasticity and these may occur spontaneously and/or be induced by movement practice. The neurophysiological mechanisms underlying such brain plasticity may take different forms in different types of injury, for example stroke vs. spinal cord injury (SCI). Recovery of movement can be enhanced by intensive, repetitive, variable, and rewarding motor practice. To this end, robots that enable or facilitate repetitive movements have been developed to assist recovery and rehabilitation. Here, we suggest that some elements of robot-mediated training such as assistance and perturbation may have the potential to enhance neuroplasticity. Together the elemental components for developing integrated robot-mediated training protocols may form part of a neurorehabilitation framework alongside those methods already employed by therapists. Robots could thus open up a wider choice of options for delivering movement rehabilitation grounded on the principles underpinning neuroplasticity in the human CNS.

  19. Translational neurophysiology in sheep: measuring sleep and neurological dysfunction in CLN5 Batten disease affected sheep.

    Science.gov (United States)

    Perentos, Nicholas; Martins, Amadeu Q; Watson, Thomas C; Bartsch, Ullrich; Mitchell, Nadia L; Palmer, David N; Jones, Matthew W; Morton, A Jennifer

    2015-04-01

    Creating valid mouse models of slowly progressing human neurological diseases is challenging, not least because the short lifespan of rodents confounds realistic modelling of disease time course. With their large brains and long lives, sheep offer significant advantages for translational studies of human disease. Here we used normal and CLN5 Batten disease affected sheep to demonstrate the use of the species for studying neurological function in a model of human disease. We show that electroencephalography can be used in sheep, and that longitudinal recordings spanning many months are possible. This is the first time such an electroencephalography study has been performed in sheep. We characterized sleep in sheep, quantifying characteristic vigilance states and neurophysiological hallmarks such as sleep spindles. Mild sleep abnormalities and abnormal epileptiform waveforms were found in the electroencephalographies of Batten disease affected sheep. These abnormalities resemble the epileptiform activity seen in children with Batten disease and demonstrate the translational relevance of both the technique and the model. Given that both spontaneous and engineered sheep models of human neurodegenerative diseases already exist, sheep constitute a powerful species in which longitudinal in vivo studies can be conducted. This will advance our understanding of normal brain function and improve our capacity for translational research into neurological disorders.

  20. Dynamics of a family of transcendental meromorphic functions having rational Schwarzian derivative

    Science.gov (United States)

    Sajid, M.; Kapoor, G. P.

    2007-02-01

    In the present paper, a class of critically finite transcendental meromorphic functions having rational Schwarzian derivative is introduced and the dynamics of functions in one parameter family is investigated. It is found that there exist two parameter values [lambda]*=[phi](0)>0 and , where and is the real root of [phi]'(x)=0, such that the Fatou sets of f[lambda](z) for [lambda]=[lambda]* and [lambda]=[lambda]** contain parabolic domains. A computationally useful characterization of the Julia set of the function f[lambda](z) as the complement of the basin of attraction of an attracting real fixed point of f[lambda](z) is established and applied for the generation of the images of the Julia sets of f[lambda](z). Further, it is observed that the Julia set of explodes to whole complex plane for [lambda]>[lambda]**. Finally, our results found in the present paper are compared with the recent results on dynamics of one parameter families [lambda]tanz, [R.L. Devaney, L. Keen, Dynamics of meromorphic maps: Maps with polynomial Schwarzian derivative, Ann. Sci. Ecole Norm. Sup. 22 (4) (1989) 55-79; L. Keen, J. Kotus, Dynamics of the family [lambda]tan(z), Conform. Geom. Dynam. 1 (1997) 28-57; G.M. Stallard, The Hausdorff dimension of Julia sets of meromorphic functions, J. London Math. Soc. 49 (1994) 281-295] and , [lambda]>0 [G.P. Kapoor, M. Guru Prem Prasad, Dynamics of : The Julia set and bifurcation, Ergodic Theory Dynam. Systems 18 (1998) 1363-1383].

  1. Dynamic functional connectivity and brain metastability during altered states of consciousness.

    Science.gov (United States)

    Cavanna, Federico; Vilas, Martina G; Palmucci, Matías; Tagliazucchi, Enzo

    2017-10-03

    The scientific study of human consciousness has greatly benefited from the development of non-invasive brain imaging methods. The quest to identify the neural correlates of consciousness combined psychophysical experimentation with neuroimaging tools such as functional magnetic resonance imaging (fMRI) to map the changes in neural activity associated with conscious vs. unconscious percepts. Different neuroimaging methods have also been applied to characterize spontaneous brain activity fluctuations during altered states of consciousness, and to develop quantitative metrics for the level of consciousness. Most of these studies, however, have not explored the dynamic nature of the whole-brain imaging data provided by fMRI. A series of empirical and computational studies strongly suggests that the temporal fluctuations observed in this data present a non-trivial structure, and that this structure is compatible with the exploration of a discrete repertoire of states. In this review we focus on how dynamic neuroimaging can be used to address theoretical accounts of consciousness based on the hypothesis of a dynamic core, i.e. a constantly evolving and transiently stable set of coordinated neurons that constitute an integrated and differentiated physical substrate for each conscious experience. We review work exploring the possibility that metastability in brain dynamics leads to a repertoire of dynamic core states, and discuss how it might be modified during altered states of consciousness. This discussion prompts us to review neuroimaging studies aimed to map the dynamic exploration of the repertoire of states as a function of consciousness. Complementary studies of the dynamic core hypothesis using perturbative methods are also discussed. Finally, we propose that a link between metastability in brain dynamics and the level of consciousness could pave the way towards a mechanistic understanding of altered states of consciousness using tools from dynamical systems

  2. The Influence of Dynamic Orthosis Training on Upper Extremity Function after Stroke: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Rodrigo Cappato de Araújo

    2014-01-01

    Full Text Available The goal of this study was to assess the use of a dynamic orthosis on upper extremity function in chronic stroke patients. A case series approach was utilized, with provision of a training program (3x/week, 50 minutes/session for 8 weeks and employment of a dynamic orthosis. Six volunteers with persistent hemiparesis due to a single, unilateral stroke performed task-oriented movements with the aid of a dynamic orthosis. Tests were administered before and after training. Functional capacity was assessed using the TEMPA (Test d'Évaluation des Membres Supérieurs de Personnes Âgées test. The Wilcoxon test was used for pre-training and post-training comparisons of TEMPA scores. The volunteers showed significant improvement of upper extremity function in the performance of a bilateral task (p = 0.01 and three unilateral tasks (p = 0.04. This pilot study suggests that the dynamic orthosis associated with the performance of functional tasks can have positive outcomes regarding the improvement of functional capacity of upper extremity.

  3. TIME-HARMONIC DYNAMIC GREEN'S FUNCTIONS FOR ONE-DIMENSIONAL HEXAGONAL QUASICRYSTALS

    Institute of Scientific and Technical Information of China (English)

    Wang Xu

    2005-01-01

    Quasicrystals have additional phason degrees of freedom not found in conventional crystals. In this paper, we present an exact solution for time-harmonic dynamic Green's function of one-dimensional hexagonal quasicrystals with the Laue classes 6/mh and 6/mhmm. Through the introduction of two new functions ψ and ψ, the original problem is reduced to the determination of Green's functions for two independent Helmholtz equations. The explicit expressions of displacement and stress fields are presented and their asymptotic behaviors are discussed. The static Green's function can be obtained by letting the circular frequency approach zero.

  4. The abstracted and integrated Green functions and OOP of BEM in soil dynamics

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    It has been generally recognized that Green function integrated with Boundary Element Method (BEM) has advantages in dimensional reduction, high accuracy and satisfaction of the radiation condition at infinity, etc. Recently, the computational technique has rapidly developed and the orient-object programming has been widely applied, whereas the attribute ofion and the integration of Green function employed in BEM have not been discovered yet. In this work the abstrac- tion and integration of Green function are carried out for soil dynamics problems, and the procedure of the object-oriented calculation method is presented. Based on the Green function developed for the two-phase saturated medium, the re- sponse of the wave field to tunnel subjected to dynamic loading is calculated, and the transient solution as well as the time history of response is obtained.

  5. Quantum statistics and classical mechanics: real time correlation functions from ring polymer molecular dynamics.

    Science.gov (United States)

    Craig, Ian R; Manolopoulos, David E

    2004-08-22

    We propose an approximate method for calculating Kubo-transformed real-time correlation functions involving position-dependent operators, based on path integral (Parrinello-Rahman) molecular dynamics. The method gives the exact quantum mechanical correlation function at time zero, exactly satisfies the quantum mechanical detailed balance condition, and for correlation functions of the form C(Ax)(t) and C(xB)(t) it gives the exact result for a harmonic potential. It also works reasonably well at short times for more general potentials and correlation functions, as we illustrate with some example calculations. The method provides a consistent improvement over purely classical molecular dynamics that is most apparent in the low-temperature regime.

  6. Three applications of functional analysis with group dynamic cognitive behavioral group therapy.

    Science.gov (United States)

    Scharwächter, Peter

    2008-01-01

    Case illustrations from group dynamic cognitive behavioral group therapy are presented to demonstrate three applications of functional analysis and the resulting cognitive behavioral interventions. The principles of group dynamic cognitive behavioral group therapy are explained. A functional analysis is applied first to the problem behavior of an individual group member. A clinical case illustrates how the group members help to change this individual group member's behavior from a learning theory perspective. Next, the circular interactional problem behavior between two group members is reduced to the individual functional analysis of each of the two member's problem behaviors. It is then illustrated how the two group member's problem behaviors, as well as feedback from others, contribute toward helping to change each others behavior. The paper concludes that functional analysis and ensuing behavioral interventions can be also applied to group as a whole behavior.

  7. Neurophysiological and BOLD signal uncoupling of giant somatosensory evoked potentials in progressive myoclonic epilepsy: a case-series study

    Science.gov (United States)

    Storti, Silvia F.; Del Felice, Alessandra; Canafoglia, Laura; Formaggio, Emanuela; Brigo, Francesco; Alessandrini, Franco; Bongiovanni, Luigi G.; Menegaz, Gloria; Manganotti, Paolo

    2017-01-01

    In progressive myoclonic epilepsy (PME), a rare epileptic syndrome caused by a variety of genetic disorders, the combination of peripheral stimulation and functional magnetic resonance imaging (fMRI) can shed light on the mechanisms underlying cortical dysfunction. The aim of the study is to investigate sensorimotor network modifications in PME by assessing the relationship between neurophysiological findings and blood oxygen level dependent (BOLD) activation. Somatosensory-evoked potential (SSEP) obtained briefly before fMRI and BOLD activation during median-nerve electrical stimulation were recorded in four subjects with typical PME phenotype and compared with normative data. Giant scalp SSEPs with enlarger N20-P25 complex compared to normal data (mean amplitude of 26.2 ± 8.2 μV after right stimulation and 27.9 ± 3.7 μV after left stimulation) were detected. Statistical group analysis showed a reduced BOLD activation in response to median nerve stimulation in PMEs compared to controls over the sensorimotor (SM) areas and an increased response over subcortical regions (p  2.3, corrected). PMEs show dissociation between neurophysiological and BOLD findings of SSEPs (giant SSEP with reduced BOLD activation over SM). A direct pathway connecting a highly restricted area of the somatosensory cortex with the thalamus can be hypothesized to support the higher excitability of these areas. PMID:28294187

  8. TMS-EEG: A window into the neurophysiological effects of transcranial electrical stimulation in non-motor brain regions.

    Science.gov (United States)

    Hill, Aron T; Rogasch, Nigel C; Fitzgerald, Paul B; Hoy, Kate E

    2016-05-01

    Transcranial electrical stimulation (tES) techniques are able to induce changes in cortical excitability and plasticity through the administration of weak currents to the brain and are currently being used to manipulate a vast array of cognitive processes. Despite the widespread use of tES technologies within both research and remedial settings, their precise neurophysiological mechanisms of action are not well established outside of the motor cortex. The expanding use of tES within non-motor brain regions highlights the growing need for a more comprehensive understanding of the effects of stimulation across a diversity of cortical locations. The combination of transcranial magnetic stimulation with electroencephalography (TMS-EEG) provides a method of directly probing both local and widespread changes in brain neurophysiology, through the recording of TMS-evoked potentials and cortical oscillations. In this review we explore TMS-EEG as a tool for examining the impact of tES on cortical function and argue that multimodal approaches which combine tES with TMS-EEG could lead to a deeper understanding of the mechanisms which underlie tES-induced cognitive modulation.

  9. Dynamic regulation of NMDAR function in the adult brain by the stress hormone corticosterone

    Directory of Open Access Journals (Sweden)

    Yiu Chung eTse

    2012-03-01

    Full Text Available Stress and corticosteroids dynamically modulate the expression of synaptic plasticity at glutamatergic synapses in the developed brain. Together with alpha-amino-3-hydroxy-methyl-4-isoxazole propionic acid receptors (AMPAR, N-methyl-D-aspartate receptors (NMDAR are critical mediators of synaptic function and are essential for the induction of many forms of synaptic plasticity. Regulation of NMDAR function by cortisol/corticosterone (CORT may be fundamental to the effects of stress on synaptic plasticity. Recent reports of the efficacy of NMDAR antagonists in treating certain stress-associated psychopathologies further highlight the importance of understanding the regulation of NMDAR function by CORT. Knowledge of how corticosteroids regulate NMDAR function within the adult brain is relatively sparse, perhaps due to a common belief that NMDAR function is relatively stable in the adult brain. We review recent results from our laboratory and others demonstrating dynamic regulation of NMDAR function by CORT in the adult brain. In addition, we consider the issue of how differences in the early life environment may program differential sensitivity to modulation of NMDAR function by CORT and how this may influence synaptic function during stress. Findings from these studies demonstrate that NMDAR function in the adult hippocampus remains sensitive to even brief exposures to CORT and that the capacity for modulation of NMDAR may be programmed, in part, by the early life environment. Modulation of NMDAR function may contribute to dynamic regulation of synaptic plasticity and adaptation in the face of stress, however enhanced NMDAR function may be implicated in mechanisms of stress related psychopathologies including depression.

  10. Vibrational characteristics of diethyltoluenediamines (DETDA) functionalized carbon nanotubes using molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Ajori, S., E-mail: Shahram_ajori1366@yahoo.com; Ansari, R., E-mail: r_ansari@guilan.ac.ir

    2015-02-15

    Functionalization of carbon nanotubes (CNTs) can be viewed as an important process by which the dispersion and solubility of CNTs in the matrices of nanocomposites are improved. Covalent functionalization can affect the mechanical behavior of CNTs. In this paper, the vibrational behavior of diethyltoluenediamines (DETDA) functionalized CNTs is investigated utilizing molecular dynamics simulations in canonical ensemble at room temperature. The models of simulations are divided into two categories of functionalized CNTs with regular and random distributions of DETDA polymers. The results demonstrate that natural frequency of functionalized CNTs is lower than that of pristine ones. Also, it is observed that buckling phenomenon occurs during vibration for functionalized CNTs with regular distribution of polymers. It is further observed that polymer mass and van der Waals (vdW) forces are responsible for frequency changes in functionalized CNTs with random and regular distribution patterns of CNTs, respectively.

