WorldWideScience

Sample records for dynamic microtubules coordinately

  1. Daple Coordinates Planar Polarized Microtubule Dynamics in Ependymal Cells and Contributes to Hydrocephalus

    Directory of Open Access Journals (Sweden)

    Maki Takagishi

    2017-07-01

    Full Text Available Motile cilia in ependymal cells, which line the cerebral ventricles, exhibit a coordinated beating motion that drives directional cerebrospinal fluid (CSF flow and guides neuroblast migration. At the apical cortex of these multi-ciliated cells, asymmetric localization of planar cell polarity (PCP proteins is required for the planar polarization of microtubule dynamics, which coordinates cilia orientation. Daple is a disheveled-associating protein that controls the non-canonical Wnt signaling pathway and cell motility. Here, we show that Daple-deficient mice present hydrocephalus and their ependymal cilia lack coordinated orientation. Daple regulates microtubule dynamics at the anterior side of ependymal cells, which in turn orients the cilial basal bodies required for the directional cerebrospinal fluid flow. These results demonstrate an important role for Daple in planar polarity in motile cilia and provide a framework for understanding the mechanisms and functions of planar polarization in the ependymal cells.

  2. Stable and dynamic microtubules coordinately shape the myosin activation zone during cytokinetic furrow formation

    Science.gov (United States)

    Foe, Victoria E.; von Dassow, George

    2008-01-01

    The cytokinetic furrow arises from spatial and temporal regulation of cortical contractility. To test the role microtubules play in furrow specification, we studied myosin II activation in echinoderm zygotes by assessing serine19-phosphorylated regulatory light chain (pRLC) localization after precisely timed drug treatments. Cortical pRLC was globally depressed before cytokinesis, then elevated only at the equator. We implicated cell cycle biochemistry (not microtubules) in pRLC depression, and differential microtubule stability in localizing the subsequent myosin activation. With no microtubules, pRLC accumulation occurred globally instead of equatorially, and loss of just dynamic microtubules increased equatorial pRLC recruitment. Nocodazole treatment revealed a population of stable astral microtubules that formed during anaphase; among these, those aimed toward the equator grew longer, and their tips coincided with cortical pRLC accumulation. Shrinking the mitotic apparatus with colchicine revealed pRLC suppression near dynamic microtubule arrays. We conclude that opposite effects of stable versus dynamic microtubules focuses myosin activation to the cell equator during cytokinesis. PMID:18955555

  3. Microtubule dynamics: Caps, catastrophes, and coupled hydrolysis

    DEFF Research Database (Denmark)

    Flyvbjerg, H.; Holy, T.E.; Leibler, S.

    1996-01-01

    An effective theory is formulated for the dynamics of the guanosine triphosphate (GTP) cap believed to stabilize growing microtubules. The theory provides a ''coarse-grained'' description of the cap's dynamics. ''Microscopic'' details, such as the microtubule lattice structure and the fate of its...

  4. Biallelic Mutations in TBCD, Encoding the Tubulin Folding Cofactor D, Perturb Microtubule Dynamics and Cause Early-Onset Encephalopathy

    NARCIS (Netherlands)

    Flex, Elisabetta; Niceta, Marcello; Cecchetti, Serena; Thiffault, Isabelle; Au, Margaret G.; Capuano, Alessandro; Piermarini, Emanuela; Ivanova, Anna A.; Francis, Joshua W.; Chillemi, Giovanni; Chandramouli, Balasubramanian; Carpentieri, Giovanna; Haaxma, Charlotte A.; Ciolfi, Andrea; Pizzi, Simone; Douglas, Ganka V.; Levine, Kara; Sferra, Antonella; Dentici, Maria Lisa; Pfundt, Rolph R.; Le Pichon, Jean-Baptiste; Farrow, Emily; Baas, Frank; Piemonte, Fiorella; Dallapiccola, Bruno; Graham, John M.; Saunders, Carol J.; Bertini, Enrico; Kahn, Richard A.; Koolen, David A.; Tartaglia, Marco

    2016-01-01

    Microtubules are dynamic cytoskeletal elements coordinating and supporting a variety of neuronal processes, including cell division, migration, polarity, intracellular trafficking, and signal transduction. Mutations in genes encoding tubulins and microtubule-associated proteins are known to cause

  5. The Role of Molecular Microtubule Motors and the Microtubule Cytoskeleton in Stress Granule Dynamics

    Directory of Open Access Journals (Sweden)

    Kristen M. Bartoli

    2011-01-01

    Full Text Available Stress granules (SGs are cytoplasmic foci that appear in cells exposed to stress-induced translational inhibition. SGs function as a triage center, where mRNAs are sorted for storage, degradation, and translation reinitiation. The underlying mechanisms of SGs dynamics are still being characterized, although many key players have been identified. The main components of SGs are stalled 48S preinitiation complexes. To date, many other proteins have also been found to localize in SGs and are hypothesized to function in SG dynamics. Most recently, the microtubule cytoskeleton and associated motor proteins have been demonstrated to function in SG dynamics. In this paper, we will discuss current literature examining the function of microtubules and the molecular microtubule motors in SG assembly, coalescence, movement, composition, organization, and disassembly.

  6. Melanophores for microtubule dynamics and motility assays.

    Science.gov (United States)

    Ikeda, Kazuho; Semenova, Irina; Zhapparova, Olga; Rodionov, Vladimir

    2010-01-01

    Microtubules (MTs) are cytoskeletal structures essential for cell division, locomotion, intracellular transport, and spatial organization of the cytoplasm. In most interphase cells, MTs are organized into a polarized radial array with minus-ends clustered at the centrosome and plus-ends extended to the cell periphery. This array directs transport of organelles driven by MT-based motor proteins that specifically move either to plus- or to minus-ends. Along with using MTs as tracks for cargo, motor proteins can organize MTs into a radial array in the absence of the centrosome. Transport of organelles and motor-dependent radial organization of MTs require MT dynamics, continuous addition and loss of tubulin subunits at minus- and plus-ends. A unique experimental system for studying the role of MT dynamics in these processes is the melanophore, which provides a useful tool for imaging of both dynamic MTs and moving membrane organelles. Melanophores are filled with pigment granules that are synchronously transported by motor proteins in response to hormonal stimuli. The flat shape of the cell and the radial organization of MTs facilitate imaging of dynamic MT plus-ends and monitoring of their interaction with membrane organelles. Microsurgically produced cytoplasmic fragments of melanophores are used to study the centrosome-independent rearrangement of MTs into a radial array. Here we describe the experimental approaches to study the role of MT dynamics in intracellular transport and centrosome-independent MT organization in melanophores. We focus on the preparation of cell cultures, microsurgery and microinjection, fluorescence labeling, and live imaging of MTs. 2010 Elsevier Inc. All rights reserved.

  7. Shaping the tracks : Regulation of microtubule dynamics by kinesins KIF21A and KIF21B

    NARCIS (Netherlands)

    van Riel, W.E.|info:eu-repo/dai/nl/338772634

    2016-01-01

    Control of microtubule dynamics is important for cell morphogenesis. Kinesins, motor proteins known to function in cargo transport, were recently also implicated in altering the microtubule network. Several kinesins are described to cause microtubule network reorganization or stabilization, either

  8. Nonlinear dynamics of C-terminal tails in cellular microtubules

    Science.gov (United States)

    Sekulic, Dalibor L.; Sataric, Bogdan M.; Zdravkovic, Slobodan; Bugay, Aleksandr N.; Sataric, Miljko V.

    2016-07-01

    The mechanical and electrical properties, and information processing capabilities of microtubules are the permanent subject of interest for carrying out experiments in vitro and in silico, as well as for theoretical attempts to elucidate the underlying processes. In this paper, we developed a new model of the mechano-electrical waves elicited in the rows of very flexible C-terminal tails which decorate the outer surface of each microtubule. The fact that C-terminal tails play very diverse roles in many cellular functions, such as recruitment of motor proteins and microtubule-associated proteins, motivated us to consider their collective dynamics as the source of localized waves aimed for communication between microtubule and associated proteins. Our approach is based on the ferroelectric liquid crystal model and it leads to the effective asymmetric double-well potential which brings about the conditions for the appearance of kink-waves conducted by intrinsic electric fields embedded in microtubules. These kinks can serve as the signals for control and regulation of intracellular traffic along microtubules performed by processive motions of motor proteins, primarly from kinesin and dynein families. On the other hand, they can be precursors for initiation of dynamical instability of microtubules by recruiting the proper proteins responsible for the depolymerization process.

  9. Nonlinear dynamics of C–terminal tails in cellular microtubules

    Energy Technology Data Exchange (ETDEWEB)

    Sekulic, Dalibor L., E-mail: dalsek@uns.ac.rs; Sataric, Bogdan M.; Sataric, Miljko V. [University of Novi Sad, Faculty of Technical Sciences, Novi Sad (Serbia); Zdravkovic, Slobodan [University of Belgrade, Institute of Nuclear Sciences Vinca, Belgrade (Serbia); Bugay, Aleksandr N. [Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Dubna (Russian Federation)

    2016-07-15

    The mechanical and electrical properties, and information processing capabilities of microtubules are the permanent subject of interest for carrying out experiments in vitro and in silico, as well as for theoretical attempts to elucidate the underlying processes. In this paper, we developed a new model of the mechano–electrical waves elicited in the rows of very flexible C–terminal tails which decorate the outer surface of each microtubule. The fact that C–terminal tails play very diverse roles in many cellular functions, such as recruitment of motor proteins and microtubule–associated proteins, motivated us to consider their collective dynamics as the source of localized waves aimed for communication between microtubule and associated proteins. Our approach is based on the ferroelectric liquid crystal model and it leads to the effective asymmetric double-well potential which brings about the conditions for the appearance of kink–waves conducted by intrinsic electric fields embedded in microtubules. These kinks can serve as the signals for control and regulation of intracellular traffic along microtubules performed by processive motions of motor proteins, primarly from kinesin and dynein families. On the other hand, they can be precursors for initiation of dynamical instability of microtubules by recruiting the proper proteins responsible for the depolymerization process.

  10. Nonlinear dynamics of C–terminal tails in cellular microtubules

    International Nuclear Information System (INIS)

    Sekulic, Dalibor L.; Sataric, Bogdan M.; Sataric, Miljko V.; Zdravkovic, Slobodan; Bugay, Aleksandr N.

    2016-01-01

    The mechanical and electrical properties, and information processing capabilities of microtubules are the permanent subject of interest for carrying out experiments in vitro and in silico, as well as for theoretical attempts to elucidate the underlying processes. In this paper, we developed a new model of the mechano–electrical waves elicited in the rows of very flexible C–terminal tails which decorate the outer surface of each microtubule. The fact that C–terminal tails play very diverse roles in many cellular functions, such as recruitment of motor proteins and microtubule–associated proteins, motivated us to consider their collective dynamics as the source of localized waves aimed for communication between microtubule and associated proteins. Our approach is based on the ferroelectric liquid crystal model and it leads to the effective asymmetric double-well potential which brings about the conditions for the appearance of kink–waves conducted by intrinsic electric fields embedded in microtubules. These kinks can serve as the signals for control and regulation of intracellular traffic along microtubules performed by processive motions of motor proteins, primarly from kinesin and dynein families. On the other hand, they can be precursors for initiation of dynamical instability of microtubules by recruiting the proper proteins responsible for the depolymerization process.

  11. Ibuprofen regulation of microtubule dynamics in cystic fibrosis epithelial cells.

    Science.gov (United States)

    Rymut, Sharon M; Kampman, Claire M; Corey, Deborah A; Endres, Tori; Cotton, Calvin U; Kelley, Thomas J

    2016-08-01

    High-dose ibuprofen, an effective anti-inflammatory therapy for the treatment of cystic fibrosis (CF), has been shown to preserve lung function in a pediatric population. Despite its efficacy, few patients receive ibuprofen treatment due to potential renal and gastrointestinal toxicity. The mechanism of ibuprofen efficacy is also unclear. We have previously demonstrated that CF microtubules are slower to reform after depolymerization compared with respective wild-type controls. Slower microtubule dynamics in CF cells are responsible for impaired intracellular transport and are related to inflammatory signaling. Here, it is identified that high-dose ibuprofen treatment in both CF cell models and primary CF nasal epithelial cells restores microtubule reformation rates to wild-type levels, as well as induce extension of microtubules to the cell periphery. Ibuprofen treatment also restores microtubule-dependent intracellular transport monitored by measuring intracellular cholesterol transport. These effects are specific to ibuprofen as other cyclooxygenase inhibitors have no effect on these measures. Effects of ibuprofen are mimicked by stimulation of AMPK and blocked by the AMPK inhibitor compound C. We conclude that high-dose ibuprofen treatment enhances microtubule formation in CF cells likely through an AMPK-related pathway. These findings define a potential mechanism to explain the efficacy of ibuprofen therapy in CF. Copyright © 2016 the American Physiological Society.

  12. The engine of microtubule dynamics comes into focus.

    Science.gov (United States)

    Mitchison, T J

    2014-05-22

    In this issue, Alushin et al. report high-resolution structures of three states of the microtubule lattice: GTP-bound, which is stable to depolymerization; unstable GDP-bound; and stable Taxol and GDP-bound. By comparing these structures at near-atomic resolution, they are able to propose a detailed model for how GTP hydrolysis destabilizes the microtubule and thus powers dynamic instability and chromosome movement. Destabilization of cytoskeleton filaments by nucleotide hydrolysis is an important general principle in cell dynamics, and this work represents a major step forward on a problem with a long history. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Biallelic Mutations in TBCD, Encoding the Tubulin Folding Cofactor D, Perturb Microtubule Dynamics and Cause Early-Onset Encephalopathy.

    Science.gov (United States)

    Flex, Elisabetta; Niceta, Marcello; Cecchetti, Serena; Thiffault, Isabelle; Au, Margaret G; Capuano, Alessandro; Piermarini, Emanuela; Ivanova, Anna A; Francis, Joshua W; Chillemi, Giovanni; Chandramouli, Balasubramanian; Carpentieri, Giovanna; Haaxma, Charlotte A; Ciolfi, Andrea; Pizzi, Simone; Douglas, Ganka V; Levine, Kara; Sferra, Antonella; Dentici, Maria Lisa; Pfundt, Rolph R; Le Pichon, Jean-Baptiste; Farrow, Emily; Baas, Frank; Piemonte, Fiorella; Dallapiccola, Bruno; Graham, John M; Saunders, Carol J; Bertini, Enrico; Kahn, Richard A; Koolen, David A; Tartaglia, Marco

    2016-10-06

    Microtubules are dynamic cytoskeletal elements coordinating and supporting a variety of neuronal processes, including cell division, migration, polarity, intracellular trafficking, and signal transduction. Mutations in genes encoding tubulins and microtubule-associated proteins are known to cause neurodevelopmental and neurodegenerative disorders. Growing evidence suggests that altered microtubule dynamics may also underlie or contribute to neurodevelopmental disorders and neurodegeneration. We report that biallelic mutations in TBCD, encoding one of the five co-chaperones required for assembly and disassembly of the αβ-tubulin heterodimer, the structural unit of microtubules, cause a disease with neurodevelopmental and neurodegenerative features characterized by early-onset cortical atrophy, secondary hypomyelination, microcephaly, thin corpus callosum, developmental delay, intellectual disability, seizures, optic atrophy, and spastic quadriplegia. Molecular dynamics simulations predicted long-range and/or local structural perturbations associated with the disease-causing mutations. Biochemical analyses documented variably reduced levels of TBCD, indicating relative instability of mutant proteins, and defective β-tubulin binding in a subset of the tested mutants. Reduced or defective TBCD function resulted in decreased soluble α/β-tubulin levels and accelerated microtubule polymerization in fibroblasts from affected subjects, demonstrating an overall shift toward a more rapidly growing and stable microtubule population. These cells displayed an aberrant mitotic spindle with disorganized, tangle-shaped microtubules and reduced aster formation, which however did not alter appreciably the rate of cell proliferation. Our findings establish that defective TBCD function underlies a recognizable encephalopathy and drives accelerated microtubule polymerization and enhanced microtubule stability, underscoring an additional cause of altered microtubule dynamics with

  14. Microtubules become more dynamic but not shorter during preprophase band formation: A possible "search-and-capture" mechanism for microtubule translocation

    NARCIS (Netherlands)

    Vos, J.W.; Dogterom, M.; Emons, A.M.C.

    2004-01-01

    The dynamic behavior of the microtubule cytoskeleton plays a crucial role in cellular organization, but the physical mechanisms underlying microtubule (re)organization in plant cells are poorly understood. We investigated microtubule dynamics in tobacco BY-2 suspension cells during interphase and

  15. Optical Tweezers-Based Measurements of Forces and Dynamics at Microtubule Ends.

    Science.gov (United States)

    Baclayon, Marian; Kalisch, Svenja-Marei; Hendel, Ed; Laan, Liedewij; Husson, Julien; Munteanu, E Laura; Dogterom, Marileen

    2017-01-01

    Microtubules are dynamic cytoskeletal polymers that polymerize and depolymerize while interacting with different proteins and structures within the cell. The highly regulated dynamic properties as well as the pushing and pulling forces generated by dynamic microtubule ends play important roles in processes such as in cell division. For instance, microtubule end-binding proteins are known to affect dramatically the dynamic properties of microtubules, and cortical dyneins are known to mediate pulling forces on microtubule ends. We discuss in this chapter our efforts to reconstitute these systems in vitro and mimic their interactions with structures within the cell using micro-fabricated barriers. Using an optical tweezers setup, we investigate the dynamics and forces of microtubules growing against functionalized barriers in the absence and presence of end-binding proteins and barrier-attached motor proteins. This setup allows high-speed as well as nanometer and piconewton resolution measurements on dynamic microtubules.

  16. EWSR1 regulates mitosis by dynamically influencing microtubule acetylation.

    Science.gov (United States)

    Wang, Yi-Long; Chen, Hui; Zhan, Yi-Qun; Yin, Rong-Hua; Li, Chang-Yan; Ge, Chang-Hui; Yu, Miao; Yang, Xiao-Ming

    2016-08-17

    EWSR1, participating in transcription and splicing, has been identified as a translocation partner for various transcription factors, resulting in translocation, which in turn plays crucial roles in tumorigenesis. Recent studies have investigated the role of EWSR1 in mitosis. However, the effect of EWSR1 on mitosis is poorly understood. Here, we observed that depletion of EWSR1 resulted in cell cycle arrest in the mitotic phase, mainly due to an increase in the time from nuclear envelope breakdown to metaphase, resulting in a high percentage of unaligned chromosomes and multipolar spindles. We also demonstrated that EWSR1 is a spindle-associated protein that interacts with α-tubulin during mitosis. EWSR1 depletion increased the cold-sensitivity of spindle microtubules, and decreased the rate of spindle assembly. EWSR1 regulated the level of microtubule acetylation in the mitotic spindle; microtubule acetylation was rescued in EWSR1-depleted mitotic cells following suppression of HDAC6 activity by its specific inhibitor or siRNA treatment. In summary, these results suggest that EWSR1 regulates the acetylation of microtubules in a cell cycle-dependent manner through its dynamic location on spindle MTs, and may be a novel regulator for mitosis progress independent of its translocation.

  17. Tau can switch microtubule network organizations: from random networks to dynamic and stable bundles.

    Science.gov (United States)

    Prezel, Elea; Elie, Auréliane; Delaroche, Julie; Stoppin-Mellet, Virginie; Bosc, Christophe; Serre, Laurence; Fourest-Lieuvin, Anne; Andrieux, Annie; Vantard, Marylin; Arnal, Isabelle

    2018-01-15

    In neurons, microtubule networks alternate between single filaments and bundled arrays under the influence of effectors controlling their dynamics and organization. Tau is a microtubule bundler that stabilizes microtubules by stimulating growth and inhibiting shrinkage. The mechanisms by which tau organizes microtubule networks remain poorly understood. Here, we studied the self-organization of microtubules growing in the presence of tau isoforms and mutants. The results show that tau's ability to induce stable microtubule bundles requires two hexapeptides located in its microtubule-binding domain and is modulated by its projection domain. Site-specific pseudophosphorylation of tau promotes distinct microtubule organizations: stable single microtubules, stable bundles, or dynamic bundles. Disease-related tau mutations increase the formation of highly dynamic bundles. Finally, cryo-electron microscopy experiments indicate that tau and its variants similarly change the microtubule lattice structure by increasing both the protofilament number and lattice defects. Overall, our results uncover novel phosphodependent mechanisms governing tau's ability to trigger microtubule organization and reveal that disease-related modifications of tau promote specific microtubule organizations that may have a deleterious impact during neurodegeneration. © 2018 Prezel, Elie, et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  18. Microtubules Nonlinear Models Dynamics Investigations through the exp(−Φ(ξ-Expansion Method Implementation

    Directory of Open Access Journals (Sweden)

    Nur Alam

    2016-02-01

    Full Text Available In this research article, we present exact solutions with parameters for two nonlinear model partial differential equations(PDEs describing microtubules, by implementing the exp(−Φ(ξ-Expansion Method. The considered models, describing highly nonlinear dynamics of microtubules, can be reduced to nonlinear ordinary differential equations. While the first PDE describes the longitudinal model of nonlinear dynamics of microtubules, the second one describes the nonlinear model of dynamics of radial dislocations in microtubules. The acquired solutions are then graphically presented, and their distinct properties are enumerated in respect to the corresponding dynamic behavior of the microtubules they model. Various patterns, including but not limited to regular, singular kink-like, as well as periodicity exhibiting ones, are detected. Being the method of choice herein, the exp(−Φ(ξ-Expansion Method not disappointing in the least, is found and declared highly efficient.

  19. NAD+ and SIRT3 control microtubule dynamics and reduce susceptibility to antimicrotubule agents

    Science.gov (United States)

    Harkcom, William T.; Ghosh, Ananda K.; Sung, Matthew S.; Matov, Alexandre; Brown, Kevin D.; Giannakakou, Paraskevi; Jaffrey, Samie R.

    2014-01-01

    Nicotinamide adenine dinucleotide (NAD+) is an endogenous enzyme cofactor and cosubstrate that has effects on diverse cellular and physiologic processes, including reactive oxygen species generation, mitochondrial function, apoptosis, and axonal degeneration. A major goal is to identify the NAD+-regulated cellular pathways that may mediate these effects. Here we show that the dynamic assembly and disassembly of microtubules is markedly altered by NAD+. Furthermore, we show that the disassembly of microtubule polymers elicited by microtubule depolymerizing agents is blocked by increasing intracellular NAD+ levels. We find that these effects of NAD+ are mediated by the activation of the mitochondrial sirtuin sirtuin-3 (SIRT3). Overexpression of SIRT3 prevents microtubule disassembly and apoptosis elicited by antimicrotubule agents and knockdown of SIRT3 prevents the protective effects of NAD+ on microtubule polymers. Taken together, these data demonstrate that NAD+ and SIRT3 regulate microtubule polymerization and the efficacy of antimicrotubule agents. PMID:24889606

  20. Four-stranded mini microtubules formed by Prosthecobacter BtubAB show dynamic instability.

    Science.gov (United States)

    Deng, Xian; Fink, Gero; Bharat, Tanmay A M; He, Shaoda; Kureisaite-Ciziene, Danguole; Löwe, Jan

    2017-07-18

    Microtubules, the dynamic, yet stiff hollow tubes built from αβ-tubulin protein heterodimers, are thought to be present only in eukaryotic cells. Here, we report a 3.6-Å helical reconstruction electron cryomicroscopy structure of four-stranded mini microtubules formed by bacterial tubulin-like Prosthecobacter dejongeii BtubAB proteins. Despite their much smaller diameter, mini microtubules share many key structural features with eukaryotic microtubules, such as an M-loop, alternating subunits, and a seam that breaks overall helical symmetry. Using in vitro total internal reflection fluorescence microscopy, we show that bacterial mini microtubules treadmill and display dynamic instability, another hallmark of eukaryotic microtubules. The third protein in the btub gene cluster, BtubC, previously known as "bacterial kinesin light chain," binds along protofilaments every 8 nm, inhibits BtubAB mini microtubule catastrophe, and increases rescue. Our work reveals that some bacteria contain regulated and dynamic cytomotive microtubule systems that were once thought to be only useful in much larger and sophisticated eukaryotic cells.

  1. Dietary flavonoid fisetin binds to β-tubulin and disrupts microtubule dynamics in prostate cancer cells.

    Science.gov (United States)

    Mukhtar, Eiman; Adhami, Vaqar Mustafa; Sechi, Mario; Mukhtar, Hasan

    2015-10-28

    Microtubule targeting based therapies have revolutionized cancer treatment; however, resistance and side effects remain a major limitation. Therefore, novel strategies that can overcome these limitations are urgently needed. We made a novel discovery that fisetin, a hydroxyflavone, is a microtubule stabilizing agent. Fisetin binds to tubulin and stabilizes microtubules with binding characteristics far superior than paclitaxel. Surface plasmon resonance and computational docking studies suggested that fisetin binds to β-tubulin with superior affinity compared to paclitaxel. Fisetin treatment of human prostate cancer cells resulted in robust up-regulation of microtubule associated proteins (MAP)-2 and -4. In addition, fisetin treated cells were enriched in α-tubulin acetylation, an indication of stabilization of microtubules. Fisetin significantly inhibited PCa cell proliferation, migration, and invasion. Nudc, a protein associated with microtubule motor dynein/dynactin complex that regulates microtubule dynamics, was inhibited with fisetin treatment. Further, fisetin treatment of a P-glycoprotein overexpressing multidrug-resistant cancer cell line NCI/ADR-RES inhibited the viability and colony formation. Our results offer in vitro proof-of-concept for fisetin as a microtubule targeting agent. We suggest that fisetin could be developed as an adjuvant for treatment of prostate and other cancer types. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Microtubule catastrophe and rescue.

    Science.gov (United States)

    Gardner, Melissa K; Zanic, Marija; Howard, Jonathon

    2013-02-01

    Microtubules are long cylindrical polymers composed of tubulin subunits. In cells, microtubules play an essential role in architecture and motility. For example, microtubules give shape to cells, serve as intracellular transport tracks, and act as key elements in important cellular structures such as axonemes and mitotic spindles. To accomplish these varied functions, networks of microtubules in cells are very dynamic, continuously remodeling through stochastic length fluctuations at the ends of individual microtubules. The dynamic behavior at the end of an individual microtubule is termed 'dynamic instability'. This behavior manifests itself by periods of persistent microtubule growth interrupted by occasional switching to rapid shrinkage (called microtubule 'catastrophe'), and then by switching back from shrinkage to growth (called microtubule 'rescue'). In this review, we summarize recent findings which provide new insights into the mechanisms of microtubule catastrophe and rescue, and discuss the impact of these findings in regards to the role of microtubule dynamics inside of cells. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. An ELMO2-RhoG-ILK network modulates microtubule dynamics.

    Science.gov (United States)

    Jackson, Bradley C; Ivanova, Iordanka A; Dagnino, Lina

    2015-07-15

    ELMO2 belongs to a family of scaffold proteins involved in phagocytosis and cell motility. ELMO2 can simultaneously bind integrin-linked kinase (ILK) and RhoG, forming tripartite ERI complexes. These complexes are involved in promoting β1 integrin-dependent directional migration in undifferentiated epidermal keratinocytes. ELMO2 and ILK have also separately been implicated in microtubule regulation at integrin-containing focal adhesions. During differentiation, epidermal keratinocytes cease to express integrins, but ERI complexes persist. Here we show an integrin-independent role of ERI complexes in modulation of microtubule dynamics in differentiated keratinocytes. Depletion of ERI complexes by inactivating the Ilk gene in these cells reduces microtubule growth and increases the frequency of catastrophe. Reciprocally, exogenous expression of ELMO2 or RhoG stabilizes microtubules, but only if ILK is also present. Mechanistically, activation of Rac1 downstream from ERI complexes mediates their effects on microtubule stability. In this pathway, Rac1 serves as a hub to modulate microtubule dynamics through two different routes: 1) phosphorylation and inactivation of the microtubule-destabilizing protein stathmin and 2) phosphorylation and inactivation of GSK-3β, which leads to the activation of CRMP2, promoting microtubule growth. At the cellular level, the absence of ERI species impairs Ca(2+)-mediated formation of adherens junctions, critical to maintaining mechanical integrity in the epidermis. Our findings support a key role for ERI species in integrin-independent stabilization of the microtubule network in differentiated keratinocytes. © 2015 Jackson et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  4. Kinesin-8 effects on mitotic microtubule dynamics contribute to spindle function in fission yeast

    Science.gov (United States)

    Gergely, Zachary R.; Crapo, Ammon; Hough, Loren E.; McIntosh, J. Richard; Betterton, Meredith D.

    2016-01-01

    Kinesin-8 motor proteins destabilize microtubules. Their absence during cell division is associated with disorganized mitotic chromosome movements and chromosome loss. Despite recent work studying effects of kinesin-8s on microtubule dynamics, it remains unclear whether the kinesin-8 mitotic phenotypes are consequences of their effect on microtubule dynamics, their well-established motor activity, or additional, unknown functions. To better understand the role of kinesin-8 proteins in mitosis, we studied the effects of deletion of the fission yeast kinesin-8 proteins Klp5 and Klp6 on chromosome movements and spindle length dynamics. Aberrant microtubule-driven kinetochore pushing movements and tripolar mitotic spindles occurred in cells lacking Klp5 but not Klp6. Kinesin-8–deletion strains showed large fluctuations in metaphase spindle length, suggesting a disruption of spindle length stabilization. Comparison of our results from light microscopy with a mathematical model suggests that kinesin-8–induced effects on microtubule dynamics, kinetochore attachment stability, and sliding force in the spindle can explain the aberrant chromosome movements and spindle length fluctuations seen. PMID:27146110

  5. Microtubule dynamics. II. Kinetics of self-assembly

    DEFF Research Database (Denmark)

    Flyvbjerg, H.; Jobs, E.

    1997-01-01

    Inverse scattering theory describes the conditions necessary and sufficient to determine an unknown potential from known scattering data. No similar theory exists for when and how one may deduce the kinetics of an unknown chemical reaction from quantitative information about its final state and i...... to analyze the self-assembly of microtubules from tubulin are general, and many other reactions and processes may be studied as inverse problems with these methods when enough experimental data are available....

  6. Dictyoceratidan poisons: Defined mark on microtubule-tubulin dynamics.

    Science.gov (United States)

    Gnanambal K, Mary Elizabeth; Lakshmipathy, Shailaja Vommi

    2016-03-01

    Tubulin/microtubule assembly and disassembly is characterized as one of the chief processes during cell growth and division. Hence drugs those perturb these process are considered to be effective in killing fast multiplying cancer cells. There is a collection of natural compounds which disturb microtubule/tubulin dis/assemblage and there have been a lot of efforts concerted in the marine realm too, to surveying such killer molecules. Close to half the natural compounds shooting out from marine invertebrates are generally with no traceable definite mechanisms of action though may be tough anti-cancerous hits at nanogram levels, hence fatefully those discoveries conclude therein without a capacity of translation from laboratory to pharmacy. Astoundingly at least 50% of natural compounds which have definite mechanisms of action causing disorders in tubulin/microtubule kinetics have an isolation history from sponges belonging to the Phylum: Porifera. Poriferans have always been a wonder worker to treat cancers with a choice of, yet precise targets on cancerous tissues. There is a specific order: Dictyoceratida within this Phylum which has contributed to yielding at least 50% of effective compounds possessing this unique mechanism of action mentioned above. However, not much notice is driven to Dictyoceratidans alongside the order: Demospongiae thus dictating the need to know its select microtubule/tubulin irritants since the unearthing of avarol in the year 1974 till date. Hence this review selectively pinpoints all the compounds, noteworthy derivatives and analogs stemming from order: Dictyoceratida focusing on the past, present and future. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. A computational framework for cortical microtubule dynamics in realistically shaped plant cells.

    Directory of Open Access Journals (Sweden)

    Bandan Chakrabortty

    2018-02-01

    Full Text Available Plant morphogenesis is strongly dependent on the directional growth and the subsequent oriented division of individual cells. It has been shown that the plant cortical microtubule array plays a key role in controlling both these processes. This ordered structure emerges as the collective result of stochastic interactions between large numbers of dynamic microtubules. To elucidate this complex self-organization process a number of analytical and computational approaches to study the dynamics of cortical microtubules have been proposed. To date, however, these models have been restricted to two dimensional planes or geometrically simple surfaces in three dimensions, which strongly limits their applicability as plant cells display a wide variety of shapes. This limitation is even more acute, as both local as well as global geometrical features of cells are expected to influence the overall organization of the array. Here we describe a framework for efficiently simulating microtubule dynamics on triangulated approximations of arbitrary three dimensional surfaces. This allows the study of microtubule array organization on realistic cell surfaces obtained by segmentation of microscopic images. We validate the framework against expected or known results for the spherical and cubical geometry. We then use it to systematically study the individual contributions of global geometry, cell-edge induced catastrophes and cell-face induced stability to array organization in a cuboidal geometry. Finally, we apply our framework to analyze the highly non-trivial geometry of leaf pavement cells of Arabidopsis thaliana, Nicotiana benthamiana and Hedera helix. We show that our simulations can predict multiple features of the microtubule array structure in these cells, revealing, among others, strong constraints on the orientation of division planes.

  8. A computational framework for cortical microtubule dynamics in realistically shaped plant cells

    KAUST Repository

    Chakrabortty, Bandan; Blilou, Ikram; Scheres, Ben; Mulder, Bela M.

    2018-01-01

    Plant morphogenesis is strongly dependent on the directional growth and the subsequent oriented division of individual cells. It has been shown that the plant cortical microtubule array plays a key role in controlling both these processes. This ordered structure emerges as the collective result of stochastic interactions between large numbers of dynamic microtubules. To elucidate this complex self-organization process a number of analytical and computational approaches to study the dynamics of cortical microtubules have been proposed. To date, however, these models have been restricted to two dimensional planes or geometrically simple surfaces in three dimensions, which strongly limits their applicability as plant cells display a wide variety of shapes. This limitation is even more acute, as both local as well as global geometrical features of cells are expected to influence the overall organization of the array. Here we describe a framework for efficiently simulating microtubule dynamics on triangulated approximations of arbitrary three dimensional surfaces. This allows the study of microtubule array organization on realistic cell surfaces obtained by segmentation of microscopic images. We validate the framework against expected or known results for the spherical and cubical geometry. We then use it to systematically study the individual contributions of global geometry, cell-edge induced catastrophes and cell-face induced stability to array organization in a cuboidal geometry. Finally, we apply our framework to analyze the highly non-trivial geometry of leaf pavement cells of Arabidopsis thaliana, Nicotiana benthamiana and Hedera helix. We show that our simulations can predict multiple features of the microtubule array structure in these cells, revealing, among others, strong constraints on the orientation of division planes.

  9. A computational framework for cortical microtubule dynamics in realistically shaped plant cells

    KAUST Repository

    Chakrabortty, Bandan

    2018-02-02

    Plant morphogenesis is strongly dependent on the directional growth and the subsequent oriented division of individual cells. It has been shown that the plant cortical microtubule array plays a key role in controlling both these processes. This ordered structure emerges as the collective result of stochastic interactions between large numbers of dynamic microtubules. To elucidate this complex self-organization process a number of analytical and computational approaches to study the dynamics of cortical microtubules have been proposed. To date, however, these models have been restricted to two dimensional planes or geometrically simple surfaces in three dimensions, which strongly limits their applicability as plant cells display a wide variety of shapes. This limitation is even more acute, as both local as well as global geometrical features of cells are expected to influence the overall organization of the array. Here we describe a framework for efficiently simulating microtubule dynamics on triangulated approximations of arbitrary three dimensional surfaces. This allows the study of microtubule array organization on realistic cell surfaces obtained by segmentation of microscopic images. We validate the framework against expected or known results for the spherical and cubical geometry. We then use it to systematically study the individual contributions of global geometry, cell-edge induced catastrophes and cell-face induced stability to array organization in a cuboidal geometry. Finally, we apply our framework to analyze the highly non-trivial geometry of leaf pavement cells of Arabidopsis thaliana, Nicotiana benthamiana and Hedera helix. We show that our simulations can predict multiple features of the microtubule array structure in these cells, revealing, among others, strong constraints on the orientation of division planes.

  10. Dynamic microtubule organization and mitochondrial transport are regulated by distinct Kinesin-1 pathways

    Directory of Open Access Journals (Sweden)

    Anna Melkov

    2015-12-01

    Full Text Available The microtubule (MT plus-end motor kinesin heavy chain (Khc is well known for its role in long distance cargo transport. Recent evidence showed that Khc is also required for the organization of the cellular MT network by mediating MT sliding. We found that mutations in Khc and the gene of its adaptor protein, kinesin light chain (Klc resulted in identical bristle morphology defects, with the upper part of the bristle being thinner and flatter than normal and failing to taper towards the bristle tip. We demonstrate that bristle mitochondria transport requires Khc but not Klc as a competing force to dynein heavy chain (Dhc. Surprisingly, we demonstrate for the first time that Dhc is the primary motor for both anterograde and retrograde fast mitochondria transport. We found that the upper part of Khc and Klc mutant bristles lacked stable MTs. When following dynamic MT polymerization via the use of GFP-tagged end-binding protein 1 (EB1, it was noted that at Khc and Klc mutant bristle tips, dynamic MTs significantly deviated from the bristle parallel growth axis, relative to wild-type bristles. We also observed that GFP-EB1 failed to concentrate as a focus at the tip of Khc and Klc mutant bristles. We propose that the failure of bristle tapering is due to defects in directing dynamic MTs at the growing tip. Thus, we reveal a new function for Khc and Klc in directing dynamic MTs during polarized cell growth. Moreover, we also demonstrate a novel mode of coordination in mitochondrial transport between Khc and Dhc.

  11. TBCD links centriologenesis, spindle microtubule dynamics, and midbody abscission in human cells.

    Directory of Open Access Journals (Sweden)

    Mónica López Fanarraga

    2010-01-01

    Full Text Available Microtubule-organizing centers recruit alpha- and beta-tubulin polypeptides for microtubule nucleation. Tubulin synthesis is complex, requiring five specific cofactors, designated tubulin cofactors (TBCs A-E, which contribute to various aspects of microtubule dynamics in vivo. Here, we show that tubulin cofactor D (TBCD is concentrated at the centrosome and midbody, where it participates in centriologenesis, spindle organization, and cell abscission. TBCD exhibits a cell-cycle-specific pattern, localizing on the daughter centriole at G1 and on procentrioles by S, and disappearing from older centrioles at telophase as the protein is recruited to the midbody. Our data show that TBCD overexpression results in microtubule release from the centrosome and G1 arrest, whereas its depletion produces mitotic aberrations and incomplete microtubule retraction at the midbody during cytokinesis. TBCD is recruited to the centriole replication site at the onset of the centrosome duplication cycle. A role in centriologenesis is further supported in differentiating ciliated cells, where TBCD is organized into "centriolar rosettes". These data suggest that TBCD participates in both canonical and de novo centriolar assembly pathways.

  12. KATNAL1 regulation of sertoli cell microtubule dynamics is essential for spermiogenesis and male fertility.

    Directory of Open Access Journals (Sweden)

    Lee B Smith

    Full Text Available Spermatogenesis is a complex process reliant upon interactions between germ cells (GC and supporting somatic cells. Testicular Sertoli cells (SC support GCs during maturation through physical attachment, the provision of nutrients, and protection from immunological attack. This role is facilitated by an active cytoskeleton of parallel microtubule arrays that permit transport of nutrients to GCs, as well as translocation of spermatids through the seminiferous epithelium during maturation. It is well established that chemical perturbation of SC microtubule remodelling leads to premature GC exfoliation demonstrating that microtubule remodelling is an essential component of male fertility, yet the genes responsible for this process remain unknown. Using a random ENU mutagenesis approach, we have identified a novel mouse line displaying male-specific infertility, due to a point mutation in the highly conserved ATPase domain of the novel KATANIN p60-related microtubule severing protein Katanin p60 subunit A-like1 (KATNAL1. We demonstrate that Katnal1 is expressed in testicular Sertoli cells (SC from 15.5 days post-coitum (dpc and that, consistent with chemical disruption models, loss of function of KATNAL1 leads to male-specific infertility through disruption of SC microtubule dynamics and premature exfoliation of spermatids from the seminiferous epithelium. The identification of KATNAL1 as an essential regulator of male fertility provides a significant novel entry point into advancing our understanding of how SC microtubule dynamics promotes male fertility. Such information will have resonance both for future treatment of male fertility and the development of non-hormonal male contraceptives.

  13. The centrosomal linker and microtubules provide dual levels of spatial coordination of centrosomes.

    Directory of Open Access Journals (Sweden)

    Marko Panic

    2015-05-01

    Full Text Available The centrosome is the principal microtubule organizing center in most animal cells. It consists of a pair of centrioles surrounded by pericentriolar material. The centrosome, like DNA, duplicates exactly once per cell cycle. During interphase duplicated centrosomes remain closely linked by a proteinaceous linker. This centrosomal linker is composed of rootletin filaments that are anchored to the centrioles via the protein C-Nap1. At the onset of mitosis the linker is dissolved by Nek2A kinase to support the formation of the bipolar mitotic spindle. The importance of the centrosomal linker for cell function during interphase awaits characterization. Here we assessed the phenotype of human RPE1 C-Nap1 knockout (KO cells. The absence of the linker led to a modest increase in the average centrosome separation from 1 to 2.5 μm. This small impact on the degree of separation is indicative of a second level of spatial organization of centrosomes. Microtubule depolymerisation or stabilization in C-Nap1 KO cells dramatically increased the inter-centrosomal separation (> 8 μm. Thus, microtubules position centrosomes relatively close to one another in the absence of linker function. C-Nap1 KO cells had a Golgi organization defect with a two-fold expansion of the area occupied by the Golgi. When the centrosomes of C-Nap1 KO cells showed considerable separation, two spatially distinct Golgi stacks could be observed. Furthermore, migration of C-Nap1 KO cells was slower than their wild type RPE1 counterparts. These data show that the spatial organization of centrosomes is modulated by a combination of centrosomal cohesion and microtubule forces. Furthermore a modest increase in centrosome separation has major impact on Golgi organization and cell migration.

  14. Erucin, the major isothiocyanate in arugula (Eruca sativa, inhibits proliferation of MCF7 tumor cells by suppressing microtubule dynamics.

    Directory of Open Access Journals (Sweden)

    Olga Azarenko

    Full Text Available Consumption of cruciferous vegetables is associated with reduced risk of various types of cancer. Isothiocyanates including sulforaphane and erucin are believed to be responsible for this activity. Erucin [1-isothiocyanato-4-(methylthiobutane], which is metabolically and structurally related to sulforaphane, is present in large quantities in arugula (Eruca sativa, Mill., kohlrabi and Chinese cabbage. However, its cancer preventive mechanisms remain poorly understood. We found that erucin inhibits proliferation of MCF7 breast cancer cells (IC50 = 28 µM in parallel with cell cycle arrest at mitosis (IC50 = 13 µM and apoptosis, by a mechanism consistent with impairment of microtubule dynamics. Concentrations of 5-15 µM erucin suppressed the dynamic instability of microtubules during interphase in the cells. Most dynamic instability parameters were inhibited, including the rates and extents of growing and shortening, the switching frequencies between growing and shortening, and the overall dynamicity. Much higher erucin concentrations were required to reduce the microtubule polymer mass. In addition, erucin suppressed dynamic instability of microtubules reassembled from purified tubulin in similar fashion. The effects of erucin on microtubule dynamics, like those of sulforaphane, are similar qualitatively to those of much more powerful clinically-used microtubule-targeting anticancer drugs, including taxanes and the vinca alkaloids. The results suggest that suppression of microtubule dynamics by erucin and the resulting impairment of critically important microtubule-dependent cell functions such as mitosis, cell migration and microtubule-based transport may be important in its cancer preventive activities.

  15. Microtubule Catastrophe and Rescue

    OpenAIRE

    Gardner, Melissa K.; Zanic, Marija; Howard, Jonathon

    2012-01-01

    Microtubules are long cylindrical polymers composed of tubulin subunits. In cells, microtubules play an essential role in architecture and motility. For example, microtubules give shape to cells, serve as intracellular transport tracks, and act as key elements in important cellular structures such as axonemes and mitotic spindles. To accomplish these varied functions, networks of microtubules in cells are very dynamic, continuously remodeling through stochastic length fluctuations at the ends...

  16. BORC Functions Upstream of Kinesins 1 and 3 to Coordinate Regional Movement of Lysosomes along Different Microtubule Tracks.

    Science.gov (United States)

    Guardia, Carlos M; Farías, Ginny G; Jia, Rui; Pu, Jing; Bonifacino, Juan S

    2016-11-15

    The multiple functions of lysosomes are critically dependent on their ability to undergo bidirectional movement along microtubules between the center and the periphery of the cell. Centrifugal and centripetal movement of lysosomes is mediated by kinesin and dynein motors, respectively. We recently described a multi-subunit complex named BORC that recruits the small GTPase Arl8 to lysosomes to promote their kinesin-dependent movement toward the cell periphery. Here, we show that BORC and Arl8 function upstream of two structurally distinct kinesin types: kinesin-1 (KIF5B) and kinesin-3 (KIF1Bβ and KIF1A). Remarkably, KIF5B preferentially moves lysosomes on perinuclear tracks enriched in acetylated α-tubulin, whereas KIF1Bβ and KIF1A drive lysosome movement on more rectilinear, peripheral tracks enriched in tyrosinated α-tubulin. These findings establish BORC as a master regulator of lysosome positioning through coupling to different kinesins and microtubule tracks. Common regulation by BORC enables coordinate control of lysosome movement in different regions of the cell. Published by Elsevier Inc.

  17. Plasma membrane factor XIIIA transglutaminase activity regulates osteoblast matrix secretion and deposition by affecting microtubule dynamics.

    Directory of Open Access Journals (Sweden)

    Hadil F Al-Jallad

    2011-01-01

    Full Text Available Transglutaminase activity, arising potentially from transglutaminase 2 (TG2 and Factor XIIIA (FXIIIA, has been linked to osteoblast differentiation where it is required for type I collagen and fibronectin matrix deposition. In this study we have used an irreversible TG-inhibitor to 'block -and-track' enzyme(s targeted during osteoblast differentiation. We show that the irreversible TG-inhibitor is highly potent in inhibiting osteoblast differentiation and mineralization and reduces secretion of both fibronectin and type I collagen and their release from the cell surface. Tracking of the dansyl probe by Western blotting and immunofluorescence microscopy demonstrated that the inhibitor targets plasma membrane-associated FXIIIA. TG2 appears not to contribute to crosslinking activity on the osteoblast surface. Inhibition of FXIIIA with NC9 resulted in defective secretory vesicle delivery to the plasma membrane which was attributable to a disorganized microtubule network and decreased microtubule association with the plasma membrane. NC9 inhibition of FXIIIA resulted in destabilization of microtubules as assessed by cellular Glu-tubulin levels. Furthermore, NC9 blocked modification of Glu-tubulin into 150 kDa high-molecular weight Glu-tubulin form which was specifically localized to the plasma membrane. FXIIIA enzyme and its crosslinking activity were colocalized with plasma membrane-associated tubulin, and thus, it appears that FXIIIA crosslinking activity is directed towards stabilizing the interaction of microtubules with the plasma membrane. Our work provides the first mechanistic cues as to how transglutaminase activity could affect protein secretion and matrix deposition in osteoblasts and suggests a novel function for plasma membrane FXIIIA in microtubule dynamics.

  18. SAS-4 is recruited to a dynamic structure in newly forming centrioles that is stabilized by the gamma-tubulin-mediated addition of centriolar microtubules.

    Science.gov (United States)

    Dammermann, Alexander; Maddox, Paul S; Desai, Arshad; Oegema, Karen

    2008-02-25

    Centrioles are surrounded by pericentriolar material (PCM), which is proposed to promote new centriole assembly by concentrating gamma-tubulin. Here, we quantitatively monitor new centriole assembly in living Caenorhabditis elegans embryos, focusing on the conserved components SAS-4 and SAS-6. We show that SAS-4 and SAS-6 are coordinately recruited to the site of new centriole assembly and reach their maximum levels during S phase. Centriolar SAS-6 is subsequently reduced by a mechanism intrinsic to the early assembly pathway that does not require progression into mitosis. Centriolar SAS-4 remains in dynamic equilibrium with the cytoplasmic pool until late prophase, when it is stably incorporated in a step that requires gamma-tubulin and microtubule assembly. These results indicate that gamma-tubulin in the PCM stabilizes the nascent daughter centriole by promoting microtubule addition to its outer wall. Such a mechanism may help restrict new centriole assembly to the vicinity of preexisting parent centrioles that recruit PCM.

  19. Noscapine alters microtubule dynamics in living cells and inhibits the progression of melanoma.

    Science.gov (United States)

    Landen, Jaren W; Lang, Roland; McMahon, Steve J; Rusan, Nasser M; Yvon, Anne-Marie; Adams, Ashley W; Sorcinelli, Mia D; Campbell, Ross; Bonaccorsi, Paola; Ansel, John C; Archer, David R; Wadsworth, Patricia; Armstrong, Cheryl A; Joshi, Harish C

    2002-07-15

    Cellular microtubules, polymers of tubulin, alternate relentlessly between phases of growth and shortening. We now show that noscapine, a tubulin-binding agent, increases the time that cellular microtubules spend idle in a paused state. As a result, most mammalian cell types observed arrest in mitosis in the presence of noscapine. We demonstrate that noscapine-treated murine melanoma B16LS9 cells do not arrest in mitosis but rather become polyploid followed by cell death, whereas primary melanocytes reversibly arrest in mitosis and resume a normal cell cycle after noscapine removal. Furthermore, in a syngeneic murine model of established s.c. melanoma, noscapine treatment resulted in an 85% inhibition of tumor volume on day 17 when delivered by gavage compared with untreated animals (P microtubule dynamics, with no detected toxicity to the host. Consequently, noscapine could be a valuable chemotherapeutic agent, alone or in combination, for the treatment of advanced melanoma.

  20. ATX-2, the C. elegans Ortholog of Human Ataxin-2, Regulates Centrosome Size and Microtubule Dynamics.

    Directory of Open Access Journals (Sweden)

    Michael D Stubenvoll

    2016-09-01

    Full Text Available Centrosomes are critical sites for orchestrating microtubule dynamics, and exhibit dynamic changes in size during the cell cycle. As cells progress to mitosis, centrosomes recruit more microtubules (MT to form mitotic bipolar spindles that ensure proper chromosome segregation. We report a new role for ATX-2, a C. elegans ortholog of Human Ataxin-2, in regulating centrosome size and MT dynamics. ATX-2, an RNA-binding protein, forms a complex with SZY-20 in an RNA-independent fashion. Depleting ATX-2 results in embryonic lethality and cytokinesis failure, and restores centrosome duplication to zyg-1 mutants. In this pathway, SZY-20 promotes ATX-2 abundance, which inversely correlates with centrosome size. Centrosomes depleted of ATX-2 exhibit elevated levels of centrosome factors (ZYG-1, SPD-5, γ-Tubulin, increasing MT nucleating activity but impeding MT growth. We show that ATX-2 influences MT behavior through γ-Tubulin at the centrosome. Our data suggest that RNA-binding proteins play an active role in controlling MT dynamics and provide insight into the control of proper centrosome size and MT dynamics.

  1. Dietary flavonoid fisetin binds to β-tubulin and disrupts microtubule dynamics in prostate cancer cells

    OpenAIRE

    Mukhtar, Eiman; Adhami, Vaqar Mustafa; Sechi, Mario; Mukhtar, Hasan

    2015-01-01

    Microtubule targeting based therapies have revolutionized cancer treatment; however, resistance and side effects remain a major limitation. Therefore, novel strategies that can overcome these limitations are urgently needed. We made a novel discovery that fisetin, a hydroxyflavone, is a microtubule stabilizing agent. Fisetin binds to tubulin and stabilizes microtubules with binding characteristics far superior than paclitaxel. Surface plasmon resonance and computational docking studies sugges...

  2. An agent-based model contrasts opposite effects of dynamic and stable microtubules on cleavage furrow positioning.

    Science.gov (United States)

    Odell, Garrett M; Foe, Victoria E

    2008-11-03

    From experiments by Foe and von Dassow (Foe, V.E., and G. von Dassow. 2008. J. Cell Biol. 183:457-470) and others, we infer a molecular mechanism for positioning the cleavage furrow during cytokinesis. Computer simulations reveal how this mechanism depends on quantitative motor-behavior details and explore how robustly this mechanism succeeds across a range of cell sizes. The mechanism involves the MKLP1 (kinesin-6) component of centralspindlin binding to and walking along microtubules to stimulate cortical contractility where the centralspindlin complex concentrates. The majority of astral microtubules are dynamically unstable. They bind most MKLP1 and suppress cortical Rho/myosin II activation because the tips of unstable microtubules usually depolymerize before MKLP1s reach the cortex. A subset of astral microtubules stabilizes during anaphase, becoming effective rails along which MKLP1 can actually reach the cortex. Because stabilized microtubules aim statistically at the equatorial spindle midplane, that is where centralspindlin accumulates to stimulate furrow formation.

  3. An antitubulin agent BCFMT inhibits proliferation of cancer cells and induces cell death by inhibiting microtubule dynamics.

    Directory of Open Access Journals (Sweden)

    Ankit Rai

    Full Text Available Using cell based screening assay, we identified a novel anti-tubulin agent (Z-5-((5-(4-bromo-3-chlorophenylfuran-2-ylmethylene-2-thioxothiazolidin-4-one (BCFMT that inhibited proliferation of human cervical carcinoma (HeLa (IC(50, 7.2 ± 1.8 µM, human breast adenocarcinoma (MCF-7 (IC(50, 10.0 ± 0.5 µM, highly metastatic breast adenocarcinoma (MDA-MB-231 (IC(50, 6.0 ± 1 µM, cisplatin-resistant human ovarian carcinoma (A2780-cis (IC(50, 5.8 ± 0.3 µM and multi-drug resistant mouse mammary tumor (EMT6/AR1 (IC(50, 6.5 ± 1 µM cells. Using several complimentary strategies, BCFMT was found to inhibit cancer cell proliferation at G2/M phase of the cell cycle apparently by targeting microtubules. In addition, BCFMT strongly suppressed the dynamics of individual microtubules in live MCF-7 cells. At its half maximal proliferation inhibitory concentration (10 µM, BCFMT reduced the rates of growing and shortening phases of microtubules in MCF-7 cells by 37 and 40%, respectively. Further, it increased the time microtubules spent in the pause (neither growing nor shortening detectably state by 135% and reduced the dynamicity (dimer exchange per unit time of microtubules by 70%. In vitro, BCFMT bound to tubulin with a dissociation constant of 8.3 ± 1.8 µM, inhibited tubulin assembly and suppressed GTPase activity of microtubules. BCFMT competitively inhibited the binding of BODIPY FL-vinblastine to tubulin with an inhibitory concentration (K(i of 5.2 ± 1.5 µM suggesting that it binds to tubulin at the vinblastine site. In cultured cells, BCFMT-treatment depolymerized interphase microtubules, perturbed the spindle organization and accumulated checkpoint proteins (BubR1 and Mad2 at the kinetochores. BCFMT-treated MCF-7 cells showed enhanced nuclear accumulation of p53 and its downstream p21, which consequently activated apoptosis in these cells. The results suggested that BCFMT inhibits proliferation of several types of cancer cells including drug

  4. The dynamic interplay of plasma membrane domains and cortical microtubules in secondary cell wall patterning

    Directory of Open Access Journals (Sweden)

    Yoshihisa eOda

    2013-12-01

    Full Text Available Patterning of the cellulosic cell wall underlies the shape and function of plant cells. The cortical microtubule array plays a central role in the regulation of cell wall patterns. However, the regulatory mechanisms by which secondary cell wall patterns are established through cortical microtubules remain to be fully determined. Our recent study in xylem vessel cells revealed that a mutual inhibitory interaction between cortical microtubules and distinct plasma membrane domains leads to distinctive patterning in secondary cell walls. Our research revealed that the recycling of active and inactive ROP proteins by a specific GAP and GEF pair establishes distinct de novo plasma membrane domains. Active ROP recruits a plant-specific microtubule-associated protein, MIDD1, which mediates the mutual interaction between cortical microtubules and plasma membrane domains. In this mini review, we summarize recent research regarding secondary wall patterning, with a focus on the emerging interplay between plasma membrane domains and cortical microtubules through MIDD1 and ROP.

  5. Griseofulvin stabilizes microtubule dynamics, activates p53 and inhibits the proliferation of MCF-7 cells synergistically with vinblastine

    International Nuclear Information System (INIS)

    Rathinasamy, Krishnan; Jindal, Bhavya; Asthana, Jayant; Singh, Parminder; Balaji, Petety V; Panda, Dulal

    2010-01-01

    Griseofulvin, an antifungal drug, has recently been shown to inhibit proliferation of various types of cancer cells and to inhibit tumor growth in athymic mice. Due to its low toxicity, griseofulvin has drawn considerable attention for its potential use in cancer chemotherapy. This work aims to understand how griseofulvin suppresses microtubule dynamics in living cells and sought to elucidate the antimitotic and antiproliferative action of the drug. The effects of griseofulvin on the dynamics of individual microtubules in live MCF-7 cells were measured by confocal microscopy. Immunofluorescence microscopy, western blotting and flow cytometry were used to analyze the effects of griseofulvin on spindle microtubule organization, cell cycle progression and apoptosis. Further, interactions of purified tubulin with griseofulvin were studied in vitro by spectrophotometry and spectrofluorimetry. Docking analysis was performed using autodock4 and LigandFit module of Discovery Studio 2.1. Griseofulvin strongly suppressed the dynamic instability of individual microtubules in live MCF-7 cells by reducing the rate and extent of the growing and shortening phases. At or near half-maximal proliferation inhibitory concentration, griseofulvin dampened the dynamicity of microtubules in MCF-7 cells without significantly disrupting the microtubule network. Griseofulvin-induced mitotic arrest was associated with several mitotic abnormalities like misaligned chromosomes, multipolar spindles, misegregated chromosomes resulting in cells containing fragmented nuclei. These fragmented nuclei were found to contain increased concentration of p53. Using both computational and experimental approaches, we provided evidence suggesting that griseofulvin binds to tubulin in two different sites; one site overlaps with the paclitaxel binding site while the second site is located at the αβ intra-dimer interface. In combination studies, griseofulvin and vinblastine were found to exert synergistic

  6. Structure of Dynamic, Taxol-Stabilized, and GMPPCP-Stabilized Microtubule.

    Science.gov (United States)

    Ginsburg, Avi; Shemesh, Asaf; Millgram, Abigail; Dharan, Raviv; Levi-Kalisman, Yael; Ringel, Israel; Raviv, Uri

    2017-09-14

    Microtubule (MT) is made of αβ-tubulin heterodimers that dynamically assemble into a hollow nanotube composed of straight protofilaments. MT dynamics is facilitated by hydrolysis of guanosine-5'-triphosphate (GTP) and can be inhibited by either anticancer agents like taxol or the nonhydrolyzable GTP analogues like GMPPCP. Using high-resolution synchrotron X-ray scattering, we have measured and analyzed the scattering curves from solutions of dynamic MT (in other words, in the presence of excess GTP and free of dynamic-inhibiting agents) and examined the effect of two MT stabilizers: taxol and GMPPCP. Previously, we have analyzed the structure of dynamic MT by docking the atomic model of tubulin dimer onto a 3-start left handed helical lattice, derived from the PDB ID 3J6F . 3J6F corresponds to a MT with 14 protofilaments. In this paper, we took into account the possibility of having MT structures containing between 12 and 15 protofilaments. MTs with 12 protofilaments were never observed. We determined the radii, the pitch, and the distribution of protofilament number that best fit the scattering data from dynamic MT or stabilized MT by taxol or GMPPCP. We found that the protofilament number distribution shifted when the MT was stabilized. Taxol increased the mass fraction of MT with 13 protofilaments and decreased the mass fraction of MT with 14 protofilaments. GMPPCP reduced the mass fraction of MT with 15 protofilaments and increased the mass fraction of MT with 14 protofilaments. The pitch, however, remained unchanged regardless of whether the MT was dynamic or stabilized. Higher tubulin concentrations increased the fraction of dynamic MT with 14 protofilaments.

  7. Deficiency of RITA results in multiple mitotic defects by affecting microtubule dynamics.

    Science.gov (United States)

    Steinhäuser, K; Klöble, P; Kreis, N-N; Ritter, A; Friemel, A; Roth, S; Reichel, J M; Michaelis, J; Rieger, M A; Louwen, F; Oswald, F; Yuan, J

    2017-04-01

    Deregulation of mitotic microtubule (MT) dynamics results in defective spindle assembly and chromosome missegregation, leading further to chromosome instability, a hallmark of tumor cells. RBP-J interacting and tubulin-associated protein (RITA) has been identified as a negative regulator of the Notch signaling pathway. Intriguingly, deregulated RITA is involved in primary hepatocellular carcinoma and other malignant entities. We were interested in the potential molecular mechanisms behind its involvement. We show here that RITA binds to tubulin and localizes to various mitotic MT structures. RITA coats MTs and affects their structures in vitro as well as in vivo. Tumor cell lines deficient of RITA display increased acetylated α-tubulin, enhanced MT stability and reduced MT dynamics, accompanied by multiple mitotic defects, including chromosome misalignment and segregation errors. Re-expression of wild-type RITA, but not RITA Δtub ineffectively binding to tubulin, restores the phenotypes, suggesting that the role of RITA in MT modulation is mediated via its interaction with tubulin. Mechanistically, RITA interacts with tubulin/histone deacetylase 6 (HDAC6) and its suppression decreases the binding of the deacetylase HDAC6 to tubulin/MTs. Furthermore, the mitotic defects and increased MT stability are also observed in RITA -/- mouse embryonic fibroblasts. RITA has thus a novel role in modulating MT dynamics and its deregulation results in erroneous chromosome segregation, one of the major reasons for chromosome instability in tumor cells.

  8. The Kinesin Adaptor Calsyntenin-1 Organizes Microtubule Polarity and Regulates Dynamics during Sensory Axon Arbor Development

    Directory of Open Access Journals (Sweden)

    Mary C. Halloran

    2017-04-01

    Full Text Available Axon growth and branching, and development of neuronal polarity are critically dependent on proper organization and dynamics of the microtubule (MT cytoskeleton. MTs must organize with correct polarity for delivery of diverse cargos to appropriate subcellular locations, yet the molecular mechanisms regulating MT polarity remain poorly understood. Moreover, how an actively branching axon reorganizes MTs to direct their plus ends distally at branch points is unknown. We used high-speed, in vivo imaging of polymerizing MT plus ends to characterize MT dynamics in developing sensory axon arbors in zebrafish embryos. We find that axonal MTs are highly dynamic throughout development, and that the peripheral and central axons of sensory neurons show differences in MT behaviors. Furthermore, we show that Calsyntenin-1 (Clstn-1, a kinesin adaptor required for sensory axon branching, also regulates MT polarity in developing axon arbors. In wild type neurons the vast majority of MTs are directed in the correct plus-end-distal orientation from early stages of development. Loss of Clstn-1 causes an increase in MTs polymerizing in the retrograde direction. These misoriented MTs most often are found near growth cones and branch points, suggesting Clstn-1 is particularly important for organizing MT polarity at these locations. Together, our results suggest that Clstn-1, in addition to regulating kinesin-mediated cargo transport, also organizes the underlying MT highway during axon arbor development.

  9. Coordinated supply chain dynamic production planning model

    Science.gov (United States)

    Chandra, Charu; Grabis, Janis

    2001-10-01

    Coordination of different and often contradicting interests of individual supply chain members is one of the important issues in supply chain management because the individual members can not succeed without success of the supply chain and vice versa. This paper investigates a supply chain dynamic production planning problem with emphasis on coordination. A planning problem is formally described using a supply chain kernel, which defines supply chain configuration, management policies, available resources and objectives both at supply chain or macro and supply chain member or micro levels. The coordinated model is solved in order to balance decisions made at the macro and micro levels and members' profitability is used as the coordination criterion. The coordinated model is used to determine inventory levels and production capacity across the supply chain. Application of the coordinated model distributes costs burden uniformly among supply chain members and preserves overall efficiency of the supply chain. Influence of the demand series uncertainty is investigated. The production planning model is a part of the integrated supply chain decision modeling system, which is shared among the supply chain members across the Internet.

  10. The coordination dynamics of social neuromarkers

    Science.gov (United States)

    Tognoli, Emmanuelle; Kelso, J. A. Scott

    2015-01-01

    Social behavior is a complex integrative function that entails many aspects of the brain’s sensory, cognitive, emotional and movement capacities. Its neural processes are seldom simultaneous but occur according to precise spatiotemporal choreographies, manifested by the coordination of their oscillations within and between brains. Methods with good temporal resolution can help to identify so-called “neuromarkers” of social function and aid in disentangling the dynamical architecture of social brains. In our ongoing research, we have used dual-electroencephalography (EEG) to study neuromarker dynamics during synchronic interactions in which pairs of subjects coordinate behavior spontaneously and intentionally (social coordination) and during diachronic transactions that require subjects to perceive or behave in turn (action observation, delayed imitation). In this paper, after outlining our dynamical approach to the neurophysiological basis of social behavior, we examine commonalities and differences in the neuromarkers that are recruited for both kinds of tasks. We find the neuromarker landscape to be task-specific: synchronic paradigms of social coordination reveal medial mu, alpha and the phi complex as contributing neuromarkers. Diachronic tasks recruit alpha as well, in addition to lateral mu rhythms and the newly discovered nu and kappa rhythms whose functional significance is still unclear. Social coordination, observation, and delayed imitation share commonality of context: in each of our experiments, subjects exchanged information through visual perception and moved in similar ways. Nonetheless, there was little overlap between their neuromarkers, a result that hints strongly of task-specific neural mechanisms for social behavior. The only neuromarker that transcended both synchronic and diachronic social behaviors was the ubiquitous alpha rhythm, which appears to be a key signature of visually-mediated social behaviors. The present paper is both an

  11. The coordination dynamics of social neuromarkers

    Directory of Open Access Journals (Sweden)

    Emmanuelle eTognoli

    2015-10-01

    Full Text Available Social behavior is a complex integrative function that entails many aspects of the brain's sensory, cognitive, emotional and motor capacities. Its neural processes are seldom simultaneous but occur according to precise spatiotemporal choreographies, manifested by the coordination of their oscillations within and between brains. Methods with good temporal resolution can help to identify so-called neuromarkers of social function and aid in disentangling the dynamical architecture of social brains. In our ongoing research, we have used dual-EEG to study neuromarker dynamics during synchronic interactions in which pairs of subjects coordinate behavior spontaneously and intentionally (social coordination and during diachronic transactions that require subjects to perceive or behave in turn (action observation, delayed imitation. In this paper, after outlining our dynamical approach to the neurophysiological basis of social behavior, we examine commonalities and differences in the neuromarkers that are recruited for both kinds of tasks. We find the neuromarker landscape to be task-specific: synchronic paradigms of social coordination reveal medial mu, alpha and the phi complex as contributing neuromarkers. Diachronic tasks recruit alpha as well, in addition to lateral mu rhythms and the newly discovered nu and kappa rhythms whose functional significance is still unclear. Social coordination, observation, and delayed imitation share commonality of context: in each of our experiments, subjects exchanged information through visual perception and moved in similar ways. Nonetheless, there was little overlap between their neuromarkers, a result that hints strongly of task-specific neural mechanisms for social behavior. The only neuromarker that transcended both synchronic and diachronic social behaviors was the ubiquitous alpha rhythm, which appears to be a key signature of visually-mediated social behaviors. The present paper is both an entry point and a

  12. The coordination dynamics of social neuromarkers.

    Science.gov (United States)

    Tognoli, Emmanuelle; Kelso, J A Scott

    2015-01-01

    Social behavior is a complex integrative function that entails many aspects of the brain's sensory, cognitive, emotional and movement capacities. Its neural processes are seldom simultaneous but occur according to precise spatiotemporal choreographies, manifested by the coordination of their oscillations within and between brains. Methods with good temporal resolution can help to identify so-called "neuromarkers" of social function and aid in disentangling the dynamical architecture of social brains. In our ongoing research, we have used dual-electroencephalography (EEG) to study neuromarker dynamics during synchronic interactions in which pairs of subjects coordinate behavior spontaneously and intentionally (social coordination) and during diachronic transactions that require subjects to perceive or behave in turn (action observation, delayed imitation). In this paper, after outlining our dynamical approach to the neurophysiological basis of social behavior, we examine commonalities and differences in the neuromarkers that are recruited for both kinds of tasks. We find the neuromarker landscape to be task-specific: synchronic paradigms of social coordination reveal medial mu, alpha and the phi complex as contributing neuromarkers. Diachronic tasks recruit alpha as well, in addition to lateral mu rhythms and the newly discovered nu and kappa rhythms whose functional significance is still unclear. Social coordination, observation, and delayed imitation share commonality of context: in each of our experiments, subjects exchanged information through visual perception and moved in similar ways. Nonetheless, there was little overlap between their neuromarkers, a result that hints strongly of task-specific neural mechanisms for social behavior. The only neuromarker that transcended both synchronic and diachronic social behaviors was the ubiquitous alpha rhythm, which appears to be a key signature of visually-mediated social behaviors. The present paper is both an entry

  13. Coordination: Neural, Behavioral and Social Dynamics

    CERN Document Server

    Fuchs, Armin

    2008-01-01

    One of the most striking features of Coordination Dynamics is its interdisciplinary character. The problems we are trying to solve in this field range from behavioral phenomena of interlimb coordination and coordination between stimuli and movements (perception-action tasks) through neural activation patterns that can be observed during these tasks to clinical applications and social behavior. It is not surprising that close collaboration among scientists from different fields as psychology, kinesiology, neurology and even physics are imperative to deal with the enormous difficulties we are facing when we try to understand a system as complex as the human brain. The chapters in this volume are not simply write-ups of the lectures given by the experts at the meeting but are written in a way that they give sufficient introductory information to be comprehensible and useful for all interested scientists and students.

  14. Non-critical string theory formulation of microtubule dynamics and quantum aspects of brain function

    CERN Document Server

    Mavromatos, Nikolaos E

    1995-01-01

    Microtubule (MT) networks, subneural paracrystalline cytosceletal structures, seem to play a fundamental role in the neurons. We cast here the complicated MT dynamics in the form of a 1+1-dimensional non-critical string theory, thus enabling us to provide a consistent quantum treatment of MTs, including enviromental {\\em friction} effects. We suggest, thus, that the MTs are the microsites, in the brain, for the emergence of stable, macroscopic quantum coherent states, identifiable with the {\\em preconscious states}. Quantum space-time effects, as described by non-critical string theory, trigger then an {\\em organized collapse} of the coherent states down to a specific or {\\em conscious state}. The whole process we estimate to take {\\cal O}(1\\,{\\rm sec}), in excellent agreement with a plethora of experimental/observational findings. The {\\em microscopic arrow of time}, endemic in non-critical string theory, and apparent here in the self-collapse process, provides a satisfactory and simple resolution to the age...

  15. Microtubule plus end-tracking proteins play critical roles in directional growth of hyphae by regulating the dynamics of cytoplasmic microtubules in Aspergillus nidulans.

    Science.gov (United States)

    Zeng, Cui J Tracy; Kim, Hye-Ryun; Vargas Arispuro, Irasema; Kim, Jung-Mi; Huang, An-Chi; Liu, Bo

    2014-11-01

    Cytoplasmic microtubules (MTs) serve as a rate-limiting factor for hyphal tip growth in the filamentous fungus Aspergillus nidulans. We hypothesized that this function depended on the MT plus end-tracking proteins (+TIPs) including the EB1 family protein EBA that decorated the MT plus ends undergoing polymerization. The ebAΔ mutation reduced colony growth and the mutant hyphae appeared in an undulating pattern instead of exhibiting unidirectional growth in the control. These phenotypes were enhanced by a mutation in another +TIP gene clipA. EBA was required for plus end-tracking of CLIPA, the Kinesin-7 motor KipA, and the XMAP215 homologue AlpA. In addition, cytoplasmic dynein also depended on EBA to track on most polymerizing MT plus ends, but not for its conspicuous appearance at the MT ends near the hyphal apex. The loss of EBA reduced the number of cytoplasmic MTs and prolonged dwelling times for MTs after reaching the hyphal apex. Finally, we found that colonies were formed in the absence of EBA, CLIPA, and NUDA together, suggesting that they were dispensable for fundamental functions of MTs. This study provided a comprehensive delineation of the relationship among different +TIPs and their contributions to MT dynamics and unidirectional hyphal expansion in filamentous fungi. © 2014 John Wiley & Sons Ltd.

