WorldWideScience

Sample records for dynamic mechanical properties

  1. Dynamic mechanical properties of buffer material

    International Nuclear Information System (INIS)

    Takaji, Kazuhiko; Taniguchi, Wataru

    1999-11-01

    The buffer material is expected to maintain its low water permeability, self-sealing properties, radionuclides adsorption and retardation properties, thermal conductivity, chemical buffering properties, overpack supporting properties, stress buffering properties, etc. over a long period of time. Natural clay is mentioned as a material that can relatively satisfy above. Among the kinds of natural clay, bentonite when compacted is superior because (i) it has exceptionally low water permeability and properties to control the movement of water in buffer, (ii) it fills void spaces in the buffer and fractures in the host rock as it swells upon water uptake, (iii) it has the ability to exchange cations and to adsorb cationic radioelements. In order to confirm these functions for the purpose of safety assessment, it is necessary to evaluate buffer properties through laboratory tests and engineering-scale tests, and to make assessments based on the ranges in the data obtained. This report describes the procedures, test conditions, results and examinations on the buffer material of dynamic triaxial tests, measurement of elastic wave velocity and liquefaction tests that aim at getting hold of dynamic mechanical properties. We can get hold of dependency on the shearing strain of the shearing modulus and hysteresis damping constant, the application for the mechanical model etc. by dynamic triaxial tests, the acceptability of maximum shearing modulus obtained from dynamic triaxial tests etc. by measurement of elastic wave velocity and dynamic strength caused by cyclic stress etc. by liquefaction tests. (author)

  2. Dynamic Mechanical Properties of PMN/CNFs/EP Composites

    International Nuclear Information System (INIS)

    Shi Minxian; Huang Zhixiong; Qin Yan

    2011-01-01

    In this research, piezoelectric ceramic PMN(lead magnesium niobate-lead zirconate-lead titanate)/carbon nano-fibers(CNFs)/epoxy resin(EP) ccomposites were prepared and the dynamic mechanical properties and damping mechanism of PMN/CNFs/EP composites were investigated. The addition of CNFs into PMN/EP composite results in decrease of volume resistivity of the composite. When the concentration of CNFs is 0.6% weight of epoxy resin the volume resistivity of PMN/CNFs/EP composite is about 10 8 Ω·m. Dynamic mechanical analysis indicates that the loss factor, loss area, and damping temperature range of PMN/CNFs/EP composites increase with the CNFs content increasing till to 0.6% of weight of epoxy resin. When the CNFs content is more than 0.6% the damping properties of composites decrease oppositely. In PMN/CNFs/EP composites, the CNFs content 0.6% and the volume resistivity of PMN/CNFs/EP composites about 10 8 Ω·m just satisfy the practicing condition of piezo-damping, so the composites show optimal damping property.

  3. Dynamic mechanical properties of toughened polyamide composites

    International Nuclear Information System (INIS)

    Alsewailem, Fares D.

    2008-01-01

    The effect of incorporating thermoplastic rubber on the dynamic mechanical properties, storage and loss moduli, of virgin and recycled glass-fiber-reinforced polyamide 66 has been investigated in this study. Styrene-Ethylene-Styrene and Ethylene-Propylene grafted with maleic anhydride were used as elastomers for toughening. Dynamic mechanical properties of the composites were examined by the rotational rhometry. Shear storage and loss moduli of recycled and virgin materials were measured against frequency. Also the variation of storage modulus of the virgin composites was measured against temperatures by conducting a series of torsion tests. Both dynamic storage and loss moduli of the composites were found to increase with increasing glass fiber and rubber contents. Recycled composites had lower values of dynamic modulus compared that of virgin composites; however by proper combining of fiber and rubber into the recycled material, its modulus fairly matches that of the virgin material. Addition of rubber to virgin composites causes a reduction in G' as temperature increases. Rubber, which acts as a stress concentrator, had a major effect on minimizing the overall modulus of the composites. The in G' versus temperature has been observed for all composites: however the temperature at which the transition G' occurs decreases with increasing rubber content. (author)

  4. Dynamic mechanical properties of photopolymerizable poly(vinyl alcohol)-acrylate monomer blends

    International Nuclear Information System (INIS)

    Koshiba, M.; Yamaoka, T.; Tsunoda, T.

    1983-01-01

    Dynamic mechanical properties of photopolymerizable poly(vinyl alcohol) (PVA)-monoacrylate blends were investigated by measuring dynamic shear modulus G' and loss tangent, tan delta. The dynamic mechanical properties of the blends before being exposed to UV irradiation were governed by the weight percent of the monomers which act as plasticizers. On the other hand, the UV-irradiated blends seemed to be typical two-phase materials since they revealed two tan delta maxima whose positions were independent of the monomer content. Those two maxima were assigned to PVA and photopolymerized acrylates with reference to the dynamic mechanical data of PVA and a PVA-polyacrylamide polyblend. Those dynamic mechanical data suggested that insolubilization of the blend type photopolymers should be caused by a decrease in solubility due to graft polymerization of acrylate monomers onto PVA. 9 figures, 3 tables

  5. Hydration Control of the Mechanical and Dynamical Properties of Cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Petridis, Loukas; O’Neill, Hugh M.; Johnsen, Mariah [Ripon College, Ripon, Wisconsin 54971, United States; Fan, Bingxin [Department; Schulz, Roland [Department; Mamontov, Eugene; Maranas, Janna [Department; Langan, Paul [Department; Smith, Jeremy C. [Department

    2014-10-13

    The mechanical and dynamical properties of cellulose, the most abundant biomolecule on earth, are essential for its function in plant cell walls and advanced biomaterials. Cellulose is almost always found in a hydrated state, and it is therefore important to understand how hydration influences its dynamics and mechanics. Here, the nanosecond-time scale dynamics of cellulose is characterized using dynamic neutron scattering experiments and molecular dynamics (MD) simulation. The experiments reveal that hydrated samples exhibit a higher average mean-square displacement above ~240 K. The MD simulation reveals that the fluctuations of the surface hydroxymethyl atoms determine the experimental temperature and hydration dependence. The increase in the conformational disorder of the surface hydroxymethyl groups with temperature follows the cellulose persistence length, suggesting a coupling between structural and mechanical properties of the biopolymer. In the MD simulation, 20% hydrated cellulose is more rigid than the dry form, due to more closely packed cellulose chains and water molecules bridging cellulose monomers with hydrogen bonds. This finding may have implications for understanding the origin of strength and rigidity of secondary plant cell walls. The detailed characterization obtained here describes how hydration-dependent increased fluctuations and hydroxymethyl disorder at the cellulose surface lead to enhancement of the rigidity of this important biomolecule.

  6. Characterisation of Dynamic Mechanical Properties of Resistance Welding Machines

    DEFF Research Database (Denmark)

    Wu, Pei; Zhang, Wenqi; Bay, Niels

    2005-01-01

    characterizing the dynamic mechanical characteristics of resistance welding machines is suggested, and a test set-up is designed determining the basic, independent machine parameters required in the model. The model is verified by performing a series of mechanical tests as well as real projection welds.......The dynamic mechanical properties of a resistance welding machine have significant influence on weld quality, which must be considered when simulating the welding process numerically. However, due to the complexity of the machine structure and the mutual coupling of components of the machine system......, it is very difficult to measure or calculate the basic, independent machine parameters required in a mathematical model of the machine dynamics, and no test method has so far been presented in literature, which can be applied directly in an industrial environment. In this paper, a mathematical model...

  7. Experimental research on dynamic mechanical properties of PZT ceramic under hydrostatic pressure

    International Nuclear Information System (INIS)

    Wang, S.; Liu, K.X.

    2011-01-01

    Highlights: → We developed an experimental device to examine dynamic mechanical properties of PZT. → Ductile behavior of PZT was seen when hydrostatic pressure was involved. → Compressive strength was shown sensitive to hydrostatic pressure and strain-rate. → A failure criterion was suggested to explain the failure behavior of PZT. - Abstract: An experimental technique for initially applied hydrostatic pressure in specimens subjected to axial impact has been developed to study the dynamic mechanical properties of materials. The technique was employed for the purpose of examining the dynamic mechanical properties of lead zirconate titanate (PZT) at zero to 15 MPa hydrostatic pressures. Experimental results unambiguously exhibit the ductile behavior of PZT when hydrostatic pressure is involved. The compressive strength is demonstrated sensitive to the initial hydrostatic pressure and the strain-rate. The fracture modes are analyzed by means of scanning electron microscopy (SEM). Moreover, a failure criterion based on Mohr-Coulomb failure theory is suggested to explain the brittle and ductile failure of PZT.

  8. Dynamic Mechanical and Thermal Properties of Bagasse/Glass Fiber/Polypropylene Hybrid Composites

    Directory of Open Access Journals (Sweden)

    Mehdi Roohani

    2016-06-01

    Full Text Available This work aims to evaluate the thermal and dynamic mechanical properties of bagasse/glass fiber/polypropylene hybrid composites. Composites were prepared by the melt compounding method and their properties were characterized by differential scanning calorimetry (DSC and dynamic mechanical analysis (DMA. DSC results found that with incorporation of bagasse and glass fiber the melting temperature (Tm and the crystallisation temperature (Tc shift to higher temperatures and the degree of crystallinity (Xc increase. These findings suggest that the fibers played the role of a nucleating agent in composites. Dynamic mechanical analysis indicated that by the incorporation of bagasse and glass fiber into polypropylene, the storage modulus ( and the loss modulus ( increase whereas the mechanical loss factor (tanδ decrease. To assess the effect of reinforcement with increasing temperature, the effectiveness coefficient C was calculated at different temperature ranges and revealed that, at the elevated temperatures, improvement of mechanical properties due to the presence of fibers was more noticeable. The fiber-matrix adhesion efficiency determined by calculating of adhesion factor A in terms of the relative damping of the composite (tan δc and the polymer (tan δpand volume fraction of the fibers (Фf. Calculated adhesion factor A values indicated that by adding glass fiber to bagasse/polypropylene system, the fiber-matrix adhesion improve. Hybrid composite containing 25% bagasse and 15% glass fiber showed better fiber-matrix adhesion.

  9. Respiratory system dynamical mechanical properties: modeling in time and frequency domain.

    Science.gov (United States)

    Carvalho, Alysson Roncally; Zin, Walter Araujo

    2011-06-01

    The mechanical properties of the respiratory system are important determinants of its function and can be severely compromised in disease. The assessment of respiratory system mechanical properties is thus essential in the management of some disorders as well as in the evaluation of respiratory system adaptations in response to an acute or chronic process. Most often, lungs and chest wall are treated as a linear dynamic system that can be expressed with differential equations, allowing determination of the system's parameters, which will reflect the mechanical properties. However, different models that encompass nonlinear characteristics and also multicompartments have been used in several approaches and most specifically in mechanically ventilated patients with acute lung injury. Additionally, the input impedance over a range of frequencies can be assessed with a convenient excitation method allowing the identification of the mechanical characteristics of the central and peripheral airways as well as lung periphery impedance. With the evolution of computational power, the airway pressure and flow can be recorded and stored for hours, and hence continuous monitoring of the respiratory system mechanical properties is already available in some mechanical ventilators. This review aims to describe some of the most frequently used models for the assessment of the respiratory system mechanical properties in both time and frequency domain.

  10. Mechanical properties of dynamic diffusion bonded joints in a mild alloy steel

    International Nuclear Information System (INIS)

    Gomez de Salazar, J. M.; Urena, A.; Menendez, M.

    2001-01-01

    Mechanical properties in Dynamic Diffusion Bonded (DDB) in a A.S.T.M. 1045 steel (=.45%C) joints were studied. The thermomechanical cycle added to the process, favours both the initial deformation stage and probably the diffusion mechanisms which participate in bond formation. (Author) 11 refs

  11. The PTFE-nanocomposites mechanical properties for transport systems dynamic sealing devices elements

    Science.gov (United States)

    Mashkov, Y. K.; Egorova, V. A.; Chemisenko, O. V.; Maliy, O. V.

    2017-06-01

    The mechanical properties study results of polymer nanocomposites based on polytetrafluoroethylene with modifiers in the form of micro- and nanoscale cryptocrystalline graphite and silicon dioxide powders are determined. The nanocomposites mechanical properties determined values provide high sealing degree of transport systems dynamic sealing devices elements. When the temperature changes from cryogenic to high positive then the elastic modulus, tensile strength decrease significantly and nonlinearly, the latter limits the composite usage in heavily loaded tribosystems operating at elevated temperatures.

  12. Test methods for the dynamic mechanical properties of polymeric materials. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Baker, G.K.

    1980-06-01

    Various test geometries and procedures for the dynamic mechanical analysis of polymers employing a mechanical spectrometer have been evaluated. The methods and materials included in this work are forced torsional pendulum testing of Kevlar/epoxy laminates and rigid urethane foams, oscillatory parallel plate testing to determine the kinetics of the cure of VCE with Hylene MP, oscillatory compressive testing of B-3223 cellular silicone, and oscillatory tensile testing of Silastic E and single Kevlar filaments. Fundamental dynamic mechanical properties, including the storage and loss moduli and loss tangent of the materials tested, were determined as a function of temperature and sometimes of frequency.

  13. Molecular Dynamics Simulation for the Mechanical Properties of CNT/Polymer Nanocomposites

    International Nuclear Information System (INIS)

    Yang, Seung Hwa; Cho, Maeg Hyo

    2007-01-01

    In order to obtain mechanical properties of CNT/Polymer nano-composites, molecular dynamics simulation is performed. Overall system was modeled as a flexible unit cell in which carbon nanotubes are embedded into a polyethylene matrix for N σ T ensemble simulation. COMPASS force field was chosen to describe inter and intra molecular potential and bulk effect was achieved via periodic boundary conditions. In CNT-polymer interface, only Lennard-Jones non-bond potential was considered. Using Parrinello-Rahman fluctuation method, mechanical properties of orthotropic nano-composites under various temperatures were successfully obtained. Also, we investigated thermal behavior of the short CNT reinforced nanocomposites system with predicting glass transition temperature

  14. A Novel Method of Mechanical Oxidation of CNT for Polymer Nanocomposite Application: Evaluation of Mechanical, Dynamic Mechanical, and Rheological Properties

    Directory of Open Access Journals (Sweden)

    Priyanka Pandey

    2014-01-01

    Full Text Available A new approach of oxidation of carbon nanotubes has been used to oxidize the CNTs. A comparative aspect of the mechanical oxidation and acid oxidation process has been established. FTIR analysis and titration method have shown the higher feasibility of the mechanical oxidation method to oxidize the CNTs. Comparatively less damage to the CNTs has been observed in case of mechanically oxidized as compared to acid oxidized CNTs. The mechanical properties of the nanocomposites reinforced with the acid oxidized CNT (ACNT and mechanically oxidized CNTs (McCNT were analyzed and relatively higher properties in the nanocomposites reinforced with McCNT were noticed. The less degree of entanglement in the McCNTs was noticed as compared to ACNTs. The dynamic mechanical analysis of the nanocomposites revealed much improved load transfer capability in the McCNT reinforced composites. Further, the rheological properties of the nanocomposites revealed the higher performance of McCNT reinforced composites.

  15. An ab-initio study of mechanical, dynamical and electronic properties of MgEu intermetallic

    Science.gov (United States)

    Kumar, S. Ramesh; Jaiganesh, G.; Jayalakshmi, V.

    2018-04-01

    The theoretical investigation on the mechanical, dynamical and electronic properties of MgEu in CsCl-type structure has been carried out through the ab-initio calculations within the framework of the density functional theory and the density functional perturbation theory. For the purpose, Vienna Ab initio Simulation Package and Phonopy packages were used. Our calculated ground-state properties of MgEu are in good agreement with other available results. Our computed elastic constants and phonon spectrum results suggest that MgEu is mechanically and dynamically stable up to 5 GPa. The thermodynamic quantities as a function of temperatures are also reported and discussed. The band structure, density of states and charge density also calculated to understand the electronic properties of MgEu.

  16. Long-term dynamic loading improves the mechanical properties of chondrogenic mesenchymal stem cell-laden hydrogel

    Directory of Open Access Journals (Sweden)

    AH Huang

    2010-02-01

    Full Text Available Mesenchymal stem cells (MSCs are an attractive cell source for cartilage tissue engineering given their ability to undergo chondrogenesis in 3D culture systems. Mechanical forces play an important role in regulating both cartilage development and MSC chondrogenic gene expression, however, mechanical stimulation has yet to enhance the mechanical properties of engineered constructs. In this study, we applied long-term dynamic compression to MSC-seeded constructs and assessed whether varying pre-culture duration, loading regimens and inclusion of TGF-beta3 during loading would influence functional outcomes and these phenotypic transitions. Loading initiated before chondrogenesis decreased functional maturation, although chondrogenic gene expression increased. In contrast, loading initiated after chondrogenesis and matrix elaboration further improved the mechanical properties of MSC-based constructs, but only when TGF-beta3 levels were maintained and under specific loading parameters. Although matrix quantity was not affected by dynamic compression, matrix distribution, assessed histologically and by FT-IRIS analysis, was significantly improved on the micro- (pericellular and macro- (construct expanse scales. Further, whole genome expression profiling revealed marked shifts in the molecular topography with dynamic loading. These results demonstrate, for the first time, that dynamic compressive loading initiated after a sufficient period of chondro-induction and with sustained TGF-beta exposure enhances matrix distribution and the mechanical properties of MSC-seeded constructs.

  17. Effect of thermally reduced graphene oxide on dynamic mechanical properties of carbon fiber/epoxy composite

    Science.gov (United States)

    Adak, Nitai Chandra; Chhetri, Suman; Murmu, Naresh Chandra; Samanta, Pranab; Kuila, Tapas

    2018-03-01

    The Carbon fiber (CF)/epoxy composites are being used in the automotive and aerospace industries owing to their high specific mechanical strength to weight ratio compared to the other conventional metal and alloys. However, the low interfacial adhesion between fiber and polymer matrix results the inter-laminar fracture of the composites. Effects of different carbonaceous nanomaterials i.e., carbon nanotubes (CNT), graphene nanosheets (GNPs), graphene oxide (GO) etc. on the static mechanical properties of the composites were investigated in detail. Only a few works focused on the improvement of the dynamic mechanical of the CF/epoxy composites. Herein, the effect of thermally reduced grapheme oxide (TRGO) on the dynamic mechanical properties of the CF/epoxy composites was investigated. At first, GO was synthesized using modified Hummers method and then reduced the synthesized GO inside a vacuum oven at 800 °C for 5 min. The prepared TRGO was dispersed in the epoxy resin to modify the epoxy matrix. Then, a number of TRGO/CF/epoxy laminates were manufactured incorporating different wt% of TRGO by vacuum assisted resin transfer molding (VARTM) technique. The developed laminates were cured at room temperature for 24 h and then post cured at 120 °C for 2 h. The dynamic mechanical analyzer (DMA 8000 Perkin Elmer) was used to examine the dynamic mechanical properties of the TRGO/CF/epoxy composites according to ASTM D7028. The dimension of the specimen was 44×10×2.4 mm3 for the DMA test. This test was carried out under flexural loading mode (duel cantilever) at a frequency of 1 Hz and amplitude of 50 μm. The temperature was ramped from 30 to 200 °C with a heating rate of 5 °C min-1. The dynamic mechanical analysis of the 0.2 wt% TRGO incorporated CF/epoxy composites showed ~ 96% enhancement in storage modulus and ~ 12 °C increments in glass transition temperature (Tg) compared to the base CF/epoxy composites. The fiber-matrix interaction was studied by Cole

  18. Dynamic mechanical analysis of compatibilizer effect on the mechanical properties of wood flour/high-density polyethylene composites

    Science.gov (United States)

    Mehdi Behzad; Medhi Tajvidi; Ghanbar Ehrahimi; Robert H. Falk

    2004-01-01

    In this study, effect of MAPE (maleic anhydride polyethylene) as the compatibilizer on the mechanical properties of wood-flour polyethylene composites has been investigated by using Dynamic Mechanical Analysis (DMA). Composites were made at 25% and 50% by weight fiber contents and 1% and 2% compatibilizer respectively. Controls were also made at the same fiber contents...

  19. Dynamic compressive properties and failure mechanism of glass fiber reinforced silica hydrogel

    International Nuclear Information System (INIS)

    Yang Jie; Li Shukui; Yan Lili; Huo Dongmei; Wang Fuchi

    2010-01-01

    The dynamic compressive properties of glass fiber reinforced silica (GFRS) hydrogel were investigated using a spilt Hopkinson pressure bar. Failure mechanism of GFRS hydrogel was studied by scanning electron microscopy (SEM). Result showed that dynamic compressive stresses were much higher than the quasi-static compressive stresses at the same strain. The dynamic compressive strength was directly proportional to the strain rate with same sample dimensions. The dynamic compressive strength was directly proportional to the sample basal area at same strain rate. Dynamic compressive failure strain was small. At high strain rates, glass fibers broke down and separated from the matrix, pores shrank rapidly. Failure resulted from the increase of lateral tensile stress in hydrogel under dynamic compression.

  20. Optimization of Mechanical, Dynamical and Thermal Properties of a High Performance Tread Compound for Radial Tires

    Directory of Open Access Journals (Sweden)

    Mir Hamid Reza Ghoreishy

    2013-06-01

    Full Text Available A high performance passenger tire tread compound was optimized for its mechanical, dynamical and thermal properties. A reference compound was based on a blend of SBR and BR, sulfur and other ingredients without accelerator, carbon black and aromatic oil. The effects of CBS/TMTD and TBBS/TMTD as accelerator systems were studied with different quantities and the best accelerator system was chosen. Then, the blends of N330 and N550 carbon blacks were added in different quantities and the properties of these samples were studied to determine the best carbon black blend. Finally, the effect of different quantities of aromatic oil was investigated and the optimized quantity of aromatic oil and the final properties of tire tread compound were defined. The mechanical and dynamical tests were carried out on appropriate samples to determine tensile strength, elongation-at-break, fatigue-to-failure, abrasion resistance, hardness, resilience, dynamical-mechanical properties and temperature rise due to the heat build-up. The results showed that the compound containing 0.8 phr CBS, 0.7 phr TMTD, 40 phr N330,20 phr N550 and 15 phr aromatic oils demonstrated the best properties.

  1. Electron beam crosslinked gels-Preparation, characterization and their effect on the mechanical, dynamic mechanical and rheological properties of rubbers

    Energy Technology Data Exchange (ETDEWEB)

    Mitra, Suman; Chattopadhyay, Santanu [Rubber Technology Centre, Indian Institute of Technology, Kharagpur 721302 (India); Sabharwal, Sunil [Radiation Technology Development Section, Bhabha Atomic Research Center, Trombay, Mumbai 400085 (India); Bhowmick, Anil K., E-mail: anilkb@rtc.iitkgp.ernet.i [Rubber Technology Centre, Indian Institute of Technology, Kharagpur 721302 (India)

    2010-03-15

    Electron beam (EB) crosslinked natural rubber (NR) gels were prepared by curing NR latex with EB irradiation over a range of doses from 2.5 to 20 kGy using butyl acrylate as sensitizer. The NR gels were systematically characterized by solvent swelling, dynamic light scattering, mechanical and dynamic mechanical properties. These gels were introduced in virgin NR and styrene butadiene rubber (SBR) matrices at 2, 4, 8 and 16 phr concentration. Addition of the gels improved the mechanical and dynamic mechanical properties of NR and SBR considerably. For example, 16 phr of 20 kGy EB-irradiated gel-filled NR showed a tensile strength of 3.53 MPa compared to 1.85 MPa of virgin NR. Introduction of gels in NR shifted the glass transition temperature to a higher temperature. A similar effect was observed in the case of NR gel-filled SBR systems. Morphology of the gel-filled systems was studied with atomic force microscopy. The NR gels also improved the processability of the virgin rubbers greatly. Both the shear viscosity and the die swell values of EB-irradiated gel-filled NR and SBR were lower than their virgin counterparts as investigated by capillary rheometer.

  2. Electron beam crosslinked gels-Preparation, characterization and their effect on the mechanical, dynamic mechanical and rheological properties of rubbers

    International Nuclear Information System (INIS)

    Mitra, Suman; Chattopadhyay, Santanu; Sabharwal, Sunil; Bhowmick, Anil K.

    2010-01-01

    Electron beam (EB) crosslinked natural rubber (NR) gels were prepared by curing NR latex with EB irradiation over a range of doses from 2.5 to 20 kGy using butyl acrylate as sensitizer. The NR gels were systematically characterized by solvent swelling, dynamic light scattering, mechanical and dynamic mechanical properties. These gels were introduced in virgin NR and styrene butadiene rubber (SBR) matrices at 2, 4, 8 and 16 phr concentration. Addition of the gels improved the mechanical and dynamic mechanical properties of NR and SBR considerably. For example, 16 phr of 20 kGy EB-irradiated gel-filled NR showed a tensile strength of 3.53 MPa compared to 1.85 MPa of virgin NR. Introduction of gels in NR shifted the glass transition temperature to a higher temperature. A similar effect was observed in the case of NR gel-filled SBR systems. Morphology of the gel-filled systems was studied with atomic force microscopy. The NR gels also improved the processability of the virgin rubbers greatly. Both the shear viscosity and the die swell values of EB-irradiated gel-filled NR and SBR were lower than their virgin counterparts as investigated by capillary rheometer.

  3. Assessment of structural, thermal, and mechanical properties of portlandite through molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Hajilar, Shahin, E-mail: shajilar@iastate.edu [Department of Civil, Construction and Environmental Engineering, Iowa State University, Ames, IA 50011-1066 (United States); Shafei, Behrouz, E-mail: shafei@iastate.edu [Department of Civil, Construction and Environmental Engineering, Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011-1066 (United States)

    2016-12-15

    The structural, thermal, and mechanical properties of portlandite, the primary solid phase of ordinary hydrated cement paste, are investigated using the molecular dynamics method. To understand the effects of temperature on the structural properties of portlandite, the coefficients of thermal expansion of portlandite are determined in the current study and validated with what reported from the experimental tests. The atomic structure of portlandite equilibrated at various temperatures is then subjected to uniaxial tensile strains in the three orthogonal directions and the stress-strain curves are developed. Based on the obtained results, the effect of the direction of straining on the mechanical properties of portlandite is investigated in detail. Structural damage analysis is performed to reveal the failure mechanisms in different directions. The energies of the fractured surfaces are calculated in different directions and compared to those of the ideal surfaces available in the literature. The key mechanical properties, including tensile strength, Young's modulus, and fracture strain, are extracted from the stress-strain curves. The sensitivity of the obtained mechanical properties to temperature and strain rate is then explored in a systematic way. This leads to valuable information on how the structural and mechanical properties of portlandite are affected under various exposure conditions and loading rates. - Graphical abstract: Fracture mechanism of portlandite under uniaxial strain in the z-direction. - Highlights: • The structural, thermal, and mechanical properties of portlandite are investigated. • The coefficients of thermal expansion are determined. • The stress-strain relationships are studied in three orthogonal directions. • The effects of temperature and strain rate on mechanical properties are examined. • The plastic energy required for fracture in the crystalline structure is reported.

  4. Mechanical properties of stanene under uniaxial and biaxial loading: A molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Mojumder, Satyajit [Department of Mechanical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000 (Bangladesh); Amin, Abdullah Al [Department of Mechanical and Aerospace Engineering, Case western Reverse University, Cleveland, Ohio 44106 (United States); Islam, Md Mahbubul, E-mail: mmi122@psu.edu [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States)

    2015-09-28

    Stanene, a graphene like two dimensional honeycomb structure of tin has attractive features in electronics application. In this study, we performed molecular dynamics simulations using modified embedded atom method potential to investigate mechanical properties of stanene. We studied the effect of temperature and strain rate on mechanical properties of α-stanene for both uniaxial and biaxial loading conditions. Our study suggests that with the increasing temperature, both the fracture strength and strain of the stanene decrease. Uniaxial loading in zigzag direction shows higher fracture strength and strain compared to the armchair direction, while no noticeable variation in the mechanical properties is observed for biaxial loading. We also found at a higher loading rate, material exhibits higher fracture strength and strain. These results will aid further investigation of stanene as a potential nano-electronics substitute.

  5. Mechanical and dynamic mechanical behaviour of novel glass ...

    Indian Academy of Sciences (India)

    M Rajesh

    the intra-ply woven fabric hybridization enhances impact and damping properties of the composite ... Keywords. Intra-ply hybrid; natural fibre; mechanical properties; dynamic mechanical analysis; vibration; .... analysis test is conducted in nitrogen environment over a ..... Mnson J A and Jolliet O 2001 Life cycle assessment of.

  6. Cure behavior, compression set and dynamic mechanical properties of EPDM/NBR blend vulcanizates

    Energy Technology Data Exchange (ETDEWEB)

    Park, C.Y. [Pukyong National Univeristy, Pusan (Korea)

    2001-03-01

    The ethylene propylene diene terpolymer (EPDM) blends with acrylonitrile butadiene rubber (NBR) were prepared by mechanical mixing method. Mooney viscosity, cure behaviors, compression set and dynamic mechanical properties were subsequently examined. Dynamic characteristics of the entire blends determined from a Rheovibron generally showed two glass transitions (T{sub g}'s), -43 deg. C and -4 deg. C for NBR and EPDM, respectively. The tan {delta} peak monotonically shifted toward the higher temperature with increasing NBR content. It was also found that the optimum cure time was significantly decreased with loading of NBR. (author). 13 refs., 4 tabs., 9 figs.

  7. Temperature-dependent dynamic mechanical properties of magnetorheological elastomers under magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Benxiang, E-mail: jubenxiang@qq.com [National Instrument Functional Materials Engineering Technology Research Center, Chongqing 400707 (China); Tang, Rui; Zhang, Dengyou; Yang, Bailian [National Instrument Functional Materials Engineering Technology Research Center, Chongqing 400707 (China); Yu, Miao; Liao, Changrong [College of Optoelectronic Engineering, Chongqing University, Chongqing 400044 (China)

    2015-01-15

    Both anisotropic and isotropic magnetorheological elastomer (MRE) samples were fabricated by using as-prepared polyurethane (PU) matrix and carbonyl iron particles. Temperature-dependent dynamic mechanical properties of MRE were investigated and analyzed. Due to the unique structural features of as-prepared matrix, temperature has a greater impact on the properties of as-prepared MRE, especially isotropic MRE. With increasing of temperature and magnetic field, MR effect of isotropic MRE can reach up to as high as 4176.5% at temperature of 80 °C, and the mechanism of the temperature-dependent in presence of magnetic field was discussed. These results indicated that MRE is a kind of temperature-dependent material, and can be cycled between MRE and MR plastomer (MRP) by varying temperature. - Highlights: • Both anisotropic and isotropic MRE were fabricated by using as-prepared matrix. • Temperature-dependent properties of MRE under magnetic field were investigated. • As-prepared MRE can transform MRE to MRP by adjusting temperature.

  8. Mechanical properties of pillared-graphene nanostructures using molecular dynamics simulations

    International Nuclear Information System (INIS)

    Wang, Chih-Hao; Fang, Te-Hua; Sun, Wei-Li

    2014-01-01

    The deformation behaviour and mechanical properties of three-dimensional (3D) pillared graphene are investigated using molecular dynamics simulations. The Tersoff–Brenner many-body potential model is employed to evaluate the interactions between 3D pillared-graphene carbon atoms and nanotube carbons. The Lennard-Jones potential model is used to compute the interactions between a conical indenter and 3D pillared-graphene carbon atoms. The effects of the size and geometric structure of 3D pillared-graphene are evaluated in terms of the indentation force and contact stiffness. The simulation results for an armchair nanotube of 3D pillared graphene show that the contact stiffness increases with increasing chiral vector of the 3D-pillared graphene. However, the adhesive force sharply decreases with increasing chiral vector of the 3D-pillared graphene. A zigzag nanotube of 3D-pillared graphene exhibits better mechanical properties compared with those of the armchair nanotube. (paper)

  9. Mechanical, dynamical and thermodynamic properties of Al-3wt%Mg from first principles

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Rong [Chongqing Jiaotong Univ., Chongqing (China). College of Materials Science and Engineering; Tang, Bin [Chongqing City Management College, Chongqing (China). Inst. of Finance and Trade; Gao, Tao [Sichuan Univ., Chengdu (China). Inst. of Atomic and Molecular Physics

    2017-09-01

    The mechanical, dynamical and thermodynamic properties of Al-3wt%Mg have been investigated using the first-principles method. The calculated structural parameter is in good agreement with previous works. Results for the elastic modulus, stress-strain relationships, ideal tensile and shear strengths are presented. Al-3wt%Mg is found to have larger moduli and higher strengths than Al, which is consistent with its exploitation in Al precipitate-hardening mechanisms. The partial density of states (PDOS) show that the partly covalent-like bonding through Al p-Mg s hybridization is the origin of excellent mechanical properties of Al-3wt%Mg. The phonon dispersion curves indicate that Al-3wt%Mg is dynamically stable at ambient pressure and 0 K. Furthermore, the Helmholtz free energy ΔF, the entropy S, the constant-volume specific heat C{sub V} and the phonon contribution to the internal energy ΔE are predicted using the phonon density of states. We expect that our work can provide useful guidance to help with the performance of Al-3wt%Mg.

  10. Mechanical, dynamical and thermodynamic properties of Al-3wt%Mg from first principles

    International Nuclear Information System (INIS)

    Yang, Rong; Tang, Bin; Gao, Tao

    2017-01-01

    The mechanical, dynamical and thermodynamic properties of Al-3wt%Mg have been investigated using the first-principles method. The calculated structural parameter is in good agreement with previous works. Results for the elastic modulus, stress-strain relationships, ideal tensile and shear strengths are presented. Al-3wt%Mg is found to have larger moduli and higher strengths than Al, which is consistent with its exploitation in Al precipitate-hardening mechanisms. The partial density of states (PDOS) show that the partly covalent-like bonding through Al p-Mg s hybridization is the origin of excellent mechanical properties of Al-3wt%Mg. The phonon dispersion curves indicate that Al-3wt%Mg is dynamically stable at ambient pressure and 0 K. Furthermore, the Helmholtz free energy ΔF, the entropy S, the constant-volume specific heat C_V and the phonon contribution to the internal energy ΔE are predicted using the phonon density of states. We expect that our work can provide useful guidance to help with the performance of Al-3wt%Mg.

  11. Predictive Modeling of Mechanical Properties of Welded Joints Based on Dynamic Fuzzy RBF Neural Network

    Directory of Open Access Journals (Sweden)

    ZHANG Yongzhi

    2016-10-01

    Full Text Available A dynamic fuzzy RBF neural network model was built to predict the mechanical properties of welded joints, and the purpose of the model was to overcome the shortcomings of static neural networks including structural identification, dynamic sample training and learning algorithm. The structure and parameters of the model are no longer head of default, dynamic adaptive adjustment in the training, suitable for dynamic sample data for learning, learning algorithm introduces hierarchical learning and fuzzy rule pruning strategy, to accelerate the training speed of model and make the model more compact. Simulation of the model was carried out by using three kinds of thickness and different process TC4 titanium alloy TIG welding test data. The results show that the model has higher prediction accuracy, which is suitable for predicting the mechanical properties of welded joints, and has opened up a new way for the on-line control of the welding process.

  12. Dynamics of coarsening in multicomponent lipid vesicles with non-uniform mechanical properties

    Science.gov (United States)

    Funkhouser, Chloe M.; Solis, Francisco J.; Thornton, K.

    2014-04-01

    Multicomponent lipid vesicles are commonly used as a model system for the complex plasma membrane. One phenomenon that is studied using such model systems is phase separation. Vesicles composed of simple lipid mixtures can phase-separate into liquid-ordered and liquid-disordered phases, and since these phases can have different mechanical properties, this separation can lead to changes in the shape of the vesicle. In this work, we investigate the dynamics of phase separation in multicomponent lipid vesicles, using a model that couples composition to mechanical properties such as bending rigidity and spontaneous curvature. The model allows the vesicle surface to deform while conserving surface area and composition. For vesicles initialized as spheres, we study the effects of phase fraction and spontaneous curvature. We additionally initialize two systems with elongated, spheroidal shapes. Dynamic behavior is contrasted in systems where only one phase has a spontaneous curvature similar to the overall vesicle surface curvature and systems where the spontaneous curvatures of both phases are similar to the overall curvature. The bending energy contribution is typically found to slow the dynamics by stabilizing configurations with multiple domains. Such multiple-domain configurations are found more often in vesicles with spheroidal shapes than in nearly spherical vesicles.

  13. Freeze-thaw treatment effects on the dynamic mechanical properties of articular cartilage

    Directory of Open Access Journals (Sweden)

    Muldrew Ken

    2010-10-01

    Full Text Available Abstract Background As a relatively non-regenerative tissue, articular cartilage has been targeted for cryopreservation as a method of mitigating a lack of donor tissue availability for transplant surgeries. In addition, subzero storage of articular cartilage has long been used in biomedical studies using various storage temperatures. The current investigation studies the potential for freeze-thaw to affect the mechanical properties of articular cartilage through direct comparison of various subzero storage temperatures. Methods Both subzero storage temperature as well as freezing rate were compared using control samples (4°C and samples stored at either -20°C or -80°C as well as samples first snap frozen in liquid nitrogen (-196°C prior to storage at -80°C. All samples were thawed at 37.5°C to testing temperature (22°C. Complex stiffness and hysteresis characterized load resistance and damping properties using a non-destructive, low force magnitude, dynamic indentation protocol spanning a broad loading rate range to identify the dynamic viscoelastic properties of cartilage. Results Stiffness levels remained unchanged with exposure to the various subzero temperatures. Hysteresis increased in samples snap frozen at -196°C and stored at -80°C, though remained unchanged with exposure to the other storage temperatures. Conclusions Mechanical changes shown are likely due to ice lens creation, where frost heave effects may have caused collagen damage. That storage to -20°C and -80°C did not alter the mechanical properties of articular cartilage shows that when combined with a rapid thawing protocol to 37.5°C, the tissue may successfully be stored at subzero temperatures.

  14. Evaluation of glass transition temperature and dynamic mechanical properties of autopolymerized hard direct denture reline resins.

    Science.gov (United States)

    Takase, Kazuma; Watanabe, Ikuya; Kurogi, Tadafumi; Murata, Hiroshi

    2015-01-01

    This study assessed methods for evaluation of glass transition temperature (Tg) of autopolymerized hard direct denture reline resins using dynamic mechanical analysis and differential scanning calorimetry in addition to the dynamic mechanical properties. The Tg values of 3 different reline resins were determined using a dynamic viscoelastometer and differential scanning calorimeter, and rheological parameters were also determined. Although all materials exhibited higher storage modulus and loss modulus values, and a lower loss tangent at 37˚C with a higher frequency, the frequency dependence was not large. Tg values obtained by dynamic mechanical analysis were higher than those by differential scanning calorimetry and higher frequency led to higher Tg, while more stable Tg values were also obtained by that method. These results suggest that dynamic mechanical analysis is more advantageous for characterization of autopolymerized hard direct denture reline resins than differential scanning calorimetry.