  11. Vibrational characteristics of diethyltoluenediamines (DETDA) functionalized carbon nanotubes using molecular dynamics simulations

    Science.gov (United States)

    Ajori, S.; Ansari, R.

    2015-02-01

    Functionalization of carbon nanotubes (CNTs) can be viewed as an important process by which the dispersion and solubility of CNTs in the matrices of nanocomposites are improved. Covalent functionalization can affect the mechanical behavior of CNTs. In this paper, the vibrational behavior of diethyltoluenediamines (DETDA) functionalized CNTs is investigated utilizing molecular dynamics simulations in canonical ensemble at room temperature. The models of simulations are divided into two categories of functionalized CNTs with regular and random distributions of DETDA polymers. The results demonstrate that natural frequency of functionalized CNTs is lower than that of pristine ones. Also, it is observed that buckling phenomenon occurs during vibration for functionalized CNTs with regular distribution of polymers. It is further observed that polymer mass and van der Waals (vdW) forces are responsible for frequency changes in functionalized CNTs with random and regular distribution patterns of CNTs, respectively.

  12. Projector augmented wave method: ab initio molecular dynamics with full wave functions

    Indian Academy of Sciences (India)

    Peter E Blöchl; Clemens J Först; Johannes Schimpl

    2003-01-01

    A brief introduction to the projector augmented wave method is given and recent developments are reviewed. The projector augmented wave method is an all-electron method for efficient ab initio molecular dynamics simulations with full wave functions. It extends and combines the traditions of existing augmented wave methods and the pseudopotential approach. Without sacrificing efficiency, the PAW method avoids transferability problems of the pseudopotential approach and it has been valuable to predict properties that depend on the full wave functions.

  13. A functional clustering algorithm for the analysis of neural relationships

    CERN Document Server

    Feldt, S; Hetrick, V L; Berke, J D; Zochowski, M

    2008-01-01

    We formulate a novel technique for the detection of functional clusters in neural data. In contrast to prior network clustering algorithms, our procedure progressively combines spike trains and derives the optimal clustering cutoff in a simple and intuitive manner. To demonstrate the power of this algorithm to detect changes in network dynamics and connectivity, we apply it to both simulated data and real neural data obtained from the mouse hippocampus during exploration and slow-wave sleep. We observe state-dependent clustering patterns consistent with known neurophysiological processes involved in memory consolidation.

  14. Explicit symplectic algorithms based on generating functions for charged particle dynamics

    CERN Document Server

    Zhang, Ruili; Tang, Yifa; Liu, Jian; He, Yang; Xiao, Jianyuan

    2016-01-01

    Dynamics of a charged particle in the canonical coordinates is a Hamiltonian system, and the well-known symplectic algorithm has been regarded as the de facto method for numerical integration of Hamiltonian systems due to its long-term accuracy and fidelity. For long-term simulations with high efficiency, explicit symplectic algorithms are desirable. However, it is widely accepted that explicit symplectic algorithms are only available for sum-separable Hamiltonians, and that this restriction severely limits the application of explicit symplectic algorithms to charged particle dynamics. To overcome this difficulty, we combine the familiar sum-split method and a generating function method to construct second and third order explicit symplectic algorithms for dynamics of charged particle. The generating function method is designed to generate explicit symplectic algorithms for product-separable Hamiltonian with form of $H(\\mathbf{p},\\mathbf{q})=\\mathbf{p}_{i}f(\\mathbf{q})$ or $H(\\mathbf{p},\\mathbf{q})=\\mathbf{q}...

  15. Shedding light on protein folding, structural and functional dynamics by single molecule studies

    DEFF Research Database (Denmark)

    Bavishi, Krutika; Hatzakis, Nikos

    2014-01-01

    The advent of advanced single molecule measurements unveiled a great wealth of dynamic information revolutionizing our understanding of protein dynamics and behavior in ways unattainable by conventional bulk assays. Equipped with the ability to record distribution of behaviors rather than the mean...... property of a population, single molecule measurements offer observation and quantification of the abundance, lifetime and function of multiple protein states. They also permit the direct observation of the transient and rarely populated intermediates in the energy landscape that are typically averaged out...... in non-synchronized ensemble measurements. Single molecule studies have thus provided novel insights about how the dynamic sampling of the free energy landscape dictates all aspects of protein behavior; from its folding to function. Here we will survey some of the state of the art contributions...

  16. Stability of dynamical systems on the role of monotonic and non-monotonic Lyapunov functions

    CERN Document Server

    Michel, Anthony N; Liu, Derong

    2015-01-01

    The second edition of this textbook provides a single source for the analysis of system models represented by continuous-time and discrete-time, finite-dimensional and infinite-dimensional, and continuous and discontinuous dynamical systems.  For these system models, it presents results which comprise the classical Lyapunov stability theory involving monotonic Lyapunov functions, as well as corresponding contemporary stability results involving non-monotonicLyapunov functions.Specific examples from several diverse areas are given to demonstrate the applicability of the developed theory to many important classes of systems, including digital control systems, nonlinear regulator systems, pulse-width-modulated feedback control systems, and artificial neural networks.   The authors cover the following four general topics:   -          Representation and modeling of dynamical systems of the types described above -          Presentation of Lyapunov and Lagrange stability theory for dynamical sy...

  17. Interplay between functional connectivity and scale-free dynamics in intrinsic fMRI networks.

    Science.gov (United States)

    Ciuciu, Philippe; Abry, Patrice; He, Biyu J

    2014-07-15

    Studies employing functional connectivity-type analyses have established that spontaneous fluctuations in functional magnetic resonance imaging (fMRI) signals are organized within large-scale brain networks. Meanwhile, fMRI signals have been shown to exhibit 1/f-type power spectra - a hallmark of scale-free dynamics. We studied the interplay between functional connectivity and scale-free dynamics in fMRI signals, utilizing the fractal connectivity framework - a multivariate extension of the univariate fractional Gaussian noise model, which relies on a wavelet formulation for robust parameter estimation. We applied this framework to fMRI data acquired from healthy young adults at rest and while performing a visual detection task. First, we found that scale-invariance existed beyond univariate dynamics, being present also in bivariate cross-temporal dynamics. Second, we observed that frequencies within the scale-free range do not contribute evenly to inter-regional connectivity, with a systematically stronger contribution of the lowest frequencies, both at rest and during task. Third, in addition to a decrease of the Hurst exponent and inter-regional correlations, task performance modified cross-temporal dynamics, inducing a larger contribution of the highest frequencies within the scale-free range to global correlation. Lastly, we found that across individuals, a weaker task modulation of the frequency contribution to inter-regional connectivity was associated with better task performance manifesting as shorter and less variable reaction times. These findings bring together two related fields that have hitherto been studied separately - resting-state networks and scale-free dynamics, and show that scale-free dynamics of human brain activity manifest in cross-regional interactions as well.

  18. Dynamic response of AFM cantilevers to dissimilar functionalized silica surfaces in aqueous electrolyte solutions.

    Science.gov (United States)

    Wu, Yan; Misra, Sambit; Karacor, M Basar; Prakash, Shaurya; Shannon, Mark A

    2010-11-16

    The dynamic response of an oscillating microcantilever with a gold-coated tip interacting with dissimilar functionalized silica surfaces was studied in electrolyte solutions with pH ranging from 4 to 9. Silica surfaces were chemically modified, yielding dissimilar surfaces with -Br, -NH(2), and -CH(3) functional group terminations. The relative hydrophobicity of the surfaces was characterized by contact angle measurements. The surface charge of the functionalized surfaces was first probed with commonly used static AFM measurements and serves as a reference to the dynamic response data. The amplitude and phase of the cantilever oscillation were monitored and used to calculate the effective interaction stiffness and damping coefficient, which relate to the electrical double layer interactions and also to distance-dependent hydrodynamic damping at the solid/water interface. The data for the dynamic response of the AFM over silica surfaces as a function of chemical functionalization and electrolyte pH show that the effective stiffness has a distinctive dependence on the surface charge of functionalized silica surfaces. The hydrodynamic damping also correlates strongly with the relative hydrophobicity of the surface. The data reported here indicate that interfacial properties can be strongly affected by changing the chemical composition of surfaces.

  19. COPEWELL: A Conceptual Framework and System Dynamics Model for Predicting Community Functioning and Resilience After Disasters.

    Science.gov (United States)

    Links, Jonathan M; Schwartz, Brian S; Lin, Sen; Kanarek, Norma; Mitrani-Reiser, Judith; Sell, Tara Kirk; Watson, Crystal R; Ward, Doug; Slemp, Cathy; Burhans, Robert; Gill, Kimberly; Igusa, Tak; Zhao, Xilei; Aguirre, Benigno; Trainor, Joseph; Nigg, Joanne; Inglesby, Thomas; Carbone, Eric; Kendra, James M

    2017-06-21

    Policy-makers and practitioners have a need to assess community resilience in disasters. Prior efforts conflated resilience with community functioning, combined resistance and recovery (the components of resilience), and relied on a static model for what is inherently a dynamic process. We sought to develop linked conceptual and computational models of community functioning and resilience after a disaster. We developed a system dynamics computational model that predicts community functioning after a disaster. The computational model outputted the time course of community functioning before, during, and after a disaster, which was used to calculate resistance, recovery, and resilience for all US counties. The conceptual model explicitly separated resilience from community functioning and identified all key components for each, which were translated into a system dynamics computational model with connections and feedbacks. The components were represented by publicly available measures at the county level. Baseline community functioning, resistance, recovery, and resilience evidenced a range of values and geographic clustering, consistent with hypotheses based on the disaster literature. The work is transparent, motivates ongoing refinements, and identifies areas for improved measurements. After validation, such a model can be used to identify effective investments to enhance community resilience.(Disaster Med Public Health Preparedness. 2017;page 1 of 11).

  20. Locally optimal control under unknown dynamics with learnt cost function: application to industrial robot positioning

    Science.gov (United States)

    Guérin, Joris; Gibaru, Olivier; Thiery, Stéphane; Nyiri, Eric

    2017-01-01

    Recent methods of Reinforcement Learning have enabled to solve difficult, high dimensional, robotic tasks under unknown dynamics using iterative Linear Quadratic Gaussian control theory. These algorithms are based on building a local time-varying linear model of the dynamics from data gathered through interaction with the environment. In such tasks, the cost function is often expressed directly in terms of the state and control variables so that it can be locally quadratized to run the algorithm. If the cost is expressed in terms of other variables, a model is required to compute the cost function from the variables manipulated. We propose a method to learn the cost function directly from the data, in the same way as for the dynamics. This way, the cost function can be defined in terms of any measurable quantity and thus can be chosen more appropriately for the task to be carried out. With our method, any sensor information can be used to design the cost function. We demonstrate the efficiency of this method through simulating, with the V-REP software, the learning of a Cartesian positioning task on several industrial robots with different characteristics. The robots are controlled in joint space and no model is provided a priori. Our results are compared with another model free technique, consisting in writing the cost function as a state variable.

  1. Towards Dynamic Control of Wettability by Using Functionalized Altitudinal Molecular Motors on Solid Surfaces

    NARCIS (Netherlands)

    London, Gabor; Chen, Kuang-Yen; Carroll, Gregory T.; Feringa, Ben L.

    2013-01-01

    We report the synthesis of altitudinal molecular motors that contain functional groups in their rotor part. In an approach to achieve dynamic control over the properties of solid surfaces, a hydrophobic perfluorobutyl chain and a relatively hydrophilic cyano group were introduced to the rotor part o

  2. The Impact of Family Violence, Family Functioning, and Parental Partner Dynamics on Korean Juvenile Delinquency

    Science.gov (United States)

    Kim, Hyun-Sil; Kim, Hun-Soo

    2008-01-01

    The present study was aimed at determining the family factors related to juvenile delinquency and identifying the effect of family violence, family functioning, parental partner dynamics, and adolescents' personality on delinquent behavior among Korean adolescents. A cross-sectional study was performed using an anonymous, self-reporting…

  3. Existence and Uniqueness of Solutions for two Classes of Functional Equations Arising in Dynamic Programming

    Institute of Scientific and Technical Information of China (English)

    Ze-qing Liu; Shin Min Kang

    2007-01-01

    In this paper we establish the existence,uniqueness and iterative approxinlation of solutions for two classes of functional equations arising in dynamic programming of multistage decision Processes.The resultspresented here extend,and unify the corresponding results due to Bellman,Bhakta and Choudhury,Bhakta and Mitra,Liu and others.

  4. ℋ-Operator Pairs with Application to Functional Equations Arising in Dynamic Programming

    Directory of Open Access Journals (Sweden)

    A. Razani

    2014-01-01

    Full Text Available Some common fixed point theorems for ℋ-operator pairs are proved. As an application, the existence and uniqueness of the common solution for systems of functional equations arising in dynamic programming are discussed. Also, an example to validate all the conditions of the main result is presented.

  5. Dynamical patterns of calcium signaling in a functional model of neuron-astrocyte networks

    DEFF Research Database (Denmark)

    Postnov, D.E.; Koreshkov, R.N.; Brazhe, N.A.

    2009-01-01

    We propose a functional mathematical model for neuron-astrocyte networks. The model incorporates elements of the tripartite synapse and the spatial branching structure of coupled astrocytes. We consider glutamate-induced calcium signaling as a specific mode of excitability and transmission...... in astrocytic-neuronal networks. We reproduce local and global dynamical patterns observed experimentally....

  6. Dynamic Graphics in Excel for Teaching Statistics: Understanding the Probability Density Function

    Science.gov (United States)

    Coll-Serrano, Vicente; Blasco-Blasco, Olga; Alvarez-Jareno, Jose A.

    2011-01-01

    In this article, we show a dynamic graphic in Excel that is used to introduce an important concept in our subject, Statistics I: the probability density function. This interactive graphic seeks to facilitate conceptual understanding of the main aspects analysed by the learners.

  7. A molecular dynamics study on the interaction between epoxy and functionalized graphene sheets

    DEFF Research Database (Denmark)

    Melro, Liliana Sofia S. F. P.; Pyrz, Ryszard; Jensen, Lars Rosgaard

    2016-01-01

    The interaction between graphene and epoxy resin was studied using molecular dynamics simulations. The interfacial shear strength and pull out force were calculated for functionalised graphene layers (carboxyl, carbonyl, and hydroxyl) and epoxy composites interfaces. The influence of functional...... and epoxy resin increases....

  8. Design of bounded feedback controls for linear dynamical systems by using common Lyapunov functions

    Institute of Scientific and Technical Information of China (English)

    Igor; Ananievskii; Nickolai; Anokhin; Alexander; Ovseevich

    2011-01-01

    For a linear dynamical system,we address the problem of devising a bounded feedback control,which brings the system to the origin in finite time.The construction is based on the notion of a common Lyapunov function.It is shown that the constructed control remains effective in the presence of small perturbations.