  16. Microtubule dynamics of the centrosome-like polar organizers from the basal land plant Marchantia polymorpha.

    Science.gov (United States)

    Buschmann, Henrik; Holtmannspötter, Michael; Borchers, Agnes; O'Donoghue, Martin-Timothy; Zachgo, Sabine

    2016-02-01

    The liverwort Marchantia employs both modern and ancestral devices during cell division: it forms preprophase bands and in addition it shows centrosome-like polar organizers. We investigated whether polar organizers and preprophase bands cooperate to set up the division plane. To this end, two novel green fluorescent protein-based microtubule markers for dividing cells of Marchantia were developed. Cells of the apical notch formed polar organizers first and subsequently assembled preprophase bands. Polar organizers were formed de novo from multiple mobile microtubule foci localizing to the nuclear envelope. The foci then became concentrated by bipolar aggregation. We determined the comet production rate of polar organizers and show that microtubule plus ends of astral microtubules polymerize faster than those found on cortical microtubules. Importantly, it was observed that conditions increasing polar organizer numbers interfere with preprophase band formation. The data show that polar organizers have much in common with centrosomes, but that they also have specialized features. The results suggest that polar organizers contribute to preprophase band formation and in this way are involved in controlling the division plane. Our analyses of the basal land plant Marchantia shed new light on the evolution of plant cell division. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  17. CLASP2 interacts with p120-catenin and governs microtubule dynamics at adherens junctions

    DEFF Research Database (Denmark)

    Shahbazi, Marta N; Megias, Diego; Epifano, Carolina

    2013-01-01

    Classical cadherins and their connections with microtubules (MTs) are emerging as important determinants of cell adhesion. However, the functional relevance of such interactions and the molecular players that contribute to tissue architecture are still emerging. In this paper, we report that the ...

  18. Insight into microtubule destabilization mechanism of 3,4,5-trimethoxyphenyl indanone derivatives using molecular dynamics simulation and conformational modes analysis

    Science.gov (United States)

    Tripathi, Shubhandra; Srivastava, Gaurava; Singh, Aastha; Prakasham, A. P.; Negi, Arvind S.; Sharma, Ashok

    2018-03-01

    Colchicine site inhibitors are microtubule destabilizers having promising role in cancer therapeutics. In the current study, four such indanone derivatives (t1, t9, t14 and t17) with 3,4,5-trimethoxyphenyl fragment (ring A) and showing significant microtubule destabilization property have been explored. The interaction mechanism and conformational modes triggered by binding of these indanone derivatives and combretastatin at colchicine binding site (CBS) of αβ-tubulin dimer were studied using molecular dynamics (MD) simulation, principle component analysis and free energy landscape analysis. In the MD results, t1 showed binding similar to colchicine interacting in the deep hydrophobic core at the CBS. While t9, t14 and t17 showed binding conformation similar to combretastatin, with ring A superficially binding at the CBS. Results demonstrated that ring A played a vital role in binding via hydrophobic interactions and got anchored between the S8 and S9 sheets, H8 helix and T7 loop at the CBS. Conformational modes study revealed that twisting and bending conformational motions (as found in the apo system) were nearly absent in the ligand bound systems. Absence of twisting motion might causes loss of lateral contacts in microtubule, thus promoting microtubule destabilization. This study provides detailed account of microtubule destabilization mechanism by indanone ligands and combretastatin, and would be helpful for designing microtubule destabilizers with higher activity.

  19. A Dynamic Coordination Mechanism Using Adjustable Autonomy

    NARCIS (Netherlands)

    Neef, R.M.; Vecht, B. van der; Dignum, F.; Meyer, J.J.C.

    2008-01-01

    Agents in an organization need to coordinate their actions in order to reach the organizational goals. This research describes the relation between types of coordination and the autonomy of actors. In an experimental setting we show that there is not one best way to coordinate in all situations. The

  20. A Dynamic Coordination Mechanism Using Adjustable Autonomy

    NARCIS (Netherlands)

    Vecht, B. van der; Dignum, F.; Meyer, J.J.C.; Neef, R.M.

    2007-01-01

    Agents in an organization need to coordinate their actions in order to reach the organizational goals. This research describes the relation between types of coordination and the autonomy of actors. In an experimental setting we show that there is not one best way to coordinate in all situations. The

  1. Dynamic release of nuclear RanGTP triggers TPX2-dependent microtubule assembly during the apoptotic execution phase.

    Science.gov (United States)

    Moss, David K; Wilde, Andrew; Lane, Jon D

    2009-03-01

    During apoptosis, the interphase microtubule network is dismantled then later replaced by a novel, non-centrosomal microtubule array. These microtubules assist in the peripheral redistribution of nuclear fragments in the apoptotic cell; however, the regulation of apoptotic microtubule assembly is not understood. Here, we demonstrate that microtubule assembly depends upon the release of nuclear RanGTP into the apoptotic cytoplasm because this process is blocked in apoptotic cells overexpressing dominant-negative GDP-locked Ran (T24N). Actin-myosin-II contractility provides the impetus for Ran release and, consequently, microtubule assembly is blocked in blebbistatin- and Y27632-treated apoptotic cells. Importantly, the spindle-assembly factor TPX2 (targeting protein for Xklp2), colocalises with apoptotic microtubules, and siRNA silencing of TPX2, but not of the microtubule motors Mklp1 and Kid, abrogates apoptotic microtubule assembly. These data provide a molecular explanation for the assembly of the apoptotic microtubule network, and suggest important similarities with the process of RanGTP- and TPX2-mediated mitotic spindle formation.

  2. Mutations in Human Tubulin Proximal to the Kinesin-Binding Site Alter Dynamic Instability at Microtubule Plus- and Minus-Ends

    Energy Technology Data Exchange (ETDEWEB)

    Ti, Shih-Chieh; Pamula, Melissa C.; Howes, Stuart C.; Duellberg, Christian; Cade, Nicholas I.; Kleiner, Ralph E.; Forth, Scott; Surrey, Thomas; Nogales, Eva; Kapoor, Tarun M.

    2016-04-01

    The assembly of microtubule-based cellular structures depends on regulated tubulin polymerization and directional transport. In this research, we have purified and characterized tubulin heterodimers that have human β-tubulin isotype III (TUBB3), as well as heterodimers with one of two β-tubulin mutations (D417H or R262H). Both point mutations are proximal to the kinesin-binding site and have been linked to an ocular motility disorder in humans. Compared to wild-type, microtubules with these mutations have decreased catastrophe frequencies and increased average lifetimes of plus- and minus-end-stabilizing caps. Importantly, the D417H mutation does not alter microtubule lattice structure or Mal3 binding to growing filaments. Instead, this mutation reduces the affinity of tubulin for TOG domains and colchicine, suggesting that the distribution of tubulin heterodimer conformations is changed. Together, our findings reveal how residues on the surface of microtubules, distal from the GTP-hydrolysis site and inter-subunit contacts, can alter polymerization dynamics at the plus- and minus-ends of microtubules.

  3. Ontology-based composition and matching for dynamic service coordination

    OpenAIRE

    Pahl, Claus; Gacitua-Decar, Veronica; Wang, MingXue; Yapa Bandara, Kosala

    2011-01-01

    Service engineering needs to address integration problems allowing services to collaborate and coordinate. The need to address dynamic automated changes - caused by on-demand environments and changing requirements - can be addressed through service coordination based on ontology-based composition and matching techniques. Our solution to composition and matching utilises a service coordination space that acts as a passive infrastructure for collaboration. We discuss the information models an...

  4. Cell cycle-dependent microtubule-based dynamic transport of cytoplasmic dynein in mammalian cells.

    Directory of Open Access Journals (Sweden)

    Takuya Kobayashi

    Full Text Available BACKGROUND: Cytoplasmic dynein complex is a large multi-subunit microtubule (MT-associated molecular motor involved in various cellular functions including organelle positioning, vesicle transport and cell division. However, regulatory mechanism of the cell-cycle dependent distribution of dynein has not fully been understood. METHODOLOGY/PRINCIPAL FINDINGS: Here we report live-cell imaging of cytoplasmic dynein in HeLa cells, by expressing multifunctional green fluorescent protein (mfGFP-tagged 74-kDa intermediate chain (IC74. IC74-mfGFP was successfully incorporated into functional dynein complex. In interphase, dynein moved bi-directionally along with MTs, which might carry cargos such as transport vesicles. A substantial fraction of dynein moved toward cell periphery together with EB1, a member of MT plus end-tracking proteins (+TIPs, suggesting +TIPs-mediated transport of dynein. In late-interphase and prophase, dynein was localized at the centrosomes and the radial MT array. In prometaphase and metaphase, dynein was localized at spindle MTs where it frequently moved from spindle poles toward chromosomes or cell cortex. +TIPs may be involved in the transport of spindle dyneins. Possible kinetochore and cortical dyneins were also observed. CONCLUSIONS AND SIGNIFICANCE: These findings suggest that cytoplasmic dynein is transported to the site of action in preparation for the following cellular events, primarily by the MT-based transport. The MT-based transport may have greater advantage than simple diffusion of soluble dynein in rapid and efficient transport of the limited concentration of the protein.

  5. Dynamic kinesin-1 clustering on microtubules due to mutually attractive interactions

    NARCIS (Netherlands)

    Roos, W.H.; Campas, O.; Montel, F.; Woehlke, G.; Spatz, J. P.; Bassereau, P.; Cappello, G.

    2008-01-01

    Molecular motors often work collectively inside the cell. While the properties of individual motors have been extensively studied over the last decade, much less is known on how motors coordinate their action when working in ensembles. The motor collective behaviour in conditions where they contact

  6. MVL-PLA2, a snake venom phospholipase A2, inhibits angiogenesis through an increase in microtubule dynamics and disorganization of focal adhesions.

    Directory of Open Access Journals (Sweden)

    Amine Bazaa

    Full Text Available Integrins are essential protagonists of the complex multi-step process of angiogenesis that has now become a major target for the development of anticancer therapies. We recently reported and characterized that MVL-PLA2, a novel phospholipase A2 from Macrovipera lebetina venom, exhibited anti-integrin activity. In this study, we show that MVL-PLA2 also displays potent anti-angiogenic properties. This phospholipase A2 inhibited adhesion and migration of human microvascular-endothelial cells (HMEC-1 in a dose-dependent manner without being cytotoxic. Using Matrigel and chick chorioallantoic membrane assays, we demonstrated that MVL-PLA2, as well as its catalytically inactivated form, significantly inhibited angiogenesis both in vitro and in vivo. We have also found that the actin cytoskeleton and the distribution of alphav beta3 integrin, a critical regulator of angiogenesis and a major component of focal adhesions, were disturbed after MVL-PLA2 treatment. In order to further investigate the mechanism of action of this protein on endothelial cells, we analyzed the dynamic instability behavior of microtubules in living endothelial cells. Interestingly, we showed that MVL-PLA2 significantly increased microtubule dynamicity in HMEC-1 cells by 40%. We propose that the enhancement of microtubule dynamics may explain the alterations in the formation of focal adhesions, leading to inhibition of cell adhesion and migration.

  7. Models for microtubule cargo transport coupling the Langevin equation to stochastic stepping motor dynamics: Caring about fluctuations.

    Science.gov (United States)

    Bouzat, Sebastián

    2016-01-01

    One-dimensional models coupling a Langevin equation for the cargo position to stochastic stepping dynamics for the motors constitute a relevant framework for analyzing multiple-motor microtubule transport. In this work we explore the consistence of these models focusing on the effects of the thermal noise. We study how to define consistent stepping and detachment rates for the motors as functions of the local forces acting on them in such a way that the cargo velocity and run-time match previously specified functions of the external load, which are set on the base of experimental results. We show that due to the influence of the thermal fluctuations this is not a trivial problem, even for the single-motor case. As a solution, we propose a motor stepping dynamics which considers memory on the motor force. This model leads to better results for single-motor transport than the approaches previously considered in the literature. Moreover, it gives a much better prediction for the stall force of the two-motor case, highly compatible with the experimental findings. We also analyze the fast fluctuations of the cargo position and the influence of the viscosity, comparing the proposed model to the standard one, and we show how the differences on the single-motor dynamics propagate to the multiple motor situations. Finally, we find that the one-dimensional character of the models impede an appropriate description of the fast fluctuations of the cargo position at small loads. We show how this problem can be solved by considering two-dimensional models.

  8. Recruitment of EB1, a Master Regulator of Microtubule Dynamics, to the Surface of the Theileria annulata Schizont

    KAUST Repository

    Woods, Kerry L.

    2013-05-09

    The apicomplexan parasite Theileria annulata transforms infected host cells, inducing uncontrolled proliferation and clonal expansion of the parasitized cell population. Shortly after sporozoite entry into the target cell, the surrounding host cell membrane is dissolved and an array of host cell microtubules (MTs) surrounds the parasite, which develops into the transforming schizont. The latter does not egress to invade and transform other cells. Instead, it remains tethered to host cell MTs and, during mitosis and cytokinesis, engages the cell\\'s astral and central spindle MTs to secure its distribution between the two daughter cells. The molecular mechanism by which the schizont recruits and stabilizes host cell MTs is not known. MT minus ends are mostly anchored in the MT organizing center, while the plus ends explore the cellular space, switching constantly between phases of growth and shrinkage (called dynamic instability). Assuming the plus ends of growing MTs provide the first point of contact with the parasite, we focused on the complex protein machinery associated with these structures. We now report how the schizont recruits end-binding protein 1 (EB1), a central component of the MT plus end protein interaction network and key regulator of host cell MT dynamics. Using a range of in vitro experiments, we demonstrate that T. annulata p104, a polymorphic antigen expressed on the schizont surface, functions as a genuine EB1-binding protein and can recruit EB1 in the absence of any other parasite proteins. Binding strictly depends on a consensus SxIP motif located in a highly disordered C-terminal region of p104. We further show that parasite interaction with host cell EB1 is cell cycle regulated. This is the first description of a pathogen-encoded protein to interact with EB1 via a bona-fide SxIP motif. Our findings provide important new insight into the mode of interaction between Theileria and the host cell cytoskeleton. 2013 Woods et al.

  9. Recruitment of EB1, a master regulator of microtubule dynamics, to the surface of the Theileria annulata schizont.

    Directory of Open Access Journals (Sweden)

    Kerry L Woods

    2013-05-01

    Full Text Available The apicomplexan parasite Theileria annulata transforms infected host cells, inducing uncontrolled proliferation and clonal expansion of the parasitized cell population. Shortly after sporozoite entry into the target cell, the surrounding host cell membrane is dissolved and an array of host cell microtubules (MTs surrounds the parasite, which develops into the transforming schizont. The latter does not egress to invade and transform other cells. Instead, it remains tethered to host cell MTs and, during mitosis and cytokinesis, engages the cell's astral and central spindle MTs to secure its distribution between the two daughter cells. The molecular mechanism by which the schizont recruits and stabilizes host cell MTs is not known. MT minus ends are mostly anchored in the MT organizing center, while the plus ends explore the cellular space, switching constantly between phases of growth and shrinkage (called dynamic instability. Assuming the plus ends of growing MTs provide the first point of contact with the parasite, we focused on the complex protein machinery associated with these structures. We now report how the schizont recruits end-binding protein 1 (EB1, a central component of the MT plus end protein interaction network and key regulator of host cell MT dynamics. Using a range of in vitro experiments, we demonstrate that T. annulata p104, a polymorphic antigen expressed on the schizont surface, functions as a genuine EB1-binding protein and can recruit EB1 in the absence of any other parasite proteins. Binding strictly depends on a consensus SxIP motif located in a highly disordered C-terminal region of p104. We further show that parasite interaction with host cell EB1 is cell cycle regulated. This is the first description of a pathogen-encoded protein to interact with EB1 via a bona-fide SxIP motif. Our findings provide important new insight into the mode of interaction between Theileria and the host cell cytoskeleton.

  10. Distributed Coordination of Fractional Dynamical Systems with Exogenous Disturbances

    Directory of Open Access Journals (Sweden)

    Hongyong Yang

    2014-01-01

    Full Text Available Distributed coordination of fractional multiagent systems with external disturbances is studied. The state observer of fractional dynamical system is presented, and an adaptive pinning controller is designed for a little part of agents in multiagent systems without disturbances. This adaptive pinning controller with the state observer can ensure multiple agents' states reaching an expected reference tracking. Based on disturbance observers, the controllers are composited with the pinning controller and the state observer. By applying the stability theory of fractional order dynamical systems, the distributed coordination of fractional multiagent systems with external disturbances can be reached asymptotically.

  11. Microtubules self-repair in response to mechanical stress

    Science.gov (United States)

    Schaedel, Laura; John, Karin; Gaillard, Jérémie; Nachury, Maxence V.; Blanchoin, Laurent; Théry, Manuel

    2015-11-01

    Microtubules--which define the shape of axons, cilia and flagella, and provide tracks for intracellular transport--can be highly bent by intracellular forces, and microtubule structure and stiffness are thought to be affected by physical constraints. Yet how microtubules tolerate the vast forces exerted on them remains unknown. Here, by using a microfluidic device, we show that microtubule stiffness decreases incrementally with each cycle of bending and release. Similar to other cases of material fatigue, the concentration of mechanical stresses on pre-existing defects in the microtubule lattice is responsible for the generation of more extensive damage, which further decreases microtubule stiffness. Strikingly, damaged microtubules were able to incorporate new tubulin dimers into their lattice and recover their initial stiffness. Our findings demonstrate that microtubules are ductile materials with self-healing properties, that their dynamics does not exclusively occur at their ends, and that their lattice plasticity enables the microtubules' adaptation to mechanical stresses.

  12. Dynamic Recruitment of Cdc2 to Specific Microtubule Structures during Mitosis

    Czech Academy of Sciences Publication Activity Database

    Weingartner, M.; Binarová, Pavla; Dryková, Denisa; Achweighofer, A.; David, P.; Heberle, E.; Doonan, J.; Bogre, L.

    2001-01-01

    Roč. 13, - (2001), s. 1929-1943 ISSN 1040-4651 R&D Projects: GA AV ČR IAA5020803 Grant - others:XE(XC) GA QLRT-00454 Keywords : dynamic * recruitment * specific Subject RIV: EE - Microbiology, Virology Impact factor: 11.081, year: 2001

  13. Assembly and control of large microtubule complexes

    Science.gov (United States)

    Korolev, Kirill; Ishihara, Keisuke; Mitchison, Timothy

    Motility, division, and other cellular processes require rapid assembly and disassembly of microtubule structures. We report a new mechanism for the formation of asters, radial microtubule complexes found in very large cells. The standard model of aster growth assumes elongation of a fixed number of microtubules originating from the centrosomes. However, aster morphology in this model does not scale with cell size, and we found evidence for microtubule nucleation away from centrosomes. By combining polymerization dynamics and auto-catalytic nucleation of microtubules, we developed a new biophysical model of aster growth. The model predicts an explosive transition from an aster with a steady-state radius to one that expands as a travelling wave. At the transition, microtubule density increases continuously, but aster growth rate discontinuously jumps to a nonzero value. We tested our model with biochemical perturbations in egg extract and confirmed main theoretical predictions including the jump in the growth rate. Our results show that asters can grow even though individual microtubules are short and unstable. The dynamic balance between microtubule collapse and nucleation could be a general framework for the assembly and control of large microtubule complexes. NIH GM39565; Simons Foundation 409704; Honjo International 486 Scholarship Foundation.

  14. Effective dynamics along given reaction coordinates, and reaction rate theory.

    Science.gov (United States)

    Zhang, Wei; Hartmann, Carsten; Schütte, Christof

    2016-12-22

    In molecular dynamics and related fields one considers dynamical descriptions of complex systems in full (atomic) detail. In order to reduce the overwhelming complexity of realistic systems (high dimension, large timescale spread, limited computational resources) the projection of the full dynamics onto some reaction coordinates is examined in order to extract statistical information like free energies or reaction rates. In this context, the effective dynamics that is induced by the full dynamics on the reaction coordinate space has attracted considerable attention in the literature. In this article, we contribute to this discussion: we first show that if we start with an ergodic diffusion process whose invariant measure is unique then these properties are inherited by the effective dynamics. Then, we give equations for the effective dynamics, discuss whether the dominant timescales and reaction rates inferred from the effective dynamics are accurate approximations of such quantities for the full dynamics, and compare our findings to results from approaches like Mori-Zwanzig, averaging, or homogenization. Finally, by discussing the algorithmic realization of the effective dynamics, we demonstrate that recent algorithmic techniques like the "equation-free" approach and the "heterogeneous multiscale method" can be seen as special cases of our approach.

  15. Biological Information Processing in Single Microtubules

    Science.gov (United States)

    2014-03-05

    generated by synchronized oscillations of microtubules, centrosomes and chromosomes regulate the dynamics of mitosis and meiosis, Yue Zhao and Qimin...of frequency by a single microtubule. Green arrows depict the peaks that appear in absorption and disappear in transmission. Purple arrows show

  16. Going Green : Framing Effects in a Dynamic Coordination Game

    NARCIS (Netherlands)

    Gerlagh, Reyer; van der Heijden, Eline

    2015-01-01

    We experimentally study decision-making in a novel dynamic coordination game. The game captures features of a transition between externality networks. Groups consisting of three subjects start in a stable benchmark equilibrium with network externality. Over seven rounds, they can transit to an

  17. Functional coordination of muscles underlying changes in behavioural dynamics.

    Science.gov (United States)

    Vernooij, Carlijn A; Rao, Guillaume; Perdikis, Dionysios; Huys, Raoul; Jirsa, Viktor K; Temprado, Jean-Jacques

    2016-06-10

    The dynamical systems approach addresses Bernstein's degrees of freedom problem by assuming that the neuro-musculo-skeletal system transiently assembles and dismantles its components into functional units (or synergies) to meet task demands. Strikingly, little is known from a dynamical point of view about the functioning of the muscular sub-system in this process. To investigate the interaction between the dynamical organisation at muscular and behavioural levels, we searched for specific signatures of a phase transition in muscular coordination when a transition is displayed at the behavioural level. Our results provide evidence that, during Fitts' task when behaviour switches to a different dynamical regime, muscular activation displays typical signatures of a phase transition; a reorganisation in muscular coordination patterns accompanied by a peak in the variability of muscle activation. This suggests that consistent changes occur in coordination processes across the different levels of description (i.e., behaviour and muscles). Specifically, in Fitts' task, target size acts as a control parameter that induces a destabilisation and a reorganisation of coordination patterns at different levels of the neuro-musculo-skeletal system.

  18. Microtubule heterogeneity of Ornithogalum umbellatum ovary epidermal cells: non-stable cortical microtubules and stable lipotubuloid microtubules.

    Science.gov (United States)

    Kwiatkowska, Maria; Stępiński, Dariusz; Polit, Justyna T; Popłońska, Katarzyna; Wojtczak, Agnieszka

    2011-01-01

    Lipotubuloids, structures containing lipid bodies and microtubules, are described in ovary epidermal cells of Ornithogalum umbellatum. Microtubules of lipotubuloids can be fixed in electron microscope fixative containing only buffered OsO(4) or in glutaraldehyde with OsO(4) post-fixation, or in a mixture of OsO(4) and glutaraldehyde. None of these substances fixes cortical microtubules of ovary epidermis of this plant which is characterized by dynamic longitudinal growth. However, cortical microtubules can be fixed with cold methanol according immunocytological methods with the use of β-tubulin antibodies and fluorescein. The existence of cortical microtubules has also been evidenced by EM observations solely after the use of taxol, microtubule stabilizer, and fixation in a glutaraldehyde/OsO(4) mixture. These microtubules mostly lie transversely, sometimes obliquely, and rarely parallel to the cell axis. Staining, using Ruthenium Red and silver hexamine, has revealed that lipotubuloid microtubules surface is covered with polysaccharides. The presumption has been made that the presence of a polysaccharide layer enhances the stability of lipotubuloid microtubules.

  19. Microtubule-Organizing Centers.

    Science.gov (United States)

    Wu, Jingchao; Akhmanova, Anna

    2017-10-06

    The organization of microtubule networks is crucial for controlling chromosome segregation during cell division, for positioning and transport of different organelles, and for cell polarity and morphogenesis. The geometry of microtubule arrays strongly depends on the localization and activity of the sites where microtubules are nucleated and where their minus ends are anchored. Such sites are often clustered into structures known as microtubule-organizing centers, which include the centrosomes in animals and spindle pole bodies in fungi. In addition, other microtubules, as well as membrane compartments such as the cell nucleus, the Golgi apparatus, and the cell cortex, can nucleate, stabilize, and tether microtubule minus ends. These activities depend on microtubule-nucleating factors, such as γ-tubulin-containing complexes and their activators and receptors, and microtubule minus end-stabilizing proteins with their binding partners. Here, we provide an overview of the current knowledge on how such factors work together to control microtubule organization in different systems.

  20. Modeling microtubule oscillations

    DEFF Research Database (Denmark)

    Jobs, E.; Wolf, D.E.; Flyvbjerg, H.

    1997-01-01

    Synchronization of molecular reactions in a macroscopic volume may cause the volume's physical properties to change dynamically and thus reveal much about the reactions. As an example, experimental time series for so-called microtubule oscillations are analyzed in terms of a minimal model...... for this complex polymerization-depolymerization cycle. The model reproduces well the qualitatively different time series that result from different experimental conditions, and illuminates the role and importance of individual processes in the cycle. Simple experiments are suggested that can further test...... and define the model and the polymer's reaction cycle....

  1. Moonlighting microtubule-associated proteins: regulatory functions by day and pathological functions at night.

    Science.gov (United States)

    Oláh, J; Tőkési, N; Lehotzky, A; Orosz, F; Ovádi, J

    2013-11-01

    The sensing, integrating, and coordinating features of the eukaryotic cells are achieved by the complex ultrastructural arrays and multifarious functions of the cytoskeletal network. Cytoskeleton comprises fibrous protein networks of microtubules, actin, and intermediate filaments. These filamentous polymer structures are highly dynamic and undergo constant and rapid reorganization during cellular processes. The microtubular system plays a crucial role in the brain, as it is involved in an enormous number of cellular events including cell differentiation and pathological inclusion formation. These multifarious functions of microtubules can be achieved by their decoration with proteins/enzymes that exert specific effects on the dynamics and organization of the cytoskeleton and mediate distinct functions due to their moonlighting features. This mini-review focuses on two aspects of the microtubule cytoskeleton. On the one hand, we describe the heteroassociation of tubulin/microtubules with metabolic enzymes, which in addition to their catalytic activities stabilize microtubule structures via their cross-linking functions. On the other hand, we focus on the recently identified moonlighting tubulin polymerization promoting protein, TPPP/p25. TPPP/p25 is a microtubule-associated protein and it displays distinct physiological or pathological (aberrant) functions; thus it is a prototype of Neomorphic Moonlighting Proteins. The expression of TPPP/p25 is finely controlled in the human brain; this protein is indispensable for the development of projections of oligodendrocytes that are responsible for the ensheathment of axons. The nonphysiological, higher or lower TPPP/p25 level leads to distinct CNS diseases. Mechanisms contributing to the control of microtubule stability and dynamics by metabolic enzymes and TPPP/p25 will be discussed. Copyright © 2013 Wiley Periodicals, Inc.

  2. The use of compressive sensing and peak detection in the reconstruction of microtubules length time series in the process of dynamic instability.

    Science.gov (United States)

    Mahrooghy, Majid; Yarahmadian, Shantia; Menon, Vineetha; Rezania, Vahid; Tuszynski, Jack A

    2015-10-01

    Microtubules (MTs) are intra-cellular cylindrical protein filaments. They exhibit a unique phenomenon of stochastic growth and shrinkage, called dynamic instability. In this paper, we introduce a theoretical framework for applying Compressive Sensing (CS) to the sampled data of the microtubule length in the process of dynamic instability. To reduce data density and reconstruct the original signal with relatively low sampling rates, we have applied CS to experimental MT lament length time series modeled as a Dichotomous Markov Noise (DMN). The results show that using CS along with the wavelet transform significantly reduces the recovery errors comparing in the absence of wavelet transform, especially in the low and the medium sampling rates. In a sampling rate ranging from 0.2 to 0.5, the Root-Mean-Squared Error (RMSE) decreases by approximately 3 times and between 0.5 and 1, RMSE is small. We also apply a peak detection technique to the wavelet coefficients to detect and closely approximate the growth and shrinkage of MTs for computing the essential dynamic instability parameters, i.e., transition frequencies and specially growth and shrinkage rates. The results show that using compressed sensing along with the peak detection technique and wavelet transform in sampling rates reduces the recovery errors for the parameters. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Coordination of Cellular Dynamics Contributes to Tooth Epithelium Deformations

    Science.gov (United States)

    Morita, Ritsuko; Kihira, Miho; Nakatsu, Yousuke; Nomoto, Yohei; Ogawa, Miho; Ohashi, Kazumasa; Mizuno, Kensaku; Tachikawa, Tetsuhiko; Ishimoto, Yukitaka; Morishita, Yoshihiro; Tsuji, Takashi

    2016-01-01

    The morphologies of ectodermal organs are shaped by appropriate combinations of several deformation modes, such as invagination and anisotropic tissue elongation. However, how multicellular dynamics are coordinated during deformation processes remains to be elucidated. Here, we developed a four-dimensional (4D) analysis system for tracking cell movement and division at a single-cell resolution in developing tooth epithelium. The expression patterns of a Fucci probe clarified the region- and stage-specific cell cycle patterns within the tooth germ, which were in good agreement with the pattern of the volume growth rate estimated from tissue-level deformation analysis. Cellular motility was higher in the regions with higher growth rates, while the mitotic orientation was significantly biased along the direction of tissue elongation in the epithelium. Further, these spatio-temporal patterns of cellular dynamics and tissue-level deformation were highly correlated with that of the activity of cofilin, which is an actin depolymerization factor, suggesting that the coordination of cellular dynamics via actin remodeling plays an important role in tooth epithelial morphogenesis. Our system enhances the understanding of how cellular behaviors are coordinated during ectodermal organogenesis, which cannot be observed from histological analyses. PMID:27588418

  4. GDP-tubulin incorporation into growing microtubules modulates polymer stability.

    Science.gov (United States)

    Valiron, Odile; Arnal, Isabelle; Caudron, Nicolas; Job, Didier

    2010-06-04

    Microtubule growth proceeds through the endwise addition of nucleotide-bound tubulin dimers. The microtubule wall is composed of GDP-tubulin subunits, which are thought to come exclusively from the incorporation of GTP-tubulin complexes at microtubule ends followed by GTP hydrolysis within the polymer. The possibility of a direct GDP-tubulin incorporation into growing polymers is regarded as hardly compatible with recent structural data. Here, we have examined GTP-tubulin and GDP-tubulin incorporation into polymerizing microtubules using a minimal assembly system comprised of nucleotide-bound tubulin dimers, in the absence of free nucleotide. We find that GDP-tubulin complexes can efficiently co-polymerize with GTP-tubulin complexes during microtubule assembly. GDP-tubulin incorporation into microtubules occurs with similar efficiency during bulk microtubule assembly as during microtubule growth from seeds or centrosomes. Microtubules formed from GTP-tubulin/GDP-tubulin mixtures display altered microtubule dynamics, in particular a decreased shrinkage rate, apparently due to intrinsic modifications of the polymer disassembly properties. Thus, although microtubules polymerized from GTP-tubulin/GDP-tubulin mixtures or from homogeneous GTP-tubulin solutions are both composed of GDP-tubulin subunits, they have different dynamic properties, and this may reveal a novel form of microtubule "structural plasticity."

  5. An analytical method for solving exact solutions of a nonlinear evolution equation describing the dynamics of ionic currents along microtubules

    Directory of Open Access Journals (Sweden)

    Md. Nur Alam

    2017-11-01

    Full Text Available In this article, a variety of solitary wave solutions are observed for microtubules (MTs. We approach the problem by treating the solutions as nonlinear RLC transmission lines and then find exact solutions of Nonlinear Evolution Equations (NLEEs involving parameters of special interest in nanobiosciences and biophysics. We determine hyperbolic, trigonometric, rational and exponential function solutions and obtain soliton-like pulse solutions for these equations. A comparative study against other methods demonstrates the validity of the technique that we developed and demonstrates that our method provides additional solutions. Finally, using suitable parameter values, we plot 2D and 3D graphics of the exact solutions that we observed using our method. Keywords: Analytical method, Exact solutions, Nonlinear evolution equations (NLEEs of microtubules, Nonlinear RLC transmission lines

  6. Mechanics of microtubules: effects of protofilament orientation.

    Science.gov (United States)

    Donhauser, Zachary J; Jobs, William B; Binka, Edem C

    2010-09-08

    Microtubules are hollow cylindrical polymers of the protein tubulin that play a number of important dynamic and structural roles in eukaryotic cells. Both in vivo and in vitro microtubules can exist in several possible configurations, differing in the number of protofilaments, helical rise of tubulin dimers, and protofilament skew angle with respect to the main tube axis. Here, finite element modeling is applied to examine the mechanical response of several known microtubule types when subjected to radial deformation. The data presented here provide an important insight into microtubule stiffness and reveal that protofilament orientation does not affect radial stiffness. Rather, stiffness is primarily dependent on the effective Young's modulus of the polymerized material and the effective radius of the microtubule. These results are also directly correlated to atomic force microscopy nanoindentation measurements to allow a more detailed interpretation of previous experiments. When combined with experimental data that show a significant difference between microtubules stabilized with a slowly hydrolyzable GTP analog and microtubules stabilized with paclitaxel, the finite element data suggest that paclitaxel increases the overall radial flexibility of the microtubule wall. Copyright 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  7. Lateral motion and bending of microtubules studied with a new single-filament tracking routine in living cells.

    Science.gov (United States)

    Pallavicini, Carla; Levi, Valeria; Wetzler, Diana E; Angiolini, Juan F; Benseñor, Lorena; Despósito, Marcelo A; Bruno, Luciana

    2014-06-17

    The cytoskeleton is involved in numerous cellular processes such as migration, division, and contraction and provides the tracks for transport driven by molecular motors. Therefore, it is very important to quantify the mechanical behavior of the cytoskeletal filaments to get a better insight into cell mechanics and organization. It has been demonstrated that relevant mechanical properties of microtubules can be extracted from the analysis of their motion and shape fluctuations. However, tracking individual filaments in living cells is extremely complex due, for example, to the high and heterogeneous background. We introduce a believed new tracking algorithm that allows recovering the coordinates of fluorescent microtubules with ∼9 nm precision in in vitro conditions. To illustrate potential applications of this algorithm, we studied the curvature distributions of fluorescent microtubules in living cells. By performing a Fourier analysis of the microtubule shapes, we found that the curvatures followed a thermal-like distribution as previously reported with an effective persistence length of ∼20 μm, a value significantly smaller than that measured in vitro. We also verified that the microtubule-associated protein XTP or the depolymerization of the actin network do not affect this value; however, the disruption of intermediate filaments decreased the persistence length. Also, we recovered trajectories of microtubule segments in actin or intermediate filament-depleted cells, and observed a significant increase of their motion with respect to untreated cells showing that these filaments contribute to the overall organization of the microtubule network. Moreover, the analysis of trajectories of microtubule segments in untreated cells showed that these filaments presented a slower but more directional motion in the cortex with respect to the perinuclear region, and suggests that the tracking routine would allow mapping the microtubule dynamical organization in cells

  8. Cellular reprogramming dynamics follow a simple 1D reaction coordinate

    Science.gov (United States)

    Teja Pusuluri, Sai; Lang, Alex H.; Mehta, Pankaj; Castillo, Horacio E.

    2018-01-01

    Cellular reprogramming, the conversion of one cell type to another, induces global changes in gene expression involving thousands of genes, and understanding how cells globally alter their gene expression profile during reprogramming is an ongoing problem. Here we reanalyze time-course data on cellular reprogramming from differentiated cell types to induced pluripotent stem cells (iPSCs) and show that gene expression dynamics during reprogramming follow a simple 1D reaction coordinate. This reaction coordinate is independent of both the time it takes to reach the iPSC state as well as the details of the experimental protocol used. Using Monte-Carlo simulations, we show that such a reaction coordinate emerges from epigenetic landscape models where cellular reprogramming is viewed as a ‘barrier-crossing’ process between cell fates. Overall, our analysis and model suggest that gene expression dynamics during reprogramming follow a canonical trajectory consistent with the idea of an ‘optimal path’ in gene expression space for reprogramming.

  9. Huntingtin coordinates the dynein-mediated dynamic positioning of endosomes and lysosomes

    Science.gov (United States)

    Caviston, Juliane P.; Zajac, Allison L.; Tokito, Mariko; Holzbaur, Erika L.F.

    2011-01-01

    Huntingtin (Htt) is a membrane-associated scaffolding protein that interacts with microtubule motors as well as actin-associated adaptor molecules. We examined a role for Htt in the dynein-mediated intracellular trafficking of endosomes and lysosomes. In HeLa cells depleted of either Htt or dynein, early, recycling, and late endosomes (LE)/lysosomes all become dispersed. Despite altered organelle localization, kinetic assays indicate only minor defects in intracellular trafficking. Expression of full-length Htt is required to restore organelle localization in Htt-depleted cells, supporting a role for Htt as a scaffold that promotes functional interactions along its length. In dynein-depleted cells, LE/lysosomes accumulate in tight patches near the cortex, apparently enmeshed by cortactin-positive actin filaments; Latrunculin B-treatment disperses these patches. Peripheral LE/lysosomes in dynein-depleted cells no longer colocalize with microtubules. Htt may be required for this off-loading, as the loss of microtubule association is not seen in Htt-depleted cells or in cells depleted of both dynein and Htt. Inhibition of kinesin-1 relocalizes peripheral LE/lysosomes induced by Htt depletion but not by dynein depletion, consistent with their detachment from microtubules upon dynein knockdown. Together, these data support a model of Htt as a facilitator of dynein-mediated trafficking that may regulate the cytoskeletal association of dynamic organelles. PMID:21169558

  10. Game-theoretic interference coordination approaches for dynamic spectrum access

    CERN Document Server

    Xu, Yuhua

    2016-01-01

    Written by experts in the field, this book is based on recent research findings in dynamic spectrum access for cognitive radio networks. It establishes a game-theoretic framework and presents cutting-edge technologies for distributed interference coordination. With game-theoretic formulation and the designed distributed learning algorithms, it provides insights into the interactions between multiple decision-makers and the converging stable states. Researchers, scientists and engineers in the field of cognitive radio networks will benefit from the book, which provides valuable information, useful methods and practical algorithms for use in emerging 5G wireless communication.

  11. Potent antiproliferative cembrenoids accumulate in tobacco upon infection with Rhodococcus fascians and trigger unusual microtubule dynamics in human glioblastoma cells.

    Directory of Open Access Journals (Sweden)

    Aminata P Nacoulma

    Full Text Available AIMS: Though plant metabolic changes are known to occur during interactions with bacteria, these were rarely challenged for pharmacologically active compounds suitable for further drug development. Here, the occurrence of specific chemicals with antiproliferative activity against human cancer cell lines was evidenced in hyperplasia (leafy galls induced when plants interact with particular phytopathogens, such as the Actinomycete Rhodococcus fascians. METHODS: We examined leafy galls fraction F3.1.1 on cell proliferation, cell division and cytoskeletal disorganization of human cancer cell lines using time-lapse videomicroscopy imaging, combined with flow cytometry and immunofluorescence analysis. We determined the F3.1.1-fraction composition by gas chromatography coupled to mass spectrometry. RESULTS: The leafy galls induced on tobacco by R. fascians yielded fraction F3.1.1 which inhibited proliferation of glioblastoma U373 cells with an IC50 of 4.5 µg/mL, F.3.1.1 was shown to increase cell division duration, cause nuclear morphological deformations and cell enlargement, and, at higher concentrations, karyokinesis defects leading to polyploidization and apoptosis. F3.1.1 consisted of a mixture of isomers belonging to the cembrenoids. The cellular defects induced by F3.1.1 were caused by a peculiar cytoskeletal disorganization, with the occurrence of fragmented tubulin and strongly organized microtubule aggregates within the same cell. Colchicine, paclitaxel, and cembrene also affected U373 cell proliferation and karyokinesis, but the induced microtubule rearrangement was very different from that provoked by F3.1.1. Altogether our data indicate that the cembrenoid isomers in F3.1.1 have a unique mode of action and are able to simultaneously modulate microtubule polymerization and stability.

  12. Higher-Order Synaptic Interactions Coordinate Dynamics in Recurrent Networks.

    Directory of Open Access Journals (Sweden)

    Brendan Chambers

    2016-08-01

    Full Text Available Linking synaptic connectivity to dynamics is key to understanding information processing in neocortex. Circuit dynamics emerge from complex interactions of interconnected neurons, necessitating that links between connectivity and dynamics be evaluated at the network level. Here we map propagating activity in large neuronal ensembles from mouse neocortex and compare it to a recurrent network model, where connectivity can be precisely measured and manipulated. We find that a dynamical feature dominates statistical descriptions of propagating activity for both neocortex and the model: convergent clusters comprised of fan-in triangle motifs, where two input neurons are themselves connected. Fan-in triangles coordinate the timing of presynaptic inputs during ongoing activity to effectively generate postsynaptic spiking. As a result, paradoxically, fan-in triangles dominate the statistics of spike propagation even in randomly connected recurrent networks. Interplay between higher-order synaptic connectivity and the integrative properties of neurons constrains the structure of network dynamics and shapes the routing of information in neocortex.

  13. Collaborative multi-agent reinforcement learning based on a novel coordination tree frame with dynamic partition

    NARCIS (Netherlands)

    Fang, M.; Groen, F.C.A.; Li, H.; Zhang, J.

    2014-01-01

    In the research of team Markov games, computing the coordinate team dynamically and determining the joint action policy are the main problems. To deal with the first problem, a dynamic team partitioning method is proposed based on a novel coordinate tree frame. We build a coordinate tree with

  14. Rho-associated coiled-coil kinase (ROCK) protein controls microtubule dynamics in a novel signaling pathway that regulates cell migration.

    Science.gov (United States)

    Schofield, Alice V; Steel, Rohan; Bernard, Ora

    2012-12-21

    The two members of the Rho-associated coiled-coil kinase (ROCK1 and 2) family are established regulators of actin dynamics that are involved in the regulation of the cell cycle as well as cell motility and invasion. Here, we discovered a novel signaling pathway whereby ROCK regulates microtubule (MT) acetylation via phosphorylation of the tubulin polymerization promoting protein 1 (TPPP1/p25). We show that ROCK phosphorylation of TPPP1 inhibits the interaction between TPPP1 and histone deacetylase 6 (HDAC6), which in turn results in increased HDAC6 activity followed by a decrease in MT acetylation. As a consequence, we show that TPPP1 phosphorylation by ROCK increases cell migration and invasion via modulation of cellular acetyl MT levels. We establish here that the ROCK-TPPP1-HDAC6 signaling pathway is important for the regulation of cell migration and invasion.

  15. Bimanual coordination and musical experience : The role of intrinsic dynamics and behavioral information

    NARCIS (Netherlands)

    Verheul, M.H.G.; Geuze, RH

    Rhythmic interlimb coordination arises from the interaction of intrinsic dynamics and behavioral information, that is, intention, memory, or external information specifying the required coordination pattern. This study investigates the influence of the content of memorized behavioral information on

  16. Microtubules Growth Rate Alteration in Human Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Irina B. Alieva

    2010-01-01

    Full Text Available To understand how microtubules contribute to the dynamic reorganization of the endothelial cell (EC cytoskeleton, we established an EC model expressing EB3-GFP, a protein that marks microtubule plus-ends. Using this model, we were able to measure microtubule growth rate at the centrosome region and near the cell periphery of a single human EC and in the EC monolayer. We demonstrate that the majority of microtubules in EC are dynamic, the growth rate of their plus-ends is highest in the internal cytoplasm, in the region of the centrosome. Growth rate of microtubule plus-ends decreases from the cell center toward the periphery. Our data suggest the existing mechanism(s of local regulation of microtubule plus-ends growth in EC. Microtubule growth rate in the internal cytoplasm of EC in the monolayer is lower than that of single EC suggesting the regulatory effect of cell-cell contacts. Centrosomal microtubule growth rate distribution in single EC indicated the presence of two subpopulations of microtubules with “normal” (similar to those in monolayer EC and “fast” (three times as much growth rates. Our results indicate functional interactions between cell-cell contacts and microtubules.

  17. Coordination dynamics in a socially situated nervous system

    Directory of Open Access Journals (Sweden)

    Charles A. Coey

    2012-06-01

    Full Text Available Traditional theories of cognitive science have typically accounted for the organization of human behavior by detailing the requisite computational or representational functions and identifying neurological mechanisms that might perform these functions. Put simply, such approaches hold that neural activity causes behavior. This same general framework has been extended to accounts of human social behavior via explanatory concepts such as common-coding and co-representation, and much recent neurological research has been devoted to brain structures that might execute these social-cognitive functions. Although these neural processes are unquestionably involved in the organization of human social interactions, there is good reason to question whether they should be accorded causal primacy. Specifically, research on interpersonal rhythmic motor coordination suggests that the organization of human behavior, including social behavior, can result from self-organizing processes and the lawful dynamics of animal-environment systems. Here we review this research, and in doing so propose that the role of the nervous system in joint action and interpersonal coordination be recast from the sole cause of behavior to one of many interdependent processes.

  18. NMR with generalized dynamics of spin and spatial coordinates

    International Nuclear Information System (INIS)

    Lee, Chang Jae.

    1987-11-01

    This work is concerned with theoretical and experimental aspects of the generalized dynamics of nuclear spin and spatial coordinates under magnetic-field pulses and mechanical motions. The main text begins with an introduction to the concept of ''fictitious'' interactions. A systematic method for constructing fictitious spin-1/2 operators is given. The interaction of spins with a quantized-field is described. The concept of the fictitious interactions under the irradiation of multiple pulses is utilized to design sequences for selectively averaging linear and bilinear operators. Relations between the low-field sequences and high-field iterative schemes are clarified. These relations and the transformation properties of the spin operators are exploited to develop schemes for heteronuclear decoupling of multi-level systems. The resulting schemes are evaluated for heteronuclear decoupling of a dilute spin-1/2 from a spin-1 in liquid crystal samples and from a homonuclear spin-1/2 pair in liquids. A relation between the spin and the spatial variables is discussed. The transformation properties of the spin operators are applied to spatial coordinates and utilized to develop methods for removing the orientational dependence responsible for line broadening in a powder sample. Elimination of the second order quadrupole effects, as well as the first order anisotropies is discussed. It is shown that various sources of line broadening can effectively be eliminated by spinning and/or hopping the sample about judiciously chosen axes along with appropriate radio-frequency pulse sequences

  19. Membrane dynamics in the intrinsic light-front coordinates

    International Nuclear Information System (INIS)

    Aragone, C.; Restuccia, A.; Torrealba, R.

    1991-01-01

    The authors study the dynamics of the membrane, using internal light-front (LF) coordinates. The set of constraints, although equivalent to the standard one, is different. The intrinsic LF gauge is defined. Four additional, alternative gauge-fixing conditions are analyzed. Two of them polynomialize the system, while the other two are convenient for studying the initial-value problem. In particular, one of them is also extrinsically (i.e., in the ambient space) light-front. In this gauge, the system is shown to be consistently reduced to attain a canonical form in terms of pure transverse variables. Two constraints on these variables still hold, clearly showing the presence, as they must, of D - 3 degrees of freedom. Finally, the initial-value problem in this intrinsic-extrinsic. LF gauge is solved. Although the paper is based on the first-order action, the LF-Hamiltonian approach is discussed too

  20. Dynamic coordinated control laws in multiple agent models

    International Nuclear Information System (INIS)

    Morgan, David S.; Schwartz, Ira B.

    2005-01-01

    We present an active control scheme of a kinetic model of swarming. It has been shown previously that the global control scheme for the model, presented in [Systems Control Lett. 52 (2004) 25], gives rise to spontaneous collective organization of agents into a unified coherent swarm, via steering controls and utilizing long-range attractive and short-range repulsive interactions. We extend these results by presenting control laws whereby a single swarm is broken into independently functioning subswarm clusters. The transition between one coordinated swarm and multiple clustered subswarms is managed simply with a homotopy parameter. Additionally, we present as an alternate formulation, a local control law for the same model, which implements dynamic barrier avoidance behavior, and in which swarm coherence emerges spontaneously

  1. Coordinated scheduling for dynamic real-time systems

    Science.gov (United States)

    Natarajan, Swaminathan; Zhao, Wei

    1994-01-01

    In this project, we addressed issues in coordinated scheduling for dynamic real-time systems. In particular, we concentrated on design and implementation of a new distributed real-time system called R-Shell. The design objective of R-Shell is to provide computing support for space programs that have large, complex, fault-tolerant distributed real-time applications. In R-shell, the approach is based on the concept of scheduling agents, which reside in the application run-time environment, and are customized to provide just those resource management functions which are needed by the specific application. With this approach, we avoid the need for a sophisticated OS which provides a variety of generalized functionality, while still not burdening application programmers with heavy responsibility for resource management. In this report, we discuss the R-Shell approach, summarize the achievement of the project, and describe a preliminary prototype of R-Shell system.

  2. Hematopoietic differentiation: a coordinated dynamical process towards attractor stable states

    Directory of Open Access Journals (Sweden)

    Rossi Simona

    2010-06-01

    Full Text Available Abstract Background The differentiation process, proceeding from stem cells towards the different committed cell types, can be considered as a trajectory towards an attractor of a dynamical process. This view, taking into consideration the transcriptome and miRNome dynamics considered as a whole, instead of looking at few 'master genes' driving the system, offers a novel perspective on this phenomenon. We investigated the 'differentiation trajectories' of the hematopoietic system considering a genome-wide scenario. Results We developed serum-free liquid suspension unilineage cultures of cord blood (CB CD34+ hematopoietic progenitor cells through erythroid (E, megakaryocytic (MK, granulocytic (G and monocytic (Mo pathways. These cultures recapitulate physiological hematopoiesis, allowing the analysis of almost pure unilineage precursors starting from initial differentiation of HPCs until terminal maturation. By analyzing the expression profile of protein coding genes and microRNAs in unilineage CB E, MK, G and Mo cultures, at sequential stages of differentiation and maturation, we observed a coordinated, fully interconnected and scalable character of cell population behaviour in both transcriptome and miRNome spaces reminiscent of an attractor-like dynamics. MiRNome and transcriptome space differed for a still not terminally committed behaviour of microRNAs. Conclusions Consistent with their roles, the transcriptome system can be considered as the state space of a cell population, while the continuously evolving miRNA space corresponds to the tuning system necessary to reach the attractor. The behaviour of miRNA machinery could be of great relevance not only for the promise of reversing the differentiated state but even for tumor biology.

  3. Coordination of membrane and actin cytoskeleton dynamics during filopodia protrusion.

    Directory of Open Access Journals (Sweden)

    Changsong Yang

    2009-05-01

    Full Text Available Leading edge protrusion of migrating cells involves tightly coordinated changes in the plasma membrane and actin cytoskeleton. It remains unclear whether polymerizing actin filaments push and deform the membrane, or membrane deformation occurs independently and is subsequently stabilized by actin filaments. To address this question, we employed an ability of the membrane-binding I-BAR domain of IRSp53 to uncouple the membrane and actin dynamics and to induce filopodia in expressing cells. Using time-lapse imaging and electron microscopy of IRSp53-I-BAR-expressing B16F1 melanoma cells, we demonstrate that cells are not able to protrude or maintain durable long extensions without actin filaments in their interior, but I-BAR-dependent membrane deformation can create a small and transient space at filopodial tips that is subsequently filled with actin filaments. Moreover, the expressed I-BAR domain forms a submembranous coat that may structurally support these transient actin-free protrusions until they are further stabilized by the actin cytoskeleton. Actin filaments in the I-BAR-induced filopodia, in contrast to normal filopodia, do not have a uniform length, are less abundant, poorly bundled, and display erratic dynamics. Such unconventional structural organization and dynamics of actin in I-BAR-induced filopodia suggests that a typical bundle of parallel actin filaments is not necessary for generation and mechanical support of the highly asymmetric filopodial geometry. Together, our data suggest that actin filaments may not directly drive the protrusion, but only stabilize the space generated by the membrane deformation; yet, such stabilization is necessary for efficient protrusion.

  4. Relation between coordinate systems describing the dynamics of a loaded Stewart platform

    Science.gov (United States)

    Petrova, V. I.

    2018-05-01

    The paper puts forward formulae for transformation of coordinates in three coordinate frames used for the study of motion of a loaded Stewart platform, which is the central mechanism of the dynamic bench. A new method for finding the law of variation of coordinates is proposed. This method depends on solving the problem-specific system of differential equations.

  5. Effect of radiation on microtubule structure in cancer cells

    International Nuclear Information System (INIS)

    Tripath, Shambhoo Sharan; Panda, Dulal; Jayakumar, S.; Maikho, Thoh; Sandur, Santosh Kumar

    2017-01-01

    Microtubules (MT) are dynamic structural cellular components. In proliferating cells, they are essential components in cell division through the formation of the mitotic spindle. Radiotherapy is an integral part of cancer treatment for most of the solid cancers. Scanty data exists in the literature related to how ionizing radiation affects microtubule reorganization in tumor cells. In the present study, breast cancer cell line (MCF-7 cells) was exposed to different doses of radiation (2-10Gy). Cells were cultured for 24 h, fixed and stained with antitubulin antibody and subjected to immunofluorescence microscopy. In another experiment, cells were subjected to cold treatment for 5 min or 30 min for studying the disassembly of microtubules after 24 h of irradiation. Further, these cells were incubated at 37°C for 20 min for studying the reassembly of microtubules. Acetylation of microtubule was also examined after exposure of cells to radiation. Experiments were also performed by combining radiation with low concentration of CXI-Benzo 84 (MT destabilizing agent 1 and 2.5 uM). Exposure of MCF-7 cells to radiation lead to destabilization of microtubules. Interestingly, destabilization of microtubule was faster upon cold treatment in irradiated group as compared to control group. These cells failed to re-stabilize at 37°C. Radiation also reduced the acetylation level of microtubule. Combination treatment of CXI-Benzo 84 with radiation exhibited additive effect in terms of depolymerization of MT. Our results suggest that ionizing radiation indeed modulates microtubule dynamics. (author)

  6. Microtubules: A network for solitary waves

    Directory of Open Access Journals (Sweden)

    Zdravković Slobodan

    2017-01-01

    Full Text Available In the present paper we deal with nonlinear dynamics of microtubules. The structure and role of microtubules in cells are explained as well as one of models explaining their dynamics. Solutions of the crucial nonlinear differential equation depend on used mathematical methods. Two commonly used procedures, continuum and semi-discrete approximations, are explained. These solutions are solitary waves usually called as kink solitons, breathers and bell-type solitons. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. III45010

  7. Automatic generation of active coordinates for quantum dynamics calculations: Application to the dynamics of benzene photochemistry

    International Nuclear Information System (INIS)

    Lasorne, Benjamin; Sicilia, Fabrizio; Bearpark, Michael J.; Robb, Michael A.; Worth, Graham A.; Blancafort, Lluis

    2008-01-01

    A new practical method to generate a subspace of active coordinates for quantum dynamics calculations is presented. These reduced coordinates are obtained as the normal modes of an analytical quadratic representation of the energy difference between excited and ground states within the complete active space self-consistent field method. At the Franck-Condon point, the largest negative eigenvalues of this Hessian correspond to the photoactive modes: those that reduce the energy difference and lead to the conical intersection; eigenvalues close to 0 correspond to bath modes, while modes with large positive eigenvalues are photoinactive vibrations, which increase the energy difference. The efficacy of quantum dynamics run in the subspace of the photoactive modes is illustrated with the photochemistry of benzene, where theoretical simulations are designed to assist optimal control experiments

  8. Motor Coordination Dynamics Underlying Graphic Motion in 7- to 11-Year-Old Children

    Science.gov (United States)

    Danna, Jeremy; Enderli, Fabienne; Athenes, Sylvie; Zanone, Pier-Giorgio

    2012-01-01

    Using concepts and tools of a dynamical system approach in order to understand motor coordination underlying graphomotor skills, the aim of the current study was to establish whether the basic coordination dynamics found in adults is already established in children at elementary school, when handwriting is trained and eventually acquired. In the…

  9. The Drosophila Microtubule-Associated Protein Mars Stabilizes Mitotic Spindles by Crosslinking Microtubules through Its N-Terminal Region

    DEFF Research Database (Denmark)

    Zhang, Gang; Beati, Hamze; Nilsson, Jakob

    2013-01-01

    Correct segregation of genetic material relies on proper assembly and maintenance of the mitotic spindle. How the highly dynamic microtubules (MTs) are maintained in stable mitotic spindles is a key question to be answered. Motor and non-motor microtubule associated proteins (MAPs) have been...

  10. Multiscale modeling and simulation of microtubule-motor-protein assemblies

    Science.gov (United States)

    Gao, Tong; Blackwell, Robert; Glaser, Matthew A.; Betterton, M. D.; Shelley, Michael J.

    2015-12-01

    Microtubules and motor proteins self-organize into biologically important assemblies including the mitotic spindle and the centrosomal microtubule array. Outside of cells, microtubule-motor mixtures can form novel active liquid-crystalline materials driven out of equilibrium by adenosine triphosphate-consuming motor proteins. Microscopic motor activity causes polarity-dependent interactions between motor proteins and microtubules, but how these interactions yield larger-scale dynamical behavior such as complex flows and defect dynamics is not well understood. We develop a multiscale theory for microtubule-motor systems in which Brownian dynamics simulations of polar microtubules driven by motors are used to study microscopic organization and stresses created by motor-mediated microtubule interactions. We identify polarity-sorting and crosslink tether relaxation as two polar-specific sources of active destabilizing stress. We then develop a continuum Doi-Onsager model that captures polarity sorting and the hydrodynamic flows generated by these polar-specific active stresses. In simulations of active nematic flows on immersed surfaces, the active stresses drive turbulent flow dynamics and continuous generation and annihilation of disclination defects. The dynamics follow from two instabilities, and accounting for the immersed nature of the experiment yields unambiguous characteristic length and time scales. When turning off the hydrodynamics in the Doi-Onsager model, we capture formation of polar lanes as observed in the Brownian dynamics simulation.

  11. Multiscale modeling and simulation of microtubule-motor-protein assemblies.

    Science.gov (United States)

    Gao, Tong; Blackwell, Robert; Glaser, Matthew A; Betterton, M D; Shelley, Michael J

    2015-01-01

    Microtubules and motor proteins self-organize into biologically important assemblies including the mitotic spindle and the centrosomal microtubule array. Outside of cells, microtubule-motor mixtures can form novel active liquid-crystalline materials driven out of equilibrium by adenosine triphosphate-consuming motor proteins. Microscopic motor activity causes polarity-dependent interactions between motor proteins and microtubules, but how these interactions yield larger-scale dynamical behavior such as complex flows and defect dynamics is not well understood. We develop a multiscale theory for microtubule-motor systems in which Brownian dynamics simulations of polar microtubules driven by motors are used to study microscopic organization and stresses created by motor-mediated microtubule interactions. We identify polarity-sorting and crosslink tether relaxation as two polar-specific sources of active destabilizing stress. We then develop a continuum Doi-Onsager model that captures polarity sorting and the hydrodynamic flows generated by these polar-specific active stresses. In simulations of active nematic flows on immersed surfaces, the active stresses drive turbulent flow dynamics and continuous generation and annihilation of disclination defects. The dynamics follow from two instabilities, and accounting for the immersed nature of the experiment yields unambiguous characteristic length and time scales. When turning off the hydrodynamics in the Doi-Onsager model, we capture formation of polar lanes as observed in the Brownian dynamics simulation.

  12. S. pombe kinesins-8 promote both nucleation and catastrophe of microtubules.

    Directory of Open Access Journals (Sweden)

    Muriel Erent

    Full Text Available The kinesins-8 were originally thought to be microtubule depolymerases, but are now emerging as more versatile catalysts of microtubule dynamics. We show here that S. pombe Klp5-436 and Klp6-440 are non-processive plus-end-directed motors whose in vitro velocities on S. pombe microtubules at 7 and 23 nm s(-1 are too slow to keep pace with the growing tips of dynamic interphase microtubules in living S. pombe. In vitro, Klp5 and 6 dimers exhibit a hitherto-undescribed combination of strong enhancement of microtubule nucleation with no effect on growth rate or catastrophe frequency. By contrast in vivo, both Klp5 and Klp6 promote microtubule catastrophe at cell ends whilst Klp6 also increases the number of interphase microtubule arrays (IMAs. Our data support a model in which Klp5/6 bind tightly to free tubulin heterodimers, strongly promoting the nucleation of new microtubules, and then continue to land as a tubulin-motor complex on the tips of growing microtubules, with the motors then dissociating after a few seconds residence on the lattice. In vivo, we predict that only at cell ends, when growing microtubule tips become lodged and their growth slows down, will Klp5/6 motor activity succeed in tracking growing microtubule tips. This mechanism would allow Klp5/6 to detect the arrival of microtubule tips at cells ends and to amplify the intrinsic tendency for microtubules to catastrophise in compression at cell ends. Our evidence identifies Klp5 and 6 as spatial regulators of microtubule dynamics that enhance both microtubule nucleation at the cell centre and microtubule catastrophe at the cell ends.

  13. An EPR Monitoring of Isomerism and coordination sphere dynamics in five-coordinated pincer nickel complexes

    OpenAIRE

    Kozhanov, K.; Bubnov, M.; Cherkasov, V.; Fukin, G.; Vavilina, N.; Efremova, L.; Abakumov, G.

    2006-01-01

    A number of five-coordinated paramagnetic pincer nickel complexes have been obtained and investigated by X-band EPR spectroscopy. In general, these complexes can exist in solution as a pair of interconverting structure isomers. Activation parameters of this interconversion were estimated for several complexes.

  14. Taxol crystals can masquerade as stabilized microtubules.

    Directory of Open Access Journals (Sweden)

    Margit Foss

    Full Text Available Taxol is a potent anti-mitotic drug used in chemotherapy, angioplastic stents, and cell biology research. By binding and stabilizing microtubules, Taxol inhibits their dynamics, crucial for cell division, motility, and survival. The drug has also been reported to induce formation of asters and bundles composed of stabilized microtubules. Surprisingly, at commonly used concentrations, Taxol forms crystals that rapidly bind fluorescent tubulin subunits, generating structures with an uncanny resemblance to microtubule asters and bundles. Kinetic and topological considerations suggest that tubulin subunits, rather than microtubules, bind the crystals. This sequestration of tubulin from the subunit pool would be expected to shift the equilibrium of free to polymerized tubulin to disfavor assembly. Our results imply that some previously reported Taxol-induced asters or bundles could include or be composed of tubulin-decorated Taxol crystals. Thus, reevaluation of certain morphological, chemical, and physical properties of Taxol-treated microtubules may be necessary. Moreover, our findings suggest a novel mechanism for chemotherapy-induced cytotoxicity in non-dividing cells, with far-reaching medical implications.

  15. KIF7 Controls the Proliferation of Cells of the Respiratory Airway through Distinct Microtubule Dependent Mechanisms.

    Directory of Open Access Journals (Sweden)

    Garry L Coles

    2015-10-01

    Full Text Available The cell cycle must be tightly coordinated for proper control of embryonic development and for the long-term maintenance of organs such as the lung. There is emerging evidence that Kinesin family member 7 (Kif7 promotes Hedgehog (Hh signaling during embryonic development, and its misregulation contributes to diseases such as ciliopathies and cancer. Kif7 encodes a microtubule interacting protein that controls Hh signaling through regulation of microtubule dynamics within the primary cilium. However, whether Kif7 has a function in nonciliated cells remains largely unknown. The role Kif7 plays in basic cell biological processes like cell proliferation or cell cycle progression also remains to be elucidated. Here, we show that Kif7 is required for coordination of the cell cycle, and inactivation of this gene leads to increased cell proliferation in vivo and in vitro. Immunostaining and transmission electron microscopy experiments show that Kif7dda/dda mutant lungs are hyperproliferative and exhibit reduced alveolar epithelial cell differentiation. KIF7 depleted C3H10T1/2 fibroblasts and Kif7dda/dda mutant mouse embryonic fibroblasts have increased growth rates at high cellular densities, suggesting that Kif7 may function as a general regulator of cellular proliferation. We ascertained that in G1, Kif7 and microtubule dynamics regulate the expression and activity of several components of the cell cycle machinery known to control entry into S phase. Our data suggest that Kif7 may function to regulate the maintenance of the respiratory airway architecture by controlling cellular density, cell proliferation, and cycle exit through its role as a microtubule associated protein.

  16. Lifting particle coordinate changes of magnetic moment type to Vlasov-Maxwell Hamiltonian dynamics

    International Nuclear Information System (INIS)

    Morrison, P. J.; Vittot, M.; Guillebon, L. de

    2013-01-01

    Techniques for coordinate changes that depend on both dependent and independent variables are developed and applied to the Maxwell-Vlasov Hamiltonian theory. Particle coordinate changes with a new velocity variable dependent on the magnetic field, with spatial coordinates unchanged, are lifted to the field theoretic level, by transforming the noncanonical Poisson bracket and Hamiltonian structure of the Vlasov-Maxwell dynamics. Several examples are given including magnetic coordinates, where the velocity is decomposed into components parallel and perpendicular to the local magnetic field, and the case of spherical velocity coordinates. An example of the lifting procedure is performed to obtain a simplified version of gyrokinetics, where the magnetic moment is used as a coordinate and the dynamics is reduced by elimination of the electric field energy in the Hamiltonian.

  17. Dynamic Routing and Coordination in Multi-Agent Networks

    Science.gov (United States)

    2016-06-10

    epidemics spreading . Bibliography (J1) F. Pasqualetti, S. Zampieri, and F. Bullo. Controllability metrics, limitations and algorithms for complex networks ...controllability properties of the clusters and on their coupling strength. We validate our results with examples from power networks , social networks , and...SECURITY CLASSIFICATION OF: Supported by this project, we designed innovative routing, planning and coordination strategies for robotic networks and

  18. Expansion and Polarity Sorting in Microtubule-Dynein Bundles(WHAT IS LIFE? THE NEXT 100 YEARS OF YUKAWA'S DREAM)

    OpenAIRE

    Assaf, ZEMEL; Alex, MOGILNER; Department of Neurobiology, Physiology and Behavior, University of California; Department of Neurobiology, Physiology and Behavior, University of California

    2008-01-01

    Interactions of multiple molecular motors with dynamic polymers, such as actin and microtubules, form the basis for many processes in the cell cytoskeleton. One example is the active 'sorting' of microtubule bundles by dynein molecular motors into aster-like arrays of microtubules; in these bundles dynein motors cross-link and slide neighboring microtubules apart. A number of models have been suggested to quantify the active dynamics of cross-linked bundles of polar filaments. In the case of ...

  19. Electrodynamic effects on microtubules

    Czech Academy of Sciences Publication Activity Database

    Kučera, Ondřej; Havelka, Daniel; Deriu, M.A.; Cifra, Michal

    2015-01-01

    Roč. 44, Jul (2015), s. 169-169 ISSN 0175-7571. [10th European-Biophysical-Societies-Association (EBSA) European Biophysics Congress. 18.07.2015-22.07.2015, Dresden] R&D Projects: GA ČR(CZ) GA15-17102S Institutional support: RVO:67985882 Keywords : Microtubules * Electric al polarity Subject RIV: JA - Electronics ; Optoelectronics, Electric al Engineering

  20. Microtubule's conformational cap

    DEFF Research Database (Denmark)

    Flyvbjerg, H.

    1999-01-01

    The molecular mechanisms that allow elongation of the unstable microtubule lattice remain unclear. It is usually thought that the GDP-liganded tubulin lattice is capped by a small layer of GTP- or GDP-P(i)-liganded molecules, the so called "GTP-cap". Here, we point-out that the elastic properties...

  1. Dynamical Methods for Evaluating the Time-Dependent Unfolding of Social Coordination in Children with Autism

    Directory of Open Access Journals (Sweden)

    Paula eFitzpatrick

    2013-04-01

    Full Text Available Children with Autism Spectrum Disorder (ASD suffer from numerous impairments in social interaction that affect both their mental and bodily coordination with others. We explored here whether interpersonal motor coordination may be an important key for understanding the profound social problems of children with ASD. We employed a set of experimental techniques to evaluate not only traditional cognitive measures of social competence but also the dynamical structure of social coordination by using dynamical measures of social motor coordination and analyzing the time series records of behavior. Preliminary findings suggest that children with ASD were equivalent to typically developing children on many social performance outcome measures. However, significant relationships were found between cognitive social measures (e.g., intentionality and dynamical social motor measures. In addition, we found that more perceptually-based measures of social coordination were not associated with social motor coordination. These findings suggest that social coordination may not be a unitary construct and point to the promise of this multi-method and process-oriented approach to analyzing social coordination as an important pathway for understanding ASD-specific social deficits.

  2. Dynamic Enhanced Inter-Cell Interference Coordination for Realistic Networks

    DEFF Research Database (Denmark)

    Pedersen, Klaus I.; Alvarez, Beatriz Soret; Barcos, Sonia

    2016-01-01

    Enhanced Inter-Cell Interference Coordination (eICIC) is a key ingredient to boost the performance of co-channel Heterogeneous Networks (HetNets). eICIC encompasses two main techniques: Almost Blank Subframes (ABS), during which the macro cell remains silent to reduce the interference, and biased...... and an opportunistic approach exploiting the varying cell conditions. Moreover, an autonomous fast distributed muting algorithm is presented, which is simple, robust, and well suited for irregular network deployments. Performance results for realistic network deployments show that the traditional semi-static e...

  3. Stochastic evolutionary dynamics in minimum-effort coordination games

    Science.gov (United States)

    Li, Kun; Cong, Rui; Wang, Long

    2016-08-01

    The minimum-effort coordination game draws recently more attention for the fact that human behavior in this social dilemma is often inconsistent with the predictions of classical game theory. Here, we combine evolutionary game theory and coalescence theory to investigate this game in finite populations. Both analytic results and individual-based simulations show that effort costs play a key role in the evolution of contribution levels, which is in good agreement with those observed experimentally. Besides well-mixed populations, set structured populations have also been taken into consideration. Therein we find that large number of sets and moderate migration rate greatly promote effort levels, especially for high effort costs.

  4. The Microtubule Regulatory Protein Stathmin Is Required to Maintain the Integrity of Axonal Microtubules in Drosophila

    Science.gov (United States)

    Duncan, Jason E.; Lytle, Nikki K.; Zuniga, Alfredo; Goldstein, Lawrence S. B.

    2013-01-01

    Axonal transport, a form of long-distance, bi-directional intracellular transport that occurs between the cell body and synaptic terminal, is critical in maintaining the function and viability of neurons. We have identified a requirement for the stathmin (stai) gene in the maintenance of axonal microtubules and regulation of axonal transport in Drosophila . The stai gene encodes a cytosolic phosphoprotein that regulates microtubule dynamics by partitioning tubulin dimers between pools of soluble tubulin and polymerized microtubules, and by directly binding to microtubules and promoting depolymerization. Analysis of stai function in Drosophila , which has a single stai gene, circumvents potential complications with studies performed in vertebrate systems in which mutant phenotypes may be compensated by genetic redundancy of other members of the stai gene family. This has allowed us to identify an essential function for stai in the maintenance of the integrity of axonal microtubules. In addition to the severe disruption in the abundance and architecture of microtubules in the axons of stai mutant Drosophila , we also observe additional neurological phenotypes associated with loss of stai function including a posterior paralysis and tail-flip phenotype in third instar larvae, aberrant accumulation of transported membranous organelles in stai deficient axons, a progressive bang-sensitive response to mechanical stimulation reminiscent of the class of Drosophila mutants used to model human epileptic seizures, and a reduced adult lifespan. Reductions in the levels of Kinesin-1, the primary anterograde motor in axonal transport, enhance these phenotypes. Collectively, our results indicate that stai has an important role in neuronal function, likely through the maintenance of microtubule integrity in the axons of nerves of the peripheral nervous system necessary to support and sustain long-distance axonal transport. PMID:23840848

  5. A Dynamic Pricing Model for Coordinated Sales and Operations

    NARCIS (Netherlands)

    M. Fleischmann (Moritz); J.M. Hall (Joseph); D.F. Pyke (David)

    2005-01-01

    textabstractRecent years have seen advances in research and management practice in the area of pricing, and particularly in dynamic pricing and revenue management. At the same time, researchers and managers have made dramatic improvements in operations and supply chain management. The interactions

  6. Linking cortical microtubule attachment and exocytosis [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Ivar Noordstra

    2017-04-01

    Full Text Available Exocytosis is a fundamental cellular process whereby secreted molecules are packaged into vesicles that move along cytoskeletal filaments and fuse with the plasma membrane. To function optimally, cells are strongly dependent on precisely controlled delivery of exocytotic cargo. In mammalian cells, microtubules serve as major tracks for vesicle transport by motor proteins, and thus microtubule organization is important for targeted delivery of secretory carriers. Over the years, multiple microtubule-associated and cortical proteins have been discovered that facilitate the interaction between the microtubule plus ends and the cell cortex. In this review, we focus on mammalian protein complexes that have been shown to participate in both cortical microtubule capture and exocytosis, thereby regulating the spatial organization of secretion. These complexes include microtubule plus-end tracking proteins, scaffolding factors, actin-binding proteins, and components of vesicle docking machinery, which together allow efficient coordination of cargo transport and release.

  7. Synchronous Oscillations in Microtubule Polymerization

    Science.gov (United States)

    Carlier, M. F.; Melki, R.; Pantaloni, D.; Hill, T. L.; Chen, Y.

    1987-08-01

    Under conditions where microtubule nucleation and growth are fast (i.e., high magnesium ion and tubulin concentrations and absence of glycerol), microtubule assembly in vitro exhibits an oscillatory regime preceding the establishment of steady state. The amplitude of the oscillations can represent >50% of the maximum turbidity change and oscillations persist for up to 20 periods of 80 s each. Oscillations are accompanied by extensive length redistribution of microtubules. Preliminary work suggests that the oscillatory kinetics can be simulated using a model in which many microtubules undergo synchronous transitions between growing and rapidly depolymerizing phases, complicated by the kinetically limiting rate of nucleotide exchange on free tubulin.

  8. Coordination dynamics in a socially situated nervous system

    Science.gov (United States)

    Coey, Charles A.; Varlet, Manuel; Richardson, Michael J.

