WorldWideScience

Sample records for dynamic network approach

  1. A Supervised Approach to Windowing Detection on Dynamic Networks

    Science.gov (United States)

    2017-07-01

    A supervised approach to windowing detection on dynamic networks Benjamin Fish University of Illinois at Chicago 1200 W. Harrison St. Chicago...For any stream of time-stamped edges that form a dynamic network, a necessary and important choice is the aggregation granularity that an analyst uses...to bin the data at. While this choice is often picked by hand, or left up to the tech- nology that is collecting the data, the choice can make a big

  2. New Approach to Cluster Synchronization in Complex Dynamical Networks

    Institute of Scientific and Technical Information of China (English)

    LU Xin-Biao; QIN Bu-Zhi; LU Xin-Yu

    2009-01-01

    In this paper, a distributed control strategy is proposed to make a complex dynamical network achieve cluster synchronization, which means that nodes in the same group achieve the same synchronization state, while nodes in different groups achieve different synchronization states. The local and global stability of the cluster synchronization state are analyzed. Moreover, simulation results verify the effectiveness of the new approach

  3. A mathematical programming approach for sequential clustering of dynamic networks

    Science.gov (United States)

    Silva, Jonathan C.; Bennett, Laura; Papageorgiou, Lazaros G.; Tsoka, Sophia

    2016-02-01

    A common analysis performed on dynamic networks is community structure detection, a challenging problem that aims to track the temporal evolution of network modules. An emerging area in this field is evolutionary clustering, where the community structure of a network snapshot is identified by taking into account both its current state as well as previous time points. Based on this concept, we have developed a mixed integer non-linear programming (MINLP) model, SeqMod, that sequentially clusters each snapshot of a dynamic network. The modularity metric is used to determine the quality of community structure of the current snapshot and the historical cost is accounted for by optimising the number of node pairs co-clustered at the previous time point that remain so in the current snapshot partition. Our method is tested on social networks of interactions among high school students, college students and members of the Brazilian Congress. We show that, for an adequate parameter setting, our algorithm detects the classes that these students belong more accurately than partitioning each time step individually or by partitioning the aggregated snapshots. Our method also detects drastic discontinuities in interaction patterns across network snapshots. Finally, we present comparative results with similar community detection methods for time-dependent networks from the literature. Overall, we illustrate the applicability of mathematical programming as a flexible, adaptable and systematic approach for these community detection problems. Contribution to the Topical Issue "Temporal Network Theory and Applications", edited by Petter Holme.

  4. Scalable Approaches to Control Network Dynamics: Prospects for City Networks

    Science.gov (United States)

    Motter, Adilson E.; Gray, Kimberly A.

    2014-07-01

    A city is a complex, emergent system and as such can be conveniently represented as a network of interacting components. A fundamental aspect of networks is that the systemic properties can depend as much on the interactions as they depend on the properties of the individual components themselves. Another fundamental aspect is that changes to one component can affect other components, in a process that may cause the entire or a substantial part of the system to change behavior. Over the past 2 decades, much research has been done on the modeling of large and complex networks involved in communication and transportation, disease propagation, and supply chains, as well as emergent phenomena, robustness and optimization in such systems...

  5. A DYNAMIC APPROACH FOR RATE ADAPTATION IN MOBILE ADHOC NETWORKS

    Directory of Open Access Journals (Sweden)

    Suganya Subramaniam

    2013-01-01

    Full Text Available A Mobile Ad hoc Network (MANET is a collection of mobile nodes with no fixed infrastructure. The absence of central authorization facility in dynamic and distributed environment affects the optimal utilization of resources like, throughput, power and bandwidth. Rate adaptation is the key technique to optimize the resource throughput. Some recently proposed rate adaptations use Request to Send/Clear to Send (RTS/CTS to suppress the collision effect by differentiating collisions from channel errors. This study presents a methodology to detect the misbehavior of nodes in MANET and proposed the new dynamic algorithm for rate adaptation which in turn can improve the throughput. The proposed approach is implemented in the distributed stipulating architecture with core and access routers. This method does not require additional probing overhead incurred by RTS/CTS exchanges and may be practically deployed without change in firmware. The collision and channel error occurrence will be detected by core router and intimated to the access router to choose alternate route and retain the current rate for transmission. The extensive simulation results demonstrate the effectiveness of proposed method by comparing with existing approaches.

  6. Information processing by biochemical networks: a dynamic approach.

    Science.gov (United States)

    Bowsher, Clive G

    2011-02-06

    Understanding how information is encoded and transferred by biochemical networks is of fundamental importance in cellular and systems biology. This requires analysis of the relationships between the stochastic trajectories of the constituent molecular (or submolecular) species that comprise the network. We describe how to identify conditional independences between the trajectories or time courses of groups of species. These are robust network properties that provide important insight into how information is processed. An entire network can then be decomposed exactly into modules on informational grounds. In the context of signalling networks with multiple inputs, the approach identifies the routes and species involved in sequential information processing between input and output modules. An algorithm is developed which allows automated identification of decompositions for large networks and visualization using a tree that encodes the conditional independences. Only stoichiometric information is used and neither simulations nor knowledge of rate parameters are required. A bespoke version of the algorithm for signalling networks identifies the routes of sequential encoding between inputs and outputs, visualized as paths in the tree. Application to the toll-like receptor signalling network reveals that inputs can be informative in ways unanticipated by steady-state analyses, that the information processing structure is not well described as a bow tie, and that encoding for the interferon response is unusually sparse compared with other outputs of this innate immune system.

  7. Geometry of Dynamic Large Networks: A Scaling and Renormalization Group Approach

    Science.gov (United States)

    2013-12-11

    Geometry of Dynamic Large Networks - A Scaling and Renormalization Group Approach IRAJ SANIEE LUCENT TECHNOLOGIES INC 12/11/2013 Final Report...Z39.18 Final Performance Report Grant Title: Geometry of Dynamic Large Networks: A Scaling and Renormalization Group Approach Grant Award Number...test itself may be scaled to much larger graphs than those we examined via renormalization group methodology. Using well-understood mechanisms, we

  8. A Service-Oriented Approach for Dynamic Chaining of Virtual Network Functions over Multi-Provider Software-Defined Networks

    Directory of Open Access Journals (Sweden)

    Barbara Martini

    2016-06-01

    Full Text Available Emerging technologies such as Software-Defined Networks (SDN and Network Function Virtualization (NFV promise to address cost reduction and flexibility in network operation while enabling innovative network service delivery models. However, operational network service delivery solutions still need to be developed that actually exploit these technologies, especially at the multi-provider level. Indeed, the implementation of network functions as software running over a virtualized infrastructure and provisioned on a service basis let one envisage an ecosystem of network services that are dynamically and flexibly assembled by orchestrating Virtual Network Functions even across different provider domains, thereby coping with changeable user and service requirements and context conditions. In this paper we propose an approach that adopts Service-Oriented Architecture (SOA technology-agnostic architectural guidelines in the design of a solution for orchestrating and dynamically chaining Virtual Network Functions. We discuss how SOA, NFV, and SDN may complement each other in realizing dynamic network function chaining through service composition specification, service selection, service delivery, and placement tasks. Then, we describe the architecture of a SOA-inspired NFV orchestrator, which leverages SDN-based network control capabilities to address an effective delivery of elastic chains of Virtual Network Functions. Preliminary results of prototype implementation and testing activities are also presented. The benefits for Network Service Providers are also described that derive from the adaptive network service provisioning in a multi-provider environment through the orchestration of computing and networking services to provide end users with an enhanced service experience.

  9. Associative nature of event participation dynamics: a network theory approach

    CERN Document Server

    Smiljanić, Jelena

    2016-01-01

    Affiliation with various social groups can be a critical factor when it comes to quality of life of every individual, making these groups an essential element of every society. The group dynamics, longevity and effectiveness strongly depend on group's ability to attract new members and keep them engaged in group activities. It was shown that high heterogeneity of scientist's engagement in conference activities of the specific scientific community depends on the balance between the number of previous attendance and non-attendance and is directly related to scientist's association with that community. Here we show that the same holds for leisure groups of Meetup website and further quantify member's association with the group. We examine how structure of personal social networks is evolving with event attendance. Our results show that member's increasing engagement in group activities is primarily associated with the strengthening of already existing ties and increase of bonding social capital. We also show tha...

  10. Associative nature of event participation dynamics: A network theory approach

    Science.gov (United States)

    Smiljanić, Jelena; Mitrović Dankulov, Marija

    2017-01-01

    The affiliation with various social groups can be a critical factor when it comes to quality of life of each individual, making such groups an essential element of every society. The group dynamics, longevity and effectiveness strongly depend on group’s ability to attract new members and keep them engaged in group activities. It was shown that high heterogeneity of scientist’s engagement in conference activities of the specific scientific community depends on the balance between the numbers of previous attendances and non-attendances and is directly related to scientist’s association with that community. Here we show that the same holds for leisure groups of the Meetup website and further quantify individual members’ association with the group. We examine how structure of personal social networks is evolving with the event attendance. Our results show that member’s increasing engagement in the group activities is primarily associated with the strengthening of already existing ties and increase in the bonding social capital. We also show that Meetup social networks mostly grow trough big events, while small events contribute to the groups cohesiveness. PMID:28166305

  11. Trend Motif: A Graph Mining Approach for Analysis of Dynamic Complex Networks

    Energy Technology Data Exchange (ETDEWEB)

    Jin, R; McCallen, S; Almaas, E

    2007-05-28

    Complex networks have been used successfully in scientific disciplines ranging from sociology to microbiology to describe systems of interacting units. Until recently, studies of complex networks have mainly focused on their network topology. However, in many real world applications, the edges and vertices have associated attributes that are frequently represented as vertex or edge weights. Furthermore, these weights are often not static, instead changing with time and forming a time series. Hence, to fully understand the dynamics of the complex network, we have to consider both network topology and related time series data. In this work, we propose a motif mining approach to identify trend motifs for such purposes. Simply stated, a trend motif describes a recurring subgraph where each of its vertices or edges displays similar dynamics over a userdefined period. Given this, each trend motif occurrence can help reveal significant events in a complex system; frequent trend motifs may aid in uncovering dynamic rules of change for the system, and the distribution of trend motifs may characterize the global dynamics of the system. Here, we have developed efficient mining algorithms to extract trend motifs. Our experimental validation using three disparate empirical datasets, ranging from the stock market, world trade, to a protein interaction network, has demonstrated the efficiency and effectiveness of our approach.

  12. An approach of community evolution based on gravitational relationship refactoring in dynamic networks

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Guisheng; Chi, Kuo, E-mail: chik89769@hrbeu.edu.cn; Dong, Yuxin; Dong, Hongbin

    2017-04-25

    In this paper, an approach of community evolution based on gravitational relationship refactoring between the nodes in a dynamic network is proposed, and it can be used to simulate the process of community evolution. A static community detection algorithm and a dynamic community evolution algorithm are included in the approach. At first, communities are initialized by constructing the core nodes chains, the nodes can be iteratively searched and divided into corresponding communities via the static community detection algorithm. For a dynamic network, an evolutionary process is divided into three phases, and behaviors of community evolution can be judged according to the changing situation of the core nodes chain in each community. Experiments show that the proposed approach can achieve accuracy and availability in the synthetic and real world networks. - Highlights: • The proposed approach considers both the static community detection and dynamic community evolution. • The approach of community evolution can identify the whole 6 common evolution events. • The proposed approach can judge the evolutionary events according to the variations of the core nodes chains.

  13. A Neural Network Approach to Fluid Quantity Measurement in Dynamic Environments

    CERN Document Server

    Terzic, Edin; Nagarajah, Romesh; Alamgir, Muhammad

    2012-01-01

    Sloshing causes liquid to fluctuate, making accurate level readings difficult to obtain in dynamic environments. The measurement system described uses a single-tube capacitive sensor to obtain an instantaneous level reading of the fluid surface, thereby accurately determining the fluid quantity in the presence of slosh. A neural network based classification technique has been applied to predict the actual quantity of the fluid contained in a tank under sloshing conditions.   In A neural network approach to fluid quantity measurement in dynamic environments, effects of temperature variations and contamination on the capacitive sensor are discussed, and the authors propose that these effects can also be eliminated with the proposed neural network based classification system. To examine the performance of the classification system, many field trials were carried out on a running vehicle at various tank volume levels that range from 5 L to 50 L. The effectiveness of signal enhancement on the neural network base...

  14. Time-varying networks approach to social dynamics: From individual to collective behavior

    CERN Document Server

    Starnini, Michele

    2016-01-01

    In this thesis we contribute to the understanding of the pivotal role of the temporal dimension in networked social systems, previously neglected and now uncovered by the data revolution recently blossomed in this field. To this aim, we first introduce the time-varying networks formalism and analyze some empirical data of social dynamics, extensively used in the rest of the thesis. We discuss the structural and temporal properties of human contact networks, such as heterogeneity and burstiness of social interactions, and we present a simple model, rooted on social attractiveness, able to reproduce them. We then explore the behavior of dynamical processes running on top of temporal networks, constituted by empirical face-to-face interactions, addressing in detail the fundamental cases of random walks and epidemic spreading. We also develop an analytic approach able to compute the structural and percolation properties of the activity driven model, aimed to describe a wide class of social interactions, driven by...

  15. Computational approaches to the topology, stability and dynamics of metabolic networks.

    Science.gov (United States)

    Steuer, Ralf

    2007-01-01

    Cellular metabolism is characterized by an intricate network of interactions between biochemical fluxes, metabolic compounds and regulatory interactions. To investigate and eventually understand the emergent global behavior arising from such networks of interaction is not possible by intuitive reasoning alone. This contribution seeks to describe recent computational approaches that aim to asses the topological and functional properties of metabolic networks. In particular, based on a recently proposed method, it is shown that it is possible to acquire a quantitative picture of the possible dynamics of metabolic systems, without assuming detailed knowledge of the underlying enzyme-kinetic rate equations and parameters. Rather, the method builds upon a statistical exploration of the comprehensive parameter space to evaluate the dynamic capabilities of a metabolic system, thus providing a first step towards the transition from topology to function of metabolic pathways. Utilizing this approach, the role of feedback mechanisms in the maintenance of stability is discussed using minimal models of cellular pathways.

  16. Extending network approach to language dynamics and human cognition. Comment on "Approaching human language with complex networks" by Cong and Liu

    Science.gov (United States)

    Gong, Tao; Shuai, Lan; Wu, Yicheng

    2014-12-01

    By analyzing complex networks constructed from authentic language data, Cong and Liu [1] advance linguistics research into the big data era. The network approach has revealed many intrinsic generalities and crucial differences at both the macro and micro scales between human languages. The axiom behind this research is that language is a complex adaptive system [2]. Although many lexical, semantic, or syntactic features have been discovered by means of analyzing the static and dynamic linguistic networks of world languages, available network-based language studies have not explicitly addressed the evolutionary dynamics of language systems and the correlations between language and human cognition. This commentary aims to provide some insights on how to use the network approach to study these issues.

  17. First principles and effective theory approaches to dynamics of complex networks

    Science.gov (United States)

    Dehmamy, Nima

    This dissertation concerns modeling two aspects of dynamics of complex networks: (1) response dynamics and (2) growth and formation. A particularly challenging class of networks are ones in which both nodes and links are evolving over time -- the most prominent example is a financial network. In the first part of the dissertation we present a model for the response dynamics in networks near a metastable point. We start with a Landau-Ginzburg approach and show that the most general lowest order Lagrangians for dynamical weighted networks can be used to derive conditions for stability under external shocks. Using a closely related model, which is easier to solve numerically, we propose a powerful and intuitive set of equations for response dynamics of financial networks. We find the stability conditions of the model and find two phases: "calm" phase , in which changes are sub-exponential and where the system moves to a new, close-by equilibrium; "frantic" phase, where changes are exponential, with negative blows resulting in crashes and positive ones leading to formation of "bubbles". We empirically verify these claims by analyzing data from Eurozone crisis of 2009-2012 and stock markets. We show that the model correctly identifies the time-line of the Eurozone crisis, and in the stock market data it correctly reproduces the auto-correlations and phases observed in the data. The second half of the dissertation addresses the following question: Do networks that form due to local interactions (local in real space, or in an abstract parameter space) have characteristics different from networks formed of random or non-local interactions? Using interacting fields obeying Fokker-Planck equations we show that many network characteristics such as degree distribution, degree-degree correlation and clustering can either be derived analytically or there are analytical bounds on their behaviour. In particular, we derive recursive equations for all powers of the ensemble average

  18. Comparison of dynamic Bayesian network approaches for online diagnosis of aircraft system

    Institute of Scientific and Technical Information of China (English)

    于劲松; 冯威; 唐荻音; 刘浩

    2016-01-01

    The online diagnosis for aircraft system has always been a difficult problem. This is due to time evolution of system change, uncertainty of sensor measurements, and real-time requirement of diagnostic inference. To address this problem, two dynamic Bayesian network (DBN) approaches are proposed. One approach prunes the DBN of system, and then uses particle filter (PF) for this pruned DBN (PDBN) to perform online diagnosis. The problem is that estimates from a PF tend to have high variance for small sample sets. Using large sample sets is computationally expensive. The other approach compiles the PDBN into a dynamic arithmetic circuit (DAC) using an offline procedure that is applied only once, and then uses this circuit to provide online diagnosis recursively. This approach leads to the most computational consumption in the offline procedure. The experimental results show that the DAC, compared with the PF for PDBN, not only provides more reliable online diagnosis, but also offers much faster inference.

  19. A variational approach to the growth dynamics of pre-stressed actin filament networks

    Science.gov (United States)

    John, Karin; Stöter, Thomas; Misbah, Chaouqi

    2016-09-01

    In order to model the growth dynamics of elastic bodies with residual stresses a thermodynamically consistent approach is needed such that the cross-coupling between growth and mechanics can be correctly described. In the present work we apply a variational principle to the formulation of the interfacial growth dynamics of dendritic actin filament networks growing from biomimetic beads, an experimentally well studied system, where the buildup of residual stresses governs the network growth. We first introduce the material model for the network via a strain energy density for an isotropic weakly nonlinear elastic material and then derive consistently from this model the dynamic equations for the interfaces, i.e. for a polymerizing internal interface in contact with the bead and a depolymerizing external interface directed towards the solvent. We show that (i) this approach automatically preserves thermodynamic symmetry-properties, which is not the case for the often cited ‘rubber-band-model’ (Sekimoto et al 2004 Eur. Phys. J. E 13 247-59, Plastino et al 2004 Eur. Biophys. J. 33 310-20) and (ii) leads to a robust morphological instability of the treadmilling network interfaces. The nature of the instability depends on the interplay of the two dynamic interfaces. Depending on the biochemical conditions the network envelope evolves into a comet-like shape (i.e. the actin envelope thins out at one side and thickens on the opposite side of the bead) via a varicose instability or it breaks the symmetry via higher order zigzag modes. We conclude that morphological instabilities due to mechano-chemical coupling mechanisms and the presences of mechancial pre-stresses can play a major role in locally organizing the cytoskeleton of living cells.

  20. Dynamics of Foreign Exchange Networks: A Time-Varying Copula Approach

    Directory of Open Access Journals (Sweden)

    Gang-Jin Wang

    2014-01-01

    Full Text Available Based on a time-varying copula approach and the minimum spanning tree (MST method, we propose a time-varying correlation network-based approach to investigate dynamics of foreign exchange (FX networks. In piratical terms, we choose the daily FX rates of 42 major currencies in the international FX market during the period of 2005–2012 as the empirical data. The empirical results show that (i the distributions of cross-correlation coefficients (distances in the international FX market (network are fat-tailed and negatively skewed; (ii financial crises during the analyzed period have a great effect on the FX network’s topology structure and lead to the US dollar becoming more centered in the MST; (iii the topological measures of the FX network show a large fluctuation and display long-range correlations; (iv the FX network has a long-term memory effect and presents a scale-free behavior in the most of time; and (v a great majority of links between currencies in the international FX market survive from one time to the next, and multistep survive rates of FX networks drop sharply as the time increases.

  1. Modeling and controlling the two-phase dynamics of the p53 network: a Boolean network approach

    Science.gov (United States)

    Lin, Guo-Qiang; Ao, Bin; Chen, Jia-Wei; Wang, Wen-Xu; Di, Zeng-Ru

    2014-12-01

    Although much empirical evidence has demonstrated that p53 plays a key role in tumor suppression, the dynamics and function of the regulatory network centered on p53 have not yet been fully understood. Here, we develop a Boolean network model to reproduce the two-phase dynamics of the p53 network in response to DNA damage. In particular, we map the fates of cells into two types of Boolean attractors, and we find that the apoptosis attractor does not exist for minor DNA damage, reflecting that the cell is reparable. As the amount of DNA damage increases, the basin of the repair attractor shrinks, accompanied by the rising of the apoptosis attractor and the expansion of its basin, indicating that the cell becomes more irreparable with more DNA damage. For severe DNA damage, the repair attractor vanishes, and the apoptosis attractor dominates the state space, accounting for the exclusive fate of death. Based on the Boolean network model, we explore the significance of links, in terms of the sensitivity of the two-phase dynamics, to perturbing the weights of links and removing them. We find that the links are either critical or ordinary, rather than redundant. This implies that the p53 network is irreducible, but tolerant of small mutations at some ordinary links, and this can be interpreted with evolutionary theory. We further devised practical control schemes for steering the system into the apoptosis attractor in the presence of DNA damage by pinning the state of a single node or perturbing the weight of a single link. Our approach offers insights into understanding and controlling the p53 network, which is of paramount importance for medical treatment and genetic engineering.

  2. An Evolutionary Algorithm Approach to Link Prediction in Dynamic Social Networks

    CERN Document Server

    Bliss, Catherine A; Danforth, Christopher M; Dodds, Peter Sheridan

    2013-01-01

    Many real world, complex phenomena have underlying structures of evolving networks where nodes and links are added and removed over time. A central scientific challenge is the description and explanation of network dynamics, with a key test being the prediction of short and long term changes. For the problem of short-term link prediction, existing methods attempt to determine neighborhood metrics that correlate with the appearance of a link in the next observation period. Recent work has suggested that the incorporation of user-specific metadata and usage patterns can improve link prediction, however methodologies for doing so in a systematic way are largely unexplored in the literature. Here, we provide an approach to predicting future links by applying an evolutionary algorithm to weights which are used in a linear combination of sixteen neighborhood and node similarity indices. We examine Twitter reciprocal reply networks constructed at the time scale of weeks, both as a test of our general method and as a...

  3. How structure shapes dynamics: knowledge development in Wikipedia--a network multilevel modeling approach.

    Directory of Open Access Journals (Sweden)

    Iassen Halatchliyski

    Full Text Available Using a longitudinal network analysis approach, we investigate the structural development of the knowledge base of Wikipedia in order to explain the appearance of new knowledge. The data consists of the articles in two adjacent knowledge domains: psychology and education. We analyze the development of networks of knowledge consisting of interlinked articles at seven snapshots from 2006 to 2012 with an interval of one year between them. Longitudinal data on the topological position of each article in the networks is used to model the appearance of new knowledge over time. Thus, the structural dimension of knowledge is related to its dynamics. Using multilevel modeling as well as eigenvector and betweenness measures, we explain the significance of pivotal articles that are either central within one of the knowledge domains or boundary-crossing between the two domains at a given point in time for the future development of new knowledge in the knowledge base.

  4. A geometrical approach to control and controllability of nonlinear dynamical networks.

    Science.gov (United States)

    Wang, Le-Zhi; Su, Ri-Qi; Huang, Zi-Gang; Wang, Xiao; Wang, Wen-Xu; Grebogi, Celso; Lai, Ying-Cheng

    2016-04-14

    In spite of the recent interest and advances in linear controllability of complex networks, controlling nonlinear network dynamics remains an outstanding problem. Here we develop an experimentally feasible control framework for nonlinear dynamical networks that exhibit multistability. The control objective is to apply parameter perturbation to drive the system from one attractor to another, assuming that the former is undesired and the latter is desired. To make our framework practically meaningful, we consider restricted parameter perturbation by imposing two constraints: it must be experimentally realizable and applied only temporarily. We introduce the concept of attractor network, which allows us to formulate a quantifiable controllability framework for nonlinear dynamical networks: a network is more controllable if the attractor network is more strongly connected. We test our control framework using examples from various models of experimental gene regulatory networks and demonstrate the beneficial role of noise in facilitating control.

  5. Dynamic Predictions from Time Series Data An Artificial Neural Network Approach

    CERN Document Server

    Kulkarni, D R; Parikh, J C

    1997-01-01

    A hybrid approach, incorporating concepts of nonlinear dynamics in artificial neural networks (ANN), is proposed to model time series generated by complex dynamic systems. We introduce well known features used in the study of dynamic systems - time delay $\\tau$ and embedding dimension $d$ - for ANN modelling of time series. These features provide a theoretical basis for selecting the optimal size for the number of neurons in the input layer. The main outcome for the number of neurons in the input layer. The main outcome of the new approach for such problems is that to a large extent it defines the ANN architecture and leads to better predictions. We illustrate our method by considering computer generated periodic and chaotic time series. The ANN model developed gave excellent quality of fit for the training and test sets as well as for iterative dynamic predictions for future values of the two time series. Further, computer experiments were conducted by introducing Gaussian noise of various degrees in the two...

  6. Network topology, Transport dynamics, and Vulnerability Analysis in River Deltas: A Graph-Theoretic Approach

    Science.gov (United States)

    Tejedor, A.; Foufoula-Georgiou, E.; Longjas, A.; Zaliapin, I. V.

    2014-12-01

    River deltas are intricate landscapes with complex channel networks that self-organize to deliver water, sediment, and nutrients from the apex to the delta top and eventually to the coastal zone. The natural balance of material and energy fluxes which maintains a stable hydrologic, geomorphologic, and ecological state of a river delta, is often disrupted by external factors causing topological and dynamical changes in the delta structure and function. A formal quantitative framework for studying river delta topology and transport dynamics and their response to change is lacking. Here we present such a framework based on spectral graph theory and demonstrate its value in quantifying the complexity of the delta network topology, computing its steady state fluxes, and identifying upstream (contributing) and downstream (nourishment) areas from any point in the network. We use this framework to construct vulnerability maps that quantify the relative change of sediment and water delivery to the shoreline outlets in response to possible perturbations in hundreds of upstream links. This enables us to evaluate which links (hotspots) and what management scenarios would most influence flux delivery to the outlets, paving the way of systematically examining how local or spatially distributed delta interventions can be studied within a systems approach for delta sustainability.

  7. Linear systems approach to analysis of complex dynamic behaviours in biochemical networks.

    Science.gov (United States)

    Schmidt, H; Jacobsen, E W

    2004-06-01

    Central functions in the cell are often linked to complex dynamic behaviours, such as sustained oscillations and multistability, in a biochemical reaction network. Determination of the specific mechanisms underlying such behaviours is important, e.g. to determine sensitivity, robustness, and modelling requirements of given cell functions. In this work we adopt a systems approach to the analysis of complex behaviours in intracellular reaction networks, described by ordinary differential equations with known kinetic parameters. We propose to decompose the overall system into a number of low complexity subsystems, and consider the importance of interactions between these in generating specific behaviours. Rather than analysing the network in a state corresponding to the complex non-linear behaviour, we move the system to the underlying unstable steady state, and focus on the mechanisms causing destabilisation of this steady state. This is motivated by the fact that all complex behaviours in unforced systems can be traced to destabilisation (bifurcation) of some steady state, and hence enables us to use tools from linear system theory to qualitatively analyse the sources of given network behaviours. One important objective of the present study is to see how far one can come with a relatively simple approach to the analysis of highly complex biochemical networks. The proposed method is demonstrated by application to a model of mitotic control in Xenopus frog eggs, and to a model of circadian oscillations in Drosophila. In both examples we are able to identify the subsystems, and the related interactions, which are instrumental in generating the observed complex non-linear behaviours.

  8. dNSP: a biologically inspired dynamic Neural network approach to Signal Processing.

    Science.gov (United States)

    Cano-Izquierdo, José Manuel; Ibarrola, Julio; Pinzolas, Miguel; Almonacid, Miguel

    2008-09-01

    The arriving order of data is one of the intrinsic properties of a signal. Therefore, techniques dealing with this temporal relation are required for identification and signal processing tasks. To perform a classification of the signal according with its temporal characteristics, it would be useful to find a feature vector in which the temporal attributes were embedded. The correlation and power density spectrum functions are suitable tools to manage this issue. These functions are usually defined with statistical formulation. On the other hand, in biology there can be found numerous processes in which signals are processed to give a feature vector; for example, the processing of sound by the auditory system. In this work, the dNSP (dynamic Neural Signal Processing) architecture is proposed. This architecture allows representing a time-varying signal by a spatial (thus statical) vector. Inspired by the aforementioned biological processes, the dNSP performs frequency decomposition using an analogical parallel algorithm carried out by simple processing units. The architecture has been developed under the paradigm of a multilayer neural network, where the different layers are composed by units whose activation functions have been extracted from the theory of Neural Dynamic [Grossberg, S. (1988). Nonlinear neural networks principles, mechanisms and architectures. Neural Networks, 1, 17-61]. A theoretical study of the behavior of the dynamic equations of the units and their relationship with some statistical functions allows establishing a parallelism between the unit activations and correlation and power density spectrum functions. To test the capabilities of the proposed approach, several testbeds have been employed, i.e. the frequencial study of mathematical functions. As a possible application of the architecture, a highly interesting problem in the field of automatic control is addressed: the recognition of a controlled DC motor operating state.

  9. Analytical approach to the dynamics of facilitated spin models on random networks

    Science.gov (United States)

    Fennell, Peter G.; Gleeson, James P.; Cellai, Davide

    2014-09-01

    Facilitated spin models were introduced some decades ago to mimic systems characterized by a glass transition. Recent developments have shown that a class of facilitated spin models is also able to reproduce characteristic signatures of the structural relaxation properties of glass-forming liquids. While the equilibrium phase diagram of these models can be calculated analytically, the dynamics are usually investigated numerically. Here we propose a network-based approach, called approximate master equation (AME), to the dynamics of the Fredrickson-Andersen model. The approach correctly predicts the critical temperature at which the glass transition occurs. We also find excellent agreement between the theory and the numerical simulations for the transient regime, except in close proximity of the liquid-glass transition. Finally, we analytically characterize the critical clusters of the model and show that the departures between our AME approach and the Monte Carlo can be related to the large interface between blocked and unblocked spins at temperatures close to the glass transition.

  10. Systems approach to studying animal sociality: individual position versus group organization in dynamic social network models.

    Directory of Open Access Journals (Sweden)

    Karlo Hock

    Full Text Available Social networks can be used to represent group structure as a network of interacting components, and also to quantify both the position of each individual and the global properties of a group. In a series of simulation experiments based on dynamic social networks, we test the prediction that social behaviors that help individuals reach prominence within their social group may conflict with their potential to benefit from their social environment. In addition to cases where individuals were able to benefit from improving both their personal relative importance and group organization, using only simple rules of social affiliation we were able to obtain results in which individuals would face a trade-off between these factors. While selection would favor (or work against social behaviors that concordantly increase (or decrease, respectively fitness at both individual and group level, when these factors conflict with each other the eventual selective pressure would depend on the relative returns individuals get from their social environment and their position within it. The presented results highlight the importance of a systems approach to studying animal sociality, in which the effects of social behaviors should be viewed not only through the benefits that those provide to individuals, but also in terms of how they affect broader social environment and how in turn this is reflected back on an individual's fitness.

  11. Systems approach to studying animal sociality: individual position versus group organization in dynamic social network models.

    Science.gov (United States)

    Hock, Karlo; Ng, Kah Loon; Fefferman, Nina H

    2010-12-23

    Social networks can be used to represent group structure as a network of interacting components, and also to quantify both the position of each individual and the global properties of a group. In a series of simulation experiments based on dynamic social networks, we test the prediction that social behaviors that help individuals reach prominence within their social group may conflict with their potential to benefit from their social environment. In addition to cases where individuals were able to benefit from improving both their personal relative importance and group organization, using only simple rules of social affiliation we were able to obtain results in which individuals would face a trade-off between these factors. While selection would favor (or work against) social behaviors that concordantly increase (or decrease, respectively) fitness at both individual and group level, when these factors conflict with each other the eventual selective pressure would depend on the relative returns individuals get from their social environment and their position within it. The presented results highlight the importance of a systems approach to studying animal sociality, in which the effects of social behaviors should be viewed not only through the benefits that those provide to individuals, but also in terms of how they affect broader social environment and how in turn this is reflected back on an individual's fitness.

  12. Systems Approach to Studying Animal Sociality: Individual Position versus Group Organization in Dynamic Social Network Models

    Science.gov (United States)

    Hock, Karlo; Ng, Kah Loon; Fefferman, Nina H.

    2010-01-01

    Social networks can be used to represent group structure as a network of interacting components, and also to quantify both the position of each individual and the global properties of a group. In a series of simulation experiments based on dynamic social networks, we test the prediction that social behaviors that help individuals reach prominence within their social group may conflict with their potential to benefit from their social environment. In addition to cases where individuals were able to benefit from improving both their personal relative importance and group organization, using only simple rules of social affiliation we were able to obtain results in which individuals would face a trade-off between these factors. While selection would favor (or work against) social behaviors that concordantly increase (or decrease, respectively) fitness at both individual and group level, when these factors conflict with each other the eventual selective pressure would depend on the relative returns individuals get from their social environment and their position within it. The presented results highlight the importance of a systems approach to studying animal sociality, in which the effects of social behaviors should be viewed not only through the benefits that those provide to individuals, but also in terms of how they affect broader social environment and how in turn this is reflected back on an individual's fitness. PMID:21203425

  13. A dynamic programming approach for quickly estimating large network-based MEV models

    DEFF Research Database (Denmark)

    Mai, Tien; Frejinger, Emma; Fosgerau, Mogens

    2017-01-01

    by a rooted, directed graph where each node without successor is an alternative. We formulate a family of MEV models as dynamic discrete choice models on graphs of correlation structures and show that the dynamic models are consistent with MEV theory and generalize the network MEV model (Daly and Bierlaire...

  14. Bayesian networks for clinical decision support : a rational approach to dynamic decision-making under uncertainty

    NARCIS (Netherlands)

    Gerven, M.A.J. van

    2007-01-01

    This dissertation deals with decision support in the context of clinical oncology. (Dynamic) Bayesian networks are used as a framework for (dynamic) decision-making under uncertainty and applied to a variety of diagnostic, prognostic, and treatment problems in medicine. It is shown that the proposed

  15. A hybrid dynamic Bayesian network approach for modelling temporal associations of gene expressions for hypertension diagnosis.

    Science.gov (United States)

    Akutekwe, Arinze; Seker, Huseyin

    2014-01-01

    Computational and machine learning techniques have been applied in identifying biomarkers and constructing predictive models for diagnosis of hypertension. Strategies such as improved classification rules based on decision trees have been proposed. Other techniques such as Fuzzy Expert Systems (FES) and Neuro-Fuzzy Systems (NFS) have recently been applied. However, these methods lack the ability to detect temporal relationships among biomarker genes that will aid better understanding of the mechanism of hypertension disease. In this paper we apply a proposed two-stage bio-network construction approach that combines the power and computational efficiency of classification methods with the well-established predictive ability of Dynamic Bayesian Network. We demonstrate our method using the analysis of male young-onset hypertension microarray dataset. Four key genes were identified by the Least Angle Shrinkage and Selection Operator (LASSO) and three Support Vector Machine Recursive Feature Elimination (SVM-RFE) methods. Results show that cell regulation FOXQ1 may inhibit the expression of focusyltransferase-6 (FUT6) and that ABCG1 ATP-binding cassette sub-family G may also play inhibitory role against NR2E3 nuclear receptor sub-family 2 and CGB2 Chromatin Gonadotrophin.

  16. An Evolutionary Algorithm Approach to Link Prediction in Dynamic Social Networks

    OpenAIRE

    Bliss, Catherine A.; Frank, Morgan R.; Danforth, Christopher M.; Dodds, Peter Sheridan

    2013-01-01

    Many real world, complex phenomena have underlying structures of evolving networks where nodes and links are added and removed over time. A central scientific challenge is the description and explanation of network dynamics, with a key test being the prediction of short and long term changes. For the problem of short-term link prediction, existing methods attempt to determine neighborhood metrics that correlate with the appearance of a link in the next observation period. Recent work has sugg...

  17. Static, Dynamic and Semantic Dimensions: Towards a Multidisciplinary Approach of Social Networks Analysis

    Science.gov (United States)

    Thovex, Christophe; Trichet, Francky

    The objective of our work is to extend static and dynamic models of Social Networks Analysis (SNA), by taking conceptual aspects of enterprises and institutions social graph into account. The originality of our multidisciplinary work is to introduce abstract notions of electro-physic to define new measures in SNA, for new decision-making functions dedicated to Human Resource Management (HRM). This paper introduces a multidimensional system and new measures: (1) a tension measure for social network analysis, (2) an electrodynamic, predictive and semantic system for recommendations on social graphs evolutions and (3) a reactance measure used to evaluate the individual stress at work of the members of a social network.

  18. A comparison between wavelet based static and dynamic neural network approaches for runoff prediction

    Science.gov (United States)

    Shoaib, Muhammad; Shamseldin, Asaad Y.; Melville, Bruce W.; Khan, Mudasser Muneer

    2016-04-01

    In order to predict runoff accurately from a rainfall event, the multilayer perceptron type of neural network models are commonly used in hydrology. Furthermore, the wavelet coupled multilayer perceptron neural network (MLPNN) models has also been found superior relative to the simple neural network models which are not coupled with wavelet. However, the MLPNN models are considered as static and memory less networks and lack the ability to examine the temporal dimension of data. Recurrent neural network models, on the other hand, have the ability to learn from the preceding conditions of the system and hence considered as dynamic models. This study for the first time explores the potential of wavelet coupled time lagged recurrent neural network (TLRNN) models for runoff prediction using rainfall data. The Discrete Wavelet Transformation (DWT) is employed in this study to decompose the input rainfall data using six of the most commonly used wavelet functions. The performance of the simple and the wavelet coupled static MLPNN models is compared with their counterpart dynamic TLRNN models. The study found that the dynamic wavelet coupled TLRNN models can be considered as alternative to the static wavelet MLPNN models. The study also investigated the effect of memory depth on the performance of static and dynamic neural network models. The memory depth refers to how much past information (lagged data) is required as it is not known a priori. The db8 wavelet function is found to yield the best results with the static MLPNN models and with the TLRNN models having small memory depths. The performance of the wavelet coupled TLRNN models with large memory depths is found insensitive to the selection of the wavelet function as all wavelet functions have similar performance.

  19. Failure-recovery model with competition between failures in complex networks: a dynamical approach

    CERN Document Server

    Valdez, L D; Braunstein, L A

    2016-01-01

    Real systems are usually composed by units or nodes whose activity can be interrupted and restored intermittently due to complex interactions not only with the environment, but also with the same system. Majdand\\v{z}i\\'c $et\\;al.$ [Nature Physics 10, 34 (2014)] proposed a model to study systems in which active nodes fail and recover spontaneously in a complex network and found that in the steady state the density of active nodes can exhibit an abrupt transition and hysteresis depending on the values of the parameters. Here we investigate a model of recovery-failure from a dynamical point of view. Using an effective degree approach we find that the systems can exhibit a temporal sharp decrease in the fraction of active nodes. Moreover we show that, depending on the values of the parameters, the fraction of active nodes has an oscillatory regime which we explain as a competition between different failure processes. We also find that in the non-oscillatory regime, the critical fraction of active nodes presents a...

  20. A recurrence network approach for the analysis of skin blood flow dynamics in response to loading pressure.

    Science.gov (United States)

    Liao, Fuyuan; Jan, Yih-Kuen

    2012-06-01

    This paper presents a recurrence network approach for the analysis of skin blood flow dynamics in response to loading pressure. Recurrence is a fundamental property of many dynamical systems, which can be explored in phase spaces constructed from observational time series. A visualization tool of recurrence analysis called recurrence plot (RP) has been proved to be highly effective to detect transitions in the dynamics of the system. However, it was found that delay embedding can produce spurious structures in RPs. Network-based concepts have been applied for the analysis of nonlinear time series recently. We demonstrate that time series with different types of dynamics exhibit distinct global clustering coefficients and distributions of local clustering coefficients and that the global clustering coefficient is robust to the embedding parameters. We applied the approach to study skin blood flow oscillations (BFO) response to loading pressure. The results showed that global clustering coefficients of BFO significantly decreased in response to loading pressure (precurrence network approach can practically quantify the nonlinear dynamics of BFO.

  1. A dynamic programming approach to missing data estimation using neural networks

    CSIR Research Space (South Africa)

    Nelwamondo, FV

    2013-01-01

    Full Text Available This paper develops and presents a novel technique for missing data estimation using a combination of dynamic programming, neural networks and genetic algorithms (GA) on suitable subsets of the input data. The method proposed here is well suited...

  2. Towards a dynamic social-network-based approach for service composition in the Internet of Things

    Science.gov (United States)

    Xu, Wen; Hu, Zheng; Gong, Tao; Zhao, Zhengzheng

    2011-12-01

    The User-Generated Service (UGS) concept allows end-users to create their own services as well as to share and manage the lifecycles of these services. The current development of the Internet-of-Things (IoT) has brought new challenges to the UGS area. Creating smart services in the IoT environment requires a dynamic social network that considers the relationship between people and things. In this paper, we consider the know-how required to best organize exchanges between users and things to enhance service composition. By surveying relevant aspects including service composition technology, social networks and a recommendation system, we present the first concept of our framework to provide recommendations for a dynamic social network-based means to organize UGSs in the IoT.

  3. Climate Dynamics: A Network-Based Approach for the Analysis of Global Precipitation

    CERN Document Server

    Scarsoglio, Stefania; Ridolfi, Luca

    2013-01-01

    Precipitation is one of the most important meteorological variables for defining the climate dynamics, but the spatial patterns of precipitation have not been fully investigated yet. The complex network theory, which provides a robust tool to investigate the statistical interdependence of many interacting elements, is used here to analyze the spatial dynamics of annual precipitation over seventy years (1941-2010). The precipitation network reveals significant spatial variability with barely connected regions, as Eastern China and Japan, and highly connected regions, such as the African Sahel, Eastern Australia and, to a lesser extent, Northern Europe. Sahel and Eastern Australia are remarkably dry regions, where low amounts of rainfall are uniformly distributed on continental scales and small-scale extreme events are rare. As a consequence, the precipitation gradient is low, making these regions well connected on a large spatial scale. On the contrary, the Asiatic South-East is often reached by extreme events...

  4. Information Flow Through Stages of Complex Engineering Design Projects: A Dynamic Network Analysis Approach

    DEFF Research Database (Denmark)

    Parraguez, Pedro; Eppinger, Steven D.; Maier, Anja

    2015-01-01

    information flows between activities in complex engineering design projects; 2) we show how the network of information flows in a large-scale engineering project evolved over time and how network analysis yields several managerial insights; and 3) we provide a useful new representation of the engineering...... design process and thus support theory-building toward the evolution of information flows through systems engineering stages. Implications include guidance on how to analyze and predict information flows as well as better planning of information flows in engineering design projects according......The pattern of information flow through the network of interdependent design activities is thought to be an important determinant of engineering design process results. A previously unexplored aspect of such patterns relates to the temporal dynamics of information transfer between activities...

  5. Mathematical Approaches to WMD Defense and Vulnerability Assessments of Dynamic Networks

    Science.gov (United States)

    2016-07-01

    analysis depending on the context. In the first example we aim to identify a set of land mines that are planted on a field . To find the location of the...and effective dose] 1 × 10–2 joule per kilogram (J kg–1) [sievert (Sv)] * Specific details regarding the implementation of SI units may be viewed at...telecommunications, transportation, and electricity grids. More importantly, we analyze network dynamics that include cascading failures due to

  6. Dynamic transcriptional signatures and network responses for clinical symptoms in influenza-infected human subjects using systems biology approaches.

    Science.gov (United States)

    Linel, Patrice; Wu, Shuang; Deng, Nan; Wu, Hulin

    2014-10-01

    Recent studies demonstrate that human blood transcriptional signatures may be used to support diagnosis and clinical decisions for acute respiratory viral infections such as influenza. In this article, we propose to use a newly developed systems biology approach for time course gene expression data to identify significant dynamically response genes and dynamic gene network responses to viral infection. We illustrate the methodological pipeline by reanalyzing the time course gene expression data from a study with healthy human subjects challenged by live influenza virus. We observed clear differences in the number of significant dynamic response genes (DRGs) between the symptomatic and asymptomatic subjects and also identified DRG signatures for symptomatic subjects with influenza infection. The 505 common DRGs shared by the symptomatic subjects have high consistency with the signature genes for predicting viral infection identified in previous works. The temporal response patterns and network response features were carefully analyzed and investigated.

  7. Climate dynamics: a network-based approach for the analysis of global precipitation.

    Directory of Open Access Journals (Sweden)

    Stefania Scarsoglio

    Full Text Available Precipitation is one of the most important meteorological variables for defining the climate dynamics, but the spatial patterns of precipitation have not been fully investigated yet. The complex network theory, which provides a robust tool to investigate the statistical interdependence of many interacting elements, is used here to analyze the spatial dynamics of annual precipitation over seventy years (1941-2010. The precipitation network is built associating a node to a geographical region, which has a temporal distribution of precipitation, and identifying possible links among nodes through the correlation function. The precipitation network reveals significant spatial variability with barely connected regions, as Eastern China and Japan, and highly connected regions, such as the African Sahel, Eastern Australia and, to a lesser extent, Northern Europe. Sahel and Eastern Australia are remarkably dry regions, where low amounts of rainfall are uniformly distributed on continental scales and small-scale extreme events are rare. As a consequence, the precipitation gradient is low, making these regions well connected on a large spatial scale. On the contrary, the Asiatic South-East is often reached by extreme events such as monsoons, tropical cyclones and heat waves, which can all contribute to reduce the correlation to the short-range scale only. Some patterns emerging between mid-latitude and tropical regions suggest a possible impact of the propagation of planetary waves on precipitation at a global scale. Other links can be qualitatively associated to the atmospheric and oceanic circulation. To analyze the sensitivity of the network to the physical closeness of the nodes, short-term connections are broken. The African Sahel, Eastern Australia and Northern Europe regions again appear as the supernodes of the network, confirming furthermore their long-range connection structure. Almost all North-American and Asian nodes vanish, revealing that

  8. Climate dynamics: a network-based approach for the analysis of global precipitation.

    Science.gov (United States)

    Scarsoglio, Stefania; Laio, Francesco; Ridolfi, Luca

    2013-01-01

    Precipitation is one of the most important meteorological variables for defining the climate dynamics, but the spatial patterns of precipitation have not been fully investigated yet. The complex network theory, which provides a robust tool to investigate the statistical interdependence of many interacting elements, is used here to analyze the spatial dynamics of annual precipitation over seventy years (1941-2010). The precipitation network is built associating a node to a geographical region, which has a temporal distribution of precipitation, and identifying possible links among nodes through the correlation function. The precipitation network reveals significant spatial variability with barely connected regions, as Eastern China and Japan, and highly connected regions, such as the African Sahel, Eastern Australia and, to a lesser extent, Northern Europe. Sahel and Eastern Australia are remarkably dry regions, where low amounts of rainfall are uniformly distributed on continental scales and small-scale extreme events are rare. As a consequence, the precipitation gradient is low, making these regions well connected on a large spatial scale. On the contrary, the Asiatic South-East is often reached by extreme events such as monsoons, tropical cyclones and heat waves, which can all contribute to reduce the correlation to the short-range scale only. Some patterns emerging between mid-latitude and tropical regions suggest a possible impact of the propagation of planetary waves on precipitation at a global scale. Other links can be qualitatively associated to the atmospheric and oceanic circulation. To analyze the sensitivity of the network to the physical closeness of the nodes, short-term connections are broken. The African Sahel, Eastern Australia and Northern Europe regions again appear as the supernodes of the network, confirming furthermore their long-range connection structure. Almost all North-American and Asian nodes vanish, revealing that extreme events can

  9. via dynamic neural networks

    Directory of Open Access Journals (Sweden)

    J. Reyes-Reyes

    2000-01-01

    Full Text Available In this paper, an adaptive technique is suggested to provide the passivity property for a class of partially known SISO nonlinear systems. A simple Dynamic Neural Network (DNN, containing only two neurons and without any hidden-layers, is used to identify the unknown nonlinear system. By means of a Lyapunov-like analysis the new learning law for this DNN, guarantying both successful identification and passivation effects, is derived. Based on this adaptive DNN model, an adaptive feedback controller, serving for wide class of nonlinear systems with an a priori incomplete model description, is designed. Two typical examples illustrate the effectiveness of the suggested approach.

  10. Portraying Temporal Dynamics of Urban Spatial Divisions with Mobile Phone Positioning Data: A Complex Network Approach

    Directory of Open Access Journals (Sweden)

    Meng Zhou

    2016-12-01

    Full Text Available Spatial structure is a fundamental characteristic of cities that influences the urban functioning to a large extent. While administrative partitioning is generally done in the form of static spatial division, understanding a more temporally dynamic structure of the urban space would benefit urban planning and management immensely. This study makes use of a large-scale mobile phone positioning dataset to characterize the diurnal dynamics of the interaction-based urban spatial structure. To extract the temporally vibrant structure, spatial interaction networks at different times are constructed based on the movement connections of individuals between geographical units. Complex network community detection technique is applied to identify the spatial divisions as well as to quantify their temporal dynamics. Empirical analysis is conducted using data containing all user positions on a typical weekday in Shenzhen, China. Results are compared with official zoning and planned structure and indicate a certain degree of expansion in urban central areas and fragmentation in industrial suburban areas. A high level of variability in spatial divisions at different times of day is detected with some distinct temporal features. Peak and pre-/post-peak hours witness the most prominent fluctuation in spatial division indicating significant change in the characteristics of movements and activities during these periods of time. Findings of this study demonstrate great potential of large-scale mobility data in supporting intelligent spatial decision making and providing valuable knowledge to the urban planning sectors.

  11. How to interpret the results of medical time series data analysis: Classical statistical approaches versus dynamic Bayesian network modeling

    Science.gov (United States)

    Onisko, Agnieszka; Druzdzel, Marek J.; Austin, R. Marshall

    2016-01-01

    Background: Classical statistics is a well-established approach in the analysis of medical data. While the medical community seems to be familiar with the concept of a statistical analysis and its interpretation, the Bayesian approach, argued by many of its proponents to be superior to the classical frequentist approach, is still not well-recognized in the analysis of medical data. Aim: The goal of this study is to encourage data analysts to use the Bayesian approach, such as modeling with graphical probabilistic networks, as an insightful alternative to classical statistical analysis of medical data. Materials and Methods: This paper offers a comparison of two approaches to analysis of medical time series data: (1) classical statistical approach, such as the Kaplan–Meier estimator and the Cox proportional hazards regression model, and (2) dynamic Bayesian network modeling. Our comparison is based on time series cervical cancer screening data collected at Magee-Womens Hospital, University of Pittsburgh Medical Center over 10 years. Results: The main outcomes of our comparison are cervical cancer risk assessments produced by the three approaches. However, our analysis discusses also several aspects of the comparison, such as modeling assumptions, model building, dealing with incomplete data, individualized risk assessment, results interpretation, and model validation. Conclusion: Our study shows that the Bayesian approach is (1) much more flexible in terms of modeling effort, and (2) it offers an individualized risk assessment, which is more cumbersome for classical statistical approaches. PMID:28163973

  12. The effect of network structure on innovation initiation process: an evolutionary dynamics approach

    CERN Document Server

    Jafari, Afshin; Zolfagharzadeh, Mohammad Mahdi; Mohammadi, Mehdi

    2016-01-01

    In this paper we have proposed a basic agent-based model based on evolutionary dynamics for investigating innovation initiation process. In our model we suppose each agent will represent a firm which is interacting with other firms through a given network structure. We consider a two-hit process for presenting a potentially successful innovation in this model and therefore at each time step each firm can be in on of three different stages which are respectively, Ordinary, Innovative, and Successful. We design different experiments in order to investigate how different interaction networks may affect the process of presenting a successful innovation to the market. In this experiments, we use five different network structures, i.e. Erd\\H{o}s and R\\'enyi, Ring Lattice, Small World, Scale-Free and Distance-Based networks. According to the results of the simulations, for less frequent innovations like radical innovation, local structures are showing a better performance comparing to Scale-Free and Erd\\H{o}s and R\\...

  13. A QoS-Aware Service Selection Approach on P2P Network for Dynamic Cross-Organizational Workflow Development

    Science.gov (United States)

    Zhou, Jielong; Dou, Wanchun

    A workflow system is often composed of a number of subtasks in its pattern. In services computing environment, a dynamic cross-organizational workflow can be implemented by assigning services to its subtasks. It is often enabled by a service discovery process on Internet. Traditional service discovery approaches are centralized, and suffer from many problems such as one-point failure and weak scalability. Thus, decentralized P2P technique is a promising approach for service publishing and discovery. It is quite probable that there are more than one candidates which have exactly the same function after a service discovery process. It is often a challenging effort to select a qualified service from a group of candidates, especially on P2P networks. In view of this challenge, a QoS-aware service selection approach on unstructured P2P networks is presented in this paper. It aims at discovering and selecting services on two-layered unstructured P2P networks according to QoS parameters of services and preference of service requesters. This approach is applied to a case study based on a simplified P2P network with some virtual services.

  14. Mathematical Approaches to WMD Defense and Vulnerability Assessments of Dynamic Networks

    Science.gov (United States)

    2016-07-01

    Structure in Dynamic Social Networks,” Proceedings of the IEEE Communications Society (INFOCOM), 2011. Nguyen, N.P. and Thai, M.T., “Finding...cubic foot (ft 3 ) 2.831 685 × 10 –2 cubic meter (m 3 ) Mass /Density pound (lb) 4.535 924 × 10 –1 kilogram (kg) unified atomic mass unit (amu...1.660 539 × 10 –27 kilogram (kg) pound- mass per cubic foot (lb ft –3 ) 1.601 846 × 10 1 kilogram per cubic meter (kg m –3 ) pound-force (lbf

  15. Optimal Power Control in Wireless Powered Sensor Networks: A Dynamic Game-Based Approach

    Science.gov (United States)

    Xu, Haitao; Guo, Chao; Zhang, Long

    2017-01-01

    In wireless powered sensor networks (WPSN), it is essential to research uplink transmit power control in order to achieve throughput performance balancing and energy scheduling. Each sensor should have an optimal transmit power level for revenue maximization. In this paper, we discuss a dynamic game-based algorithm for optimal power control in WPSN. The main idea is to use the non-cooperative differential game to control the uplink transmit power of wireless sensors in WPSN, to extend their working hours and to meet QoS (Quality of Services) requirements. Subsequently, the Nash equilibrium solutions are obtained through Bellman dynamic programming. At the same time, an uplink power control algorithm is proposed in a distributed manner. Through numerical simulations, we demonstrate that our algorithm can obtain optimal power control and reach convergence for an infinite horizon. PMID:28282945

  16. A state space approach for piecewise-linear recurrent neural networks for identifying computational dynamics from neural measurements.

    Science.gov (United States)

    Durstewitz, Daniel

    2017-06-01

    The computational and cognitive properties of neural systems are often thought to be implemented in terms of their (stochastic) network dynamics. Hence, recovering the system dynamics from experimentally observed neuronal time series, like multiple single-unit recordings or neuroimaging data, is an important step toward understanding its computations. Ideally, one would not only seek a (lower-dimensional) state space representation of the dynamics, but would wish to have access to its statistical properties and their generative equations for in-depth analysis. Recurrent neural networks (RNNs) are a computationally powerful and dynamically universal formal framework which has been extensively studied from both the computational and the dynamical systems perspective. Here we develop a semi-analytical maximum-likelihood estimation scheme for piecewise-linear RNNs (PLRNNs) within the statistical framework of state space models, which accounts for noise in both the underlying latent dynamics and the observation process. The Expectation-Maximization algorithm is used to infer the latent state distribution, through a global Laplace approximation, and the PLRNN parameters iteratively. After validating the procedure on toy examples, and using inference through particle filters for comparison, the approach is applied to multiple single-unit recordings from the rodent anterior cingulate cortex (ACC) obtained during performance of a classical working memory task, delayed alternation. Models estimated from kernel-smoothed spike time data were able to capture the essential computational dynamics underlying task performance, including stimulus-selective delay activity. The estimated models were rarely multi-stable, however, but rather were tuned to exhibit slow dynamics in the vicinity of a bifurcation point. In summary, the present work advances a semi-analytical (thus reasonably fast) maximum-likelihood estimation framework for PLRNNs that may enable to recover relevant aspects

  17. A state space approach for piecewise-linear recurrent neural networks for identifying computational dynamics from neural measurements.