  9. Metaphors in Mathematics Classrooms: Analyzing the Dynamic Process of Teaching and Learning of Graph Functions

    Science.gov (United States)

    Font, Vicenc; Bolite, Janete; Acevedo, Jorge

    2010-01-01

    This article presents an analysis of a phenomenon that was observed within the dynamic processes of teaching and learning to read and elaborate Cartesian graphs for functions at high-school level. Two questions were considered during this investigation: What types of metaphors does the teacher use to explain the graphic representation of functions…

  10. Towards Dynamic Control of Wettability by Using Functionalized Altitudinal Molecular Motors on Solid Surfaces

    NARCIS (Netherlands)

    London, Gabor; Chen, Kuang-Yen; Carroll, Gregory T.; Feringa, Ben L.

    2013-01-01

    We report the synthesis of altitudinal molecular motors that contain functional groups in their rotor part. In an approach to achieve dynamic control over the properties of solid surfaces, a hydrophobic perfluorobutyl chain and a relatively hydrophilic cyano group were introduced to the rotor part

  11. Neurophysiologic findings in children with spastic cerebral palsy

    Directory of Open Access Journals (Sweden)

    Ruchi Kothari

    2010-01-01

    Full Text Available Context : Cerebral palsy (CP is a heterogeneous group of permanent, non-progressive motor disorders of movement and posture caused by chronic brain injuries. It is the most common cause of physical disability in childhood; spastic cerebral palsy being the most prevalent of its various forms. There is scanty information about the neurophysiologic investigations in children diagnosed as having spastic CP. Aims : The aim of the study was to investigate the relationship between abnormal VEP and BAEP findings with different clinical parameters in children with spastic cerebral palsy. Materials and Methods : Fifteen children with spastic CP in the age range 4 months to 10 years participated in this study. Evaluation of VEPs, brainstem evoked potentials (BAEPs were performed in all study patients as well as 35 healthy children as controls. The study was conducted after obtaining ethics committee approval and informed consent of parents. Statistical Analysis Used : Significance of difference in the mean values of different parameters in different groups was assessed by Student′s "t" test and the P value <0.05 was considered to be significant. All the values were expressed as mean ± 1 Std. Deviation. Results : A significant difference was found in the VEP latencies and amplitude between the subjects with CP and controls. Striking BAEP abnormalities in CP patients include prolongation of absolute latency of wave V, interpeak latencies of III-V and lowered I-V ratio. Abnormal VEPs and BAEPs in children with bilateral spastic cerebral palsy demonstrated a correlation with the presence of moderate to severe developmental delay. Conclusions : The differences in VEPs and BAEPs were determined between CP children and healthy children. The abnormalities found are probably linked to the neurological deficits present in cases of cerebral palsy.

  12. Long-term treatment of transthyretin familial amyloid polyneuropathy with tafamidis: a clinical and neurophysiological study.

    Science.gov (United States)

    Planté-Bordeneuve, Violaine; Gorram, Farida; Salhi, Hayet; Nordine, Tarik; Ayache, Samar S; Le Corvoisier, Philippe; Azoulay, Daniel; Feray, Cyrille; Damy, Thibaud; Lefaucheur, Jean-Pascal

    2017-02-01

    Tafamidis is a transthyretin (TTR) stabilizer recently approved to slow the neurologic impairment in TTR familial amyloid polyneuropathy (TTR-FAP). The pivotal studies on Tafamidis reported encouraging results on the short term, in the early onset Val30Met-TTR-FAP patients at an early stage of the neuropathy. However, the effect of the drug in the non-Val30Met patients, at a more advanced stage of the disease and on the long term, is less known. In this study, we report the effect of Tafamidis in 43 TTR-FAP patients with a variety of pathogenic mutations, including 53% of non-Val30Met variants, at different stages of neuropathy followed on the long term. General and neurological assessment was performed in a standardized protocol every 6-12 months along with neurophysiological variables, including testing of small nerve fibres. The mean follow-up under treatment was 2 years with a subset of 26 patients treated for 3 years. Overall, Tafamidis was well tolerated. A significant clinical deterioration of the neuropathy and the patient's general condition was observed across the 3 years follow-up, although neurophysiological parameters remained stable for the first 2 years. In contrast, patients had a significant increase of BMI under treatment. Deterioration of the neuropathy correlated to an older age at disease onset or treatment initiation and to poor clinical status at baseline. A higher BMI at baseline was associated with a lower progression of the neuropathy. About one-third of the patients who received 3 years of tafamidis had still preserved walking capacity or good clinical condition, suggesting that tafamidis slowed the disease progression in some patients. Overall, our work shows that tafamidis is well tolerated in TTR-FAP but does not prevent the steady progression of the neuropathy on the long term. Age, neurologic status, and general condition at baseline appear to be best predictors of tafamidis efficacy on the neurological function.

  13. Dynamic functional connectivity reveals altered variability in functional connectivity among patients with major depressive disorder

    Science.gov (United States)

    Tornador, Cristian; Falcón, Carles; López‐Solà, Marina; Hernández‐Ribas, Rosa; Pujol, Jesús; Menchón, José M.; Ritter, Petra; Cardoner, Narcis; Soriano‐Mas, Carles; Deco, Gustavo

    2016-01-01

    Abstract Resting‐state fMRI (RS‐fMRI) has become a useful tool to investigate the connectivity structure of mental health disorders. In the case of major depressive disorder (MDD), recent studies regarding the RS‐fMRI have found abnormal connectivity in several regions of the brain, particularly in the default mode network (DMN). Thus, the relevance of the DMN to self‐referential thoughts and ruminations has made the use of the resting‐state approach particularly important for MDD. The majority of such research has relied on the grand averaged functional connectivity measures based on the temporal correlations between the BOLD time series of various brain regions. We, in our study, investigated the variations in the functional connectivity over time at global and local level using RS‐fMRI BOLD time series of 27 MDD patients and 27 healthy control subjects. We found that global synchronization and temporal stability were significantly increased in the MDD patients. Furthermore, the participants with MDD showed significantly increased overall average (static) functional connectivity (sFC) but decreased variability of functional connectivity (vFC) within specific networks. Static FC increased to predominance among the regions pertaining to the default mode network (DMN), while the decreased variability of FC was observed in the connections between the DMN and the frontoparietal network. Hum Brain Mapp 37:2918–2930, 2016. © 2016 Wiley Periodicals, Inc. PMID:27120982

  14. Neurophysiological and behavioral correlates of cognitive control during low and moderate intensity exercise.

    Science.gov (United States)

    Olson, Ryan L; Chang, Yu-Kai; Brush, Christopher J; Kwok, Andrea N; Gordon, Valentina X; Alderman, Brandon L

    2016-05-01

    The aim of this study was to examine neurophysiological and behavioral correlates of cognitive control elicited by a modified flanker task while exercising at low and moderate intensities. A secondary aim was to examine cognitive control processes at several time points during an acute bout of exercise to determine whether cognition is selectively influenced by the duration of exercise. Twenty-seven healthy participants completed a modified version of the Eriksen flanker task while exercising on a cycle ergometer at 40% and 60% VO2 peak and during a no-exercise seated control across three separate days. During task performance, continuous EEG was collected to assess neurocognitive function using the N2 and P3 event-related brain potentials (ERPs). Neurocognitive performance was assessed at 5, 15, and 25min time points during steady-state exercise. Regardless of intensity, behavioral findings revealed impaired accuracy during both exercise conditions for the flanker task trials that require greater cognitive control. However, faster reaction times were found during moderate-intensity exercise. Neuroelectric measures revealed increased N2 and P3 amplitudes during both exercise conditions relative to rest. Together, these findings suggest divergent effects of exercise on behavioral performance measures accompanied by an upregulation of cognitive control during aerobic exercise. These impairments are discussed in terms of dual-task paradigms and the transient hypofrontality theory.

  15. Neurocognitive rehabilitation for addiction medicine: From neurophysiological markers to cognitive rehabilitation and relapse prevention.

    Science.gov (United States)

    Campanella, Salvatore

    2016-01-01

    Currently, relapse prevention remains the main challenge in addiction medicine, indicating that the established treatment methods combining psychotherapy with neuropharmacological interventions are not entirely effective. Therefore, there is a push to develop alternatives to psychotherapy- and medication-based approaches to addiction treatment. Two major cognitive factors have been identified that trigger relapse in addicted patients: attentional biases directed toward drug-related cues, which increase the urge to consume, and impaired response inhibition toward these cues, which makes it more difficult for addicted people to resist temptation. Recent studies on newly detoxified alcoholic patients have shown that by using the appropriate tasks to index these cognitive functions with event-related potentials (ERPs), it is possible to discriminate between future relapsers and nonrelapsers. These preliminary data suggest that the ERP technique has great clinical potential for preventing relapse in alcohol-dependent patients, as well as for addictive states in general. Indeed, ERPs may help to identify patients highly vulnerable to relapse and allow the development of individually adapted cognitive rehabilitation programs. The implementation of this combined approach requires an intense collaboration between psychiatry departments, clinical neurophysiology laboratories, and neuropsychological rehabilitation centers. The potential pitfalls and limitations of this approach are also discussed.

  16. Psychophysical and neurophysiological responses to acupuncture stimulation to incorporated rubber hand.

    Science.gov (United States)

    Chae, Youngbyoung; Lee, In-Seon; Jung, Won-Mo; Park, Kyungmo; Park, Hi-Joon; Wallraven, Christian

    2015-03-30

    From a neuroscientific perspective, the sensations induced by acupuncture are not only the product of the bottom-up modulation of simple needling at somatosensory receptors, but also of the reciprocal interaction of top-down modulation from the brain. The present study investigated whether acupuncture stimulation to incorporated body parts produces brain responses that are similar to the responses observed following acupuncture stimulation to the real hand. The present study included 17 participants who watched a rubber hand being synchronously stroked with their unseen left hand to induce incorporation of the rubber hand into their body. After the experimental modification of body ownership, acupuncture needle stimulation was applied to the LI4 acupoint on the incorporated rubber hand while brain activity was measured with functional magnetic resonance imaging (fMRI). When the rubber hand was fully incorporated with the real body, acupuncture stimulation to the rubber hand resulted in the experience of the DeQi sensation as well as brain activations in the dorsolateral prefrontal cortex (DLPFC), insula, secondary somatosensory cortex (SII), and medial temporal (MT) visual area. The insular activation was associated with the DeQi sensation from the rubber hand. The psychophysical and neurophysiological responses associated with acupuncture stimulation to the incorporated rubber hand were influenced by an enhanced bodily awareness of the hand, which was likely due to top-down modulation from the interoceptive system in the brain. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. From Phenomenology to Neurophysiological Understanding of Hallucinations in Children and Adolescents

    Science.gov (United States)

    Jardri, Renaud; Bartels-Velthuis, Agna A.; Debbané, Martin; Jenner, Jack A.; Kelleher, Ian; Dauvilliers, Yves; Plazzi, Giuseppe; Demeulemeester, Morgane; David, Christopher N.; Rapoport, Judith; Dobbelaere, Dries; Escher, Sandra; Fernyhough, Charles

    2014-01-01

    Typically reported as vivid, multisensory experiences which may spontaneously resolve, hallucinations are present at high rates during childhood. The risk of associated psychopathology is a major cause of concern. On the one hand, the risk of developing further delusional ideation has been shown to be reduced by better theory of mind skills. On the other hand, ideas of reference, passivity phenomena, and misidentification syndrome have been shown to increase the risk of self-injury or heteroaggressive behaviors. Cognitive psychology and brain-imaging studies have advanced our knowledge of the mechanisms underlying these early-onset hallucinations. Notably, specific functional impairments have been associated with certain phenomenological characteristics of hallucinations in youths, including intrusiveness and the sense of reality. In this review, we provide an update of associated epidemiological and phenomenological factors (including sociocultural context, social adversity, and genetics, considered in relation to the psychosis continuum hypothesis), cognitive models, and neurophysiological findings concerning hallucinations in children and adolescents. Key issues that have interfered with progress are considered and recommendations for future studies are provided. PMID:24936083

  18. LRRK2 mouse models: dissecting the behavior, striatal neurochemistry and neurophysiology of PD pathogenesis.

    Science.gov (United States)

    Volta, Mattia; Melrose, Heather

    2017-02-08

    Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common genetic cause of familial Parkinson's disease (PD), resembling the sporadic disorder. Intensive effort has been directed toward LRRK2 mouse modeling and investigation, aimed at reproducing the human disease to inform mechanistic studies of pathogenesis and design of neuroprotective therapies. The physiological function of LRRK2 is still under exploration, but a clear role in striatal neurophysiology and animal behavior has emerged. Alterations in LRRK2 impair dopamine (DA) transmission, regulation and signaling, in addition to corticostriatal synaptic plasticity. Consistently, several subtle abnormalities in motor and nonmotor abilities have been demonstrated in LRRK2 genetic mouse models, generally paralleling preclinical symptoms of early DA dysfunction. However, the variability in model design and phenotypes observed requires a critical approach in interpreting the results, adapting the model used to the specific research question. Etiologically appropriate knockin mice might represent the ultimate animal model in which to study early disease mechanisms and therapies as well as to investigate drug effectiveness and off-target consequences.

  19. Effects of Auditory Attention Training with the Dichotic Listening Task: Behavioural and Neurophysiological Evidence.

    Directory of Open Access Journals (Sweden)

    Jussi Tallus

    Full Text Available Facilitation of general cognitive capacities such as executive functions through training has stirred considerable research interest during the last decade. Recently we demonstrated that training of auditory attention with forced attention dichotic listening not only facilitated that performance but also generalized to an untrained attentional task. In the present study, 13 participants underwent a 4-week dichotic listening training programme with instructions to report syllables presented to the left ear (FL training group. Another group (n = 13 was trained using the non-forced instruction, asked to report whichever syllable they heard the best (NF training group. The study aimed to replicate our previous behavioural results, and to explore the neurophysiological correlates of training through event-related brain potentials (ERPs. We partially replicated our previous behavioural training effects, as the FL training group tended to show more allocation of auditory spatial attention to the left ear in a standard dichotic listening task. ERP measures showed diminished N1 and enhanced P2 responses to dichotic stimuli after training in both groups, interpreted as improvement in early perceptual processing of the stimuli. Additionally, enhanced anterior N2 amplitudes were found after training, with relatively larger changes in the FL training group in the forced-left condition, suggesting improved top-down control on the trained task. These results show that top-down cognitive training can modulate the left-right allocation of auditory spatial attention, accompanied by a change in an evoked brain potential related to cognitive control.

  20. Constituting the human via the animal in eighteenth-century experimental neurophysiology: Albrecht von Haller's sensibility trials.

    Science.gov (United States)

    Eichberg, Stephanie

    2009-01-01

    This paper will address the use of animal models as a vital constituent of 'life science in the making' by focussing on the 'sensibility trials' conducted by the Swiss physiologist Albrecht von Haller (1708-1777). Haller was a pioneering figure in the early days of neurophysiological research, being not only influential for establishing animal experimentation as a viable method to gain knowledge about (human) neurological functions. He also tackled the question of sensibility as the most fundamental property of living bodies, which came to influence our conception of bodily feeling. In analysing some of his experiments on the nervous system, this paper addresses the following questions: what does sensibility or sensation signify in eighteenth-century physiology? How was it assessed or measured during experimentation? How were nervous functions 'read', i.e., how was the observable behaviour of an experimental animal interpreted? And finally: how did Haller address the differences between humans and animals in the context of his investigations?