  15. On the dynamic mechanical property and deformation mechanism of as-extruded Mg-Sn-Ca alloys under tension

    International Nuclear Information System (INIS)

    Huang, Qiuyan; Pan, Hucheng; Tang, Aitao; Ren, Yuping; Song, Bo; Qin, Gaowu; Zhang, Mingxing; Pan, Fusheng

    2016-01-01

    To further understand the deformation mechanism of magnesium alloys and expand their applications under dynamic conditions, the newly developed Mg-2Sn-1Ca alloy (TX21) is selected as the representative sample and tested under wide loading rate ranging from quasi-static to dynamic level (10"−"3–500/s). Both ultimate tensile strength and elongation of the as-extruded TX21 alloys increase with strain rate. Although twinning is accompanied due to the enhanced activity at higher strain rate, the preferential activation of dislocations is readily clarified and confirmed as the dominant deformation modes. Active interactions of pyramidal dislocations result in the higher strain hardening ability and could be correlated to the obviously positive strain-rate sensitivity for mechanical properties. Moreover, it is observed that the larger grain size and higher content of solute atoms dissolved in matrix would lead to the more active dislocations and twinning formations. The present results would provide insight into further understanding the deformation mechanism under dynamic rate loading and designing Mg alloy suitable for impact conditions.

  16. On the dynamic mechanical property and deformation mechanism of as-extruded Mg-Sn-Ca alloys under tension

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Qiuyan [National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China); Pan, Hucheng [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110819 (China); Tang, Aitao, E-mail: tat@cqu.edu.cn [National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China); Ren, Yuping [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110819 (China); Song, Bo [Faculty of Materials and Energy, Southwest University, Chongqing 400715 (China); Qin, Gaowu, E-mail: qingw@smm.neu.edu.cn [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110819 (China); Zhang, Mingxing [School of Mechanical and Mining Engineering, University of Queensland, St Lucia, QLD 4072 (Australia); Pan, Fusheng [National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China)

    2016-05-10

    To further understand the deformation mechanism of magnesium alloys and expand their applications under dynamic conditions, the newly developed Mg-2Sn-1Ca alloy (TX21) is selected as the representative sample and tested under wide loading rate ranging from quasi-static to dynamic level (10{sup −3}–500/s). Both ultimate tensile strength and elongation of the as-extruded TX21 alloys increase with strain rate. Although twinning is accompanied due to the enhanced activity at higher strain rate, the preferential activation of dislocations is readily clarified and confirmed as the dominant deformation modes. Active interactions of pyramidal dislocations result in the higher strain hardening ability and could be correlated to the obviously positive strain-rate sensitivity for mechanical properties. Moreover, it is observed that the larger grain size and higher content of solute atoms dissolved in matrix would lead to the more active dislocations and twinning formations. The present results would provide insight into further understanding the deformation mechanism under dynamic rate loading and designing Mg alloy suitable for impact conditions.

  17. Evaluation of ethanol aged PVDF: diffusion, crystallinity and dynamic mechanical thermal properties

    International Nuclear Information System (INIS)

    Silva, Agmar J.J.; Costa, Marysilvia F.

    2015-01-01

    This work discuss firstly the effect of the ethanol fuel absorption by PVDF at 60°C through mass variation tests. A Fickian character was observed for the ethanol absorption kinetics of the aged PVDF at 60°C. In the second step, the dynamic mechanical thermal properties (E’, E’, E” and tan δ) of the PVDF were evaluated through dynamic mechanical thermal analysis (DMTA). The chemical structure of the materials was analyzed by X-ray diffraction analysis (XRD), and significant changes in the degree of crystallinity were verified after the aging. However, DMTA results showed a reduction in the storage modulus (E') of the aged PVDF, which was associated to diffusion of ethanol and swelling of the PVDF, which generated a prevailing plasticizing effect and led to reduction of its structural stiffness. (author)

  18. Dynamic mechanical properties of 3D fiber-deposited PEOT/PBT scaffolds: An experimental and numerical analysis.

    NARCIS (Netherlands)

    Moroni, Lorenzo; Poort, G.; van Keulen, F.; de Wijn, J.R.; van Blitterswijk, Clemens

    2006-01-01

    Mechanical properties of three-dimensional (3D) scaffolds can be appropriately modulated through novel fabrication techniques like 3D fiber deposition (3DF), by varying scaffold's pore size and shape. Dynamic stiffness, in particular, can be considered as an important property to optimize the

  19. Temperature-dependent mechanical properties of single-layer molybdenum disulphide: Molecular dynamics nanoindentation simulations

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Junhua, E-mail: junhua.zhao@uni-weimar.de [Jiangsu Province Key Laboratory of Advanced Manufacturing Equipment and Technology of Food, Jiangnan University, 214122 Wuxi (China); Institute of Structural Mechanics, Bauhaus-University Weimar, 99423 Weimar (Germany); Jiang, Jin-Wu, E-mail: jwjiang5918@hotmail.com [Institute of Structural Mechanics, Bauhaus-University Weimar, 99423 Weimar (Germany); Rabczuk, Timon, E-mail: timon.rabczuk@uni-weimar.de [Institute of Structural Mechanics, Bauhaus-University Weimar, 99423 Weimar (Germany); School of Civil, Environmental and Architectural Engineering, Korea University, 136-701 Seoul (Korea, Republic of)

    2013-12-02

    The temperature-dependent mechanical properties of single-layer molybdenum disulphide (MoS{sub 2}) are obtained using molecular dynamics (MD) nanoindentation simulations. The Young's moduli, maximum load stress, and maximum loading strain decrease with increasing temperature from 4.2 K to 500 K. The obtained Young's moduli are in good agreement with those using our MD uniaxial tension simulations and the available experimental results. The tendency of maximum loading strain with different temperature is opposite with that of metal materials due to the short range Stillinger-Weber potentials in MoS{sub 2}. Furthermore, the indenter tip radius and fitting strain effect on the mechanical properties are also discussed.

  20. Relationships between nanostructure and dynamic-mechanical properties of epoxy network containing PMMA-modified silsesquioxane

    Directory of Open Access Journals (Sweden)

    2009-06-01

    Full Text Available A new class of organic-inorganic hybrid nanocomposites was obtained by blending PMMA-modified silsesquioxane hybrid materials with epoxy matrix followed by curing with methyl tetrahydrophthalic anhydride. The hybrid materials were obtained by sol-gel method through the hydrolysis and polycondensation of the silicon species of the hybrid precursor, 3-methacryloxypropyltrimethoxysilane (MPTS, simultaneously to the polymerization of the methacrylate (MMA groups covalently bonded to the silicon atoms. The nanostructure of these materials was investigated by small angle X-ray scattering (SAXS and correlated to their dynamic mechanical properties. The SAXS results revealed a hierarchical nanostructure consisting on two structural levels. The first level is related to the siloxane nanoparticles spatially correlated in the epoxy matrix, forming larger hybrid secondary aggregates. The dispersion of siloxane nanoparticles in epoxy matrix was favored by increasing the MMA content in the hybrid material. The presence of small amount of hybrid material affected significantly the dynamic mechanical properties of the epoxy networks.

  1. Simultaneous Contact Sensing and Characterizing of Mechanical and Dynamic Heat Transfer Properties of Porous Polymeric Materials

    Directory of Open Access Journals (Sweden)

    Bao-guo Yao

    2017-10-01

    Full Text Available Porous polymeric materials, such as textile fabrics, are elastic and widely used in our daily life for garment and household products. The mechanical and dynamic heat transfer properties of porous polymeric materials, which describe the sensations during the contact process between porous polymeric materials and parts of the human body, such as the hand, primarily influence comfort sensations and aesthetic qualities of clothing. A multi-sensory measurement system and a new method were proposed to simultaneously sense the contact and characterize the mechanical and dynamic heat transfer properties of porous polymeric materials, such as textile fabrics in one instrument, with consideration of the interactions between different aspects of contact feels. The multi-sensory measurement system was developed for simulating the dynamic contact and psychological judgment processes during human hand contact with porous polymeric materials, and measuring the surface smoothness, compression resilience, bending and twisting, and dynamic heat transfer signals simultaneously. The contact sensing principle and the evaluation methods were presented. Twelve typical sample materials with different structural parameters were measured. The results of the experiments and the interpretation of the test results were described. An analysis of the variance and a capacity study were investigated to determine the significance of differences among the test materials and to assess the gage repeatability and reproducibility. A correlation analysis was conducted by comparing the test results of this measurement system with the results of Kawabata Evaluation System (KES in separate instruments. This multi-sensory measurement system provides a new method for simultaneous contact sensing and characterizing of mechanical and dynamic heat transfer properties of porous polymeric materials.

  2. Phase transition and mechanical properties of tungsten nanomaterials from molecular dynamic simulation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, L.; Fan, J. L.; Gong, H. R., E-mail: gonghr@csu.edu.cn [Central South University, State Key Laboratory of Powder Metallurgy (China)

    2017-03-15

    Molecular dynamic simulation is used to systematically find out the effects of the size and shape of nanoparticles on phase transition and mechanical properties of W nanomaterials. It is revealed that the body-centered cubic (BCC) to face-centered cubic (FCC) phase transition could only happen in cubic nanoparticles of W, instead of the shapes of sphere, octahedron, and rhombic dodecahedron, and that the critical number to trigger the phase transition is 5374 atoms. Simulation also shows that the FCC nanocrystalline W should be prevented due to its much lower tensile strength than its BCC counterpart and that the octahedral and rhombic dodecahedral nanoparticles of W, rather than the cubic nanoparticles, should be preferred in terms of phase transition and mechanical properties. The derived results are discussed extensively through comparing with available observations in the literature to provide a deep understanding of W nanomaterials.

  3. Effect of addition of organo clay on mechanical properties and dynamic-mechanical based TPV

    International Nuclear Information System (INIS)

    Honorato, Luciana R.; Silva, Adriana A.; Soares, Bluma G.; Soares, Ketly P.

    2011-01-01

    The effect of organophilic clay on the mechanical and dynamical-mechanical properties of thermoplastic elastomers based on polypropylene (PP) and nitrile rubber (NBR) was investigated. The addition of clay was performed from a master batch prepared by a solution intercalation of NBR inside the clay galleries. Since the PP/NBR blend is highly incompatible, PP functionalized with maleic anhydride (PP-g-MA) and carboxylated NBR (XNBR) were employed as compatibilizing system together with triethylene-tetramine (TETA) used as coupling agent. The addition of Clay inside the elastomeric phase of the TPV resulted in a significant decrease of the elongation at break without changes on the tensile strength. The presence of clay also promoted a slight increase of the storage modulus and the glass transition temperature. The small angle X ray scattering confirmed the high dispersion of clay inside the TPV. Analysis of light scattering small angle (SAXS) confirmed the high dispersion of clay in the matrix of the TPV. (author)

  4. Improved crystallinity and dynamic mechanical properties of reclaimed waste tire rubber/EVA blends under the influence of electron beam irradiation

    Science.gov (United States)

    Ramarad, Suganti; Ratnam, Chantara T.; Khalid, Mohammad; Chuah, Abdullah Luqman; Hanson, Svenja

    2017-01-01

    Dependence on automobiles has led to a huge amount of waste tires produced annually around the globe. In this study, the feasibility of recycling these waste tires by blending reclaimed waste tire rubber (RTR) with poly(ethylene-co-vinyl acetate) (EVA) and electron beam irradiation was studied. The RTR/EVA blends containing 100-0 wt% of RTR were prepared in the internal mixer followed by electron beam (EB) irradiation with doses ranging from 50 to 200 kGy. The processing torques, calorimetric and dynamic mechanical properties of the blends were studied. Blends were found to have lower processing torque indicating easier processability of RTR/EVA blends compared to EVA. RTR domains were found to be dispersed in EVA matrix, whereas, irradiation improved the dispersion of RTR into smaller domains in EVA matrix. Results showed the addition of EVA improves the efficiency of irradiation induced crosslink formation and dynamic mechanical properties of the blends at the expense of the calorimetric properties. Storage and loss modulus of 50 wt% RTR blend was higher than RTR and EVA, suggesting partial miscibility of the blend. Whereas, electron beam irradiation improved the calorimetric properties and dynamic mechanical properties of the blends through redistribution of RTR in smaller domain sizes within EVA.

  5. Tensile mechanical properties of Ni-based superalloy of nanophases using molecular dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Lei; Hu, Wangyu [College of Materials Science and Engineering, Hunan University, Changsha (China); Department of Applied Physics, Hunan University, Changsha (China); Xiao, Shifang; Deng, Huiqiu [Department of Applied Physics, Hunan University, Changsha (China)

    2016-04-15

    The mechanical properties of Ni/Ni{sub 3}Al monocrystal of nanophases with varying temperatures, strain rates, and phase sizes have been studied using molecular dynamics simulation. The simulation results show that the primary deformation mechanisms in Ni/Ni{sub 3}Al monocrystal of nanophases were slip bands and antiphase boundaries at room temperature. The studies on the effects of temperature showed that the yield strain, yield strength, and elastic module decreased as temperature increased. However, the influences of strain rate and phase size on the mechanical properties of Ni/Ni{sub 3}Al monocrystal of nanophases showed that the high strain rate led to the increase of yield stress, and the phase sizes had no significant influence on the maximum yield stress. In addition, the behavior of crack propagation in the model of Ni/Ni{sub 3}Al interface was investigated under cyclic loading, and it was found that the interface of Ni/Ni{sub 3}Al was resistance to the fatigue crack propagation. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Effects of Modified Iron Oxide Nanoparticles on the Thermal and Dynamic Mechanical Properties of Cellulose Poly(vinyl alcohol Blend Films

    Directory of Open Access Journals (Sweden)

    Mehdi Roohani

    2015-11-01

    Full Text Available This study was designed to investigate the effect of modified iron oxide nanoparticles (MINP and cellulose nanocrystals (NCC on magnetic, thermal and dynamic-mechanical properties of poly(vinyl alcohol based nanocomposites. Fe3O4 nanoparticles have been synthesized using a chemical co-precipitation route. Nanocomposite films were developed by solvent casting method and their properties were characterized by vibrating sample magnetometer (VSM, differential scanning calorimetry (DSC and dynamic mechanical analysis (DMA. DSC results found that with incorporation of nanoparticles, the glass transition temperature increase slightly to higher temperatures; however, the degree of crystallinity and the values of the melting temperature are found to decrease. Dynamic mechanical analysis revealed that, at the elevated temperatures, improvement of mechanical properties due to the presence of nanoparticles was even more noticeable. Addition of nanoparticles resulted in increased thermal stability of PVA due to the reduction in mobility of matrix molecules by strong hydrogen bonds between nanocomposite components. Results indicated that, MINP and NCC have synergistic effect on improving of poly(vinyl alcohol properties. The VSM findings showed that the saturation magnetization of iron oxide nanoparticles reduced after modification. This can be attributed to formation of hydroxyapatite on nanoparticles surface. The saturation magnetization (Ms of PVA- MINP films was higher than PVA-MINP- NCC film. This result probably is related to more amount of magnetic nanoparticles in PVA-MINP films.

  7. Reactive molecular dynamics simulations of the mechanical properties of various phosphorene allotropes

    Science.gov (United States)

    Le, Minh-Quy

    2018-05-01

    Although various phosphorene allotropes have been theoretically predicted to be stable at 0 K, the mechanical properties and fracture mechanism at room temperature remain unclear for many of them. We investigate through reactive molecular dynamics simulations at room temperature the mechanical properties of phosphorene allotropes including: five sheets with hexagonal structures (β-, γ-, δ-, θ-, and α-phosphorene), one sheet with 4-8 membered rings (4-8-P), and two sheets with 5-7 membered rings. High, moderate and slight anisotropies in their mechanical properties are observed, depending on their crystal structures. Their Young’s moduli and tensile strength are approximately in the range from 7.3% through 25%, and from 8.6% through 22% of those of graphene, respectively. At the early stage of fracture, eye-shaped cracks are formed by local bond breaking and perpendicular to the tensile direction in hexagonal and 4-8-P sheets. Complete fractures take place with straight cracks in these hexagonal sheets under tension along the zigzag direction and under tension along the square edge direction in the 4-8-P sheet. Crack meandering and branching are observed during the tension of α-, β-, and γ-phosphorene along the armchair direction; and along the square diagonal direction in the 4-8-P sheet. Under uniaxial tension of two phosphorene sheets with 5-7 atom rings, 12 and 10 membered rings are formed by merging two neighbor heptagons, and a heptagon and its neighbor pentagon, respectively. These 12 and 10 membered rings coalesce subsequently, causing the failure of these two sheets. The results are of great importance in the design of these novel phosphorene allotropes.

  8. Dynamic mechanical analysis of carbon nanotube-reinforced nanocomposites.

    Science.gov (United States)

    Her, Shiuh-Chuan; Lin, Kuan-Yu

    2017-06-16

    To predict the mechanical properties of multiwalled carbon nanotube (MWCNT)-reinforced polymers, it is necessary to understand the role of the nanotube-polymer interface with regard to load transfer and the formation of the interphase region. The main objective of this study was to explore and attempt to clarify the reinforcement mechanisms of MWCNTs in epoxy matrix. Nanocomposites were fabricated by adding different amounts of MWCNTs to epoxy resin. Tensile test and dynamic mechanical analysis (DMA) were conducted to investigate the effect of MWCNT contents on the mechanical properties and thermal stability of nanocomposites. Compared with the neat epoxy, nanocomposite reinforced with 1 wt% of MWCNTs exhibited an increase of 152% and 54% in Young's modulus and tensile strength, respectively. Dynamic mechanical analysis demonstrates that both the storage modulus and glass transition temperature tend to increase with the addition of MWCNTs. Scanning electron microscopy (SEM) observations reveal that uniform dispersion and strong interfacial adhesion between the MWCNTs and epoxy are achieved, resulting in the improvement of mechanical properties and thermal stability as compared with neat epoxy.

  9. Mechanical Properties of Boehmite Evaluated by Atomic Force Microscopy Experiments and Molecular Dynamic Finite Element Simulations

    International Nuclear Information System (INIS)

    Fankhanel, J.; Daum, B.; Kempe, A.; Rolfes, R.; Silbernagl, D.; Khorasani, M.Gh.Z.; Sturm, H.; Sturm, H.

    2016-01-01

    Boehmite nanoparticles show great potential in improving mechanical properties of fiber reinforced polymers. In order to predict the properties of nanocomposites, knowledge about the material parameters of the constituent phases, including the boehmite particles, is crucial. In this study, the mechanical behavior of boehmite is investigated using Atomic Force Microscopy (AFM) experiments and Molecular Dynamic Finite Element Method (MDFEM) simulations. Young’s modulus of the perfect crystalline boehmite nanoparticles is derived from numerical AFM simulations. Results of AFM experiments on boehmite nanoparticles deviate significantly. Possible causes are identified by experiments on complementary types of boehmite, that is, geological and hydrothermally synthesized samples, and further simulations of imperfect crystals and combined boehmite/epoxy models. Under certain circumstances, the mechanical behavior of boehmite was found to be dominated by inelastic effects that are discussed in detail in the present work. The studies are substantiated with accompanying X-ray diffraction and Raman experiments.

  10. Examination of the Thermo-mechanical Properties of E-Glass/Carbon Composites

    Directory of Open Access Journals (Sweden)

    Hande Sezgin

    2017-12-01

    Full Text Available Eight-ply E-glass, carbon and E-glass/carbon fabric-reinforced polyester based hybrid composites were manufactured in this study. A vacuum infusion system was used as the production method. Dynamic mechanical analysis, thermogravimetric analysis and differential scanning calorimetry analysis were conducted to examine the thermo-mechanical properties of composite samples. The effect of reinforcement type and different stacking sequences of fabric plies on the thermo-mechanical properties of composite samples were also investigated. Results showed that the type and alignment of reinforcement material has a signifi cant effect on the dynamic mechanical properties of composite samples.

  11. Mechanical properties of nano and bulk Fe pillars using molecular dynamics and dislocation dynamics simulation

    Directory of Open Access Journals (Sweden)

    S. K. Deb Nath

    2017-10-01

    Full Text Available Using molecular dynamics simulation, tension and bending tests of a Fe nanopillar are carried out to obtain its Young’s modulus and yield strength. Then the comparative study of Young’s modulus and yield strength of a Fe nanopillar under bending and tension are carried out varying its diameter in the range of diameter 1-15nm. We find out the reasons why bending Young’s modulus and yield strength of a Fe nanopillar are higher than those of tension Young’s modulus and yield strength of a Fe nanopillar. Using the mobility parameters of bulk Fe from the experimental study [N. Urabe and J. Weertman, Materials Science and Engineering 18, 41 (1975], its temperature dependent stress-strain relationship, yield strength and strain hardening modulus are obtained from the dislocation dynamics simulations. Strain rate dependent yield strength and strain hardening modulus of bulk Fe pillars under tension are studied. Temperature dependent creep behaviors of bulk Fe pillars under tension are also studied. To verify the soundness of the present dislocation dynamics studies of the mechanical properties of bulk Fe pillars under tension, the stress vs. strain relationship and dislocation density vs. strain of bulk Fe pillars obtained by us are compared with the published results obtained by S. Queyreau, G. Monnet, and B. Devincre, International Journal of Plasticity 25, 361 (2009.

  12. Review of research on the mechanical properties of the human tooth

    Science.gov (United States)

    Zhang, Ya-Rong; Du, Wen; Zhou, Xue-Dong; Yu, Hai-Yang

    2014-01-01

    ‘Bronze teeth' reflect the mechanical properties of natural teeth to a certain extent. Their mechanical properties resemble those of a tough metal, and the gradient of these properties lies in the direction from outside to inside. These attributes confer human teeth with effective mastication ability. Understanding the various mechanical properties of human teeth and dental materials is the basis for the development of restorative materials. In this study, the elastic properties, dynamic mechanical properties (visco-elasticity) and fracture mechanical properties of enamel and dentin were reviewed to provide a more thorough understanding of the mechanical properties of human teeth. PMID:24743065

  13. Effects of Heating Rate on the Dynamic Tensile Mechanical Properties of Coal Sandstone during Thermal Treatment

    Directory of Open Access Journals (Sweden)

    Ming Li

    2017-01-01

    Full Text Available The effects of coal layered combustion and the heat injection rate on adjacent rock were examined in the process of underground coal gasification and coal-bed methane mining. Dynamic Brazilian disk tests were conducted on coal sandstone at 800°C and slow cooling from different heating rates by means of a Split Hopkinson Pressure Bar (SHPB test system. It was discovered that thermal conditions had significant effects on the physical and mechanical properties of the sandstone including longitudinal wave velocity, density, and dynamic linear tensile strength; as the heating rates increased, the thermal expansion of the sandstone was enhanced and the damage degree increased. Compared with sandstone at ambient temperature, the fracture process of heat-treated sandstone was more complicated. After thermal treatment, the specimen had a large crack in the center and cracks on both sides caused by loading; the original cracks grew and mineral particle cracks, internal pore geometry, and other defects gradually appeared. With increasing heating rates, the microscopic fracture mode transformed from ductile fracture to subbrittle fracture. It was concluded that changes in the macroscopic mechanical properties of the sandstone were result from changes in the composition and microstructure.

  14. Dynamic Mechanical Properties and Microstructure of Graphene Oxide Nanosheets Reinforced Cement Composites

    Directory of Open Access Journals (Sweden)

    Wu-Jian Long

    2017-11-01

    Full Text Available This paper presents an experimental investigation on the effect of uniformly dispersed graphene oxide (GO nanosheets on dynamic mechanical properties of cement based composites prepared with recycled fine aggregate (RFA. Three different amounts of GO, 0.05%, 0.10%, and 0.20% in mass of cement, were used in the experiments. The visual inspections of GO nanosheets were also carried out after ultrasonication by transmission electron microscope (TEM atomic force microscope (AFM, and Raman to characterize the dispersion effect of graphite oxide. Dynamic mechanical analyzer test showed that the maximum increased amount of loss factor and storage modulus, energy absorption was 125%, 53%, and 200% when compared to the control sample, respectively. The flexural and compressive strengths of GO-mortar increased up to 22% to 41.3% and 16.2% to 16.4% with 0.20 wt % GO at 14 and 28 days, respectively. However the workability decreased by 7.5% to 18.8% with 0.05% and 0.2% GO addition. Microstructural analysis with environmental scanning electron microscopy (ESEM/backscattered mode (BSEM showed that the GO-cement composites had a much denser structure and better crystallized hydration products, meanwhile mercury intrusion porosimetry (MIP testing and image analysis demonstrated that the incorporation of GO in the composites can help in refining capillary pore structure and reducing the air voids content.

  15. Influence of grain size on the mechanical properties of nano-crystalline copper; insights from molecular dynamics simulation

    Science.gov (United States)

    Rida, A.; Makke, A.; Rouhaud, E.; Micoulaut, M.

    2017-10-01

    We use molecular dynamics simulations to study the mechanical properties of a columnar nanocrystalline copper with a mean grain size between 8.91 nm and 24 nm. The used samples were generated by using a melting cooling method. These samples were submitted to uniaxial tensile test. The results reveal the presence of a critical mean grain size between 16 and 20 nm, where there is an inversion in the conventional Hall-Petch tendency. This inversion is illustrated by the increase of flow stress with the increase of the mean grain size. This transition is caused by shifting of the deformation mechanism from dislocations to a combination of grain boundaries sliding and dislocations. Moreover, the effect of temperature on the mechanical properties of nanocrystalline copper has been investigated. The results show a decrease of the flow stress and Young's modulus when the temperature increases.

  16. Influence of extreme low temperature conditions on the dynamic mechanical properties of carbon fiber reinforced polymers

    Science.gov (United States)

    Zaoutsos, S. P.; Zilidou, M. C.

    2017-12-01

    In the current study dynamic mechanical analysis (DMA) is performed in CFRPs that have been exposed for certain periods of time to extreme low temperatures. Through experimental data arising from respective DMA tests the influence of low temperature exposure (-40 °C) on the dynamic mechanical properties is studied. DMA tests were conducted in CFRP specimens in three point bending mode at both frequency and thermal scans in order to determine the viscoelastic response of the material in low temperatures. All experimental tests were run both for aged and pristine materials for comparison purposes. The results occurred reveal that there is deterioration both on transition temperature (Tg) and storage modulus values while there is also a moderate increase in the damping ability of the tested material as expressed by the factor tanδ as the period of exposure to low temperature increases.

  17. A molecular dynamic simulation study of mechanical properties of graphene–polythiophene composite with Reax force field

    International Nuclear Information System (INIS)

    Nayebi, Payman; Zaminpayma, Esmaeil

    2016-01-01

    In this paper, we performed molecular dynamic simulations by Reax force field to study the mechanical properties of graphene–polythiophene nanocomposite. By computing elastic constant, breaking stress, breaking strain and Young's modulus from the stress–strain curve for the nanocomposites, we investigated effects of tension orientation, graphene loading to the polymer, temperature of nanocomposite and defect of graphene on these mechanical characters. It is found that mechanical characters of tension along the zigzag orientation are higher than other directions. Also, by increasing the weight concentration of graphene in composite, the Young's modulus and breaking strain increase. Our results showed that the Young's modulus decreased with increasing temperature. Finally by applying defect on graphene structure, we found that one atom missing defect has lower Young's modulus. Also, by increasing the defects concentration, elastic modulus decreases gradually. - Highlights: • We studied mechanical properties of graphene–polythiophene nanocomposite. • Mechanical characters of tension along the zigzag are higher than other directions. • By increasing the weight concentration of graphene in composite, the Young's modulus increases. • Young's modulus decreased with increasing temperature. • By increasing the defects concentration, elastic modulus decreases gradually.

  18. The effect of point mutations on structure and mechanical properties of collagen-like fibril: A molecular dynamics study

    International Nuclear Information System (INIS)

    Marlowe, Ashley E.; Singh, Abhishek; Yingling, Yaroslava G.

    2012-01-01

    Understanding sequence dependent mechanical and structural properties of collagen fibrils is important for the development of artificial biomaterials for medical and nanotechnological applications. Moreover, point mutations are behind many collagen associated diseases, including Osteogenesis Imperfecta (OI). We conducted a combination of classical and steered atomistic molecular dynamics simulations to examine the effect of point mutations on structure and mechanical properties of short collagen fibrils which include mutations of glycine to alanine, aspartic acid, cysteine, and serine or mutations of hydroxyproline to arginine, asparagine, glutamine, and lysine. We found that all mutations disrupt structure and reduce strength of the collagen fibrils, which may affect the hierarchical packing of the fibrils. The glycine mutations were more detrimental to mechanical strength of the fibrils (WT > Ala > Ser > Cys > Asp) than that of hydroxyproline (WT > Arg > Gln > Asn > Lys). The clinical outcome for glycine mutations agrees well with the trend in reduction of fibril's tensile strength predicted by our simulations. Overall, our results suggest that the reduction in mechanical properties of collagen fibrils may be used to predict the clinical outcome of mutations. Highlights: ► All mutations disrupt structure and bonding pattern and reduce strength of the collagen fibrils. ► Gly based mutations are worst to mechanical integrity of fibrils than that of Hyp. ► Lys and Arg mutations most dramatically destabilize collagen fibril properties. ► Clinical outcome of mutations may be related to the reduced mechanical properties of fibrils.

  19. Dynamic mechanical properties and anisotropy of synthetic shales with different clay minerals under confining pressure

    Science.gov (United States)

    Gong, Fei; Di, Bangrang; Wei, Jianxin; Ding, Pinbo; Shuai, Da

    2018-03-01

    The presence of clay minerals can alter the elastic behaviour of reservoir rocks significantly as the type of clay minerals, their volume and distribution, and their orientation control the shale's intrinsic anisotropic behaviours. Clay minerals are the most abundant materials in shale, and it has been proven extremely difficult to measure the elastic properties of natural shale by means of a single variable (in this case, the type of clay minerals), due to the influences of multiple factors, including water, TOC content and complex mineral compositions. We used quartz, clay (kaolinite, illite and smectite), carbonate and kerogen extract as the primary materials to construct synthetic shale with different clay minerals. Ultrasonic experiments were conducted to investigate the anisotropy of velocity and mechanical properties in dry synthetic and natural shale as a function of confining pressure. Velocities in synthetic shale are sensitive to the type of clay minerals, possibly due to the different structures of the clay minerals. The velocities increase with confining pressure and show higher rate of velocity increase at low pressures, and P-wave velocity is usually more sensitive than S-wave velocity to confining pressure according to our results. Similarly, the dynamic Young's modulus and Poisson's ratio increase with applied pressure, and the results also reveal that E11 is always larger than E33 and ν31 is smaller than ν12. Velocity and mechanical anisotropy decrease with increasing stress, and are sensitive to stress and the type of clay minerals. However, the changes of mechanical anisotropy with applied stress are larger compared with the velocity anisotropy, indicating that mechanical properties are more sensitive to the change of rock properties.

  20. Mechanical Properties and Fractographic Analysis of High Manganese Steels After Dynamic Deformation Tests

    Directory of Open Access Journals (Sweden)

    Jabłońska M.B.

    2014-10-01

    Full Text Available Since few years many research centres conducting research on the development of high-manganese steels for manufacturing of parts for automotive and railway industry. Some of these steels belong to the group of AHS possessing together with high strength a great plastic elongation, and an ideal uniform work hardening behavior. The article presents the dynamic mechanical properties of two types of high manganese austenitic steel with using a flywheel machine at room temperature with strain rates between 5×102÷3.5×103s?–1. It was found that the both studied steels exhibit a high sensitivity Rm to the strain rate. With increasing the strain rate from 5×102 to 3.5×103s?–1 the hardening dominates the process. The fracture analysis indicate that after dynamic test both steel is characterized by ductile fracture surfaces which indicate good plasticity of investigated steels.

  1. Cartilage-like mechanical properties of poly (ethylene glycol)-diacrylate hydrogels.

    Science.gov (United States)

    Nguyen, Quynhhoa T; Hwang, Yongsung; Chen, Albert C; Varghese, Shyni; Sah, Robert L

    2012-10-01

    Hydrogels prepared from poly-(ethylene glycol) (PEG) have been used in a variety of studies of cartilage tissue engineering. Such hydrogels may also be useful as a tunable mechanical material for cartilage repair. Previous studies have characterized the chemical and mechanical properties of PEG-based hydrogels, as modulated by precursor molecular weight and concentration. Cartilage mechanical properties vary substantially, with maturation, with depth from the articular surface, in health and disease, and in compression and tension. We hypothesized that PEG hydrogels could mimic a broad range of the compressive and tensile mechanical properties of articular cartilage. The objective of this study was to characterize the mechanical properties of PEG hydrogels over a broad range and with reference to articular cartilage. In particular, we assessed the effects of PEG precursor molecular weight (508 Da, 3.4 kDa, 6 kDa, and 10 kDa) and concentration (10-40%) on swelling property, equilibrium confined compressive modulus (H(A0)), compressive dynamic stiffness, and hydraulic permeability (k(p0)) of PEG hydrogels in static/dynamic confined compression tests, and equilibrium tensile modulus (E(ten)) in tension tests. As molecular weight of PEG decreased and concentration increased, hydrogels exhibited a decrease in swelling ratio (31.5-2.2), an increase in H(A0) (0.01-2.46 MPa) and E(ten) (0.02-3.5 MPa), an increase in dynamic compressive stiffness (0.055-42.9 MPa), and a decrease in k(p0) (1.2 × 10(-15) to 8.5 × 10(-15) m(2)/(Pa s)). The frequency-dependence of dynamic compressive stiffness amplitude and phase, as well as the strain-dependence of permeability, were typical of the time- and strain-dependent mechanical behavior of articular cartilage. H(A0) and E(ten) were positively correlated with the final PEG concentration, accounting for swelling. These results indicate that PEG hydrogels can be prepared to mimic many of the static and dynamic mechanical

  2. Molecular mechanisms in compatibility and mechanical properties of Polyacrylamide/Polyvinyl alcohol blends.

    Science.gov (United States)

    Wei, Qinghua; Wang, Yanen; Che, Yu; Yang, Mingming; Li, Xinpei; Zhang, Yingfeng

    2017-01-01

    The objectives of this study were to develop a computational model based on molecular dynamics technique to investigate the compatibility and mechanical properties of Polyacrylamide (PAM)/Polyvinyl alcohol (PVA) blends. Five simulation models of PAM/PVA with different composition ratios (4/0, 3/1, 2/2, 1/3, 0/4) were constructed and simulated by using molecular dynamics (MD) simulation. The interaction mechanisms of molecular chains in PAM/PVA blend system were elaborated from the aspects of the compatibility, mechanical properties, binding energy and pair correlation function, respectively. The computed values of solubility parameters for PAM and PVA indicate PAM has a good miscibility with PVA. The results of the static mechanical analysis, based on the equilibrium structures of blends with differing component ratios, shows us that the elastic coefficient, engineering modulus, and ductility are increased with the addition of PVA content, which is 4/0 PAM/PVAPVAPVAPVAPVA. Moreover, binding energy results indicate that a stronger interaction exists among PVA molecular chains comparing with PAM molecular chains, which is why the mechanical properties of blend system increasing with the addition of PVA content. Finally, the results of pair correlation functions (PCFs) between polar functional groups and its surrounding hydrogen atoms, indicated they interact with each other mainly by hydrogen bonds, and the strength of three types of polar functional groups has the order of O(-OH)>O(-C=O)>N(-NH 2 ). This further elaborates the root reason why the mechanical properties of blend system increase with the addition of PVA content. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Mechanical properties of depleted uranium-2 w/o molybdenum alloy

    International Nuclear Information System (INIS)

    Deel, O.L.; Burian, R.J.

    1979-01-01

    The primary objective of this program is to develop data and techniques for determining the dynamic impact response of radioactive-material shipping-container systems for environmental control and safety overview and assessment. One phase of this program is the dynamic testing of 1/8-, 1/4-, and 1/2-scale models of uranium-shielded truck casks. These linearly scaled models are fabricated from the same materials typically used in full-size prototype casks. In order to analytically evaluate the results of dynamic tests, it is necessary to know the mechanical properties of the materials of construction. Since the properties of cast uranium--molybdenum alloys vary significantly with casting and heat-treating techniques, it is necessary to fully characterize the mechanical properties of the uranium used in the model tests. This report presents the results of these studies. The uranium alloy exhibited a tensile strength equal to or greater than that reported by others. As indicated by the percentage of elongation and reduction in area, the ductility was lower. Comparative data for the other mechanical properties measured were not found in the literature

  4. Effect of fiber directionality on the static and dynamic mechanical properties of 3D SiCf/SiC composites

    International Nuclear Information System (INIS)

    Hou, Zhenhua; Luo, Ruiying; Yang, Wei; Xu, Huaizhe; Han, Tao

    2016-01-01

    The static and dynamic mechanical properties of three-dimensional (3D) 4-directional and 3D 5-directional braided SiC f /SiC composites fabricated by polymer infiltration and pyrolysis (PIP) were investigated using static and dynamic bending tests, as well as microstructural characterization. X-ray diffraction revealed that polycarbosilane was converted into a matrix of crystalline β-SiC after PIP cycling. Test results indicated that the density, flexural strength, elastic modulus, fracture toughness, and storage modulus of 3D 5-directional SiC f /SiC composites were superior to those of 3D 4-directional braided SiC f /SiC composites; the former also showed a smaller internal friction than the latter. Results from Weibull statistical analysis indicated that the scale parameter σ 0 (736.9 MPa) and Weibull modulus m (21.7) of the 3D 5-directional specimen were higher than those of 3D 4-directional braided SiC f /SiC composites (629.6 MPa, 14.7). Both 3D braided composites demonstrated good toughness and avoided catastrophic brittle fractures under loading because of the effective crack energy dissipating mechanisms of crack deflection, interface debonding, and fiber pull-out. The internal friction and storage modulus of the 3D braided composites were sensitive to temperature. The cross angle of fiber placement in the preform and the direction of the applied force, as well as the pre-crack propagation remarkably influenced the static mechanical properties and failure behavior of the 3D braided SiC f /SiC composites. The dynamic mechanical properties of the 3D braided composites, including internal friction and storage modulus, were also considerably affected by fiber directionality in their preforms.