    2012-01-01

    Traditional theories of cognitive science have typically accounted for the organization of human behavior by detailing requisite computational/representational functions and identifying neurological mechanisms that might perform these functions. Put simply, such approaches hold that neural activity causes behavior. This same general framework has been extended to accounts of human social behavior via concepts such as “common-coding” and “co-representation” and much recent neurological research has been devoted to brain structures that might execute these social-cognitive functions. Although these neural processes are unquestionably involved in the organization and control of human social interactions, there is good reason to question whether they should be accorded explanatory primacy. Alternatively, we propose that a full appreciation of the role of neural processes in social interactions requires appropriately situating them in their context of embodied-embedded constraints. To this end, we introduce concepts from dynamical systems theory and review research demonstrating that the organization of human behavior, including social behavior, can be accounted for in terms of self-organizing processes and lawful dynamics of animal-environment systems. Ultimately, we hope that these alternative concepts can complement the recent advances in cognitive neuroscience and thereby provide opportunities to develop a complete and coherent account of human social interaction. PMID:22701413

  9. Capture of microtubule plus-ends at the actin cortex promotes axophilic neuronal migration by enhancing microtubule tension in the leading process.

    Science.gov (United States)

    Hutchins, B Ian; Wray, Susan

    2014-01-01

    Microtubules are a critical part of neuronal polarity and leading process extension, thus microtubule movement plays an important role in neuronal migration. However, the dynamics of microtubules during the forward movement of the nucleus into the leading process (nucleokinesis) is unclear and may be dependent on the cell type and mode of migration used. In particular, little is known about cytoskeletal changes during axophilic migration, commonly used in anteroposterior neuronal migration. We recently showed that leading process actin flow in migrating GnRH neurons is controlled by a signaling cascade involving IP3 receptors, CaMKK, AMPK, and RhoA. In the present study, microtubule dynamics were examined in GnRH neurons. Failure of the migration of these cells leads to the neuroendocrine disorder Kallmann Syndrome. Microtubules translocated forward along the leading process shaft during migration, but reversed direction and moved toward the nucleus when migration stalled. Blocking calcium release through IP3 receptors halted migration and induced the same reversal of microtubule translocation, while blocking cortical actin flow prevented microtubules from translocating toward the distal leading process. Super-resolution imaging revealed that microtubule plus-end tips are captured at the actin cortex through calcium-dependent mechanisms. This work shows that cortical actin flow draws the microtubule network forward through calcium-dependent capture in order to promote nucleokinesis, revealing a novel mechanism engaged by migrating neurons to facilitate movement.

  10. Microtubules as mechanical force sensors.

    Science.gov (United States)

    Karafyllidis, Ioannis G; Lagoudas, Dimitris C

    2007-03-01

    Microtubules are polymers of tubulin subunits (dimers) arranged on a hexagonal lattice. Each tubulin dimer comprises two monomers, the alpha-tubulin and beta-tubulin, and can be found in two states. In the first state a mobile negative charge is located into the alpha-tubulin monomer and in the second into the beta-tubulin monomer. Each tubulin dimer is modeled as an electrical dipole coupled to its neighbors by electrostatic forces. The location of the mobile charge in each dimer depends on the location of the charges in the dimer's neighborhood. Mechanical forces that act on the microtubule affect the distances between the dimers and alter the electrostatic potential. Changes in this potential affect the mobile negative charge location in each dimer and the charge distribution in the microtubule. The net effect is that mechanical forces affect the charge distribution in microtubules. We propose to exploit this effect and use microtubules as mechanical force sensors. We model each dimer as a two-state quantum system and, following the quantum computation paradigm, we use discrete quantum random walk on the hexagonal microtubule lattice to determine the charge distribution. Different forces applied on the microtubule are modeled as different coin biases leading to different probability distributions of the quantum walker location, which are directly connected to different charge distributions. Simulation results show that there is a strong indication that microtubules can be used as mechanical force sensors and that they can also detect the force directions and magnitudes.

  11. Enhancing response coordination through the assessment of response network structural dynamics.

    Directory of Open Access Journals (Sweden)

    Alireza Abbasi

    Full Text Available Preparing for intensifying threats of emergencies in unexpected, dangerous, and serious natural or man-made events, and consequent management of the situation, is highly demanding in terms of coordinating the personnel and resources to support human lives and the environment. This necessitates prompt action to manage the uncertainties and risks imposed by such extreme events, which requires collaborative operation among different stakeholders (i.e., the personnel from both the state and local communities. This research aims to find a way to enhance the coordination of multi-organizational response operations. To do so, this manuscript investigates the role of participants in the formed coordination response network and also the emergence and temporal dynamics of the network. By analyzing an inter-personal response coordination operation to an extreme bushfire event, the networks' and participants' structural change is evaluated during the evolution of the operation network over four time durations. The results reveal that the coordination response network becomes more decentralized over time due to the high volume of communication required to exchange information. New emerging communication structures often do not fit the developed plans, which stress the need for coordination by feedback in addition to by plan. In addition, we find that the participant's brokering role in the response operation network identifies a formal and informal coordination role. This is useful for comparison of network structures to examine whether what really happens during response operations complies with the initial policy.

  12. Dynamic Analysis of Offshore Oil Pipe Installation Using the Absolute Nodal Coordinate Formulation

    DEFF Research Database (Denmark)

    Nielsen, Jimmy D; Madsen, Søren B; Hyldahl, Per Christian

    2013-01-01

    The Absolute Nodal Coordinate Formulation (ANCF) has shown promising results in dynamic analysis of structures that undergo large deformation. The method relaxes the assumption of infinitesimal rotations. Being based in a fixed inertial reference frame leads to a constant mass matrix and zero......, are included to mimic the external forces acting on the pipe during installation. The scope of this investigation is to demonstrate the ability using the ANCF to analyze the dynamic behavior of an offshore oil pipe during installation...

  13. Overreaching in coordination dynamics therapy in an athlete with a spinal cord injury.

    Science.gov (United States)

    Schalow, G; Vaher, I; Jaigma, P

    2008-03-01

    A motocross athlete suffered a clinically complete spinal cord injury (SCI) during competition. Although MRIs (magnetic resonance imaging) showed a complete spinal cord injury at the Thoracic 11/12 levels, surface EMG recordings indicated the survival of few tract fibres across the injury site. Six weeks after the accident the subject began intensive Coordination Dynamics Therapy (CDT) at an up-to-date therapy centre. The subject trained at his physical limits to induce structural and functional repair. Exercising at variable loads between 20 and 200N (on a special CDT and recording device) generated periods of overreaching and super-compensation. By plotting coordination dynamics values (kinesiology), including high-load exertion (200N) and hysteresis curves, periods of overreaching and super-compensation were made graphically visible. It was found that symmetrical improvements of central nervous system (CNS) functioning occurred during overreaching. Improvements in spinal cord functioning were achieved throughout one year of CDT in this chronically injured subject with an almost anatomically complete SCI. It is discussed that the measuring of CNS functions by means of recording coordination dynamics is a powerful and non-invasive tool ideal for exact quantitative and qualitative measurements of improvement (or change) in CNS functioning. Such diagnostics may be of particular importance in sport during training and before competition. Also, coordination dynamics might be used to measure the effects of prolonged exposure to reduced gravitational conditions on CNS functions, such as faced by astronauts.

  14. Stabilizing versus Destabilizing the Microtubules: A Double-Edge Sword for an Effective Cancer Treatment Option?

    Directory of Open Access Journals (Sweden)

    Daniele Fanale

    2015-01-01

    Full Text Available Microtubules are dynamic and structural cellular components involved in several cell functions, including cell shape, motility, and intracellular trafficking. In proliferating cells, they are essential components in the division process through the formation of the mitotic spindle. As a result of these functions, tubulin and microtubules are targets for anticancer agents. Microtubule-targeting agents can be divided into two groups: microtubule-stabilizing, and microtubule-destabilizing agents. The former bind to the tubulin polymer and stabilize microtubules, while the latter bind to the tubulin dimers and destabilize microtubules. Alteration of tubulin-microtubule equilibrium determines the disruption of the mitotic spindle, halting the cell cycle at the metaphase-anaphase transition and, eventually, resulting in cell death. Clinical application of earlier microtubule inhibitors, however, unfortunately showed several limits, such as neurological and bone marrow toxicity and the emergence of drug-resistant tumor cells. Here we review several natural and synthetic microtubule-targeting agents, which showed antitumor activity and increased efficacy in comparison to traditional drugs in various preclinical and clinical studies. Cryptophycins, combretastatins, ombrabulin, soblidotin, D-24851, epothilones and discodermolide were used in clinical trials. Some of them showed antiangiogenic and antivascular activity and others showed the ability to overcome multidrug resistance, supporting their possible use in chemotherapy.

  15. Dynamical Coordination of Hand Intrinsic Muscles for Precision Grip in Diabetes Mellitus.

    Science.gov (United States)

    Li, Ke; Wei, Na; Cheng, Mei; Hou, Xingguo; Song, Jun

    2018-03-12

    This study investigated the effects of diabetes mellitus (DM) on dynamical coordination of hand intrinsic muscles during precision grip. Precision grip was tested using a custom designed apparatus with stable and unstable loads, during which the surface electromyographic (sEMG) signals of the abductor pollicis brevis (APB) and first dorsal interosseous (FDI) were recorded simultaneously. Recurrence quantification analysis (RQA) was applied to quantify the dynamical structure of sEMG signals of the APB and FDI; and cross recurrence quantification analysis (CRQA) was used to assess the intermuscular coupling between the two intrinsic muscles. This study revealed that the DM altered the dynamical structure of muscle activation for the FDI and the dynamical intermuscular coordination between the APB and FDI during precision grip. A reinforced feedforward mechanism that compensates the loss of sensory feedbacks in DM may be responsible for the stronger intermuscular coupling between the APB and FDI muscles. Sensory deficits in DM remarkably decreased the capacity of online motor adjustment based on sensory feedback, rendering a lower adaptability to the uncertainty of environment. This study shed light on inherent dynamical properties underlying the intrinsic muscle activation and intermuscular coordination for precision grip and the effects of DM on hand sensorimotor function.

  16. Patterns of horse-rider coordination during endurance race: a dynamical system approach.

    Directory of Open Access Journals (Sweden)

    Sylvain Viry

    Full Text Available In riding, most biomechanical studies have focused on the description of the horse locomotion in unridden condition. In this study, we draw the prospect of how the basic principles established in inter-personal coordination by the theory of Coordination Dynamics may provide a conceptual and methodological framework for understanding the horse-rider coupling. The recent development of mobile technologies allows combined horse and rider recordings during long lasting natural events such as endurance races. Six international horse-rider dyads were thus recorded during a 120 km race by using two tri-axial accelerometers placed on the horses and riders, respectively. The analysis concentrated on their combined vertical displacements. The obtained shapes and angles of Lissajous plots together with values of relative phase between horse and rider displacements at lower reversal point allowed us to characterize four coordination patterns, reflecting the use of two riding techniques per horse's gait (trot and canter. The present study shows that the concepts, methods and tools of self-organizing dynamic system approach offer new directions for understanding horse-rider coordination. The identification of the horse-rider coupling patterns constitutes a firm basis to further study the coalition of multiple constraints that determine their emergence and their dynamics in endurance race.

  17. The Virtual Teacher (VT) Paradigm: Learning New Patterns of Interpersonal Coordination Using the Human Dynamic Clamp.

    Science.gov (United States)

    Kostrubiec, Viviane; Dumas, Guillaume; Zanone, Pier-Giorgio; Kelso, J A Scott

    2015-01-01

    The Virtual Teacher paradigm, a version of the Human Dynamic Clamp (HDC), is introduced into studies of learning patterns of inter-personal coordination. Combining mathematical modeling and experimentation, we investigate how the HDC may be used as a Virtual Teacher (VT) to help humans co-produce and internalize new inter-personal coordination pattern(s). Human learners produced rhythmic finger movements whilst observing a computer-driven avatar, animated by dynamic equations stemming from the well-established Haken-Kelso-Bunz (1985) and Schöner-Kelso (1988) models of coordination. We demonstrate that the VT is successful in shifting the pattern co-produced by the VT-human system toward any value (Experiment 1) and that the VT can help humans learn unstable relative phasing patterns (Experiment 2). Using transfer entropy, we find that information flow from one partner to the other increases when VT-human coordination loses stability. This suggests that variable joint performance may actually facilitate interaction, and in the long run learning. VT appears to be a promising tool for exploring basic learning processes involved in social interaction, unraveling the dynamics of information flow between interacting partners, and providing possible rehabilitation opportunities.

  18. Self-assembly of a constitutional dynamic library of Cu(II) coordination polygons and reversible sorting by crystallization.

    Science.gov (United States)

    Rancan, Marzio; Tessarolo, Jacopo; Zanonato, Pier Luigi; Seraglia, Roberta; Quici, Silvio; Armelao, Lidia

    2013-06-07

    A small coordination constitutional dynamic library (CDL) is self-assembled from Cu(2+) ions and the ortho bis-(3-acetylacetone)benzene ligand. Two coordination polygons, a rhomboid and a triangle, establish a dynamic equilibrium. Quantitative sorting of the rhomboidal polygon is reversibly obtained by crystallization. Thermodynamic and kinetic aspects ruling the CDL system have been elucidated.

  19. The C-terminal region of A-kinase anchor protein 350 (AKAP350A) enables formation of microtubule-nucleation centers and interacts with pericentriolar proteins.

    Science.gov (United States)

    Kolobova, Elena; Roland, Joseph T; Lapierre, Lynne A; Williams, Janice A; Mason, Twila A; Goldenring, James R

    2017-12-15

    Microtubules in animal cells assemble (nucleate) from both the centrosome and the cis-Golgi cisternae. A-kinase anchor protein 350 kDa (AKAP350A, also called AKAP450/CG-NAP/AKAP9) is a large scaffolding protein located at both the centrosome and Golgi apparatus. Previous findings have suggested that AKAP350 is important for microtubule dynamics at both locations, but how this scaffolding protein assembles microtubule nucleation machinery is unclear. Here, we found that overexpression of the C-terminal third of AKAP350A, enhanced GFP-AKAP350A(2691-3907), induces the formation of multiple microtubule-nucleation centers (MTNCs). Nevertheless, these induced MTNCs lacked "true" centriole proteins, such as Cep135. Mapping analysis with AKAP350A truncations demonstrated that AKAP350A contains discrete regions responsible for promoting or inhibiting the formation of multiple MTNCs. Moreover, GFP-AKAP350A(2691-3907) recruited several pericentriolar proteins to MTNCs, including γ-tubulin, pericentrin, Cep68, Cep170, and Cdk5RAP2. Proteomic analysis indicated that Cdk5RAP2 and Cep170 both interact with the microtubule nucleation-promoting region of AKAP350A, whereas Cep68 interacts with the distal C-terminal AKAP350A region. Yeast two-hybrid assays established a direct interaction of Cep170 with AKAP350A. Super-resolution and deconvolution microscopy analyses were performed to define the association of AKAP350A with centrosomes, and these studies disclosed that AKAP350A spans the bridge between centrioles, co-localizing with rootletin and Cep68 in the linker region. siRNA-mediated depletion of AKAP350A caused displacement of both Cep68 and Cep170 from the centrosome. These results suggest that AKAP350A acts as a scaffold for factors involved in microtubule nucleation at the centrosome and coordinates the assembly of protein complexes associating with the intercentriolar bridge.

  20. Conservation form of the equations of fluid dynamics in general nonsteady coordinates

    Science.gov (United States)

    Zhang, H.; Camarero, R.; Kahawita, R.

    1985-11-01

    Many of the differential equations arising in fluid dynamics may be stated in conservation-law form. A number of investigations have been conducted with the aim to derive the conservation-law form of the Navier-Stokes equations in general nonsteady coordinate systems. The present note has the objective to illustrate a mathematical methodology with which such forms of the equations may be derived in an easier and more general fashion. For numerical applications, the scalar form of the equations is eventually provided. Attention is given to the conservation form of equations in curvilinear coordinates and numerical considerations.

  1. Conservation form of the equations of fluid dynamics in general nonsteady coordinates

    International Nuclear Information System (INIS)

    Zhang, H.; Camarero, R.; Kahawita, R.

    1985-01-01

    Many of the differential equations arising in fluid dynamics may be stated in conservation-law form. A number of investigations have been conducted with the aim to derive the conservation-law form of the Navier-Stokes equations in general nonsteady coordinate systems. The present note has the objective to illustrate a mathematical methodology with which such forms of the equations may be derived in an easier and more general fashion. For numerical applications, the scalar form of the equations is eventually provided. Attention is given to the conservation form of equations in curvilinear coordinates and numerical considerations. 6 references

  2. EML proteins in microtubule regulation and human disease.

    Science.gov (United States)

    Fry, Andrew M; O'Regan, Laura; Montgomery, Jessica; Adib, Rozita; Bayliss, Richard

    2016-10-15

    The EMLs are a conserved family of microtubule-associated proteins (MAPs). The founding member was discovered in sea urchins as a 77-kDa polypeptide that co-purified with microtubules. This protein, termed EMAP for echinoderm MAP, was the major non-tubulin component present in purified microtubule preparations made from unfertilized sea urchin eggs [J. Cell Sci. (1993) 104: , 445-450; J. Cell Sci. (1987) 87: (Pt 1), 71-84]. Orthologues of EMAP were subsequently identified in other echinoderms, such as starfish and sand dollar, and then in more distant eukaryotes, including flies, worms and vertebrates, where the name of ELP or EML (both for EMAP-like protein) has been adopted [BMC Dev. Biol. (2008) 8: , 110; Dev. Genes Evol. (2000) 210: , 2-10]. The common property of these proteins is their ability to decorate microtubules. However, whether they are associated with particular microtubule populations or exercise specific functions in different microtubule-dependent processes remains unknown. Furthermore, although there is limited evidence that they regulate microtubule dynamics, the biochemical mechanisms of their molecular activity have yet to be explored. Nevertheless, interest in these proteins has grown substantially because of the identification of EML mutations in neuronal disorders and oncogenic fusions in human cancers. Here, we summarize our current knowledge of the expression, localization and structure of what is proving to be an interesting and important class of MAPs. We also speculate about their function in microtubule regulation and highlight how the studies of EMLs in human diseases may open up novel avenues for patient therapy. © 2016 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  3. TONNEAU2/FASS Regulates the Geometry of Microtubule Nucleation and Cortical Array Organization in Interphase Arabidopsis Cells[C][W

    Science.gov (United States)

    Kirik, Angela; Ehrhardt, David W.; Kirik, Viktor

    2012-01-01

    Organization of microtubules into ordered arrays involves spatial and temporal regulation of microtubule nucleation. Here, we show that acentrosomal microtubule nucleation in plant cells involves a previously unknown regulatory step that determines the geometry of microtubule nucleation. Dynamic imaging of interphase cortical microtubules revealed that the ratio of branching to in-bundle microtubule nucleation on cortical microtubules is regulated by the Arabidopsis thaliana B′′ subunit of protein phosphatase 2A, which is encoded by the TONNEAU2/FASS (TON2) gene. The probability of nucleation from γ-tubulin complexes localized at the cell cortex was not affected by a loss of TON2 function, suggesting a specific role of TON2 in regulating the nucleation geometry. Both loss of TON2 function and ectopic targeting of TON2 to the plasma membrane resulted in defects in cell shape, suggesting the importance of TON2-mediated regulation of the microtubule cytoskeleton in cell morphogenesis. Loss of TON2 function also resulted in an inability for cortical arrays to reorient in response to light stimulus, suggesting an essential role for TON2 and microtubule branching nucleation in reorganization of microtubule arrays. Our data establish TON2 as a regulator of interphase microtubule nucleation and provide experimental evidence for a novel regulatory step in the process of microtubule-dependent nucleation. PMID:22395485

  4. Wood cell-wall structure requires local 2D-microtubule disassembly by a novel plasma membrane-anchored protein.

    Science.gov (United States)

    Oda, Yoshihisa; Iida, Yuki; Kondo, Yuki; Fukuda, Hiroo

    2010-07-13

    Plant cells have evolved cortical microtubules, in a two-dimensional space beneath the plasma membrane, that regulate patterning of cellulose deposition. Although recent studies have revealed that several microtubule-associated proteins facilitate self-organization of transverse cortical microtubules, it is still unknown how diverse patterns of cortical microtubules are organized in different xylem cells, which are the major components of wood. Using our newly established in vitro xylem cell differentiation system, we found that a novel microtubule end-tracking protein, microtubule depletion domain 1 (MIDD1), was anchored to distinct plasma membrane domains and promoted local microtubule disassembly, resulting in pits on xylem cell walls. The introduction of RNA interference for MIDD1 resulted in the failure of local microtubule depletion and the formation of secondary walls without pits. Conversely, the overexpression of MIDD1 reduced microtubule density. MIDD1 has two coiled-coil domains for the binding to microtubules and for the anchorage to plasma membrane domains, respectively. Combination of the two coils caused end tracking of microtubules during shrinkage and suppressed their rescue events. Our results indicate that MIDD1 integrates spatial information in the plasma membrane with cortical microtubule dynamics for determining xylem cell wall pattern. Copyright 2010 Elsevier Ltd. All rights reserved.

  5. Structural insights into microtubule doublet interactions inaxonemes

    Energy Technology Data Exchange (ETDEWEB)

    Downing, Kenneth H.; Sui, Haixin

    2007-06-06

    Coordinated sliding of microtubule doublets, driven by dynein motors, produces periodic beating of the axoneme. Recent structural studies of the axoneme have used cryo-electron tomography to reveal new details of the interactions among some of the multitude of proteins that form the axoneme and regulate its movement. Connections among the several sets of dyneins, in particular, suggest ways in which their actions may be coordinated. Study of the molecular architecture of isolated doublets has provided a structural basis for understanding the doublet's mechanical properties that are related to the bending of the axoneme, and has also offered insight into its potential role in the mechanism of dynein activity regulation.

  6. Polyamine sharing between tubulin dimers favours microtubule nucleation and elongation via facilitated diffusion.

    Directory of Open Access Journals (Sweden)

    Alain Mechulam

    2009-01-01

    Full Text Available We suggest for the first time that the action of multivalent cations on microtubule dynamics can result from facilitated diffusion of GTP-tubulin to the microtubule ends. Facilitated diffusion can promote microtubule assembly, because, upon encountering a growing nucleus or the microtubule wall, random GTP-tubulin sliding on their surfaces will increase the probability of association to the target sites (nucleation sites or MT ends. This is an original explanation for understanding the apparent discrepancy between the high rate of microtubule elongation and the low rate of tubulin association at the microtubule ends in the viscous cytoplasm. The mechanism of facilitated diffusion requires an attraction force between two tubulins, which can result from the sharing of multivalent counterions. Natural polyamines (putrescine, spermidine, and spermine are present in all living cells and are potent agents to trigger tubulin self-attraction. By using an analytical model, we analyze the implication of facilitated diffusion mediated by polyamines on nucleation and elongation of microtubules. In vitro experiments using pure tubulin indicate that the promotion of microtubule assembly by polyamines is typical of facilitated diffusion. The results presented here show that polyamines can be of particular importance for the regulation of the microtubule network in vivo and provide the basis for further investigations into the effects of facilitated diffusion on cytoskeleton dynamics.

  7. Synthesis and biological evaluation of structurally simplified noscapine analogues as microtubule binding agents

    Czech Academy of Sciences Publication Activity Database

    Ghaly, P.E.; Churchill, C.D.M.; Abou El-Magd, R.M.; Hájková, Zuzana; Dráber, Pavel; West, F.G.; Tuszyński, J.A.

    2017-01-01

    Roč. 95, č. 6 (2017), s. 649-655 ISSN 0008-4042 R&D Projects: GA ČR GA15-22194S Institutional support: RVO:68378050 Keywords : noscapine * microtubule * tubulin * cytotoxicity * microtubule dynamics * docking Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Biochemistry and molecular biology Impact factor: 1.080, year: 2016

  8. Complementary activities of TPX2 and chTOG constitute an efficient importin-regulated microtubule nucleation module.

    Science.gov (United States)

    Roostalu, Johanna; Cade, Nicholas I; Surrey, Thomas

    2015-11-01

    Spindle assembly and function require precise control of microtubule nucleation and dynamics. The chromatin-driven spindle assembly pathway exerts such control locally in the vicinity of chromosomes. One of the key targets of this pathway is TPX2. The molecular mechanism of how TPX2 stimulates microtubule nucleation is not understood. Using microscopy-based dynamic in vitro reconstitution assays with purified proteins, we find that human TPX2 directly stabilizes growing microtubule ends and stimulates microtubule nucleation by stabilizing early microtubule nucleation intermediates. Human microtubule polymerase chTOG (XMAP215/Msps/Stu2p/Dis1/Alp14 homologue) only weakly promotes nucleation, but acts synergistically with TPX2. Hence, a combination of distinct and complementary activities is sufficient for efficient microtubule formation in vitro. Importins control the efficiency of the microtubule nucleation by selectively blocking the interaction of TPX2 with microtubule nucleation intermediates. This in vitro reconstitution reveals the molecular mechanism of regulated microtubule formation by a minimal nucleation module essential for chromatin-dependent microtubule nucleation in cells.

  9. Dynamic modeling and optimal joint torque coordination of advanced robotic systems

    Science.gov (United States)

    Kang, Hee-Jun

    The development is documented of an efficient dynamic modeling algorithm and the subsequent optimal joint input load coordination of advanced robotic systems for industrial application. A closed-form dynamic modeling algorithm for the general closed-chain robotic linkage systems is presented. The algorithm is based on the transfer of system dependence from a set of open chain Lagrangian coordinates to any desired system generalized coordinate set of the closed-chain. Three different techniques for evaluation of the kinematic closed chain constraints allow the representation of the dynamic modeling parameters in terms of system generalized coordinates and have no restriction with regard to kinematic redundancy. The total computational requirement of the closed-chain system model is largely dependent on the computation required for the dynamic model of an open kinematic chain. In order to improve computational efficiency, modification of an existing open-chain KIC based dynamic formulation is made by the introduction of the generalized augmented body concept. This algorithm allows a 44 pct. computational saving over the current optimized one (O(N4), 5995 when N = 6). As means of resolving redundancies in advanced robotic systems, local joint torque optimization is applied for effectively using actuator power while avoiding joint torque limits. The stability problem in local joint torque optimization schemes is eliminated by using fictitious dissipating forces which act in the necessary null space. The performance index representing the global torque norm is shown to be satisfactory. In addition, the resulting joint motion trajectory becomes conservative, after a transient stage, for repetitive cyclic end-effector trajectories. The effectiveness of the null space damping method is shown. The modular robot, which is built of well defined structural modules from a finite-size inventory and is controlled by one general computer system, is another class of evolving

  10. Differing Dynamics of Intrapersonal and Interpersonal Coordination: Two-finger and Four-Finger Tapping Experiments.

    Directory of Open Access Journals (Sweden)

    Kentaro Kodama

    Full Text Available Finger-tapping experiments were conducted to examine whether the dynamics of intrapersonal and interpersonal coordination systems can be described equally by the Haken-Kelso-Bunz model, which describes inter-limb coordination dynamics. This article reports the results of finger-tapping experiments conducted in both systems. Two within-subject factors were investigated: the phase mode and the number of fingers. In the intrapersonal experiment (Experiment 1, the participants were asked to tap, paced by a gradually hastening auditory metronome, looking at their fingers moving, using the index finger in the two finger condition, or the index and middle finger in the four-finger condition. In the interpersonal experiment (Experiment 2, pairs of participants performed the task while each participant used the outside hand, tapping with the index finger in the two finger condition, or the index and middle finger in the four-finger condition. Some results did not agree with the HKB model predictions. First, from Experiment 1, no significant difference was observed in the movement stability between the in-phase and anti-phase modes in the two finger condition. Second, from Experiment 2, no significant difference was found in the movement stability between the in-phase and anti-phase mode in the four-finger condition. From these findings, different coordination dynamics were inferred between intrapersonal and interpersonal coordination systems against prediction from the previous studies. Results were discussed according to differences between intrapersonal and interpersonal coordination systems in the availability of perceptual information and the complexity in the interaction between limbs derived from a nested structure.

  11. Switching among graphic patterns is governed by oscillatory coordination dynamics: Implications for understanding handwriting.

    Directory of Open Access Journals (Sweden)

    Pier-Giorgio eZanone

    2013-09-01

    Full Text Available Revisiting an original idea by Hollerbach (1981, previous work has established that the production of graphic shapes, assumed to be the blueprint for handwriting, is governed by the dynamics of orthogonal non-linear coupled oscillators. Such dynamics determines few stable coordination patterns, giving rise to a limited set of preferred graphic shapes, namely, four lines and four ellipsoids independent of orientation. The present study investigates the rules of switching among such graphic coordination patterns. Seven participants were required to voluntarily switch within twelve pairs of shapes presented on a graphic tablet. In line with previous theoretical and experimental work on bimanual coordination, results corroborated our hypothesis that the relative stability of the produced coordination patterns determines the time needed for switching: the transition to a more stable pattern was shorter, and inversely. Moreover, switching between patterns with the same orientation but different eccentricities was faster than with a change in orientation. Nonetheless, the switching time covaried strictly with the change in relative phase effected by the transition between two shapes, whether this implied a change in eccentricity or in orientation. These findings suggest a new operational definition of what the (motor units or strokes of handwriting are and shed a novel light on how co-articulation and recruitment of degrees of freedom may occur in graphic skills. They also yield some leads for understanding the acquisition and the neural underpinnings of handwriting.

  12. Investigation of the complex reaction coordinate of acid catalyzed amide hydrolysis from molecular dynamics simulations

    International Nuclear Information System (INIS)

    Zahn, Dirk

    2004-01-01

    The rate-determining step of acid catalyzed peptide hydrolysis is the nucleophilic attack of a water molecule to the carbon atom of the amide group. Therein the addition of the hydroxyl group to the amide carbon atom involves the association of a water molecule transferring one of its protons to an adjacent water molecule. The protonation of the amide nitrogen atom follows as a separate reaction step. Since the nucleophilic attack involves the breaking and formation of several bonds, the underlying reaction coordinate is rather complex. We investigate this reaction step from path sampling Car-Parrinello molecular dynamics simulations. This approach does not require the predefinition of reaction coordinates and is thus particularly suited for investigating reaction mechanisms. From our simulations the most relevant components of the reaction coordinate are elaborated. Though the C···O distance of the oxygen atom of the water molecule performing the nucleophilic attack and the corresponding amide carbon atom is a descriptor of the reaction progress, a complete picture of the reaction coordinate must include all three molecules taking part in the reaction. Moreover, the proton transfer is found to depend on favorable solvent configurations. Thus, also the arrangement of non-reacting, i.e. solvent water molecules needs to be considered in the reaction coordinate

  13. Collective coordinates and an accompanying metric force in structural isomerization dynamics of molecules

    International Nuclear Information System (INIS)

    Yanao, Tomohiro; Takatsuka, Kazuo

    2003-01-01

    Structural isomerization dynamics of three- and four-atom clusters of vanishing total angular momentum is studied in terms of internal coordinates of n-body systems on the basis of a gauge theory. The so-called principal-axis hyperspherical coordinates are employed effectively as collective variables for the study of isomerization reactions. It turns out that the non-Euclidean metric on the internal space gives rise to a force, which works in response to internal motions called the democratic (kinematic) rotations in the internal space. This metric force generally tends to induce an asymmetry in mass balance of a system, and is coupled with the usual potential force to give rise to trapped motions in the vicinity of the transition states of the cluster. This observation provides a different perspective for the so-called recrossing problem in chemical reaction dynamics

  14. A Lagrangian cylindrical coordinate system for characterizing dynamic surface geometry of tubular anatomic structures.

    Science.gov (United States)

    Lundh, Torbjörn; Suh, Ga-Young; DiGiacomo, Phillip; Cheng, Christopher

    2018-03-03

    Vascular morphology characterization is useful for disease diagnosis, risk stratification, treatment planning, and prediction of treatment durability. To quantify the dynamic surface geometry of tubular-shaped anatomic structures, we propose a simple, rigorous Lagrangian cylindrical coordinate system to monitor well-defined surface points. Specifically, the proposed system enables quantification of surface curvature and cross-sectional eccentricity. Using idealized software phantom examples, we validate the method's ability to accurately quantify longitudinal and circumferential surface curvature, as well as eccentricity and orientation of eccentricity. We then apply the method to several medical imaging data sets of human vascular structures to exemplify the utility of this coordinate system for analyzing morphology and dynamic geometric changes in blood vessels throughout the body. Graphical abstract Pointwise longitudinal curvature of a thoracic aortic endograft surface for systole and diastole, with their absolute difference.

  15. Analysis on the dynamic error for optoelectronic scanning coordinate measurement network

    Science.gov (United States)

    Shi, Shendong; Yang, Linghui; Lin, Jiarui; Guo, Siyang; Ren, Yongjie

    2018-01-01

    Large-scale dynamic three-dimension coordinate measurement technique is eagerly demanded in equipment manufacturing. Noted for advantages of high accuracy, scale expandability and multitask parallel measurement, optoelectronic scanning measurement network has got close attention. It is widely used in large components jointing, spacecraft rendezvous and docking simulation, digital shipbuilding and automated guided vehicle navigation. At present, most research about optoelectronic scanning measurement network is focused on static measurement capacity and research about dynamic accuracy is insufficient. Limited by the measurement principle, the dynamic error is non-negligible and restricts the application. The workshop measurement and positioning system is a representative which can realize dynamic measurement function in theory. In this paper we conduct deep research on dynamic error resources and divide them two parts: phase error and synchronization error. Dynamic error model is constructed. Based on the theory above, simulation about dynamic error is carried out. Dynamic error is quantized and the rule of volatility and periodicity has been found. Dynamic error characteristics are shown in detail. The research result lays foundation for further accuracy improvement.

  16. Quantum quench dynamics of the attractive one-dimensional Bose gas via the coordinate Bethe ansatz

    Directory of Open Access Journals (Sweden)

    Jan C. Zill, Tod M. Wright, Karen V. Kheruntsyan, Thomas Gasenzer, Matthew J. Davis

    2018-02-01

    Full Text Available We use the coordinate Bethe ansatz to study the Lieb-Liniger model of a one-dimensional gas of bosons on a finite-sized ring interacting via an attractive delta-function potential. We calculate zero-temperature correlation functions for seven particles in the vicinity of the crossover to a localized solitonic state and study the dynamics of a system of four particles quenched to attractive interactions from the ideal-gas ground state. We determine the time evolution of correlation functions, as well as their temporal averages, and discuss the role of bound states in shaping the postquench correlations and relaxation dynamics.

  17. The growth speed of microtubules with XMAP215-coated beads coupled to their ends is increased by tensile force

    Science.gov (United States)

    Trushko, Anastasiya; Schäffer, Erik; Howard, Jonathon

    2013-01-01

    The generation of pulling and pushing forces is one of the important functions of microtubules, which are dynamic and polarized structures. The ends of dynamic microtubules are able to form relatively stable links to cellular structures, so that when a microtubule grows it can exert a pushing force and when it shrinks it can exert a pulling force. Microtubule growth and shrinkage are tightly regulated by microtubule-associated proteins (MAPs) that bind to microtubule ends. Given their localization, MAPs may be exposed to compressive and tensile forces. The effect of such forces on MAP function, however, is poorly understood. Here we show that beads coated with the microtubule polymerizing protein XMAP215, the Xenopus homolog of Dis1 and chTOG, are able to link stably to the plus ends of microtubules, even when the ends are growing or shrinking; at growing ends, the beads increase the polymerization rate. Using optical tweezers, we found that tensile force further increased the microtubule polymerization rate. These results show that physical forces can regulate the activity of MAPs. Furthermore, our results show that XMAP215 can be used as a handle to sense and mechanically manipulate the dynamics of the microtubule tip. PMID:23964126

  18. Team dynamics, clinical work satisfaction, and patient care coordination between primary care providers: A mixed methods study.

    Science.gov (United States)

    Song, Hummy; Ryan, Molly; Tendulkar, Shalini; Fisher, Josephine; Martin, Julia; Peters, Antoinette S; Frolkis, Joseph P; Rosenthal, Meredith B; Chien, Alyna T; Singer, Sara J

    Team-based care is essential for delivering high-quality, comprehensive, and coordinated care. Despite considerable research about the effects of team-based care on patient outcomes, few studies have examined how team dynamics relate to provider outcomes. The aim of this study was to examine relationships among team dynamics, primary care provider (PCP) clinical work satisfaction, and patient care coordination between PCPs in 18 Harvard-affiliated primary care practices participating in Harvard's Academic Innovations Collaborative. First, we administered a cross-sectional survey to all 548 PCPs (267 attending clinicians, 281 resident physicians) working at participating practices; 65% responded. We assessed the relationship of team dynamics with PCPs' clinical work satisfaction and perception of patient care coordination between PCPs, respectively, and the potential mediating effect of patient care coordination on the relationship between team dynamics and work satisfaction. In addition, we embedded a qualitative evaluation within the quantitative evaluation to achieve a convergent mixed methods design to help us better understand our findings and illuminate relationships among key variables. Better team dynamics were positively associated with clinical work satisfaction and quality of patient care coordination between PCPs. Coordination partially mediated the relationship between team dynamics and satisfaction for attending clinicians, suggesting that higher satisfaction depends, in part, on better teamwork, yielding more coordinated patient care. We found no mediating effects for resident physicians. Qualitative results suggest that sources of satisfaction from positive team dynamics for PCPs may be most relevant to attending clinicians. Improving primary care team dynamics could improve clinical work satisfaction among PCPs and patient care coordination between PCPs. In addition to improving outcomes that directly concern health care providers, efforts to

  19. Centriolar CPAP/SAS-4 Imparts Slow Processive Microtubule Growth

    NARCIS (Netherlands)

    Sharma, Ashwani; Aher, Amol; Dynes, Nicola J; Frey, Daniel; Katrukha, Eugene A; Jaussi, Rolf; Grigoriev, Ilya; Croisier, Marie; Kammerer, Richard A; Akhmanova, Anna; Gönczy, Pierre; Steinmetz, Michel O

    2016-01-01

    Centrioles are fundamental and evolutionarily conserved microtubule-based organelles whose assembly is characterized by microtubule growth rates that are orders of magnitude slower than those of cytoplasmic microtubules. Several centriolar proteins can interact with tubulin or microtubules, but how

  20. Intersection Group Dynamic Subdivision and Coordination at Intraregional Boundaries in Sudden Disaster

    Directory of Open Access Journals (Sweden)

    Ciyun Lin

    2015-01-01

    Full Text Available This paper aims at the traffic flow agglomeration effect characteristics and rapid evacuation requirement in sudden disaster; operation time of intraregional boundaries traffic signal coordination was presented firstly. Then intraregional boundaries intersection group dynamic subdivision and consolidation method based on relative similarity degree and similarity coefficient of adjacent intersections was put forward. As to make the traffic control strategy adapt to traffic condition of different intraregional boundaries intersection groups, this paper proposes an intraregional boundaries traffic signal coordination and optimization technology based on organic computing theory. Finally, this paper uses Delphi 7.0, MapX, and Oracle developing a software package, combined with Paramics V6 Simulator to validate the methods of this paper. The result shows that it can obviously improve disaster affected regional traffic signal control efficiency which reduces average traffic delay by 30–35%, decreases vehicle queue by more than 20% and reduces evacuation time more than 13.06%.

  1. A study of collective coordinates and dynamical groups in nuclear theory

    International Nuclear Information System (INIS)

    Papadopolos, Z.

    1983-01-01

    Lie-algebraic techniques for the group action on manifolds given as a direct product of coset spaces and group manifolds are developed. The microscopic realisation of the Mass Quadrupole Collective Model (MQC) in the S0(3)xSO(n) and GLsub(+)(3, R)xSO(n) schemes is studied. The problem of the separation of the kinetic energy and the velocity field into a collective and an intrinsic part is analyzed. Different coordinate schemes in phase space for the U(n)-invariant collective motion and the U(3) dynamical group are introduced. In the GL(3,C)xU(n) scheme, the invariant volume element in the new coordinates and a completely orthonormal basis is constructed. (orig.) [de

  2. Dynamic Pricing and Supply Coordination with Reimbursement Contract under Random Yield and Demand

    Directory of Open Access Journals (Sweden)

    Guo Li

    2013-01-01

    Full Text Available This paper investigates the dynamic pricing and supply chain coordination in a decentralized system that consists of one supplier and one manufacturer, in which both the market demand and production yield are stochastic. We show that the centralized expected profit is jointly concave in the production quantity and order quantity when the price is ex-ante selected. We also derive the equilibrium strategies in the decentralized system and prove that the entire profit of supply chain is inevitably lower than that under centralized system. Based on this, we propose a reimbursement contract to coordinate the decentralized supply chain so as to achieve the maximized profit. It is worth mentioning that, under reimbursement contract, the equilibrium production and order quantities are irrelevant to the manufacturer's risk sharing coefficient but are only determined by the supplier’s risk sharing coefficient.

  3. On the nature and shape of tubulin trails: implications on microtubule self-organization.

    Science.gov (United States)

    Glade, Nicolas

    2012-06-01

    Microtubules, major elements of the cell skeleton are, most of the time, well organized in vivo, but they can also show self-organizing behaviors in time and/or space in purified solutions in vitro. Theoretical studies and models based on the concepts of collective dynamics in complex systems, reaction-diffusion processes and emergent phenomena were proposed to explain some of these behaviors. In the particular case of microtubule spatial self-organization, it has been advanced that microtubules could behave like ants, self-organizing by 'talking to each other' by way of hypothetic (because never observed) concentrated chemical trails of tubulin that are expected to be released by their disassembling ends. Deterministic models based on this idea yielded indeed like-looking spatio-temporal self-organizing behaviors. Nevertheless the question remains of whether microscopic tubulin trails produced by individual or bundles of several microtubules are intense enough to allow microtubule self-organization at a macroscopic level. In the present work, by simulating the diffusion of tubulin in microtubule solutions at the microscopic scale, we measure the shape and intensity of tubulin trails and discuss about the assumption of microtubule self-organization due to the production of chemical trails by disassembling microtubules. We show that the tubulin trails produced by individual microtubules or small microtubule arrays are very weak and not elongated even at very high reactive rates. Although the variations of concentration due to such trails are not significant compared to natural fluctuations of the concentration of tubuline in the chemical environment, the study shows that heterogeneities of biochemical composition can form due to microtubule disassembly. They could become significant when produced by numerous microtubule ends located in the same place. Their possible formation could play a role in certain conditions of reaction. In particular, it gives a mesoscopic

  4. Mutual and asynchronous anticipation and action in sports as globally competitive and locally coordinative dynamics

    Science.gov (United States)

    Fujii, Keisuke; Isaka, Tadao; Kouzaki, Motoki; Yamamoto, Yuji

    2015-11-01

    Humans interact by changing their actions, perceiving other’s actions and executing solutions in conflicting situations. Using oscillator models, nonlinear dynamics have been considered for describing these complex human movements as an emergence of self-organisation. However, these frameworks cannot explain the hierarchical structures of complex behaviours between conflicting inter-agent and adapting intra-agent systems, especially in sport competitions wherein mutually quick decision making and execution are required. Here we adopt a hybrid multiscale approach to model an attack-and-defend game during which both players predict the opponent’s movement and move with a delay. From both simulated and measured data, one synchronous outcome between two-agent (i.e. successful defence) can be described as one attractor. In contrast, the other coordination-breaking outcome (i.e. successful attack) cannot be explained using gradient dynamics because the asymmetric interaction cannot always assume a conserved physical quantity. Instead, we provide the asymmetric and asynchronous hierarchical dynamical models to discuss two-agent competition. Our framework suggests that possessing information about an opponent and oneself in local-coordinative and global-competitive scale enables us to gain a deeper understanding of sports competitions. We anticipate developments in the scientific fields of complex movement adapting to such uncontrolled environments.

  5. Interactive domains in the molecular chaperone human alphaB crystallin modulate microtubule assembly and disassembly.

    Directory of Open Access Journals (Sweden)

    Joy G Ghosh

    2007-06-01

    Full Text Available Small heat shock proteins regulate microtubule assembly during cell proliferation and in response to stress through interactions that are poorly understood.Novel functions for five interactive sequences in the small heat shock protein and molecular chaperone, human alphaB crystallin, were investigated in the assembly/disassembly of microtubules and aggregation of tubulin using synthetic peptides and mutants of human alphaB crystallin.The interactive sequence (113FISREFHR(120 exposed on the surface of alphaB crystallin decreased microtubule assembly by approximately 45%. In contrast, the interactive sequences, (131LTITSSLSSDGV(142 and (156ERTIPITRE(164, corresponding to the beta8 strand and the C-terminal extension respectively, which are involved in complex formation, increased microtubule assembly by approximately 34-45%. The alphaB crystallin peptides, (113FISREFHR(120 and (156ERTIPITRE(164, inhibited microtubule disassembly by approximately 26-36%, and the peptides (113FISREFHR(120 and (131LTITSSLSSDGV(142 decreased the thermal aggregation of tubulin by approximately 42-44%. The (131LTITSSLSSDGV(142 and (156ERTIPITRE(164 peptides were more effective than the widely used anti-cancer drug, Paclitaxel, in modulating tubulinmicrotubule dynamics. Mutagenesis of these interactive sequences in wt human alphaB crystallin confirmed the effects of the alphaB crystallin peptides on microtubule assembly/disassembly and tubulin aggregation. The regulation of microtubule assembly by alphaB crystallin varied over a narrow range of concentrations. The assembly of microtubules was maximal at alphaB crystallin to tubulin molar ratios between 1:4 and 2:1, while molar ratios >2:1 inhibited microtubule assembly.Interactive sequences on the surface of human alphaB crystallin collectively modulate microtubule assembly through a dynamic subunit exchange mechanism that depends on the concentration and ratio of alphaB crystallin to tubulin. These are the first

  6. High resolution kinetic beam schemes in generalized coordinates for ideal quantum gas dynamics

    International Nuclear Information System (INIS)

    Shi, Yu-Hsin; Huang, J.C.; Yang, J.Y.

    2007-01-01

    A class of high resolution kinetic beam schemes in multiple space dimensions in general coordinates system for the ideal quantum gas is presented for the computation of quantum gas dynamical flows. The kinetic Boltzmann equation approach is adopted and the local equilibrium quantum statistics distribution is assumed. High-order accurate methods using essentially non-oscillatory interpolation concept are constructed. Computations of shock wave diffraction by a circular cylinder in an ideal quantum gas are conducted to illustrate the present method. The present method provides a viable means to explore various practical ideal quantum gas flows

  7. Uplink Performance of Dynamic Interference Coordination under Fractional Power Control for LTE-Advanced Femtocells

    DEFF Research Database (Denmark)

    Garcia, Luis Guilherme Uzeda; Pedersen, Klaus; Mogensen, Preben

    2010-01-01

    It has been identified in numerous contributions that dynamic interference coordination is very appealing in case of dense and uncoordinated deployments of home eNBs (eNBs), also known as femtocells. One of the proposed schemes for LTE-Advanced is known as Autonomous Component Carrier Selection...... when applied to femtocells is significantly different from that seen on macrocells. In addition we demonstrate that ACCS is equally attractive and applicable to the uplink even though most decisions are based on UE downlink measurements....

  8. Mechanism of supply chain coordination cased on dynamic capability framework-the mediating role of manufacturing capabilities

    Directory of Open Access Journals (Sweden)

    Tiantian Gao

    2014-10-01

    Full Text Available Purpose: A critical issue has been absent from the conversation on supply chain coordination: how supply chain coordination influence the enterprise performance. This research proposes a new vision to research the performance mechanism of supply chain coordination capability as a dynamic capability. Manufacturing capabilities are existed as mediating role. Design/methodology/approach: Data from International Manufacturing Strategy Survey in 2009 is used to verify the mediating model by hierarchical regression analysis. Findings: The results show that supply chain coordination impacts the enterprise performance positively and indirect impacts the enterprise performance through quality, cost, flexibility. Research implications: This study presents an overview of the impact of supply chain coordination and manufacturing capabilities on enterprise performance, giving grasp for further research of the relationships that exist between them. Originality/value: This finding integrates insights from previous research in dynamic capability framework and supply chain management into a generalization and extension of the performance mechanism in manufacturing enterprises.

  9. A system dynamics model of coordinated development of central and provincial economy and oil enterprises

    International Nuclear Information System (INIS)

    Ge, Feng-Long; Fan, Ying

    2013-01-01

    Based on the characteristics of oil exploration and development and the inherent rule of a coordinated development of central and provincial economy and oil enterprises in oil producing provinces, this paper addresses the principal questions that determine the coordinated development of the central economy, provincial economy and oil enterprises, and establishes a dynamic model for the above three variables. The research takes Shaanxi Province as an example and makes analogue simulation of the situations from 2006 to 2020. The results indicate that China's provincial governments need to share more tax income, reform some taxes on oil enterprises, and China's oil industry needs to be open to both provincial state-owned enterprise and private enterprise. Meanwhile, this research also provides policy proposals for the coordinated development of central and provincial economy and oil enterprises regarding taxation and sustainable development in China's market-oriented economy. - Highlights: • Chinese provincial government should share more oil enterprises' income tax. • Diversifying sources of investment is able to boost provincial economic development. • Compensation for environment relieves provincial governments' financial pressure. • People's welfare hinges on oil enterprises, provincial governments and tax reform

  10. Coordinated approaches to quantify long-term ecosystem dynamics in response to global change

    DEFF Research Database (Denmark)

    Liu, Y.; Melillo, J.; Niu, S.

    2011-01-01

    a coordinated approach that combines long-term, large-scale global change experiments with process studies and modeling. Long-term global change manipulative experiments, especially in high-priority ecosystems such as tropical forests and high-latitude regions, are essential to maximize information gain......Many serious ecosystem consequences of climate change will take decades or even centuries to emerge. Long-term ecological responses to global change are strongly regulated by slow processes, such as changes in species composition, carbon dynamics in soil and by long-lived plants, and accumulation...... to be the most effective strategy to gain the best information on long-term ecosystem dynamics in response to global change....

  11. Dynamic analysis of the tether transportation system using absolute nodal coordinate formulation

    Science.gov (United States)

    Sun, Xin; Xu, Ming; Zhong, Rui

    2017-10-01

    Long space tethers are becoming a rising concern as an alternate way for transportation in space. It benefits from fuel economizing. This paper focuses on the dynamics of the tether transportation system, which consists of two end satellites connected by a flexible tether, and a movable vehicle driven by the actuator carried by itself. The Absolute Nodal Coordinate Formulation is applied to the establishment of the equation of motion, so that the influence caused by the distributed mass and elasticity of the tether is introduced. Moreover, an approximated method for accelerating the calculation of the generalized gravitational forces on the tether is proposed by substituting the volume integral every step into summation of finite terms. Afterwards, dynamic evolutions of such a system in different configurations are illustrated using numerical simulations. The deflection of the tether and the trajectory of the crawler during the transportation is investigated. Finally, the effect on the orbit of the system due to the crawler is revealed.

  12. Chronophin coordinates cell leading edge dynamics by controlling active cofilin levels

    Science.gov (United States)

    Delorme-Walker, Violaine; Seo, Ji-Yeon; Gohla, Antje; Fowler, Bruce; Bohl, Ben; DerMardirossian, Céline

    2015-01-01

    Cofilin, a critical player of actin dynamics, is spatially and temporally regulated to control the direction and force of membrane extension required for cell locomotion. In carcinoma cells, although the signaling pathways regulating cofilin activity to control cell direction have been established, the molecular machinery required to generate the force of the protrusion remains unclear. We show that the cofilin phosphatase chronophin (CIN) spatiotemporally regulates cofilin activity at the cell edge to generate persistent membrane extension. We show that CIN translocates to the leading edge in a PI3-kinase–, Rac1-, and cofilin-dependent manner after EGF stimulation to activate cofilin, promotes actin free barbed end formation, accelerates actin turnover, and enhances membrane protrusion. In addition, we establish that CIN is crucial for the balance of protrusion/retraction events during cell migration. Thus, CIN coordinates the leading edge dynamics by controlling active cofilin levels to promote MTLn3 cell protrusion. PMID:26324884

  13. A ROP2-RIC1 pathway fine-tunes microtubule reorganization for salt tolerance in Arabidopsis.

    Science.gov (United States)

    Li, Changjiang; Lu, Hanmei; Li, Wei; Yuan, Ming; Fu, Ying

    2017-07-01

    The reorganization of microtubules induced by salt stress is required for Arabidopsis survival under high salinity conditions. RIC1 is an effector of Rho-related GTPase from plants (ROPs) and a known microtubule-associated protein. In this study, we demonstrated that RIC1 expression decreased with long-term NaCl treatment, and ric1-1 seedlings exhibited a higher survival rate under salt stress. We found that RIC1 reduced the frequency of microtubule transition from shortening to growing status and knockout of RIC1 improved the reassembly of depolymerized microtubules caused by either oryzalin treatment or salt stress. Further investigation showed that constitutively active ROP2 promoted the reassembly of microtubules and the survival of seedlings under salt stress. A rop2-1 ric1-1 double mutant rescued the salt-sensitive phenotype of rop2-1, indicating that ROP2 functions in salt tolerance through RIC1. Although ROP2 did not regulate RIC1 expression upon salt stress, a quick but mild increase of ROP2 activity was induced, led to reduction of RIC1 on microtubules. Collectively, our study reveals an ROP2-RIC1 pathway that fine-tunes microtubule dynamics in response to salt stress in Arabidopsis. This finding not only reveals a new regulatory mechanism for microtubule reorganization under salt stress but also the importance of ROP signalling for salinity tolerance. © 2017 John Wiley & Sons Ltd.

  14. Overcoming potential energy distortions in constrained internal coordinate molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Kandel, Saugat; Salomon-Ferrer, Romelia; Larsen, Adrien B.; Vaidehi, Nagarajan, E-mail: nvaidehi@coh.org [Division of Immunology, Beckman Research Institute of the City of Hope, Duarte, California 91010 (United States); Jain, Abhinandan, E-mail: Abhi.Jain@jpl.nasa.gov [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109 (United States)

    2016-01-28

    The Internal Coordinate Molecular Dynamics (ICMD) method is an attractive molecular dynamics (MD) method for studying the dynamics of bonded systems such as proteins and polymers. It offers a simple venue for coarsening the dynamics model of a system at multiple hierarchical levels. For example, large scale protein dynamics can be studied using torsional dynamics, where large domains or helical structures can be treated as rigid bodies and the loops connecting them as flexible torsions. ICMD with such a dynamic model of the protein, combined with enhanced conformational sampling method such as temperature replica exchange, allows the sampling of large scale domain motion involving high energy barrier transitions. Once these large scale conformational transitions are sampled, all-torsion, or even all-atom, MD simulations can be carried out for the low energy conformations sampled via coarse grained ICMD to calculate the energetics of distinct conformations. Such hierarchical MD simulations can be carried out with standard all-atom forcefields without the need for compromising on the accuracy of the forces. Using constraints to treat bond lengths and bond angles as rigid can, however, distort the potential energy landscape of the system and reduce the number of dihedral transitions as well as conformational sampling. We present here a two-part solution to overcome such distortions of the potential energy landscape with ICMD models. To alleviate the intrinsic distortion that stems from the reduced phase space in torsional MD, we use the Fixman compensating potential. To additionally alleviate the extrinsic distortion that arises from the coupling between the dihedral angles and bond angles within a force field, we propose a hybrid ICMD method that allows the selective relaxing of bond angles. This hybrid ICMD method bridges the gap between all-atom MD and torsional MD. We demonstrate with examples that these methods together offer a solution to eliminate the potential

  15. Deviation rectification for dynamic measurement of rail wear based on coordinate sets projection

    International Nuclear Information System (INIS)

    Wang, Chao; Ma, Ziji; Li, Yanfu; Liu, Hongli; Zeng, Jiuzhen; Jin, Tan

    2017-01-01

    Dynamic measurement of rail wear using a laser imaging system suffers from random vibrations in the laser-based imaging sensor which cause distorted rail profiles. In this paper, a simple and effective method for rectifying profile deviation is presented to address this issue. There are two main steps: profile recognition and distortion calibration. According to the constant camera and projector parameters, efficient recognition of measured profiles is achieved by analyzing the geometric difference between normal profiles and distorted ones. For a distorted profile, by constructing coordinate sets projecting from it to the standard one on triple projecting primitives, including the rail head inner line, rail waist curve and rail jaw, iterative extrinsic camera parameter self-compensation is implemented. The distortion is calibrated by projecting the distorted profile onto the x – y plane of a measuring coordinate frame, which is parallel to the rail cross section, to eliminate the influence of random vibrations in the laser-based imaging sensor. As well as evaluating the implementation with comprehensive experiments, we also compare our method with other published works. The results exhibit the effectiveness and superiority of our method for the dynamic measurement of rail wear. (paper)

  16. Deviation rectification for dynamic measurement of rail wear based on coordinate sets projection

    Science.gov (United States)

    Wang, Chao; Ma, Ziji; Li, Yanfu; Zeng, Jiuzhen; Jin, Tan; Liu, Hongli

    2017-10-01

    Dynamic measurement of rail wear using a laser imaging system suffers from random vibrations in the laser-based imaging sensor which cause distorted rail profiles. In this paper, a simple and effective method for rectifying profile deviation is presented to address this issue. There are two main steps: profile recognition and distortion calibration. According to the constant camera and projector parameters, efficient recognition of measured profiles is achieved by analyzing the geometric difference between normal profiles and distorted ones. For a distorted profile, by constructing coordinate sets projecting from it to the standard one on triple projecting primitives, including the rail head inner line, rail waist curve and rail jaw, iterative extrinsic camera parameter self-compensation is implemented. The distortion is calibrated by projecting the distorted profile onto the x-y plane of a measuring coordinate frame, which is parallel to the rail cross section, to eliminate the influence of random vibrations in the laser-based imaging sensor. As well as evaluating the implementation with comprehensive experiments, we also compare our method with other published works. The results exhibit the effectiveness and superiority of our method for the dynamic measurement of rail wear.

  17. Dynamic Shift Coordinated Control Based on Motor Active Speed Synchronization with the New Hybrid System

    Directory of Open Access Journals (Sweden)

    Ting Yan

    2017-01-01

    Full Text Available Considering the inherent disadvantages that severely affect driving comfortability during the shift process in HEVs, a dynamic shift coordinated control based on motor active speed synchronization is proposed to improve shift quality by reduction of shift vibration. The whole control scheme is comprised of three phases, preparatory phase, speed regulation phase, and synchronization phase, which are implemented consecutively in order. The key to inhibiting impact and jerk depends on the speed regulation phase, where motor active speed synchronization is utilized to reach the minimum speed difference between the two ends of synchronizer. A new hybrid system with superior performances is applied to present the validity of the adopted control algorithm during upshift or downshift, which can represent planetary gear system and conventional AMT shift procedure, respectively. Bench test, simulation, and road test results show that, compared with other methods, the proposed dynamic coordinated control can achieve shifting control in real time to effectively improve gear-shift comfort and shorten power interruption transients, with robustness in both conventional AMT and planetary gear train.

  18. Binding of anions in triply interlocked coordination catenanes and dynamic allostery for dehalogenation reactions.

    Science.gov (United States)

    Yang, Linlin; Jing, Xu; An, Bowen; He, Cheng; Yang, Yang; Duan, Chunying

    2018-01-28

    By synergistic combination of multicomponent self-assembly and template-directed approaches, triply interlocked metal organic catenanes that consist of two isolated chirally identical tetrahedrons were constructed and stabilized as thermodynamic minima. In the presence of suitable template anions, the structural conversion from the isolated tetrahedral conformers into locked catenanes occurred via the cleavage of an intrinsically reversible coordination bond in each of the tetrahedrons, followed by the reengineering and interlocking of two fragments with the regeneration of the broken coordination bonds. The presence of several kinds of individual pocket that were attributed to the triply interlocked patterns enabled the possibility of encapsulating different anions, allowing the dynamic allostery between the unlocked/locked conformers to promote the dehalogenation reaction of 3-bromo-cyclohexene efficiently, as with the use of dehalogenase enzymes. The interlocked structures could be unlocked into two individual tetrahedrons through removal of the well-matched anion templates. The stability and reversibility of the locked/unlocked structures were further confirmed by the catching/releasing process that accompanied emission switching, providing opportunities for the system to be a dynamic molecular logic system.

  19. Dynamic exposure model analysis of continuous laser direct writing in Polar-coordinate

    Science.gov (United States)

    Zhang, Shan; Lv, Yingjun; Mao, Wenjie

    2018-01-01

    In order to exactly predict the continuous laser direct writing quality in Polar-coordinate, we take into consideration the effect of the photoresist absorbing beam energy, the Gaussian attribute of the writing beam and the dynamic exposure process, and establish a dynamic exposure model to describe the influence of the tangential velocity of the normal incident facular center and laser power on the line width and sidewall angle. Numerical simulation results indicate that while writing velocity remains unchanged, the line width and sidewall angle are all increased as the laser power increases; while laser power remains unchanged, the line width and sidewall angle are all decreased as the writing velocity increases; at the same time the line profile in the exposure section is asymmetry and the center of the line has tiny excursion toward the Polar-coordinate origin compared with the facular center. Then it is necessary to choose the right writing velocity and laser power to obtain the ideal line profile. The model makes up the shortcomings of traditional models that can only predict line width or estimate the profile of the writing line in the absence of photoresist absorption, and can be considered as an effect analysis method for optimizing the parameters of fabrication technique of laser direct writing.

  20. Manipulation and quantification of microtubule lattice integrity

    Directory of Open Access Journals (Sweden)

    Taylor A. Reid

    2017-08-01

    Full Text Available Microtubules are structural polymers that participate in a wide range of cellular functions. The addition and loss of tubulin subunits allows the microtubule to grow and shorten, as well as to develop and repair defects and gaps in its cylindrical lattice. These lattice defects act to modulate the interactions of microtubules with molecular motors and other microtubule-associated proteins. Therefore, tools to control and measure microtubule lattice structure will be invaluable for developing a quantitative understanding of how the structural state of the microtubule lattice may regulate its interactions with other proteins. In this work, we manipulated the lattice integrity of in vitro microtubules to create pools of microtubules with common nucleotide states, but with variations in structural states. We then developed a series of novel semi-automated analysis tools for both fluorescence and electron microscopy experiments to quantify the type and severity of alterations in microtubule lattice integrity. These techniques will enable new investigations that explore the role of microtubule lattice structure in interactions with microtubule-associated proteins.

  1. Dynamics of multiple nuclei in Ashbya gossypii hyphae depend on the control of cytoplasmic microtubules length by Bik1, Kip2, Kip3, and not on a capture/shrinkage mechanism.

    Science.gov (United States)

    Grava, Sandrine; Philippsen, Peter

    2010-11-01

    Ashbya gossypii has a budding yeast-like genome but grows exclusively as multinucleated hyphae. In contrast to budding yeast where positioning of nuclei at the bud neck is a major function of cytoplasmic microtubules (cMTs), A. gossypii nuclei are constantly in motion and positioning is not an issue. To investigate the role of cMTs in nuclear oscillation and bypassing, we constructed mutants potentially affecting cMT lengths. Hyphae lacking the plus (+)end marker Bik1 or the kinesin Kip2 cannot polymerize long cMTs and lose wild-type nuclear movements. Interestingly, hyphae lacking the kinesin Kip3 display longer cMTs concomitant with increased nuclear oscillation and bypassing. Polymerization and depolymerization rates of cMTs are 3 times higher in A. gossypii than in budding yeast and cMT catastrophes are rare. Growing cMTs slide along the hyphal cortex and exert pulling forces on nuclei. Surprisingly, a capture/shrinkage mechanism seems to be absent in A. gossypii. cMTs reaching a hyphal tip do not shrink, and cMT +ends accumulate in hyphal tips. Thus, differences in cMT dynamics and length control between budding yeast and A. gossypii are key elements in the adaptation of the cMT cytoskeleton to much longer cells and much higher degrees of nuclear mobilities.

  2. Taking directions: the role of microtubule-bound nucleation in the self-organization of the plant cortical array

    International Nuclear Information System (INIS)

    Deinum, Eva E; Tindemans, Simon H; Mulder, Bela M

    2011-01-01

    The highly aligned cortical microtubule array of interphase plant cells is a key regulator of anisotropic cell expansion. Recent computational and analytical work has shown that the non-equilibrium self-organization of this structure can be understood on the basis of experimentally observed collisional interactions between dynamic microtubules attached to the plasma membrane. Most of these approaches assumed that new microtubules are homogeneously and isotropically nucleated on the cortical surface. Experimental evidence, however, shows that nucleation mostly occurs from other microtubules and under specific relative angles. Here, we investigate the impact of directed microtubule-bound nucleations on the alignment process using computer simulations. The results show that microtubule-bound nucleations can increase the degree of alignment achieved, decrease the timescale of the ordering process and widen the regime of dynamic parameters for which the system can self-organize. We establish that the major determinant of this effect is the degree of co-alignment of the nucleations with the parent microtubule. The specific role of sideways branching nucleations appears to allow stronger alignment while maintaining a measure of overall spatial homogeneity. Finally, we investigate the suggestion that observed persistent rotation of microtubule domains can be explained through a handedness bias in microtubule-bound nucleations, showing that this is possible only for an extreme bias and over a limited range of parameters

  3. Taking directions: the role of microtubule-bound nucleation in the self-organization of the plant cortical array

    Science.gov (United States)

    Deinum, Eva E.; Tindemans, Simon H.; Mulder, Bela M.

    2011-10-01

    The highly aligned cortical microtubule array of interphase plant cells is a key regulator of anisotropic cell expansion. Recent computational and analytical work has shown that the non-equilibrium self-organization of this structure can be understood on the basis of experimentally observed collisional interactions between dynamic microtubules attached to the plasma membrane. Most of these approaches assumed that new microtubules are homogeneously and isotropically nucleated on the cortical surface. Experimental evidence, however, shows that nucleation mostly occurs from other microtubules and under specific relative angles. Here, we investigate the impact of directed microtubule-bound nucleations on the alignment process using computer simulations. The results show that microtubule-bound nucleations can increase the degree of alignment achieved, decrease the timescale of the ordering process and widen the regime of dynamic parameters for which the system can self-organize. We establish that the major determinant of this effect is the degree of co-alignment of the nucleations with the parent microtubule. The specific role of sideways branching nucleations appears to allow stronger alignment while maintaining a measure of overall spatial homogeneity. Finally, we investigate the suggestion that observed persistent rotation of microtubule domains can be explained through a handedness bias in microtubule-bound nucleations, showing that this is possible only for an extreme bias and over a limited range of parameters.

  4. Model for the orientational ordering of the plant microtubule cortical array

    Science.gov (United States)

    Hawkins, Rhoda J.; Tindemans, Simon H.; Mulder, Bela M.

    2010-07-01

    The plant microtubule cortical array is a striking feature of all growing plant cells. It consists of a more or less homogeneously distributed array of highly aligned microtubules connected to the inner side of the plasma membrane and oriented transversely to the cell growth axis. Here, we formulate a continuum model to describe the origin of orientational order in such confined arrays of dynamical microtubules. The model is based on recent experimental observations that show that a growing cortical microtubule can interact through angle dependent collisions with pre-existing microtubules that can lead either to co-alignment of the growth, retraction through catastrophe induction or crossing over the encountered microtubule. We identify a single control parameter, which is fully determined by the nucleation rate and intrinsic dynamics of individual microtubules. We solve the model analytically in the stationary isotropic phase, discuss the limits of stability of this isotropic phase, and explicitly solve for the ordered stationary states in a simplified version of the model.

  5. Computing the Free Energy along a Reaction Coordinate Using Rigid Body Dynamics.

    Science.gov (United States)

    Tao, Peng; Sodt, Alexander J; Shao, Yihan; König, Gerhard; Brooks, Bernard R

    2014-10-14

    The calculations of potential of mean force along complex chemical reactions or rare events pathways are of great interest because of their importance for many areas in chemistry, molecular biology, and material science. The major difficulty for free energy calculations comes from the great computational cost for adequate sampling of the system in high-energy regions, especially close to the reaction transition state. Here, we present a method, called FEG-RBD, in which the free energy gradients were obtained from rigid body dynamics simulations. Then the free energy gradients were integrated along a reference reaction pathway to calculate free energy profiles. In a given system, the reaction coordinates defining a subset of atoms (e.g., a solute, or the quantum mechanics (QM) region of a quantum mechanics/molecular mechanics simulation) are selected to form a rigid body during the simulation. The first-order derivatives (gradients) of the free energy with respect to the reaction coordinates are obtained through the integration of constraint forces within the rigid body. Each structure along the reference reaction path is separately subjected to such a rigid body simulation. The individual free energy gradients are integrated along the reference pathway to obtain the free energy profile. Test cases provided demonstrate both the strengths and weaknesses of the FEG-RBD method. The most significant benefit of this method comes from the fast convergence rate of the free energy gradient using rigid-body constraints instead of restraints. A correction to the free energy due to approximate relaxation of the rigid-body constraint is estimated and discussed. A comparison with umbrella sampling using a simple test case revealed the improved sampling efficiency of FEG-RBD by a factor of 4 on average. The enhanced efficiency makes this method effective for calculating the free energy of complex chemical reactions when the reaction coordinate can be unambiguously defined by a

  6. Atomic-resolution structure of the CAP-Gly domain of dynactin on polymeric microtubules determined by magic angle spinning NMR spectroscopy.

    Science.gov (United States)

    Yan, Si; Guo, Changmiao; Hou, Guangjin; Zhang, Huilan; Lu, Xingyu; Williams, John Charles; Polenova, Tatyana

    2015-11-24

    Microtubules and their associated proteins perform a broad array of essential physiological functions, including mitosis, polarization and differentiation, cell migration, and vesicle and organelle transport. As such, they have been extensively studied at multiple levels of resolution (e.g., from structural biology to cell biology). Despite these efforts, there remain significant gaps in our knowledge concerning how microtubule-binding proteins bind to microtubules, how dynamics connect different conformational states, and how these interactions and dynamics affect cellular processes. Structures of microtubule-associated proteins assembled on polymeric microtubules are not known at atomic resolution. Here, we report a structure of the cytoskeleton-associated protein glycine-rich (CAP-Gly) domain of dynactin motor on polymeric microtubules, solved by magic angle spinning NMR spectroscopy. We present the intermolecular interface of CAP-Gly with microtubules, derived by recording direct dipolar contacts between CAP-Gly and tubulin using double rotational echo double resonance (dREDOR)-filtered experiments. Our results indicate that the structure adopted by CAP-Gly varies, particularly around its loop regions, permitting its interaction with multiple binding partners and with the microtubules. To our knowledge, this study reports the first atomic-resolution structure of a microtubule-associated protein on polymeric microtubules. Our approach lays the foundation for atomic-resolution structural analysis of other microtubule-associated motors.

  7. A dynamical model of hierarchical selection and coordination in speech planning.

    Directory of Open Access Journals (Sweden)

    Sam Tilsen

    Full Text Available studies of the control of complex sequential movements have dissociated two aspects of movement planning: control over the sequential selection of movement plans, and control over the precise timing of movement execution. This distinction is particularly relevant in the production of speech: utterances contain sequentially ordered words and syllables, but articulatory movements are often executed in a non-sequential, overlapping manner with precisely coordinated relative timing. This study presents a hybrid dynamical model in which competitive activation controls selection of movement plans and coupled oscillatory systems govern coordination. The model departs from previous approaches by ascribing an important role to competitive selection of articulatory plans within a syllable. Numerical simulations show that the model reproduces a variety of speech production phenomena, such as effects of preparation and utterance composition on reaction time, and asymmetries in patterns of articulatory timing associated with onsets and codas. The model furthermore provides a unified understanding of a diverse group of phonetic and phonological phenomena which have not previously been related.

  8. Coordinating two-period ordering and advertising policies in a dynamic market with stochastic demand

    Science.gov (United States)

    Wang, Junping; Wang, Shengdong; Min, Jie

    2015-03-01

    In this paper, we study the optimal two-stage advertising and ordering policies and the channel coordination issues in a supply chain composed of one manufacturer and one retailer. The manufacturer sells a short-life-cycle product through the retailer facing stochastic demand in dynamic markets characterised by price declines and product obsolescence. Following a two-period newsvendor framework, we develop two members' optimal ordering and advertising models under both the centralised and decentralised settings, and present the closed-form solutions to the developed models as well. Moreover, we design a two-period revenue-sharing contract, and develop sufficient conditions such that the channel coordination can be achieved and a win-win outcome can be guaranteed. Our analysis suggests that the centralised decision creates an incentive for the retailer to increase the advertising investments in two periods and put the purchase forward, but the decentralised decision mechanism forces the retailer to decrease the advertising investments in two periods and postpone/reduce its purchase in the first period. This phenomenon becomes more evident when demand variability is high.

  9. The heart tube forms and elongates through dynamic cell rearrangement coordinated with foregut extension.

    Science.gov (United States)

    Kidokoro, Hinako; Yonei-Tamura, Sayuri; Tamura, Koji; Schoenwolf, Gary C; Saijoh, Yukio

    2018-03-29

    In the initiation of cardiogenesis, the heart primordia transform from bilateral flat sheets of mesoderm into an elongated midline tube. Here, we discover that this rapid architectural change is driven by actomyosin-based oriented cell rearrangement and resulting dynamic tissue reshaping (convergent extension, CE). By labeling clusters of cells spanning the entire heart primordia, we show that the heart primordia converge toward the midline to form a narrow tube, while extending perpendicularly to rapidly lengthen it. Our data for the first time visualize the process of early heart tube formation from both the medial (second) and lateral (first) heart fields, revealing that both fields form the early heart tube by essentially the same mechanism. Additionally, the adjacent endoderm coordinately forms the foregut through previously unrecognized movements that parallel those of the heart mesoderm and elongates by CE. In conclusion, our data illustrate how initially two-dimensional flat primordia rapidly change their shapes and construct the three-dimensional morphology of emerging organs in coordination with neighboring morphogenesis. © 2018. Published by The Company of Biologists Ltd.