  1. The neurophysiological aspects of Pavlov's theory of higher nervous activity: in honor of the 150th anniversary of Pavlov's birth.

    Science.gov (United States)

    Grimsley, D L; Windholz, G

    2000-08-01

    Whereas Ivan P. Pavlov (1849-1936) is well-known for his work on classical conditioning, his contribution to neuroscience, particularly his interest in the function of neural centers in the central nervous system, is not as widely known. During the last three decades of his life, Pavlov explored cortical processes by salivary reflex conditioning, a method he used to develop his theory of higher nervous activity. This theory outlined the function of the brain in higher organisms in their interaction with the changing environmental contingencies. As early as 1908, Pavlov outlined a neurophysiological theory as the physiological basis of his theory of higher nervous activity. He maintained that the neural processes of excitation and inhibition irradiate and concentrate among the cortical neural centers. Most of all, he emphasized the plasticity of the cortex in higher organisms' in the Darwinian struggle for existence.

  2. Family dynamics and psychosocial functioning in children with SCI/D from Colombia, South America

    Science.gov (United States)

    Nicolais, Christina J.; Perrin, Paul B.; Panyavin, Ivan; Nicholls, Elizabeth G.; Olivera Plaza, Silvia Leonor; Quintero, Lorena Medina; Arango-Lasprilla, Juan Carlos

    2016-01-01

    Objective The purpose of this study was to examine the connections between family dynamics and the psychosocial functioning of children with spinal cord injuries and disorders (SCI/D). Design Cross-sectional. Setting Participants were recruited from communities in Neiva, Colombia. Participants Thirty children with SCI/D and their primary caregiver participated. Children were between 8 and 17 years of age, and had sustained their injury at least six months prior to data collection. Interventions NA. Outcome measures Participating children completed measures assessing their own psychosocial functioning (Children's Depression Inventory, Revised Children's Manifest Anxiety Scale-2, Pediatric Quality of Life Inventory), and their primary caregiver completed measures of family dynamics (Family Adaptability and Cohesion Evaluation Scale- Fourth Edition, Family Communication Scale, Family Assessment Device- General Functioning, Family Satisfaction Scale, Relationship-Focused Coping Scale). Results A correlation matrix showed a number of significant bivariate correlations between child and family variables, and three multiple regressions showed that family satisfaction, empathy, and flexibility significantly explained 27% of the variance in child worry; family satisfaction and communication explained 18% of the variance in child social anxiety; and family cohesion and communication explained 23% of the variance in child emotional functioning. Conclusions These findings highlight the importance of rehabilitation professionals considering the association between family dynamics and the psychosocial functioning of children with SCI/D when working with this population. PMID:25582185

  3. Evolutionary Fates and Dynamic Functionalization of Young Duplicate Genes in Arabidopsis Genomes1[OPEN

    Science.gov (United States)

    Wang, Jun; Tao, Feng; Marowsky, Nicholas C.; Fan, Chuanzhu

    2016-01-01

    Gene duplication is a primary means to generate genomic novelties, playing an essential role in speciation and adaptation. Particularly in plants, a high abundance of duplicate genes has been maintained for significantly long periods of evolutionary time. To address the manner in which young duplicate genes were derived primarily from small-scale gene duplication and preserved in plant genomes and to determine the underlying driving mechanisms, we generated transcriptomes to produce the expression profiles of five tissues in Arabidopsis thaliana and the closely related species Arabidopsis lyrata and Capsella rubella. Based on the quantitative analysis metrics, we investigated the evolutionary processes of young duplicate genes in Arabidopsis. We determined that conservation, neofunctionalization, and specialization are three main evolutionary processes for Arabidopsis young duplicate genes. We explicitly demonstrated the dynamic functionalization of duplicate genes along the evolutionary time scale. Upon origination, duplicates tend to maintain their ancestral functions; but as they survive longer, they might be likely to develop distinct and novel functions. The temporal evolutionary processes and functionalization of plant duplicate genes are associated with their ancestral functions, dynamic DNA methylation levels, and histone modification abundances. Furthermore, duplicate genes tend to be initially expressed in pollen and then to gain more interaction partners over time. Altogether, our study provides novel insights into the dynamic retention processes of young duplicate genes in plant genomes. PMID:27485883

  4. Resting-state quantitative electroencephalography reveals increased neurophysiologic connectivity in depression.

    Directory of Open Access Journals (Sweden)

    Andrew F Leuchter

    Full Text Available Symptoms of Major Depressive Disorder (MDD are hypothesized to arise from dysfunction in brain networks linking the limbic system and cortical regions. Alterations in brain functional cortical connectivity in resting-state networks have been detected with functional imaging techniques, but neurophysiologic connectivity measures have not been systematically examined. We used weighted network analysis to examine resting state functional connectivity as measured by quantitative electroencephalographic (qEEG coherence in 121 unmedicated subjects with MDD and 37 healthy controls. Subjects with MDD had significantly higher overall coherence as compared to controls in the delta (0.5-4 Hz, theta (4-8 Hz, alpha (8-12 Hz, and beta (12-20 Hz frequency bands. The frontopolar region contained the greatest number of "hub nodes" (surface recording locations with high connectivity. MDD subjects expressed higher theta and alpha coherence primarily in longer distance connections between frontopolar and temporal or parietooccipital regions, and higher beta coherence primarily in connections within and between electrodes overlying the dorsolateral prefrontal cortical (DLPFC or temporal regions. Nearest centroid analysis indicated that MDD subjects were best characterized by six alpha band connections primarily involving the prefrontal region. The present findings indicate a loss of selectivity in resting functional connectivity in MDD. The overall greater coherence observed in depressed subjects establishes a new context for the interpretation of previous studies showing differences in frontal alpha power and synchrony between subjects with MDD and normal controls. These results can inform the development of qEEG state and trait biomarkers for MDD.

  5. Challenges in microbial ecology: Building predictive understanding of community function and dynamics

    DEFF Research Database (Denmark)

    Widder, Stefanie; Allen, Rosalind J.; Pfeiffer, Thomas

    2016-01-01

    The importance of microbial communities (MCs) cannot be overstated. MCs underpin the biogeochemical cycles of the earth's soil, oceans and the atmosphere, and perform ecosystem functions that impact plants, animals and humans. Yet our ability to predict and manage the function of these highly...... complex, dynamically changing communities is limited. Building predictive models that link MC composition to function is a key emerging challenge in microbial ecology. Here, we argue that addressing this challenge requires close coordination of experimental data collection and method development...

  6. Response Functions for the Two-Dimensional Ultracold Fermi Gas: Dynamical BCS Theory and Beyond

    Science.gov (United States)

    Vitali, Ettore; Shi, Hao; Qin, Mingpu; Zhang, Shiwei

    2017-08-01

    Response functions are central objects in physics. They provide crucial information about the behavior of physical systems, and they can be directly compared with scattering experiments involving particles such as neutrons or photons. Calculations of such functions starting from the many-body Hamiltonian of a physical system are challenging and extremely valuable. In this paper, we focus on the two-dimensional (2D) ultracold Fermi atomic gas which has been realized experimentally. We present an application of the dynamical BCS theory to obtain response functions for different regimes of interaction strengths in the 2D gas with zero-range attractive interaction. We also discuss auxiliary-field quantum Monte Carlo (AFQMC) methods for the calculation of imaginary time correlations in these dilute Fermi gas systems. Illustrative results are given and comparisons are made between AFQMC and dynamical BCS theory results to assess the accuracy of the latter.

  7. Perspectives for clinical measures of dynamic foot function-reference data and methodological considerations.

    Science.gov (United States)

    Rathleff, M S; Nielsen, R G; Simonsen, O; Olesen, C G; Kersting, U G

    2010-02-01

    Several studies have investigated if static posture assessments qualify to predict dynamic function of the foot showing diverse outcomes. However, it was suggested that dynamic measures may be better suited to predict foot-related overuse problems. The purpose of this study was to establish the reliability for dynamic measures of longitudinal arch angle (LAA) and navicular height (NH) and to examine to what extent static and dynamic measures thereof are related. Intra-rater reliability of LAA and NH measures was tested on a sample of 17 control subjects. Subsequently, 79 subjects were tested while walking on a treadmill. The ranges and minimum values for LAA and NH during ground contact were identified over 20 consecutive steps. A geometric error model was used to simulate effects of marker placement uncertainty and skin movement artifacts. Results demonstrated the highest reliability for the minimum NH (MinNH), followed by the minimum LAA (MinLAA), the dynamic range of navicular height (DeltaNH) and the range of LAA (DeltaLAA) while all measures were highly reliable. Marker location uncertainty and skin movement artifacts had the smallest effects on measures of NH. The use of an alignment device for marker placement was shown to reduce error ranges for NH measures. Therefore, DeltaNH and MinNH were recommended for functional dynamic foot characterization in the sagittal plane. There is potential for such measures to be a suitable predictor for overuse injuries while being obtainable in clinical settings. Future research needs to include such dynamic but simple foot assessments in large-scale clinical studies.

  8. Task-related Functional Connectivity Dynamics in a Block-designed Visual Experiment

    Directory of Open Access Journals (Sweden)

    Xin eDi

    2015-09-01

    Full Text Available Studying task modulations of brain connectivity using functional magnetic resonance imaging (fMRI is critical to understand brain functions that support cognitive and affective processes. Existing methods such as psychophysiological interaction (PPI and dynamic causal modelling (DCM usually implicitly assume that the connectivity patterns are stable over a block-designed task with identical stimuli. However, this assumption lacks empirical verification on high-temporal resolution fMRI data with reliable data-driven analysis methods. The present study performed a detailed examination of dynamic changes of functional connectivity (FC in a simple block-designed visual checkerboard experiment with a sub-second sampling rate (TR = 0.645 s by estimating time-varying correlation coefficient (TVCC between BOLD responses of different brain regions. We observed reliable task-related FC changes (i.e., FCs were transiently decreased after task onset and went back to the baseline afterward among several visual regions of the bilateral middle occipital gyrus (MOG and the bilateral fusiform gyrus (FuG. Importantly, only the FCs between higher visual regions (MOG and lower visual regions (FuG exhibited such dynamic patterns. The results suggested that simply assuming a sustained FC during a task block may be insufficient to capture distinct task-related FC changes. The investigation of FC dynamics in tasks could improve our understanding of condition shifts and the coordination between different activated brain regions.

  9. Molecular dynamics simulation of doxorubicin adsorption on a bundle of functionalized CNT.

    Science.gov (United States)

    Izadyar, Akram; Farhadian, Nafiseh; Chenarani, Naser

    2016-08-01

    In this study, molecular dynamics simulation is used to investigate the adsorption of an anticancer drug, doxorubicin, on bundles of functionalized single-walled carbon nanotubes (SWNTs) in an aqueous solution. Carboxylic group has been selected as the functional group. Molecular dynamics (MD) simulations are performed for both separated systems containing a SWNT bundle and a functionalized carbon nanotube bundle, and results are compared with existing experimental data. MD results show that doxorubicin can be adsorbed on CNTs using different methods such as entrapment within CNT bundle, attachment to the side wall of the CNT, and adsorption on the CNT inner cavity. For functionalized CNT, the adsorption of drugs on the functional groups is essential for predicting the enhancement of drug loading on the functionalized nanotubes. Furthermore, the adsorption behavior of doxorubicin on CNTs is fitted with Langmuir and Freundlich isotherm models. The results show that Langmuir model can predict the adsorption behavior of doxorubicin on CNTs more accurately than Freundlich model does. As predicted by this isotherm model, the adsorption process of doxorubicin on CNTs is relatively difficult, but it can be improved by increasing the functional groups on the CNTs surface.

  10. Sufficiently informative functions and the minimax feedback control of uncertain dynamic systems.

    Science.gov (United States)

    Bertsekas, D. P.; Rhodes, I. B.

    1973-01-01

    The problem of optimal feedback control of uncertain discrete-time dynamic systems is considered where the uncertain quantities do not have a stochastic description but instead are known to belong to given sets. The problem is converted to a sequential minimax problem and dynamic programming is suggested as a general method for its solution. The notion of a sufficiently informative function, which parallels the notion of a sufficient statistic of stochastic optimal control, is introduced, and conditions under which the optimal controller decomposes into an estimator and an actuator are identified.

  11. DYNAMIC SCALING OF GROWING SURFACES WITH GROWTH INHOMOGENEITIES OF SCREENED COULOMBIC FUNCTION

    Institute of Scientific and Technical Information of China (English)

    TANG GANG; MA BEN-KUN

    2000-01-01

    The dynamic scaling properties of growing surfaces with growth inhomogeneities are studied by applying a dy namic renormalization-group analysis to the generalized Kardar-Parisi-Zhang(hereafter abbreviated to KPZ) equation, which contains an additional term of growth inhomogeneities. In a practical crystal growth process, these growth inho mogeneities can be induced by surface impurities and defects and are modeled by a screened Coulomb function in this paper. Our results show that the existence of the growth inhomogeneities can significantly change the dynamic scaling properties of a growing surface and can lead to a rougher surface.

  12. Dynamical behaviors and chaos control in a discrete functional response model

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yue [Institute of Systems Science, Northeastern University, Shenyang 110004 (China)]. E-mail: zyueneu@sina.com; Zhang Qingling [Institute of Systems Science, Northeastern University, Shenyang 110004 (China)]. E-mail: qlzhang@mail.neu.edu.cn; Zhao Lichun [Department of Mathematics, Anshan Teachers College, Anshan 114005 (China); Yang Chunyu [Institute of Systems Science, Northeastern University, Shenyang 110004 (China)

    2007-11-15

    In this paper, the dynamical behaviors and chaos control are investigated in a discrete functional response model. It is verified that there are phenomena of the transcritical bifurcation, flip bifurcation, Hopf bifurcation types and chaos in the sense of Marotto's definition. Specifically, a controller is designed to stabilize the chaotic orbits and enable them to be an ideal target one (i.e., an unstable fixed point of the chaotic system). Finally, numerical simulations not only show the consistency with theoretical analysis but also exhibit the complex dynamical behaviors.

  13. Clinical neurophysiology referral patterns to a tertiary hospital--a prospective audit.

    LENUS (Irish Health Repository)

    Renganathan, R

    2012-02-03

    BACKGROUND: Cork University Hospital (CUH) provides a tertiary service for all neurophysiology referrals in the Southern Health Board region. AIM: To ascertain the number, source, symptoms and diagnosis of neurophysiology referrals at CUH. METHODS: We did a prospective audit of the referral patterns to the neurophysiology department over a 12 -week period. RESULTS: Of 635 referrals, 254 had electromyograms (EMG), 359 had electro-encephalograms (EEG), 18 had visual evoked potentials (VEP), three had somato-sensory evoked potentials (SSEP) and one had multiple sleep latency tests (MSLT). We analysed the demographic pattern, reason for referrals, the average waiting time for neurophysiology tests and the patterns of diagnosis in this audit. CONCLUSIONS: Patients from County Cork are making more use of the neurophysiology services than patients from other counties within the Southern Health Board. The average waiting time for an EEG was 32 days and for an EMG was 74 days. However, more than 35% of those patients waiting for an EEG or an EMG had their tests done within four weeks of referral. The appointments of EEG and EMG were assigned on the basis of clinical need.