    Directory of Open Access Journals (Sweden)

    Daniel Durstewitz

    2017-06-01

    Full Text Available The computational and cognitive properties of neural systems are often thought to be implemented in terms of their (stochastic network dynamics. Hence, recovering the system dynamics from experimentally observed neuronal time series, like multiple single-unit recordings or neuroimaging data, is an important step toward understanding its computations. Ideally, one would not only seek a (lower-dimensional state space representation of the dynamics, but would wish to have access to its statistical properties and their generative equations for in-depth analysis. Recurrent neural networks (RNNs are a computationally powerful and dynamically universal formal framework which has been extensively studied from both the computational and the dynamical systems perspective. Here we develop a semi-analytical maximum-likelihood estimation scheme for piecewise-linear RNNs (PLRNNs within the statistical framework of state space models, which accounts for noise in both the underlying latent dynamics and the observation process. The Expectation-Maximization algorithm is used to infer the latent state distribution, through a global Laplace approximation, and the PLRNN parameters iteratively. After validating the procedure on toy examples, and using inference through particle filters for comparison, the approach is applied to multiple single-unit recordings from the rodent anterior cingulate cortex (ACC obtained during performance of a classical working memory task, delayed alternation. Models estimated from kernel-smoothed spike time data were able to capture the essential computational dynamics underlying task performance, including stimulus-selective delay activity. The estimated models were rarely multi-stable, however, but rather were tuned to exhibit slow dynamics in the vicinity of a bifurcation point. In summary, the present work advances a semi-analytical (thus reasonably fast maximum-likelihood estimation framework for PLRNNs that may enable to recover

  18. Dynamic control approaches of spectrum sensing in multi-band cognitive radio networks

    Institute of Scientific and Technical Information of China (English)

    AN Chun-yan; JI Hong; SI Peng-bo; MAO Xu

    2010-01-01

    In this paper,the dynamic control approaches for spectrum sensing are proposed,based on the theory that prediction is synonymous with data compression in computational learning. Firstly,a spectrum sensing sequence prediction scheme is proposed to reduce the spectrum sensing time and improve the throughput of secondary users. We use Ziv-Lempel data compression algorithm to design the prediction scheme,where spectrum band usage history is utilized. In addition,an iterative algorithm to find out the optimal number of spectrum bands allowed to sense is proposed,with the aim of maximizing the expected net reward of each secondary user in each time slot. Finally,extensive simulation results are shown to demonstrate the effectiveness of the proposed dynamic control approaches of spectrum sensing.

  19. A novel approach for pilot error detection using Dynamic Bayesian Networks.

    Science.gov (United States)

    Saada, Mohamad; Meng, Qinggang; Huang, Tingwen

    2014-06-01

    In the last decade Dynamic Bayesian Networks (DBNs) have become one type of the most attractive probabilistic modelling framework extensions of Bayesian Networks (BNs) for working under uncertainties from a temporal perspective. Despite this popularity not many researchers have attempted to study the use of these networks in anomaly detection or the implications of data anomalies on the outcome of such models. An abnormal change in the modelled environment's data at a given time, will cause a trailing chain effect on data of all related environment variables in current and consecutive time slices. Albeit this effect fades with time, it still can have an ill effect on the outcome of such models. In this paper we propose an algorithm for pilot error detection, using DBNs as the modelling framework for learning and detecting anomalous data. We base our experiments on the actions of an aircraft pilot, and a flight simulator is created for running the experiments. The proposed anomaly detection algorithm has achieved good results in detecting pilot errors and effects on the whole system.

  20. Patient Prognosis from Vital Sign Time Series: Combining Convolutional Neural Networks with a Dynamical Systems Approach

    Science.gov (United States)

    Lehman, Li-wei; Ghassemi, Mohammad; Snoek, Jasper; Nemati, Shamim

    2016-01-01

    In this work, we propose a stacked switching vector-autoregressive (SVAR)-CNN architecture to model the changing dynamics in physiological time series for patient prognosis. The SVAR-layer extracts dynamical features (or modes) from the time-series, which are then fed into the CNN-layer to extract higher-level features representative of transition patterns among the dynamical modes. We evaluate our approach using 8-hours of minute-by-minute mean arterial blood pressure (BP) from over 450 patients in the MIMIC-II database. We modeled the time-series using a third-order SVAR process with 20 modes, resulting in first-level dynamical features of size 20×480 per patient. A fully connected CNN is then used to learn hierarchical features from these inputs, and to predict hospital mortality. The combined CNN/SVAR approach using BP time-series achieved a median and interquartile-range AUC of 0.74 [0.69, 0.75], significantly outperforming CNN-alone (0.54 [0.46, 0.59]), and SVAR-alone with logistic regression (0.69 [0.65, 0.72]). Our results indicate that including an SVAR layer improves the ability of CNNs to classify nonlinear and nonstationary time-series. PMID:27790623

  1. Energy approach to rivalry dynamics, soliton stability, and pattern formation in neuronal networks

    Science.gov (United States)

    Loxley, P. N.; Robinson, P. A.

    2007-10-01

    Hopfield’s Lyapunov function is used to view the stability and topology of equilibria in neuronal networks for visual rivalry and pattern formation. For two neural populations with reciprocal inhibition and slow adaptation, the dynamics of neural activity is found to include a pair of limit cycles: one for oscillations between states where one population has high activity and the other has low activity, as in rivalry, and one for oscillations between states where both populations have the same activity. Hopfield’s Lyapunov function is used to find the dynamical mechanism for oscillations and the basin of attraction of each limit cycle. For a spatially continuous population with lateral inhibition, stable equilibria are found for local regions of high activity (solitons) and for bound states of two or more solitons. Bound states become stable when moving two solitons together minimizes the Lyapunov function, a result of decreasing activity in regions between peaks of high activity when the firing rate is described by a sigmoid function. Lowering the barrier to soliton formation leads to a pattern-forming instability, and a nonlinear solution to the dynamical equations is found to be given by a soliton lattice, which is completely characterized by the soliton width and the spacing between neighboring solitons. Fluctuations due to noise create lattice vacancies analogous to point defects in crystals, leading to activity which is spatially inhomogeneous.

  2. Dynamic Network Models

    CERN Document Server

    Armbruster, Benjamin

    2011-01-01

    We analyze random networks that change over time. First we analyze a dynamic Erdos-Renyi model, whose edges change over time. We describe its stationary distribution, its convergence thereto, and the SI contact process on the network, which has relevance for connectivity and the spread of infections. Second, we analyze the effect of node turnover, when nodes enter and leave the network, which has relevance for network models incorporating births, deaths, aging, and other demographic factors.

  3. Pilot study of dynamic Bayesian networks approach for fault diagnostics and accident progression prediction in HTR-PM

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yunfei; Tong, Jiejuan; Zhang, Liguo, E-mail: lgzhang@tsinghua.edu.cn; Zhang, Qin

    2015-09-15

    Highlights: • Dynamic Bayesian network is used to diagnose and predict accident progress in HTR-PM. • Dynamic Bayesian network model of HTR-PM is built based on detailed system analysis. • LOCA Simulations validate the above model even if part monitors are lost or false. - Abstract: The first high-temperature-reactor pebble-bed demonstration module (HTR-PM) is under construction currently in China. At the same time, development of a system that is used to support nuclear emergency response is in progress. The supporting system is expected to complete two tasks. The first one is diagnostics of the fault in the reactor based on abnormal sensor measurements obtained. The second one is prognostic of the accident progression based on sensor measurements obtained and operator actions. Both tasks will provide valuable guidance for emergency staff to take appropriate protective actions. Traditional method for the two tasks relies heavily on expert judgment, and has been proven to be inappropriate in some cases, such as Three Mile Island accident. To better perform the two tasks, dynamic Bayesian networks (DBN) is introduced in this paper and a pilot study based on the approach is carried out. DBN is advantageous in representing complex dynamic systems and taking full consideration of evidences obtained to perform diagnostics and prognostics. Pearl's loopy belief propagation (LBP) algorithm is recommended for diagnostics and prognostics in DBN. The DBN model of HTR-PM is created based on detailed system analysis and accident progression analysis. A small break loss of coolant accident (SBLOCA) is selected to illustrate the application of the DBN model of HTR-PM in fault diagnostics (FD) and accident progression prognostics (APP). Several advantages of DBN approach compared with other techniques are discussed. The pilot study lays the foundation for developing the nuclear emergency response supporting system (NERSS) for HTR-PM.

  4. Assimilation Dynamic Network (ADN) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Assimilation Dynamic Network (ADN) is a dynamic inter-processor communication network that spans heterogeneous processor architectures, unifying components,...

  5. Airborne Network Optimization with Dynamic Network Update

    Science.gov (United States)

    2015-03-26

    AIRBORNE NETWORK OPTIMIZATION WITH DYNAMIC NETWORK UPDATE THESIS Bradly S. Paul, Capt, USAF AFIT-ENG-MS-15-M-030 DEPARTMENT OF THE AIR FORCE AIR...to copyright protection in the United States. AFIT-ENG-MS-15-M-030 AIRBORNE NETWORK OPTIMIZATION WITH DYNAMIC NETWORK UPDATE THESIS Presented to the...NETWORK OPTIMIZATION WITH DYNAMIC NETWORK UPDATE Bradly S. Paul, B.S.C.P. Capt, USAF Committee Membership: Maj Thomas E. Dube Chair Dr. Kenneth M. Hopkinson

  6. Identification and discrimination of patterns of dynamical influences within the climate system by means of complex network approaches

    Science.gov (United States)

    Donner, R. V.

    2014-12-01

    Complex network theory provides a powerful toolbox for studying the structure of statistical interrelationships between multiple time series. In this work, we demonstrate how networks constructed from fields of climatological observables like surface air temperatures, geopotential height or vertically integrated moisture divergence can be used for characterizing the evolving spatio-temporal correlation structure of the Earth's climate system and the time-dependent coupling between different variables. As a first application, we study the temporal variability of several network characteristics based on global surface air temperature data. The corresponding evolving climate network properties provide a functional discrimination between different large-scale climatological situations associated with different phases of the El Nino Southern Oscillation (ENSO), as well as reorganizations of dynamical similarity patterns following localized perturbations of the global climate system after strong volcanic eruptions. As a particular application, we demonstrate the distinction between the two previously known El Nino types based on global climate network properties and discuss implications for the possible existence of different La Nina types. A second example concerns the spatio-temporal organization of strong evapotranspiration events over South America. By constructing climate networks based on the synchronicity of extreme values in the vertically integrated moisture flux at different locations, we obtain distinct spatial patterns associated with the organization of strong atmospheric upwelling events. Again, our results exhibit a distinct imprint of the phasing of ENSO. Finally, we demonstrate how the climate network approach can be extended to studying the interaction structure between two climatological fields. As an example, we discuss the cross-linkage structure of mid-to-high latitude northern hemispheric ocean-atmosphere interactions during summer and winter

  7. Dynamical detection of network communities

    Science.gov (United States)

    Quiles, Marcos G.; Macau, Elbert E. N.; Rubido, Nicolás

    2016-05-01

    A prominent feature of complex networks is the appearance of communities, also known as modular structures. Specifically, communities are groups of nodes that are densely connected among each other but connect sparsely with others. However, detecting communities in networks is so far a major challenge, in particular, when networks evolve in time. Here, we propose a change in the community detection approach. It underlies in defining an intrinsic dynamic for the nodes of the network as interacting particles (based on diffusive equations of motion and on the topological properties of the network) that results in a fast convergence of the particle system into clustered patterns. The resulting patterns correspond to the communities of the network. Since our detection of communities is constructed from a dynamical process, it is able to analyse time-varying networks straightforwardly. Moreover, for static networks, our numerical experiments show that our approach achieves similar results as the methodologies currently recognized as the most efficient ones. Also, since our approach defines an N-body problem, it allows for efficient numerical implementations using parallel computations that increase its speed performance.

  8. Network-behavior dynamics

    NARCIS (Netherlands)

    Veenstra, René; Dijkstra, Jan; Steglich, Christian; Van Zalk, Maarten H. W.

    2013-01-01

    Researchers have become increasingly interested in disentangling selection and influence processes. This literature review provides context for the special issue on network-behavior dynamics. It brings together important conceptual, methodological, and empirical contributions focusing on longitudina

  9. Current approaches to gene regulatory network modelling

    Directory of Open Access Journals (Sweden)

    Brazma Alvis

    2007-09-01

    Full Text Available Abstract Many different approaches have been developed to model and simulate gene regulatory networks. We proposed the following categories for gene regulatory network models: network parts lists, network topology models, network control logic models, and dynamic models. Here we will describe some examples for each of these categories. We will study the topology of gene regulatory networks in yeast in more detail, comparing a direct network derived from transcription factor binding data and an indirect network derived from genome-wide expression data in mutants. Regarding the network dynamics we briefly describe discrete and continuous approaches to network modelling, then describe a hybrid model called Finite State Linear Model and demonstrate that some simple network dynamics can be simulated in this model.

  10. A dynamical network approach to uncovering hidden causality relationships in collective neuron firings

    CERN Document Server

    Ruszczycki, Bła\\ zej; Johnson, Neil F

    2009-01-01

    We analyze the synchronous firings of the salamander ganglion cells from the perspective of the complex network viewpoint where the network's links reflect the correlated behavior of firings. We study the time-aggregated properties of the resulting network focusing on its topological features. The behavior of pairwise correlations has been inspected in order to construct an appropriate measure that will serve as a weight of network connection.

  11. Dynamic traffic splitting to parallel wireless networks with partial information: a Bayesian approach.

    NARCIS (Netherlands)

    Bhulai, S.; Hoekstra, G.J.; Bosman, J.W.; Mei, R.D. van der

    2012-01-01

    Contemporary wireless networks are based on a wide range of different technologies providing overlapping coverage. This offers users a seamless integration of connectivity by allowing to switch between networks, and opens up a promising area for boosting the performance of wireless networks. Motivat

  12. AN AGENT BASED APPROACH TO AVOID SELFISH NODE DYNAMICALLY IN MOBILE NETWORKS

    Directory of Open Access Journals (Sweden)

    Radhika Garg

    2012-09-01

    Full Text Available Mobile Networks is one of the busy networks on which lotof data is transferred at very high speed. Security andefficiency are the main challenges for such open network.One of the common attacks on such network is themisbehavior of a node as a Selfish Node. A selfish nodeitself utilizes the communication medium and will not helpin forwarding the packet. The proposed work is the agentbased analysis of network. For this work, an Agent is setupwhich will perform the analysis while communicating overthe network. The agent will observe the averagecommunication of each node and based on analysis, adynamic fuzzy rule will be decided. Now each nodetransmission will be checked on this fuzzy rule. A specificrule will be decided to identify the selfish node. The workis about to decide the compromising node that will replacethe selfish node to improve the throughput over thenetwork.

  13. Pin-Align: a new dynamic programming approach to align protein-protein interaction networks.

    Science.gov (United States)

    Amir-Ghiasvand, Farid; Nowzari-Dalini, Abbas; Momenzadeh, Vida

    2014-01-01

    To date, few tools for aligning protein-protein interaction networks have been suggested. These tools typically find conserved interaction patterns using various local or global alignment algorithms. However, the improvement of the speed, scalability, simplification, and accuracy of network alignment tools is still the target of new researches. In this paper, we introduce Pin-Align, a new tool for local alignment of protein-protein interaction networks. Pin-Align accuracy is tested on protein interaction networks from IntAct, DIP, and the Stanford Network Database and the results are compared with other well-known algorithms. It is shown that Pin-Align has higher sensitivity and specificity in terms of KEGG Ortholog groups.

  14. Pin-Align: A New Dynamic Programming Approach to Align Protein-Protein Interaction Networks

    Directory of Open Access Journals (Sweden)

    Farid Amir-Ghiasvand

    2014-01-01

    Full Text Available To date, few tools for aligning protein-protein interaction networks have been suggested. These tools typically find conserved interaction patterns using various local or global alignment algorithms. However, the improvement of the speed, scalability, simplification, and accuracy of network alignment tools is still the target of new researches. In this paper, we introduce Pin-Align, a new tool for local alignment of protein-protein interaction networks. Pin-Align accuracy is tested on protein interaction networks from IntAct, DIP, and the Stanford Network Database and the results are compared with other well-known algorithms. It is shown that Pin-Align has higher sensitivity and specificity in terms of KEGG Ortholog groups.

  15. Strength dynamics of weighted evolving networks

    Institute of Scientific and Technical Information of China (English)

    Wu Jian-Jun; Gao Zi-You; Sun Hui-Jun

    2007-01-01

    In this paper, a simple model for the strength dynamics of weighted evolving networks is proposed to characterize the weighted networks. By considering the congestion effects, this approach can yield power law strength distribution appeared on the many real weighted networks, such as traffic networks, internet networks. Besides, the relationship between strength and degree is given. Numerical simulations indicate that the strength distribution is strongly related to the strength dynamics decline. The model also provides us with a better description of the real weighted networks.

  16. An Energy Efficient Approach to Dynamic Coverage in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Mohamed K. Watfa

    2006-08-01

    Full Text Available Tracking of mobile targets is an important application of sensor networks. This is a non-trivial problem as the increased accuracy of tracking results in an overall reduction in the lifetime of the sensor network. In this paper, the tracking issue is first addressed through the determination of a reduced cover for the region of interest. Tracking algorithms are then developed using a reduced set of sensor nodes. The tradeoffs involved in the energy efficient tracking of the target are studied and the performance of the distributed tracking algorithms is compared with well known strategies from the literature. It is shown that the gain in energy savings comes at the expense of reduced quality of tracking. The algorithms guarantee the robustness and accuracy of tracking as well as the extension of the overall system lifetime. Numerical simulations are presented to validate the performance of the proposed algorithms.

  17. Co-evolutionnary network approach to cultural dynamics controlled by intolerance

    CERN Document Server

    Gracia-Lázaro, Carlos; Hernández, Laura; Floría, Luis Mario; Moreno, Yamir

    2011-01-01

    Starting from Axelrod's model of cultural dissemination, we introduce a rewiring probability, enabling agents to cut the links with their unfriendly neighbors if their cultural similarity is below a tolerance parameter. For low values of tolerance, rewiring promotes the convergence to a frozen monocultural state. However, intermediate tolerance values prevent rewiring once the network is fragmented, resulting in a multicultural society even for values of initial cultural diversity in which the original Axelrod model reaches globalization.

  18. The Technological Advent and Dynamics of the Network Society. The "Middle-Aged Approach"

    Directory of Open Access Journals (Sweden)

    Elena Mădălina Vătămănescu

    2016-08-01

    Full Text Available Nowadays, scholars have become interested in the ways new media influence young people, but its influence on middle-aged people have not been thoroughly examined. This age category is often ignored as most of the online activities are performed by young persons. New media gathers a wide range of phenomena which may become concepts of the network society through their diversity, knowledge and novelty. Interactivity is the most important characteristic, turning the user into a content creator, not just into a receiver. Moreover, what was once considered to be a personal state of mind tends to become a part of the public domain. Starting from these premises, the article advances the idea that the Internet can be beneficial not just for teenagers, but also for the middle-aged group oriented towards keeping in touch with relatives and friends and towards finding online useful information. At this level, the present paper aims to discover directions given by network society in the lives of middle-aged people. To this end, the research relies on an interview-based survey which addresses the way people may adapt to communication technology and to its particularities, exploring advantages or discovering potential drawbacks.

  19. Dynamic Network Change Detection

    Science.gov (United States)

    2008-12-01

    detection methods is presented; the cumulative sum ( CUSUM ), the exponentially weighted moving average (EWMA), and a scan statistic (SS). Statistical...minimizing the risk of false alarms. Three common SPC methods that we consider here are the CUSUM (Page, 1961), EWMA (Roberts, 1959), and the SS...successive dynamic network measures are then used to calculate the statistics for the CUSUM , the EWMA, and the SS. These are then compared to decision

  20. Hybrid Dynamic Network Data Envelopment Analysis

    Directory of Open Access Journals (Sweden)

    Ling Li

    2015-01-01

    Full Text Available Conventional DEA models make no hypothesis concerning the internal operations in a static situation. To open the “black box” and work with dynamic assessment issues synchronously, we put forward a hybrid model for evaluating the relative efficiencies of a set of DMUs over an observed time period with a composite of network DEA and dynamic DEA. We vertically deal with intermediate products between divisions with assignable inputs in the network structure and, horizontally, we extend network structure by means of a dynamic pattern with unrelated activities between two succeeding periods. The hybrid dynamic network DEA model proposed in this paper enables us to (i pry into the internal operations of DEA by another network structure, (ii obtain dynamic change of period efficiency, and (iii gain the overall dynamic efficiency of DMUs over the entire observed periods. We finally illustrate the calculation procedure of the proposed approach by a numerical example.

  1. The Structurally Dynamic Cellular Network and Quantum Graphity Approaches to Quantum Gravity - A Review and Comparison

    CERN Document Server

    Requardt, Manfred

    2015-01-01

    Starting from the working hypothesis that both physics and the corresponding mathematics have to be described by means of discrete concepts on the Planck-scale, one of the many problems one has to face in this enterprise is to find the discrete protoforms of the building blocks of our ordinary continuum physics and mathematics. We regard these continuum concepts and continuum spacetime in particular as being emergent, coarse-grained and derived relative to an underlying erratic and disordered microscopic substratum which is expected to play by quite different rules. A central role in our analysis is played by a geometric renormalization group which creates (among other things) a kind of sparse translocal network of correlations between the points in classical continuous space-time and underlies, in our view, such mysterious phenomena as holography and the black hole entropy-area law. The same point of view holds for quantum theory which we also regard as a low-energy, coarse-grained continuum theory, being em...

  2. Dynamic protoneural networks in plants: a new approach of spontaneous extracellular potential variations.

    Science.gov (United States)

    Debono, Marc-Williams

    2013-06-01

    Taking as a basis of discussion Kalanchoe's spontaneous and evoked extracellular activities recorded at the whole plant level, we put the challenging questions: do these low-voltage variations, together with endocellular events, reflect integrative properties and complex behavior in plants? Does it reflect common perceptive systems in animal and plant species? Is the ability of plants to treat short-term variations and information transfer without nervous system relevant? Is a protoneural construction of the world by lower organisms possible? More generally, the aim of this paper is to reevaluate the probably underestimated role of plant surface potentials in the plant relation life, carefully comparing the biogenesis of both animal and plant organisms in the era of plant neurobiology. Knowing that surface potentials participate at least to morphogenesis, cell to cell coupling, long distance transmission and transduction of stimuli, some hypothesis are given indicating that plants have to be studied as environmental biosensors and non linear dynamic systems able to detect transitional states between perception and response to stimuli. This study is conducted in the frame of the "plasticity paradigm," which gives a theoretical model of evolutionary processes and suggests some hypothesis about the nature of complexity, information and behavior.

  3. Complex networks for streamflow dynamics

    Directory of Open Access Journals (Sweden)

    B. Sivakumar

    2014-07-01

    Full Text Available Streamflow modeling is an enormously challenging problem, due to the complex and nonlinear interactions between climate inputs and landscape characteristics over a wide range of spatial and temporal scales. A basic idea in streamflow studies is to establish connections that generally exist, but attempts to identify such connections are largely dictated by the problem at hand and the system components in place. While numerous approaches have been proposed in the literature, our understanding of these connections remains far from adequate. The present study introduces the theory of networks, and in particular complex networks, to examine the connections in streamflow dynamics, with a particular focus on spatial connections. Monthly streamflow data observed over a period of 52 years from a large network of 639 monitoring stations in the contiguous United States are studied. The connections in this streamflow network are examined using the concept of clustering coefficient, which is a measure of local density and quantifies the network's tendency to cluster. The clustering coefficient analysis is performed with several different threshold levels, which are based on correlations in streamflow data between the stations. The clustering coefficient values of the 639 stations are used to obtain important information about the connections in the network and their extent, similarity and differences between stations/regions, and the influence of thresholds. The relationship of the clustering coefficient with the number of links/actual links in the network and the number of neighbors is also addressed. The results clearly indicate the usefulness of the network-based approach for examining connections in streamflow, with important implications for interpolation and extrapolation, classification of catchments, and predictions in ungaged basins.

  4. Theoretical approach and impact of correlations on the critical packet generation rate in traffic dynamics on complex networks

    CERN Document Server

    Fronczak, Piotr

    2015-01-01

    Using the formalism of the biased random walk in random uncorrelated networks with arbitrary degree distributions, we develop theoretical approach to the critical packet generation rate in traffic based on routing strategy with local information. We explain microscopic origins of the transition from the flow to the jammed phase and discuss how the node neighbourhood topology affects the transport capacity in uncorrelated and correlated networks.

  5. Emergent Opinion Dynamics on Endogenous Networks

    CERN Document Server

    Gulyás, L; Dugundji, Elenna R.

    2006-01-01

    In recent years networks have gained unprecedented attention in studying a broad range of topics, among them in complex systems research. In particular, multi-agent systems have seen an increased recognition of the importance of the interaction topology. It is now widely recognized that emergent phenomena can be highly sensitive to the structure of the interaction network connecting the system's components, and there is a growing body of abstract network classes, whose contributions to emergent dynamics are well-understood. However, much less understanding have yet been gained about the effects of network dynamics, especially in cases when the emergent phenomena feeds back to and changes the underlying network topology. Our work starts with the application of the network approach to discrete choice analysis, a standard method in econometric estimation, where the classic approach is grounded in individual choice and lacks social network influences. In this paper, we extend our earlier results by considering th...

  6. Hopfield Neural Network Approach to Clustering in Mobile Radio Networks

    Institute of Scientific and Technical Information of China (English)

    JiangYan; LiChengshu

    1995-01-01

    In this paper ,the Hopfield neural network(NN) algorithm is developed for selecting gateways in cluster linkage.The linked cluster(LC) architecture is assumed to achieve distributed network control in multihop radio networks throrgh the local controllers,called clusterheads and the nodes connecting these clusterheads are defined to be gateways.In Hopfield NN models ,the most critical issue being the determination of connection weights,we use the approach of Lagrange multipliers(LM) for its dynamic nature.

  7. SYNCHRONIZATION IN COMPLEX DYNAMICAL NETWORKS

    Institute of Scientific and Technical Information of China (English)

    WANG Xiaofan; CHEN Guanrong

    2003-01-01

    In the past few years, the discovery of small-world and scale-free properties of many natural and artificial complex networks has stimulated increasing interest in further studying the underlying organizing principles of various complex networks. This has led to significant advances in understanding the relationship between the topology and the dynamics of such complex networks. This paper reviews some recent research works on the synchronization phenomenon in various dynamical networks with small-world and scalefree connections.

  8. Signal Transduction at the Single-Cell Level: Approaches to Study the Dynamic Nature of Signaling Networks.

    Science.gov (United States)

    Handly, L Naomi; Yao, Jason; Wollman, Roy

    2016-09-25

    Signal transduction, or how cells interpret and react to external events, is a fundamental aspect of cellular function. Traditional study of signal transduction pathways involves mapping cellular signaling pathways at the population level. However, population-averaged readouts do not adequately illuminate the complex dynamics and heterogeneous responses found at the single-cell level. Recent technological advances that observe cellular response, computationally model signaling pathways, and experimentally manipulate cells now enable studying signal transduction at the single-cell level. These studies will enable deeper insights into the dynamic nature of signaling networks.

  9. Failure dynamics of the global risk network

    CERN Document Server

    Szymanski, Boleslaw K; Asztalos, Andrea; Sreenivasan, Sameet

    2013-01-01

    The risks faced by modern societies form an intricately interconnected network that often underlies crisis situations. Yet, little is known about the ways in which risks materializing across different domains influence each other. Here we present an approach in which experts' assessment of network dynamics is mapped into state transition probabilities in the model of network evolution. This approach enables us to analyze difficult to quantify risks, such as geo-political or social. The model is optimized using historical data on risk materialization. We apply this approach to the World Economic Forum Global Risk Network to quantify the adverse effects of risk interdependency. The optimized model can predict how changes in risk characteristics impact future states of the risk network. Thus, our approach facilitates actionable insights for mitigating globally networked risks.

  10. Epidemic dynamics on complex networks

    Institute of Scientific and Technical Information of China (English)

    ZHOU Tao; FU Zhongqian; WANG Binghong

    2006-01-01

    Recently, motivated by the pioneer work in revealing the small-world effect and scale-free property of various real-life networks, many scientists devote themselves to studying complex networks. One of the ultimate goals is to understand how the topological structures affect the dynamics upon networks. In this paper, we give a brief review on the studies of epidemic dynamics on complex networks, including the description of classical epidemic models, the epidemic spread on small-world and scale-free networks, and network immunization. Finally, perspectives and some interesting problems are proposed.

  11. Complex Dynamics in Communication Networks

    CERN Document Server

    Kocarev, Ljupco

    2005-01-01

    Computer and communication networks are among society's most important infrastructures. The internet, in particular, is a giant global network of networks without central control or administration. It is a paradigm of a complex system, where complexity may arise from different sources: topological structure, network evolution, connection and node diversity, or dynamical evolution. The present volume is the first book entirely devoted to the new and emerging field of nonlinear dynamics of TCP/IP networks. It addresses both scientists and engineers working in the general field of communication networks.

  12. Recent approaches to immune networks

    NARCIS (Netherlands)

    Boer, R.J. de; Neumann, A.U.; Perelson, A.S.; Segel, L.A.; Weisbuch, G.W.

    1993-01-01

    Jerne (1974) proposed that the immune system has important network characteristics that are similar in many respects to neural networks. This paper outlines some recent approaches taken by the authors and their colleagues toward the analysis of immune networks. Other approaches have been omitted owi

  13. QoS Differential Scheduling in Cognitive-Radio-Based Smart Grid Networks: An Adaptive Dynamic Programming Approach.

    Science.gov (United States)

    Yu, Rong; Zhong, Weifeng; Xie, Shengli; Zhang, Yan; Zhang, Yun

    2016-02-01

    As the next-generation power grid, smart grid will be integrated with a variety of novel communication technologies to support the explosive data traffic and the diverse requirements of quality of service (QoS). Cognitive radio (CR), which has the favorable ability to improve the spectrum utilization, provides an efficient and reliable solution for smart grid communications networks. In this paper, we study the QoS differential scheduling problem in the CR-based smart grid communications networks. The scheduler is responsible for managing the spectrum resources and arranging the data transmissions of smart grid users (SGUs). To guarantee the differential QoS, the SGUs are assigned to have different priorities according to their roles and their current situations in the smart grid. Based on the QoS-aware priority policy, the scheduler adjusts the channels allocation to minimize the transmission delay of SGUs. The entire transmission scheduling problem is formulated as a semi-Markov decision process and solved by the methodology of adaptive dynamic programming. A heuristic dynamic programming (HDP) architecture is established for the scheduling problem. By the online network training, the HDP can learn from the activities of primary users and SGUs, and adjust the scheduling decision to achieve the purpose of transmission delay minimization. Simulation results illustrate that the proposed priority policy ensures the low transmission delay of high priority SGUs. In addition, the emergency data transmission delay is also reduced to a significantly low level, guaranteeing the differential QoS in smart grid.

  14. Markovian Dynamics on Complex Reaction Networks

    CERN Document Server

    Goutsias, John

    2012-01-01

    Complex networks, comprised of individual elements that interact with each other through reaction channels, are ubiquitous across many scientific and engineering disciplines. Examples include biochemical, pharmacokinetic, epidemiological, ecological, social, neural, and multi-agent networks. A common approach to modeling such networks is by a master equation that governs the dynamic evolution of the joint probability mass function of the underling population process and naturally leads to Markovian dynamics for such process. Due however to the nonlinear nature of most reactions, the computation and analysis of the resulting stochastic population dynamics is a difficult task. This review article provides a coherent and comprehensive coverage of recently developed approaches and methods to tackle this problem. After reviewing a general framework for modeling Markovian reaction networks and giving specific examples, the authors present numerical and computational techniques capable of evaluating or approximating...

  15. Markovian dynamics on complex reaction networks

    Energy Technology Data Exchange (ETDEWEB)

    Goutsias, J., E-mail: goutsias@jhu.edu; Jenkinson, G., E-mail: jenkinson@jhu.edu

    2013-08-10

    Complex networks, comprised of individual elements that interact with each other through reaction channels, are ubiquitous across many scientific and engineering disciplines. Examples include biochemical, pharmacokinetic, epidemiological, ecological, social, neural, and multi-agent networks. A common approach to modeling such networks is by a master equation that governs the dynamic evolution of the joint probability mass function of the underlying population process and naturally leads to Markovian dynamics for such process. Due however to the nonlinear nature of most reactions and the large size of the underlying state-spaces, computation and analysis of the resulting stochastic population dynamics is a difficult task. This review article provides a coherent and comprehensive coverage of recently developed approaches and methods to tackle this problem. After reviewing a general framework for modeling Markovian reaction networks and giving specific examples, the authors present numerical and computational techniques capable of evaluating or approximating the solution of the master equation, discuss a recently developed approach for studying the stationary behavior of Markovian reaction networks using a potential energy landscape perspective, and provide an introduction to the emerging theory of thermodynamic analysis of such networks. Three representative problems of opinion formation, transcription regulation, and neural network dynamics are used as illustrative examples.

  16. Variational perturbation and extended Plefka approaches to dynamics on random networks: the case of the kinetic Ising model

    CERN Document Server

    Bachschmid-Romano, Ludovica; Opper, Manfred; Roudi, Yasser

    2016-01-01

    We describe and analyze some novel approaches for studying the dynamics of Ising spin glass models. We first briefly consider the variational approach based on minimizing the Kullback-Leibler divergence between independent trajectories and the real ones and note that this approach only coincides with the mean field equations from the saddle point approximation to the generating functional when the dynamics is defined through a logistic link function, which is the case for the kinetic Ising model with parallel update. We then spend the rest of the paper developing two ways of going beyond the saddle point approximation to the generating functional. In the first one, we develop a variational perturbative approximation to the generating functional by expanding the action around a quadratic function of the local fields and conjugate local fields whose parameters are optimized. We derive analytical expressions for the optimal parameters and show that when the optimization is suitably restricted, we recover the mea...

  17. Identifying Community Structures in Dynamic Networks

    CERN Document Server

    Alvari, Hamidreza; Sukthankar, Gita; Lakkaraju, Kiran

    2016-01-01

    Most real-world social networks are inherently dynamic, composed of communities that are constantly changing in membership. To track these evolving communities, we need dynamic community detection techniques. This article evaluates the performance of a set of game theoretic approaches for identifying communities in dynamic networks. Our method, D-GT (Dynamic Game Theoretic community detection), models each network node as a rational agent who periodically plays a community membership game with its neighbors. During game play, nodes seek to maximize their local utility by joining or leaving the communities of network neighbors. The community structure emerges after the game reaches a Nash equilibrium. Compared to the benchmark community detection methods, D-GT more accurately predicts the number of communities and finds community assignments with a higher normalized mutual information, while retaining a good modularity.

  18. Network Physiology: How Organ Systems Dynamically Interact.

    Science.gov (United States)

    Bartsch, Ronny P; Liu, Kang K L; Bashan, Amir; Ivanov, Plamen Ch

    2015-01-01

    We systematically study how diverse physiologic systems in the human organism dynamically interact and collectively behave to produce distinct physiologic states and functions. This is a fundamental question in the new interdisciplinary field of Network Physiology, and has not been previously explored. Introducing the novel concept of Time Delay Stability (TDS), we develop a computational approach to identify and quantify networks of physiologic interactions from long-term continuous, multi-channel physiological recordings. We also develop a physiologically-motivated visualization framework to map networks of dynamical organ interactions to graphical objects encoded with information about the coupling strength of network links quantified using the TDS measure. Applying a system-wide integrative approach, we identify distinct patterns in the network structure of organ interactions, as well as the frequency bands through which these interactions are mediated. We establish first maps representing physiologic organ network interactions and discover basic rules underlying the complex hierarchical reorganization in physiologic networks with transitions across physiologic states. Our findings demonstrate a direct association between network topology and physiologic function, and provide new insights into understanding how health and distinct physiologic states emerge from networked interactions among nonlinear multi-component complex systems. The presented here investigations are initial steps in building a first atlas of dynamic interactions among organ systems.

  19. Network Physiology: How Organ Systems Dynamically Interact.

    Directory of Open Access Journals (Sweden)

    Ronny P Bartsch

    Full Text Available We systematically study how diverse physiologic systems in the human organism dynamically interact and collectively behave to produce distinct physiologic states and functions. This is a fundamental question in the new interdisciplinary field of Network Physiology, and has not been previously explored. Introducing the novel concept of Time Delay Stability (TDS, we develop a computational approach to identify and quantify networks of physiologic interactions from long-term continuous, multi-channel physiological recordings. We also develop a physiologically-motivated visualization framework to map networks of dynamical organ interactions to graphical objects encoded with information about the coupling strength of network links quantified using the TDS measure. Applying a system-wide integrative approach, we identify distinct patterns in the network structure of organ interactions, as well as the frequency bands through which these interactions are mediated. We establish first maps representing physiologic organ network interactions and discover basic rules underlying the complex hierarchical reorganization in physiologic networks with transitions across physiologic states. Our findings demonstrate a direct association between network topology and physiologic function, and provide new insights into understanding how health and distinct physiologic states emerge from networked interactions among nonlinear multi-component complex systems. The presented here investigations are initial steps in building a first atlas of dynamic interactions among organ systems.

  20. A Network Approach to Unravel Correlated Ion Pair Dynamics in Protic Ionic Liquids. The Case of Triethylammonium Nitrate

    CERN Document Server

    Zentel, Tobias

    2016-01-01

    The intermolecular interactions in the title compound are investigated using self-consistent charge density functional based tight binding molecular dynamics. Emphasis is put on the analysis of correlated motions of ion pairs using ideas of network theory. At equilibrium such correlations are not very pronounced on average. However, there exist sizeable local correlations for cases where two cations share the same anion via two NHO-hydrogen bonds. The effect of an external perturbation, which artificially introduces a sudden local heating of an NH-bond, is investigated using nonequilibrium molecular dynamics. Here, it is found that the average N-H bond vibrational relaxation time is about 5.3 ~ps. This energy redistribution is rather nonspecific with respect to the ion pairs and does not lead to long-range correlations spreading from the initially excited ion pair.

  1. Variational perturbation and extended Plefka approaches to dynamics on random networks: the case of the kinetic Ising model

    Science.gov (United States)

    Bachschmid-Romano, L.; Battistin, C.; Opper, M.; Roudi, Y.

    2016-10-01

    We describe and analyze some novel approaches for studying the dynamics of Ising spin glass models. We first briefly consider the variational approach based on minimizing the Kullback-Leibler divergence between independent trajectories and the real ones and note that this approach only coincides with the mean field equations from the saddle point approximation to the generating functional when the dynamics is defined through a logistic link function, which is the case for the kinetic Ising model with parallel update. We then spend the rest of the paper developing two ways of going beyond the saddle point approximation to the generating functional. In the first one, we develop a variational perturbative approximation to the generating functional by expanding the action around a quadratic function of the local fields and conjugate local fields whose parameters are optimized. We derive analytical expressions for the optimal parameters and show that when the optimization is suitably restricted, we recover the mean field equations that are exact for the fully asymmetric random couplings (Mézard and Sakellariou 2011 J. Stat. Mech. 2011 L07001). However, without this restriction the results are different. We also describe an extended Plefka expansion in which in addition to the magnetization, we also fix the correlation and response functions. Finally, we numerically study the performance of these approximations for Sherrington-Kirkpatrick type couplings for various coupling strengths and the degrees of coupling symmetry, for both temporally constant but random, as well as time varying external fields. We show that the dynamical equations derived from the extended Plefka expansion outperform the others in all regimes, although it is computationally more demanding. The unconstrained variational approach does not perform well in the small coupling regime, while it approaches dynamical TAP equations of (Roudi and Hertz 2011 J. Stat. Mech. 2011 P03031) for strong couplings.

  2. Symmetry in Critical Random Boolean Networks Dynamics

    Science.gov (United States)

    Bassler, Kevin E.; Hossein, Shabnam

    2014-03-01

    Using Boolean networks as prototypical examples, the role of symmetry in the dynamics of heterogeneous complex systems is explored. We show that symmetry of the dynamics, especially in critical states, is a controlling feature that can be used to both greatly simplify analysis and to characterize different types of dynamics. Symmetry in Boolean networks is found by determining the frequency at which the various Boolean output functions occur. Classes of functions occur at the same frequency. These classes are orbits of the controlling symmetry group. We find the nature of the symmetry that controls the dynamics of critical random Boolean networks by determining the frequency of output functions utilized by nodes that remain active on dynamical attractors. This symmetry preserves canalization, a form of network robustness. We compare it to a different symmetry known to control the dynamics of an evolutionary process that allows Boolean networks to organize into a critical state. Our results demonstrate the usefulness and power of using symmetry to characterize complex network dynamics, and introduce a novel approach to the analysis of heterogeneous complex systems. This work was supported by the NSF through grants DMR-0908286 and DMR-1206839, and by the AFSOR and DARPA through grant FA9550-12-1-0405.

  3. Dynamic ad hoc networks

    CERN Document Server

    Rashvand, Habib

    2013-01-01

    Motivated by the exciting new application paradigm of using amalgamated technologies of the Internet and wireless, the next generation communication networks (also called 'ubiquitous', 'complex' and 'unstructured' networking) are changing the way we develop and apply our future systems and services at home and on local, national and global scales. Whatever the interconnection - a WiMAX enabled networked mobile vehicle, MEMS or nanotechnology enabled distributed sensor systems, Vehicular Ad hoc Networking (VANET) or Mobile Ad hoc Networking (MANET) - all can be classified under new networking s

  4. Cognitive Dynamic Optical Networks

    DEFF Research Database (Denmark)

    de Miguel, Ignacio; Duran, Ramon J.; Lorenzo, Ruben M.

    2013-01-01

    Cognitive networks are a promising solution for the control of heterogeneous optical networks. We review their fundamentals as well as a number of applications developed in the framework of the EU FP7 CHRON project.......Cognitive networks are a promising solution for the control of heterogeneous optical networks. We review their fundamentals as well as a number of applications developed in the framework of the EU FP7 CHRON project....

  5. Directed network discovery with dynamic network modelling.

    Science.gov (United States)

    Anzellotti, Stefano; Kliemann, Dorit; Jacoby, Nir; Saxe, Rebecca

    2017-05-01

    Cognitive tasks recruit multiple brain regions. Understanding how these regions influence each other (the network structure) is an important step to characterize the neural basis of cognitive processes. Often, limited evidence is available to restrict the range of hypotheses a priori, and techniques that sift efficiently through a large number of possible network structures are needed (network discovery). This article introduces a novel modelling technique for network discovery (Dynamic Network Modelling or DNM) that builds on ideas from Granger Causality and Dynamic Causal Modelling introducing three key changes: (1) efficient network discovery is implemented with statistical tests on the consistency of model parameters across participants, (2) the tests take into account the magnitude and sign of each influence, and (3) variance explained in independent data is used as an absolute (rather than relative) measure of the quality of the network model. In this article, we outline the functioning of DNM, we validate DNM in simulated data for which the ground truth is known, and we report an example of its application to the investigation of influences between regions during emotion recognition, revealing top-down influences from brain regions encoding abstract representations of emotions (medial prefrontal cortex and superior temporal sulcus) onto regions engaged in the perceptual analysis of facial expressions (occipital face area and fusiform face area) when participants are asked to switch between reporting the emotional valence and the age of a face. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Boolean modeling: a logic-based dynamic approach for understanding signaling and regulatory networks and for making useful predictions.

    Science.gov (United States)

    Albert, Réka; Thakar, Juilee

    2014-01-01

    The biomolecules inside or near cells form a complex interacting system. Cellular phenotypes and behaviors arise from the totality of interactions among the components of this system. A fruitful way of modeling interacting biomolecular systems is by network-based dynamic models that characterize each component by a state variable, and describe the change in the state variables due to the interactions in the system. Dynamic models can capture the stable state patterns of this interacting system and can connect them to different cell fates or behaviors. A Boolean or logic model characterizes each biomolecule by a binary state variable that relates the abundance of that molecule to a threshold abundance necessary for downstream processes. The regulation of this state variable is described in a parameter free manner, making Boolean modeling a practical choice for systems whose kinetic parameters have not been determined. Boolean models integrate the body of knowledge regarding the components and interactions of biomolecular systems, and capture the system's dynamic repertoire, for example the existence of multiple cell fates. These models were used for a variety of systems and led to important insights and predictions. Boolean models serve as an efficient exploratory model, a guide for follow-up experiments, and as a foundation for more quantitative models.

  7. Metric projection for dynamic multiplex networks

    CERN Document Server

    Jurman, Giuseppe

    2016-01-01

    Evolving multiplex networks are a powerful model for representing the dynamics along time of different phenomena, such as social networks, power grids, biological pathways. However, exploring the structure of the multiplex network time series is still an open problem. Here we propose a two-steps strategy to tackle this problem based on the concept of distance (metric) between networks. Given a multiplex graph, first a network of networks is built for each time steps, and then a real valued time series is obtained by the sequence of (simple) networks by evaluating the distance from the first element of the series. The effectiveness of this approach in detecting the occurring changes along the original time series is shown on a synthetic example first, and then on the Gulf dataset of political events.

  8. Cognitive Dynamic Optical Networks

    DEFF Research Database (Denmark)

    de Miguel, Ignacio; Duran, Ramon J.; Jimenez, Tamara

    2013-01-01

    learning with the aim of improving performance. In this paper, we review the fundamentals of cognitive networks and focus on their application to the optical networking area. In particular, a number of cognitive network architectures proposed so far, as well as their associated supporting technologies......The use of cognition is a promising element for the control of heterogeneous optical networks. Not only are cognitive networks able to sense current network conditions and act according to them, but they also take into account the knowledge acquired through past experiences; that is, they include......, are reviewed. Moreover, several applications, mainly developed in the framework of the EU FP7 Cognitive Heterogeneous Reconfigurable Optical Network (CHRON) project, are also described....

  9. Symmetry in critical random Boolean network dynamics

    Science.gov (United States)

    Hossein, Shabnam; Reichl, Matthew D.; Bassler, Kevin E.

    2014-04-01

    Using Boolean networks as prototypical examples, the role of symmetry in the dynamics of heterogeneous complex systems is explored. We show that symmetry of the dynamics, especially in critical states, is a controlling feature that can be used both to greatly simplify analysis and to characterize different types of dynamics. Symmetry in Boolean networks is found by determining the frequency at which the various Boolean output functions occur. There are classes of functions that consist of Boolean functions that behave similarly. These classes are orbits of the controlling symmetry group. We find that the symmetry that controls the critical random Boolean networks is expressed through the frequency by which output functions are utilized by nodes that remain active on dynamical attractors. This symmetry preserves canalization, a form of network robustness. We compare it to a different symmetry known to control the dynamics of an evolutionary process that allows Boolean networks to organize into a critical state. Our results demonstrate the usefulness and power of using the symmetry of the behavior of the nodes to characterize complex network dynamics, and introduce an alternative approach to the analysis of heterogeneous complex systems.

  10. Symmetry in critical random Boolean network dynamics.

    Science.gov (United States)

    Hossein, Shabnam; Reichl, Matthew D; Bassler, Kevin E

    2014-04-01

    Using Boolean networks as prototypical examples, the role of symmetry in the dynamics of heterogeneous complex systems is explored. We show that symmetry of the dynamics, especially in critical states, is a controlling feature that can be used both to greatly simplify analysis and to characterize different types of dynamics. Symmetry in Boolean networks is found by determining the frequency at which the various Boolean output functions occur. There are classes of functions that consist of Boolean functions that behave similarly. These classes are orbits of the controlling symmetry group. We find that the symmetry that controls the critical random Boolean networks is expressed through the frequency by which output functions are utilized by nodes that remain active on dynamical attractors. This symmetry preserves canalization, a form of network robustness. We compare it to a different symmetry known to control the dynamics of an evolutionary process that allows Boolean networks to organize into a critical state. Our results demonstrate the usefulness and power of using the symmetry of the behavior of the nodes to characterize complex network dynamics, and introduce an alternative approach to the analysis of heterogeneous complex systems.

  11. Nonlinear Dynamics on Interconnected Networks

    Science.gov (United States)

    Arenas, Alex; De Domenico, Manlio

    2016-06-01

    Networks of dynamical interacting units can represent many complex systems, from the human brain to transportation systems and societies. The study of these complex networks, when accounting for different types of interactions has become a subject of interest in the last few years, especially because its representational power in the description of users' interactions in diverse online social platforms (Facebook, Twitter, Instagram, etc.) [1], or in representing different transportation modes in urban networks [2,3]. The general name coined for these networks is multilayer networks, where each layer accounts for a type of interaction (see Fig. 1).

  12. Tensor networks for dynamic spacetimes

    CERN Document Server

    May, Alex

    2016-01-01

    Existing tensor network models of holography are limited to representing the geometry of constant time slices of static spacetimes. We study the possibility of describing the geometry of a dynamic spacetime using tensor networks. We find it is necessary to give a new definition of length in the network, and propose a definition based on the mutual information. We show that by associating a set of networks with a single quantum state and making use of the mutual information based definition of length, a network analogue of the maximin formula can be used to calculate the entropy of boundary regions.

  13. Structurally Dynamic Spin Market Networks

    Science.gov (United States)

    Horváth, Denis; Kuscsik, Zoltán

    The agent-based model of stock price dynamics on a directed evolving complex network is suggested and studied by direct simulation. The stationary regime is maintained as a result of the balance between the extremal dynamics, adaptivity of strategic variables and reconnection rules. The inherent structure of node agent "brain" is modeled by a recursive neural network with local and global inputs and feedback connections. For specific parametric combination the complex network displays small-world phenomenon combined with scale-free behavior. The identification of a local leader (network hub, agent whose strategies are frequently adapted by its neighbors) is carried out by repeated random walk process through network. The simulations show empirically relevant dynamics of price returns and volatility clustering. The additional emerging aspects of stylized market statistics are Zipfian distributions of fitness.

  14. Dynamical Convergence Trajectory in Networks

    Institute of Scientific and Technical Information of China (English)

    TAN Ning; ZHANG Yun-Jun; OUYANG Qi; GENG Zhi

    2005-01-01

    @@ It is well known that topology and dynamics are two major aspects to determine the function of a network. We study one of the dynamic properties of a network: trajectory convergence, i.e. how a system converges to its steady state. Using numerical and analytical methods, we show that in a logical-like dynamical model, the occurrence of convergent trajectory in a network depends mainly on the type of the fixed point and the ratio between activation and inhibition links. We analytically proof that this property is induced by the competition between two types of state transition structures in phase space: tree-like transition structure and star-like transition structure. We show that the biological networks, such as the cell cycle network in budding yeast, prefers the tree-like transition structures and suggest that this type of convergence trajectories may be universal.

  15. Computer Networks A Systems Approach

    CERN Document Server

    Peterson, Larry L

    2011-01-01

    This best-selling and classic book teaches you the key principles of computer networks with examples drawn from the real world of network and protocol design. Using the Internet as the primary example, the authors explain various protocols and networking technologies. Their systems-oriented approach encourages you to think about how individual network components fit into a larger, complex system of interactions. Whatever your perspective, whether it be that of an application developer, network administrator, or a designer of network equipment or protocols, you will come away with a "big pictur

  16. Studying Dynamics in Business Networks

    DEFF Research Database (Denmark)

    Andersen, Poul Houman; Anderson, Helen; Havila, Virpi;

    1998-01-01

    This paper develops a theory on network dynamics using the concepts of role and position from sociological theory. Moreover, the theory is further tested using case studies from Denmark and Finland...

  17. Experimental analysis of dynamic characteristics on the PEM fuel cell stack by using Taguchi approach with neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Wei-Lung [Department of Vehicle Engineering, Army Academy, No. 113, Sec.4, Chun-San E. Rd., Chun-Li 320 (China); Wu, Sheng-Ju; Shiah, Sheau-Wen [Department of Power Vehicle and Systems Engineering, Chung Cheng Institute of Technology, National Defense University, No. 190, Sanyuan 1st St., Tashi, Taoyuan 335 (China)

    2010-10-15

    This study determines the optimum operating parameters for a proton exchange membrane fuel cell (PEMFC) stack to obtain small variation and maximum electric power output using a robust parameter design (RPD). The operating parameters examined experimentally are operating temperatures, operating pressures, anode/cathode humidification temperatures, and reactant flow rates. First, the dynamic Taguchi method is used to obtain the maximum and stable power density against the different current densities, which are regarded as the systemic inputs considered a signal factor. The relationship between control factors and responses in the PEMFC stack is determined using a neural network. The discrete parameter levels in the dynamic Taguchi method can be divided into desired levels to acquire real optimum operating parameters. Based on these investigations, the PEMFC stack is operated at the current densities of 0.4-0.8 A/cm{sup 2}. Since the voltage shift is quite small (roughly 0.73-0.83 V for each single cell), the efficiency would be higher. In the range of operation, the operating pressure, the cathode humidification temperature and the interactions between operating temperature and operating pressure significantly impact PEMFC stack performance. As the operating pressure increasing, the increments of the electric power decrease, and power stability is enhanced because the variation in responses is reduced. (author)

  18. Wireless Sensor Networks Approach

    Science.gov (United States)

    Perotti, Jose M.

    2003-01-01

    This viewgraph presentation provides information on hardware and software configurations for a network architecture for sensors. The hardware configuration uses a central station and remote stations. The software configuration uses the 'lost station' software algorithm. The presentation profiles a couple current examples of this network architecture in use.

  19. Evolution of cooperation on stochastic dynamical networks.

    Directory of Open Access Journals (Sweden)

    Bin Wu

    Full Text Available Cooperative behavior that increases the fitness of others at a cost to oneself can be promoted by natural selection only in the presence of an additional mechanism. One such mechanism is based on population structure, which can lead to clustering of cooperating agents. Recently, the focus has turned to complex dynamical population structures such as social networks, where the nodes represent individuals and links represent social relationships. We investigate how the dynamics of a social network can change the level of cooperation in the network. Individuals either update their strategies by imitating their partners or adjust their social ties. For the dynamics of the network structure, a random link is selected and breaks with a probability determined by the adjacent individuals. Once it is broken, a new one is established. This linking dynamics can be conveniently characterized by a Markov chain in the configuration space of an ever-changing network of interacting agents. Our model can be analytically solved provided the dynamics of links proceeds much faster than the dynamics of strategies. This leads to a simple rule for the evolution of cooperation: The more fragile links between cooperating players and non-cooperating players are (or the more robust links between cooperators are, the more likely cooperation prevails. Our approach may pave the way for analytically investigating coevolution of strategy and structure.

  20. Complexity, dynamic cellular network, and tumorigenesis.

    Science.gov (United States)

    Waliszewski, P

    1997-01-01

    A holistic approach to tumorigenesis is proposed. The main element of the model is the existence of dynamic cellular network. This network comprises a molecular and an energetistic structure of a cell connected through the multidirectional flow of information. The interactions within dynamic cellular network are complex, stochastic, nonlinear, and also involve quantum effects. From this non-reductionist perspective, neither tumorigenesis can be limited to the genetic aspect, nor the initial event must be of molecular nature, nor mutations and epigenetic factors are mutually exclusive, nor a link between cause and effect can be established. Due to complexity, an unstable stationary state of dynamic cellular network rather than a group of unrelated genes determines the phenotype of normal and transformed cells. This implies relativity of tumor suppressor genes and oncogenes. A bifurcation point is defined as an unstable state of dynamic cellular network leading to the other phenotype-stationary state. In particular, the bifurcation point may be determined by a change of expression of a single gene. Then, the gene is called bifurcation point gene. The unstable stationary state facilitates the chaotic dynamics. This may result in a fractal dimension of both normal and tumor tissues. The co-existence of chaotic dynamics and complexity is the essence of cellular processes and shapes differentiation, morphogenesis, and tumorigenesis. In consequence, tumorigenesis is a complex, unpredictable process driven by the interplay between self-organisation and selection.