  10. Approximating high-dimensional dynamics by barycentric coordinates with linear programming

    Energy Technology Data Exchange (ETDEWEB)

    Hirata, Yoshito, E-mail: yoshito@sat.t.u-tokyo.ac.jp; Aihara, Kazuyuki; Suzuki, Hideyuki [Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 (Japan); Department of Mathematical Informatics, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656 (Japan); CREST, JST, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Shiro, Masanori [Department of Mathematical Informatics, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656 (Japan); Mathematical Neuroinformatics Group, Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568 (Japan); Takahashi, Nozomu; Mas, Paloma [Center for Research in Agricultural Genomics (CRAG), Consorci CSIC-IRTA-UAB-UB, Barcelona 08193 (Spain)

    2015-01-15

    The increasing development of novel methods and techniques facilitates the measurement of high-dimensional time series but challenges our ability for accurate modeling and predictions. The use of a general mathematical model requires the inclusion of many parameters, which are difficult to be fitted for relatively short high-dimensional time series observed. Here, we propose a novel method to accurately model a high-dimensional time series. Our method extends the barycentric coordinates to high-dimensional phase space by employing linear programming, and allowing the approximation errors explicitly. The extension helps to produce free-running time-series predictions that preserve typical topological, dynamical, and/or geometric characteristics of the underlying attractors more accurately than the radial basis function model that is widely used. The method can be broadly applied, from helping to improve weather forecasting, to creating electronic instruments that sound more natural, and to comprehensively understanding complex biological data.

  11. Approximating high-dimensional dynamics by barycentric coordinates with linear programming

    International Nuclear Information System (INIS)

    Hirata, Yoshito; Aihara, Kazuyuki; Suzuki, Hideyuki; Shiro, Masanori; Takahashi, Nozomu; Mas, Paloma

    2015-01-01

    The increasing development of novel methods and techniques facilitates the measurement of high-dimensional time series but challenges our ability for accurate modeling and predictions. The use of a general mathematical model requires the inclusion of many parameters, which are difficult to be fitted for relatively short high-dimensional time series observed. Here, we propose a novel method to accurately model a high-dimensional time series. Our method extends the barycentric coordinates to high-dimensional phase space by employing linear programming, and allowing the approximation errors explicitly. The extension helps to produce free-running time-series predictions that preserve typical topological, dynamical, and/or geometric characteristics of the underlying attractors more accurately than the radial basis function model that is widely used. The method can be broadly applied, from helping to improve weather forecasting, to creating electronic instruments that sound more natural, and to comprehensively understanding complex biological data

  12. Approximating high-dimensional dynamics by barycentric coordinates with linear programming.

    Science.gov (United States)

    Hirata, Yoshito; Shiro, Masanori; Takahashi, Nozomu; Aihara, Kazuyuki; Suzuki, Hideyuki; Mas, Paloma

    2015-01-01

    The increasing development of novel methods and techniques facilitates the measurement of high-dimensional time series but challenges our ability for accurate modeling and predictions. The use of a general mathematical model requires the inclusion of many parameters, which are difficult to be fitted for relatively short high-dimensional time series observed. Here, we propose a novel method to accurately model a high-dimensional time series. Our method extends the barycentric coordinates to high-dimensional phase space by employing linear programming, and allowing the approximation errors explicitly. The extension helps to produce free-running time-series predictions that preserve typical topological, dynamical, and/or geometric characteristics of the underlying attractors more accurately than the radial basis function model that is widely used. The method can be broadly applied, from helping to improve weather forecasting, to creating electronic instruments that sound more natural, and to comprehensively understanding complex biological data.

  13. Event heap: a coordination infrastructure for dynamic heterogeneous application interactions in ubiquitous computing environments

    Science.gov (United States)

    Johanson, Bradley E.; Fox, Armando; Winograd, Terry A.; Hanrahan, Patrick M.

    2010-04-20

    An efficient and adaptive middleware infrastructure called the Event Heap system dynamically coordinates application interactions and communications in a ubiquitous computing environment, e.g., an interactive workspace, having heterogeneous software applications running on various machines and devices across different platforms. Applications exchange events via the Event Heap. Each event is characterized by a set of unordered, named fields. Events are routed by matching certain attributes in the fields. The source and target versions of each field are automatically set when an event is posted or used as a template. The Event Heap system implements a unique combination of features, both intrinsic to tuplespaces and specific to the Event Heap, including content based addressing, support for routing patterns, standard routing fields, limited data persistence, query persistence/registration, transparent communication, self-description, flexible typing, logical/physical centralization, portable client API, at most once per source first-in-first-out ordering, and modular restartability.

  14. Car-Parrinello molecular dynamics study of the coordination on Al3+ (aq)

    International Nuclear Information System (INIS)

    Larrucea, Julen

    2011-01-01

    The solution of the Al 3+ cation has been simulated for coordination numbers 4, 5 and 6 in order to test their stability. The trajectories confirm the stability of the four- and six-coordinated Al 3+ structures and Helmholtz's free energy estimations show the dehydration energy to decrease along with the coordination number. The five-coordinated structure turned into a six-coordinated one after 80 ps.

  15. Global Analysis of miRNA Gene Clusters and Gene Families Reveals Dynamic and Coordinated Expression

    Directory of Open Access Journals (Sweden)

    Li Guo

    2014-01-01

    Full Text Available To further understand the potential expression relationships of miRNAs in miRNA gene clusters and gene families, a global analysis was performed in 4 paired tumor (breast cancer and adjacent normal tissue samples using deep sequencing datasets. The compositions of miRNA gene clusters and families are not random, and clustered and homologous miRNAs may have close relationships with overlapped miRNA species. Members in the miRNA group always had various expression levels, and even some showed larger expression divergence. Despite the dynamic expression as well as individual difference, these miRNAs always indicated consistent or similar deregulation patterns. The consistent deregulation expression may contribute to dynamic and coordinated interaction between different miRNAs in regulatory network. Further, we found that those clustered or homologous miRNAs that were also identified as sense and antisense miRNAs showed larger expression divergence. miRNA gene clusters and families indicated important biological roles, and the specific distribution and expression further enrich and ensure the flexible and robust regulatory network.

  16. Dynamic wake model with coordinated pitch and torque control of wind farms for power tracking

    Science.gov (United States)

    Shapiro, Carl; Meyers, Johan; Meneveau, Charles; Gayme, Dennice

    2017-11-01

    Control of wind farm power production, where wind turbines within a wind farm coordinate to follow a time-varying power set point, is vital for increasing renewable energy participation in the power grid. Previous work developed a one-dimensional convection-diffusion equation describing the advection of the velocity deficit behind each turbine (wake) as well the turbulent mixing of the wake with the surrounding fluid. Proof-of-concept simulations demonstrated that a receding horizon controller built around this time-dependent model can effectively provide power tracking services by modulating the thrust coefficients of individual wind turbines. In this work, we extend this model-based controller to include pitch angle and generator torque control and the first-order dynamics of the drive train. Including these dynamics allows us to investigate control strategies for providing kinetic energy reserves to the grid, i.e. storing kinetic energy from the wind in the rotating mass of the wind turbine rotor for later use. CS, CM, and DG are supported by NSF (ECCS-1230788, CMMI 1635430, and OISE-1243482, the WINDINSPIRE project). JM is supported by ERC (ActiveWindFarms, 306471). This research was conducted using computational resources at MARCC.

  17. Structural differences between yeast and mammalian microtubules revealed by cryo-EM

    Energy Technology Data Exchange (ETDEWEB)

    Howes, Stuart C. [Univ. of California, Berkeley, CA (United States). Biophysics Graduate Group; Geyer, Elisabeth A. [Univ. of Texas Southwestern Medical Center, Dallas, TX (United States). Dept. of Biophysics; Univ. of Texas Southwestern Medical Center, Dallas, TX (United States). Dept. of Biochemistry; LaFrance, Benjamin [Univ. of California, Berkeley, CA (United States). Molecular and Cell Biology Graduate Program; Zhang, Rui [Univ. of California, Berkeley, CA (United States). Howard Hughes Medical Inst.; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Biophysics and Integrated Bioimaging Division; Kellogg, Elizabeth H. [Univ. of California, Berkeley, CA (United States). Howard Hughes Medical Inst.; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Biophysics and Integrated Bioimaging Division; Westermann, Stefan [Univ. of Duisburg-Essen, Essen (Germany). Dept. of Molecular Genetics, Center for Medical Biotechnology; Rice, Luke M. [Univ. of Texas Southwestern Medical Center, Dallas, TX (United States). Dept. of Biophysics; Univ. of Texas Southwestern Medical Center, Dallas, TX (United States). Dept. of Biochemistry; Nogales, Eva [Univ. of California, Berkeley, CA (United States). Howard Hughes Medical Inst.; Univ. of California, Berkeley, CA (United States). Dept. of Molecular Biology and California Inst. for Quantitative Biosciences; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Biophysics and Integrated Bioimaging Division

    2017-06-26

    Microtubules are polymers of αβ-tubulin heterodimers essential for all eukaryotes. Despite sequence conservation, there are significant structural differences between microtubules assembled in vitro from mammalian or budding yeast tubulin. Yeast MTs were not observed to undergo compaction at the interdimer interface as seen for mammalian microtubules upon GTP hydrolysis. Lack of compaction might reflect slower GTP hydrolysis or a different degree of allosteric coupling in the lattice. The microtubule plus end–tracking protein Bim1 binds yeast microtubules both between αβ-tubulin heterodimers, as seen for other organisms, and within tubulin dimers, but binds mammalian tubulin only at interdimer contacts. At the concentrations used in cryo-electron microscopy, Bim1 causes the compaction of yeast microtubules and induces their rapid disassembly. In conclusion, our studies demonstrate structural differences between yeast and mammalian microtubules that likely underlie their differing polymerization dynamics. These differences may reflect adaptations to the demands of different cell size or range of physiological growth temperatures.

  18. Microtubule nucleation and organization in dendrites

    Science.gov (United States)

    Delandre, Caroline; Amikura, Reiko; Moore, Adrian W.

    2016-01-01

    ABSTRACT Dendrite branching is an essential process for building complex nervous systems. It determines the number, distribution and integration of inputs into a neuron, and is regulated to create the diverse dendrite arbor branching patterns characteristic of different neuron types. The microtubule cytoskeleton is critical to provide structure and exert force during dendrite branching. It also supports the functional requirements of dendrites, reflected by differential microtubule architectural organization between neuron types, illustrated here for sensory neurons. Both anterograde and retrograde microtubule polymerization occur within growing dendrites, and recent studies indicate that branching is enhanced by anterograde microtubule polymerization events in nascent branches. The polarities of microtubule polymerization events are regulated by the position and orientation of microtubule nucleation events in the dendrite arbor. Golgi outposts are a primary microtubule nucleation center in dendrites and share common nucleation machinery with the centrosome. In addition, pre-existing dendrite microtubules may act as nucleation sites. We discuss how balancing the activities of distinct nucleation machineries within the growing dendrite can alter microtubule polymerization polarity and dendrite branching, and how regulating this balance can generate neuron type-specific morphologies. PMID:27097122

  19. Microtubule-targeting drugs rescue axonal swellings in cortical neurons from spastin knockout mice

    Directory of Open Access Journals (Sweden)

    Coralie Fassier

    2013-01-01

    Mutations in SPG4, encoding the microtubule-severing protein spastin, are responsible for the most frequent form of hereditary spastic paraplegia (HSP, a heterogeneous group of genetic diseases characterized by degeneration of the corticospinal tracts. We previously reported that mice harboring a deletion in Spg4, generating a premature stop codon, develop progressive axonal degeneration characterized by focal axonal swellings associated with impaired axonal transport. To further characterize the molecular and cellular mechanisms underlying this mutant phenotype, we have assessed microtubule dynamics and axonal transport in primary cultures of cortical neurons from spastin-mutant mice. We show an early and marked impairment of microtubule dynamics all along the axons of spastin-deficient cortical neurons, which is likely to be responsible for the occurrence of axonal swellings and cargo stalling. Our analysis also reveals that a modulation of microtubule dynamics by microtubule-targeting drugs rescues the mutant phenotype of cortical neurons. Together, these results contribute to a better understanding of the pathogenesis of SPG4-linked HSP and ascertain the influence of microtubule-targeted drugs on the early axonal phenotype in a mouse model of the disease.

  20. Dynamic instability analysis of axisymmetric shells by finite element method with convected coordinates

    International Nuclear Information System (INIS)

    Hsieh, B.J.

    1977-01-01

    A rectilinear shell element formulated in the convected (co-rotational) coordinates is used to investigate the effects of edge conditions on the behaviors of thin shells of revolution under suddenly applied uniform loading. The equivalent generalized nodal forces under uniform loading are computed to the third order of the length of each element. A dynamic buckling load is defined as the load at which a great change in the response is observed for a small change in the loading. The problem studied is a shallow spherical cap. The cap is discretized into a finite number of elements. This discretization introduces some initial imperfections into the shell model. Nonetheless, the effect of this artificial imperfection is isolated from the effect of the edge conditions provided the same number of elements is used in all the cases. Four different edge conditions for the cap are used. These boundary conditions are fixed edge, hinged edge, roller edge and free edge. The apex displacement of the cap is taken as the measure for the response of the cap, and the dynamic buckling load is obtained by examining the response of the cap under different levels of loadings. Dynamic buckling loads can be found for all cases but for the free edge case. They are 0.28q for both fixed and hinged cases and 0.13 q for the roller case, where q is the classic static buckling load of a complete spherical shell with the same geometric dimensions and material properties. In the case of free edge, the motions of the cap are composed of mostly rigid body motion and small vibrations. The vibration of the cap is stable up to 1 q loading. The cap does snap through at higher loading. However, no loading can be clearly identified as buckling load

  1. Use of isotope techniques in lake dynamics investigations. Proceedings of a final research co-ordination meeting

    International Nuclear Information System (INIS)

    2001-03-01

    The Co-ordinated Research Programme (CRP) on the Use of Isotope Techniques in Lake Dynamics Investigations was launched with the aim of assessing the potential of environmental isotope techniques in studying the dynamics of surface water bodies and related problems such as: dynamics of solutes; sediment focusing; establishment of water balance components; vulnerability to pollution. The CRP enabled a number of isotope and geochemical studies to be carried out on small and large water bodies, with the general aim of understanding of the dynamics of these systems under the growing anthropogenic influence. This publication is a compilation of the papers presented at the final Research Co-ordination Meeting (RCM) held in Rehovot, Israel, from 10 to 13 March 1997. Individual contributions have been indexed separately

  2. Biological oscillations for learning walking coordination: dynamic recurrent neural network functionally models physiological central pattern generator.

    Science.gov (United States)

    Hoellinger, Thomas; Petieau, Mathieu; Duvinage, Matthieu; Castermans, Thierry; Seetharaman, Karthik; Cebolla, Ana-Maria; Bengoetxea, Ana; Ivanenko, Yuri; Dan, Bernard; Cheron, Guy

    2013-01-01

    The existence of dedicated neuronal modules such as those organized in the cerebral cortex, thalamus, basal ganglia, cerebellum, or spinal cord raises the question of how these functional modules are coordinated for appropriate motor behavior. Study of human locomotion offers an interesting field for addressing this central question. The coordination of the elevation of the 3 leg segments under a planar covariation rule (Borghese et al., 1996) was recently modeled (Barliya et al., 2009) by phase-adjusted simple oscillators shedding new light on the understanding of the central pattern generator (CPG) processing relevant oscillation signals. We describe the use of a dynamic recurrent neural network (DRNN) mimicking the natural oscillatory behavior of human locomotion for reproducing the planar covariation rule in both legs at different walking speeds. Neural network learning was based on sinusoid signals integrating frequency and amplitude features of the first three harmonics of the sagittal elevation angles of the thigh, shank, and foot of each lower limb. We verified the biological plausibility of the neural networks. Best results were obtained with oscillations extracted from the first three harmonics in comparison to oscillations outside the harmonic frequency peaks. Physiological replication steadily increased with the number of neuronal units from 1 to 80, where similarity index reached 0.99. Analysis of synaptic weighting showed that the proportion of inhibitory connections consistently increased with the number of neuronal units in the DRNN. This emerging property in the artificial neural networks resonates with recent advances in neurophysiology of inhibitory neurons that are involved in central nervous system oscillatory activities. The main message of this study is that this type of DRNN may offer a useful model of physiological central pattern generator for gaining insights in basic research and developing clinical applications.

  3. The Drosophila Microtubule-Associated Protein Mars Stabilizes Mitotic Spindles by Crosslinking Microtubules through Its N-Terminal Region

    Science.gov (United States)

    Zhang, Gang; Beati, Hamze; Nilsson, Jakob; Wodarz, Andreas

    2013-01-01

    Correct segregation of genetic material relies on proper assembly and maintenance of the mitotic spindle. How the highly dynamic microtubules (MTs) are maintained in stable mitotic spindles is a key question to be answered. Motor and non-motor microtubule associated proteins (MAPs) have been reported to stabilize the dynamic spindle through crosslinking adjacent MTs. Mars, a novel MAP, is essential for the early development of Drosophila embryos. Previous studies showed that Mars is required for maintaining an intact mitotic spindle but did not provide a molecular mechanism for this function. Here we show that Mars is able to stabilize the mitotic spindle in vivo. Both in vivo and in vitro data reveal that the N-terminal region of Mars functions in the stabilization of the mitotic spindle by crosslinking adjacent MTs. PMID:23593258

  4. The Drosophila microtubule-associated protein mars stabilizes mitotic spindles by crosslinking microtubules through its N-terminal region.

    Directory of Open Access Journals (Sweden)

    Gang Zhang

    Full Text Available Correct segregation of genetic material relies on proper assembly and maintenance of the mitotic spindle. How the highly dynamic microtubules (MTs are maintained in stable mitotic spindles is a key question to be answered. Motor and non-motor microtubule associated proteins (MAPs have been reported to stabilize the dynamic spindle through crosslinking adjacent MTs. Mars, a novel MAP, is essential for the early development of Drosophila embryos. Previous studies showed that Mars is required for maintaining an intact mitotic spindle but did not provide a molecular mechanism for this function. Here we show that Mars is able to stabilize the mitotic spindle in vivo. Both in vivo and in vitro data reveal that the N-terminal region of Mars functions in the stabilization of the mitotic spindle by crosslinking adjacent MTs.

  5. The Drosophila microtubule-associated protein mars stabilizes mitotic spindles by crosslinking microtubules through its N-terminal region.

    Science.gov (United States)

    Zhang, Gang; Beati, Hamze; Nilsson, Jakob; Wodarz, Andreas

    2013-01-01

    Correct segregation of genetic material relies on proper assembly and maintenance of the mitotic spindle. How the highly dynamic microtubules (MTs) are maintained in stable mitotic spindles is a key question to be answered. Motor and non-motor microtubule associated proteins (MAPs) have been reported to stabilize the dynamic spindle through crosslinking adjacent MTs. Mars, a novel MAP, is essential for the early development of Drosophila embryos. Previous studies showed that Mars is required for maintaining an intact mitotic spindle but did not provide a molecular mechanism for this function. Here we show that Mars is able to stabilize the mitotic spindle in vivo. Both in vivo and in vitro data reveal that the N-terminal region of Mars functions in the stabilization of the mitotic spindle by crosslinking adjacent MTs.

  6. GDP-to-GTP exchange on the microtubule end can contribute to the frequency of catastrophe.

    Science.gov (United States)

    Piedra, Felipe-Andrés; Kim, Tae; Garza, Emily S; Geyer, Elisabeth A; Burns, Alexander; Ye, Xuecheng; Rice, Luke M

    2016-11-07

    Microtubules are dynamic polymers of αβ-tubulin that have essential roles in chromosome segregation and organization of the cytoplasm. Catastrophe-the switch from growing to shrinking-occurs when a microtubule loses its stabilizing GTP cap. Recent evidence indicates that the nucleotide on the microtubule end controls how tightly an incoming subunit will be bound (trans-acting GTP), but most current models do not incorporate this information. We implemented trans-acting GTP into a computational model for microtubule dynamics. In simulations, growing microtubules often exposed terminal GDP-bound subunits without undergoing catastrophe. Transient GDP exposure on the growing plus end slowed elongation by reducing the number of favorable binding sites on the microtubule end. Slower elongation led to erosion of the GTP cap and an increase in the frequency of catastrophe. Allowing GDP-to-GTP exchange on terminal subunits in simulations mitigated these effects. Using mutant αβ-tubulin or modified GTP, we showed experimentally that a more readily exchangeable nucleotide led to less frequent catastrophe. Current models for microtubule dynamics do not account for GDP-to-GTP exchange on the growing microtubule end, so our findings provide a new way of thinking about the molecular events that initiate catastrophe. © 2016 Piedra et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  7. Evaluation of aggregate stability of Haplic Stagnosols using dynamic light scattering, phase analysis light scattering and color coordinates

    Czech Academy of Sciences Publication Activity Database

    Artemyeva, Z.; Žigová, Anna; Kirillova, N.; Šťastný, Martin; Holubík, O.; Podrázský, V.

    2017-01-01

    Roč. 63, č. 13 (2017), s. 1838-1851 ISSN 0365-0340 Institutional support: RVO:67985831 Keywords : land use * aggregate stability * organo-clay complexes * dynamic light scattering * phase analysis light scattering * color coordinates Subject RIV: DF - Soil Science OBOR OECD: Soil science Impact factor: 2.137, year: 2016

  8. Dissecting the nanoscale distributions and functions of microtubule-end-binding proteins EB1 and ch-TOG in interphase HeLa cells.

    Directory of Open Access Journals (Sweden)

    Satoko Nakamura

    Full Text Available Recently, the EB1 and XMAP215/TOG families of microtubule binding proteins have been demonstrated to bind autonomously to the growing plus ends of microtubules and regulate their behaviour in in vitro systems. However, their functional redundancy or difference in cells remains obscure. Here, we compared the nanoscale distributions of EB1 and ch-TOG along microtubules using high-resolution microscopy techniques, and also their roles in microtubule organisation in interphase HeLa cells. The ch-TOG accumulation sites protruded ∼100 nm from the EB1 comets. Overexpression experiments showed that ch-TOG and EB1 did not interfere with each other's localisation, confirming that they recognise distinct regions at the ends of microtubules. While both EB1 and ch-TOG showed similar effects on microtubule plus end dynamics and additively increased microtubule dynamicity, only EB1 exhibited microtubule-cell cortex attachment activity. These observations indicate that EB1 and ch-TOG regulate microtubule organisation differently via distinct regions in the plus ends of microtubules.

  9. A Simple and Efficient Numerical Method for Computing the Dynamics of Rotating Bose--Einstein Condensates via Rotating Lagrangian Coordinates

    KAUST Repository

    Bao, Weizhu

    2013-01-01

    We propose a simple, efficient, and accurate numerical method for simulating the dynamics of rotating Bose-Einstein condensates (BECs) in a rotational frame with or without longrange dipole-dipole interaction (DDI). We begin with the three-dimensional (3D) Gross-Pitaevskii equation (GPE) with an angular momentum rotation term and/or long-range DDI, state the twodimensional (2D) GPE obtained from the 3D GPE via dimension reduction under anisotropic external potential, and review some dynamical laws related to the 2D and 3D GPEs. By introducing a rotating Lagrangian coordinate system, the original GPEs are reformulated to GPEs without the angular momentum rotation, which is replaced by a time-dependent potential in the new coordinate system. We then cast the conserved quantities and dynamical laws in the new rotating Lagrangian coordinates. Based on the new formulation of the GPE for rotating BECs in the rotating Lagrangian coordinates, a time-splitting spectral method is presented for computing the dynamics of rotating BECs. The new numerical method is explicit, simple to implement, unconditionally stable, and very efficient in computation. It is spectral-order accurate in space and second-order accurate in time and conserves the mass on the discrete level. We compare our method with some representative methods in the literature to demonstrate its efficiency and accuracy. In addition, the numerical method is applied to test the dynamical laws of rotating BECs such as the dynamics of condensate width, angular momentum expectation, and center of mass, and to investigate numerically the dynamics and interaction of quantized vortex lattices in rotating BECs without or with the long-range DDI.Copyright © by SIAM.

  10. Katanin: A Sword Cutting Microtubules for Cellular, Developmental, and Physiological Purposes

    Directory of Open Access Journals (Sweden)

    Ivan Luptovčiak

    2017-11-01

    Full Text Available KATANIN is a well-studied microtubule severing protein affecting microtubule organization and dynamic properties in higher plants. By regulating mitotic and cytokinetic and cortical microtubule arrays it is involved in the progression of cell division and cell division plane orientation. KATANIN is also involved in cell elongation and morphogenesis during plant growth. In this way KATANIN plays critical roles in diverse plant developmental processes including the development of pollen, embryo, seed, meristem, root, hypocotyl, cotyledon, leaf, shoot, and silique. KATANIN-dependent microtubule regulation seems to be under the control of plant hormones. This minireview provides an overview on available KATANIN mutants and discusses advances in our understanding of KATANIN biological roles in plants.

  11. Embodied economics: how bodily information shapes the social coordination dynamics of decision-making

    Science.gov (United States)

    Oullier, Olivier; Basso, Frédéric

    2010-01-01

    To date, experiments in economics are restricted to situations in which individuals are not influenced by the physical presence of other people. In such contexts, interactions remain at an abstract level, agents guessing what another person is thinking or is about to decide based on money exchange. Physical presence and bodily signals are therefore left out of the picture. However, in real life, social interactions (involving economic decisions or not) are not solely determined by a person's inference about someone else's state-of-mind. In this essay, we argue for embodied economics: an approach to neuroeconomics that takes into account how information provided by the entire body and its coordination dynamics influences the way we make economic decisions. Considering the role of embodiment in economics—movements, posture, sensitivity to mimicry and every kind of information the body conveys—makes sense. This is what we claim in this essay which, to some extent, constitutes a plea to consider bodily interactions between agents in social (neuro)economics. PMID:20026467

  12. Evolving dynamics of trading behavior based on coordination game in complex networks

    Science.gov (United States)

    Bian, Yue-tang; Xu, Lu; Li, Jin-sheng

    2016-05-01

    This work concerns the modeling of evolvement of trading behavior in stock markets. Based on the assumption of the investors' limited rationality, the evolution mechanism of trading behavior is modeled according to the investment strategy of coordination game in network, that investors are prone to imitate their neighbors' activity through comprehensive analysis on the risk dominance degree of certain investment behavior, the network topology of their relationship and its heterogeneity. We investigate by mean-field analysis and extensive simulations the evolution of investors' trading behavior in various typical networks under different risk dominance degree of investment behavior. Our results indicate that the evolution of investors' behavior is affected by the network structure of stock market and the effect of risk dominance degree of investment behavior; the stability of equilibrium states of investors' behavior dynamics is directly related with the risk dominance degree of some behavior; connectivity and heterogeneity of the network plays an important role in the evolution of the investment behavior in stock market.

  13. Learning robotic eye-arm-hand coordination from human demonstration: a coupled dynamical systems approach.

    Science.gov (United States)

    Lukic, Luka; Santos-Victor, José; Billard, Aude

    2014-04-01

    We investigate the role of obstacle avoidance in visually guided reaching and grasping movements. We report on a human study in which subjects performed prehensile motion with obstacle avoidance where the position of the obstacle was systematically varied across trials. These experiments suggest that reaching with obstacle avoidance is organized in a sequential manner, where the obstacle acts as an intermediary target. Furthermore, we demonstrate that the notion of workspace travelled by the hand is embedded explicitly in a forward planning scheme, which is actively involved in detecting obstacles on the way when performing reaching. We find that the gaze proactively coordinates the pattern of eye-arm motion during obstacle avoidance. This study provides also a quantitative assessment of the coupling between the eye-arm-hand motion. We show that the coupling follows regular phase dependencies and is unaltered during obstacle avoidance. These observations provide a basis for the design of a computational model. Our controller extends the coupled dynamical systems framework and provides fast and synchronous control of the eyes, the arm and the hand within a single and compact framework, mimicking similar control system found in humans. We validate our model for visuomotor control of a humanoid robot.

  14. Embodied economics: how bodily information shapes the social coordination dynamics of decision-making.

    Science.gov (United States)

    Oullier, Olivier; Basso, Frédéric

    2010-01-27

    To date, experiments in economics are restricted to situations in which individuals are not influenced by the physical presence of other people. In such contexts, interactions remain at an abstract level, agents guessing what another person is thinking or is about to decide based on money exchange. Physical presence and bodily signals are therefore left out of the picture. However, in real life, social interactions (involving economic decisions or not) are not solely determined by a person's inference about someone else's state-of-mind. In this essay, we argue for embodied economics: an approach to neuroeconomics that takes into account how information provided by the entire body and its coordination dynamics influences the way we make economic decisions. Considering the role of embodiment in economics--movements, posture, sensitivity to mimicry and every kind of information the body conveys--makes sense. This is what we claim in this essay which, to some extent, constitutes a plea to consider bodily interactions between agents in social (neuro)economics.

  15. C-terminal region of MAP7 domain containing protein 3 (MAP7D3 promotes microtubule polymerization by binding at the C-terminal tail of tubulin.

    Directory of Open Access Journals (Sweden)

    Saroj Yadav

    Full Text Available MAP7 domain containing protein 3 (MAP7D3, a newly identified microtubule associated protein, has been shown to promote microtubule assembly and stability. Its microtubule binding region has been reported to consist of two coiled coil motifs located at the N-terminus. It possesses a MAP7 domain near the C-terminus and belongs to the microtubule associated protein 7 (MAP7 family. The MAP7 domain of MAP7 protein has been shown to bind to kinesin-1; however, the role of MAP7 domain in MAP7D3 remains unknown. Based on the bioinformatics analysis of MAP7D3, we hypothesized that the MAP7 domain of MAP7D3 may have microtubule binding activity. Indeed, we found that MAP7 domain of MAP7D3 bound to microtubules as well as enhanced the assembly of microtubules in vitro. Interestingly, a longer fragment MDCT that contained the MAP7 domain (MD with the C-terminal tail (CT of the protein promoted microtubule polymerization to a greater extent than MD and CT individually. MDCT stabilized microtubules against dilution induced disassembly. MDCT bound to reconstituted microtubules with an apparent dissociation constant of 3.0 ± 0.5 µM. An immunostaining experiment showed that MDCT localized along the length of the preassembled microtubules. Competition experiments with tau indicated that MDCT shares its binding site on microtubules with tau. Further, we present evidence indicating that MDCT binds to the C-terminal tail of tubulin. In addition, MDCT could bind to tubulin in HeLa cell extract. Here, we report a microtubule binding region in the C-terminal region of MAP7D3 that may have a role in regulating microtubule assembly dynamics.

  16. Tubulin cofactor B regulates microtubule densities during microglia transition to the reactive states

    International Nuclear Information System (INIS)

    Fanarraga, M.L.; Villegas, J.C.; Carranza, G.; Castano, R.; Zabala, J.C.

    2009-01-01

    Microglia are highly dynamic cells of the CNS that continuously survey the welfare of the neural parenchyma and play key roles modulating neurogenesis and neuronal cell death. In response to injury or pathogen invasion parenchymal microglia transforms into a more active cell that proliferates, migrates and behaves as a macrophage. The acquisition of these extra skills implicates enormous modifications of the microtubule and actin cytoskeletons. Here we show that tubulin cofactor B (TBCB), which has been found to contribute to various aspects of microtubule dynamics in vivo, is also implicated in microglial cytoskeletal changes. We find that TBCB is upregulated in post-lesion reactive parenchymal microglia/macrophages, in interferon treated BV-2 microglial cells, and in neonate amoeboid microglia where the microtubule densities are remarkably low. Our data demonstrate that upon TBCB downregulation both, after microglia differentiation to the ramified phenotype in vivo and in vitro, or after TBCB gene silencing, microtubule densities are restored in these cells. Taken together these observations support the view that TBCB functions as a microtubule density regulator in microglia during activation, and provide an insight into the understanding of the complex mechanisms controlling microtubule reorganization during microglial transition between the amoeboid, ramified, and reactive phenotypes

  17. Biomechanics and muscle coordination of human walking. Part I: introduction to concepts, power transfer, dynamics and simulations.

    Science.gov (United States)

    Zajac, Felix E; Neptune, Richard R; Kautz, Steven A

    2002-12-01

    Current understanding of how muscles coordinate walking in humans is derived from analyses of body motion, ground reaction force and EMG measurements. This is Part I of a two-part review that emphasizes how muscle-driven dynamics-based simulations assist in the understanding of individual muscle function in walking, especially the causal relationships between muscle force generation and walking kinematics and kinetics. Part I reviews the strengths and limitations of Newton-Euler inverse dynamics and dynamical simulations, including the ability of each to find the contributions of individual muscles to the acceleration/deceleration of the body segments. We caution against using the concept of biarticular muscles transferring power from one joint to another to infer muscle coordination principles because energy flow among segments, even the adjacent segments associated with the joints, cannot be inferred from computation of joint powers and segmental angular velocities alone. Rather, we encourage the use of dynamical simulations to perform muscle-induced segmental acceleration and power analyses. Such analyses have shown that the exchange of segmental energy caused by the forces or accelerations induced by a muscle can be fundamentally invariant to whether the muscle is shortening, lengthening, or neither. How simulation analyses lead to understanding the coordination of seated pedaling, rather than walking, is discussed in this first part because the dynamics of pedaling are much simpler, allowing important concepts to be revealed. We elucidate how energy produced by muscles is delivered to the crank through the synergistic action of other non-energy producing muscles; specifically, that a major function performed by a muscle arises from the instantaneous segmental accelerations and redistribution of segmental energy throughout the body caused by its force generation. Part II reviews how dynamical simulations provide insight into muscle coordination of walking.

  18. Optimal Attitude Estimation and Filtering Without Using Local Coordinates Part I: Uncontrolled and Deterministic Attitude Dynamics

    OpenAIRE

    Sanyal, Amit K.

    2005-01-01

    There are several attitude estimation algorithms in existence, all of which use local coordinate representations for the group of rigid body orientations. All local coordinate representations of the group of orientations have associated problems. While minimal coordinate representations exhibit kinematic singularities for large rotations, the quaternion representation requires satisfaction of an extra constraint. This paper treats the attitude estimation and filtering problem as an optimizati...

  19. Embodiment of intersubjective time: relational dynamics as attractors in the temporal coordination of interpersonal behaviors and experiences.

    Science.gov (United States)

    Laroche, Julien; Berardi, Anna Maria; Brangier, Eric

    2014-01-01

    This paper addresses the issue of "being together," and more specifically the issue of "being together in time." We provide with an integrative framework that is inspired by phenomenology, the enactive approach and dynamical systems theories. To do so, we first define embodiment as a living and lived phenomenon that emerges from agent-world coupling. We then show that embodiment is essentially dynamical and therefore we describe experiential, behavioral and brain dynamics. Both lived temporality and the temporality of the living appear to be complex, multiscale phenomena. Next we discuss embodied dynamics in the context of interpersonal interactions, and briefly review the empirical literature on between-persons temporal coordination. Overall, we propose that being together in time emerges from the relational dynamics of embodied interactions and their flexible co-regulation.

  20. Microtubule bundling plays a role in ethylene-mediated cortical microtubule reorientation in etiolated Arabidopsis hypocotyls.

    Science.gov (United States)

    Ma, Qianqian; Sun, Jingbo; Mao, Tonglin

    2016-05-15

    The gaseous hormone ethylene is known to regulate plant growth under etiolated conditions (the 'triple response'). Although organization of cortical microtubules is essential for cell elongation, the underlying mechanisms that regulate microtubule organization by hormone signaling, including ethylene, are ambiguous. In the present study, we demonstrate that ethylene signaling participates in regulation of cortical microtubule reorientation. In particular, regulation of microtubule bundling is important for this process in etiolated hypocotyls. Time-lapse analysis indicated that selective stabilization of microtubule-bundling structures formed in various arrays is related to ethylene-mediated microtubule orientation. Bundling events and bundle growth lifetimes were significantly increased in oblique and longitudinal arrays, but decreased in transverse arrays in wild-type cells in response to ethylene. However, the effects of ethylene on microtubule bundling were partially suppressed in a microtubule-bundling protein WDL5 knockout mutant (wdl5-1). This study suggests that modulation of microtubule bundles that have formed in certain orientations plays a role in reorienting microtubule arrays in response to ethylene-mediated etiolated hypocotyl cell elongation. © 2016. Published by The Company of Biologists Ltd.

  1. Direct evidence for GTP and GDP-Pi intermediates in microtubule assembly

    International Nuclear Information System (INIS)

    Melki, R.; Carlier, M.F.; Pantaloni, D.

    1990-01-01

    Identification of the kinetic intermediates in GTP hydrolysis on microtubules and characterization of their assembly properties is essential in understanding microtubule dynamics. By using an improved glass filter assay that selectively traps microtubules with a dead time of 2 s and monitoring taxol-induced rapid assembly of microtubules from [γ- 32 P, 3 H]GTP-tubulin 1:1 complex, direct evidence has been obtained for GTP- and GDP-P i -microtubule transient states in the early stages of the polymerization process. A simple kinetic analysis of GTP hydrolysis on microtubules within two sequential pseudo-first-order processes led to apparent first-order rate constants of 0.065 s -1 for the cleavage of the γ-phosphate and 0.02 s -1 for the liberation of P i , assuming a simple random model. Apparent rate constants for GTP hydrolysis and P i release were independent of the composition of the buffer used to polymerize tubulin. The significance of these values with respect to those derived from previous studies from this and other laboratories and the possibility of a vectorial model for GTP hydrolysis are discussed

  2. Profilin connects actin assembly with microtubule dynamics

    Czech Academy of Sciences Publication Activity Database

    Nejedla, M.; Sadi, S.; Sulimenko, Vadym; de Almeida, F.N.; Blom, H.; Dráber, Pavel; Aspenstrom, P.; Karlsson, R.

    2016-01-01

    Roč. 27, č. 15 (2016), s. 2381-2393 ISSN 1059-1524 R&D Projects: GA ČR GA16-25159S Institutional support: RVO:68378050 Keywords : cross-linked profilin * arp2/3 complex * f-actin * microfilament system * migrating cells * focal adhesions * cultured-cells * messenger-rna * living cells * protein Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.685, year: 2016

  3. A novel mechanism important for the alignment of microtubules.

    Science.gov (United States)

    Wightman, Raymond; Turner, Simon R

    2008-04-01

    Using a live-cell imaging approach to study individual micro-tubules, we have compared microtubule behavior between net-like and aligned cortical arrays. In contrast to previous studies, a steep angled collision between the growing end of a microtubule and a preexisting microtubule was found to favor crossover. Frequencies of microtubule crossovers, bundling and catastrophes are similar regardless of whether the cell exhibited a net-like or aligned microtubule array. In the predominantly aligned array of petiole cells, severing occurs at the sites of microtubule crossovers and serves to remove unaligned microtubules and to increase microtubule density. Severing was observed to be rare in net-like arrays. Microtubule severing is carried out by the katanin enzyme. In this addendum, we present new insights into the possible mechanism of crossing over and preliminary data looking at organization of the array in a katanin mutant.

  4. Microtubule array reorientation in response to hormones does not involve changes in microtubule nucleation modes at the periclinal cell surface

    Science.gov (United States)

    Atkinson, Samantha; Kirik, Angela; Kirik, Viktor

    2014-01-01

    Aligned microtubule arrays spatially organize cell division, trafficking, and determine the direction of cell expansion in plant cells. In response to changes in environmental and developmental signals, cells reorganize their microtubule arrays into new configurations. Here, we tested the role of microtubule nucleation during hormone-induced microtubule array reorientation. We have found that in the process of microtubule array reorientation the ratios between branching, parallel, and de-novo nucleations remained constant, suggesting that the microtubule reorientation mechanism does not involve changes in nucleation modes. In the ton2/fass mutant, which has reduced microtubule branching nucleation frequency and decreased nucleation activity of the γ-tubulin complexes, microtubule arrays were able to reorient. Presented data suggest that reorientation of microtubules into transverse arrays in response to hormones does not involve changes in microtubule nucleation at the periclinal cell surface PMID:25135522

  5. Conditions for order and chaos in the dynamics of a trapped Bose-Einstein condensate in coordinate and energy space

    Science.gov (United States)

    Sakhel, Roger R.; Sakhel, Asaad R.; Ghassib, Humam B.; Balaz, Antun

    2016-03-01

    We investigate numerically conditions for order and chaos in the dynamics of an interacting Bose-Einstein condensate (BEC) confined by an external trap cut off by a hard-wall box potential. The BEC is stirred by a laser to induce excitations manifesting as irregular spatial and energy oscillations of the trapped cloud. Adding laser stirring to the external trap results in an effective time-varying trapping frequency in connection with the dynamically changing combined external+laser potential trap. The resulting dynamics are analyzed by plotting their trajectories in coordinate phase space and in energy space. The Lyapunov exponents are computed to confirm the existence of chaos in the latter space. Quantum effects and trap anharmonicity are demonstrated to generate chaos in energy space, thus confirming its presence and implicating either quantum effects or trap anharmonicity as its generator. The presence of chaos in energy space does not necessarily translate into chaos in coordinate space. In general, a dynamic trapping frequency is found to promote chaos in a trapped BEC. An apparent means to suppress chaos in a trapped BEC is achieved by increasing the characteristic scale of the external trap with respect to the condensate size.

  6. Bidirectional coupling between astrocytes and neurons mediates learning and dynamic coordination in the brain: a multiple modeling approach.

    Directory of Open Access Journals (Sweden)

    John J Wade

    Full Text Available In recent years research suggests that astrocyte networks, in addition to nutrient and waste processing functions, regulate both structural and synaptic plasticity. To understand the biological mechanisms that underpin such plasticity requires the development of cell level models that capture the mutual interaction between astrocytes and neurons. This paper presents a detailed model of bidirectional signaling between astrocytes and neurons (the astrocyte-neuron model or AN model which yields new insights into the computational role of astrocyte-neuronal coupling. From a set of modeling studies we demonstrate two significant findings. Firstly, that spatial signaling via astrocytes can relay a "learning signal" to remote synaptic sites. Results show that slow inward currents cause synchronized postsynaptic activity in remote neurons and subsequently allow Spike-Timing-Dependent Plasticity based learning to occur at the associated synapses. Secondly, that bidirectional communication between neurons and astrocytes underpins dynamic coordination between neuron clusters. Although our composite AN model is presently applied to simplified neural structures and limited to coordination between localized neurons, the principle (which embodies structural, functional and dynamic complexity, and the modeling strategy may be extended to coordination among remote neuron clusters.

  7. Identification and characterization of SSE15206, a microtubule depolymerizing agent that overcomes multidrug resistance

    KAUST Repository

    Manzoor, Safia

    2018-02-13

    Microtubules are highly dynamic structures that form spindle fibres during mitosis and are one of the most validated cancer targets. The success of drugs targeting microtubules, however, is often limited by the development of multidrug resistance. Here we describe the discovery and characterization of SSE15206, a pyrazolinethioamide derivative [3-phenyl-5-(3,4,5-trimethoxyphenyl)-4,5-dihydro-1H-pyrazole-1-carbothioamide] that has potent antiproliferative activities in cancer cell lines of different origins and overcomes resistance to microtubule-targeting agents. Treatment of cells with SSE15206 causes aberrant mitosis resulting in G2/M arrest due to incomplete spindle formation, a phenotype often associated with drugs that interfere with microtubule dynamics. SSE15206 inhibits microtubule polymerization both in biochemical and cellular assays by binding to colchicine site in tubulin as shown by docking and competition studies. Prolonged treatment of cells with the compound results in apoptotic cell death [increased Poly (ADP-ribose) polymerase cleavage and Annexin V/PI staining] accompanied by p53 induction. More importantly, we demonstrate that SSE15206 is able to overcome resistance to chemotherapeutic drugs in different cancer cell lines including multidrug-resistant KB-V1 and A2780-Pac-Res cell lines overexpressing MDR-1, making it a promising hit for the lead optimization studies to target multidrug resistance.

  8. Xyloglucan Deficiency Disrupts Microtubule Stability and Cellulose Biosynthesis in Arabidopsis, Altering Cell Growth and Morphogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Chaowen; Zhang, Tian; Zheng, Yunzhen; Cosgrove, Daniel J.; Anderson, Charles T.

    2015-11-02

    Xyloglucan constitutes most of the hemicellulose in eudicot primary cell walls and functions in cell wall structure and mechanics. Although Arabidopsis (Arabidopsis thaliana) xxt1 xxt2 mutants lacking detectable xyloglucan are viable, they display growth defects that are suggestive of alterations in wall integrity. To probe the mechanisms underlying these defects, we analyzed cellulose arrangement, microtubule patterning and dynamics, microtubule- and wall-integrity-related gene expression, and cellulose biosynthesis in xxt1 xxt2 plants. We found that cellulose is highly aligned in xxt1 xxt2 cell walls, that its three-dimensional distribution is altered, and that microtubule patterning and stability are aberrant in etiolated xxt1 xxt2 hypocotyls. We also found that the expression levels of microtubule-associated genes, such as MAP70-5 and CLASP, and receptor genes, such as HERK1 and WAK1, were changed in xxt1 xxt2 plants and that cellulose synthase motility is reduced in xxt1 xxt2 cells, corresponding with a reduction in cellulose content. Our results indicate that loss of xyloglucan affects both the stability of the microtubule cytoskeleton and the production and patterning of cellulose in primary cell walls. These findings establish, to our knowledge, new links between wall integrity, cytoskeletal dynamics, and wall synthesis in the regulation of plant morphogenesis.

  9. TIPsy tour guides: How microtubule plus-end tracking proteins (+TIPs facilitate axon guidance

    Directory of Open Access Journals (Sweden)

    Elizabeth A Bearce

    2015-06-01

    Full Text Available The growth cone is a dynamic cytoskeletal vehicle, which drives the end of a developing axon. It serves to interpret and navigate through the complex landscape and guidance cues of the early nervous system. The growth cone’s distinctive cytoskeletal organization offers a fascinating platform to study how extracellular cues can be translated into mechanical outgrowth and turning behaviors. While many studies of cell motility highlight the importance of actin networks in signaling, adhesion, and propulsion, both seminal and emerging works in the field have highlighted a unique and necessary role for microtubules in growth cone navigation. Here, we focus on the role of singular pioneer microtubules, which extend into the growth cone periphery and are regulated by a diverse family of microtubule plus-end tracking proteins (+TIPs. These +TIPs accumulate at the dynamic ends of microtubules, where they are well-positioned to encounter and respond to key signaling events downstream of guidance receptors, catalyzing immediate changes in microtubule stability and actin cross-talk, that facilitate both axonal outgrowth and turning events.

  10. Geometrically motivated coordinate system for exploring spacetime dynamics in numerical-relativity simulations using a quasi-Kinnersley tetrad

    Science.gov (United States)

    Zhang, Fan; Brink, Jeandrew; Szilágyi, Béla; Lovelace, Geoffrey

    2012-10-01

    We investigate the suitability and properties of a quasi-Kinnersley tetrad and a geometrically motivated coordinate system as tools for quantifying both strong-field and wave-zone effects in numerical relativity (NR) simulations. We fix two of the coordinate degrees of freedom of the metric, namely, the radial and latitudinal coordinates, using the Coulomb potential associated with the quasi-Kinnersley transverse frame. These coordinates are invariants of the spacetime and can be used to unambiguously fix the outstanding spin-boost freedom associated with the quasi-Kinnersley frame (and thus can be used to choose a preferred quasi-Kinnersley tetrad). In the limit of small perturbations about a Kerr spacetime, these geometrically motivated coordinates and quasi-Kinnersley tetrad reduce to Boyer-Lindquist coordinates and the Kinnersley tetrad, irrespective of the simulation gauge choice. We explore the properties of this construction both analytically and numerically, and we gain insights regarding the propagation of radiation described by a super-Poynting vector, further motivating the use of this construction in NR simulations. We also quantify in detail the peeling properties of the chosen tetrad and gauge. We argue that these choices are particularly well-suited for a rapidly converging wave-extraction algorithm as the extraction location approaches infinity, and we explore numerically the extent to which this property remains applicable on the interior of a computational domain. Using a number of additional tests, we verify numerically that the prescription behaves as required in the appropriate limits regardless of simulation gauge; these tests could also serve to benchmark other wave extraction methods. We explore the behavior of the geometrically motivated coordinate system in dynamical binary-black-hole NR mergers; while we obtain no unexpected results, we do find that these coordinates turn out to be useful for visualizing NR simulations (for example, for

  11. A Multi-layer Dynamic Model for Coordination Based Group Decision Making in Water Resource Allocation and Scheduling

    Science.gov (United States)

    Huang, Wei; Zhang, Xingnan; Li, Chenming; Wang, Jianying

    Management of group decision-making is an important issue in water source management development. In order to overcome the defects in lacking of effective communication and cooperation in the existing decision-making models, this paper proposes a multi-layer dynamic model for coordination in water resource allocation and scheduling based group decision making. By introducing the scheme-recognized cooperative satisfaction index and scheme-adjusted rationality index, the proposed model can solve the problem of poor convergence of multi-round decision-making process in water resource allocation and scheduling. Furthermore, the problem about coordination of limited resources-based group decision-making process can be solved based on the effectiveness of distance-based group of conflict resolution. The simulation results show that the proposed model has better convergence than the existing models.

  12. Dynamic Data Driven Experiment Control Coordinated with Anisotropic Elastic Material Characterization

    Science.gov (United States)

    John G. Michopoulos; Tomonari Furukawa; John C. Hermanson; Samuel G. Lambrakos

    2011-01-01

    The goal of this paper is to propose and demonstrate a multi level design optimization approach for the coordinated determination of a material constitutive model synchronously to the design of the experimental procedure needed to acquire the necessary data. The methodology achieves both online (real-time) and offline design of optimum experiments required for...

  13. Interaction of the Tobacco mosaic virus movement protein with microtubules during the cell cycle in tobacco BY-2 cells.

    Science.gov (United States)

    Boutant, Emmanuel; Fitterer, Chantal; Ritzenthaler, Christophe; Heinlein, Manfred

    2009-10-01

    Cell-to-cell movement of Tobacco mosaic virus (TMV) involves the interaction of virus-encoded 30-kDa movement protein (MP) with microtubules. In cells behind the infection front that accumulate high levels of MP, this activity is reflected by the formation of stabilized MP/microtubule complexes. The ability of MP to bind along and stabilize microtubules is conserved upon expression in mammalian cells. In mammalian cells, the protein also leads to inhibition of mitosis and cell division through a microtubule-independent process correlated with the loss of centrosomal gamma-tubulin and of centrosomal microtubule-nucleation activity. Since MP has the capacity to interact with plant factors involved in microtubule nucleation and dynamics, we used inducible expression in BY-2 cells to test whether MP expression inhibits mitosis and cell division also in plants. We demonstrate that MP:GFP associates with all plant microtubule arrays and, unlike in mammalian cells, does not interfere with mitosis. Thus, MP function and the interaction of MP with factors of the cytoskeleton do not entail an inhibition of mitosis in plants. We also report that the protein targets primary plasmodesmata in BY-2 cells immediately upon or during cytokinesis and that the accumulation of MP in plasmodesmata occurs in the presence of inhibitors of the cytoskeleton and the secretory pathway.

  14. Finding the Cell Center by a Balance of Dynein and Myosin Pulling and Microtubule Pushing: A Computational Study

    Science.gov (United States)

    Zhu, Jie; Burakov, Anton; Rodionov, Vladimir

    2010-01-01

    The centrosome position in many types of interphase cells is actively maintained in the cell center. Our previous work indicated that the centrosome is kept at the center by pulling force generated by dynein and actin flow produced by myosin contraction and that an unidentified factor that depends on microtubule dynamics destabilizes position of the centrosome. Here, we use modeling to simulate the centrosome positioning based on the idea that the balance of three forces—dyneins pulling along microtubule length, myosin-powered centripetal drag, and microtubules pushing on organelles—is responsible for the centrosome displacement. By comparing numerical predictions with centrosome behavior in wild-type and perturbed interphase cells, we rule out several plausible hypotheses about the nature of the microtubule-based force. We conclude that strong dynein- and weaker myosin-generated forces pull the microtubules inward competing with microtubule plus-ends pushing the microtubule aster outward and that the balance of these forces positions the centrosome at the cell center. The model also predicts that kinesin action could be another outward-pushing force. Simulations demonstrate that the force-balance centering mechanism is robust yet versatile. We use the experimental observations to reverse engineer the characteristic forces and centrosome mobility. PMID:20980619

  15. YB-1 promotes microtubule assembly in vitro through interaction with tubulin and microtubules

    Directory of Open Access Journals (Sweden)

    Baconnais Sonia

    2008-09-01

    Full Text Available Abstract Background YB-1 is a major regulator of gene expression in eukaryotic cells. In addition to its role in transcription, YB-1 plays a key role in translation and stabilization of mRNAs. Results We show here that YB-1 interacts with tubulin and microtubules and stimulates microtubule assembly in vitro. High resolution imaging via electron and atomic force microscopy revealed that microtubules assembled in the presence of YB-1 exhibited a normal single wall ultrastructure and indicated that YB-1 most probably coats the outer microtubule wall. Furthermore, we found that YB-1 also promotes the assembly of MAPs-tubulin and subtilisin-treated tubulin. Finally, we demonstrated that tubulin interferes with RNA:YB-1 complexes. Conclusion These results suggest that YB-1 may regulate microtubule assembly in vivo and that its interaction with tubulin may contribute to the control of mRNA translation.

  16. Magnolol Inhibits the Growth of Non-Small Cell Lung Cancer via Inhibiting Microtubule Polymerization

    Directory of Open Access Journals (Sweden)

    Jia Shen

    2017-07-01

    Full Text Available Background: The tubulin/microtubule system, which is an integral component of the cytoskeleton, plays an essential role in mitosis. Targeting mitotic progression by disturbing microtubule dynamics is a rational strategy for cancer treatment. Methods: Microtubule polymerization assay was performed to examine the effect of Magnolol (a novel natural phenolic compound isolated from Magnolia obovata on cellular microtubule polymerization in human non-small cell lung cancer (NSCLC cells. Cell cycle analysis, mitotic index assay, cell proliferation assay, colony formation assay, western blotting analysis of cell cycle regulators, Annexin V-FITC/PI staining, and live/dead viability staining were carried out to investigate the Magnolol’s inhibitory effect on proliferation and viability of NSCLS cells in vitro. Xenograft model of human A549 NSCLC tumor was used to determine the Magnolol’s efficacy in vivo. Results: Magnolol treatment effectively inhibited cell proliferation and colony formation of NSCLC cells. Further study proved that Magnolol induced the mitotic phase arrest and inhibited G2/M progression in a dose-dependent manner, which were mechanistically associated with expression alteration of a series of cell cycle regulators. Furthermore, Magnolol treatment disrupted the cellular microtubule organization via inhibiting the polymerization of microtubule. We also found treatment with NSCLC cells with Magnolol resulted in apoptosis activation through a p53-independent pathway, and autophgy induction via down-regulation of the Akt/mTOR pathway. Finally, Magnolol treatment significantly suppressed the NSCLC tumor growth in mouse xenograft model in vivo. Conclusion: These findings identify Magnolol as a promising candidate with anti-microtubule polymerization activity for NSCLC treatment.

  17. Spatiotemporal Regulation of Nuclear Transport Machinery and Microtubule Organization

    Science.gov (United States)

    Okada, Naoyuki; Sato, Masamitsu

    2015-01-01

    Spindle microtubules capture and segregate chromosomes and, therefore, their assembly is an essential event in mitosis. To carry out their mission, many key players for microtubule formation need to be strictly orchestrated. Particularly, proteins that assemble the spindle need to be translocated at appropriate sites during mitosis. A small GTPase (hydrolase enzyme of guanosine triphosphate), Ran, controls this translocation. Ran plays many roles in many cellular events: nucleocytoplasmic shuttling through the nuclear envelope, assembly of the mitotic spindle, and reorganization of the nuclear envelope at the mitotic exit. Although these events are seemingly distinct, recent studies demonstrate that the mechanisms underlying these phenomena are substantially the same as explained by molecular interplay of the master regulator Ran, the transport factor importin, and its cargo proteins. Our review focuses on how the transport machinery regulates mitotic progression of cells. We summarize translocation mechanisms governed by Ran and its regulatory proteins, and particularly focus on Ran-GTP targets in fission yeast that promote spindle formation. We also discuss the coordination of the spatial and temporal regulation of proteins from the viewpoint of transport machinery. We propose that the transport machinery is an essential key that couples the spatial and temporal events in cells. PMID:26308057

  18. Direct and quantitative characterization of dynamic ligand exchange between coordination-driven self-assembled supramolecular polygons.

    Science.gov (United States)

    Zheng, Yao-Rong; Stang, Peter J

    2009-03-18

    The direct observation of dynamic ligand exchange between Pt-N coordination-driven self-assembled supramolecular polygons (triangles and rectangles) has been achieved using stable (1)H/(2)D isotope labeling of the pyridyl donors and electrospray ionization mass spectrometry combined with NMR spectroscopy. Both the thermodynamic and kinetic aspects of such exchange processes have been established on the basis of quantitative mass spectral results. Further investigation has shown that the exchange is highly dependent on experimental conditions such as temperature, solvent, and the counteranions.

  19. Linear perturbation of spherically symmetric flows: a first-order upwind scheme for the gas dynamics equations in Lagrangian coordinates

    International Nuclear Information System (INIS)

    Clarisse, J.M.

    2007-01-01

    A numerical scheme for computing linear Lagrangian perturbations of spherically symmetric flows of gas dynamics is proposed. This explicit first-order scheme uses the Roe method in Lagrangian coordinates, for computing the radial spherically symmetric mean flow, and its linearized version, for treating the three-dimensional linear perturbations. Fulfillment of the geometric conservation law discrete formulations for both the mean flow and its perturbation is ensured. This scheme capabilities are illustrated by the computation of free-surface mode evolutions at the boundaries of a spherical hollow shell undergoing an homogeneous cumulative compression, showing excellent agreement with reference results. (author)

  20. The coordination aspect of institutions in the context of an evolutionary approach to economic dynamics

    Directory of Open Access Journals (Sweden)

    Zoran Stefanovic

    2015-08-01

    Full Text Available The paper provides an insight into the dominant trends of contemporary evolutionary economics and outlines the important issues related to the articulation of this approach in thinking about the economy. The paper also affirms a proposition on institutions as carrier structures of socio-economic evolution, whose numerous effects at the societal level are decoded through the coordination function. In addition to the market, the process of coordination also employs other non-market institutional structures, whose profile and operational principles are the product of the trajectories of cultural and historical evolution, different among social orders. Projects aimed at the transformation of the economic system are to be sensitized to an objectively conditioned diversity of the institutional structures of the world economy, and in this sense, should be very careful in the installation of „universal” reform solutions.

  1. Lattice dynamics and vibrational spectra of polyfuran: effective conjugation coordinate and photoexcited spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, V. [Departamento de Quimica Fisica, Universidad de Malaga, 29071 Malaga (Spain)]|[Dipartimento di Chimica Industriale, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milano (Italy); Lopez Navarrete, J.T. [Departamento de Quimica Fisica, Universidad de Malaga, 29071 Malaga (Spain); Zotti, G. [CNR, Istituto di Polarografia ed Elettrochimica Preparativa, Corso Stati Uniti, 4, 35020 Padova (Italy); Veronelli, M. [Dipartimento di Chimica Industriale, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milano (Italy); Zerbi, G. [Dipartimento di Chimica Industriale, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milano (Italy)

    1995-03-01

    Recently the photoinduced infrared spectrum of neutral polyfuran was recorded. The observed spectrum combined with the doping-induced infrared and the FT-Raman spectrum of the neutral polymer, interpreted in terms of the effective conjugation coordinate theory, suggests that the samples consist of a bimodal distribution of conjugation lengths. PFu seems to be very stable in air at room T and shows the largest {pi} electron delocalization among polyheteroaromatics. (orig.)

  2. Ferritin associates with marginal band microtubules

    International Nuclear Information System (INIS)

    Infante, Anthony A.; Infante, Dzintra; Chan, M.-C.; How, P.-C.; Kutschera, Waltraud; Linhartova, Irena; Muellner, Ernst W.; Wiche, Gerhard; Propst, Friedrich

    2007-01-01

    We characterized chicken erythrocyte and human platelet ferritin by biochemical studies and immunofluorescence. Erythrocyte ferritin was found to be a homopolymer of H-ferritin subunits, resistant to proteinase K digestion, heat stable, and contained iron. In mature chicken erythrocytes and human platelets, ferritin was localized at the marginal band, a ring-shaped peripheral microtubule bundle, and displayed properties of bona fide microtubule-associated proteins such as tau. Red blood cell ferritin association with the marginal band was confirmed by temperature-induced disassembly-reassembly of microtubules. During erythrocyte differentiation, ferritin co-localized with coalescing microtubules during marginal band formation. In addition, ferritin was found in the nuclei of mature erythrocytes, but was not detectable in those of bone marrow erythrocyte precursors. These results suggest that ferritin has a function in marginal band formation and possibly in protection of the marginal band from damaging effects of reactive oxygen species by sequestering iron in the mature erythrocyte. Moreover, our data suggest that ferritin and syncolin, a previously identified erythrocyte microtubule-associated protein, are identical. Nuclear ferritin might contribute to transcriptional silencing or, alternatively, constitute a ferritin reservoir

  3. Stabilization of microtubules by inorganic phosphate and its structural analogues, the fluoride complexes of aluminum and beryllium

    International Nuclear Information System (INIS)

    Carlier, M.F.; Didry, D.; Melki, R.; Chabre, M.; Pantaloni, D.

    1988-01-01

    In order to elucidate how the elementary reactions of GTP cleavage and subsequent inorganic phosphate (P/sub i/) release, which accompany microtubule assembly, regulate microtubule dynamics, the effect of P/sub i/ and of its structural analogues AlF 4 - and BeF 3 - on the stability of GDP-microtubules has been investigated. Inorganic phosphate binds to microtubules with a low affinity (K/sub D/ = 25 mM) and slows down the rate of GDP-subunit dissociation by about 2 orders of magnitude. AlF 4 - and BeF 3 - exhibit phosphate-like effects with 1000-fold higher affinity. Evidence has been obtained for direct binding of BeF 3 - to microtubules with a stoichiometry of 1 mol of BeF 3 - per mole of GDP-subunit and an equilibrium dissociation constant of 12-15 μM. AlF 4 - and P/sub i/ compete for this site. Phosphate analogues abolish oscillatory polymerization kinetics and slow down microtubule turnover at steady state. In view of these results, the authors propose that P/sub i/ and its structural analogues bind to the site of the γ-phosphate of GTP in the E site and reconstitute a GDP-P/sub i/-microtubule, from which tubulin subunits dissociate very slowly. They therefore understand that, following GTP cleavage on microtubules, P/sub i/ release in the medium is accompanied by a structural change resulting in a large destabilization of the polymer. A cap of slowly dissociating GDP-P/sub i/-subunits prevents depolymerization of the microtubule GDP-core at steady state. The similarity with the actin system is studied

  4. Information theoretic measures of network coordination in high-frequency scalp EEG reveal dynamic patterns associated with seizure termination.

    Science.gov (United States)

    Stamoulis, Catherine; Schomer, Donald L; Chang, Bernard S

    2013-08-01

    How a seizure terminates is still under-studied and, despite its clinical importance, remains an obscure phase of seizure evolution. Recent studies of seizure-related scalp EEGs at frequencies >100 Hz suggest that neural activity, in the form of oscillations and/or neuronal network interactions, may play an important role in preictal/ictal seizure evolution (Andrade-Valenca et al., 2011; Stamoulis et al., 2012). However, the role of high-frequency activity in seizure termination, is unknown, if it exists at all. Using information theoretic measures of network coordination, this study investigated ictal and immediate postictal neurodynamic interactions encoded in scalp EEGs from a relatively small sample of 8 patients with focal epilepsy and multiple seizures originating in temporal and/or frontal brain regions, at frequencies ≤ 100 Hz and >100 Hz, respectively. Despite some heterogeneity in the dynamics of these interactions, consistent patterns were also estimated. Specifically, in several seizures, linear or non-linear increase in high-frequency neuronal coordination during ictal intervals, coincided with a corresponding decrease in coordination at frequencies interval, which continues during the postictal interval. This may be one of several possible mechanisms that facilitate seizure termination. In fact, inhibition of pairwise interactions between EEGs by other signals in their spatial neighborhood, quantified by negative interaction information, was estimated at frequencies ≤ 100 Hz, at least in some seizures. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. SDF1 Reduces Interneuron Leading Process Branching through Dual Regulation of Actin and Microtubules

    Science.gov (United States)

    Lysko, Daniel E.; Putt, Mary

    2014-01-01

    Normal cerebral cortical function requires a highly ordered balance between projection neurons and interneurons. During development these two neuronal populations migrate from distinct progenitor zones to form the cerebral cortex, with interneurons originating in the more distant ganglionic eminences. Moreover, deficits in interneurons have been linked to a variety of neurodevelopmental disorders underscoring the importance of understanding interneuron development and function. We, and others, have identified SDF1 signaling as one important modulator of interneuron migration speed and leading process branching behavior in mice, although how SDF1 signaling impacts these behaviors remains unknown. We previously found SDF1 inhibited leading process branching while increasing the rate of migration. We have now mechanistically linked SDF1 modulation of leading process branching behavior to a dual regulation of both actin and microtubule organization. We find SDF1 consolidates actin at the leading process tip by de-repressing calpain protease and increasing proteolysis of branched-actin-supporting cortactin. Additionally, SDF1 stabilizes the microtubule array in the leading process through activation of the microtubule-associated protein doublecortin (DCX). DCX stabilizes the microtubule array by bundling microtubules within the leading process, reducing branching. These data provide mechanistic insight into the regulation of interneuron leading process dynamics during neuronal migration in mice and provides insight into how cortactin and DCX, a known human neuronal migration disorder gene, participate in this process. PMID:24695713

  6. Stabilization, not polymerization, of microtubules inhibits the nuclear translocation of STATs in adipocytes

    International Nuclear Information System (INIS)

    Gleason, Evanna L.; Hogan, Jessica C.; Stephens, Jacqueline M.

    2004-01-01

    Signal transducers and activators of transcriptions (STATs) are a family of latent transcription factors which are activated by a variety of growth factors and cytokines in many cell types. However, the mechanism by which these transcription factors translocate to the nucleus is poorly understood. The goal of this study was to determine the requirement of microfilaments and microtubules for cytokine induced STAT activation in cultured adipocytes. We used seven different actin-specific and microtubule-specific agents that are well-established effectors of these cytoskeletal networks. Our results clearly demonstrate that inhibition of microfilaments or the prevention of microtubule polymerization has no effect on the ability of STATs to be tyrosine phosphorylated or to translocate to the nucleus. However, we observed that paclitaxel, a microtubule stabilizer, resulted in a significant decrease in the nuclear translocation of STATs without affecting the cytosolic tyrosine phosphorylation of these transcription factors. In summary, our results demonstrate that the dynamic instability, but not the polymerization, of microtubules contributes to nuclear translocation of STAT proteins in adipocytes

  7. SDF1 reduces interneuron leading process branching through dual regulation of actin and microtubules.

    Science.gov (United States)

    Lysko, Daniel E; Putt, Mary; Golden, Jeffrey A

    2014-04-02

    Normal cerebral cortical function requires a highly ordered balance between projection neurons and interneurons. During development these two neuronal populations migrate from distinct progenitor zones to form the cerebral cortex, with interneurons originating in the more distant ganglionic eminences. Moreover, deficits in interneurons have been linked to a variety of neurodevelopmental disorders underscoring the importance of understanding interneuron development and function. We, and others, have identified SDF1 signaling as one important modulator of interneuron migration speed and leading process branching behavior in mice, although how SDF1 signaling impacts these behaviors remains unknown. We previously found SDF1 inhibited leading process branching while increasing the rate of migration. We have now mechanistically linked SDF1 modulation of leading process branching behavior to a dual regulation of both actin and microtubule organization. We find SDF1 consolidates actin at the leading process tip by de-repressing calpain protease and increasing proteolysis of branched-actin-supporting cortactin. Additionally, SDF1 stabilizes the microtubule array in the leading process through activation of the microtubule-associated protein doublecortin (DCX). DCX stabilizes the microtubule array by bundling microtubules within the leading process, reducing branching. These data provide mechanistic insight into the regulation of interneuron leading process dynamics during neuronal migration in mice and provides insight into how cortactin and DCX, a known human neuronal migration disorder gene, participate in this process.

  8. Dynamic Coordinated Shifting Control of Automated Mechanical Transmissions without a Clutch in a Plug-In Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Xinlei Liu

    2012-08-01

    Full Text Available On the basis of the shifting process of automated mechanical transmissions (AMTs for traditional hybrid electric vehicles (HEVs, and by combining the features of electric machines with fast response speed, the dynamic model of the hybrid electric AMT vehicle powertrain is built up, the dynamic characteristics of each phase of shifting process are analyzed, and a control strategy in which torque and speed of the engine and electric machine are coordinatively controlled to achieve AMT shifting control for a plug-in hybrid electric vehicle (PHEV without clutch is proposed. In the shifting process, the engine and electric machine are well controlled, and the shift jerk and power interruption and restoration time are reduced. Simulation and real car test results show that the proposed control strategy can more efficiently improve the shift quality for PHEVs equipped with AMTs.

  9. Microtubules move the nucleus to quiescence.

    Science.gov (United States)

    Laporte, Damien; Sagot, Isabelle

    2014-01-01

    The nucleus is a cellular compartment that hosts several macro-molecular machines displaying a highly complex spatial organization. This tight architectural orchestration determines not only DNA replication and repair but also regulates gene expression. In budding yeast microtubules play a key role in structuring the nucleus since they condition the Rabl arrangement in G1 and chromosome partitioning during mitosis through their attachment to centromeres via the kinetochore proteins. Recently, we have shown that upon quiescence entry, intranuclear microtubules emanating from the spindle pole body elongate to form a highly stable bundle that spans the entire nucleus. Here, we examine some molecular mechanisms that may underlie the formation of this structure. As the intranuclear microtubule bundle causes a profound re-organization of the yeast nucleus and is required for cell survival during quiescence, we discuss the possibility that the assembly of such a structure participates in quiescence establishment.

  10. Effects of experimental muscle pain on muscle activity and co-ordination during static and dynamic motor function.

    Science.gov (United States)

    Graven-Nielsen, T; Svensson, P; Arendt-Nielsen, L

    1997-04-01

    The relation between muscle pain, muscle activity, and muscle co-ordination is still controversial. The present human study investigates the influence of experimental muscle pain on resting, static, and dynamic muscle activity. In the resting and static experiments, the electromyography (EMG) activity and the contraction force of m. tibialis anterior were assessed before and after injection of 0.5 ml hypertonic saline (5%) into the same muscle. In the dynamic experiment, injections of 0.5 ml hypertonic saline (5%) were performed into either m. tibialis anterior (TA) or m. gastrocnemius (GA) and the muscle activity and co-ordination were investigated during gait on a treadmill by EMG recordings from m. TA and m. GA. At rest no evidence of EMG hyperactivity was found during muscle pain. The maximal voluntary contraction (MVC) during muscle pain was significantly lower than the control condition (P Fibromyalgia and Myofascial Pain. Elsevier, Amsterdam, 1993, pp. 311-327.) which predicts increased activity of antagonistic muscle and decreased activity of agonistic muscle during experimental and clinical muscle pain.

  11. Improved decomposition–coordination and discrete differential dynamic programming for optimization of large-scale hydropower system

    International Nuclear Information System (INIS)

    Li, Chunlong; Zhou, Jianzhong; Ouyang, Shuo; Ding, Xiaoling; Chen, Lu

    2014-01-01

    Highlights: • Optimization of large-scale hydropower system in the Yangtze River basin. • Improved decomposition–coordination and discrete differential dynamic programming. • Generating initial solution randomly to reduce generation time. • Proposing relative coefficient for more power generation. • Proposing adaptive bias corridor technology to enhance convergence speed. - Abstract: With the construction of major hydro plants, more and more large-scale hydropower systems are taking shape gradually, which brings up a challenge to optimize these systems. Optimization of large-scale hydropower system (OLHS), which is to determine water discharges or water levels of overall hydro plants for maximizing total power generation when subjecting to lots of constrains, is a high dimensional, nonlinear and coupling complex problem. In order to solve the OLHS problem effectively, an improved decomposition–coordination and discrete differential dynamic programming (IDC–DDDP) method is proposed in this paper. A strategy that initial solution is generated randomly is adopted to reduce generation time. Meanwhile, a relative coefficient based on maximum output capacity is proposed for more power generation. Moreover, an adaptive bias corridor technology is proposed to enhance convergence speed. The proposed method is applied to long-term optimal dispatches of large-scale hydropower system (LHS) in the Yangtze River basin. Compared to other methods, IDC–DDDP has competitive performances in not only total power generation but also convergence speed, which provides a new method to solve the OLHS problem

  12. Myopic versus Far-Sighted Behaviors in Dynamic Supply Chain Coordination through Advertising with Reference Price Effect

    Directory of Open Access Journals (Sweden)

    Yafei Zu

    2017-01-01

    Full Text Available To better understand the different effects of the myopic and far-sighted behaviors on the advertising coordination in dynamic supply chain, this paper takes the reference price effect into consideration and formulates four differential game models for the two-level supply chain composed of a manufacturer and a retailer in the situation of Stackelberg game. In our models, the market demand is assumed to be affected by the goodwill, reference price, and the advertising investment, in which the advertising investment can promote the construction of goodwill and such goodwill can further enhance the reference price. The results show that the participating members in the supply chain should invest more in advertisement to improve the goodwill and the relative reference price reflected in the minds of consumers. A far-sighted manufacturer will invest more in the advertisement and charge a higher wholesale price regardless of the behavior choice of the retailer. However, such kind of ignorance leads to different results on the retail pricing strategies of the retailer. The numerical analyses are given in the end to verify the effectiveness of the conclusions which provide the theoretical support to the dynamic supply chain coordination in practice.