  14. Application of Higuchi's fractal dimension from basic to clinical neurophysiology: A review.

    Science.gov (United States)

    Kesić, Srdjan; Spasić, Sladjana Z

    2016-09-01

    For more than 20 years, Higuchi's fractal dimension (HFD), as a nonlinear method, has occupied an important place in the analysis of biological signals. The use of HFD has evolved from EEG and single neuron activity analysis to the most recent application in automated assessments of different clinical conditions. Our objective is to provide an updated review of the HFD method applied in basic and clinical neurophysiological research. This article summarizes and critically reviews a broad literature and major findings concerning the applications of HFD for measuring the complexity of neuronal activity during different neurophysiological conditions. The source of information used in this review comes from the PubMed, Scopus, Google Scholar and IEEE Xplore Digital Library databases. The review process substantiated the significance, advantages and shortcomings of HFD application within all key areas of basic and clinical neurophysiology. Therefore, the paper discusses HFD application alone, combined with other linear or nonlinear measures, or as a part of automated methods for analyzing neurophysiological signals. The speed, accuracy and cost of applying the HFD method for research and medical diagnosis make it stand out from the widely used linear methods. However, only a combination of HFD with other nonlinear methods ensures reliable and accurate analysis of a wide range of neurophysiological signals. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Towards dynamic control of wettability by using functionalized altitudinal molecular motors on solid surfaces.

    Science.gov (United States)

    London, Gábor; Chen, Kuang-Yen; Carroll, Gregory T; Feringa, Ben L

    2013-08-05

    We report the synthesis of altitudinal molecular motors that contain functional groups in their rotor part. In an approach to achieve dynamic control over the properties of solid surfaces, a hydrophobic perfluorobutyl chain and a relatively hydrophilic cyano group were introduced to the rotor part of the motors. Molecular motors were attached to quartz surfaces by using interfacial 1,3-dipolar cycloadditions. To test the effect of the functional groups on the rotary motion, photochemical and thermal isomerization studies of the motors were performed both in solution and when attached to the surface. We found that the substituents have no significant effect on the thermal and photochemical processes, and the functionalized motors preserved their rotary function both in solution and on a quartz surface. Preliminary results on the influence of the functional groups on surface wettability are also described.

  16. Thermal expansion coefficient of graphene using molecular dynamics simulation: A comparative study on potential functions

    Science.gov (United States)

    Ghasemi, Hamid; Rajabpour, Ali

    2017-01-01

    In this paper, we studied the thermal expansion coefficient (TEC) of pristine graphene sheets (GSs) using molecular dynamics (MD) simulation. We validated our model with previous studies employing AIREBO potential function and repeated the same simulation with the optimized Tersoff potential function. We also discussed the differences of the results and the corresponding reasons: evaluating the negative TEC of graphene by measuring the C-C bond length and out-of-plane vibrations of the GS. We finally showed that the ripples and wrinkles are more represented over the GS during the simulation with the AIREBO potential function rather than the optimized Tersoff. Comparing the results of both potential functions; it is seen that the results obtained by AIREBO potential function are in better agreement with those reported by previous scholars.

  17. The Dynamic Programming Method of Stochastic Differential Game for Functional Forward-Backward Stochastic System

    Directory of Open Access Journals (Sweden)

    Shaolin Ji

    2013-01-01

    Full Text Available This paper is devoted to a stochastic differential game (SDG of decoupled functional forward-backward stochastic differential equation (FBSDE. For our SDG, the associated upper and lower value functions of the SDG are defined through the solution of controlled functional backward stochastic differential equations (BSDEs. Applying the Girsanov transformation method introduced by Buckdahn and Li (2008, the upper and the lower value functions are shown to be deterministic. We also generalize the Hamilton-Jacobi-Bellman-Isaacs (HJBI equations to the path-dependent ones. By establishing the dynamic programming principal (DPP, we derive that the upper and the lower value functions are the viscosity solutions of the corresponding upper and the lower path-dependent HJBI equations, respectively.

  18. A functional-dynamic reflection on participatory processes in modeling projects.

    Science.gov (United States)

    Seidl, Roman

    2015-12-01

    The participation of nonscientists in modeling projects/studies is increasingly employed to fulfill different functions. However, it is not well investigated if and how explicitly these functions and the dynamics of a participatory process are reflected by modeling projects in particular. In this review study, I explore participatory modeling projects from a functional-dynamic process perspective. The main differences among projects relate to the functions of participation-most often, more than one per project can be identified, along with the degree of explicit reflection (i.e., awareness and anticipation) on the dynamic process perspective. Moreover, two main approaches are revealed: participatory modeling covering diverse approaches and companion modeling. It becomes apparent that the degree of reflection on the participatory process itself is not always explicit and perfectly visible in the descriptions of the modeling projects. Thus, the use of common protocols or templates is discussed to facilitate project planning, as well as the publication of project results. A generic template may help, not in providing details of a project or model development, but in explicitly reflecting on the participatory process. It can serve to systematize the particular project's approach to stakeholder collaboration, and thus quality management.

  19. Neurophysiologic Correlates of Ketamine Sedation and Anesthesia: A High-density Electroencephalography Study in Healthy Volunteers.

    Science.gov (United States)

    Vlisides, Phillip E; Bel-Bahar, Tarik; Lee, UnCheol; Li, Duan; Kim, Hyoungkyu; Janke, Ellen; Tarnal, Vijay; Pichurko, Adrian B; McKinney, Amy M; Kunkler, Bryan S; Picton, Paul; Mashour, George A

    2017-07-01

    Previous studies have demonstrated inconsistent neurophysiologic effects of ketamine, although discrepant findings might relate to differences in doses studied, brain regions analyzed, coadministration of other anesthetic medications, and resolution of the electroencephalograph. The objective of this study was to characterize the dose-dependent effects of ketamine on cortical oscillations and functional connectivity. Ten healthy human volunteers were recruited for study participation. The data were recorded using a 128-channel electroencephalograph during baseline consciousness, subanesthetic dosing (0.5 mg/kg over 40 min), anesthetic dosing (1.5 mg/kg bolus), and recovery. No other sedative or anesthetic medications were administered. Spectrograms, topomaps, and functional connectivity (weighted and directed phase lag index) were computed and analyzed. Frontal theta bandwidth power increased most dramatically during ketamine anesthesia (mean power ± SD, 4.25 ± 1.90 dB) compared to the baseline (0.64 ± 0.28 dB), subanesthetic (0.60 ± 0.30 dB), and recovery (0.68 ± 0.41 dB) states; P ketamine anesthesia. Weighted phase lag index demonstrated theta phase locking within anterior regions (0.2349 ± 0.1170, P ketamine anesthesia. Alpha power gradually decreased with subanesthetic ketamine, and anterior-to-posterior directed connectivity was maximally reduced (0.0282 ± 0.0772) during ketamine anesthesia compared to all other states (P Ketamine anesthesia correlates most clearly with distinct changes in the theta bandwidth, including increased power and functional connectivity. Anterior-to-posterior connectivity in the alpha bandwidth becomes maximally depressed with anesthetic ketamine administration, suggesting a dose-dependent effect.

  20. Impulsivity is associated with early sensory inhibition in neurophysiological processing of affective sounds

    Directory of Open Access Journals (Sweden)

    Takahiro eSoshi

    2015-10-01

    Full Text Available Impulsivity is widely related to socially problematic behaviors and psychiatric illness. Previous studies have investigated the relationship between response inhibition and impulsivity. However, no study has intensively examined how impulsivity correlates with automatic sensory processing before the drive for response inhibition to sensory inputs. Sensory gating is an automatic inhibitory function that attenuates the neural response to redundant sensory information and protects higher cognitive functions from the burst of information processing. Although sensory gating functions abnormally in several clinical populations, there is very little evidence supporting sensory gating changes in conjunction with impulsivity traits in non-clinical populations. The present study recruited healthy adults (n = 23 to conduct a neurophysiological experiment using a paired click paradigm and self-report scales assessing impulsive behavioral traits. Auditory stimuli included not only a pure tone, but also white noise, to explore the differences in auditory evoked potential responses between the two stimuli. White noise is more affective than pure tones; therefore, we predicted that the sensory gating of auditory evoked potentials (P50, N100, P200 for white noise would correlate more with self-reported impulsivity than with those for pure tones. Our main findings showed that sensory gating of the P50 and P200 amplitudes significantly correlated with self-reported reward responsiveness and fun-seeking, respectively, only for white noise stimuli, demonstrating that higher-scoring impulsivity subcomponents were related to greater sensory gating. Frequency-domain analyses also revealed that greater desynchronization of the beta band for the second white noise stimulus was associated with higher motor impulsivity scores, suggesting that an impulsivity-related change of sensory gating was associated with attentional modulation. These findings indicate that the

  1. Neurophysiological defects and neuronal gene deregulation in Drosophila mir-124 mutants.

    Directory of Open Access Journals (Sweden)

    Kailiang Sun

    2012-02-01

    Full Text Available miR-124 is conserved in sequence and neuronal expression across the animal kingdom and is predicted to have hundreds of mRNA targets. Diverse defects in neural development and function were reported from miR-124 antisense studies in vertebrates, but a nematode knockout of mir-124 surprisingly lacked detectable phenotypes. To provide genetic insight from Drosophila, we deleted its single mir-124 locus and found that it is dispensable for gross aspects of neural specification and differentiation. On the other hand, we detected a variety of mutant phenotypes that were rescuable by a mir-124 genomic transgene, including short lifespan, increased dendrite variation, impaired larval locomotion, and aberrant synaptic release at the NMJ. These phenotypes reflect extensive requirements of miR-124 even under optimal culture conditions. Comparison of the transcriptomes of cells from wild-type and mir-124 mutant animals, purified on the basis of mir-124 promoter activity, revealed broad upregulation of direct miR-124 targets. However, in contrast to the proposed mutual exclusion model for miR-124 function, its functional targets were relatively highly expressed in miR-124-expressing cells and were not enriched in genes annotated with epidermal expression. A notable aspect of the direct miR-124 network was coordinate targeting of five positive components in the retrograde BMP signaling pathway, whose activation in neurons increases synaptic release at the NMJ, similar to mir-124 mutants. Derepression of the direct miR-124 target network also had many secondary effects, including over-activity of other post-transcriptional repressors and a net incomplete transition from a neuroblast to a neuronal gene expression signature. Altogether, these studies demonstrate complex consequences of miR-124 loss on neural gene expression and neurophysiology.

  2. The functional role of protein dynamics in photosynthetic reaction centers investigated by elastic and quasielastic neutron scattering

    Directory of Open Access Journals (Sweden)

    Pieper Jörg

    2015-01-01

    Full Text Available This short review summarizes our current knowledge about the functional relevance of protein dynamics in photosynthetic reaction centers. In the case of Photosystem II membrane fragments, elastic and quasielastic neutron scattering experiments reveal a dynamical transition at about 240 K corresponding to the activation of picosecond molecular motions. Likewise, a “freezing” of molecular dynamics is observed upon dehydration. Intriguingly, these effects correlate with the pronounced temperature- and hydration-dependence of specific electron transfer steps in Photosystem II indicating that molecular dynamics is an indispensable prerequisite for its function. Thus, electron transfer in Photosystem II appears to be a prototypical example for a dynamics-function correlation. Finally, the laser-neutron pump-probe technique is shown to permit in-situ monitoring of molecular dynamics in specific functional states of a protein in real time.

  3. Dynamic kinetic energy potential for orbital-free density functional theory.

    Science.gov (United States)

    Neuhauser, Daniel; Pistinner, Shlomo; Coomar, Arunima; Zhang, Xu; Lu, Gang

    2011-04-14

    A dynamic kinetic energy potential (DKEP) is developed for time-dependent orbital-free (TDOF) density function theory applications. This potential is constructed to affect only the dynamical (ω ≠ 0) response of an orbital-free electronic system. It aims at making the orbital-free simulation respond in the same way as that of a noninteracting homogenous electron gas (HEG), as required by a correct kinetic energy, therefore enabling extension of the success of orbital-free density functional theory in the static case (e.g., for embedding and description of processes in bulk materials) to dynamic processes. The potential is constructed by expansions of terms, each of which necessitates only simple time evolution (concurrent with the TDOF evolution) and a spatial convolution at each time-step. With 14 such terms a good fit is obtained to the response of the HEG at a large range of frequencies, wavevectors, and densities. The method is demonstrated for simple jellium spheres, approximating Na(9)(+) and Na(65)(+) clusters. It is applicable both to small and large (even ultralarge) excitations and the results converge (i.e., do not blow up) as a function of time. An extension to iterative frequency-resolved extraction is briefly outlined, as well as possibly numerically simpler expansions. The approach could also be extended to fit, instead of the HEG susceptibility, either an experimental susceptibility or a theoretically derived one for a non-HEG system. The DKEP potential should be a powerful tool for embedding a dynamical system described by a more accurate method (such as time-dependent density functional theory, TDDFT) in a large background described by TDOF with a DKEP potential. The type of expansions used and envisioned should be useful for other approaches, such as memory functionals in TDDFT. Finally, an appendix details the formal connection between TDOF and TDDFT.

  4. Predator-prey dynamics driven by feedback between functionally diverse trophic levels.

    Directory of Open Access Journals (Sweden)

    Katrin Tirok

    Full Text Available Neglecting the naturally existing functional diversity of communities and the resulting potential to respond to altered conditions may strongly reduce the realism and predictive power of ecological models. We therefore propose and study a predator-prey model that describes mutual feedback via species shifts in both predator and prey, using a dynamic trait approach. Species compositions of the two trophic levels were described by mean functional traits--prey edibility and predator food-selectivity--and functional diversities by the variances. Altered edibility triggered shifts in food-selectivity so that consumers continuously respond to the present prey composition, and vice versa. This trait-mediated feedback mechanism resulted in a complex dynamic behavior with ongoing oscillations in the mean trait values, reflecting continuous reorganization of the trophic levels. The feedback was only possible if sufficient functional diversity was present in both trophic levels. Functional diversity was internally maintained on the prey level as no niche existed in our system, which was ideal under any composition of the predator level due to the trade-offs between edibility, growth and carrying capacity. The predators were only subject to one trade-off between food-selectivity and grazing ability and in the absence of immigration, one predator type became abundant, i.e., functional diversity declined to zero. In the lack of functional diversity the system showed the same dynamics as conventional models of predator-prey interactions ignoring the potential for shifts in species composition. This way, our study identified the crucial role of trade-offs and their shape in physiological and ecological traits for preserving diversity.