  1. Tourism destination: The networking approach

    Directory of Open Access Journals (Sweden)

    Żemła Michał

    2016-12-01

    Full Text Available Different approaches to the analysis of tourism destinations as the basic units of research in tourism, are reviewed in this paper. Traditional geographical and economic perspectives are presented as the bases for more modern system and networking approaches. Network analysis is discussed as the most useful current approach to understand cooperation and coopetition processes taking place in destinations. This approach, developed in general management theory, however, if implicated directly in tourism, is not free from major problems and may lead to misleading conclusions. Among such problems, spatial embeddedness and the non-voluntary character of membership in a network, the crucial role of free goods in product creation, the predominance of SMEs in a destination network, differences between particular destinations and the difficulty in setting clear borders between networks, are discussed.

  2. Dynamical System Approaches to Combinatorial Optimization

    DEFF Research Database (Denmark)

    Starke, Jens

    2013-01-01

    Several dynamical system approaches to combinatorial optimization problems are described and compared. These include dynamical systems derived from penalty methods; the approach of Hopfield and Tank; self-organizing maps, that is, Kohonen networks; coupled selection equations; and hybrid methods....... Many of them are investigated analytically, and the costs of the solutions are compared numerically with those of solutions obtained by simulated annealing and the costs of a global optimal solution. Using dynamical systems, a solution to the combinatorial optimization problem emerges in the limit...... of large times as an asymptotically stable point of the dynamics. The obtained solutions are often not globally optimal but good approximations of it. Dynamical system and neural network approaches are appropriate methods for distributed and parallel processing. Because of the parallelization...

  3. Competition and cooperation in dynamic replication networks.

    Science.gov (United States)

    Dadon, Zehavit; Wagner, Nathaniel; Alasibi, Samaa; Samiappan, Manickasundaram; Mukherjee, Rakesh; Ashkenasy, Gonen

    2015-01-07

    The simultaneous replication of six coiled-coil peptide mutants by reversible thiol-thioester exchange reactions is described. Experimental analysis of the time dependent evolution of networks formed by the peptides under different conditions reveals a complex web of molecular interactions and consequent mutant replication, governed by competition for resources and by autocatalytic and/or cross-catalytic template-assisted reactions. A kinetic model, first of its kind, is then introduced, allowing simulation of varied network behaviour as a consequence of changing competition and cooperation scenarios. We suggest that by clarifying the kinetic description of these relatively complex dynamic networks, both at early stages of the reaction far from equilibrium and at later stages approaching equilibrium, one lays the foundation for studying dynamic networks out-of-equilibrium in the near future.

  4. The Dynamics of Semilattice Networks

    CERN Document Server

    Veliz-Cuba, Alan

    2010-01-01

    Time-discrete dynamical systems on a finite state space have been used with great success to model natural and engineered systems such as biological networks, social networks, and engineered control systems. They have the advantage of being intuitive and models can be easily simulated on a computer in most cases; however, few analytical tools beyond simulation are available. The motivation for this paper is to develop such tools for the analysis of models in biology. In this paper we have identified a broad class of discrete dynamical systems with a finite phase space for which one can derive strong results about their long-term dynamics in terms of properties of their dependency graphs. We classify completely the limit cycles of semilattice networks with strongly connected dependency graph and provide polynomial upper and lower bounds in the general case.

  5. Structurally dynamic spin market networks

    CERN Document Server

    Horváth, D

    2007-01-01

    The agent-based model of price dynamics on a directed evolving complex network is suggested and studied by direct simulation. The resulting stationary regime is maintained as a result of the balance between the extremal dynamics, adaptivity of strategic variables and reconnection rules. For some properly selected parametric combination the network displays small-world phenomenon with high mean clustering coefficient and power-law node degree distribution. The mechanism of repeated random walk through network combined with a fitness recognition is proposed and tested to generate modular multi-leader market. The simulations suggest that dynamics of fitness is the slowest process that manifests itself in the volatility clustering of the log-price returns.

  6. Dynamics on modular networks with heterogeneous correlations

    Science.gov (United States)

    Melnik, Sergey; Porter, Mason A.; Mucha, Peter J.; Gleeson, James P.

    2014-06-01

    We develop a new ensemble of modular random graphs in which degree-degree correlations can be different in each module, and the inter-module connections are defined by the joint degree-degree distribution of nodes for each pair of modules. We present an analytical approach that allows one to analyze several types of binary dynamics operating on such networks, and we illustrate our approach using bond percolation, site percolation, and the Watts threshold model. The new network ensemble generalizes existing models (e.g., the well-known configuration model and Lancichinetti-Fortunato-Radicchi networks) by allowing a heterogeneous distribution of degree-degree correlations across modules, which is important for the consideration of nonidentical interacting networks.

  7. Unification of theoretical approaches for epidemic spreading on complex networks

    Science.gov (United States)

    Wang, Wei; Tang, Ming; Stanley, H. Eugene; Braunstein, Lidia A.

    2017-03-01

    Models of epidemic spreading on complex networks have attracted great attention among researchers in physics, mathematics, and epidemiology due to their success in predicting and controlling scenarios of epidemic spreading in real-world scenarios. To understand the interplay between epidemic spreading and the topology of a contact network, several outstanding theoretical approaches have been developed. An accurate theoretical approach describing the spreading dynamics must take both the network topology and dynamical correlations into consideration at the expense of increasing the complexity of the equations. In this short survey we unify the most widely used theoretical approaches for epidemic spreading on complex networks in terms of increasing complexity, including the mean-field, the heterogeneous mean-field, the quench mean-field, dynamical message-passing, link percolation, and pairwise approximation. We build connections among these approaches to provide new insights into developing an accurate theoretical approach to spreading dynamics on complex networks.

  8. Dynamic simulation of regulatory networks using SQUAD

    Directory of Open Access Journals (Sweden)

    Xenarios Ioannis

    2007-11-01

    Full Text Available Abstract Background The ambition of most molecular biologists is the understanding of the intricate network of molecular interactions that control biological systems. As scientists uncover the components and the connectivity of these networks, it becomes possible to study their dynamical behavior as a whole and discover what is the specific role of each of their components. Since the behavior of a network is by no means intuitive, it becomes necessary to use computational models to understand its behavior and to be able to make predictions about it. Unfortunately, most current computational models describe small networks due to the scarcity of kinetic data available. To overcome this problem, we previously published a methodology to convert a signaling network into a dynamical system, even in the total absence of kinetic information. In this paper we present a software implementation of such methodology. Results We developed SQUAD, a software for the dynamic simulation of signaling networks using the standardized qualitative dynamical systems approach. SQUAD converts the network into a discrete dynamical system, and it uses a binary decision diagram algorithm to identify all the steady states of the system. Then, the software creates a continuous dynamical system and localizes its steady states which are located near the steady states of the discrete system. The software permits to make simulations on the continuous system, allowing for the modification of several parameters. Importantly, SQUAD includes a framework for perturbing networks in a manner similar to what is performed in experimental laboratory protocols, for example by activating receptors or knocking out molecular components. Using this software we have been able to successfully reproduce the behavior of the regulatory network implicated in T-helper cell differentiation. Conclusion The simulation of regulatory networks aims at predicting the behavior of a whole system when subject

  9. Spontaneous recovery in dynamical networks

    Science.gov (United States)

    Majdandzic, Antonio; Podobnik, Boris; Buldyrev, Sergey V.; Kenett, Dror Y.; Havlin, Shlomo; Eugene Stanley, H.

    2014-01-01

    Much research has been carried out to explore the structural properties and vulnerability of complex networks. Of particular interest are abrupt dynamic events that cause networks to irreversibly fail. However, in many real-world phenomena, such as brain seizures in neuroscience or sudden market crashes in finance, after an inactive period of time a significant part of the damaged network is capable of spontaneously becoming active again. The process often occurs repeatedly. To model this marked network recovery, we examine the effect of local node recoveries and stochastic contiguous spreading, and find that they can lead to the spontaneous emergence of macroscopic `phase-flipping' phenomena. As the network is of finite size and is stochastic, the fraction of active nodes z switches back and forth between the two network collective modes characterized by high network activity and low network activity. Furthermore, the system exhibits a strong hysteresis behaviour analogous to phase transitions near a critical point. We present real-world network data exhibiting phase switching behaviour in accord with the predictions of the model.

  10. Complex networks: Dynamics and security

    Indian Academy of Sciences (India)

    Ying-Cheng Lai; Adilson Motter; Takashi Nishikawa; Kwangho Park; Liang Zhao

    2005-04-01

    This paper presents a perspective in the study of complex networks by focusing on how dynamics may affect network security under attacks. In particular, we review two related problems: attack-induced cascading breakdown and range-based attacks on links. A cascade in a network means the failure of a substantial fraction of the entire network in a cascading manner, which can be induced by the failure of or attacks on only a few nodes. These have been reported for the internet and for the power grid (e.g., the August 10, 1996 failure of the western United States power grid). We study a mechanism for cascades in complex networks by constructing a model incorporating the flows of information and physical quantities in the network. Using this model we can also show that the cascading phenomenon can be understood as a phase transition in terms of the key parameter characterizing the node capacity. For a parameter value below the phase-transition point, cascading failures can cause the network to disintegrate almost entirely. We will show how to obtain a theoretical estimate for the phase-transition point. The second problem is motivated by the fact that most existing works on the security of complex networks consider attacks on nodes rather than on links. We address attacks on links. Our investigation leads to the finding that many scale-free networks are more sensitive to attacks on short-range than on long-range links. Considering that the small-world phenomenon in complex networks has been identified as being due to the presence of long-range links, i.e., links connecting nodes that would otherwise be separated by a long node-to-node distance, our result, besides its importance concerning network efficiency and security, has the striking implication that the small-world property of scale-free networks is mainly due to short-range links.

  11. Nonparametric inference of network structure and dynamics

    Science.gov (United States)

    Peixoto, Tiago P.

    The network structure of complex systems determine their function and serve as evidence for the evolutionary mechanisms that lie behind them. Despite considerable effort in recent years, it remains an open challenge to formulate general descriptions of the large-scale structure of network systems, and how to reliably extract such information from data. Although many approaches have been proposed, few methods attempt to gauge the statistical significance of the uncovered structures, and hence the majority cannot reliably separate actual structure from stochastic fluctuations. Due to the sheer size and high-dimensionality of many networks, this represents a major limitation that prevents meaningful interpretations of the results obtained with such nonstatistical methods. In this talk, I will show how these issues can be tackled in a principled and efficient fashion by formulating appropriate generative models of network structure that can have their parameters inferred from data. By employing a Bayesian description of such models, the inference can be performed in a nonparametric fashion, that does not require any a priori knowledge or ad hoc assumptions about the data. I will show how this approach can be used to perform model comparison, and how hierarchical models yield the most appropriate trade-off between model complexity and quality of fit based on the statistical evidence present in the data. I will also show how this general approach can be elegantly extended to networks with edge attributes, that are embedded in latent spaces, and that change in time. The latter is obtained via a fully dynamic generative network model, based on arbitrary-order Markov chains, that can also be inferred in a nonparametric fashion. Throughout the talk I will illustrate the application of the methods with many empirical networks such as the internet at the autonomous systems level, the global airport network, the network of actors and films, social networks, citations among

  12. Unifying evolutionary and network dynamics

    Science.gov (United States)

    Swarup, Samarth; Gasser, Les

    2007-06-01

    Many important real-world networks manifest small-world properties such as scale-free degree distributions, small diameters, and clustering. The most common model of growth for these networks is preferential attachment, where nodes acquire new links with probability proportional to the number of links they already have. We show that preferential attachment is a special case of the process of molecular evolution. We present a single-parameter model of network growth that unifies varieties of preferential attachment with the quasispecies equation (which models molecular evolution), and also with the Erdős-Rényi random graph model. We suggest some properties of evolutionary models that might be applied to the study of networks. We also derive the form of the degree distribution resulting from our algorithm, and we show through simulations that the process also models aspects of network growth. The unification allows mathematical machinery developed for evolutionary dynamics to be applied in the study of network dynamics, and vice versa.

  13. Statistical physics approaches to neuronal network dynamics%神经元网络动力学的统计物理方法

    Institute of Scientific and Technical Information of China (English)

    蔡申瓯; 陶乐天

    2011-01-01

    We review a statistical physics approach for reduced descriptions of neuronal network dynamics.From a network of all-toall coupled,excitatory integrate-and-fire neurons,we derive a (2+1)-D advection-diffusion equation for a probability distribution function,which describes neuronal population dynamics.We further show how to derive a (1 + 1)-D kinetic equation,using a moment closure scheme,without introducing any new parameters to the system.We demonstrate the numerical accuracy of our kinetic theory by comparing its results to Monte Carlo simulations of the full integrate-and-fire neuronal network.%本文回顾了利用统计物理的方法研究神经元网络动力学的数学降维描述.以一个全兴奋性的“整合-发放”神经元网络为出发点,导出了描写神经元群体活动的概率分布函数的(2+1)-维对流-扩散方程.在没有引入任何新参数的情况下,讨论了如何利用moment closure scheme得到(1+1)-维的动力学方程.我们将此方程的预测与原神经元网络动力学的蒙特卡洛模拟结果进行比较,从而展示了新方程的数值精确性.

  14. Wealth dynamics on complex networks

    Science.gov (United States)

    Garlaschelli, Diego; Loffredo, Maria I.

    2004-07-01

    We study a model of wealth dynamics (Physica A 282 (2000) 536) which mimics transactions among economic agents. The outcomes of the model are shown to depend strongly on the topological properties of the underlying transaction network. The extreme cases of a fully connected and a fully disconnected network yield power-law and log-normal forms of the wealth distribution, respectively. We perform numerical simulations in order to test the model on more complex network topologies. We show that the mixed form of most empirical distributions (displaying a non-smooth transition from a log-normal to a power-law form) can be traced back to a heterogeneous topology with varying link density, which on the other hand is a recently observed property of real networks.

  15. Decoding network dynamics in cancer

    DEFF Research Database (Denmark)

    Linding, Rune

    2014-01-01

    models through computational integration of systematic, large-scale, high-dimensional quantitative data sets. I will review our latest advances in methods for exploring phosphorylation networks. In particular I will discuss how the combination of quantitative mass-spectrometry, systems...... in comparative phospho-proteomics and network evolution [Tan et al. Science Signaling 2009, Tan et al. Science 2009, Tan et al. Science 2011]. Finally, I will discuss our most recent work in analyzing genomic sequencing data from NGS studies and how we have developed new powerful algorithms to predict the impact......Biological systems are composed of highly dynamic and interconnected molecular networks that drive biological decision processes. The goal of network biology is to describe, quantify and predict the information flow and functional behaviour of living systems in a formal language...

  16. A perturbative approach to Lagrangian flow networks

    CERN Document Server

    Fujiwara, Naoya; Donges, Jonathan F; Donner, Reik V

    2016-01-01

    Complex network approaches have been successfully applied for studying transport processes in complex systems ranging from road, railway or airline infrastructure over industrial manufacturing to fluid dynamics. Here, we utilize a generic framework for describing the dynamics of geophysical flows such as ocean currents or atmospheric wind fields in terms of Lagrangian flow networks. In this approach, information on the passive advection of particles is transformed into a Markov chain based on transition probabilities of particles between the volume elements of a given partition of space for a fixed time step. We employ perturbation-theoretic methods to investigate the effects of modifications of transport processes in the underlying flow for three different problem classes: efficient absorption (corresponding to particle trapping or leaking), constant input of particles (with additional source terms modeling, e.g., localized contamination), and shifts of the steady state under probability mass conservation (a...

  17. Complex Dynamics in Information Sharing Networks

    Science.gov (United States)

    Cronin, Bruce

    This study examines the roll-out of an electronic knowledge base in a medium-sized professional services firm over a six year period. The efficiency of such implementation is a key business problem in IT systems of this type. Data from usage logs provides the basis for analysis of the dynamic evolution of social networks around the depository during this time. The adoption pattern follows an "s-curve" and usage exhibits something of a power law distribution, both attributable to network effects, and network position is associated with organisational performance on a number of indicators. But periodicity in usage is evident and the usage distribution displays an exponential cut-off. Further analysis provides some evidence of mathematical complexity in the periodicity. Some implications of complex patterns in social network data for research and management are discussed. The study provides a case study demonstrating the utility of the broad methodological approach.

  18. Neural Networks in Chemical Reaction Dynamics

    CERN Document Server

    Raff, Lionel; Hagan, Martin

    2011-01-01

    This monograph presents recent advances in neural network (NN) approaches and applications to chemical reaction dynamics. Topics covered include: (i) the development of ab initio potential-energy surfaces (PES) for complex multichannel systems using modified novelty sampling and feedforward NNs; (ii) methods for sampling the configuration space of critical importance, such as trajectory and novelty sampling methods and gradient fitting methods; (iii) parametrization of interatomic potential functions using a genetic algorithm accelerated with a NN; (iv) parametrization of analytic interatomic

  19. Distributed Queuing in Dynamic Networks

    Directory of Open Access Journals (Sweden)

    Gokarna Sharma

    2013-10-01

    Full Text Available We consider the problem of forming a distributed queue in the adversarial dynamic network model of Kuhn, Lynch, and Oshman (STOC 2010 in which the network topology changes from round to round but the network stays connected. This is a synchronous model in which network nodes are assumed to be fixed, the communication links for each round are chosen by an adversary, and nodes do not know who their neighbors are for the current round before they broadcast their messages. Queue requests may arrive over rounds at arbitrary nodes and the goal is to eventually enqueue them in a distributed queue. We present two algorithms that give a total distributed ordering of queue requests in this model. We measure the performance of our algorithms through round complexity, which is the total number of rounds needed to solve the distributed queuing problem. We show that in 1-interval connected graphs, where the communication links change arbitrarily between every round, it is possible to solve the distributed queueing problem in O(nk rounds using O(log n size messages, where n is the number of nodes in the network and k 0 is the concurrency level parameter that captures the minimum number of active queue requests in the system in any round. These results hold in any arbitrary (sequential, one-shot concurrent, or dynamic arrival of k queue requests in the system. Moreover, our algorithms ensure correctness in the sense that each queue request is eventually enqueued in the distributed queue after it is issued and each queue request is enqueued exactly once. We also provide an impossibility result for this distributed queuing problem in this model. To the best of our knowledge, these are the first solutions to the distributed queuing problem in adversarial dynamic networks.

  20. Dynamics of network motifs in genetic regulatory networks

    Institute of Scientific and Technical Information of China (English)

    Li Ying; Liu Zeng-Rong; Zhang Jian-Bao

    2007-01-01

    Network motifs hold a very important status in genetic regulatory networks. This paper aims to analyse the dynamical property of the network motifs in genetic regulatory networks. The main result we obtained is that the dynamical property of a single motif is very simple with only an asymptotically stable equilibrium point, but the combination of several motifs can make more complicated dynamical properties emerge such as limit cycles. The above-mentioned result shows that network motif is a stable substructure in genetic regulatory networks while their combinations make the genetic regulatory network more complicated.

  1. EVOLVING FRIENDSHIP NETWORKS - AN INDIVIDUAL-ORIENTED APPROACH IMPLEMENTING SIMILARITY

    NARCIS (Netherlands)

    ZEGGELINK, E

    1995-01-01

    This article is an extension to Zeggelink (1994) which introduced the individual-oriented approach to model the evolution of networks. In this approach, the dynamics of friendship network structure are considered as a result of individual choices with regard to friendship relationships. Individuals

  2. Asynchronous networks and event driven dynamics

    Science.gov (United States)

    Bick, Christian; Field, Michael

    2017-02-01

    Real-world networks in technology, engineering and biology often exhibit dynamics that cannot be adequately reproduced using network models given by smooth dynamical systems and a fixed network topology. Asynchronous networks give a theoretical and conceptual framework for the study of network dynamics where nodes can evolve independently of one another, be constrained, stop, and later restart, and where the interaction between different components of the network may depend on time, state, and stochastic effects. This framework is sufficiently general to encompass a wide range of applications ranging from engineering to neuroscience. Typically, dynamics is piecewise smooth and there are relationships with Filippov systems. In this paper, we give examples of asynchronous networks, and describe the basic formalism and structure. In the following companion paper, we make the notion of a functional asynchronous network rigorous, discuss the phenomenon of dynamical locks, and present a foundational result on the spatiotemporal factorization of the dynamics for a large class of functional asynchronous networks.

  3. Competitive Dynamics on Complex Networks

    CERN Document Server

    Zhao, Jiuhua; Wang, Xiaofan

    2014-01-01

    We consider a dynamical network model in which two competitors have fixed and different states, and each normal agent adjusts its state according to a distributed consensus protocol. The state of each normal agent converges to a steady value which is a convex combination of the competitors' states, and is independent of the initial states of agents. This implies that the competition result is fully determined by the network structure and positions of competitors in the network. We compute an Influence Matrix (IM) in which each element characterizing the influence of an agent on another agent in the network. We use the IM to predict the bias of each normal agent and thus predict which competitor will win. Furthermore, we compare the IM criterion with seven node centrality measures to predict the winner. We find that the competitor with higher Katz Centrality in an undirected network or higher PageRank in a directed network is much more likely to be the winner. These findings may shed new light on the role of n...

  4. Coordination Games on Dynamical Networks

    Directory of Open Access Journals (Sweden)

    Enea Pestelacci

    2010-07-01

    Full Text Available We propose a model in which agents of a population interacting according to a network of contacts play games of coordination with each other and can also dynamically break and redirect links to neighbors if they are unsatisfied. As a result, there is co-evolution of strategies in the population and of the graph that represents the network of contacts. We apply the model to the class of pure and general coordination games. For pure coordination games, the networks co-evolve towards the polarization of different strategies. In the case of general coordination games our results show that the possibility of refusing neighbors and choosing different partners increases the success rate of the Pareto-dominant equilibrium.

  5. Network dynamics and systems biology

    Science.gov (United States)

    Norrell, Johannes A.

    The physics of complex systems has grown considerably as a field in recent decades, largely due to improved computational technology and increased availability of systems level data. One area in which physics is of growing relevance is molecular biology. A new field, systems biology, investigates features of biological systems as a whole, a strategy of particular importance for understanding emergent properties that result from a complex network of interactions. Due to the complicated nature of the systems under study, the physics of complex systems has a significant role to play in elucidating the collective behavior. In this dissertation, we explore three problems in the physics of complex systems, motivated in part by systems biology. The first of these concerns the applicability of Boolean models as an approximation of continuous systems. Studies of gene regulatory networks have employed both continuous and Boolean models to analyze the system dynamics, and the two have been found produce similar results in the cases analyzed. We ask whether or not Boolean models can generically reproduce the qualitative attractor dynamics of networks of continuously valued elements. Using a combination of analytical techniques and numerical simulations, we find that continuous networks exhibit two effects---an asymmetry between on and off states, and a decaying memory of events in each element's inputs---that are absent from synchronously updated Boolean models. We show that in simple loops these effects produce exactly the attractors that one would predict with an analysis of the stability of Boolean attractors, but in slightly more complicated topologies, they can destabilize solutions that are stable in the Boolean approximation, and can stabilize new attractors. Second, we investigate ensembles of large, random networks. Of particular interest is the transition between ordered and disordered dynamics, which is well characterized in Boolean systems. Networks at the

  6. Perspective: network-guided pattern formation of neural dynamics

    OpenAIRE

    Hütt, Marc-Thorsten; Kaiser, Marcus; Claus C Hilgetag

    2014-01-01

    The understanding of neural activity patterns is fundamentally linked to an understanding of how the brain's network architecture shapes dynamical processes. Established approaches rely mostly on deviations of a given network from certain classes of random graphs. Hypotheses about the supposed role of prominent topological features (for instance, the roles of modularity, network motifs or hierarchical network organization) are derived from these deviations. An alternative strategy could be to...

  7. Anomaly Detection in Dynamic Networks

    Energy Technology Data Exchange (ETDEWEB)

    Turcotte, Melissa [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-10-14

    Anomaly detection in dynamic communication networks has many important security applications. These networks can be extremely large and so detecting any changes in their structure can be computationally challenging; hence, computationally fast, parallelisable methods for monitoring the network are paramount. For this reason the methods presented here use independent node and edge based models to detect locally anomalous substructures within communication networks. As a first stage, the aim is to detect changes in the data streams arising from node or edge communications. Throughout the thesis simple, conjugate Bayesian models for counting processes are used to model these data streams. A second stage of analysis can then be performed on a much reduced subset of the network comprising nodes and edges which have been identified as potentially anomalous in the first stage. The first method assumes communications in a network arise from an inhomogeneous Poisson process with piecewise constant intensity. Anomaly detection is then treated as a changepoint problem on the intensities. The changepoint model is extended to incorporate seasonal behavior inherent in communication networks. This seasonal behavior is also viewed as a changepoint problem acting on a piecewise constant Poisson process. In a static time frame, inference is made on this extended model via a Gibbs sampling strategy. In a sequential time frame, where the data arrive as a stream, a novel, fast Sequential Monte Carlo (SMC) algorithm is introduced to sample from the sequence of posterior distributions of the change points over time. A second method is considered for monitoring communications in a large scale computer network. The usage patterns in these types of networks are very bursty in nature and don’t fit a Poisson process model. For tractable inference, discrete time models are considered, where the data are aggregated into discrete time periods and probability models are fitted to the

  8. Dynamic Spectrum Leasing to Cooperating Secondary Networks

    CERN Document Server

    Li, Cuilian

    2008-01-01

    We propose and analyze a dynamic implementation of the property-rights model of cognitive radio, whereby a primary link has the possibility to lease the owned spectrum to a MAC network of secondary nodes in exchange for cooperation in the form of distributed space-time coding. On one hand, the primary link attempts to maximize its quality of service in terms of Signal-to-interference-plus-noise ratio (SINR), accounting for the possible contribution from cooperation. On the other hand, nodes in the secondary network compete among themselves for transmission within the leased time-slot following a distributed heterogeneous opportunistic power control mechanism. The cooperation and competition between the primary and secondary network are cast in the framework of sequential game. We give consider both a baseline model with complete information and a more practical version with incomplete information, Using the backward induction approach for the former and providing approximating algorithm for the latter. Analys...

  9. Synthesis of recurrent neural networks for dynamical system simulation.

    Science.gov (United States)

    Trischler, Adam P; D'Eleuterio, Gabriele M T

    2016-08-01

    We review several of the most widely used techniques for training recurrent neural networks to approximate dynamical systems, then describe a novel algorithm for this task. The algorithm is based on an earlier theoretical result that guarantees the quality of the network approximation. We show that a feedforward neural network can be trained on the vector-field representation of a given dynamical system using backpropagation, then recast it as a recurrent network that replicates the original system's dynamics. After detailing this algorithm and its relation to earlier approaches, we present numerical examples that demonstrate its capabilities. One of the distinguishing features of our approach is that both the original dynamical systems and the recurrent networks that simulate them operate in continuous time.

  10. Sensitive dependence of network dynamics on network structure

    CERN Document Server

    Nishikawa, Takashi; Motter, Adilson E

    2016-01-01

    The relation between network structure and dynamics is determinant for the behavior of complex systems in numerous domains. An important longstanding problem concerns the properties of the networks that optimize the dynamics with respect to a given performance measure. Here we show that such optimization can lead to sensitive dependence of the dynamics on the structure of the network. Specifically, we demonstrate that the stability of the dynamical state, as determined by the maximum Lyapunov exponent, can exhibit a cusp-like dependence on the number of nodes and links as well as on the size of perturbations applied to the network structure. As mechanisms underlying this sensitivity, we identify discontinuous transitions occurring in the complement of optimal networks and the prevalence of eigenvector degeneracy in these networks. These findings establish a unified characterization of networks optimized for dynamical stability in diffusively coupled systems, which we illustrate using Turing instability in act...

  11. Dynamic properties of network motifs contribute to biological network organization.

    Directory of Open Access Journals (Sweden)

    Robert J Prill

    2005-11-01

    Full Text Available Biological networks, such as those describing gene regulation, signal transduction, and neural synapses, are representations of large-scale dynamic systems. Discovery of organizing principles of biological networks can be enhanced by embracing the notion that there is a deep interplay between network structure and system dynamics. Recently, many structural characteristics of these non-random networks have been identified, but dynamical implications of the features have not been explored comprehensively. We demonstrate by exhaustive computational analysis that a dynamical property--stability or robustness to small perturbations--is highly correlated with the relative abundance of small subnetworks (network motifs in several previously determined biological networks. We propose that robust dynamical stability is an influential property that can determine the non-random structure of biological networks.

  12. Network dynamics in nanofilled polymers

    Science.gov (United States)

    Baeza, Guilhem P.; Dessi, Claudia; Costanzo, Salvatore; Zhao, Dan; Gong, Shushan; Alegria, Angel; Colby, Ralph H.; Rubinstein, Michael; Vlassopoulos, Dimitris; Kumar, Sanat K.

    2016-04-01

    It is well accepted that adding nanoparticles (NPs) to polymer melts can result in significant property improvements. Here we focus on the causes of mechanical reinforcement and present rheological measurements on favourably interacting mixtures of spherical silica NPs and poly(2-vinylpyridine), complemented by several dynamic and structural probes. While the system dynamics are polymer-like with increased friction for low silica loadings, they turn network-like when the mean face-to-face separation between NPs becomes smaller than the entanglement tube diameter. Gel-like dynamics with a Williams-Landel-Ferry temperature dependence then result. This dependence turns particle dominated, that is, Arrhenius-like, when the silica loading increases to ~31 vol%, namely, when the average nearest distance between NP faces becomes comparable to the polymer's Kuhn length. Our results demonstrate that the flow properties of nanocomposites are complex and can be tuned via changes in filler loading, that is, the character of polymer bridges which `tie' NPs together into a network.

  13. Dynamic network management and service integration for airborne network

    Science.gov (United States)

    Pan, Wei; Li, Weihua

    2009-12-01

    The development of airborne network is conducive to resource sharing, flight management and interoperability in civilian and military aviation fields. To enhance the integrated ability of airborne network, the paper focuses on dynamic network management and service integration architecture for airborne network (DNMSIAN). Adaptive routing based on the mapping mechanism between connection identification and routing identification can provide diversified network access, and ensure the credibility and mobility of the aviation information exchange. Dynamic network management based on trustworthy cluster can ensure dynamic airborne network controllable and safe. Service integration based on semantic web and ontology can meet the customized and diversified needs for aviation information services. The DNMSIAN simulation platform demonstrates that our proposed methods can effectively perform dynamic network management and service integration.

  14. Factorial graphical lasso for dynamic networks

    NARCIS (Netherlands)

    Wit, E. C.; Abbruzzo, A.

    2012-01-01

    Dynamic networks models describe a growing number of important scientific processes, from cell biology and epidemiology to sociology and finance. There are many aspects of dynamical networks that require statistical considerations. In this paper we focus on determining network structure. Estimating

  15. Factorial graphical lasso for dynamic networks

    CERN Document Server

    Wit, E C

    2012-01-01

    Dynamic networks models describe a growing number of important scientific processes, from cell biology and epidemiology to sociology and finance. There are many aspects of dynamical networks that require statistical considerations. In this paper we focus on determining network structure. Estimating dynamic networks is a difficult task since the number of components involved in the system is very large. As a result, the number of parameters to be estimated is bigger than the number of observations. However, a characteristic of many networks is that they are sparse. For example, the molecular structure of genes make interactions with other components a highly-structured and therefore sparse process. Penalized Gaussian graphical models have been used to estimate sparse networks. However, the literature has focussed on static networks, which lack specific temporal constraints. We propose a structured Gaussian dynamical graphical model, where structures can consist of specific time dynamics, known presence or abse...

  16. Tourism-planning network knowledge dynamics

    DEFF Research Database (Denmark)

    Dredge, Dianne

    2014-01-01

    , network agents, network boundaries and network resources. A case study of the development of the Next Generation Tourism Handbook (Queensland, Australia), a policy initiative that sought to bring tourism and land use planning knowledge closer together is presented. The case study illustrates...... that the tourism policy and land use planning networks operate in very different spheres and that context, network agents, network boundaries and network resources have a significant influence not only on knowledge dynamics but also on the capacity of network agents to overcome barriers to learning and to innovate.......This chapter explores the characteristics and functions of tourism networks as a first step in understanding how networks facilitate and reproduce knowledge. A framework to progress understandings of knowledge dynamics in tourism networks is presented that includes four key dimensions: context...

  17. Strategy-aligned fuzzy approach for market segment evaluation and selection: a modular decision support system by dynamic network process (DNP)

    Science.gov (United States)

    Mohammadi Nasrabadi, Ali; Hosseinpour, Mohammad Hossein; Ebrahimnejad, Sadoullah

    2013-05-01

    In competitive markets, market segmentation is a critical point of business, and it can be used as a generic strategy. In each segment, strategies lead companies to their targets; thus, segment selection and the application of the appropriate strategies over time are very important to achieve successful business. This paper aims to model a strategy-aligned fuzzy approach to market segment evaluation and selection. A modular decision support system (DSS) is developed to select an optimum segment with its appropriate strategies. The suggested DSS has two main modules. The first one is SPACE matrix which indicates the risk of each segment. Also, it determines the long-term strategies. The second module finds the most preferred segment-strategies over time. Dynamic network process is applied to prioritize segment-strategies according to five competitive force factors. There is vagueness in pairwise comparisons, and this vagueness has been modeled using fuzzy concepts. To clarify, an example is illustrated by a case study in Iran's coffee market. The results show that success possibility of segments could be different, and choosing the best ones could help companies to be sure in developing their business. Moreover, changing the priority of strategies over time indicates the importance of long-term planning. This fact has been supported by a case study on strategic priority difference in short- and long-term consideration.

  18. Non-homogeneous dynamic Bayesian networks for continuous data

    NARCIS (Netherlands)

    Grzegorczyk, Marco; Husmeier, Dirk

    2011-01-01

    Classical dynamic Bayesian networks (DBNs) are based on the homogeneous Markov assumption and cannot deal with non-homogeneous temporal processes. Various approaches to relax the homogeneity assumption have recently been proposed. The present paper presents a combination of a Bayesian network with c

  19. Spreading dynamics in complex networks

    CERN Document Server

    Pei, Sen

    2013-01-01

    Searching for influential spreaders in complex networks is an issue of great significance for applications across various domains, ranging from the epidemic control, innovation diffusion, viral marketing, social movement to idea propagation. In this paper, we first display some of the most important theoretical models that describe spreading processes, and then discuss the problem of locating both the individual and multiple influential spreaders respectively. Recent approaches in these two topics are presented. For the identification of privileged single spreaders, we summarize several widely used centralities, such as degree, betweenness centrality, PageRank, k-shell, etc. We investigate the empirical diffusion data in a large scale online social community -- LiveJournal. With this extensive dataset, we find that various measures can convey very distinct information of nodes. Of all the users in LiveJournal social network, only a small fraction of them involve in spreading. For the spreading processes in Li...

  20. Dynamics of the ethanolamine glycerophospholipid remodeling network.

    Directory of Open Access Journals (Sweden)

    Lu Zhang

    Full Text Available Acyl chain remodeling in lipids is a critical biochemical process that plays a central role in disease. However, remodeling remains poorly understood, despite massive increases in lipidomic data. In this work, we determine the dynamic network of ethanolamine glycerophospholipid (PE remodeling, using data from pulse-chase experiments and a novel bioinformatic network inference approach. The model uses a set of ordinary differential equations based on the assumptions that (1 sn1 and sn2 acyl positions are independently remodeled; (2 remodeling reaction rates are constant over time; and (3 acyl donor concentrations are constant. We use a novel fast and accurate two-step algorithm to automatically infer model parameters and their values. This is the first such method applicable to dynamic phospholipid lipidomic data. Our inference procedure closely fits experimental measurements and shows strong cross-validation across six independent experiments with distinct deuterium-labeled PE precursors, demonstrating the validity of our assumptions. In contrast, fits of randomized data or fits using random model parameters are worse. A key outcome is that we are able to robustly distinguish deacylation and reacylation kinetics of individual acyl chain types at the sn1 and sn2 positions, explaining the established prevalence of saturated and unsaturated chains in the respective positions. The present study thus demonstrates that dynamic acyl chain remodeling processes can be reliably determined from dynamic lipidomic data.

  1. Queueing networks a fundamental approach

    CERN Document Server

    Dijk, Nico

    2011-01-01

    This handbook aims to highlight fundamental, methodological and computational aspects of networks of queues to provide insights and to unify results that can be applied in a more general manner.  The handbook is organized into five parts: Part 1 considers exact analytical results such as of product form type. Topics include characterization of product forms by physical balance concepts and simple traffic flow equations, classes of service and queue disciplines that allow a product form, a unified description of product forms for discrete time queueing networks, insights for insensitivity, and aggregation and decomposition results that allow subnetworks to be aggregated into single nodes to reduce computational burden. Part 2 looks at monotonicity and comparison results such as for computational simplification by either of two approaches: stochastic monotonicity and ordering results based on the ordering of the proces generators, and comparison results and explicit error bounds based on an underlying Markov r...

  2. Modeling the dynamical interaction between epidemics on overlay networks

    CERN Document Server

    Marceau, Vincent; Hébert-Dufresne, Laurent; Allard, Antoine; Dubé, Louis J

    2011-01-01

    Epidemics seldom occur as isolated phenomena. Typically, two or more viral agents spread within the same host population and may interact dynamically with each other. We present a general model where two viral agents interact via an immunity mechanism as they propagate simultaneously on two networks connecting the same set of nodes. Exploiting a correspondence between the propagation dynamics and a dynamical process performing progressive network generation, we develop an analytic approach that accurately captures the dynamical interaction between epidemics on overlay networks. The formalism allows for overlay networks with arbitrary joint degree distribution and overlap. To illustrate the versatility of our approach, we consider a hypothetical delayed intervention scenario in which an immunizing agent is disseminated in a host population to hinder the propagation of an undesirable agent (e.g. the spread of preventive information in the context of an emerging infectious disease).

  3. Granger causality vs. dynamic Bayesian network inference: a comparative study

    Directory of Open Access Journals (Sweden)

    Feng Jianfeng

    2009-04-01

    Full Text Available Abstract Background In computational biology, one often faces the problem of deriving the causal relationship among different elements such as genes, proteins, metabolites, neurons and so on, based upon multi-dimensional temporal data. Currently, there are two common approaches used to explore the network structure among elements. One is the Granger causality approach, and the other is the dynamic Bayesian network inference approach. Both have at least a few thousand publications reported in the literature. A key issue is to choose which approach is used to tackle the data, in particular when they give rise to contradictory results. Results In this paper, we provide an answer by focusing on a systematic and computationally intensive comparison between the two approaches on both synthesized and experimental data. For synthesized data, a critical point of the data length is found: the dynamic Bayesian network outperforms the Granger causality approach when the data length is short, and vice versa. We then test our results in experimental data of short length which is a common scenario in current biological experiments: it is again confirmed that the dynamic Bayesian network works better. Conclusion When the data size is short, the dynamic Bayesian network inference performs better than the Granger causality approach; otherwise the Granger causality approach is better.

  4. Identifying communities by influence dynamics in social networks

    CERN Document Server

    Stanoev, Angel; Kocarev, Ljupco

    2011-01-01

    Communities are not static; they evolve, split and merge, appear and disappear, i.e. they are product of dynamical processes that govern the evolution of the network. A good algorithm for community detection should not only quantify the topology of the network, but incorporate the dynamical processes that take place on the network. We present a novel algorithm for community detection that combines network structure with processes that support creation and/or evolution of communities. The algorithm does not embrace the universal approach but instead tries to focus on social networks and model dynamic social interactions that occur on those networks. It identifies leaders, and communities that form around those leaders. It naturally supports overlapping communities by associating each node with a membership vector that describes node's involvement in each community. This way, in addition to overlapping communities, we can identify nodes that are good followers to their leader, and also nodes with no clear commu...

  5. A dynamic network model for interbank market

    Science.gov (United States)

    Xu, Tao; He, Jianmin; Li, Shouwei

    2016-12-01

    In this paper, a dynamic network model based on agent behavior is introduced to explain the formation mechanism of interbank market network. We investigate the impact of credit lending preference on interbank market network topology, the evolution of interbank market network and stability of interbank market. Experimental results demonstrate that interbank market network is a small-world network and cumulative degree follows the power-law distribution. We find that the interbank network structure keeps dynamic stability in the network evolution process. With the increase of bank credit lending preference, network clustering coefficient increases and average shortest path length decreases monotonously, which improves the stability of the network structure. External shocks are main threats for the interbank market and the reduction of bank external investment yield rate and deposits fluctuations contribute to improve the resilience of the banking system.

  6. Dynamic Intelligent Feedback Scheduling in Networked Control Systems

    Directory of Open Access Journals (Sweden)

    Hui-ying Chen

    2013-01-01

    Full Text Available For the networked control system with limited bandwidth and flexible workload, a dynamic intelligent feedback scheduling strategy is proposed. Firstly, a monitor is used to acquire the current available network bandwidth. Then, the new available bandwidth in the next interval is predicted by using LS_SVM approach. At the same time, the dynamic performance indices of all control loops are obtained with a two-dimensional fuzzy logic modulator. Finally, the predicted network bandwidth is dynamically allocated by the bandwidth manager and the priority allocator in terms of the loops' dynamic performance indices. Simulation results show that the sampling periods and priorities of control loops are adjusted timely according to the network workload condition and the dynamic performance of control loops, which make the system running in the optimal state all the time.

  7. Bayesian Overlapping Community Detection in Dynamic Networks

    CERN Document Server

    Ghorbani, Mahsa; Khodadadi, Ali

    2016-01-01

    Detecting community structures in social networks has gained considerable attention in recent years. However, lack of prior knowledge about the number of communities, and their overlapping nature have made community detection a challenging problem. Moreover, many of the existing methods only consider static networks, while most of real world networks are dynamic and evolve over time. Hence, finding consistent overlapping communities in dynamic networks without any prior knowledge about the number of communities is still an interesting open research problem. In this paper, we present an overlapping community detection method for dynamic networks called Dynamic Bayesian Overlapping Community Detector (DBOCD). DBOCD assumes that in every snapshot of network, overlapping parts of communities are dense areas and utilizes link communities instead of common node communities. Using Recurrent Chinese Restaurant Process and community structure of the network in the last snapshot, DBOCD simultaneously extracts the numbe...

  8. Controlling edge dynamics in complex networks

    CERN Document Server

    Nepusz, Tamás

    2011-01-01

    The interaction of distinct units in physical, social, biological and technological systems naturally gives rise to complex network structures. Networks have constantly been in the focus of research for the last decade, with considerable advances in the description of their structural and dynamical properties. However, much less effort has been devoted to studying the controllability of the dynamics taking place on them. Here we introduce and evaluate a dynamical process defined on the edges of a network, and demonstrate that the controllability properties of this process significantly differ from simple nodal dynamics. Evaluation of real-world networks indicates that most of them are more controllable than their randomized counterparts. We also find that transcriptional regulatory networks are particularly easy to control. Analytic calculations show that networks with scale-free degree distributions have better controllability properties than uncorrelated networks, and positively correlated in- and out-degre...

  9. Dynamic information routing in complex networks

    Science.gov (United States)

    Kirst, Christoph; Timme, Marc; Battaglia, Demian

    2016-01-01

    Flexible information routing fundamentally underlies the function of many biological and artificial networks. Yet, how such systems may specifically communicate and dynamically route information is not well understood. Here we identify a generic mechanism to route information on top of collective dynamical reference states in complex networks. Switching between collective dynamics induces flexible reorganization of information sharing and routing patterns, as quantified by delayed mutual information and transfer entropy measures between activities of a network's units. We demonstrate the power of this mechanism specifically for oscillatory dynamics and analyse how individual unit properties, the network topology and external inputs co-act to systematically organize information routing. For multi-scale, modular architectures, we resolve routing patterns at all levels. Interestingly, local interventions within one sub-network may remotely determine nonlocal network-wide communication. These results help understanding and designing information routing patterns across systems where collective dynamics co-occurs with a communication function. PMID:27067257

  10. Dynamic information routing in complex networks

    Science.gov (United States)

    Kirst, Christoph; Timme, Marc; Battaglia, Demian

    2016-04-01

    Flexible information routing fundamentally underlies the function of many biological and artificial networks. Yet, how such systems may specifically communicate and dynamically route information is not well understood. Here we identify a generic mechanism to route information on top of collective dynamical reference states in complex networks. Switching between collective dynamics induces flexible reorganization of information sharing and routing patterns, as quantified by delayed mutual information and transfer entropy measures between activities of a network's units. We demonstrate the power of this mechanism specifically for oscillatory dynamics and analyse how individual unit properties, the network topology and external inputs co-act to systematically organize information routing. For multi-scale, modular architectures, we resolve routing patterns at all levels. Interestingly, local interventions within one sub-network may remotely determine nonlocal network-wide communication. These results help understanding and designing information routing patterns across systems where collective dynamics co-occurs with a communication function.

  11. Dynamics of neural networks with continuous attractors

    Science.gov (United States)

    Fung, C. C. Alan; Wong, K. Y. Michael; Wu, Si

    2008-10-01

    We investigate the dynamics of continuous attractor neural networks (CANNs). Due to the translational invariance of their neuronal interactions, CANNs can hold a continuous family of stationary states. We systematically explore how their neutral stability facilitates the tracking performance of a CANN, which is believed to have wide applications in brain functions. We develop a perturbative approach that utilizes the dominant movement of the network stationary states in the state space. We quantify the distortions of the bump shape during tracking, and study their effects on the tracking performance. Results are obtained on the maximum speed for a moving stimulus to be trackable, and the reaction time to catch up an abrupt change in stimulus.

  12. Complex network approach for recurrence analysis of time series

    Energy Technology Data Exchange (ETDEWEB)

    Marwan, Norbert, E-mail: marwan@pik-potsdam.d [Potsdam Institute for Climate Impact Research, PO Box 601203, 14412 Potsdam (Germany); Donges, Jonathan F. [Potsdam Institute for Climate Impact Research, PO Box 601203, 14412 Potsdam (Germany)] [Department of Physics, Humboldt University Berlin, Newtonstr. 15, 12489 Berlin (Germany); Zou Yong [Potsdam Institute for Climate Impact Research, PO Box 601203, 14412 Potsdam (Germany); Donner, Reik V. [Potsdam Institute for Climate Impact Research, PO Box 601203, 14412 Potsdam (Germany)] [Institute for Transport and Economics, Dresden University of Technology, Andreas-Schubert-Str. 23, 01062 Dresden (Germany)] [Graduate School of Science, Osaka Prefecture University, 1-1 Gakuencho, Naka-ku, Sakai 599-8531 (Japan); Kurths, Juergen [Potsdam Institute for Climate Impact Research, PO Box 601203, 14412 Potsdam (Germany)] [Department of Physics, Humboldt University Berlin, Newtonstr. 15, 12489 Berlin (Germany)

    2009-11-09

    We propose a novel approach for analysing time series using complex network theory. We identify the recurrence matrix (calculated from time series) with the adjacency matrix of a complex network and apply measures for the characterisation of complex networks to this recurrence matrix. By using the logistic map, we illustrate the potential of these complex network measures for the detection of dynamical transitions. Finally, we apply the proposed approach to a marine palaeo-climate record and identify the subtle changes to the climate regime.

  13. A network approach based on cliques

    Science.gov (United States)

    Fadigas, I. S.; Pereira, H. B. B.

    2013-05-01

    The characterization of complex networks is a procedure that is currently found in several research studies. Nevertheless, few studies present a discussion on networks in which the basic element is a clique. In this paper, we propose an approach based on a network of cliques. This approach consists not only of a set of new indices to capture the properties of a network of cliques but also of a method to characterize complex networks of cliques (i.e., some of the parameters are proposed to characterize the small-world phenomenon in networks of cliques). The results obtained are consistent with results from classical methods used to characterize complex networks.

  14. Capacity Analysis for Dynamic Space Networks

    Institute of Scientific and Technical Information of China (English)

    Yang Lu; Bo Li; Wenjing Kang; Gongliang Liu; Xueting Li

    2015-01-01

    To evaluate transmission rate of highly dynamic space networks, a new method for studying space network capacity is proposed in this paper. Using graph theory, network capacity is defined as the maximum amount of flows ground stations can receive per unit time. Combined with a hybrid constellation model, network capacity is calculated and further analyzed for practical cases. Simulation results show that network capacity will increase to different extents as link capacity, minimum ground elevation constraint and satellite onboard processing capability change. Considering the efficiency and reliability of communication networks, how to scientifically design satellite networks is also discussed.

  15. Dynamic structure evolution of time-dependent network

    Science.gov (United States)

    Zhang, Beibei; Zhou, Yadong; Xu, Xiaoyan; Wang, Dai; Guan, Xiaohong

    2016-08-01

    In this paper, we research the long-voided problem of formulating the time-dependent network structure evolution scheme, it focus not only on finding new emerging vertices in evolving communities and new emerging communities over the specified time range but also formulating the complex network structure evolution schematic. Previous approaches basically applied to community detection on time static networks and thus failed to consider the potentially crucial and useful information latently embedded in the dynamic structure evolution process of time-dependent network. To address these problems and to tackle the network non-scalability dilemma, we propose the dynamic hierarchical method for detecting and revealing structure evolution schematic of the time-dependent network. In practice and specificity, we propose an explicit hierarchical network evolution uncovering algorithm framework originated from and widely expanded from time-dependent and dynamic spectral optimization theory. Our method yields preferable results compared with previous approaches on a vast variety of test network data, including both real on-line networks and computer generated complex networks.

  16. Perspective: network-guided pattern formation of neural dynamics.

    Science.gov (United States)

    Hütt, Marc-Thorsten; Kaiser, Marcus; Hilgetag, Claus C

    2014-10-05

    The understanding of neural activity patterns is fundamentally linked to an understanding of how the brain's network architecture shapes dynamical processes. Established approaches rely mostly on deviations of a given network from certain classes of random graphs. Hypotheses about the supposed role of prominent topological features (for instance, the roles of modularity, network motifs or hierarchical network organization) are derived from these deviations. An alternative strategy could be to study deviations of network architectures from regular graphs (rings and lattices) and consider the implications of such deviations for self-organized dynamic patterns on the network. Following this strategy, we draw on the theory of spatio-temporal pattern formation and propose a novel perspective for analysing dynamics on networks, by evaluating how the self-organized dynamics are confined by network architecture to a small set of permissible collective states. In particular, we discuss the role of prominent topological features of brain connectivity, such as hubs, modules and hierarchy, in shaping activity patterns. We illustrate the notion of network-guided pattern formation with numerical simulations and outline how it can facilitate the understanding of neural dynamics. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  17. A Gaussian graphical model approach to climate networks

    Energy Technology Data Exchange (ETDEWEB)

    Zerenner, Tanja, E-mail: tanjaz@uni-bonn.de [Meteorological Institute, University of Bonn, Auf dem Hügel 20, 53121 Bonn (Germany); Friederichs, Petra; Hense, Andreas [Meteorological Institute, University of Bonn, Auf dem Hügel 20, 53121 Bonn (Germany); Interdisciplinary Center for Complex Systems, University of Bonn, Brühler Straße 7, 53119 Bonn (Germany); Lehnertz, Klaus [Department of Epileptology, University of Bonn, Sigmund-Freud-Straße 25, 53105 Bonn (Germany); Helmholtz Institute for Radiation and Nuclear Physics, University of Bonn, Nussallee 14-16, 53115 Bonn (Germany); Interdisciplinary Center for Complex Systems, University of Bonn, Brühler Straße 7, 53119 Bonn (Germany)

    2014-06-15

    Distinguishing between direct and indirect connections is essential when interpreting network structures in terms of dynamical interactions and stability. When constructing networks from climate data the nodes are usually defined on a spatial grid. The edges are usually derived from a bivariate dependency measure, such as Pearson correlation coefficients or mutual information. Thus, the edges indistinguishably represent direct and indirect dependencies. Interpreting climate data fields as realizations of Gaussian Random Fields (GRFs), we have constructed networks according to the Gaussian Graphical Model (GGM) approach. In contrast to the widely used method, the edges of GGM networks are based on partial correlations denoting direct dependencies. Furthermore, GRFs can be represented not only on points in space, but also by expansion coefficients of orthogonal basis functions, such as spherical harmonics. This leads to a modified definition of network nodes and edges in spectral space, which is motivated from an atmospheric dynamics perspective. We construct and analyze networks from climate data in grid point space as well as in spectral space, and derive the edges from both Pearson and partial correlations. Network characteristics, such as mean degree, average shortest path length, and clustering coefficient, reveal that the networks posses an ordered and strongly locally interconnected structure rather than small-world properties. Despite this, the network structures differ strongly depending on the construction method. Straightforward approaches to infer networks from climate data while not regarding any physical processes may contain too strong simplifications to describe the dynamics of the climate system appropriately.

  18. Social uses of ICTs in dynamics of transnationalism and network migrant communication: an approach to the Senegalese diaspora in South Brazil

    Directory of Open Access Journals (Sweden)

    Liliane Dutra Brignol

    2015-12-01

    unknown in the Brazilian context. The article starts from a debate on the concepts of Black Atlantic and diaspora, in more hybrid senses of culture and identities, in order to reflect upon migratory fluxes that remodel the relationships between both realms. The text integrates research on communication and migration dynamics between Senegal and Rio Grande do Sul, and aims at exploring the consumption process of information and communication technologies by Senegalese immigrants. The analysis values two central aspects assumed by ICTs in the migratory process: the role of transnational connection and the consolidation of network communication dynamics with intra and intercultural implications.

  19. Revealing networks from dynamics: an introduction

    CERN Document Server

    Timme, Marc

    2014-01-01

    What can we learn from the collective dynamics of a complex network about its interaction topology? Taking the perspective from nonlinear dynamics, we briefly review recent progress on how to infer structural connectivity (direct interactions) from accessing the dynamics of the units. Potential applications range from interaction networks in physics, to chemical and metabolic reactions, protein and gene regulatory networks as well as neural circuits in biology and electric power grids or wireless sensor networks in engineering. Moreover, we briefly mention some standard ways of inferring effective or functional connectivity.

  20. Learning dynamic Bayesian networks with mixed variables

    DEFF Research Database (Denmark)

    Bøttcher, Susanne Gammelgaard

    This paper considers dynamic Bayesian networks for discrete and continuous variables. We only treat the case, where the distribution of the variables is conditional Gaussian. We show how to learn the parameters and structure of a dynamic Bayesian network and also how the Markov order can be learn....... An automated procedure for specifying prior distributions for the parameters in a dynamic Bayesian network is presented. It is a simple extension of the procedure for the ordinary Bayesian networks. Finally the W¨olfer?s sunspot numbers are analyzed....

  1. Dynamic information routing in complex networks

    CERN Document Server

    Kirst, Christoph; Battaglia, Demian

    2015-01-01

    Flexible information routing fundamentally underlies the function of many biological and artificial networks. Yet, how such systems may specifically communicate and dynamically route information is not well understood. Here we identify a generic mechanism to route information on top of collective dynamical reference states in complex networks. Switching between collective dynamics induces flexible reorganization of information sharing and routing patterns, as quantified by delayed mutual information and transfer entropy measures between activities of a network's units. We demonstrate the power of this generic mechanism specifically for oscillatory dynamics and analyze how individual unit properties, the network topology and external inputs coact to systematically organize information routing. For multi-scale, modular architectures, we resolve routing patterns at all levels. Interestingly, local interventions within one sub-network may remotely determine non-local network-wide communication. These results help...

  2. Dynamic Analysis of Structures Using Neural Networks

    Directory of Open Access Journals (Sweden)

    N. Ahmadi

    2008-01-01

    Full Text Available In the recent years, neural networks are considered as the best candidate for fast approximation with arbitrary accuracy in the time consuming problems. Dynamic analysis of structures against earthquake has the time consuming process. We employed two kinds of neural networks: Generalized Regression neural network (GR and Back-Propagation Wavenet neural network (BPW, for approximating of dynamic time history response of frame structures. GR is a traditional radial basis function neural network while BPW categorized as a wavelet neural network. In BPW, sigmoid activation functions of hidden layer neurons are substituted with wavelets and weights training are achieved using Scaled Conjugate Gradient (SCG algorithm. Comparison the results of BPW with those of GR in the dynamic analysis of eight story steel frame indicates that accuracy of the properly trained BPW was better than that of GR and therefore, BPW can be efficiently used for approximate dynamic analysis of structures.

  3. Synchronization of Intermittently Coupled Dynamical Networks

    Directory of Open Access Journals (Sweden)

    Gang Zhang

    2013-01-01

    Full Text Available This paper investigates the synchronization phenomenon of an intermittently coupled dynamical network in which the coupling among nodes can occur only at discrete instants and the coupling configuration of the network is time varying. A model of intermittently coupled dynamical network consisting of identical nodes is introduced. Based on the stability theory for impulsive differential equations, some synchronization criteria for intermittently coupled dynamical networks are derived. The network synchronizability is shown to be related to the second largest and the smallest eigenvalues of the coupling matrix, the coupling strength, and the impulsive intervals. Using the chaotic Chua system and Lorenz system as nodes of a dynamical network for simulation, respectively, the theoretical results are verified and illustrated.