  13. Tracking excited-state charge and spin dynamics in iron coordination complexes

    DEFF Research Database (Denmark)

    Zhang, Wenkai; Alonso-Mori, Roberto; Bergmann, Uwe

    2014-01-01

    to spin state, can elucidate the spin crossover dynamics of [Fe(2,2'-bipyridine)(3)](2+) on photoinduced metal-to-ligand charge transfer excitation. We are able to track the charge and spin dynamics, and establish the critical role of intermediate spin states in the crossover mechanism. We anticipate......Crucial to many light-driven processes in transition metal complexes is the absorption and dissipation of energy by 3d electrons(1-4). But a detailed understanding of such non-equilibrium excited-state dynamics and their interplay with structural changes is challenging: a multitude of excited...... states and possible transitions result in phenomena too complex to unravel when faced with the indirect sensitivity of optical spectroscopy to spin dynamics(5) and the flux limitations of ultrafast X-ray sources(6,7). Such a situation exists for archetypal poly-pyridyl iron complexes, such as [Fe(2...

  14. Generator coordinate method for triaxial quadrupole collective dynamics in strontium isotopes

    International Nuclear Information System (INIS)

    Bonche, P.; Dobaczewski, J.; Flocard, H.; Heenen, P.H.

    1991-01-01

    We discuss the algebraic structure of the generator coordinate method for triaxial quadrupole collective motion. The collective solutions are classified according to the representations of the permutation group of the intrinsic axes. Our method amounts to an approximate angular momentum projection. We apply it to a study of the spherical to deformed shape transition in light even strontium isotopes 78-88 Sr. We find that triaxial configurations play a significant role in explaining the structure of the transitional isotopes 80-82 Sr

  15. Potential mechanisms of resistance to microtubule inhibitors.

    Science.gov (United States)

    Kavallaris, Maria; Annereau, Jean-Philippe; Barret, Jean-Marc

    2008-06-01

    Antimitotic drugs targeting the microtubules, such as the taxanes and vinca alkaloids, are widely used in the treatment of neoplastic diseases. Development of drug resistance over time, however, limits the efficacy of these agents and poses a clinical challenge to long-term improvement of patient outcomes. Understanding the mechanism(s) of drug resistance becomes paramount to allowing for alternative, if not improved, therapeutic options that might circumvent this challenge. Vinflunine, a novel microtubule inhibitor, has shown superior preclinical antitumor activity, and displays a different pattern of resistance, compared with other agents in the vinca alkaloid class.

  16. A Control Scheme That Uses Dynamic Postural Synergies to Coordinate a Hybrid Walking Neuroprosthesis: Theory and Experiments.

    Science.gov (United States)

    Alibeji, Naji A; Molazadeh, Vahidreza; Dicianno, Brad E; Sharma, Nitin

    2018-01-01

    A hybrid walking neuroprosthesis that combines functional electrical stimulation (FES) with a powered lower limb exoskeleton can be used to restore walking in persons with paraplegia. It provides therapeutic benefits of FES and torque reliability of the powered exoskeleton. Moreover, by harnessing metabolic power of muscles via FES, the hybrid combination has a potential to lower power consumption and reduce actuator size in the powered exoskeleton. Its control design, however, must overcome the challenges of actuator redundancy due to the combined use of FES and electric motor. Further, dynamic disturbances such as electromechanical delay (EMD) and muscle fatigue must be considered during the control design process. This ensures stability and control performance despite disparate dynamics of FES and electric motor. In this paper, a general framework to coordinate FES of multiple gait-governing muscles with electric motors is presented. A muscle synergy-inspired control framework is used to derive the controller and is motivated mainly to address the actuator redundancy issue. Dynamic postural synergies between FES of the muscles and the electric motors were artificially generated through optimizations and result in key dynamic postures when activated. These synergies were used in the feedforward path of the control system. A dynamic surface control technique, modified with a delay compensation term, is used as the feedback controller to address model uncertainty, the cascaded muscle activation dynamics, and EMD. To address muscle fatigue, the stimulation levels in the feedforward path were gradually increased based on a model-based fatigue estimate. A Lyapunov-based stability approach was used to derive the controller and guarantee its stability. The synergy-based controller was demonstrated experimentally on an able-bodied subject and person with an incomplete spinal cord injury.

  17. A Control Scheme That Uses Dynamic Postural Synergies to Coordinate a Hybrid Walking Neuroprosthesis: Theory and Experiments

    Directory of Open Access Journals (Sweden)

    Naji A. Alibeji

    2018-04-01

    Full Text Available A hybrid walking neuroprosthesis that combines functional electrical stimulation (FES with a powered lower limb exoskeleton can be used to restore walking in persons with paraplegia. It provides therapeutic benefits of FES and torque reliability of the powered exoskeleton. Moreover, by harnessing metabolic power of muscles via FES, the hybrid combination has a potential to lower power consumption and reduce actuator size in the powered exoskeleton. Its control design, however, must overcome the challenges of actuator redundancy due to the combined use of FES and electric motor. Further, dynamic disturbances such as electromechanical delay (EMD and muscle fatigue must be considered during the control design process. This ensures stability and control performance despite disparate dynamics of FES and electric motor. In this paper, a general framework to coordinate FES of multiple gait-governing muscles with electric motors is presented. A muscle synergy-inspired control framework is used to derive the controller and is motivated mainly to address the actuator redundancy issue. Dynamic postural synergies between FES of the muscles and the electric motors were artificially generated through optimizations and result in key dynamic postures when activated. These synergies were used in the feedforward path of the control system. A dynamic surface control technique, modified with a delay compensation term, is used as the feedback controller to address model uncertainty, the cascaded muscle activation dynamics, and EMD. To address muscle fatigue, the stimulation levels in the feedforward path were gradually increased based on a model-based fatigue estimate. A Lyapunov-based stability approach was used to derive the controller and guarantee its stability. The synergy-based controller was demonstrated experimentally on an able-bodied subject and person with an incomplete spinal cord injury.

  18. Dynamic enzyme docking to the ribosome coordinates N-terminal processing with polypeptide folding.

    Science.gov (United States)

    Sandikci, Arzu; Gloge, Felix; Martinez, Michael; Mayer, Matthias P; Wade, Rebecca; Bukau, Bernd; Kramer, Günter

    2013-07-01

    Newly synthesized polypeptides undergo various cotranslational maturation steps, including N-terminal enzymatic processing, chaperone-assisted folding and membrane targeting, but the spatial and temporal coordination of these steps is unclear. We show that Escherichia coli methionine aminopeptidase (MAP) associates with ribosomes through a charged loop that is crucial for nascent-chain processing and cell viability. MAP competes with peptide deformylase (PDF), the first enzyme to act on nascent chains, for binding sites at the ribosomal tunnel exit. PDF has extremely fast association and dissociation kinetics, which allows it to frequently sample ribosomes and ensure the processing of nascent chains after their emergence. Premature recruitment of the chaperone trigger factor, or polypeptide folding, negatively affect processing efficiency. Thus, the fast ribosome association kinetics of PDF and MAP are crucial for the temporal separation of nascent-chain processing from later maturation events, including chaperone recruitment and folding.

  19. Stable reduced-order models of generalized dynamical systems using coordinate-transformed Arnoldi algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Silveira, L.M.; Kamon, M.; Elfadel, I.; White, J. [Massachusetts Inst. of Technology, Cambridge, MA (United States)

    1996-12-31

    Model order reduction based on Krylov subspace iterative methods has recently emerged as a major tool for compressing the number of states in linear models used for simulating very large physical systems (VLSI circuits, electromagnetic interactions). There are currently two main methods for accomplishing such a compression: one is based on the nonsymmetric look-ahead Lanczos algorithm that gives a numerically stable procedure for finding Pade approximations, while the other is based on a less well characterized Arnoldi algorithm. In this paper, we show that for certain classes of generalized state-space systems, the reduced-order models produced by a coordinate-transformed Arnoldi algorithm inherit the stability of the original system. Complete Proofs of our results will be given in the final paper.

  20. Coordinated approaches to quantify long-term ecosystem dynamics in response to global change

    Science.gov (United States)

    Yiqi Luo; Jerry Melillo; Shuli Niu; Claus Beier; James S. Clark; Aime E.T. Classen; Eric Dividson; Jeffrey S. Dukes; R. Dave Evans; Christopher B. Field; Claudia I. Czimczik; Michael Keller; Bruce A. Kimball; Lara M. Kueppers; Richard J. Norby; Shannon L. Pelini; Elise Pendall; Edward Rastetter; Johan Six; Melinda Smith; Mark G. Tjoelker; Margaret S. Torn

    2011-01-01

    Many serious ecosystem consequences of climate change will take decades or even centuries to emerge. Long-term ecological responses to global change are strongly regulated by slow processes, such as changes in species composition, carbon dynamics in soil and by long-lived plants, and accumulation of nutrient capitals. Understanding and predicting these processes...

  1. Leading-process actomyosin coordinates organelle positioning and adhesion receptor dynamics in radially migrating cerebellar granule neurons.

    Science.gov (United States)

    Trivedi, Niraj; Ramahi, Joseph S; Karakaya, Mahmut; Howell, Danielle; Kerekes, Ryan A; Solecki, David J

    2014-12-02

    During brain development, neurons migrate from germinal zones to their final positions to assemble neural circuits. A unique saltatory cadence involving cyclical organelle movement (e.g., centrosome motility) and leading-process actomyosin enrichment prior to nucleokinesis organizes neuronal migration. While functional evidence suggests that leading-process actomyosin is essential for centrosome motility, the role of the actin-enriched leading process in globally organizing organelle transport or traction forces remains unexplored. We show that myosin ii motors and F-actin dynamics are required for Golgi apparatus positioning before nucleokinesis in cerebellar granule neurons (CGNs) migrating along glial fibers. Moreover, we show that primary cilia are motile organelles, localized to the leading-process F-actin-rich domain and immobilized by pharmacological inhibition of myosin ii and F-actin dynamics. Finally, leading process adhesion dynamics are dependent on myosin ii and F-actin. We propose that actomyosin coordinates the overall polarity of migrating CGNs by controlling asymmetric organelle positioning and cell-cell contacts as these cells move along their glial guides.

  2. TCS1, a Microtubule-Binding Protein, Interacts with KCBP/ZWICHEL to Regulate Trichome Cell Shape in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Liangliang Chen

    2016-10-01

    Full Text Available How cell shape is controlled is a fundamental question in developmental biology, but the genetic and molecular mechanisms that determine cell shape are largely unknown. Arabidopsis trichomes have been used as a good model system to investigate cell shape at the single-cell level. Here we describe the trichome cell shape 1 (tcs1 mutants with the reduced trichome branch number in Arabidopsis. TCS1 encodes a coiled-coil domain-containing protein. Pharmacological analyses and observations of microtubule dynamics show that TCS1 influences the stability of microtubules. Biochemical analyses and live-cell imaging indicate that TCS1 binds to microtubules and promotes the assembly of microtubules. Further results reveal that TCS1 physically associates with KCBP/ZWICHEL, a microtubule motor involved in the regulation of trichome branch number. Genetic analyses indicate that kcbp/zwi is epistatic to tcs1 with respect to trichome branch number. Thus, our findings define a novel genetic and molecular mechanism by which TCS1 interacts with KCBP to regulate trichome cell shape by influencing the stability of microtubules.

  3. Explaining the Microtubule Energy Balance: Contributions Due to Dipole Moments, Charges, van der Waals and Solvation Energy

    Directory of Open Access Journals (Sweden)

    Ahmed Taha Ayoub

    2017-09-01

    Full Text Available Microtubules are the main components of mitotic spindles, and are the pillars of the cellular cytoskeleton. They perform most of their cellular functions by virtue of their unique dynamic instability processes which alternate between polymerization and depolymerization phases. This in turn is driven by a precise balance between attraction and repulsion forces between the constituents of microtubules (MTs—tubulin dimers. Therefore, it is critically important to know what contributions result in a balance of the interaction energy among tubulin dimers that make up microtubules and what interactions may tip this balance toward or away from a stable polymerized state of tubulin. In this paper, we calculate the dipole–dipole interaction energy between tubulin dimers in a microtubule as part of the various contributions to the energy balance. We also compare the remaining contributions to the interaction energies between tubulin dimers and establish a balance between stabilizing and destabilizing components, including the van der Waals, electrostatic, and solvent-accessible surface area energies. The energy balance shows that the GTP-capped tip of the seam at the plus end of microtubules is stabilized only by − 9 kcal/mol, which can be completely reversed by the hydrolysis of a single GTP molecule, which releases + 14 kcal/mol and destabilizes the seam by an excess of + 5 kcal/mol. This triggers the breakdown of microtubules and initiates a disassembly phase which is aptly called a catastrophe.

  4. Dynamic Contact between a Wire Rope and a Pulley Using Absolute Nodal Coordinate Formulation

    Directory of Open Access Journals (Sweden)

    Shoichiro Takehara

    2016-01-01

    Full Text Available Wire rope and pulley devices are used in various machines. To use these machines more safely, it is necessary to analyze the behavior of the contact between them. In this study, we represent a wire rope by a numerical model of a flexible body. This flexible body is expressed in the absolute nodal coordinate formulation (ANCF, and the model includes the normal contact force and the frictional force between the wire rope and the pulley. The normal contact force is expressed by spring-damper elements, and the frictional force is expressed by the Quinn method. The advantage of the Quinn method is that it reduces the numerical problems associated with the discontinuities in Coulomb friction at zero velocity. By using the numerical model, simulations are performed, and the validity of this model is shown by comparing its results with those of an experiment. Through numerical simulations, we confirm the proposed model for the contact between the wire rope and the pulley. We confirmed that the behavior of the wire rope changes when both the bending elastic modulus of the wire rope and the mass added to each end of the wire rope are changed.

  5. Local dynamic stability during treadmill walking can detect children with developmental coordination disorder

    DEFF Research Database (Denmark)

    Speedtsberg, Merete Brink; Christensen, Sofie Bouschinger; Stenum, Jan

    2018-01-01

    -posterior directions were recorded with a sternum mounted accelerometer at 256Hz. Short term local dynamic stability (λs), root mean square (RMS) and relative root mean square (RMSR) were calculated from measures of orthogonal trunk accelerations. Receiver operating characteristic curve (ROC) analysis was performed...... between children with DCD and TD children in any direction. The ROC analysis of λs in separate directions and in two dimensions showed an excellent accuracy of discriminating between children with DCD and TD children. Anterior-posterior direction in combination with medio-lateral or vertical showed best...

  6. Cis/trans Coordination in olefin metathesis by static and molecular dynamic DFT calculations

    KAUST Repository

    Poater, Albert

    2014-05-25

    In regard to [(N-heterocyclic carbene)Ru]-based catalysts, it is still a matter of debate if the substrate binding is preferentially cis or trans to the N-heterocyclic carbene ligand. By means of static and molecular dynamic DFT calculations, a simple olefin, like ethylene, is shown to be prone to the trans binding. Bearing in mind the higher reactivity of trans isomers in olefin metathesis, this insight helps to construct small alkene substrates with increased reactivity. © 2014 Springer Science+Business Media New York.

  7. Cis/trans Coordination in olefin metathesis by static and molecular dynamic DFT calculations

    KAUST Repository

    Poater, Albert; Correa, Andrea; Pump, Eva; Cavallo, Luigi

    2014-01-01

    In regard to [(N-heterocyclic carbene)Ru]-based catalysts, it is still a matter of debate if the substrate binding is preferentially cis or trans to the N-heterocyclic carbene ligand. By means of static and molecular dynamic DFT calculations, a simple olefin, like ethylene, is shown to be prone to the trans binding. Bearing in mind the higher reactivity of trans isomers in olefin metathesis, this insight helps to construct small alkene substrates with increased reactivity. © 2014 Springer Science+Business Media New York.

  8. Coordinated Lot-sizing and Dynamic Prizing under a Supplier All-units Quantity Discount

    Directory of Open Access Journals (Sweden)

    Sandra Transchel

    2008-05-01

    Full Text Available We consider an economic order quantity model where the supplier offers an all-units quantity discount and a price sensitive customer demand. We compare a decentralized decision framework where selling price and replenishment policy are determined independently to simultaneous decision making. Constant and dynamic pricing are distinguished. We derive structural properties and develop algorithms that determine the optimal pricing and replenishment policy and show how quantity discounts not only influence the purchasing strategy but also the pricing policy. A sensitivity analysis indicates the impact of the fixed-holding cost ratio, the discount policy, and the customers' price sensitivity on the optimal decisions.

  9. A program for performing exact quantum dynamics calculations using cylindrical polar coordinates: A nanotube application

    Science.gov (United States)

    Skouteris, Dimitris; Gervasi, Osvaldo; Laganà, Antonio

    2009-03-01

    A program that uses the time-dependent wavepacket method to study the motion of structureless particles in a force field of quasi-cylindrical symmetry is presented here. The program utilises cylindrical polar coordinates to express the wavepacket, which is subsequently propagated using a Chebyshev expansion of the Schrödinger propagator. Time-dependent exit flux as well as energy-dependent S matrix elements can be obtained for all states of the particle (describing its angular momentum component along the nanotube axis and the excitation of the radial degree of freedom in the cylinder). The program has been used to study the motion of an H atom across a carbon nanotube. Program summaryProgram title: CYLWAVE Catalogue identifier: AECL_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECL_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 3673 No. of bytes in distributed program, including test data, etc.: 35 237 Distribution format: tar.gz Programming language: Fortran 77 Computer: RISC workstations Operating system: UNIX RAM: 120 MBytes Classification: 16.7, 16.10 External routines: SUNSOFT performance library (not essential) TFFT2D.F (Temperton Fast Fourier Transform), BESSJ.F (from Numerical Recipes, for the calculation of Bessel functions) (included in the distribution file). Nature of problem: Time evolution of the state of a structureless particle in a quasicylindrical potential. Solution method: Time dependent wavepacket propagation. Running time: 50000 secs. The test run supplied with the distribution takes about 10 minutes to complete.

  10. Mechanosensation Dynamically Coordinates Polar Growth and Cell Wall Assembly to Promote Cell Survival.

    Science.gov (United States)

    Davì, Valeria; Tanimoto, Hirokazu; Ershov, Dmitry; Haupt, Armin; De Belly, Henry; Le Borgne, Rémi; Couturier, Etienne; Boudaoud, Arezki; Minc, Nicolas

    2018-04-23

    How growing cells cope with size expansion while ensuring mechanical integrity is not known. In walled cells, such as those of microbes and plants, growth and viability are both supported by a thin and rigid encasing cell wall (CW). We deciphered the dynamic mechanisms controlling wall surface assembly during cell growth, using a sub-resolution microscopy approach to monitor CW thickness in live rod-shaped fission yeast cells. We found that polar cell growth yielded wall thinning and that thickness negatively influenced growth. Thickness at growing tips exhibited a fluctuating behavior with thickening phases followed by thinning phases, indicative of a delayed feedback promoting thickness homeostasis. This feedback was mediated by mechanosensing through the CW integrity pathway, which probes strain in the wall to adjust synthase localization and activity to surface growth. Mutants defective in thickness homeostasis lysed by rupturing the wall, demonstrating its pivotal role for walled cell survival. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Coevolving residues of (beta/alpha)(8)-barrel proteins play roles in stabilizing active site architecture and coordinating protein dynamics.

    Science.gov (United States)

    Shen, Hongbo; Xu, Feng; Hu, Hairong; Wang, Feifei; Wu, Qi; Huang, Qiang; Wang, Honghai

    2008-12-01

    Indole-3-glycerol phosphate synthase (IGPS) is a representative of (beta/alpha)(8)-barrel proteins-the most common enzyme fold in nature. To better understand how the constituent amino-acids work together to define the structure and to facilitate the function, we investigated the evolutionary and dynamical coupling of IGPS residues by combining statistical coupling analysis (SCA) and molecular dynamics (MD) simulations. The coevolving residues identified by the SCA were found to form a network which encloses the active site completely. The MD simulations showed that these coevolving residues are involved in the correlated and anti-correlated motions. The correlated residues are within van der Waals contact and appear to maintain the active site architecture; the anti-correlated residues are mainly distributed on opposite sides of the catalytic cavity and coordinate the motions likely required for the substrate entry and product release. Our findings might have broad implications for proteins with the highly conserved (betaalpha)(8)-barrel in assessing the roles of amino-acids that are moderately conserved and not directly involved in the active site of the (beta/alpha)(8)-barrel. The results of this study could also provide useful information for further exploring the specific residue motions for the catalysis and protein design based on the (beta/alpha)(8)-barrel scaffold.

  12. Dinitroaniline herbicide resistance and the microtubule cytoskeleton.

    Science.gov (United States)

    Anthony; Hussey

    1999-03-01

    Dinitroaniline herbicides have been used for pre-emergence weed control for the past 25 years in cotton, soybean, wheat and oilseed crops. Considering their long persistence and extensive use, resistance to dinitroanilines is fairly rare. However, the most widespread dinitroaniline-resistant weeds, the highly resistant (R) and the intermediate (I) biotypes of the invasive goosegrass Eleusine indica, are now infesting more than 1000 cotton fields in the southern states of the USA. The molecular basis of this resistance has been identified, and found to be a point mutation in a major microtubule cytoskeletal protein, alpha-tubulin. These studies have served both to explain the establishment of resistance and to reveal fundamental properties of tubulin gene expression and microtubule structure.

  13. Coordinated three-dimensional motion of the head and torso by dynamic neural networks.

    Science.gov (United States)

    Kim, J; Hemami, H

    1998-01-01

    The problem of trajectory tracking control of a three dimensional (3D) model of the human upper torso and head is considered. The torso and the head are modeled as two rigid bodies connected at one point, and the Newton-Euler method is used to derive the nonlinear differential equations that govern the motion of the system. The two-link system is driven by six pairs of muscle like actuators that possess physiologically inspired alpha like and gamma like inputs, and spindle like and Golgi tendon organ like outputs. These outputs are utilized as reflex feedback for stability and stiffness control, in a long loop feedback for the purpose of estimating the state of the system (somesthesis), and as part of the input to the controller. Ideal delays of different duration are included in the feedforward and feedback paths of the system to emulate such delays encountered in physiological systems. Dynamical neural networks are trained to learn effective control of the desired maneuvers of the system. The feasibility of the controller is demonstrated by computer simulation of the successful execution of the desired maneuvers. This work demonstrates the capabilities of neural circuits in controlling highly nonlinear systems with multidelays in their feedforward and feedback paths. The ultimate long range goal of this research is toward understanding the working of the central nervous system in controlling movement. It is an interdisciplinary effort relying on mechanics, biomechanics, neuroscience, system theory, physiology and anatomy, and its short range relevance to rehabilitation must be noted.

  14. Dynamic instability analysis of axisymmetric shells by finite element method with convected coordinates

    International Nuclear Information System (INIS)

    Hsieh, B.J.

    1977-01-01

    The instability of axisymmetric shells has been used in engineering fields as a safety device such as the rupture discs used in the LMFBR (Liquid Metal Fast Breeder Reactor) design to relieve the excessive pressure caused by the water and sodium reaction when there is a leak in the piping system. Hence, the analysis of the instability of shells under time varying loading is becoming more and more important. However, notorious discrepancy has been observed between various analytical predications and experimental results for the buckling of shells. Various theories have been proposed to explain these discrepancies. Most of these theories are concerned with two aspects: initial imperfections and asymmetric responses. Both theories do narrow the gap between theoretical and experimental results; however, the remaining discrepancy is still not small. Other possible causes of this discrepancy have to be studied- among them, the boundary conditions. It has been pointed out that the slip at the boundary may have noticeable effect on the transient behavior of a plate. In this paper, the effect of various boundary conditions on the dynamic instability of axisymmetric shells is studied using the numerical discretization technique--convective finite element method

  15. Double level selection in a constitutional dynamic library of coordination driven supramolecular polygons.

    Science.gov (United States)

    Rancan, Marzio; Tessarolo, Jacopo; Casarin, Maurizio; Zanonato, Pier Luigi; Quici, Silvio; Armelao, Lidia

    2014-07-21

    A constitutional dynamic library (CDL) of Cu(II) metallo-supramolecular polygons has been studied as a bench test to examine an interesting selection case based on molecular recognition. Sorting of the CDL polygons is achieved through a proper guest that is hosted into the triangular metallo-macrocycle constituent. Two selection mechanisms are observed, a guest induced path and a guest templated self-assembly (virtual library approach). Remarkably, the triangular host can accommodate several guests with a degree of selectivity ranging from ∼1 to ∼10(4) for all possible guest pairs. A double level selection operates: guests drive the CDL toward the triangular polygon, and, at the same time, this is able to pick a specific guest from a set of competitive molecules, according to a selectivity-affinity correlation. Association constants of the host-guest systems have been determined. Guest competition and exchange studies have been analyzed through variable temperature UV-Vis absorption spectroscopy and single crystal X-ray diffraction studies. Molecular structures and electronic properties of the triangular polygon and of the host-guest systems also have been studied by means of all electrons density functional theory (DFT) and time-dependent density functional theory (TDDFT) calculations including dispersive contributions. DFT outcomes ultimately indicate the dispersive nature of the host-guest interactions, while TDDFT results allow a thorough assignment of the host and host-guests spectral features.

  16. Dynamics and regulation at the tip : a high resolution view on microtubele assembly

    NARCIS (Netherlands)

    Munteanu, Laura

    2008-01-01

    Microtubules are highly dynamic protein polymers that and are essential for intracellular organization and fundamental processes like transport and cell division. In cells, a wide family of microtubule-associated proteins (MAPs) tightly regulates microtubule dynamics. The work presented in this

  17. Novel mitochondrial extensions provide evidence for a link between microtubule-directed movement and mitochondrial fission

    International Nuclear Information System (INIS)

    Bowes, Timothy; Gupta, Radhey S.

    2008-01-01

    Mitochondrial dynamics play an important role in a large number of cellular processes. Previously, we reported that treatment of mammalian cells with the cysteine-alkylators, N-ethylmaleimide and ethacrynic acid, induced rapid mitochondrial fusion forming a large reticulum approximately 30 min after treatment. Here, we further investigated this phenomenon using a number of techniques including live-cell confocal microscopy. In live cells, drug-induced fusion coincided with a cessation of fast mitochondrial movement which was dependent on microtubules. During this loss of movement, thin mitochondrial tubules extending from mitochondria were also observed, which we refer to as 'mitochondrial extensions'. The formation of these mitochondrial extensions, which were not observed in untreated cells, depended on microtubules and was abolished by pretreatment with nocodazole. In this study, we provide evidence that these extensions result from of a block in mitochondrial fission combined with continued application of motile force by microtubule-dependent motor complexes. Our observations strongly suggest the existence of a link between microtubule-based mitochondrial trafficking and mitochondrial fission

  18. Vault mobility depends in part on microtubules and vaults can be recruited to the nuclear envelope

    International Nuclear Information System (INIS)

    Zon, Arend van; Mossink, Marieke H.; Houtsmuller, Adriaan B.; Schoester, Martijn; Scheffer, George L.; Scheper, Rik J.; Sonneveld, Pieter; Wiemer, Erik A.C.

    2006-01-01

    Vaults are ribonucleoproteins that may function in intracellular transport processes. We investigated the intracellular distribution and dynamics of vaults in non-small cell lung cancer cells in which vaults are labeled with the green fluorescent protein. Immunofluorescence experiments showed that vaults are dispersed throughout the cytoplasm; a small fraction is found in close proximity to microtubules. Immunoprecipitation experiments corroborated these results showing co-precipitation of MVP and β-tubulin. Using quantitative fluorescence-recovery after photobleaching (FRAP), we demonstrated that vault mobility over longer distances in part depends on intact microtubules; vaults moving slower when microtubules are depolymerized by nocodazole. Biochemical fractionation indicated a small fraction of MVP associated with the nucleus, however, no GFP-tagged vaults could be observed inside the nucleus. We observed an accumulation of vaults at the nuclear envelope upon treatment of cells with the protein synthesis inhibitor cycloheximide. Analysis of nucleo-cytoplasmic transport using a fluorescent substrate containing a classical NLS and NES expressed in MVP +/+ and MVP -/- mouse embryonic fibroblasts indicated no differences in nuclear import/export kinetics, suggesting no role for vaults in these processes. We hypothesize that a subset of vaults moves directionally via microtubules, possibly towards the nucleus

  19. The Coordination Dynamics of Observational Learning: Relative Motion Direction and Relative Phase as Informational Content Linking Action-Perception to Action-Production.

    Science.gov (United States)

    Buchanan, John J

    2016-01-01

    The primary goal of this chapter is to merge together the visual perception perspective of observational learning and the coordination dynamics theory of pattern formation in perception and action. Emphasis is placed on identifying movement features that constrain and inform action-perception and action-production processes. Two sources of visual information are examined, relative motion direction and relative phase. The visual perception perspective states that the topological features of relative motion between limbs and joints remains invariant across an actor's motion and therefore are available for pickup by an observer. Relative phase has been put forth as an informational variable that links perception to action within the coordination dynamics theory. A primary assumption of the coordination dynamics approach is that environmental information is meaningful only in terms of the behavior it modifies. Across a series of single limb tasks and bimanual tasks it is shown that the relative motion and relative phase between limbs and joints is picked up through visual processes and supports observational learning of motor skills. Moreover, internal estimations of motor skill proficiency and competency are linked to the informational content found in relative motion and relative phase. Thus, the chapter links action to perception and vice versa and also links cognitive evaluations to the coordination dynamics that support action-perception and action-production processes.

  20. Microtubules are organized independently of the centrosome in Drosophila neurons

    Directory of Open Access Journals (Sweden)

    Nguyen Michelle M

    2011-12-01

    Full Text Available Abstract Background The best-studied arrangement of microtubules is that organized by the centrosome, a cloud of microtubule nucleating and anchoring proteins is clustered around centrioles. However, noncentrosomal microtubule arrays are common in many differentiated cells, including neurons. Although microtubules are not anchored at neuronal centrosomes, it remains unclear whether the centrosome plays a role in organizing neuronal microtubules. We use Drosophila as a model system to determine whether centrosomal microtubule nucleation is important in mature neurons. Results In developing and mature neurons, centrioles were not surrounded by the core nucleation protein γ-tubulin. This suggests that the centrioles do not organize functional centrosomes in Drosophila neurons in vivo. Consistent with this idea, centriole position was not correlated with a specific region of the cell body in neurons, and growing microtubules did not cluster around the centriole, even after axon severing when the number of growing plus ends is dramatically increased. To determine whether the centrosome was required for microtubule organization in mature neurons, we used two approaches. First, we used DSas-4 centriole duplication mutants. In these mutants, centrioles were present in many larval sensory neurons, but they were not fully functional. Despite reduced centriole function, microtubule orientation was normal in axons and dendrites. Second, we used laser ablation to eliminate the centriole, and again found that microtubule polarity in axons and dendrites was normal, even 3 days after treatment. Conclusion We conclude that the centrosome is not a major site of microtubule nucleation in Drosophila neurons, and is not required for maintenance of neuronal microtubule organization in these cells.

  1. Model predictive control-based dynamic coordinate strategy for hydraulic hub-motor auxiliary system of a heavy commercial vehicle

    Science.gov (United States)

    Zeng, Xiaohua; Li, Guanghan; Yin, Guodong; Song, Dafeng; Li, Sheng; Yang, Nannan

    2018-02-01

    Equipping a hydraulic hub-motor auxiliary system (HHMAS), which mainly consists of a hydraulic variable pump, a hydraulic hub-motor, a hydraulic valve block and hydraulic accumulators, with part-time all-wheel-drive functions improves the power performance and fuel economy of heavy commercial vehicles. The coordinated control problem that occurs when HHMAS operates in the auxiliary drive mode is addressed in this paper; the solution to this problem is the key to the maximization of HHMAS. To achieve a reasonable distribution of the engine power between mechanical and hydraulic paths, a nonlinear control scheme based on model predictive control (MPC) is investigated. First, a nonlinear model of HHMAS with vehicle dynamics and tire slip characteristics is built, and a controller-design-oriented model is simplified. Then, a steady-state feedforward + dynamic MPC feedback controller (FMPC) is designed to calculate the control input sequence of engine torque and hydraulic variable pump displacement. Finally, the controller is tested in the MATLAB/Simulink and AMESim co-simulation platform and the hardware-in-the-loop experiment platform, and its performance is compared with that of the existing proportional-integral-derivative controller and the feedforward controller under the same conditions. Simulation results show that the designed FMPC has the best performance, and control performance can be guaranteed in a real-time environment. Compared with the tracking control error of the feedforward controller, that of the designed FMPC is decreased by 85% and the traction efficiency performance is improved by 23% under a low-friction-surface condition. Moreover, under common road conditions for heavy commercial vehicles, the traction force can increase up to 13.4-15.6%.

  2. Producing Conditional Mutants for Studying Plant Microtubule Function

    Energy Technology Data Exchange (ETDEWEB)

    Richard Cyr

    2009-09-29

    The cytoskeleton, and in particular its microtubule component, participates in several processes that directly affect growth and development in higher plants. Normal cytoskeletal function requires the precise and orderly arrangement of microtubules into several cell cycle and developmentally specific arrays. One of these, the cortical array, is notable for its role in directing the deposition of cellulose (the most prominent polymer in the biosphere). An understanding of how these arrays form, and the molecular interactions that contribute to their function, is incomplete. To gain a better understanding of how microtubules work, we have been working to characterize mutants in critical cytoskeletal genes. This characterization is being carried out at the subcellular level using vital microtubule gene constructs. In the last year of funding colleagues have discovered that gamma-tubulin complexes form along the lengths of cortical microtubules where they act to spawn new microtubules at a characteristic 40 deg angle. This finding complements nicely the finding from our lab (which was funded by the DOE) showing that microtubule encounters are angle dependent; high angles encounters results in catastrophic collisions while low angle encounters result in favorable zippering. The finding of a 40 deg spawn of new microtubules from extant microtubule, together with aforementioned rules of encounters, insures favorable co-alignment in the array. I was invited to write a New and Views essay on this topic and a PDF is attached (News and Views policy does not permit funding acknowledgments and so I was not allowed to acknowledge support from the DOE).

  3. How biological microtubules may avoid decoherence

    International Nuclear Information System (INIS)

    Hameroff, S.

    2005-01-01

    Full text: Entangled superpositions persisting for hundreds of milliseconds in protein assemblies such as microtubules (MTs) are proposed in biological functions, e.g. quantum computation relevant to consciousness in the Penrose-Hameroff 'Orch OR' model. Cylindrical polymers of the protein tubulin, MTs organize cell activities. The obvious question is how biological quantum states could avoid decoherence, e.g. in the brain at 37.6 degrees centigrade. Screening/sheelding: tubulin protein states/functions are governed by van der Waals London forces, quantum interactions among clouds of delocalizable electrons in nonpolar 'hydrophobic' intra-protein pockets screened from external van der Waals thermal interactions. Such pockets include amino acid resonance structures benzene and indole rings. (Anesthetic gases erase consciousness solely by interfering with London forces in hydrophobic pockets in various brain proteins). Hence tubulin states may act as superpositioned qubits also shielded at the MT level by counter-ion Debye plasma layers (due to charged C-termini tails on tubulin) and by water-ordering actin gels which embed MTs in a quasi-solid. Biological systems may also exploit thermodynamic gradients to give extremely low effective temperatures. Decoherence free subspaces: paradoxically, a system coupled strongly to its environment through certain degrees of freedom can effectively 'freeze' other degrees of freedom (quantum Zeno effect), enabling coherent superpositions and entanglement to persist. Metabolic energy supplied to MT collective dynamics (e.g. Froehlich coherence) can cause Bose-Einstein condenzation and counter decoherence as lasers avoid decoherence at room temperature. Topological quantum error correction: MT lattice structure reveals various helical winding paths through adjacent tubulins which follow the Fibonacci series. Propagation/interactions of quasi-particles along these paths may process information. As proposed by Kitaev (1997), various

  4. Duplication in the microtubule-actin cross-linking factor 1 gene causes a novel neuromuscular condition

    DEFF Research Database (Denmark)

    Jørgensen, Louise H; Mosbech, Mai-Britt; Færgeman, Nils J

    2014-01-01

    Spectrins and plakins are important communicators linking cytoskeletal components to each other and to cellular junctions. Microtubule-actin cross-linking factor 1 (MACF1) belongs to the spectraplakin family and is involved in control of microtubule dynamics. Complete knock out of MACF1 in mice...... muscles and diminished motor skills, with heterogeneous presentation among the affected family members. To corroborate these findings we used RNA interference to knock down the VAB-10 locus containing the MACF1 homologue in C. elegans, and we could show that this also causes movement disturbances...

  5. Molecular architecture of axonemal microtubule doublets revealedby cryo-electron tomography

    Energy Technology Data Exchange (ETDEWEB)

    Sui, Haixin; Downing, Kenneth H.

    2006-05-22

    The axoneme, which forms the core of eukaryotic flagella and cilia, is one of the largest macromolecular machines with a structure that is largely conserved from protists to mammals. Microtubule doublets are structural components of axonemes containing a number of proteins besides tubulin, and are usually found in arrays of nine doublets arranged around two singlet microtubules. Coordinated sliding of adjacent doublets, which involves a host of other proteins in the axoneme, produces periodic beating movements of the axoneme. We have obtained a 3D density map of intact microtubule doublets using cryo-electron tomography and image averaging. Our map, with a resolution of about 3 nm, provides insights into locations of particular proteins within the doublets and the structural features of the doublets that define their mechanical properties. We identify likely candidates for several of these non-tubulin components of the doublets. This work offers novel insight on how tubulin protofilaments and accessory proteins attach together to form the doublets and provides a structural basis for understanding doublet function in axonemes.

  6. Optomechanical proposal for monitoring microtubule mechanical vibrations

    Czech Academy of Sciences Publication Activity Database

    Barzanjeh, Sh.; Salari, V.; Tuszynski, J. A.; Cifra, Michal; Simon, C.

    2017-01-01

    Roč. 96, č. 1 (2017), č. článku 012404. ISSN 2470-0045 R&D Projects: GA ČR(CZ) GA15-17102S Grant - others:AV ČR(CZ) SAV-15-22 Program:Bilaterální spolupráce Institutional support: RVO:67985882 Keywords : Vibrational modes * Microtubule * Resonance frequencies Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 2.366, year: 2016

  7. Emerging microtubule targets in glioma therapy

    Czech Academy of Sciences Publication Activity Database

    Katsetos, C.D.; Reginato, M.J.; Baas, P.W.; D'Agostino, L.; Legido, A.; Tuszynski, J. A.; Dráberová, Eduarda; Dráber, Pavel

    2015-01-01

    Roč. 22, č. 1 (2015), s. 49-72 ISSN 1071-9091 R&D Projects: GA MŠk LH12050; GA MZd NT14467 Grant - others:GA AV ČR M200521203PIPP; NIH(US) R01 NS028785; Philadelphia Health Education Corporation (PHEC)–St. Christopher’s Hospital for Children Reunified Endowment (C.D.K.)(US) 323256 Institutional support: RVO:68378050 Keywords : glioma tumorigenesis * glioblastoma * tubulin * microtubules Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.303, year: 2015

  8. In vivo FRET imaging revealed a regulatory role of RanGTP in kinetochore-microtubule attachments via Aurora B kinase.

    Directory of Open Access Journals (Sweden)

    Yoke-Peng Lee

    Full Text Available Under the fluctuating circumstances provided by the innate dynamics of microtubules and opposing tensions resulted from microtubule-associated motors, it is vital to ensure stable kinetochore-microtubule attachments for accurate segregation. However, a comprehensive understanding of how this regulation is mechanistically achieved remains elusive. Using our newly designed live cell FRET time-lapse imaging, we found that post-metaphase RanGTP is crucial in the maintenance of stable kinetochore-microtubule attachments by regulating Aurora B kinase via the NES-bearing Mst1. More importantly, our study demonstrates that by ensuring stable alignment of metaphase chromosomes prior to segregation, RanGTP is indispensible in governing the genomic integrity and the fidelity of cell cycle progression. Our findings suggest an additional role of RanGTP beyond its known function in mitotic spindle assembly during the prometaphase-metaphase transition.

  9. Microtubules Enable the Planar Cell Polarity of Airway Cilia

    Science.gov (United States)

    Vladar, Eszter K.; Bayly, Roy D.; Sangoram, Ashvin; Scott, Matthew P.; Axelrod, Jeffrey D.

    2012-01-01

    Summary Background Airway cilia must be physically oriented along the longitudinal tissue axis for concerted, directional motility that is essential for proper mucociliary clearance. Results We show that Planar Cell Polarity (PCP) signaling specifies directionality and orients respiratory cilia. Within all airway epithelial cells a conserved set of PCP proteins shows interdependent, asymmetric junctional localization; non-autonomous signaling coordinates polarization between cells; and a polarized microtubule (MT) network is likely required for asymmetric PCP protein localization. We find that basal bodies dock after polarity of PCP proteins is established, are polarized nearly simultaneously, and refinement of basal body/cilium orientation continues during airway epithelial development. Unique to mature multiciliated cells, we identify PCP-regulated, planar polarized MTs that originate from basal bodies and interact, via their plus ends, with membrane domains associated with the PCP proteins Frizzled and Dishevelled. Disruption of MTs leads to misoriented cilia. Conclusions A conserved PCP pathway orients airway cilia by communicating polarity information from asymmetric membrane domains at the apical junctions, through MTs, to orient the MT and actin based network of ciliary basal bodies below the apical surface. PMID:23122850

  10. Quantitative analysis of microtubule orientation in interdigitated leaf pavement cells.

    Science.gov (United States)

    Akita, Kae; Higaki, Takumi; Kutsuna, Natsumaro; Hasezawa, Seiichiro

    2015-01-01

    Leaf pavement cells are shaped like a jigsaw puzzle in most dicotyledon species. Molecular genetic studies have identified several genes required for pavement cells morphogenesis and proposed that microtubules play crucial roles in the interdigitation of pavement cells. In this study, we performed quantitative analysis of cortical microtubule orientation in leaf pavement cells in Arabidopsis thaliana. We captured confocal images of cortical microtubules in cotyledon leaf epidermis expressing GFP-tubulinβ and quantitatively evaluated the microtubule orientations relative to the pavement cell growth axis using original image processing techniques. Our results showed that microtubules kept parallel orientations to the growth axis during pavement cell growth. In addition, we showed that immersion treatment of seed cotyledons in solutions containing tubulin polymerization and depolymerization inhibitors decreased pavement cell complexity. Treatment with oryzalin and colchicine inhibited the symmetric division of guard mother cells.

  11. Microtubule and Cell Contact Dependency of ER-bound PTP1B Localization in Growth Cones

    Science.gov (United States)

    Fuentes, Federico

    2009-01-01

    PTP1B is an ER-bound protein tyrosine phosphatase implied in the regulation of cell adhesion. Here we investigated mechanisms involved in the positioning and dynamics of PTP1B in axonal growth cones and evaluated the role of this enzyme in axons. In growth cones, PTP1B consistently localizes in the central domain, and occasionally at the peripheral region and filopodia. Live imaging of GFP-PTP1B reveals dynamic excursions of fingerlike processes within the peripheral region and filopodia. PTP1B and GFP-PTP1B colocalize with ER markers and coalign with microtubules at the peripheral region and redistribute to the base of the growth cone after treatment with nocodazole, a condition that is reversible. Growth cone contact with cellular targets is accompanied by invasion of PTP1B and stable microtubules in the peripheral region aligned with the contact axis. Functional impairment of PTP1B causes retardation of axon elongation, as well as reduction of growth cone filopodia lifetime and Src activity. Our results highlight the role of microtubules and cell contacts in the positioning of ER-bound PTP1B to the peripheral region of growth cones, which may be required for the positive role of PTP1B in axon elongation, filopodia stabilization, and Src activity. PMID:19158394

  12. Branching microtubule nucleation in Xenopus egg extracts mediated by augmin and TPX2

    Science.gov (United States)

    Petry, Sabine; Groen, Aaron C.; Ishihara, Keisuke; Mitchison, Timothy J.; Vale, Ronald D.

    2013-01-01

    Summary The microtubules that comprise mitotic spindles in animal cells are nucleated at centrosomes and by spindle assembly factors that are activated in the vicinity of chromatin. Indirect evidence also has suggested that microtubules might be nucleated from pre-existing microtubules throughout the spindle, but this process has not been observed directly. Here, we demonstrate microtubule nucleation from the sides of existing microtubules in meiotic Xenopus egg extracts. Daughter microtubules grow at a low branch angle and with the same polarity as mother filaments. Branching microtubule nucleation requires gamma-tubulin and augmin and is stimulated by GTP-bound Ran and its effector TPX2, factors previously implicated in chromatin-stimulated nucleation. Because of the rapid amplification of microtubule numbers and the preservation of microtubule polarity, microtubule-dependent microtubule nucleation is well suited for spindle assembly and maintenance. PMID:23415226

  13. The Dynamic Coordinated Development of a Regional Environment-Tourism-Economy System: A Case Study from Western Hunan Province, China

    Directory of Open Access Journals (Sweden)

    Yaoqing Yuan

    2014-08-01

    Full Text Available Based on regional coordination theory and system theory, the authors constructed an evaluation index system for the coordinated development of a regional environment-tourism-economy system with a pressure-state-response (PSR model. With a coordinated development model, it further empirically analyzed the coordinated development state of an environment-tourism-economy system in western Hunan from 2001 to 2012. The results showed that, although this environment-tourism-economy system failed to achieve a high benefit index, inter-subsystem coupling extent, and coordinated development index, the three indices presented an increasing overall trend. This outcome suggested that the sub-systems in this system were developing towards their optimal proportions: the development of these sub-systems (environmental, tourism, and economic was unbalanced in western Hunan. The environment therein sees only slow development although provided with a favorable ecological foundation. Economic development, which has long been lagging, acted as the main factor restricting the coordinated development of a regional environment-tourism-economy system. To promote its coordinated development in western Hunan, the following recommendations were proposed: strengthen the prediction and warnings on the evolution of the whole system; optimize the industry’s structure; reinforce environmental management.

  14. Dynamics of actin cables in polarized growth of the filamentous fungus Aspergillus nidulans

    Directory of Open Access Journals (Sweden)

    Anna eBergs

    2016-05-01

    Full Text Available Highly polarized growth of filamentous fungi requires a continuous supply of proteins and lipids to the hyphal tip. This transport is managed by vesicle trafficking via the actin and microtubule cytoskeletons and their associated motor proteins. Particularly, actin cables originating from the hyphal tip are essential for hyphal growth. Although specific marker proteins to visualize actin cables have been developed in filamentous fungi, the exact organization and dynamics of actin cables has remained elusive. Here we visualized actin cables using tropomyosin (TpmA and Lifeact fused to fluorescent proteins in Aspergillus nidulans and studied the dynamics and regulation. GFP tagged TpmA visualized dynamic actin cables formed from the hyphal tip with cycles of elongation and shrinkage. The elongation and shrinkage rates of actin cables were similar and approximately 0.6 μm/s. Comparison of actin markers revealed that high concentrations of Lifeact reduced actin dynamics. Simultaneous visualization of actin cables and microtubules suggests temporally and spatially coordinated polymerization and depolymerization between the two cytoskeletons. Our results provide new insights into the molecular mechanism of ordered polarized growth regulated by actin cables and microtubules.

  15. Role of water in the dynamic disproportionation of Zn-based TCNQ(F4) coordination polymers (TCNQ = tetracyanoquinodimethane).

    Science.gov (United States)

    Nafady, Ayman; Le, Thanh Hai; Vo, Nguyen; Haworth, Naomi L; Bond, Alan M; Martin, Lisandra L

    2014-02-17

    Intriguingly, coordination polymers containing TCNQ(2–) and TCNQF4(2–) (TCNQ = 7,7,8,8-tetracyanoquinodimethane, TCNQF4 = 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane, both designated as TCNQ(F4)(2–)) may be generated from reaction of metal ions with TCNQ(F4)•–. An explanation is now provided in terms of a solvent-dependent dynamic disproportionation reaction. A systematic study of reactions associated with TCNQ(F4) and electrochemically generated TCNQ(F4)MeCN•– and TCNQ(F4)MeCN(2–) revealed that disproportionation of TCNQ(F4)MeCN•– radical anions in acetonitrile containing a low concentration of water is facilitated by the presence of ZnMeCN(2+). Thus, while the disproportionation reaction 2TCNQ(F4)MeCN•– TCNQ(F4)MeCN + TCNQ(F4)MeCN(2–) is thermodynamically very unfavorable in this medium (Keq ≈ 9 × 10(–10); TCNQF4), the preferential precipitation of ZnTCNQ(F4)(s) drives the reaction: ZnMeCN(2+) + 2 TCNQ(F4)MeCN•– ZnTCNQ(F4)(s) + TCNQ(F4)MeCN. The concomitant formation of soluble TCNQ(F4)MeCN and insoluble ZnTCNQ(F4)(s) and the loss of TCNQ(F4)MeCN•– were verified by UV–visible and infrared spectroscopy and steady-state voltammetry. Importantly, the reverse reaction of comproportionation rather than disproportionation becomes the favored process in the presence of ≥3% (v/v) water, due to the increased solubility of solid ZnTCNQ(F4)(s). Thus, in this “wet” environment, ZnMeCN(2+) and TCNQ(F4)MeCN•– are produced from a mixture of ZnTCNQ(F4)(s) and TCNQ(F4)MeCN and with the addition of water provides a medium for synthesis of [Zn(TCNQ(F4))2(H2O)2]. An important conclusion from this work is that the redox level of TCNQ(F4)-based materials, synthesized from a mixture of metal cations and TCNQ(F4)•–, is controlled by a solvent-dependent disproportionation/comproportionation reaction that may be tuned to favor formation of solids containing the monoanion radical, the dianion, or even a mixture of both.

  16. Microtubule self-organisation by reaction-diffusion processes causes collective transport and organisation of cellular particles

    Directory of Open Access Journals (Sweden)

    Demongeot Jacques

    2004-06-01

    Full Text Available Abstract Background The transport of intra-cellular particles by microtubules is a major biological function. Under appropriate in vitro conditions, microtubule preparations behave as a 'complex' system and show 'emergent' phenomena. In particular, they form dissipative structures that self-organise over macroscopic distances by a combination of reaction and diffusion. Results Here, we show that self-organisation also gives rise to a collective transport of colloidal particles along a specific direction. Particles, such as polystyrene beads, chromosomes, nuclei, and vesicles are carried at speeds of several microns per minute. The process also results in the macroscopic self-organisation of these particles. After self-organisation is completed, they show the same pattern of organisation as the microtubules. Numerical simulations of a population of growing and shrinking microtubules, incorporating experimentally realistic reaction dynamics, predict self-organisation. They forecast that during self-organisation, macroscopic parallel arrays of oriented microtubules form which cross the reaction space in successive waves. Such travelling waves are capable of transporting colloidal particles. The fact that in the simulations, the aligned arrays move along the same direction and at the same speed as the particles move, suggest that this process forms the underlying mechanism for the observed transport properties. Conclusions This process constitutes a novel physical chemical mechanism by which chemical energy is converted into collective transport of colloidal particles along a given direction. Self-organisation of this type provides a new mechanism by which intra cellular particles such as chromosomes and vesicles can be displaced and simultaneously organised by microtubules. It is plausible that processes of this type occur in vivo.

  17. Microtubule self-organisation by reaction-diffusion processes causes collective transport and organisation of cellular particles

    Science.gov (United States)

    Glade, Nicolas; Demongeot, Jacques; Tabony, James

    2004-01-01

    Background The transport of intra-cellular particles by microtubules is a major biological function. Under appropriate in vitro conditions, microtubule preparations behave as a 'complex' system and show 'emergent' phenomena. In particular, they form dissipative structures that self-organise over macroscopic distances by a combination of reaction and diffusion. Results Here, we show that self-organisation also gives rise to a collective transport of colloidal particles along a specific direction. Particles, such as polystyrene beads, chromosomes, nuclei, and vesicles are carried at speeds of several microns per minute. The process also results in the macroscopic self-organisation of these particles. After self-organisation is completed, they show the same pattern of organisation as the microtubules. Numerical simulations of a population of growing and shrinking microtubules, incorporating experimentally realistic reaction dynamics, predict self-organisation. They forecast that during self-organisation, macroscopic parallel arrays of oriented microtubules form which cross the reaction space in successive waves. Such travelling waves are capable of transporting colloidal particles. The fact that in the simulations, the aligned arrays move along the same direction and at the same speed as the particles move, suggest that this process forms the underlying mechanism for the observed transport properties. Conclusions This process constitutes a novel physical chemical mechanism by which chemical energy is converted into collective transport of colloidal particles along a given direction. Self-organisation of this type provides a new mechanism by which intra cellular particles such as chromosomes and vesicles can be displaced and simultaneously organised by microtubules. It is plausible that processes of this type occur in vivo. PMID:15176973

  18. Centrosome and microtubule instability in aging Drosophila cells

    Science.gov (United States)

    Schatten, H.; Chakrabarti, A.; Hedrick, J.

    1999-01-01

    Several cytoskeletal changes are associated with aging which includes alterations in muscle structure leading to muscular atrophy, and weakening of the microtubule network which affects cellular secretion and maintenance of cell shape. Weakening of the microtubule network during meiosis in aging oocytes can result in aneuploidy or trisomic zygotes with increasing maternal age. Imbalances of cytoskeletal organization can lead to disease such as Alzheimer's, muscular disorders, and cancer. Because many cytoskeletal diseases are related to age we investigated the effects of aging on microtubule organization in cell cultures of the Drosophila cell model system (Schneider S-1 and Kc23 cell lines). This cell model is increasingly being used as an alternative system to mammalian cell cultures. Drosophila cells are amenable to genetic manipulations and can be used to identify and manipulate genes which are involved in the aging processes. Immunofluorescence, scanning, and transmission electron microscopy were employed for the analysis of microtubule organizing centers (centrosomes) and microtubules at various times after subculturing cells in fresh medium. Our results reveal that centrosomes and the microtubule network becomes significantly affected in aging cells after 5 days of subculture. At 5-14 days of subculture, 1% abnormal out of 3% mitoses were noted which were clearly distinguishable from freshly subcultured control cells in which 3% of cells undergo normal mitosis with bipolar configurations. Microtubules are also affected in the midbody during cell division. The midbody in aging cells becomes up to 10 times longer when compared with midbodies in freshly subcultured cells. During interphase, microtubules are often disrupted and disorganized, which may indicate improper function related to transport of cell organelles along microtubules. These results are likely to help explain some cytoskeletal disorders and diseases related to aging.

  19. Birefringence of single and bundled microtubules.

    Science.gov (United States)

    Oldenbourg, R; Salmon, E D; Tran, P T

    1998-01-01

    We have measured the birefringence of microtubules (MTs) and of MT-based macromolecular assemblies in vitro and in living cells by using the new Pol-Scope. A single microtubule in aqueous suspension and imaged with a numerical aperture of 1.4 had a peak retardance of 0.07 nm. The peak retardance of a small bundle increased linearly with the number of MTs in the bundle. Axonemes (prepared from sea urchin sperm) had a peak retardance 20 times higher than that of single MTs, in accordance with the nine doublets and two singlets arrangement of parallel MTs in the axoneme. Measured filament retardance decreased when the filament was defocused or the numerical aperture of the imaging system was decreased. However, the retardance "area," which we defined as the image retardance integrated along a line perpendicular to the filament axis, proved to be independent of focus and of numerical aperture. These results are in good agreement with a theory that we developed for measuring retardances with imaging optics. Our theoretical concept is based on Wiener's theory of mixed dielectrics, which is well established for nonimaging applications. We extend its use to imaging systems by considering the coherence region defined by the optical set-up. Light scattered from within that region interferes coherently in the image point. The presence of a filament in the coherence region leads to a polarization dependent scattering cross section and to a finite retardance measured in the image point. Similar to resolution measurements, the linear dimension of the coherence region for retardance measurements is on the order lambda/(2 NA), where lambda is the wavelength of light and NA is the numerical aperture of the illumination and imaging lenses.

  20. Spatiotemporal relationships between growth and microtubule orientation as revealed in living root cells of Arabidopsis thaliana transformed with green-fluorescent-protein gene construct GFP-MBD

    Science.gov (United States)

    Granger, C. L.; Cyr, R. J.

    2001-01-01

    Arabidopsis thaliana plants were transformed with GFP-MBD (J. Marc et al., Plant Cell 10: 1927-1939, 1998) under the control of a constitutive (35S) or copper-inducible promoter. GFP-specific fluorescence distributions, levels, and persistence were determined and found to vary with age, tissue type, transgenic line, and individual plant. With the exception of an increased frequency of abnormal roots of 35S GFP-MBD plants grown on kanamycin-containing media, expression of GFP-MBD does not appear to affect plant phenotype. The number of leaves, branches, bolts, and siliques as well as overall height, leaf size, and seed set are similar between wild-type and transgenic plants as is the rate of root growth. Thus, we conclude that the transgenic plants can serve as a living model system in which the dynamic behavior of microtubules can be visualized. Confocal microscopy was used to simultaneously monitor growth and microtubule behavior within individual cells as they passed through the elongation zone of the Arabidopsis root. Generally, microtubules reoriented from transverse to oblique or longitudinal orientations as growth declined. Microtubule reorientation initiated at the ends of the cell did not necessarily occur simultaneously in adjacent neighboring cells and did not involve complete disintegration and repolymerization of microtubule arrays. Although growth rates correlated with microtubule reorientation, the two processes were not tightly coupled in terms of their temporal relationships, suggesting that other factor(s) may be involved in regulating both events. Additionally, microtubule orientation was more defined in cells whose growth was accelerating and less stringent in cells whose growth was decelerating, indicating that microtubule-orienting factor(s) may be sensitive to growth acceleration, rather than growth per se.

  1. Curcumin alters the cytoskeleton and microtubule organization on trophozoites of Giardia lamblia.

    Science.gov (United States)

    Gutiérrez-Gutiérrez, Filiberto; Palomo-Ligas, Lissethe; Hernández-Hernández, José Manuel; Pérez-Rangel, Armando; Aguayo-Ortiz, Rodrigo; Hernández-Campos, Alicia; Castillo, Rafael; González-Pozos, Sirenia; Cortés-Zárate, Rafael; Ramírez-Herrera, Mario Alberto; Mendoza-Magaña, María Luisa; Castillo-Romero, Araceli

    2017-08-01

    Giardia lamblia is a worldwide protozoan responsible for a significant number of intestinal infections. There are several drugs for the treatment of giardiasis, but they often cause side effects. Curcumin, a component of turmeric, has antigiardial activity; however, the molecular target and mechanism of antiproliferative activity are not clear. The effects of curcumin on cellular microtubules have been widely investigated. Since tubulin is the most abundant protein in the cytoskeleton of Giardia, to elucidate whether curcumin has activity against the microtubules of this parasite, we treated trophozoites with curcumin and the cells were analyzed by scanning electron microscopy and confocal microscopy. Curcumin inhibited Giardia proliferation and adhesion in a time-concentration-dependent mode. The higher inhibitory concentrations of curcumin (3 and 15μM) disrupted the cytoskeletal structures of trophozoites; the damage was evident on the ventral disk, flagella and in the caudal region, also the membrane was affected. The immunofluorescence images showed altered distribution of tubulin staining on ventral disk and flagella. Additionally, we found that curcumin caused a clear reduction of tubulin expression. By docking analysis and molecular dynamics we showed that curcumin has a high probability to bind at the interface of the tubulin dimer close to the vinblastine binding site. All the data presented indicate that curcumin may inhibit Giardia proliferation by perturbing microtubules. Copyright © 2017. Published by Elsevier B.V.

  2. Image-based compound profiling reveals a dual inhibitor of tyrosine kinase and microtubule polymerization.

    Science.gov (United States)

    Tanabe, Kenji

    2016-04-27

    Small-molecule compounds are widely used as biological research tools and therapeutic drugs. Therefore, uncovering novel targets of these compounds should provide insights that are valuable in both basic and clinical studies. I developed a method for image-based compound profiling by quantitating the effects of compounds on signal transduction and vesicle trafficking of epidermal growth factor receptor (EGFR). Using six signal transduction molecules and two markers of vesicle trafficking, 570 image features were obtained and subjected to multivariate analysis. Fourteen compounds that affected EGFR or its pathways were classified into four clusters, based on their phenotypic features. Surprisingly, one EGFR inhibitor (CAS 879127-07-8) was classified into the same cluster as nocodazole, a microtubule depolymerizer. In fact, this compound directly depolymerized microtubules. These results indicate that CAS 879127-07-8 could be used as a chemical probe to investigate both the EGFR pathway and microtubule dynamics. The image-based multivariate analysis developed herein has potential as a powerful tool for discovering unexpected drug properties.

  3. Effects of the KIF2C neck peptide on microtubules: lateral disintegration of microtubules and β-structure formation.

    Science.gov (United States)

    Shimizu, Youské; Shimizu, Takashi; Nara, Masayuki; Kikumoto, Mahito; Kojima, Hiroaki; Morii, Hisayuki

    2013-04-01

    Members of the kinesin-13 sub-family, including KIF2C, depolymerize microtubules. The positive charge-rich 'neck' region extending from the N-terminus of the catalytic head is considered to be important in the depolymerization activity. Chemically synthesized peptides, covering the basic region (A182-E200), induced a sigmoidal increase in the turbidity of a microtubule suspension. The increase was suppressed by salt addition or by reduction of basicity by amino acid substitutions. Electron microscopic observations revealed ring structures surrounding the microtubules at high peptide concentrations. Using the peptide A182-D218, we also detected free thin straight filaments, probably protofilaments disintegrated from microtubules. Therefore, the neck region, even without the catalytic head domain, may induce lateral disintegration of microtubules. With microtubules lacking anion-rich C-termini as a result of subtilisin treatment, addition of the peptide induced only a moderate increase in turbidity, and rings and protofilaments were rarely detected, while aggregations, also thought to be caused by lateral disintegration, were often observed in electron micrographs. Thus, the C-termini are not crucial for the action of the peptides in lateral disintegration but contribute to structural stabilization of the protofilaments. Previous structural studies indicated that the neck region of KIF2C is flexible, but our IR analysis suggests that the cation-rich region (K190-A204) forms β-structure in the presence of microtubules, which may be of significance with regard to the action of the neck region. Therefore, the neck region of KIF2C is sufficient to cause disintegration of microtubules into protofilaments, and this may contribute to the ability of KIF2C to cause depolymerization of microtubules. © 2013 The Authors Journal compilation © 2013 FEBS.

  4. Identification of interphase functions for the NIMA kinase involving microtubules and the ESCRT pathway.

    Directory of Open Access Journals (Sweden)

    Meera Govindaraghavan

    2014-03-01

    Full Text Available The Never in Mitosis A (NIMA kinase (the founding member of the Nek family of kinases has been considered a mitotic specific kinase with nuclear restricted roles in the model fungus Aspergillus nidulans. By extending to A. nidulans the results of a synthetic lethal screen performed in Saccharomyces cerevisiae using the NIMA ortholog KIN3, we identified a conserved genetic interaction between nimA and genes encoding proteins of the Endosomal Sorting Complex Required for Transport (ESCRT pathway. Absence of ESCRT pathway functions in combination with partial NIMA function causes enhanced cell growth defects, including an inability to maintain a single polarized dominant cell tip. These genetic insights suggest NIMA potentially has interphase functions in addition to its established mitotic functions at nuclei. We therefore generated endogenously GFP-tagged NIMA (NIMA-GFP which was fully functional to follow its interphase locations using live cell spinning disc 4D confocal microscopy. During interphase some NIMA-GFP locates to the tips of rapidly growing cells and, when expressed ectopically, also locates to the tips of cytoplasmic microtubules, suggestive of non-nuclear interphase functions. In support of this, perturbation of NIMA function either by ectopic overexpression or through partial inactivation results in marked cell tip growth defects with excess NIMA-GFP promoting multiple growing cell tips. Ectopic NIMA-GFP was found to locate to the plus ends of microtubules in an EB1 dependent manner, while impairing NIMA function altered the dynamic localization of EB1 and the cytoplasmic microtubule network. Together, our genetic and cell biological analyses reveal novel non-nuclear interphase functions for NIMA involving microtubules and the ESCRT pathway for normal polarized fungal cell tip growth. These insights extend the roles of NIMA both spatially and temporally and indicate that this conserved protein kinase could help integrate cell

  5. Molecular dynamics study of the coordination sphere of trivalent lanthanum in a highly concentrated LiCl aqueous solution: A combined classical and ab initio approach

    International Nuclear Information System (INIS)

    Vuilleumier, R.; Petit, L.; Maldivi, P.; Adamo, C.

    2008-01-01

    The first coordination sphere of trivalent lanthanum in a highly concentrated (14 M) lithium chloride solution is studied with a combination of classical molecular dynamics and density functional theory based first principle molecular dynamics. This method enables us to obtain a solvation shell of La 3+ containing 2 chloride ions and 6 water molecules. After refinement using first principle molecular dynamics, the resulting cation-water and cation-anion distances are in very good agreement with experiment. The 2 Cl - and the 6 water molecules arrange in a square anti-prism around La 3+ . Exchange of water molecules was also observed in the first-principle simulation, with an intermediate structure comprising 7 water molecules stable for 2.5 ps. Finally, evaluation of dipole moments using maximally localized Wannier functions shows a substantial polarization of the chloride anions and the water molecules in the first solvation shell of trivalent lanthanum. (authors)

  6. Lysosomes are associated with microtubules and not with intermediate filaments in cultured fibroblasts.

    OpenAIRE

    Collot, M; Louvard, D; Singer, S J

    1984-01-01

    Double immunofluorescent labeling experiments for lysosomes and either microtubules or vimentin intermediate filaments in cultured well-spread fibroblasts show a remarkable degree of superposition of the lysosomes and the microtubules. Under two different sets of conditions where the microtubules and intermediate filaments are well segregated from one another, the lysosomes remain codistributed with the microtubules. It is suggested that this specific association of lysosomes with microtubule...

  7. and its allicin on microtubule and cancer cell lines

    African Journals Online (AJOL)

    STORAGESEVER

    2009-10-05

    Oct 5, 2009 ... microtubule protein polymer that treated by A. hirtifolium. (A), and allicin (B) in .... with a chromogenic thiol: reaction of 4-mercaptopyridine with ... transformed tumor growth in vivo by diallyl disulfide is associated with inhibition ...

  8. Fitting Handled Objects into Apertures by 17- to 36-Month-Old Children: The Dynamics of Spatial Coordination

    Science.gov (United States)

    Jung, Wendy P.; Kahrs, Björn A.; Lockman, Jeffrey J.

    2018-01-01

    Handled artifacts are ubiquitous in human technology, but how young children engage in spatially coordinated behaviors with these artifacts is not well understood. To address this issue, children (N = 30) from 17-36 months were studied with motion tracking technology as they fit the distal segment of a handled artifact into a slot. The handle was…

  9. The impact of Wii Fit intervention on dynamic balance control in children with probable Developmental Coordination Disorder and balance problems

    NARCIS (Netherlands)

    Jelsma, Dorothee; Geuze, Reint H; Mombarg, Remo; Smits-Engelsman, Bouwien C.M.

    The aim of this study was to examine differences in the performance of children with probable Developmental Coordination Disorder (p-DCD) and balance problems (BP) and typical developing children (TD) on a Wii Fit task and to measure the effect on balance skills after a Wii Fit intervention.

  10. Effects of microtubule mechanics on hydrolysis and catastrophes

    International Nuclear Information System (INIS)

    Müller, N; Kierfeld, J

    2014-01-01

    We introduce a model for microtubule (MT) mechanics containing lateral bonds between dimers in neighboring protofilaments, bending rigidity of dimers, and repulsive interactions between protofilaments modeling steric constraints to investigate the influence of mechanical forces on hydrolysis and catastrophes. We use the allosteric dimer model, where tubulin dimers are characterized by an equilibrium bending angle, which changes from 0 ∘ to 22 ∘ by hydrolysis of a dimer. This also affects the lateral interaction and bending energies and, thus, the mechanical equilibrium state of the MT. As hydrolysis gives rise to conformational changes in dimers, mechanical forces also influence the hydrolysis rates by mechanical energy changes modulating the hydrolysis rate. The interaction via the MT mechanics then gives rise to correlation effects in the hydrolysis dynamics, which have not been taken into account before. Assuming a dominant influence of mechanical energies on hydrolysis rates, we investigate the most probable hydrolysis pathways both for vectorial and random hydrolysis. Investigating the stability with respect to lateral bond rupture, we identify initiation configurations for catastrophes along the hydrolysis pathways and values for a lateral bond rupture force. If we allow for rupturing of lateral bonds between dimers in neighboring protofilaments above this threshold force, our model exhibits avalanche-like catastrophe events. (papers)

  11. Optical properties of template synthesized nanowalled ZnS microtubules

    Science.gov (United States)

    Kumar, Rajesh; Chakarvarti, S. K.

    2007-12-01

    Electrodeposition is a versatile technique combining low processing cost with ambient conditions that can be used to prepare metallic, polymeric and semiconducting nano/micro structures. In the present work, track-etch membranes (TEMs) of makrofol (KG) have been used as templates for synthesis of ZnS nanowalled microtubules using electrodeposition technique. The morphology of the microtubules was characterized by scanning electron microscopy. Size effects on the band gap of tubules have also been studied by UV-visible spectrophotometer.

  12. Aggregation of SND1 in Stress Granules is Associated with the Microtubule Cytoskeleton During Heat Shock Stimulus.

    Science.gov (United States)

    Shao, Jie; Gao, Fei; Zhang, Bingbing; Zhao, Meng; Zhou, Yunli; He, Jinyan; Ren, Li; Yao, Zhi; Yang, Jie; Su, Chao; Gao, Xingjie

    2017-12-01

    Stress granules (SGs) are dynamic dense structures in the cytoplasm that form in response to a variety of environmental stress stimuli. Staphylococcal nuclease and Tudor domain containing 1 (SND1) is a type of RNA-binding protein and has been identified as a transcriptional co-activator. Our previous studies have shown that SND1 is a component of the stress granule, which forms under stress conditions. Here, we observed that SND1 granules were often surrounded by ɑ-tubulin-microtubules in 45°C-treated HeLa cells at 15 min or colocalized with microtubules at 30 or 45 min. Furthermore, Nocodazole-mediated microtubule depolymerization could significantly affect the efficient recruitment of SND1 proteins to the SGs during heat shock stress. In addition, the 45°C heat shock mediated the enhancement of eIF2α phosphorylation, which was not affected by treatment with Nocodazole, an agent that disrupts the cytoskeleton. The intact microtubule cytoskeletal tracks are important for the efficient assembly of SND1 granules under heat shock stress and may facilitate SND1 shuttling between cytoplasmic RNA foci. Anat Rec, 300:2192-2199, 2017. © 2017 The Authors The Anatomical Record published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists. Copyright © 2017 The Authors The Anatomical Record published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists.

  13. Association of TCTP with Centrosome and Microtubules

    Directory of Open Access Journals (Sweden)

    Mariusz K. Jaglarz

    2012-01-01

    Full Text Available Translationally Controlled Tumour Protein (TCTP associates with microtubules (MT, however, the details of this association are unknown. Here we analyze the relationship of TCTP with MTs and centrosomes in Xenopus laevis and mammalian cells using immunofluorescence, tagged TCTP expression and immunoelectron microscopy. We show that TCTP associates both with MTs and centrosomes at spindle poles when detected by species-specific antibodies and by Myc-XlTCTP expression in Xenopus and mammalian cells. However, when the antibodies against XlTCTP were used in mammalian cells, TCTP was detected exclusively in the centrosomes. These results suggest that a distinct pool of TCTP may be specific for, and associate with, the centrosomes. Double labelling for TCTP and γ-tubulin with immuno-gold electron microscopy in Xenopus laevis oogonia shows localization of TCTP at the periphery of the γ-tubulin-containing pericentriolar material (PCM enveloping the centriole. TCTP localizes in the close vicinity of, but not directly on the MTs in Xenopus ovary suggesting that this association requires unidentified linker proteins. Thus, we show for the first time: (1 the association of TCTP with centrosomes, (2 peripheral localization of TCTP in relation to the centriole and the γ-tubulin-containing PCM within the centrosome, and (3 the indirect association of TCTP with MTs.

  14. Coordinates in relativistic Hamiltonian mechanics

    International Nuclear Information System (INIS)

    Sokolov, S.N.