  5. Predator-prey dynamics driven by feedback between functionally diverse trophic levels.

    Science.gov (United States)

    Tirok, Katrin; Bauer, Barbara; Wirtz, Kai; Gaedke, Ursula

    2011-01-01

    Neglecting the naturally existing functional diversity of communities and the resulting potential to respond to altered conditions may strongly reduce the realism and predictive power of ecological models. We therefore propose and study a predator-prey model that describes mutual feedback via species shifts in both predator and prey, using a dynamic trait approach. Species compositions of the two trophic levels were described by mean functional traits--prey edibility and predator food-selectivity--and functional diversities by the variances. Altered edibility triggered shifts in food-selectivity so that consumers continuously respond to the present prey composition, and vice versa. This trait-mediated feedback mechanism resulted in a complex dynamic behavior with ongoing oscillations in the mean trait values, reflecting continuous reorganization of the trophic levels. The feedback was only possible if sufficient functional diversity was present in both trophic levels. Functional diversity was internally maintained on the prey level as no niche existed in our system, which was ideal under any composition of the predator level due to the trade-offs between edibility, growth and carrying capacity. The predators were only subject to one trade-off between food-selectivity and grazing ability and in the absence of immigration, one predator type became abundant, i.e., functional diversity declined to zero. In the lack of functional diversity the system showed the same dynamics as conventional models of predator-prey interactions ignoring the potential for shifts in species composition. This way, our study identified the crucial role of trade-offs and their shape in physiological and ecological traits for preserving diversity.

  6. Dynamics of pesticide uptake into plants: From system functioning to parsimonious modeling

    DEFF Research Database (Denmark)

    Fantke, Peter; Wieland, Peter; Wannaz, Cedric;

    2013-01-01

    Dynamic plant uptake models are suitable for assessing environmental fate and behavior of toxic chemicals in food crops. However, existing tools mostly lack in-depth analysis of system dynamics. Furthermore, no existing model is available as parameterized version that is easily applicable for use...... harvested for human consumption by taking wheat grains as example. Results show that grains, grain surface and soil are the compartments predominantly influencing the mass evolution of most pesticides in the plant–environment system as a function of substance degradation in plant components and overall...... in spatially resolved frameworks for comparative assessment. In the present paper, we thus analyze the dynamics of substance masses in a multi-compartment plant–environment system by applying mathematical decomposition techniques. We thereby focus on the evolution of pesticide residues in crop components...

  7. Polynomial scaling approximations and dynamic correlation corrections to doubly occupied configuration interaction wave functions.

    Science.gov (United States)

    Van Raemdonck, Mario; Alcoba, Diego R; Poelmans, Ward; De Baerdemacker, Stijn; Torre, Alicia; Lain, Luis; Massaccesi, Gustavo E; Van Neck, Dimitri; Bultinck, Patrick

    2015-09-14

    A class of polynomial scaling methods that approximate Doubly Occupied Configuration Interaction (DOCI) wave functions and improve the description of dynamic correlation is introduced. The accuracy of the resulting wave functions is analysed by comparing energies and studying the overlap between the newly developed methods and full configuration interaction wave functions, showing that a low energy does not necessarily entail a good approximation of the exact wave function. Due to the dependence of DOCI wave functions on the single-particle basis chosen, several orbital optimisation algorithms are introduced. An energy-based algorithm using the simulated annealing method is used as a benchmark. As a computationally more affordable alternative, a seniority number minimising algorithm is developed and compared to the energy based one revealing that the seniority minimising orbital set performs well. Given a well-chosen orbital basis, it is shown that the newly developed DOCI based wave functions are especially suitable for the computationally efficient description of static correlation and to lesser extent dynamic correlation.

  8. Backstepping-Based Lyapunov Function Construction Using Approximate Dynamic Programming and Sum of Square Techniques.

    Science.gov (United States)

    Wang, Zheng; Liu, Xiaoping; Liu, Kefu; Li, Shuai; Wang, Huanqing

    2017-10-01

    In this paper, backstepping for a class of block strict-feedback nonlinear systems is considered. Since the input function could be zero for each backstepping step, the backstepping technique cannot be applied directly. Based on the assumption that nonlinear systems are polynomials, for each backstepping step, Lypunov function can be constructed in a polynomial form by sum of square (SOS) technique. The virtual control can be obtained by the Sontag feedback formula, which is equivalent to an optimal control-the solution of a Hamilton-Jacobi-Bellman equation. Thus, approximate dynamic programming (ADP) could be used to estimate value functions (Lyapunov functions) instead of SOS. Through backstepping technique, the control Lyapunov function (CLF) of the full system is constructed finally making use of the strict-feedback structure and a stabilizable controller can be obtained through the constructed CLF. The contributions of the proposed method are twofold. On one hand, introducing ADP into backstepping can broaden the application of the backstepping technique. A class of block strict-feedback systems can be dealt by the proposed method and the requirement of nonzero input function for each backstepping step can be relaxed. On the other hand, backstepping with surface dynamic control actually reduces the computation complexity of ADP through constructing one part of the CLF by solving semidefinite programming using SOS. Simulation results verify contributions of the proposed method.

  9. Abnormal dynamics of cortical resting state functional connectivity in chronic headache patients.

    Science.gov (United States)

    Wang, Zewei; Yang, Qing; Chen, Li Min

    2017-02-01

    The goals of this study are to characterize the temporal dynamics of inter-regional connectivity of the brain in chronic headache (CH) patients versus their age/gender matched controls (CONCH, n=28 pairs), and to determine whether dynamic measures reveal additional features to static functional connectivity and correlate with psychometric scores. Cortical thickness and inter-regional resting state fMRI connectivity were quantified and compared between CH and CONCH groups. Six cortical regions of interest (ROI) pairs that exhibited correlated cortical thickness and static functional connectivity abnormalities were selected for temporal dynamic analysis. Two methods were used: temporal sliding-window (SW) and wavelet transformation coherence (WTC). SW analyses using three temporal windows of 30, 60, 120s revealed that all six ROI pairs of CH exhibited higher percentage of strong connectivity (high r values), and smaller fast Fourier transform (FFT) amplitudes at a very low frequency range (i.e., 0.002-0.01Hz), compared to those of CONCH. These features were particularly prevalent in the 120s window analysis. Less variable dynamic fluctuation (i.e., smaller standard deviation of r values) was identified in two out of six ROI pairs in CH. WTC analysis revealed that time-averaged coherence was generally greater in CH than CONCH between wavelet decomposition scales 20 to 55 (0.018-0.05Hz), and was statistically significant in three out of six ROI pairs. Together, the most robust and significant differences in temporal dynamics between CH and CONCH were detected in two ROI pairs: left medial-orbitofrontal-left posterior-cingulate and left medial-orbitofrontal-left inferior-temporal. The high degrees of sleep disturbance (high PSQI score), depression (high HRSD score) and fatigue (low SF-36 score) were associated with high degree of inter-regional temporal coherence in CH. In summary, these dynamic functional connectivity (dFC) measures uncovered a temporal "lock

  10. MR-guided dynamic PET reconstruction with the kernel method and spectral temporal basis functions.

    Science.gov (United States)

    Novosad, Philip; Reader, Andrew J

    2016-06-21

    Recent advances in dynamic positron emission tomography (PET) reconstruction have demonstrated that it is possible to achieve markedly improved end-point kinetic parameter maps by incorporating a temporal model of the radiotracer directly into the reconstruction algorithm. In this work we have developed a highly constrained, fully dynamic PET reconstruction algorithm incorporating both spectral analysis temporal basis functions and spatial basis functions derived from the kernel method applied to a co-registered T1-weighted magnetic resonance (MR) image. The dynamic PET image is modelled as a linear combination of spatial and temporal basis functions, and a maximum likelihood estimate for the coefficients can be found using the expectation-maximization (EM) algorithm. Following reconstruction, kinetic fitting using any temporal model of interest can be applied. Based on a BrainWeb T1-weighted MR phantom, we performed a realistic dynamic [(18)F]FDG simulation study with two noise levels, and investigated the quantitative performance of the proposed reconstruction algorithm, comparing it with reconstructions incorporating either spectral analysis temporal basis functions alone or kernel spatial basis functions alone, as well as with conventional frame-independent reconstruction. Compared to the other reconstruction algorithms, the proposed algorithm achieved superior performance, offering a decrease in spatially averaged pixel-level root-mean-square-error on post-reconstruction kinetic parametric maps in the grey/white matter, as well as in the tumours when they were present on the co-registered MR image. When the tumours were not visible in the MR image, reconstruction with the proposed algorithm performed similarly to reconstruction with spectral temporal basis functions and was superior to both conventional frame-independent reconstruction and frame-independent reconstruction with kernel spatial basis functions. Furthermore, we demonstrate that a joint spectral

  11. MR-guided dynamic PET reconstruction with the kernel method and spectral temporal basis functions

    Science.gov (United States)

    Novosad, Philip; Reader, Andrew J.

    2016-06-01

    Recent advances in dynamic positron emission tomography (PET) reconstruction have demonstrated that it is possible to achieve markedly improved end-point kinetic parameter maps by incorporating a temporal model of the radiotracer directly into the reconstruction algorithm. In this work we have developed a highly constrained, fully dynamic PET reconstruction algorithm incorporating both spectral analysis temporal basis functions and spatial basis functions derived from the kernel method applied to a co-registered T1-weighted magnetic resonance (MR) image. The dynamic PET image is modelled as a linear combination of spatial and temporal basis functions, and a maximum likelihood estimate for the coefficients can be found using the expectation-maximization (EM) algorithm. Following reconstruction, kinetic fitting using any temporal model of interest can be applied. Based on a BrainWeb T1-weighted MR phantom, we performed a realistic dynamic [18F]FDG simulation study with two noise levels, and investigated the quantitative performance of the proposed reconstruction algorithm, comparing it with reconstructions incorporating either spectral analysis temporal basis functions alone or kernel spatial basis functions alone, as well as with conventional frame-independent reconstruction. Compared to the other reconstruction algorithms, the proposed algorithm achieved superior performance, offering a decrease in spatially averaged pixel-level root-mean-square-error on post-reconstruction kinetic parametric maps in the grey/white matter, as well as in the tumours when they were present on the co-registered MR image. When the tumours were not visible in the MR image, reconstruction with the proposed algorithm performed similarly to reconstruction with spectral temporal basis functions and was superior to both conventional frame-independent reconstruction and frame-independent reconstruction with kernel spatial basis functions. Furthermore, we demonstrate that a joint spectral

  12. Evolution in functional complexity of heart rate dynamics: a measure of cardiac allograft adaptability.

    Science.gov (United States)

    Kresh, J Y; Izrailtyan, I

    1998-09-01

    The capacity of self-organized systems to adapt is embodied in the functional organization of intrinsic control mechanisms. Evolution in functional complexity of heart rate variability (HRV) was used as measure of the capacity of the transplanted heart to express newly emergent regulatory order. In a cross-sectional study of 100 patients after (0-10 yr) heart transplantation (HTX), heart rate dynamics were assessed using pointwise correlation dimension (PD2) analysis. A new observation is that, commencing with the acute event of allograft transplantation, the dynamics of rhythm formation proceed through complex phase transitions. At implantation, the donor heart manifested metronome-like chronotropic behavior (PD2 approximately 1.0). At 11-100 days, dimensional complexity of HRV reached a peak (PD2 approximately 2.0) associated with resurgence in the high-frequency component (0.15-0.5 Hz) of the power spectral density. Subsequent dimensional loss to PD2 approximately 1.0 at 20-30 mo after HTX was followed by a progressive near-linear gain in system complexity, reaching PD2 approximately 3.0 7-10 yr after HTX. The "dynamic reorganization" in the allograft rhythm-generating system, seen in the first 100 days, is a manifestation of the adaptive capacity of intrinsic control mechanisms. The loss of HRV 2 yr after HTX implies a withdrawal of intrinsic autonomic control and/or development of an entrained dynamic pattern characteristic of extrinsic sympathetic input. The subsequent long-term progressive rise in dimensional complexity of HRV can be attributed to the restoration of a functional order patterning parasympathetic control. The recognition that the decentralized heart can restitute the multidimensional state space of HR generator dynamics independent of external autonomic signaling may provide a new perspective on principles that constitute homeodynamic regulation.

  13. Equivalent Dynamic Stiffness Mapping technique for identifying nonlinear structural elements from frequency response functions

    Science.gov (United States)

    Wang, X.; Zheng, G. T.

    2016-02-01

    A simple and general Equivalent Dynamic Stiffness Mapping technique is proposed for identifying the parameters or the mathematical model of a nonlinear structural element with steady-state primary harmonic frequency response functions (FRFs). The Equivalent Dynamic Stiffness is defined as the complex ratio between the internal force and the displacement response of unknown element. Obtained with the test data of responses' frequencies and amplitudes, the real and imaginary part of Equivalent Dynamic Stiffness are plotted as discrete points in a three dimensional space over the displacement amplitude and the frequency, which are called the real and the imaginary Equivalent Dynamic Stiffness map, respectively. These points will form a repeatable surface as the Equivalent Dynamic stiffness is only a function of the corresponding data as derived in the paper. The mathematical model of the unknown element can then be obtained by surface-fitting these points with special functions selected by priori knowledge of the nonlinear type or with ordinary polynomials if the type of nonlinearity is not pre-known. An important merit of this technique is its capability of dealing with strong nonlinearities owning complicated frequency response behaviors such as jumps and breaks in resonance curves. In addition, this technique could also greatly simplify the test procedure. Besides there is no need to pre-identify the underlying linear parameters, the method uses the measured data of excitation forces and responses without requiring a strict control of the excitation force during the test. The proposed technique is demonstrated and validated with four classical single-degree-of-freedom (SDOF) numerical examples and one experimental example. An application of this technique for identification of nonlinearity from multiple-degree-of-freedom (MDOF) systems is also illustrated.

  14. Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia

    Directory of Open Access Journals (Sweden)

    E. Damaraju

    2014-01-01

    Full Text Available Schizophrenia is a psychotic disorder characterized by functional dysconnectivity or abnormal integration between distant brain regions. Recent functional imaging studies have implicated large-scale thalamo-cortical connectivity as being disrupted in patients. However, observed connectivity differences in schizophrenia have been inconsistent between studies, with reports of hyperconnectivity and hypoconnectivity between the same brain regions. Using resting state eyes-closed functional imaging and independent component analysis on a multi-site data that included 151 schizophrenia patients and 163 age- and gender matched healthy controls, we decomposed the functional brain data into 100 components and identified 47 as functionally relevant intrinsic connectivity networks. We subsequently evaluated group differences in functional network connectivity, both in a static sense, computed as the pairwise Pearson correlations between the full network time courses (5.4 minutes in length, and a dynamic sense, computed using sliding windows (44 s in length and k-means clustering to characterize five discrete functional connectivity states. Static connectivity analysis revealed that compared to healthy controls, patients show significantly stronger connectivity, i.e., hyperconnectivity, between the thalamus and sensory networks (auditory, motor and visual, as well as reduced connectivity (hypoconnectivity between sensory networks from all modalities. Dynamic analysis suggests that (1, on average, schizophrenia patients spend much less time than healthy controls in states typified by strong, large-scale connectivity, and (2, that abnormal connectivity patterns are more pronounced during these connectivity states. In particular, states exhibiting cortical–subcortical antagonism (anti-correlations and strong positive connectivity between sensory networks are those that show the group differences of thalamic hyperconnectivity and sensory hypoconnectivity

  15. Neuroethics vs neurophysiologically and neuropsychologically uninformed influences in child-rearing, education, emerging hunter-gatherers, and artificial intelligence models of the brain.