  4. MODELS FOR NETWORK DYNAMICS - A MARKOVIAN FRAMEWORK

    NARCIS (Netherlands)

    LEENDERS, RTAJ

    1995-01-01

    A question not very often addressed in social network analysis relates to network dynamics and focuses on how networks arise and change. It alludes to the idea that ties do not arise or vanish randomly, but (partly) as a consequence of human behavior and preferences. Statistical models for modeling

  5. A system dynamics model for communications networks

    Science.gov (United States)

    Awcock, A. J.; King, T. E. G.

    1985-09-01

    An abstract model of a communications network in system dynamics terminology is developed as implementation of this model by a FORTRAN program package developed at RSRE is discussed. The result of this work is a high-level simulation package in which the performance of adaptive routing algorithms and other network controls may be assessed for a network of arbitrary topology.

  6. Using Network Dynamical Influence to Drive Consensus

    Science.gov (United States)

    Punzo, Giuliano; Young, George F.; MacDonald, Malcolm; Leonard, Naomi E.

    2016-05-01

    Consensus and decision-making are often analysed in the context of networks, with many studies focusing attention on ranking the nodes of a network depending on their relative importance to information routing. Dynamical influence ranks the nodes with respect to their ability to influence the evolution of the associated network dynamical system. In this study it is shown that dynamical influence not only ranks the nodes, but also provides a naturally optimised distribution of effort to steer a network from one state to another. An example is provided where the “steering” refers to the physical change in velocity of self-propelled agents interacting through a network. Distinct from other works on this subject, this study looks at directed and hence more general graphs. The findings are presented with a theoretical angle, without targeting particular applications or networked systems; however, the framework and results offer parallels with biological flocks and swarms and opportunities for design of technological networks.

  7. Forced synchronization of autonomous dynamical Boolean networks

    Energy Technology Data Exchange (ETDEWEB)

    Rivera-Durón, R. R., E-mail: roberto.rivera@ipicyt.edu.mx; Campos-Cantón, E., E-mail: eric.campos@ipicyt.edu.mx [División de Matemáticas Aplicadas, Instituto Potosino de Investigación Científica y Tecnológica A. C., Camino a la Presa San José 2055, Col. Lomas 4 Sección, C.P. 78216, San Luis Potosí, S.L.P. (Mexico); Campos-Cantón, I. [Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, C.P. 78000, San Luis Potosí, S.L.P. (Mexico); Gauthier, Daniel J. [Department of Physics and Center for Nonlinear and Complex Systems, Duke University, Box 90305, Durham, North Carolina 27708 (United States)

    2015-08-15

    We present the design of an autonomous time-delay Boolean network realized with readily available electronic components. Through simulations and experiments that account for the detailed nonlinear response of each circuit element, we demonstrate that a network with five Boolean nodes displays complex behavior. Furthermore, we show that the dynamics of two identical networks display near-instantaneous synchronization to a periodic state when forced by a common periodic Boolean signal. A theoretical analysis of the network reveals the conditions under which complex behavior is expected in an individual network and the occurrence of synchronization in the forced networks. This research will enable future experiments on autonomous time-delay networks using readily available electronic components with dynamics on a slow enough time-scale so that inexpensive data collection systems can faithfully record the dynamics.

  8. Forced synchronization of autonomous dynamical Boolean networks.

    Science.gov (United States)

    Rivera-Durón, R R; Campos-Cantón, E; Campos-Cantón, I; Gauthier, Daniel J

    2015-08-01

    We present the design of an autonomous time-delay Boolean network realized with readily available electronic components. Through simulations and experiments that account for the detailed nonlinear response of each circuit element, we demonstrate that a network with five Boolean nodes displays complex behavior. Furthermore, we show that the dynamics of two identical networks display near-instantaneous synchronization to a periodic state when forced by a common periodic Boolean signal. A theoretical analysis of the network reveals the conditions under which complex behavior is expected in an individual network and the occurrence of synchronization in the forced networks. This research will enable future experiments on autonomous time-delay networks using readily available electronic components with dynamics on a slow enough time-scale so that inexpensive data collection systems can faithfully record the dynamics.

  9. Dynamic Multi-class Network Loading Problem

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The dynamic network loading problem (DNLP) consists in determining on a congested network, timedependent arc volumes, together with arc and path travel times, given the time varying path flow departure rates over a finite time horizon. The objective of this paper is to present the formulation of an analytical dynamic multiclass network loading model. The model does not require the assumption of the FIFO condition. The existence of a solution to the model is shown.

  10. Spreading dynamics in complex networks

    Science.gov (United States)

    Pei, Sen; Makse, Hernán A.

    2013-12-01

    Searching for influential spreaders in complex networks is an issue of great significance for applications across various domains, ranging from epidemic control, innovation diffusion, viral marketing, and social movement to idea propagation. In this paper, we first display some of the most important theoretical models that describe spreading processes, and then discuss the problem of locating both the individual and multiple influential spreaders respectively. Recent approaches in these two topics are presented. For the identification of privileged single spreaders, we summarize several widely used centralities, such as degree, betweenness centrality, PageRank, k-shell, etc. We investigate the empirical diffusion data in a large scale online social community—LiveJournal. With this extensive dataset, we find that various measures can convey very distinct information of nodes. Of all the users in the LiveJournal social network, only a small fraction of them are involved in spreading. For the spreading processes in LiveJournal, while degree can locate nodes participating in information diffusion with higher probability, k-shell is more effective in finding nodes with a large influence. Our results should provide useful information for designing efficient spreading strategies in reality.

  11. Deep Dynamic Neural Networks for Multimodal Gesture Segmentation and Recognition

    OpenAIRE

    Wu, Di; Pigou, Lionel; Kindermans, Pieter-Jan; Le, Nam Do-Hoang; Shao, Ling; Dambre, Joni; Odobez, Jean-Marc

    2016-01-01

    This paper describes a novel method called Deep Dynamic Neural Networks (DDNN) for multimodal gesture recognition. A semi-supervised hierarchical dynamic framework based on a Hidden Markov Model (HMM) is proposed for simultaneous gesture segmentation and recognition where skeleton joint information, depth and RGB images, are the multimodal input observations. Unlike most traditional approaches that rely on the construction of complex handcrafted features, our approach learns high-level spatio...

  12. Charge transport network dynamics in molecular aggregates

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Nicholas E. [Northwestern Univ., Evanston, IL (United States). Dept. of Chemistry; Chen, Lin X. [Argonne National Lab. (ANL), Argonne, IL (United States). Chemical Science and Engineering Division; Ratner, Mark A. [Northwestern Univ., Evanston, IL (United States). Dept. of Chemistry

    2016-07-20

    Due to the nonperiodic nature of charge transport in disordered systems, generating insight into static charge transport networks, as well as analyzing the network dynamics, can be challenging. Here, we apply time-dependent network analysis to scrutinize the charge transport networks of two representative molecular semiconductors: a rigid n-type molecule, perylenediimide, and a flexible p-type molecule, bBDT(TDPP)2. Simulations reveal the relevant timescale for local transfer integral decorrelation to be ~100 fs, which is shown to be faster than that of a crystalline morphology of the same molecule. Using a simple graph metric, global network changes are observed over timescales competitive with charge carrier lifetimes. These insights demonstrate that static charge transport networks are qualitatively inadequate, whereas average networks often overestimate network connectivity. Finally, a simple methodology for tracking dynamic charge transport properties is proposed.

  13. Controlling edge dynamics in complex networks

    OpenAIRE

    Nepusz, Tamás; Vicsek, Tamás

    2012-01-01

    The interaction of distinct units in physical, social, biological and technological systems naturally gives rise to complex network structures. Networks have constantly been in the focus of research for the last decade, with considerable advances in the description of their structural and dynamical properties. However, much less effort has been devoted to studying the controllability of the dynamics taking place on them. Here we introduce and evaluate a dynamical process defined on the edges ...

  14. Reconstructing complex networks with binary-state dynamics

    CERN Document Server

    Li, Jingwen; Lai, Ying-Cheng; Grebogi, Celso

    2015-01-01

    The prerequisite for our understanding of many complex networked systems lies in the reconstruction of network structure from measurable data. Although binary-state dynamics occurring in a broad class of complex networked systems in nature and society and has been intensively investigated, a general framework for reconstructing complex networks from binary states, the inverse problem, is lacking. Here we offer a general solution to the reconstruction problem by developing a data-based linearization approach for binary-state dynamics with linear, nonlinear, discrete and stochastic switching functions. The linearization allows us to convert the network reconstruction problem into a sparse signal reconstruction problem that can be resolved efficiently and credibly by convex optimization based on compressed sensing. The completely data-based linearization method and the sparse signal reconstruction constitutes a general framework for reconstructing complex networks without any knowledge of the binary-state dynami...

  15. Indecisiveness: A Dynamic, Integrative Approach.

    Science.gov (United States)

    Johnson, Douglas Paul

    1990-01-01

    Responds to case of Sondra presented in Career Development Quarterly (September 1990). Suggests that her inability to decide on a career may be rooted in long-term personality style, poor ego strength, noisome family dynamics, and/or developmental delay. Recommends an integrative approach incorporating both personal and career counseling. (PVV)

  16. Imaging complex nutrient dynamics in mycelial networks.

    Science.gov (United States)

    Fricker, M D; Lee, J A; Bebber, D P; Tlalka, M; Hynes, J; Darrah, P R; Watkinson, S C; Boddy, L

    2008-08-01

    Transport networks are vital components of multi-cellular organisms, distributing nutrients and removing waste products. Animal cardiovascular and respiratory systems, and plant vasculature, are branching trees whose architecture is thought to determine universal scaling laws in these organisms. In contrast, the transport systems of many multi-cellular fungi do not fit into this conceptual framework, as they have evolved to explore a patchy environment in search of new resources, rather than ramify through a three-dimensional organism. These fungi grow as a foraging mycelium, formed by the branching and fusion of threadlike hyphae, that gives rise to a complex network. To function efficiently, the mycelial network must both transport nutrients between spatially separated source and sink regions and also maintain its integrity in the face of continuous attack by mycophagous insects or random damage. Here we review the development of novel imaging approaches and software tools that we have used to characterise nutrient transport and network formation in foraging mycelia over a range of spatial scales. On a millimetre scale, we have used a combination of time-lapse confocal imaging and fluorescence recovery after photobleaching to quantify the rate of diffusive transport through the unique vacuole system in individual hyphae. These data then form the basis of a simulation model to predict the impact of such diffusion-based movement on a scale of several millimetres. On a centimetre scale, we have used novel photon-counting scintillation imaging techniques to visualize radiolabel movement in small microcosms. This approach has revealed novel N-transport phenomena, including rapid, preferential N-resource allocation to C-rich sinks, induction of simultaneous bi-directional transport, abrupt switching between different pre-existing transport routes, and a strong pulsatile component to transport in some species. Analysis of the pulsatile transport component using Fourier

  17. Temporal fidelity in dynamic social networks

    DEFF Research Database (Denmark)

    Stopczynski, Arkadiusz; Sapiezynski, Piotr; Pentland, Alex ‘Sandy’

    2015-01-01

    of the network dynamics can be used to inform the process of measuring social networks. The details of measurement are of particular importance when considering dynamic processes where minute-to-minute details are important, because collection of physical proximity interactions with high temporal resolution......It has recently become possible to record detailed social interactions in large social systems with high resolution. As we study these datasets, human social interactions display patterns that emerge at multiple time scales, from minutes to months. On a fundamental level, understanding...... is difficult and expensive. Here, we consider the dynamic network of proximity-interactions between approximately 500 individuals participating in the Copenhagen Networks Study. We show that in order to accurately model spreading processes in the network, the dynamic processes that occur on the order...

  18. Pinning Synchronization of Switched Complex Dynamical Networks

    Directory of Open Access Journals (Sweden)

    Liming Du

    2015-01-01

    Full Text Available Network topology and node dynamics play a key role in forming synchronization of complex networks. Unfortunately there is no effective synchronization criterion for pinning synchronization of complex dynamical networks with switching topology. In this paper, pinning synchronization of complex dynamical networks with switching topology is studied. Two basic problems are considered: one is pinning synchronization of switched complex networks under arbitrary switching; the other is pinning synchronization of switched complex networks by design of switching when synchronization cannot achieved by using any individual connection topology alone. For the two problems, common Lyapunov function method and single Lyapunov function method are used respectively, some global synchronization criteria are proposed and the designed switching law is given. Finally, simulation results verify the validity of the results.

  19. Psychology and social networks: a dynamic network theory perspective.

    Science.gov (United States)

    Westaby, James D; Pfaff, Danielle L; Redding, Nicholas

    2014-04-01

    Research on social networks has grown exponentially in recent years. However, despite its relevance, the field of psychology has been relatively slow to explain the underlying goal pursuit and resistance processes influencing social networks in the first place. In this vein, this article aims to demonstrate how a dynamic network theory perspective explains the way in which social networks influence these processes and related outcomes, such as goal achievement, performance, learning, and emotional contagion at the interpersonal level of analysis. The theory integrates goal pursuit, motivation, and conflict conceptualizations from psychology with social network concepts from sociology and organizational science to provide a taxonomy of social network role behaviors, such as goal striving, system supporting, goal preventing, system negating, and observing. This theoretical perspective provides psychologists with new tools to map social networks (e.g., dynamic network charts), which can help inform the development of change interventions. Implications for social, industrial-organizational, and counseling psychology as well as conflict resolution are discussed, and new opportunities for research are highlighted, such as those related to dynamic network intelligence (also known as cognitive accuracy), levels of analysis, methodological/ethical issues, and the need to theoretically broaden the study of social networking and social media behavior. (PsycINFO Database Record (c) 2014 APA, all rights reserved).

  20. Quasispecies dynamics with network constraints.

    Science.gov (United States)

    Barbosa, Valmir C; Donangelo, Raul; Souza, Sergio R

    2012-11-07

    A quasispecies is a set of interrelated genotypes that have reached a stationary state while evolving according to the usual Darwinian principles of selection and mutation. Quasispecies studies invariably assume that it is possible for any genotype to mutate into any other, but recent finds indicate that this assumption is not necessarily true. Here we revisit the traditional quasispecies theory by adopting a network structure to constrain the occurrence of mutations. Such structure is governed by a random-graph model, whose single parameter (a probability p) controls both the graph's density and the dynamics of mutation. We contribute two further modifications to the theory, one to account for the fact that different loci in a genotype may be differently susceptible to the occurrence of mutations, the other to allow for a more plausible description of the transition from adaptation to degeneracy of the quasispecies as p is increased. We give analytical and simulation results for the usual case of binary genotypes, assuming the fitness landscape in which a genotype's fitness decays exponentially with its Hamming distance to the wild type. These results support the theory's assertions regarding the adaptation of the quasispecies to the fitness landscape and also its possible demise as a function of p.

  1. Dynamic Coverage of Mobile Sensor Networks

    CERN Document Server

    Liu, Benyuan; Nain, Philippe; Towsley, Don

    2011-01-01

    In this paper we study the dynamic aspects of the coverage of a mobile sensor network resulting from continuous movement of sensors. As sensors move around, initially uncovered locations are likely to be covered at a later time. A larger area is covered as time continues, and intruders that might never be detected in a stationary sensor network can now be detected by moving sensors. However, this improvement in coverage is achieved at the cost that a location is covered only part of the time, alternating between covered and not covered. We characterize area coverage at specific time instants and during time intervals, as well as the time durations that a location is covered and uncovered. We further characterize the time it takes to detect a randomly located intruder. For mobile intruders, we take a game theoretic approach and derive optimal mobility strategies for both sensors and intruders. Our results show that sensor mobility brings about unique dynamic coverage properties not present in a stationary sens...

  2. Dynamic Routing Protocol for Computer Networks with Clustering Topology

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    This paper presents a hierarchical dynamic routing protocol (HDRP) based on the discrete dynamic programming principle. The proposed protocol can adapt to the dynamic and large computer networks (DLCN) with clustering topology. The procedures for realizing routing update and decision are presented in this paper. The proof of correctness and complexity analysis of the protocol are also made. The performance measures of the HDRP including throughput and average message delay are evaluated by using of simulation. The study shows that the HDRP provides a new available approach to the routing decision for DLCN or high speed networks with clustering topology.

  3. Approach to the unfolding and folding dynamics of add A-riboswitch upon adenine dissociation using a coarse-grained elastic network model

    Science.gov (United States)

    Li, Chunhua; Lv, Dashuai; Zhang, Lei; Yang, Feng; Wang, Cunxin; Su, Jiguo; Zhang, Yang

    2016-07-01

    Riboswitches are noncoding mRNA segments that can regulate the gene expression via altering their structures in response to specific metabolite binding. We proposed a coarse-grained Gaussian network model (GNM) to examine the unfolding and folding dynamics of adenosine deaminase (add) A-riboswitch upon the adenine dissociation, in which the RNA is modeled by a nucleotide chain with interaction networks formed by connecting adjoining atomic contacts. It was shown that the adenine binding is critical to the folding of the add A-riboswitch while the removal of the ligand can result in drastic increase of the thermodynamic fluctuations especially in the junction regions between helix domains. Under the assumption that the native contacts with the highest thermodynamic fluctuations break first, the iterative GNM simulations showed that the unfolding process of the adenine-free add A-riboswitch starts with the denature of the terminal helix stem, followed by the loops and junctions involving ligand binding pocket, and then the central helix domains. Despite the simplified coarse-grained modeling, the unfolding dynamics and pathways are shown in close agreement with the results from atomic-level MD simulations and the NMR and single-molecule force spectroscopy experiments. Overall, the study demonstrates a new avenue to investigate the binding and folding dynamics of add A-riboswitch molecule which can be readily extended for other RNA molecules.

  4. Global Synchronization of General Delayed Dynamical Networks

    Institute of Scientific and Technical Information of China (English)

    LI Zhi

    2007-01-01

    Global synchronization of general delayed dynamical networks with linear coupling are investigated. A sufficient condition for the global synchronization is obtained by using the linear matrix inequality and introducing a reference state. This condition is simply given based on the maximum nonzero eigenvalue of the network coupling matrix. Moreover, we show how to construct the coupling matrix to guarantee global synchronization of network,which is very convenient to use. A two-dimension system with delay as a dynamical node in network with global coupling is finally presented to verify the theoretical results of the proposed global synchronization scheme.

  5. Matrix expression and vaccination control for epidemic dynamics over dynamic networks

    Institute of Scientific and Technical Information of China (English)

    Peilian GUO; Yuzhen WANG

    2016-01-01

    This paper investigates epidemic dynamics over dynamic networks via the approach of semi-tensor product of matrices. First, a formal susceptible-infected-susceptible epidemic dynamic model over dynamic networks (SISED-DN) is given. Second, based on a class of determinate co-evolutionary rule, the matrix expressions are established for the dynamics of individual states and network topologies, respectively. Then, all possible final spreading equilibria are obtained for any given initial epidemic state and network topology by the matrix expression. Third, a sufficient and necessary condition of the existence of state feedback vaccination control is presented to make every individual susceptible. The study of illustrative examples shows the effectiveness of our new results.

  6. Network-based approach to online cursive script recognition.

    Science.gov (United States)

    Sin, B K; Ha, J Y; Oh, S C; Kim, J H

    1999-01-01

    The idea of combining the network of HMMs and the dynamic programming-based search is highly relevant to online handwriting recognition. The word model of HMM network can be systematically constructed by concatenating letter and ligature HMM's while sharing common ones. Character recognition in such a network can be defined as the task of best aligning a given input sequence to the best path in the network. One distinguishing feature of the approach is that letter segmentation is obtained simultaneously with recognition but no extra computation is required.

  7. Simulating market dynamics: interactions between consumer psychology and social networks.

    Science.gov (United States)

    Janssen, Marco A; Jager, Wander

    2003-01-01

    Markets can show different types of dynamics, from quiet markets dominated by one or a few products, to markets with continual penetration of new and reintroduced products. In a previous article we explored the dynamics of markets from a psychological perspective using a multi-agent simulation model. The main results indicated that the behavioral rules dominating the artificial consumer's decision making determine the resulting market dynamics, such as fashions, lock-in, and unstable renewal. Results also show the importance of psychological variables like social networks, preferences, and the need for identity to explain the dynamics of markets. In this article we extend this work in two directions. First, we will focus on a more systematic investigation of the effects of different network structures. The previous article was based on Watts and Strogatz's approach, which describes the small-world and clustering characteristics in networks. More recent research demonstrated that many large networks display a scale-free power-law distribution for node connectivity. In terms of market dynamics this may imply that a small proportion of consumers may have an exceptional influence on the consumptive behavior of others (hubs, or early adapters). We show that market dynamics is a self-organized property depending on the interaction between the agents' decision-making process (heuristics), the product characteristics (degree of satisfaction of unit of consumption, visibility), and the structure of interactions between agents (size of network and hubs in a social network).

  8. Dynamic recurrent Elman neural network based on immune clonal selection algorithm

    Science.gov (United States)

    Wang, Limin; Han, Xuming; Li, Ming; Sun, Haibo; Li, Qingzhao

    2012-04-01

    Owing to the immune clonal selection algorithm introduced into dynamic threshold strategy has better advantage on optimizing multi-parameters, therefore a novel approach that the immune clonal selection algorithm introduced into dynamic threshold strategy, is used to optimize the dynamic recursion Elman neural network is proposed in the paper. The concrete structure of the recursion neural network, the connect weight and the initial values of the contact units etc. are done by evolving training and learning automatically. Thus it could realize to construct and design for dynamic recursion Elman neural networks. It could provide a new effective approach for immune clonal selection algorithm optimizing dynamic recursion neural networks.

  9. A network approach to leadership

    DEFF Research Database (Denmark)

    Lewis, Jenny; Ricard, Lykke Margot

    examine two contradictory leadership strategies using social network theory: structural holes, where ego (the focal individual) benefits from brokering between two disconnected alters (low redundancy); and network closure, where ego is embedded in very dense local structures (high redundancy). Using......Leaders’ ego-networks within an organization are pivotal as focal points that point to other organizational factors such as innovation capacity and leadership effectiveness. The aim of the paper is to provide a framework for exploring leaders’ ego-networks within the boundary of an organization. We...... a survey of senior administrators and politicians from Copenhagen municipality, we examine strategic information networks. Whole network analysis is used first to identify important individuals on the basis of centrality measures. The ego-networks of these individuals are then analysed to examine...

  10. Scale-Free Networks Hidden in Chaotic Dynamical Systems

    CERN Document Server

    Iba, Takashi

    2010-01-01

    In this paper, we show our discovery that state-transition networks in several chaotic dynamical systems are "scale-free networks," with a technique to understand a dynamical system as a whole, which we call the analysis for "Discretized-State Transition" (DST) networks; This scale-free nature is found universally in the logistic map, the sine map, the cubic map, the general symmetric map, the sine-circle map, the Gaussian map, and the delayed logistic map. Our findings prove that there is a hidden order in chaos, which has not detected yet. Furthermore, we anticipate that our study opens up a new way to a "network analysis approach to dynamical systems" for understanding complex phenomena.

  11. Complex networks repair strategies: Dynamic models

    Science.gov (United States)

    Fu, Chaoqi; Wang, Ying; Gao, Yangjun; Wang, Xiaoyang

    2017-09-01

    Network repair strategies are tactical methods that restore the efficiency of damaged networks; however, unreasonable repair strategies not only waste resources, they are also ineffective for network recovery. Most extant research on network repair focuses on static networks, but results and findings on static networks cannot be applied to evolutionary dynamic networks because, in dynamic models, complex network repair has completely different characteristics. For instance, repaired nodes face more severe challenges, and require strategic repair methods in order to have a significant effect. In this study, we propose the Shell Repair Strategy (SRS) to minimize the risk of secondary node failures due to the cascading effect. Our proposed method includes the identification of a set of vital nodes that have a significant impact on network repair and defense. Our identification of these vital nodes reduces the number of switching nodes that face the risk of secondary failures during the dynamic repair process. This is positively correlated with the size of the average degree and enhances network invulnerability.

  12. Network games theory, models, and dynamics

    CERN Document Server

    Ozdaglar, Asu

    2011-01-01

    Traditional network optimization focuses on a single control objective in a network populated by obedient users and limited dispersion of information. However, most of today's networks are large-scale with lack of access to centralized information, consist of users with diverse requirements, and are subject to dynamic changes. These factors naturally motivate a new distributed control paradigm, where the network infrastructure is kept simple and the network control functions are delegated to individual agents which make their decisions independently (""selfishly""). The interaction of multiple

  13. Dynamics of comb-of-comb networks

    Science.gov (United States)

    Liu, Hongxiao; Lin, Yuan; Dolgushev, Maxim; Zhang, Zhongzhi

    2016-03-01

    The dynamics of complex networks, a current hot topic in many scientific fields, is often coded through the corresponding Laplacian matrix. The spectrum of this matrix carries the main features of the networks' dynamics. Here we consider the deterministic networks which can be viewed as "comb-of-comb" iterative structures. For their Laplacian spectra we find analytical equations involving Chebyshev polynomials whose properties allow one to analyze the spectra in deep. Here, in particular, we find that in the infinite size limit the corresponding spectral dimension goes as ds→2 . The ds leaves its fingerprint on many dynamical processes, as we exemplarily show by considering the dynamical properties of polymer networks, including single monomer displacement under a constant force, mechanical relaxation, and fluorescence depolarization.

  14. Boolean networks with reliable dynamics

    CERN Document Server

    Peixoto, Tiago P

    2009-01-01

    We investigated the properties of Boolean networks that follow a given reliable trajectory in state space. A reliable trajectory is defined as a sequence of states which is independent of the order in which the nodes are updated. We explored numerically the topology, the update functions, and the state space structure of these networks, which we constructed using a minimum number of links and the simplest update functions. We found that the clustering coefficient is larger than in random networks, and that the probability distribution of three-node motifs is similar to that found in gene regulation networks. Among the update functions, only a subset of all possible functions occur, and they can be classified according to their probability. More homogeneous functions occur more often, leading to a dominance of canalyzing functions. Finally, we studied the entire state space of the networks. We observed that with increasing systems size, fixed points become more dominant, moving the networks close to the frozen...

  15. Diffusion Dynamics with Changing Network Composition

    CERN Document Server

    Baños, Raquel A; Wang, Ning; Moreno, Yamir; González-Bailón, Sandra

    2013-01-01

    We analyze information diffusion using empirical data that tracks online communication around two instances of mass political mobilization, including the year that lapsed in-between the protests. We compare the global properties of the topological and dynamic networks through which communication took place as well as local changes in network composition. We show that changes in network structure underlie aggregated differences on how information diffused: an increase in network hierarchy is accompanied by a reduction in the average size of cascades. The increasing hierarchy affects not only the underlying communication topology but also the more dynamic structure of information exchange; the increase is especially noticeable amongst certain categories of nodes (or users). This suggests that the relationship between the structure of networks and their function in diffusing information is not as straightforward as some theoretical models of diffusion in networks imply.

  16. Process-in-Network: A Comprehensive Network Processing Approach

    Directory of Open Access Journals (Sweden)

    Juan Carlos Lopez

    2012-06-01

    Full Text Available A solid and versatile communications platform is very important in modern Ambient Intelligence (AmI applications, which usually require the transmission of large amounts of multimedia information over a highly heterogeneous network. This article focuses on the concept of Process-in-Network (PIN, which is defined as the possibility that the network processes information as it is being transmitted, and introduces a more comprehensive approach than current network processing technologies. PIN can take advantage of waiting times in queues of routers, idle processing capacity in intermediate nodes, and the information that passes through the network.

  17. Process-in-Network: a comprehensive network processing approach.

    Science.gov (United States)

    Urzaiz, Gabriel; Villa, David; Villanueva, Felix; Lopez, Juan Carlos

    2012-01-01

    A solid and versatile communications platform is very important in modern Ambient Intelligence (AmI) applications, which usually require the transmission of large amounts of multimedia information over a highly heterogeneous network. This article focuses on the concept of Process-in-Network (PIN), which is defined as the possibility that the network processes information as it is being transmitted, and introduces a more comprehensive approach than current network processing technologies. PIN can take advantage of waiting times in queues of routers, idle processing capacity in intermediate nodes, and the information that passes through the network.

  18. Dynamical Adaptation in Terrorist Cells/Networks

    DEFF Research Database (Denmark)

    Hussain, Dil Muhammad Akbar; Ahmed, Zaki

    2010-01-01

    Typical terrorist cells/networks have dynamical structure as they evolve or adapt to changes which may occur due to capturing or killing of a member of the cell/network. Analytical measures in graph theory like degree centrality, betweenness and closeness centralities are very common and have long...

  19. Collective dynamics of active cytoskeletal networks

    CERN Document Server

    Köhler, Simone; Bausch, Andreas R

    2011-01-01

    Self organization mechanisms are essential for the cytoskeleton to adapt to the requirements of living cells. They rely on the intricate interplay of cytoskeletal filaments, crosslinking proteins and molecular motors. Here we present an in vitro minimal model system consisting of actin filaments, fascin and myosin-II filaments exhibiting pulsative collective long range dynamics. The reorganizations in the highly dynamic steady state of the active gel are characterized by alternating periods of runs and stalls resulting in a superdiffusive dynamics of the network's constituents. They are dominated by the complex competition of crosslinking molecules and motor filaments in the network: Collective dynamics are only observed if the relative strength of the binding of myosin-II filaments to the actin network allows exerting high enough forces to unbind actin/fascin crosslinks. The feedback between structure formation and dynamics can be resolved by combining these experiments with phenomenological simulations base...

  20. Local Checkability in Dynamic Networks

    DEFF Research Database (Denmark)

    Förster, Klaus-Tycho; Richter, Oliver; Seidel, Jochen

    2017-01-01

    In this work we study local checkability of network properties considering inconsistency throughout the verification process. We use disappearing and appearing edges to model inconsistency and prover-verifier-pairs (PVPs) for verification. We say that a network property N is locally checkable und...

  1. RD2: Resilient Dynamic Desynchronization for TDMA over Lossy Networks

    DEFF Research Database (Denmark)

    Hinterhofer, Thomas; Schwefel, Hans-Peter; Tomic, Slobodanka

    2012-01-01

    We present a distributed TDMA negotiation approach for single-hop ad-hoc network communication. It is distributed, resilient to arbitrary transient packet loss and defines a non-overlapping TDMA schedule without the need of global time synchronization. A participating node can dynamically request...

  2. Dynamic bandwidth allocation in GPON networks

    DEFF Research Database (Denmark)

    Ozimkiewiez, J.; Ruepp, Sarah Renée; Dittmann, Lars

    2009-01-01

    Two Dynamic Bandwidth Allocation algorithms used for coordination of the available bandwidth between end users in a GPON network have been simulated using OPNET to determine and compare the performance, scalability and efficiency of status reporting and non status reporting dynamic bandwidth allo...

  3. Traffic dynamics on dynamical networks: The connection between network lifetime and traffic congestion

    CERN Document Server

    Yang, Xianxia; Yan, Meichen; Sharafat, Rajput Ramiz; Yang, Jian

    2016-01-01

    For many power-limited networks, such as wireless sensor networks and mobile ad hoc networks, maximizing the network lifetime is the first concern in the related designing and maintaining activities. We study the network lifetime from the perspective of network science. In our dynamic network, nodes are assigned a fixed amount of energy initially and consume the energy in the delivery of packets. We divided the network traffic flow into four states: no, slow, fast, and absolute congestion states. We derive the network lifetime by considering the state of the traffic flow. We find that the network lifetime is generally opposite to traffic congestion in that the more congested traffic, the less network lifetime. We also find the impacts of factors such as packet generation rate, communication radius, node moving speed, etc., on network lifetime and traffic congestion.

  4. Semi-supervised Graph Embedding Approach to Dynamic Link Prediction

    CERN Document Server

    Hisano, Ryohei

    2016-01-01

    We propose a simple discrete time semi-supervised graph embedding approach to link prediction in dynamic networks. The learned embedding reflects information from both the temporal and cross-sectional network structures, which is performed by defining the loss function as a weighted sum of the supervised loss from past dynamics and the unsupervised loss of predicting the neighborhood context in the current network. Our model is also capable of learning different embeddings for both formation and dissolution dynamics. These key aspects contributes to the predictive performance of our model and we provide experiments with three real--world dynamic networks showing that our method is comparable to state of the art methods in link formation prediction and outperforms state of the art baseline methods in link dissolution prediction.

  5. High Performance Network Security Using NIDS Approach

    Directory of Open Access Journals (Sweden)

    Sutapa Sarkar

    2014-06-01

    Full Text Available Ever increasing demand of good quality communication relies heavily on Network Intrusion Detection System (NIDS. Intrusion detection for network security demands high performance. This paper gives a description of the available approaches for a network intrusion detection system in both software and hardware implementation. This paper gives a description of the structure of Snort rule set which is a very popular software signature and anomaly based Intrusion Detection and prevention system. This paper also discusses the merit of FPGA devices to be used in network intrusion detection system implementation and the approaches used in hardware implementation of NIDS.

  6. Using relaxational dynamics to reduce network congestion

    Science.gov (United States)

    Piontti, Ana L. Pastore y.; La Rocca, Cristian E.; Toroczkai, Zoltán; Braunstein, Lidia A.; Macri, Pablo A.; López, Eduardo

    2008-09-01

    We study the effects of relaxational dynamics on congestion pressure in scale-free (SF) networks by analyzing the properties of the corresponding gradient networks (Toroczkai and Bassler 2004 Nature 428 716). Using the Family model (Family and Bassler 1986 J. Phys. A: Math. Gen. 19 L441) from surface-growth physics as single-step load-balancing dynamics, we show that the congestion pressure considerably drops on SF networks when compared with the same dynamics on random graphs. This is due to a structural transition of the corresponding gradient network clusters, which self-organize so as to reduce the congestion pressure. This reduction is enhanced when lowering the value of the connectivity exponent λ towards 2.

  7. A Complex Network Approach to Stylometry.

    Directory of Open Access Journals (Sweden)

    Diego Raphael Amancio

    Full Text Available Statistical methods have been widely employed to study the fundamental properties of language. In recent years, methods from complex and dynamical systems proved useful to create several language models. Despite the large amount of studies devoted to represent texts with physical models, only a limited number of studies have shown how the properties of the underlying physical systems can be employed to improve the performance of natural language processing tasks. In this paper, I address this problem by devising complex networks methods that are able to improve the performance of current statistical methods. Using a fuzzy classification strategy, I show that the topological properties extracted from texts complement the traditional textual description. In several cases, the performance obtained with hybrid approaches outperformed the results obtained when only traditional or networked methods were used. Because the proposed model is generic, the framework devised here could be straightforwardly used to study similar textual applications where the topology plays a pivotal role in the description of the interacting agents.

  8. A Complex Network Approach to Stylometry.

    Science.gov (United States)

    Amancio, Diego Raphael

    2015-01-01

    Statistical methods have been widely employed to study the fundamental properties of language. In recent years, methods from complex and dynamical systems proved useful to create several language models. Despite the large amount of studies devoted to represent texts with physical models, only a limited number of studies have shown how the properties of the underlying physical systems can be employed to improve the performance of natural language processing tasks. In this paper, I address this problem by devising complex networks methods that are able to improve the performance of current statistical methods. Using a fuzzy classification strategy, I show that the topological properties extracted from texts complement the traditional textual description. In several cases, the performance obtained with hybrid approaches outperformed the results obtained when only traditional or networked methods were used. Because the proposed model is generic, the framework devised here could be straightforwardly used to study similar textual applications where the topology plays a pivotal role in the description of the interacting agents.

  9. Cognitive radio networks dynamic resource allocation schemes

    CERN Document Server

    Wang, Shaowei

    2014-01-01

    This SpringerBrief presents a survey of dynamic resource allocation schemes in Cognitive Radio (CR) Systems, focusing on the spectral-efficiency and energy-efficiency in wireless networks. It also introduces a variety of dynamic resource allocation schemes for CR networks and provides a concise introduction of the landscape of CR technology. The author covers in detail the dynamic resource allocation problem for the motivations and challenges in CR systems. The Spectral- and Energy-Efficient resource allocation schemes are comprehensively investigated, including new insights into the trade-off

  10. Competing dynamic phases of active polymer networks

    Science.gov (United States)

    Freedman, Simon; Banerjee, Shiladitya; Dinner, Aaron R.

    Recent experiments on in-vitro reconstituted assemblies of F-actin, myosin-II motors, and cross-linking proteins show that tuning local network properties can changes the fundamental biomechanical behavior of the system. For example, by varying cross-linker density and actin bundle rigidity, one can switch between contractile networks useful for reshaping cells, polarity sorted networks ideal for directed molecular transport, and frustrated networks with robust structural properties. To efficiently investigate the dynamic phases of actomyosin networks, we developed a coarse grained non-equilibrium molecular dynamics simulation of model semiflexible filaments, molecular motors, and cross-linkers with phenomenologically defined interactions. The simulation's accuracy was verified by benchmarking the mechanical properties of its individual components and collective behavior against experimental results at the molecular and network scales. By adjusting the model's parameters, we can reproduce the qualitative phases observed in experiment and predict the protein characteristics where phase crossovers could occur in collective network dynamics. Our model provides a framework for understanding cells' multiple uses of actomyosin networks and their applicability in materials research. Supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.

  11. Dynamics of deceptive interactions in social networks

    CERN Document Server

    Barrio, Rafael A; Dunbar, Robin; Iñiguez, Gerardo; Kaski, Kimmo

    2015-01-01

    In this paper we examine the role of lies in human social relations by implementing some salient characteristics of deceptive interactions into an opinion formation model, so as to describe the dynamical behaviour of a social network more realistically. In this model we take into account such basic properties of social networks as the dynamics of the intensity of interactions, the influence of public opinion, and the fact that in every human interaction it might be convenient to deceive or withhold information depending on the instantaneous situation of each individual in the network. We find that lies shape the topology of social networks, especially the formation of tightly linked, small communities with loose connections between them. We also find that agents with a larger proportion of deceptive interactions are the ones that connect communities of different opinion, and in this sense they have substantial centrality in the network. We then discuss the consequences of these results for the social behaviou...

  12. Control theory of digitally networked dynamic systems

    CERN Document Server

    Lunze, Jan

    2013-01-01

    The book gives an introduction to networked control systems and describes new modeling paradigms, analysis methods for event-driven, digitally networked systems, and design methods for distributed estimation and control. Networked model predictive control is developed as a means to tolerate time delays and packet loss brought about by the communication network. In event-based control the traditional periodic sampling is replaced by state-dependent triggering schemes. Novel methods for multi-agent systems ensure complete or clustered synchrony of agents with identical or with individual dynamic

  13. Dynamical networks reconstructed from time series

    CERN Document Server

    Levnajić, Zoran

    2012-01-01

    Novel method of reconstructing dynamical networks from empirically measured time series is proposed. By statistically examining the correlations between motions displayed by network nodes, we derive a simple equation that directly yields the adjacency matrix, assuming the intra-network interaction functions to be known. We illustrate the method's implementation on a simple example and discuss the dependence of the reconstruction precision on the properties of time series. Our method is applicable to any network, allowing for reconstruction precision to be maximized, and errors to be estimated.

  14. Synchronization of fractional order complex dynamical networks

    Science.gov (United States)

    Wang, Yu; Li, Tianzeng

    2015-06-01

    In this letter the synchronization of complex dynamical networks with fractional order chaotic nodes is studied. A fractional order controller for synchronization of complex network is presented. Some new sufficient synchronization criteria are proposed based on the Lyapunov stability theory and the LaSalle invariance principle. These synchronization criteria can apply to an arbitrary fractional order complex network in which the coupling-configuration matrix and the inner-coupling matrix are not assumed to be symmetric or irreducible. It means that this method is more general and effective. Numerical simulations of two fractional order complex networks demonstrate the universality and the effectiveness of the proposed method.

  15. Phase multistability in a dynamical small world network

    Energy Technology Data Exchange (ETDEWEB)

    Shabunin, A. V., E-mail: shabuninav@info.sgu.ru [Radiophysics and Nonlinear Dynamics Department, Saratov State University, Saratov (Russian Federation)

    2015-01-15

    The effect of phase multistability is explored in a small world network of periodic oscillators with diffusive couplings. The structure of the network represents a ring with additional non-local links, which spontaneously arise and vanish between arbitrary nodes. The dynamics of random couplings is modeled by “birth” and “death” stochastic processes by means of the cellular automate approach. The evolution of the network under gradual increasing of the number of random couplings goes through stages of phases fluctuations and spatial cluster formation. Finally, in the presence of non-local couplings the phase multistability “dies” and only the in-phase regime survives.

  16. Evolutionary dynamics of prokaryotic transcriptional regulatory networks.

    Science.gov (United States)

    Madan Babu, M; Teichmann, Sarah A; Aravind, L

    2006-04-28

    The structure of complex transcriptional regulatory networks has been studied extensively in certain model organisms. However, the evolutionary dynamics of these networks across organisms, which would reveal important principles of adaptive regulatory changes, are poorly understood. We use the known transcriptional regulatory network of Escherichia coli to analyse the conservation patterns of this network across 175 prokaryotic genomes, and predict components of the regulatory networks for these organisms. We observe that transcription factors are typically less conserved than their target genes and evolve independently of them, with different organisms evolving distinct repertoires of transcription factors responding to specific signals. We show that prokaryotic transcriptional regulatory networks have evolved principally through widespread tinkering of transcriptional interactions at the local level by embedding orthologous genes in different types of regulatory motifs. Different transcription factors have emerged independently as dominant regulatory hubs in various organisms, suggesting that they have convergently acquired similar network structures approximating a scale-free topology. We note that organisms with similar lifestyles across a wide phylogenetic range tend to conserve equivalent interactions and network motifs. Thus, organism-specific optimal network designs appear to have evolved due to selection for specific transcription factors and transcriptional interactions, allowing responses to prevalent environmental stimuli. The methods for biological network analysis introduced here can be applied generally to study other networks, and these predictions can be used to guide specific experiments.

  17. Dynamic Packet Scheduling in Wireless Networks

    CERN Document Server

    Kesselheim, Thomas

    2012-01-01

    We consider protocols that serve communication requests arising over time in a wireless network that is subject to interference. Unlike previous approaches, we take the geometry of the network and power control into account, both allowing to increase the network's performance significantly. We introduce a stochastic and an adversarial model to bound the packet injection. Although taken as the primary motivation, this approach is not only suitable for models based on the signal-to-interference-plus-noise ratio (SINR). It also covers virtually all other common interference models, for example the multiple-access channel, the radio-network model, the protocol model, and distance-2 matching. Packet-routing networks allowing each edge or each node to transmit or receive one packet at a time can be modeled as well. Starting from algorithms for the respective scheduling problem with static transmission requests, we build distributed stable protocols. This is more involved than in previous, similar approaches because...

  18. A Dynamic Algebraic Specification for Social Networks

    CERN Document Server

    Ksystra, Katerina; Triantafyllou, Nikolaos; Stefaneas, Petros

    2011-01-01

    With the help of the Internet, social networks have grown rapidly. This has increased security requirements. We present a formalization of social networks as composite behavioral objects, defined using the Observational Transition System (OTS) approach. Our definition is then translated to the OTS/CafeOBJ algebraic specification methodology. This translation allows the formal verification of safety properties for social networks via the Proof Score method. Finally, using this methodology we formally verify some security properties.

  19. SCOUT: simultaneous time segmentation and community detection in dynamic networks

    CERN Document Server

    Hulovatyy, Yuriy

    2016-01-01

    Many evolving complex systems can be modeled via dynamic networks. An important problem in dynamic network research is community detection, which identifies groups of topologically related nodes. Typically, this problem is approached by assuming either that each time point has a distinct community organization or that all time points share one community organization. In reality, the truth likely lies between these two extremes, since some time periods can have community organization that evolves while others can have community organization that stays the same. To find the compromise, we consider community detection in the context of the problem of segment detection, which identifies contiguous time periods with consistent network structure. Consequently, we formulate a combined problem of segment community detection (SCD), which simultaneously partitions the network into contiguous time segments with consistent community organization and finds this community organization for each segment. To solve SCD, we int...

  20. The Dynamics of network and dyad level supply management

    DEFF Research Database (Denmark)

    Ellegaard, Chris

    Various academic disciplines have treated the task of managing supply in the industrial company. These disciplines have focussed on various (inter-)organisational levels, e.g. the dyadic relation, the supply chain or the network. The present article argues that supply managers must manage both...... the dyadic supplier relations and the overall supply network of the company. By applying data from a longitudinal case study, this two-sided management task is investigated from a dynamic perspective. Three episodes from the case study, which describes the 14-year development of an industrial buyer......-supplier relation and its immediate network context, are presented. In analysing the data, the dynamic interdependency between management of one level and management of the other, will be demonstrated. The analysis reveals a need for an alternating approach to supply management, which takes the dynamic complexity...

  1. Random graph models for dynamic networks

    CERN Document Server

    Zhang, Xiao; Newman, M E J

    2016-01-01

    We propose generalizations of a number of standard network models, including the classic random graph, the configuration model, and the stochastic block model, to the case of time-varying networks. We assume that the presence and absence of edges are governed by continuous-time Markov processes with rate parameters that can depend on properties of the nodes. In addition to computing equilibrium properties of these models, we demonstrate their use in data analysis and statistical inference, giving efficient algorithms for fitting them to observed network data. This allows us, for instance, to estimate the time constants of network evolution or infer community structure from temporal network data using cues embedded both in the probabilities over time that node pairs are connected by edges and in the characteristic dynamics of edge appearance and disappearance. We illustrate our methods with a selection of applications, both to computer-generated test networks and real-world examples.

  2. Coupled disease-behavior dynamics on complex networks: A review

    Science.gov (United States)

    Wang, Zhen; Andrews, Michael A.; Wu, Zhi-Xi; Wang, Lin; Bauch, Chris T.

    2015-12-01

    It is increasingly recognized that a key component of successful infection control efforts is understanding the complex, two-way interaction between disease dynamics and human behavioral and social dynamics. Human behavior such as contact precautions and social distancing clearly influence disease prevalence, but disease prevalence can in turn alter human behavior, forming a coupled, nonlinear system. Moreover, in many cases, the spatial structure of the population cannot be ignored, such that social and behavioral processes and/or transmission of infection must be represented with complex networks. Research on studying coupled disease-behavior dynamics in complex networks in particular is growing rapidly, and frequently makes use of analysis methods and concepts from statistical physics. Here, we review some of the growing literature in this area. We contrast network-based approaches to homogeneous-mixing approaches, point out how their predictions differ, and describe the rich and often surprising behavior of disease-behavior dynamics on complex networks, and compare them to processes in statistical physics. We discuss how these models can capture the dynamics that characterize many real-world scenarios, thereby suggesting ways that policy makers can better design effective prevention strategies. We also describe the growing sources of digital data that are facilitating research in this area. Finally, we suggest pitfalls which might be faced by researchers in the field, and we suggest several ways in which the field could move forward in the coming years.

  3. Relevance of Dynamic Clustering to Biological Networks

    CERN Document Server

    Kaneko, K

    1993-01-01

    Abstract Network of nonlinear dynamical elements often show clustering of synchronization by chaotic instability. Relevance of the clustering to ecological, immune, neural, and cellular networks is discussed, with the emphasis of partially ordered states with chaotic itinerancy. First, clustering with bit structures in a hypercubic lattice is studied. Spontaneous formation and destruction of relevant bits are found, which give self-organizing, and chaotic genetic algorithms. When spontaneous changes of effective couplings are introduced, chaotic itinerancy of clusterings is widely seen through a feedback mechanism, which supports dynamic stability allowing for complexity and diversity, known as homeochaos. Second, synaptic dynamics of couplings is studied in relation with neural dynamics. The clustering structure is formed with a balance between external inputs and internal dynamics. Last, an extension allowing for the growth of the number of elements is given, in connection with cell differentiation. Effecti...

  4. Understanding migraine using dynamic network biomarkers

    NARCIS (Netherlands)

    Dahlem, M.A.; Kurths, J.; Ferrari, M.D.; Aihara, K.; Scheffer, M.; May, A.

    2015-01-01

    Background: Mathematical modeling approaches are becoming ever more established in clinical neuroscience. They provide insight that is key to understanding complex interactions of network phenomena, in general, and interactions within the migraine-generator network, in particular. Purpose: In this s

  5. Network Medicine: A Network-based Approach to Human Diseases

    Science.gov (United States)

    Ghiassian, Susan Dina

    With the availability of large-scale data, it is now possible to systematically study the underlying interaction maps of many complex systems in multiple disciplines. Statistical physics has a long and successful history in modeling and characterizing systems with a large number of interacting individuals. Indeed, numerous approaches that were first developed in the context of statistical physics, such as the notion of random walks and diffusion processes, have been applied successfully to study and characterize complex systems in the context of network science. Based on these tools, network science has made important contributions to our understanding of many real-world, self-organizing systems, for example in computer science, sociology and economics. Biological systems are no exception. Indeed, recent studies reflect the necessity of applying statistical and network-based approaches in order to understand complex biological systems, such as cells. In these approaches, a cell is viewed as a complex network consisting of interactions among cellular components, such as genes and proteins. Given the cellular network as a platform, machinery, functionality and failure of a cell can be studied with network-based approaches, a field known as systems biology. Here, we apply network-based approaches to explore human diseases and their associated genes within the cellular network. This dissertation is divided in three parts: (i) A systematic analysis of the connectivity patterns among disease proteins within the cellular network. The quantification of these patterns inspires the design of an algorithm which predicts a disease-specific subnetwork containing yet unknown disease associated proteins. (ii) We apply the introduced algorithm to explore the common underlying mechanism of many complex diseases. We detect a subnetwork from which inflammatory processes initiate and result in many autoimmune diseases. (iii) The last chapter of this dissertation describes the

  6. Impact of constrained rewiring on network structure and node dynamics.

    Science.gov (United States)

    Rattana, P; Berthouze, L; Kiss, I Z

    2014-11-01

    In this paper, we study an adaptive spatial network. We consider a susceptible-infected-susceptible (SIS) epidemic on the network, with a link or contact rewiring process constrained by spatial proximity. In particular, we assume that susceptible nodes break links with infected nodes independently of distance and reconnect at random to susceptible nodes available within a given radius. By systematically manipulating this radius we investigate the impact of rewiring on the structure of the network and characteristics of the epidemic. We adopt a step-by-step approach whereby we first study the impact of rewiring on the network structure in the absence of an epidemic, then with nodes assigned a disease status but without disease dynamics, and finally running network and epidemic dynamics simultaneously. In the case of no labeling and no epidemic dynamics, we provide both analytic and semianalytic formulas for the value of clustering achieved in the network. Our results also show that the rewiring radius and the network's initial structure have a pronounced effect on the endemic equilibrium, with increasingly large rewiring radiuses yielding smaller disease prevalence.

  7. Dynamic Pricing in Electronic Commerce Using Neural Network

    Science.gov (United States)

    Ghose, Tapu Kumar; Tran, Thomas T.

    In this paper, we propose an approach where feed-forward neural network is used for dynamically calculating a competitive price of a product in order to maximize sellers’ revenue. In the approach we considered that along with product price other attributes such as product quality, delivery time, after sales service and seller’s reputation contribute in consumers purchase decision. We showed that once the sellers, by using their limited prior knowledge, set an initial price of a product our model adjusts the price automatically with the help of neural network so that sellers’ revenue is maximized.

  8. Deep Dynamic Neural Networks for Multimodal Gesture Segmentation and Recognition.

    Science.gov (United States)

    Wu, Di; Pigou, Lionel; Kindermans, Pieter-Jan; Le, Nam Do-Hoang; Shao, Ling; Dambre, Joni; Odobez, Jean-Marc

    2016-08-01

    This paper describes a novel method called Deep Dynamic Neural Networks (DDNN) for multimodal gesture recognition. A semi-supervised hierarchical dynamic framework based on a Hidden Markov Model (HMM) is proposed for simultaneous gesture segmentation and recognition where skeleton joint information, depth and RGB images, are the multimodal input observations. Unlike most traditional approaches that rely on the construction of complex handcrafted features, our approach learns high-level spatio-temporal representations using deep neural networks suited to the input modality: a Gaussian-Bernouilli Deep Belief Network (DBN) to handle skeletal dynamics, and a 3D Convolutional Neural Network (3DCNN) to manage and fuse batches of depth and RGB images. This is achieved through the modeling and learning of the emission probabilities of the HMM required to infer the gesture sequence. This purely data driven approach achieves a Jaccard index score of 0.81 in the ChaLearn LAP gesture spotting challenge. The performance is on par with a variety of state-of-the-art hand-tuned feature-based approaches and other learning-based methods, therefore opening the door to the use of deep learning techniques in order to further explore multimodal time series data.

  9. Dynamics-based centrality for directed networks

    Science.gov (United States)

    Masuda, Naoki; Kori, Hiroshi

    2010-11-01

    Determining the relative importance of nodes in directed networks is important in, for example, ranking websites, publications, and sports teams, and for understanding signal flows in systems biology. A prevailing centrality measure in this respect is the PageRank. In this work, we focus on another class of centrality derived from the Laplacian of the network. We extend the Laplacian-based centrality, which has mainly been applied to strongly connected networks, to the case of general directed networks such that we can quantitatively compare arbitrary nodes. Toward this end, we adopt the idea used in the PageRank to introduce global connectivity between all the pairs of nodes with a certain strength. Numerical simulations are carried out on some networks. We also offer interpretations of the Laplacian-based centrality for general directed networks in terms of various dynamical and structural properties of networks. Importantly, the Laplacian-based centrality defined as the stationary density of the continuous-time random walk with random jumps is shown to be equivalent to the absorption probability of the random walk with sinks at each node but without random jumps. Similarly, the proposed centrality represents the importance of nodes in dynamics on the original network supplied with sinks but not with random jumps.

  10. Agent-based modeling and network dynamics

    CERN Document Server

    Namatame, Akira

    2016-01-01

    The book integrates agent-based modeling and network science. It is divided into three parts, namely, foundations, primary dynamics on and of social networks, and applications. The book begins with the network origin of agent-based models, known as cellular automata, and introduce a number of classic models, such as Schelling’s segregation model and Axelrod’s spatial game. The essence of the foundation part is the network-based agent-based models in which agents follow network-based decision rules. Under the influence of the substantial progress in network science in late 1990s, these models have been extended from using lattices into using small-world networks, scale-free networks, etc. The book also shows that the modern network science mainly driven by game-theorists and sociophysicists has inspired agent-based social scientists to develop alternative formation algorithms, known as agent-based social networks. The book reviews a number of pioneering and representative models in this family. Upon the gi...

  11. The dynamics of transmission and the dynamics of networks.

    Science.gov (United States)

    Farine, Damien

    2017-05-01

    A toy example depicted here highlighting the results of a study in this issue of the Journal of Animal Ecology that investigates the impact of network dynamics on potential disease outbreaks. Infections (stars) that spread by contact only (left) reduce the predicted outbreak size compared to situations where individuals can become infected by moving through areas that previously contained infected individuals (right). This is potentially important in species where individuals, or in this case groups, have overlapping ranges (as depicted on the top right). Incorporating network dynamics that maintain information about the ordering of contacts (central blocks; including the ordering of spatial overlap as noted by the arrows that highlight the blue group arriving after the red group in top-right of the figure) is important for capturing how a disease might not have the opportunity to spread to all individuals. By contrast, a static or 'average' network (lower blocks) does not capture any of these dynamics. Interestingly, although static networks generally predict larger outbreak sizes, the authors find that in cases when transmission probability is low, this prediction can switch as a result of changes in the estimated intensity of contacts among individuals. [Colour figure can be viewed at wileyonlinelibrary.com]. Springer, A., Kappeler, P.M. & Nunn, C.L. (2017) Dynamic vs. static social networks in models of parasite transmission: Predicting Cryptosporidium spread in wild lemurs. Journal of Animal Ecology, 86, 419-433. The spread of disease or information through networks can be affected by several factors. Whether and how these factors are accounted for can fundamentally change the predicted impact of a spreading epidemic. Springer, Kappeler & Nunn () investigate the role of different modes of transmission and network dynamics on the predicted size of a disease outbreak across several groups of Verreaux's sifakas, a group-living species of lemur. While some factors

  12. Stochastic Simulation of Biomolecular Networks in Dynamic Environments.

    Directory of Open Access Journals (Sweden)

    Margaritis Voliotis

    2016-06-01

    Full Text Available Simulation of biomolecular networks is now indispensable for studying biological systems, from small reaction networks to large ensembles of cells. Here we present a novel approach for stochastic simulation of networks embedded in the dynamic environment of the cell and its surroundings. We thus sample trajectories of the stochastic process described by the chemical master equation with time-varying propensities. A comparative analysis shows that existing approaches can either fail dramatically, or else can impose impractical computational burdens due to numerical integration of reaction propensities, especially when cell ensembles are studied. Here we introduce the Extrande method which, given a simulated time course of dynamic network inputs, provides a conditionally exact and several orders-of-magnitude faster simulation solution. The new approach makes it feasible to demonstrate-using decision-making by a large population of quorum sensing bacteria-that robustness to fluctuations from upstream signaling places strong constraints on the design of networks determining cell fate. Our approach has the potential to significantly advance both understanding of molecular systems biology and design of synthetic circuits.