  5. Thermal and dynamic mechanical properties of grafted kenaf filled poly (vinyl chloride)/ethylene vinyl acetate composites

    International Nuclear Information System (INIS)

    Bakar, Nurfatimah Abu; Chee, Ching Yern; Abdullah, Luqman Chuah; Ratnam, Chantara Thevy; Ibrahim, Nor Azowa

    2015-01-01

    Highlights: • Study on thermal and dynamic mechanical properties of PVC/EVA/PMMA grafted kenaf fiber. • PMMA grafted kenaf fiber showed good interaction with PVC/EVA blends. • Thermal stability of the composites increase upon PMMA grafting on kenaf fiber. • The crystallinity of the composites decrease upon PMMA grafting on kenaf fiber. • PMMA grafted fiber provides more reinforcement on PVC/EVA/grafted PMMA composite. - Abstract: The effects of kenaf and poly (methyl methacrylate grafted kenaf on the thermal and dynamic mechanical properties of poly (vinyl chloride), PVC and ethylene vinyl acetate, EVA blends were investigated. The PVC/EVA/kenaf composites were prepared by mixing the grafted and ungrafted kenaf fiber and PVC/EVA blend using HAAKE Rheomixer at a temperature of 150 °C and the rotor speed at 50 rpm for 20 min. The composites were subjected to Differential Scanning Calorimetric (DSC), Thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), Fourier transform infrared (FTIR) and Scanning Electron Microscopy (SEM) studies. The DSC data revealed that the crystallinity of the EVA decreased with the addition of 30% grafted and ungrafted kenaf fibers. TGA and derivative thermogravimetric (DTG) curves displayed an increase in the thermal stability of the composites upon grafting of the fiber. Studies on DMA indicate that the T g of the PVC and EVA in the PVC/EVA/kenaf composites has been shifted to higher temperature with the addition of the kenaf fiber. The presence of PMMA on the surface of grafted kenaf fiber was further confirmed by the analytical results from FTIR. The morphology of fractured surfaces of the composites, which was examined by a scanning electron microscope, showed the adhesion between the kenaf fiber and the PVC/EVA matrix was improved upon grafting of the kenaf fiber

  6. Effect of microstructure on static and dynamic mechanical properties of high strength steels

    Science.gov (United States)

    Qu, Jinbo

    The high speed deformation behavior of a commercially available dual phase (DP) steel was studied by means of split Hopkinson bar apparatus in shear punch (25m/s) and tension (1000s-1) modes with an emphasis on the influence of microstructure. The cold rolled sheet material was subjected to a variety of heat treatment conditions to produce several different microstructures, namely ferrite plus pearlite, ferrite plus bainite and/or acicular ferrite, ferrite plus bainite and martensite, and ferrite plus different fractions of martensite. Static properties (0.01mm/s for shear punch and 0.001s -1 for tension) of all the microstructures were also measured by an MTS hydraulic machine and compared to the dynamic properties. The effects of low temperature tempering and bake hardening were investigated for some ferrite plus martensite microstructures. In addition, two other materials, composition designed as high strength low alloy (HSLA) steel and transformation induced plasticity (TRIP) steel, were heat treated and tested to study the effect of alloy chemistry on the microstructure and property relationship. A strong effect of microstructure on both static and dynamic properties and on the relationship between static and dynamic properties was observed. According to the variation of dynamic factor with static strength, three groups of microstructures with three distinct behaviors were identified, i.e. classic dual phase (ferrite plus less than 50% martensite), martensite-matrix dual phase (ferrite plus more than 50% martensite), and non-dual phase (ferrite plus non-martensite). Under the same static strength level, the dual phase microstructure was found to absorb more dynamic energy than other microstructures. It was also observed that the general dependence of microstructure on static and dynamic property relationship was not strongly influenced by chemical composition, except the ferrite plus martensite microstructures generated by the TRIP chemistry, which exhibited

  7. Effects of surface atomistic modification on mechanical properties of gold nanowires

    International Nuclear Information System (INIS)

    Sun, Xiao-Yu; Xu, Yuanjie; Wang, Gang-Feng; Gu, Yuantong; Feng, Xi-Qiao

    2015-01-01

    Highlights: • Molecular dynamics simulations of surface modification effect of Au nanowires. • Surface modification can greatly affect the mechanical properties of nanowires. • Core–shell model is used to elucidate the effect of residual surface stress. - Abstract: Modulation of the physical and mechanical properties of nanowires is a challenging issue for their technological applications. In this paper, we investigate the effects of surface modification on the mechanical properties of gold nanowires by performing molecular dynamics simulations. It is found that by modifying a small density of silver atoms to the surface of a gold nanowire, the residual surface stress state can be altered, rendering a great improvement of its plastic yield strength. This finding is in good agreement with experimental measurements. The underlying physical mechanisms are analyzed by a core–shell nanowire model. The results are helpful for the design and optimization of advanced nanomaterial with superior mechanical properties

  8. The effect of point mutations on structure and mechanical properties of collagen-like fibril: A molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Marlowe, Ashley E.; Singh, Abhishek; Yingling, Yaroslava G., E-mail: yara_yingling@ncsu.edu

    2012-12-01

    Understanding sequence dependent mechanical and structural properties of collagen fibrils is important for the development of artificial biomaterials for medical and nanotechnological applications. Moreover, point mutations are behind many collagen associated diseases, including Osteogenesis Imperfecta (OI). We conducted a combination of classical and steered atomistic molecular dynamics simulations to examine the effect of point mutations on structure and mechanical properties of short collagen fibrils which include mutations of glycine to alanine, aspartic acid, cysteine, and serine or mutations of hydroxyproline to arginine, asparagine, glutamine, and lysine. We found that all mutations disrupt structure and reduce strength of the collagen fibrils, which may affect the hierarchical packing of the fibrils. The glycine mutations were more detrimental to mechanical strength of the fibrils (WT > Ala > Ser > Cys > Asp) than that of hydroxyproline (WT > Arg > Gln > Asn > Lys). The clinical outcome for glycine mutations agrees well with the trend in reduction of fibril's tensile strength predicted by our simulations. Overall, our results suggest that the reduction in mechanical properties of collagen fibrils may be used to predict the clinical outcome of mutations. Highlights: Black-Right-Pointing-Pointer All mutations disrupt structure and bonding pattern and reduce strength of the collagen fibrils. Black-Right-Pointing-Pointer Gly based mutations are worst to mechanical integrity of fibrils than that of Hyp. Black-Right-Pointing-Pointer Lys and Arg mutations most dramatically destabilize collagen fibril properties. Black-Right-Pointing-Pointer Clinical outcome of mutations may be related to the reduced mechanical properties of fibrils.

  9. Dynamics of ligand exchange mechanism at Cu(II) in water: an ab initio quantum mechanical charge field molecular dynamics study with extended quantum mechanical region.

    Science.gov (United States)

    Moin, Syed Tarique; Hofer, Thomas S; Weiss, Alexander K H; Rode, Bernd M

    2013-07-07

    Ab initio quantum mechanical charge field molecular dynamics (QMCF-MD) were successfully applied to Cu(II) embedded in water to elucidate structure and to understand dynamics of ligand exchange mechanism. From the simulation studies, it was found that using an extended large quantum mechanical region including two shells of hydration is required for a better description of the dynamics of exchanging water molecules. The structural features characterized by radial distribution function, angular distribution function and other analytical parameters were consistent with experimental data. The major outcome of this study was the dynamics of exchange mechanism and reactions in the first hydration shell that could not be studied so far. The dynamical data such as mean residence time of the first shell water molecules and other relevant data from the simulations are close to the results determined experimentally. Another major characteristic of hydrated Cu(II) is the Jahn-Teller distortion which was also successfully reproduced, leading to the final conclusion that the dominating aqua complex is a 6-coordinated species. The ab initio QMCF-MD formalism proved again its capabilities of unraveling even ambiguous properties of hydrated species that are far difficult to explore by any conventional quantum mechanics/molecular mechanics (QM/MM) approach or experiment.

  10. Dynamics of ligand exchange mechanism at Cu(II) in water: An ab initio quantum mechanical charge field molecular dynamics study with extended quantum mechanical region

    International Nuclear Information System (INIS)

    Moin, Syed Tarique; Hofer, Thomas S.; Weiss, Alexander K. H.; Rode, Bernd M.

    2013-01-01

    Ab initio quantum mechanical charge field molecular dynamics (QMCF-MD) were successfully applied to Cu(II) embedded in water to elucidate structure and to understand dynamics of ligand exchange mechanism. From the simulation studies, it was found that using an extended large quantum mechanical region including two shells of hydration is required for a better description of the dynamics of exchanging water molecules. The structural features characterized by radial distribution function, angular distribution function and other analytical parameters were consistent with experimental data. The major outcome of this study was the dynamics of exchange mechanism and reactions in the first hydration shell that could not be studied so far. The dynamical data such as mean residence time of the first shell water molecules and other relevant data from the simulations are close to the results determined experimentally. Another major characteristic of hydrated Cu(II) is the Jahn-Teller distortion which was also successfully reproduced, leading to the final conclusion that the dominating aqua complex is a 6-coordinated species. The ab initio QMCF-MD formalism proved again its capabilities of unraveling even ambiguous properties of hydrated species that are far difficult to explore by any conventional quantum mechanics/molecular mechanics (QM/MM) approach or experiment

  11. Photo-crosslinkable cyanoacrylate bioadhesive: shrinkage kinetics, dynamic mechanical properties, and biocompatibility of adhesives containing TMPTMA and POSS nanostructures as crosslinking agents.

    Science.gov (United States)

    Ghasaban, S; Atai, M; Imani, M; Zandi, M; Shokrgozar, M-A

    2011-11-01

    The study investigates the photo-polymerization shrinkage behavior, dynamic mechanical properties, and biocompatibility of cyanoacrylate bioadhesives containing POSS nanostructures and TMPTMA as crosslinking agents. Adhesives containing 2-octyl cyanoacrylate (2-OCA) and different percentages of POSS nanostructures and TMPTMA as crosslinking agents were prepared. The 1-phenyl-1, 2-propanedione (PPD) was incorporated as photo-initiator into the adhesive in 1.5, 3, and 4 wt %. The shrinkage strain of the specimens was measured using bonded-disk technique. Shrinkage strain, shrinkage strain rate, maximum and time at maximum shrinkage strain rate were measured and compared. Mechanical properties of the adhesives were also studied using dynamic mechanical thermal analysis (DMTA). Biocompatibility of the adhesives was examined by MTT method. The results showed that shrinkage strain increased with increasing the initiator concentration up to 3 wt % in POSS-containing and 1.5 wt % in TMPTMA-containing specimens and plateaued out at higher concentrations. By increasing the crosslinking agent, shrinkage strain, and shrinkage strain rate increased and the time at maximum shrinkage strain rate decreased. The study indicates that the incorporation of crosslinking agents into the cyanoacrylate adhesives resulted in improved mechanical properties. Preliminary MTT studies also revealed better biocompatibility profile for the adhesives containing crosslinking agents comparing to the neat specimens. Copyright © 2011 Wiley Periodicals, Inc.

  12. Anisotropic mechanical properties of graphene sheets from molecular dynamics

    International Nuclear Information System (INIS)

    Ni Zhonghua; Bu Hao; Zou Min; Yi Hong; Bi Kedong; Chen Yunfei

    2010-01-01

    Anisotropic mechanical properties are observed for a sheet of graphene along different load directions. The anisotropic mechanical properties are attributed to the hexagonal structure of the unit cells of the graphene. Under the same tensile loads, the edge bonds bear larger load in the longitudinal mode (LM) than in the transverse mode (TM), which causes fracture sooner in LM than in TM. The Young's modulus and the third order elastic modulus for the LM are slightly larger than that for the TM. Simulation also demonstrates that, for both LM and TM, the loading and unloading stress-strain response curves overlap as long as the graphene is unloaded before the fracture point. This confirms that graphene sustains complete elastic and reversible deformation in the elongation process.

  13. Retrogradation of concentrated starch systems : mechanism and consequences for product properties

    NARCIS (Netherlands)

    Keetels, C.J.A.M.

    1995-01-01

    The mechanical properties of concentrated starch + water systems were studied during heating, cooling and storage. Methods used were a small-amplitude dynamic rheological test and compression between parallel plates. The mechanical properties were related to the structure of the gels.

  14. Phonon spectrum, mechanical and thermophysical properties of thorium carbide

    International Nuclear Information System (INIS)

    Pérez Daroca, D.; Jaroszewicz, S.; Llois, A.M.; Mosca, H.O.

    2013-01-01

    In this work, we study, by means of density functional perturbation theory and the pseudopotential method, mechanical and thermophysical properties of thorium carbide. These properties are derived from the lattice dynamics in the quasi-harmonic approximation. The phonon spectrum of ThC presented in this article, to the best authors’ knowledge, have not been studied, neither experimentally, nor theoretically. We compare mechanical properties, volume thermal expansion and molar specific capacities with previous results and find a very good agreement

  15. Phonon spectrum, mechanical and thermophysical properties of thorium carbide

    Energy Technology Data Exchange (ETDEWEB)

    Pérez Daroca, D., E-mail: pdaroca@tandar.cnea.gov.ar [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica (Argentina); Consejo Nacional de Investigaciones Cientı´ficas y Técnicas (Argentina); Jaroszewicz, S. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica (Argentina); Instituto de Tecnología Jorge A. Sabato, UNSAM-CNEA (Argentina); Llois, A.M. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica (Argentina); Consejo Nacional de Investigaciones Cientı´ficas y Técnicas (Argentina); Mosca, H.O. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica (Argentina); Instituto de Tecnología Jorge A. Sabato, UNSAM-CNEA (Argentina)

    2013-06-15

    In this work, we study, by means of density functional perturbation theory and the pseudopotential method, mechanical and thermophysical properties of thorium carbide. These properties are derived from the lattice dynamics in the quasi-harmonic approximation. The phonon spectrum of ThC presented in this article, to the best authors’ knowledge, have not been studied, neither experimentally, nor theoretically. We compare mechanical properties, volume thermal expansion and molar specific capacities with previous results and find a very good agreement.

  16. Optimisation by plastic deformation of structural and mechanical uranium alloys properties

    International Nuclear Information System (INIS)

    Prunier, Claude.

    1981-08-01

    Structural and mechanical properties evolution of rich and poor uranium alloys are investigated. Good usual properties are obtained with few metallic additions with a limited effect giving a fine and isotrope grain structure. Amelioration is observed with heat treatment from β and γ phases high temperature range. However, dynamic recrystallisation, related to hot working, is the better phenomena to maximize the usual mechanical and structural properties. So high temperature behaviour of rich and poor uranium alloys in α, β and γ crystalline structure is studied: - dynamic recrystallisation phenomena begins only in α, and β phases high temperature range; - high strength and brittle β phase shows a very large ductility above 700 deg C. Recrystallisation is a thermal actived phenomena localised at grain boundary, dependant with alloys concentration and crystalline structure. β phase activation energy and deformation rate for dynamic recrystallisation beginning are most important, than α and γ phases in relation with quadratic structure complexity. Both temperature and deformation rate are the main dynamic recrystallisation factors. Optimal usual mechanical and structural properties obtained by hot working (forging, milling) are sensible to hydrogen embrittlement [fr

  17. Data of thermal degradation and dynamic mechanical properties of starch-glycerol based films with citric acid as crosslinking agent.

    Science.gov (United States)

    González Seligra, Paula; Medina Jaramillo, Carolina; Famá, Lucía; Goyanes, Silvia

    2016-06-01

    Interest in biodegradable edible films as packaging or coating has increased because their beneficial effects on foods. In particular, food products are highly dependents on thermal stability, integrity and transition process temperatures of the packaging. The present work describes a complete data of the thermal degradation and dynamic mechanical properties of starch-glycerol based films with citric acid (CA) as crosslinking agent described in the article titled: "Biodegradable and non-retrogradable eco-films based on starch-glycerol with citric acid as crosslinking agent" González Seligra et al. (2016) [1]. Data describes thermogravimetric and dynamical mechanical experiences and provides the figures of weight loss and loss tangent of the films as a function of the temperature.

  18. The thermal and mechanical properties of electron beam-irradiated polylactide

    International Nuclear Information System (INIS)

    Kuk, In Seol; Jung, Chan Hee; Hwang, In Tae; Choi, Jae Hak; Nho, Young Chang

    2010-01-01

    The effect of electron beam irradiation on the thermal and mechanical properties of polylactide (PLA) was investigated in this research. PLA films were irradiated by electron beams at different absorption doses ranging from 20 to 200 kGy. The thermal and mechanical properties of the irradiated PLA films were investigated by means of differential scanning calorimeter, thermogravimetric analyzer, universal testing machine, dynamic mechanical analyzer, and thermal mechanical analyzer. The results revealed that the chain scission of the PLA predominated over the crosslinking during the irradiation, which considerably deteriorated the thermal and mechanical properties of the PLA

  19. Molecular dynamics simulation study of thermodynamic and mechanical properties of the Cu-Pd random alloy

    International Nuclear Information System (INIS)

    Davoodi, J.; Ahmadi, M.; Rafii-Tabar, H.

    2010-01-01

    Molecular dynamics (MD) simulations have been performed to investigate the thermodynamic and mechanical properties of Cu-x% Pd (at%) random alloy, as well as those of the Cu 3 Pd and CuPd 3 ordered alloys, in the temperature range from 200 K up to the melting point. The quantum Sutton-Chen (Q-SC) many-body interatomic potentials have been used to describe the energetics of the Cu and Pd pure metals, and a standard mixing rule has been employed to obtain the potential parameters for the mixed (alloy) states. We have computed the variation of the melting temperature with the concentration of Pd. Furthermore, the variation of the cohesive energy, the order parameter, the thermal expansion coefficient, the density, the isobaric heat capacity, the bulk modulus, and the elastic stiffness constants were also calculated at different temperatures and concentrations for these materials. The computed variations of the thermodynamic and mechanical properties with temperature are fitted to a polynomial function. Our computed results show good agreement with other computational simulations, as well as with the experimental results where they have been available.

  20. Mechanics and dynamics of triglyceride-phospholipid model membranes

    DEFF Research Database (Denmark)

    Pakkanen, Kirsi I.; Duelund, Lars; Qvortrup, Klaus

    2011-01-01

    We demonstrate here that triolein alters the mechanical properties of phospholipid membranes and induces extraordinary conformational dynamics. Triolein containing membranes exhibit fluctuations up to size range of 100µm and with the help of these are e.g. able to squeeze through narrow passages...... with larger lamellar distances observed in the TOPOPC membranes. These findings suggest repulsion between adjacent membranes. We provide a comprehensive discussion on the possible explanations for the observed mechanics and dynamics in the TOPOPC system and on their potential cellular implications....

  1. Multiscale simulation of mechanical properties of TiNb alloy

    Science.gov (United States)

    Nikonov, A. Yu.

    2017-12-01

    The article presents a numerical simulation of the mechanical properties of a Ti-Nb β-alloy on three different scales. The ab-initio approach is used to estimate the concentrations of the Ti alloy with required elastic properties. On the basis of molecular dynamics simulation, we calculate the adhesive force between individual particles of the alloy. The calculated dependence is implemented within the movable cellular automata method to determine the mechanical properties of Ti-Nb depending on the interparticle free space.

  2. Dynamic mechanical properties of hydroxyapatite/polyethylene oxide nanocomposites: characterizing isotropic and post-processing microstructures

    Science.gov (United States)

    Shofner, Meisha; Lee, Ji Hoon

    2012-02-01

    Compatible component interfaces in polymer nanocomposites can be used to facilitate a dispersed morphology and improved physical properties as has been shown extensively in experimental results concerning amorphous matrix nanocomposites. In this research, a block copolymer compatibilized interface is employed in a semi-crystalline matrix to prevent large scale nanoparticle clustering and enable microstructure construction with post-processing drawing. The specific materials used are hydroxyapatite nanoparticles coated with a polyethylene oxide-b-polymethacrylic acid block copolymer and a polyethylene oxide matrix. Two particle shapes are used: spherical and needle-shaped. Characterization of the dynamic mechanical properties indicated that the two nanoparticle systems provided similar levels of reinforcement to the matrix. For the needle-shaped nanoparticles, the post-processing step increased matrix crystallinity and changed the thermomechanical reinforcement trends. These results will be used to further refine the post-processing parameters to achieve a nanocomposite microstructure with triangulated arrays of nanoparticles.

  3. Characterization of the mechanical properties of polyphenylene polymer using molecular dynamics simulations

    International Nuclear Information System (INIS)

    Ansari, R.; Ajori, S.; Rouhi, S.

    2016-01-01

    Synthesizing polyphenylene polymer, a two-dimensional hydrocarbon known as porous graphene, has led to the initiation of a new age in nanoscience. In this investigation, molecular dynamics (MD) simulations are carried out to study the mechanical properties of porous graphene such as Young's modulus, Poisson's ratio, bulk modulus and ultimate strength and strain. The fracture initiation and propagation pattern of porous graphene are also considered in this study. The results show that Young's and bulk moduli of porous graphene are lower than those of graphene, graphene and graphyne. Unlikely, it is also observed that its Poisson's ratio is considerably more than that of graphene, graphene and graphyne. Furthermore, it is found out that Young's and bulk moduli as well as fracture strain and ultimate stress are extremely size-dependent and also the porous graphene can be considered as an isotropic material.

  4. Mechanical properties of irradiated materials

    International Nuclear Information System (INIS)

    Robertson, I.M.; Robach, J.; Wirth, B.

    2001-01-01

    The effect of irradiation on the mechanical properties of metals is considered with particular attention being paid to the development of defect-free channels following uniaxial tensile loading. The in situ transmission electron microscope deformation technique is coupled with dislocation dynamic computer simulations to reveal the fundamental processes governing the elimination of defects by glissile dislocations. The observations of preliminary experiments are reported.(author)

  5. Dynamic compressive mechanical response of a soft polymer material

    NARCIS (Netherlands)

    Fan, J.T.; Weerheijm, J.; Sluys, L.J.

    2015-01-01

    The dynamic mechanical behaviour of a soft polymer material (Clear Flex 75) was studied using a split Hopkinson pressure bar (SHPB) apparatus. Mechanical properties have been determined at moderate to high strain rates. Real time deformation and fracture were recorded using a high-speed camera.

  6. Static and Dynamic Mechanical Properties of Graphene Oxide-Incorporated Woven Carbon Fiber/Epoxy Composite

    Science.gov (United States)

    Adak, Nitai Chandra; Chhetri, Suman; Kim, Nam Hoon; Murmu, Naresh Chandra; Samanta, Pranab; Kuila, Tapas

    2018-03-01

    This study investigates the synergistic effects of graphene oxide (GO) on the woven carbon fiber (CF)-reinforced epoxy composites. The GO nanofiller was incorporated into the epoxy resin with variations in the content, and the CF/epoxy composites were manufactured using a vacuum-assisted resin transfer molding process and then cured at 70 and 120 °C. An analysis of the mechanical properties of the GO (0.2 wt.%)/CF/epoxy composites showed an improvement in the tensile strength, Young's modulus, toughness, flexural strength and flexural modulus by 34, 20, 83, 55 and 31%, respectively, when compared to the CF/epoxy composite. The dynamic mechanical analysis of the composites exhibited an enhancement of 56, 114 and 22% in the storage modulus, loss modulus and damping capacity (tan δ), respectively, at its glass transition temperature. The fiber-matrix interaction was studied using a Cole-Cole plot analysis.

  7. Using molecular dynamics simulations and finite element method to study the mechanical properties of nanotube reinforced polyethylene and polyketone

    Science.gov (United States)

    Rouhi, S.; Alizadeh, Y.; Ansari, R.; Aryayi, M.

    2015-09-01

    Molecular dynamics simulations are used to study the mechanical behavior of single-walled carbon nanotube reinforced composites. Polyethylene and polyketone are selected as the polymer matrices. The effects of nanotube atomic structure and diameter on the mechanical properties of polymer matrix nanocomposites are investigated. It is shown that although adding nanotube to the polymer matrix raises the longitudinal elastic modulus significantly, the transverse tensile and shear moduli do not experience important change. As the previous finite element models could not be used for polymer matrices with the atom types other than carbon, molecular dynamics simulations are used to propose a finite element model which can be used for any polymer matrices. It is shown that this model can predict Young’s modulus with an acceptable accuracy.

  8. Transitional grain boundary structures and the influence on thermal, mechanical and energy properties from molecular dynamics simulations

    International Nuclear Information System (INIS)

    Burbery, N.J.; Das, R.; Ferguson, W.G.

    2016-01-01

    The thermo-kinetic characteristics that dictate the activation of atomistic crystal defects significantly influence the mechanical properties of crystalline materials. Grain boundaries (GBs) primarily influence the plastic deformation of FCC metals through their interaction with mobile dislocation defects. The activation thresholds and atomic mechanisms that dictate the thermo-kinetic properties of grain boundaries have been difficult to study due to complex and highly variable GB structure. This paper presents a new approach for modelling GBs which is based on a systematic structural analysis of metastable and stable GBs. GB structural transformation accommodates defect interactions at the interface. The activation energy for such structural transformations was evaluated with nudged elastic band analysis of bi-crystals with several metastable 0 K grain boundary structures in pure FCC Aluminium (Al). The resultant activation energy was used to evaluate the thermal stability of the metastable grain boundary structures, with predictions of transition time based on transition state theory. The predictions are in very good agreement with the minimum time for irreversible structure transformation at 300 K obtained with molecular dynamics simulations. Analytical methods were used to evaluate the activation volume, which in turn was used to predict and explain the influence of stress and strain rate on the thermal and mechanical properties. Results of molecular dynamics simulations show that the GB structure is more closely related to the elastic strength at 0 K than the GB energy. Furthermore, the thermal instability of the GB structure directly influences the relationship between bi-crystal strength, temperature and strain rate. Hence, theoretically consistent models are established on the basis of activation criteria, and used to make predictions of temperature-dependent yield stress at a low strain rate, in agreement with experimental results.

  9. Research on structures, mechanical properties, and mechanical responses of TKX-50 and TKX-50 based PBX with molecular dynamics.

    Science.gov (United States)

    Ma, Song; Li, Yajin; Li, Yang; Luo, Yunjun

    2016-02-01

    To improve the practicality and safety of a novel explosive dihydroxylamm onium 5,5'-bis (tetrazole)-1,1'-diolate (TKX-50), polyvinylidene difluoride (PVDF) and polychlorotrifluoroe-thylene (PCTFE) were respectively added to the TKX-50, forming the polymer-bonded explosives (PBX). Interfacial and mechanical properties of PBX were investigated through molecular dynamics (MD) method, desensitizing mechanisms of fluorine-polymers for TKX-50 were researched by compression and bulk shear simulations. Results show that the binding energies (E bind ) between polymers (PVDF or PCTFE) and TKX-50 surfaces all rank in order of (011) > (100) > (010), shorter interatomic distance and the resulted higher potentials lead to higher E bind on TKX-50/PVDF interfaces than that on PCTFE/TKX-50 interfaces. Compared with TKX-50, the ductility of PBX is improved due to the isotropic mechanical property and flexibility of fluorine-polymers especially the PCTFE. Desensitizing effect of fluorine-polymers for TKX-50 is found under loading condition, which is attributed to the enhanced compressibility and buffer capacity against external pressure in compression, as well as the improved lubricity to reduce the sliding potentials in bulk shear process. Graphical Abstract Comparisons of the internal stress and slide potentials of the novel explosive,TKX-50 and its based PBX. Desensitizing effects can be found by the adding of fluorine-polymers, it owes to their better flexibility and lubricity as well as the amorphous nature.

  10. Experimental Investigation into Corrosion Effect on Mechanical Properties of High Strength Steel Bars under Dynamic Loadings

    Directory of Open Access Journals (Sweden)

    Hui Chen

    2018-01-01

    Full Text Available The tensile behaviors of corroded steel bars are important in the capacity evaluation of corroded reinforced concrete structures. The present paper studies the mechanical behavior of the corroded high strength reinforcing steel bars under static and dynamic loading. High strength reinforcing steel bars were corroded by using accelerated corrosion methods and the tensile tests were carried out under different strain rates. The results showed that the mechanical properties of corroded high strength steel bars were strain rate dependent, and the strain rate effect decreased with the increase of corrosion degree. The decreased nominal yield and ultimate strengths were mainly caused by the reduction of cross-sectional areas, and the decreased ultimate deformation and the shortened yield plateau resulted from the intensified stress concentration at the nonuniform reduction. Based on the test results, reduction factors were proposed to relate the tensile behaviors with the corrosion degree and strain rate for corroded bars. A modified Johnson-Cook strength model of corroded high strength steel bars under dynamic loading was proposed by taking into account the influence of corrosion degree. Comparison between the model and test results showed that proposed model properly describes the dynamic response of the corroded high strength rebars.

  11. Tensile Mechanical Properties and Dynamic Collagen Fiber Re-Alignment of the Murine Cervix are Dramatically Altered Throughout Pregnancy.

    Science.gov (United States)

    Barnum, Carrie E; Fey, Jennifer L; Weiss, Stephanie N; Barila, Guillermo; Brown, Amy G; Connizzo, Brianne K; Shetye, Snehal S; Elovitz, Michal A; Soslowsky, Louis J

    2017-06-01

    The cervix is a unique organ able to dramatically change its shape and function by serving as a physical barrier for the growing fetus and then undergoing dramatic dilation allowing for delivery of a term infant. As a result, the cervix endures changing mechanical forces from the growing fetus. There is an emerging concept that the cervix may change or remodel "early" in many cases of spontaneous preterm birth (sPTB). However, the mechanical role of the cervix in both normal and preterm birth remains unclear. Therefore, the primary objective of this study was to determine the mechanical and structural responses of murine cervical tissue throughout a normal gestational time course. In this study, both tissue structural and material properties were determined via a quasi-static tensile load-to-failure test, while simultaneously obtaining dynamic collagen fiber re-alignment via cross-polarization imaging. This study demonstrated that the majority of the mechanical properties evaluated decreased at midgestation and not just at term, while collagen fiber re-alignment occurred earlier in the loading curve for cervices at term. This suggests that although structural changes in the cervix occur throughout gestation, the differences in material properties function in combination with collagen fiber re-alignment as mechanical precursors to regulate term gestation. This work lays a foundation for investigating cervical biomechanics and the role of the cervix in preterm birth.

  12. Regeneration of Achilles' tendon: the role of dynamic stimulation for enhanced cell proliferation and mechanical properties.

    Science.gov (United States)

    Lee, Jongman; Guarino, Vincenzo; Gloria, Antonio; Ambrosio, Luigi; Tae, Giyoong; Kim, Young Ha; Jung, Youngmee; Kim, Sang-Heon; Kim, Soo Hyun

    2010-01-01

    The tissue engineering of tendon was studied using highly elastic poly(L-lactide-co-epsilon-caprolactone) (PLCL) scaffolds and focusing on the effect of dynamic tensile stimulation. Tenocytes from rabbit Achilles tendon were seeded (1.0 x 10(6) cells/scaffold) onto porous PLCL scaffolds and cultured for periods of 2 weeks and 4 weeks. This was performed in a static system and also in a bioreactor equipped with tensile modulation which mimicked the environmental surroundings of tendons with respect to tensile extension. The degradation of the polymeric scaffolds during the culture was relatively slow. However, there was an indication that cells accelerated the degradation of PLCL scaffolds. The scaffold/cell adducts from the static culture exhibited inferior strength (at 2 weeks 350 kPa, 4 weeks 300 kPa) compared to the control without cells (at 2 weeks 460 kPa, 4 weeks 340 kPa), indicating that the cells contributed to the enhanced degradation. On the contrary, the corresponding values of the adducts from the dynamic culture (at 2 weeks 430 kPa, 4 weeks 370 kPa) were similar to, or higher than, those from the control. This could be explained by the increased quantity of cells and neo-tissues in the case of dynamic culture compensating for the loss in tensile strength. Compared with static and dynamic culture conditions, mechanical stimulation played a crucial role in the regeneration of tendon tissue. In the case of the dynamic culture system, cell proliferation was enhanced and secretion of collagen type I was increased, as evidenced by DNA assay and histological and immunofluorescence analysis. Thus, tendon regeneration, indicated by improved mechanical and biological properties, was demonstrated, confirming the effect of mechanical stimulation. It could be concluded that the dynamic tensile stimulation appeared to be an essential factor in tendon/ligament tissue engineering, and that elastic PLCL co-polymers could be very beneficial in this process.

  13. Quantifying dynamic mechanical properties of human placenta tissue using optimization techniques with specimen-specific finite-element models.

    Science.gov (United States)

    Hu, Jingwen; Klinich, Kathleen D; Miller, Carl S; Nazmi, Giseli; Pearlman, Mark D; Schneider, Lawrence W; Rupp, Jonathan D

    2009-11-13

    Motor-vehicle crashes are the leading cause of fetal deaths resulting from maternal trauma in the United States, and placental abruption is the most common cause of these deaths. To minimize this injury, new assessment tools, such as crash-test dummies and computational models of pregnant women, are needed to evaluate vehicle restraint systems with respect to reducing the risk of placental abruption. Developing these models requires accurate material properties for tissues in the pregnant abdomen under dynamic loading conditions that can occur in crashes. A method has been developed for determining dynamic material properties of human soft tissues that combines results from uniaxial tensile tests, specimen-specific finite-element models based on laser scans that accurately capture non-uniform tissue-specimen geometry, and optimization techniques. The current study applies this method to characterizing material properties of placental tissue. For 21 placenta specimens tested at a strain rate of 12/s, the mean failure strain is 0.472+/-0.097 and the mean failure stress is 34.80+/-12.62 kPa. A first-order Ogden material model with ground-state shear modulus (mu) of 23.97+/-5.52 kPa and exponent (alpha(1)) of 3.66+/-1.90 best fits the test results. The new method provides a nearly 40% error reduction (p<0.001) compared to traditional curve-fitting methods by considering detailed specimen geometry, loading conditions, and dynamic effects from high-speed loading. The proposed method can be applied to determine mechanical properties of other soft biological tissues.

  14. Static and dynamic mechanical properties of alkali treated unidirectional continuous Palmyra Palm Leaf Stalk Fiber/jute fiber reinforced hybrid polyester composites

    International Nuclear Information System (INIS)

    Shanmugam, D.; Thiruchitrambalam, M.

    2013-01-01

    Highlights: • New type of hybrid composite with Palmyra Palm Leaf Stalk Fibers (PPLSF) and jute. • Composites fabricated with continuous, unidirectional fibers. • Alkali treatment and hybridizing jute imparted good static and dynamic properties. • Properties are comparable with well know natural/glass fiber composites. • New hybrid composite can be an alternative in place of synthetic fiber composites. - Abstract: Alkali treated continuous Palmyra Palm Leaf Stalk Fiber (PPLSF) and jute fibers were used as reinforcement in unsaturated polyester matrix and their static and dynamic mechanical properties were evaluated. Continuous PPLSF and jute fibers were aligned unidirectionally in bi-layer arrangement and the hybrid composites were fabricated by compression molding process. Positive hybrid effect was observed for the composites due to hybridization. Increasing jute fiber loading showed a considerable increase in tensile and flexural properties of the hybrid composites as compared to treated PPLSF composites. Scanning Electron microscopy (SEM) of the fractured surfaces showed the nature of fiber/matrix interface. The impact strength of the hybrid composites were observed to be less compared to pure PPLSF composites. Addition of jute fibers to PPLSF and alkali treatment of the fibers has enhanced the storage and loss modulus of the hybrid composites. A positive shift of Tan δ peaks to higher temperature and reduction in the peak height of the composites was also observed. The composites with higher jute loading showed maximum damping behavior. Overall the hybridization was found to be efficient showing increased static and dynamic mechanical properties. A comparative study of properties of this hybrid composite with other hybrids made out of using natural/glass fibers is elaborated. Hybridization of alkali treated jute and PPLSF has resulted in enhanced properties which are comparable with other natural/glass fiber composites thus increasing the scope of

  15. Molecular dynamics simulation of joining process of Ag-Au nanowires and mechanical properties of the hybrid nanojoint

    Directory of Open Access Journals (Sweden)

    Su Ding

    2015-05-01

    Full Text Available The nanojoining process of Ag-Au hybrid nanowires at 800K was comprehensively studied by virtue of molecular dynamics (MD simulation. Three kinds of configurations including end-to-end, T-like and X-like were built in the simulation aiming to understand the nanojoining mechanism. The detailed dynamic evolution of atoms, crystal structure transformation and defects development during the nanojoining processes were performed. The results indicate that there are two stages in the nanojoining process of Ag-Au nanowires which are atom diffusion and new bonds formation. Temperature is a key parameter affecting both stages ascribed to the energy supply and the optimum temperature for Ag-Au nanojoint with diameter of 4.08 nm has been discussed. The mechanical properties of the nanojoint were examined with simulation of tensile test on the end-to-end joint. It was revealed that the nanojoint was strong enough to resist fracture at the joining area.

  16. Soft tissue deformation modelling through neural dynamics-based reaction-diffusion mechanics.

    Science.gov (United States)

    Zhang, Jinao; Zhong, Yongmin; Gu, Chengfan

    2018-05-30

    Soft tissue deformation modelling forms the basis of development of surgical simulation, surgical planning and robotic-assisted minimally invasive surgery. This paper presents a new methodology for modelling of soft tissue deformation based on reaction-diffusion mechanics via neural dynamics. The potential energy stored in soft tissues due to a mechanical load to deform tissues away from their rest state is treated as the equivalent transmembrane potential energy, and it is distributed in the tissue masses in the manner of reaction-diffusion propagation of nonlinear electrical waves. The reaction-diffusion propagation of mechanical potential energy and nonrigid mechanics of motion are combined to model soft tissue deformation and its dynamics, both of which are further formulated as the dynamics of cellular neural networks to achieve real-time computational performance. The proposed methodology is implemented with a haptic device for interactive soft tissue deformation with force feedback. Experimental results demonstrate that the proposed methodology exhibits nonlinear force-displacement relationship for nonlinear soft tissue deformation. Homogeneous, anisotropic and heterogeneous soft tissue material properties can be modelled through the inherent physical properties of mass points. Graphical abstract Soft tissue deformation modelling with haptic feedback via neural dynamics-based reaction-diffusion mechanics.

  17. Characterization of the mechanical properties of polyphenylene polymer using molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Ansari, R.; Ajori, S. [Department of Mechanical Engineering, University of Guilan, P.O. Box 3756, Rasht (Iran, Islamic Republic of); Rouhi, S., E-mail: s_rouhi@iaul.ac.ir [Young Researchers and Elite Club, Langroud Branch, Islamic Azad University, Langroud, Guilan (Iran, Islamic Republic of)

    2016-01-15

    Synthesizing polyphenylene polymer, a two-dimensional hydrocarbon known as porous graphene, has led to the initiation of a new age in nanoscience. In this investigation, molecular dynamics (MD) simulations are carried out to study the mechanical properties of porous graphene such as Young's modulus, Poisson's ratio, bulk modulus and ultimate strength and strain. The fracture initiation and propagation pattern of porous graphene are also considered in this study. The results show that Young's and bulk moduli of porous graphene are lower than those of graphene, graphene and graphyne. Unlikely, it is also observed that its Poisson's ratio is considerably more than that of graphene, graphene and graphyne. Furthermore, it is found out that Young's and bulk moduli as well as fracture strain and ultimate stress are extremely size-dependent and also the porous graphene can be considered as an isotropic material.