    1984-01-01

    The physical (covariant and measurable) coordinates of free particles and covariant coordinates of the center of inertia are found for three main forms of relativistic dynamics. In the point form of dynamics, the covariant coordinates of two directly interacting particles are found, and the equations of motion are brought to the explicitly covariant form. These equations are generalized to the case of interaction with an external electromagnetic field

  15. Dynamic clustering scheme based on the coordination of management and control in multi-layer and multi-region intelligent optical network

    Science.gov (United States)

    Niu, Xiaoliang; Yuan, Fen; Huang, Shanguo; Guo, Bingli; Gu, Wanyi

    2011-12-01

    A Dynamic clustering scheme based on coordination of management and control is proposed to reduce network congestion rate and improve the blocking performance of hierarchical routing in Multi-layer and Multi-region intelligent optical network. Its implement relies on mobile agent (MA) technology, which has the advantages of efficiency, flexibility, functional and scalability. The paper's major contribution is to adjust dynamically domain when the performance of working network isn't in ideal status. And the incorporation of centralized NMS and distributed MA control technology migrate computing process to control plane node which releases the burden of NMS and improves process efficiently. Experiments are conducted on Multi-layer and multi-region Simulation Platform for Optical Network (MSPON) to assess the performance of the scheme.

  16. Oscillatory fluid flow influences primary cilia and microtubule mechanics.

    Science.gov (United States)

    Espinha, Lina C; Hoey, David A; Fernandes, Paulo R; Rodrigues, Hélder C; Jacobs, Christopher R

    2014-07-01

    Many tissues are sensitive to mechanical stimuli; however, the mechanotransduction mechanism used by cells remains unknown in many cases. The primary cilium is a solitary, immotile microtubule-based extension present on nearly every mammalian cell which extends from the basal body. The cilium is a mechanosensitive organelle and has been shown to transduce fluid flow-induced shear stress in tissues, such as the kidney and bone. The majority of microtubules assemble from the mother centriole (basal body), contributing significantly to the anchoring of the primary cilium. Several studies have attempted to quantify the number of microtubules emanating from the basal body and the results vary depending on the cell type. It has also been shown that cellular response to shear stress depends on microtubular integrity. This study hypothesizes that changing the microtubule attachment of primary cilia in response to a mechanical stimulus could change primary cilia mechanics and, possibly, mechanosensitivity. Oscillatory fluid flow was applied to two different cell types and the microtubule attachment to the ciliary base was quantified. For the first time, an increase in microtubules around primary cilia both with time and shear rate in response to oscillatory fluid flow stimulation was demonstrated. Moreover, it is presented that the primary cilium is required for this loading-induced cellular response. This study has demonstrated a new role for the cilium in regulating alterations in the cytoplasmic microtubule network in response to mechanical stimulation, and therefore provides a new insight into how cilia may regulate its mechanics and thus the cells mechanosensitivity. Copyright © 2014 Wiley Periodicals, Inc.

  17. A Novel Plasma Membrane-Anchored Protein Regulates Xylem Cell-Wall Deposition through Microtubule-Dependent Lateral Inhibition of Rho GTPase Domains.

    Science.gov (United States)

    Sugiyama, Yuki; Wakazaki, Mayumi; Toyooka, Kiminori; Fukuda, Hiroo; Oda, Yoshihisa

    2017-08-21

    Spatial control of cell-wall deposition is essential for determining plant cell shape [1]. Rho-type GTPases, together with the cortical cytoskeleton, play central roles in regulating cell-wall patterning [2]. In metaxylem vessel cells, which are the major components of xylem tissues, active ROP11 Rho GTPases form oval plasma membrane domains that locally disrupt cortical microtubules, thereby directing the formation of oval pits in secondary cell walls [3-5]. However, the regulatory mechanism that determines the planar shape of active Rho of Plants (ROP) domains is still unknown. Here we show that IQD13 associates with cortical microtubules and the plasma membrane to laterally restrict the localization of ROP GTPase domains, thereby directing the formation of oval secondary cell-wall pits. Loss and overexpression of IQD13 led to the formation of abnormally round and narrow secondary cell-wall pits, respectively. Ectopically expressed IQD13 increased the presence of parallel cortical microtubules by promoting microtubule rescue. A reconstructive approach revealed that IQD13 confines the area of active ROP domains within the lattice of the cortical microtubules, causing narrow ROP domains to form. This activity required the interaction of IQD13 with the plasma membrane. These findings suggest that IQD13 positively regulates microtubule dynamics as well as their linkage to the plasma membrane, which synergistically confines the area of active ROP domains, leading to the formation of oval secondary cell-wall pits. This finding sheds light on the role of microtubule-plasma membrane linkage as a lateral fence that determines the planar shape of Rho GTPase domains. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. A Simple and Efficient Numerical Method for Computing the Dynamics of Rotating Bose--Einstein Condensates via Rotating Lagrangian Coordinates

    KAUST Repository

    Bao, Weizhu; Marahrens, Daniel; Tang, Qinglin; Zhang, Yanzhi

    2013-01-01

    We propose a simple, efficient, and accurate numerical method for simulating the dynamics of rotating Bose-Einstein condensates (BECs) in a rotational frame with or without longrange dipole-dipole interaction (DDI). We begin with the three

  19. Dynamic correction of the laser beam coordinate in fabrication of large-sized diffractive elements for testing aspherical mirrors

    Science.gov (United States)

    Shimansky, R. V.; Poleshchuk, A. G.; Korolkov, V. P.; Cherkashin, V. V.

    2017-05-01

    This paper presents a method of improving the accuracy of a circular laser system in fabrication of large-diameter diffractive optical elements by means of a polar coordinate system and the results of their use. An algorithm for correcting positioning errors of a circular laser writing system developed at the Institute of Automation and Electrometry, SB RAS, is proposed and tested. Highprecision synthesized holograms fabricated by this method and the results of using these elements for testing the 6.5 m diameter aspheric mirror of the James Webb space telescope (JWST) are described..

  20. Direct Cytoplasmic Delivery and Nuclear Targeting Delivery of HPMA-MT Conjugates in a Microtubules Dependent Fashion.

    Science.gov (United States)

    Zhong, Jiaju; Zhu, Xi; Luo, Kui; Li, Lian; Tang, Manlin; Liu, Yanxi; Zhou, Zhou; Huang, Yuan

    2016-09-06

    As the hearts of tumor cells, the nucleus is the ultimate target of many chemotherapeutic agents and genes. However, nuclear drug delivery is always hampered by multiple intracellular obstacles, such as low efficiency of lysosome escape and insufficient nuclear trafficking. Herein, an N-(2-hydroxypropyl) methacrylamide (HPMA) polymer-based drug delivery system was designed, which could achieve direct cytoplasmic delivery by a nonendocytic pathway and transport into the nucleus in a microtubules dependent fashion. A special targeting peptide (MT), derived from an endogenic parathyroid hormone-related protein, was conjugated to the polymer backbone, which could accumulate into the nucleus a by microtubule-mediated pathway. The in vitro studies found that low temperature and NaN3 could not influence the cell internalization of the conjugates. Besides, no obvious overlay of the conjugates with lysosome demonstrated that the polymer conjugates could enter the tumor cell cytoplasm by a nonendocytic pathway, thus avoiding the drug degradation in the lysosome. Furthermore, after suppression of the microtubule dynamics with microtubule stabilizing docetaxel (DTX) and destabilizing nocodazole (Noc), the nuclear accumulation of polymeric conjugates was significantly inhibited. Living cells fluorescence recovery after photobleaching study found that the nuclear import rate of conjugates was 2-fold faster compared with the DTX and Noc treated groups. These results demonstrated that the conjugates transported into the nucleus in a microtubules dependent way. Therefore, in addition to direct cytoplasmic delivery, our peptide conjugated polymeric platform could simultaneously mediate nuclear drug accumulation, which may open a new path for further intracellular genes/peptides delivery.

  1. Coin Tossing Explains the Activity of Opposing Microtubule Motors on Phagosomes.

    Science.gov (United States)

    Sanghavi, Paulomi; D'Souza, Ashwin; Rai, Ashim; Rai, Arpan; Padinhatheeri, Ranjith; Mallik, Roop

    2018-05-07

    How the opposing activity of kinesin and dynein motors generates polarized distribution of organelles inside cells is poorly understood and hotly debated [1, 2]. Possible explanations include stochastic mechanical competition [3, 4], coordinated regulation by motor-associated proteins [5-7], mechanical activation of motors [8], and lipid-induced organization [9]. Here, we address this question by using phagocytosed latex beads to generate early phagosomes (EPs) that move bidirectionally along microtubules (MTs) in an in vitro assay [9]. Dynein/kinesin activity on individual EPs is recorded as real-time force generation of the motors against an optical trap. Activity of one class of motors frequently coincides with, or is rapidly followed by opposite motors. This leads to frequent and rapid reversals of EPs in the trap. Remarkably, the choice between dynein and kinesin can be explained by the tossing of a coin. Opposing motors therefore appear to function stochastically and independently of each other, as also confirmed by observing no effect on kinesin function when dynein is inhibited on the EPs. A simple binomial probability calculation based on the geometry of EP-microtubule contact explains the observed activity of dynein and kinesin on phagosomes. This understanding of intracellular transport in terms of a hypothetical coin, if it holds true for other cargoes, provides a conceptual framework to explain the polarized localization of organelles inside cells. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  2. Integrins Regulate Apical Constriction via Microtubule Stabilization in the Drosophila Eye Disc Epithelium

    Directory of Open Access Journals (Sweden)

    Vilaiwan M. Fernandes

    2014-12-01

    Full Text Available During morphogenesis, extracellular signals trigger actomyosin contractility in subpopulations of cells to coordinate changes in cell shape. To illuminate the link between signaling-mediated tissue patterning and cytoskeletal remodeling, we study the progression of the morphogenetic furrow (MF, the wave of apical constriction that traverses the Drosophila eye imaginal disc preceding photoreceptor neurogenesis. Apical constriction depends on actomyosin contractility downstream of the Hedgehog (Hh and bone morphogenetic protein (BMP pathways. We identify a role for integrin adhesion receptors in MF progression. We show that Hh and BMP regulate integrin expression, the loss of which disrupts apical constriction and slows furrow progression; conversely, elevated integrins accelerate furrow progression. We present evidence that integrins regulate MF progression by promoting microtubule stabilization, since reducing microtubule stability rescues integrin-mediated furrow acceleration. Thus, integrins act as a genetic link between tissue-level signaling events and morphological change at the cellular level, leading to morphogenesis and neurogenesis in the eye.

  3. A quantum dynamical study of the rotation of the dihydrogen ligand in the Fe(H)2(H2)(PEtPh2)3 coordination complex

    Science.gov (United States)

    Gonzalez, Megan E.; Eckert, Juergen; Aquino, Adelia J. A.; Poirier, Bill

    2018-04-01

    Progress in the hydrogen fuel field requires a clear understanding and characterization of how materials of interest interact with hydrogen. Due to the inherently quantum mechanical nature of hydrogen nuclei, any theoretical studies of these systems must be treated quantum dynamically. One class of material that has been examined in this context are dihydrogen complexes. Since their discovery by Kubas in 1984, many such complexes have been studied both experimentally and theoretically. This particular study examines the rotational dynamics of the dihydrogen ligand in the Fe(H)2(H2)(PEtPh2)3 complex, allowing for full motion in both the rotational degrees of freedom and treating the quantum dynamics (QD) explicitly. A "gas-phase" global potential energy surface is first constructed using density functional theory with the Becke, 3-parameter, Lee-Yang-Parr functional; this is followed by an exact QD calculation of the corresponding rotation/libration states. The results provide insight into the dynamical correlation of the two rotation angles as well as a comprehensive analysis of both ground- and excited-state librational tunneling splittings. The latter was computed to be 6.914 cm-1—in excellent agreement with the experimental value of 6.4 cm-1. This work represents the first full-dimensional ab initio exact QD calculation ever performed for dihydrogen ligand rotation in a coordination complex.

  4. Numerical simulation of four-field extended magnetohydrodynamics in dynamically adaptive curvilinear coordinates via Newton-Krylov-Schwarz

    KAUST Repository

    Yuan, Xuefei

    2012-07-01

    Numerical simulations of the four-field extended magnetohydrodynamics (MHD) equations with hyper-resistivity terms present a difficult challenge because of demanding spatial resolution requirements. A time-dependent sequence of . r-refinement adaptive grids obtained from solving a single Monge-Ampère (MA) equation addresses the high-resolution requirements near the . x-point for numerical simulation of the magnetic reconnection problem. The MHD equations are transformed from Cartesian coordinates to solution-defined curvilinear coordinates. After the application of an implicit scheme to the time-dependent problem, the parallel Newton-Krylov-Schwarz (NKS) algorithm is used to solve the system at each time step. Convergence and accuracy studies show that the curvilinear solution requires less computational effort than a pure Cartesian treatment. This is due both to the more optimal placement of the grid points and to the improved convergence of the implicit solver, nonlinearly and linearly. The latter effect, which is significant (more than an order of magnitude in number of inner linear iterations for equivalent accuracy), does not yet seem to be widely appreciated. © 2012 Elsevier Inc.

  5. Numerical simulation of four-field extended magnetohydrodynamics in dynamically adaptive curvilinear coordinates via Newton-Krylov-Schwarz

    KAUST Repository

    Yuan, Xuefei; Jardin, Stephen C.; Keyes, David E.

    2012-01-01

    Numerical simulations of the four-field extended magnetohydrodynamics (MHD) equations with hyper-resistivity terms present a difficult challenge because of demanding spatial resolution requirements. A time-dependent sequence of . r-refinement adaptive grids obtained from solving a single Monge-Ampère (MA) equation addresses the high-resolution requirements near the . x-point for numerical simulation of the magnetic reconnection problem. The MHD equations are transformed from Cartesian coordinates to solution-defined curvilinear coordinates. After the application of an implicit scheme to the time-dependent problem, the parallel Newton-Krylov-Schwarz (NKS) algorithm is used to solve the system at each time step. Convergence and accuracy studies show that the curvilinear solution requires less computational effort than a pure Cartesian treatment. This is due both to the more optimal placement of the grid points and to the improved convergence of the implicit solver, nonlinearly and linearly. The latter effect, which is significant (more than an order of magnitude in number of inner linear iterations for equivalent accuracy), does not yet seem to be widely appreciated. © 2012 Elsevier Inc.

  6. Quantitative Analysis of Tau-Microtubule Interaction Using FRET

    Directory of Open Access Journals (Sweden)

    Isabelle L. Di Maïo

    2014-08-01

    Full Text Available The interaction between the microtubule associated protein, tau and the microtubules is investigated. A fluorescence resonance energy transfer (FRET assay was used to determine the distance separating tau to the microtubule wall, as well as the binding parameters of the interaction. By using microtubules stabilized with Flutax-2 as donor and tau labeled with rhodamine as acceptor, a donor-to-acceptor distance of 54 ± 1 Å was found. A molecular model is proposed in which Flutax-2 is directly accessible to tau-rhodamine molecules for energy transfer. By titration, we calculated the stoichiometric dissociation constant to be equal to 1.0 ± 0.5 µM. The influence of the C-terminal tails of αβ-tubulin on the tau-microtubule interaction is presented once a procedure to form homogeneous solution of cleaved tubulin has been determined. The results indicate that the C-terminal tails of α- and β-tubulin by electrostatic effects and of recruitment seem to be involved in the binding mechanism of tau.

  7. Kinesin expands and stabilizes the GDP-microtubule lattice

    Science.gov (United States)

    Peet, Daniel R.; Burroughs, Nigel J.; Cross, Robert A.

    2018-05-01

    Kinesin-1 is a nanoscale molecular motor that walks towards the fast-growing (plus) ends of microtubules, hauling molecular cargo to specific reaction sites in cells. Kinesin-driven transport is central to the self-organization of eukaryotic cells and shows great promise as a tool for nano-engineering1. Recent work hints that kinesin may also play a role in modulating the stability of its microtubule track, both in vitro2,3 and in vivo4, but the results are conflicting5-7 and the mechanisms are unclear. Here, we report a new dimension to the kinesin-microtubule interaction, whereby strong-binding state (adenosine triphosphate (ATP)-bound and apo) kinesin-1 motor domains inhibit the shrinkage of guanosine diphosphate (GDP) microtubules by up to two orders of magnitude and expand their lattice spacing by 1.6%. Our data reveal an unexpected mechanism by which the mechanochemical cycles of kinesin and tubulin interlock, and so allow motile kinesins to influence the structure, stability and mechanics of their microtubule track.

  8. Unraveling the routine dynamics of interfunctional coordination: : Solving “ad-hoc” customer problems in a high-tech industrial enterprise

    NARCIS (Netherlands)

    Bakir, Lisa; Loohuis, Raymond Petrus Antonius

    2017-01-01

    The interfunctional coordination involved in adequately responding to immediate customer needs and problems is central in business marketing theory and practice. However, the literature on interfunctional coordination has so far focused on the design of organizational coordination mechanism and

  9. Microtubule–microtubule sliding by kinesin-1 is essential for normal cytoplasmic streaming in Drosophila oocytes

    Science.gov (United States)

    Lu, Wen; Winding, Michael; Lakonishok, Margot; Wildonger, Jill

    2016-01-01

    Cytoplasmic streaming in Drosophila oocytes is a microtubule-based bulk cytoplasmic movement. Streaming efficiently circulates and localizes mRNAs and proteins deposited by the nurse cells across the oocyte. This movement is driven by kinesin-1, a major microtubule motor. Recently, we have shown that kinesin-1 heavy chain (KHC) can transport one microtubule on another microtubule, thus driving microtubule–microtubule sliding in multiple cell types. To study the role of microtubule sliding in oocyte cytoplasmic streaming, we used a Khc mutant that is deficient in microtubule sliding but able to transport a majority of cargoes. We demonstrated that streaming is reduced by genomic replacement of wild-type Khc with this sliding-deficient mutant. Streaming can be fully rescued by wild-type KHC and partially rescued by a chimeric motor that cannot move organelles but is active in microtubule sliding. Consistent with these data, we identified two populations of microtubules in fast-streaming oocytes: a network of stable microtubules anchored to the actin cortex and free cytoplasmic microtubules that moved in the ooplasm. We further demonstrated that the reduced streaming in sliding-deficient oocytes resulted in posterior determination defects. Together, we propose that kinesin-1 slides free cytoplasmic microtubules against cortically immobilized microtubules, generating forces that contribute to cytoplasmic streaming and are essential for the refinement of posterior determinants. PMID:27512034

  10. CENTROSOMES AND MICROTUBULES DURING MEIOSIS IN THE MUSHROOM BOLETUS RUBINELLUS

    Science.gov (United States)

    McLaughlin, David J.

    1971-01-01

    The double centrosome in the basidium of Boletus rubinellus has been observed in three planes with the electron microscope at interphase preceding nuclear fusion, at prophase I, and at interphase I. It is composed of two components connected by a band-shaped middle part. At anaphase I a single, enlarged centrosome is found at the spindle pole, which is attached to the cell membrane. Microtubules mainly oriented parallel to the longitudinal axis of the basidium are present at prefusion, prophase I and interphase I. Cytoplasmic microtubules are absent when the spindle is present. The relationship of the centrosome in B. rubinellus to that in other organisms and the role of the cytoplasmic microtubules are discussed. PMID:4329156

  11. Plant cortical microtubule dynamics and cell division plane orientation

    NARCIS (Netherlands)

    Chakrabortty, Bandan

    2017-01-01

    This thesis work aimed at a better understanding of the molecular basis of oriented cell division in plant cell. As, the efficiency of plant morphogenesis depends on oriented cell division, this work should contribute towards a fundamental understanding of the molecular basis of efficient plant

  12. Autocatalytic microtubule nucleation determines the size and mass of Xenopus laevis egg extract spindles.

    Science.gov (United States)

    Decker, Franziska; Oriola, David; Dalton, Benjamin; Brugués, Jan

    2018-01-11

    Regulation of size and growth is a fundamental problem in biology. A prominent example is the formation of the mitotic spindle, where protein concentration gradients around chromosomes are thought to regulate spindle growth by controlling microtubule nucleation. Previous evidence suggests that microtubules nucleate throughout the spindle structure. However, the mechanisms underlying microtubule nucleation and its spatial regulation are still unclear. Here, we developed an assay based on laser ablation to directly probe microtubule nucleation events in Xenopus laevis egg extracts. Combining this method with theory and quantitative microscopy, we show that the size of a spindle is controlled by autocatalytic growth of microtubules, driven by microtubule-stimulated microtubule nucleation. The autocatalytic activity of this nucleation system is spatially regulated by the limiting amounts of active microtubule nucleators, which decrease with distance from the chromosomes. This mechanism provides an upper limit to spindle size even when resources are not limiting. © 2018, Decker et al.

  13. Differential regulation of microtubule severing by APC underlies distinct patterns of projection neuron and interneuron migration

    Science.gov (United States)

    Eom, Tae-Yeon; Stanco, Amelia; Guo, Jiami; Wilkins, Gary; Deslauriers, Danielle; Yan, Jessica; Monckton, Chase; Blair, Josh; Oon, Eesim; Perez, Abby; Salas, Eduardo; Oh, Adrianna; Ghukasyan, Vladimir; Snider, William D.; Rubenstein, John L. R.; Anton, E. S.

    2014-01-01

    Coordinated migration of distinct classes of neurons to appropriate positions leads to the formation of functional neuronal circuitry in the cerebral cortex. Two major classes of cortical neurons, interneurons and projection neurons, utilize distinctly different modes (radial vs. tangential) and routes of migration to arrive at their final positions in the cerebral cortex. Here, we show that adenomatous polyposis coli (APC) modulates microtubule (MT) severing in interneurons to facilitate tangential mode of interneuron migration, but not the glial-guided, radial migration of projection neurons. APC regulates the stability and activity of the MT severing protein p60-katanin in interneurons to promote the rapid remodeling of neuronal processes necessary for interneuron migration. These findings reveal how severing and restructuring of MTs facilitate distinct modes of neuronal migration necessary for laminar organization of neurons in the developing cerebral cortex. PMID:25535916

  14. Regulation of microtubule nucleation mediated by gamma-tubulin complexes

    Czech Academy of Sciences Publication Activity Database

    Sulimenko, Vadym; Hájková, Zuzana; Klebanovych, Anastasiya; Dráber, Pavel

    2017-01-01

    Roč. 254, č. 3 (2017), s. 1187-1199 ISSN 0033-183X R&D Projects: GA MŠk(CZ) LD13015 Institutional support: RVO:68378050 Keywords : mitotic spindle formation * ring complex * fission yeast * organizing centers * protein complex * golgi-complex * cell-cycle * pole body * augmin * centrosome * Centrosomes * Microtubule nucleation * Microtubule-organizing centers * Non-centrosomal nucleation sites * Spindle pole bodies * gamma-Tubulin complexes Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Cell biology Impact factor: 2.870, year: 2016

  15. Poisson Coordinates.

    Science.gov (United States)

    Li, Xian-Ying; Hu, Shi-Min

    2013-02-01

    Harmonic functions are the critical points of a Dirichlet energy functional, the linear projections of conformal maps. They play an important role in computer graphics, particularly for gradient-domain image processing and shape-preserving geometric computation. We propose Poisson coordinates, a novel transfinite interpolation scheme based on the Poisson integral formula, as a rapid way to estimate a harmonic function on a certain domain with desired boundary values. Poisson coordinates are an extension of the Mean Value coordinates (MVCs) which inherit their linear precision, smoothness, and kernel positivity. We give explicit formulas for Poisson coordinates in both continuous and 2D discrete forms. Superior to MVCs, Poisson coordinates are proved to be pseudoharmonic (i.e., they reproduce harmonic functions on n-dimensional balls). Our experimental results show that Poisson coordinates have lower Dirichlet energies than MVCs on a number of typical 2D domains (particularly convex domains). As well as presenting a formula, our approach provides useful insights for further studies on coordinates-based interpolation and fast estimation of harmonic functions.

  16. Studies of molecular dynamics with neutron scattering techniques. Part of a coordinated programme on neutron scattering techniques

    International Nuclear Information System (INIS)

    Vinhas, L.A.

    1980-05-01

    Molecular dynamics was studied in samples of tert-butanol, cyclohexanol and methanol, using neutron inelastic and quasi-elastic techniques. The frequency spectra of cyclohexanol in crystalline phase were interpreted by assigning individual energy peaks to hindered rotation of molecules, lattice vibration, hydrogen bond stretching and ring bending modes. Neutron quasi-elastic scattering measurements permitted the testing of models for molecular diffusion as a function of temperature. The interpretation of neutron incoherent inelastic scattering on methanol indicated the different modes of molecular dynamics in this material; individual inelastic peaks in the spectra could be assigned to vibrations of crystalline lattice, stretching of hydrogen bond and vibrational and torsional modes of CH 3 OH molecule. The results of the experimental work on tertbutanol indicate two distinct modes of motion in this material: individual molecular librations are superposed to a cooperative rotation diffusion which occurs both in solid and in liquid state

  17. Individual-Environment Interactions in Swimming: The Smallest Unit for Analysing the Emergence of Coordination Dynamics in Performance?

    Science.gov (United States)

    Guignard, Brice; Rouard, Annie; Chollet, Didier; Hart, John; Davids, Keith; Seifert, Ludovic

    2017-08-01

    Displacement in competitive swimming is highly dependent on fluid characteristics, since athletes use these properties to propel themselves. It is essential for sport scientists and practitioners to clearly identify the interactions that emerge between each individual swimmer and properties of an aquatic environment. Traditionally, the two protagonists in these interactions have been studied separately. Determining the impact of each swimmer's movements on fluid flow, and vice versa, is a major challenge. Classic biomechanical research approaches have focused on swimmers' actions, decomposing stroke characteristics for analysis, without exploring perturbations to fluid flows. Conversely, fluid mechanics research has sought to record fluid behaviours, isolated from the constraints of competitive swimming environments (e.g. analyses in two-dimensions, fluid flows passively studied on mannequins or robot effectors). With improvements in technology, however, recent investigations have focused on the emergent circular couplings between swimmers' movements and fluid dynamics. Here, we provide insights into concepts and tools that can explain these on-going dynamic interactions in competitive swimming within the theoretical framework of ecological dynamics.

  18. The free energy profile of tubulin straight-bent conformational changes, with implications for microtubule assembly and drug discovery.

    Directory of Open Access Journals (Sweden)

    Lili X Peng

    2014-02-01

    Full Text Available αβ-tubulin dimers need to convert between a 'bent' conformation observed for free dimers in solution and a 'straight' conformation required for incorporation into the microtubule lattice. Here, we investigate the free energy landscape of αβ-tubulin using molecular dynamics simulations, emphasizing implications for models of assembly, and modulation of the conformational landscape by colchicine, a tubulin-binding drug that inhibits microtubule polymerization. Specifically, we performed molecular dynamics, potential-of-mean force simulations to obtain the free energy profile for unpolymerized GDP-bound tubulin as a function of the ∼12° intradimer rotation differentiating the straight and bent conformers. Our results predict that the unassembled GDP-tubulin heterodimer exists in a continuum of conformations ranging between straight and bent, but, in agreement with existing structural data, suggests that an intermediate bent state has a lower free energy (by ∼1 kcal/mol and thus dominates in solution. In agreement with predictions of the lattice model of microtubule assembly, lateral binding of two αβ-tubulins strongly shifts the conformational equilibrium towards the straight state, which is then ∼1 kcal/mol lower in free energy than the bent state. Finally, calculations of colchicine binding to a single αβ-tubulin dimer strongly shifts the equilibrium toward the bent states, and disfavors the straight state to the extent that it is no longer thermodynamically populated.

  19. Microtubule protein ADP-ribosylation in vitro leads to assembly inhibition and rapid depolymerization

    Energy Technology Data Exchange (ETDEWEB)

    Scaife, R.M. (Fred Hutchinson Cancer Research Center, Seattle, WA (United States)); Wilson, L. (Univ. of California, Santa Barbara (United States)); Purich, D.L. (Univ. of Florida, Gainesville (United States))

    1992-01-14

    Bovine brain microtubule protein, containing both tubulin and microtubule-associated proteins, undergoes ADP-ribosylation in the presence of ({sup 14}C)NAD{sup +} and a turkey erythrocyte mono-ADP-ribosyltransferase in vitro. The modification reaction could be demonstrated in crude brain tissue extracts where selective ADP-ribosylation of both the {alpha} and {beta} chains of tubulin and of the high molecular weight microtubule-associated protein MAP-2 occurred. In experiments with purified microtubule protein, tubulin dimer, the high molecular weight microtubule-associated protein MAP-2, and another high molecular weight microtubule-associated protein which may be a MAP-1 species were heavily labeled. Tubulin and MAP-2 incorporated ({sup 14}C)ADP-ribose to an average extent of approximately 2.4 and 30 mol of ADP-ribose/mol of protein, respectively. Assembly of microtubule protein into microtubules in vitro was inhibited by ADP-ribosylation, and incubation of assembled steady-state microtubules with ADP-ribosyltransferase and NAD{sup +} resulted in rapid depolymerization of the microtubules. Thus, the eukaryotic enzyme can ADP-ribosylate tubulin and microtubule-associated proteins to much greater extents than previously observed with cholera and pertussis toxins, and the modification can significantly modulate microtubule assembly and disassembly.

  20. Short Linear Sequence Motif LxxPTPh Targets Diverse Proteins to Growing Microtubule Ends

    NARCIS (Netherlands)

    Kumar, Anil; Manatschal, Cristina; Rai, Ankit; Grigoriev, Ilya; Degen, Miriam Steiner; Jaussi, Rolf; Kretzschmar, Ines; Prota, Andrea E; Volkmer, Rudolf; Kammerer, Richard A.; Akhmanova, Anna; Steinmetz, Michel O.

    2017-01-01

    Microtubule plus-end tracking proteins (+TIPs) are involved in virtually all microtubule-based processes. End-binding (EB) proteins are considered master regulators of +TIP interaction networks, since they autonomously track growing microtubule ends and recruit a plethora of proteins to this

  1. Dynamics of α-Hb chain binding to its chaperone AHSP depends on heme coordination and redox state.

    Science.gov (United States)

    Kiger, Laurent; Vasseur, Corinne; Domingues-Hamdi, Elisa; Truan, Gilles; Marden, Michael C; Baudin-Creuza, Véronique

    2014-01-01

    AHSP is an erythroid molecular chaperone of the α-hemoglobin chains (α-Hb). Upon AHSP binding, native ferric α-Hb undergoes an unprecedented structural rearrangement at the heme site giving rise to a 6th coordination bond with His(E7). Recombinant AHSP, WT α-Hb:AHSP and α-Hb(HE7Q):AHSP complexes were expressed in Escherichia coli. Thermal denaturation curves were measured by circular dichroism for the isolated α-Hb and bound to AHSP. Kinetics of ligand binding and redox reactions of α-Hb bound to AHSP as well as α-Hb release from the α-Hb:AHSP complex were measured by time-resolved absorption spectroscopy. AHSP binding to α-Hb is kinetically controlled to prevail over direct binding with β-chains and is also thermodynamically controlled by the α-Hb redox state and not the liganded state of the ferrous α-Hb. The dramatic instability of isolated ferric α-Hb is greatly decreased upon AHSP binding. Removing the bis-histidyl hexacoordination in α-HbH58(E7)Q:AHSP complex reduces the stabilizing effect of AHSP binding. Once the ferric α-Hb is bound to AHSP, the globin can be more easily reduced by several chemical and enzymatic systems compared to α-Hb within the Hb-tetramer. α-Hb reduction could trigger its release from AHSP toward its final Hb β-chain partner producing functional ferrous Hb-tetramers. This work indicates a preferred kinetic pathway for Hb-synthesis. The cellular redox balance in Hb-synthesis should be considered as important as the relative proportional synthesis of both Hb-subunits and their heme cofactor. The in vivo role of AHSP is discussed in the context of the molecular disorders observed in thalassemia. © 2013 Elsevier B.V. All rights reserved.

  2. Prion protein inhibits microtubule assembly by inducing tubulin oligomerization

    International Nuclear Information System (INIS)

    Nieznanski, Krzysztof; Podlubnaya, Zoya A.; Nieznanska, Hanna

    2006-01-01

    A growing body of evidence points to an association of prion protein (PrP) with microtubular cytoskeleton. Recently, direct binding of PrP to tubulin has also been found. In this work, using standard light scattering measurements, sedimentation experiments, and electron microscopy, we show for First time the effect of a direct interaction between these proteins on tubulin polymerization. We demonstrate that full-length recombinant PrP induces a rapid increase in the turbidity of tubulin diluted below the critical concentration for microtubule assembly. This effect requires magnesium ions and is weakened by NaCl. Moreover, the PrP-induced light scattering structures of tubulin are cold-stable. In preparations of diluted tubulin incubated with PrP, electron microscopy revealed the presence of ∼50 nm disc-shaped structures not reported so far. These unique tubulin oligomers may form large aggregates. The effect of PrP is more pronounced under the conditions promoting microtubule formation. In these tubulin samples, PrP induces formation of the above oligomers associated with short protofilaments and sheets of protofilaments into aggregates. Noticeably, this is accompanied by a significant reduction of the number and length of microtubules. Hence, we postulate that prion protein may act as an inhibitor of microtubule assembly by inducing formation of stable tubulin oligomers

  3. Neuronal microtubule organization: from minus end to plus end

    NARCIS (Netherlands)

    Yau, K.W.

    2016-01-01

    Neurons are highly polarized cells consisting of a dendritic part and axonal part. Dendrites receive signals from other cells while axons transmit signals to other cells. In this thesis, mostly hippocampal neurons from rat embryos are used to study fundamental aspects of the microtubule organization

  4. Microtubules in cell migration, morphogenesis and metabolism: Making the connections

    NARCIS (Netherlands)

    Noordstra, I.

    2017-01-01

    Cell polarity refers to a fundamental property of eukaryotic cells, in which cellular components and structures are organized in an asymmetric fashion. In order to control their polarity, cells make use of microtubules, hollow polymers that extend throughout the cytoplasm. Due to the asymmetry of

  5. m-AAA and i-AAA complexes coordinate to regulate OMA1, the stress-activated supervisor of mitochondrial dynamics.

    Science.gov (United States)

    Consolato, Francesco; Maltecca, Francesca; Tulli, Susanna; Sambri, Irene; Casari, Giorgio

    2018-04-09

    The proteolytic processing of dynamin-like GTPase OPA1, mediated by the activity of both YME1L1 [intermembrane (i)-AAA protease complex] and OMA1, is a crucial step in the regulation of mitochondrial dynamics. OMA1 is a zinc metallopeptidase of the inner mitochondrial membrane that undergoes pre-activating proteolytic and auto-proteolytic cleavage after mitochondrial import. Here, we identify AFG3L2 [matrix (m) - AAA complex] as the major protease mediating this event, which acts by maturing the 60 kDa pre-pro-OMA1 to the 40 kDa pro-OMA1 form by severing the N-terminal portion without recognizing a specific consensus sequence. Therefore, m - AAA and i - AAA complexes coordinately regulate OMA1 processing and turnover, and consequently control which OPA1 isoforms are present, thus adding new information on the molecular mechanisms of mitochondrial dynamics and neurodegenerative diseases affected by these phenomena.This article has an associated First Person interview with the first author of the paper. © 2018. Published by The Company of Biologists Ltd.

  6. Statistical mechanics provides novel insights into microtubule stability and mechanism of shrinkage.

    Directory of Open Access Journals (Sweden)

    Ishutesh Jain

    2015-02-01

    Full Text Available Microtubules are nano-machines that grow and shrink stochastically, making use of the coupling between chemical kinetics and mechanics of its constituent protofilaments (PFs. We investigate the stability and shrinkage of microtubules taking into account inter-protofilament interactions and bending interactions of intrinsically curved PFs. Computing the free energy as a function of PF tip position, we show that the competition between curvature energy, inter-PF interaction energy and entropy leads to a rich landscape with a series of minima that repeat over a length-scale determined by the intrinsic curvature. Computing Langevin dynamics of the tip through the landscape and accounting for depolymerization, we calculate the average unzippering and shrinkage velocities of GDP protofilaments and compare them with the experimentally known results. Our analysis predicts that the strength of the inter-PF interaction (E(s(m has to be comparable to the strength of the curvature energy (E(b(m such that E(s(m - E(b(m ≈ 1kBT, and questions the prevalent notion that unzippering results from the domination of bending energy of curved GDP PFs. Our work demonstrates how the shape of the free energy landscape is crucial in explaining the mechanism of MT shrinkage where the unzippered PFs will fluctuate in a set of partially peeled off states and subunit dissociation will reduce the length.

  7. Quantifying linguistic coordination

    DEFF Research Database (Denmark)

    Fusaroli, Riccardo; Tylén, Kristian

    task (Bahrami et al 2010, Fusaroli et al. 2012) we extend to linguistic coordination dynamical measures of recurrence employed in the analysis of sensorimotor coordination (such as heart-rate (Konvalinka et al 2011), postural sway (Shockley 2005) and eye-movements (Dale, Richardson and Kirkham 2012......). We employ nominal recurrence analysis (Orsucci et al 2005, Dale et al 2011) on the decision-making conversations between the participants. We report strong correlations between various indexes of recurrence and collective performance. We argue this method allows us to quantify the qualities...

  8. Cell wall matrix polysaccharide distribution and cortical microtubule organization: two factors controlling mesophyll cell morphogenesis in land plants.

    Science.gov (United States)

    Sotiriou, P; Giannoutsou, E; Panteris, E; Apostolakos, P; Galatis, B

    2016-03-01

    This work investigates the involvement of local differentiation of cell wall matrix polysaccharides and the role of microtubules in the morphogenesis of mesophyll cells (MCs) of three types (lobed, branched and palisade) in the dicotyledon Vigna sinensis and the fern Asplenium nidus. Homogalacturonan (HGA) epitopes recognized by the 2F4, JIM5 and JIM7 antibodies and callose were immunolocalized in hand-made leaf sections. Callose was also stained with aniline blue. We studied microtubule organization by tubulin immunofluorescence and transmission electron microscopy. In both plants, the matrix cell wall polysaccharide distribution underwent definite changes during MC differentiation. Callose constantly defined the sites of MC contacts. The 2F4 HGA epitope in V. sinensis first appeared in MC contacts but gradually moved towards the cell wall regions facing the intercellular spaces, while in A. nidus it was initially localized at the cell walls delimiting the intercellular spaces, but finally shifted to MC contacts. In V. sinensis, the JIM5 and JIM7 HGA epitopes initially marked the cell walls delimiting the intercellular spaces and gradually shifted in MC contacts, while in A. nidus they constantly enriched MC contacts. In all MC types examined, the cortical microtubules played a crucial role in their morphogenesis. In particular, in palisade MCs, cortical microtubule helices, by controlling cellulose microfibril orientation, forced these MCs to acquire a truncated cone-like shape. Unexpectedly in V. sinensis, the differentiation of colchicine-affected MCs deviated completely, since they developed a cell wall ingrowth labyrinth, becoming transfer-like cells. The results of this work and previous studies on Zea mays (Giannoutsou et al., Annals of Botany 2013; 112: : 1067-1081) revealed highly controlled local cell wall matrix differentiation in MCs of species belonging to different plant groups. This, in coordination with microtubule-dependent cellulose microfibril

  9. Tubulation of Class II MHC Compartments Is Microtubule Dependent and Involves Multiple Endolysosomal Membrane Proteins in Primary Dendritic Cells1

    Science.gov (United States)

    Vyas, Jatin M.; Kim, You-Me; Artavanis-Tsakonas, Katerina; Love, J. Christopher; Van der Veen, Annemarthe G.; Ploegh, Hidde L.

    2009-01-01

    Immature dendritic cells (DCs) capture exogenous Ags in the periphery for eventual processing in endolysosomes. Upon maturation by TLR agonists, DCs deliver peptide-loaded class II MHC molecules from these compartments to the cell surface via long tubular structures (endolysosomal tubules). The nature and rules that govern the movement of these DC compartments are unknown. In this study, we demonstrate that the tubules contain multiple proteins including the class II MHC molecules and LAMP1, a lysosomal resident protein, as well as CD63 and CD82, members of the tetraspanin family. Endolysosomal tubules can be stained with acidotropic dyes, indicating that they are extensions of lysosomes. However, the proper trafficking of class II MHC molecules themselves is not necessary for endolysosomal tubule formation. DCs lacking MyD88 can also form endolysosomal tubules, demonstrating that MyD88-dependent TLR activation is not necessary for the formation of this compartment. Endolysosomal tubules in DCs exhibit dynamic and saltatory movement, including bidirectional travel. Measured velocities are consistent with motor-based movement along microtubules. Indeed, nocodazole causes the collapse of endolysosomal tubules. In addition to its association with microtubules, endolysosomal tubules follow the plus ends of microtubules as visualized in primary DCs expressing end binding protein 1 (EB1)-enhanced GFP. PMID:17513769

  10. The neurosteroid pregnenolone reverts microtubule derangement induced by the loss of a functional CDKL5-IQGAP1 complex.

    Science.gov (United States)

    Barbiero, Isabella; Peroni, Diana; Tramarin, Marco; Chandola, Chetan; Rusconi, Laura; Landsberger, Nicoletta; Kilstrup-Nielsen, Charlotte

    2017-09-15

    CDKL5 is a protein kinase that plays a key role for neuronal functions as testified by the onset of complex neuronal dysfunctions in patients with genetic lesions in CDKL5. Here we identify a novel interactor of CDKL5, IQGAP1, a fundamental regulator of cell migration and polarity. In accordance with a functional role of this interaction, depletion of CDKL5 impairs cell migration and impedes the localization of IQGAP1 at the leading edge. Moreover, we demonstrate that CDKL5 is required for IQGAP1 to form a functional complex with its effectors, Rac1 and the microtubule plus end tracking protein CLIP170. These defects eventually impact on the microtubule association of CLIP170, thus deranging their dynamics. CLIP170 is a cellular target of the neurosteroid pregnenolone; by blocking CLIP170 in its active conformation, pregnenolone is capable of restoring the microtubule association of CLIP170 in CDKL5 deficient cells and rescuing morphological defects in neurons devoid of CDKL5. These findings provide novel insights into CDKL5 functions and pave the way for target-specific therapeutic strategies for individuals affected with CDKL5-disorder. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Tubulation of class II MHC compartments is microtubule dependent and involves multiple endolysosomal membrane proteins in primary dendritic cells.

    Science.gov (United States)

    Vyas, Jatin M; Kim, You-Me; Artavanis-Tsakonas, Katerina; Love, J Christopher; Van der Veen, Annemarthe G; Ploegh, Hidde L

    2007-06-01

    Immature dendritic cells (DCs) capture exogenous Ags in the periphery for eventual processing in endolysosomes. Upon maturation by TLR agonists, DCs deliver peptide-loaded class II MHC molecules from these compartments to the cell surface via long tubular structures (endolysosomal tubules). The nature and rules that govern the movement of these DC compartments are unknown. In this study, we demonstrate that the tubules contain multiple proteins including the class II MHC molecules and LAMP1, a lysosomal resident protein, as well as CD63 and CD82, members of the tetraspanin family. Endolysosomal tubules can be stained with acidotropic dyes, indicating that they are extensions of lysosomes. However, the proper trafficking of class II MHC molecules themselves is not necessary for endolysosomal tubule formation. DCs lacking MyD88 can also form endolysosomal tubules, demonstrating that MyD88-dependent TLR activation is not necessary for the formation of this compartment. Endolysosomal tubules in DCs exhibit dynamic and saltatory movement, including bidirectional travel. Measured velocities are consistent with motor-based movement along microtubules. Indeed, nocodazole causes the collapse of endolysosomal tubules. In addition to its association with microtubules, endolysosomal tubules follow the plus ends of microtubules as visualized in primary DCs expressing end binding protein 1 (EB1)-enhanced GFP.

  12. The nucleation of microtubules in Aspergillus nidulans germlings

    Directory of Open Access Journals (Sweden)

    Cristina de Andrade-Monteiro

    1999-09-01

    Full Text Available Microtubules are filaments composed of dimers of alpha- and beta-tubulins, which have a variety of functions in living cells. In fungi, the spindle pole bodies usually have been considered to be microtubule-organizing centers. We used the antimicrotubule drug Benomyl in block/release experiments to depolymerize and repolymerize microtubules in Aspergillus nidulans germlings to learn more about the microtubule nucleation process in this filamentous fungus. Twenty seconds after release from Benomyl short microtubules were formed from several bright (immunofluorescent dots distributed along the germlings, suggesting that microtubule nucleation is randomly distributed in A. nidulans germlings. Since nuclear movement is dependent on microtubules in A. nidulans we analyzed whether mutants defective in nuclear distribution along the growing hyphae (nud mutants have some obvious microtubule defect. Cytoplasmic, astral and spindle microtubules were present and appeared to be normal in all nud mutants. However, significant changes in the percentage of short versus long mitotic spindles were observed in nud mutants. This suggests that some of the nuclei of nud mutants do not reach the late stage of cell division at normal temperatures.Microtúbulos são filamentos compostos por dímeros das tubulinas a e b e têm uma variedade de funções nas células vivas. Em fungos, os corpúsculos polares dos fusos são geralmente considerados os centros organizadores dos microtúbulos. Com o objetivo de contribuir para uma melhor compreensão dos processos de nucleação dos microtúbulos no fungo filamentoso A. nidulans, nós utilizamos a droga antimicrotúbulo Benomil em experimentos de bloqueio e liberação para depolimerizar e repolimerizar os microtúbulos. Após 20 segundos de reincubação em meio sem Benomil, pequenos microtúbulos foram formados a partir de pontos distribuídos pela célula, sugerindo que os pontos de nucleação de microtúbulos s

  13. Heuristic consequences of a load of oxygen in microtubules.

    Science.gov (United States)

    Denis, Pierre A

    2014-04-01

    The current cell oxygen paradigm shows some major gaps that have not yet been resolved. Something seems to be lacking for the comprehensive statement of the oxygen distribution in the cell, especially the low cytoplasmic oxygen level. The entrapment of oxygen in microtubules (MTs) resolves the latter observation, as well as the occurrence of an extensive cytoplasmic foam formation. It leads to a novel oxygen paradigm for cells. During the steady-state treadmilling, the mobile cavity would absorb oxygenated cytoplasm forward, entrap gas nuclei and concentrate them. A fluorescence method is described to confirm the in vitro load of oxygen in MTs during their periodic growths and shrinkages. The latter operating mechanism is called the gas dynamic instability (GDI) of MTs. Several known biosystems could rest on the GDI. (1) The GTP-cap is linked with the gas meniscus encountered in a tube filled with gas. The GTP hydrolysis is linked to the conformational change of the GTPase domain according to the bubble pressure, and to the shaking of protofilaments with gas particles (soliton-like waves). (2) The GDI provides a free energy water pump because water molecules have to escape from MT pores when foam concentrates within the MT. Beside ATP hydrolysis in motor proteins, the GDI provides an additional driving force in intracellular transport of cargo. The water streams flowing from the MT through slits organize themselves as water layers between the cargo and the MT surface, and break ionic bridges. It makes the cargo glide over a water rail. (3) The GDI provides a universal motor for chromosome segregation because the depolymerization of kinetochorial MTs is expected to generate a strong cytoplasmic foam. Chromosomes are sucked up according to the pressure difference (or density difference) applied to opposite sides of the kinetochore, which is in agreement with Archimedes' principle of buoyancy. Non-kinetochorial MTs reabsorb foam during GDI. Last, the mitotic spindle

  14. TCTEX1D4, a novel protein phosphatase 1 interactor: connecting the phosphatase to the microtubule network

    Science.gov (United States)

    Korrodi-Gregório, Luís; Vieira, Sandra I.; Esteves, Sara L. C.; Silva, Joana V.; Freitas, Maria João; Brauns, Ann-Kristin; Luers, Georg; Abrantes, Joana; Esteves, Pedro J.; da Cruz e Silva, Odete A. B.; Fardilha, Margarida; da Cruz e Silva, Edgar F.

    2013-01-01

    Summary Reversible phosphorylation plays an important role as a mechanism of intracellular control in eukaryotes. PPP1, a major eukaryotic Ser/Thr-protein phosphatase, acquires its specificity by interacting with different protein regulators, also known as PPP1 interacting proteins (PIPs). In the present work we characterized a physiologically relevant PIP in testis. Using a yeast two-hybrid screen with a human testis cDNA library, we identified a novel PIP of PPP1CC2 isoform, the T-complex testis expressed protein 1 domain containing 4 (TCTEX1D4) that has recently been described as a Tctex1 dynein light chain family member. The overlay assays confirm that TCTEX1D4 interacts with the different spliced isoforms of PPP1CC. Also, the binding domain occurs in the N-terminus, where a consensus PPP1 binding motif (PPP1BM) RVSF is present. The distribution of TCTEX1D4 in testis suggests its involvement in distinct functions, such as TGFβ signaling at the blood–testis barrier and acrosome cap formation. Immunofluorescence in human ejaculated sperm shows that TCTEX1D4 is present in the flagellum and in the acrosome region of the head. Moreover, TCTEX1D4 and PPP1 co-localize in the microtubule organizing center (MTOC) and microtubules in cell cultures. Importantly, the TCTEX1D4 PPP1BM seems to be relevant for complex formation, for PPP1 retention in the MTOC and movement along microtubules. These novel results open new avenues to possible roles of this dynein, together with PPP1. In essence TCTEX1D4/PPP1C complex appears to be involved in microtubule dynamics, sperm motility, acrosome reaction and in the regulation of the blood–testis barrier. PMID:23789093

  15. Modulation of microtubule assembly by the HIV-1 Tat protein is strongly dependent on zinc binding to Tat

    Directory of Open Access Journals (Sweden)

    Muller Sylviane

    2008-07-01

    Full Text Available Abstract Background During HIV-1 infection, the Tat protein plays a key role by transactivating the transcription of the HIV-1 proviral DNA. In addition, Tat induces apoptosis of non-infected T lymphocytes, leading to a massive loss of immune competence. This apoptosis is notably mediated by the interaction of Tat with microtubules, which are dynamic components essential for cell structure and division. Tat binds two Zn2+ ions through its conserved cysteine-rich region in vitro, but the role of zinc in the structure and properties of Tat is still controversial. Results To investigate the role of zinc, we first characterized Tat apo- and holo-forms by fluorescence correlation spectroscopy and time-resolved fluorescence spectroscopy. Both of the Tat forms are monomeric and poorly folded but differ by local conformational changes in the vicinity of the cysteine-rich region. The interaction of the two Tat forms with tubulin dimers and microtubules was monitored by analytical ultracentrifugation, turbidity measurements and electron microscopy. At 20°C, both of the Tat forms bind tubulin dimers, but only the holo-Tat was found to form discrete complexes. At 37°C, both forms promoted the nucleation and increased the elongation rates of tubulin assembly. However, only the holo-Tat increased the amount of microtubules, decreased the tubulin critical concentration, and stabilized the microtubules. In contrast, apo-Tat induced a large amount of tubulin aggregates. Conclusion Our data suggest that holo-Tat corresponds to the active form, responsible for the Tat-mediated apoptosis.

  16. Coordination cycles

    Czech Academy of Sciences Publication Activity Database

    Steiner, Jakub

    -, č. 274 (2005), s. 1-26 ISSN 1211-3298 Institutional research plan: CEZ:AV0Z70850503 Keywords : coordination * crises * cycles and fluctuations Subject RIV: AH - Economics http://www.cerge-ei.cz/pdf/wp/Wp274.pdf

  17. Coordination cycles

    Czech Academy of Sciences Publication Activity Database

    Steiner, Jakub

    2008-01-01

    Roč. 63, č. 1 (2008), s. 308-327 ISSN 0899-8256 Institutional research plan: CEZ:AV0Z70850503 Keywords : global games * coordination * crises * cycles and fluctuations Subject RIV: AH - Economics Impact factor: 1.333, year: 2008

  18. TgICMAP1 is a novel microtubule binding protein in Toxoplasma gondii.

    Directory of Open Access Journals (Sweden)

    Aoife T Heaslip

    Full Text Available The microtubule cytoskeleton provides essential structural support for all eukaryotic cells and can be assembled into various higher order structures that perform drastically different functions. Understanding how microtubule-containing assemblies are built in a spatially and temporally controlled manner is therefore fundamental to understanding cell physiology. Toxoplasma gondii, a protozoan parasite, contains at least five distinct tubulin-containing structures, the spindle pole, centrioles, cortical microtubules, the conoid, and the intra-conoid microtubules. How these five structurally and functionally distinct sets of tubulin containing structures are constructed and maintained in the same cell is an intriguing problem. Previously, we performed a proteomic analysis of the T. gondii apical complex, a cytoskeletal complex located at the apical end of the parasite that is composed of the conoid, three ring-like structures, and the two short intra-conoid microtubules. Here we report the characterization of one of the proteins identified in that analysis, TgICMAP1. We show that TgICMAP1 is a novel microtubule binding protein that can directly bind to microtubules in vitro and stabilizes microtubules when ectopically expressed in mammalian cells. Interestingly, in T. gondii, TgICMAP1 preferentially binds to the intra-conoid microtubules, providing us the first molecular tool to investigate the intra-conoid microtubule assembly process during daughter construction.

  19. Characterization of the TolB-Pal trans-envelope complex from Xylella fastidiosa reveals a dynamic and coordinated protein expression profile during the biofilm development process.

    Science.gov (United States)

    Santos, Clelton A; Janissen, Richard; Toledo, Marcelo A S; Beloti, Lilian L; Azzoni, Adriano R; Cotta, Monica A; Souza, Anete P

    2015-10-01

    The intriguing roles of the bacterial Tol-Pal trans-envelope protein complex range from maintenance of cell envelope integrity to potential participation in the process of cell division. In this study, we report the characterization of the XfTolB and XfPal proteins of the Tol-Pal complex of Xylella fastidiosa. X. fastidiosa is a major plant pathogen that forms biofilms inside xylem vessels, triggering the development of diseases in important cultivable plants around the word. Based on functional complementation experiments in Escherichia coli tolB and pal mutant strains, we confirmed the role of xftolB and xfpal in outer membrane integrity. In addition, we observed a dynamic and coordinated protein expression profile during the X. fastidiosa biofilm development process. Using small-angle X-ray scattering (SAXS), the low-resolution structure of the isolated XfTolB-XfPal complex in solution was solved for the first time. Finally, the localization of the XfTolB and XfPal polar ends was visualized via immunofluorescence labeling in vivo during bacterial cell growth. Our results highlight the major role of the components of the cell envelope, particularly the TolB-Pal complex, during the different phases of bacterial biofilm development. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Vibrations of microtubules: Physics that has not met biology yet

    Czech Academy of Sciences Publication Activity Database

    Kučera, Ondřej; Havelka, Daniel; Cifra, Michal

    2017-01-01

    Roč. 72, 1 July (2017), s. 13-22 ISSN 0165-2125 R&D Projects: GA ČR(CZ) GA15-17102S Grant - others:AV ČR(CZ) SAV-15-22 Program:Bilaterální spolupráce Institutional support: RVO:67985882 Keywords : Models * Vibrations * Microtubules Subject RIV: BO - Biophysics OBOR OECD: Biophysics Impact factor: 1.575, year: 2016

  1. TECHNICAL COORDINATION

    CERN Multimedia

    A. Ball

    Overview From a technical perspective, CMS has been in “beam operation” state since 6th November. The detector is fully closed with all components operational and the magnetic field is normally at the nominal 3.8T. The UXC cavern is normally closed with the radiation veto set. Access to UXC is now only possible during downtimes of LHC. Such accesses must be carefully planned, documented and carried out in agreement with CMS Technical Coordination, Experimental Area Management, LHC programme coordination and the CCC. Material flow in and out of UXC is now strictly controlled. Access to USC remains possible at any time, although, for safety reasons, it is necessary to register with the shift crew in the control room before going down.It is obligatory for all material leaving UXC to pass through the underground buffer zone for RP scanning, database entry and appropriate labeling for traceability. Technical coordination (notably Stephane Bally and Christoph Schaefer), the shift crew and run ...

  2. TIP maker and TIP marker; EB1 as a master controller of microtubule plus ends.

    Science.gov (United States)

    Vaughan, Kevin T

    2005-10-24

    The EB1 protein is a member of the exciting and enigmatic family of microtubule (MT) tip-tracking proteins. EB1 acts as an exquisite marker of dynamic MT plus ends in some cases, whereas in others EB1 is thought to directly dictate the behavior of the plus ends. How EB1 differentiates between these two roles remains unclear; however, a growing list of interactions between EB1 and other MT binding proteins suggests there may be a single mechanism. Adding another layer of complexity to these interactions, two studies published in this issue implicate EB1 in cross-talk between mitotic MTs and between MTs and actin filaments (Goshima et al., p. 229; Wu et al., p. 201). These results raise the possibility that EB1 is a central player in MT-based transport, and that the activity of MT-binding proteins depends on their ability or inability to interact with EB1.

  3. GIT1 enhances neurite outgrowth by stimulating microtubule assembly

    Directory of Open Access Journals (Sweden)

    Yi-sheng Li

    2016-01-01

    Full Text Available GIT1, a G-protein-coupled receptor kinase interacting protein, has been reported to be involved in neurite outgrowth. However, the neurobiological functions of the protein remain unclear. In this study, we found that GIT1 was highly expressed in the nervous system, and its expression was maintained throughout all stages of neuritogenesis in the brain. In primary cultured mouse hippocampal neurons from GIT1 knockout mice, there was a significant reduction in total neurite length per neuron, as well as in the average length of axon-like structures, which could not be prevented by nerve growth factor treatment. Overexpression of GIT1 significantly promoted axon growth and fully rescued the axon outgrowth defect in the primary hippocampal neuron cultures from GIT1 knockout mice. The GIT1 N terminal region, including the ADP ribosylation factor-GTPase activating protein domain, the ankyrin domains and the Spa2 homology domain, were sufficient to enhance axonal extension. Importantly, GIT1 bound to many tubulin proteins and microtubule-associated proteins, and it accelerated microtubule assembly in vitro. Collectively, our findings suggest that GIT1 promotes neurite outgrowth, at least partially by stimulating microtubule assembly. This study provides new insight into the cellular and molecular pathogenesis of GIT1-associated neurological diseases.

  4. Regulation of developmental and environmental signaling by interaction between microtubules and membranes in plant cells

    Directory of Open Access Journals (Sweden)

    Qun Zhang

    2015-12-01

    Full Text Available ABSTRACT Cell division and expansion require the ordered arrangement of microtubules, which are subject to spatial and temporal modifications by developmental and environmental factors. Understanding how signals translate to changes in cortical microtubule organization is of fundamental importance. A defining feature of the cortical microtubule array is its association with the plasma membrane; modules of the plasma membrane are thought to play important roles in the mediation of microtubule organization. In this review, we highlight advances in research on the regulation of cortical microtubule organization by membrane-associated and membrane-tethered proteins and lipids in response to phytohormones and stress. The transmembrane kinase receptor Rho-like guanosine triphosphatase, phospholipase D, phosphatidic acid, and phosphoinositides are discussed with a focus on their roles in microtubule organization.

  5. Simultaneous 3D tracking of passive tracers and microtubule bundles in an active gel

    Science.gov (United States)

    Fan, Yi; Breuer, Kenneth S.; Fluids Team

    Kinesin-driven microtubule bundles generate a spontaneous flow in unconfined geometries. They exhibit properties of active matter, including the emergence of collective motion, reduction of apparent viscosity and consumption of local energy. Here we present results from 3D tracking of passive tracers (using Airy rings and 3D scanning) synchronized with 3D measurement of the microtubule bundles motion. This technique is applied to measure viscosity variation and collective flow in a confined geometry with particular attention paid to the self-pumping system recently reported by Wu et al. (2016). Results show that the viscosity in an equilibrium microtubule network is around half that of the isotropic unbundled microtubule solution. Cross-correlations of the active microtubule network and passive tracers define a neighborhood around microtubule bundles in which passive tracers are effectively transported. MRSEC NSF.

  6. Dynamic Coordination of Supply Chains

    OpenAIRE

    Paulitsch, Michael

    2003-01-01

    Business-to-business exchanges have become a common form of procurement due to their advantages regarding flexibility (such as the ability of being able to quickly change business partners), although the mean procurement prices are generally higher compared to long-term contracts. On the other side, a lot of procurement managers still believe that long-term relationships are the key in the procurement process partly due to cost savings. Two main conflicting opinions on the optimal type of rel...

  7. Measuring and modeling polymer concentration profiles near spindle boundaries argues that spindle microtubules regulate their own nucleation

    Science.gov (United States)

    Kaye, Bryan; Stiehl, Olivia; Foster, Peter J.; Shelley, Michael J.; Needleman, Daniel J.; Fürthauer, Sebastian

    2018-05-01

    Spindles are self-organized microtubule-based structures that segregate chromosomes during cell division. The mass of the spindle is controlled by the balance between microtubule turnover and nucleation. The mechanisms that control the spatial regulation of microtubule nucleation remain poorly understood. While previous work found that microtubule nucleators bind to pre-existing microtubules in the spindle, it is still unclear whether this binding regulates the activity of those nucleators. Here we use a combination of experiments and mathematical modeling to investigate this issue. We measured the concentration of microtubules and soluble tubulin in and around the spindle. We found a very sharp decay in the concentration of microtubules at the spindle interface. This is inconsistent with a model in which the activity of nucleators is independent of their association with microtubules but consistent with a model in which microtubule nucleators are only active when bound to pre-existing microtubules. This argues that the activity of microtubule nucleators is greatly enhanced when bound to pre-existing microtubules. Thus, microtubule nucleators are both localized and activated by the microtubules they generate.

  8. Ase1p Organizes Antiparallel Microtubule Arrays during Interphase and Mitosis in Fission YeastV⃞

    OpenAIRE

    Loïodice, Isabelle; Staub, Jayme; Setty, Thanuja Gangi; Nguyen, Nam-Phuong T.; Paoletti, Anne; Tran, P. T.

    2005-01-01

    Proper microtubule organization is essential for cellular processes such as organelle positioning during interphase and spindle formation during mitosis. The fission yeast Schizosaccharomyces pombe presents a good model for understanding microtubule organization. We identify fission yeast ase1p, a member of the conserved ASE1/PRC1/MAP65 family of microtubule bundling proteins, which functions in organizing the spindle midzone during mitosis. Using fluorescence live cell imaging, we show that ...

  9. A mutation of the fission yeast EB1 overcomes negative regulation by phosphorylation and stabilizes microtubules

    International Nuclear Information System (INIS)

    Iimori, Makoto; Ozaki, Kanako; Chikashige, Yuji; Habu, Toshiyuki; Hiraoka, Yasushi; Maki, Takahisa; Hayashi, Ikuko; Obuse, Chikashi; Matsumoto, Tomohiro

    2012-01-01

    Mal3 is a fission yeast homolog of EB1, a plus-end tracking protein (+ TIP). We have generated a mutation (89R) replacing glutamine with arginine in the calponin homology (CH) domain of Mal3. Analysis of the 89R mutant in vitro has revealed that the mutation confers a higher affinity to microtubules and enhances the intrinsic activity to promote the microtubule-assembly. The mutant Mal3 is no longer a + TIP, but binds strongly the microtubule lattice. Live cell imaging has revealed that while the wild type Mal3 proteins dissociate from the tip of the growing microtubules before the onset of shrinkage, the mutant Mal3 proteins persist on microtubules and reduces a rate of shrinkage after a longer pausing period. Consequently, the mutant Mal3 proteins cause abnormal elongation of microtubules composing the spindle and aster. Mal3 is phosphorylated at a cluster of serine/threonine residues in the linker connecting the CH and EB1-like C-terminal motif domains. The phosphorylation occurs in a microtubule-dependent manner and reduces the affinity of Mal3 to microtubules. We propose that because the 89R mutation is resistant to the effect of phosphorylation, it can associate persistently with microtubules and confers a stronger stability of microtubules likely by reinforcing the cylindrical structure. -- Highlights: ► We characterize a mutation (mal3-89R) in fission yeast homolog of EB1. ► The mutation enhances the activity to assemble microtubules. ► Mal3 is phosphorylated in a microtubule-dependent manner. ► The phosphorylation negatively regulates the Mal3 activity.

  10. A mutation of the fission yeast EB1 overcomes negative regulation by phosphorylation and stabilizes microtubules

    Energy Technology Data Exchange (ETDEWEB)

    Iimori, Makoto; Ozaki, Kanako [Graduate School of Biostudies, Kyoto University, Kitashirakawa-Oiwake cho, Sakyo ku, Kyoto, 606-8502 (Japan); Chikashige, Yuji [Kobe Advanced ICT Research Center, National Institute of Information and Communications Technology, Kobe, 651-2492 (Japan); Habu, Toshiyuki [Graduate School of Biostudies, Kyoto University, Kitashirakawa-Oiwake cho, Sakyo ku, Kyoto, 606-8502 (Japan); Radiation Biology Center, Kyoto University, Yoshida-Konoe cho, Sakyo ku, Kyoto, 606-8501 (Japan); Hiraoka, Yasushi [Kobe Advanced ICT Research Center, National Institute of Information and Communications Technology, Kobe, 651-2492 (Japan); Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, 565-0871 (Japan); Maki, Takahisa; Hayashi, Ikuko [Graduate School of Nanobioscience, Yokohama City University, Tsurumi, Yokohama, 230-0045 (Japan); Obuse, Chikashi [Graduate School of Life Science, Hokkaido University, Sapporo 001-0021 (Japan); Matsumoto, Tomohiro, E-mail: tmatsumo@house.rbc.kyoto-u.ac.jp [Graduate School of Biostudies, Kyoto University, Kitashirakawa-Oiwake cho, Sakyo ku, Kyoto, 606-8502 (Japan); Radiation Biology Center, Kyoto University, Yoshida-Konoe cho, Sakyo ku, Kyoto, 606-8501 (Japan)

    2012-02-01

    Mal3 is a fission yeast homolog of EB1, a plus-end tracking protein (+ TIP). We have generated a mutation (89R) replacing glutamine with arginine in the calponin homology (CH) domain of Mal3. Analysis of the 89R mutant in vitro has revealed that the mutation confers a higher affinity to microtubules and enhances the intrinsic activity to promote the microtubule-assembly. The mutant Mal3 is no longer a + TIP, but binds strongly the microtubule lattice. Live cell imaging has revealed that while the wild type Mal3 proteins dissociate from the tip of the growing microtubules before the onset of shrinkage, the mutant Mal3 proteins persist on microtubules and reduces a rate of shrinkage after a longer pausing period. Consequently, the mutant Mal3 proteins cause abnormal elongation of microtubules composing the spindle and aster. Mal3 is phosphorylated at a cluster of serine/threonine residues in the linker connecting the CH and EB1-like C-terminal motif domains. The phosphorylation occurs in a microtubule-dependent manner and reduces the affinity of Mal3 to microtubules. We propose that because the 89R mutation is resistant to the effect of phosphorylation, it can associate persistently with microtubules and confers a stronger stability of microtubules likely by reinforcing the cylindrical structure. -- Highlights: Black-Right-Pointing-Pointer We characterize a mutation (mal3-89R) in fission yeast homolog of EB1. Black-Right-Pointing-Pointer The mutation enhances the activity to assemble microtubules. Black-Right-Pointing-Pointer Mal3 is phosphorylated in a microtubule-dependent manner. Black-Right-Pointing-Pointer The phosphorylation negatively regulates the Mal3 activity.

  11. Coordinating controls

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1986-07-15

    While physics Laboratories are having to absorb cuts in resources, the machines they rely on are becoming more and more complex, requiring increasingly sophisticated systems. Rather than being a resourceful engineer or physicist able to timber together solutions in his 'backyard', the modern controls specialist has become a professional in his own right. Because of possible conflicts between increasing sophistication on one hand and scarcer resources on the other, there was felt a need for more contacts among controls specialists to exchange experiences, coordinate development and discuss 'family problems', away from meetings where the main interest is on experimental physics.

  12. Coordinated unbundling

    DEFF Research Database (Denmark)

    Timmermans, Bram; Zabala-Iturriagagoitia, Jon Mikel

    2013-01-01

    Public procurement for innovation is a matter of using public demand to trigger innovation. Empirical studies have demonstrated that demand-based policy instruments can be considered to be a powerful tool in stimulating innovative processes among existing firms; however, the existing literature has...... not focused on the role this policy instrument can play in the promotion of (knowledge-intensive) entrepreneurship. This paper investigates this link in more detail and introduces the concept of coordinated unbundling as a strategy that can facilitate this purpose. We also present a framework on how...

  13. Coordinating controls

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    While physics Laboratories are having to absorb cuts in resources, the machines they rely on are becoming more and more complex, requiring increasingly sophisticated systems. Rather than being a resourceful engineer or physicist able to timber together solutions in his 'backyard', the modern controls specialist has become a professional in his own right. Because of possible conflicts between increasing sophistication on one hand and scarcer resources on the other, there was felt a need for more contacts among controls specialists to exchange experiences, coordinate development and discuss 'family problems', away from meetings where the main interest is on experimental physics

  14. Combing and self-assembly phenomena in dry films of Taxol-stabilized microtubules

    Directory of Open Access Journals (Sweden)

    Rose Franck

    2007-01-01

    Full Text Available AbstractMicrotubules are filamentous proteins that act as a substrate for the translocation of motor proteins. As such, they may be envisioned as a scaffold for the self-assembly of functional materials and devices. Physisorption, self-assembly and combing are here investigated as a potential prelude to microtubule-templated self-assembly. Dense films of self-assembled microtubules were successfully produced, as well as patterns of both dendritic and non-dendritic bundles of microtubules. They are presented in the present paper and the mechanism of their formation is discussed.

  15. Msd1/SSX2IP-dependent microtubule anchorage ensures spindle orientation and primary cilia formation

    OpenAIRE

    Hori, Akiko; Ikebe, Chiho; Tada, Masazumi; Toda, Takashi

    2014-01-01

    Anchoring microtubules to the centrosome is critical for cell geometry and polarity, yet the molecular mechanism remains unknown. Here we show that the conserved human Msd1/SSX2IP is required for microtubule anchoring. hMsd1/SSX2IP is delivered to the centrosome in a centriolar satellite-dependent manner and binds the microtubule-nucleator ?-tubulin complex. hMsd1/SSX2IP depletion leads to disorganised interphase microtubules and misoriented mitotic spindles with reduced length and intensity....

  16. TECHNICAL COORDINATION

    CERN Multimedia

    A. Ball

    2010-01-01

    Operational Experience At the end of the first full-year running period of LHC, CMS is established as a reliable, robust and mature experiment. In particular common systems and infrastructure faults accounted for <0.6 % CMS downtime during LHC pp physics. Technical operation throughout the entire year was rather smooth, the main faults requiring UXC access being sub-detector power systems and rack-cooling turbines. All such problems were corrected during scheduled technical stops, in the shadow of tunnel access needed by the LHC, or in negotiated accesses or access extensions. Nevertheless, the number of necessary accesses to the UXC averaged more than one per week and the technical stops were inevitably packed with work packages, typically 30 being executed within a few days, placing a high load on the coordination and area management teams. It is an appropriate moment for CMS Technical Coordination to thank all those in many CERN departments and in the Collaboration, who were involved in CMS techni...

  17. Tracking of plus-ends reveals microtubule functional diversity in different cell types

    Science.gov (United States)

    Shaebani, M. Reza; Pasula, Aravind; Ott, Albrecht; Santen, Ludger

    2016-07-01

    Many cellular processes are tightly connected to the dynamics of microtubules (MTs). While in neuronal axons MTs mainly regulate intracellular trafficking, they participate in cytoskeleton reorganization in many other eukaryotic cells, enabling the cell to efficiently adapt to changes in the environment. We show that the functional differences of MTs in different cell types and regions is reflected in the dynamic properties of MT tips. Using plus-end tracking proteins EB1 to monitor growing MT plus-ends, we show that MT dynamics and life cycle in axons of human neurons significantly differ from that of fibroblast cells. The density of plus-ends, as well as the rescue and catastrophe frequencies increase while the growth rate decreases toward the fibroblast cell margin. This results in a rather stable filamentous network structure and maintains the connection between nucleus and membrane. In contrast, plus-ends are uniformly distributed along the axons and exhibit diverse polymerization run times and spatially homogeneous rescue and catastrophe frequencies, leading to MT segments of various lengths. The probability distributions of the excursion length of polymerization and the MT length both follow nearly exponential tails, in agreement with the analytical predictions of a two-state model of MT dynamics.

  18. Cdk1-Cyclin B1-mediated Phosphorylation of Tumor-associated Microtubule-associated Protein/Cytoskeleton-associated Protein 2 in Mitosis*

    OpenAIRE

    Uk Hong, Kyung; Kim, Hyun-Jun; Kim, Hyo-Sil; Seong, Yeon-Sun; Hong, Kyeong-Man; Bae, Chang-Dae; Park, Joobae

    2009-01-01

    During mitosis, establishment of structurally and functionally sound bipolar spindles is necessary for maintaining the fidelity of chromosome segregation. Tumor-associated microtubule-associated protein (TMAP), also known as cytoskeleton-associated protein 2 (CKAP2), is a mitotic spindle-associated protein whose level is frequently up-regulated in various malignancies. Previous reports have suggested that TMAP is a potential regulator of mitotic spindle assembly and dynamics and that it is re...

  19. Cep169, a Novel Microtubule Plus-End-Tracking Centrosomal Protein, Binds to CDK5RAP2 and Regulates Microtubule Stability.