  13. Transportation dynamics on networks of mobile agents

    CERN Document Server

    Yang, Han-Xin; Xie, Yan-Bo; Lai, Ying-Cheng; Wang, Bing-Hong

    2011-01-01

    Most existing works on transportation dynamics focus on networks of a fixed structure, but networks whose nodes are mobile have become widespread, such as cell-phone networks. We introduce a model to explore the basic physics of transportation on mobile networks. Of particular interest are the dependence of the throughput on the speed of agent movement and communication range. Our computations reveal a hierarchical dependence for the former while, for the latter, we find an algebraic power law between the throughput and the communication range with an exponent determined by the speed. We develop a physical theory based on the Fokker-Planck equation to explain these phenomena. Our findings provide insights into complex transportation dynamics arising commonly in natural and engineering systems.

  14. Cascading Edge Failures: A Dynamic Network Process

    CERN Document Server

    Zhang, June

    2016-01-01

    This paper considers the dynamics of edges in a network. The Dynamic Bond Percolation (DBP) process models, through stochastic local rules, the dependence of an edge $(a,b)$ in a network on the states of its neighboring edges. Unlike previous models, DBP does not assume statistical independence between different edges. In applications, this means for example that failures of transmission lines in a power grid are not statistically independent, or alternatively, relationships between individuals (dyads) can lead to changes in other dyads in a social network. We consider the time evolution of the probability distribution of the network state, the collective states of all the edges (bonds), and show that it converges to a stationary distribution. We use this distribution to study the emergence of global behaviors like consensus (i.e., catastrophic failure or full recovery of the entire grid) or coexistence (i.e., some failed and some operating substructures in the grid). In particular, we show that, depending on...

  15. Dynamical and bursty interactions in social networks

    CERN Document Server

    Stehle, Juliette; Bianconi, Ginestra

    2010-01-01

    We present a modeling framework for dynamical and bursty contact networks made of agents in social interaction. We consider agents' behavior at short time scales, in which the contact network is formed by disconnected cliques of different sizes. At each time a random agent can make a transition from being isolated to being part of a group, or vice-versa. Different distributions of contact times and inter-contact times between individuals are obtained by considering transition probabilities with memory effects, i.e. the transition probabilities for each agent depend both on its state (isolated or interacting) and on the time elapsed since the last change of state. The model lends itself to analytical and numerical investigations. The modeling framework can be easily extended, and paves the way for systematic investigations of dynamical processes occurring on rapidly evolving dynamical networks, such as the propagation of an information, or spreading of diseases.

  16. The fidelity of dynamic signaling by noisy biomolecular networks.

    Directory of Open Access Journals (Sweden)

    Clive G Bowsher

    Full Text Available Cells live in changing, dynamic environments. To understand cellular decision-making, we must therefore understand how fluctuating inputs are processed by noisy biomolecular networks. Here we present a general methodology for analyzing the fidelity with which different statistics of a fluctuating input are represented, or encoded, in the output of a signaling system over time. We identify two orthogonal sources of error that corrupt perfect representation of the signal: dynamical error, which occurs when the network responds on average to other features of the input trajectory as well as to the signal of interest, and mechanistic error, which occurs because biochemical reactions comprising the signaling mechanism are stochastic. Trade-offs between these two errors can determine the system's fidelity. By developing mathematical approaches to derive dynamics conditional on input trajectories we can show, for example, that increased biochemical noise (mechanistic error can improve fidelity and that both negative and positive feedback degrade fidelity, for standard models of genetic autoregulation. For a group of cells, the fidelity of the collective output exceeds that of an individual cell and negative feedback then typically becomes beneficial. We can also predict the dynamic signal for which a given system has highest fidelity and, conversely, how to modify the network design to maximize fidelity for a given dynamic signal. Our approach is general, has applications to both systems and synthetic biology, and will help underpin studies of cellular behavior in natural, dynamic environments.

  17. Dynamic queuing transmission model for dynamic network loading

    DEFF Research Database (Denmark)

    Raovic, Nevena; Nielsen, Otto Anker; Prato, Carlo Giacomo

    2017-01-01

    This paper presents a new macroscopic multi-class dynamic network loading model called Dynamic Queuing Transmission Model (DQTM). The model utilizes ‘good’ properties of the Dynamic Queuing Model (DQM) and the Link Transmission Model (LTM) by offering a DQM consistent with the kinematic wave theory...... and allowing for the representation of multiple vehicle classes, queue spillbacks and shock waves. The model assumes that a link is split into a moving part plus a queuing part, and p that traffic dynamics are given by a triangular fundamental diagram. A case-study is investigated and the DQTM is compared...

  18. Submodularity in dynamics and control of networked systems

    CERN Document Server

    Clark, Andrew; Bushnell, Linda; Poovendran, Radha

    2016-01-01

    This book presents a framework for the control of networked systems utilizing submodular optimization techniques. The main focus is on selecting input nodes for the control of networked systems, an inherently discrete optimization problem with applications in power system stability, social influence dynamics, and the control of vehicle formations. The first part of the book is devoted to background information on submodular functions, matroids, and submodular optimization, and presents algorithms for distributed submodular optimization that are scalable to large networked systems. In turn, the second part develops a unifying submodular optimization approach to controlling networked systems based on multiple performance and controllability criteria. Techniques are introduced for selecting input nodes to ensure smooth convergence, synchronization, and robustness to environmental and adversarial noise. Submodular optimization is the first unifying approach towards guaranteeing both performance and controllabilit...

  19. Efficient mapping of ligand migration channel networks in dynamic proteins.

    Science.gov (United States)

    Lin, Tu-Liang; Song, Guang

    2011-08-01

    For many proteins such as myoglobin, the binding site lies in the interior, and there is no obvious route from the exterior to the binding site in the average structure. Although computer simulations for a limited number of proteins have found some transiently open channels, it is not clear if there exist more channels elsewhere or how the channels are regulated. A systematic approach that can map out the whole ligand migration channel network is lacking. Ligand migration in a dynamic protein resembles closely a well-studied problem in robotics, namely, the navigation of a mobile robot in a dynamic environment. In this work, we present a novel robotic motion planning inspired approach that can map the ligand migration channel network in a dynamic protein. The method combines an efficient spatial mapping of protein inner space with a temporal exploration of protein structural heterogeneity, which is represented by a structure ensemble. The spatial mapping of each conformation in the ensemble produces a partial map of protein inner cavities and their inter-connectivity. These maps are then merged to form a super map that contains all the channels that open dynamically. Results on the pathways in myoglobin for gaseous ligands demonstrate the efficiency of our approach in mapping the ligand migration channel networks. The results, obtained in a significantly less amount of time than trajectory-based approaches, are in agreement with previous simulation results. Additionally, the method clearly illustrates how and what conformational changes open or close a channel.

  20. Inversion of Schlumberger resistivity sounding data from the critically dynamic Koyna region using the Hybrid Monte Carlo-based neural network approach

    Directory of Open Access Journals (Sweden)

    S. Maiti

    2011-03-01

    Full Text Available Koyna region is well-known for its triggered seismic activities since the hazardous earthquake of M=6.3 occurred around the Koyna reservoir on 10 December 1967. Understanding the shallow distribution of resistivity pattern in such a seismically critical area is vital for mapping faults, fractures and lineaments. However, deducing true resistivity distribution from the apparent resistivity data lacks precise information due to intrinsic non-linearity in the data structures. Here we present a new technique based on the Bayesian neural network (BNN theory using the concept of Hybrid Monte Carlo (HMC/Markov Chain Monte Carlo (MCMC simulation scheme. The new method is applied to invert one and two-dimensional Direct Current (DC vertical electrical sounding (VES data acquired around the Koyna region in India. Prior to apply the method on actual resistivity data, the new method was tested for simulating synthetic signal. In this approach the objective/cost function is optimized following the Hybrid Monte Carlo (HMC/Markov Chain Monte Carlo (MCMC sampling based algorithm and each trajectory was updated by approximating the Hamiltonian differential equations through a leapfrog discretization scheme. The stability of the new inversion technique was tested in presence of correlated red noise and uncertainty of the result was estimated using the BNN code. The estimated true resistivity distribution was compared with the results of singular value decomposition (SVD-based conventional resistivity inversion results. Comparative results based on the HMC-based Bayesian Neural Network are in good agreement with the existing model results, however in some cases, it also provides more detail and precise results, which appears to be justified with local geological and structural details. The new BNN approach based on HMC is faster and proved to be a promising inversion scheme to interpret complex and non-linear resistivity problems. The HMC-based BNN results

  1. Dynamical behavior of disordered spring networks

    OpenAIRE

    Yucht, M. G.; Sheinman, M.; Broedersz, C. P.

    2013-01-01

    We study the dynamical rheology of spring networks with a percolation model constructed by bond dilution in a two-dimensional triangular lattice. Hydrodynamic interactions are implemented by a Stokesian viscous coupling between the network nodes and a uniformly deforming liquid. Our simulations show that in a critical connectivity regime, these systems display weak power law rheology in which the complex shear modulus scales with frequency as G^* ~ (i * omega)^Delta where Delta = 0.41, in dis...

  2. Dynamics of Abusive IPv6 Networks

    Science.gov (United States)

    2014-09-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS DYNAMICS OF ABUSIVE IPV6 NETWORKS by Mark J. Turner September 2014 Thesis Advisor: Robert... IPV6 NETWORKS 5. FUNDING NUMBERS CNS-1111445 6. AUTHOR(S) Mark J. Turner 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval Postgraduate School... IPv6 . As IPv6 becomes more commonplace, it permits abusive and malicious parties to exploit both new and existing vulnerabilities. Among such

  3. Pipe-cleaner Model of Neuronal Network Dynamics

    CERN Document Server

    Armstrong, Eve

    2016-01-01

    We present a functional model of neuronal network connectivity in which the single architectural element is the object commonly known in handicraft circles as a pipe cleaner. We argue that the dual nature of a neuronal circuit - that it be at times highly robust to external manipulation and yet sufficiently flexible to allow for learning and adaptation - is embodied in the pipe cleaner, and thus that a pipe cleaner framework serves as an instructive scaffold in which to examine network dynamics. Regarding the dynamics themselves: as pipe cleaners possess no intrinsic dynamics, in our model we attribute the emergent circuit dynamics to magic. Magic is a strategy that has been largely neglected in the neuroscience community, and may serve as an illuminating comparison to the common physics-based approaches. This model makes predictions that it would be really awesome to test experimentally. Moreover, the relative simplicity of the pipe cleaner - setting aside the fact that it comes in an overwhelming variety of...

  4. Controllability of Weighted and Directed Networks with Nonidentical Node Dynamics

    Directory of Open Access Journals (Sweden)

    Linying Xiang

    2013-01-01

    Full Text Available The concept of controllability from control theory is applied to weighted and directed networks with heterogenous linear or linearized node dynamics subject to exogenous inputs, where the nodes are grouped into leaders and followers. Under this framework, the controllability of the controlled network can be decomposed into two independent problems: the controllability of the isolated leader subsystem and the controllability of the extended follower subsystem. Some necessary and/or sufficient conditions for the controllability of the leader-follower network are derived based on matrix theory and graph theory. In particular, it is shown that a single-leader network is controllable if it is a directed path or cycle, but it is uncontrollable for a complete digraph or a star digraph in general. Furthermore, some approaches to improving the controllability of a heterogenous network are presented. Some simulation examples are given for illustration and verification.

  5. Gene regulatory network modeling via global optimization of high-order dynamic Bayesian network

    Directory of Open Access Journals (Sweden)

    Xuan Nguyen

    2012-06-01

    Full Text Available Abstract Background Dynamic Bayesian network (DBN is among the mainstream approaches for modeling various biological networks, including the gene regulatory network (GRN. Most current methods for learning DBN employ either local search such as hill-climbing, or a meta stochastic global optimization framework such as genetic algorithm or simulated annealing, which are only able to locate sub-optimal solutions. Further, current DBN applications have essentially been limited to small sized networks. Results To overcome the above difficulties, we introduce here a deterministic global optimization based DBN approach for reverse engineering genetic networks from time course gene expression data. For such DBN models that consist only of inter time slice arcs, we show that there exists a polynomial time algorithm for learning the globally optimal network structure. The proposed approach, named GlobalMIT+, employs the recently proposed information theoretic scoring metric named mutual information test (MIT. GlobalMIT+ is able to learn high-order time delayed genetic interactions, which are common to most biological systems. Evaluation of the approach using both synthetic and real data sets, including a 733 cyanobacterial gene expression data set, shows significantly improved performance over other techniques. Conclusions Our studies demonstrate that deterministic global optimization approaches can infer large scale genetic networks.

  6. Dynamic Protection of Optical Networks

    DEFF Research Database (Denmark)

    Ruepp, Sarah Renée

    2008-01-01

    This thesis deals with making optical networks resilient to failures. The recovery performance of path, segment and span restoration is evaluated in a network with limited wavelength conversion capability using both standard and enhanced wavelength assignment schemes. The enhanced wavelength...... assignment scheme is based on the Suggested Vector (SV), which is a Generalized Multi-Protocol Label Switching (GMPLS) compliant signalling extension aiming at wavelength conversion minimization. To increase the recovery percentage, two modifcations of the signalling session are proposed and evaluated...... through simulation. By resolving wavelength contention, the blocking reduction scheme reduces the number of necessary recovery retries and thereby the restoration time and control plane load. The stub-awareness schemes avoids wavelength conversions when merging the restoration segment to the connection...

  7. Hydrogen application dynamics and networks

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, E. [Air Liquide Large Industries, Champigny-sur-Marne (France)

    2010-12-30

    The Chemical Industry consumes large volumes of hydrogen as raw material for the manufacture of numerous products (e.g. polyamides and polyurethanes account for 60% of hydrogen demand). The hydrogen demand was in the recent past and will continue to be driven by the polyurethane family. China will host about 60% of new hydrogen needs over the period 2010-2015 becoming the first hydrogen market next year and reaching 25% of market share by 2015 (vs. only 4% in 2001). Air Liquide supplies large volumes of Hydrogen (and other Industrial Gases) to customers by on-site plants and through pipeline networks which offer significant benefits such as higher safety, reliability and flexibility of supply. Thanks to its long term strategy and heavy investment in large units and pipeline networks, Air Liquide is the Industrial Gas leader in most of the world class Petrochemical basins (Rotterdam, Antwerp, US Gulf Coast, Yosu, Caojing,..) (orig.)

  8. Dynamics in online social networks

    CERN Document Server

    Grabowicz, Przemyslaw A; Eguiluz, Victor M

    2012-01-01

    An increasing number of today's social interactions occurs using online social media as communication channels. Some online social networks have become extremely popular in the last decade. They differ among themselves in the character of the service they provide to online users. For instance, Facebook can be seen mainly as a platform for keeping in touch with close friends and relatives, Twitter is used to propagate and receive news, LinkedIn facilitates the maintenance of professional contacts, Flickr gathers amateurs and professionals of photography, etc. Albeit different, all these online platforms share an ingredient that pervades all their applications. There exists an underlying social network that allows their users to keep in touch with each other and helps to engage them in common activities or interactions leading to a better fulfillment of the service's purposes. This is the reason why these platforms share a good number of functionalities, e.g., personal communication channels, broadcasted status...

  9. Network-Configurations of Dynamic Friction Patterns

    CERN Document Server

    Ghaffari, H O

    2012-01-01

    The complex configurations of dynamic friction patterns-regarding real time contact areas- are transformed into appropriate networks. With this transformation of a system to network space, many properties can be inferred about the structure and dynamics of the system. Here, we analyze the dynamics of static friction, i.e. nucleation processes, with respect to "friction networks". We show that networks can successfully capture the crack-like shear ruptures and possible corresponding acoustic features. We found that the fraction of triangles remarkably scales with the detachment fronts. There is a universal power law between nodes' degree and motifs frequency (for triangles, it reads T(k)\\proptok{\\beta} ({\\beta} \\approx2\\pm0.4)). We confirmed the obtained universality in aperture-based friction networks. Based on the achieved results, we extracted a possible friction law in terms of network parameters and compared it with the rate and state friction laws. In particular, the evolutions of loops are scaled with p...

  10. Failure and recovery in dynamical networks

    Science.gov (United States)

    Böttcher, L.; Luković, M.; Nagler, J.; Havlin, S.; Herrmann, H. J.

    2017-01-01

    Failure, damage spread and recovery crucially underlie many spatially embedded networked systems ranging from transportation structures to the human body. Here we study the interplay between spontaneous damage, induced failure and recovery in both embedded and non-embedded networks. In our model the network’s components follow three realistic processes that capture these features: (i) spontaneous failure of a component independent of the neighborhood (internal failure), (ii) failure induced by failed neighboring nodes (external failure) and (iii) spontaneous recovery of a component. We identify a metastable domain in the global network phase diagram spanned by the model’s control parameters where dramatic hysteresis effects and random switching between two coexisting states are observed. This dynamics depends on the characteristic link length of the embedded system. For the Euclidean lattice in particular, hysteresis and switching only occur in an extremely narrow region of the parameter space compared to random networks. We develop a unifying theory which links the dynamics of our model to contact processes. Our unifying framework may help to better understand controllability in spatially embedded and random networks where spontaneous recovery of components can mitigate spontaneous failure and damage spread in dynamical networks. PMID:28155876

  11. Dynamic Dilution Effects in Polymeric Networks

    DEFF Research Database (Denmark)

    Skov, Anne Ladegaard; Sommer-Larsen, Peter; Hassager, Ole

    2006-01-01

    processes, namely the reptation of linear species within the network and the arm withdrawal process of star arms in the sol fraction and of dangling single-chain ends attached to the network. The relaxation spectra are influenced by the stoichiometry to a large extent due to dynamic dilution effects caused...... by the change in the amount of dangling arms and solubles with stoichiometry. The star arm relaxation is suppressed by washing out the sol fraction which is seen as a clear example of the dynamic dilution effect arising from the small amount of non-reactive PDMS....

  12. Computer networking a top-down approach

    CERN Document Server

    Kurose, James

    2017-01-01

    Unique among computer networking texts, the Seventh Edition of the popular Computer Networking: A Top Down Approach builds on the author’s long tradition of teaching this complex subject through a layered approach in a “top-down manner.” The text works its way from the application layer down toward the physical layer, motivating readers by exposing them to important concepts early in their study of networking. Focusing on the Internet and the fundamentally important issues of networking, this text provides an excellent foundation for readers interested in computer science and electrical engineering, without requiring extensive knowledge of programming or mathematics. The Seventh Edition has been updated to reflect the most important and exciting recent advances in networking.

  13. Approaching human language with complex networks

    Science.gov (United States)

    Cong, Jin; Liu, Haitao

    2014-12-01

    The interest in modeling and analyzing human language with complex networks is on the rise in recent years and a considerable body of research in this area has already been accumulated. We survey three major lines of linguistic research from the complex network approach: 1) characterization of human language as a multi-level system with complex network analysis; 2) linguistic typological research with the application of linguistic networks and their quantitative measures; and 3) relationships between the system-level complexity of human language (determined by the topology of linguistic networks) and microscopic linguistic (e.g., syntactic) features (as the traditional concern of linguistics). We show that the models and quantitative tools of complex networks, when exploited properly, can constitute an operational methodology for linguistic inquiry, which contributes to the understanding of human language and the development of linguistics. We conclude our review with suggestions for future linguistic research from the complex network approach: 1) relationships between the system-level complexity of human language and microscopic linguistic features; 2) expansion of research scope from the global properties to other levels of granularity of linguistic networks; and 3) combination of linguistic network analysis with other quantitative studies of language (such as quantitative linguistics).

  14. Dynamics of High-Resolution Networks

    DEFF Research Database (Denmark)

    Sekara, Vedran

    NETWORKS are everywhere. From the smallest confines of the cells within our bodies to the webs of social relations across the globe. Networks are not static, they constantly change, adapt, and evolve to suit new conditions. In order to understand the fundamental laws that govern networks we need...... the unprecedented amounts of information collected by mobile phones to gain detailed insight into the dynamics of social systems. This dissertation presents an unparalleled data collection campaign, collecting highly detailed traces for approximately 1000 people over the course of multiple years. The availability...

  15. Eigenvector dynamics under perturbation of modular networks

    CERN Document Server

    Sarkar, Somwrita; Robinson, Peter A; Fortunato, Santo

    2015-01-01

    Rotation dynamics of eigenvectors of modular network adjacency matrices under random perturbations are presented. In the presence of $q$ communities, the number of eigenvectors corresponding to the $q$ largest eigenvalues form a "community" eigenspace and rotate together, but separately from that of the "bulk" eigenspace spanned by all the other eigenvectors. Using this property, the number of modules or clusters in a network can be estimated in an algorithm-independent way. A general derivation for the theoretical detectability limit for sparse modular networks with $q$ communities is presented, beyond which modularity persists in the system but cannot be detected, and estimation results are shown to hold right to this limit.

  16. Semiclassical approaches to nuclear dynamics

    CERN Document Server

    Magner, A G; Bartel, J

    2016-01-01

    The extended Gutzwiller trajectory approach is presented for the semiclassical description of nuclear collective dynamics, in line with the main topics of the fruitful activity of V.G. Solovjov. Within the Fermi-liquid droplet model, the leptodermous effective surface approximation was applied to calculations of energies, sum rules and transition densities for the neutron-proton asymmetry of the isovector giant-dipole resonance and found to be in good agreement with the experimental data. By using the Strutinsky shell correction method, the semiclassical collective transport coefficients such as nuclear inertia, friction, stiffness, and moments of inertia can be derived beyond the quantum perturbation approximation of the response function theory and the cranking model.The averaged particle-number dependence of the low-lying collective vibrational states are described in good agreement with basic experimental data, mainly due to an enhancement of the collective inertia as compared to its irrotational flow val...

  17. A Temporal Approach to Stochastic Network Calculus

    CERN Document Server

    Xie, Jing; Xie, Min

    2011-01-01

    Stochastic network calculus is a newly developed theory for stochastic service guarantee analysis of computer networks. In the current stochastic network calculus literature, its fundamental models are based on the cumulative amount of traffic or cumulative amount of service. However, there are network scenarios where direct application of such models is difficult. This paper presents a temporal approach to stochastic network calculus. The key idea is to develop models and derive results from the time perspective. Particularly, we define traffic models and service models based on the cumulative packet inter-arrival time and the cumulative packet service time, respectively. Relations among these models as well as with the existing models in the literature are established. In addition, we prove the basic properties of the proposed models, such as delay bound and backlog bound, output characterization, concatenation property and superposition property. These results form a temporal stochastic network calculus an...

  18. SOCIOLOGICAL UNDERSTANDING OF INTERNET: THEORETICAL APPROACHES TO THE NETWORK ANALYSIS

    Directory of Open Access Journals (Sweden)

    D. E. Dobrinskaya

    2016-01-01

    Full Text Available Internet studies are carried out by various scientific disciplines and in different research perspectives. Sociological studies of the Internet deal with a new technology, a revolutionary means of mass communication and a social space. There is a set of research difficulties associated with the Internet. Firstly, the high speed and wide spread of Internet technologies’ development. Secondly, the collection and filtration of materials concerning with Internet studies. Lastly, the development of new conceptual categories, which are able to reflect the impact of the Internet development in contemporary world. In that regard the question of the “network” category use is essential. Network is the base of Internet functioning, on the one hand. On the other hand, network is the ground for almost all social interactions in modern society. So such society is called network society. Three theoretical network approaches in the Internet research case are the most relevant: network society theory, social network analysis and actor-network theory. Each of these theoretical approaches contributes to the study of the Internet. They shape various images of interactions between human beings in their entity and dynamics. All these approaches also provide information about the nature of these interactions. 

  19. Structural and dynamical properties of complex networks

    Science.gov (United States)

    Ghoshal, Gourab

    Recent years have witnessed a substantial amount of interest within the physics community in the properties of networks. Techniques from statistical physics coupled with the widespread availability of computing resources have facilitated studies ranging from large scale empirical analysis of the worldwide web, social networks, biological systems, to the development of theoretical models and tools to explore the various properties of these systems. Following these developments, in this dissertation, we present and solve for a diverse set of new problems, investigating the structural and dynamical properties of both model and real world networks. We start by defining a new metric to measure the stability of network structure to disruptions, and then using a combination of theory and simulation study its properties in detail on artificially generated networks; we then compare our results to a selection of networks from the real world and find good agreement in most cases. In the following chapter, we propose a mathematical model that mimics the structure of popular file-sharing websites such as Flickr and CiteULike and demonstrate that many of its properties can solved exactly in the limit of large network size. The remaining part of the dissertation primarily focuses on the dynamical properties of networks. We first formulate a model of a network that evolves under the addition and deletion of vertices and edges, and solve for the equilibrium degree distribution for a variety of cases of interest. We then consider networks whose structure can be manipulated by adjusting the rules by which vertices enter and leave the network. We focus in particular on degree distributions and show that, with some mild constraints, it is possible by a suitable choice of rules to arrange for the network to have any degree distribution we desire. In addition we define a simple local algorithm by which appropriate rules can be implemented in practice. Finally, we conclude our

  20. Fundamental structures of dynamic social networks.

    Science.gov (United States)

    Sekara, Vedran; Stopczynski, Arkadiusz; Lehmann, Sune

    2016-09-06

    Social systems are in a constant state of flux, with dynamics spanning from minute-by-minute changes to patterns present on the timescale of years. Accurate models of social dynamics are important for understanding the spreading of influence or diseases, formation of friendships, and the productivity of teams. Although there has been much progress on understanding complex networks over the past decade, little is known about the regularities governing the microdynamics of social networks. Here, we explore the dynamic social network of a densely-connected population of ∼1,000 individuals and their interactions in the network of real-world person-to-person proximity measured via Bluetooth, as well as their telecommunication networks, online social media contacts, geolocation, and demographic data. These high-resolution data allow us to observe social groups directly, rendering community detection unnecessary. Starting from 5-min time slices, we uncover dynamic social structures expressed on multiple timescales. On the hourly timescale, we find that gatherings are fluid, with members coming and going, but organized via a stable core of individuals. Each core represents a social context. Cores exhibit a pattern of recurring meetings across weeks and months, each with varying degrees of regularity. Taken together, these findings provide a powerful simplification of the social network, where cores represent fundamental structures expressed with strong temporal and spatial regularity. Using this framework, we explore the complex interplay between social and geospatial behavior, documenting how the formation of cores is preceded by coordination behavior in the communication networks and demonstrating that social behavior can be predicted with high precision.

  1. Dynamic Shortest Path Monitoring in Spatial Networks

    Institute of Scientific and Technical Information of China (English)

    Shuo Shang; Lisi Chen; Zhe-Wei Wei; Dan-Huai Guo; Ji-Rong Wen

    2016-01-01

    With the increasing availability of real-time traffic information, dynamic spatial networks are pervasive nowa-days and path planning in dynamic spatial networks becomes an important issue. In this light, we propose and investigate a novel problem of dynamically monitoring shortest paths in spatial networks (DSPM query). When a traveler aims to a des-tination, his/her shortest path to the destination may change due to two reasons: 1) the travel costs of some edges have been updated and 2) the traveler deviates from the pre-planned path. Our target is to accelerate the shortest path computing in dynamic spatial networks, and we believe that this study may be useful in many mobile applications, such as route planning and recommendation, car navigation and tracking, and location-based services in general. This problem is challenging due to two reasons: 1) how to maintain and reuse the existing computation results to accelerate the following computations, and 2) how to prune the search space effectively. To overcome these challenges, filter-and-refinement paradigm is adopted. We maintain an expansion tree and define a pair of upper and lower bounds to prune the search space. A series of optimization techniques are developed to accelerate the shortest path computing. The performance of the developed methods is studied in extensive experiments based on real spatial data.

  2. The fundamental structures of dynamic social networks

    CERN Document Server

    Sekara, Vedran; Lehmann, Sune

    2015-01-01

    Networks provide a powerful mathematical framework for analyzing the structure and dynamics of complex systems (1-3). The study of group behavior has deep roots in the social science literature (4,5) and community detection is a central part of modern network science. Network communities have been found to be highly overlapping and organized in a hierarchical structure (6-9). Recent technological advances have provided a toolset for measuring the detailed social dynamics at scale (10,11). In spite of great progress, a quantitative description of the complex temporal behavior of social groups-with dynamics spanning from minute-by-minute changes to patterns expressed on the timescale of years-is still absent. Here we uncover a class of fundamental structures embedded within highly dynamic social networks. On the shortest time-scale, we find that social gatherings are fluid, with members coming and going, but organized via a stable core of individuals. We show that cores represent social contexts (9), with recur...

  3. Dynamical networks with topological self-organization

    Science.gov (United States)

    Zak, M.

    2001-01-01

    Coupled evolution of state and topology of dynamical networks is introduced. Due to the well organized tensor structure, the governing equations are presented in a canonical form, and required attractors as well as their basins can be easily implanted and controlled.

  4. Distributed dynamic load balancing in wireless networks

    NARCIS (Netherlands)

    S.C. Borst (Sem); I. Saniee; P.A. Whiting

    2007-01-01

    htmlabstractSpatial and temporal load variations, e.g. flash overloads and traffic hot spots that persist for minutes to hours, are intrinsic features of wireless networks, and give rise to potentially huge performance repercussions. Dynamic load balancing strategies provide a natural mechanism for

  5. Wireless sensor networks dynamic runtime configuration

    NARCIS (Netherlands)

    Dulman, S.O.; Hofmeijer, T.J.; Havinga, Paul J.M.

    2004-01-01

    Current Wireless Sensor Networks (WSN) use fixed layered architectures, that can be modified only at compile time. Using a non-layered architecture, which allows dynamic loading of modules and automatic reconfiguration to adapt to the surrounding environment was believed to be too resource consuming

  6. Filtering in hybrid dynamic Bayesian networks

    DEFF Research Database (Denmark)

    Andersen, Morten Nonboe; Andersen, Rasmus Ørum; Wheeler, Kevin

    2004-01-01

    We demonstrate experimentally that inference in a complex hybrid Dynamic Bayesian Network (DBN) is possible using the 2-Time Slice DBN (2T-DBN) from (Koller & Lerner, 2000) to model fault detection in a watertank system. In (Koller & Lerner, 2000) a generic Particle Filter (PF) is used for infere...

  7. Filtering in hybrid dynamic Bayesian networks (left)

    DEFF Research Database (Denmark)

    Andersen, Morten Nonboe; Andersen, Rasmus Ørum; Wheeler, Kevin

    We demonstrate experimentally that inference in a complex hybrid Dynamic Bayesian Network (DBN) is possible using the 2-Time Slice DBN (2T-DBN) from (Koller & Lerner, 2000) to model fault detection in a watertank system. In (Koller & Lerner, 2000) a generic Particle Filter (PF) is used for infere...

  8. Filtering in hybrid dynamic Bayesian networks (center)

    DEFF Research Database (Denmark)

    Andersen, Morten Nonboe; Andersen, Rasmus Ørum; Wheeler, Kevin

    We demonstrate experimentally that inference in a complex hybrid Dynamic Bayesian Network (DBN) is possible using the 2-Time Slice DBN (2T-DBN) from (Koller & Lerner, 2000) to model fault detection in a watertank system. In (Koller & Lerner, 2000) a generic Particle Filter (PF) is used for infere...

  9. Dynamical networks with topological self-organization

    Science.gov (United States)

    Zak, M.

    2001-01-01

    Coupled evolution of state and topology of dynamical networks is introduced. Due to the well organized tensor structure, the governing equations are presented in a canonical form, and required attractors as well as their basins can be easily implanted and controlled.

  10. Autonomous and Decentralized Optimization of Large-Scale Heterogeneous Wireless Networks by Neural Network Dynamics

    Science.gov (United States)

    Hasegawa, Mikio; Tran, Ha Nguyen; Miyamoto, Goh; Murata, Yoshitoshi; Harada, Hiroshi; Kato, Shuzo

    We propose a neurodynamical approach to a large-scale optimization problem in Cognitive Wireless Clouds, in which a huge number of mobile terminals with multiple different air interfaces autonomously utilize the most appropriate infrastructure wireless networks, by sensing available wireless networks, selecting the most appropriate one, and reconfiguring themselves with seamless handover to the target networks. To deal with such a cognitive radio network, game theory has been applied in order to analyze the stability of the dynamical systems consisting of the mobile terminals' distributed behaviors, but it is not a tool for globally optimizing the state of the network. As a natural optimization dynamical system model suitable for large-scale complex systems, we introduce the neural network dynamics which converges to an optimal state since its property is to continually decrease its energy function. In this paper, we apply such neurodynamics to the optimization problem of radio access technology selection. We compose a neural network that solves the problem, and we show that it is possible to improve total average throughput simply by using distributed and autonomous neuron updates on the terminal side.

  11. Boolean network model for GPR142 against Type 2 diabetes and relative dynamic change ratio analysis using systems and biological circuits approach.

    Science.gov (United States)

    Kaushik, Aman Chandra; Sahi, Shakti

    2015-06-01

    Systems biology addresses challenges in the analysis of genomics data, especially for complex genes and protein interactions using Meta data approach on various signaling pathways. In this paper, we report systems biology and biological circuits approach to construct pathway and identify early gene and protein interactions for predicting GPR142 responses in Type 2 diabetes. The information regarding genes, proteins and other molecules involved in Type 2 diabetes were retrieved from literature and kinetic simulation of GPR142 was carried out in order to determine the dynamic interactions. The major objective of this work was to design a GPR142 biochemical pathway using both systems biology as well as biological circuits synthetically. The term 'synthetically' refers to building biological circuits for cell signaling pathway especially for hormonal pathway disease. The focus of the paper is on logical components and logical circuits whereby using these applications users can create complex virtual circuits. Logic gates process represents only true or false and investigates whether biological regulatory circuits are active or inactive. The basic gates used are AND, NAND, OR, XOR and NOT gates and Integrated circuit composition of many such basic gates and some derived gates. Biological circuits may have a futuristic application in biomedical sciences which may involve placing a micro chip in human cells to modulate the down or up regulation of hormonal disease.

  12. Dynamic multicast traffic grooming in WDM networks

    Institute of Scientific and Technical Information of China (English)

    CHENG Xiao-jun; GE Ning; FENG Chong-xi

    2006-01-01

    Dynamic multicast traffic grooming in wavelength division multiplexing (WDM) networks was analyzed to minimize networkwide costs and to increase the network resource utilization.A network model was developed for dynamic multicast traffic grooming with resource constraints and an algorithm that can provide quality of service (QoS)was proposed.The QoS is measured by the maximum number of lightpaths passing between the source and the destinations.The blocking probability of the algorithm was assessed in simulations.The results show that a higher QoS requirement results in higher blocking probability,and when the QoS requirement is low,changes in the QoS requirements have only small effects on the blocking probability.

  13. Dynamical systems on networks a tutorial

    CERN Document Server

    Porter, Mason A

    2016-01-01

    This volume is a tutorial for the study of dynamical systems on networks. It discusses both methodology and models, including spreading models for social and biological contagions. The authors focus especially on “simple” situations that are analytically tractable, because they are insightful and provide useful springboards for the study of more complicated scenarios. This tutorial, which also includes key pointers to the literature, should be helpful for junior and senior undergraduate students, graduate students, and researchers from mathematics, physics, and engineering who seek to study dynamical systems on networks but who may not have prior experience with graph theory or networks. Mason A. Porter is Professor of Nonlinear and Complex Systems at the Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute, University of Oxford, UK. He is also a member of the CABDyN Complexity Centre and a Tutorial Fellow of Somerville College. James P. Gleeson is Professor of Industrial and Appli...

  14. Power Aware Dynamic Provisioning of HPC Networks

    Energy Technology Data Exchange (ETDEWEB)

    Groves, Taylor [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Grant, Ryan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-10-01

    Future exascale systems are under increased pressure to find power savings. The network, while it consumes a considerable amount of power is often left out of the picture when discussing total system power. Even when network power is being considered, the references are frequently a decade or older and rely on models that lack validation on modern inter- connects. In this work we explore how dynamic mechanisms of an Infiniband network save power and at what granularity we can engage these features. We explore this within the context of the host controller adapter (HCA) on the node and for the fabric, i.e. switches, using three different mechanisms of dynamic link width, frequency and disabling of links for QLogic and Mellanox systems. Our results show that while there is some potential for modest power savings, real world systems need to improved responsiveness to adjustments in order to fully leverage these savings. This page intentionally left blank.

  15. Modeling epidemics dynamics on heterogenous networks.

    Science.gov (United States)

    Ben-Zion, Yossi; Cohen, Yahel; Shnerb, Nadav M

    2010-05-21

    The dynamics of the SIS process on heterogenous networks, where different local communities are connected by airlines, is studied. We suggest a new modeling technique for travelers movement, in which the movement does not affect the demographic parameters characterizing the metapopulation. A solution to the deterministic reaction-diffusion equations that emerges from this model on a general network is presented. A typical example of a heterogenous network, the star structure, is studied in detail both analytically and using agent-based simulations. The interplay between demographic stochasticity, spatial heterogeneity and the infection dynamics is shown to produce some counterintuitive effects. In particular it was found that, while movement always increases the chance of an outbreak, it may decrease the steady-state fraction of sick individuals. The importance of the modeling technique in estimating the outcomes of a vaccination campaign is demonstrated.

  16. Enhanced Distributed Dynamic Skyline Query for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Khandakar Ahmed

    2016-02-01

    Full Text Available Dynamic skyline query is one of the most popular and significant variants of skyline query in the field of multi-criteria decision-making. However, designing a distributed dynamic skyline query possesses greater challenge, especially for the distributed data centric storage within wireless sensor networks (WSNs. In this paper, a novel Enhanced Distributed Dynamic Skyline (EDDS approach is proposed and implemented in Disk Based Data Centric Storage (DBDCS architecture. DBDCS is an adaptation of magnetic disk storage platter consisting tracks and sectors. In DBDCS, the disc track and sector analogy is used to map data locations. A distance based indexing method is used for storing and querying multi-dimensional similar data. EDDS applies a threshold based hierarchical approach, which uses temporal correlation among sectors and sector segments to calculate a dynamic skyline. The efficiency and effectiveness of EDDS has been evaluated in terms of latency, energy consumption and accuracy through a simulation model developed in Castalia.

  17. Networks as complex dynamic systems: applications to clinical and developmental psychology and psychopathology.

    Science.gov (United States)

    van Geert, Paul L C; Steenbeek, Henderien W

    2010-06-01

    Cramer et al.'s article is an example of the fruitful application of complex dynamic systems theory. We extend their approach with examples from our own work on development and developmental psychopathology and address three issues: (1) the level of aggregation of the network, (2) the required research methodology, and (3) the clinical and educational application of dynamic network thinking.

  18. Dynamic analysis of biochemical network using complex network method

    Directory of Open Access Journals (Sweden)

    Wang Shuqiang

    2015-01-01

    Full Text Available In this study, the stochastic biochemical reaction model is proposed based on the law of mass action and complex network theory. The dynamics of biochemical reaction system is presented as a set of non-linear differential equations and analyzed at the molecular-scale. Given the initial state and the evolution rules of the biochemical reaction system, the system can achieve homeostasis. Compared with random graph, the biochemical reaction network has larger information capacity and is more efficient in information transmission. This is consistent with theory of evolution.

  19. Clustering determines the dynamics of complex contagions in multiplex networks

    CERN Document Server

    Zhuang, Yong; Yağan, Osman

    2016-01-01

    We present the mathematical analysis of generalized complex contagions in clustered multiplex networks for susceptible-infected-recovered (SIR)-like dynamics. The model is intended to understand diffusion of influence, or any other spreading process implying a threshold dynamics, in setups of interconnected networks with significant clustering. The contagion is assumed to be general enough to account for a content-dependent linear threshold model, where each link type has a different weight (for spreading influence) that may depend on the content (e.g., product, rumor, political view) that is being spread. Using the generating functions formalism, we determine the conditions, probability, and expected size of the emergent global cascades. This analysis provides a generalization of previous approaches and is specially useful in problems related to spreading and percolation. The results present non trivial dependencies between the clustering coefficient of the networks and its average degree. In particular, sev...

  20. Evolutionary approaches of economic dynamics (In French)

    OpenAIRE

    Yildizoglu, Murat

    2009-01-01

    This chapter presents the methods and contributions of evolutionary approach to economic dynamics. First, we expose why economic dynamics can indeed be considered as evolutionary. Second, we discuss sources of diversity and selection mechanisms that drive these dynamics, in the context of industrial dynamics. Third, we expose the main methods of this approach. Last, we give a partial survey of this approach’s contributions in economic systems covering a full spectrum, from organizational to m...

  1. A new approach to artificial neural networks.

    Science.gov (United States)

    Baptista Filho, B D; Cabral, E L; Soares, A J

    1998-01-01

    A novel approach to artificial neural networks is presented. The philosophy of this approach is based on two aspects: the design of task-specific networks, and a new neuron model with multiple synapses. The synapses' connective strengths are modified through selective and cumulative processes conducted by axo-axonic connections from a feedforward circuit. This new concept was applied to the position control of a planar two-link manipulator exhibiting excellent results on learning capability and generalization when compared with a conventional feedforward network. In the present paper, the example shows only a network developed from a neuronal reflexive circuit with some useful artifices, nevertheless without the intention of covering all possibilities devised.

  2. Water dynamics in rigid ionomer networks

    Science.gov (United States)

    Osti, N. C.; Etampawala, T. N.; Shrestha, U. M.; Aryal, D.; Tyagi, M.; Diallo, S. O.; Mamontov, E.; Cornelius, C. J.; Perahia, D.

    2016-12-01

    The dynamics of water within ionic polymer networks formed by sulfonated poly(phenylene) (SPP), as revealed by quasi-elastic neutron scattering (QENS), is presented. These polymers are distinguished from other ionic macromolecules by their rigidity and therefore in their network structure. QENS measurements as a function of temperature as the fraction of ionic groups and humidity were varied have shown that the polymer molecules are immobile while absorbed water molecules remain dynamic. The water molecules occupy multiple sites, either bound or loosely constrained, and bounce between the two. With increasing temperature and hydration levels, the system becomes more dynamic. Water molecules remain mobile even at subzero temperatures, illustrating the applicability of the SPP membrane for selective transport over a broad temperature range.

  3. Transformation of Networks through Cognitive Approaches

    CERN Document Server

    Nair, T R Gopalakrishnan; Sooda, Kavitha

    2010-01-01

    The growth in data traffic and the increased demand for quality of service has meant current network systems need to be more efficient. The introduction of improved routing systems to meet the increasing demand and varied protocols to accommodate various scales of challenges in network efficiency has further complicated the operations. This means a better mode of intelligence had to be infused into networking for smoother operations and better autonomic features. Cognitive networks are defined and analyzed in this angle. They are identified to have the potential to deal with the future user related quality and efficiency of service at optimized levels. The cognitive elements of system like perception, learning, planning, reasoning and decision forming can enable the systems to be more aware of their environment and offer better services. These approaches are expected to transform the mode of operation of future networks.

  4. Dynamic network-based epistasis analysis: Boolean examples

    Directory of Open Access Journals (Sweden)

    Eugenio eAzpeitia

    2011-12-01

    Full Text Available In this review we focus on how the hierarchical and single-path assumptions of epistasis analysis can bias the topologies of gene interactions infered. This has been acknowledged in several previous papers and reviews, but here we emphasize the critical importance of dynamic analyses, and specifically illustrate the use of Boolean network models. Epistasis in a broad sense refers to gene interactions, however, as originally proposed by Bateson (herein, classical epistasis, defined as the blocking of a particular allelic effect due to the effect of another allele at a different locus. Classical epistasis analysis has proven powerful and useful, allowing researchers to infer and assign directionality to gene interactions. As larger data sets are becoming available, the analysis of classical epistasis is being complemented with computer science tools and system biology approaches. We show that when the hierarchical and single-path assumptions are not met in classical epistasis analysis, the access to relevant information and the correct gene interaction topologies are hindered, and it becomes necessary to consider the temporal dynamics of gene interactions. The use of dynamical networks can overcome these limitations. We particularly focus on the use of Boolean networks that, like classical epistasis analysis, relies on logical formalisms, and hence can complement classical epistasis analysis and relax its assumptions. We develop a couple of theoretical examples and analyze them from a dynamic Boolean network model perspective. Boolean networks could help to guide additional experiments and discern among alternative regulatory schemes that would be impossible or difficult to infer without the elimination of these assumption from the classical epistasis analysis. We also use examples from the literature to show how a Boolean network-based approach has resolved ambiguities and guided epistasis analysis. Our review complements previous accounts, not

  5. Dynamic Brain Network Correlates of Spontaneous Fluctuations in Attention.

    Science.gov (United States)

    Kucyi, Aaron; Hove, Michael J; Esterman, Michael; Hutchison, R Matthew; Valera, Eve M

    2017-03-01

    Human attention is intrinsically dynamic, with focus continuously shifting between elements of the external world and internal, self-generated thoughts. Communication within and between large-scale brain networks also fluctuates spontaneously from moment to moment. However, the behavioral relevance of dynamic functional connectivity and possible link with attentional state shifts is unknown. We used a unique approach to examine whether brain network dynamics reflect spontaneous fluctuations in moment-to-moment behavioral variability, a sensitive marker of attentional state. Nineteen healthy adults were instructed to tap their finger every 600 ms while undergoing fMRI. This novel, but simple, approach allowed us to isolate moment-to-moment fluctuations in behavioral variability related to attention, independent of common confounds in cognitive tasks (e.g., stimulus changes, response inhibition). Spontaneously increasing tap variance ("out-of-the-zone" attention) was associated with increasing activation in dorsal-attention and salience network regions, whereas decreasing tap variance ("in-the-zone" attention) was marked by increasing activation of default mode network (DMN) regions. Independent of activation, tap variance representing out-of-the-zone attention was also time-locked to connectivity both within DMN and between DMN and salience network regions. These results provide novel mechanistic data on the understudied neural dynamics of everyday, moment-to-moment attentional fluctuations, elucidating the behavioral importance of spontaneous, transient coupling within and between attention-relevant networks. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. DYNAMIC CONGESTION CONTROL IN WDM OPTICAL NETWORK

    Directory of Open Access Journals (Sweden)

    Sangita Samajpati

    2013-02-01

    Full Text Available This paper is based on Wavelength Division Multiplexing (WDM optical networking. In this optical networking, prior to data transfer, lightpath establishment between source and destination nodes is usually carried out through a wavelength reservation protocol. This wavelength is reserved corresponding to a route between the source and destination and the route is chosen following any standard routing protocol based on shortest path. The backward reservation protocol is implemented initially. A fixed connected and weighted network is considered. The inputs of this implementation are the fixed network itself and its corresponding shortest path matrix. After this initial level of implementation, the average node usage over a time period is calculated and various thresholds for node usage are considered. Above threshold value, request arriving at that path selects its next shortest path. This concept is implemented on various wavelengths. The output represents the performance issues of dynamic congestion control.

  7. Innovation networking between stability and political dynamics

    DEFF Research Database (Denmark)

    Koch, Christian

    2004-01-01

    of the contribution is to challenge and transcend these notions and develop an understanding of innovation networks as an interplay between stable and dynamic elements, where political processes in innovation are much more than a disruptive and even a counterproductive feature. It reviews the growing number......This contribution views innovation as a social activity of building networks, using software product development in multicompany alliances and networks as example. Innovation networks are frequently understood as quite stable arrangements characterised by high trust among the participants. The aim...... of studies that highlight the political aspect of innovation. The paper reports on a study of innovation processes conducted within the EU—TSER-programme and a study made under the banner of management of technology. Intensive field studies in two constellations of enterprises were carried out. One...

  8. Topology identification of complex dynamical networks

    Science.gov (United States)

    Zhao, Junchan; Li, Qin; Lu, Jun-An; Jiang, Zhong-Ping

    2010-06-01

    Recently, some researchers investigated the topology identification for complex networks via LaSalle's invariance principle. The principle cannot be directly applied to time-varying systems since the positive limit sets are generally not invariant. In this paper, we study the topology identification problem for a class of weighted complex networks with time-varying node systems. Adaptive identification laws are proposed to estimate the coupling parameters of the networks with and without communication delays. We prove that the asymptotic identification is ensured by a persistently exciting condition. Numerical simulations are given to demonstrate the effectiveness of the proposed approach.

  9. Nonlinear Approach in Nuclear Dynamics

    Science.gov (United States)

    Gridnev, K. A.; Kartavenko, V. G.; Greiner, W.

    2002-11-01

    Attention is focused on the various approaches that use the concept of nonlinear dispersive waves (solitons) in nonrelativistic nuclear physics. The problem of dynamical instability and clustering (stable fragments formation) in a breakup of excited nuclear systems are considered from the points of view of the soliton concept. It is shown that the volume (spinodal) instability can be associated with nonlinear terms, and the surface (Rayleigh-Taylor type) instability, with the dispersion terms in the evolution equations. The both instabilities may compensate each other and lead to stable solutions (solitons). A static scission configuration in cold ternary fission is considered in the framework of mean field approach. We suggest to use the inverse mean field method to solve single-particle Schrödinger equation, instead of constrained selfconsistent Hartree-Fock equations. It is shown, that it is possible to simulate one-dimensional three-center system in the approximation of reflectless single-particle potentials. The soliton-like solutions of the Korteweg-de Vries equation are using to describe collective excitations of nuclei observed in inelastic alpha-particle and proton scattering. The analogy between fragmentation into parts of nuclei and buckyballs has led us to the idea of light nuclei as quasi-crystals. We establish that the quasi-crystalline structure can be formed when the distance between the alpha-particles is comparable with the length of the De Broglia wave of the alpha-particle. Applying this model to the scattering of alpha-particles we obtain that the form factor of the clusterized nucleus can be factorized into the formfactor of the cluster and the density of clusters in the nucleus. It gives possibility to study the distribution of clusters in nuclei and to resolve what kind of distribution we are dealing with: a surface or volume one.

  10. Epidemics in networks: A master equation approach

    CERN Document Server

    Cotacallapa, M

    2016-01-01

    A problem closely related to epidemiology, where a subgraph of 'infected' links is defined inside a larger network, is investigated. This subgraph is generated from the underlying network by a random variable, which decides whether a link is able to propagate a disease/information. The relaxation timescale of this random variable is examined in both annealed and quenched limits, and the effectiveness of propagation of disease/information is analyzed. The dynamics of the model is governed by a master equation and two types of underlying network are considered: one is scale-free and the other has exponential degree distribution. We have shown that the relaxation timescale of the contagion variable has a major influence on the topology of the subgraph of infected links, which determines the efficiency of spreading of disease/information over the network.

  11. Resistor network approaches to electrical impedance tomography

    CERN Document Server

    Borcea, Liliana; Vasquez, Fernando Guevara; Mamonov, Alexander V

    2011-01-01

    We review a resistor network approach to the numerical solution of the inverse problem of electrical impedance tomography (EIT). The networks arise in the context of finite volume discretizations of the elliptic equation for the electric potential, on sparse and adaptively refined grids that we call optimal. The name refers to the fact that the grids give spectrally accurate approximations of the Dirichlet to Neumann map, the data in EIT. The fundamental feature of the optimal grids in inversion is that they connect the discrete inverse problem for resistor networks to the continuum EIT problem.

  12. Traffic Dynamics of Computer Networks

    CERN Document Server

    Fekete, Attila

    2008-01-01

    Two important aspects of the Internet, namely the properties of its topology and the characteristics of its data traffic, have attracted growing attention of the physics community. My thesis has considered problems of both aspects. First I studied the stochastic behavior of TCP, the primary algorithm governing traffic in the current Internet, in an elementary network scenario consisting of a standalone infinite-sized buffer and an access link. The effect of the fast recovery and fast retransmission (FR/FR) algorithms is also considered. I showed that my model can be extended further to involve the effect of link propagation delay, characteristic of WAN. I continued my thesis with the investigation of finite-sized semi-bottleneck buffers, where packets can be dropped not only at the link, but also at the buffer. I demonstrated that the behavior of the system depends only on a certain combination of the parameters. Moreover, an analytic formula was derived that gives the ratio of packet loss rate at the buffer ...

  13. Sensitivity of chemical reaction networks: a structural approach. 1. Examples and the carbon metabolic network.

    Science.gov (United States)

    Mochizuki, Atsushi; Fiedler, Bernold

    2015-02-21

    In biological cells, chemical reaction pathways lead to complex network systems like metabolic networks. One experimental approach to the dynamics of such systems examines their "sensitivity": each enzyme mediating a reaction in the system is increased/decreased or knocked out separately, and the responses in the concentrations of chemicals or their fluxes are observed. In this study, we present a mathematical method, named structural sensitivity analysis, to determine the sensitivity of reaction systems from information on the network alone. We investigate how the sensitivity responses of chemicals in a reaction network depend on the structure of the network, and on the position of the perturbed reaction in the network. We establish and prove some general rules which relate the sensitivity response to the structure of the underlying network. We describe a hierarchical pattern in the flux response which is governed by branchings in the network. We apply our method to several hypothetical and real life chemical reaction networks, including the metabolic network of the Escherichia coli TCA cycle.

  14. Semiclassical approaches to nuclear dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Magner, A. G., E-mail: magner@kinr.kiev.ua; Gorpinchenko, D. V. [Institute for Nuclear Research NASU (Ukraine); Bartel, J. [Université de Strasbourg, Institut Pluridisciplinaire Hubert Curien, CNRS/IN2P3 (France)

    2017-01-15

    The extended Gutzwiller trajectory approach is presented for the semiclassical description of nuclear collective dynamics, in line with the main topics of the fruitful activity of V.G. Solovjov. Within the Fermi-liquid droplet model, the leptodermous effective surface approximation was applied to calculations of energies, sum rules, and transition densities for the neutron–proton asymmetry of the isovector giant-dipole resonance and found to be in good agreement with the experimental data. By using the Strutinsky shell correction method, the semiclassical collective transport coefficients, such as nuclear inertia, friction, stiffness, and moments of inertia, can be derived beyond the quantum perturbation approximation of the response function theory and the cranking model. The averaged particle-number dependences of the low-lying collective vibrational states are described in good agreement with the basic experimental data, mainly due to the enhancement of the collective inertia as compared to its irrotational flow value. Shell components of the moment of inertia are derived in terms of the periodic-orbit free-energy shell corrections. A good agreement between the semiclassical extended Thomas–Fermi moments of inertia with shell corrections and the quantum results is obtained for different nuclear deformations and particle numbers. Shell effects are shown to be exponentially dampted out with increasing temperature in all the transport coefficients.

  15. Dynamic pricing by hopfield neural network

    Institute of Scientific and Technical Information of China (English)

    Lusajo M Minga; FENG Yu-qiang(冯玉强); LI Yi-jun(李一军); LU Yang(路杨); Kimutai Kimeli

    2004-01-01

    The increase in the number of shopbots users in e-commerce has triggered flexibility of sellers in their pricing strategies. Sellers see the importance of automated price setting which provides efficient services to a large number of buyers who are using shopbots. This paper studies the characteristic of decreasing energy with time in a continuous model of a Hopfield neural network that is the decreasing of errors in the network with respect to time. The characteristic shows that it is possible to use Hopfield neural network to get the main factor of dynamic pricing; the least variable cost, from production function principles. The least variable cost is obtained by reducing or increasing the input combination factors, and then making the comparison of the network output with the desired output, where the difference between the network output and desired output will be decreasing in the same manner as in the Hopfield neural network energy. Hopfield neural network will simplify the rapid change of prices in e-commerce during transaction that depends on the demand quantity for demand sensitive model of pricing.