  18. Molecular dynamics simulation study of thermodynamic and mechanical properties of the Cu-Pd random alloy

    Energy Technology Data Exchange (ETDEWEB)

    Davoodi, J., E-mail: jdavoodi@znu.ac.ir [Departmant of Physics, University of Zanjan, P.O. Box 45371-38111, Zanjan (Iran, Islamic Republic of); Ahmadi, M. [Departmant of Physics, University of Zanjan, P.O. Box 45371-38111, Zanjan (Iran, Islamic Republic of); Rafii-Tabar, H. [Department of Medical Physics and Biomedical Engineering and Research Center for Medical Nanotechnology and Tissue Engineering, Shahid Beheshti University of Medical Sciences, Evin, Tehran (Iran, Islamic Republic of); Computational Physical Sciences Research Laboratory, Department of Nano-Science, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of)

    2010-06-25

    Molecular dynamics (MD) simulations have been performed to investigate the thermodynamic and mechanical properties of Cu-x% Pd (at%) random alloy, as well as those of the Cu{sub 3}Pd and CuPd{sub 3} ordered alloys, in the temperature range from 200 K up to the melting point. The quantum Sutton-Chen (Q-SC) many-body interatomic potentials have been used to describe the energetics of the Cu and Pd pure metals, and a standard mixing rule has been employed to obtain the potential parameters for the mixed (alloy) states. We have computed the variation of the melting temperature with the concentration of Pd. Furthermore, the variation of the cohesive energy, the order parameter, the thermal expansion coefficient, the density, the isobaric heat capacity, the bulk modulus, and the elastic stiffness constants were also calculated at different temperatures and concentrations for these materials. The computed variations of the thermodynamic and mechanical properties with temperature are fitted to a polynomial function. Our computed results show good agreement with other computational simulations, as well as with the experimental results where they have been available.

  19. Grewia Gum 1: Some Mechanical and Swelling Properties of ...

    African Journals Online (AJOL)

    Purpose: To study the mechanical and dynamic swelling properties of grewia gum, evaluate its compression behaviour and determine the effect of drying methods on its properties. Methods: Compacts (500 mg) of both freeze-dried and air-dried grewia gum were separately prepared by compression on a potassium bromide ...

  20. Characterization of dynamic properties of ballistic clay

    NARCIS (Netherlands)

    Carton, E.P.; Roebroeks, G.H.J.J.; Broos, J.P.F.; Halls, V.; Zheng, J.

    2014-01-01

    In order use material models in (numerical) calculations, the mechanical properties of all materials involved should be known. At TNO an indirect method to determine the dynamic flow stress of materials has been generated by a combination of ballistic penetration tests with an energy-based

  1. Studies on mechanical, thermal and dynamic mechanical properties of untreated (raw) and treated coconut sheath fiber reinforced epoxy composites

    International Nuclear Information System (INIS)

    Suresh Kumar, S.M.; Duraibabu, D.; Subramanian, K.

    2014-01-01

    Highlights: • UTCSE and TCSE composites have been fabricated by compression molding technique. • The prepared specimens were characterized by FTIR, DMA, TGA and SEM techniques. • TCSE composite showed higher mechanical properties compared to UTCSE composite. • DMA showed that TCSE composite exhibited higher storage modulus than UTCSE composite. • TCSE composite showed higher thermal stability than UTCSE composite. - Abstract: The untreated (raw) coconut sheath fiber reinforced epoxy (UTCSE) composite and treated coconut sheath fiber reinforced epoxy (TCSE) composite have been fabricated using hand layup followed by compression molding technique. The prepared specimens were characterized by Fourier transform infrared spectroscopy (FTIR), dynamic mechanical analysis (DMA), thermo gravimetric analysis (TGA) and scanning electron microscopy (SEM) techniques. The prepared specimens are cut as per ASTM Standards to measure tensile, flexural and impact strengths by using universal testing machine and izod impact tester respectively. The treated coconut sheath fiber reinforced epoxy composite (TCSE) posses higher mechanical strength and thermal stability compared to untreated (raw) coconut sheath fiber reinforced epoxy composite (UTCSE). In the SEM fracture analysis, TCSE composite showed better fiber–matrix bonding and absence of voids compared to UTCSE composite

  2. Crystallization and mechanical properties of biodegradable poly(p ...

    Indian Academy of Sciences (India)

    Effect of ome-POSS on the isothermal melt crystallization and dynamic mechanical properties of PPDO in the ... attracting more and more attention in recent times.12–14 Blen- ..... spent at Ts is enough to erase the crystalline memory of the.

  3. Role of differential physical properties in the collective mechanics and dynamics of tissues

    Science.gov (United States)

    Das, Moumita

    Living cells and tissues are highly mechanically sensitive and active. Mechanical stimuli influence the shape, motility, and functions of cells, modulate the behavior of tissues, and play a key role in several diseases. In this talk I will discuss how collective biophysical properties of tissues emerge from the interplay between differential mechanical properties and statistical physics of underlying components, focusing on two complementary tissue types whose properties are primarily determined by (1) the extracellular matrix (ECM), and (2) individual and collective cell properties. I will start with the structure-mechanics-function relationships in articular cartilage (AC), a soft tissue that has very few cells, and its mechanical response is primarily due to its ECM. AC is a remarkable tissue: it can support loads exceeding ten times our body weight and bear 60+ years of daily mechanical loading despite having minimal regenerative capacity. I will discuss the biophysical principles underlying this exceptional mechanical response using the framework of rigidity percolation theory, and compare our predictions with experiments done by our collaborators. Next I will discuss ongoing theoretical work on how the differences in cell mechanics, motility, adhesion, and proliferation in a co-culture of breast cancer cells and healthy breast epithelial cells may modulate experimentally observed differential migration and segregation. Our results may provide insights into the mechanobiology of tissues with cell populations with different physical properties present together such as during the formation of embryos or the initiation of tumors. This work was partially supported by a Cottrell College Science Award.

  4. Dynamic mechanical properties of straight titanium alloy arch wires.

    Science.gov (United States)

    Kusy, R P; Wilson, T W

    1990-10-01

    Eight straight-wire materials were studied: an orthodontic titanium-molybdenum (Ti-Mo) product, TMA; three orthodontic nickel-titanium (Ni-Ti) products, Nitinol, Titanal, and Orthonol; three prototype alloys, a martensitic, an austenitic, and a biphasic alloy; and a hybrid shape-memory-effect product, Biometal. Each wire was prepared with a length-to-cross-sectional area of at least 3600 cm-1. With an Autovibron Model DDV-II-C used in the tensile mode, each sample was scanned from -120 to +200 degrees C at 2 degrees C/min. From the data base, plots of the log storage modulus, log tan delta, and percent change in length vs. temperature were generated. Results showed that the dynamic mechanical properties of the alloys within this TI system are quite different. The Ti-Mo alloy, TMA, was invariant with temperature, having a modulus of 7.30 x 10(11) dyne/cm2 (10.6 x 10(6) psi). The three cold-worked alloys--Nitinol, Titanal, and Orthonol--appeared to be similar, having a modulus of 5.74 x 10(11) dyne/cm2 (8.32 x 10(6) psi). The biphasic shape-memory alloy displayed a phase transformation near ambient temperature; whereas the hybrid shape-memory product, Biometal, underwent a 3-5% change in length during its transformation between 95 and 125 degrees C. Among the Ni-Ti wires tested, several different types of alloys were represented by this intermetallic material.

  5. Effect of dynamic crosslinking on phase morphology and mechanical properties of polyamide 6,12/ethylene vinyl acetate copolymer blends

    Directory of Open Access Journals (Sweden)

    Fabrício Bondan

    2015-03-01

    Full Text Available The dynamic crosslinking of polyamide 6,12 and ethylene vinyl acetate (PA6,12/EVA blends in the mixing chamber of a torque rheometer was investigated. EVA was selectively crosslinked within the PA6,12 phase through free radical reactions using dycumil peroxide. The degree of EVA crosslinking in the PA12,6/EVA materials was estimated based on the gel content (insoluble EVA fraction. The PA6,12/EVA phase morphology was investigated by scanning electron microscopy. The mechanical properties were investigated by determining the tensile strength and hardness. The half-life time ( for homolytic scission of the dcumil peroxide (DCP was ~6s, and this time is longer than the dispersion time of the DCP in the blends. The addition of DCP resulted in increased torque values due to specific crosslinking in the EVA phase. For the pure EVA and its blends with PA6,12 the stabilized torque values increased proportionally with the amount of DCP in the system, due to a higher degree of crosslinking of the elastomeric phase. The gel content of the dynamically crosslinked blends increased with the amount of DCP incorporated until 4 phr. At 1 phr the gel content value was 2.6wt.%, while at 4 phr it was 17wt.%. For the polymer blend with 8 phr of DCP a lubricating effect contributed to reducing the gel content. The dynamically crosslinked blends, regardless of the amount of DCP added, showed a reduction in the mechanical properties, which is related to the morphological features of the system due to the low mechanical fragmentation during melt processing.

  6. Mechanical properties of intra-ocular lenses

    Science.gov (United States)

    Ehrmann, Klaus; Kim, Eon; Parel, Jean-Marie

    2008-02-01

    Cataract surgery usually involves the replacement of the natural crystalline lens with a rigid or foldable intraocular lens to restore clear vision for the patient. While great efforts have been placed on optimising the shape and optical characteristics of IOLs, little is know about the mechanical properties of these devices and how they interact with the capsular bag once implanted. Mechanical properties measurements were performed on 8 of the most commonly implanted IOLs using a custom build micro tensometer. Measurement data will be presented for the stiffness of the haptic elements, the buckling resistance of foldable IOLs, the dynamic behaviour of the different lens materials and the axial compressibility. The biggest difference between the lens types was found between one-piece and 3-piece lenses with respect to the flexibility of the haptic elements

  7. Dynamic response analysis as a tool for investigating transport mechanisms

    International Nuclear Information System (INIS)

    Dudok de Wit, Th.; Joye, B.; Lister, J.B.; Moret, J.M.

    1990-01-01

    Dynamic response analysis provides an attractive method for studying transport mechanisms in tokamak plasmas. The analysis of the radial response has already been widely used for heat and particle transport studies. The frequency dependence of the dynamic response, which is often omitted, reveals further properties of the dominant transport mechanisms. Extended measurements of the soft X-ray emission were carried out on the TCA tokamak in order to determine the underlying transport processes. (author) 5 refs., 2 figs

  8. Dynamic properties of motor proteins with two subunits

    International Nuclear Information System (INIS)

    Kolomeisky, Anatoly B; III, Hubert Phillips

    2005-01-01

    The dynamics of motor protein molecules consisting of two subunits is investigated using simple discrete stochastic models. Exact steady-state analytical expressions are obtained for velocities and dispersions for any number of intermediate states and conformations between the corresponding binding states of proteins. These models enable us to provide a detailed description and comparison of two different mechanisms of the motion of motor proteins along the linear tracks: the hand-over-hand mechanism, when the motion of subunits alternate; and the inchworm mechanism, when one subunit is always trailing another one. It is shown that the proteins in the hand-over-hand mechanism move faster and fluctuate more than the molecules in the inchworm mechanism. The effect of external forces on dynamic properties of motor proteins is also discussed. Finally, a quantitative method, based on experimental observations for single motor proteins, is proposed for distinguishing between two mechanisms of motion

  9. Dynamic properties of human incudostapedial joint-Experimental measurement and finite element modeling.

    Science.gov (United States)

    Jiang, Shangyuan; Gan, Rong Z

    2018-04-01

    The incudostapedial joint (ISJ) is a synovial joint connecting the incus and stapes in the middle ear. Mechanical properties of the ISJ directly affect sound transmission from the tympanic membrane to the cochlea. However, how ISJ properties change with frequency has not been investigated. In this paper, we report the dynamic properties of the human ISJ measured in eight samples using a dynamic mechanical analyzer (DMA) for frequencies from 1 to 80 Hz at three temperatures of 5, 25 and 37 °C. The frequency-temperature superposition (FTS) principle was used to extrapolate the results to 8 kHz. The complex modulus of ISJ was measured with a mean storage modulus of 1.14 MPa at 1 Hz that increased to 3.01 MPa at 8 kHz, and a loss modulus that increased from 0.07 to 0.47 MPa. A 3-dimensional finite element (FE) model consisting of the articular cartilage, joint capsule and synovial fluid was then constructed to derive mechanical properties of ISJ components by matching the model results to experimental data. Modeling results showed that mechanical properties of the joint capsule and synovial fluid affected the dynamic behavior of the joint. This study contributes to a better understanding of the structure-function relationship of the ISJ for sound transmission. Copyright © 2018. Published by Elsevier Ltd.

  10. Mechanical Properties of Isotactic Polypropylene Modified with Thermoplastic Potato Starch

    Science.gov (United States)

    Knitter, M.; Dobrzyńska-Mizera, M.

    2015-05-01

    In this paper selected mechanical properties of isotactic polypropylene (iPP) modified with potato starch have been presented. Thermoplastic starch (TPS) used as a modifier in the study was produced from potato starch modified with glycerol. Isotactic polypropylene/thermoplastic potato starch composites (iPP/TPS) that contained 10, 30, 50 wt.% of modified starch were examined using dynamic mechanical-thermal analysis, static tensile, Brinell hardness, and Charpy impact test. The studies indicated a distinct influence of a filler content on the mechanical properties of composites in comparison with non-modified polypropylene.

  11. Structural, electronic, mechanical, and dynamical properties of graphene oxides: A first principles study

    International Nuclear Information System (INIS)

    Dabhi, Shweta D.; Gupta, Sanjay D.; Jha, Prafulla K.

    2014-01-01

    We report the results of a theoretical study on the structural, electronic, mechanical, and vibrational properties of some graphene oxide models (GDO, a-GMO, z-GMO, ep-GMO and mix-GMO) at ambient pressure. The calculations are based on the ab-initio plane-wave pseudo potential density functional theory, within the generalized gradient approximations for the exchange and correlation functional. The calculated values of lattice parameters, bulk modulus, and its first order pressure derivative are in good agreement with other reports. A linear response approach to the density functional theory is used to derive the phonon frequencies. We discuss the contribution of the phonons in the dynamical stability of graphene oxides and detailed analysis of zone centre phonon modes in all the above mentioned models. Our study demonstrates a wide range of energy gap available in the considered models of graphene oxide and hence the possibility of their use in nanodevices.

  12. Structural, electronic, mechanical, and dynamical properties of graphene oxides: A first principles study

    Energy Technology Data Exchange (ETDEWEB)

    Dabhi, Shweta D. [Department of Physics, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar 364001 (India); Gupta, Sanjay D. [V. B. Institute of Science, Department of Physics, C. U. Shah University, Wadhwan City - 363030, Surendranagar (India); Jha, Prafulla K., E-mail: prafullaj@yahoo.com [Department of Physics, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara-390002 (India)

    2014-05-28

    We report the results of a theoretical study on the structural, electronic, mechanical, and vibrational properties of some graphene oxide models (GDO, a-GMO, z-GMO, ep-GMO and mix-GMO) at ambient pressure. The calculations are based on the ab-initio plane-wave pseudo potential density functional theory, within the generalized gradient approximations for the exchange and correlation functional. The calculated values of lattice parameters, bulk modulus, and its first order pressure derivative are in good agreement with other reports. A linear response approach to the density functional theory is used to derive the phonon frequencies. We discuss the contribution of the phonons in the dynamical stability of graphene oxides and detailed analysis of zone centre phonon modes in all the above mentioned models. Our study demonstrates a wide range of energy gap available in the considered models of graphene oxide and hence the possibility of their use in nanodevices.

  13. Vibrational mechanics nonlinear dynamic effects, general approach, applications

    CERN Document Server

    Blekhman, Iliya I

    2000-01-01

    This important book deals with vibrational mechanics - the new, intensively developing section of nonlinear dynamics and the theory of nonlinear oscillations. It offers a general approach to the study of the effect of vibration on nonlinear mechanical systems.The book presents the mathematical apparatus of vibrational mechanics which is used to describe such nonlinear effects as the disappearance and appearance under vibration of stable positions of equilibrium and motions (i.e. attractors), the change of the rheological properties of the media, self-synchronization, self-balancing, the vibrat

  14. Molecular dynamics simulations for the examination of mechanical properties of hydroxyapatite/ poly α-n-butyl cyanoacrylate under additive manufacturing.

    Science.gov (United States)

    Wang, Yanen; Wei, Qinghua; Pan, Feilong; Yang, Mingming; Wei, Shengmin

    2014-01-01

    Molecular dynamics (MD) simulations emerged to be a helpful tool in the field of material science. In rapid prototyping artificial bone scaffolds process, the binder spraying volume and mechanism are very important for bone scaffolds mechanical properties. In this study, we applied MD simulations to investigating the binding energy of α-n-butyl cyanoacrylate (NBCA) on Hydroxyapatite (HA) crystallographic planes (001, 100 and 110), and to calculating and analyzing the mechanical properties and radial distribution function of the HA(110)/NBCA mixed system. The simulation results suggested that HA (110) has the highest binding energy with NBCA owing to the high planar atom density, and the mechanical properties of HA(110)/NBCA mixed system is stronger than pure HA system. Therefore, the multi-grade strength bone scaffold could be fabricated through spraying various volume NBCA binders during 3D printing process. By calculating the radial distribution function of HA(110)/NBCA, the essence of the interface interaction were successfully elucidated. The forming situation parameters can be referred to calculation results. There exists a strong interaction between HA crystallographic plane (110) and NBCA, it is mainly derived from the hydrogen bonds between O atoms which connect with C atoms of NBCA and H atoms in HA crystal. Furthermore, a strong adsorption effect can be demonstrated between HA and NBCA.

  15. Dynamic properties of ceramic materials

    International Nuclear Information System (INIS)

    Grady, D.E.

    1995-02-01

    The present study offers new data and analysis on the transient shock strength and equation-of-state properties of ceramics. Various dynamic data on nine high strength ceramics are provided with wave profile measurements, through velocity interferometry techniques, the principal observable. Compressive failure in the shock wave front, with emphasis on brittle versus ductile mechanisms of deformation, is examined in some detail. Extensive spall strength data are provided and related to the theoretical spall strength, and to energy-based theories of the spall process. Failure waves, as a mechanism of deformation in the transient shock process, are examined. Strength and equation-of-state analysis of shock data on silicon carbide, boron carbide, tungsten carbide, silicon dioxide and aluminum nitride is presented with particular emphasis on phase transition properties for the latter two. Wave profile measurements on selected ceramics are investigated for evidence of rate sensitive elastic precursor decay in the shock front failure process

  16. Mechanical properties of irradiated nanowires – A molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Figueroa, Emilio [Grupo de NanoMateriales, Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla, 653 Santiago (Chile); Departamento de Física, Facultad de Ciencias Naturales, Matemática y del Medio Ambiente, Universidad Tecnológica Metropolitana, Santiago 7800002 (Chile); Tramontina, Diego [Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, 5500 Mendoza (Argentina); Instituto de Bioingeniería, Universidad de Mendoza, 5500 Mendoza (Argentina); Gutiérrez, Gonzalo, E-mail: gonzalo@fisica.ciencias.uchile.cl [Grupo de NanoMateriales, Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla, 653 Santiago (Chile); Bringa, Eduardo [Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, 5500 Mendoza (Argentina)

    2015-12-15

    In this work we study, by means of molecular dynamics simulation, the change in the mechanical properties of a gold nanowire with pre-existing radiation damage. The gold nanowire is used as a simple model for a nanofoam, made of connected nanowires. Radiation damage by keV ions leads to the formation of a stacking fault tetrahedron (SFT), and this defect leads to a reduced plastic threshold, as expected, when the nanowire is subjected to tension. We quantify dislocation and twin density during the deformation, and find that the early activation of the SFT as a dislocation source leads to reduced dislocation densities compared to the case without radiation damage. In addition, we observed a total destruction of the SFT, as opposed to a recent simulation study where it was postulated that SFTs might act as self-generating dislocation sources. The flow stress at large deformation is also found to be slightly larger for the irradiated case, in agreement with recent experiments. - Highlights: • Stacking Fault Tetrahedra (SFT) formation proceeds by cascades, containing typically a vacancy cluster and interstitials. • Applied tension leads to the destruction of the SFT, in contrast to a recently reported case of a SFT which soften the NW. • After the initial dislocation activity, strength is controlled by a few surviving dislocations.

  17. Rapid cable tension estimation using dynamic and mechanical properties

    Science.gov (United States)

    Martínez-Castro, Rosana E.; Jang, Shinae; Christenson, Richard E.

    2016-04-01

    Main tension elements are critical to the overall stability of cable-supported bridges. A dependable and rapid determination of cable tension is desired to assess the state of a cable-supported bridge and evaluate its operability. A portable smart sensor setup is presented to reduce post-processing time and deployment complexity while reliably determining cable tension using dynamic characteristics extracted from spectral analysis. A self-recording accelerometer is coupled with a single-board microcomputer that communicates wirelessly with a remote host computer. The portable smart sensing device is designed such that additional algorithms, sensors and controlling devices for various monitoring applications can be installed and operated for additional structural assessment. The tension-estimating algorithms are based on taut string theory and expand to consider bending stiffness. The successful combination of cable properties allows the use of a cable's dynamic behavior to determine tension force. The tension-estimating algorithms are experimentally validated on a through-arch steel bridge subject to ambient vibration induced by passing traffic. The tension estimation is determined in well agreement with previously determined tension values for the structure.

  18. Sintering, structure, and mechanical properties of nanophase SiC: A molecular-dynamics and neutron scattering study

    International Nuclear Information System (INIS)

    Chatterjee, Alok; Kalia, Rajiv K.; Nakano, Aiichiro; Omeltchenko, Andrey; Tsuruta, Kenji; Vashishta, Priya; Loong, Chun-Keung; Winterer, Markus; Klein, Sylke

    2000-01-01

    Structure, mechanical properties, and sintering of nanostructured SiC (n-SiC) are investigated with neutron scattering and molecular-dynamics (MD) techniques. Both MD and the experiment indicate the onset of sintering around 1500 K. During sintering, the pores shrink while maintaining their morphology: the fractal dimension is ∼2 and the surface roughness exponent is ∼0.45. Structural analyses reveal that interfacial regions in n-SiC are disordered with nearly the same number of three- and fourfold coordinated Si atoms. The elastic moduli scale with the density as ∼ρ μ , where μ=3.4±0.1. (c) 2000 American Institute of Physics

  19. Tissue-Level Mechanical Properties of Bone Contributing to Fracture Risk.

    Science.gov (United States)

    Nyman, Jeffry S; Granke, Mathilde; Singleton, Robert C; Pharr, George M

    2016-08-01

    Tissue-level mechanical properties characterize mechanical behavior independently of microscopic porosity. Specifically, quasi-static nanoindentation provides measurements of modulus (stiffness) and hardness (resistance to yielding) of tissue at the length scale of the lamella, while dynamic nanoindentation assesses time-dependent behavior in the form of storage modulus (stiffness), loss modulus (dampening), and loss factor (ratio of the two). While these properties are useful in establishing how a gene, signaling pathway, or disease of interest affects bone tissue, they generally do not vary with aging after skeletal maturation or with osteoporosis. Heterogeneity in tissue-level mechanical properties or in compositional properties may contribute to fracture risk, but a consensus on whether the contribution is negative or positive has not emerged. In vivo indentation of bone tissue is now possible, and the mechanical resistance to microindentation has the potential for improving fracture risk assessment, though determinants are currently unknown.

  20. Molecular dynamics simulation of nanocrystalline nickel: structure and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Swygenhoven, H. van [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Caro, A. [Comision Nacional de Energia Atomica, San Carlos de Bariloche (Argentina). Centro Atomico Bariloche

    1997-09-01

    Molecular dynamics computer simulations of low temperature elastic and plastic deformation of Ni nanophase samples (3-7 nm) are performed. The samples are polycrystals nucleated from different seeds, with random locations and orientations. Bulk and Young`s modulus, onset of plastic deformation and mechanism responsible for the plastic behaviour are studied and compared with the behaviour of coarse grained samples. (author) 1 fig., 3 refs.

  1. Molecular dynamics simulation of nanocrystalline nickel: structure and mechanical properties

    International Nuclear Information System (INIS)

    Swygenhoven, H. van; Caro, A.

    1997-01-01

    Molecular dynamics computer simulations of low temperature elastic and plastic deformation of Ni nanophase samples (3-7 nm) are performed. The samples are polycrystals nucleated from different seeds, with random locations and orientations. Bulk and Young's modulus, onset of plastic deformation and mechanism responsible for the plastic behaviour are studied and compared with the behaviour of coarse grained samples. (author) 1 fig., 3 refs

  2. MECHANICAL AND THERMO–MECHANICAL PROPERTIES OF BI-DIRECTIONAL AND SHORT CARBON FIBER REINFORCED EPOXY COMPOSITES

    Directory of Open Access Journals (Sweden)

    G. AGARWAL

    2014-10-01

    Full Text Available This paper based on bidirectional and short carbon fiber reinforced epoxy composites reports the effect of fiber loading on physical, mechanical and thermo-mechanical properties respectively. The five different fiber loading, i.e., 10wt. %, 20wt. %, 30wt. %, 40wt. % and 50wt. % were taken for evaluating the above said properties. The physical and mechanical properties, i.e., hardness, tensile strength, flexural strength, inter-laminar shear strength and impact strength are determined to represent the behaviour of composite structures with that of fiber loading. Thermo-mechanical properties of the material are measured with the help of Dynamic Mechanical Analyser to measure the damping capacity of the material that is used to reduce the vibrations. The effect of storage modulus, loss modulus and tan delta with temperature are determined. Finally, Cole–Cole analysis is performed on both bidirectional and short carbon fiber reinforced epoxy composites to distinguish the material properties of either homogeneous or heterogeneous materials. The results show that with the increase in fiber loading the mechanical properties of bidirectional carbon fiber reinforced epoxy composites increases as compared to short carbon fiber reinforced epoxy composites except in case of hardness, short carbon fiber reinforced composites shows better results. Similarly, as far as Loss modulus, storage modulus is concerned bidirectional carbon fiber shows better damping behaviour than short carbon fiber reinforced composites.

  3. Molecular Dynamics Simulation Connections and Mechanical Properties of Cu/Al Explosion Shock Interface

    Directory of Open Access Journals (Sweden)

    ZHANG Yan

    2017-10-01

    Full Text Available Based on the molecular dynamics (MD method, transient explosive welding process of Cu/Al junction point was revealed from the microscopic aspect, and mechanical properties and machinability of the Cu/Al nano-weldment were studied. The results show that kinetic energy is converted into internal energy in the system after the collision. The heterogeneous atoms penetrate into each other and the diffusion effect of copper atoms is better than aluminium atoms. The elastic modulus of the nano-weldment is 64.56 GPa, which is between copper's and aluminium's; however, its yield strength is less than those of the two monocrystals. Interactions between dislocations and disordered lattices cause the stress strengthening in the plastic deformation stage, which causes that the stress values of the weldment is larger than those of the two monocrystals. This strengthening mechanism is also reflected in the cutting process, and the weldment has the highest average cutting force 117.80 nN. A mass of dislocations nucleate in the disordered lattice areas of the weldment, and they spread at 45¯ to the cutting direction. However, dislocations pile up when their propagation is hindered by the disordered lattices and interface, which leads to the work hardening effect.

  4. Dynamic texture perception, oral processing behaviour and bolus properties of emulsion-filled gels with and without contrasting mechanical properties

    NARCIS (Netherlands)

    Devezeaux de Lavergne, M.S.M.; Tournier, C.; Bertrand, D.; Salles, C.; Velde, van de F.; Stieger, M.A.

    2016-01-01

    Many highly palatable foods are composed of multiple components which can have considerably different mechanical properties leading to contrasting texture sensations. The aim of this study was to better understand the impact of contrasting mechanical properties in semi-solid gels on oral processing

  5. Investigation of deformation mechanisms of staggered nanocomposites using molecular dynamics

    Science.gov (United States)

    Mathiazhagan, S.; Anup, S.

    2016-08-01

    Biological materials with nanostructure of regularly or stair-wise staggered arrangements of hard platelets reinforced in a soft protein matrix have superior mechanical properties. Applications of these nanostructures to ceramic matrix composites could enhance their toughness. Using molecular dynamics simulations, mechanical behaviour of the bio-inspired nanocomposites is studied. Regularly staggered model shows better flow behaviour compared to stair-wise staggered model due to the symmetrical crack propagation along the interface. Though higher stiffness and strength are obtained for stair-wise staggered models, rapid crack propagation reduces the toughness. Arresting this crack propagation could lead to superior mechanical properties in stair-wise staggered models.

  6. Measure theoretical approach to recurrent properties for quantum dynamics

    International Nuclear Information System (INIS)

    Otobe, Yoshiki; Sasaki, Itaru

    2011-01-01

    Poincaré's recurrence theorem, which states that every Hamiltonian dynamics enclosed in a finite volume returns to its initial position as close as one wishes, is a mathematical basis of statistical mechanics. It is Liouville's theorem that guarantees that the dynamics preserves the volume on the state space. A quantum version of Poincaré's theorem was obtained in the middle of the 20th century without any volume structures of the state space (Hilbert space). One of our aims in this paper is to establish such properties of quantum dynamics from an analog of Liouville's theorem, namely, we will construct a natural probability measure on the Hilbert space from a Hamiltonian defined on the space. Then we will show that the measure is invariant under the corresponding Schrödinger flow. Moreover, we show that the dynamics naturally causes an infinite-dimensional Weyl transformation. It also enables us to discuss the ergodic properties of such dynamics. (paper)

  7. Measure theoretical approach to recurrent properties for quantum dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Otobe, Yoshiki [Department of Mathematical Sciences, Shinshu University, Asahi 3-1-1, Matsumoto 390-8621 (Japan); Sasaki, Itaru, E-mail: otobe@math.shinshu-u.ac.jp, E-mail: isasaki@shinshu-u.ac.jp [Fiber-Nanotech Young Researcher Empowerment Center, Shinshu University, Asahi 3-1-1, Matsumoto 390-8621 (Japan)

    2011-11-18

    Poincare's recurrence theorem, which states that every Hamiltonian dynamics enclosed in a finite volume returns to its initial position as close as one wishes, is a mathematical basis of statistical mechanics. It is Liouville's theorem that guarantees that the dynamics preserves the volume on the state space. A quantum version of Poincare's theorem was obtained in the middle of the 20th century without any volume structures of the state space (Hilbert space). One of our aims in this paper is to establish such properties of quantum dynamics from an analog of Liouville's theorem, namely, we will construct a natural probability measure on the Hilbert space from a Hamiltonian defined on the space. Then we will show that the measure is invariant under the corresponding Schroedinger flow. Moreover, we show that the dynamics naturally causes an infinite-dimensional Weyl transformation. It also enables us to discuss the ergodic properties of such dynamics. (paper)

  8. Effects of electron irradiation in space environment on thermal and mechanical properties of carbon fiber/bismaleimide composite

    International Nuclear Information System (INIS)

    Yu, Qi; Chen, Ping; Gao, Yu; Ma, Keming; Lu, Chun; Xiong, Xuhai

    2014-01-01

    Highlights: •Electron irradiation decreased the storage modulus finally. •T g decreased first and then increased and finally decreased. •The thermal stability was reduced and then improved and finally decreased. •The changing trend of flexural strength and ILSS are consistent. -- Abstract: The effects of electron irradiation in simulated space environment on thermal and mechanical properties of high performance carbon fiber/bismaleimide composites were investigated. The dynamic mechanical properties of the composites exposed to different fluences of electron irradiation were evaluated by Dynamic mechanical analysis (DMA). Thermogravimetric analysis was applied to investigate the changes in thermal stability of the resin matrix after exposure to electron irradiation. The changes in mechanical properties of the composites were evaluated by flexural strength and interlaminar shear strength (ILSS). The results indicated that electron irradiation in high vacuum had an impact on thermal and mechanical properties of CF/BMI composites, which depends on irradiation fluence. At lower irradiation fluences less than 5 × 10 15 cm −2 , the dynamic storage modulus, cross-linking degree, thermal stability and mechanical properties that were determined by a competing effect between chain scission and cross-linking process, decreased firstly and then increased. While at higher fluences beyond 5 × 10 15 cm −2 , the chain scission process was dominant and thus led to the degradation in thermal and mechanical properties of the composites

  9. Multifractal properties of ball milling dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Budroni, M. A., E-mail: mabudroni@uniss.it; Pilosu, V.; Rustici, M. [Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, Via Vienna 2, Sassari 07100 (Italy); Delogu, F. [Dipartimento di Ingegneria Meccanica, Chimica, e dei Materiali, Università degli Studi di Cagliari, via Marengo 2, Cagliari 09123 (Italy)

    2014-06-15

    This work focuses on the dynamics of a ball inside the reactor of a ball mill. We show that the distribution of collisions at the reactor walls exhibits multifractal properties in a wide region of the parameter space defining the geometrical characteristics of the reactor and the collision elasticity. This feature points to the presence of restricted self-organized zones of the reactor walls where the ball preferentially collides and the mechanical energy is mainly dissipated.

  10. The mechanism and properties of acid-coagulated milk gels

    Directory of Open Access Journals (Sweden)

    Chanokphat Phadungath

    2005-03-01

    Full Text Available Acid-coagulated milk products such as fresh acid-coagulated cheese varieties and yogurt areimportant dairy food products. However, little is known regarding the mechanisms involved in gel formation, physical properties of acid gels, and the effects of processing variables such as heat treatment and gelation temperature on the important physical properties of acid milk gels. This paper reviews the modern concepts of possible mechanisms involved in the formation of particle milk gel aggregation, along with recent developments including the use of techniques such as dynamic low amplitude oscillatory rheology to observe the gel formation process, and confocal laser scanning microscopy to monitor gel microstructure.

  11. Effects of pore design on mechanical properties of nanoporous silicon

    International Nuclear Information System (INIS)

    Winter, Nicholas; Becton, Matthew; Zhang, Liuyang; Wang, Xianqiao

    2017-01-01

    Nanoporous silicon has been emerging as a powerful building block for next-generation sensors, catalysts, transistors, and tissue scaffolds. The capability to design novel devices with desired mechanical properties is paramount to their reliability and serviceability. In order to bring further resolution to the highly variable mechanical characteristics of nanoporous silicon, here we perform molecular dynamics simulations to study the effects of ligament thickness, relative density, and pore geometry/orientation on the mechanical properties of nanoporous silicon, thereby determining its Young's modulus, ultimate strength, and toughness as well as the scaling laws versus the features of interior ligaments. Results show that pore shape and pattern dictate stress accumulation inside the designed structure, leading to the corresponding failure signature, such as stretching-dominated, bending-dominated, or stochastic failure signatures, in nanoporous silicon. The nanostructure of the material is also seen to drive or mute size effects such as “smaller is stronger” and “smaller is ductile”. This investigation provides useful insight into the behavior of nanoporous silicon and how one might leverage its promising applications. - Graphical abstract: Molecular dynamics simulations are performed to study the effects of ligament thickness, relative density, and pore geometry/orientation on the mechanical properties of nanoporous silicon, thereby determining its Young's modulus, ultimate strength, and toughness as well as the scaling trends versus the features of interior ligaments.

  12. A review of penetration mechanisms and dynamic properties of tungsten and depleted uranium penetrators

    International Nuclear Information System (INIS)

    Andrew, S.P.; Caligiuri, R.D.; Eiselstein, L.E.

    1991-01-01

    Over the last decade, depleted uranium (DU) and tungsten alloys have been the materials of choice for kinetic energy penetrators. However, despite improvements in mechanical properties in recent years, the penetration performance of tungsten still lags behind that of DU. One possible reason is the difference in deformation mechanisms- DU alloys tend to shear band as they penetrate the target material, whereas tungsten penetrators tend to mushroom. As a first step to determining whether shear banding is truly the reason for superior DU performance, a review and summary of the available information was performed. This paper presents a state-of-the-art review of the formulation, high strain- rate properties, and penetration phenomena of penetrators manufactured from both tungsten and DU alloys. Specifically, the effects of composition, processing, and heat treatment on mechanical properties and penetration mechanisms of these alloys are discussed. Penetration data and models for penetration mechanisms (in particular shear banding) are also presented, as well as the applicability of these models and their salient features

  13. Using molecular mechanics to predict bulk material properties of fibronectin fibers.

    Directory of Open Access Journals (Sweden)

    Mark J Bradshaw

    Full Text Available The structural proteins of the extracellular matrix (ECM form fibers with finely tuned mechanical properties matched to the time scales of cell traction forces. Several proteins such as fibronectin (Fn and fibrin undergo molecular conformational changes that extend the proteins and are believed to be a major contributor to the extensibility of bulk fibers. The dynamics of these conformational changes have been thoroughly explored since the advent of single molecule force spectroscopy and molecular dynamics simulations but remarkably, these data have not been rigorously applied to the understanding of the time dependent mechanics of bulk ECM fibers. Using measurements of protein density within fibers, we have examined the influence of dynamic molecular conformational changes and the intermolecular arrangement of Fn within fibers on the bulk mechanical properties of Fn fibers. Fibers were simulated as molecular strands with architectures that promote either equal or disparate molecular loading under conditions of constant extension rate. Measurements of protein concentration within micron scale fibers using deep ultraviolet transmission microscopy allowed the simulations to be scaled appropriately for comparison to in vitro measurements of fiber mechanics as well as providing estimates of fiber porosity and water content, suggesting Fn fibers are approximately 75% solute. Comparing the properties predicted by single molecule measurements to in vitro measurements of Fn fibers showed that domain unfolding is sufficient to predict the high extensibility and nonlinear stiffness of Fn fibers with surprising accuracy, with disparately loaded fibers providing the best fit to experiment. This work shows the promise of this microstructural modeling approach for understanding Fn fiber properties, which is generally applicable to other ECM fibers, and could be further expanded to tissue scale by incorporating these simulated fibers into three dimensional

  14. The Influence of Forming Directions and Strain Rate on Dynamic Shear Properties of Aerial Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Ying Meng

    2018-03-01

    Full Text Available Dynamic shear properties under high strain rate are an important basis for studying the dynamic mechanical properties and microscopic mechanisms of materials. Dynamic impact shear tests of aerial aluminum alloy 7050-T7451 in rolling direction (RD, transverse direction (TD and normal direction (ND were performed at a range of strain rates from 2.5 × 104 s−1 to 4.5 × 104 s−1 by High Split Hopkinson Pressure Bar (SHPB. The influence of different forming directions and strain rates on the dynamic shear properties of material and the microstructure evolution under dynamic shear were emphatically analyzed. The results showed that aluminum alloy 7050-T7451 had a certain strain rate sensitivity and positive strain rate strengthening effect, and also the material had no obvious strain strengthening effect. Different forming directions had a great influence on dynamic shear properties. The shear stress in ND was the largest, followed by that in RD, and the lowest was that in TD. The microstructure observation showed that the size and orientation of the grain structure were different in three directions, which led to the preferred orientation of the material. All of those were the main reasons for the difference of dynamic shear properties of the material.