    Directory of Open Access Journals (Sweden)

    Yusuke Mori

    Full Text Available The centrosomal protein, CDK5RAP2, is a microcephaly protein that regulates centrosomal maturation by recruitment of a γ-tubulin ring complex (γ-TuRC onto centrosomes. In this report, we identified a novel human centrosomal protein, Cep169, as a binding partner of CDK5RAP2, a member of microtubule plus-end-tracking proteins (+TIPs. Cep169 interacts directly with CDK5RAP2 through CM1, an evolutionarily conserved domain, and colocalizes at the pericentriolar matrix (PCM around centrioles with CDK5RAP2. In addition, Cep169 interacts with EB1 through SxIP-motif responsible for EB1 binding, and colocalizes with CDK5RAP2 at the microtubule plus-end. EB1-binding-deficient Cep169 abolishes EB1 interaction and microtubule plus-end attachment, indicating Cep169 as a novel member of +TIPs. We further show that ectopic expression of either Cep169 or CDK5RAP2 induces microtubule bundling and acetylation in U2OS cells, and depletion of Cep169 induces microtubule depolymerization in HeLa cells, although Cep169 is not required for assembly of γ-tubulin onto centrosome by CDK5RAP2. These results show that Cep169 targets microtubule tips and regulates stability of microtubules with CDK5RAP2.

  20. TRESK background K(+ channel is inhibited by PAR-1/MARK microtubule affinity-regulating kinases in Xenopus oocytes.

    Directory of Open Access Journals (Sweden)

    Gabriella Braun

    Full Text Available TRESK (TWIK-related spinal cord K(+ channel, KCNK18 is a major background K(+ channel of sensory neurons. Dominant-negative mutation of TRESK is linked to familial migraine. This important two-pore domain K(+ channel is uniquely activated by calcineurin. The calcium/calmodulin-dependent protein phosphatase directly binds to the channel and activates TRESK current several-fold in Xenopus oocytes and HEK293 cells. We have recently shown that the kinase, which is responsible for the basal inhibition of the K(+ current, is sensitive to the adaptor protein 14-3-3. Therefore we have examined the effect of the 14-3-3-inhibited PAR-1/MARK, microtubule-associated-protein/microtubule affinity-regulating kinase on TRESK in the Xenopus oocyte expression system. MARK1, MARK2 and MARK3 accelerated the return of TRESK current to the resting state after the calcium-dependent activation. Several other serine-threonine kinase types, generally involved in the modulation of other ion channels, failed to influence TRESK current recovery. MARK2 phosphorylated the primary determinant of regulation, the cluster of three adjacent serine residues (S274, 276 and 279 in the intracellular loop of mouse TRESK. In contrast, serine 264, the 14-3-3-binding site of TRESK, was not phosphorylated by the kinase. Thus MARK2 selectively inhibits TRESK activity via the S274/276/279 cluster, but does not affect the direct recruitment of 14-3-3 to the channel. TRESK is the first example of an ion channel phosphorylated by the dynamically membrane-localized MARK kinases, also known as general determinants of cellular polarity. These results raise the possibility that microtubule dynamics is coupled to the regulation of excitability in the neurons, which express TRESK background potassium channel.

  1. Plus- and minus-end directed microtubule motors bind simultaneously to herpes simplex virus capsids using different inner tegument structures.

    Directory of Open Access Journals (Sweden)

    Kerstin Radtke

    2010-07-01

    Full Text Available Many viruses depend on host microtubule motors to reach their destined intracellular location. Viral particles of neurotropic alphaherpesviruses such as herpes simplex virus 1 (HSV1 show bidirectional transport towards the cell center as well as the periphery, indicating that they utilize microtubule motors of opposing directionality. To understand the mechanisms of specific motor recruitment, it is necessary to characterize the molecular composition of such motile viral structures. We have generated HSV1 capsids with different surface features without impairing their overall architecture, and show that in a mammalian cell-free system the microtubule motors dynein and kinesin-1 and the dynein cofactor dynactin could interact directly with capsids independent of other host factors. The capsid composition and surface was analyzed with respect to 23 structural proteins that are potentially exposed to the cytosol during virus assembly or cell entry. Many of these proteins belong to the tegument, the hallmark of all herpesviruses located between the capsid and the viral envelope. Using immunoblots, quantitative mass spectrometry and quantitative immunoelectron microscopy, we show that capsids exposing inner tegument proteins such as pUS3, pUL36, pUL37, ICP0, pUL14, pUL16, and pUL21 recruited dynein, dynactin, kinesin-1 and kinesin-2. In contrast, neither untegumented capsids exposing VP5, VP26, pUL17 and pUL25 nor capsids covered by outer tegument proteins such as vhs, pUL11, ICP4, ICP34.5, VP11/12, VP13/14, VP16, VP22 or pUS11 bound microtubule motors. Our data suggest that HSV1 uses different structural features of the inner tegument to recruit dynein or kinesin-1. Individual capsids simultaneously accommodated motors of opposing directionality as well as several copies of the same motor. Thus, these associated motors either engage in a tug-of-war or their activities are coordinately regulated to achieve net transport either to the nucleus during

  2. Sensitivity of docetaxel-resistant MCF-7 breast cancer cells to microtubule-destabilizing agents including vinca alkaloids and colchicine-site binding agents.

    Directory of Open Access Journals (Sweden)

    Richard C Wang

    Full Text Available One of the main reasons for disease recurrence in the curative breast cancer treatment setting is the development of drug resistance. Microtubule targeted agents (MTAs are among the most commonly used drugs for the treatment of breaset cancer and therefore overcoming taxane resistance is of primary clinical importance. Our group has previously demonstrated that the microtubule dynamics of docetaxel-resistant MCF-7TXT cells are insensitivity to docetaxel due to the distinct expression profiles of β-tubulin isotypes in addition to the high expression of p-glycoprotein (ABCB1. In the present investigation we examined whether taxane-resistant breast cancer cells are more sensitive to microtubule destabilizing agents including vinca alkaloids and colchicine-site binding agents (CSBAs than the non-resistant cells.Two isogenic MCF-7 breast cancer cell lines were selected for resistance to docetaxel (MCF-7TXT and the wild type parental cell line (MCF-7CC to examine if taxane-resistant breast cancer cells are sensitive to microtubule-destabilizing agents including vinca alkaloids and CSBAs. Cytotoxicity assays, immunoblotting, indirect immunofluorescence and live imaging were used to study drug resistance, apoptosis, mitotic arrest, microtubule formation, and microtubule dynamics.MCF-7TXT cells were demonstrated to be cross resistant to vinca alkaloids, but were more sensitive to treatment with colchicine compared to parental non-resistant MCF-7CC cells. Cytotoxicity assays indicated that the IC50 of MCF-7TXT cell to vinorelbine and vinblastine was more than 6 and 3 times higher, respectively, than that of MCF-7CC cells. By contrast, the IC50 of MCF-7TXT cell for colchincine was 4 times lower than that of MCF-7CC cells. Indirect immunofluorescence showed that all MTAs induced the disorganization of microtubules and the chromatin morphology and interestingly each with a unique pattern. In terms of microtubule and chromain morphology, MCF-7TXT cells were

  3. The Ndc80 internal loop is required for recruitment of the Ska complex to establish end-on microtubule attachment to kinetochores.

    Science.gov (United States)

    Zhang, Gang; Kelstrup, Christian D; Hu, Xiao-Wen; Kaas Hansen, Mathilde J; Singleton, Martin R; Olsen, Jesper V; Nilsson, Jakob

    2012-07-01

    The Ndc80 complex establishes end-on attachment of kinetochores to microtubules, which is essential for chromosome segregation. The Ndc80 subunit is characterized by an N-terminal region that binds directly to microtubules, and a long coiled-coil region that interacts with Nuf2. A loop region in Ndc80 that generates a kink in the structure disrupts the long coiled-coil region but the exact function of this loop, has until now, not been clear. Here we show that this loop region is essential for end-on attachment of kinetochores to microtubules in human cells. Cells expressing loop mutants of Ndc80 are unable to align the chromosomes, and stable kinetochore fibers are absent. Through quantitative mass spectrometry and immunofluorescence we found that the binding of the spindle and kinetochore associated (Ska) complex depends on the loop region, explaining why end-on attachment is defective. This underscores the importance of the Ndc80 loop region in coordinating chromosome segregation through the recruitment of specific proteins to the kinetochore.

  4. GIT1/βPIX signaling proteins and PAK1 kinase regulate microtubule nucleation.

    Science.gov (United States)

    Černohorská, Markéta; Sulimenko, Vadym; Hájková, Zuzana; Sulimenko, Tetyana; Sládková, Vladimíra; Vinopal, Stanislav; Dráberová, Eduarda; Dráber, Pavel

    2016-06-01

    Microtubule nucleation from γ-tubulin complexes, located at the centrosome, is an essential step in the formation of the microtubule cytoskeleton. However, the signaling mechanisms that regulate microtubule nucleation in interphase cells are largely unknown. In this study, we report that γ-tubulin is in complexes containing G protein-coupled receptor kinase-interacting protein 1 (GIT1), p21-activated kinase interacting exchange factor (βPIX), and p21 protein (Cdc42/Rac)-activated kinase 1 (PAK1) in various cell lines. Immunofluorescence microscopy revealed association of GIT1, βPIX and activated PAK1 with centrosomes. Microtubule regrowth experiments showed that depletion of βPIX stimulated microtubule nucleation, while depletion of GIT1 or PAK1 resulted in decreased nucleation in the interphase cells. These data were confirmed for GIT1 and βPIX by phenotypic rescue experiments, and counting of new microtubules emanating from centrosomes during the microtubule regrowth. The importance of PAK1 for microtubule nucleation was corroborated by the inhibition of its kinase activity with IPA-3 inhibitor. GIT1 with PAK1 thus represent positive regulators, and βPIX is a negative regulator of microtubule nucleation from the interphase centrosomes. The regulatory roles of GIT1, βPIX and PAK1 in microtubule nucleation correlated with recruitment of γ-tubulin to the centrosome. Furthermore, in vitro kinase assays showed that GIT1 and βPIX, but not γ-tubulin, serve as substrates for PAK1. Finally, direct interaction of γ-tubulin with the C-terminal domain of βPIX and the N-terminal domain of GIT1, which targets this protein to the centrosome, was determined by pull-down experiments. We propose that GIT1/βPIX signaling proteins with PAK1 kinase represent a novel regulatory mechanism of microtubule nucleation in interphase cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Keep Meaning in Conversational Coordination

    Directory of Open Access Journals (Sweden)

    Elena Clare Cuffari

    2014-12-01

    Full Text Available Coordination is a widely employed term across recent quantitative and qualitative approaches to intersubjectivity, particularly approaches that give embodiment and enaction central explanatory roles. With a focus on linguistic and bodily coordination in conversational contexts, I review the operational meaning of coordination in recent empirical research and related theorizing of embodied intersubjectivity. This discussion articulates what must be involved in treating linguistic meaning as dynamic processes of coordination. The coordination approach presents languaging as a set of dynamic self-organizing processes and actions on multiple timescales and across multiple modalities that come about and work in certain domains (those jointly constructed in social, interactive, high-order sense-making. These processes go beyond meaning at the level that is available to first-person experience. I take one crucial consequence of this to be the ubiquitously moral nature of languaging with others. Languaging coordinates experience, among other levels of behavior and event. Ethical effort is called for by the automatic autonomy-influencing forces of languaging as coordination.

  6. Katanin localization requires triplet microtubules in Chlamydomonas reinhardtii.

    Directory of Open Access Journals (Sweden)

    Jessica M Esparza

    Full Text Available Centrioles and basal bodies are essential for a variety of cellular processes that include the recruitment of proteins to these structures for both centrosomal and ciliary function. This recruitment is compromised when centriole/basal body assembly is defective. Mutations that cause basal body assembly defects confer supersensitivity to Taxol. These include bld2, bld10, bld12, uni3, vfl1, vfl2, and vfl3. Flagellar motility mutants do not confer sensitivity with the exception of mutations in the p60 (pf19 and p80 (pf15 subunits of the microtubule severing protein katanin. We have identified additional pf15 and bld2 (ε-tubulin alleles in screens for Taxol sensitivity. Null pf15 and bld2 alleles are viable and are not essential genes in Chlamydomonas. Analysis of double mutant strains with the pf15-3 and bld2-6 null alleles suggests that basal bodies in Chlamydomonas may recruit additional proteins beyond katanin that affect spindle microtubule stability. The bld2-5 allele is a hypomorphic allele and its phenotype is modulated by nutritional cues. Basal bodies in bld2-5 cells are missing proximal ends. The basal body mutants show aberrant localization of an epitope-tagged p80 subunit of katanin. Unlike IFT proteins, katanin p80 does not localize to the transition fibers of the basal bodies based on an analysis of the uni1 mutant as well as the lack of colocalization of katanin p80 with IFT74. We suggest that the triplet microtubules are likely to play a key role in katanin p80 recruitment to the basal body of Chlamydomonas rather than the transition fibers that are needed for IFT localization.

  7. Interaction of microtubules with active principles of Xanthium strumarium.

    Science.gov (United States)

    Menon, G S; Kuchroo, K; Dasgupta, D

    2001-01-01

    Indigenous variety of Xanthium strumarium (X. strumarium) was screened for its antimitotic activity using the microtubule-tubulin system isolated from mammalian tissue. A preliminary phytochemical screening of the whole extracts of the plant was carried out followed by partial purification of the whole extract of X.strumarium. The separated fractions obtained were identified and used for in vitro polymerization studies. The whole as well as partially separated chemical constituents of X. strumarium showed effective inhibition of tubulin polymerization. The results thus suggest that X. strumarium may possess antimitotic components.

  8. Genetic analysis of a Drosophila microtubule-associated protein

    OpenAIRE

    1992-01-01

    The 205-kD microtubule-associated protein (205K MAP) is one of the principal MAPs in Drosophila. 205K MAP is similar to the HeLa 210K/MAP4 family of MAPs since it shares the following biochemical properties: it is present in several isoforms, has a molecular mass of approximately 200 kD, and is thermostable. Furthermore, immuno-crossreactivity has been observed between mouse MAP4, HeLa 210K, and Drosophila 205K MAP. Currently, there is little information concerning the biological function of ...

  9. Ionic wave propagation and collision in an excitable circuit model of microtubules

    Science.gov (United States)

    Guemkam Ghomsi, P.; Tameh Berinyoh, J. T.; Moukam Kakmeni, F. M.

    2018-02-01

    In this paper, we report the propensity to excitability of the internal structure of cellular microtubules, modelled as a relatively large one-dimensional spatial array of electrical units with nonlinear resistive features. We propose a model mimicking the dynamics of a large set of such intracellular dynamical entities as an excitable medium. We show that the behavior of such lattices can be described by a complex Ginzburg-Landau equation, which admits several wave solutions, including the plane waves paradigm. A stability analysis of the plane waves solutions of our dynamical system is conducted both analytically and numerically. It is observed that perturbed plane waves will always evolve toward promoting the generation of localized periodic waves trains. These modes include both stationary and travelling spatial excitations. They encompass, on one hand, localized structures such as solitary waves embracing bright solitons, dark solitons, and bisolitonic impulses with head-on collisions phenomena, and on the other hand, the appearance of both spatially homogeneous and spatially inhomogeneous stationary patterns. This ability exhibited by our array of proteinic elements to display several states of excitability exposes their stunning biological and physical complexity and is of high relevance in the description of the developmental and informative processes occurring on the subcellular scale.

  10. Fluid mechanics in dentinal microtubules provides mechanistic insights into the difference between hot and cold dental pain.

    Science.gov (United States)

    Lin, Min; Luo, Zheng Yuan; Bai, Bo Feng; Xu, Feng; Lu, Tian Jian

    2011-03-23

    Dental thermal pain is a significant health problem in daily life and dentistry. There is a long-standing question regarding the phenomenon that cold stimulation evokes sharper and more shooting pain sensations than hot stimulation. This phenomenon, however, outlives the well-known hydrodynamic theory used to explain dental thermal pain mechanism. Here, we present a mathematical model based on the hypothesis that hot or cold stimulation-induced different directions of dentinal fluid flow and the corresponding odontoblast movements in dentinal microtubules contribute to different dental pain responses. We coupled a computational fluid dynamics model, describing the fluid mechanics in dentinal microtubules, with a modified Hodgkin-Huxley model, describing the discharge behavior of intradental neuron. The simulated results agreed well with existing experimental measurements. We thence demonstrated theoretically that intradental mechano-sensitive nociceptors are not "equally sensitive" to inward (into the pulp) and outward (away from the pulp) fluid flows, providing mechanistic insights into the difference between hot and cold dental pain. The model developed here could enable better diagnosis in endodontics which requires an understanding of pulpal histology, neurology and physiology, as well as their dynamic response to the thermal stimulation used in dental practices.

  11. Disassembly of microtubules and inhibition of neurite outgrowth, neuroblastoma cell proliferation, and MAP kinase tyrosine dephosphorylation by dibenzyl trisulphide.

    Science.gov (United States)

    Rösner, H; Williams, L A; Jung, A; Kraus, W

    2001-08-22

    Dibenzyl trisulphide (DTS), a main lipophilic compound in Petiveria alliacea L. (Phytolaccaceae), was identified as one of the active immunomodulatory compounds in extracts of the plant. To learn more about its biological activities and molecular mechanisms, we conducted one-dimensional NMR interaction studies with bovine serum albumin (BSA) and tested DTS and related compounds in two well-established neuronal cell-and-tissue culture systems. We found that DTS preferentially binds to an aromatic region of BSA which is rich in tyrosyl residues. In SH-SY5Y neuroblastoma cells, DTS attenuates the dephosphorylation of tyrosyl residues of MAP kinase (erk1/erk2). In the same neuroblastoma cell line and in Wistar 38 human lung fibroblasts, DTS causes a reversible disassembly of microtubules, but it did not affect actin dynamics. Probably due to the disruption of the microtubule dynamics, DTS also inhibits neuroblastoma cell proliferation and neurite outgrowth from spinal cord explants. Related dibenzyl compounds with none, one, or two sulphur atoms were found to be significantly less effective. These data confirmed that the natural compound DTS has a diverse spectrum of biological properties, including cytostatic and neurotoxic actions in addition to immunomodulatory activities.

  12. Microtubule reorganization in tobacco BY-2 cells stably expressing GFP-MBD

    Science.gov (United States)

    Granger, C. L.; Cyr, R. J.

    2000-01-01

    Microtubule organization plays an important role in plant morphogenesis; however, little is known about how microtubule arrays transit from one organized state to another. The use of a genetically incorporated fluorescent marker would allow long-term observation of microtubule behavior in living cells. Here, we have characterized a Nicotiana tabacum L. cv. Bright Yellow 2 (BY-2) cell line that had been stably transformed with a gfp-mbd construct previously demonstrated to label microtubules (J. Marc et al., 1998, Plant Cell 10: 1927-1939). Fluorescence levels were low, but interphase and mitotic microtubule arrays, as well as the transitions between these arrays, could be observed in individual gfp-mbd-transformed cells. By comparing several attributes of transformed and untransformed cells it was concluded that the transgenic cells are not adversely affected by low-level expression of the transgene and that these cells will serve as a useful and accurate model system for observing microtubule reorganization in vivo. Indeed, some initial observations were made that are consistent with the involvement of motor proteins in the transition between the spindle and phragmoplast arrays. Our observations also support the role of the perinuclear region in nucleating microtubules at the end of cell division with a progressive shift of these microtubules and/or nucleating activity to the cortex to form the interphase cortical array.

  13. Feeding cells induced by phytoparasitic nematodes require γ-tubulin ring complex for microtubule reorganization.

    Directory of Open Access Journals (Sweden)

    Mohamed Youssef Banora

    2011-12-01

    Full Text Available Reorganization of the microtubule network is important for the fast isodiametric expansion of giant-feeding cells induced by root-knot nematodes. The efficiency of microtubule reorganization depends on the nucleation of new microtubules, their elongation rate and activity of microtubule severing factors. New microtubules in plants are nucleated by cytoplasmic or microtubule-bound γ-tubulin ring complexes. Here we investigate the requirement of γ-tubulin complexes for giant feeding cells development using the interaction between Arabidopsis and Meloidogyne spp. as a model system. Immunocytochemical analyses demonstrate that γ-tubulin localizes to both cortical cytoplasm and mitotic microtubule arrays of the giant cells where it can associate with microtubules. The transcripts of two Arabidopsis γ-tubulin (TUBG1 and TUBG2 and two γ-tubulin complex proteins genes (GCP3 and GCP4 are upregulated in galls. Electron microscopy demonstrates association of GCP3 and γ-tubulin as part of a complex in the cytoplasm of giant cells. Knockout of either or both γ-tubulin genes results in the gene dose-dependent alteration of the morphology of feeding site and failure of nematode life cycle completion. We conclude that the γ-tubulin complex is essential for the control of microtubular network remodelling in the course of initiation and development of giant-feeding cells, and for the successful reproduction of nematodes in their plant hosts.

  14. A structural model for microtubule minus-end recognition and protection by CAMSAP proteins

    NARCIS (Netherlands)

    Atherton, Joseph; Jiang, Kai; Stangier, Marcel M.; Luo, Yanzhang; Hua, Shasha; Houben, Klaartje; Van Hooff, Jolien J.E.; Joseph, Agnel Praveen; Scarabelli, Guido; Grant, Barry J.; Roberts, Anthony J.; Topf, Maya; Steinmetz, Michel O.; Baldus, Marc; Moores, Carolyn A.; Akhmanova, Anna

    2017-01-01

    CAMSAP and Patronin family members regulate microtubule minus-end stability and localization and thus organize noncentrosomal microtubule networks, which are essential for cell division, polarization and differentiation. Here, we found that the CAMSAP C-terminal CKK domain is widely present among

  15. RUN COORDINATION

    CERN Multimedia

    Christophe Delaere

    2013-01-01

    The focus of Run Coordination during LS1 is to monitor closely the advance of maintenance and upgrade activities, to smooth interactions between subsystems and to ensure that all are ready in time to resume operations in 2015 with a fully calibrated and understood detector. After electricity and cooling were restored to all equipment, at about the time of the last CMS week, recommissioning activities were resumed for all subsystems. On 7 October, DCS shifts began 24/7 to allow subsystems to remain on to facilitate operations. That culminated with the Global Run in November (GriN), which   took place as scheduled during the week of 4 November. The GriN has been the first centrally managed operation since the beginning of LS1, and involved all subdetectors but the Pixel Tracker presently in a lab upstairs. All nights were therefore dedicated to long stable runs with as many subdetectors as possible. Among the many achievements in that week, three items may be highlighted. First, the Strip...

  16. RUN COORDINATION

    CERN Multimedia

    C. Delaere

    2013-01-01

    Since the LHC ceased operations in February, a lot has been going on at Point 5, and Run Coordination continues to monitor closely the advance of maintenance and upgrade activities. In the last months, the Pixel detector was extracted and is now stored in the pixel lab in SX5; the beam pipe has been removed and ME1/1 removal has started. We regained access to the vactank and some work on the RBX of HB has started. Since mid-June, electricity and cooling are back in S1 and S2, allowing us to turn equipment back on, at least during the day. 24/7 shifts are not foreseen in the next weeks, and safety tours are mandatory to keep equipment on overnight, but re-commissioning activities are slowly being resumed. Given the (slight) delays accumulated in LS1, it was decided to merge the two global runs initially foreseen into a single exercise during the week of 4 November 2013. The aim of the global run is to check that we can run (parts of) CMS after several months switched off, with the new VME PCs installed, th...

  17. GSK3 controls axon growth via CLASP-mediated regulation of growth cone microtubules

    Science.gov (United States)

    Hur, Eun-Mi; Saijilafu; Lee, Byoung Dae; Kim, Seong-Jin; Xu, Wen-Lin; Zhou, Feng-Quan

    2011-01-01

    Suppression of glycogen synthase kinase 3 (GSK3) activity in neurons yields pleiotropic outcomes, causing both axon growth promotion and inhibition. Previous studies have suggested that specific GSK3 substrates, such as adenomatous polyposis coli (APC) and collapsin response mediator protein 2 (CRMP2), support axon growth by regulating the stability of axonal microtubules (MTs), but the substrate(s) and mechanisms conveying axon growth inhibition remain elusive. Here we show that CLIP (cytoplasmic linker protein)-associated protein (CLASP), originally identified as a MT plus end-binding protein, displays both plus end-binding and lattice-binding activities in nerve growth cones, and reveal that the two MT-binding activities regulate axon growth in an opposing manner: The lattice-binding activity mediates axon growth inhibition induced by suppression of GSK3 activity via preventing MT protrusion into the growth cone periphery, whereas the plus end-binding property supports axon extension via stabilizing the growing ends of axonal MTs. We propose a model in which CLASP transduces GSK3 activity levels to differentially control axon growth by coordinating the stability and configuration of growth cone MTs. PMID:21937714

  18. Changes in the Width of the Tibiofibular Syndesmosis Related to Lower Extremity Joint Dynamics and Neuromuscular Coordination on Drop Landing During the Menstrual Cycle.

    Science.gov (United States)

    Okazaki, Michie; Kaneko, Masaaki; Ishida, Yukisato; Murase, Norio; Katsumura, Toshihito

    2017-09-01

    Many injuries of the lower extremities, especially the knee and ankle, occur during sports activity, and the incidence rate is higher in women than in men. The hypothesis was that phases of the menstrual cycle affect the width of the tibiofibular syndesmosis during drop landing in healthy young women and that such changes at the tibiofibular joint also affect the dynamics and neuromuscular coordination of the lower extremities. Descriptive laboratory study. Participants included 28 healthy young women (mean age, 21.0 ± 0.8 years). Blood samples were collected to determine plasma levels of estradiol and progesterone immediately before the performance of the task: drop landing on a single leg from a 30-cm platform. Using ultrasonography, the distance between the tibia and the distal end of the fibula, regarded as the width of the tibiofibular syndesmosis, was measured in an upright position without flexion of the ankle. The peak ground-reaction force (GRF) on landing was measured using a force platform. The time to peak GRF (Tp-GRF) was measured as the time from initial ground contact to the peak GRF. Hip, knee, and ankle joint angles during the single-leg landing were calculated using a 3-dimensional motion analysis system. Muscle activities of the lower extremities were measured using surface electromyography. The width of the tibiofibular syndesmosis was significantly greater in the luteal phase when compared with the menstrual, follicular, and ovulation phases (by 5%-8% of control). Also, during the luteal phase, the Tp-GRF was significantly shorter than in the follicular phase (by 6%); hip internal rotation and knee valgus were significantly greater than in the menstrual phase (by 43% and 34%, respectively); knee flexion was significantly less than in the menstrual and follicular phases (by 7%-9%); ankle dorsiflection was significantly less than in the follicular phase (by 11%); ankle adduction and eversion were significantly greater than in the menstrual and

  19. Kindlin1 regulates microtubule function to ensure normal mitosis.

    Science.gov (United States)

    Patel, Hitesh; Stavrou, Ifigeneia; Shrestha, Roshan L; Draviam, Viji; Frame, Margaret C; Brunton, Valerie G

    2016-08-01

    Loss of Kindlin 1 (Kin1) results in the skin blistering disorder Kindler Syndrome (KS), whose symptoms also include skin atrophy and reduced keratinocyte proliferation. Kin1 binds to integrins to modulate their activation and more recently it has been shown to regulate mitotic spindles and cell survival in a Plk1-dependent manner. Here we report that short-term Kin1 deletion in mouse skin results in impaired mitosis, which is associated with reduced acetylated tubulin (ac-tub) levels and cell proliferation. In cells, impaired mitosis and reduced ac-tub levels are also accompanied by reduced microtubule stability, all of which are rescued by HDAC6 inhibition. The ability of Kin1 to regulate HDAC6-dependent cellular ac-tub levels is dependent on its phosphorylation by Plk1. Taken together, these data define a novel role for Kin1 in microtubule acetylation and stability and offer a mechanistic insight into how certain KS phenotypes, such as skin atrophy and reduced cell proliferation, arise. © The Author (2016). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS.

  20. Hepatocyte cotransport of taurocholate and bilirubin glucuronides: Role of microtubules

    International Nuclear Information System (INIS)

    Crawford, J.M.; Gollan, J.L.

    1988-01-01

    Modulation of bile pigment excretion by bile salts has been attributed to modification of canalicular membrane transport or a physical interaction in bile. Based on the observation that a microtubule-dependent pathway is involved in the hepatocellular transport of bile salts, the authors investigated the possibility that bilirubin glucuronides are associated with bile salts during intracellular transport. Experiments were conducted in intact rats (basal) or after overnight biliary diversion and intravenous reinfusion of taurocholate (depleted/reinfused). All rats were pretreated with intravenous low-dose colchicine or its inactive isomer lumicolchicine. Biliary excretion of radiolabeled bilirubin glucuronides derived from tracer [ 14 C]bilirubin-[ 3 H]bilirubin monoglucuronide (coinjected iv) was unchanged in basal rats but was consistently delayed in depleted/reinfused rats. This was accompanied by a significant shift toward bilirubin diglucuronide formation from both substrates. In basal Gunn rats, with deficient bilirubin glucuronidation, biliary excretion of intravenous [ 14 C]bilirubin monoglucuronide-[ 3 H]bilirubin diglucuronide was unaffected by colchicine but was retarded in depleted/reinfused Gunn rats. Colchicine had no effect on the rate of bilirubin glucuronidation in vitro in rat liver microsomes. They conclude that a portion of the bilirubin glucuronides generated endogenously in hepatocytes or taken up directly from plasma may be cotransported with bile salts to the bile canalicular membrane via a microtubule-dependent mechanism

  1. Endoplasmic-reticulum-mediated microtubule alignment governs cytoplasmic streaming.

    Science.gov (United States)

    Kimura, Kenji; Mamane, Alexandre; Sasaki, Tohru; Sato, Kohta; Takagi, Jun; Niwayama, Ritsuya; Hufnagel, Lars; Shimamoto, Yuta; Joanny, Jean-François; Uchida, Seiichi; Kimura, Akatsuki

    2017-04-01

    Cytoplasmic streaming refers to a collective movement of cytoplasm observed in many cell types. The mechanism of meiotic cytoplasmic streaming (MeiCS) in Caenorhabditis elegans zygotes is puzzling as the direction of the flow is not predefined by cell polarity and occasionally reverses. Here, we demonstrate that the endoplasmic reticulum (ER) network structure is required for the collective flow. Using a combination of RNAi, microscopy and image processing of C. elegans zygotes, we devise a theoretical model, which reproduces and predicts the emergence and reversal of the flow. We propose a positive-feedback mechanism, where a local flow generated along a microtubule is transmitted to neighbouring regions through the ER. This, in turn, aligns microtubules over a broader area to self-organize the collective flow. The proposed model could be applicable to various cytoplasmic streaming phenomena in the absence of predefined polarity. The increased mobility of cortical granules by MeiCS correlates with the efficient exocytosis of the granules to protect the zygotes from osmotic and mechanical stresses.

  2. Centriole triplet microtubules are required for stable centriole formation and inheritance in human cells

    Science.gov (United States)

    Wang, Jennifer T; Kong, Dong; Hoerner, Christian R; Loncarek, Jadranka

    2017-01-01

    Centrioles are composed of long-lived microtubules arranged in nine triplets. However, the contribution of triplet microtubules to mammalian centriole formation and stability is unknown. Little is known of the mechanism of triplet microtubule formation, but experiments in unicellular eukaryotes indicate that delta-tubulin and epsilon-tubulin, two less-studied tubulin family members, are required. Here, we report that centrioles in delta-tubulin and epsilon-tubulin null mutant human cells lack triplet microtubules and fail to undergo centriole maturation. These aberrant centrioles are formed de novo each cell cycle, but are unstable and do not persist to the next cell cycle, leading to a futile cycle of centriole formation and disintegration. Disintegration can be suppressed by paclitaxel treatment. Delta-tubulin and epsilon-tubulin physically interact, indicating that these tubulins act together to maintain triplet microtubules and that these are necessary for inheritance of centrioles from one cell cycle to the next. PMID:28906251

  3. Centriole triplet microtubules are required for stable centriole formation and inheritance in human cells.

    Science.gov (United States)

    Wang, Jennifer T; Kong, Dong; Hoerner, Christian R; Loncarek, Jadranka; Stearns, Tim

    2017-09-14

    Centrioles are composed of long-lived microtubules arranged in nine triplets. However, the contribution of triplet microtubules to mammalian centriole formation and stability is unknown. Little is known of the mechanism of triplet microtubule formation, but experiments in unicellular eukaryotes indicate that delta-tubulin and epsilon-tubulin, two less-studied tubulin family members, are required. Here, we report that centrioles in delta-tubulin and epsilon-tubulin null mutant human cells lack triplet microtubules and fail to undergo centriole maturation. These aberrant centrioles are formed de novo each cell cycle, but are unstable and do not persist to the next cell cycle, leading to a futile cycle of centriole formation and disintegration. Disintegration can be suppressed by paclitaxel treatment. Delta-tubulin and epsilon-tubulin physically interact, indicating that these tubulins act together to maintain triplet microtubules and that these are necessary for inheritance of centrioles from one cell cycle to the next.

  4. Quantitative cell polarity imaging defines leader-to-follower transitions during collective migration and the key role of microtubule-dependent adherens junction formation.

    Science.gov (United States)

    Revenu, Céline; Streichan, Sebastian; Donà, Erika; Lecaudey, Virginie; Hufnagel, Lars; Gilmour, Darren

    2014-03-01

    The directed migration of cell collectives drives the formation of complex organ systems. A characteristic feature of many migrating collectives is a 'tissue-scale' polarity, whereby 'leader' cells at the edge of the tissue guide trailing 'followers' that become assembled into polarised epithelial tissues en route. Here, we combine quantitative imaging and perturbation approaches to investigate epithelial cell state transitions during collective migration and organogenesis, using the zebrafish lateral line primordium as an in vivo model. A readout of three-dimensional cell polarity, based on centrosomal-nucleus axes, allows the transition from migrating leaders to assembled followers to be quantitatively resolved for the first time in vivo. Using live reporters and a novel fluorescent protein timer approach, we investigate changes in cell-cell adhesion underlying this transition by monitoring cadherin receptor localisation and stability. This reveals that while cadherin 2 is expressed across the entire tissue, functional apical junctions are first assembled in the transition zone and become progressively more stable across the leader-follower axis of the tissue. Perturbation experiments demonstrate that the formation of these apical adherens junctions requires dynamic microtubules. However, once stabilised, adherens junction maintenance is microtubule independent. Combined, these data identify a mechanism for regulating leader-to-follower transitions within migrating collectives, based on the relocation and stabilisation of cadherins, and reveal a key role for dynamic microtubules in this process.

  5. Control of cell volume in the J774 macrophage by microtubule disassembly and cyclic AMP

    Science.gov (United States)

    Melmed, RN; Karanian, PJ; Berlin, RD

    1981-01-01

    We have explored the possibilities that cell volume is regulated by the status of microtubule assembly and cyclic AMP metabolism and may be coordinated with shape change. Treatment of J774.2 mouse macrophages with colchicine caused rapid microtubule disassembly and was associated with a striking increase (from 15-20 to more than 90 percent) in the proportion of cells with a large protuberance at one pole. This provided a simple experimental system in which shape changes occurred in virtually an entire cell population in suspension. Parallel changes in cell volume could then be quantified by isotope dilution techniques. We found that the shape change caused by colchicine was accompanied by a decrease in cell volume of approximately 20 percent. Nocodozole, but not lumicolchicine, caused identical changes in both cell shape and cell volume. The volume loss was not due to cell lysis nor to inhibition of pinocytosis. The mechanism of volume loss was also examined. Colchicine induced a small but reproducible increase in activity of the ouabain-sensitive Na(+), K(+)-dependent ATPase. However, inhibition of this enzyme/transport system by ouabain did not change cell volume nor did it block the colchicines-induced decrease in volume. One the other hand, SITS (4’acetamido, 4-isothiocyano 2,2’ disulfonic acid stilbene), an inhibitor of anion transport, inhibited the effects of colchicines, thus suggesting a role for an anion transport system in cell volume regulation. Because colchicine is known to activate adenylate cyclase in several systems and because cell shape changes are often induced by hormones that elevate cyclic AMP, we also examined the effects of cyclic AMP on cell volume. Agents that act to increase syclic AMP (cholera toxin, which activates adenylate cyclase; IBMX, and inhibitor of phosphodiesterase; and dibutyryl cyclic AMP) all caused a volume decrease comparable to that of colchicine. To define the effective metabolic pathway, we studied two mutants of J

  6. Modeling of the dynamics of GBB1005 Ball & Beam Educational Control System as a controlled mechanical system with a redundant coordinate

    Directory of Open Access Journals (Sweden)

    A. Ya. Krasinskii

    2014-01-01

    Full Text Available The method of research stability and stabilization of equilibrium of systems with geometrical constraints is elaborated and used for equilibrium for real mechatronic arrangement GBB1005 Ball & Beam. For mathematical model construction is used Shul'gin's equations with redundant coordinates. The through differentiation geometrical constraints obtained kinematic (holonomic constraints is necessary add for stability analysis. Asymptotic stability equilibrium for mechanical systems with redundant coordinates is possible , in spite of formal reduction to Lyapunov's especial case, if the number zero roots is equal the number constraints . More exact nonlinear mathematical model of the mechanical component Ball &Beam is considered in this paper. One nonlinear geometric constrain in this problem is allow find the new equilibrium position. The choice of linear control subsystem is depend from the choice of redundant coordinate.

  7. Collective behavior of minus-ended motors in mitotic microtubule asters gliding toward DNA

    International Nuclear Information System (INIS)

    Athale, Chaitanya A; Dinarina, Ana; Nedelec, Francois; Karsenti, Eric

    2014-01-01

    Microtubules (MTs) nucleated by centrosomes form star-shaped structures referred to as asters. Aster motility and dynamics is vital for genome stability, cell division, polarization and differentiation. Asters move either toward the cell center or away from it. Here, we focus on the centering mechanism in a membrane independent system of Xenopus cytoplasmic egg extracts. Using live microscopy and single particle tracking, we find that asters move toward chromatinized DNA structures. The velocity and directionality profiles suggest a random-walk with drift directed toward DNA. We have developed a theoretical model that can explain this movement as a result of a gradient of MT length dynamics and MT gliding on immobilized dynein motors. In simulations, the antagonistic action of the motor species on the radial array of MTs leads to a tug-of-war purely due to geometric considerations and aster motility resembles a directed random-walk. Additionally, our model predicts that aster velocities do not change greatly with varying initial distance from DNA. The movement of asymmetric asters becomes increasingly super-diffusive with increasing motor density, but for symmetric asters it becomes less super-diffusive. The transition of symmetric asters from superdiffusive to diffusive mobility is the result of number fluctuations in bound motors in the tug-of-war. Overall, our model is in good agreement with experimental data in Xenopus cytoplasmic extracts and predicts novel features of the collective effects of motor-MT interactions. (paper)

  8. Collective coordinates on symplectic manifolds

    International Nuclear Information System (INIS)

    Razumov, A.V.; Taranov, A.Yu.

    1981-01-01

    For an arbitrary Lie group of canonical transformations on a symplectic manifold collective coordinates are introduced. They describe a motion of the dynamical system as a whole under the group transformations. Some properties of Lie group of canonical transformations are considered [ru

  9. Brassinosteroids regulate pavement cell growth by mediating BIN2-induced microtubule stabilization.

    Science.gov (United States)

    Liu, Xiaolei; Yang, Qin; Wang, Yuan; Wang, Linhai; Fu, Ying; Wang, Xuelu

    2018-02-23

    Brassinosteroids (BRs), a group of plant steroid hormones, play important roles in regulating plant development. The cytoskeleton also affects key developmental processes and a deficiency in BR biosynthesis or signaling leads to abnormal phenotypes similar to those of microtubule-defective mutants. However, how BRs regulate microtubule and cell morphology remains unknown. Here, using liquid chromatography-tandem mass spectrometry, we identified tubulin proteins that interact with Arabidopsis BRASSINOSTEROID INSENSITIVE2 (BIN2), a negative regulator of BR responses in plants. In vitro and in vivo pull-down assays confirmed that BIN2 interacts with tubulin proteins. High-speed co-sedimentation assays demonstrated that BIN2 also binds microtubules. The Arabidopsis genome also encodes two BIN2 homologs, BIN2-LIKE 1 (BIL1) and BIL2, which function redundantly with BIN2. In the bin2-3 bil1 bil2 triple mutant, cortical microtubules were more sensitive to treatment with the microtubule-disrupting drug oryzalin than in wild-type, whereas in the BIN2 gain-of-function mutant bin2-1, cortical microtubules were insensitive to oryzalin treatment. These results provide important insight into how BR regulates plant pavement cell and leaf growth by mediating the stabilization of microtubules by BIN2.

  10. Clostridium difficile toxin CDT induces formation of microtubule-based protrusions and increases adherence of bacteria.

    Directory of Open Access Journals (Sweden)

    Carsten Schwan

    2009-10-01

    Full Text Available Clostridium difficile causes antibiotic-associated diarrhea and pseudomembranous colitis by production of the Rho GTPase-glucosylating toxins A and B. Recently emerging hypervirulent Clostridium difficile strains additionally produce the binary ADP-ribosyltransferase toxin CDT (Clostridium difficile transferase, which ADP-ribosylates actin and inhibits actin polymerization. Thus far, the role of CDT as a virulence factor is not understood. Here we report by using time-lapse- and immunofluorescence microscopy that CDT and other binary actin-ADP-ribosylating toxins, including Clostridium botulinum C2 toxin and Clostridium perfringens iota toxin, induce redistribution of microtubules and formation of long (up to >150 microm microtubule-based protrusions at the surface of intestinal epithelial cells. The toxins increase the length of decoration of microtubule plus-ends by EB1/3, CLIP-170 and CLIP-115 proteins and cause redistribution of the capture proteins CLASP2 and ACF7 from microtubules at the cell cortex into the cell interior. The CDT-induced microtubule protrusions form a dense meshwork at the cell surface, which wrap and embed bacterial cells, thereby largely increasing the adherence of Clostridia. The study describes a novel type of microtubule structure caused by less efficient microtubule capture and offers a new perspective for the pathogenetic role of CDT and other binary actin-ADP-ribosylating toxins in host-pathogen interactions.

  11. Buckling analysis of orthotropic protein microtubules under axial and radial compression based on couple stress theory.

    Science.gov (United States)

    Beni, Yaghoub Tadi; Zeverdejani, M Karimi; Mehralian, Fahimeh

    2017-10-01

    Protein microtubules (MTs) are one of the important intercellular components and have a vital role in the stability and strength of the cells. Due to applied external loads, protein microtubules may be involved buckling phenomenon. Due to impact of protein microtubules in cell reactions, it is important to determine their critical buckling load. Considering nature of protein microtubules, various parameters are effective on microtubules buckling. The small size of microtubules and also lack of uniformity of MTs properties in different directions caused the necessity of accuracy in the analysis of these bio-structure. In fact, microtubules must be considered as a size dependent cylinder, which behave as an orthotropic material. Hence, in the present work using first-order shear deformation model (FSDT), the buckling equations of anisotropic MTs are derived based on new modified couple stress theory (NMCST). After solving the stability equations, the influences of various parameters are measured on the MTs critical buckling load. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Measurement of in vitro microtubule polymerization by turbidity and fluorescence.

    Science.gov (United States)

    Mirigian, Matthew; Mukherjee, Kamalika; Bane, Susan L; Sackett, Dan L

    2013-01-01

    Tubulin polymerization may be conveniently monitored by the increase in turbidity (optical density, or OD) or by the increase in fluorescence intensity of diamidino-phenylindole. The resulting data can be a quantitative measure of microtubule (MT) assembly, but some care is needed in interpretation, especially of OD data. Buffer formulations used for the assembly reaction significantly influence the polymerization, both by altering the critical concentration for polymerization and by altering the exact polymer produced-for example, by increasing the production of sheet polymers in addition to MT. Both the turbidity and the fluorescence methods are useful for demonstrating the effect of MT-stabilizing or -destabilizing additives. 2013 Published by Elsevier Inc.

  13. HSPB1 facilitates the formation of non-centrosomal microtubules.

    Directory of Open Access Journals (Sweden)

    Leonardo Almeida-Souza

    Full Text Available The remodeling capacity of microtubules (MT is essential for their proper function. In mammals, MTs are predominantly formed at the centrosome, but can also originate from non-centrosomal sites, a process that is still poorly understood. We here show that the small heat shock protein HSPB1 plays a role in the control of non-centrosomal MT formation. The HSPB1 expression level regulates the balance between centrosomal and non-centrosomal MTs. The HSPB1 protein can be detected specifically at sites of de novo forming non-centrosomal MTs, while it is absent from the centrosomes. In addition, we show that HSPB1 binds preferentially to the lattice of newly formed MTs in vitro, suggesting that its function occurs by stabilizing MT seeds. Our findings open new avenues for the understanding of the role of HSPB1 in the development, maintenance and protection of cells with specialized non-centrosomal MT arrays.

  14. Near-atomic model of microtubule-tau interactions.

    Science.gov (United States)

    Kellogg, Elizabeth H; Hejab, Nisreen M A; Poepsel, Simon; Downing, Kenneth H; DiMaio, Frank; Nogales, Eva

    2018-06-15

    Tau is a developmentally regulated axonal protein that stabilizes and bundles microtubules (MTs). Its hyperphosphorylation is thought to cause detachment from MTs and subsequent aggregation into fibrils implicated in Alzheimer's disease. It is unclear which tau residues are crucial for tau-MT interactions, where tau binds on MTs, and how it stabilizes them. We used cryo-electron microscopy to visualize different tau constructs on MTs and computational approaches to generate atomic models of tau-tubulin interactions. The conserved tubulin-binding repeats within tau adopt similar extended structures along the crest of the protofilament, stabilizing the interface between tubulin dimers. Our structures explain the effect of phosphorylation on MT affinity and lead to a model of tau repeats binding in tandem along protofilaments, tethering together tubulin dimers and stabilizing polymerization interfaces. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  15. STIM1-Directed Reorganization of Microtubules in Activated Mast Cells

    Czech Academy of Sciences Publication Activity Database

    Hájková, Zuzana; Bugajev, Viktor; Dráberová, Eduarda; Vinopal, Stanislav; Dráberová, Lubica; Janáček, Jiří; Dráber, Petr; Dráber, Pavel

    2011-01-01

    Roč. 186, č. 2 (2011), s. 913-923 ISSN 0022-1767 R&D Projects: GA ČR(CZ) GD204/09/H084; GA ČR GA204/09/1777; GA ČR GA301/09/1826; GA ČR GAP302/10/1759; GA MŠk LC545; GA MŠk(CZ) LC06063; GA AV ČR KAN200520701 Institutional research plan: CEZ:AV0Z50520514; CEZ:AV0Z50110509 Keywords : STIM1 * bone marrow-derived mast cells * microtubules Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.788, year: 2011

  16. A Mechanism for Cytoplasmic Streaming: Kinesin-Driven Alignment of Microtubules and Fast Fluid Flows.

    Science.gov (United States)

    Monteith, Corey E; Brunner, Matthew E; Djagaeva, Inna; Bielecki, Anthony M; Deutsch, Joshua M; Saxton, William M

    2016-05-10

    The transport of cytoplasmic components can be profoundly affected by hydrodynamics. Cytoplasmic streaming in Drosophila oocytes offers a striking example. Forces on fluid from kinesin-1 are initially directed by a disordered meshwork of microtubules, generating minor slow cytoplasmic flows. Subsequently, to mix incoming nurse cell cytoplasm with ooplasm, a subcortical layer of microtubules forms parallel arrays that support long-range, fast flows. To analyze the streaming mechanism, we combined observations of microtubule and organelle motions with detailed mathematical modeling. In the fast state, microtubules tethered to the cortex form a thin subcortical layer and undergo correlated sinusoidal bending. Organelles moving in flows along the arrays show velocities that are slow near the cortex and fast on the inward side of the subcortical microtubule layer. Starting with fundamental physical principles suggested by qualitative hypotheses, and with published values for microtubule stiffness, kinesin velocity, and cytoplasmic viscosity, we developed a quantitative coupled hydrodynamic model for streaming. The fully detailed mathematical model and its simulations identify key variables that can shift the system between disordered (slow) and ordered (fast) states. Measurements of array curvature, wave period, and the effects of diminished kinesin velocity on flow rates, as well as prior observations on f-actin perturbation, support the model. This establishes a concrete mechanistic framework for the ooplasmic streaming process. The self-organizing fast phase is a result of viscous drag on kinesin-driven cargoes that mediates equal and opposite forces on cytoplasmic fluid and on microtubules whose minus ends are tethered to the cortex. Fluid moves toward plus ends and microtubules are forced backward toward their minus ends, resulting in buckling. Under certain conditions, the buckling microtubules self-organize into parallel bending arrays, guiding varying directions

  17. MTB-3, a microtubule plus-end tracking protein (+TIP of Neurospora crassa.

    Directory of Open Access Journals (Sweden)

    Rosa R Mouriño-Pérez

    Full Text Available The microtubule (MT "plus end" constitutes the platform for the accumulation of a structurally and functionally diverse group of proteins, collectively called "MT plus-end tracking proteins" (+TIPs. +TIPs control MT dynamics and link MTs to diverse sub-cellular structures. Neurospora crassaMicroTubule Binding protein-3 (MTB-3 is the homolog of yeast EB1, a highly conserved +TIP. To address the function of MTB-3, we examined strains with mtb-3 deletions, and we tagged MTB-3 with GFP to assess its dynamic behavior. MTB-3-GFP was present as comet-like structures distributed more or less homogeneously within the hyphal cytoplasm, and moving mainly towards the apex at speeds up to 4× faster than the normal hyphal elongation rates. MTB-3-GFP comets were present in all developmental stages, but were most abundant in mature hyphae. MTB-3-GFP comets were observed moving in anterograde and retrograde direction along the hypha. Retrograde movement was also observed as originating from the apical dome. The integrity of the microtubular cytoskeleton affects the presence and dynamics of MTB-3-GFP comets, while actin does not seem to play a role. The size of MTB-3-GFP comets is affected by the absence of dynactin and conventional kinesin. We detected no obvious morphological phenotypes in Δmtb-3 mutants but there were fewer MTs in Δmtb-3, MTs were less bundled and less organized. Compared to WT, both MT polymerization and depolymerization rates were significantly decreased in Δmtb-3. In summary, the lack of MTB-3 affects overall growth and morphological phenotypes of N. crassa only slightly, but deletion of mtb-3 has strong effect on MT dynamics.

  18. Trainer Instruction for the Aircrew Coordination Exportable Training Package

    National Research Council Canada - National Science Library

    Pawlik, Eugene

    2001-01-01

    ...) to field the Aircrew Coordination Exportable Training Package. USARIARDA and Dynamics Research Corporation prepared and conducted a 12-day, modified Aircrew Coordination Instructor Course and provided post-training consultation to the cadre...

  19. Communication: State-to-state dynamics of the Cl + H2O → HCl + OH reaction: Energy flow into reaction coordinate and transition-state control of product energy disposal

    International Nuclear Information System (INIS)

    Zhao, Bin; Guo, Hua; Sun, Zhigang

    2015-01-01

    Quantum state-to-state dynamics of a prototypical four-atom reaction, namely, Cl + H 2 O → HCl + OH, is investigated for the first time in full dimensionality using a transition-state wave packet method. The state-to-state reactivity and its dependence on the reactant internal excitations are analyzed and found to share many similarities both energetically and dynamically with the H + H 2 O → H 2 + OH reaction. The strong enhancement of reactivity by the H 2 O stretching vibrational excitations in both reactions is attributed to the favorable energy flow into the reaction coordinate near the transition state. On the other hand, the insensitivity of the product state distributions with regard to reactant internal excitation stems apparently from the transition-state control of product energy disposal

  20. Communication: State-to-state dynamics of the Cl + H2O → HCl + OH reaction: Energy flow into reaction coordinate and transition-state control of product energy disposal.

    Science.gov (United States)

    Zhao, Bin; Sun, Zhigang; Guo, Hua

    2015-06-28

    Quantum state-to-state dynamics of a prototypical four-atom reaction, namely, Cl + H2O → HCl + OH, is investigated for the first time in full dimensionality using a transition-state wave packet method. The state-to-state reactivity and its dependence on the reactant internal excitations are analyzed and found to share many similarities both energetically and dynamically with the H + H2O → H2 + OH reaction. The strong enhancement of reactivity by the H2O stretching vibrational excitations in both reactions is attributed to the favorable energy flow into the reaction coordinate near the transition state. On the other hand, the insensitivity of the product state distributions with regard to reactant internal excitation stems apparently from the transition-state control of product energy disposal.

  1. Protein friction limits diffusive and directed movements of kinesin motors on microtubules.

    Science.gov (United States)

    Bormuth, Volker; Varga, Vladimir; Howard, Jonathon; Schäffer, Erik

    2009-08-14

    Friction limits the operation of macroscopic engines and is critical to the performance of micromechanical devices. We report measurements of friction in a biological nanomachine. Using optical tweezers, we characterized the frictional drag force of individual kinesin-8 motor proteins interacting with their microtubule tracks. At low speeds and with no energy source, the frictional drag was related to the diffusion coefficient by the Einstein relation. At higher speeds, the frictional drag force increased nonlinearly, consistent with the motor jumping 8 nanometers between adjacent tubulin dimers along the microtubule, and was asymmetric, reflecting the structural polarity of the microtubule. We argue that these frictional forces arise from breaking bonds between the motor domains and the microtubule, and they limit the speed and efficiency of kinesin.

  2. Coupling of kinesin ATP turnover to translocation and microtubule regulation: one engine, many machines.

    Science.gov (United States)

    Friel, Claire T; Howard, Jonathon

    2012-12-01

    The cycle of ATP turnover is integral to the action of motor proteins. Here we discuss how variation in this cycle leads to variation of function observed amongst members of the kinesin superfamily of microtubule associated motor proteins. Variation in the ATP turnover cycle among superfamily members can tune the characteristic kinesin motor to one of the range of microtubule-based functions performed by kinesins. The speed at which ATP is hydrolysed affects the speed of translocation. The ratio of rate constants of ATP turnover in relation to association and dissociation from the microtubule influence the processivity of translocation. Variation in the rate-limiting step of the cycle can reverse the way in which the motor domain interacts with the microtubule producing non-motile kinesins. Because the ATP turnover cycle is not fully understood for the majority of kinesins, much work remains to show how the kinesin engine functions in such a wide variety of molecular machines.

  3. Cytoplasmic Nucleation and Atypical Branching Nucleation Generate Endoplasmic Microtubules in Physcomitrella patens[OPEN

    Science.gov (United States)

    Nakaoka, Yuki; Kimura, Akatsuki; Tani, Tomomi; Goshima, Gohta

    2015-01-01

    The mechanism underlying microtubule (MT) generation in plants has been primarily studied using the cortical MT array, in which fixed-angled branching nucleation and katanin-dependent MT severing predominate. However, little is known about MT generation in the endoplasm. Here, we explored the mechanism of endoplasmic MT generation in protonemal cells of Physcomitrella patens. We developed an assay that utilizes flow cell and oblique illumination fluorescence microscopy, which allowed visualization and quantification of individual MT dynamics. MT severing was infrequently observed, and disruption of katanin did not severely affect MT generation. Branching nucleation was observed, but it showed markedly variable branch angles and was occasionally accompanied by the transport of nucleated MTs. Cytoplasmic nucleation at seemingly random locations was most frequently observed and predominated when depolymerized MTs were regrown. The MT nucleator γ-tubulin was detected at the majority of the nucleation sites, at which a single MT was generated in random directions. When γ-tubulin was knocked down, MT generation was significantly delayed in the regrowth assay. However, nucleation occurred at a normal frequency in steady state, suggesting the presence of a γ-tubulin-independent backup mechanism. Thus, endoplasmic MTs in this cell type are generated in a less ordered manner, showing a broader spectrum of nucleation mechanisms in plants. PMID:25616870

  4. Cytoplasmic streaming in Drosophila oocytes varies with kinesin activity and correlates with the microtubule cytoskeleton architecture.

    Science.gov (United States)

    Ganguly, Sujoy; Williams, Lucy S; Palacios, Isabel M; Goldstein, Raymond E

    2012-09-18

    Cells can localize molecules asymmetrically through the combined action of cytoplasmic streaming, which circulates their fluid contents, and specific anchoring mechanisms. Streaming also contributes to the distribution of nutrients and organelles such as chloroplasts in plants, the asymmetric position of the meiotic spindle in mammalian embryos, and the developmental potential of the zygote, yet little is known quantitatively about the relationship between streaming and the motor activity which drives it. Here we use Particle Image Velocimetry to quantify the statistical properties of Kinesin-dependent streaming during mid-oogenesis in Drosophila. We find that streaming can be used to detect subtle changes in Kinesin activity and that the flows reflect the architecture of the microtubule cytoskeleton. Furthermore, based on characterization of the rheology of the cytoplasm in vivo, we establish estimates of the number of Kinesins required to drive the observed streaming. Using this in vivo data as the basis of a model for transport, we suggest that the disordered character of transport at mid-oogenesis, as revealed by streaming, is an important component of the localization dynamics of the body plan determinant oskar mRNA.

  5. Multi scale modeling of 2450MHz electric field effects on microtubule mechanical properties.

    Science.gov (United States)

    Setayandeh, S S; Lohrasebi, A

    2016-11-01

    Microtubule (MT) rigidity and response to 2450MHz electric fields were investigated, via multi scale modeling approach. For this purpose, six systems were designed and simulated to consider all types of feasible interactions between α and β monomers in MT, by using all atom molecular dynamics method. Subsequently, coarse grain modeling was used to design different lengths of MT. Investigation of effects of external 2450MHz electric field on MT showed MT less rigidity in the presence of such field, which may perturb its functions. Moreover, an additional computational setup was designed to study effects of 2450MHz field on MT response to AFM tip. It was found, more tip velocity led to MT faster transformation and less time was required to change MT elastic response to plastic one, applying constant radius. Moreover it was observed smaller tip caused to increase required time to change MT elastic response to plastic one, considering constant velocity. Furthermore, exposing MT to 2450MHz field led to no significant changes in MT response to AFM tip, but quick change in MT elastic response to plastic one. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Survivin counteracts the therapeutic effect of microtubule de-stabilizers by stabilizing tubulin polymers

    Directory of Open Access Journals (Sweden)

    Hsieh Hsing-Pang

    2009-07-01

    Full Text Available Abstract Background Survivin is a dual function protein. It inhibits the apoptosis of cells by inhibiting caspases, and also promotes cell growth by stabilizing microtubules during mitosis. Over-expression of survivin has been demonstrated to induce drug-resistance to various chemo-therapeutic agents such as cisplatin (DNA damaging agent and paclitaxel (microtubule stabilizer in cancers. However, survivin-induced resistance to microtubule de-stabilizers such as Vinca alkaloids and Combretastatin A-4 (CA-4-related compounds were seldom demonstrated in the past. Furthermore, the question remains as to whether survivin plays a dominant role in processing cytokinesis or inhibiting caspases activity in cells treated with anti-mitotic compounds. The purpose of this study is to evaluate the effect of survivin on the resistance and susceptibility of human cancer cells to microtubule de-stabilizer-induced cell death. Results BPR0L075 is a CA-4 analog that induces microtubule de-polymerization and subsequent caspase-dependent apoptosis. To study the relationship between the expression of survivin and the resistance to microtubule de-stabilizers, a KB-derived BPR0L075-resistant cancer cell line, KB-L30, was generated for this study. Here, we found that survivin was over-expressed in the KB-L30 cells. Down-regulation of survivin by siRNA induced hyper-sensitivity to BPR0L075 in KB cells and partially re-stored sensitivity to BPR0L075 in KB-L30 cells. Western blot analysis revealed that down-regulation of survivin induced microtubule de-stabilization in both KB and KB-L30 cells. However, the same treatment did not enhance the down-stream caspase-3/-7 activities in BPR0L075-treated KB cells. Translocation of a caspase-independent apoptosis-related molecule, apoptosis-inducing factor (AIF, from cytoplasm to the nucleus was observed in survivin-targeted KB cells under BPR0L075 treatment. Conclusion In this study, survivin plays an important role in the

  7. Syntheses and Characterization of New Nickel Coordination Polymers with 4,4’-Dipyridylsulfide. Dynamic Rearrangements of One-Dimensional Chains Responding to External Stimuli: Temperature Variation and Guest Releases/Re-Inclusions

    Directory of Open Access Journals (Sweden)

    Hiroyuki Kawaguchi

    2010-08-01

    Full Text Available Crystal structures and dynamic rearrangements of one-dimensional coordination polymers with 4,4'-dipyridylsulfide (dps have been studied. Reaction of Ni(NO32·6H2O with dps in EtOH yielded [Ni(dps2(NO32]·EtOH (1, which had channels filled with guest EtOH molecules among the four Ni(dps2 chains. This coordination polymer reversibly transformed the channel structure responding to temperature variations. Immersion of 1 in m-xylene released guest EtOH molecules to yield a guest-free coordination polymer [Ni(dps2(NO32] (2a, which was also obtained by treatment of Ni(NO32·6H2O with dps in MeOH. On the other hand, removal of the guest molecules from 1 upon heating at 130 °C under reduced pressure produced a guest-free coordination polymer [Ni(dps2(NO32] (2b. Although the 2a and 2b guest-free coordination polymers have the same formula, they showed differences in the assembled structures of the one-dimensional chains. Exposure of 2b to EtOH vapor reproduced 1, while 2a did not convert to 1 in a similar reaction. Reaction of Ni(NO32·6H2O with dps in acetone provided [Ni(dps(NO32(H2O]·Me2CO (4 with no channel structure. When MeOH or acetone was used as a reaction solvent, the [Ni(dps2(NO32]·(guest molecule type coordination polymer ,which was observed in 1, was not formed. Nevertheless, the reaction of Ni(NO32·6H2O with dps in MeOH/acetone mixed solution produced [Ni(dps2(NO32]·0.5(MeOH·acetone (5, which has an isostructural Ni-dps framework to 1.

  8. Arabidopsis FH1 Formin Affects Cotyledon Pavement Cell Shape by Modulating Cytoskeleton Dynamics.

    Science.gov (United States)

    Rosero, Amparo; Oulehlová, Denisa; Stillerová, Lenka; Schiebertová, Petra; Grunt, Michal; Žárský, Viktor; Cvrčková, Fatima

    2016-03-01

    Plant cell morphogenesis involves concerted rearrangements of microtubules and actin microfilaments. We previously reported that FH1, the main Arabidopsis thaliana housekeeping Class I membrane-anchored formin, contributes to actin dynamics and microtubule stability in rhizodermis cells. Here we examine the effects of mutations affecting FH1 (At3g25500) on cell morphogenesis and above-ground organ development in seedlings, as well as on cytoskeletal organization and dynamics, using a combination of confocal and variable angle epifluorescence microscopy with a pharmacological approach. Homozygous fh1 mutants exhibited cotyledon epinasty and had larger cotyledon pavement cells with more pronounced lobes than the wild type. The pavement cell shape alterations were enhanced by expression of the fluorescent microtubule marker GFP-microtubule-associated protein 4 (MAP4). Mutant cotyledon pavement cells exhibited reduced density and increased stability of microfilament bundles, as well as enhanced dynamics of microtubules. Analogous results were also obtained upon treatments with the formin inhibitor SMIFH2 (small molecule inhibitor of formin homology 2 domains). Pavement cell shape in wild-type (wt) and fh1 plants in some situations exhibited a differential response towards anti-cytoskeletal drugs, especially the microtubule disruptor oryzalin. Our observations indicate that FH1 participates in the control of microtubule dynamics, possibly via its effects on actin, subsequently influencing cell morphogenesis and macroscopic organ development. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  9. Cellular effects of curcumin on Plasmodium falciparum include disruption of microtubules.

    Directory of Open Access Journals (Sweden)

    Rimi Chakrabarti

    Full Text Available Curcumin has been widely investigated for its myriad cellular effects resulting in reduced proliferation of various eukaryotic cells including cancer cells and the human malaria parasite Plasmodium falciparum. Studies with human cancer cell lines HT-29, Caco-2, and MCF-7 suggest that curcumin can bind to tubulin and induce alterations in microtubule structure. Based on this finding, we investigated whether curcumin has any effect on P. falciparum microtubules, considering that mammalian and parasite tubulin are 83% identical. IC50 of curcumin was found to be 5 µM as compared to 20 µM reported before. Immunofluorescence images of parasites treated with 5 or 20 µM curcumin showed a concentration-dependent effect on parasite microtubules resulting in diffuse staining contrasting with the discrete hemispindles and subpellicular microtubules observed in untreated parasites. The effect on P. falciparum microtubules was evident only in the second cycle for both concentrations tested. This diffuse pattern of tubulin fluorescence in curcumin treated parasites was similar to the effect of a microtubule destabilizing drug vinblastine on P. falciparum. Molecular docking predicted the binding site of curcumin at the interface of alpha and beta tubulin, similar to another destabilizing drug colchicine. Data from predicted drug binding is supported by results from drug combination assays showing antagonistic interactions between curcumin and colchicine, sharing a similar binding site, and additive/synergistic interactions of curcumin with paclitaxel and vinblastine, having different binding sites. This evidence suggests that cellular effects of curcumin are at least, in part, due to its perturbing effect on P. falciparum microtubules. The action of curcumin, both direct and indirect, on P. falciparum microtubules is discussed.

  10. In vivo control mechanisms of motor-cargo movement on microtubules

    Science.gov (United States)

    Gunawardena, Shermali

    2014-03-01

    Within axons, molecular motors transport essential components required for neuronal growth and viability. Although many levels of regulation must exist for proper anterograde and retrograde transport of vital proteins, little is known about these mechanisms. Previous work suggested that the amyloid precursor protein (APP) functions as a kinesin-1 receptor during transport. However, how APP vesicle motility is regulated is unclear. Using genetics and in vivo imaging in Drosophila we showed that reduction of presenilin (PS) substantially increased anterograde and retrograde APP vesicle velocities. Strikingly, PS deficiency had no effect on an unrelated cargo vesicle containing synaptotagmin, which is powered by a different kinesin motor. Increased PS-mediated velocities required functional kinesin-1 and dynein motors. We also found that these PS-mediated effects on motor protein function were mediated via a pathway that involves glycogen synthase kinase-3 β (GSK-3 β) . PS genetically interacted with GSK-3 β in an activity dependent manner. Excess of active GSK-3 β perturbed transport by causing axonal blockages, which were enhanced by reduction of kinesin-1 or dynein, while excess of non-functional GSK-3 β had no effect. Strikingly, GSK-3 β-activity dependent transport defects were enhanced by reduction of PS. Collectively, our findings suggest that PS and GSK-3 β are required for normal motor protein function, and we propose a model in which PS likely regulates GSK-3 β activity during transport. These findings have important implications for our understanding of the complex regulatory machinery that must exist in vivo and how this system is coordinated during vesicle motility on microtubules.

  11. Interplay between microtubule bundling and sorting factors ensures acentriolar spindle stability during C. elegans oocyte meiosis.

    Directory of Open Access Journals (Sweden)

    Timothy J Mullen

    2017-09-01

    Full Text Available In many species, oocyte meiosis is carried out in the absence of centrioles. As a result, microtubule organization, spindle assembly, and chromosome segregation proceed by unique mechanisms. Here, we report insights into the principles underlying this specialized form of cell division, through studies of C. elegans KLP-15 and KLP-16, two highly homologous members of the kinesin-14 family of minus-end-directed kinesins. These proteins localize to the acentriolar oocyte spindle and promote microtubule bundling during spindle assembly; following KLP-15/16 depletion, microtubule bundles form but then collapse into a disorganized array. Surprisingly, despite this defect we found that during anaphase, microtubules are able to reorganize into a bundled array that facilitates chromosome segregation. This phenotype therefore enabled us to identify factors promoting microtubule organization during anaphase, whose contributions are normally undetectable in wild-type worms; we found that SPD-1 (PRC1 bundles microtubules and KLP-18 (kinesin-12 likely sorts those bundles into a functional orientation capable of mediating chromosome segregation. Therefore, our studies have revealed an interplay between distinct mechanisms that together promote spindle formation and chromosome segregation in the absence of structural cues such as centrioles.

  12. Hypothesis: NDL proteins function in stress responses by regulating microtubule organization.

    Science.gov (United States)

    Khatri, Nisha; Mudgil, Yashwanti

    2015-01-01

    N-MYC DOWNREGULATED-LIKE proteins (NDL), members of the alpha/beta hydrolase superfamily were recently rediscovered as interactors of G-protein signaling in Arabidopsis thaliana. Although the precise molecular function of NDL proteins is still elusive, in animals these proteins play protective role in hypoxia and expression is induced by hypoxia and nickel, indicating role in stress. Homology of NDL1 with animal counterpart N-MYC DOWNREGULATED GENE (NDRG) suggests similar functions in animals and plants. It is well established that stress responses leads to the microtubule depolymerization and reorganization which is crucial for stress tolerance. NDRG is a microtubule-associated protein which mediates the microtubule organization in animals by causing acetylation and increases the stability of α-tubulin. As NDL1 is highly homologous to NDRG, involvement of NDL1 in the microtubule organization during plant stress can also be expected. Discovery of interaction of NDL with protein kinesin light chain- related 1, enodomembrane family protein 70, syntaxin-23, tubulin alpha-2 chain, as a part of G protein interactome initiative encourages us to postulate microtubule stabilizing functions for NDL family in plants. Our search for NDL interactors in G protein interactome also predicts the role of NDL proteins in abiotic stress tolerance management. Based on published report in animals and predicted interacting partners for NDL in G protein interactome lead us to hypothesize involvement of NDL in the microtubule organization during abiotic stress management in plants.

  13. Emerging roles for microtubules in angiosperm pollen tube growth highlight new research cues

    Directory of Open Access Journals (Sweden)

    Alessandra eMoscatelli

    2015-02-01

    Full Text Available In plants, actin filaments have an important role in organelle movement and cytoplasmic streaming. Otherwise microtubules have a role in restricting organelles to specific areas of the cell and in maintaining organelle morphology. In somatic plant cells, microtubules also participate in cell division and morphogenesis, allowing cells to take their definitive shape in order to perform specific functions. In the latter case, microtubules influence assembly of the cell wall, controlling the delivery of enzymes involved in cellulose synthesis and of wall modulation material to the proper sites.In angiosperm pollen tubes, organelle movement is generally attributed to the acto-myosin system, the main role of which is in distributing organelles in the cytoplasm and in carrying secretory vesicles to the apex for polarized growth. Recent data on membrane trafficking suggests a role of microtubules in fine delivery and repositioning of vesicles to sustain pollen tube growth. This review examines the role of microtubules in secretion and endocytosis, highlighting new research cues regarding cell wall construction and pollen tube-pistil crosstalk, that help unravel the role of microtubules in polarized growth.

  14. ATPase Cycle of the Nonmotile Kinesin NOD Allows Microtubule End Tracking and Drives Chromosome Movement

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, J.; Sindelar, C; Mulko, N; Collins, K; Kong, S; Hawley, R; Kull, F

    2009-01-01

    Segregation of nonexchange chromosomes during Drosophila melanogaster meiosis requires the proper function of NOD, a nonmotile kinesin-10. We have determined the X-ray crystal structure of the NOD catalytic domain in the ADP- and AMPPNP-bound states. These structures reveal an alternate conformation of the microtubule binding region as well as a nucleotide-sensitive relay of hydrogen bonds at the active site. Additionally, a cryo-electron microscopy reconstruction of the nucleotide-free microtubule-NOD complex shows an atypical binding orientation. Thermodynamic studies show that NOD binds tightly to microtubules in the nucleotide-free state, yet other nucleotide states, including AMPPNP, are weakened. Our pre-steady-state kinetic analysis demonstrates that NOD interaction with microtubules occurs slowly with weak activation of ADP product release. Upon rapid substrate binding, NOD detaches from the microtubule prior to the rate-limiting step of ATP hydrolysis, which is also atypical for a kinesin. We propose a model for NOD's microtubule plus-end tracking that drives chromosome movement.

  15. Actin and microtubule networks contribute differently to cell response for small and large strains

    Science.gov (United States)

    Kubitschke, H.; Schnauss, J.; Nnetu, K. D.; Warmt, E.; Stange, R.; Kaes, J.

    2017-09-01

    Cytoskeletal filaments provide cells with mechanical stability and organization. The main key players are actin filaments and microtubules governing a cell’s response to mechanical stimuli. We investigated the specific influences of these crucial components by deforming MCF-7 epithelial cells at small (≤5% deformation) and large strains (>5% deformation). To understand specific contributions of actin filaments and microtubules, we systematically studied cellular responses after treatment with cytoskeleton influencing drugs. Quantification with the microfluidic optical stretcher allowed capturing the relative deformation and relaxation of cells under different conditions. We separated distinctive deformational and relaxational contributions to cell mechanics for actin and microtubule networks for two orders of magnitude of drug dosages. Disrupting actin filaments via latrunculin A, for instance, revealed a strain-independent softening. Stabilizing these filaments by treatment with jasplakinolide yielded cell softening for small strains but showed no significant change at large strains. In contrast, cells treated with nocodazole to disrupt microtubules displayed a softening at large strains but remained unchanged at small strains. Stabilizing microtubules within the cells via paclitaxel revealed no significant changes for deformations at small strains, but concentration-dependent impact at large strains. This suggests that for suspended cells, the actin cortex is probed at small strains, while at larger strains; the whole cell is probed with a significant contribution from the microtubules.