  16. Advances in dynamic network modeling in complex transportation systems

    CERN Document Server

    Ukkusuri, Satish V

    2013-01-01

    This book focuses on the latest in dynamic network modeling, including route guidance and traffic control in transportation systems and other complex infrastructure networks. Covers dynamic traffic assignment, flow modeling, mobile sensor deployment and more.

  17. 基于黑板模型的配电网多故障分时段动态恢复%An Approach of Time Interval-Divided Multi-Fault Dynamic Restoration for Distribution Network Based on Blackboard Model

    Institute of Scientific and Technical Information of China (English)

    卢志刚; 叶治格; 杨丽君

    2012-01-01

    为更好地实现配电网抢修过程中多故障分时段的动态恢复问题,提出了基于黑板模型的配电网多故障分时段动态恢复方法.首先建立了以恢复失电电量最大与系统网损最小为目标的双层优化模型.然后根据黑板模型原理,每次故障恢复由一个工作代理负责,各代理进行分布式并行计算,并利用改进离散细菌群体趋药性算法求取各代理的最优解,协调机制通过对可中断负荷的控制保证重要负荷优先恢复和减少开关操作次数.算例结果验证了该方法的有效性.%To better implement the time interval-divided multi-fault dynamic restoration during the urgent repair of distribution network, based on the blackboard model a time interval-divided dynamic restoration approach for distribution network is given. Firstly, an algorithm that combines blackboard modules with improved discrete bacterial colony chemotaxis (DBCC) algorithm for time interval-divided dynamic multi-fault restoration of distribution network is proposed, and a double-layer optimization model, which takes the maximum restoration of lost load and minimum network loss as objectives, is built; then according to the principle of blackboard model each time of fault restoration is in charge by a working agent, meanwhile the distributed parallel calculation is performed for all agents and by use of improved DBCC algorithm the optimal solution of each agent is solved. By means of controlling the interruptible loads, the coordinative mechanism ensures preferential restoration of important loads and reduces the switching times of circuit breakers. Simulation results of modified IEEE 69-bus system show that the proposed approach is effective.

  18. Semi-tensor product approach to networked evolutionary games

    Institute of Scientific and Technical Information of China (English)

    Daizhan CHENG; Hongsheng QI; Fehuang HE; Tingting XU; Hairong DONG

    2014-01-01

    In this paper a comprehensive introduction for modeling and control of networked evolutionary games (NEGs) via semi-tensor product (STP) approach is presented. First, we review the mathematical model of an NEG, which consists of three ingredients:network graph, fundamental network game, and strategy updating rule. Three kinds of network graphs are considered, which are i) undirected graph for symmetric games;ii) directed graph for asymmetric games, and iii) d-directed graph for symmetric games with partial neighborhood information. Three kinds of fundamental evolutionary games (FEGs) are discussed, which are i) two strategies and symmetric (S-2); ii) two strategies and asymmetric (A-2); and iii) three strategies and symmetric (S-3). Three strategy updating rules (SUR) are introduced, which are i) Unconditional Imitation (UI);ii) Fermi Rule(FR);iii) Myopic Best Response Adjustment Rule (MBRA). First, we review the fundamental evolutionary equation (FEE) and use it to construct network profile dynamics (NPD)of NEGs. To show how the dynamics of an NEG can be modeled as a discrete time dynamics within an algebraic state space, the fundamental evolutionary equation (FEE) of each player is discussed. Using FEEs, the network strategy profile dynamics (NSPD) is built by providing efficient algorithms. Finally, we consider three more complicated NEGs:i) NEG with different length historical information, ii) NEG with multi-species, and iii) NEG with time-varying payoffs. In all the cases, formulas are provided to construct the corresponding NSPDs. Using these NSPDs, certain properties are explored. Examples are presented to demonstrate the model constructing method, analysis and control design technique, and to reveal certain dynamic behaviors of NEGs.

  19. Clustering determines the dynamics of complex contagions in multiplex networks

    Science.gov (United States)

    Zhuang, Yong; Arenas, Alex; Yaǧan, Osman

    2017-01-01

    We present the mathematical analysis of generalized complex contagions in a class of clustered multiplex networks. The model is intended to understand spread of influence, or any other spreading process implying a threshold dynamics, in setups of interconnected networks with significant clustering. The contagion is assumed to be general enough to account for a content-dependent linear threshold model, where each link type has a different weight (for spreading influence) that may depend on the content (e.g., product, rumor, political view) that is being spread. Using the generating functions formalism, we determine the conditions, probability, and expected size of the emergent global cascades. This analysis provides a generalization of previous approaches and is especially useful in problems related to spreading and percolation. The results present nontrivial dependencies between the clustering coefficient of the networks and its average degree. In particular, several phase transitions are shown to occur depending on these descriptors. Generally speaking, our findings reveal that increasing clustering decreases the probability of having global cascades and their size, however, this tendency changes with the average degree. There exists a certain average degree from which on clustering favors the probability and size of the contagion. By comparing the dynamics of complex contagions over multiplex networks and their monoplex projections, we demonstrate that ignoring link types and aggregating network layers may lead to inaccurate conclusions about contagion dynamics, particularly when the correlation of degrees between layers is high.

  20. Population Dynamics of Genetic Regulatory Networks

    Science.gov (United States)

    Braun, Erez

    2005-03-01

    Unlike common objects in physics, a biological cell processes information. The cell interprets its genome and transforms the genomic information content, through the action of genetic regulatory networks, into proteins which in turn dictate its metabolism, functionality and morphology. Understanding the dynamics of a population of biological cells presents a unique challenge. It requires to link the intracellular dynamics of gene regulation, through the mechanism of cell division, to the level of the population. We present experiments studying adaptive dynamics of populations of genetically homogeneous microorganisms (yeast), grown for long durations under steady conditions. We focus on population dynamics that do not involve random genetic mutations. Our experiments follow the long-term dynamics of the population distributions and allow to quantify the correlations among generations. We focus on three interconnected issues: adaptation of genetically homogeneous populations following environmental changes, selection processes on the population and population variability and expression distributions. We show that while the population exhibits specific short-term responses to environmental inputs, it eventually adapts to a robust steady-state, largely independent of external conditions. Cycles of medium-switch show that the adapted state is imprinted in the population and that this memory is maintained for many generations. To further study population adaptation, we utilize the process of gene recruitment whereby a gene naturally regulated by a specific promoter is placed under a different regulatory system. This naturally occurring process has been recognized as a major driving force in evolution. We have recruited an essential gene to a foreign regulatory network and followed the population long-term dynamics. Rewiring of the regulatory network allows us to expose their complex dynamics and phase space structure.

  1. Symbolic Tensor Calculus -- Functional and Dynamic Approach

    CERN Document Server

    Woszczyna, A; Czaja, W; Golda, Z A

    2016-01-01

    In this paper, we briefly discuss the dynamic and functional approach to computer symbolic tensor analysis. The ccgrg package for Wolfram Language/Mathematica is used to illustrate this approach. Some examples of applications are attached.

  2. Innovation Networks New Approaches in Modelling and Analyzing

    CERN Document Server

    Pyka, Andreas

    2009-01-01

    The science of graphs and networks has become by now a well-established tool for modelling and analyzing a variety of systems with a large number of interacting components. Starting from the physical sciences, applications have spread rapidly to the natural and social sciences, as well as to economics, and are now further extended, in this volume, to the concept of innovations, viewed broadly. In an abstract, systems-theoretical approach, innovation can be understood as a critical event which destabilizes the current state of the system, and results in a new process of self-organization leading to a new stable state. The contributions to this anthology address different aspects of the relationship between innovation and networks. The various chapters incorporate approaches in evolutionary economics, agent-based modeling, social network analysis and econophysics and explore the epistemic tension between insights into economics and society-related processes, and the insights into new forms of complex dynamics.

  3. Network evolution induced by the dynamical rules of two populations

    Science.gov (United States)

    Platini, Thierry; Zia, R. K. P.

    2010-10-01

    We study the dynamical properties of a finite dynamical network composed of two interacting populations, namely extrovert (a) and introvert (b). In our model, each group is characterized by its size (Na and Nb) and preferred degree (κa and \\kappa_b\\ll \\kappa_a ). The network dynamics is governed by the competing microscopic rules of each population that consist of the creation and destruction of links. Starting from an unconnected network, we give a detailed analysis of the mean field approach which is compared to Monte Carlo simulation data. The time evolution of the restricted degrees langkbbrang and langkabrang presents three time regimes and a non-monotonic behavior well captured by our theory. Surprisingly, when the population sizes are equal Na = Nb, the ratio of the restricted degree θ0 = langkabrang/langkbbrang appears to be an integer in the asymptotic limits of the three time regimes. For early times (defined by t introverts remains constant while the number of connections increases linearly in the extrovert population. Finally, due to the competing dynamics, the network presents a frustrated stationary state characterized by a ratio θ0 = 3.

  4. Dynamic motifs in socio-economic networks

    Science.gov (United States)

    Zhang, Xin; Shao, Shuai; Stanley, H. Eugene; Havlin, Shlomo

    2014-12-01

    Socio-economic networks are of central importance in economic life. We develop a method of identifying and studying motifs in socio-economic networks by focusing on “dynamic motifs,” i.e., evolutionary connection patterns that, because of “node acquaintances” in the network, occur much more frequently than random patterns. We examine two evolving bi-partite networks: i) the world-wide commercial ship chartering market and ii) the ship build-to-order market. We find similar dynamic motifs in both bipartite networks, even though they describe different economic activities. We also find that “influence” and “persistence” are strong factors in the interaction behavior of organizations. When two companies are doing business with the same customer, it is highly probable that another customer who currently only has business relationship with one of these two companies, will become customer of the second in the future. This is the effect of influence. Persistence means that companies with close business ties to customers tend to maintain their relationships over a long period of time.

  5. Information dynamics of brain-heart physiological networks during sleep

    Science.gov (United States)

    Faes, L.; Nollo, G.; Jurysta, F.; Marinazzo, D.

    2014-10-01

    This study proposes an integrated approach, framed in the emerging fields of network physiology and information dynamics, for the quantitative analysis of brain-heart interaction networks during sleep. With this approach, the time series of cardiac vagal autonomic activity and brain wave activities measured respectively as the normalized high frequency component of heart rate variability and the EEG power in the δ, θ, α, σ, and β bands, are considered as realizations of the stochastic processes describing the dynamics of the heart system and of different brain sub-systems. Entropy-based measures are exploited to quantify the predictive information carried by each (sub)system, and to dissect this information into a part actively stored in the system and a part transferred to it from the other connected systems. The application of this approach to polysomnographic recordings of ten healthy subjects led us to identify a structured network of sleep brain-brain and brain-heart interactions, with the node described by the β EEG power acting as a hub which conveys the largest amount of information flowing between the heart and brain nodes. This network was found to be sustained mostly by the transitions across different sleep stages, as the information transfer was weaker during specific stages than during the whole night, and vanished progressively when moving from light sleep to deep sleep and to REM sleep.

  6. Fractional Hopfield Neural Networks: Fractional Dynamic Associative Recurrent Neural Networks.

    Science.gov (United States)

    Pu, Yi-Fei; Yi, Zhang; Zhou, Ji-Liu

    2016-07-14

    This paper mainly discusses a novel conceptual framework: fractional Hopfield neural networks (FHNN). As is commonly known, fractional calculus has been incorporated into artificial neural networks, mainly because of its long-term memory and nonlocality. Some researchers have made interesting attempts at fractional neural networks and gained competitive advantages over integer-order neural networks. Therefore, it is naturally makes one ponder how to generalize the first-order Hopfield neural networks to the fractional-order ones, and how to implement FHNN by means of fractional calculus. We propose to introduce a novel mathematical method: fractional calculus to implement FHNN. First, we implement fractor in the form of an analog circuit. Second, we implement FHNN by utilizing fractor and the fractional steepest descent approach, construct its Lyapunov function, and further analyze its attractors. Third, we perform experiments to analyze the stability and convergence of FHNN, and further discuss its applications to the defense against chip cloning attacks for anticounterfeiting. The main contribution of our work is to propose FHNN in the form of an analog circuit by utilizing a fractor and the fractional steepest descent approach, construct its Lyapunov function, prove its Lyapunov stability, analyze its attractors, and apply FHNN to the defense against chip cloning attacks for anticounterfeiting. A significant advantage of FHNN is that its attractors essentially relate to the neuron's fractional order. FHNN possesses the fractional-order-stability and fractional-order-sensitivity characteristics.

  7. Mean field methods for cortical network dynamics

    DEFF Research Database (Denmark)

    Hertz, J.; Lerchner, Alexander; Ahmadi, M.

    2004-01-01

    We review the use of mean field theory for describing the dynamics of dense, randomly connected cortical circuits. For a simple network of excitatory and inhibitory leaky integrate- and-fire neurons, we can show how the firing irregularity, as measured by the Fano factor, increases...... with the strength of the synapses in the network and with the value to which the membrane potential is reset after a spike. Generalizing the model to include conductance-based synapses gives insight into the connection between the firing statistics and the high- conductance state observed experimentally in visual...

  8. Personality traits and ego-network dynamics

    Science.gov (United States)

    Centellegher, Simone; López, Eduardo; Saramäki, Jari; Lepri, Bruno

    2017-01-01

    Strong and supportive social relationships are fundamental to our well-being. However, there are costs to their maintenance, resulting in a trade-off between quality and quantity, a typical strategy being to put a lot of effort on a few high-intensity relationships while maintaining larger numbers of less close relationships. It has also been shown that there are persistent individual differences in this pattern; some individuals allocate their efforts more uniformly across their networks, while others strongly focus on their closest relationships. Furthermore, some individuals maintain more stable networks than others. Here, we focus on how personality traits of individuals affect this picture, using mobile phone calls records and survey data from the Mobile Territorial Lab (MTL) study. In particular, we look at the relationship between personality traits and the (i) persistence of social signatures, namely the similarity of the social signature shape of an individual measured in different time intervals; (ii) the turnover in egocentric networks, that is, differences in the set of alters present at two consecutive temporal intervals; and (iii) the rank dynamics defined as the variation of alter rankings in egocentric networks in consecutive intervals. We observe that some traits have effects on the stability of the social signatures as well as network turnover and rank dynamics. As an example, individuals who score highly in the Openness to Experience trait tend to have higher levels of network turnover and larger alter rank variations. On broader terms, our study shows that personality traits clearly affect the ways in which individuals maintain their personal networks. PMID:28253333

  9. Personality traits and ego-network dynamics.

    Science.gov (United States)

    Centellegher, Simone; López, Eduardo; Saramäki, Jari; Lepri, Bruno

    2017-01-01

    Strong and supportive social relationships are fundamental to our well-being. However, there are costs to their maintenance, resulting in a trade-off between quality and quantity, a typical strategy being to put a lot of effort on a few high-intensity relationships while maintaining larger numbers of less close relationships. It has also been shown that there are persistent individual differences in this pattern; some individuals allocate their efforts more uniformly across their networks, while others strongly focus on their closest relationships. Furthermore, some individuals maintain more stable networks than others. Here, we focus on how personality traits of individuals affect this picture, using mobile phone calls records and survey data from the Mobile Territorial Lab (MTL) study. In particular, we look at the relationship between personality traits and the (i) persistence of social signatures, namely the similarity of the social signature shape of an individual measured in different time intervals; (ii) the turnover in egocentric networks, that is, differences in the set of alters present at two consecutive temporal intervals; and (iii) the rank dynamics defined as the variation of alter rankings in egocentric networks in consecutive intervals. We observe that some traits have effects on the stability of the social signatures as well as network turnover and rank dynamics. As an example, individuals who score highly in the Openness to Experience trait tend to have higher levels of network turnover and larger alter rank variations. On broader terms, our study shows that personality traits clearly affect the ways in which individuals maintain their personal networks.

  10. Traffic chaotic dynamics modeling and analysis of deterministic network

    Science.gov (United States)

    Wu, Weiqiang; Huang, Ning; Wu, Zhitao

    2016-07-01

    Network traffic is an important and direct acting factor of network reliability and performance. To understand the behaviors of network traffic, chaotic dynamics models were proposed and helped to analyze nondeterministic network a lot. The previous research thought that the chaotic dynamics behavior was caused by random factors, and the deterministic networks would not exhibit chaotic dynamics behavior because of lacking of random factors. In this paper, we first adopted chaos theory to analyze traffic data collected from a typical deterministic network testbed — avionics full duplex switched Ethernet (AFDX, a typical deterministic network) testbed, and found that the chaotic dynamics behavior also existed in deterministic network. Then in order to explore the chaos generating mechanism, we applied the mean field theory to construct the traffic dynamics equation (TDE) for deterministic network traffic modeling without any network random factors. Through studying the derived TDE, we proposed that chaotic dynamics was one of the nature properties of network traffic, and it also could be looked as the action effect of TDE control parameters. A network simulation was performed and the results verified that the network congestion resulted in the chaotic dynamics for a deterministic network, which was identical with expectation of TDE. Our research will be helpful to analyze the traffic complicated dynamics behavior for deterministic network and contribute to network reliability designing and analysis.

  11. Dynamic Trust Management for Mobile Networks and Its Applications

    Science.gov (United States)

    Bao, Fenye

    2013-01-01

    Trust management in mobile networks is challenging due to dynamically changing network environments and the lack of a centralized trusted authority. In this dissertation research, we "design" and "validate" a class of dynamic trust management protocols for mobile networks, and demonstrate the utility of dynamic trust management…

  12. Activating and inhibiting connections in biological network dynamics

    Directory of Open Access Journals (Sweden)

    Knight Rob

    2008-12-01

    Full Text Available Abstract Background Many studies of biochemical networks have analyzed network topology. Such work has suggested that specific types of network wiring may increase network robustness and therefore confer a selective advantage. However, knowledge of network topology does not allow one to predict network dynamical behavior – for example, whether deleting a protein from a signaling network would maintain the network's dynamical behavior, or induce oscillations or chaos. Results Here we report that the balance between activating and inhibiting connections is important in determining whether network dynamics reach steady state or oscillate. We use a simple dynamical model of a network of interacting genes or proteins. Using the model, we study random networks, networks selected for robust dynamics, and examples of biological network topologies. The fraction of activating connections influences whether the network dynamics reach steady state or oscillate. Conclusion The activating fraction may predispose a network to oscillate or reach steady state, and neutral evolution or selection of this parameter may affect the behavior of biological networks. This principle may unify the dynamics of a wide range of cellular networks. Reviewers Reviewed by Sergei Maslov, Eugene Koonin, and Yu (Brandon Xia (nominated by Mark Gerstein. For the full reviews, please go to the Reviewers' comments section.

  13. Study of the structure and dynamics of complex biological networks

    Science.gov (United States)

    Samal, Areejit

    2008-12-01

    In this thesis, we have studied the large scale structure and system level dynamics of certain biological networks using tools from graph theory, computational biology and dynamical systems. We study the structure and dynamics of large scale metabolic networks inside three organisms, Escherichia coli, Saccharomyces cerevisiae and Staphylococcus aureus. We also study the dynamics of the large scale genetic network controlling E. coli metabolism. We have tried to explain the observed system level dynamical properties of these networks in terms of their underlying structure. Our studies of the system level dynamics of these large scale biological networks provide a different perspective on their functioning compared to that obtained from purely structural studies. Our study also leads to some new insights on features such as robustness, fragility and modularity of these large scale biological networks. We also shed light on how different networks inside the cell such as metabolic networks and genetic networks are interrelated to each other.

  14. A network-based dynamical ranking system

    CERN Document Server

    Motegi, Shun

    2012-01-01

    Ranking players or teams in sports is of practical interests. From the viewpoint of networks, a ranking system is equivalent a centrality measure for sports networks, whereby a directed link represents the result of a single game. Previously proposed network-based ranking systems are derived from static networks, i.e., aggregation of the results of games over time. However, the score (i.e., strength) of a player, for example, depends on time. Defeating a renowned player in the peak performance is intuitively more rewarding than defeating the same player in other periods. To account for this factor, we propose a dynamic variant of such a network-based ranking system and apply it to professional men's tennis data. Our ranking system, also interpreted as a centrality measure for directed temporal networks, has two parameters. One parameter represents the exponential decay rate of the past score, and the other parameter controls the effect of indirect wins on the score. We derive a set of linear online update equ...

  15. Physical Proximity and Spreading in Dynamic Social Networks

    CERN Document Server

    Stopczynski, Arkadiusz; Lehmann, Sune

    2015-01-01

    Most infectious diseases spread on a dynamic network of human interactions. Recent studies of social dynamics have provided evidence that spreading patterns may depend strongly on detailed micro-dynamics of the social system. We have recorded every single interaction within a large population, mapping out---for the first time at scale---the complete proximity network for a densely-connected system. Here we show the striking impact of interaction-distance on the network structure and dynamics of spreading processes. We create networks supporting close (intimate network, up to ~1m) and longer distance (ambient network, up to ~10m) modes of transmission. The intimate network is fragmented, with weak ties bridging densely-connected neighborhoods, whereas the ambient network supports spread driven by random contacts between strangers. While there is no trivial mapping from the micro-dynamics of proximity networks to empirical epidemics, these networks provide a telling approximation of droplet and airborne modes o...

  16. Programming the dynamics of biochemical reaction networks.

    Science.gov (United States)

    Simmel, Friedrich C

    2013-01-22

    The development of complex self-organizing molecular systems for future nanotechnology requires not only robust formation of molecular structures by self-assembly but also precise control over their temporal dynamics. As an exquisite example of such control, in this issue of ACS Nano, Fujii and Rondelez demonstrate a particularly compact realization of a molecular "predator-prey" ecosystem consisting of only three DNA species and three enzymes. The system displays pronounced oscillatory dynamics, in good agreement with the predictions of a simple theoretical model. Moreover, its considerable modularity also allows for ecological studies of competition and cooperation within molecular networks.

  17. Discovering the Dynamics of Smart Business Networks

    NARCIS (Netherlands)

    L-F. Pau (Louis-François)

    2007-01-01

    textabstractIn an earlier paper ,was discussed the necessary evolution from smart business networks, as based on process need satisfaction and governance, into business genetics [1] based on strategic bonds or decay and opportunistic complementarities. This paper will describe an approach and

  18. Organisations’ evolutionary dynamics: a group dynamics approach

    Directory of Open Access Journals (Sweden)

    Germán Eduardo Vargas

    2010-04-01

    Full Text Available Colombian entrepreneurs’ straggling, reactionary and inertial orientation has been inconsistently lustified by the availability of internal and leveraged resources, a concept intensifying deficient technological capacity. Company activity (seen as being a socioeconomic unit has been integrally orientated within an evolutionary framework by company identity and cohesion as well as adaptation and evolutionary mechanisms. The present document uses a group dynamics’ model to illustrate how knowledge-based strategic orientation and integration for innovation have become an imperative for development, from slight leverage, distinguishing between two evolutionary company forms: traditional economic (inertial, as they introduce sporadic incremental improvements and modern companies (dynamic and radical innovators. Revealing conclusions obtained from such model may be used for intervening in and modernising company activity.

  19. Dynamic metabolic flux analysis--tools for probing transient states of metabolic networks.

    Science.gov (United States)

    Antoniewicz, Maciek R

    2013-12-01

    Computational approaches for analyzing dynamic states of metabolic networks provide a practical framework for design, control, and optimization of biotechnological processes. In recent years, two promising modeling approaches have emerged for characterizing transients in cellular metabolism, dynamic metabolic flux analysis (DMFA), and dynamic flux balance analysis (DFBA). Both approaches combine metabolic network analysis based on pseudo steady-state (PSS) assumption for intracellular metabolism with dynamic models for extracellular environment. One strategy to capture dynamics is by combining network analysis with a kinetic model. Predictive models are thus established that can be used to optimize bioprocessing conditions and identify useful genetic manipulations. Alternatively, by combining network analysis with methods for analyzing extracellular time-series data, transients in intracellular metabolic fluxes can be determined and applied for process monitoring and control.

  20. Evolutionary epistemology and dynamical virtual learning networks.

    Science.gov (United States)

    Giani, Umberto

    2004-01-01

    This paper is an attempt to define the main features of a new educational model aimed at satisfying the needs of a rapidly changing society. The evolutionary epistemology paradigm of culture diffusion in human groups could be the conceptual ground for the development of this model. Multidimensionality, multi-disciplinarity, complexity, connectivity, critical thinking, creative thinking, constructivism, flexible learning, contextual learning, are the dimensions that should characterize distance learning models aimed at increasing the epistemological variability of learning communities. Two multimedia educational software, Dynamic Knowledge Networks (DKN) and Dynamic Virtual Learning Networks (DVLN) are described. These two complementary tools instantiate these dimensions, and were tested in almost 150 online courses. Even if the examples are framed in the medical context, the analysis of the shortcomings of the traditional educational systems and the proposed solutions can be applied to the vast majority of the educational contexts.

  1. Dynamic network participation of functional connectivity hubs assessed by resting-state fMRI

    Directory of Open Access Journals (Sweden)

    Alexander eSchaefer

    2014-05-01

    Full Text Available Network studies of large-scale brain connectivity have demonstrated that highly connected areas, or ‘hubs’, are a key feature of human functional and structural brain organization. We use resting-state functional MRI data and connectivity clustering to identify multi network hubs and show that while hubs can belong to multiple networks their degree of integration into these different networks varies dynamically over time. In addition, we found that these network dynamics were inversely related to positive self-generated thoughts reported by individuals and were further decreased with older age. Moreover, the left caudate varied its degree of participation between a default mode subnetwork and a limbic network. This variation was predictive of individual differences in the reports of past-related thoughts. These results support an association between ongoing thought processes and network dynamics and offer a new approach to investigate the brain dynamics underlying mental experience.

  2. Asymptotic theory for the dynamic of networks with heterogenous social capital allocation

    CERN Document Server

    Ubaldi, Enrico; Karsai, Márton; Vezzani, Alessandro; Burioni, Raffaella; Vespignani, Alessandro

    2015-01-01

    The structure and dynamic of social network are largely determined by the heterogeneous interaction activity and social capital allocation of individuals. These features interplay in a non-trivial way in the formation of network and challenge a rigorous dynamical system theory of network evolution. Here we study seven real networks describing temporal human interactions in three different settings: scientific collaborations, Twitter mentions, and mobile phone calls. We find that the node's activity and social capital allocation can be described by two general functional forms that can be used to define a simple stochastic model for social network dynamic. This model allows the explicit asymptotic solution of the Master Equation describing the system dynamic, and provides the scaling laws characterizing the time evolution of the social network degree distribution and individual node's ego network. The analytical predictions reproduce with accuracy the empirical observations validating the theoretical approach....

  3. A Transdiagnostic Network Approach to Psychosis

    NARCIS (Netherlands)

    Wigman, Johanna T W; de Vos, Stijn; Wichers, Marieke; van Os, Jim; Bartels-Velthuis, Agna A

    2016-01-01

    Our ability to accurately predict development and outcome of early expression of psychosis is limited. To elucidate the mechanisms underlying psychopathology, a broader, transdiagnostic approach that acknowledges the complexity of mental illness is required. The upcoming network paradigm may be frui

  4. Social Network Analyses and Nutritional Behavior: An Integrated Modeling Approach

    Directory of Open Access Journals (Sweden)

    Alistair McNair Senior

    2016-01-01

    Full Text Available Animals have evolved complex foraging strategies to obtain a nutritionally balanced diet and associated fitness benefits. Recent advances in nutrition research, combining state-space models of nutritional geometry with agent-based models of systems biology, show how nutrient targeted foraging behavior can also influence animal social interactions, ultimately affecting collective dynamics and group structures. Here we demonstrate how social network analyses can be integrated into such a modeling framework and provide a tangible and practical analytical tool to compare experimental results with theory. We illustrate our approach by examining the case of nutritionally mediated dominance hierarchies. First we show how nutritionally explicit agent-based models that simulate the emergence of dominance hierarchies can be used to generate social networks. Importantly the structural properties of our simulated networks bear similarities to dominance networks of real animals (where conflicts are not always directly related to nutrition. Finally, we demonstrate how metrics from social network analyses can be used to predict the fitness of agents in these simulated competitive environments. Our results highlight the potential importance of nutritional mechanisms in shaping dominance interactions in a wide range of social and ecological contexts. Nutrition likely influences social interaction in many species, and yet a theoretical framework for exploring these effects is currently lacking. Combining social network analyses with computational models from nutritional ecology may bridge this divide, representing a pragmatic approach for generating theoretical predictions for nutritional experiments.

  5. Social Network Analysis and Nutritional Behavior: An Integrated Modeling Approach.

    Science.gov (United States)

    Senior, Alistair M; Lihoreau, Mathieu; Buhl, Jerome; Raubenheimer, David; Simpson, Stephen J

    2016-01-01

    Animals have evolved complex foraging strategies to obtain a nutritionally balanced diet and associated fitness benefits. Recent research combining state-space models of nutritional geometry with agent-based models (ABMs), show how nutrient targeted foraging behavior can also influence animal social interactions, ultimately affecting collective dynamics and group structures. Here we demonstrate how social network analyses can be integrated into such a modeling framework and provide a practical analytical tool to compare experimental results with theory. We illustrate our approach by examining the case of nutritionally mediated dominance hierarchies. First we show how nutritionally explicit ABMs that simulate the emergence of dominance hierarchies can be used to generate social networks. Importantly the structural properties of our simulated networks bear similarities to dominance networks of real animals (where conflicts are not always directly related to nutrition). Finally, we demonstrate how metrics from social network analyses can be used to predict the fitness of agents in these simulated competitive environments. Our results highlight the potential importance of nutritional mechanisms in shaping dominance interactions in a wide range of social and ecological contexts. Nutrition likely influences social interactions in many species, and yet a theoretical framework for exploring these effects is currently lacking. Combining social network analyses with computational models from nutritional ecology may bridge this divide, representing a pragmatic approach for generating theoretical predictions for nutritional experiments.

  6. Message Passing for Dynamic Network Energy Management

    CERN Document Server

    Kraning, Matt; Lavaei, Javad; Boyd, Stephen

    2012-01-01

    We consider a network of devices, such as generators, fixed loads, deferrable loads, and storage devices, each with its own dynamic constraints and objective, connected by lossy capacitated lines. The problem is to minimize the total network objective subject to the device and line constraints, over a given time horizon. This is a large optimization problem, with variables for consumption or generation in each time period for each device. In this paper we develop a decentralized method for solving this problem. The method is iterative: At each step, each device exchanges simple messages with its neighbors in the network and then solves its own optimization problem, minimizing its own objective function, augmented by a term determined by the messages it has received. We show that this message passing method converges to a solution when the device objective and constraints are convex. The method is completely decentralized, and needs no global coordination other than synchronizing iterations; the problems to be...

  7. Eigenvector dynamics under perturbation of modular networks

    Science.gov (United States)

    Sarkar, Somwrita; Chawla, Sanjay; Robinson, P. A.; Fortunato, Santo

    2016-06-01

    Rotation dynamics of eigenvectors of modular network adjacency matrices under random perturbations are presented. In the presence of q communities, the number of eigenvectors corresponding to the q largest eigenvalues form a "community" eigenspace and rotate together, but separately from that of the "bulk" eigenspace spanned by all the other eigenvectors. Using this property, the number of modules or clusters in a network can be estimated in an algorithm-independent way. A general argument and derivation for the theoretical detectability limit for sparse modular networks with q communities is presented, beyond which modularity persists in the system but cannot be detected. It is shown that for detecting the clusters or modules using the adjacency matrix, there is a "band" in which it is hard to detect the clusters even before the theoretical detectability limit is reached, and for which the theoretically predicted detectability limit forms the sufficient upper bound. Analytic estimations of these bounds are presented and empirically demonstrated.

  8. Information spreading on dynamic social networks

    CERN Document Server

    Liu, Chuang

    2012-01-01

    Nowadays, information spreading on social networks has triggered an explosive attention in various disciplines. Most of previous related works in this area mainly focus on discussing the effects of spreading probability or immunization strategy on static networks. However, in real systems, the peer-to-peer network structure changes constantly according to frequently social activities of users. In order to capture this dynamical property and study its impact on information spreading, in this Letter, a link rewiring strategy based on the Fermi function is introduced. In the present model, the informed individuals tend to break old links and reconnect to ones with more uninformed neighbors. Simulation results on the susceptible-infected (\\textit{SI}) model with non-redundancy contacts indicate that the information spread more faster and broader with the rewiring strategy. Extensive analyses of the information cascading show that the spreading process of the initial steps plays a very important role, that is to s...

  9. Time-Varying Graphs and Dynamic Networks

    CERN Document Server

    Casteigts, Arnaud; Quattrociocchi, Walter; Santoro, Nicola

    2010-01-01

    The past few years have seen intensive research efforts carried out in some apparently unrelated areas of dynamic systems -- delay-tolerant networks, opportunistic-mobility networks, social networks -- obtaining closely related insights. Indeed, the concepts discovered in these investigations can be viewed as parts of the same conceptual universe; and the formal models proposed so far to express some specific concepts can be viewed as fragments of a larger formal description of this universe. The main contribution of this paper is to integrate the existing partial models proposed in the literature into a unified framework, which we call TVG (for time-varying graphs). Using this framework, it is possible to express directly in the same formalism not only the concepts common to all those different areas, but also those specific to each. As part of the framework definition, we identify a hierarchy of classes of TVGs, defined with respects to basic properties to which correspond necessary conditions and impossibi...

  10. Dynamic Network Analysis for Robust Uncertainty Management

    Science.gov (United States)

    2010-03-01

    kpc , kgc are controller gains and A" is a constant skew symmetric matrix. Please see [11] for more details on the potential and gyroscropic...distilled from the study of statistical physics such as the small-world and the scale-free network (10,11), begin to see their application in gene ...dynamics of the nuclear factor NFKB, which regulates various genes important for pathogen or cytokine inflammation, immune re- 4 170 B.6. UNFOLDING

  11. Mean field methods for cortical network dynamics

    DEFF Research Database (Denmark)

    Hertz, J.; Lerchner, Alexander; Ahmadi, M.

    2004-01-01

    We review the use of mean field theory for describing the dynamics of dense, randomly connected cortical circuits. For a simple network of excitatory and inhibitory leaky integrate- and-fire neurons, we can show how the firing irregularity, as measured by the Fano factor, increases with the stren...... cortex. Finally, an extension of the model to describe an orientation hypercolumn provides understanding of how cortical interactions sharpen orientation tuning, in a way that is consistent with observed firing statistics...

  12. Synchronization of coupled chaotic dynamics on networks

    Indian Academy of Sciences (India)

    R E Amritkar; Sarika Jalan

    2005-03-01

    We review some recent work on the synchronization of coupled dynamical systems on a variety of networks. When nodes show synchronized behaviour, two interesting phenomena can be observed. First, there are some nodes of the floating type that show intermittent behaviour between getting attached to some clusters and evolving independently. Secondly, two different ways of cluster formation can be identified, namely self-organized clusters which have mostly intra-cluster couplings and driven clusters which have mostly inter-cluster couplings.

  13. TOWARDS A NEW APPROACH OF DATA DISSEMINATION IN VANETS NETWORKS

    Directory of Open Access Journals (Sweden)

    Ouafa Mahma

    2016-01-01

    Full Text Available In the 2000s, ad hoc networks was developed and highly used in dynamic environment, particularly for inter- vehicular communication (VANETs : Vehicular Ad hoc Networks. Since that time, many researches and developments process was dedicated to VANET networks. This was motivated by the current vehicular industry trend that is leading to a new transport system generation based on the use of new communication technologies in order to provide many services to passengers, the fact that improves the driving and travel’s experience. These systems require traffic information sharing and dissemination the example as the case alert message emitting allowing the driver to minimize driving risks. Sharing such information between vehicles helps to anticipate potentially dangerous situations, as well as planning better routes during congestion situations. In this context, we are trying in this paper to model and simulate VANET Networks in order to analyze and evaluate security information dissemination approaches and mechanisms used in this type of networks in several exchanges conditions.This in order to identify their limitations and suggest a new improved approach. This study was conducted as part of our research project entitled “Simulation & VANETs”, where we justify and validate our approach using modeling and simulation techniques and tools used in this domain.

  14. Dynamic congestion control mechanisms for MPLS networks

    Science.gov (United States)

    Holness, Felicia; Phillips, Chris I.

    2001-02-01

    Considerable interest has arisen in congestion control through traffic engineering from the knowledge that although sensible provisioning of the network infrastructure is needed, together with sufficient underlying capacity, these are not sufficient to deliver the Quality of Service required for new applications. This is due to dynamic variations in load. In operational Internet Protocol (IP) networks, it has been difficult to incorporate effective traffic engineering due to the limited capabilities of the IP technology. In principle, Multiprotocol Label Switching (MPLS), which is a connection-oriented label swapping technology, offers new possibilities in addressing the limitations by allowing the operator to use sophisticated traffic control mechanisms. This paper presents a novel scheme to dynamically manage traffic flows through the network by re-balancing streams during periods of congestion. It proposes management-based algorithms that will allow label switched routers within the network to utilize mechanisms within MPLS to indicate when flows are starting to experience frame/packet loss and then to react accordingly. Based upon knowledge of the customer's Service Level Agreement, together with instantaneous flow information, the label edge routers can then instigate changes to the LSP route and circumvent congestion that would hitherto violate the customer contacts.

  15. Finding optimal solutions for vehicle routing problem with pickup and delivery services with time windows: A dynamic programming approach based on state-space-time network representations

    OpenAIRE

    2015-01-01

    Optimization of on-demand transportation systems and ride-sharing services involves solving a class of complex vehicle routing problems with pickup and delivery with time windows (VRPPDTW). This paper first proposes a new time-discretized multi-commodity network flow model for the VRPPDTW based on the integration of vehicles carrying states within space-time transportation networks, so as to allow a joint optimization of passenger-to-vehicle assignment and turn-by-turn routing in congested tr...

  16. 基于动态贝叶斯网络的缺失数据系统故障辨识%Fault Identification for Missing Data Systems with a Dynamic Bayesian Network Approach

    Institute of Scientific and Technical Information of China (English)

    朱金林; 张正道; 潘丰

    2013-01-01

    For the problems in monitoring the industrial systems,such as non-Gaussianity,dynamic nature and missing data,a fault identification method based on dynamic Bayesian network is proposed.A dynamic Bayesian network with mixture of Gaussian output (DBNMG) is constructed,and a parameter learning strategy based on expectation maximization algorithm is deduced.For the missing data issue,a non-imputation inference method for DBNMG is proposed to conduct the fault detection and identification with the partially observed data.The proposed approach is evaluated with the continuous stirred tank reactor (CSTR).Simulation results demonstrate the effectiveness of the proposed method.%针对工业系统监控中存在的非高斯性、动态性以及缺失数据等问题,提出了基于动态贝叶斯网络的故障辨识方法.构建了混合高斯输出动态贝叶斯网络(DBNMG)模型,并基于期望最大化算法推导了DBNMG模型的参数学习策略.对于缺失数据问题,提出了一种非修补的DBNMG模型推理方法,利用部分的观测数据实现对故障的检测和辨识.以连续搅拌釜式反应器(CSTR)为对象,对本文提出的方法进行了仿真研究,仿真结果证明了本文所提方法的有效性.

  17. Unveiling protein functions through the dynamics of the interaction network.

    Directory of Open Access Journals (Sweden)

    Irene Sendiña-Nadal

    Full Text Available Protein interaction networks have become a tool to study biological processes, either for predicting molecular functions or for designing proper new drugs to regulate the main biological interactions. Furthermore, such networks are known to be organized in sub-networks of proteins contributing to the same cellular function. However, the protein function prediction is not accurate and each protein has traditionally been assigned to only one function by the network formalism. By considering the network of the physical interactions between proteins of the yeast together with a manual and single functional classification scheme, we introduce a method able to reveal important information on protein function, at both micro- and macro-scale. In particular, the inspection of the properties of oscillatory dynamics on top of the protein interaction network leads to the identification of misclassification problems in protein function assignments, as well as to unveil correct identification of protein functions. We also demonstrate that our approach can give a network representation of the meta-organization of biological processes by unraveling the interactions between different functional classes.

  18. Dynamic Pathloss Model for Future Mobile Communication Networks

    DEFF Research Database (Denmark)

    Kumar, Ambuj; Mihovska, Albena Dimitrova; Prasad, Ramjee

    2016-01-01

    — Future mobile communication networks (MCNs) are expected to be more intelligent and proactive based on new capabilities that increase agility and performance. However, for any successful mobile network service, the dexterity in network deployment is a key factor. The efficiency of the network...... that incorporates the environmental dynamics factor in the propagation model for intelligent and proactively iterative networks...

  19. Stochastic Boolean networks: An efficient approach to modeling gene regulatory networks

    Directory of Open Access Journals (Sweden)

    Liang Jinghang

    2012-08-01

    network inferred from a T cell immune response dataset. An SBN can also implement the function of an asynchronous PBN and is potentially useful in a hybrid approach in combination with a continuous or single-molecule level stochastic model. Conclusions Stochastic Boolean networks (SBNs are proposed as an efficient approach to modelling gene regulatory networks (GRNs. The SBN approach is able to recover biologically-proven regulatory behaviours, such as the oscillatory dynamics of the p53-Mdm2 network and the dynamic attractors in a T cell immune response network. The proposed approach can further predict the network dynamics when the genes are under perturbation, thus providing biologically meaningful insights for a better understanding of the dynamics of GRNs. The algorithms and methods described in this paper have been implemented in Matlab packages, which are attached as Additional files.

  20. Alternative approach to community detection in networks

    Science.gov (United States)

    Medus, A. D.; Dorso, C. O.

    2009-06-01

    The problem of community detection is relevant in many disciplines of science and modularity optimization is the widely accepted method for this purpose. It has recently been shown that this approach presents a resolution limit by which it is not possible to detect communities with sizes smaller than a threshold, which depends on the network size. Moreover, it might happen that the communities resulting from such an approach do not satisfy the usual qualitative definition of commune; i.e., nodes in a commune are more connected among themselves than to nodes outside the commune. In this paper we present a different method for community detection in complex networks. We define merit factors based on the weak and strong community definitions formulated by Radicchi [Proc. Natl. Acad. Sci. U.S.A. 101, 2658 (2004)] and we show that these local definitions avoid the resolution limit problem found in the modularity optimization approach.

  1. Dynamic reorganization of intrinsic functional networks in the mouse brain.

    Science.gov (United States)

    Grandjean, Joanes; Preti, Maria Giulia; Bolton, Thomas A W; Buerge, Michaela; Seifritz, Erich; Pryce, Christopher R; Van De Ville, Dimitri; Rudin, Markus

    2017-03-14

    Functional connectivity (FC) derived from resting-state functional magnetic resonance imaging (rs-fMRI) allows for the integrative study of neuronal processes at a macroscopic level. The majority of studies to date have assumed stationary interactions between brain regions, without considering the dynamic aspects of network organization. Only recently has the latter received increased attention, predominantly in human studies. Applying dynamic FC (dFC) analysis to mice is attractive given the relative simplicity of the mouse brain and the possibility to explore mechanisms underlying network dynamics using pharmacological, environmental or genetic interventions. Therefore, we have evaluated the feasibility and research potential of mouse dFC using the interventions of social stress or anesthesia duration as two case-study examples. By combining a sliding-window correlation approach with dictionary learning, several dynamic functional states (dFS) with a complex organization were identified, exhibiting highly dynamic inter- and intra-modular interactions. Each dFS displayed a high degree of reproducibility upon changes in analytical parameters and across datasets. They fluctuated at different degrees as a function of anesthetic depth, and were sensitive indicators of pathology as shown for the chronic psychosocial stress mouse model of depression. Dynamic functional states are proposed to make a major contribution to information integration and processing in the healthy and diseased brain.

  2. Multi-Topic Tracking Model for dynamic social network

    Science.gov (United States)

    Li, Yuhua; Liu, Changzheng; Zhao, Ming; Li, Ruixuan; Xiao, Hailing; Wang, Kai; Zhang, Jun

    2016-07-01

    The topic tracking problem has attracted much attention in the last decades. However, existing approaches rarely consider network structures and textual topics together. In this paper, we propose a novel statistical model based on dynamic bayesian network, namely Multi-Topic Tracking Model for Dynamic Social Network (MTTD). It takes influence phenomenon, selection phenomenon, document generative process and the evolution of textual topics into account. Specifically, in our MTTD model, Gibbs Random Field is defined to model the influence of historical status of users in the network and the interdependency between them in order to consider the influence phenomenon. To address the selection phenomenon, a stochastic block model is used to model the link generation process based on the users' interests to topics. Probabilistic Latent Semantic Analysis (PLSA) is used to describe the document generative process according to the users' interests. Finally, the dependence on the historical topic status is also considered to ensure the continuity of the topic itself in topic evolution model. Expectation Maximization (EM) algorithm is utilized to estimate parameters in the proposed MTTD model. Empirical experiments on real datasets show that the MTTD model performs better than Popular Event Tracking (PET) and Dynamic Topic Model (DTM) in generalization performance, topic interpretability performance, topic content evolution and topic popularity evolution performance.

  3. Dynamic network structure of interhemispheric coordination.

    Science.gov (United States)

    Doron, Karl W; Bassett, Danielle S; Gazzaniga, Michael S

    2012-11-13

    Fifty years ago Gazzaniga and coworkers published a seminal article that discussed the separate roles of the cerebral hemispheres in humans. Today, the study of interhemispheric communication is facilitated by a battery of novel data analysis techniques drawn from across disciplinary boundaries, including dynamic systems theory and network theory. These techniques enable the characterization of dynamic changes in the brain's functional connectivity, thereby providing an unprecedented means of decoding interhemispheric communication. Here, we illustrate the use of these techniques to examine interhemispheric coordination in healthy human participants performing a split visual field experiment in which they process lexical stimuli. We find that interhemispheric coordination is greater when lexical information is introduced to the right hemisphere and must subsequently be transferred to the left hemisphere for language processing than when it is directly introduced to the language-dominant (left) hemisphere. Further, we find that putative functional modules defined by coherent interhemispheric coordination come online in a transient manner, highlighting the underlying dynamic nature of brain communication. Our work illustrates that recently developed dynamic, network-based analysis techniques can provide novel and previously unapproachable insights into the role of interhemispheric coordination in cognition.

  4. Early diagnosis of complex diseases by molecular biomarkers, network biomarkers, and dynamical network biomarkers.

    Science.gov (United States)

    Liu, Rui; Wang, Xiangdong; Aihara, Kazuyuki; Chen, Luonan

    2014-05-01

    Many studies have been carried out for early diagnosis of complex diseases by finding accurate and robust biomarkers specific to respective diseases. In particular, recent rapid advance of high-throughput technologies provides unprecedented rich information to characterize various disease genotypes and phenotypes in a global and also dynamical manner, which significantly accelerates the study of biomarkers from both theoretical and clinical perspectives. Traditionally, molecular biomarkers that distinguish disease samples from normal samples are widely adopted in clinical practices due to their ease of data measurement. However, many of them suffer from low coverage and high false-positive rates or high false-negative rates, which seriously limit their further clinical applications. To overcome those difficulties, network biomarkers (or module biomarkers) attract much attention and also achieve better performance because a network (or subnetwork) is considered to be a more robust form to characterize diseases than individual molecules. But, both molecular biomarkers and network biomarkers mainly distinguish disease samples from normal samples, and they generally cannot ensure to identify predisease samples due to their static nature, thereby lacking ability to early diagnosis. Based on nonlinear dynamical theory and complex network theory, a new concept of dynamical network biomarkers (DNBs, or a dynamical network of biomarkers) has been developed, which is different from traditional static approaches, and the DNB is able to distinguish a predisease state from normal and disease states by even a small number of samples, and therefore has great potential to achieve "real" early diagnosis of complex diseases. In this paper, we comprehensively review the recent advances and developments on molecular biomarkers, network biomarkers, and DNBs in particular, focusing on the biomarkers for early diagnosis of complex diseases considering a small number of samples and high

  5. Structure identification and adaptive synchronization of uncertain general complex dynamical networks

    Energy Technology Data Exchange (ETDEWEB)

    Xu Yuhua, E-mail: yuhuaxu2004@163.co [College of Information Science and Technology, Donghua University, Shanghai 201620 (China) and Department of Maths, Yunyang Teacher' s College, Hubei 442000 (China); Zhou Wuneng, E-mail: wnzhou@163.co [College of Information Science and Technology, Donghua University, Shanghai 201620 (China); Fang Jian' an [College of Information Science and Technology, Donghua University, Shanghai 201620 (China); Lu Hongqian [Shandong Institute of Light Industry, Shandong Jinan 250353 (China)

    2009-12-28

    This Letter proposes an approach to identify the topological structure and unknown parameters for uncertain general complex networks simultaneously. By designing effective adaptive controllers, we achieve synchronization between two complex networks. The unknown network topological structure and system parameters of uncertain general complex dynamical networks are identified simultaneously in the process of synchronization. Several useful criteria for synchronization are given. Finally, an illustrative example is presented to demonstrate the application of the theoretical results.

  6. Universal structural estimator and dynamics approximator for complex networks

    CERN Document Server

    Chen, Yu-Zhong

    2016-01-01

    Revealing the structure and dynamics of complex networked systems from observed data is of fundamental importance to science, engineering, and society. Is it possible to develop a universal, completely data driven framework to decipher the network structure and different types of dynamical processes on complex networks, regardless of their details? We develop a Markov network based model, sparse dynamical Boltzmann machine (SDBM), as a universal network structural estimator and dynamics approximator. The SDBM attains its topology according to that of the original system and is capable of simulating the original dynamical process. We develop a fully automated method based on compressive sensing and machine learning to find the SDBM. We demonstrate, for a large variety of representative dynamical processes on model and real world complex networks, that the equivalent SDBM can recover the network structure of the original system and predicts its dynamical behavior with high precision.

  7. SCOUT: simultaneous time segmentation and community detection in dynamic networks

    Science.gov (United States)

    Hulovatyy, Yuriy; Milenković, Tijana

    2016-11-01

    Many evolving complex real-world systems can be modeled via dynamic networks. An important problem in dynamic network research is community detection, which finds groups of topologically related nodes. Typically, this problem is approached by assuming either that each time point has a distinct community organization or that all time points share a single community organization. The reality likely lies between these two extremes. To find the compromise, we consider community detection in the context of the problem of segment detection, which identifies contiguous time periods with consistent network structure. Consequently, we formulate a combined problem of segment community detection (SCD), which simultaneously partitions the network into contiguous time segments with consistent community organization and finds this community organization for each segment. To solve SCD, we introduce SCOUT, an optimization framework that explicitly considers both segmentation quality and partition quality. SCOUT addresses limitations of existing methods that can be adapted to solve SCD, which consider only one of segmentation quality or partition quality. In a thorough evaluation, SCOUT outperforms the existing methods in terms of both accuracy and computational complexity. We apply SCOUT to biological network data to study human aging.

  8. A Network Coding Approach to Loss Tomography

    DEFF Research Database (Denmark)

    Sattari, Pegah; Markopoulou, Athina; Fragouli, Christina

    2013-01-01

    network coding capabilities. We design a framework for estimating link loss rates, which leverages network coding capabilities and we show that it improves several aspects of tomography, including the identifiability of links, the tradeoff between estimation accuracy and bandwidth efficiency......, and the complexity of probe path selection. We discuss the cases of inferring the loss rates of links in a tree topology or in a general topology. In the latter case, the benefits of our approach are even more pronounced compared to standard techniques but we also face novel challenges, such as dealing with cycles...

  9. Prediction-based Dynamic Energy Management in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Dao-Wei Bi

    2007-03-01

    Full Text Available Energy consumption is a critical constraint in wireless sensor networks. Focusing on the energy efficiency problem of wireless sensor networks, this paper proposes a method of prediction-based dynamic energy management. A particle filter was introduced to predict a target state, which was adopted to awaken wireless sensor nodes so that their sleep time was prolonged. With the distributed computing capability of nodes, an optimization approach of distributed genetic algorithm and simulated annealing was proposed to minimize the energy consumption of measurement. Considering the application of target tracking, we implemented target position prediction, node sleep scheduling and optimal sensing node selection. Moreover, a routing scheme of forwarding nodes was presented to achieve extra energy conservation. Experimental results of target tracking verified that energy-efficiency is enhanced by prediction-based dynamic energy management.

  10. Synchronization in dynamical networks with unconstrained structure switching

    CERN Document Server

    del Genio, Charo I; Criado, Regino; Boccaletti, Stefano

    2015-01-01

    We provide a rigorous solution to the problem of constructing a structural evolution for a network of coupled identical dynamical units that switches between specified topologies without constraints on their structure. The evolution of the structure is determined indirectly, from a carefully built transformation of the eigenvector matrices of the coupling Laplacians, which are guaranteed to change smoothly in time. In turn, this allows to extend the Master Stability Function formalism, which can be used to assess the stability of a synchronized state. This approach is independent from the particular topologies that the network visits, and is not restricted to commuting structures. Also, it does not depend on the time scale of the evolution, which can be faster than, comparable to, or even secular with respect to the the dynamics of the units.

  11. A knowledge network for a dynamic taxonomy of psychiatric disease.

    Science.gov (United States)

    Krishnan, Ranga R

    2015-03-01

    Current taxonomic approaches in medicine and psychiatry are limited in validity and utility. They do serve simple communication purposes for medical coding, teaching, and reimbursement, but they are not suited for the modern era with its rapid explosion of knowledge from the "omics" revolution. The National Academy of Sciences published a report entitled Toward Precision Medicine: Building a Knowledge Network for Biomedical Research and a New Taxonomy of Disease. The authors advocate a new taxonomy that would integrate molecular data, clinical data, and health outcomes in a dynamic, iterative fashion, bringing together research, public health, and health-care delivery with the interlinked goals of advancing our understanding of disease pathogenesis and thereby improving health. As the need for an information hub and a knowledge network with a dynamic taxonomy based on integration of clinical and research data is vital, and timely, this proposal merits consideration.

  12. Epidemic spreading in interconnected networks: a continuous time approach

    CERN Document Server

    de Arruda, Guilherme Ferraz; Peixoto, Tiago P; Rodrigues, Francisco A; Moreno, Yamir

    2015-01-01

    We present a continuous formulation of epidemic spreading on interconnected networks using a tensorial notation, extending the models of monoplex networks to this context. We derive analytical expressions for the epidemic threshold on the SIS and SIR dynamics, as well as upper and lower bounds for the steady-state. Using the quasi-stationary state (QS) method we show the emergence of two or more phase transitions, and propose an analytical and numerical analysis based on the inverse participation ratio. Furthermore, when mapping the critical epidemic dynamics to the eigenvalue problem, we observe a characteristic transition in the eigenvalue spectra of the supra-contact tensor as a function of the ratio of spreading rates: If the spreading rate within each layer is comparable to the rate across layers, the individual spectra of each layer merge with the coupling between layers. Our formalism provides a mathematical approach to epidemic spreading in multiplex systems and our results reinforce the importance of...

  13. Dynamical modeling and analysis of large cellular regulatory networks

    Science.gov (United States)

    Bérenguier, D.; Chaouiya, C.; Monteiro, P. T.; Naldi, A.; Remy, E.; Thieffry, D.; Tichit, L.

    2013-06-01

    The dynamical analysis of large biological regulatory networks requires the development of scalable methods for mathematical modeling. Following the approach initially introduced by Thomas, we formalize the interactions between the components of a network in terms of discrete variables, functions, and parameters. Model simulations result in directed graphs, called state transition graphs. We are particularly interested in reachability properties and asymptotic behaviors, which correspond to terminal strongly connected components (or "attractors") in the state transition graph. A well-known problem is the exponential increase of the size of state transition graphs with the number of network components, in particular when using the biologically realistic asynchronous updating assumption. To address this problem, we have developed several complementary methods enabling the analysis of the behavior of large and complex logical models: (i) the definition of transition priority classes to simplify the dynamics; (ii) a model reduction method preserving essential dynamical properties, (iii) a novel algorithm to compact state transition graphs and directly generate compressed representations, emphasizing relevant transient and asymptotic dynamical properties. The power of an approach combining these different methods is demonstrated by applying them to a recent multilevel logical model for the network controlling CD4+ T helper cell response to antigen presentation and to a dozen cytokines. This model accounts for the differentiation of canonical Th1 and Th2 lymphocytes, as well as of inflammatory Th17 and regulatory T cells, along with many hybrid subtypes. All these methods have been implemented into the software GINsim, which enables the definition, the analysis, and the simulation of logical regulatory graphs.