  15. Stochastic dynamics of penetrable rods in one dimension: Entangled dynamics and transport properties

    Energy Technology Data Exchange (ETDEWEB)

    Craven, Galen T.; Popov, Alexander V.; Hernandez, Rigoberto, E-mail: hernandez@chemistry.gatech.edu [Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400 (United States)

    2015-04-21

    The dynamical properties of a system of soft rods governed by stochastic hard collisions (SHCs) have been determined over a varying range of softness using molecular dynamics simulations in one dimension and analytic theory. The SHC model allows for interpenetration of the system’s constituent particles in the simulations, generating overlapping clustering behavior analogous to the spatial structures observed in systems governed by deterministic bounded potentials. Through variation of an assigned softness parameter δ, the limiting ranges of intermolecular softness are bridged, connecting the limiting ensemble behavior from hard to ideal (completely soft). Various dynamical and structural observables are measured from simulation and compared to developed theoretical values. The spatial properties are found to be well predicted by theories developed for the deterministic penetrable-sphere model with a transformation from energetic to probabilistic arguments. While the overlapping spatial structures are complex, the dynamical properties can be adequately approximated through a theory built on impulsive interactions with Enskog corrections. Our theory suggests that as the softness of interaction is varied toward the ideal limit, correlated collision processes are less important to the energy transfer mechanism, and Markovian processes dominate the evolution of the configuration space ensemble. For interaction softness close to hard limit, collision processes are highly correlated and overlapping spatial configurations give rise to entanglement of single-particle trajectories.

  16. The mechanical properties modeling of nano-scale materials by molecular dynamics

    NARCIS (Netherlands)

    Yuan, C.; Driel, W.D. van; Poelma, R.; Zhang, G.Q.

    2012-01-01

    We propose a molecular modeling strategy which is capable of mod-eling the mechanical properties on nano-scale low-dielectric (low-k) materials. Such modeling strategy has been also validated by the bulking force of carbon nano tube (CNT). This modeling framework consists of model generation method,

  17. Dynamical chaos: systems of classical mechanics

    International Nuclear Information System (INIS)

    Loskutov, A Yu

    2007-01-01

    This article is a methodological manual for those who are interested in chaotic dynamics. An exposition is given on the foundations of the theory of deterministic chaos that originates in classical mechanics systems. Fundamental results obtained in this area are presented, such as elements of the theory of nonlinear resonance and the Kolmogorov-Arnol'd-Moser theory, the Poincare-Birkhoff fixed-point theorem, and the Mel'nikov method. Particular attention is given to the analysis of the phenomena underlying the self-similarity and nature of chaos: splitting of separatrices and homoclinic and heteroclinic tangles. Important properties of chaotic systems - unpredictability, irreversibility, and decay of temporal correlations - are described. Models of classical statistical mechanics with chaotic properties, which have become popular in recent years - billiards with oscillating boundaries - are considered. It is shown that if a billiard has the property of well-developed chaos, then perturbations of its boundaries result in Fermi acceleration. But in nearly-integrable billiard systems, excitations of the boundaries lead to a new phenomenon in the ensemble of particles, separation of particles in accordance their velocities. If the initial velocity of the particles exceeds a certain critical value characteristic of the given billiard geometry, the particles accelerate; otherwise, they decelerate. (methodological notes)

  18. Dynamic mechanical and dielectric properties of ethylene vinyl acetate/carbon nanotube composites

    Czech Academy of Sciences Publication Activity Database

    Valentová, H.; Ilčíková, M.; Czaniková, K.; Špitalský, Z.; Šlouf, Miroslav; Nedbal, J.; Omastová, M.

    2014-01-01

    Roč. 53, č. 3 (2014), s. 496-512 ISSN 0022-2348 R&D Projects: GA TA ČR TE01020118 Institutional support: RVO:61389013 Keywords : carbon nanotubes * dielectric relaxation spectroscopy * dynamic mechanical analysis Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.740, year: 2014

  19. Atomistic modeling of mechanical properties of polycrystalline graphene.

    Science.gov (United States)

    Mortazavi, Bohayra; Cuniberti, Gianaurelio

    2014-05-30

    We performed molecular dynamics (MD) simulations to investigate the mechanical properties of polycrystalline graphene. By constructing molecular models of ultra-fine-grained graphene structures, we studied the effect of different grain sizes of 1-10 nm on the mechanical response of graphene. We found that the elastic modulus and tensile strength of polycrystalline graphene decrease with decreasing grain size. The calculated mechanical proprieties for pristine and polycrystalline graphene sheets are found to be in agreement with experimental results in the literature. Our MD results suggest that the ultra-fine-grained graphene structures can show ultrahigh tensile strength and elastic modulus values that are very close to those of pristine graphene sheets.

  20. Structural, dynamical, and electronic properties of amorphous silicon: An ab initio molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Car, R.; Parrinello, M.

    1988-01-18

    An amorphous silicon structure is obtained with a computer simulation based on a new molecular-dynamics technique in which the interatomic potential is derived from a parameter-free quantum mechanical method. Our results for the atomic structure, the phonon spectrum, and the electronic properties are in excellent agreement with experiment. In addition we study details of the microscopic dynamics which are not directly accessible to experiment. We find in particular that structural defects are associated with weak bonds. These may give rise to low-frequency vibrational modes.

  1. Unique microstructure and excellent mechanical properties of ADI

    Directory of Open Access Journals (Sweden)

    Jincheng Liu

    2006-11-01

    Full Text Available Amongst the cast iron family, ADI has a unique microstructure and an excellent, optimised combination of mechanical properties. The main microstructure of ADI is ausferrite, which is a mixture ofextremely fine acicular ferrite and stable, high carbon austenite. There are two types of austenite in ADI:(1 the coarser and more equiaxed blocks of austenite between non-parallel acicular structures, which exist mainly in the last solidified area, and (2 the thin films of ustenite between the individual ferriteplatelets in the acicular structure. It is this unique microstructure, which gives ADI its excellent static and dynamic properties, and good low temperature impact toughness. The effect of microstructure on the mechanical properties is explained in more detail by examining the microstructure at the atomic scale. Considering the nanometer grain sizes, the unique microstructure, the excellent mechanical properties,good castability, (which enables near net shape components to be produced economically and in large volumes, and the fact that it can be 100% recycled, it is not overemphasized to call ADI a high-tech,nanometer and “green” material. ADI still has the potential to be further improved and its production and the number of applications for ADI will continue to grow, driven by the resultant cost savings over alternative materials.

  2. Active Polymers — Emergent Conformational and Dynamical Properties: A Brief Review

    Science.gov (United States)

    Winkler, Roland G.; Elgeti, Jens; Gompper, Gerhard

    2017-10-01

    Active matter exhibits a wealth of emerging nonequilibrium behaviours. A paradigmatic example is the interior of cells, where active components, such as the cytoskeleton, are responsible for its structural organization and the dynamics of the various components. Of particular interest are the properties of polymers and filaments. The intimate coupling of thermal and active noise, hydrodynamic interactions, and polymer conformations implies the emergence of novel structural and dynamical features. In this article, we review recent theoretical and simulation developments and results for the structural and dynamical properties of polymers exposed to activity. Two- and three-dimensional filaments are considered propelled by different mechanisms such as active Brownian particles or hydrodynamically-coupled force dipoles.

  3. The Independent and Shared Mechanisms of Intrinsic Brain Dynamics: Insights From Bistable Perception

    Directory of Open Access Journals (Sweden)

    Teng Cao

    2018-04-01

    Full Text Available In bistable perception, constant input leads to alternating perception. The dynamics of the changing perception reflects the intrinsic dynamic properties of the “unconscious inferential” process in the brain. Under the same condition, individuals differ in how fast they experience the perceptual alternation. In this study, testing many forms of bistable perception in a large number of observers, we investigated the key question of whether there is a general and common mechanism or multiple and independent mechanisms that control the dynamics of the inferential brain. Bistable phenomena tested include binocular rivalry, vase-face, Necker cube, moving plaid, motion induced blindness, biological motion, spinning dancer, rotating cylinder, Lissajous-figure, rolling wheel, and translating diamond. Switching dynamics for each bistable percept was measured in 100 observers. Results show that the switching rates of subsets of bistable percept are highly correlated. The clustering of dynamic properties of some bistable phenomena but not an overall general control of switching dynamics implies that the brain’s inferential processes are both shared and independent – faster in constructing 3D structure from motion does not mean faster in integrating components into an objects.

  4. Tunable dynamic response of magnetic gels: Impact of structural properties and magnetic fields

    Science.gov (United States)

    Tarama, Mitsusuke; Cremer, Peet; Borin, Dmitry Y.; Odenbach, Stefan; Löwen, Hartmut; Menzel, Andreas M.

    2014-10-01

    Ferrogels and magnetic elastomers feature mechanical properties that can be reversibly tuned from outside through magnetic fields. Here we concentrate on the question of how their dynamic response can be adjusted. The influence of three factors on the dynamic behavior is demonstrated using appropriate minimal models: first, the orientational memory imprinted into one class of the materials during their synthesis; second, the structural arrangement of the magnetic particles in the materials; and third, the strength of an external magnetic field. To illustrate the latter point, structural data are extracted from a real experimental sample and analyzed. Understanding how internal structural properties and external influences impact the dominant dynamical properties helps to design materials that optimize the requested behavior.

  5. Effects of humidity on the mechanical properties of gecko setae.

    Science.gov (United States)

    Prowse, Michael S; Wilkinson, Matt; Puthoff, Jonathan B; Mayer, George; Autumn, Kellar

    2011-02-01

    We tested the hypothesis that an increase in relative humidity (RH) causes changes in the mechanical properties of the keratin of adhesive gecko foot hairs (setae). We measured the effect of RH on the tensile deformation properties, fracture, and dynamic mechanical response of single isolated tokay gecko setae and strips of the smooth lamellar epidermal layer. The mechanical properties of gecko setae were strongly affected by RH. The complex elastic modulus (measured at 5 Hz) of a single seta at 80% RH was 1.2 GPa, only 39% of the value when dry. An increase in RH reduced the stiffness and increased the strain to failure. The loss tangent increased significantly with humidity, suggesting that water absorption produces a transition to a more viscous type of deformation. The influence of RH on the properties of the smooth epidermal layer was comparable with that of isolated seta, with the exception of stress at rupture. These values were two to four times greater for the setae than for the smooth layer. The changes in mechanical properties of setal keratin were consistent with previously reported increases in contact forces, supporting the hypothesis that an increase in RH softens setal keratin, which increases adhesion and friction. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  6. Study of the Mechanical Properties and Vibration Isolation Performance of a Molecular Spring Isolator

    Directory of Open Access Journals (Sweden)

    Muchun Yu

    2016-01-01

    Full Text Available Molecular Spring Isolator (MSI is a novel passive vibration isolation technique, providing High-Static-Low-Dynamic (HSLD stiffness based on the use of molecular spring material. The molecular spring material is a solid-liquid mixture consisting of water and hydrophobic nanoporous materials. Under a certain level of external pressure, water molecules can intrude into the hydrophobic pores of nanoporous materials, developing an additional solid-liquid interface. Such interfaces are able to store, release, and transform mechanical energy, providing properties like mechanical spring. Having been only recently developed, the basic mechanic properties of a MSI have not been studied in depth. This paper focuses on the stiffness influence factors, the dynamic frequency response, and the vibration isolation performance of a MSI; these properties help engineers to design MSIs for different engineering applications. First, the working mechanism of a MSI is introduced from a three-dimensional general view of the water infiltration massive hydrophobic nanoporous pores. Next, a wide range of influence factors on the stiffness properties of MSI are studied. In addition, the frequency response functions (FRFs of the MSI vibration isolation system are studied utilizing the matching method based on equivalent piecewise linear (EPL system. Finally, the vibration isolation properties of MSI are evaluated by force transmissibility.

  7. Correlation between the mechanical and histological properties of liver tissue.

    Science.gov (United States)

    Yarpuzlu, Berkay; Ayyildiz, Mehmet; Tok, Olgu Enis; Aktas, Ranan Gulhan; Basdogan, Cagatay

    2014-01-01

    In order to gain further insight into the mechanisms of tissue damage during the progression of liver diseases as well as the liver preservation for transplantation, an improved understanding of the relation between the mechanical and histological properties of liver is necessary. We suggest that this relation can only be established truly if the changes in the states of those properties are investigated dynamically as a function of post mortem time. In this regard, we first perform mechanical characterization experiments on three bovine livers to investigate the changes in gross mechanical properties (stiffness, viscosity, and fracture toughness) for the preservation periods of 5, 11, 17, 29, 41 and 53h after harvesting. Then, the histological examination is performed on the samples taken from the same livers to investigate the changes in apoptotic cell count, collagen accumulation, sinusoidal dilatation, and glycogen deposition as a function of the same preservation periods. Finally, the correlation between the mechanical and histological properties is investigated via the Spearman's Rank-Order Correlation method. The results of our study show that stiffness, viscosity, and fracture toughness of bovine liver increase as the preservation period is increased. These macroscopic changes are very strongly correlated with the increase in collagen accumulation and decrease in deposited glycogen level at the microscopic level. Also, we observe that the largest changes in mechanical and histological properties occur after the first 11-17h of preservation. © 2013 Elsevier Ltd. All rights reserved.

  8. Atomistic modeling of mechanical properties of polycrystalline graphene

    International Nuclear Information System (INIS)

    Mortazavi, Bohayra; Cuniberti, Gianaurelio

    2014-01-01

    We performed molecular dynamics (MD) simulations to investigate the mechanical properties of polycrystalline graphene. By constructing molecular models of ultra-fine-grained graphene structures, we studied the effect of different grain sizes of 1–10 nm on the mechanical response of graphene. We found that the elastic modulus and tensile strength of polycrystalline graphene decrease with decreasing grain size. The calculated mechanical proprieties for pristine and polycrystalline graphene sheets are found to be in agreement with experimental results in the literature. Our MD results suggest that the ultra-fine-grained graphene structures can show ultrahigh tensile strength and elastic modulus values that are very close to those of pristine graphene sheets. (papers)

  9. Validation of a laboratory method for evaluating dynamic properties of reconstructed equine racetrack surfaces.

    Directory of Open Access Journals (Sweden)

    Jacob J Setterbo

    Full Text Available Racetrack surface is a risk factor for racehorse injuries and fatalities. Current research indicates that race surface mechanical properties may be influenced by material composition, moisture content, temperature, and maintenance. Race surface mechanical testing in a controlled laboratory setting would allow for objective evaluation of dynamic properties of surface and factors that affect surface behavior.To develop a method for reconstruction of race surfaces in the laboratory and validate the method by comparison with racetrack measurements of dynamic surface properties.Track-testing device (TTD impact tests were conducted to simulate equine hoof impact on dirt and synthetic race surfaces; tests were performed both in situ (racetrack and using laboratory reconstructions of harvested surface materials. Clegg Hammer in situ measurements were used to guide surface reconstruction in the laboratory. Dynamic surface properties were compared between in situ and laboratory settings. Relationships between racetrack TTD and Clegg Hammer measurements were analyzed using stepwise multiple linear regression.Most dynamic surface property setting differences (racetrack-laboratory were small relative to surface material type differences (dirt-synthetic. Clegg Hammer measurements were more strongly correlated with TTD measurements on the synthetic surface than the dirt surface. On the dirt surface, Clegg Hammer decelerations were negatively correlated with TTD forces.Laboratory reconstruction of racetrack surfaces guided by Clegg Hammer measurements yielded TTD impact measurements similar to in situ values. The negative correlation between TTD and Clegg Hammer measurements confirms the importance of instrument mass when drawing conclusions from testing results. Lighter impact devices may be less appropriate for assessing dynamic surface properties compared to testing equipment designed to simulate hoof impact (TTD.Dynamic impact properties of race surfaces

  10. Mechanical properties and failure behaviour of graphene/silicene/graphene heterostructures

    International Nuclear Information System (INIS)

    Chung, Jing-Yang; Sorkin, Viacheslav; Pei, Qing-Xiang; Zhang, Yong-Wei; Chiu, Cheng-Hsin

    2017-01-01

    Van der Waals heterostructures based on graphene and other 2D materials have attracted great attention recently. In this study, the mechanical properties and failure behaviour of a graphene/silicene/graphene heterostructure are investigated using molecular dynamics simulations. We find that by sandwiching silicene in-between two graphene layers, both ultimate tensile strength and Young’s modulus of the heterostructure increase approximately by a factor of 10 compared with those of stand-alone silicene. By examining the fracture process of the heterostructure, we find that graphene and silicene exhibit quite different fracture behaviour. While graphene undergoes cleavage through its zigzag edge only, silicene can cleave through both its zigzag and armchair edges. In addition, we study the effects of temperature and strain rate on the mechanical properties of the heterostructure and find that an increase in temperature results in a decrease in its mechanical strength and stiffness, while an increase in strain rate leads to an increase in its mechanical strength without significant changes in its stiffness. We further explore the failure mechanism and show that the temperature and strain-rate dependent fracture stress can be accurately described by the kinetic theory of fracture. Our findings provide a deep insight into the mechanical properties and failure mechanism of graphene/silicene heterostructures. (paper)

  11. Dynamical mechanisms for sensitive response of aperiodic firing cells to external stimulation

    International Nuclear Information System (INIS)

    Xie Yong; Xu Jianxue; Hu Sanjue; Kang Yanmei; Yang Hongjun; Duan Yubin

    2004-01-01

    An interesting phenomenon that aperiodic firing neurons have a higher sensitivity to drugs than periodic firing neurons have been reported for the chronically compressed dorsal root ganglion neurons in rats. In this study, the dynamical mechanisms for such a phenomenon are uncovered from the viewpoint of dynamical systems theory. We use the Rose-Hindmarsh neuron model to illustrate our opinions. Periodic orbit theory is introduced to characterize the dynamical behavior of aperiodic firing neurons. It is considered that bifurcations, crises and sensitive dependence of chaotic motions on control parameters can be the underlying mechanisms. And then, a similar analysis is applied to the modified Chay model describing the firing behavior of pancreatic beta cells. The same dynamical mechanisms can be obtained underlying that aperiodic firing cells are more sensitive to external stimulation than periodic firing ones. As a result, we conjecture that sensitive response of aperiodic firing cells to external stimulation is a universal property of excitable cells

  12. Damping capacity and dynamic mechanical characteristics of the plasma-sprayed coatings

    International Nuclear Information System (INIS)

    Yu Liming; Ma Yue; Zhou Chungen; Xu Huibin

    2005-01-01

    The damping properties and dynamic mechanical performance of NiCrAlY coating, FeCrMo ferromagnetic coating, AlCuFeCr quasicrystalline coating and nanostructured ZrO 2 ceramic coating, which were prepared by plasma-spray method, were investigated. The measuring results of the dynamic mechanical thermal analyzer (DMTA) and the flexural resonance testing method show that the damping capacity (Q -1 ) of the coated sample has a notable improvement compared to the substrate, while the dynamic modulus has a dramatic decrease. The resonance frequency of the coated cantilever beam structure shifted to high-frequency, and the resonance amplitude, especially high mode resonance, was dramatically attenuated. The internal friction peaks were observed in the Q -1 -temperature spectrogram and a normal amplitude effects were shown in the coated samples damping characteristics. The damping mechanism based on the interaction between substrate and coating layer, and the microstructure of the coated sample were also discussed in this paper

  13. The effects of topology on the structural, dynamic and mechanical properties of network-forming materials

    International Nuclear Information System (INIS)

    Wilson, Mark

    2012-01-01

    The effects of network topology on the static structural, mechanical and dynamic properties of MX 2 network-forming liquids (with tetrahedral short-range order) are discussed. The network topology is controlled via a single model parameter (the anion polarizability) which effectively constrains the inter-tetrahedral linkages in a physically transparent manner. Critically, it is found to control the balance between the stability of corner- and edge-sharing tetrahedra. A potential rigidity transformation is investigated. The vibrational density of states is investigated, using an instantaneous normal model analysis, as a function of both anion polarizability and temperature. A low frequency peak is seen to appear and is shown to be correlated with the fraction of cations which are linked through solely edge-sharing structural motifs. A modified effective mean atom coordination number is proposed which allows the appearance of the low frequency feature to be understood in terms of a mean field rigidity percolation threshold. (paper)

  14. Forcefields based molecular modeling on the mechanical and physical properties of emeraldine base polyaniline

    NARCIS (Netherlands)

    Chen, X.; Yuan, C.A.; Wong, K.Y.; Zhang, G.Q.

    2010-01-01

    Molecular dynamics (MD) and molecular mechanical (MM) analysis are carried out to provide reliable and accurate model for emeraldine base polyaniline. This study validate the forcefields and model with the physical and mechanical properties of the polyaniline. The temperature effects on non-bond

  15. Dynamics in microbial communities: Unraveling mechanisms to identify principles

    Energy Technology Data Exchange (ETDEWEB)

    Konopka, Allan; Lindemann, Stephen R.; Fredrickson, Jim K.

    2015-07-01

    Diversity begets higher order properties such as functional stability and robustness in microbial communities, but principles that inform conceptual (and eventually predictive) models of community dynamics are lacking. Recent work has shown that selection as well as dispersal and drift shape communities, but the mechanistic bases for assembly of communities and the forces that maintain their function in the face of environmental perturbation are not well understood. Conceptually, some interactions among community members could generate endogenous dynamics in composition, even in the absence of environmental changes. These endogenous dynamics are further perturbed by exogenous forcing factors to produce a richer network of community interactions, and it is this “system” that is the basis for higher order community properties. Elucidation of principles that follow from this conceptual model requires identifying the mechanisms that (a) optimize diversity within a community and (b) impart community stability. The network of interactions between organisms can be an important element by providing a buffer against disturbance beyond the effect of functional redundancy, as alternative pathways with different combinations of microbes can be recruited to fulfill specific functions.

  16. Effect of Printing Parameters on Tensile, Dynamic Mechanical, and Thermoelectric Properties of FDM 3D Printed CABS/ZnO Composites

    Directory of Open Access Journals (Sweden)

    Yah Yun Aw

    2018-03-01

    Full Text Available Fused deposition modelling (FDM has been widely used in medical appliances, automobile, aircraft and aerospace, household appliances, toys, and many other fields. The ease of processing, low cost and high flexibility of FDM technique are strong advantages compared to other techniques for thermoelectric polymer composite fabrication. This research work focuses on the effect of two crucial printing parameters (infill density and printing pattern on the tensile, dynamic mechanical, and thermoelectric properties of conductive acrylonitrile butadiene styrene/zinc oxide (CABS/ZnO composites fabricated by FDM technique. Results revealed significant improvement in tensile strength and Young’s modulus, with a decrease in elongation at break with infill density. Improvement in dynamic storage modulus was observed when infill density changed from 50% to 100%. However, the loss modulus and damping factor reduced gradually. The increase of thermal conductivity was relatively smaller compared to the improvement of electrical conductivity and Seebeck coefficient, therefore, the calculated figure of merit (ZT value increased with infill density. Line pattern performed better than rectilinear, especially in tensile properties and electrical conductivity. From the results obtained, FDM-fabricated CABS/ZnO showed much potential as a promising candidate for thermoelectric application.

  17. Effect of Printing Parameters on Tensile, Dynamic Mechanical, and Thermoelectric Properties of FDM 3D Printed CABS/ZnO Composites.

    Science.gov (United States)

    Aw, Yah Yun; Yeoh, Cheow Keat; Idris, Muhammad Asri; Teh, Pei Leng; Hamzah, Khairul Amali; Sazali, Shulizawati Aqzna

    2018-03-22

    Fused deposition modelling (FDM) has been widely used in medical appliances, automobile, aircraft and aerospace, household appliances, toys, and many other fields. The ease of processing, low cost and high flexibility of FDM technique are strong advantages compared to other techniques for thermoelectric polymer composite fabrication. This research work focuses on the effect of two crucial printing parameters (infill density and printing pattern) on the tensile, dynamic mechanical, and thermoelectric properties of conductive acrylonitrile butadiene styrene/zinc oxide (CABS/ZnO composites fabricated by FDM technique. Results revealed significant improvement in tensile strength and Young's modulus, with a decrease in elongation at break with infill density. Improvement in dynamic storage modulus was observed when infill density changed from 50% to 100%. However, the loss modulus and damping factor reduced gradually. The increase of thermal conductivity was relatively smaller compared to the improvement of electrical conductivity and Seebeck coefficient, therefore, the calculated figure of merit (ZT) value increased with infill density. Line pattern performed better than rectilinear, especially in tensile properties and electrical conductivity. From the results obtained, FDM-fabricated CABS/ZnO showed much potential as a promising candidate for thermoelectric application .

  18. Dynamic behavior of the mechanical systems from the structure of a hybrid automobile

    Science.gov (United States)

    Dinel, Popa; Irina, Tudor; Nicolae-Doru, Stănescu

    2017-10-01

    In introduction are presented solutions of planetary mechanisms that can be used in the construction of the hybrid automobiles where the thermal and electrical sources must be coupled. The systems have in their composition a planetary mechanism with two degrees of mobility at which are coupled a thermal engine, two revertible electrical machines, a gear transmission with four gears and a differential mechanism which transmits the motion at the driving wheels. For the study of the dynamical behavior, with numerical results, one designs such mechanisms, models the elements with solids in AutoCAD, and obtains the mechanical properties of the elements. Further on, we present and solve the equations of motion of a hybrid automotive for which one knows the dynamical parameters.

  19. Mechanisms of dynamic deformation and dynamic failure in aluminum nitride

    International Nuclear Information System (INIS)

    Hu Guangli; Chen, C.Q.; Ramesh, K.T.; McCauley, J.W.

    2012-01-01

    Uniaxial quasi-static, uniaxial dynamic and confined dynamic compression experiments have been performed to characterize the failure and deformation mechanisms of a sintered polycrystalline aluminum nitride using a servohydraulic machine and a modified Kolsky bar. Scanning electron microscopy and transmission electron microscopy (TEM) are used to identify the fracture and deformation mechanisms under high rate and high pressure loading conditions. These results show that the fracture mechanisms are strong functions of confining stress and strain rate, with transgranular fracture becoming more common at high strain rates. Dynamic fracture mechanics and micromechanical models are used to analyze the observed fracture mechanisms. TEM characterization of fragments from the confined dynamic experiments shows that at higher pressures dislocation motion becomes a common dominant deformation mechanism in AlN. Prismatic slip is dominant, and pronounced microcrack–dislocation interactions are observed, suggesting that the dislocation plasticity affects the macroscopic fracture behavior in this material under high confining stresses.

  20. Size Effect of Defects on the Mechanical Properties of Graphene

    Science.gov (United States)

    Park, Youngho; Hyun, Sangil

    2018-03-01

    Graphene, a two-dimensional material, has been studied and utilized for its excellent material properties. In reality, achieving a pure single-crystalline structure in graphene is difficult, so usually graphene may have various types of defects in it. Vacancies, Stone-Wales defects, and grain boundaries can drastically change the material properties of graphene. Graphene with vacancy defects has been of interest because it is a two-dimensional analogy of three-dimensional porous materials. It has efficient material properties, and can function as a part of modern devices. The mechanical properties have been studied by using molecular dynamics for either a single vacancy defect with various sizes or multiple vacancy defects with same defect ratios. However, it is not clear which one has more influence on the mechanical properties between the size of the defects and the defect ratio. Therefore, we investigated the hole-size effect on the mechanical properties of single-crystalline graphene at various defect ratios. A void defect with large size can have a rather high tensile modulus with a low fracture strain compared to a void defect with small size. We numerically found that the tensile properties of scattered single vacancies is similar to that of amorphous graphene. We suspect that this is due to the local orbital change of the carbon atoms near the boundary of the void defects, so-called the interfacial phase.

  1. Microstructure and mechanical properties of precipitation hardened aluminum under high rate deformation

    International Nuclear Information System (INIS)

    Grady, D.E.; Asav, J.R.; Rohde, R.W.; Wise, J.L.

    1983-01-01

    This chapter attempts to correlate the shock compression and quasistatic deformation of 6061-T6 aluminium. Examines recovered specimens which have been shock loaded, and compares results with both static and dynamic mechanical property measurements. Discusses experimental procedures (reshock and unloading experiments, shock recovery techniques, metallographic techniques and coldwork experiments); dynamic strength and wave-profile properties (strength and shear-stress states on the Hugoniot, steady-wave risetime and viscosity); quasistatic and shock metallography studies (metallography of quasistatically deformed material; metallography of shock deformed specimens; comparison of static and shock deformation; correlation of hardness and dynamic strength measurements); and thermal trapping calculations in shocked aluminium (heterogeneous deformation and adiabatic heating in shock-wave loading; energy and risetime relations under steadywave shock compression; heterogeneous temperature calculations in aluminium). Concludes that heterogeneous shear deformation appears to play a role in the dynamic deformation process

  2. Nanocomposite of photocurable epoxy-acrylate resin and carbon nanotubes: dynamic-mechanical, thermal and tribological properties

    Directory of Open Access Journals (Sweden)

    Marcos Nunes dos Santos

    2013-04-01

    Full Text Available In this study, the thermal, dynamic-mechanical and tribological behavior of nanocomposites of a photocurable epoxy-acrylate resin and multiwalled carbon nanotubes (MWCNT are investigated. A route consisting of a combination of sonication, mechanical and magnetic stirring is used to disperse 0.25-0.75 wt. (% MWCNT into the resin. Two photocuring cycles using 12 hours and 24 hours of UV-A radiation are studied. The storage modulus, the loss modulus and the tan delta are obtained by dynamic mechanical analysis. Thermal stability is investigated by thermogravimetry, morphology by transmission electronic microscopy (TEM and tribological performance using a pin-on-disk apparatus. The results indicate an increase in stiffness and higher ability to dissipate energy, as well as a shift in the glass transition temperature for the nanocomposites. The addition of nanofillers also decreased friction coefficient and wear rate of the nanocomposites but did not change the observed wear mechanisms.

  3. Nanocomposite of photocurable epoxy-acrylate resin and carbon nanotubes: dynamic-mechanical, thermal and tribological properties

    Directory of Open Access Journals (Sweden)

    Marcos Nunes dos Santos

    2012-01-01

    Full Text Available In this study, the thermal, dynamic-mechanical and tribological behavior of nanocomposites of a photocurable epoxy-acrylate resin and multiwalled carbon nanotubes (MWCNT are investigated. A route consisting of a combination of sonication, mechanical and magnetic stirring is used to disperse 0.25-0.75 wt. (% MWCNT into the resin. Two photocuring cycles using 12 hours and 24 hours of UV-A radiation are studied. The storage modulus, the loss modulus and the tan delta are obtained by dynamic mechanical analysis. Thermal stability is investigated by thermogravimetry, morphology by transmission electronic microscopy (TEM and tribological performance using a pin-on-disk apparatus. The results indicate an increase in stiffness and higher ability to dissipate energy, as well as a shift in the glass transition temperature for the nanocomposites. The addition of nanofillers also decreased friction coefficient and wear rate of the nanocomposites but did not change the observed wear mechanisms.

  4. Phase Morphology and Mechanical Properties of Cyclic Butylene Terephthalate Oligomer-Containing Rubbers: Effect of Mixing Temperature

    OpenAIRE

    Hal?sz, Istv?n Zolt?n; B?r?ny, Tam?s

    2016-01-01

    In this work, the effect of mixing temperature (Tmix) on the mechanical, rheological, and morphological properties of rubber/cyclic butylene terephthalate (CBT) oligomer compounds was studied. Apolar (styrene butadiene rubber, SBR) and polar (acrylonitrile butadiene rubber, NBR) rubbers were modified by CBT (20 phr) for reinforcement and viscosity reduction. The mechanical properties were determined in tensile, tear, and dynamical mechanical analysis (DMTA) tests. The CBT-caused viscosity cha...

  5. Dynamic mechanical analysis of single walled carbon nanotubes/polymethyl methacrylate nanocomposite films

    International Nuclear Information System (INIS)

    Badawi, Ali; Al Hosiny, N.

    2015-01-01

    Dynamic mechanical properties of nanocomposite films with different ratios of single walled carbon nanotubes/polymethyl methacrylate (SWCNTs/PMMA) are studied. Nanocomposite films of different ratios (0, 0.5, 1.0, and 2.0 weight percent (wt%)) of SWCNTs/PMMA are fabricated by using a casting technique. The morphological and structural properties of both SWCNT powder and SWCNTs/PMMA nanocomposite films are investigated by using a high resolution transmission electron microscope and x-ray diffractometer respectively. The mechanical properties including the storage modulus, loss modulus, loss factor (tan δ) and stiffness of the nanocomposite film as a function of temperature are recorded by using a dynamic mechanical analyzer at a frequency of 1 Hz. Compared with pure PMMA film, the nanocomposite films with different ratios of SWCNTs/PMMA are observed to have enhanced storage moduli, loss moduli and high stiffness, each of which is a function of temperature. The intensity of the tan δ peak for pure PMMA film is larger than those of the nanocomposite films. The glass transition temperature (T g ) of SWCNTs/PMMA nanocomposite film shifts towards the higher temperature side with respect to pure PMMA film from 91.2 °C to 99.5 °C as the ratio of SWCNTs/PMMA increases from 0 to 2.0 wt%. (paper)

  6. Influence of Thermo-Oxidative Ageing on the Thermal and Dynamical Mechanical Properties of Long Glass Fibre-Reinforced Poly(Butylene Terephthalate) Composites Filled with DOPO.

    Science.gov (United States)

    Zhang, Daohai; He, Min; He, Weidi; Zhou, Ying; Qin, Shuhao; Yu, Jie

    2017-05-04

    In this work, the long glass fibre-reinforced poly(butylene terephthalate) (PBT) composites filled with 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) were prepared by melt blending, and the influence of thermo-oxidative ageing on the static and dynamic mechanical properties, thermal behaviours and morphology of composites with different ageing time at 120 °C were investigated and analysed. The results showed that the mechanical properties decreased in the primary stage of ageing, while embrittlement occurs in the later period, and the crystallinity of PBT decreases first, and then recovers to some extent. The scanning electron microscopy (SEM) photos of the samples indicated that the obvious crack appeared on the sample surface and a deeper, broader crack occurred with a longer ageing time. The results of energy dispersive X-ray analysis (EDAX) proved the DOPO filler diffused to the sample surface by measuring the content of phosphorus. Thermal gravimetric analysis (TGA) curves showed that the thermal stabilities of composites increased with longer ageing time, as did the values of the limited oxygen index (LOI). Meanwhile, the results of dynamic mechanical analysis (DMA) indicated that the glass transition temperature shifted to a higher temperature after ageing due to the effect of crosslinking, and both the crosslinking and degradation of PBT molecular chains act as the main factors in the whole process of thermo-oxidative ageing.

  7. Influence of increasing amount of recycled concrete powder on mechanical properties of cement paste

    Science.gov (United States)

    Topič, Jaroslav; Prošek, Zdeněk; Plachý, Tomáš

    2017-09-01

    This paper deals with using fine recycled concrete powder in cement composites as micro-filler and partial cement replacement. Binder properties of recycled concrete powder are given by exposed non-hydrated cement grains, which can hydrate again and in small amount replace cement or improve some mechanical properties. Concrete powder used in the experiments was obtained from old railway sleepers. Infrastructure offer more sources of old concrete and they can be recycled directly on building site and used again. Experimental part of this paper focuses on influence of increasing amount of concrete powder on mechanical properties of cement paste. Bulk density, shrinkage, dynamic Young’s modulus, compression and flexural strength are observed during research. This will help to determine limiting amount of concrete powder when decrease of mechanical properties outweighs the benefits of cement replacement. The shrinkage, dynamic Young’s modulus and flexural strength of samples with 20 to 30 wt. % of concrete powder are comparable with reference cement paste or even better. Negative effect of concrete powder mainly influenced the compression strength. Only a 10 % cement replacement reduced compression strength by about 25 % and further decrease was almost linear.

  8. Microstructure and mechanical property of dual-directional-extruded Mg alloy AZ31

    International Nuclear Information System (INIS)

    Lu Liwei; Liu Tianmo; Jiang Shan; Pan Fushen; Liu Qing; Wang Zhongchang

    2010-01-01

    We report microstructure evolution and mechanical property of Mg alloy AZ31 processed by a new deformation technique, dual-directional extrusion (DDE). Using optical microscopy, scanning electron microscopy, and electron back scatter diffraction technique, we attribute the significant refinement of original coarse grains in the DDE-processed alloy to the occurrence of dynamic recrystallization. Moreover, we find that low temperature is crucial for yielding fine grain, which consequently results in high micro-hardness and yield stress, large fracture strain, and enhanced elongation. The improved mechanical properties are comparable or even superior to those of the alloy subjected to other deformation techniques, rendering the DDE a promising way for further tailoring properties of Mg-based alloys.

  9. Mechanical properties of MEMS materials: reliability investigations by mechanical- and HRXRD-characterization related to environmental testing

    Science.gov (United States)

    Bandi, T.; Shea, H.; Neels, A.

    2014-06-01

    The performance and aging of MEMS often rely on the stability of the mechanical properties over time and under harsh conditions. An overview is given on methods to investigate small variations of the mechanical properties of structural MEMS materials by functional characterization, high-resolution x-ray diffraction methods (HR-XRD) and environmental testing. The measurement of the dynamical properties of micro-resonators is a powerful method for the investigation of elasticity variations in structures relevant to microtechnology. X-ray diffraction techniques are used to analyze residual strains and deformations with high accuracy and in a non-destructive manner at surfaces and in buried micro-structures. The influence of elevated temperatures and radiation damage on the performance of resonant microstructures with a focus on quartz and single crystal silicon is discussed and illustrated with examples including work done in our laboratories at CSEM and EPFL.