  16. Germ Plasm Anchoring Is a Dynamic State that Requires Persistent Trafficking

    Directory of Open Access Journals (Sweden)

    Kristina S. Sinsimer

    2013-12-01

    Full Text Available Localized cytoplasmic determinants packaged as ribonucleoprotein (RNP particles direct embryonic patterning and cell fate specification in a wide range of organisms. Once established, the asymmetric distributions of such RNP particles must be maintained, often over considerable developmental time. A striking example is the Drosophila germ plasm, which contains RNP particles whose localization to the posterior of the egg during oogenesis results in their asymmetric inheritance and segregation of germline from somatic fates in the embryo. Although actin-based anchoring mechanisms have been implicated, high-resolution live imaging revealed persistent trafficking of germ plasm RNP particles at the posterior cortex of the Drosophila oocyte. This motility relies on cortical microtubules, is mediated by kinesin and dynein motors, and requires coordination between the microtubule and actin cytoskeletons. Finally, we show that RNP particle motility is required for long-term germ plasm retention. We propose that anchoring is a dynamic state that renders asymmetries robust to developmental time and environmental perturbations.

  17. Calmodulin immunolocalization to cortical microtubules is calcium independent

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, D.D.; Cyr, R.J.

    1992-12-31

    Calcium affects the stability of cortical microtubules (MTs) in lysed protoplasts. This calmodulin (CaM)-mediated interaction may provide a mechanism that serves to integrate cellular behavior with MT function. To test the hypothesis that CaM associates with these MTs, monoclonal antibodies were produced against CaM, and one (designated mAb1D10), was selected for its suitability as an immunocytochemical reagent. It is shown that CaM associates with the cortical Mats of cultured carrot (Daucus carota L.) and tobacco (Nicotiana tobacum L.) cells. Inasmuch as CaM interacts with calcium and affects the behavior of these Mats, we hypothesized that calcium would alter this association. To test this, protoplasts containing taxol-stabilized Mats were lysed in the presence of various concentrations of calcium and examined for the association of Cam with cortical Mats. At 1 {mu}M calcium, many protoplasts did not have CaM in association with the cortical Mats, while at 3.6 {mu}M calcium, this association was completely abolished. The results are discussed in terms of a model in which CaM associates with Mats via two types of interactions; one calcium dependent and one independent.

  18. Calmodulin immunolocalization to cortical microtubules is calcium independent

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, D.D.; Cyr, R.J.

    1992-01-01

    Calcium affects the stability of cortical microtubules (MTs) in lysed protoplasts. This calmodulin (CaM)-mediated interaction may provide a mechanism that serves to integrate cellular behavior with MT function. To test the hypothesis that CaM associates with these MTs, monoclonal antibodies were produced against CaM, and one (designated mAb1D10), was selected for its suitability as an immunocytochemical reagent. It is shown that CaM associates with the cortical Mats of cultured carrot (Daucus carota L.) and tobacco (Nicotiana tobacum L.) cells. Inasmuch as CaM interacts with calcium and affects the behavior of these Mats, we hypothesized that calcium would alter this association. To test this, protoplasts containing taxol-stabilized Mats were lysed in the presence of various concentrations of calcium and examined for the association of Cam with cortical Mats. At 1 [mu]M calcium, many protoplasts did not have CaM in association with the cortical Mats, while at 3.6 [mu]M calcium, this association was completely abolished. The results are discussed in terms of a model in which CaM associates with Mats via two types of interactions; one calcium dependent and one independent.

  19. Characterization of gold nanoparticle binding to microtubule filaments

    International Nuclear Information System (INIS)

    Zhou, Jing C.; Wang Xianghuai; Xue Mei; Xu Zheng; Hamasaki, Toshikazu; Yang, Yang; Wang Kang; Dunn, Bruce

    2010-01-01

    Microtubule (MT) protein filaments were used as templates for fabricating Au nanowires as a bottom-up approach for fabricating building blocks for future integrated circuits. Photochemical reduction methods were employed to form Au nanoparticles which bind and uniformly cover the MT filaments. Synthesis of the MT-templated Au nanowires was characterized using UV/vis spectroscopy and transmission electron microscopy (TEM). In addition, binding between the MT filaments and Au nanoparticles was investigated using surface enhanced Raman spectroscopy (SERS) and X-ray photoelectron spectroscopy (XPS) to establish the nature of the binding sites. A variety of functional groups were identified by SERS to interact with the Au including imidazole, sulfur, aromatic rings, amine, and carboxylate. The imidazole ring in the histidine is the most prominent functional group for Au binding. The results from these studies provide better understanding of the binding between Au and the biotemplate and give insight concerning methods to improve Au coverage for MT-templated Au nanowires.

  20. Halogenated auxins affect microtubules and root elongation in Lactuca sativa

    Science.gov (United States)

    Zhang, N.; Hasenstein, K. H.

    2000-01-01

    We studied the effect of 4,4,4-trifluoro-3-(indole-3-)butyric acid (TFIBA), a recently described root growth stimulator, and 5,6-dichloro-indole-3-acetic acid (DCIAA) on growth and microtubule (MT) organization in roots of Lactuca sativa L. DCIAA and indole-3-butyric acid (IBA) inhibited root elongation and depolymerized MTs in the cortex of the elongation zone, inhibited the elongation of stele cells, and promoted xylem maturation. Both auxins caused the plane of cell division to shift from anticlinal to periclinal. In contrast, TFIBA (100 micromolar) promoted elongation of primary roots by 40% and stimulated the elongation of lateral roots, even in the presence of IBA, the microtubular inhibitors oryzalin and taxol, or the auxin transport inhibitor naphthylphthalamic acid. However, TFIBA inhibited the formation of lateral root primordia. Immunostaining showed that TFIBA stabilized MTs orientation perpendicular to the root axis, doubled the cortical cell length, but delayed xylem maturation. The data indicate that the auxin-induced inhibition of elongation and swelling of roots results from reoriented phragmoplasts, the destabilization of MTs in elongating cells, and promotion of vessel formation. In contrast, TFIBA induced promotion of root elongation by enhancing cell length, prolonging transverse MT orientation, delaying cell and xylem maturation.

  1. Regulation of microtubule-based transport by MAP4

    Science.gov (United States)

    Semenova, Irina; Ikeda, Kazuho; Resaul, Karim; Kraikivski, Pavel; Aguiar, Mike; Gygi, Steven; Zaliapin, Ilya; Cowan, Ann; Rodionov, Vladimir

    2014-01-01

    Microtubule (MT)-based transport of organelles driven by the opposing MT motors kinesins and dynein is tightly regulated in cells, but the underlying molecular mechanisms remain largely unknown. Here we tested the regulation of MT transport by the ubiquitous protein MAP4 using Xenopus melanophores as an experimental system. In these cells, pigment granules (melanosomes) move along MTs to the cell center (aggregation) or to the periphery (dispersion) by means of cytoplasmic dynein and kinesin-2, respectively. We found that aggregation signals induced phosphorylation of threonine residues in the MT-binding domain of the Xenopus MAP4 (XMAP4), thus decreasing binding of this protein to MTs. Overexpression of XMAP4 inhibited pigment aggregation by shortening dynein-dependent MT runs of melanosomes, whereas removal of XMAP4 from MTs reduced the length of kinesin-2–dependent runs and suppressed pigment dispersion. We hypothesize that binding of XMAP4 to MTs negatively regulates dynein-dependent movement of melanosomes and positively regulates kinesin-2–based movement. Phosphorylation during pigment aggregation reduces binding of XMAP4 to MTs, thus increasing dynein-dependent and decreasing kinesin-2–dependent motility of melanosomes, which stimulates their accumulation in the cell center, whereas dephosphorylation of XMAP4 during dispersion has an opposite effect. PMID:25143402

  2. APC functions at the centrosome to stimulate microtubule growth.

    Science.gov (United States)

    Lui, Christina; Ashton, Cahora; Sharma, Manisha; Brocardo, Mariana G; Henderson, Beric R

    2016-01-01

    The adenomatous polyposis coli (APC) tumor suppressor is multi-functional. APC is known to localize at the centrosome, and in mitotic cells contributes to formation of the mitotic spindle. To test whether APC contributes to nascent microtubule (MT) growth at interphase centrosomes, we employed MT regrowth assays in U2OS cells to measure MT assembly before and after nocodazole treatment and release. We showed that siRNA knockdown of full-length APC delayed both initial MT aster formation and MT elongation/regrowth. In contrast, APC-mutant SW480 cancer cells displayed a defect in MT regrowth that was unaffected by APC knockdown, but which was rescued by reconstitution of full-length APC. Our findings identify APC as a positive regulator of centrosome MT initial assembly and suggest that this process is disrupted by cancer mutations. We confirmed that full-length APC associates with the MT-nucleation factor γ-tubulin, and found that the APC cancer-truncated form (1-1309) also bound to γ-tubulin through APC amino acids 1-453. While binding to γ-tubulin may help target APC to the site of MT nucleation complexes, additional C-terminal sequences of APC are required to stimulate and stabilize MT growth. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. The effects of 60Co γ-ray irradiation on cytoplasmic microtubules of mouse macrophages and lymphocytes

    International Nuclear Information System (INIS)

    Li Qianqian; Mao Zijun; Yin Zhiwei; Hu Yumin

    1989-05-01

    The effects of 60 Co γ-ray irradiation on cytoplasmic microtubules of mouse macrophages and lymphocytes were investigated by immunofluorescence microscopy and scanning electron microscope. The results indicated. (1) microtubule organization of the irradiated cells remarkably differed from that of the control since the doses over 4 Gy; (2) 144 hours after irradiation the alterations of microtubules have been shown to be basically r epaired ; (3) the cytoplasmic microtubules and centrioles disappeared under transmission electron microscope, the membranes irradiated and microvilli showed changes under scanning electron microscope too. From these observations and those of other workers who studied the radiation effect on extracted microtubule proteins in vitro, the authors support that 60 Co γ-ray irradiation can inhabits cytoplasmic microtubule assembling

  4. Microtubule-Targeting Agents Enter the Central Nervous System (CNS): Double-edged Swords for Treating CNS Injury and Disease.

    Science.gov (United States)

    Hur, Eun-Mi; Lee, Byoung Dae

    2014-12-01

    Microtubules have been among the most successful targets in anticancer therapy and a large number of microtubule-targeting agents (MTAs) are in various stages of clinical development for the treatment of several malignancies. Given that injury and diseases in the central nervous system (CNS) are accompanied by acute or chronic disruption of the structural integrity of neurons and that microtubules provide structural support for the nervous system at cellular and intracellular levels, microtubules are emerging as potential therapeutic targets for treating CNS disorders. It has been postulated that exogenous application of MTAs might prevent the breakdown or degradation of microtubules after injury or during neurodegeneration, which will thereby aid in preserving the structural integrity and function of the nervous system. Here we review recent evidence that supports this notion and also discuss potential risks of targeting microtubules as a therapy for treating nerve injury and neurodegenerative diseases.

  5. Microtubule-Targeting Agents Enter the Central Nervous System (CNS: Double-edged Swords for Treating CNS Injury and Disease

    Directory of Open Access Journals (Sweden)

    Eun-Mi Hur

    2014-12-01

    Full Text Available Microtubules have been among the most successful targets in anticancer therapy and a large number of microtubule-targeting agents (MTAs are in various stages of clinical development for the treatment of several malignancies. Given that injury and diseases in the central nervous system (CNS are accompanied by acute or chronic disruption of the structural integrity of neurons and that microtubules provide structural support for the nervous system at cellular and intracellular levels, microtubules are emerging as potential therapeutic targets for treating CNS disorders. It has been postulated that exogenous application of MTAs might prevent the breakdown or degradation of microtubules after injury or during neurodegeneration, which will thereby aid in preserving the structural integrity and function of the nervous system. Here we review recent evidence that supports this notion and also discuss potential risks of targeting microtubules as a therapy for treating nerve injury and neurodegenerative diseases.

  6. Control coordination abilities in shock combat sports

    Directory of Open Access Journals (Sweden)

    Natalya Boychenko

    2014-12-01

    Full Text Available Purpose: optimize the process control level of coordination abilities in martial arts. Material and Methods: analysis and compilation of scientific and methodological literature, interviews with coaches of drum martial arts, video analysis techniques, teacher observations. Results: identified specific types of coordination abilities in shock combat sports. Pod branny and offered specific and nonspecific tests to monitor the level of species athletes coordination abilities. Conclusion: it is determined that in order to achieve victory in the fight martial artists to navigate the space to be able to assess and manage dynamic and spatio-temporal parameters of movements, maintain balance, have a high coordination of movements. The proposed tests to monitor species coordination abilities athletes allow an objective assessment of not only the overall level of coordination, and the level of specific types of manifestations of this ability.

  7. Polo-Like Kinase 2 is Dynamically Regulated to Coordinate Proliferation and Early Lineage Specification Downstream of Yes-Associated Protein 1 in Cardiac Progenitor Cells.

    Science.gov (United States)

    Mochizuki, Michika; Lorenz, Vera; Ivanek, Robert; Della Verde, Giacomo; Gaudiello, Emanuele; Marsano, Anna; Pfister, Otmar; Kuster, Gabriela M

    2017-10-24

    Recent studies suggest that adult cardiac progenitor cells (CPCs) can produce new cardiac cells. Such cell formation requires an intricate coordination of progenitor cell proliferation and commitment, but the molecular cues responsible for this regulation in CPCs are ill defined. Extracellular matrix components are important instructors of cell fate. Using laminin and fibronectin, we induced two slightly distinct CPC phenotypes differing in proliferation rate and commitment status and analyzed the early transcriptomic response to CPC adhesion (<2 hours). Ninety-four genes were differentially regulated on laminin versus fibronectin, consisting of mostly downregulated genes that were enriched for Yes-associated protein (YAP) conserved signature and TEA domain family member 1 (TEAD1)-related genes. This early gene regulation was preceded by the rapid cytosolic sequestration and degradation of YAP on laminin. Among the most strongly regulated genes was polo-like kinase 2 ( Plk2 ). Plk2 expression depended on YAP stability and was enhanced in CPCs transfected with a nuclear-targeted mutant YAP. Phenotypically, the early downregulation of Plk2 on laminin was succeeded by lower cell proliferation, enhanced lineage gene expression (24 hours), and facilitated differentiation (3 weeks) compared with fibronectin. Finally, overexpression of Plk2 enhanced CPC proliferation and knockdown of Plk2 induced the expression of lineage genes. Plk2 acts as coordinator of cell proliferation and early lineage commitment in CPCs. The rapid downregulation of Plk2 on YAP inactivation marks a switch towards enhanced commitment and facilitated differentiation. These findings link early gene regulation to cell fate and provide novel insights into how CPC proliferation and differentiation are orchestrated. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  8. The plant formin AtFH4 interacts with both actin and microtubules, and contains a newly identified microtubule-binding domain

    Czech Academy of Sciences Publication Activity Database

    Deeks, M.J.; Fendrych, Matyáš; Smertenko, A.; Bell, K.S.; Oparka, K.; Cvrčková, F.; Žárský, Viktor; Hussey, P.J.

    2010-01-01

    Roč. 123, č. 8 (2010), s. 1209-1215 ISSN 0021-9533 R&D Projects: GA MŠk(CZ) LC06004; GA ČR GAP305/10/0433 Institutional research plan: CEZ:AV0Z50380511 Keywords : Actin regulating proteins * Membrane * Microtubule Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 6.290, year: 2010

  9. Measuring mitotic spindle dynamics in budding yeast

    Science.gov (United States)

    Plumb, Kemp

    In order to carry out its life cycle and produce viable progeny through cell division, a cell must successfully coordinate and execute a number of complex processes with high fidelity, in an environment dominated by thermal noise. One important example of such a process is the assembly and positioning of the mitotic spindle prior to chromosome segregation. The mitotic spindle is a modular structure composed of two spindle pole bodies, separated in space and spanned by filamentous proteins called microtubules, along which the genetic material of the cell is held. The spindle is responsible for alignment and subsequent segregation of chromosomes into two equal parts; proper spindle positioning and timing ensure that genetic material is appropriately divided amongst mother and daughter cells. In this thesis, I describe fluorescence confocal microscopy and automated image analysis algorithms, which I have used to observe and analyze the real space dynamics of the mitotic spindle in budding yeast. The software can locate structures in three spatial dimensions and track their movement in time. By selecting fluorescent proteins which specifically label the spindle poles and cell periphery, mitotic spindle dynamics have been measured in a coordinate system relevant to the cell division. I describe how I have characterised the accuracy and precision of the algorithms by simulating fluorescence data for both spindle poles and the budding yeast cell surface. In this thesis I also describe the construction of a microfluidic apparatus that allows for the measurement of long time-scale dynamics of individual cells and the development of a cell population. The tools developed in this thesis work will facilitate in-depth quantitative analysis of the non-equilibrium processes in living cells.

  10. Chlorpyrifos, chlorpyrifos-oxon, and diisopropylfluorophosphate inhibit kinesin-dependent microtubule motility

    International Nuclear Information System (INIS)

    Gearhart, Debra A.; Sickles, Dale W.; Buccafusco, Jerry J.; Prendergast, Mark A.; Terry, Alvin V.

    2007-01-01

    Diisopropylfluorophosphate, originally developed as a chemical warfare agent, is structurally similar to nerve agents, and chlorpyrifos has extensive worldwide use as an agricultural pesticide. While inhibition of cholinesterases underlies the acute toxicity of these organophosphates, we previously reported impaired axonal transport in the sciatic nerves from rats treated chronically with subthreshold doses of chlorpyrifos. Those data indicate that chlorpyrifos (and/or its active metabolite, chlorpyrifos-oxon) might directly affect the function of kinesin and/or microtubules-the principal proteins that mediate anterograde axonal transport. The current report describes in vitro assays to assess the concentration-dependent effects of chlorpyrifos (0-10 μM), chlorpyrifos-oxon (0-10 μM), and diisopropylfluorophosphate (0-0.59 nM) on kinesin-dependent microtubule motility. Preincubating bovine brain microtubules with the organophosphates did not alter kinesin-mediated microtubule motility. In contrast, preincubation of bovine brain kinesin with diisopropylfluorophosphate, chlorpyrifos, or chlorpyrifos-oxon produced a concentration-dependent increase in the number of locomoting microtubules that detached from the kinesin-coated glass cover slip. Our data suggest that the organophosphates-chlorpyrifos-oxon, chlorpyrifos, and diisopropylfluorophosphate-directly affect kinesin, thereby disrupting kinesin-dependent transport on microtubules. Kinesin-dependent movement of vesicles, organelles, and other cellular components along microtubules is fundamental to the organization of all eukaryotic cells, especially in neurons where organelles and proteins synthesized in the cell body must move down long axons to pre-synaptic sites in nerve terminals. We postulate that disruption of kinesin-dependent intracellular transport could account for some of the long-term effects of organophosphates on the peripheral and central nervous system

  11. Cep192 controls the balance of centrosome and non-centrosomal microtubules during interphase.

    Directory of Open Access Journals (Sweden)

    Brian P O'Rourke

    Full Text Available Cep192 is a centrosomal protein that contributes to the formation and function of the mitotic spindle in mammalian cells. Cep192's mitotic activities stem largely from its role in the recruitment to the centrosome of numerous additional proteins such as gamma-tubulin and Pericentrin. Here, we examine Cep192's function in interphase cells. Our data indicate that, as in mitosis, Cep192 stimulates the nucleation of centrosomal microtubules thereby regulating the morphology of interphase microtubule arrays. Interestingly, however, cells lacking Cep192 remain capable of generating normal levels of MTs as the loss of centrosomal microtubules is augmented by MT nucleation from other sites, most notably the Golgi apparatus. The depletion of Cep192 results in a significant decrease in the level of centrosome-associated gamma-tubulin, likely explaining its impact on centrosome microtubule nucleation. However, in stark contrast to mitosis, Cep192 appears to maintain an antagonistic relationship with Pericentrin at interphase centrosomes. Interphase cells depleted of Cep192 display significantly higher levels of centrosome-associated Pericentrin while overexpression of Cep192 reduces the levels of centrosomal Pericentrin. Conversely, depletion of Pericentrin results in elevated levels of centrosomal Cep192 and enhances microtubule nucleation at centrosomes, at least during interphase. Finally, we show that depletion of Cep192 negatively impacts cell motility and alters normal cell polarization. Our current working hypothesis is that the microtubule nucleating capacity of the interphase centrosome is determined by an antagonistic balance of Cep192, which promotes nucleation, and Pericentrin, which inhibits nucleation. This in turn determines the relative abundance of centrosomal and non-centrosomal microtubules that tune cell movement and shape.

  12. Evaluation of vertical coordinate and vertical mixing algorithms in the HYbrid-Coordinate Ocean Model (HYCOM)

    Science.gov (United States)

    Halliwell, George R.

    Vertical coordinate and vertical mixing algorithms included in the HYbrid Coordinate Ocean Model (HYCOM) are evaluated in low-resolution climatological simulations of the Atlantic Ocean. The hybrid vertical coordinates are isopycnic in the deep ocean interior, but smoothly transition to level (pressure) coordinates near the ocean surface, to sigma coordinates in shallow water regions, and back again to level coordinates in very shallow water. By comparing simulations to climatology, the best model performance is realized using hybrid coordinates in conjunction with one of the three available differential vertical mixing models: the nonlocal K-Profile Parameterization, the NASA GISS level 2 turbulence closure, and the Mellor-Yamada level 2.5 turbulence closure. Good performance is also achieved using the quasi-slab Price-Weller-Pinkel dynamical instability model. Differences among these simulations are too small relative to other errors and biases to identify the "best" vertical mixing model for low-resolution climate simulations. Model performance deteriorates slightly when the Kraus-Turner slab mixed layer model is used with hybrid coordinates. This deterioration is smallest when solar radiation penetrates beneath the mixed layer and when shear instability mixing is included. A simulation performed using isopycnic coordinates to emulate the Miami Isopycnic Coordinate Ocean Model (MICOM), which uses Kraus-Turner mixing without penetrating shortwave radiation and shear instability mixing, demonstrates that the advantages of switching from isopycnic to hybrid coordinates and including more sophisticated turbulence closures outweigh the negative numerical effects of maintaining hybrid vertical coordinates.

  13. Cdk1-cyclin B1-mediated phosphorylation of tumor-associated microtubule-associated protein/cytoskeleton-associated protein 2 in mitosis.

    Science.gov (United States)

    Hong, Kyung Uk; Kim, Hyun-Jun; Kim, Hyo-Sil; Seong, Yeon-Sun; Hong, Kyeong-Man; Bae, Chang-Dae; Park, Joobae

    2009-06-12

    During mitosis, establishment of structurally and functionally sound bipolar spindles is necessary for maintaining the fidelity of chromosome segregation. Tumor-associated microtubule-associated protein (TMAP), also known as cytoskeleton-associated protein 2 (CKAP2), is a mitotic spindle-associated protein whose level is frequently up-regulated in various malignancies. Previous reports have suggested that TMAP is a potential regulator of mitotic spindle assembly and dynamics and that it is required for chromosome segregation to occur properly. So far, there have been no reports on how its mitosis-related functions are regulated. Here, we report that TMAP is hyper-phosphorylated at the C terminus specifically during mitosis. At least four different residues (Thr-578, Thr-596, Thr-622, and Ser-627) were responsible for the mitosis-specific phosphorylation of TMAP. Among these, Thr-622 was specifically phosphorylated by Cdk1-cyclin B1 both in vitro and in vivo. Interestingly, compared with the wild type, a phosphorylation-deficient mutant form of TMAP, in which Thr-622 had been replaced with an alanine (T622A), induced a significant increase in the frequency of metaphase cells with abnormal bipolar spindles, which often displayed disorganized, asymmetrical, or narrow and elongated morphologies. Formation of these abnormal bipolar spindles subsequently resulted in misalignment of metaphase chromosomes and ultimately caused a delay in the entry into anaphase. Moreover, such defects resulting from the T622A mutation were associated with a decrease in the rate of protein turnover at spindle microtubules. These findings suggest that Cdk1-cyclin B1-mediated phosphorylation of TMAP is important for and contributes to proper regulation of microtubule dynamics and establishment of functional bipolar spindles during mitosis.

  14. Cdk1-Cyclin B1-mediated Phosphorylation of Tumor-associated Microtubule-associated Protein/Cytoskeleton-associated Protein 2 in Mitosis*

    Science.gov (United States)

    Uk Hong, Kyung; Kim, Hyun-Jun; Kim, Hyo-Sil; Seong, Yeon-Sun; Hong, Kyeong-Man; Bae, Chang-Dae; Park, Joobae

    2009-01-01

    During mitosis, establishment of structurally and functionally sound bipolar spindles is necessary for maintaining the fidelity of chromosome segregation. Tumor-associated microtubule-associated protein (TMAP), also known as cytoskeleton-associated protein 2 (CKAP2), is a mitotic spindle-associated protein whose level is frequently up-regulated in various malignancies. Previous reports have suggested that TMAP is a potential regulator of mitotic spindle assembly and dynamics and that it is required for chromosome segregation to occur properly. So far, there have been no reports on how its mitosis-related functions are regulated. Here, we report that TMAP is hyper-phosphorylated at the C terminus specifically during mitosis. At least four different residues (Thr-578, Thr-596, Thr-622, and Ser-627) were responsible for the mitosis-specific phosphorylation of TMAP. Among these, Thr-622 was specifically phosphorylated by Cdk1-cyclin B1 both in vitro and in vivo. Interestingly, compared with the wild type, a phosphorylation-deficient mutant form of TMAP, in which Thr-622 had been replaced with an alanine (T622A), induced a significant increase in the frequency of metaphase cells with abnormal bipolar spindles, which often displayed disorganized, asymmetrical, or narrow and elongated morphologies. Formation of these abnormal bipolar spindles subsequently resulted in misalignment of metaphase chromosomes and ultimately caused a delay in the entry into anaphase. Moreover, such defects resulting from the T622A mutation were associated with a decrease in the rate of protein turnover at spindle microtubules. These findings suggest that Cdk1-cyclin B1-mediated phosphorylation of TMAP is important for and contributes to proper regulation of microtubule dynamics and establishment of functional bipolar spindles during mitosis. PMID:19369249

  15. Study of nuclear reactions with the Skyrme interaction; static properties by the self-consistent method; dynamic properties by the generator-coordinate method

    International Nuclear Information System (INIS)

    Flocard, Hubert.

    1975-01-01

    Using the same effective interaction depending only on 6 parameters a large number of nuclear properties are calculated, and the results are compared with experiment. Total binding energies of all nuclei of the chart table are reproduced within 5MeV. It is shown that the remaining discrepancy is coherent with the increase of total binding energy that can be expected from the further inclusion of collective motion correlations. Monopole, quadrupole and hexadecupole part of the charge densities are also reproduced with good accuracy. The deformation energy curves of many nuclei ranging from carbon to superheavy elements are calculated, and the different features of these curves are discussed. It should be noted that the fission barrier of actinide nuclei has been obtained and the results exhibit the well known two-bump shape. In addition the fusion energy curve of two 16 O merging in one nucleus 32 S has been completed. Results concerning monopole, dipole and quadrupole giant resonances of light nuclei obtained within the frame of the generator coordinate method are also presented. The calculated position of these resonances agree well with present available data [fr

  16. Self-Sustained Oscillatory Sliding Movement of Doublet Microtubules and Flagellar Bend Formation.

    Directory of Open Access Journals (Sweden)

    Sumio Ishijima

    Full Text Available It is well established that the basis for flagellar and ciliary movements is ATP-dependent sliding between adjacent doublet microtubules. However, the mechanism for converting microtubule sliding into flagellar and ciliary movements has long remained unresolved. The author has developed new sperm models that use bull spermatozoa divested of their plasma membrane and midpiece mitochondrial sheath by Triton X-100 and dithiothreitol. These models enable the observation of both the oscillatory sliding movement of activated doublet microtubules and flagellar bend formation in the presence of ATP. A long fiber of doublet microtubules extruded by synchronous sliding of the sperm flagella and a short fiber of doublet microtubules extruded by metachronal sliding exhibited spontaneous oscillatory movements and constructed a one beat cycle of flagellar bending by alternately actuating. The small sliding displacement generated by metachronal sliding formed helical bends, whereas the large displacement by synchronous sliding formed planar bends. Therefore, the resultant waveform is a half-funnel shape, which is similar to ciliary movements.

  17. Disruption of microtubule network rescues aberrant actin comets in dynamin2-depleted cells.

    Directory of Open Access Journals (Sweden)

    Yuji Henmi

    Full Text Available A large GTPase dynamin, which is required for endocytic vesicle formation, regulates the actin cytoskeleton through its interaction with cortactin. Dynamin2 mutants impair the formation of actin comets, which are induced by Listeria monocytogenes or phosphatidylinositol-4-phosphate 5-kinase. However, the role of dynamin2 in the regulation of the actin comet is still unclear. Here we show that aberrant actin comets in dynamin2-depleted cells were rescued by disrupting of microtubule networks. Depletion of dynamin2, but not cortactin, significantly reduced the length and the speed of actin comets induced by Listeria. This implies that dynamin2 may regulate the actin comet in a cortactin-independent manner. As dynamin regulates microtubules, we investigated whether perturbation of microtubules would rescue actin comet formation in dynamin2-depleted cells. Treatment with taxol or colchicine created a microtubule-free space in the cytoplasm, and made no difference between control and dynamin2 siRNA cells. This suggests that the alteration of microtubules by dynamin2 depletion reduced the length and the speed of the actin comet.

  18. Fission yeast cells undergo nuclear division in the absence of spindle microtubules.

    Directory of Open Access Journals (Sweden)

    Stefania Castagnetti

    2010-10-01

    Full Text Available Mitosis in eukaryotic cells employs spindle microtubules to drive accurate chromosome segregation at cell division. Cells lacking spindle microtubules arrest in mitosis due to a spindle checkpoint that delays mitotic progression until all chromosomes have achieved stable bipolar attachment to spindle microtubules. In fission yeast, mitosis occurs within an intact nuclear membrane with the mitotic spindle elongating between the spindle pole bodies. We show here that in fission yeast interference with mitotic spindle formation delays mitosis only briefly and cells proceed to an unusual nuclear division process we term nuclear fission, during which cells perform some chromosome segregation and efficiently enter S-phase of the next cell cycle. Nuclear fission is blocked if spindle pole body maturation or sister chromatid separation cannot take place or if actin polymerization is inhibited. We suggest that this process exhibits vestiges of a primitive nuclear division process independent of spindle microtubules, possibly reflecting an evolutionary intermediate state between bacterial and Archeal chromosome segregation where the nucleoid divides without a spindle and a microtubule spindle-based eukaryotic mitosis.

  19. Mto2 multisite phosphorylation inactivates non-spindle microtubule nucleation complexes during mitosis

    Science.gov (United States)

    Borek, Weronika E.; Groocock, Lynda M.; Samejima, Itaru; Zou, Juan; de Lima Alves, Flavia; Rappsilber, Juri; Sawin, Kenneth E.

    2015-01-01

    Microtubule nucleation is highly regulated during the eukaryotic cell cycle, but the underlying molecular mechanisms are largely unknown. During mitosis in fission yeast Schizosaccharomyces pombe, cytoplasmic microtubule nucleation ceases simultaneously with intranuclear mitotic spindle assembly. Cytoplasmic nucleation depends on the Mto1/2 complex, which binds and activates the γ-tubulin complex and also recruits the γ-tubulin complex to both centrosomal (spindle pole body) and non-centrosomal sites. Here we show that the Mto1/2 complex disassembles during mitosis, coincident with hyperphosphorylation of Mto2 protein. By mapping and mutating multiple Mto2 phosphorylation sites, we generate mto2-phosphomutant strains with enhanced Mto1/2 complex stability, interaction with the γ-tubulin complex and microtubule nucleation activity. A mutant with 24 phosphorylation sites mutated to alanine, mto2[24A], retains interphase-like behaviour even in mitotic cells. This provides a molecular-level understanding of how phosphorylation ‘switches off' microtubule nucleation complexes during the cell cycle and, more broadly, illuminates mechanisms regulating non-centrosomal microtubule nucleation. PMID:26243668

  20. Direct incorporation of guanosine 5'-diphosphate into microtubules without guanosine 5'-triphosphate hydrolysis

    International Nuclear Information System (INIS)

    Hamel, E.; Batra, J.K.; Lin, C.M.

    1986-01-01

    Using highly purified calf brain tubulin bearing [8- 14 C]guanosine 5'-diphosphate (GDP) in the exchangeable nucleotide site and heat-treated microtubule-associated proteins, the authors have found that a significant proportion of exchangeable-site GDP in microtubules can be incorporated directly during guanosine 5'-triphosphate (GTP) dependent polymerization of tubulin, without an initial exchange of GDP for GTP and subsequent GTP hydrolysis during assembly. The precise amount of GDP incorporated directly into microtubules is highly dependent on specific reaction conditions, being favored by high tubulin concentrations, low GTP and Mg 2+ concentrations, and exogenous GDP in the reaction mixture. Minimum effects were observed with changes in reaction pH or temperature, changes in concentration of microtubule-associated proteins, alteration of the sulfonate buffer, or the presence of a calcium chelator in the reaction mixture. Under conditions most favorable for direct GDP incorporation, about one-third of the GDP in microtubules is incorporated directly (without GTP hydrolysis) and two-thirds is incorporated hydrolytically (as a consequence of GTP hydrolysis). Direct incorporation of GDP occurs in a constant proportion throughout elongation, and the amount of direct incorporation probably reflects the rapid equilibration of GDP and GTP at the exchangeable site that occurs before the onset of assembly

  1. Prickle isoforms control the direction of tissue polarity by microtubule independent and dependent mechanisms

    Directory of Open Access Journals (Sweden)

    Katherine A. Sharp

    2016-03-01

    Full Text Available Planar cell polarity signaling directs the polarization of cells within the plane of many epithelia. While these tissues exhibit asymmetric localization of a set of core module proteins, in Drosophila, more than one mechanism links the direction of core module polarization to the tissue axes. One signaling system establishes a polarity bias in the parallel, apical microtubules upon which vesicles containing core proteins traffic. Swapping expression of the differentially expressed Prickle isoforms, Prickle and Spiny-legs, reverses the direction of core module polarization. Studies in the proximal wing and the anterior abdomen indicated that this results from their differential control of microtubule polarity. Prickle and Spiny-legs also control the direction of polarization in the distal wing (D-wing and the posterior abdomen (P-abd. We report here that this occurs without affecting microtubule polarity in these tissues. The direction of polarity in the D-wing is therefore likely determined by a novel mechanism independent of microtubule polarity. In the P-abd, Prickle and Spiny-legs interpret at least two directional cues through a microtubule-polarity-independent mechanism.

  2. Nerve growth factor stimulates axon outgrowth through negative regulation of growth cone actomyosin restraint of microtubule advance.

    Science.gov (United States)

    Turney, Stephen G; Ahmed, Mostafa; Chandrasekar, Indra; Wysolmerski, Robert B; Goeckeler, Zoe M; Rioux, Robert M; Whitesides, George M; Bridgman, Paul C

    2016-02-01

    Nerve growth factor (NGF) promotes growth, differentiation, and survival of sensory neurons in the mammalian nervous system. Little is known about how NGF elicits faster axon outgrowth or how growth cones integrate and transform signal input to motor output. Using cultured mouse dorsal root ganglion neurons, we found that myosin II (MII) is required for NGF to stimulate faster axon outgrowth. From experiments inducing loss or gain of function of MII, specific MII isoforms, and vinculin-dependent adhesion-cytoskeletal coupling, we determined that NGF causes decreased vinculin-dependent actomyosin restraint of microtubule advance. Inhibition of MII blocked NGF stimulation, indicating the central role of restraint in directed outgrowth. The restraint consists of myosin IIB- and IIA-dependent processes: retrograde actin network flow and transverse actin bundling, respectively. The processes differentially contribute on laminin-1 and fibronectin due to selective actin tethering to adhesions. On laminin-1, NGF induced greater vinculin-dependent adhesion-cytoskeletal coupling, which slowed retrograde actin network flow (i.e., it regulated the molecular clutch). On fibronectin, NGF caused inactivation of myosin IIA, which negatively regulated actin bundling. On both substrates, the result was the same: NGF-induced weakening of MII-dependent restraint led to dynamic microtubules entering the actin-rich periphery more frequently, giving rise to faster elongation. © 2016 Turney et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  3. The XMAP215 Ortholog Alp14 Promotes Microtubule Nucleation in Fission Yeast.

    Science.gov (United States)

    Flor-Parra, Ignacio; Iglesias-Romero, Ana Belén; Chang, Fred

    2018-06-04

    The organization and number of microtubules (MTs) in a cell depend on the proper regulation of MT nucleation. Currently, the mechanism of nucleation is the most poorly understood aspect of MT dynamics. XMAP215/chTOG/Alp14/Stu2 proteins are MT polymerases that stimulate MT polymerization at MT plus ends by binding and releasing tubulin dimers. Although these proteins also localize to MT organizing centers and have nucleating activity in vitro, it is not yet clear whether these proteins participate in MT nucleation in vivo. Here, we demonstrate that in the fission yeast Schizosaccharomyces pombe, the XMAP215 ortholog Alp14 is critical for efficient MT nucleation in vivo. In multiple assays, loss of Alp14 function led to reduced nucleation rate and numbers of interphase MT bundles. Conversely, activation of Alp14 led to increased nucleation frequency. Alp14 associated with Mto1 and γ-tubulin complex components, and artificially targeting Alp14 to the γ-tubulin ring complexes (γ-TuRCs) stimulated nucleation. In imaging individual nucleation events, we found that Alp14 transiently associated with a γ-tubulin particle shortly before the appearance of a new MT. The transforming acidic coiled-coil (TACC) ortholog Alp7 mediated the localization of Alp14 at nucleation sites but not plus ends, and was required for efficient nucleation but not for MT polymerization. Our findings provide the strongest evidence to date that Alp14 serves as a critical MT nucleation factor in vivo. We suggest a model in which Alp14 associates with the γ-tubulin complex in an Alp7-dependent manner to facilitate the assembly or stabilization of the nascent MT. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Disruption of actin filaments in Zea mays by bisphenol A depends on their crosstalk with microtubules.

    Science.gov (United States)

    Stavropoulou, Konstantina; Adamakis, Ioannis-Dimosthenis S; Panteris, Emmanuel; Arseni, Ermioni-Makedonia; Eleftheriou, Eleftherios P

    2018-03-01

    Bisphenol A (BPA) is a widespread environmental pollutant, reportedly harmful to living organisms. In plant cells, BPA was shown to disrupt microtubule (MT) arrays and perturb mitosis, but its effects on filamentous actin (F-actin) have not been explored. Here we studied the effects of BPA on actin filaments (AFs) in meristematic root tip and leaf cells of Zea mays, by fluorescent labeling and confocal microscopy. Considering the typical dynamic interaction between MTs and AFs, the effects on these two essential components of the plant cytoskeleton were correlated. It was found that BPA disorganized rapidly AFs in a concentration- and time-dependent manner. The fine filaments were first to be affected, followed by the subcortical bundles, resulting in rod- and ring-like conformations. The observed differences in sensitivity between protodermal and cortex cells were attributed to the deeper location of the latter. Depolymerization or stabilization of MTs by relevant drugs (oryzalin, taxol) revealed that AF susceptibility to BPA depends on MT integrity. Developing leaves required harder and longer treatment to be affected by BPA. Ontogenesis of stomatal complexes was highly disturbed, arrangement of AFs and MT arrays was disordered and accuracy of cell division sequence was deranged or completely arrested. The effect of BPA confirmed that subsidiary cell mother cell polarization is not mediated by F-actin patch neither of preprophase band organization. On the overall, it is concluded that AFs in plant cells constitute a subcellular target of BPA and their disruption depends on their crosstalk with MTs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Katanin spiral and ring structures shed light on power stroke for microtubule severing

    Energy Technology Data Exchange (ETDEWEB)

    Zehr, Elena; Szyk, Agnieszka; Piszczek, Grzegorz; Szczesna, Ewa; Zuo, Xiaobing; Roll-Mecak, Antonina

    2017-08-07

    Microtubule-severing enzymes katanin, spastin and fidgetin are AAA ATPases critical for the biogenesis and maintenance of complex microtubule arrays in axons, spindles and cilia. Because of a lack of 3D structures, their mechanism has remained poorly understood. We report the first X-ray structure of the monomeric AAA katanin module and cryo-EM reconstructions of the hexamer in two conformations. These reveal an unexpected asymmetric arrangement of the AAA domains mediated by structural elements unique to severing enzymes and critical for their function. Our reconstructions show that katanin cycles between open spiral and closed ring conformations, depending on the ATP occupancy of a gating protomer that tenses or relaxes inter-protomer interfaces. Cycling of the hexamer between these conformations would provide the power stroke for microtubule severing.

  6. Template-free electrosynthesis of aligned poly(p-phenylene) microtubules

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Poly(p-phenylene) (PPP) microtubules with diameters of 0.2-0.8μm and lengths of~10 (m have been synthesized by direct oxidation of benzene in the mixed electrolyte of boron trifluoride diethyl etherate (BFEE) and trifluoroacetic acid (TFA) (BFEE:TFA= 2:1, by volume), containing a certain amount of sodium dodecylbenzene- sulfonate (SDBS) as surfactant. The microtubules were grown vertically on the working electrode surface. The tubular morphology has been confirmed by scanning and transmission electron microscopies and the chain structure of the skin of the tubules has been characterized by Raman spectroscopy. The electrode property, monomer/surfactant molar ratio and the value of applied potential have strong effects on the morphology of the microtubules.

  7. Microtubule Destabilizer KIF2A Undergoes Distinct Site-Specific Phosphorylation Cascades that Differentially Affect Neuronal Morphogenesis

    Directory of Open Access Journals (Sweden)

    Tadayuki Ogawa

    2015-09-01

    Full Text Available Neurons exhibit dynamic structural changes in response to extracellular stimuli. Microtubules (MTs provide rapid and dramatic cytoskeletal changes within the structural framework. However, the molecular mechanisms and signaling networks underlying MT dynamics remain unknown. Here, we have applied a comprehensive and quantitative phospho-analysis of the MT destabilizer KIF2A to elucidate the regulatory mechanisms of MT dynamics within neurons in response to extracellular signals. Interestingly, we identified two different sets of KIF2A phosphorylation profiles that accelerate (A-type and brake (B-type the MT depolymerization activity of KIF2A. Brain-derived neurotrophic factor (BDNF stimulates PAK1 and CDK5 kinases, which decrease the MT depolymerizing activity of KIF2A through B-type phosphorylation, resulting in enhanced outgrowth of neural processes. In contrast, lysophosphatidic acid (LPA induces ROCK2 kinase, which suppresses neurite outgrowth from round cells via A-type phosphorylation. We propose that these two mutually exclusive forms of KIF2A phosphorylation differentially regulate neuronal morphogenesis during development.

  8. Reassessing the Roles of PIN Proteins and Anticlinal Microtubules during Pavement Cell Morphogenesis1[OPEN

    Science.gov (United States)

    Sawchuk, Megan G.; Scarpella, Enrico

    2018-01-01

    The leaf epidermis is a biomechanical shell that influences the size and shape of the organ. Its morphogenesis is a multiscale process in which nanometer-scale cytoskeletal protein complexes, individual cells, and groups of cells pattern growth and define macroscopic leaf traits. Interdigitated growth of neighboring cells is an evolutionarily conserved developmental strategy. Understanding how signaling pathways and cytoskeletal proteins pattern cell walls during this form of tissue morphogenesis is an important research challenge. The cellular and molecular control of a lobed cell morphology is currently thought to involve PIN-FORMED (PIN)-type plasma membrane efflux carriers that generate subcellular auxin gradients. Auxin gradients were proposed to function across cell boundaries to encode stable offset patterns of cortical microtubules and actin filaments between adjacent cells. Many models suggest that long-lived microtubules along the anticlinal cell wall generate local cell wall heterogeneities that restrict local growth and specify the timing and location of lobe formation. Here, we used Arabidopsis (Arabidopsis thaliana) reverse genetics and multivariate long-term time-lapse imaging to test current cell shape control models. We found that neither PIN proteins nor long-lived microtubules along the anticlinal wall predict the patterns of lobe formation. In fields of lobing cells, anticlinal microtubules are not correlated with cell shape and are unstable at the time scales of cell expansion. Our analyses indicate that anticlinal microtubules have multiple functions in pavement cells and that lobe initiation is likely controlled by complex interactions among cell geometry, cell wall stress patterns, and transient microtubule networks that span the anticlinal and periclinal walls. PMID:29192026

  9. Reassessing the Roles of PIN Proteins and Anticlinal Microtubules during Pavement Cell Morphogenesis.

    Science.gov (United States)

    Belteton, Samuel A; Sawchuk, Megan G; Donohoe, Bryon S; Scarpella, Enrico; Szymanski, Daniel B

    2018-01-01

    The leaf epidermis is a biomechanical shell that influences the size and shape of the organ. Its morphogenesis is a multiscale process in which nanometer-scale cytoskeletal protein complexes, individual cells, and groups of cells pattern growth and define macroscopic leaf traits. Interdigitated growth of neighboring cells is an evolutionarily conserved developmental strategy. Understanding how signaling pathways and cytoskeletal proteins pattern cell walls during this form of tissue morphogenesis is an important research challenge. The cellular and molecular control of a lobed cell morphology is currently thought to involve PIN-FORMED (PIN)-type plasma membrane efflux carriers that generate subcellular auxin gradients. Auxin gradients were proposed to function across cell boundaries to encode stable offset patterns of cortical microtubules and actin filaments between adjacent cells. Many models suggest that long-lived microtubules along the anticlinal cell wall generate local cell wall heterogeneities that restrict local growth and specify the timing and location of lobe formation. Here, we used Arabidopsis ( Arabidopsis thaliana ) reverse genetics and multivariate long-term time-lapse imaging to test current cell shape control models. We found that neither PIN proteins nor long-lived microtubules along the anticlinal wall predict the patterns of lobe formation. In fields of lobing cells, anticlinal microtubules are not correlated with cell shape and are unstable at the time scales of cell expansion. Our analyses indicate that anticlinal microtubules have multiple functions in pavement cells and that lobe initiation is likely controlled by complex interactions among cell geometry, cell wall stress patterns, and transient microtubule networks that span the anticlinal and periclinal walls. © 2018 American Society of Plant Biologists. All Rights Reserved.

  10. Reassessing the roles of PIN proteins and anticlinal microtubules during pavement cell morphogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Belteton, Samuel; Sawchuk, Megan G.; Donohoe, Bryon S.; Scarpella, Enrico; Szymanski, Daniel B.

    2017-11-30

    The leaf epidermis is a biomechanical shell that influences the size and shape of the organ. Its morphogenesis is a multiscale process in which nanometer-scale cytoskeletal protein complexes, individual cells, and groups of cells pattern growth and define macroscopic leaf traits. Interdigitated growth of neighboring cells is an evolutionarily conserved developmental strategy. Understanding how signaling pathways and cytoskeletal proteins pattern cell walls during this form of tissue morphogenesis is an important research challenge. The cellular and molecular control of a lobed cell morphology is currently thought to involve PIN-FORMED (PIN)-type plasma membrane efflux carriers that generate subcellular auxin gradients. Auxin gradients were proposed to function across cell boundaries to encode stable offset patterns of cortical microtubules and actin filaments between adjacent cells. Many models suggest that long-lived microtubules along the anticlinal cell wall generate local cell wall heterogeneities that restrict local growth and specify the timing and location of lobe formation. Here we used Arabidopsis reverse genetics and multivariate long-term time-lapse imaging to test current cell shape control models. We found that neither PIN proteins nor microtubules along the anticlinal wall predict the patterns of lobe formation. In fields of lobing cells, anticlinal microtubules are not correlated with cell shape and are unstable at the time scales of cell expansion. Our analyses indicate that anticlinal microtubules have multiple functions in pavement cells, and that lobe initiation is likely controlled by complex interactions among cell geometry, cell wall stress patterns, and transient microtubule networks that span the anticlinal and periclinal walls.

  11. Calcium regulates ATP-sensitive microtubule binding by Chlamydomonas outer arm dynein.

    Science.gov (United States)

    Sakato, Miho; King, Stephen M

    2003-10-31

    The Chlamydomonas outer dynein arm contains three distinct heavy chains (alpha, beta, and gamma) that exhibit different motor properties. The LC4 protein, which binds 1-2 Ca2+ with KCa = 3 x 10-5 m, is associated with the gamma heavy chain and has been proposed to act as a sensor to regulate dynein motor function in response to alterations in intraflagellar Ca2+ levels. Here we genetically dissect the outer arm to yield subparticles containing different motor unit combinations and assess the microtubule-binding properties of these complexes both prior to and following preincubation with tubulin and ATP, which was used to inhibit ATP-insensitive (structural) microtubule binding. We observed that the alpha heavy chain exhibits a dominant Ca2+-independent ATP-sensitive MT binding activity in vitro that is inhibited by attachment of tubulin to the structural microtubule-binding domain. Furthermore, we show that ATP-sensitive microtubule binding by a dynein subparticle containing only the beta and gamma heavy chains does not occur at Ca2+ concentrations below pCa 6 but is maximally activated above pCa 5. This activity was not observed in mutant dyneins containing small deletions in the microtubule-binding region of the beta heavy chain or in dyneins that lack both the alpha heavy chain and the motor domain of the beta heavy chain. These findings strongly suggest that Ca2+ binding directly to a component of the dynein complex regulates ATP-sensitive interactions between the beta heavy chain and microtubules and lead to a model for how individual motor units are controlled within the outer dynein arm.

  12. Arabidopsis cortical microtubules position cellulose synthase delivery to the plasma membrane and interact with cellulose synthase trafficking compartments.

    NARCIS (Netherlands)

    Gutierrez, R.; Lindeboom, J.J.; Paredez, A.R.; Emons, A.M.C.; Ehrhardt, D.W.

    2009-01-01

    Plant cell morphogenesis relies on the organization and function of two polymer arrays separated by the plasma membrane: the cortical microtubule cytoskeleton and cellulose microfibrils in the cell wall. Studies using in vivo markers confirmed that one function of the cortical microtubule array is

  13. Capu and Spire Assemble a Cytoplasmic Actin~Mesh that Maintains Microtubule Organization in the Drosophila Oocyte

    DEFF Research Database (Denmark)

    Dahlgaard, K.; Raposo, A.A.S.F.; Niccoli, T.

    2007-01-01

    Mutants in the actin nucleators Cappuccino and Spire disrupt the polarized microtubule network in the Drosophila oocyte that defines the anterior-posterior axis, suggesting that microtubule organization depends on actin. Here, we show that Cappuccino and Spire organize an isotropic mesh of actin...

  14. Learning-induced and stathmin-dependent changes in microtubule stability are critical for memory and disrupted in ageing

    Science.gov (United States)

    Uchida, Shusaku; Martel, Guillaume; Pavlowsky, Alice; Takizawa, Shuichi; Hevi, Charles; Watanabe, Yoshifumi; Kandel, Eric R.; Alarcon, Juan Marcos; Shumyatsky, Gleb P.

    2014-01-01

    Changes in the stability of microtubules regulate many biological processes, but their role in memory remains unclear. Here we show that learning causes biphasic changes in the microtubule-associated network in the hippocampus. In the early phase, stathmin is dephosphorylated, enhancing its microtubule-destabilizing activity by promoting stathmin-tubulin binding, whereas in the late phase these processes are reversed leading to an increase in microtubule/KIF5-mediated localization of the GluA2 subunit of AMPA receptors at synaptic sites. A microtubule stabilizer paclitaxel decreases or increases memory when applied at the early or late phases, respectively. Stathmin mutations disrupt changes in microtubule stability, GluA2 localization, synaptic plasticity and memory. Aged wild-type mice show impairments in stathmin levels, changes in microtubule stability, and GluA2 localization. Blocking GluA2 endocytosis rescues memory deficits in stathmin mutant and aged wild-type mice. These findings demonstrate a role for microtubules in memory in young adult and aged individuals. PMID:25007915

  15. Proteasome Failure Promotes Positioning of Lysosomes around the Aggresome via Local Block of Microtubule-Dependent Transport

    Science.gov (United States)

    Zaarur, Nava; Meriin, Anatoli B.; Bejarano, Eloy; Xu, Xiaobin; Gabai, Vladimir L.; Cuervo, Ana Maria

    2014-01-01

    Ubiquitinated proteins aggregate upon proteasome failure, and the aggregates are transported to the aggresome. In aggresomes, protein aggregates are actively degraded by the autophagy-lysosome pathway, but why targeting the aggresome promotes degradation of aggregated species is currently unknown. Here we report that the important factor in this process is clustering of lysosomes around the aggresome via a novel mechanism. Proteasome inhibition causes formation of a zone around the centrosome where microtubular transport of lysosomes is suppressed, resulting in their entrapment and accumulation. Microtubule-dependent transport of other organelles, including autophagosomes, mitochondria, and endosomes, is also blocked in this entrapment zone (E-zone), while movement of organelles at the cell periphery remains unaffected. Following the whole-genome small interfering RNA (siRNA) screen for proteins involved in aggresome formation, we defined the pathway that regulates formation of the E-zone, including the Stk11 protein kinase, the Usp9x deubiquitinating enzyme, and their substrate kinase MARK4. Therefore, upon proteasome failure, targeting of aggregated proteins of the aggresome is coordinated with lysosome positioning around this body to facilitate degradation of the abnormal species. PMID:24469403

  16. Microtubule-dependent targeting of the exocyst complex is necessary for xylem development in Arabidopsis

    Czech Academy of Sciences Publication Activity Database

    Vukašinović, Nemanja; Oda, Y.; Pejchar, Přemysl; Synek, Lukáš; Pečenková, Tamara; Rawat, Anamika; Sekereš, Juraj; Potocký, Martin; Žárský, Viktor

    2017-01-01

    Roč. 213, č. 3 (2017), s. 1052-1067 ISSN 0028-646X R&D Projects: GA ČR(CZ) GA15-14886S Grant - others:GA MŠk(CZ) LO1417 Institutional support: RVO:61389030 Keywords : secondary cell-wall * tracheary element differentiation * cortical microtubules * plasma-membrane * vesicle trafficking * secretory pathways * auxin transport * exocytosis * deposition * thaliana * conserved oligomeric Golgi (COG) complex * exocyst * microtubules * secondary cell wall * tracheary elements * xylem Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Cell biology Impact factor: 7.330, year: 2016

  17. Challenges and opportunities in the high-resolution cryo-EM visualization of microtubules and their binding partners.

    Science.gov (United States)

    Nogales, Eva; Kellogg, Elizabeth H

    2017-10-01

    As non-crystallizable polymers, microtubules have been the target of cryo-electron microscopy (cryo-EM) studies since the technique was first established. Over the years, image processing strategies have been developed that take care of the unique, pseudo-helical symmetry of the microtubule. With recent progress in data quality and data processing, cryo-EM reconstructions are now reaching resolutions that allow the generation of atomic models of microtubules and the factors that bind them. These include cellular partners that contribute to microtubule cellular functions, or small ligands that interfere with those functions in the treatment of cancer. The stage is set to generate a family portrait for all identified microtubule interacting proteins and to use cryo-EM as a drug development tool in the targeting of tubulin. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Cell proliferation, cell shape, and microtubule and cellulose microfibril organization of tobacco BY-2 cells are not altered by exposure to near weightlessness in space

    NARCIS (Netherlands)

    Sieberer, B.; Kieft, H.; Franssen-Verheijen, M.A.W.; Emons, A.M.C.; Vos, J.W.

    2009-01-01

    The microtubule cytoskeleton and the cell wall both play key roles in plant cell growth and division, determining the plant’s final stature. At near weightlessness, tubulin polymerizes into microtubules in vitro, but these microtubules do not self-organize in the ordered patterns observed at 1g.

  19. Microtubule organization in three-dimensional confined geometries: Evaluating the role of elasticity through a combined in vitro and modeling approach

    NARCIS (Netherlands)

    Cosentino Lagomarsino, M.; Tanase, C.; Vos, J.W.; Emons, A.M.C.; Mulder, B.; Dogterom, M.

    2007-01-01

    Microtubules or microtubule bundles in cells often grow longer than the size of the cell, which causes their shape and organization to adapt to constraints imposed by the cell geometry. We test the reciprocal role of elasticity and confinement in the organization of growing microtubules in a

  20. Explicitly computing geodetic coordinates from Cartesian coordinates

    Science.gov (United States)

    Zeng, Huaien

    2013-04-01

    This paper presents a new form of quartic equation based on Lagrange's extremum law and a Groebner basis under the constraint that the geodetic height is the shortest distance between a given point and the reference ellipsoid. A very explicit and concise formulae of the quartic equation by Ferrari's line is found, which avoids the need of a good starting guess for iterative methods. A new explicit algorithm is then proposed to compute geodetic coordinates from Cartesian coordinates. The convergence region of the algorithm is investigated and the corresponding correct solution is given. Lastly, the algorithm is validated with numerical experiments.

  1. Probing the lowest coordination number of dianionic platinum-cyanide complexes in the gas phase: Dynamics of the charge dissociation process

    DEFF Research Database (Denmark)

    Bojesen, G; Hvelplund, P; Jørgensen, Thomas J. D.

    2000-01-01

    Low-energy and high-energy collision induced dissociation techniques are used to study the dissociation behavior of the gaseous Pt(CN)(6)(2-) and Pt(CN)(4)(2-) dianion complexes in order to probe the smallest stable dianion complex. Loss of neutral molecules from Pt(CN)(6)(2-) occurs resulting...... in Pt(CN)(5)(2-) and Pt(CN)(4)(2-), but no indication of the existence of Pt(CN)(3)(2-) was found. This indicates that the lifetime of Pt(CN)(3)(2-) is less than 4 mus (the flight time from the collision region to the detector). In contrast, all monoanion platinum-cyanide complexes were observed, i.......e., Pt(CN)(n)(-) (n=1-6). The kinetic energy released in processes where monoanions are formed is much lower than the barrier height for the reverse reaction (>1.5 eV), which indicates that electron detachment is involved, e.g., Pt(CN)(3)(-) and CN- are not formed in the same dynamical process from Pt(CN...

  2. The Vip1 inositol polyphosphate kinase family regulates polarized growth and modulates the microtubule cytoskeleton in fungi.

    Directory of Open Access Journals (Sweden)

    Jennifer Pöhlmann

    2014-09-01

    Full Text Available Microtubules (MTs are pivotal for numerous eukaryotic processes ranging from cellular morphogenesis, chromosome segregation to intracellular transport. Execution of these tasks requires intricate regulation of MT dynamics. Here, we identify a new regulator of the Schizosaccharomyces pombe MT cytoskeleton: Asp1, a member of the highly conserved Vip1 inositol polyphosphate kinase family. Inositol pyrophosphates generated by Asp1 modulate MT dynamic parameters independent of the central +TIP EB1 and in a dose-dependent and cellular-context-dependent manner. Importantly, our analysis of the in vitro kinase activities of various S. pombe Asp1 variants demonstrated that the C-terminal phosphatase-like domain of the dual domain Vip1 protein negatively affects the inositol pyrophosphate output of the N-terminal kinase domain. These data suggest that the former domain has phosphatase activity. Remarkably, Vip1 regulation of the MT cytoskeleton is a conserved feature, as Vip1-like proteins of the filamentous ascomycete Aspergillus nidulans and the distantly related pathogenic basidiomycete Ustilago maydis also affect the MT cytoskeleton in these organisms. Consistent with the role of interphase MTs in growth zone selection/maintenance, all 3 fungal systems show aspects of aberrant cell morphogenesis. Thus, for the first time we have identified a conserved biological process for inositol pyrophosphates.

  3. CEP295 interacts with microtubules and is required for centriole elongation.

    Science.gov (United States)

    Chang, Ching-Wen; Hsu, Wen-Bin; Tsai, Jhih-Jie; Tang, Chieh-Ju C; Tang, Tang K

    2016-07-01

    Centriole duplication is a tightly ordered process during which procentrioles are assembled in G1-S and elongate during S and G2. Here, we show that human CEP295 (Drosophila Ana1) is not essential for initial cartwheel assembly, but is required to build distal half centrioles during S and G2. Using super-resolution and immunogold electron microscopy, we demonstrate that CEP295 is recruited to the proximal end of procentrioles in early S phase, when it is also localized at the centriolar microtubule wall that surrounds the human SAS6 cartwheel hub. Interestingly, depletion of CEP295 not only inhibits the recruitments of POC5 and POC1B to the distal half centrioles in G2, resulting in shorter centrioles, it also blocks the post-translational modification of centriolar microtubules (e.g. acetylation and glutamylation). Importantly, our results indicate that CEP295 directly interacts with microtubules, and that excess CEP295 could induce the assembly of overly long centrioles. Furthermore, exogenous expression of the N-terminal domain of CEP295 exerts a dominant-negative effect on centriole elongation. Collectively, these findings suggest that CEP295 is essential for building the distal half centrioles and for post-translational modification of centriolar microtubules. © 2016. Published by The Company of Biologists Ltd.

  4. Dissecting the function and assembly of acentriolar microtubule organizing centers in Drosophila cells in vivo.

    Directory of Open Access Journals (Sweden)

    Janina Baumbach

    2015-05-01

    Full Text Available Acentriolar microtubule organizing centers (aMTOCs are formed during meiosis and mitosis in several cell types, but their function and assembly mechanism is unclear. Importantly, aMTOCs can be overactive in cancer cells, enhancing multipolar spindle formation, merotelic kinetochore attachment and aneuploidy. Here we show that aMTOCs can form in acentriolar Drosophila somatic cells in vivo via an assembly pathway that depends on Asl, Cnn and, to a lesser extent, Spd-2--the same proteins that appear to drive mitotic centrosome assembly in flies. This finding enabled us to ablate aMTOC formation in acentriolar cells, and so perform a detailed genetic analysis of the contribution of aMTOCs to acentriolar mitotic spindle formation. Here we show that although aMTOCs can nucleate microtubules, they do not detectably increase the efficiency of acentriolar spindle assembly in somatic fly cells. We find that they are required, however, for robust microtubule array assembly in cells without centrioles that also lack microtubule nucleation from around the chromatin. Importantly, aMTOCs are also essential for dynein-dependent acentriolar spindle pole focusing and for robust cell proliferation in the absence of centrioles and HSET/Ncd (a kinesin essential for acentriolar spindle pole focusing in many systems. We propose an updated model for acentriolar spindle pole coalescence by the molecular motors Ncd/HSET and dynein in conjunction with aMTOCs.

  5. The current of a particle along a microtubule in microscopic plasma

    International Nuclear Information System (INIS)

    Li Wei; Chen Junfang; Wang Teng; Lai Xiuqiong

    2008-01-01

    Transport of a particle along the axis of a microtubule in a plasma-enhanced chemical vapor deposition (PECVD) system is investigated. The current, respectively, as a function of the temperature, the magnetic field and the external force is obtained. The value and direction of the current may be controlled by changing the above parameters

  6. Phospholipase D family interactions with the cytoskeleton: isoform delta promotes plasma membrane anchoring of cortical microtubules

    Czech Academy of Sciences Publication Activity Database

    Andreeva, Z.; Ho, A. Y. Y.; Barthet, M. M.; Potocký, Martin; Bezvoda, R.; Žárský, Viktor; Marc, J.

    2009-01-01

    Roč. 36, č. 7 (2009), s. 600-612 ISSN 1445-4408 R&D Projects: GA AV ČR IAA601110916 Institutional research plan: CEZ:AV0Z50380511 Keywords : Allium * Arabidopsis * F-actin-microtubule interactions Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.678, year: 2009

  7. Microtubule Abnormalities Underlying Gulf War Illness in Neurons from Human-Induced Pluripotent Cells

    Science.gov (United States)

    2016-09-01

    cells derived from human induced pluripotent stem cells (hiPSCs), originating from GW...AWARD NUMBER: W81XWH-15-1-0433 TITLE: Microtubule Abnormalities Underlying Gulf War Illness in Neurons from Human- Induced Pluripotent Cells ...A simple blood sample is taken from the soldier, and then transduced, using reliable established methods , to make the cells pluripotent .

  8. Wolbachia utilizes host microtubules and Dynein for anterior localization in the Drosophila oocyte.

    Directory of Open Access Journals (Sweden)

    Patrick M Ferree

    2005-10-01

    Full Text Available To investigate the role of the host cytoskeleton in the maternal transmission of the endoparasitic bacteria Wolbachia, we have characterized their distribution in the female germ line of Drosophila melanogaster. In the germarium, Wolbachia are distributed to all germ cells of the cyst, establishing an early infection in the cell destined to become the oocyte. During mid-oogenesis, Wolbachia exhibit a distinct concentration between the anterior cortex and the nucleus in the oocyte, where many bacteria appear to contact the nuclear envelope. Following programmed rearrangement of the microtubule network, Wolbachia dissociate from this anterior position and become dispersed throughout the oocyte. This localization pattern is distinct from mitochondria and all known axis determinants. Manipulation of microtubules and cytoplasmic Dynein and Dynactin, but not Kinesin-1, disrupts anterior bacterial localization in the oocyte. In live egg chambers, Wolbachia exhibit movement in nurse cells but not in the oocyte, suggesting that the bacteria are anchored by host factors. In addition, we identify mid-oogenesis as a period in the life cycle of Wolbachia in which bacterial replication occurs. Total bacterial counts show that Wolbachia increase at a significantly higher rate in the oocyte than in the average nurse cell, and that normal Wolbachia levels in the oocyte depend on microtubules. These findings demonstrate that Wolbachia utilize the host microtubule network and associated proteins for their subcellular localization in the Drosophila oocyte. These interactions may also play a role in bacterial motility and replication, ultimately leading to the bacteria's efficient maternal transmission.

  9. The imidazopyridine derivative JK184 reveals dual roles for microtubules in Hedgehog signaling.

    Science.gov (United States)

    Cupido, Tommaso; Rack, Paul G; Firestone, Ari J; Hyman, Joel M; Han, Kyuho; Sinha, Surajit; Ocasio, Cory A; Chen, James K

    2009-01-01

    Eradicating hedgehogs: The title molecule has been previously identified as a potent inhibitor of the Hedgehog signaling pathway, which gives embryonic cells information needed to develop properly. This molecule is shown to modulate Hedgehog target gene expression by depolymerizing microtubules, thus revealing dual roles of the cytoskeleton in pathway regulation (see figure).

  10. Deformation pattern in vibrating microtubule: Structural mechanics study based on an atomistic approach

    Czech Academy of Sciences Publication Activity Database

    Havelka, Daniel; Deriu, M.A.; Cifra, Michal; Kučera, Ondřej

    2017-01-01

    Roč. 7, č. 1 (2017), č. článku 4227. ISSN 2045-2322 R&D Projects: GA ČR(CZ) GA15-17102S Institutional support: RVO:67985882 Keywords : Continuum model * Protein microtubules * Molecular-dymamics Subject RIV: BO - Biophysics OBOR OECD: Biophysics Impact factor: 4.259, year: 2016

  11. Proteomics of cancer cell lines resistant to microtubule-stabilizing agents

    DEFF Research Database (Denmark)

    Albrethsen, Jakob; Angeletti, Ruth H; Horwitz, Susan Band

    2014-01-01

    Despite the clinical success of microtubule-interacting agents (MIA), a significant challenge for oncologists is the inability to predict the response of individual patients with cancer to these drugs. In the present study, six cell lines were compared by 2D DIGE proteomics to investigate cellula...

  12. Application of quasi-steady state methods to molecular motor transport on microtubules in fungal hyphae.

    Science.gov (United States)

    Dauvergne, Duncan; Edelstein-Keshet, Leah

    2015-08-21

    We consider bidirectional transport of cargo by molecular motors dynein and kinesin that walk along microtubules, and/or diffuse in the cell. The motors compete to transport cargo in opposite directions with respect to microtubule polarity (towards the plus or minus end of the microtubule). In recent work, Gou et al. (2014) used a hierarchical set of models, each consisting of continuum transport equations to track the evolution of motors and their cargo (early endosomes) in the specific case of the fungus Ustilago maydis. We complement their work using a framework of quasi-steady state analysis developed by Newby and Bressloff (2010) and Bressloff and Newby (2013) to reduce the models to an approximating steady state Fokker-Plank equation. This analysis allows us to find analytic approximations to the steady state solutions in many cases where the full models are not easily solved. Consequently, we can make predictions about parameter dependence of the resulting spatial distributions. We also characterize the overall rates of bulk transport and diffusion, and how these are related to state transition parameters, motor speeds, microtubule polarity distribution, and specific assumptions made. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Tubular lysosome morphology and distribution within macrophages depend on the integrity of cytoplasmic microtubules

    International Nuclear Information System (INIS)

    Swanson, J.; Bushnell, A.; Silverstein, S.C.

    1987-01-01

    Pinocytosis of the fluorescent dye lucifer yellow labels elongated, membrane-bound tubular organelles in several cell types, including cultured human monocytes, thioglycolate-elicited mouse peritoneal macrophages, and the macrophage-like cell line J774.2. These tubular structures can be identified as lysosomes by acid phosphatase histochemistry and immunofluorescence localization of cathepsin L. The abundance of tubular lysosomes is markedly increased by treatment with phorbol 12-myristate 13-acetate. When labeled by pinocytosis of microperoxidase and examined by electron microscopic histochemistry, the tubular lysosomes have an outside diameter of ≅ 75 nm and a length of several micrometers; they radiate from the cell's centrosphere in alignment with cytoplasmic microtubules and intermediate filaments. Incubation of phorbol myristate acetate-treated macrophages at 4 0 C or in medium containing 5 μM colchicine or nocodazole at 37 0 C leads to disassembly of microtubules and fragmentation of the tubular lysosomes. Return of the cultures to 37 0 C or removal of nocodazole from the medium leads to reassembly of microtubules and the reappearance of tubular lysosomes within 10-20 min. The authors conclude that microtubules are essential for the maintenance of tubular lysosome morphology and that, in macrophages, a significant proportion of the lysosomal compartment is contained within these tubular structures

  14. Microtubule-Mediated Inositol Lipid Signaling Plays Critical Roles in Regulation of Blebbing.

    Directory of Open Access Journals (Sweden)

    Tatsuroh Sugiyama

    Full Text Available Cells migrate by extending pseudopods such as lamellipodia and blebs. Although the signals leading to lamellipodia extension have been extensively investigated, those for bleb extension remain unclear. Here, we investigated signals for blebbing in Dictyostelium cells using a newly developed assay to induce blebbing. When cells were cut into two pieces with a microneedle, the anucleate fragments vigorously extended blebs. This assay enabled us to induce blebbing reproducibly, and analyses of knockout mutants and specific inhibitors identified candidate molecules that regulate blebbing. Blebs were also induced in anucleate fragments of leukocytes, indicating that this assay is generally applicable to animal cells. After cutting, microtubules in the anucleate fragments promptly depolymerized, followed by the extension of blebs. Furthermore, when intact cells were treated with a microtubule inhibitor, they frequently extended blebs. The depolymerization of microtubules induced the delocalization of inositol lipid phosphatidylinositol 3,4,5-trisphosphate from the cell membrane. PI3 kinase-null cells frequently extended blebs, whereas PTEN-null cells extended fewer blebs. From these observations, we propose a model in which microtubules play a critical role in bleb regulation via inositol lipid metabolism.

  15. Cationic membranes complexed with oppositely charged microtubules: hierarchical self-assembly leading to bio-nanotubes

    International Nuclear Information System (INIS)

    Raviv, Uri; Needleman, Daniel J; Safinya, Cyrus R

    2006-01-01

    The self-assembly of microtubules and charged membranes has been studied, using x-ray diffraction and electron microscopy. Polyelectrolyte lipid complexes usually form structures templated by the lipid phase, when the polyelectrolyte curvature is much larger than the membrane spontaneous curvature. When the polyelectrolyte curvature approaches the membrane spontaneous curvature, as in microtubules, two types of new structures emerge. Depending on the conditions, vesicles either adsorb onto the microtubule, forming a 'beads on a rod' structure, or coat the microtubule, which now forms the template. Tubulin oligomers then coat the external lipid layer, forming a lipid protein nanotube. The tubulin oligomer coverage at the external layer is determined by the membrane charge density. The energy barrier between the beads on a rod and the lipid-protein nanotube states depends on the membrane bending rigidity and membrane charge density. By controlling the lipid/tubulin stoichiometry we can switch between lipid-protein nanotubes with open ends to lipid-protein nanotubes with closed end with lipid cups. This forms the basis for controlled drug encapsulation and release

  16. Aluminum ions inhibit phospholipase D in a microtubule-dependent manner

    Czech Academy of Sciences Publication Activity Database

    Pejchar, Přemysl; Pleskot, R.; Schwarzerová, K.; Martinec, Jan; Valentová, O.; Novotná, Z.

    2008-01-01

    Roč. 32, č. 5 (2008), s. 554-556 ISSN 1065-6995 R&D Projects: GA ČR GA522/05/0340 Institutional research plan: CEZ:AV0Z50380511 Keywords : Aluminum toxicity * Phospholipase D * Microtubules Subject RIV: ED - Physiology Impact factor: 1.619, year: 2008

  17. The curvature coordinate system

    DEFF Research Database (Denmark)

    Almegaard, Henrik

    2007-01-01

    The paper describes a concept for a curvature coordinate system on regular curved surfaces from which faceted surfaces with plane quadrangular facets can be designed. The lines of curvature are used as parametric lines for the curvature coordinate system on the surface. A new conjugate set of lin...

  18. Effects of ultraviolet radiation on microtubule organisation and morphogenesis in plants

    International Nuclear Information System (INIS)

    Staxen, I.

    1994-09-01

    The involvement of the cytoskeleton in the development of somatic embryos was studied in Larix x eurolepis. Protoplasts were isolated from both somatic embryo-regenerating and non-generating cultures and fractionated on a discontinuous Percoll density gradient, whereby a highly embryogenic protoplast fraction could be enriched. Protoplasts of two cell lines of Larix eurolepis, one with regenerating potential and one lacking this potent