  14. Predicting climate extremes – a complex network approach

    Directory of Open Access Journals (Sweden)

    M. Weimer

    2015-10-01

    Full Text Available Regional decadal predictions have emerged in the past few years as a research field with high application potential, especially for extremes like heat and drought periods. However, up to now the prediction skill of decadal hindcasts, as evaluated with standard methods is moderate, and for extreme values even rarely investigated. In this study, we use hindcast data from a regional climate model (CCLM for 8 regions in Europe to construct time evolving climate networks and use the network correlation threshold (link strength as a predictor for heat periods. We show that the skill of the network measure to predict the low frequency dynamics of heat periods is similar to the one of the standard approach, with the potential of being even better in some regions.

  15. Learning about knowledge: A complex network approach

    CERN Document Server

    Costa, L F

    2006-01-01

    This article describes an approach to modeling of knowledge acquisition in terms of complex networks and walks. Each subset of knowledge is represented as a node, and relationship between such knowledge are represented as edges. Two types of edges are considered, corresponding to logical equivalence and implication. Multiple conditional implications are also considered, implying that a node can only be reached after visiting previously a set of nodes (the conditions). It is shown that hierarchical networks, involving a series of interconnected layers containing a connected subnetwork, provides a simple and natural means for avoiding deadlocks, i.e. unreachable nodes. The process of knowledge acquisition can then be simulated by considering a single agent moving along the nodes and edges, starting from the lowest layer. Several configurations of such hierarchical knowledge networks are simulated and the performance of the agent quantified in terms of the percentage of visited nodes after each movement. The Bar...

  16. A Bayesian Approach to Network Modularity

    CERN Document Server

    Hofman, Jake M

    2007-01-01

    We present an efficient, principled, and interpretable technique for inferring module assignments and identifying the optimal number of modules in a given network. We show how several existing methods for finding modules can be described as variant, special, or limiting cases of our work, and how related methods for complexity control -- identification of the true number of modules -- are outperformed. Our approach is based on Bayesian methods for model selection which have been used with success for almost a century, implemented using a variational technique developed only in the past decade. We apply the technique to synthetic and real networks, including networks of up to $10^4$ nodes, and outline how the method naturally allows model selection among generative models.

  17. Fractional Dynamics of Network Growth Constrained by Aging Node Interactions.

    Directory of Open Access Journals (Sweden)

    Hadiseh Safdari

    Full Text Available In many social complex systems, in which agents are linked by non-linear interactions, the history of events strongly influences the whole network dynamics. However, a class of "commonly accepted beliefs" seems rarely studied. In this paper, we examine how the growth process of a (social network is influenced by past circumstances. In order to tackle this cause, we simply modify the well known preferential attachment mechanism by imposing a time dependent kernel function in the network evolution equation. This approach leads to a fractional order Barabási-Albert (BA differential equation, generalizing the BA model. Our results show that, with passing time, an aging process is observed for the network dynamics. The aging process leads to a decay for the node degree values, thereby creating an opposing process to the preferential attachment mechanism. On one hand, based on the preferential attachment mechanism, nodes with a high degree are more likely to absorb links; but, on the other hand, a node's age has a reduced chance for new connections. This competitive scenario allows an increased chance for younger members to become a hub. Simulations of such a network growth with aging constraint confirm the results found from solving the fractional BA equation. We also report, as an exemplary application, an investigation of the collaboration network between Hollywood movie actors. It is undubiously shown that a decay in the dynamics of their collaboration rate is found, even including a sex difference. Such findings suggest a widely universal application of the so generalized BA model.

  18. Fractional Dynamics of Network Growth Constrained by Aging Node Interactions

    Science.gov (United States)

    Safdari, Hadiseh; Zare Kamali, Milad; Shirazi, Amirhossein; Khalighi, Moein; Jafari, Gholamreza; Ausloos, Marcel

    2016-01-01

    In many social complex systems, in which agents are linked by non-linear interactions, the history of events strongly influences the whole network dynamics. However, a class of “commonly accepted beliefs” seems rarely studied. In this paper, we examine how the growth process of a (social) network is influenced by past circumstances. In order to tackle this cause, we simply modify the well known preferential attachment mechanism by imposing a time dependent kernel function in the network evolution equation. This approach leads to a fractional order Barabási-Albert (BA) differential equation, generalizing the BA model. Our results show that, with passing time, an aging process is observed for the network dynamics. The aging process leads to a decay for the node degree values, thereby creating an opposing process to the preferential attachment mechanism. On one hand, based on the preferential attachment mechanism, nodes with a high degree are more likely to absorb links; but, on the other hand, a node’s age has a reduced chance for new connections. This competitive scenario allows an increased chance for younger members to become a hub. Simulations of such a network growth with aging constraint confirm the results found from solving the fractional BA equation. We also report, as an exemplary application, an investigation of the collaboration network between Hollywood movie actors. It is undubiously shown that a decay in the dynamics of their collaboration rate is found, even including a sex difference. Such findings suggest a widely universal application of the so generalized BA model. PMID:27171424

  19. Dynamical system approach to phyllotaxis

    DEFF Research Database (Denmark)

    D'ovidio, Francesco; Mosekilde, Erik

    2000-01-01

    and not a dynamical system, mainly because new active elements are added at each step, and thus the dimension of the "natural" phase space is not conserved. Here a construction is presented by which a well defined dynamical system can be obtained, and a bifurcation analysis can be carried out. Stable and unstable...... of the Jacobian, and thus the eigenvalues, is given. It is likely that problems of the above type often arise in biology, and especially in morphogenesis, where growing systems are modeled....

  20. Neural network for graphs: a contextual constructive approach.

    Science.gov (United States)

    Micheli, Alessio

    2009-03-01

    This paper presents a new approach for learning in structured domains (SDs) using a constructive neural network for graphs (NN4G). The new model allows the extension of the input domain for supervised neural networks to a general class of graphs including both acyclic/cyclic, directed/undirected labeled graphs. In particular, the model can realize adaptive contextual transductions, learning the mapping from graphs for both classification and regression tasks. In contrast to previous neural networks for structures that had a recursive dynamics, NN4G is based on a constructive feedforward architecture with state variables that uses neurons with no feedback connections. The neurons are applied to the input graphs by a general traversal process that relaxes the constraints of previous approaches derived by the causality assumption over hierarchical input data. Moreover, the incremental approach eliminates the need to introduce cyclic dependencies in the definition of the system state variables. In the traversal process, the NN4G units exploit (local) contextual information of the graphs vertices. In spite of the simplicity of the approach, we show that, through the compositionality of the contextual information developed by the learning, the model can deal with contextual information that is incrementally extended according to the graphs topology. The effectiveness and the generality of the new approach are investigated by analyzing its theoretical properties and providing experimental results.

  1. Discrete Opinion Dynamics on Online Social Networks

    Institute of Scientific and Technical Information of China (English)

    HU Yan-Li; BAI Liang; ZHANG Wei-Ming

    2013-01-01

    This paper focuses on the dynamics of binary opinions {+1,-1} on online social networks consisting of heterogeneous actors.In our model,actors update their opinions under the interplay of social influence and selfaffirmation,which leads to rich dynamical behaviors on online social networks.We find that the opinion leading to the consensus features an advantage of the initially weighted fraction based on actors' strength over the other,instead of the population.For the role of specific actors,the consensus converges towards the opinion that a small fraction of high-strength actors hold,and individual diversity of self-affirmation slows down the ordering process of consensus.These indicate that high-strength actors play an essential role in opinion formation with strong social influence as well as high persistence.Further investigations show that the initial fraction of high-strength actors to dominate the evolution depends on the heterogeneity of the strength distribution,and less high-strength actors are needed in the case of a smaller exponent of power-law distribution of actors' strength.Our study provides deep insights into the role of social influence and self-affirmation on opinion formation on online social networks.

  2. Integrating atomistic molecular dynamics simulations, experiments, and network analysis to study protein dynamics

    DEFF Research Database (Denmark)

    Papaleo, Elena

    2015-01-01

    In the last years, we have been observing remarkable improvements in the field of protein dynamics. Indeed, we can now study protein dynamics in atomistic details over several timescales with a rich portfolio of experimental and computational techniques. On one side, this provides us with the pos......In the last years, we have been observing remarkable improvements in the field of protein dynamics. Indeed, we can now study protein dynamics in atomistic details over several timescales with a rich portfolio of experimental and computational techniques. On one side, this provides us...... simulations with attention to the effects that can be propagated over long distances and are often associated to important biological functions. In this context, approaches inspired by network analysis can make an important contribution to the analysis of molecular dynamics simulations....

  3. An efficient approach of attractor calculation for large-scale Boolean gene regulatory networks.

    Science.gov (United States)

    He, Qinbin; Xia, Zhile; Lin, Bin

    2016-11-07

    Boolean network models provide an efficient way for studying gene regulatory networks. The main dynamics of a Boolean network is determined by its attractors. Attractor calculation plays a key role for analyzing Boolean gene regulatory networks. An approach of attractor calculation was proposed in this study, which improved the predecessor-based approach. Furthermore, the proposed approach combined with the identification of constant nodes and simplified Boolean networks to accelerate attractor calculation. The proposed algorithm is effective to calculate all attractors for large-scale Boolean gene regulatory networks. If the average degree of the network is not too large, the algorithm can get all attractors of a Boolean network with dozens or even hundreds of nodes.

  4. Competing dynamical processes on two interacting networks

    CERN Document Server

    Alvarez-Zuzek, L G; Braunstein, L A; Vazquez, F

    2016-01-01

    We propose and study a model for the competition between two different dynamical processes, one for opinion formation and the other for decision making, on two interconnected networks. The networks represent two interacting social groups, the society and the Congress. An opinion formation process takes place on the society, where the opinion S of each individual can take one of four possible values (S=-2,-1,1,2), describing its level of agreement on a given issue, from totally against (S=-2) to totally in favor (S=2). The dynamics is controlled by a reinforcement parameter r, which measures the ratio between the likelihood to become an extremist or a moderate. The dynamics of the Congress is akin to that of the Abrams-Strogatz model, where congressmen can adopt one of two possible positions, to be either in favor (+) or against (-) the issue. The probability that a congressman changes his decision is proportional to the fraction of interacting neighbors that hold the opposite opinion raised to a power $\\beta$...

  5. Systems approaches to the networks of aging.

    Science.gov (United States)

    Kriete, Andres; Sokhansanj, Bahrad A; Coppock, Donald L; West, Geoffrey B

    2006-11-01

    The aging of an organism is the result of complex changes in structure and function of molecules, cells, tissues, and whole body systems. To increase our understanding of how aging works, we have to analyze and integrate quantitative evidence from multiple levels of biological organization. Here, we define a broader conceptual framework for a quantitative, computational systems biology approach to aging. Initially, we consider fractal supply networks that give rise to scaling laws relating body mass, metabolism and lifespan. This approach provides a top-down view of constrained cellular processes. Concomitantly, multi-omics data generation build such a framework from the bottom-up, using modeling strategies to identify key pathways and their physiological capacity. Multiscale spatio-temporal representations finally connect molecular processes with structural organization. As aging manifests on a systems level, it emerges as a highly networked process regulated through feedback loops between levels of biological organization.

  6. Persistence and periodicity in a dynamic proximity network

    CERN Document Server

    Clauset, Aaron

    2012-01-01

    The topology of social networks can be understood as being inherently dynamic, with edges having a distinct position in time. Most characterizations of dynamic networks discretize time by converting temporal information into a sequence of network "snapshots" for further analysis. Here we study a highly resolved data set of a dynamic proximity network of 66 individuals. We show that the topology of this network evolves over a very broad distribution of time scales, that its behavior is characterized by strong periodicities driven by external calendar cycles, and that the conversion of inherently continuous-time data into a sequence of snapshots can produce highly biased estimates of network structure. We suggest that dynamic social networks exhibit a natural time scale \\Delta_{nat}, and that the best conversion of such dynamic data to a discrete sequence of networks is done at this natural rate.

  7. Modeling Dynamic Evolution of Online Friendship Network

    Institute of Scientific and Technical Information of China (English)

    吴联仁; 闫强

    2012-01-01

    In this paper,we study the dynamic evolution of friendship network in SNS (Social Networking Site).Our analysis suggests that an individual joining a community depends not only on the number of friends he or she has within the community,but also on the friendship network generated by those friends.In addition,we propose a model which is based on two processes:first,connecting nearest neighbors;second,strength driven attachment mechanism.The model reflects two facts:first,in the social network it is a universal phenomenon that two nodes are connected when they have at least one common neighbor;second,new nodes connect more likely to nodes which have larger weights and interactions,a phenomenon called strength driven attachment (also called weight driven attachment).From the simulation results,we find that degree distribution P(k),strength distribution P(s),and degree-strength correlation are all consistent with empirical data.

  8. Optimizing Dynamical Network Structure for Pinning Control

    Science.gov (United States)

    Orouskhani, Yasin; Jalili, Mahdi; Yu, Xinghuo

    2016-04-01

    Controlling dynamics of a network from any initial state to a final desired state has many applications in different disciplines from engineering to biology and social sciences. In this work, we optimize the network structure for pinning control. The problem is formulated as four optimization tasks: i) optimizing the locations of driver nodes, ii) optimizing the feedback gains, iii) optimizing simultaneously the locations of driver nodes and feedback gains, and iv) optimizing the connection weights. A newly developed population-based optimization technique (cat swarm optimization) is used as the optimization method. In order to verify the methods, we use both real-world networks, and model scale-free and small-world networks. Extensive simulation results show that the optimal placement of driver nodes significantly outperforms heuristic methods including placing drivers based on various centrality measures (degree, betweenness, closeness and clustering coefficient). The pinning controllability is further improved by optimizing the feedback gains. We also show that one can significantly improve the controllability by optimizing the connection weights.

  9. Fractional quantum mechanics on networks: Long-range dynamics and quantum transport.

    Science.gov (United States)

    Riascos, A P; Mateos, José L

    2015-11-01

    In this paper we study the quantum transport on networks with a temporal evolution governed by the fractional Schrödinger equation. We generalize the dynamics based on continuous-time quantum walks, with transitions to nearest neighbors on the network, to the fractional case that allows long-range displacements. By using the fractional Laplacian matrix of a network, we establish a formalism that combines a long-range dynamics with the quantum superposition of states; this general approach applies to any type of connected undirected networks, including regular, random, and complex networks, and can be implemented from the spectral properties of the Laplacian matrix. We study the fractional dynamics and its capacity to explore the network by means of the transition probability, the average probability of return, and global quantities that characterize the efficiency of this quantum process. As a particular case, we explore analytically these quantities for circulant networks such as rings, interacting cycles, and complete graphs.

  10. Collective dynamics of active cytoskeletal networks.

    Directory of Open Access Journals (Sweden)

    Simone Köhler

    Full Text Available Self organization mechanisms are essential for the cytoskeleton to adapt to the requirements of living cells. They rely on the intricate interplay of cytoskeletal filaments, crosslinking proteins and molecular motors. Here we present an in vitro minimal model system consisting of actin filaments, fascin and myosin-II filaments exhibiting pulsatile collective dynamics and superdiffusive transport properties. Both phenomena rely on the complex competition of crosslinking molecules and motor filaments in the network. They are only observed if the relative strength of the binding of myosin-II filaments to the actin network allows exerting high enough forces to unbind actin/fascin crosslinks. This is shown by varying the binding strength of the acto-myosin bond and by combining the experiments with phenomenological simulations based on simple interaction rules.

  11. Stochastic epidemic dynamics on extremely heterogeneous networks

    CERN Document Server

    Parra-Rojas, César; McKane, Alan J

    2016-01-01

    Networks of contacts capable of spreading infectious diseases are often observed to be highly heterogeneous, with the majority of individuals having fewer contacts than the mean, and a significant minority having relatively very many contacts. We derive a two-dimensional diffusion model for the full temporal behavior of the stochastic susceptible-infectious-recovered (SIR) model on such a network, by making use of a time-scale separation in the deterministic limit of the dynamics. This low-dimensional process is an accurate approximation to the full model in the limit of large populations, even for cases when the time-scale separation is not too pronounced, provided the maximum degree is not of the order of the population size.

  12. Stochastic epidemic dynamics on extremely heterogeneous networks

    Science.gov (United States)

    Parra-Rojas, César; House, Thomas; McKane, Alan J.

    2016-12-01

    Networks of contacts capable of spreading infectious diseases are often observed to be highly heterogeneous, with the majority of individuals having fewer contacts than the mean, and a significant minority having relatively very many contacts. We derive a two-dimensional diffusion model for the full temporal behavior of the stochastic susceptible-infectious-recovered (SIR) model on such a network, by making use of a time-scale separation in the deterministic limit of the dynamics. This low-dimensional process is an accurate approximation to the full model in the limit of large populations, even for cases when the time-scale separation is not too pronounced, provided the maximum degree is not of the order of the population size.

  13. The Dynamics of Initiative in Communication Networks

    CERN Document Server

    Mollgaard, Anders

    2016-01-01

    Human social interaction is often intermittent. Two acquainted persons can have extended periods without social interaction punctuated by periods of repeated interaction. In this case, the repeated interaction can be characterized by a seed initiative by either of the persons and a number of follow-up interactions. The tendency to initiate social interaction plays an important role in the formation of social networks and is in general not symmetric between persons. In this paper, we study the dynamics of initiative by analysing and modeling a detailed call and text message network sampled from a group of 700 individuals. We show that in an average relationship between two individuals, one part is almost twice as likely to initiate communication compared to the other part. The asymmetry has social consequences and ultimately might lead to the discontinuation of a relationship. We explain the observed asymmetry by a positive feedback mechanism where individuals already taking initiative are more likely to take ...

  14. Creative Cognition and Brain Network Dynamics

    Science.gov (United States)

    Beaty, Roger E.; Benedek, Mathias; Silvia, Paul J.; Schacter, Daniel L.

    2015-01-01

    Creative thinking is central to the arts, sciences, and everyday life. How does the brain produce creative thought? A series of recently published papers has begun to provide insight into this question, reporting a strikingly similar pattern of brain activity and connectivity across a range of creative tasks and domains, from divergent thinking to poetry composition to musical improvisation. This research suggests that creative thought involves dynamic interactions of large-scale brain systems, with the most compelling finding being that the default and executive control networks, which can show an antagonistic relationship, actually cooperate during creative cognition and artistic performance. These findings have implications for understanding how brain networks interact to support complex cognitive processes, particularly those involving goal-directed, self-generated thought. PMID:26553223

  15. Improved System Identification Approach Using Wavelet Networks

    Institute of Scientific and Technical Information of China (English)

    石宏理; 蔡远利; 邱祖廉

    2005-01-01

    A new approach is proposed to improve the general identification algorithm of multidimensional systems using wavelet networks. The general algorithm involves mapping vector input into its norm to avoid problem of dimensionality in construction multidimensional wavelet basis functions. Thus, the basis functions are spherically symmetric without direction selectivity. In order to restore the direction selectivity, the improved approach weights the input variables before mapping it into a scalar form. The weights can be obtained using universal optimization algorithms. Generally, only local optimal weights are obtained. Even so, performance of identification can be improved.

  16. Correlation networks from flows. The case of forced and time-dependent advection-diffusion dynamics

    CERN Document Server

    Tupikina, Liubov; López, Cristóbal; Hernández-García, Emilio; Marwan, Norbert; Kurths, Jürgen

    2016-01-01

    Complex network theory provides an elegant and powerful framework to statistically investigate different types of systems such as society, brain or the structure of local and long-range dynamical interrelationships in the climate system. Network links in climate networks typically imply information, mass or energy exchange. However, the specific connection between oceanic or atmospheric flows and the climate network's structure is still unclear. We propose a theoretical approach for verifying relations between the correlation matrix and the climate network measures, generalizing previous studies and overcoming the restriction to stationary flows. Our methods are developed for correlations of a scalar quantity (temperature, for example) which satisfies an advection-diffusion dynamics in the presence of forcing and dissipation. Our approach reveals that correlation networks are not sensitive to steady sources and sinks and the profound impact of the signal decay rate on the network topology. We illustrate our r...

  17. A High-Resolution Sensor Network for Monitoring Glacier Dynamics

    Science.gov (United States)

    Edwards, S.; Murray, T.; O'Farrell, T.; Rutt, I. C.; Loskot, P.; Martin, I.; Selmes, N.; Aspey, R.; James, T.; Bevan, S. L.; Baugé, T.

    2013-12-01

    Changes in Greenland and Antarctic ice sheets due to ice flow/ice-berg calving are a major uncertainty affecting sea-level rise forecasts. Latterly GNSS (Global Navigation Satellite Systems) have been employed extensively to monitor such glacier dynamics. Until recently however, the favoured methodology has been to deploy sensors onto the glacier surface, collect data for a period of time, then retrieve and download the sensors. This approach works well in less dynamic environments where the risk of sensor loss is low. In more extreme environments e.g. approaching the glacial calving front, the risk of sensor loss and hence data loss increases dramatically. In order to provide glaciologists with new insights into flow dynamics and calving processes we have developed a novel sensor network to increase the robustness of data capture. We present details of the technological requirements for an in-situ Zigbee wireless streaming network infrastructure supporting instantaneous data acquisition from high resolution GNSS sensors thereby increasing data capture robustness. The data obtained offers new opportunities to investigate the interdependence of mass flow, uplift, velocity and geometry and the network architecture has been specifically designed for deployment by helicopter close to the calving front to yield unprecedented detailed information. Following successful field trials of a pilot three node network during 2012, a larger 20 node network was deployed on the fast-flowing Helheim glacier, south-east Greenland over the summer months of 2013. The utilisation of dual wireless transceivers in each glacier node, multiple frequencies and four ';collector' stations located on the valley sides creates overlapping networks providing enhanced capacity, diversity and redundancy of data 'back-haul', even close to ';floor' RSSI (Received Signal Strength Indication) levels around -100 dBm. Data loss through radio packet collisions within sub-networks are avoided through the

  18. Dynamic Homeostasis in Packet Switching Networks

    CERN Document Server

    Oka, Mizuki; Ikegami, Takashi

    2014-01-01

    In this study, we investigate the adaptation and robustness of a packet switching network (PSN), the fundamental architecture of the Internet. We claim that the adaptation introduced by a transmission control protocol (TCP) congestion control mechanism is interpretable as the self-organization of multiple attractors and stability to switch from one attractor to another. To discuss this argument quantitatively, we study the adaptation of the Internet by simulating a PSN using ns-2. Our hypothesis is that the robustness and fragility of the Internet can be attributed to the inherent dynamics of the PSN feedback mechanism called the congestion window size, or \\textit{cwnd}. By varying the data input into the PSN system, we investigate the possible self-organization of attractors in cwnd temporal dynamics and discuss the adaptability and robustness of PSNs. The present study provides an example of Ashby's Law of Requisite Variety in action.

  19. Sensory Coding with Dynamically Competitive Networks

    CERN Document Server

    Rabinovich, M I; Volkovskii, A R; Abarbanel, Henry D I; Laurent, G; Abarbanel, Henry D I

    1999-01-01

    Studies of insect olfactory processing indicate that odors are represented by rich spatio-temporal patterns of neural activity. These patterns are very difficult to predict a priori, yet they are stimulus specific and reliable upon repeated stimulation with the same input. We formulate here a theoretical framework in which we can interpret these experimental results. We propose a paradigm of ``dynamic competition'' in which inputs (odors) are represented by internally competing neural assemblies. Each pattern is the result of dynamical motion within the network and does not involve a ``winner'' among competing possibilities. The model produces spatio-temporal patterns with strong resemblance to those observed experimentally and possesses many of the general features one desires for pattern classifiers: large information capacity, reliability, specific responses to specific inputs, and reduced sensitivity to initial conditions or influence of noise. This form of neural processing may thus describe the organiza...

  20. A dynamic network in a dynamic population: asymptotic properties

    CERN Document Server

    Britton, Tom; Turova, Tatyana

    2011-01-01

    We derive asymptotic properties for a stochastic dynamic network model in a stochastic dynamic population. In the model, nodes give birth to new nodes until they die, each node being equipped with a social index given at birth. During the life of a node it creates edges to other nodes, nodes with high social index at higher rate, and edges disappear randomly in time. For this model we derive criterion for when a giant connected component exists after the process has evolved for a long period of time, assuming the node population grows to infinity. We also obtain an explicit expression for the degree correlation $\\rho$ (of neighbouring nodes) which shows that $\\rho$ is always positive irrespective of parameter values in one of the two treated submodels, and may be either positive or negative in the other model, depending on the parameters.

  1. Network Evolution Induced by the Dynamical Rules of Two Populations

    CERN Document Server

    Platini, T

    2010-01-01

    We study the dynamical properties of a finite dynamical network composed of two interacting populations, namely; extrovert ($a$) and introvert ($b$). In our model, each group is characterized by its size ($N_a$ and $N_b$) and preferred degree ($\\kappa_a$ and $\\kappa_b\\ll\\kappa_a$). The network dynamics is governed by the competing microscopic rules of each population that consist of the creation and destruction of links. Starting from an unconnected network, we give a detailed analysis of the mean field approach which is compared to Monte Carlo simulation data. The time evolution of the restricted degrees $\\moyenne{k_{bb}}$ and $\\moyenne{k_{ab}}$ presents three time regimes and a non monotonic behavior well captured by our theory. Surprisingly, when the population size are equal $N_a=N_b$, the ratio of the restricted degree $\\theta_0=\\moyenne{k_{ab}}/\\moyenne{k_{bb}}$ appears to be an integer in the asymptotic limits of the three time regimes. For early times (defined by $t

  2. Molecular Dynamics Simulations of Network Glasses

    Science.gov (United States)

    Drabold, David A.

    The following sections are included: * Introduction and Background * History and use of MD * The role of the potential * Scope of the method * Use of a priori information * Appraising a model * MD Method * Equations of motion * Energy minimization and equilibration * Deeper or global minima * Simulated annealing * Genetic algorithms * Activation-relaxation technique * Alternate dynamics * Modeling infinite systems: Periodic boundary conditions * The Interatomic Interactions * Overview * Empirical classical potentials * Potentials from electronic structure * The tight-binding method * Approximate methods based on tight-binding * First principles * Local basis: "ab initio tight binding" * Plane-waves: Car-Parrinello methods * Efficient ab initio methods for large systems * The need for locality of electron states in real space * Avoiding explicit orthogonalization * Connecting Simulation to Experiment * Structure * Network dynamics * Computing the harmonic modes * Dynamical autocorrelation functions * Dynamical structure factor * Electronic structure * Density of states * Thermal modulation of the electron states * Transport * Applications * g-GeSe2 * g-GexSe1-x glasses * Amorphous carbon surface * Where to Get Codes to Get Started * Acknowledgments * References

  3. Dynamic Processes in Network Goods: Modeling, Analysis and Applications

    Science.gov (United States)

    Paothong, Arnut

    2013-01-01

    The network externality function plays a very important role in the study of economic network industries. Moreover, the consumer group dynamic interactions coupled with network externality concept is going to play a dominant role in the network goods in the 21st century. The existing literature is stemmed on a choice of externality function with…

  4. Insomnia and Personality—A Network Approach

    Science.gov (United States)

    Dekker, Kim; Blanken, Tessa F.; Van Someren, Eus J. W.

    2017-01-01

    Studies on personality traits and insomnia have remained inconclusive about which traits show the most direct associations with insomnia severity. It has moreover hardly been explored how traits relate to specific characteristics of insomnia. We here used network analysis in a large sample (N = 2089) to obtain an integrated view on the associations of personality traits with both overall insomnia severity and different insomnia characteristics, while distinguishing direct from indirect associations. We first estimated a network describing the associations among the five factor model personality traits and overall insomnia severity. Overall insomnia severity was associated with neuroticism, agreeableness, and openness. Subsequently, we estimated a separate network describing the associations among the personality traits and each of the seven individual items of the Insomnia Severity Index. This revealed relatively separate clusters of daytime and nocturnal insomnia complaints, that both contributed to dissatisfaction with sleep, and were both most directly associated with neuroticism and conscientiousness. The approach revealed the strongest direct associations between personality traits and the severity of different insomnia characteristics and overall insomnia severity. Differentiating them from indirect associations identified the targets for improving Cognitive Behavioral Therapy for insomnia with the highest probability of effectively changing the network of associated complaints. PMID:28257084

  5. Insomnia and Personality—A Network Approach

    Directory of Open Access Journals (Sweden)

    Kim Dekker

    2017-03-01

    Full Text Available Studies on personality traits and insomnia have remained inconclusive about which traits show the most direct associations with insomnia severity. It has moreover hardly been explored how traits relate to specific characteristics of insomnia. We here used network analysis in a large sample (N = 2089 to obtain an integrated view on the associations of personality traits with both overall insomnia severity and different insomnia characteristics, while distinguishing direct from indirect associations. We first estimated a network describing the associations among the five factor model personality traits and overall insomnia severity. Overall insomnia severity was associated with neuroticism, agreeableness, and openness. Subsequently, we estimated a separate network describing the associations among the personality traits and each of the seven individual items of the Insomnia Severity Index. This revealed relatively separate clusters of daytime and nocturnal insomnia complaints, that both contributed to dissatisfaction with sleep, and were both most directly associated with neuroticism and conscientiousness. The approach revealed the strongest direct associations between personality traits and the severity of different insomnia characteristics and overall insomnia severity. Differentiating them from indirect associations identified the targets for improving Cognitive Behavioral Therapy for insomnia with the highest probability of effectively changing the network of associated complaints.

  6. Wireless Network Information Flow: A Deterministic Approach

    CERN Document Server

    Avestimehr, Salman; Tse, David

    2009-01-01

    In contrast to wireline networks, not much is known about the flow of information over wireless networks. The main barrier is the complexity of the signal interaction in wireless channels in addition to the noise in the channel. A widely accepted model is the the additive Gaussian channel model, and for this model, the capacity of even a network with a single relay node is open for 30 years. In this paper, we present a deterministic approach to this problem by focusing on the signal interaction rather than the noise. To this end, we propose a deterministic channel model which is analytically simpler than the Gaussian model but still captures two key wireless channel properties of broadcast and superposition. We consider a model for a wireless relay network with nodes connected by such deterministic channels, and present an exact characterization of the end-to-end capacity when there is a single source and one or more destinations (all interested in the same information) and an arbitrary number of relay nodes....

  7. Information diversity in structure and dynamics of simulated neuronal networks.

    Science.gov (United States)

    Mäki-Marttunen, Tuomo; Aćimović, Jugoslava; Nykter, Matti; Kesseli, Juha; Ruohonen, Keijo; Yli-Harja, Olli; Linne, Marja-Leena

    2011-01-01

    Neuronal networks exhibit a wide diversity of structures, which contributes to the diversity of the dynamics therein. The presented work applies an information theoretic framework to simultaneously analyze structure and dynamics in neuronal networks. Information diversity within the structure and dynamics of a neuronal network is studied using the normalized compression distance. To describe the structure, a scheme for generating distance-dependent networks with identical in-degree distribution but variable strength of dependence on distance is presented. The resulting network structure classes possess differing path length and clustering coefficient distributions. In parallel, comparable realistic neuronal networks are generated with NETMORPH simulator and similar analysis is done on them. To describe the dynamics, network spike trains are simulated using different network structures and their bursting behaviors are analyzed. For the simulation of the network activity the Izhikevich model of spiking neurons is used together with the Tsodyks model of dynamical synapses. We show that the structure of the simulated neuronal networks affects the spontaneous bursting activity when measured with bursting frequency and a set of intraburst measures: the more locally connected networks produce more and longer bursts than the more random networks. The information diversity of the structure of a network is greatest in the most locally connected networks, smallest in random networks, and somewhere in between in the networks between order and disorder. As for the dynamics, the most locally connected networks and some of the in-between networks produce the most complex intraburst spike trains. The same result also holds for sparser of the two considered network densities in the case of full spike trains.

  8. A dynamic systems approach to family assessment

    NARCIS (Netherlands)

    van Geert, PLC; Lichtwarck-Aschoff, A

    2005-01-01

    The dynamic systems approach provides a general framework for studying processes. Properties of that approach are applied to the issue of fan-lily assessment. The description covers methods of assessment of short-term processes (e.g., dyadic interaction) and long-term processes (e.g., changes in int

  9. Dynamic Localization Schemes in Malicious Sensor Networks

    Directory of Open Access Journals (Sweden)

    Kaiqi Xiong

    2009-10-01

    Full Text Available Wireless sensor networks (WSN have recently shown many potential military and civilian applications, especially those used in hostile environments where malicious adversaries can be present. The accuracy of location information is critical for such applications. It is impractical to have a GPS device on each sensor in WSN due to costs. Most of the existing location discovery schemes can only be used in the trusted environment. Recent research has addressed security issues in sensor network localization, but to the best of our knowledge, none have completely solved the secure localization problem. In this paper, we propose novel schemes for secure dynamic localization in sensor networks. These proposed schemes can tolerate up to 50% of beacon nodes being malicious, and they have linear computation time with respect to the number of reference nodes. Our security analysis has showed that our schemes are applicable and resilient to attacks from adversaries. We have further conducted simulations to analyze and compare the performance of these schemes, and to indicate when each should be used. The efficiencies of each method shows why we needed to propose multiple methods.

  10. OTDM Networking for Short Range High-Capacity Highly Dynamic Networks

    DEFF Research Database (Denmark)

    Medhin, Ashenafi Kiros

    This PhD thesis aims at investigating the possibility of designing energy-efficient high-capacity (up to Tbit/s) optical network scenarios, leveraging on the effect of collective switching of many bits simultaneously, as is inherent in high bit rate serial optical data signals. The focus...... is on short range highly dynamic networks, catering to data center needs. The investigation concerns optical network scenarios, and experimental implementations of high bit rate serial data packet generation and reception, scalable optical packet labeling, simple optical label extraction and stable ultra......-fast optical packet switching, with the constraint that there must be potential energy savings, which is also evaluated. A survey of the current trends in data centers is given and state-of-the-art research approaches are mentioned. Optical time-division multiplexing is proposed and demonstrated to generate...

  11. Phase resetting reveals network dynamics underlying a bacterial cell cycle.

    Directory of Open Access Journals (Sweden)

    Yihan Lin

    Full Text Available Genomic and proteomic methods yield networks of biological regulatory interactions but do not provide direct insight into how those interactions are organized into functional modules, or how information flows from one module to another. In this work we introduce an approach that provides this complementary information and apply it to the bacterium Caulobacter crescentus, a paradigm for cell-cycle control. Operationally, we use an inducible promoter to express the essential transcriptional regulatory gene ctrA in a periodic, pulsed fashion. This chemical perturbation causes the population of cells to divide synchronously, and we use the resulting advance or delay of the division times of single cells to construct a phase resetting curve. We find that delay is strongly favored over advance. This finding is surprising since it does not follow from the temporal expression profile of CtrA and, in turn, simulations of existing network models. We propose a phenomenological model that suggests that the cell-cycle network comprises two distinct functional modules that oscillate autonomously and couple in a highly asymmetric fashion. These features collectively provide a new mechanism for tight temporal control of the cell cycle in C. crescentus. We discuss how the procedure can serve as the basis for a general approach for probing network dynamics, which we term chemical perturbation spectroscopy (CPS.

  12. Theoretical research progress in complexity of complex dynamical networks

    Institute of Scientific and Technical Information of China (English)

    Fang Jinqing

    2007-01-01

    This article reviews the main progress in dynamical complexity of theoretical models for nonlinear complex networks proposed by our Joint Complex Network Research Group (JCNRG). The topological and dynamical properties of these theoretical models are numerically and analytically studied. Several findings are useful for understanding and deeply studying complex networks from macroscopic to microscopic levels and have a potential of applications in real-world networks.

  13. Agent Based Modeling on Organizational Dynamics of Terrorist Network

    OpenAIRE

    Bo Li; Duoyong Sun; Renqi Zhu; Ze Li

    2015-01-01

    Modeling organizational dynamics of terrorist network is a critical issue in computational analysis of terrorism research. The first step for effective counterterrorism and strategic intervention is to investigate how the terrorists operate with the relational network and what affects the performance. In this paper, we investigate the organizational dynamics by employing a computational experimentation methodology. The hierarchical cellular network model and the organizational dynamics model ...

  14. Identifying the topology of networks with discrete-time dynamics

    Science.gov (United States)

    Guo, Shu-Juan; Fu, Xin-Chu

    2010-07-01

    We suggest a method for identifying the topology of networks with discrete-time dynamics based on the dynamical evolution supported by the networks. The Frobenius matrix norm and Lasalle's invariance principle are used in this work. The network concerned can be directed or undirected, weighted or unweighted, and the local dynamics of each node can be nonidentical. The connections among the nodes can be all unknown or partially known. Finally, several examples are illustrated to verify the theoretical results.

  15. Identifying the topology of networks with discrete-time dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Guo Shujuan [School of Physics and Mathematics, Changzhou University, Changzhou 213164 (China); Fu Xinchu, E-mail: sjguo1@gmail.co, E-mail: enxcfu@gmail.co [Department of Mathematics, Shanghai University, Shanghai 200444 (China)

    2010-07-23

    We suggest a method for identifying the topology of networks with discrete-time dynamics based on the dynamical evolution supported by the networks. The Frobenius matrix norm and Lasalle's invariance principle are used in this work. The network concerned can be directed or undirected, weighted or unweighted, and the local dynamics of each node can be nonidentical. The connections among the nodes can be all unknown or partially known. Finally, several examples are illustrated to verify the theoretical results.

  16. Multiplex visibility graphs to investigate recurrent neural network dynamics

    Science.gov (United States)

    Bianchi, Filippo Maria; Livi, Lorenzo; Alippi, Cesare; Jenssen, Robert

    2017-03-01

    A recurrent neural network (RNN) is a universal approximator of dynamical systems, whose performance often depends on sensitive hyperparameters. Tuning them properly may be difficult and, typically, based on a trial-and-error approach. In this work, we adopt a graph-based framework to interpret and characterize internal dynamics of a class of RNNs called echo state networks (ESNs). We design principled unsupervised methods to derive hyperparameters configurations yielding maximal ESN performance, expressed in terms of prediction error and memory capacity. In particular, we propose to model time series generated by each neuron activations with a horizontal visibility graph, whose topological properties have been shown to be related to the underlying system dynamics. Successively, horizontal visibility graphs associated with all neurons become layers of a larger structure called a multiplex. We show that topological properties of such a multiplex reflect important features of ESN dynamics that can be used to guide the tuning of its hyperparamers. Results obtained on several benchmarks and a real-world dataset of telephone call data records show the effectiveness of the proposed methods.

  17. Quantifying the dynamics of coupled networks of switches and oscillators.

    Directory of Open Access Journals (Sweden)

    Matthew R Francis

    Full Text Available Complex network dynamics have been analyzed with models of systems of coupled switches or systems of coupled oscillators. However, many complex systems are composed of components with diverse dynamics whose interactions drive the system's evolution. We, therefore, introduce a new modeling framework that describes the dynamics of networks composed of both oscillators and switches. Both oscillator synchronization and switch stability are preserved in these heterogeneous, coupled networks. Furthermore, this model recapitulates the qualitative dynamics for the yeast cell cycle consistent with the hypothesized dynamics resulting from decomposition of the regulatory network into dynamic motifs. Introducing feedback into the cell-cycle network induces qualitative dynamics analogous to limitless replicative potential that is a hallmark of cancer. As a result, the proposed model of switch and oscillator coupling provides the ability to incorporate mechanisms that underlie the synchronized stimulus response ubiquitous in biochemical systems.

  18. Low-dimensional dynamics of structured random networks

    Science.gov (United States)

    Aljadeff, Johnatan; Renfrew, David; Vegué, Marina; Sharpee, Tatyana O.

    2016-02-01

    Using a generalized random recurrent neural network model, and by extending our recently developed mean-field approach [J. Aljadeff, M. Stern, and T. Sharpee, Phys. Rev. Lett. 114, 088101 (2015), 10.1103/PhysRevLett.114.088101], we study the relationship between the network connectivity structure and its low-dimensional dynamics. Each connection in the network is a random number with mean 0 and variance that depends on pre- and postsynaptic neurons through a sufficiently smooth function g of their identities. We find that these networks undergo a phase transition from a silent to a chaotic state at a critical point we derive as a function of g . Above the critical point, although unit activation levels are chaotic, their autocorrelation functions are restricted to a low-dimensional subspace. This provides a direct link between the network's structure and some of its functional characteristics. We discuss example applications of the general results to neuroscience where we derive the support of the spectrum of connectivity matrices with heterogeneous and possibly correlated degree distributions, and to ecology where we study the stability of the cascade model for food web structure.

  19. An effective dynamic reconfiguration algorithm for IP over WDM networks

    Science.gov (United States)

    Yu, Hongfang; Zhou, Tao; Wang, Sheng; Li, Lemin

    2005-02-01

    WDM (Wavelength Division Multiplexing) technology can provide multiple wavelengths on a fiber. IP directly over WDM (or IP over WDM) has become the hot topic of industry. A promising approach for building an IP over WDM network is that a logical network consisting of the wavelength channels (lightpaths) is built on the physical WDM network. Then, IP traffic is carried on the logical topology, by utilizing the MPLS (Multiple Protocol Label Switching) or GMPLS (Generalized MPLS). When the traffic demand pattern changes in the IP layer, the network performance may become poor. In order to improve the network performance, the virtual topology can be reconfigured to suit the changing traffic patterns. In this paper, dynamic slowly-adaptation scheme (e.g. tearing down a lightpath that is lightly loaded or setting up a new lightpath when congestion occurs) is adopted. How to select the source and the destination nodes of the new lightpath to be added and the underutilized lightpath to be deleted if it is necessary to do so is our key issue. Four selection ways are developed. These ways are evaluated through detail simulations and various performances are investigated.

  20. Recognition algorithm of seabed pipeline defect inspection based on dynamic WBF neural networks

    Institute of Scientific and Technical Information of China (English)

    Jin Tao; Que Peiwen; Tao Zhengshu

    2005-01-01

    This paper describes a magnetic flux leak (MFL) model of pipeline defect inspection, and presents a recognition algorithm based on dynamic wavelet basis function (WBF) neural network. The dynamic network utilizes multiscale and multiresolution orthogonal wavelet, through signals backwards propagation, has more significant advantages than BP or other neural networks used in MFL inspection. It also can control the accuracy of the predicted defect profiles, high-speed convergence possessing and well approaching feature. The performance applying the algorithm based on the network to predict defect profile from experimental MFL signals is presented.

  1. Complex Dynamical Network Control for Trajectory Tracking Using Delayed Recurrent Neural Networks

    Directory of Open Access Journals (Sweden)

    Jose P. Perez

    2014-01-01

    Full Text Available In this paper, the problem of trajectory tracking is studied. Based on the V-stability and Lyapunov theory, a control law that achieves the global asymptotic stability of the tracking error between a delayed recurrent neural network and a complex dynamical network is obtained. To illustrate the analytic results, we present a tracking simulation of a dynamical network with each node being just one Lorenz’s dynamical system and three identical Chen’s dynamical systems.

  2. Semi-automatic simulation model generation of virtual dynamic networks for production flow planning

    Science.gov (United States)

    Krenczyk, D.; Skolud, B.; Olender, M.

    2016-08-01

    Computer modelling, simulation and visualization of production flow allowing to increase the efficiency of production planning process in dynamic manufacturing networks. The use of the semi-automatic model generation concept based on parametric approach supporting processes of production planning is presented. The presented approach allows the use of simulation and visualization for verification of production plans and alternative topologies of manufacturing network configurations as well as with automatic generation of a series of production flow scenarios. Computational examples with the application of Enterprise Dynamics simulation software comprising the steps of production planning and control for manufacturing network have been also presented.

  3. An Intelligent Location Management approaches in GSM Mobile Network

    CERN Document Server

    Rao, N Mallikharjuna

    2012-01-01

    Location management refers to the problem of updating and searching the current location of mobile nodes in a wireless network. To make it efficient, the sum of update costs of location database must be minimized. Previous work relying on fixed location databases is unable to fully exploit the knowledge of user mobility patterns in the system so as to achieve this minimization. The study presents an intelligent location management approach which has interacts between intelligent information system and knowledge-base technologies, so we can dynamically change the user patterns and reduce the transition between the VLR and HLR. The study provides algorithms are ability to handle location registration and call delivery

  4. The human functional brain network demonstrates structural and dynamical resilience to targeted attack.

    Directory of Open Access Journals (Sweden)

    Karen E Joyce

    Full Text Available In recent years, the field of network science has enabled researchers to represent the highly complex interactions in the brain in an approachable yet quantitative manner. One exciting finding since the advent of brain network research was that the brain network can withstand extensive damage, even to highly connected regions. However, these highly connected nodes may not be the most critical regions of the brain network, and it is unclear how the network dynamics are impacted by removal of these key nodes. This work seeks to further investigate the resilience of the human functional brain network. Network attack experiments were conducted on voxel-wise functional brain networks and region-of-interest (ROI networks of 5 healthy volunteers. Networks were attacked at key nodes using several criteria for assessing node importance, and the impact on network structure and dynamics was evaluated. The findings presented here echo previous findings that the functional human brain network is highly resilient to targeted attacks, both in terms of network structure and dynamics.

  5. The human functional brain network demonstrates structural and dynamical resilience to targeted attack.

    Science.gov (United States)

    Joyce, Karen E; Hayasaka, Satoru; Laurienti, Paul J

    2013-01-01

    In recent years, the field of network science has enabled researchers to represent the highly complex interactions in the brain in an approachable yet quantitative manner. One exciting finding since the advent of brain network research was that the brain network can withstand extensive damage, even to highly connected regions. However, these highly connected nodes may not be the most critical regions of the brain network, and it is unclear how the network dynamics are impacted by removal of these key nodes. This work seeks to further investigate the resilience of the human functional brain network. Network attack experiments were conducted on voxel-wise functional brain networks and region-of-interest (ROI) networks of 5 healthy volunteers. Networks were attacked at key nodes using several criteria for assessing node importance, and the impact on network structure and dynamics was evaluated. The findings presented here echo previous findings that the functional human brain network is highly resilient to targeted attacks, both in terms of network structure and dynamics.

  6. Social Balance on Networks: The Dynamics of Friendship and Enmity

    CERN Document Server

    Antal, T; Redner, S

    2006-01-01

    How do social networks evolve when both friendly and unfriendly relations exist? Here we propose a simple dynamics for social networks in which the sense of a relationship can change so as to eliminate imbalanced triads--relationship triangles that contains 1 or 3 unfriendly links. In this dynamics, a friendly link changes to unfriendly or vice versa in an imbalanced triad to make the triad balanced. Such networks undergo a dynamic phase transition from a steady state to "utopia"--all friendly links--as the amount of network friendliness is changed. Basic features of the long-time dynamics and the phase transition are discussed.

  7. Genome-wide system analysis reveals stable yet flexible network dynamics in yeast.

    Science.gov (United States)

    Gustafsson, M; Hörnquist, M; Björkegren, J; Tegnér, J

    2009-07-01

    Recently, important insights into static network topology for biological systems have been obtained, but still global dynamical network properties determining stability and system responsiveness have not been accessible for analysis. Herein, we explore a genome-wide gene-to-gene regulatory network based on expression data from the cell cycle in Saccharomyces cerevisae (budding yeast). We recover static properties like hubs (genes having several out-going connections), network motifs and modules, which have previously been derived from multiple data sources such as whole-genome expression measurements, literature mining, protein-protein and transcription factor binding data. Further, our analysis uncovers some novel dynamical design principles; hubs are both repressed and repressors, and the intra-modular dynamics are either strongly activating or repressing whereas inter-modular couplings are weak. Finally, taking advantage of the inferred strength and direction of all interactions, we perform a global dynamical systems analysis of the network. Our inferred dynamics of hubs, motifs and modules produce a more stable network than what is expected given randomised versions. The main contribution of the repressed hubs is to increase system stability, while higher order dynamic effects (e.g. module dynamics) mainly increase system flexibility. Altogether, the presence of hubs, motifs and modules induce few flexible modes, to which the network is extra sensitive to an external signal. We believe that our approach, and the inferred biological mode of strong flexibility and stability, will also apply to other cellular networks and adaptive systems.

  8. A modeling approach for district heating systems with focus on transient heat transfer in pipe networks

    DEFF Research Database (Denmark)

    Mohammadi, Soma; Bojesen, Carsten

    2015-01-01

    finite element method is applied to simulate transient temperature changes in pipe networks. The model is calculating time series data related to supply temperature to the DHN from heat production units, heat loads and return temperature related to each consumer to calculate dynamic temperature changes...... district heating networks [DHN] characteristics. This paper is presenting a new developed model, which reflects the thermo-dynamic behavior of DHN. It is designed for tree network topologies. The purpose of the model is to serve as a basis for applying a variety of scenarios towards lowering...... the temperature in DH systems. The main focus is on modeling transient heat transfer in pipe networks regarding the time delays between the heat supply unit and the consumers, the heat loss in the pipe networks and the consumers’ dynamic heat loads. A pseudo-dynamic approach is adopted and also the implicit...

  9. Google matrix, dynamical attractors, and Ulam networks

    Science.gov (United States)

    Shepelyansky, D. L.; Zhirov, O. V.

    2010-03-01

    We study the properties of the Google matrix generated by a coarse-grained Perron-Frobenius operator of the Chirikov typical map with dissipation. The finite-size matrix approximant of this operator is constructed by the Ulam method. This method applied to the simple dynamical model generates directed Ulam networks with approximate scale-free scaling and characteristics being in certain features similar to those of the world wide web with approximate scale-free degree distributions as well as two characteristics similar to the web: a power-law decay in PageRank that mirrors the decay of PageRank on the world wide web and a sensitivity to the value α in PageRank. The simple dynamical attractors play here the role of popular websites with a strong concentration of PageRank. A variation in the Google parameter α or other parameters of the dynamical map can drive the PageRank of the Google matrix to a delocalized phase with a strange attractor where the Google search becomes inefficient.

  10. A system of recurrent neural networks for modularising, parameterising and dynamic analysis of cell signalling networks.

    Science.gov (United States)

    Samarasinghe, S; Ling, H

    2017-02-04

    In this paper, we show how to extend our previously proposed novel continuous time Recurrent Neural Networks (RNN) approach that retains the advantage of continuous dynamics offered by Ordinary Differential Equations (ODE) while enabling parameter estimation through adaptation, to larger signalling networks using a modular approach. Specifically, the signalling network is decomposed into several sub-models based on important temporal events in the network. Each sub-model is represented by the proposed RNN and trained using data generated from the corresponding ODE model. Trained sub-models are assembled into a whole system RNN which is then subjected to systems dynamics and sensitivity analyses. The concept is illustrated by application to G1/S transition in cell cycle using Iwamoto et al. (2008) ODE model. We decomposed the G1/S network into 3 sub-models: (i) E2F transcription factor release; (ii) E2F and CycE positive feedback loop for elevating cyclin levels; and (iii) E2F and CycA negative feedback to degrade E2F. The trained sub-models accurately represented system dynamics and parameters were in good agreement with the ODE model. The whole system RNN however revealed couple of parameters contributing to compounding errors due to feedback and required refinement to sub-model 2. These related to the reversible reaction between CycE/CDK2 and p27, its inhibitor. The revised whole system RNN model very accurately matched dynamics of the ODE system. Local sensitivity analysis of the whole system model further revealed the most dominant influence of the above two parameters in perturbing G1/S transition, giving support to a recent hypothesis that the release of inhibitor p27 from Cyc/CDK complex triggers cell cycle stage transition. To make the model useful in a practical setting, we modified each RNN sub-model with a time relay switch to facilitate larger interval input data (≈20min) (original model used data for 30s or less) and retrained them that produced

  11. Structure and dynamics of core-periphery networks

    CERN Document Server

    Csermely, Peter; Wu, Ling-Yun; Uzzi, Brian

    2013-01-01

    Recent studies uncovered important core/periphery network structures characterizing complex sets of cooperative and competitive interactions between network nodes, be they proteins, cells, species or humans. Better characterization of the structure, dynamics and function of core/periphery networks is a key step of our understanding cellular functions, species adaptation, social and market changes. Here we summarize the current knowledge of the structure and dynamics of "traditional" core/periphery networks, rich-clubs, nested, bow-tie and onion networks. Comparing core/periphery structures with network modules, we discriminate between global and local cores. The core/periphery network organization lies in the middle of several extreme properties, such as random/condensed structures, clique/star configurations, network symmetry/asymmetry, network assortativity/disassortativity, as well as network hierarchy/anti-hierarchy. These properties of high complexity together with the large degeneracy of core pathways e...

  12. Dynamics on networks: competition of temporal and topological correlations

    CERN Document Server

    Artime, Oriol; Miguel, Maxi San

    2016-01-01

    Links in many real-world networks activate and deactivate in correspondence to the sporadic interactions between the elements of the system. The activation patterns may be irregular or bursty and play an important role on the dynamics of processes taking place in the network. Social networks and information or disease spreading processes are paradigmatic examples of this situation. Besides the burstiness, several other correlations may appear in the network dynamics. The activation of links connecting to the same node can be synchronized or the existence of communities in the network may mediate the activation patterns of internal an external links. Here we study the competition of topological and temporal correlations in link activation and how they affect the dynamics of systems running on the network. Interestingly, both types of correlations by separate have opposite effects: one (topological) delays the dynamics of processes on the network, while the other (temporal) accelerates it. When they occur toget...

  13. Interestingness-Driven Diffusion Process Summarization in Dynamic Networks

    DEFF Research Database (Denmark)

    Qu, Qiang; Liu, Siyuan; Jensen, Christian S.

    2014-01-01

    tool in this regard is data summarization. However, few existing studies aim to summarize graphs/networks for dynamics. Dynamic networks raise new challenges not found in static settings, including time sensitivity and the needs for online interestingness evaluation and summary traceability, which......The widespread use of social networks enables the rapid diffusion of information, e.g., news, among users in very large communities. It is a substantial challenge to be able to observe and understand such diffusion processes, which may be modeled as networks that are both large and dynamic. A key...... render existing techniques inapplicable. We study the topic of dynamic network summarization: how to summarize dynamic networks with millions of nodes by only capturing the few most interesting nodes or edges over time, and we address the problem by finding interestingness-driven diffusion processes...

  14. Self-organization of complex networks as a dynamical system

    Science.gov (United States)

    Aoki, Takaaki; Yawata, Koichiro; Aoyagi, Toshio

    2015-01-01

    To understand the dynamics of real-world networks, we investigate a mathematical model of the interplay between the dynamics of random walkers on a weighted network and the link weights driven by a resource carried by the walkers. Our numerical studies reveal that, under suitable conditions, the co-evolving dynamics lead to the emergence of stationary power-law distributions of the resource and link weights, while the resource quantity at each node ceaselessly changes with time. We analyze the network organization as a deterministic dynamical system and find that the system exhibits multistability, with numerous fixed points, limit cycles, and chaotic states. The chaotic behavior of the system leads to the continual changes in the microscopic network dynamics in the absence of any external random noises. We conclude that the intrinsic interplay between the states of the nodes and network reformation constitutes a major factor in the vicissitudes of real-world networks.

  15. Logical Modeling and Dynamical Analysis of Cellular Networks.

    Science.gov (United States)

    Abou-Jaoudé, Wassim; Traynard, Pauline; Monteiro, Pedro T; Saez-Rodriguez, Julio; Helikar, Tomáš; Thieffry, Denis; Chaouiya, Claudine

    2016-01-01

    The logical (or logic) formalism is increasingly used to model regulatory and signaling networks. Complementing these applications, several groups contributed various methods and tools to support the definition and analysis of logical models. After an introduction to the logical modeling framework and to several of its variants, we review here a number of recent methodological advances to ease the analysis of large and intricate networks. In particular, we survey approaches to determine model attractors and their reachability properties, to assess the dynamical impact of variations of external signals, and to consistently reduce large models. To illustrate these developments, we further consider several published logical models for two important biological processes, namely the differentiation of T helper cells and the control of mammalian cell cycle.

  16. A novel approach to characterize information radiation in complex networks

    Science.gov (United States)

    Wang, Xiaoyang; Wang, Ying; Zhu, Lin; Li, Chao

    2016-06-01

    The traditional research of information dissemination is mostly based on the virus spreading model that the information is being spread by probability, which does not match very well to the reality, because the information that we receive is always more or less than what was sent. In order to quantitatively describe variations in the amount of information during the spreading process, this article proposes a safety information radiation model on the basis of communication theory, combining with relevant theories of complex networks. This model comprehensively considers the various influence factors when safety information radiates in the network, and introduces some concepts from the communication theory perspective, such as the radiation gain function, receiving gain function, information retaining capacity and information second reception capacity, to describe the safety information radiation process between nodes and dynamically investigate the states of network nodes. On a micro level, this article analyzes the influence of various initial conditions and parameters on safety information radiation through the new model simulation. The simulation reveals that this novel approach can reflect the variation of safety information quantity of each node in the complex network, and the scale-free network has better "radiation explosive power", while the small-world network has better "radiation staying power". The results also show that it is efficient to improve the overall performance of network security by selecting nodes with high degrees as the information source, refining and simplifying the information, increasing the information second reception capacity and decreasing the noises. In a word, this article lays the foundation for further research on the interactions of information and energy between internal components within complex systems.