  10. Mechanical and thermal properties of irradiated films based on Tilapia (Oreochromis niloticus) proteins

    Energy Technology Data Exchange (ETDEWEB)

    Sabato, S.F. [Radiation Technology Center, IPEN-CNEN/SP, Av. Lineu Prestes 2242, 05508 900 Sao Paulo, SP (Brazil)], E-mail: sfsabato@ipen.br; Nakamurakare, N.; Sobral, P.J.A. [Food Engineering Department, ZEA/FZEA/USP, Av. Duque de Caxias Norte 225, 13635 900 Pirassununga, SP (Brazil)

    2007-11-15

    Proteins are considered potential material in natural films as alternative to traditional packaging. When gamma radiation is applied to protein film forming solution it resulted in an improvement in mechanical properties of whey protein films. The objective of this work was the characterization of mechanical and thermal properties of irradiated films based on muscle proteins from Nile Tilapia (Oreochromis niloticus). The films were prepared according to a casting technique with two levels of plasticizer: 25% and 45% glycerol and irradiated in electron accelerator type Radiation Dynamics, 0.550 MeV at dose range from 0 to 200 kGy. Thermal properties and mechanical properties were determined using a differential scanning calorimeter and a texture analyzer, respectively. Radiation from electron beam caused a slightly increase on its tensile strength characteristic at 100 kGy, while elongation value at this dose had no reduction.

  11. Mechanical and thermal properties of irradiated films based on Tilapia (Oreochromis niloticus) proteins

    International Nuclear Information System (INIS)

    Sabato, S.F.; Nakamurakare, N.; Sobral, P.J.A.

    2007-01-01

    Proteins are considered potential material in natural films as alternative to traditional packaging. When gamma radiation is applied to protein film forming solution it resulted in an improvement in mechanical properties of whey protein films. The objective of this work was the characterization of mechanical and thermal properties of irradiated films based on muscle proteins from Nile Tilapia (Oreochromis niloticus). The films were prepared according to a casting technique with two levels of plasticizer: 25% and 45% glycerol and irradiated in electron accelerator type Radiation Dynamics, 0.550 MeV at dose range from 0 to 200 kGy. Thermal properties and mechanical properties were determined using a differential scanning calorimeter and a texture analyzer, respectively. Radiation from electron beam caused a slightly increase on its tensile strength characteristic at 100 kGy, while elongation value at this dose had no reduction

  12. Investigation of deformation mechanisms of staggered nanocomposites using molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Mathiazhagan, S., E-mail: smathi.research@gmail.com; Anup, S., E-mail: anupiist@gmail.com

    2016-08-19

    Biological materials with nanostructure of regularly or stair-wise staggered arrangements of hard platelets reinforced in a soft protein matrix have superior mechanical properties. Applications of these nanostructures to ceramic matrix composites could enhance their toughness. Using molecular dynamics simulations, mechanical behaviour of the bio-inspired nanocomposites is studied. Regularly staggered model shows better flow behaviour compared to stair-wise staggered model due to the symmetrical crack propagation along the interface. Though higher stiffness and strength are obtained for stair-wise staggered models, rapid crack propagation reduces the toughness. Arresting this crack propagation could lead to superior mechanical properties in stair-wise staggered models. - Highlights: • The deformation behaviour of staggered nanocomposites is studied. • Stair-wise staggered model has high stiffness and strength, but low toughness. • Rapid crack growth in overlap region causes this low toughness. • Toughness could be enhanced by arresting interfacial crack in the overlap.

  13. Investigation of deformation mechanisms of staggered nanocomposites using molecular dynamics

    International Nuclear Information System (INIS)

    Mathiazhagan, S.; Anup, S.

    2016-01-01

    Biological materials with nanostructure of regularly or stair-wise staggered arrangements of hard platelets reinforced in a soft protein matrix have superior mechanical properties. Applications of these nanostructures to ceramic matrix composites could enhance their toughness. Using molecular dynamics simulations, mechanical behaviour of the bio-inspired nanocomposites is studied. Regularly staggered model shows better flow behaviour compared to stair-wise staggered model due to the symmetrical crack propagation along the interface. Though higher stiffness and strength are obtained for stair-wise staggered models, rapid crack propagation reduces the toughness. Arresting this crack propagation could lead to superior mechanical properties in stair-wise staggered models. - Highlights: • The deformation behaviour of staggered nanocomposites is studied. • Stair-wise staggered model has high stiffness and strength, but low toughness. • Rapid crack growth in overlap region causes this low toughness. • Toughness could be enhanced by arresting interfacial crack in the overlap.

  14. Chemical dynamics in the gas phase: Time-dependent quantum mechanics of chemical reactions

    Energy Technology Data Exchange (ETDEWEB)

    Gray, S.K. [Argonne National Laboratory, IL (United States)

    1993-12-01

    A major goal of this research is to obtain an understanding of the molecular reaction dynamics of three and four atom chemical reactions using numerically accurate quantum dynamics. This work involves: (i) the development and/or improvement of accurate quantum mechanical methods for the calculation and analysis of the properties of chemical reactions (e.g., rate constants and product distributions), and (ii) the determination of accurate dynamical results for selected chemical systems, which allow one to compare directly with experiment, determine the reliability of the underlying potential energy surfaces, and test the validity of approximate theories. This research emphasizes the use of recently developed time-dependent quantum mechanical methods, i.e. wave packet methods.

  15. Dynamical systems in classical mechanics

    CERN Document Server

    Kozlov, V V

    1995-01-01

    This book shows that the phenomenon of integrability is related not only to Hamiltonian systems, but also to a wider variety of systems having invariant measures that often arise in nonholonomic mechanics. Each paper presents unique ideas and original approaches to various mathematical problems related to integrability, stability, and chaos in classical dynamics. Topics include… the inverse Lyapunov theorem on stability of equilibria geometrical aspects of Hamiltonian mechanics from a hydrodynamic perspective current unsolved problems in the dynamical systems approach to classical mechanics

  16. Modified Continuum Mechanics Modeling on Size-Dependent Properties of Piezoelectric Nanomaterials: A Review

    Directory of Open Access Journals (Sweden)

    Zhi Yan

    2017-01-01

    Full Text Available Piezoelectric nanomaterials (PNs are attractive for applications including sensing, actuating, energy harvesting, among others in nano-electro-mechanical-systems (NEMS because of their excellent electromechanical coupling, mechanical and physical properties. However, the properties of PNs do not coincide with their bulk counterparts and depend on the particular size. A large amount of efforts have been devoted to studying the size-dependent properties of PNs by using experimental characterization, atomistic simulation and continuum mechanics modeling with the consideration of the scale features of the nanomaterials. This paper reviews the recent progresses and achievements in the research on the continuum mechanics modeling of the size-dependent mechanical and physical properties of PNs. We start from the fundamentals of the modified continuum mechanics models for PNs, including the theories of surface piezoelectricity, flexoelectricity and non-local piezoelectricity, with the introduction of the modified piezoelectric beam and plate models particularly for nanostructured piezoelectric materials with certain configurations. Then, we give a review on the investigation of the size-dependent properties of PNs by using the modified continuum mechanics models, such as the electromechanical coupling, bending, vibration, buckling, wave propagation and dynamic characteristics. Finally, analytical modeling and analysis of nanoscale actuators and energy harvesters based on piezoelectric nanostructures are presented.

  17. Modified Continuum Mechanics Modeling on Size-Dependent Properties of Piezoelectric Nanomaterials: A Review.

    Science.gov (United States)

    Yan, Zhi; Jiang, Liying

    2017-01-26

    Piezoelectric nanomaterials (PNs) are attractive for applications including sensing, actuating, energy harvesting, among others in nano-electro-mechanical-systems (NEMS) because of their excellent electromechanical coupling, mechanical and physical properties. However, the properties of PNs do not coincide with their bulk counterparts and depend on the particular size. A large amount of efforts have been devoted to studying the size-dependent properties of PNs by using experimental characterization, atomistic simulation and continuum mechanics modeling with the consideration of the scale features of the nanomaterials. This paper reviews the recent progresses and achievements in the research on the continuum mechanics modeling of the size-dependent mechanical and physical properties of PNs. We start from the fundamentals of the modified continuum mechanics models for PNs, including the theories of surface piezoelectricity, flexoelectricity and non-local piezoelectricity, with the introduction of the modified piezoelectric beam and plate models particularly for nanostructured piezoelectric materials with certain configurations. Then, we give a review on the investigation of the size-dependent properties of PNs by using the modified continuum mechanics models, such as the electromechanical coupling, bending, vibration, buckling, wave propagation and dynamic characteristics. Finally, analytical modeling and analysis of nanoscale actuators and energy harvesters based on piezoelectric nanostructures are presented.

  18. Dynamic mechanical properties of polymer blends of polypropylene and poly(ethylene-co-vinyl acetate) irradiated with fast electrons

    International Nuclear Information System (INIS)

    Mihaylova, M.; Kresteva, M.; Perena, J; Phillips, P.

    2001-01-01

    Extruded blends of polypropylene and poly(ethylene-co-vinyl acetate) irradiated with fast electrons were studied. The dynamic mechanical properties were investigated with respects to the blend composition and irradiation dose. Two glass transition temperatures corresponding to the glass transitions of the pure components were observed. Their existence is an evidence of immiscibility of the components. Nevertheless, the peaks broadening, the single jump in the storage modulus values and the changes of T g with the blend ratio suggest the creation of an interface region, leading to the improvement of the compatibility of the components. The irradiation with fast electrons at doses higher than 100 KGy results in single T g transition because of the broadening of the interface layer. (authors)

  19. Dynamically Assisted Schwinger Mechanism

    International Nuclear Information System (INIS)

    Schuetzhold, Ralf; Gies, Holger; Dunne, Gerald

    2008-01-01

    We study electron-positron pair creation from the Dirac vacuum induced by a strong and slowly varying electric field (Schwinger effect) which is superimposed by a weak and rapidly changing electromagnetic field (dynamical pair creation). In the subcritical regime where both mechanisms separately are strongly suppressed, their combined impact yields a pair creation rate which is dramatically enhanced. Intuitively speaking, the strong electric field lowers the threshold for dynamical particle creation--or, alternatively, the fast electromagnetic field generates additional seeds for the Schwinger mechanism. These findings could be relevant for planned ultrahigh intensity lasers

  20. Effects of Inorganic Fillers on the Thermal and Mechanical Properties of Poly(lactic acid).

    Science.gov (United States)

    Liu, Xingxun; Wang, Tongxin; Chow, Laurence C; Yang, Mingshu; Mitchell, James W

    Addition of filler to polylactic acid (PLA) may affect its crystallization behavior and mechanical properties. The effects of talc and hydroxyapatite (HA) on the thermal and mechanical properties of two types of PLA (one amorphous and one semicrystalline) have been investigated. The composites were prepared by melt blending followed by injection molding. The molecular weight, morphology, mechanical properties, and thermal properties have been characterized by gel permeation chromatography (GPC), scanning electron microscope (SEM), instron tensile tester, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA). It was found that the melting blending led to homogeneous distribution of the inorganic filler within the PLA matrix but decreased the molecular weight of PLA. Regarding the filler, addition of talc increased the crystallinity of PLA, but HA decreased the crystallinity of PLA. The tensile strength of the composites depended on the crystallinity of PLA and the interfacial properties between PLA and the filler, but both talc and HA filler increased the toughness of PLA.

  1. Effects of Inorganic Fillers on the Thermal and Mechanical Properties of Poly(lactic acid

    Directory of Open Access Journals (Sweden)

    Xingxun Liu

    2014-01-01

    Full Text Available Addition of filler to polylactic acid (PLA may affect its crystallization behavior and mechanical properties. The effects of talc and hydroxyapatite (HA on the thermal and mechanical properties of two types of PLA (one amorphous and one semicrystalline have been investigated. The composites were prepared by melt blending followed by injection molding. The molecular weight, morphology, mechanical properties, and thermal properties have been characterized by gel permeation chromatography (GPC, scanning electron microscope (SEM, instron tensile tester, thermogravimetric analysis (TGA, differential scanning calorimetry (DSC, and dynamic mechanical analysis (DMA. It was found that the melting blending led to homogeneous distribution of the inorganic filler within the PLA matrix but decreased the molecular weight of PLA. Regarding the filler, addition of talc increased the crystallinity of PLA, but HA decreased the crystallinity of PLA. The tensile strength of the composites depended on the crystallinity of PLA and the interfacial properties between PLA and the filler, but both talc and HA filler increased the toughness of PLA.

  2. Hydrogen bond dynamics governs the effective photoprotection mechanism of plant phenolic sunscreens.

    Science.gov (United States)

    Liu, Fang; Du, Likai; Lan, Zhenggang; Gao, Jun

    2017-02-15

    Sinapic acid derivatives are important sunscreen species in natural plants, which could provide protection from solar UV radiation. Using a combination of ultrafast excited state dynamics, together with classical molecular dynamics studies, we demonstrate that there is direct coupling of hydrogen bond motion with excited state photoprotection dynamics as part of the basic mechanism in solution. Beyond the intra-molecular degree of freedom, the inter-molecular motions on all timescales are potentially important for the photochemical or photophysical events, ranging from the ultrafast hydrogen bond motion to solvent rearrangements. This provides not only an enhanced understanding of the anomalous experimental spectroscopic results, but also the key idea in the development of sunscreen agents with improved photo-chemical properties. We suggest that the hydrogen bond dynamics coupled excited state photoprotection mechanism may also be possible in a broad range of bio-related molecules in the condensed phase.

  3. Dynamic simulation of a beta-type Stirling engine with cam-drive mechanism via the combination of the thermodynamic and dynamic models

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Chin-Hsiang; Yu, Ying-Ju [Department of Aeronautics and Astronautics, National Cheng Kung University, No. 1, Ta-Shieh Road, Tainan, Taiwan (China)

    2011-02-15

    Dynamic simulation of a beta-type Stirling engine with cam-drive mechanism used in concentrating solar power system has been performed. A dynamic model of the mechanism is developed and then incorporated with the thermodynamic model so as to predict the transient behavior of the engine in the hot-start period. In this study, the engine is started from an initial rotational speed. The torques exerted by the flywheel of the engine at any time instant can be calculated by the dynamic model as long as the gas pressures in the chambers, the mass inertia, the friction force, and the external load have been evaluated. The instantaneous rotation speed of the engine is then determined by integration of the equation of rotational motion with respect to time, which in return affects the instantaneous variations in pressure and other thermodynamic properties of the gas inside the chambers. Therefore, the transient variations in gas properties inside the engine chambers and the dynamic behavior of the engine mechanism should be handled simultaneously via the coupling of the thermodynamic and dynamic models. An extensive parametric study of the effects of different operating and geometrical parameters has been performed, and results regarding the effects of mass moment of inertia of the flywheel, initial rotational speed, initial charged pressure, heat source temperature, phase angle, gap size, displacer length, and piston stroke on the engine transient behavior are investigated. (author)

  4. PDMS Network Structure-Property Relationships: Influence of Molecular Architecture on Mechanical and Wetting Properties

    Science.gov (United States)

    Melillo, Matthew Joseph

    Poly(dimethylsiloxane) (PDMS) is one of the most common elastomers, with applications ranging from sealants and marine-antifouling coatings to medical devices and absorbents for water treatment. Fundamental understanding of how liquids spread on the surface of and absorb into and leach out of PDMS networks is of critical importance for the design and use in another application - microfluidic devices. The growing use of PDMS in microfluidic devices raises the concern that some researchers may use this material without fully understanding all of its advantages, drawbacks, and intricacies. The primary goal of this Ph.D. dissertation is to elucidate PDMS network molecular structure to macroscopic property relationships and to demonstrate how molecular architecture can alter dynamic mechanical and wetting characteristics. We prepare PDMS materials by using vinyl/ tetrakis(dimethylsiloxy)silane (TDSS) and silanol/ tetraethylorthosilicate (TEOS) combinations of PDMS end-groups and crosslinkers as two model systems. Under constant curing conditions, we systematically study the effects of polymer molecular weight, loading of crosslinker, and end-group chemical functionality on the extent of gelation and the dynamic mechanical and water wetting properties of end-linked PDMS networks. The extent of the gelation reaction is determined using the Soxhlet extraction to quantify the amount of material that did and did not participate in the crosslinking reactions, termed the gel and sol fractions, respectively. We use the Miller-Macosko model in conjunction with the gel fraction and precise chemical composition (i.e., stoichiometric ratio and molecular weight) to determine the fractions of elastic and pendant material, the molecular weight between chemical crosslinks, and the average effective functionality of the crosslinker molecule. Based on dynamic mechanical testing, we find that the maximum storage moduli are achieved at optimal stoichiometric conditions in the vinyl

  5. Mechanical Properties of Graphene Nanoplatelet/Carbon Fiber/Epoxy Hybrid Composites: Multiscale Modeling and Experiments

    Science.gov (United States)

    Hadden, C. M.; Klimek-McDonald, D. R.; Pineda, E. J.; King, J. A.; Reichanadter, A. M.; Miskioglu, I.; Gowtham, S.; Odegard, G. M.

    2015-01-01

    Because of the relatively high specific mechanical properties of carbon fiber/epoxy composite materials, they are often used as structural components in aerospace applications. Graphene nanoplatelets (GNPs) can be added to the epoxy matrix to improve the overall mechanical properties of the composite. The resulting GNP/carbon fiber/epoxy hybrid composites have been studied using multiscale modeling to determine the influence of GNP volume fraction, epoxy crosslink density, and GNP dispersion on the mechanical performance. The hierarchical multiscale modeling approach developed herein includes Molecular Dynamics (MD) and micromechanical modeling, and it is validated with experimental testing of the same hybrid composite material system. The results indicate that the multiscale modeling approach is accurate and provides physical insight into the composite mechanical behavior. Also, the results quantify the substantial impact of GNP volume fraction and dispersion on the transverse mechanical properties of the hybrid composite, while the effect on the axial properties is shown to be insignificant.

  6. Mechanical Properties of Graphene Nanoplatelet Carbon Fiber Epoxy Hybrid Composites: Multiscale Modeling and Experiments

    Science.gov (United States)

    Hadden, Cameron M.; Klimek-McDonald, Danielle R.; Pineda, Evan J.; King, Julie A.; Reichanadter, Alex M.; Miskioglu, Ibrahim; Gowtham, S.; Odegard, Gregory M.

    2015-01-01

    Because of the relatively high specific mechanical properties of carbon fiber/epoxy composite materials, they are often used as structural components in aerospace applications. Graphene nanoplatelets (GNPs) can be added to the epoxy matrix to improve the overall mechanical properties of the composite. The resulting GNP/carbon fiber/epoxy hybrid composites have been studied using multiscale modeling to determine the influence of GNP volume fraction, epoxy crosslink density, and GNP dispersion on the mechanical performance. The hierarchical multiscale modeling approach developed herein includes Molecular Dynamics (MD) and micromechanical modeling, and it is validated with experimental testing of the same hybrid composite material system. The results indicate that the multiscale modeling approach is accurate and provides physical insight into the composite mechanical behavior. Also, the results quantify the substantial impact of GNP volume fraction and dispersion on the transverse mechanical properties of the hybrid composite, while the effect on the axial properties is shown to be insignificant.

  7. The mechanical properties, deformation and thermomechanical properties of alkali treated and untreated Agave continuous fibre reinforced epoxy composites

    International Nuclear Information System (INIS)

    Mylsamy, K.; Rajendran, I.

    2011-01-01

    Research highlights: → New renewable and biodegradable Agave americana fibre. → Environmentally free materials. → Good mechanical properties of Agave fibre reinforced epoxy composite materials. → Surface modification of the fibre (Alkali treatment) imported good mechanical properties. → Future scope in light weight materials manufacture. -- Abstract: The mechanical properties such as tensile, compressive, flexural, impact strength and water absorption of the alkali treated continuous Agave fibre reinforced epoxy composite (TCEC) and untreated continuous Agave fibre reinforced epoxy composite (UTCEC) were analysed. A comparison of the surfaces of TCEC and UTCEC composites was carried out by dynamic mechanical analysis (DMA), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The thermomechanical properties of the composite reinforced with sodium hydroxide (NaOH) treated Agave fibres were considerably good as the shrinkage of the fibre during alkali treatment had facilitated more points of fibre resin interface. The SEM micrograph and FTIR spectra of the impact fracture surfaces of TCEC clearly demonstrate the better interfacial adhesion between fibre and the matrix. In both analyses the TCEC gave good performance than UTCEC and, thus, there is a scope for its application in light weight manufacture in future.

  8. Effect of processing conditions on the mechanical and thermal properties of high-impact polypropylene nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Furlan, L G [Federal Institute of Rio Grande do Sul, IFRS, Campus Restinga, Estrada Joao Antonio da Silveira, 351, Porto Alegre 91790-400 (Brazil); Ferreira, C I; Dal Castel, C; Santos, K S; Mello, A C.E. [Chemistry Institute, Federal University of Rio Grande do Sul, UFRGS, Av. Bento Goncalves, 9500, Porto Alegre 91501-970 (Brazil); Liberman, S A; Oviedo, M A.S. [Braskem S.A., III Polo Petroquimico, Via Oeste, Lote 5, Triunfo 95853-000 (Brazil); Mauler, R.S., E-mail: mauler@iq.ufrgs.br [Chemistry Institute, Federal University of Rio Grande do Sul, UFRGS, Av. Bento Goncalves, 9500, Porto Alegre 91501-970 (Brazil)

    2011-08-25

    Highlights: {yields} Polypropylene montmorillonite (PP-MMT) produced at different processing conditions. {yields} Polypropylene Nanocomposites with higher increase on impact resistance. {yields} Higher enhancement on mechanical properties. - Abstract: Polypropylene montmorillonite (PP-MMT) nanocomposites have been prepared by using a co-rotating twin screw extruder. The effects of processing conditions at fixed clay content (5 wt%) on polymer properties were investigated by means of transmission electron microscopy (TEM), flexural modulus, izod impact, dynamic mechanical analysis (DMA), and differential scanning calorimetry (DSC). It was noticed that the morphology and the mechanical properties of polypropylene nanocomposites were affected by different screw shear configuration. The results showed that the higher enhancement on mechanical properties was obtained by medium shear intensity profile instead of high configuration. An exceptional increase (maximum of 282%) on impact resistance was observed.

  9. Effect of processing conditions on the mechanical and thermal properties of high-impact polypropylene nanocomposites

    International Nuclear Information System (INIS)

    Furlan, L.G.; Ferreira, C.I.; Dal Castel, C.; Santos, K.S.; Mello, A.C.E.; Liberman, S.A.; Oviedo, M.A.S.; Mauler, R.S.

    2011-01-01

    Highlights: → Polypropylene montmorillonite (PP-MMT) produced at different processing conditions. → Polypropylene Nanocomposites with higher increase on impact resistance. → Higher enhancement on mechanical properties. - Abstract: Polypropylene montmorillonite (PP-MMT) nanocomposites have been prepared by using a co-rotating twin screw extruder. The effects of processing conditions at fixed clay content (5 wt%) on polymer properties were investigated by means of transmission electron microscopy (TEM), flexural modulus, izod impact, dynamic mechanical analysis (DMA), and differential scanning calorimetry (DSC). It was noticed that the morphology and the mechanical properties of polypropylene nanocomposites were affected by different screw shear configuration. The results showed that the higher enhancement on mechanical properties was obtained by medium shear intensity profile instead of high configuration. An exceptional increase (maximum of 282%) on impact resistance was observed.

  10. Structure and dynamics of the uranyl tricarbonate complex in aqueous solution: insights from quantum mechanical charge field molecular dynamics.

    Science.gov (United States)

    Tirler, Andreas O; Hofer, Thomas S

    2014-11-13

    This investigation presents the characterization of structural and dynamical properties of uranyl tricarbonate in aqueous solution employing an extended hybrid quantum mechanical/molecular mechanical (QM/MM) approach. It is shown that the inclusion of explicit solvent molecules in the quantum chemical treatment is essential to mimic the complex interaction occurring in an aqueous environment. Thus, in contrast to gas phase cluster calculations on a quantum chemical level proposing a 6-fold coordination of the three carbonates, the QMCF MD simulation proposes a 5-fold coordination. An extensive comparison of the simulation results to structural and dynamical data available in the literature was found to be in excellent agreement. Furthermore, this work is the first theoretical study on a quantum chemical level of theory able to observe the conversion of carbonate (CO₃²⁻) to bicarbonate (HCO₃⁻) in the equatorial coordination sphere of the uranyl ion. From a comparison of the free energy ΔG values for the unprotonated educt [UO₂(CO₃)₃]⁴⁻ and the protonated [UO₂(CO₃)₂(HCO₃)]³⁻, it could be concluded that the reaction equilibrium is strongly shifted toward the product state confirming the benignity for the observed protonation reaction. Structural properties and the three-dimensional arrangement of carbonate ligands were analyzed via pair-, three-body, and angular distributions, the dynamical properties were evaluated by hydrogen-bond correlation functions and vibrational power spectra.

  11. Mechanical properties and fracture behavior of single-layer phosphorene at finite temperatures

    International Nuclear Information System (INIS)

    Sha, Zhen-Dong; Pei, Qing-Xiang; Ding, Zhiwei; Zhang, Yong-Wei; Jiang, Jin-Wu

    2015-01-01

    Phosphorene, a new two-dimensional (2D) material beyond graphene, has attracted great attention in recent years due to its superior physical and electrical properties. However, compared to graphene and other 2D materials, phosphorene has a relatively low Young’s modulus and fracture strength, which may limit its applications due to possible structure failures. For the mechanical reliability of future phosphorene-based nanodevices, it is necessary to have a deep understanding of the mechanical properties and fracture behaviors of phosphorene. Previous studies on the mechanical properties of phosphorene were based on first principles calculations at 0 K. In this work, we employ molecular dynamics simulations to explore the mechanical properties and fracture behaviors of phosphorene at finite temperatures. It is found that temperature has a significant effect on the mechanical properties of phosphorene. The fracture strength and strain reduce by more than 65% when the temperature increases from 0 K to 450 K. Moreover, the fracture strength and strain in the zigzag direction is more sensitive to the temperature rise than that in the armchair direction. More interestingly, the failure crack propagates preferably along the groove in the puckered structure when uniaxial tension is applied in the armchair direction. In contrast, when the uniaxial tension is applied in the zigzag direction, multiple cracks are observed with rough fracture surfaces. Our present work provides useful information about the mechanical properties and failure behaviors of phosphorene at finite temperatures. (paper)

  12. Effects of various defects on the mechanical properties of black phosphorene

    Science.gov (United States)

    Nguyen, Danh-Truong; Le, Minh-Quy; Nguyen, Van-Trang; Bui, Thanh-Lam

    2017-12-01

    The present work investigates the effects of seven types of defects on the mechanical properties of black phosphorene. Molecular dynamics finite element method with Stillinger-Weber potential is used to simulate the uniaxial tensile tests of the pristine and defective black phosphorene sheets. Young's modulus, fracture stress, and fracture strain of the pristine and defective black phosphorene sheets are estimated. Comparison of the influence of different types of defects on the mechanical response of black phosphorene is considered. Fracture mechanism of various defective black phosphorene sheets is also analyzed. It is found that effect of the defects on Young's modulus of black phosphorene is insignificant. In contrast, due to defects fracture stress and fracture strain can reduce up to 53% and 69%, respectively. Results provide a landscape on the mechanical properties of defective black phosphorene and are useful for the design of nanodevices with black phosphorene in future applications.

  13. Dynamic Mechanical Compression of Chondrocytes for Tissue Engineering: A Critical Review

    Directory of Open Access Journals (Sweden)

    Devon E. Anderson

    2017-12-01

    Full Text Available Articular cartilage functions to transmit and translate loads. In a classical structure–function relationship, the tissue resides in a dynamic mechanical environment that drives the formation of a highly organized tissue architecture suited to its biomechanical role. The dynamic mechanical environment includes multiaxial compressive and shear strains as well as hydrostatic and osmotic pressures. As the mechanical environment is known to modulate cell fate and influence tissue development toward a defined architecture in situ, dynamic mechanical loading has been hypothesized to induce the structure–function relationship during attempts at in vitro regeneration of articular cartilage. Researchers have designed increasingly sophisticated bioreactors with dynamic mechanical regimes, but the response of chondrocytes to dynamic compression and shear loading remains poorly characterized due to wide variation in study design, system variables, and outcome measurements. We assessed the literature pertaining to the use of dynamic compressive bioreactors for in vitro generation of cartilaginous tissue from primary and expanded chondrocytes. We used specific search terms to identify relevant publications from the PubMed database and manually sorted the data. It was very challenging to find consensus between studies because of species, age, cell source, and culture differences, coupled with the many loading regimes and the types of analyses used. Early studies that evaluated the response of primary bovine chondrocytes within hydrogels, and that employed dynamic single-axis compression with physiologic loading parameters, reported consistently favorable responses at the tissue level, with upregulation of biochemical synthesis and biomechanical properties. However, they rarely assessed the cellular response with gene expression or mechanotransduction pathway analyses. Later studies that employed increasingly sophisticated biomaterial-based systems, cells

  14. Dynamic Mechanical Compression of Chondrocytes for Tissue Engineering: A Critical Review.

    Science.gov (United States)

    Anderson, Devon E; Johnstone, Brian

    2017-01-01

    Articular cartilage functions to transmit and translate loads. In a classical structure-function relationship, the tissue resides in a dynamic mechanical environment that drives the formation of a highly organized tissue architecture suited to its biomechanical role. The dynamic mechanical environment includes multiaxial compressive and shear strains as well as hydrostatic and osmotic pressures. As the mechanical environment is known to modulate cell fate and influence tissue development toward a defined architecture in situ , dynamic mechanical loading has been hypothesized to induce the structure-function relationship during attempts at in vitro regeneration of articular cartilage. Researchers have designed increasingly sophisticated bioreactors with dynamic mechanical regimes, but the response of chondrocytes to dynamic compression and shear loading remains poorly characterized due to wide variation in study design, system variables, and outcome measurements. We assessed the literature pertaining to the use of dynamic compressive bioreactors for in vitro generation of cartilaginous tissue from primary and expanded chondrocytes. We used specific search terms to identify relevant publications from the PubMed database and manually sorted the data. It was very challenging to find consensus between studies because of species, age, cell source, and culture differences, coupled with the many loading regimes and the types of analyses used. Early studies that evaluated the response of primary bovine chondrocytes within hydrogels, and that employed dynamic single-axis compression with physiologic loading parameters, reported consistently favorable responses at the tissue level, with upregulation of biochemical synthesis and biomechanical properties. However, they rarely assessed the cellular response with gene expression or mechanotransduction pathway analyses. Later studies that employed increasingly sophisticated biomaterial-based systems, cells derived from different

  15. Mechanical properties of Stripa granite

    International Nuclear Information System (INIS)

    Stephansson, O.; Swan, G.; Leijon, B.

    1978-01-01

    For the determination of the mechanical properties of Stripa Granite samples were taken from the boreholes in the vicinity of the test site. The granite type taken from these different sources is of variable character. For the purpose of numerical calculations performed in projects related to the waste storage research program the following parameters have been determined: Young's modulus, Poisson's ratio, compressive fracture stress and expansion coefficient as a function of temperature 20< T<200C; Young's modulus and compressive fracture stress as a function of confining pressure; Brazilian tensile fracture stress; residual shear stress as a function of normal stress; anisotropy ratio for Young's modulus and compressive fracture stress; dilatational wave velocity and deduced dynamic Young's modulus. A brief description of the test methods and the results for each test are presented

  16. Martensite and bainite in steels: transformation mechanism and mechanical properties

    International Nuclear Information System (INIS)

    Bhadeshia, H.K.D.H.

    1997-01-01

    Many essential properties of iron alloys depend on what actually happens when one allotropic form gives way to another, i.e. on the mechanism of phase change. The dependence of the mechanical properties on the atomic mechanism by which bainite and martensite grow is the focus of this paper. The discussion is illustrated in the context of some common engineering design parameters, and with a brief example of the inverse problem in which the mechanism may be a function of the mechanical properties. (orig.)

  17. Mechanical and Thermal Properties of Bamboo Pulp Fiber Reinforced Polyethylene Composites

    Directory of Open Access Journals (Sweden)

    Wenhan Ren

    2014-05-01

    Full Text Available The purpose of this study was to investigate the mechanical and thermal properties of high-density polyethylene (HDPE composites reinforced by bamboo pulp fibers (BPF. Using a twin-screw extruder, polymer composites were fabricated using BPF and bamboo flour (BF as the reinforcement and HDPE as the matrix. Tensile and flexural tests of the HDPE composites were performed to determine the mechanical properties under different conditions. The thermal properties of HDPE composites were characterized by thermogravimetric analysis (TGA and dynamic mechanical analysis (DMA. The results showed that BPF improved the mechanical and thermal properties of the polymer composites more than did BF. The tensile and flexural strength of composites with 30 wt% BPF were increased by 61.46% and 22.94%, respectively, while the tensile and flexural modulus were increased by 84.52% and 27.30%, respectively. Compared to composites with 50 wt% BF, the T5% of composites with 50 wt% BPF increased by 20.18 °C. As the BPF content increased, the storage modulus (E’ and loss modulus (E” initially increased, followed by a decrease. Compared to the BF/HDPE composites, BPF/HDPE composites reinforced at 30 wt% had a higher storage modulus (E’ and loss modulus (E” and lower damping parameter (tanδ.

  18. Length-scale dependent mechanical properties of Al-Cu eutectic alloy: Molecular dynamics based model and its experimental verification

    Science.gov (United States)

    Tiwary, C. S.; Chakraborty, S.; Mahapatra, D. R.; Chattopadhyay, K.

    2014-05-01

    This paper attempts to gain an understanding of the effect of lamellar length scale on the mechanical properties of two-phase metal-intermetallic eutectic structure. We first develop a molecular dynamics model for the in-situ grown eutectic interface followed by a model of deformation of Al-Al2Cu lamellar eutectic. Leveraging the insights obtained from the simulation on the behaviour of dislocations at different length scales of the eutectic, we present and explain the experimental results on Al-Al2Cu eutectic with various different lamellar spacing. The physics behind the mechanism is further quantified with help of atomic level energy model for different length scale as well as different strain. An atomic level energy partitioning of the lamellae and the interface regions reveals that the energy of the lamellae core are accumulated more due to dislocations irrespective of the length-scale. Whereas the energy of the interface is accumulated more due to dislocations when the length-scale is smaller, but the trend is reversed when the length-scale is large beyond a critical size of about 80 nm.

  19. Hydrogen-Bonded Polymer-Small Molecule Complexes with Tunable Mechanical Properties.

    Science.gov (United States)

    Liu, Tianqi; Peng, Xin; Chen, Ya-Nan; Bai, Qing-Wen; Shang, Cong; Zhang, Lin; Wang, Huiliang

    2018-03-13

    A novel type of polymeric material with tunable mechanical properties is fabricated from polymers and small molecules that can form hydrogen-bonded intermolecular complexes (IMCs). In this work, poly(vinyl alcohol) (PVA)-glycerol hydrogels are first prepared, and then they are dried to form IMCs. The tensile strengths and moduli of IMCs decrease dramatically with increasing glycerol content, while the elongations increase gradually. The mechanical properties are comparable with or even superior to those of common engineering plastics and rubbers. The IMCs with high glycerol content also show excellent flexibility and cold-resistance at subzero temperatures. Cyclic tensile and stress relaxation tests prove that there is an effective energy dissipation mechanism in IMCs and dynamic mechanical analysis confirms their physical crosslinking nature. FTIR and NMR characterizations prove the existence of hydrogen bonding between glycerol and PVA chains, which suppresses the crystallization of PVA from X-ray diffraction measurement. These PVA-glycerol IMCs may find potential applications in barrier films, biomedical packaging, etc., in the future. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Evaluation of ethanol aged PVDF: diffusion, crystallinity and dynamic mechanical thermal properties; Avaliacao do PVDF envelhecido em etanol combustivel: difusao, cristalinidade e propriedades termicas dinamico-mecanicas

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Agmar J.J.; Costa, Marysilvia F., E-mail: agmar@metalmat.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    This work discuss firstly the effect of the ethanol fuel absorption by PVDF at 60°C through mass variation tests. A Fickian character was observed for the ethanol absorption kinetics of the aged PVDF at 60°C. In the second step, the dynamic mechanical thermal properties (E’, E’, E” and tan δ) of the PVDF were evaluated through dynamic mechanical thermal analysis (DMTA). The chemical structure of the materials was analyzed by X-ray diffraction analysis (XRD), and significant changes in the degree of crystallinity were verified after the aging. However, DMTA results showed a reduction in the storage modulus (E') of the aged PVDF, which was associated to diffusion of ethanol and swelling of the PVDF, which generated a prevailing plasticizing effect and led to reduction of its structural stiffness. (author)

  1. Experimental studies of the dynamic mechanical response of a single polymer chain

    DEFF Research Database (Denmark)

    Thormann, Esben; Evans, Drew R.; Craig, Vincent S. J.

    2006-01-01

    The high-frequency and low-amplitude dynamic mechanical response from a single poly(vinyl alcohol) chain was investigated. Modification of a commercial atomic force microscope enabled high-frequency and low-amplitude periodic deformations of polymer chains during extension to be performed...... mechanical response from poly(vinyl alcohol) does not differ from its static response. This result is not unexpected as poly(vinyl alcohol) is a highly flexible polymer with intramolecular relaxation processes taking place on a short time scale. The choice of a polymer with a fast relaxation allows its...... static properties to be recovered from the dynamic measurements and enables the method suggested in this paper for decoupling the polymer response from the hydrodynamic response to be validated....

  2. Improved mechanical and functional properties of elastomer/graphite nanocomposites prepared by latex compounding

    Energy Technology Data Exchange (ETDEWEB)

    Yang Jian [Key Laboratory for Nano-materials, Beijing University of Chemical Technology, Ministry of Education of China, Beijing 100029 (China); Key Laboratory on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029 (China); Tian Ming [Key Laboratory for Nano-materials, Beijing University of Chemical Technology, Ministry of Education of China, Beijing 100029 (China); Jia Qingxiu [Key Laboratory on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029 (China); Shi Junhong [Key Laboratory for Nano-materials, Beijing University of Chemical Technology, Ministry of Education of China, Beijing 100029 (China); Zhang Liqun [Key Laboratory for Nano-materials, Beijing University of Chemical Technology, Ministry of Education of China, Beijing 100029 (China); Key Laboratory on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029 (China)], E-mail: zhanglq@mail.buct.edu.cn; Lim Szuhui; Yu Zhongzhen [Centre for Advanced Materials Technology (CAMT), School of Aerospace, Mechanical and Mechatronic Engineering (J07), University of Sydney, Sydney, NSW 2006 (Australia); Mai Yiuwing [Centre for Advanced Materials Technology (CAMT), School of Aerospace, Mechanical and Mechatronic Engineering (J07), University of Sydney, Sydney, NSW 2006 (Australia)], E-mail: y.mai@usyd.edu.au

    2007-10-15

    The facile latex approach has been adopted to finely incorporate graphite nanosheets into elastomeric polymer matrix to obtain high-performance elastomeric nanocomposites with improved mechanical properties and functional properties. Scanning electron microscopy, transmission electron microscopy and X-ray diffraction experiments show that the nanostructures of the final nanocomposites exhibit a high degree of exfoliation and intercalation of graphite in the nitrile-butadiene rubber (NBR) matrix. Mechanical and dynamic-mechanical tests demonstrate that the NBR/graphite nanocomposites possess greatly increased elastic modulus and tensile strength, and desirably strong interfaces. The unexpected self-crosslinking of elastomer/graphite nanocomposites was discovered and then verified by oscillating disc rheometry and equilibrium swelling experiments. After critically examining various polymer types by X-ray photoelectron spectroscopy, electron spin resonance and Fourier transform infrared spectroscopy, a radical initiation mechanism was proposed to explain the self-crosslinking reaction. These NBR/graphite nanocomposites possess significantly improved wear resistance and gas barrier properties, and superior electrical/thermal conductivity. Such versatile functional properties make NBR nanocomposites a promising new class of advanced materials.