    Science.gov (United States)

    Pontius, A A

    1993-04-01

    Potentially negative long-term consequences in four areas are emphasized, if specific neuromaturational, neurophysiological, and neuropsychological facts within a neurodevelopmental and ecological context are neglected in normal functional levels of child development and maturational lag of the frontal lobe system in "Attention Deficit Disorder," in education (reading/writing and arithmetic), in assessment of cognitive functioning in hunter-gatherer populations, specifically modified in the service of their survival, and in constructing computer models of the brain, neglecting consciousness and intentionality as criticized recently by Searle.

  16. Dynamic network participation of functional connectivity hubs assessed by resting-state fMRI

    Science.gov (United States)

    Schaefer, Alexander; Margulies, Daniel S.; Lohmann, Gabriele; Gorgolewski, Krzysztof J.; Smallwood, Jonathan; Kiebel, Stefan J.; Villringer, Arno

    2014-01-01

    Network studies of large-scale brain connectivity have demonstrated that highly connected areas, or “hubs,” are a key feature of human functional and structural brain organization. We use resting-state functional MRI data and connectivity clustering to identify multi-network hubs and show that while hubs can belong to multiple networks their degree of integration into these different networks varies dynamically over time. The extent of the network variation was related to the connectedness of the hub. In addition, we found that these network dynamics were inversely related to positive self-generated thoughts reported by individuals and were further decreased with older age. Moreover, the left caudate varied its degree of participation between a default mode subnetwork and a limbic network. This variation was predictive of individual differences in the reports of past-related thoughts. These results support an association between ongoing thought processes and network dynamics and offer a new approach to investigate the brain dynamics underlying mental experience. PMID:24860458

  17. Microscopic derivation of particle-based coarse-grained dynamics: Exact expression for memory function

    Science.gov (United States)

    Izvekov, Sergei

    2017-03-01

    We consider the generalized Langevin equations of motion describing exactly the particle-based coarse-grained dynamics in the classical microscopic ensemble that were derived recently within the Mori-Zwanzig formalism based on new projection operators [S. Izvekov, J. Chem. Phys. 138(13), 134106 (2013)]. The fundamental difference between the new family of projection operators and the standard Zwanzig projection operator used in the past to derive the coarse-grained equations of motion is that the new operators average out the explicit irrelevant trajectories leading to the possibility of solving the projected dynamics exactly. We clarify the definition of the projection operators and revisit the formalism to compute the projected dynamics exactly for the microscopic system in equilibrium. The resulting expression for the projected force is in the form of a "generalized additive fluctuating force" describing the departure of the generalized microscopic force associated with the coarse-grained coordinate from its projection. Starting with this key expression, we formulate a new exact formula for the memory function in terms of microscopic and coarse-grained conservative forces. We conclude by studying two independent limiting cases of practical importance: the Markov limit (vanishing correlations of projected force) and the limit of weak dependence of the memory function on the particle momenta. We present computationally affordable expressions which can be efficiently evaluated from standard molecular dynamics simulations.

  18. Dynamics of two-phase interfaces and surface tensions: A density-functional theory perspective

    Science.gov (United States)

    Yatsyshin, Petr; Sibley, David N.; Duran-Olivencia, Miguel A.; Kalliadasis, Serafim

    2016-11-01

    Classical density functional theory (DFT) is a statistical mechanical framework for the description of fluids at the nanoscale, where the inhomogeneity of the fluid structure needs to be carefully accounted for. By expressing the grand free-energy of the fluid as a functional of the one-body density, DFT offers a theoretically consistent and computationally accessible way to obtain two-phase interfaces and respective interfacial tensions in a ternary solid-liquid-gas system. The dynamic version of DFT (DDFT) can be rigorously derived from the Smoluchowsky picture of the dynamics of colloidal particles in a solvent. It is generally agreed that DDFT can capture the diffusion-driven evolution of many soft-matter systems. In this context, we use DDFT to investigate the dynamic behaviour of two-phase interfaces in both equilibrium and dynamic wetting and discuss the possibility of defining a time-dependent surface tension, which still remains in debate. We acknowledge financial support from the European Research Council via Advanced Grant No. 247031 and from the Engineering and Physical Sciences Research Council of the UK via Grants No. EP/L027186 and EP/L020564.

  19. Fast dynamics of cortical functional and effective connectivity during word reading.

    Directory of Open Access Journals (Sweden)

    Nicolas Bedo

    Full Text Available We describe for the first time the fast dynamics of functional and effective (causal connectivity during word reading. Independent component analysis of high-density EEG recorded during a word reading task recovered multiple sources of electrical brain activity previously identified by fMRI and PET. Results confirmed the ventral occipito-temporal cortex (vOT as a central hub for word reading, showing a progression of theta-band (3-7 Hz and gamma-band (30-50 Hz phase synchronization and directed theta-band and gamma-band information flow with both early visual areas and high-level language-processing areas. These results highlight the interplay between local and long-distance neural dynamics involved at each stage of the reading process. Moreover, these measures of functional and causal connectivity dynamics may be used as a benchmark for comparison with clinical populations (e.g. individuals with developmental dyslexia, such that disturbances in connectivity dynamics may provide insight as to underlying neurological problems with language processing, and their potential remediation.

  20. Antiperiodic dynamical 6-vertex model by separation of variables II: Functional equations and form factors

    CERN Document Server

    Levy-Bencheton, D; Terras, V

    2015-01-01

    We pursue our study of the antiperiodic dynamical 6-vertex model using Sklyanin's separation of variables approach, allowing in the model new possible global shifts of the dynamical parameter. We show in particular that the spectrum and eigenstates of the antiperiodic transfer matrix are completely characterized by a system of discrete equations. We prove the existence of different reformulations of this characterization in terms of functional equations of Baxter's type. We notably consider the homogeneous functional $T$-$Q$ equation which is the continuous analog of the aforementioned discrete system and show, in the case of a model with an even number of sites, that the complete spectrum and eigenstates of the antiperiodic transfer matrix can equivalently be described in terms of a particular class of its $Q$-solutions, hence leading to a complete system of Bethe equations. Finally, we compute the form factors of local operators for which we obtain determinant representations in finite volume.

  1. The transfer function method for gear system dynamics applied to conventional and minimum excitation gearing designs

    Science.gov (United States)

    Mark, W. D.

    1982-01-01

    A transfer function method for predicting the dynamic responses of gear systems with more than one gear mesh is developed and applied to the NASA Lewis four-square gear fatigue test apparatus. Methods for computing bearing-support force spectra and temporal histories of the total force transmitted by a gear mesh, the force transmitted by a single pair of teeth, and the maximum root stress in a single tooth are developed. Dynamic effects arising from other gear meshes in the system are included. A profile modification design method to minimize the vibration excitation arising from a pair of meshing gears is reviewed and extended. Families of tooth loading functions required for such designs are developed and examined for potential excitation of individual tooth vibrations. The profile modification design method is applied to a pair of test gears.

  2. Chaotic dynamics of size dependent Timoshenko beams with functionally graded properties along their thickness

    Science.gov (United States)

    Awrejcewicz, J.; Krysko, A. V.; Pavlov, S. P.; Zhigalov, M. V.; Krysko, V. A.

    2017-09-01

    Chaotic dynamics of microbeams made of functionally graded materials (FGMs) is investigated in this paper based on the modified couple stress theory and von Kármán geometric nonlinearity. We assume that the beam properties are graded along the thickness direction. The influence of size-dependent and functionally graded coefficients on the vibration characteristics, scenarios of transition from regular to chaotic vibrations as well as a series of static problems with an emphasis put on the load-deflection behavior are studied. Our theoretical/numerical analysis is supported by methods of nonlinear dynamics and the qualitative theory of differential equations supplemented by Fourier and wavelet spectra, phase portraits, and Lyapunov exponents spectra estimated by different algorithms, including Wolf's, Rosenstein's, Kantz's, and neural networks. We have also detected and numerically validated a general scenario governing transition into chaotic vibrations, which follows the classical Ruelle-Takens-Newhouse scenario for the considered values of the size-dependent and grading parameters.

  3. Extreme value laws for fractal intensity functions in dynamical systems: Minkowski analysis

    Science.gov (United States)

    Mantica, Giorgio; Perotti, Luca

    2016-09-01

    Typically, in the dynamical theory of extremal events, the function that gauges the intensity of a phenomenon is assumed to be convex and maximal, or singular, at a single, or at most a finite collection of points in phase-space. In this paper we generalize this situation to fractal landscapes, i.e. intensity functions characterized by an uncountable set of singularities, located on a Cantor set. This reveals the dynamical rôle of classical quantities like the Minkowski dimension and content, whose definition we extend to account for singular continuous invariant measures. We also introduce the concept of extremely rare event, quantified by non-standard Minkowski constants and we study its consequences to extreme value statistics. Limit laws are derived from formal calculations and are verified by numerical experiments. Dedicated to the memory of Joseph Ford, on the twentieth anniversary of his departure.

  4. An empirically constructed dynamic electric dipole polarizability function of magnesium and its applications

    CERN Document Server

    Babb, James F

    2015-01-01

    The dynamic electric dipole polarizability function for the magnesium atom is formed by assembling the atomic electric dipole oscillator strength distribution from combinations of theoretical and experimental data for resonance oscillator strengths and for photoionization cross sections of valence and inner shell electrons. Consistency with the oscillator strength (Thomas-Reiche-Kuhn) sum rule requires the adopted principal resonance line oscillator strength to be several percent lower than the values given in two critical tabulations, though the value adopted is consistent with a number of theoretical determinations. The static polarizability is evaluated. Comparing the resulting dynamic polarizability as a function of photon energy with more elaborate calculations reveals the contributions of inner shell electron excitations. The present results are applied to calculate the long-range interactions between two and three magnesium atoms and the interaction between a magnesium atom and a perfectly conducting m...

  5. Star PolyMOCs with Diverse Structures, Dynamics, and Functions by Three-Component Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yufeng; Gu, Yuwei; Keeler, Eric G.; Park, Jiwon V.; Griffin, Robert G.; Johnson, Jeremiah A. (MIT)

    2016-12-05

    We report star polymer metal–organic cage (polyMOC) materials whose structures, mechanical properties, functionalities, and dynamics can all be precisely tailored through a simple three-component assembly strategy. The star polyMOC network is composed of tetra-arm star polymers functionalized with ligands on the chain ends, small molecule ligands, and palladium ions; polyMOCs are formed via metal–ligand coordination and thermal annealing. The ratio of small molecule ligands to polymer-bound ligands determines the connectivity of the MOC junctions and the network structure. The use of large M12L24 MOCs enables great flexibility in tuning this ratio, which provides access to a rich spectrum of material properties including tunable moduli and relaxation dynamics.

  6. Spatially heterogeneous dynamics investigated via a time-dependent four-point density correlation function

    DEFF Research Database (Denmark)

    Lacevic, N.; Starr, F. W.; Schrøder, Thomas

    2003-01-01

    two-point time-dependent density correlation functions, while providing information about the transient "caging" of particles on cooling, are unable to provide sufficiently detailed information about correlated motion and dynamical heterogeneity. Here, we study a four-point, time-dependent density...... simulations of a binary Lennard-Jones mixture approaching the mode coupling temperature from above. We find that the correlations between particles measured by g4(r,t) and S4(q,t) become increasingly pronounced on cooling. The corresponding dynamical correlation length xi4(t) extracted from the small......-q behavior of S4(q,t) provides an estimate of the range of correlated particle motion. We find that xi4(t) has a maximum as a function of time t, and that the value of the maximum of xi4(t) increases steadily from less than one particle diameter to a value exceeding nine particle diameters in the temperature...

  7. Star PolyMOCs with Diverse Structures, Dynamics, and Functions by Three-Component Assembly.

    Science.gov (United States)

    Wang, Yufeng; Gu, Yuwei; Keeler, Eric G; Park, Jiwon V; Griffin, Robert G; Johnson, Jeremiah A

    2017-01-02

    We report star polymer metal-organic cage (polyMOC) materials whose structures, mechanical properties, functionalities, and dynamics can all be precisely tailored through a simple three-component assembly strategy. The star polyMOC network is composed of tetra-arm star polymers functionalized with ligands on the chain ends, small molecule ligands, and palladium ions; polyMOCs are formed via metal-ligand coordination and thermal annealing. The ratio of small molecule ligands to polymer-bound ligands determines the connectivity of the MOC junctions and the network structure. The use of large M12 L24 MOCs enables great flexibility in tuning this ratio, which provides access to a rich spectrum of material properties including tunable moduli and relaxation dynamics.

  8. Methodology to Support Dynamic Function Allocation Policies Between Humans and Flight Deck Automation

    Science.gov (United States)

    Johnson, Eric N.

    2012-01-01

    Function allocation assigns work functions to all agents in a team, both human and automation. Efforts to guide function allocation systematically have been studied in many fields such as engineering, human factors, team and organization design, management science, cognitive systems engineering. Each field focuses on certain aspects of function allocation, but not all; thus, an independent discussion of each does not address all necessary aspects of function allocation. Four distinctive perspectives have emerged from this comprehensive review of literature on those fields: the technology-centered, human-centered, team-oriented, and work-oriented perspectives. Each perspective focuses on different aspects of function allocation: capabilities and characteristics of agents (automation or human), structure and strategy of a team, and work structure and environment. This report offers eight issues with function allocation that can be used to assess the extent to which each of issues exist on a given function allocation. A modeling framework using formal models and simulation was developed to model work as described by the environment, agents, their inherent dynamics, and relationships among them. Finally, to validate the framework and metrics, a case study modeled four different function allocations between a pilot and flight deck automation during the arrival and approach phases of flight.

  9. Balancing Automatic-Controlled Behaviors and Emotional-Salience States: A Dynamic Executive Functioning Hypothesis

    Science.gov (United States)

    Kluwe-Schiavon, Bruno; Viola, Thiago W.; Sanvicente-Vieira, Breno; Malloy-Diniz, Leandro F.; Grassi-Oliveira, Rodrigo

    2017-01-01

    Recently, there has been growing interest in understanding how executive functions are conceptualized in psychopathology. Since several models have been proposed, the major issue lies within the definition of executive functioning itself. Theoretical discussions have emerged, narrowing the boundaries between “hot” and “cold” executive functions or between self-regulation and cognitive control. Nevertheless, the definition of executive functions is far from a consensual proposition and it has been suggested that these models might be outdated. Current efforts indicate that human behavior and cognition are by-products of many brain systems operating and interacting at different levels, and therefore, it is very simplistic to assume a dualistic perspective of information processing. Based upon an adaptive perspective, we discuss how executive functions could emerge from the ability to solve immediate problems and to generalize successful strategies, as well as from the ability to synthesize and to classify environmental information in order to predict context and future. We present an executive functioning perspective that emerges from the dynamic balance between automatic-controlled behaviors and an emotional-salience state. According to our perspective, the adaptive role of executive functioning is to automatize efficient solutions simultaneously with cognitive demand, enabling individuals to engage such processes with increasingly complex problems. Understanding executive functioning as a mediator of stress and cognitive engagement not only fosters discussions concerning individual differences, but also offers an important paradigm to understand executive functioning as a continuum process rather than a categorical and multicomponent structure. PMID:28154541

  10. Dynamic circadian protein-protein interaction networks predict temporal organization of cellular functions.

    Directory of Open Access Journals (Sweden)

    Thomas Wallach

    2013-03-01

    Full Text Available Essentially all biological processes depend on protein-protein interactions (PPIs. Timing of such interactions is crucial for regulatory function. Although circadian (~24-hour clocks constitute fundamental cellular timing mechanisms regulating important physiological processes, PPI dynamics on this timescale are largely unknown. Here, we identified 109 novel PPIs among circadian clock proteins via a yeast-two-hybrid approach. Among them, the interaction of protein phosphatase 1 and CLOCK/BMAL1 was found to result in BMAL1 destabilization. We constructed a dynamic circadian PPI network predicting the PPI timing using circadian expression data. Systematic circadian phenotyping (RNAi and overexpression suggests a crucial role for components involved in dynamic interactions. Systems analysis of a global dynamic network in liver revealed that interacting proteins are expressed at similar times likely to restrict regulatory interactions to specific phases. Moreover, we predict that circadian PPIs dynamically connect many important cellular processes (signal transduction, cell cycle, etc. contributing to temporal organization of cellular physiology in an unprecedented manner.