  17. A Network Traffic Control Enhancement Approach over Bluetooth Networks

    DEFF Research Database (Denmark)

    Son, L.T.; Schiøler, Henrik; Madsen, Ole Brun

    2003-01-01

    This paper analyzes network traffic control issues in Bluetooth data networks as convex optimization problem. We formulate the problem of maximizing of total network flows and minimizing the costs of flows. An adaptive distributed network traffic control scheme is proposed as an approximated...... solution of the stated optimization problem that satisfies quality of service requirements and topologically induced constraints in Bluetooth networks, such as link capacity and node resource limitations. The proposed scheme is decentralized and complies with frequent changes of topology as well...... as capacity limitations and flow requirements in the network. Simulation shows that the performance of Bluetooth networks could be improved by applying the adaptive distributed network traffic control scheme...

  18. A Wavelet Analysis-Based Dynamic Prediction Algorithm to Network Traffic

    Directory of Open Access Journals (Sweden)

    Meng Fan-Bo

    2016-01-01

    Full Text Available Network traffic is a significantly important parameter for network traffic engineering, while it holds highly dynamic nature in the network. Accordingly, it is difficult and impossible to directly predict traffic amount of end-to-end flows. This paper proposes a new prediction algorithm to network traffic using the wavelet analysis. Firstly, network traffic is converted into the time-frequency domain to capture time-frequency feature of network traffic. Secondly, in different frequency components, we model network traffic in the time-frequency domain. Finally, we build the prediction model about network traffic. At the same time, the corresponding prediction algorithm is presented to attain network traffic prediction. Simulation results indicates that our approach is promising.

  19. Neural Network Approach for Eye Detection

    CERN Document Server

    Vijayalaxmi,; Sreehari, S

    2012-01-01

    Driving support systems, such as car navigation systems are becoming common and they support driver in several aspects. Non-intrusive method of detecting Fatigue and drowsiness based on eye-blink count and eye directed instruction controlhelps the driver to prevent from collision caused by drowsy driving. Eye detection and tracking under various conditions such as illumination, background, face alignment and facial expression makes the problem complex.Neural Network based algorithm is proposed in this paper to detect the eyes efficiently. In the proposed algorithm, first the neural Network is trained to reject the non-eye regionbased on images with features of eyes and the images with features of non-eye using Gabor filter and Support Vector Machines to reduce the dimension and classify efficiently. In the algorithm, first the face is segmented using L*a*btransform color space, then eyes are detected using HSV and Neural Network approach. The algorithm is tested on nearly 100 images of different persons under...

  20. Quality of Information Approach to Improving Source Selection in Tactical Networks

    Science.gov (United States)

    2017-02-01

    Intelligence operations in highly dynamic and constrained networked environments require a prudent strategies to query information sources. We...metrics are identified in military doctrine as requirements that promote mission success. Further, it is possible to identify specific network metrics...social networks to assist a decision maker in the source selection problem. We show how this approach can be used to score information sources for such tasks using results from representative simulations.

  1. THE NETWORKS IN TOURISM: A THEORETICAL APPROACH

    Directory of Open Access Journals (Sweden)

    Maria TĂTĂRUȘANU

    2016-12-01

    Full Text Available The economic world in which tourism companies act today is in a continuous changing process. The most important factor of these changes is the globalization of their environment, both in economic, social, natural and cultural aspects. The tourism companies can benefit from the opportunities brought by globalization, but also could be menaced by the new context. How could react the companies to these changes in order to create and maintain long term competitive advantage for their business? In the present paper we make a literature review of the new tourism companies´ business approach: the networks - a result and/or a reason for exploiting the opportunities or, on the contrary, for keeping their actual position on the market. It’s a qualitative approach and the research methods used are analyses, synthesis, abstraction, which are considered the most appropriate to achieve the objective of the paper.

  2. Identifying Geographic Clusters: A Network Analytic Approach

    CERN Document Server

    Catini, Roberto; Penner, Orion; Riccaboni, Massimo

    2015-01-01

    In recent years there has been a growing interest in the role of networks and clusters in the global economy. Despite being a popular research topic in economics, sociology and urban studies, geographical clustering of human activity has often studied been by means of predetermined geographical units such as administrative divisions and metropolitan areas. This approach is intrinsically time invariant and it does not allow one to differentiate between different activities. Our goal in this paper is to present a new methodology for identifying clusters, that can be applied to different empirical settings. We use a graph approach based on k-shell decomposition to analyze world biomedical research clusters based on PubMed scientific publications. We identify research institutions and locate their activities in geographical clusters. Leading areas of scientific production and their top performing research institutions are consistently identified at different geographic scales.

  3. Dynamical Analysis of Protein Regulatory Network in Budding Yeast Nucleus

    Institute of Scientific and Technical Information of China (English)

    LI Fang-Ting; JIA Xun

    2006-01-01

    @@ Recent progresses in the protein regulatory network of budding yeast Saccharomyces cerevisiae have provided a global picture of its protein network for further dynamical research. We simplify and modularize the protein regulatory networks in yeast nucleus, and study the dynamical properties of the core 37-node network by a Boolean network model, especially the evolution steps and final fixed points. Our simulation results show that the number of fixed points N(k) for a given size of the attraction basin k obeys a power-law distribution N(k)∝k-2.024. The yeast network is more similar to a scale-free network than a random network in the above dynamical properties.

  4. Integrating atomistic molecular dynamics simulations, experiments, and network analysis to study protein dynamics: strength in unity.

    Science.gov (United States)

    Papaleo, Elena

    2015-01-01

    In the last years, we have been observing remarkable improvements in the field of protein dynamics. Indeed, we can now study protein dynamics in atomistic details over several timescales with a rich portfolio of experimental and computational techniques. On one side, this provides us with the possibility to validate simulation methods and physical models against a broad range of experimental observables. On the other side, it also allows a complementary and comprehensive view on protein structure and dynamics. What is needed now is a better understanding of the link between the dynamic properties that we observe and the functional properties of these important cellular machines. To make progresses in this direction, we need to improve the physical models used to describe proteins and solvent in molecular dynamics, as well as to strengthen the integration of experiments and simulations to overcome their own limitations. Moreover, now that we have the means to study protein dynamics in great details, we need new tools to understand the information embedded in the protein ensembles and in their dynamic signature. With this aim in mind, we should enrich the current tools for analysis of biomolecular simulations with attention to the effects that can be propagated over long distances and are often associated to important biological functions. In this context, approaches inspired by network analysis can make an important contribution to the analysis of molecular dynamics simulations.

  5. A Random Laser as a Dynamical Network

    CERN Document Server

    Höfner, M; Henneberger, F

    2013-01-01

    The mode dynamics of a random laser is investigated in experiment and theory. The laser consists of a ZnCdO/ZnO multiple quantum well with air-holes that provide the necessary feedback. Time-resolved measurements reveal multimode spectra with individually developing features but no variation from shot to shot. These findings are qualitatively reproduced with a model that exploits the specifics of a dilute system of weak scatterers and can be interpreted in terms of a lasing network. Introducing the phase-sensitive node coherence reveals new aspects of the self-organization of the laser field. Lasing is carried by connected links between a subset of scatterers, the fields on which are oscillating coherently in phase. In addition, perturbing feedback with possibly unfitting phases from frustrated other scatterers is suppressed by destructive superposition. We believe that our findings are representative at least for weakly scattering random lasers. A generalization to random laser with dense and strong scattere...

  6. Magnetoencephalography from signals to dynamic cortical networks

    CERN Document Server

    Aine, Cheryl

    2014-01-01

    "Magnetoencephalography (MEG) provides a time-accurate view into human brain function. The concerted action of neurons generates minute magnetic fields that can be detected---totally noninvasively---by sensitive multichannel magnetometers. The obtained millisecond accuracycomplements information obtained by other modern brain-imaging tools. Accurate timing is quintessential in normal brain function, often distorted in brain disorders. The noninvasiveness and time-sensitivityof MEG are great assets to developmental studies, as well. This multiauthored book covers an ambitiously wide range of MEG research from introductory to advanced level, from sensors to signals, and from focal sources to the dynamics of cortical networks. Written by active practioners of this multidisciplinary field, the book contains tutorials for newcomers and chapters of new challenging methods and emerging technologies to advanced MEG users. The reader will obtain a firm grasp of the possibilities of MEG in the study of audition, vision...

  7. Topological stabilization for synchronized dynamics on networks

    Science.gov (United States)

    Cencetti, Giulia; Bagnoli, Franco; Battistelli, Giorgio; Chisci, Luigi; Di Patti, Francesca; Fanelli, Duccio

    2017-01-01

    A general scheme is proposed and tested to control the symmetry breaking instability of a homogeneous solution of a spatially extended multispecies model, defined on a network. The inherent discreteness of the space makes it possible to act on the topology of the inter-nodes contacts to achieve the desired degree of stabilization, without altering the dynamical parameters of the model. Both symmetric and asymmetric couplings are considered. In this latter setting the web of contacts is assumed to be balanced, for the homogeneous equilibrium to exist. The performance of the proposed method are assessed, assuming the Complex Ginzburg-Landau equation as a reference model. In this case, the implemented control allows one to stabilize the synchronous limit cycle, hence time-dependent, uniform solution. A system of coupled real Ginzburg-Landau equations is also investigated to obtain the topological stabilization of a homogeneous and constant fixed point.

  8. Attractor dynamics in local neuronal networks

    Directory of Open Access Journals (Sweden)

    Jean-Philippe eThivierge

    2014-03-01

    Full Text Available Patterns of synaptic connectivity in various regions of the brain are characterized by the presence of synaptic motifs, defined as unidirectional and bidirectional synaptic contacts that follow a particular configuration and link together small groups of neurons. Recent computational work proposes that a relay network (two populations communicating via a third, relay population of neurons can generate precise patterns of neural synchronization. Here, we employ two distinct models of neuronal dynamics and show that simulated neural circuits designed in this way are caught in a global attractor of activity that prevents neurons from modulating their response on the basis of incoming stimuli. To circumvent the emergence of a fixed global attractor, we propose a mechanism of selective gain inhibition that promotes flexible responses to external stimuli. We suggest that local neuronal circuits may employ this mechanism to generate precise patterns of neural synchronization whose transient nature delimits the occurrence of a brief stimulus.

  9. Spatial Dynamics of Multilayer Cellular Neural Networks

    Science.gov (United States)

    Wu, Shi-Liang; Hsu, Cheng-Hsiung

    2017-06-01

    The purpose of this work is to study the spatial dynamics of one-dimensional multilayer cellular neural networks. We first establish the existence of rightward and leftward spreading speeds of the model. Then we show that the spreading speeds coincide with the minimum wave speeds of the traveling wave fronts in the right and left directions. Moreover, we obtain the asymptotic behavior of the traveling wave fronts when the wave speeds are positive and greater than the spreading speeds. According to the asymptotic behavior and using various kinds of comparison theorems, some front-like entire solutions are constructed by combining the rightward and leftward traveling wave fronts with different speeds and a spatially homogeneous solution of the model. Finally, various qualitative features of such entire solutions are investigated.

  10. A Reinforcement Learning Framework for Spiking Networks with Dynamic Synapses

    Directory of Open Access Journals (Sweden)

    Karim El-Laithy

    2011-01-01

    Full Text Available An integration of both the Hebbian-based and reinforcement learning (RL rules is presented for dynamic synapses. The proposed framework permits the Hebbian rule to update the hidden synaptic model parameters regulating the synaptic response rather than the synaptic weights. This is performed using both the value and the sign of the temporal difference in the reward signal after each trial. Applying this framework, a spiking network with spike-timing-dependent synapses is tested to learn the exclusive-OR computation on a temporally coded basis. Reward values are calculated with the distance between the output spike train of the network and a reference target one. Results show that the network is able to capture the required dynamics and that the proposed framework can reveal indeed an integrated version of Hebbian and RL. The proposed framework is tractable and less computationally expensive. The framework is applicable to a wide class of synaptic models and is not restricted to the used neural representation. This generality, along with the reported results, supports adopting the introduced approach to benefit from the biologically plausible synaptic models in a wide range of intuitive signal processing.

  11. EEG source localization: a neural network approach.

    Science.gov (United States)

    Sclabassi, R J; Sonmez, M; Sun, M

    2001-07-01

    Functional activity in the brain is associated with the generation of currents and resultant voltages which may be observed on the scalp as the electroencephelogram. The current sources may be modeled as dipoles. The properties of the current dipole sources may be studied by solving either the forward or inverse problems. The forward problem utilizes a volume conductor model for the head, in which the potentials on the conductor surface are computed based on an assumed current dipole at an arbitrary location, orientation, and strength. In the inverse problem, on the other hand, a current dipole, or a group of dipoles, is identified based on the observed EEG. Both the forward and inverse problems are typically solved by numerical procedures, such as a boundary element method and an optimization algorithm. These approaches are highly time-consuming and unsuitable for the rapid evaluation of brain function. In this paper we present a different approach to these problems based on machine learning. We solve both problems using artificial neural networks which are trained off-line using back-propagation techniques to learn the complex source-potential relationships of head volume conduction. Once trained, these networks are able to generalize their knowledge to localize functional activity within the brain in a computationally efficient manner.

  12. How the dynamics and structure of sexual contact networks shape pathogen phylogenies.

    Directory of Open Access Journals (Sweden)

    Katy Robinson

    Full Text Available The characteristics of the host contact network over which a pathogen is transmitted affect both epidemic spread and the projected effectiveness of control strategies. Given the importance of understanding these contact networks, it is unfortunate that they are very difficult to measure directly. This challenge has led to an interest in methods to infer information about host contact networks from pathogen phylogenies, because in shaping a pathogen's opportunities for reproduction, contact networks also shape pathogen evolution. Host networks influence pathogen phylogenies both directly, through governing opportunities for evolution, and indirectly by changing the prevalence and incidence. Here, we aim to separate these two effects by comparing pathogen evolution on different host networks that share similar epidemic trajectories. This approach allows use to examine the direct effects of network structure on pathogen phylogenies, largely controlling for confounding differences arising from population dynamics. We find that networks with more heterogeneous degree distributions yield pathogen phylogenies with more variable cluster numbers, smaller mean cluster sizes, shorter mean branch lengths, and somewhat higher tree imbalance than networks with relatively homogeneous degree distributions. However, in particular for dynamic networks, we find that these direct effects are relatively modest. These findings suggest that the role of the epidemic trajectory, the dynamics of the network and the inherent variability of metrics such as cluster size must each be taken into account when trying to use pathogen phylogenies to understand characteristics about the underlying host contact network.

  13. Filtering in Hybrid Dynamic Bayesian Networks

    Science.gov (United States)

    Andersen, Morten Nonboe; Andersen, Rasmus Orum; Wheeler, Kevin

    2004-01-01

    We demonstrate experimentally that inference in a complex hybrid Dynamic Bayesian Network (DBN) is possible using the 2 - T i e Slice DBN (2T-DBN) from [Koller & Lerner, 20001 to model fault detection in a watertank system. In [Koller & Lerner, 20001 a generic Particle Filter (PF) is used for inference. We extend the experiment and perform approximate inference using The Extended Kalman Filter (EKF) and the Unscented Kalman Filter (UKF). Furthermore, we combine these techniques in a 'non-strict' Rao-Blackwellisation framework and apply it to the watertank system. We show that UKF and UKF in a PF framework outperfom the generic PF, EKF and EKF in a PF framework with respect to accuracy and robustness in terms of estimation RMSE. Especially we demonstrate the superiority of UKF in a PF framework when our beliefs of how data was generated are wrong. We also show that the choice of network structure is very important for the performance of the generic PF and the EKF algorithms, but not for the UKF algorithms. Furthermore, we investigate the influence of data noise in the water[ank simulation. Theory and implementation is based on the theory presented.

  14. Choice Shift in Opinion Network Dynamics

    Science.gov (United States)

    Gabbay, Michael

    Choice shift is a phenomenon associated with small group dynamics whereby group discussion causes group members to shift their opinions in a more extreme direction so that the mean post-discussion opinion exceeds the mean pre-discussion opinion. Also known as group polarization, choice shift is a robust experimental phenomenon and has been well-studied within social psychology. In opinion network models, shifts toward extremism are typically produced by the presence of stubborn agents at the extremes of the opinion axis, whose opinions are much more resistant to change than moderate agents. However, we present a model in which choice shift can arise without the assumption of stubborn agents; the model evolves member opinions and uncertainties using coupled nonlinear differential equations. In addition, we briefly describe the results of a recent experiment conducted involving online group discussion concerning the outcome of National Football League games are described. The model predictions concerning the effects of network structure, disagreement level, and team choice (favorite or underdog) are in accord with the experimental results. This research was funded by the Office of Naval Research and the Defense Threat Reduction Agency.

  15. Filtering in Hybrid Dynamic Bayesian Networks

    Science.gov (United States)

    Andersen, Morten Nonboe; Andersen, Rasmus Orum; Wheeler, Kevin

    2000-01-01

    We implement a 2-time slice dynamic Bayesian network (2T-DBN) framework and make a 1-D state estimation simulation, an extension of the experiment in (v.d. Merwe et al., 2000) and compare different filtering techniques. Furthermore, we demonstrate experimentally that inference in a complex hybrid DBN is possible by simulating fault detection in a watertank system, an extension of the experiment in (Koller & Lerner, 2000) using a hybrid 2T-DBN. In both experiments, we perform approximate inference using standard filtering techniques, Monte Carlo methods and combinations of these. In the watertank simulation, we also demonstrate the use of 'non-strict' Rao-Blackwellisation. We show that the unscented Kalman filter (UKF) and UKF in a particle filtering framework outperform the generic particle filter, the extended Kalman filter (EKF) and EKF in a particle filtering framework with respect to accuracy in terms of estimation RMSE and sensitivity with respect to choice of network structure. Especially we demonstrate the superiority of UKF in a PF framework when our beliefs of how data was generated are wrong. Furthermore, we investigate the influence of data noise in the watertank simulation using UKF and PFUKD and show that the algorithms are more sensitive to changes in the measurement noise level that the process noise level. Theory and implementation is based on (v.d. Merwe et al., 2000).

  16. The Dynamics of Initiative in Communication Networks.

    Science.gov (United States)

    Mollgaard, Anders; Mathiesen, Joachim

    2016-01-01

    Human social interaction is often intermittent. Two acquainted persons can have extended periods without social interaction punctuated by periods of repeated interaction. In this case, the repeated interaction can be characterized by a seed initiative by either of the persons and a number of follow-up interactions. The tendency to initiate social interaction plays an important role in the formation of social networks and is in general not symmetric between persons. In this paper, we study the dynamics of initiative by analysing and modeling a detailed call and text message network sampled from a group of 700 individuals. We show that in an average relationship between two individuals, one part is almost twice as likely to initiate communication compared to the other part. The asymmetry has social consequences and ultimately might lead to the discontinuation of a relationship. We explain the observed asymmetry by a positive feedback mechanism where individuals already taking initiative are more likely to take initiative in the future. In general, people with many initiatives receive attention from a broader spectrum of friends than people with few initiatives. Lastly, we compare the likelihood of taking initiative with the basic personality traits of the five factor model.

  17. Polarization dynamics in optical ground wire network.

    Science.gov (United States)

    Leeson, Jesse; Bao, Xiaoyi; Côté, Alain

    2009-04-20

    We report the polarization dynamics in an optical ground wire (OPGW) network for a summer period and a fall period for what is believed to be the first time. To better observe the surrounding magnetic fields contribution to modulating the state of polarization (SOP) we installed a Faraday rotating mirror to correct reciprocal birefringence from quasi-static changes. We also monitored the OPGW while no electrical current was present in the towers' electrical conductors. The spectral analysis, the arc length mapped out over a given time interval on a Poincaré sphere, histograms of the arc length, and the SOP autocorrelation function are calculated to analyze the SOP changes. Ambient temperature changes, wind, Sun-induced temperature gradients, and electrical current all have a significant impact on the SOP drift in an OPGW network. Wind-generated cable oscillations and Sun-induced temperature gradients are shown to be the dominant slow SOP modulations, while Aeolian vibrations and electrical current are shown to be the dominant fast SOP modulations. The spectral analysis revealed that the electrical current gives the fastest SOP modulation to be 300 Hz for the sampling frequency of 1 KHz. This has set the upper speed limit for real-time polarization mode dispersion compensation devices.

  18. The stochastic network dynamics underlying perceptual discrimination

    Directory of Open Access Journals (Sweden)

    Genis Prat-Ortega

    2015-04-01

    Full Text Available The brain is able to interpret streams of high-dimensional ambiguous information and yield coherent percepts. The mechanisms governing sensory integration have been extensively characterized using time-varying visual stimuli (Britten et al. 1996; Roitman and Shadlen 2002, but some of the basic principles regarding the network dynamics underlying this process remain largely unknown. We captured the basic features of a neural integrator using three canonical one-dimensional models: (1 the Drift Diffusion Model (DDM, (2 the Perfect Integrator (PI which is a particular case of the DDM where the bounds are set to infinity and (3 the double-well potential (DW which captures the dynamics of the attractor networks (Wang 2002; Roxin and Ledberg 2008. Although these models has been widely studied (Bogacz et al. 2006; Roxin and Ledberg 2008; Gold and Shadlen 2002, it has been difficult to experimentally discriminate among them because most of the observables measured are only quantitatively different among these models (e.g. psychometric curves. Here we aim to find experimentally measurable quantities that can yield qualitatively different behaviors depending on the nature of the underlying network dynamics. We examined the categorization dynamics of these models in response to fluctuating stimuli of different duration (T. On each time step, stimuli are drawn from a Gaussian distribution N(μ, σ and the two stimulus categories are defined by μ > 0 and μ < 0. Psychometric curves can therefore be obtained by quantifying the probability of the integrator to yield one category versus μ . We find however that varying σ can reveal more clearly the differences among the different integrators. In the small σ regime, both the DW and the DDM perform transient integration and exhibit a decaying stimulus reverse correlation kernel revealing a primacy effect (Nienborg and Cumming 2009; Wimmer et al. 2015 . In the large σ regime, the integration in the DDM

  19. Water losses dynamic modelling in water distribution networks

    Science.gov (United States)

    Puleo, Valeria; Milici, Barbara

    2015-12-01

    In the last decades, one of the main concerns of the water system managers have been the minimisation of water losses, that frequently reach values of 30% or even 70% of the volume supplying the water distribution network. The economic and social costs associated with water losses in modern water supply systems are rapidly rising to unacceptably high levels. Furthermore, the problem of the water losses assumes more and more importance mainly when periods of water scarcity occur or when not sufficient water supply takes part in areas with fast growth. In the present analysis, a dynamic model was used for estimating real and apparent losses of a real case study. A specific nodal demand model reflecting the user's tank installation and a specific apparent losses module were implemented. The results from the dynamic model were compared with the modelling estimation based on a steady-state approach.

  20. MODELING NONLINEAR DYNAMICS OF CIRCULATING FLUIDIZED BEDS USING NEURAL NETWORKS

    Institute of Scientific and Technical Information of China (English)

    Wei; Chen; Atsushi; Tsutsumi; Haiyan; Lin; Kentaro; Otawara

    2005-01-01

    In the present work, artificial neural networks (ANNs) were proposed to model nonlinear dynamic behaviors of local voidage fluctuations induced by highly turbulent interactions between the gas and solid phases in circulating fluidized beds. The fluctuations of local voidage were measured by using an optical transmittance probe at various axial and radial positions in a circulating fluidized bed with a riser of 0.10 m in inner diameter and 10 m in height. The ANNs trained with experimental time series were applied to make short-term and long-term predictions of dynamic characteristics in the circulating fluidized bed. An early stop approach was adopted to enhance the long-term prediction capability of ANNs. The performance of the trained ANN was evaluated in terms of time-averaged characteristics, power spectra, cycle number and short-term predictability analysis of time series measured and predicted by the model.

  1. Network Routing Using the Network Tasking Order, a Chron Approach

    Science.gov (United States)

    2015-03-26

    Mobile Ad hoc Networks ( MANET ). The network topology created by airborne platforms is determined ahead of time and network transitions are calculated...scheduling and splitting network traffic over an emulated MANET compared to Open Shortest Path First (OSPF) which only achieved around a 71% success rate...13  2.4  MANET Prediction Routing .............................................................................14  2.4.1

  2. HUMANISTIC APPROACH IN MOBILE ADHOC NETWORK: HAMANET

    Directory of Open Access Journals (Sweden)

    Md. Amir Khusru Akhtar

    2013-02-01

    Full Text Available Human society is a complex and most organized networks, in which many communities have different cultural livelihood. The creation/formation of one or more communities within a society and the way of associations can be mapped to MANET. By involving human characteristics and behavior, surely it would pave a new way, for further development. In this paper we have presented a new approach called “HAMANET” which is not only robust and secure but it certainly meets the challenges of MANET (such as name resolution, address allocation and authentication. Our object oriented design defines a service in terms of Arts, Culture, and Machine. The ‘Art’ is the smallest unit of work (defined as an interface, the ‘Culture’ is the integration/assembling of one or more Arts (defined as a class and finally the ‘Machine’ which is an instance of a Culture that defines a service. The grouping of the communicable Machines of the same Culture forms a ‘Community’. We have used the term ‘Society’ for MANET consisting of one or more communities and modeled using humanistic approach. We have compared our design with GloMoSim and proposed the implementation of file transfer service using the said approach. Our approach gives better results in terms of implementation of the basic services, security, reliability, throughput, extensibility, scalability etc.

  3. Universal data-based method for reconstructing complex networks with binary-state dynamics

    Science.gov (United States)

    Li, Jingwen; Shen, Zhesi; Wang, Wen-Xu; Grebogi, Celso; Lai, Ying-Cheng

    2017-03-01

    To understand, predict, and control complex networked systems, a prerequisite is to reconstruct the network structure from observable data. Despite recent progress in network reconstruction, binary-state dynamics that are ubiquitous in nature, technology, and society still present an outstanding challenge in this field. Here we offer a framework for reconstructing complex networks with binary-state dynamics by developing a universal data-based linearization approach that is applicable to systems with linear, nonlinear, discontinuous, or stochastic dynamics governed by monotonic functions. The linearization procedure enables us to convert the network reconstruction into a sparse signal reconstruction problem that can be resolved through convex optimization. We demonstrate generally high reconstruction accuracy for a number of complex networks associated with distinct binary-state dynamics from using binary data contaminated by noise and missing data. Our framework is completely data driven, efficient, and robust, and does not require any a priori knowledge about the detailed dynamical process on the network. The framework represents a general paradigm for reconstructing, understanding, and exploiting complex networked systems with binary-state dynamics.

  4. Investigating echo state networks dynamics by means of recurrence analysis

    CERN Document Server

    Bianchi, Filippo Maria; Alippi, Cesare

    2016-01-01

    In this paper, we elaborate over the well-known interpretability issue in echo state networks. The idea is to investigate the dynamics of reservoir neurons with time-series analysis techniques taken from research on complex systems. Notably, we analyze time-series of neuron activations with Recurrence Plots (RPs) and Recurrence Quantification Analysis (RQA), which permit to visualize and characterize high-dimensional dynamical systems. We show that this approach is useful in a number of ways. First, the two-dimensional representation offered by RPs provides a way for visualizing the high-dimensional dynamics of a reservoir. Our results suggest that, if the network is stable, reservoir and input denote similar line patterns in the respective RPs. Conversely, the more unstable the ESN, the more the RP of the reservoir presents instability patterns. As a second result, we show that the $\\mathrm{L_{max}}$ measure is highly correlated with the well-established maximal local Lyapunov exponent. This suggests that co...

  5. A perturbation-theoretic approach to Lagrangian flow networks

    Science.gov (United States)

    Fujiwara, Naoya; Kirchen, Kathrin; Donges, Jonathan F.; Donner, Reik V.

    2017-03-01

    Complex network approaches have been successfully applied for studying transport processes in complex systems ranging from road, railway, or airline infrastructures over industrial manufacturing to fluid dynamics. Here, we utilize a generic framework for describing the dynamics of geophysical flows such as ocean currents or atmospheric wind fields in terms of Lagrangian flow networks. In this approach, information on the passive advection of particles is transformed into a Markov chain based on transition probabilities of particles between the volume elements of a given partition of space for a fixed time step. We employ perturbation-theoretic methods to investigate the effects of modifications of transport processes in the underlying flow for three different problem classes: efficient absorption (corresponding to particle trapping or leaking), constant input of particles (with additional source terms modeling, e.g., localized contamination), and shifts of the steady state under probability mass conservation (as arising if the background flow is perturbed itself). Our results demonstrate that in all three cases, changes to the steady state solution can be analytically expressed in terms of the eigensystem of the unperturbed flow and the perturbation itself. These results are potentially relevant for developing more efficient strategies for coping with contaminations of fluid or gaseous media such as ocean and atmosphere by oil spills, radioactive substances, non-reactive chemicals, or volcanic aerosols.

  6. Variable sampling approach to mitigate instability in networked control systems with delays.

    Science.gov (United States)

    López-Echeverría, Daniel; Magaña, Mario E

    2012-01-01

    This paper analyzes a new alternative approach to compensate for the effects of time delays on a dynamic networked control system (NCS). The approach is based on the use of time-delay-predicted values as the sampling times of the NCS. We use a one-step-ahead prediction algorithm based on an adaptive time delay neural network. The application of pole placement and linear quadratic regulator methods to compute the feedback gains taking into account the estimated time delays is investigated.

  7. Innovation networking between stability and political dynamics

    DEFF Research Database (Denmark)

    Koch, Christian

    2004-01-01

    This contribution views innovation as a social activity of building networks, using software product development in multicompany alliances and networks as example. Innovation networks are frequently understood as quite stable arrangements characterised by high trust among the participants. The aim...

  8. Fast paths in large-scale dynamic road networks

    CERN Document Server

    Nannicini, Giacomo; Barbier, Gilles; Krob, Daniel; Liberti, Leo

    2007-01-01

    Efficiently computing fast paths in large scale dynamic road networks (where dynamic traffic information is known over a part of the network) is a practical problem faced by several traffic information service providers who wish to offer a realistic fast path computation to GPS terminal enabled vehicles. The heuristic solution method we propose is based on a highway hierarchy-based shortest path algorithm for static large-scale networks; we maintain a static highway hierarchy and perform each query on the dynamically evaluated network.

  9. Novel recurrent neural network for modelling biological networks: oscillatory p53 interaction dynamics.

    Science.gov (United States)

    Ling, Hong; Samarasinghe, Sandhya; Kulasiri, Don

    2013-12-01

    Understanding the control of cellular networks consisting of gene and protein interactions and their emergent properties is a central activity of Systems Biology research. For this, continuous, discrete, hybrid, and stochastic methods have been proposed. Currently, the most common approach to modelling accurate temporal dynamics of networks is ordinary differential equations (ODE). However, critical limitations of ODE models are difficulty in kinetic parameter estimation and numerical solution of a large number of equations, making them more suited to smaller systems. In this article, we introduce a novel recurrent artificial neural network (RNN) that addresses above limitations and produces a continuous model that easily estimates parameters from data, can handle a large number of molecular interactions and quantifies temporal dynamics and emergent systems properties. This RNN is based on a system of ODEs representing molecular interactions in a signalling network. Each neuron represents concentration change of one molecule represented by an ODE. Weights of the RNN correspond to kinetic parameters in the system and can be adjusted incrementally during network training. The method is applied to the p53-Mdm2 oscillation system - a crucial component of the DNA damage response pathways activated by a damage signal. Simulation results indicate that the proposed RNN can successfully represent the behaviour of the p53-Mdm2 oscillation system and solve the parameter estimation problem with high accuracy. Furthermore, we presented a modified form of the RNN that estimates parameters and captures systems dynamics from sparse data collected over relatively large time steps. We also investigate the robustness of the p53-Mdm2 system using the trained RNN under various levels of parameter perturbation to gain a greater understanding of the control of the p53-Mdm2 system. Its outcomes on robustness are consistent with the current biological knowledge of this system. As more

  10. Dynamic Mobile IP routers in ad hoc networks

    NARCIS (Netherlands)

    Kock, B.A.; Schmidt, J.R.

    2005-01-01

    This paper describes a concept combining mobile IP and ad hoc routing to create a robust mobile network. In this network all nodes are mobile and globally and locally reachable under the same IP address. Essential for implementing this network are the dynamic mobile IP routers. They act as gateways

  11. Optical-router-based dynamically reconfigurable photonic access network

    NARCIS (Netherlands)

    Roy, R.

    2014-01-01

    The Broadband photonics (BBP) project under the Freeband consortium of projects investigated the design of a dynamically reconfigurable photonic access network. Access networks form a key link in ensuring optimal bandwidth to the end user without which any improvements deeper in the network in the a

  12. Inferring slowly-changing dynamic gene-regulatory networks

    NARCIS (Netherlands)

    Wit, Ernst C.; Abbruzzo, Antonino

    2015-01-01

    Dynamic gene-regulatory networks are complex since the interaction patterns between their components mean that it is impossible to study parts of the network in separation. This holistic character of gene-regulatory networks poses a real challenge to any type of modelling. Graphical models are a cla

  13. Dynamic Mobile IP routers in ad hoc networks

    NARCIS (Netherlands)

    Kock, B.A.; Schmidt, J.R.

    2005-01-01

    This paper describes a concept combining mobile IP and ad hoc routing to create a robust mobile network. In this network all nodes are mobile and globally and locally reachable under the same IP address. Essential for implementing this network are the dynamic mobile IP routers. They act as gateways

  14. Optical-router-based dynamically reconfigurable photonic access network

    NARCIS (Netherlands)

    Roy, Rajeev

    2014-01-01

    The Broadband photonics (BBP) project under the Freeband consortium of projects investigated the design of a dynamically reconfigurable photonic access network. Access networks form a key link in ensuring optimal bandwidth to the end user without which any improvements deeper in the network in the a

  15. Stochastic simulation of HIV population dynamics through complex network modelling

    NARCIS (Netherlands)

    Sloot, P.M.A.; Ivanov, S.V.; Boukhanovsky, A.V.; van de Vijver, D.A.M.C.; Boucher, C.A.B.

    2008-01-01

    We propose a new way to model HIV infection spreading through the use of dynamic complex networks. The heterogeneous population of HIV exposure groups is described through a unique network degree probability distribution. The time evolution of the network nodes is modelled by a Markov process and

  16. Stochastic simulation of HIV population dynamics through complex network modelling

    NARCIS (Netherlands)

    Sloot, P. M. A.; Ivanov, S. V.; Boukhanovsky, A. V.; van de Vijver, D. A. M. C.; Boucher, C. A. B.

    We propose a new way to model HIV infection spreading through the use of dynamic complex networks. The heterogeneous population of HIV exposure groups is described through a unique network degree probability distribution. The time evolution of the network nodes is modelled by a Markov process and

  17. Non-transcriptional regulatory processes shape transcriptional network dynamics

    OpenAIRE

    Ray, J. Christian J; Tabor, Jeffrey J.; Igoshin, Oleg A.

    2011-01-01

    Information about the extra- or intracellular environment is often captured as biochemical signals propagating through regulatory networks. These signals eventually drive phenotypic changes, typically by altering gene expression programs in the cell. Reconstruction of transcriptional regulatory networks has given a compelling picture of bacterial physiology, but transcriptional network maps alone often fail to describe phenotypes. In many cases, the dynamical performance of transcriptional re...

  18. Optical-router-based dynamically reconfigurable photonic access network

    NARCIS (Netherlands)

    Roy, R.

    2014-01-01

    The Broadband photonics (BBP) project under the Freeband consortium of projects investigated the design of a dynamically reconfigurable photonic access network. Access networks form a key link in ensuring optimal bandwidth to the end user without which any improvements deeper in the network in the

  19. Dynamic Bayesian Network Modeling of Game Based Diagnostic Assessments. CRESST Report 837

    Science.gov (United States)

    Levy, Roy

    2014-01-01

    Digital games offer an appealing environment for assessing student proficiencies, including skills and misconceptions in a diagnostic setting. This paper proposes a dynamic Bayesian network modeling approach for observations of student performance from an educational video game. A Bayesian approach to model construction, calibration, and use in…

  20. Adaptive Synchronization in Small-World Dynamical Networks

    Institute of Scientific and Technical Information of China (English)

    ZOU Yan-li; ZHU Jie; LUO Xiao-shu

    2007-01-01

    Adaptive synchronization in NW small-world dynamical networks was studied. Firstly, an adaptive synchronization method is presented and explained. Then, it is applied to two different classes of dynamical networks,one is a class-B network, small-world connected R(o)ssler oscillators, the other is a class-A network, small-world connected Chua's circuits. The simulation verifies the validity of the presented method. It also shows that the adaptive synchronization method is robust to the variations of the node systems parameters. So the presented method can be used in networks whose node systems have unknown or time-varying parameters.

  1. NetworkPainter: dynamic intracellular pathway animation in Cytobank.

    Science.gov (United States)

    Karr, Jonathan R; Guturu, Harendra; Chen, Edward Y; Blair, Stuart L; Irish, Jonathan M; Kotecha, Nikesh; Covert, Markus W

    2015-05-25

    High-throughput technologies such as flow and mass cytometry have the potential to illuminate cellular networks. However, analyzing the data produced by these technologies is challenging. Visualization is needed to help researchers explore this data. We developed a web-based software program, NetworkPainter, to enable researchers to analyze dynamic cytometry data in the context of pathway diagrams. NetworkPainter provides researchers a graphical interface to draw and "paint" pathway diagrams with experimental data, producing animated diagrams which display the activity of each network node at each time point. NetworkPainter enables researchers to more fully explore multi-parameter, dynamical cytometry data.

  2. Topology Identification of General Dynamical Network with Distributed Time Delays

    Institute of Scientific and Technical Information of China (English)

    WU Zhao-Yan; FU Xin-Chu

    2009-01-01

    General dynamical networks with distributed time delays are studied. The topology of the networks are viewed as unknown parameters, which need to be identified. Some auxiliary systems (also called the network estimators)are designed to achieve this goal. Both linear feedback control and adaptive strategy are applied in designing these network estimators. Based on linear matrix inequalities and the Lyapunov function method, the sufficient condition for the achievement of topology identification is obtained. This method can also better monitor the switching topology of dynamical networks. Illustrative examples are provided to show the effectiveness of this method.

  3. A Smart Booster Approach In Wireless Ad Hoc Network

    Directory of Open Access Journals (Sweden)

    Anzar Ahmad

    2016-02-01

    Full Text Available Wireless Mobile Ad-hoc network is upcoming next generation technology. The foremost reason to be the popularity of MANET is its infrastructure less nature. MANET is a group of wireless mobile nodes which are connected wirelessly. Nodes may be highly mobile because the beauty of wireless network (like MANET or cellular system lies in mobility. But due to this mobility of nodes, the topology of the node and network changed frequently. This frequent change topology affect to the communication between nodes. If nodes are within the range of each other they can communicate properly but if nodes are not in the range of each other, communication will not be possible smoothly or even ongoing communication may be disrupt or lost. So there is a need to develop and design a mechanism or system that can handle such types of situation and prevent communication failure or frequent link failure. In the present work a novel booster mechanism approach is proposed to overcome such situation or Link failure. In the proposed Approach, the level of the Power at both the Transmitter as well as Receiver is measured in order to maintain communication smooth between the nodes. If one node is moving away from the communicating node then both moving node will measure its receiving power with respect to the distance and if its current power level reaches the threshold level it switched “ON” its Booster and at the same time it send a message to source node which contains received power level of moving node due to this ,that source node also “ON” its Booster and thus both nodes connect together to protect the link failure during that mobility. The Booster Approach is a novel concept in the direction of smooth communication in dynamic or wireless environment in Mobile Ad hoc Network.

  4. An adaptive neural swarm approach for intrusion defense in ad hoc networks

    Science.gov (United States)

    Cannady, James

    2011-06-01

    Wireless sensor networks (WSN) and mobile ad hoc networks (MANET) are being increasingly deployed in critical applications due to the flexibility and extensibility of the technology. While these networks possess numerous advantages over traditional wireless systems in dynamic environments they are still vulnerable to many of the same types of host-based and distributed attacks common to those systems. Unfortunately, the limited power and bandwidth available in WSNs and MANETs, combined with the dynamic connectivity that is a defining characteristic of the technology, makes it extremely difficult to utilize traditional intrusion detection techniques. This paper describes an approach to accurately and efficiently detect potentially damaging activity in WSNs and MANETs. It enables the network as a whole to recognize attacks, anomalies, and potential vulnerabilities in a distributive manner that reflects the autonomic processes of biological systems. Each component of the network recognizes activity in its local environment and then contributes to the overall situational awareness of the entire system. The approach utilizes agent-based swarm intelligence to adaptively identify potential data sources on each node and on adjacent nodes throughout the network. The swarm agents then self-organize into modular neural networks that utilize a reinforcement learning algorithm to identify relevant behavior patterns in the data without supervision. Once the modular neural networks have established interconnectivity both locally and with neighboring nodes the analysis of events within the network can be conducted collectively in real-time. The approach has been shown to be extremely effective in identifying distributed network attacks.

  5. Game theory and extremal optimization for community detection in complex dynamic networks.

    Directory of Open Access Journals (Sweden)

    Rodica Ioana Lung

    Full Text Available The detection of evolving communities in dynamic complex networks is a challenging problem that recently received attention from the research community. Dynamics clearly add another complexity dimension to the difficult task of community detection. Methods should be able to detect changes in the network structure and produce a set of community structures corresponding to different timestamps and reflecting the evolution in time of network data. We propose a novel approach based on game theory elements and extremal optimization to address dynamic communities detection. Thus, the problem is formulated as a mathematical game in which nodes take the role of players that seek to choose a community that maximizes their profit viewed as a fitness function. Numerical results obtained for both synthetic and real-world networks illustrate the competitive performance of this game theoretical approach.

  6. Game theory and extremal optimization for community detection in complex dynamic networks.

    Science.gov (United States)

    Lung, Rodica Ioana; Chira, Camelia; Andreica, Anca

    2014-01-01

    The detection of evolving communities in dynamic complex networks is a challenging problem that recently received attention from the research community. Dynamics clearly add another complexity dimension to the difficult task of community detection. Methods should be able to detect changes in the network structure and produce a set of community structures corresponding to different timestamps and reflecting the evolution in time of network data. We propose a novel approach based on game theory elements and extremal optimization to address dynamic communities detection. Thus, the problem is formulated as a mathematical game in which nodes take the role of players that seek to choose a community that maximizes their profit viewed as a fitness function. Numerical results obtained for both synthetic and real-world networks illustrate the competitive performance of this game theoretical approach.

  7. Arresting Strategy Based on Dynamic Criminal Networks Changing over Time

    Directory of Open Access Journals (Sweden)

    Junqing Yuan

    2013-01-01

    Full Text Available We investigate a sequence of dynamic criminal networks on a time series based on the dynamic network analysis (DNA. According to the change of networks’ structure, networks’ variation trend is analyzed to forecast its future structure. Finally, an optimal arresting time and priority list are designed based on our analysis. Better results can be expected than that based on social network analysis (SNA.

  8. Dynamic molecular networks: from synthetic receptors to self-replicators.

    Science.gov (United States)

    Otto, Sijbren

    2012-12-18

    Dynamic combinatorial libraries (DCLs) are molecular networks in which the network members exchange building blocks. The resulting product distribution is initially under thermodynamic control. Addition of a guest or template molecule tends to shift the equilibrium towards compounds that are receptors for the guest. This Account gives an overview of our work in this area. We have demonstrated the template-induced amplification of synthetic receptors, which has given rise to several high-affinity binders for cationic and anionic guests in highly competitive aqueous solution. The dynamic combinatorial approach allows for the identification of new receptors unlikely to be obtained through rational design. Receptor discovery is possible and more efficient in larger libraries. The dynamic combinatorial approach has the attractive characteristic of revealing interesting structures, such as catenanes, even when they are not specifically targeted. Using a transition-state analogue as a guest we can identify receptors with catalytic activity. Although DCLs were initially used with the reductionistic view of identifying new synthetic receptors or catalysts, it is becoming increasingly apparent that DCLs are also of interest in their own right. We performed detailed computational studies of the effect of templates on the product distributions of DCLs using DCLSim software. Template effects can be rationalized by considering the entire network: the system tends to maximize global host-guest binding energy. A data-fitting analysis of the response of the global position of the DCLs to the addition of the template using DCLFit software allowed us to disentangle individual host-guest binding constants. This powerful procedure eliminates the need for isolation and purification of the various individual receptors. Furthermore, local network binding events tend to propagate through the entire network and may be harnessed for transmitting and processing of information. We demonstrated

  9. Major component analysis of dynamic networks of physiologic organ interactions

    Science.gov (United States)

    Liu, Kang K. L.; Bartsch, Ronny P.; Ma, Qianli D. Y.; Ivanov, Plamen Ch

    2015-09-01

    The human organism is a complex network of interconnected organ systems, where the behavior of one system affects the dynamics of other systems. Identifying and quantifying dynamical networks of diverse physiologic systems under varied conditions is a challenge due to the complexity in the output dynamics of the individual systems and the transient and nonlinear characteristics of their coupling. We introduce a novel computational method based on the concept of time delay stability and major component analysis to investigate how organ systems interact as a network to coordinate their functions. We analyze a large database of continuously recorded multi-channel physiologic signals from healthy young subjects during night-time sleep. We identify a network of dynamic interactions between key physiologic systems in the human organism. Further, we find that each physiologic state is characterized by a distinct network structure with different relative contribution from individual organ systems to the global network dynamics. Specifically, we observe a gradual decrease in the strength of coupling of heart and respiration to the rest of the network with transition from wake to deep sleep, and in contrast, an increased relative contribution to network dynamics from chin and leg muscle tone and eye movement, demonstrating a robust association between network topology and physiologic function.

  10. Evolution of Terrorist Network using Clustered approach: A Case study

    DEFF Research Database (Denmark)

    2011-01-01

    In the paper we present a cluster based approach for terrorist network evolution. We have applied hierarchical agglomerative clustering approach to 9/11 case study. We show that, how individual actors who are initially isolated from each other are converted in small clusters and result in a fully...... evolved network. This method of network evolution can help intelligence security analysts to understand the structure of the network....

  11. Identify Dynamic Network Modules with Temporal and Spatial Constraints

    Energy Technology Data Exchange (ETDEWEB)

    Jin, R; McCallen, S; Liu, C; Almaas, E; Zhou, X J

    2007-09-24

    Despite the rapid accumulation of systems-level biological data, understanding the dynamic nature of cellular activity remains a difficult task. The reason is that most biological data are static, or only correspond to snapshots of cellular activity. In this study, we explicitly attempt to detangle the temporal complexity of biological networks by using compilations of time-series gene expression profiling data.We define a dynamic network module to be a set of proteins satisfying two conditions: (1) they form a connected component in the protein-protein interaction (PPI) network; and (2) their expression profiles form certain structures in the temporal domain. We develop the first efficient mining algorithm to discover dynamic modules in a temporal network, as well as frequently occurring dynamic modules across many temporal networks. Using yeast as a model system, we demonstrate that the majority of the identified dynamic modules are functionally homogeneous. Additionally, many of them provide insight into the sequential ordering of molecular events in cellular systems. We further demonstrate that identifying frequent dynamic network modules can significantly increase the signal to noise separation, despite the fact that most dynamic network modules are highly condition-specific. Finally, we note that the applicability of our algorithm is not limited to the study of PPI systems, instead it is generally applicable to the combination of any type of network and time-series data.

  12. Network approaches for expert decisions in sports.

    Science.gov (United States)

    Glöckner, Andreas; Heinen, Thomas; Johnson, Joseph G; Raab, Markus

    2012-04-01

    This paper focuses on a model comparison to explain choices based on gaze behavior via simulation procedures. We tested two classes of models, a parallel constraint satisfaction (PCS) artificial neuronal network model and an accumulator model in a handball decision-making task from a lab experiment. Both models predict action in an option-generation task in which options can be chosen from the perspective of a playmaker in handball (i.e., passing to another player or shooting at the goal). Model simulations are based on a dataset of generated options together with gaze behavior measurements from 74 expert handball players for 22 pieces of video footage. We implemented both classes of models as deterministic vs. probabilistic models including and excluding fitted parameters. Results indicated that both classes of models can fit and predict participants' initially generated options based on gaze behavior data, and that overall, the classes of models performed about equally well. Early fixations were thereby particularly predictive for choices. We conclude that the analyses of complex environments via network approaches can be successfully applied to the field of experts' decision making in sports and provide perspectives for further theoretical developments.

  13. Temporal Dynamics of Connectivity and Epidemic Properties of Growing Networks

    CERN Document Server

    Fotouhi, Babak

    2015-01-01

    Traditional mathematical models of epidemic disease had for decades conventionally considered static structure for contacts. Recently, an upsurge of theoretical inquiry has strived towards rendering the models more realistic by incorporating the temporal aspects of networks of contacts, societal and online, that are of interest in the study of epidemics (and other similar diffusion processes). However, temporal dynamics have predominantly focused on link fluctuations and nodal activities, and less attention has been paid to the growth of the underlying network. Many real networks grow: online networks are evidently in constant growth, and societal networks can grow due to migration flux and reproduction. The effect of network growth on the epidemic properties of networks is hitherto unknown---mainly due to the predominant focus of the network growth literature on the so-called steady-state. This paper takes a step towards alleviating this gap. We analytically study the degree dynamics of a given arbitrary net...

  14. Higher-order structure and epidemic dynamics in clustered networks

    CERN Document Server

    Ritchie, Martin; House, Thomas; Kiss, Istvan Z

    2013-01-01

    Clustering is typically measured by the ratio of triangles to all triples, open or closed. Generating clustered networks, and how clustering affects dynamics on networks, is reasonably well understood for certain classes of networks \\cite{vmclust, karrerclust2010}, e.g., networks composed of lines and non-overlapping triangles. In this paper we show that it is possible to generate networks which, despite having the same degree distribution and equal clustering, exhibit different higher-order structure, specifically, overlapping triangles and other order-four (a closed network motif composed of four nodes) structures. To distinguish and quantify these additional structural features, we develop a new network metric capable of measuring order-four structure which, when used alongside traditional network metrics, allows us to more accurately describe a network's topology. Three network generation algorithms are considered: a modified configuration model and two rewiring algorithms. By generating homogeneous netwo...

  15. Adaptive Dynamics of Regulatory Networks: Size Matters

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available To accomplish adaptability, all living organisms are constructed of regulatory networks on different levels which are capable to differentially respond to a variety of environmental inputs. Structure of regulatory networks determines their phenotypical plasticity, that is, the degree of detail and appropriateness of regulatory replies to environmental or developmental challenges. This regulatory network structure is encoded within the genotype. Our conceptual simulation study investigates how network structure constrains the evolution of networks and their adaptive abilities. The focus is on the structural parameter network size. We show that small regulatory networks adapt fast, but not as good as larger networks in the longer perspective. Selection leads to an optimal network size dependent on heterogeneity of the environment and time pressure of adaptation. Optimal mutation rates are higher for smaller networks. We put special emphasis on discussing our simulation results on the background of functional observations from experimental and evolutionary biology.

  16. Adaptive Dynamics of Regulatory Networks: Size Matters

    Directory of Open Access Journals (Sweden)

    Martinetz Thomas

    2009-01-01

    Full Text Available To accomplish adaptability, all living organisms are constructed of regulatory networks on different levels which are capable to differentially respond to a variety of environmental inputs. Structure of regulatory networks determines their phenotypical plasticity, that is, the degree of detail and appropriateness of regulatory replies to environmental or developmental challenges. This regulatory network structure is encoded within the genotype. Our conceptual simulation study investigates how network structure constrains the evolution of networks and their adaptive abilities. The focus is on the structural parameter network size. We show that small regulatory networks adapt fast, but not as good as larger networks in the longer perspective. Selection leads to an optimal network size dependent on heterogeneity of the environment and time pressure of adaptation. Optimal mutation rates are higher for smaller networks. We put special emphasis on discussing our simulation results on the background of functional observations from experimental and evolutionary biology.

  17. Structures and Boolean Dynamics in Gene Regulatory Networks

    Science.gov (United States)

    Szedlak, Anthony

    This dissertation discusses the topological and dynamical properties of GRNs in cancer, and is divided into four main chapters. First, the basic tools of modern complex network theory are introduced. These traditional tools as well as those developed by myself (set efficiency, interset efficiency, and nested communities) are crucial for understanding the intricate topological properties of GRNs, and later chapters recall these concepts. Second, the biology of gene regulation is discussed, and a method for disease-specific GRN reconstruction developed by our collaboration is presented. This complements the traditional exhaustive experimental approach of building GRNs edge-by-edge by quickly inferring the existence of as of yet undiscovered edges using correlations across sets of gene expression data. This method also provides insight into the distribution of common mutations across GRNs. Third, I demonstrate that the structures present in these reconstructed networks are strongly related to the evolutionary histories of their constituent genes. Investigation of how the forces of evolution shaped the topology of GRNs in multicellular organisms by growing outward from a core of ancient, conserved genes can shed light upon the ''reverse evolution'' of normal cells into unicellular-like cancer states. Next, I simulate the dynamics of the GRNs of cancer cells using the Hopfield model, an infinite range spin-glass model designed with the ability to encode Boolean data as attractor states. This attractor-driven approach facilitates the integration of gene expression data into predictive mathematical models. Perturbations representing therapeutic interventions are applied to sets of genes, and the resulting deviations from their attractor states are recorded, suggesting new potential drug targets for experimentation. Finally, I extend the Hopfield model to modular networks, cyclic attractors, and complex attractors, and apply these concepts to simulations of the cell cycle

  18. Efficient network reconstruction from dynamical cascades identifies small-world topology of neuronal avalanches.

    Directory of Open Access Journals (Sweden)

    Sinisa Pajevic

    2009-01-01

    Full Text Available Cascading activity is commonly found in complex systems with directed interactions such as metabolic networks, neuronal networks, or disease spreading in social networks. Substantial insight into a system's organization can be obtained by reconstructing the underlying functional network architecture from the observed activity cascades. Here we focus on Bayesian approaches and reduce their computational demands by introducing the Iterative Bayesian (IB and Posterior Weighted Averaging (PWA methods. We introduce a special case of PWA, cast in nonparametric form, which we call the normalized count (NC algorithm. NC efficiently reconstructs random and small-world functional network topologies and architectures from subcritical, critical, and supercritical cascading dynamics and yields significant improvements over commonly used correlation methods. With experimental data, NC identified a functional and structural small-world topology and its corresponding traffic in cortical networks with neuronal avalanche dynamics.

  19. Experiments in clustered neuronal networks: A paradigm for complex modular dynamics

    Science.gov (United States)

    Teller, Sara; Soriano, Jordi

    2016-06-01

    Uncovering the interplay activity-connectivity is one of the major challenges in neuroscience. To deepen in the understanding of how a neuronal circuit shapes network dynamics, neuronal cultures have emerged as remarkable systems given their accessibility and easy manipulation. An attractive configuration of these in vitro systems consists in an ensemble of interconnected clusters of neurons. Using calcium fluorescence imaging to monitor spontaneous activity in these clustered neuronal networks, we were able to draw functional maps and reveal their topological features. We also observed that these networks exhibit a hierarchical modular dynamics, in which clusters fire in small groups that shape characteristic communities in the network. The structure and stability of these communities is sensitive to chemical or physical action, and therefore their analysis may serve as a proxy for network health. Indeed, the combination of all these approaches is helping to develop models to quantify damage upon network degradation, with promising applications for the study of neurological disorders in vitro.

  20. Dynamic Object Identification with SOM-based neural networks

    Directory of Open Access Journals (Sweden)

    Aleksey Averkin

    2014-03-01

    Full Text Available In this article a number of neural networks based on self-organizing maps, that can be successfully used for dynamic object identification, is described. Unique SOM-based modular neural networks with vector quantized associative memory and recurrent self-organizing maps as modules are presented. The structured algorithms of learning and operation of such SOM-based neural networks are described in details, also some experimental results and comparison with some other neural networks are given.