  3. Improved mechanical and functional properties of elastomer/graphite nanocomposites prepared by latex compounding

    International Nuclear Information System (INIS)

    Yang Jian; Tian Ming; Jia Qingxiu; Shi Junhong; Zhang Liqun; Lim Szuhui; Yu Zhongzhen; Mai Yiuwing

    2007-01-01

    The facile latex approach has been adopted to finely incorporate graphite nanosheets into elastomeric polymer matrix to obtain high-performance elastomeric nanocomposites with improved mechanical properties and functional properties. Scanning electron microscopy, transmission electron microscopy and X-ray diffraction experiments show that the nanostructures of the final nanocomposites exhibit a high degree of exfoliation and intercalation of graphite in the nitrile-butadiene rubber (NBR) matrix. Mechanical and dynamic-mechanical tests demonstrate that the NBR/graphite nanocomposites possess greatly increased elastic modulus and tensile strength, and desirably strong interfaces. The unexpected self-crosslinking of elastomer/graphite nanocomposites was discovered and then verified by oscillating disc rheometry and equilibrium swelling experiments. After critically examining various polymer types by X-ray photoelectron spectroscopy, electron spin resonance and Fourier transform infrared spectroscopy, a radical initiation mechanism was proposed to explain the self-crosslinking reaction. These NBR/graphite nanocomposites possess significantly improved wear resistance and gas barrier properties, and superior electrical/thermal conductivity. Such versatile functional properties make NBR nanocomposites a promising new class of advanced materials

  4. Biodegradability and mechanical properties of reinforced starch nanocomposites using cellulose nanofibers.

    Science.gov (United States)

    Babaee, Mehran; Jonoobi, Mehdi; Hamzeh, Yahya; Ashori, Alireza

    2015-11-05

    In this study the effects of chemical modification of cellulose nanofibers (CNFs) on the biodegradability and mechanical properties of reinforced thermoplastic starch (TPS) nanocomposites was evaluated. The CNFs were modified using acetic anhydride and the nanocomposites were fabricated by solution casting from corn starch with glycerol/water as the plasticizer and 10 wt% of either CNFs or acetylated CNFs (ACNFs). The morphology, water absorption (WA), water vapor permeability rate (WVP), tensile, dynamic mechanical analysis (DMA), and fungal degradation properties of the obtained nanocomposites were investigated. The results demonstrated that the addition of CNFs and ACNFs significantly enhanced the mechanical properties of the nanocomposites and reduced the WVP and WA of the TPS. The effects were more pronounced for the CNFs than the ACNFs. The DMA showed that the storage modulus was improved, especially for the CNFs/TPS nanocomposite. Compared with the neat TPS, the addition of nanofibers improved the degradation rate of the nanocomposite and particularly ACNFs reduced degradation rate of the nanocomposite toward fungal degradation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Analytical Modelling and Optimization of the Temperature-Dependent Dynamic Mechanical Properties of Fused Deposition Fabricated Parts Made of PC-ABS

    Science.gov (United States)

    Mohamed, Omar Ahmed; Masood, Syed Hasan; Bhowmik, Jahar Lal

    2016-01-01

    Fused deposition modeling (FDM) additive manufacturing has been intensively used for many industrial applications due to its attractive advantages over traditional manufacturing processes. The process parameters used in FDM have significant influence on the part quality and its properties. This process produces the plastic part through complex mechanisms and it involves complex relationships between the manufacturing conditions and the quality of the processed part. In the present study, the influence of multi-level manufacturing parameters on the temperature-dependent dynamic mechanical properties of FDM processed parts was investigated using IV-optimality response surface methodology (RSM) and multilayer feed-forward neural networks (MFNNs). The process parameters considered for optimization and investigation are slice thickness, raster to raster air gap, deposition angle, part print direction, bead width, and number of perimeters. Storage compliance and loss compliance were considered as response variables. The effect of each process parameter was investigated using developed regression models and multiple regression analysis. The surface characteristics are studied using scanning electron microscope (SEM). Furthermore, performance of optimum conditions was determined and validated by conducting confirmation experiment. The comparison between the experimental values and the predicted values by IV-Optimal RSM and MFNN was conducted for each experimental run and results indicate that the MFNN provides better predictions than IV-Optimal RSM. PMID:28774019

  6. Achilles tendons from decorin- and biglycan-null mouse models have inferior mechanical and structural properties predicted by an image-based empirical damage model.

    Science.gov (United States)

    Gordon, J A; Freedman, B R; Zuskov, A; Iozzo, R V; Birk, D E; Soslowsky, L J

    2015-07-16

    Achilles tendons are a common source of pain and injury, and their pathology may originate from aberrant structure function relationships. Small leucine rich proteoglycans (SLRPs) influence mechanical and structural properties in a tendon-specific manner. However, their roles in the Achilles tendon have not been defined. The objective of this study was to evaluate the mechanical and structural differences observed in mouse Achilles tendons lacking class I SLRPs; either decorin or biglycan. In addition, empirical modeling techniques based on mechanical and image-based measures were employed. Achilles tendons from decorin-null (Dcn(-/-)) and biglycan-null (Bgn(-/-)) C57BL/6 female mice (N=102) were used. Each tendon underwent a dynamic mechanical testing protocol including simultaneous polarized light image capture to evaluate both structural and mechanical properties of each Achilles tendon. An empirical damage model was adapted for application to genetic variation and for use with image based structural properties to predict tendon dynamic mechanical properties. We found that Achilles tendons lacking decorin and biglycan had inferior mechanical and structural properties that were age dependent; and that simple empirical models, based on previously described damage models, were predictive of Achilles tendon dynamic modulus in both decorin- and biglycan-null mice. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Material properties for reactor pressure vessels and containment shells under dynamic loading

    International Nuclear Information System (INIS)

    Albertini, C.

    1997-01-01

    The effects of high strain rate, dynamic biaxial loading and deformation mode (tension, shear) on the mechanical properties of AISI 316 austenitic stainless steel in as-received and pre-damaged (creep, LCF) conditions are reported. This research was conducted to assess the performances of the containment shell of fast breeder reactors. The results of this research have been utilized to prepare similar investigations for SA 537 Class 1 ferritic steel used for the containment shell of LWR. The first results of these investigations are reported. A programme to study the mechanical properties of plain concrete with real size aggregate at high strain rate is described. (orig.)

  8. Surface modification of silica particles and its effects on cure and mechanical properties of the natural rubber composites

    Energy Technology Data Exchange (ETDEWEB)

    Theppradit, Thawinan [Program in Petrochemistry and Polymer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Prasassarakich, Pattarapan [Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Poompradub, Sirilux, E-mail: sirilux.p@chula.ac.th [Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand)

    2014-12-15

    The efficiency of modified silica (SiO{sub 2}) particles in the reinforcement of natural rubber (NR) vulcanizates was evaluated. The SiO{sub 2} particles were synthesized via a sol–gel reaction using tetraethyl orthosilicate as the precursor, and then the formed SiO{sub 2} particles were modified with methyl, vinyl or aminopropyl groups using methyltriethoxysilane, vinyltriethoxysilane or aminopropyltrimethoxysilane, respectively. Fourier transform infrared spectroscopy and elemental analysis confirmed the successful modification of the surface of the silica particles. The water contact angle measurement revealed the greater hydrophobicity of the three modified silica preparations compared to the unmodified SiO{sub 2}. NR vulcanizates filled with modified SiO{sub 2} particles were prepared and the mechanical, thermal and dynamic mechanical properties of composites were investigated. The morphology of composite materials was also investigated by scanning electron microscopy. The modified SiO{sub 2} particles were well dispersed in the NR matrix leading to the good compatibility between the rubber and filler, and so an improved cure, mechanical, thermal and dynamic mechanical properties of the composite vulcanizate materials. - Highlights: • Modification of SiO{sub 2} particles by MTES, VTES and APTES. • Improvement of hydrophobicity of SiO{sub 2} particle and compatibility between SiO{sub 2} and rubbery matrix. • Improvement of cure, mechanical, thermal, dynamic mechanical properties of NR vulcanizates.

  9. Structure and dynamics of hydrated Fe(II) and Fe(III) ions. Quantum mechanical and molecular mechanical simulations

    International Nuclear Information System (INIS)

    Remsungnen, T.

    2002-11-01

    Classical molecular dynamics (MD) and combined em ab initio quantum mechanical/molecular mechanical molecular dynamics (QM/MM-MD) simulations have been performed to investigate structural, dynamical and energetical properties of Fe(II), and Fe(III) transition metal ions in aqueous solution. In the QM/MM-MD simulations the ion and its first hydration sphere were treated at the Hartree-Fock ab initio quantum mechanical level, while ab initio generated pair plus three-body potentials were employed for the remaining system. For the classical MD simulation the pair plus three-body potential were employed for all ion-water interactions. The coordination number of the first hydration shell is 100 % of 6 in both cases. The number of waters in the second hydration shell obtained from classical simulations are 13.4 and 15.1 for Fe(II) and Fe(III), respectively, while QM/MM-MD gives the values of 12.4 and 13.4 for Fe(II) and Fe(III). The energies of hydration obtained from MD and QM/MM-MD for Fe(II) are 520 and 500 kcal/mol, and for Fe(III) 1160 and 1100 kcal/mol respectively. The mean residence times of water in the second shell obtained from QM/MM-MD are 24 and 48 ps for Fe(II) and Fe(III), respectively. In contrast to the data obtained from classical MD simulation, the QM/MM-MD values are all in good agreement with the experimental data available. These investigations and results clearly indicate that many-body effects are essential for the proper description of all properties of the aqueous solution of both Fe(II) and Fe(III) ions. (author)

  10. HYDRATION PROCESS AND MECHANICAL PROPERTIES OF CEMENT PASTE WITH RECYCLED CONCRETE POWDER AND SILICA SAND POWDER

    Directory of Open Access Journals (Sweden)

    Jaroslav Topič

    2017-11-01

    Full Text Available Recycled concrete powder (RCP mostly consisting of cement paste could be reused as partial cement replacement. The aim of this paper is to compare hydration and mechanical properties of RCP and two types of silica sand powder (SSP. Comparison of those materials combined with cement can highlight the binder properties of recycled concrete powder. Using of two types of SSP also show an influence of their fines on hydration process and mechanical properties. Particle size analysis and calorimetric measurement were carried out and mechanical properties such as bulk density, dynamic Young’s modulus and compression strength were examine. Calorimetric measurement proves the presence of exposed non-hydrated particles in RCP that can react again. However lower density of old cement paste in RCP overweight the mentioned potential of RCP and mechanical properties are decreasing compared with reference cement paste and cement paste SSP.

  11. Investigations on the Structural and Mechanical Properties of Polyurethane Resins Based on Cu(IIphthalocyanines

    Directory of Open Access Journals (Sweden)

    Tamer E. Youssef

    2015-01-01

    Full Text Available This work report was reported on the effect of the addition of organic filler, that is, 2(3,9(10,16(17,23(24-octahydroxycopper(IIphthalocyanine [(OH8CuPc] (3, on the thermal, tensile, and morphological properties of a polyurethane matrix. The mechanical and dynamic mechanical thermal tests together with microstructural characterization of CuPc/PU composites were performed. The three PU composite films containing up to 1, 15, and 30 wt% of CuPc have different behaviors in terms of their morphological issues, thermal properties, and tensile behavior in comparison with the PU film as the reference material. Very high elongations at break from 910% to 1230%, as well as high tensile strengths, illustrate excellent ultimate tensile properties of the prepared samples. The best mechanical and thermomechanical properties were found for the sample filled with 30 wt% of CuPc.

  12. Mechanically Robust 3D Nanostructure Chitosan-Based Hydrogels with Autonomic Self-Healing Properties.

    Science.gov (United States)

    Karimi, Ali Reza; Khodadadi, Azam

    2016-10-12

    Fabrication of hydrogels based on chitosan (CS) with superb self-healing behavior and high mechanical and electrical properties has become a challenging and fascinating topic. Most of the conventional hydrogels lack these properties at the same time. Our objectives in this research were to synthesize, characterize, and evaluate the general properties of chitosan covalently cross-linked with zinc phthalocyanine tetra-aldehyde (ZnPcTa) framework. Our hope was to access an unprecedented self-healable three-dimensional (3D) nanostructure that would harvest the superior mechanical and electrical properties associated with chitosan. The properties of cross-linker such as the structure, steric effect, and rigidity of the molecule played important roles in determining the microstructure and properties of the resulting hydrogels. The tetra-functionalized phthalocyanines favor a dynamic Schiff-base linkage with chitosan to form a 3D porous nanostructure. Based on this strategy, the self-healing ability, as demonstrated by rheological recovery and macroscopic and microscopic observations, is introduced through dynamic covalent Schiff-base linkage between NH 2 groups in CS and benzaldehyde groups at cross-linker ends. The hydrogel was characterized using FT-IR, NMR, UV/vis, and rheological measurements. In addition, cryogenic scanning electron microscopy (cryo-SEM) was employed as a technique to visualize the internal morphology of the hydrogels. Study of the surface morphology of the hydrogel showed a 3D porous nanostructure with uniform morphology. Furthermore, incorporating the conductive nanofillers, such as carbon nanotubes (CNTs), into the structure can modulate the mechanical and electrical properties of the obtained hydrogels. Interestingly, these hydrogel nanocomposites proved to have very good film-forming properties, high modulus and strength, acceptable electrical conductivity, and excellent self-healing properties at neutral pH. Such properties can be finely tuned

  13. Effects of Yb on the mechanical properties and microstructures of an Al-Mg alloy

    International Nuclear Information System (INIS)

    Song Min; Wu Zhenggang; He Yuehui

    2008-01-01

    This paper reported a first study of the effects of Yb on the microstructures and mechanical properties of an extruded Al-Mg alloy. It has been shown that the addition of 0.3 wt.% Yb decreases the mechanical properties of the alloy since Mg- and Yb-containing constituents decrease the concentration of Mg solute atoms in Al matrix, and thus the solution strengthening effect. However, the addition of 1 wt.% Yb substantially improves the mechanical behavior of the alloy because the concentration of Yb solute atoms in Al matrix is high enough to generate solution strengthening effect. The improvement in the mechanical properties is due to the large work-hardening and high dislocation density caused by the interaction between dislocations and Yb and Mg solute atoms. The Yb and Mg atoms inhibit the dynamic recovery and recrystallization of the alloy, thus provide a uniformly distributed dislocation structure with high density

  14. Size dependence of elastic mechanical properties of nanocrystalline aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Wenwu; Dávila, Lilian P., E-mail: ldavila@ucmerced.edu

    2017-04-24

    The effect of grain size on the elastic mechanical properties of nanocrystalline pure metal Al is quantified by molecular dynamics simulation method. In this work, the largest nanocrystalline Al sample has a mean grain size of 29.6 nm and contains over 100 millions atoms in the modeling system. The simulation results show that the elastic properties including elastic modulus and ultimate tensile strength of nanocrystalline Al are relatively insensitive to the variation of mean grain size above 13 nm yet they become distinctly grain size dependent below 13 nm. Moreover, at a grain size <13 nm, the elastic modulus decreases monotonically with decreasing grain size while the ultimate tensile strength of nanocrystalline Al initially decreases with the decrease of the grain size down to 9 nm and then increases with further reduction of grain size. The increase of ultimate tensile strength below 9 nm is believed to be a result of an extended elasticity in the ultrafine grain size nanocrystalline Al. This study can facilitate the prediction of varied mechanical properties for similar nanocrystalline materials and even guide testing and fabrication schemes of such materials.

  15. Dynamic mechanical analysis of multi-walled carbon nanotube/HDPE composites.

    Science.gov (United States)

    Kanagaraj, S; Guedes, R M; Oliveira, Mónica S A; Simões, José A O

    2008-08-01

    Since the discovery of carbon nanotubes (CNTs), their remarkable properties make them ideal candidates to reinforce in advanced composites. In this attempt, an enhancement of mechanical properties of high density polyethylene (HDPE) by adding 1 wt% of CNTs is studied using Dynamic mechanical and Thermal analyzer (DMTA). The chemically treated and functionalized CNTs were homogeneously dispersed with HDPE and the test samples were made using injection molding machine. Using DMTA, storage modulus (E'), loss modulus (E") and damping factor (tan delta) of the sample under oscillating load were studied as a function of frequency of oscillation and temperatures. The storage modulus decreases with an increase of temperature and increases by adding CNTs in the composites where the reinforcing effect of CNT is confirmed. It is concluded that the large scale polymer relaxations in the composites are effectively restrained by the presence of CNTs and thus the mechanical properties of nanocomposites increase. The transition frequency of loss modulus is observed at 1 Hz. The loss modulus decreases with an increase of temperature at below 1 Hz but opposite trend was observed at above 1 Hz. The shift factor could be predicted from Williams-Landel-Ferry (WLF) model which has good agreement with experimental results.

  16. Effect of addition of organo clay on mechanical properties and dynamic-mechanical based TPV; Preparacao de termoplasticos vulcanizados dinamicamente (TPV) de NBR/PP com nanocargas de argila

    Energy Technology Data Exchange (ETDEWEB)

    Honorato, Luciana R.; Silva, Adriana A.; Soares, Bluma G. [Universidade Federal do Rio de Janeiro - UFRJ, Instituto de Macromoleculas Professora Eloisa Mano, Rio de Janeiro, RJ (Brazil); Soares, Ketly P. [Centro Universitario do Leste de Minas Gerais (UNILESTEMG) - Coronel Fabriciano, MG (Brazil)

    2011-07-01

    The effect of organophilic clay on the mechanical and dynamical-mechanical properties of thermoplastic elastomers based on polypropylene (PP) and nitrile rubber (NBR) was investigated. The addition of clay was performed from a master batch prepared by a solution intercalation of NBR inside the clay galleries. Since the PP/NBR blend is highly incompatible, PP functionalized with maleic anhydride (PP-g-MA) and carboxylated NBR (XNBR) were employed as compatibilizing system together with triethylene-tetramine (TETA) used as coupling agent. The addition of Clay inside the elastomeric phase of the TPV resulted in a significant decrease of the elongation at break without changes on the tensile strength. The presence of clay also promoted a slight increase of the storage modulus and the glass transition temperature. The small angle X ray scattering confirmed the high dispersion of clay inside the TPV. Analysis of light scattering small angle (SAXS) confirmed the high dispersion of clay in the matrix of the TPV. (author)

  17. Pharmaceutical applications of dynamic mechanical thermal analysis.

    Science.gov (United States)

    Jones, David S; Tian, Yiwei; Abu-Diak, Osama; Andrews, Gavin P

    2012-04-01

    The successful development of polymeric drug delivery and biomedical devices requires a comprehensive understanding of the viscoleastic properties of polymers as these have been shown to directly affect clinical efficacy. Dynamic mechanical thermal analysis (DMTA) is an accessible and versatile analytical technique in which an oscillating stress or strain is applied to a sample as a function of oscillatory frequency and temperature. Through cyclic application of a non-destructive stress or strain, a comprehensive understanding of the viscoelastic properties of polymers may be obtained. In this review, we provide a concise overview of the theory of DMTA and the basic instrumental/operating principles. Moreover, the application of DMTA for the characterization of solid pharmaceutical and biomedical systems has been discussed in detail. In particular we have described the potential of DMTA to measure and understand relaxation transitions and miscibility in binary and higher-order systems and describe the more recent applications of the technique for this purpose. © 2011 Elsevier B.V. All rights reserved.

  18. Effects of temperature on mechanical properties of SU-8 photoresist material

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Soon Wan; Park, Seung Bae [State University of New York, New York (United States)

    2013-09-15

    A representative fabrication processing of SU-8 photoresist, Ultraviolet (UV) lithography is usually composed of spin coat, soft bake, UV exposure, post exposure bake (PEB), development and optional hard bake, etc. The exposed region of SU-8 is crosslinked during the PEB process and its physical properties highly depend on UV exposure and PEB condition. This work was initiated to investigate if thermal baking after fabrication can affect the mechanical properties of SU-8 photoresist material because SU-8 is trying to be used as a structural material for MEMS operated at high temperature. Since a temperature of 95 .deg. C is normally recommended for PEB process, elevated temperatures up to 200 .deg. C were considered for the optional hard bake process. The viscoelastic material properties were measured by dynamic mechanical analyses (DMA). Also, pulling tests were performed to obtain Young's modulus and Poisson's ratio as a function of strain rate in a wide temperature range. From this study, the effects of temperature on the elastic and viscoelastic material properties of SU-8 were obtained.

  19. Effects of temperature on mechanical properties of SU-8 photoresist material

    International Nuclear Information System (INIS)

    Chung, Soon Wan; Park, Seung Bae

    2013-01-01

    A representative fabrication processing of SU-8 photoresist, Ultraviolet (UV) lithography is usually composed of spin coat, soft bake, UV exposure, post exposure bake (PEB), development and optional hard bake, etc. The exposed region of SU-8 is crosslinked during the PEB process and its physical properties highly depend on UV exposure and PEB condition. This work was initiated to investigate if thermal baking after fabrication can affect the mechanical properties of SU-8 photoresist material because SU-8 is trying to be used as a structural material for MEMS operated at high temperature. Since a temperature of 95 .deg. C is normally recommended for PEB process, elevated temperatures up to 200 .deg. C were considered for the optional hard bake process. The viscoelastic material properties were measured by dynamic mechanical analyses (DMA). Also, pulling tests were performed to obtain Young's modulus and Poisson's ratio as a function of strain rate in a wide temperature range. From this study, the effects of temperature on the elastic and viscoelastic material properties of SU-8 were obtained.

  20. Mechanical properties and fracture behaviour of defective phosphorene nanotubes under uniaxial tension

    Science.gov (United States)

    Liu, Ping; Pei, Qing-Xiang; Huang, Wei; Zhang, Yong-Wei

    2017-12-01

    The easy formation of vacancy defects and the asymmetry in the two sublayers of phosphorene nanotubes (PNTs) may result in brand new mechanical properties and failure behaviour. Herein, we investigate the mechanical properties and fracture behaviour of defective PNTs under uniaxial tension using molecular dynamics simulations. Our simulation results show that atomic vacancies cause local stress concentration and thus significantly reduce the fracture strength and fracture strain of PNTs. More specifically, a 1% defect concentration is able to reduce the fracture strength and fracture strain by as much as 50% and 66%, respectively. Interestingly, the reduction in the mechanical properties is found to depend on the defect location: a defect located in the outer sublayer has a stronger effect than one located in the inner layer, especially for PNTs with a small diameter. Temperature is also found to strongly influence the mechanical properties of both defect-free and defective PNTs. When the temperature is increased from 0 K to 400 K, the fracture strength and fracture strain of defective PNTs with a defect concentration of 1% are reduced further by 71% and 61%, respectively. These findings are of great importance for the structural design of PNTs as building blocks in nanodevices.

  1. Role of sequence and structural polymorphism on the mechanical properties of amyloid fibrils.

    Directory of Open Access Journals (Sweden)

    Gwonchan Yoon

    Full Text Available Amyloid fibrils playing a critical role in disease expression, have recently been found to exhibit the excellent mechanical properties such as elastic modulus in the order of 10 GPa, which is comparable to that of other mechanical proteins such as microtubule, actin filament, and spider silk. These remarkable mechanical properties of amyloid fibrils are correlated with their functional role in disease expression. This suggests the importance in understanding how these excellent mechanical properties are originated through self-assembly process that may depend on the amino acid sequence. However, the sequence-structure-property relationship of amyloid fibrils has not been fully understood yet. In this work, we characterize the mechanical properties of human islet amyloid polypeptide (hIAPP fibrils with respect to their molecular structures as well as their amino acid sequence by using all-atom explicit water molecular dynamics (MD simulation. The simulation result suggests that the remarkable bending rigidity of amyloid fibrils can be achieved through a specific self-aggregation pattern such as antiparallel stacking of β strands (peptide chain. Moreover, we have shown that a single point mutation of hIAPP chain constituting a hIAPP fibril significantly affects the thermodynamic stability of hIAPP fibril formed by parallel stacking of peptide chain, and that a single point mutation results in a significant change in the bending rigidity of hIAPP fibrils formed by antiparallel stacking of β strands. This clearly elucidates the role of amino acid sequence on not only the equilibrium conformations of amyloid fibrils but also their mechanical properties. Our study sheds light on sequence-structure-property relationships of amyloid fibrils, which suggests that the mechanical properties of amyloid fibrils are encoded in their sequence-dependent molecular architecture.

  2. Length and temperature dependence of the mechanical properties of finite-size carbyne

    Science.gov (United States)

    Yang, Xueming; Huang, Yanhui; Cao, Bingyang; To, Albert C.

    2017-09-01

    Carbyne is an ideal one-dimensional conductor and the thinnest interconnection in an ultimate nano-device and it requires an understanding of the mechanical properties that affect device performance and reliability. Here, we report the mechanical properties of finite-size carbyne, obtained by a molecular dynamics simulation study based on the adaptive intermolecular reactive empirical bond order potential. To avoid confusion in assigning the effective cross-sectional area of carbyne, the value of the effective cross-sectional area of carbyne (4.148 Å2) was deduced via experiment and adopted in our study. Ends-constraints effects on the ultimate stress (maximum force) of the carbyne chains are investigated, revealing that the molecular dynamics simulation results agree very well with the experimental results. The ultimate strength, Young's Modulus and maximum strain of carbyne are rather sensitive to the temperature and all decrease with the temperature. Opposite tendencies of the length dependence of the overall ultimate strength and maximum strain of carbyne at room temperature and very low temperature have been found, and analyses show that this originates in the ends effect of carbyne.

  3. Poly-Lactide/Exfoliated C30B Interactions and Influence on Thermo-Mechanical Properties Due to Artificial Weathering

    Directory of Open Access Journals (Sweden)

    Wendy Margarita Chávez-Montes

    2016-04-01

    Full Text Available Thermal stability as well as enhanced mechanical properties of poly-lactide (PLA can increase PLA applications for short-use products. The conjunction of adequate molecular weight (MW as well as satisfactory thermo-mechanical properties, together, can lead to the achievement of suitable properties. However, PLA is susceptible to thermal degradation and thus an undesired decay of MW and a decrease of its mechanical properties during processing. To avoid this PLA degradation, nanofiller is incorporated as reinforcement to increase its thermo-mechanical properties. There are many papers focusing on filler effects on the thermal stability and mechanical properties of PLA/nanocomposites; however, these investigations lack an explanation of polymer/filler interactions. We propose interactions between PLA and Cloisite30B (C30B as nanofiller. We also study the effects on the thermal and mechanical properties due to molecular weight decay after exposure to artificial weathering. PLA blank and nanocomposites were subjected to three time treatments (0, 176, and 360 h of exposure to artificial weathering in order to achieve comparable materials with different MW. MW was acquired by means of Gel Permeation Chromatography (GPC. Thermo-mechanical properties were investigated through Thermogravimetric Analysis (TGA, Differential Scanning Calorimetry (DSC, X-ray Diffraction (XRD, Dynamic Mechanical Thermal Analysis (DMTA and Fourier Transform Infrared Spectroscopy (FTIR.

  4. Electromagnetic and Dynamic Mechanical Properties of Epoxy and Vinylester-Based Composites Filled with Graphene Nanoplatelets

    Directory of Open Access Journals (Sweden)

    Fabrizio Marra

    2016-07-01

    Full Text Available Development of epoxy or epoxy-based vinyl ester composites with improved mechanical and electromagnetic properties, filled with carbon-based nanomaterials, is of crucial interest for use in aerospace applications as radar absorbing materials at radio frequency. Numerous studies have highlighted the fact that the effective functional properties of this class of polymer composites are strongly dependent on the production process, which affects the dispersion of the nanofiller in the polymer matrix and the formation of micro-sized aggregations, degrading the final properties of the composite. The assessment of the presence of nanofiller aggregation in a composite through microscopy investigations is quite inefficient in the case of large scale applications, and in general provides local information about the aggregation state of the nanofiller rather than an effective representation of the degradation of the functional properties of the composite due to the presence of the aggregates. In this paper, we investigate the mechanical, electrical, and electromagnetic properties of thermosetting polymer composites filled with graphene nanoplatelets (GNPs. Moreover, we propose a novel approach based on measurements of the dielectric permittivity of the composite in the 8–12 GHz range in order to assess the presence of nanofiller aggregates and to estimate their average size and dimensions.

  5. Modification of mechanical and thermal property of chitosan-starch blend films

    Science.gov (United States)

    Tuhin, Mohammad O.; Rahman, Nazia; Haque, M. E.; Khan, Ruhul A.; Dafader, N. C.; Islam, Rafiqul; Nurnabi, Mohammad; Tonny, Wafa

    2012-10-01

    Chitosan-starch blend films (thickness 0.2 mm) of different composition were prepared by casting and their mechanical properties were studied. To improve the properties of chitosan-starch films, glycerol and mustard oil of different composition were used. Chitosan-starch films, incorporated with glycerol and mustard oil, were further modified with monomer 2-hydroxyethyl methacrylate (HEMA) using gamma radiation. The modified films showed improvement in both tensile strength and elongation at break than the pure chitosan-starch films. Water uptake of the films reduced significantly than the pure chitosan-starch film. Thermo gravimetric analysis (TGA) and dynamic mechanical analysis (DMA) showed that the modified films experience less thermal degradation than the pure films. Scanning electron microscopy (SEM) and FTIR were used to investigate the morphology and molecular interaction of the blend film, respectively.

  6. Microstructure and Mechanical Properties of High Copper HSLA-100 Steel in 2-inch Plate Form

    Science.gov (United States)

    1992-06-01

    CCT diagram . Increasing copper in HSLA-100 steel also increases the toughness as well as the strength, though the dynamics of this process are not clear. Steel, High Copper HSLA-100 Steel, mechanical property, microstructure.

  7. Effect of electron beam irradiation on thermal and mechanical properties of aluminum based epoxy composites

    Science.gov (United States)

    Visakh, P. M.; Nazarenko, O. B.; Sarath Chandran, C.; Melnikova, T. V.; Nazarenko, S. Yu.; Kim, J.-C.

    2017-07-01

    The epoxy resins are widely used in nuclear and aerospace industries. The certain properties of epoxy resins as well as the resistance to radiation can be improved by the incorporation of different fillers. This study examines the effect of electron beam irradiation on the thermal and mechanical properties of the epoxy composites filled with aluminum nanoparticles at percentage of 0.35 wt%. The epoxy composites were exposed to the irradiation doses of 30, 100 and 300 kGy using electron beam generated by the linear electron accelerator ELU-4. The effects of the doses on thermal and mechanical properties of the aluminum based epoxy composites were investigated by the methods of thermal gravimetric analysis, tensile test, and dynamic mechanical analysis. The results revealed that the studied epoxy composites showed good radiation resistance. The thermal and mechanical properties of the aluminum based epoxy composites increased with increasing the irradiation dose up to 100 kGy and decreased with further increasing the dose.

  8. Mechanical properties of rock at high temperatures

    International Nuclear Information System (INIS)

    Kinoshita, Naoto; Abe, Tohru; Wakabayashi, Naruki; Ishida, Tsuyoshi.

    1997-01-01

    The laboratory tests have been performed in order to investigate the effects of temperature up to 300degC and pressure up to 30 MPa on the mechanical properties of three types of rocks, Inada granite, Sanjoume andesite and Oya tuff. The experimental results indicated that the significant differences in temperature dependence of mechanical properties exist between the three rocks, because of the difference of the factors which determine the mechanical properties of the rocks. The effect of temperature on the mechanical properties for the rocks is lower than that of pressure and water content. Temperature dependence of the mechanical properties is reduced by increase in pressure in the range of pressure and temperature investigated in this paper. (author)

  9. Mechanical properties and impact behavior of a microcellular structural foam

    Directory of Open Access Journals (Sweden)

    M. Avalle

    Full Text Available Structural foams are a relatively new class of materials with peculiar characteristics that make them very attractive in some energy absorption applications. They are currently used for packaging to protect goods from damage during transportation in the case of accidental impacts. Structural foams, in fact, have sufficient mechanical strength even with reduced weight: the balance between the two antagonist requirements demonstrates that these materials are profitable. Structural foams are generally made of microcellular materials, obtained by polymers where voids at the microscopic level are created. Although the processing technologies and some of the material properties, including mechanical, are well known, very little is established for what concerns dynamic impact properties, for the design of energy absorbing components made of microcellular foams. The paper reports a number of experimental results, in different loading conditions and loading speed, which will be a basis for the structural modeling.

  10. Study the bonding mechanism of binders on hydroxyapatite surface and mechanical properties for 3DP fabrication bone scaffolds.

    Science.gov (United States)

    Wei, Qinghua; Wang, Yanen; Li, Xinpei; Yang, Mingming; Chai, Weihong; Wang, Kai; zhang, Yingfeng

    2016-04-01

    In 3DP fabricating artificial bone scaffolds process, the interaction mechanism between binder and bioceramics power determines the microstructure and macro mechanical properties of Hydroxyapatite (HA) bone scaffold. In this study, we applied Molecular Dynamics (MD) methods to investigating the bonding mechanism and essence of binders on the HA crystallographic planes for 3DP fabrication bone scaffolds. The cohesive energy densities of binders and the binding energies, PCFs g(r), mechanical properties of binder/HA interaction models were analyzed through the MD simulation. Additionally, we prepared the HA bone scaffold specimens with different glues by 3DP additive manufacturing, and tested their mechanical properties by the electronic universal testing machine. The simulation results revealed that the relationship of the binding energies between binders and HA surface is consistent with the cohesive energy densities of binders, which is PAM/HA>PVA/HA>PVP/HA. The PCFs g(r) indicated that their interfacial interactions mainly attribute to the ionic bonds and hydrogen bonds which formed between the polar atoms, functional groups in binder polymer and the Ca, -OH in HA. The results of mechanical experiments verified the relationship of Young׳s modulus for three interaction models in simulation, which is PVA/HA>PAM/HA>PVP/HA. But the trend of compressive strength is PAM/HA>PVA/HA>PVP/HA, this is consistent with the binding energies of simulation. Therefore, the Young׳s modulus of bone scaffolds are limited by the Young׳s modulus of binders, and the compressive strength is mainly decided by the viscosity of binder. Finally, the major reasons for differences in mechanical properties between simulation and experiment were found, the space among HA pellets and the incomplete infiltration of glue were the main reasons influencing the mechanical properties of 3DP fabrication HA bone scaffolds. These results provide useful information in choosing binder for 3DP fabrication

  11. Analytical Modelling and Optimization of the Temperature-Dependent Dynamic Mechanical Properties of Fused Deposition Fabricated Parts Made of PC-ABS

    Directory of Open Access Journals (Sweden)

    Omar Ahmed Mohamed

    2016-11-01

    Full Text Available Fused deposition modeling (FDM additive manufacturing has been intensively used for many industrial applications due to its attractive advantages over traditional manufacturing processes. The process parameters used in FDM have significant influence on the part quality and its properties. This process produces the plastic part through complex mechanisms and it involves complex relationships between the manufacturing conditions and the quality of the processed part. In the present study, the influence of multi-level manufacturing parameters on the temperature-dependent dynamic mechanical properties of FDM processed parts was investigated using IV-optimality response surface methodology (RSM and multilayer feed-forward neural networks (MFNNs. The process parameters considered for optimization and investigation are slice thickness, raster to raster air gap, deposition angle, part print direction, bead width, and number of perimeters. Storage compliance and loss compliance were considered as response variables. The effect of each process parameter was investigated using developed regression models and multiple regression analysis. The surface characteristics are studied using scanning electron microscope (SEM. Furthermore, performance of optimum conditions was determined and validated by conducting confirmation experiment. The comparison between the experimental values and the predicted values by IV-Optimal RSM and MFNN was conducted for each experimental run and results indicate that the MFNN provides better predictions than IV-Optimal RSM.