  11. Analytic Transfer Functions for the Dynamics & Control of Flexible Rotating Spacecraft Performing Large Angle Maneuvers

    Science.gov (United States)

    Elgohary, Tarek A.; Turner, James D.; Junkins, John L.

    2015-06-01

    A symmetric flexible rotating spacecraft can be modeled as a distributed parameter system of a rigid hub attached to two flexible appendages with tip masses. First, Hamilton's extended principle is utilized to establish a general treatment for deriving the dynamics of multi-body dynamical systems to establish a hybrid system of integro-partial differential equations that model the evolution of the system in space and time. A Generalized State Space (GSS) system of equations is constructed in the frequency domain to obtain analytic transfer functions for the rotating spacecraft. This model does not include spatial discretization. The frequency response of the generally modeled spacecraft and a special case with no tip masses are presented. Numerical results for the system frequency response obtained from the analytic transfer functions are presented and compared against the classical assumed modes numerical method with two choices of admissible functions. The truncation-error-free analytic results are used to validate the numerical approximations and to agree well with the classical widely used finite dimensional numerical solutions. Fundamentally, we show that the rigorous transfer function, without introduction of spatial discretization, can be directly used in control law design with a guarantee of Lyapunov stable closed loop dynamics. The frequency response of the system is used in a classical control problem where the Lyapunov stable controller is derived and tested for gain selection. The correlation between the controller design in the frequency domain utilizing the analytic transfer functions and the system response is analyzed and verified. The derived analytic transfer functions provide a powerful tool to test various control schemes in the frequency domain and a validation platform for existing numerical methods for distributed parameters models. The same platform has been used to obtain the frequency response of more complex beam models following

  12. Structural connectivity in schizophrenia and its impact on the dynamics of spontaneous functional networks

    Science.gov (United States)

    Cabral, Joana; Fernandes, Henrique M.; Van Hartevelt, Tim J.; James, Anthony C.; Kringelbach, Morten L.; Deco, Gustavo

    2013-12-01

    The neuropathology of schizophrenia remains unclear. Some insight has come from modern neuroimaging techniques, which offer an unparalleled opportunity to explore in vivo the structure and function of the brain. Using functional magnetic resonance imaging, it has been found that the large-scale resting-state functional connectivity (rsFC) in schizophrenia — measured as the temporal correlations of the blood-oxygen-level-dependent (BOLD) signal — exhibit altered network topology, with lower small-world index. The origin of these rsFC alterations and link with the underlying structural connectivity remain unclear. In this work, we used a computational model of spontaneous large-scale brain activity to explore the role of the structural connectivity in the large-scale dynamics of the brain in health and schizophrenia. The structural connectomes from 15 adolescent patients with early-onset schizophrenia and 15 age- and gender-matched controls were built from diffusion tensor imaging data to detect the white matter tracts between 90 brain areas. Brain areas, simulated using a reduced dynamic mean-field model, receive excitatory input from other areas in proportion to the number of fibre tracts between them. The simulated mean field activity was transformed into BOLD signal, and the properties of the simulated functional networks were analyzed. Our results suggest that the functional alterations observed in schizophrenia are not directly linked to alterations in the structural topology. Instead, subtly randomized and less small-world functional networks appear when the brain operates with lower global coupling, which shifts the dynamics from the optimal healthy regime.

  13. Structural connectivity in schizophrenia and its impact on the dynamics of spontaneous functional networks

    Energy Technology Data Exchange (ETDEWEB)

    Cabral, Joana [Theoretical and Computational Neuroscience Group, Center of Brain and Cognition, Universitat Pompeu Fabra, Barcelona 08018 (Spain); Department of Psychiatry, University of Oxford, Oxford OX3 7JX (United Kingdom); Fernandes, Henrique M.; Van Hartevelt, Tim J.; Kringelbach, Morten L. [Department of Psychiatry, University of Oxford, Oxford OX3 7JX (United Kingdom); Center of Functionally Integrative Neuroscience (CFIN), Aarhus University, Aarhus (Denmark); James, Anthony C. [Department of Psychiatry, University of Oxford, Oxford OX3 7JX (United Kingdom); Highfield Unit, Warneford Hospital, Oxford OX3 7JX (United Kingdom); Deco, Gustavo [Theoretical and Computational Neuroscience Group, Center of Brain and Cognition, Universitat Pompeu Fabra, Barcelona 08018 (Spain); Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010 (Spain)

    2013-12-15

    The neuropathology of schizophrenia remains unclear. Some insight has come from modern neuroimaging techniques, which offer an unparalleled opportunity to explore in vivo the structure and function of the brain. Using functional magnetic resonance imaging, it has been found that the large-scale resting-state functional connectivity (rsFC) in schizophrenia — measured as the temporal correlations of the blood-oxygen-level-dependent (BOLD) signal — exhibit altered network topology, with lower small-world index. The origin of these rsFC alterations and link with the underlying structural connectivity remain unclear. In this work, we used a computational model of spontaneous large-scale brain activity to explore the role of the structural connectivity in the large-scale dynamics of the brain in health and schizophrenia. The structural connectomes from 15 adolescent patients with early-onset schizophrenia and 15 age- and gender-matched controls were built from diffusion tensor imaging data to detect the white matter tracts between 90 brain areas. Brain areas, simulated using a reduced dynamic mean-field model, receive excitatory input from other areas in proportion to the number of fibre tracts between them. The simulated mean field activity was transformed into BOLD signal, and the properties of the simulated functional networks were analyzed. Our results suggest that the functional alterations observed in schizophrenia are not directly linked to alterations in the structural topology. Instead, subtly randomized and less small-world functional networks appear when the brain operates with lower global coupling, which shifts the dynamics from the optimal healthy regime.

  14. Complex oscillatory redox dynamics with signaling potential at the edge between normal and pathological mitochondrial function.

    Science.gov (United States)

    Kembro, Jackelyn M; Cortassa, Sonia; Aon, Miguel A

    2014-01-01

    The time-keeping properties bestowed by oscillatory behavior on functional rhythms represent an evolutionarily conserved trait in living systems. Mitochondrial networks function as timekeepers maximizing energetic output while tuning reactive oxygen species (ROS) within physiological levels compatible with signaling. In this work, we explore the potential for timekeeping functions dependent on mitochondrial dynamics with the validated two-compartment mitochondrial energetic-redox (ME-R) computational model, that takes into account (a) four main redox couples [NADH, NADPH, GSH, Trx(SH)2], (b) scavenging systems (glutathione, thioredoxin, SOD, catalase) distributed in matrix and extra-matrix compartments, and (c) transport of ROS species between them. Herein, we describe that the ME-R model can exhibit highly complex oscillatory dynamics in energetic/redox variables and ROS species, consisting of at least five frequencies with modulated amplitudes and period according to power spectral analysis. By stability analysis we describe that the extent of steady state-as against complex oscillatory behavior-was dependent upon the abundance of Mn and Cu, Zn SODs, and their interplay with ROS production in the respiratory chain. Large parametric regions corresponding to oscillatory dynamics of increasingly complex waveforms were obtained at low Cu, Zn SOD concentration as a function of Mn SOD. This oscillatory domain was greatly reduced at higher levels of Cu, Zn SOD. Interestingly, the realm of complex oscillations was located at the edge between normal and pathological mitochondrial energetic behavior, and was characterized by oxidative stress. We conclude that complex oscillatory dynamics could represent a frequency- and amplitude-modulated H2O2 signaling mechanism that arises under intense oxidative stress. By modulating SOD, cells could have evolved an adaptive compromise between relative constancy and the flexibility required under stressful redox/energetic conditions.

  15. A dynamic method for the investigation of induced state metabolic capacities as a function of temperature.

    Science.gov (United States)

    Sagmeister, Patrick; Langemann, Timo; Wechselberger, Patrick; Meitz, Andrea; Herwig, Christoph

    2013-10-15

    Science-based recombinant bioprocess designs as well as the design of statistical experimental plans for process optimization (Design of Experiments, DoE) demand information on physiological bioprocess boundaries, such as the onset of acetate production, adaptation times, mixed feed metabolic capabilities or induced state maximum metabolic rates as at the desired cultivation temperature. Dynamic methods provide experimental alternatives to determine this information in a fast and efficient way. Information on maximum metabolic capabilities as a function of temperature is needed in case a reduced cultivation temperature is desirable (e.g. to avoid inclusion body formation) and an appropriate feeding profile is to be designed. Here, we present a novel dynamic method for the determination of the specific growth rate as a function of temperature for induced recombinant bacterial bioprocesses. The method is based on the control of the residual substrate concentration at non-limiting conditions with dynamic changes in cultivation temperature. The presented method was automated in respect to information extraction and closed loop control by means of in-line Fourier Transformation Infrared Spectroscopy (FTIR) residual substrate measurements and on-line first principle rate-based soft-sensors. Maximum induced state metabolic capabilities as a function of temperature were successfully extracted for a recombinant E. coli C41 fed-batch bioprocess without the need for sampling in a time frame of 20 hours. The presented method was concluded to allow the fast and automated extraction of maximum metabolic capabilities (specific growth rate) as a function of temperature. This complements the dynamic toolset necessary for science-based recombinant bacterial bioprocess design and DoE design.

  16. Dynamics of a three species food chain model with Crowley-Martin type functional response

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyay, Ranjit Kumar [Department of Applied Mathematics, Indian School of Mines University, Dhanbad, Jharkhand 826 004 (India)], E-mail: ranjit_ism@yahoo.com; Naji, Raid Kamel [Department of Mathematics, College of Science, University of Baghdad (Iraq)], E-mail: rknaji@gmail.com

    2009-11-15

    In this paper, a three species food chain model, consisting of a hybrid type of prey-dependent and predator-dependent functional responses, is investigated analytically as well as numerically. The local and global stability analysis is carried out. The persistence conditions are established. Bifurcation diagrams are obtained for biologically feasible parameters. The results show that the system exhibits rich complexity features such as stable, periodic and chaotic dynamics.

  17. Facts and philosophy in neurophysiology. The 200th anniversary of Johannes Müller (1801-1858).

    Science.gov (United States)

    Lohff, B

    2001-12-01

    Johannes Müller was the founder of the first school of physiology in Germany. His anatomical, morphological and physiological research as well as his epistemological view of scientific medicine opened the way to a deeper understanding of the structure and the function of the organism. With important discoveries like the law of sense energy, the reflex movement and the definition of different organic stimuli, he enriched the knowledge of neuroanatomy, neurophysiology and sensory physiology and smoothed the way to an experimental physiology. All his famous students like Hermann von Helmholtz, Emil Du Bois-Reymond, Ernst Brücke, Jakob Henle, Robert Remak, Rudolf Virchow and Ernst Haeckel solved many crucial research problems, which Müller identified and pointed out to them as open questions, due to the insufficient methods of investigation. Müller's research method, epistemological view of biological sciences, and his open-minded personal style encouraged the development of new methods adapted to particular problems.

  18. Inferring the physical connectivity of complex networks from their functional dynamics

    Directory of Open Access Journals (Sweden)

    Holm Liisa

    2010-05-01

    Full Text Available Abstract Background Biological networks, such as protein-protein interactions, metabolic, signalling, transcription-regulatory networks and neural synapses, are representations of large-scale dynamic systems. The relationship between the network structure and functions remains one of the central problems in current multidisciplinary research. Significant progress has been made toward understanding the implication of topological features for the network dynamics and functions, especially in biological networks. Given observations of a network system's behaviours or measurements of its functional dynamics, what can we conclude of the details of physical connectivity of the underlying structure? Results We modelled the network system by employing a scale-free network of coupled phase oscillators. Pairwise phase coherence (PPC was calculated for all the pairs of oscillators to present functional dynamics induced by the system. At the regime of global incoherence, we observed a Significant pairwise synchronization only between two nodes that are physically connected. Right after the onset of global synchronization, disconnected nodes begin to oscillate in a correlated fashion and the PPC of two nodes, either connected or disconnected, depends on their degrees. Based on the observation of PPCs, we built a weighted network of synchronization (WNS, an all-to-all functionally connected network where each link is weighted by the PPC of two oscillators at the ends of the link. In the regime of strong coupling, we observed a Significant similarity in the organization of WNSs induced by systems sharing the same substrate network but different configurations of initial phases and intrinsic frequencies of oscillators. We reconstruct physical network from the WNS by choosing the links whose weights are higher than a given threshold. We observed an optimal reconstruction just before the onset of global synchronization. Finally, we correlated the topology of the

  19. Dynamic function MR of the cervical vertebral column. Dynamische Funktions-MRT der Halswirbelsaeule

    Energy Technology Data Exchange (ETDEWEB)

    Naegele, M.; Woell, B.; Reiser, M. (Radiologische Universitaetsklinik, Bonn (Germany)); Koch, W. (Orthopaedische Universitaetsklinik, Bonn (Germany)); Kaden, B. (Neurochirurgische Universitaetsklinik, Bonn (Germany))

    1992-09-01

    To obtain functional studies of the cervical spine, a device has been developed which allows MRI examinations to be carried out in five different degrees of flexion. T[sub 1] and T[sub 2][sup *] weighted FFE sequences were used. Dynamic functional MRI was performed on 5 normals and 31 patients (5 disc herniation, 4 whiplash injuries, 6 spinal canal stenoses, 14 laminectomies and spinal fusions, 2 rheumatoid arthritis). The relationship of the spinal cord to the bony and ligamentous components in different degrees of flexion was particularly well shown in whiplash injury, spinal stenosis and postoperative situations. (orig.).

  20. Global Analysis of a Virus Dynamics Model with General Incidence Function and Cure Rate

    Directory of Open Access Journals (Sweden)

    Yu Yang

    2014-01-01

    Full Text Available A virus dynamics model with logistic function, general incidence function, and cure rate is considered. By carrying out mathematical analysis, we show that the infection-free equilibrium is globally asymptotically stable if the basic reproduction number ℛ0≤1. If ℛ0>1, then the infection equilibrium is globally asymptotically stable under some assumptions. Furthermore, we also obtain the conditions for which the model exists an orbitally asymptotically stable periodic solution. Examples are provided to support our analytical conclusions.