  12. Mechanical property evaluation of apricot fruits under quasi-static and dynamic loading

    Directory of Open Access Journals (Sweden)

    E Ahmadi

    2016-04-01

    Full Text Available Introduction: Some forces and impacts that occur during transporting and handling can reduce the apricot quality. Bruise damage is a major cause of fruit quality loss. Bruises occur under dynamic and static loading when stress induced in the fruit exceeds the failure stress of the fruit tissue. Needless to say that physical and mechanical properties of fruits in the design and optimization of systems related to production, processing and packaging of the products are important. Harvesting, transport, packaging and transportation of fruits and vegetables, result in their bruising which can cause loss of marketability of the fruit by consumers. The term of ‘absorbed energy’ could be used to express the quantity of damage done on the fruit and the high the absorbed energy, the higher the damage on the fruit. The object of this research was due to the importance of apricot fruit and lack of information about the mechanical behavior. Materials and Methods: In this study, apricot fruit variety “Ziaolmolki” was examined to determine some physical and mechanical properties. In order avoid any damage, the fruits were carefully harvested from trees and gathered in plastic boxes in a row, to prevent damage to the apricots. For determination of mechanical properties and levels of impact energy used test axial machine and pendulum device, respectively. Dependent variables (acoustics stiffness, radius of curvature, color characteristic a* and b*, Brix percentage, penetration force, penetration work and penetration deformation and independent variables (impact energy in three levels, temperature and color in 2 levels each were selected and analyzed by block designs with factorial structure. In the experimental design, the fruits were stored in two temperature levels, 3oC and 25oC. Two areas of any fruit (red and yellow areas were subjected to 3 impact energy levels. For each of the 8 levels, 8 fruit samples were selected. Overall, 96 fruits {8 (number

  13. The Dynamical Mechanisms of the Cell Cycle Size Checkpoint

    International Nuclear Information System (INIS)

    Feng Shi-Fu; Yang Ling; Yan Jie; Liu Zeng-Rong

    2012-01-01

    Cell division must be tightly coupled to cell growth in order to maintain cell size, whereas the mechanisms of how initialization of mitosis is regulated by cell size remain to be elucidated. We develop a mathematical model of the cell cycle, which incorporates cell growth to investigate the dynamical properties of the size checkpoint in embryos of Xenopus laevis. We show that the size checkpoint is naturally raised from a saddle-node bifurcation, and in a mutant case, the cell loses its size control ability due to the loss of this saddle-node point

  14. Relationship between free volume and mechanical properties of polyurethane irradiated by gamma rays

    International Nuclear Information System (INIS)

    Heliang Sui; Xin Ju; Xueyong Liu; Fachun Zhong; Xiaoyan Li; Baoyi Wang

    2014-01-01

    Polyurethane was irradiated at various gamma radiation doses up to 1,000 kGy at room temperature in nitrogen. Positron annihilation lifetime spectroscopy, tensile test and dynamic mechanical analysis were used to find the relationship between free volume and mechanical properties. An increase of the free volume fraction in soft segments (SS) and a decrease of the free volume fraction in hard segments (HS) during gamma radiation was observed and analyzed. The results showed that HS in polyurethane had the excellent resistance to gamma radiation, whereas SS had a tendency to degrade. The reason for the decrease of the strain at break and the ultimate tensile strength was analyzed, which showed the changes in the mechanical properties of polyurethane irradiated by gamma rays were mainly determined by the changes of free volume in SS. If the resistance properties of polyurethanes exposed to radiations need to be improved, SS should be paid more attention to. (author)

  15. Thermal and mechanical properties of bio-based plasticizers mixtures on poly (vinyl chloride

    Directory of Open Access Journals (Sweden)

    Boussaha Bouchoul

    2017-09-01

    Full Text Available Abstract The use of mixtures of nontoxic and biodegradable plasticizers coming from natural resources is a good way to replace conventional phthalates plasticizers. In this study, two secondary plasticizers of epoxidized sunflower oil (ESO and epoxidized sunflower oil methyl ester (ESOME were synthesized and have been used with two commercially available biobased plasticizers; isosorbide diesters (ISB and acetyl tributyl citrate (ATBC in order to produce flexible PVC. Different mixtures of these plasticizers have been introduced in PVC formulations. Thermal, mechanical and morphological properties have been studied by using discoloration, thermogravimetric analysis (TGA, differential scanning calorimetry (DSC, dynamic mechanical thermal analysis (DMTA, tensile - strain and scanning electron microscopy (SEM. Studies have shown that PVC plasticization and stabilization were improved by addition of plasticizers blends containing ISB, ATBC, ESO and ESOME. An increase in the content of ESO or ESOME improved thermal and mechanical properties, whereas ESOME/ATBC formulations exhibited the best properties.

  16. Influence of ion irradiation induced defects on mechanical properties of copper nanowires

    International Nuclear Information System (INIS)

    Li, Weina; Sun, Lixin; Xue, Jianming; Wang, Jianxiang; Duan, Huiling

    2013-01-01

    The mechanical properties of copper nanowires irradiated with energetic ions have been investigated by using molecular dynamics simulations. The Cu ions with energies ranging from 0.2 to 8.0 keV are used in our simulation, and both the elastic properties and yields under tension and compression are analyzed. The results show that two kinds of defects, namely point defects and stacking faults, appear in the irradiated nanowires depending on the incident ion energy. The Young modulus is significantly reduced by the ion irradiation, and the reduction magnitude depends on the vacancy number, which is determined by the ion energy. Moreover, the irradiated nanowires yield at a smaller strain, compared with the unirradiated nanowire. The mechanism for these changes are also discussed

  17. Investigating the properties and interaction mechanism of nano-silica in polyvinyl alcohol/polyacrylamide blends at an atomic level.

    Science.gov (United States)

    Wei, Qinghua; Wang, Yanen; Wang, Shuzhi; Zhang, Yingfeng; Chen, Xiongbiao

    2017-11-01

    The nano-silica can be incorporated into polymers for improved mechanical properties. Notably, the interaction between nano-silica and polymer is of a microscopic phenomenon and thus, hard to observe and study by using experimental methods. Based on molecular dynamics, this paper presents a study on the properties and the interaction mechanism of nano-silica in the polyvinyl alcohol (PVA)/polyacrylamide (PAM) blends at an atomic level. Specifically, six blends of PVA/PAM with varying concentrations of nano-silica (0-13wt%) and two interfacial interaction models of polymers on the silica surface were designed and analyzed at an atomic level in terms of concentration profile, mechanical properties, fractional free volume (FFV), dynamic properties of polymers and X-ray diffraction patterns. The concentration profile results and micromorphologies of equilibrium models suggest PAM molecular chains are easier to be adsorbed on the silica surface than PVA molecular chains in blends. The incorporation of nano-silica into the PVA/PAM blends can increase the blend mechanical properties, densities, and semicrystalline character. Meanwhile, the FFV and the mobility of polymer chain decrease with the silica concentration, which agrees with the results of mechanical properties, densities, and semicrystalline character. Our results also illustrate that an analysis of binding energies and pair correlation functions (PCF) allows for the discovery of the interaction mechanism of nano-silica in PVA/PAM blends; and that hydrogen bond interactions between polar functional groups of polymer molecular chains and the hydroxyl groups of the silica surface are involved in adsorption of the polymers on the silica surface, thus affecting the interaction mechanism of nano-silica in PVA/PAM blend systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Thermal behavior and mechanical properties of physically crosslinked PVA/Gelatin hydrogels.

    Science.gov (United States)

    Liu, Yurong; Geever, Luke M; Kennedy, James E; Higginbotham, Clement L; Cahill, Paul A; McGuinness, Garrett B

    2010-02-01

    Poly (vinyl alcohol)/Gelatin hydrogels are under active investigation as potential vascular cell culture biomaterials, tissue models and vascular implants. The PVA/Gelatin hydrogels are physically crosslinked by the freeze-thaw technique, which is followed by a coagulation bath treatment. In this study, the thermal behavior of the gels was examined by differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA). Rheological measurement and uniaxial tensile tests revealed key mechanical properties. The role of polymer fraction in relation to these mechanical properties is explored. Gelatin has no significant effect on the thermal behavior of PVA, which indicates that no substantial change occurs in the PVA crystallite due to the presence of gelatin. The glass transition temperature, melting temperature, degree of crystallinity, polymer fraction, storage modulus (G') and ultimate strength of one freeze-thaw cycle (1FT) hydrogels are inferior to those of 3FT hydrogels. With coagulation, both 1FT and 3FT hydrogels shifted to a lower value of T(g), melting temperature and polymer fraction are further increased and the degree of crystallinity is depressed. The mechanical properties of 1FT, but not 3FT, were strengthened with coagulation treatment. This study gives a detailed investigation of the microstructure formation of PVA/Gelatin hydrogel in each stage of physical treatments which helps us to explain the role of physical treatments in tuning their physical properties for biomechanical applications. Copyright 2009 Elsevier Ltd. All rights reserved.

  19. Carbon nanotube epoxy nanocomposites: the effects of interfacial modifications on the dynamic mechanical properties of the nanocomposites.

    Science.gov (United States)

    Yoonessi, Mitra; Lebrón-Colón, Marisabel; Scheiman, Daniel; Meador, Michael A

    2014-10-08

    Surface functionalization of pretreated carbon nanotubes (CNT) using aromatic, aliphatic, and aliphatic ether diamines was performed. The pretreatment of the CNT consisted of either acid- or photo-oxidation. The acid treated CNT had a higher initial oxygen content compared to the photo-oxidized CNT and this resulted in a higher density of functionalization. X-ray photoelectron spectroscopy (XPS) and thermal gravimetric analysis (TGA) were used to verify the presence of the oxygenated and amine moieties on the CNT surfaces. Epoxy/0.1 wt % CNT nanocomposites were prepared using the functionalized CNT and the bulk properties of the nanocomposites were examined. Macroscale correlations between the interfacial modification and bulk dynamic mechanical and thermal properties were observed. The amine modified epoxy/CNT nanocomposites exhibited up to a 1.9-fold improvement in storage modulus (G') below the glass transition (Tg) and up to an almost 4-fold increase above the Tg. They also exhibited a 3-10 °C increase in the glass transition temperature. The aromatic diamine surface modified epoxy/CNT nanocomposites resulted in the largest increase in shear moduli below and above the Tg and the largest increase in the Tg. Surface examination of the nanocomposites with scanning electron microscopy (SEM) revealed indications of a greater adhesion of the epoxy resin matrix to the CNT, most likely due to the covalent bonding.

  20. Control of Mechanical Properties of Thermoplastic Polyurethane Elastomers by Restriction of Crystallization of Soft Segment

    Directory of Open Access Journals (Sweden)

    Sadaharu Nakamura

    2010-12-01

    Full Text Available Mechanical properties of thermoplastic polyurethane elastomers based on either polyether or polycarbonate (PC-glycols, 4,4’-dipheylmethane diisocyanate (1,1’-methylenebis(4-isocyanatobenzene, 1,4-butanediol, were controlled by restriction of crystallization of polymer glycols. For the polyether glycol based-polyurethane elastomers (PUEs, poly(oxytetramethylene glycol (PTMG, and PTMG incorporating dimethyl groups (PTG-X and methyl side groups (PTG-L were employed as a polymer glycol. For the PC-glycol, the randomly copolymerized PC-glycols with hexamethylene (C6 and tetramethylene (C4 units between carbonate groups with various composition ratios (C4/C6 = 0/100, 50/50, 70/30 and 90/10 were employed. The degree of microphase separation and mechanical properties of both the PUEs were investigated using differential scanning calorimetry, dynamic viscoelastic property measurements and tensile testing. Mechanical properties could be controlled by changing the molar ratio of two different monomer components.

  1. A new experimental setup to characterize the dynamic mechanical behaviour of ballistic yarns

    International Nuclear Information System (INIS)

    Chevalier, C; Kerisit, C; Faderl, N; Klavzar, A; Boussu, F; Coutellier, D

    2016-01-01

    Fabrics have been widely used as part of ballistic protections since the 1970s and the development of new ballistic solutions made from fabrics need numerical simulations, in order to predict the performance of the ballistic protection. The performances and the induced mechanisms in ballistic fabrics during an impact depend on the weaving parameters and also on the inner parameters of the yarns used inside these structures. Thus, knowing the dynamic behaviour of yarn is essential to determine the ballistic behaviour of fabrics during an impact. Two major experimental devices exist and are used to test ballistic yarns in a dynamic uniaxial tension. The first one corresponds to the Split Hopkinson Tensile Bars device, which is commonly used to characterize the mechanical properties of materials in uniaxial tension and under high loading. The second one is the transversal impact device. The real conditions of ballistic impact can be realized with this device. Then, this paper deals with a new experimental setup developed in our laboratory and called the ‘tensile impact test for yarn’ (TITY) device. With this device, specific absorbed energy measurements of para-aramid yarns (336 Tex, Twaron ™ , 1000 filaments) have been carried out and revealed that static and dynamic properties of para-aramid are different. (paper)

  2. Measurement of Mechanical Properties of Cantilever Shaped Materials

    Directory of Open Access Journals (Sweden)

    Thomas Thundat

    2008-05-01

    variations. When appropriate, we use continuum mechanics, which is justified according to the ratio between the cantilever thickness and the grain size of the materials. We will also address other potential applications such as the ageing process of nuclear materials, building materials, and optical fibers, which can be investigated by monitoring their mechanical changes with time. In summary, by virtue of the dynamic response of a miniaturized cantilever shaped material, we present useful measurements of the associated elastic properties.

  3. Calculation of dynamic and electronic properties of perfect and defect crystals by semiempirical quantum mechanical methods

    International Nuclear Information System (INIS)

    Zunger, A.

    1975-07-01

    Semiempirical all-valence-electron LCAO methods, that were previously used to study the electronic structure of molecules are applied to three problems in solid state physics: the electronic band structure of covalent crystals, point defect problems in solids and lattice dynamical study of molecular crystals. Calculation methods for the electronic band structure of regular solids are introduced and problems regarding the computation of the density matrix in solids are discussed. Three models for treating the electronic eigenvalue problem in the solid, within the proposed calculation schemes, are discussed and the proposed models and calculation schemes are applied to the calculation of the electronic structure of several solids belonging to different crystal types. The calculation models also describe electronic properties of deep defects in covalent insulating crystals. The possible usefulness of the semieipirical LCAO methods in determining the first order intermolecular interaction potential in solids and an improved model for treating the lattice dynamics and related thermodynamical properties of molecular solids are presented. The improved lattice dynamical is used to compute phonon dispersion curves, phonon density of states, stable unit cell structure, lattice heat capacity and thermal crystal parameters, in α and γ-N 2 crystals, using the N 2 -N 2 intermolecular interaction potential that has been computed from the semiempirical LCAO methods. (B.G.)

  4. Dynamics of mechanical systems with variable mass

    CERN Document Server

    Belyaev, Alexander

    2014-01-01

    The book presents up-to-date and unifying formulations for treating dynamics of different types of mechanical systems with variable mass. The starting point is overview of the continuum mechanics relations of balance and jump for open systems from which extended Lagrange and Hamiltonian formulations are derived. Corresponding approaches are stated at the level of analytical mechanics with emphasis on systems with a position-dependent mass and at the level of structural mechanics. Special emphasis is laid upon axially moving structures like belts and chains, and on pipes with an axial flow of fluid. Constitutive relations in the dynamics of systems with variable mass are studied with particular reference to modeling of multi-component mixtures. The dynamics of machines with a variable mass are treated in detail and conservation laws and the stability of motion will be analyzed. Novel finite element formulations for open systems in coupled fluid and structural dynamics are presented.

  5. Numerical methods in dynamic fracture mechanics

    International Nuclear Information System (INIS)

    Beskos, D.E.

    1987-01-01

    A review of numerical methods for the solution of dynamic problems of fracture mechanics is presented. Finite difference, finite element and boundary element methods as applied to linear elastic or viscoelastic and non-linear elastoplastic or elastoviscoplastic dynamic fracture mechanics problems are described and critically evaluated. Both cases of stationary cracks and rapidly propagating cracks of simple I, II, III or mixed modes are considered. Harmonically varying with time or general transient dynamic disturbances in the form of external loading or incident waves are taken into account. Determination of the dynamic stress intensity factor for stationary cracks or moving cracks with known velocity history as well as determination of the crack-tip propagation history for given dynamic fracture toughness versus crack velocity relation are described and illustrated by means of certain representative examples. Finally, a brief assessment of the present state of knowledge is made and research needs are identified

  6. Mechanical Models of the Dynamics of Vitreous Substitutes

    Directory of Open Access Journals (Sweden)

    Krystyna Isakova

    2014-01-01

    Full Text Available We discuss some aspects of the fluid dynamics of vitreous substitutes in the vitreous chamber, focussing on the flow induced by rotations of the eye bulb. We use simple, yet not trivial, theoretical models to highlight mechanical concepts that are relevant to understand the dynamics of vitreous substitutes and also to identify ideal properties for vitreous replacement fluids. We first recall results by previous authors, showing that the maximum shear stress on the retina grows with increasing viscosity of the fluid up to a saturation value. We then investigate how the wall shear stress changes if a thin layer of aqueous humour is present in the vitreous chamber, separating the retina from the vitreous replacement fluid. The theoretical predictions show that the existence of a thin layer of aqueous is sufficient to substantially decrease the shear stress on the retina. We finally discuss a theoretical model that predicts the stability conditions of the interface between the aqueous and a vitreous substitute. We discuss the implications of this model to understand the mechanisms leading to the formation of emulsion in the vitreous chamber, showing that instability of the interface is possible in a range of parameters relevant for the human eye.

  7. A review of penetration mechanisms and dynamic properties of tungsten and depleted uranium penetrators

    International Nuclear Information System (INIS)

    Andrew, S.P.; Caligiuri, R.D.; Eiselstein, L.E.

    1991-01-01

    Kinetic energy penetrators must posses the best possible combination of hardness, stiffness, strength, and fracture toughness characteristics to be effective against modern armor systems. Over the last decade, depleted uranium (DU) and tungsten alloys have been the materials of choice for kinetic energy penetrators. Du and tungsten perform abut the same against semi-infinite targets, and DU outperforms tungsten penetrators in oblique, spaced array targets, but because of environmental and subsequent cost concerns, effort has focused on improving the performance of tungsten penetrators over the last few years. However, despite recent improvements in material properties, the penetration performance of tungsten still lags behind that of DU. One possible reason is the difference in deformation mechanisms at the leading edge of the penetrator during the penetration process-DU alloys tend to shear band and sharpen as they penetrate the target material, whereas tungsten penetrators tend to mushroom and blunt. As a first step to determine whether shear banding is truly the reason for superior DU performance, a review of the fabrication, high strain-rate properties, and penetration phenomena of penetrators manufactured from both tungsten and DU alloys. Specifically, the effects of composition, processing, and heat treatment on material properties and penetration mechanisms of these alloys are discussed

  8. Preparation and Dynamic Mechanical Properties at Elevated Temperatures of a Tungsten/Glass Composite

    Science.gov (United States)

    Gao, Chong; Wang, Yingchun; Ma, Xueya; Liu, Keyi; Wang, Yubing; Li, Shukui; Cheng, Xingwang

    2018-03-01

    Experiments were conducted to prepare a borosilicate glass matrix composite containing 50 vol.% tungsten and examine its dynamic compressive behavior at elevated temperatures in the range of 450-775 °C. The results show that the homogenous microstructure of the tungsten/glass composite with relative density of 97% can be obtained by hot-pressing sintering at 800 °C for 1 h under pressure of 30 MPa. Dynamic compressive testing was carried out by a separate Hopkinson pressure bar system with a synchronous device. The results show that the peak stress decreases and the composite transforms from brittle to ductile in nature with testing temperature increasing from 450 to 750 °C. The brittle-ductile transition temperature is about 500 °C. Over 775 °C, the composite loses load-bearing capacity totally because of the excessive softening of the glass phase. In addition, the deformation and failure mechanism were analyzed.

  9. Influence of Fiber Volume Fraction on the Tensile Properties and Dynamic Characteristics of Coconut Fiber Reinforced Composite

    OpenAIRE

    Izzuddin Zaman; Al Emran Ismail; Muhamad Khairudin Awang

    2011-01-01

    The utilization of coconut fibers as reinforcement in polymer composites has been increased significantly due to their low cost and high specific mechanical properties. In this paper, the mechanical properties and dynamic characteristics of a proposed combined polymer composite which consist of a polyester matrix and coconut fibers are determined. The influence of fibers volume fraction (%) is also evaluated and composites with volumetric amounts of coconut fiber up to 15% are fabricated. In ...

  10. Dynamical phase transitions in quantum mechanics

    International Nuclear Information System (INIS)

    Rotter, Ingrid

    2012-01-01

    1936 Niels Bohr: In the atom and in the nucleus we have indeed to do with two extreme cases of mechanical many-body problems for which a procedure of approximation resting on a combination of one-body problems, so effective in the former case, loses any validity in the latter where we, from the very beginning, have to do with essential collective aspects of the interplay between the constituent particles. 1963: Maria Goeppert-Mayer and J. Hans D. Jensen received the Nobel Prize in Physics for their discoveries concerning nuclear shell structure. State of the art 2011: - The nucleus is an open quantum system described by a non-Hermitian Hamilton operator with complex eigenvalues. The eigenvalues may cross in the complex plane ('exceptional points'), the phases of the eigenfunctions are not rigid in approaching the crossing points and the widths bifurcate. By this, a dynamical phase transition occurs in the many-level system. The dynamical phase transition starts at a critical value of the level density. Hence the properties of he low-lying nuclear states (described well by the shell model) and those of highly excited nuclear states (described by random ensembles) differ fundamentally from one another. The statement of Niels Bohr for compound nucleus states at high level density is not in contradiction to the shell-model description of nuclear (and atomic) states at low level density. Dynamical phase transitions are observed experimentally in different systems, including PT-symmetric ones, by varying one or more parameters

  11. Structural and dynamical properties of Yukawa balls

    International Nuclear Information System (INIS)

    Block, D; Kroll, M; Arp, O; Piel, A; Kaeding, S; Ivanov, Y; Melzer, A; Henning, C; Baumgartner, H; Ludwig, P; Bonitz, M

    2007-01-01

    To study the structural and dynamical properties of finite 3D dust clouds (Yukawa balls) new diagnostic tools have been developed. This contribution describes the progress towards 3D diagnostics for measuring the particle positions. It is shown that these diagnostics are capable of investigating the structural and dynamical properties of Yukawa balls and gaining insight into their basic construction principles

  12. Thermo-mechanical properties improvement of asphalt binder by using methylmethacrylate/ethylene glycol dimethacrylate

    Directory of Open Access Journals (Sweden)

    A.A. Ragab

    2016-09-01

    Full Text Available Various polymer-modified asphalt compositions for paving and roofing applications are known since several years ago. The degree to which a polymer improves the asphalt’s properties depends on the compatibility of the polymer and the asphalt. Highly compatible polymers are more effective in providing property improvements. In this research, the influence of in situ polymerization of methylmethacrylate monomer with asphalt in presence of ethylene glycol dimethacrylate (EGDM as a crosslinker on the rheological and thermal properties of asphalt binder of type penetration grade 60/70 was studied. To achieve this aim, MMA/EGDM(MC in different ratios as 5, 10 and 15% (w/w were used to modify the thermo-mechanical properties of asphalt via forming chemical bond, and the changing in mechanical and thermal properties, of the mixes as well as the storage stability were studied. Also, the morphology (SEM, thermal characterization (TGA, dynamic mechanical analysis (DMA, bending and rheological tests were detected. The obtained experimental results revealed that the addition of MC causes both the rheological and thermal properties of the binder to improve and the prepared PMAs has high temperature susceptibility and low curing time. The improvement in the properties of the virgin asphalt will be effective in using this soft type in coating applications instead of highly expensive oxidized one.

  13. Studies of biaxial mechanical properties and nonlinear finite element modeling of skin.

    Science.gov (United States)

    Shang, Xituan; Yen, Michael R T; Gaber, M Waleed

    2010-06-01

    The objective of this research is to conduct mechanical property studies of skin from two individual but potentially connected aspects. One is to determine the mechanical properties of the skin experimentally by biaxial tests, and the other is to use the finite element method to model the skin properties. Dynamic biaxial tests were performed on 16 pieces of abdominal skin specimen from rats. Typical biaxial stress-strain responses show that skin possesses anisotropy, nonlinearity and hysteresis. To describe the stress-strain relationship in forms of strain energy function, the material constants of each specimen were obtained and the results show a high correlation between theory and experiments. Based on the experimental results, a finite element model of skin was built to model the skin's special properties including anisotropy and nonlinearity. This model was based on Arruda and Boyce's eight-chain model and Bischoff et al.'s finite element model of skin. The simulation results show that the isotropic, nonlinear eight-chain model could predict the skin's anisotropic and nonlinear responses to biaxial loading by the presence of an anisotropic prestress state.

  14. Dynamic characteristics of lead rubber bearings with dynamic two-dimensional test equipment

    International Nuclear Information System (INIS)

    Ohtori, Y.; Ishida, K.; Mazda, T.

    1994-01-01

    Although studies have previously been done on the static mechanical properties of lead rubber bearings, this study aims to grasp the dynamic characteristics of lead rubber bearings from experimental results, using two-dimensional dynamic test equipment which is designed to grasp in detail such dynamic characteristics as deformation capacity and proof stress. This paper describes the results from three types of tests: (1) dynamic mechanical properties tests, (2) cyclic loading tests, and (3) dynamic ultimate tests. Through these tests, it was confirmed that the dynamic characteristics of lead rubber bearings are independent of strain rate

  15. Chronic alcohol abuse in men alters bone mechanical properties by affecting both tissue mechanical properties and microarchitectural parameters.

    Science.gov (United States)

    Cruel, M; Granke, M; Bosser, C; Audran, M; Hoc, T

    2017-06-01

    Alcohol-induced secondary osteoporosis in men has been characterized by higher fracture prevalence and a modification of bone microarchitecture. Chronic alcohol consumption impairs bone cell activity and results in an increased fragility. A few studies highlighted effects of heavy alcohol consumption on some microarchitectural parameters of trabecular bone. But to date and to our knowledge, micro- and macro-mechanical properties of bone of alcoholic subjects have not been investigated. In the present study, mechanical properties and microarchitecture of trabecular bone samples from the iliac crest of alcoholic male patients (n=15) were analyzed and compared to a control group (n=8). Nanoindentation tests were performed to determine the tissue's micromechanical properties, micro-computed tomography was used to measure microarchitectural parameters, and numerical simulations provided the apparent mechanical properties of the samples. Compared to controls, bone tissue from alcoholic patients exhibited an increase of micromechanical properties at tissue scale, a significant decrease of apparent mechanical properties at sample scale, and significant changes in several microarchitectural parameters. In particular, a crucial role of structure model index (SMI) on mechanical properties was identified. 3D microarchitectural parameters are at least as important as bone volume fraction to predict bone fracture risk in the case of alcoholic patients. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  16. Exploring the Local Elastic Properties of Bilayer Membranes Using Molecular Dynamics Simulations

    DEFF Research Database (Denmark)

    Pieffet, Gilles; Botero, Alonso; Peters, Günther H.J.

    2014-01-01

    Membrane mechanical elastic properties regulate a variety of cellular processes involving local membrane deformation, such as ion channel function and vesicle fusion. In this work, we used molecular dynamics simulations to estimate the local elastic properties of a membrane. For this, we calculated...... the stretching process in molecular detail, allowing us to fit this profile to a previously proposed continuum elastic model. Through this approach, we calculated an effective membrane spring constant of 42 kJ-2.mol-1, which is in good agreement with the PMF calculation. Furthermore, the solvation energy we...

  17. Dynamic tensile loading improves the functional properties of mesenchymal stem cell-laden nanofiber-based fibrocartilage.

    Science.gov (United States)

    Baker, Brendon M; Shah, Roshan P; Huang, Alice H; Mauck, Robert L

    2011-05-01

    Fibrocartilaginous tissues such as the meniscus serve critical load-bearing roles, relying on arrays of collagen fibers to resist tensile loads experienced with normal activity. As these structures are frequently injured and possess limited healing capacity, there exists great demand for tissue-engineered replacements. Toward recreating the structural features of these anisotropic tissues in vitro, we employ scaffolds composed of co-aligned nanofibers that direct mesenchymal stem cell (MSC) orientation and the formation of organized extracellular matrix (ECM). Concomitant with ECM synthesis, the mechanical properties of constructs increase with free-swelling culture, but ultimately failed to achieve equivalence with meniscal fibrocartilage. As mechanical forces are essential to the development and maintenance of musculoskeletal tissues, this work examined the effect of cyclic tensile loading on MSC-laden nanofibrous constructs. We hypothesized that loading would modulate the transcriptional behavior of MSCs, spur the deposition of ECM, and lead to enhancements in construct mechanical properties compared to free-swelling controls. Fiber-aligned scaffolds were seeded with MSCs and dynamically loaded daily in tension or maintained as nonloaded controls for 4 weeks. With mechanical stimulation, fibrous gene expression increased, collagen deposition increased, and the tensile modulus increased by 16% relative to controls. These results show that dynamic tensile loading enhances the maturation of MSC-laden aligned nanofibrous constructs, suggesting that recapitulation of the structural and mechanical environment of load-bearing tissues results in increases in functional properties that can be exploited for tissue engineering applications.

  18. Effect of Short Fiber Reinforcement on Mechanical Properties of Hybrid Phenolic Composites

    Directory of Open Access Journals (Sweden)

    Sembian Manoharan

    2014-01-01

    Full Text Available Fiber plays an important role in determining the hardness, strength, and dynamic mechanical properties of composite material. In the present work, enhancement of viscoelastic behaviour of hybrid phenolic composites has been synergistically investigated. Five different phenolic composites, namely, C1, C2, C3, C4, and C5, were fabricated by varying the weight percentage of basalt and aramid fiber, namely, 25, 20, 15, 10, and 5% by compensating with barium sulphate (BaSO4 to keep the combined reinforcement concentration at 25 wt%. Hardness was measured to examine the resistance of composites to indentation. The hardness of phenolic composites increased from 72.2 to 85.2 with increase in basalt fiber loading. Composite C1 (25 wt% fiber is 1.2 times harder than composite C5. Compression test was conducted to find out compressive strength of phenolic composites and compressive strength increased with increase in fiber content. Dynamic mechanical analysis (DMA was carried out to assess the temperature dependence mechanical properties in terms of storage modulus (E′, loss modulus (E′′, and damping factor (tan δ. The results indicate great improvement of E′ values and decrease in damping behaviour of composite upon fiber addition. Further X-ray powder diffraction (XRD and energy-dispersive X-ray (EDX analysis were employed to characterize the friction composites.

  19. Dimensionless study on dynamics of pressure controlled mechanical ventilation system

    International Nuclear Information System (INIS)

    Shi, Yan; Niu, Jinglong; Cai, Maolin; Xu, Weiqing

    2015-01-01

    Dynamics of mechanical ventilation system can be referred in pulmonary diagnostics and treatments. In this paper, to conveniently grasp the essential characteristics of mechanical ventilation system, a dimensionless model of mechanical ventilation system is presented. For the validation of the mathematical model, a prototype mechanical ventilation system of a lung simulator is proposed. Through the simulation and experimental studies on the dimensionless dynamics of the mechanical ventilation system, firstly, the mathematical model is proved to be authentic and reliable. Secondly, the dimensionless dynamics of the mechanical ventilation system are obtained. Last, the influences of key parameters on the dimensionless dynamics of the mechanical ventilation system are illustrated. The study provides a novel method to study the dynamic of mechanical ventilation system, which can be referred in the respiratory diagnostics and treatment.

  20. Dimensionless study on dynamics of pressure controlled mechanical ventilation system

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Yan; Niu, Jinglong; Cai, Maolin; Xu, Weiqing [Beihang University, Beijing (Korea, Republic of)

    2015-02-15

    Dynamics of mechanical ventilation system can be referred in pulmonary diagnostics and treatments. In this paper, to conveniently grasp the essential characteristics of mechanical ventilation system, a dimensionless model of mechanical ventilation system is presented. For the validation of the mathematical model, a prototype mechanical ventilation system of a lung simulator is proposed. Through the simulation and experimental studies on the dimensionless dynamics of the mechanical ventilation system, firstly, the mathematical model is proved to be authentic and reliable. Secondly, the dimensionless dynamics of the mechanical ventilation system are obtained. Last, the influences of key parameters on the dimensionless dynamics of the mechanical ventilation system are illustrated. The study provides a novel method to study the dynamic of mechanical ventilation system, which can be referred in the respiratory diagnostics and treatment.

  1. Real-time observations of mechanical stimulus-induced enhancements of mechanical properties in osteoblast cells

    International Nuclear Information System (INIS)

    Zhang Xu; Liu Xiaoli; Sun Jialun; He Shuojie; Lee, Imshik; Pak, Hyuk Kyu

    2008-01-01

    Osteoblast, playing a key role in the pathophysiology of osteoporosis, is one of the mechanical stress sensitive cells. The effects of mechanical load-induced changes of mechanical properties in osteoblast cells were studied at real-time. Osteoblasts obtained from young Wister rats were exposed to mechanical loads in different frequencies and resting intervals generated by atomic force microscopy (AFM) probe tip and simultaneously measured the changes of the mechanical properties by AFM. The enhancement of the mechanical properties was observed and quantified by the increment of the apparent Young's modulus, E * . The observed mechanical property depended on the frequency of applied tapping loads. For the resting interval is 50 s, the mechanical load-induced enhancement of E * -values disappears. It seems that the enhanced mechanical property was recover able under no additional mechanical stimulus

  2. Morphology, crystallization and dynamic mechanical properties of ...

    Indian Academy of Sciences (India)

    Unknown

    considerable interest both in industry and academia because of its significantly ... super-engineering materials because of their superior mecha- nical properties at ... proves the barrier (Kojima et al 1993c) and ablative. (Vaia et al 1999) ...

  3. Zeno dynamics in quantum statistical mechanics

    International Nuclear Information System (INIS)

    Schmidt, Andreas U

    2003-01-01

    We study the quantum Zeno effect in quantum statistical mechanics within the operator algebraic framework. We formulate a condition for the appearance of the effect in W*-dynamical systems, in terms of the short-time behaviour of the dynamics. Examples of quantum spin systems show that this condition can be effectively applied to quantum statistical mechanical models. Furthermore, we derive an explicit form of the Zeno generator, and use it to construct Gibbs equilibrium states for the Zeno dynamics. As a concrete example, we consider the X-Y model, for which we show that a frequent measurement at a microscopic level, e.g. a single lattice site, can produce a macroscopic effect in changing the global equilibrium

  4. Biological Reclaiming of Recycled Rubber and Its Effect on Mechanical Properties of New Rubber Vulcanizates

    Directory of Open Access Journals (Sweden)

    Maryam Mansourirad

    2014-12-01

    Full Text Available Nowadays, due to environmental concerns, there has been great attention to recycling and reclaiming of tires. Different methods have been used for reclaiming or desulfurization of rubber. One of these methods, in which desulfurization of rubber happens with no damage to the polymer structure, is desulfurization by biological microorganisms. In this research the application and performance of thermophilic and sulfur oxidizing bacteria, Acidianus brierleyi for this purpose was investigated. Ground tire rubber was detoxified with organic solvents, and the optimum conditions for growing microorganisms in the existence of rubber powder in the shaker flasks were determined. In order to accelerate the process, the suitable conditions for growth of bacteria and desulfurization in the bioreactor were adopted. Fourier transfer infrared spectroscopy and scanning electron microscopy were employed to characterize desulfurization of bio-treated powder from bioreactor. The results indicated that morphological changes on powder surface and reduction of sulfur bonds have occurred. Samples from bioreactors, with and without bacteria and also untreated rubber powder were compounded with virgin styrene butadiene rubber. Tensile and dynamic properties were investigated using uni-direction tensile test and dynamic-mechanical-thermal analysis, respectively. Although some differences in dynamic-mechanical-thermal properties of samples pointed to stronger interaction between rubber matrix and treated rubber powder, no significant improvements in the mechanical properties of vulcanizates containing A.brierleyi-treated powder were observed. Low concentration of sulfur in rubber vulcanizates, chemical bonds of sulfur, and low efficiency of A. brierleyi in breaking sulfur bonds and reclaiming rubber were considered as the reasons for low efficiency of this treatment process.

  5. Nonlinear Dynamic Phenomena in Mechanics

    CERN Document Server

    Warminski, Jerzy; Cartmell, Matthew P

    2012-01-01

    Nonlinear phenomena should play a crucial role in the design and control of engineering systems and structures as they can drastically change the prevailing dynamical responses. This book covers theoretical and applications-based problems of nonlinear dynamics concerned with both discrete and continuous systems of interest in civil and mechanical engineering. They include pendulum-like systems, slender footbridges, shape memory alloys, sagged elastic cables and non-smooth problems. Pendulums can be used as a dynamic absorber mounted in high buildings, bridges or chimneys. Geometrical nonlinear

  6. Mechanical, dielectric, and physicochemical properties of impregnating resin based on unsaturated polyesterimides

    Science.gov (United States)

    Fetouhi, Louiza; Petitgas, Benoit; Dantras, Eric; Martinez-Vega, Juan

    2017-10-01

    This work aims to characterize the dielectric and the mechanical properties of a resin based on an unsaturated polyesterimide diluted in methacrylate reactive diluents used in the impregnation of rotating machines. The broadband dielectric spectrometry and the dynamic mechanical analysis were used to quantify the changes in dielectric and mechanical properties of the network PEI resin, as a function of temperature and frequency. The network characterizations highlight the presence of two main relaxations, α and α', confirmed by the differential scanning calorimetry analysis, showing the complexity of the chemical composition of this resin. The dielectric spectroscopy shows a significant increase in the dielectric values due to an increase of the material conductivity, while the mechanical spectroscopy shows an important decrease of the polymer rigidity and viscosity expressed by an important decrease in the storage modulus. The PEI resin shows a high reactivity when it is submitted in successive heating ramps, which involves in a post-cross-linking reaction. Contribution to the topical issue "Electrical Engineering Symposium (SGE 2016)", edited by Adel Razek

  7. Composition, morphology and mechanical properties of sputtered TiAlN coating

    Energy Technology Data Exchange (ETDEWEB)

    Budi, Esmar, E-mail: esmarbudi@unj.ac.id [Department of Physics, Faculty of Science and Mathematics, Universitas Negeri Jakarta, Jl. Pemuda No. 10, Jakarta 13220 (Indonesia); Razali, M. Mohd. [Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka, Karung Berkunci No. 1752 Pejabat Pos Durian Tunggal 76109 Melaka (Malaysia); Nizam, A. R. Md. [Faculty of Manufacturing Engineering, UniversitiTeknikal Malaysia Melaka, Karung Berkunci No. 1752 Pejabat Pos Durian Tunggal 76109 Melaka (Malaysia)

    2014-03-24

    TiAlN coating was deposited on the tungsten carbide cutting tool by using DC magnetron sputtering system to study the influence of substrate bias and nitrogen flow rate on the composition, morphology and mechanical properties. The negatively substrate bias and nitrogen flow rate was varied from about −79 to −221 V and 30 sccm to 72 sccm, respectively. The coating composition and roughness were characterized by using SEM/EDX and Atomic Force Microscopy (AFM), respectively. The dynamic ultra micro hardness tester was used to measure the mechanical properties. The coating hardness increases to about 10-12 GPa with an increase of the negatively substrate bias up to − 200 V and it tend to decrease with an increase in nitrogen flow rate up to 70 sccm. The increase of hardness follows the increase of Ti and N content and rms coating roughness.

  8. Comprehensive Study on Thermal and Dynamic Mechanical Behavior of PET/PEN Blends

    Directory of Open Access Journals (Sweden)

    Hossien Ali Khonakdar

    2013-10-01

    Full Text Available The effects of interchange reactions on the crystallization, melting, and dynamic mechanical thermal behavior of poly(ethylene terephthalate/poly(ethylene naphthalate (PET/PEN blends prepared by melt mixing have been investigated. The occurrence of interchange reactions has been verified by proton nuclear magnetic resonance (1H NMR. Differential scanning calorimetry (DSC and dynamic mechanical analysis (DMA were used to study the effect of transesterification reaction on crystallinity, melting and dynamic mechanical properties of the blends. It was found that by extension of transesterification, the miscibility of the blend increased. Time and temperature of mixing were most important parameters affecting the transesterification level. On blending, the melt crystallinity of poly(ethylene terephthalate was reduced and in contrast that of poly(ethylene naphthalate was increased; where melt crystallization temperatures of both phases were depressed. A single composition-dependent glass transition peak, which was indicative of miscibility, was detected in second heating thermograms of the blends. It was observed that cold crystallization of poly(ethylene terephthalate phase decreases while that of poly(ethylene naphthalate was suppressed on blending. It was found that each phase crystallized individually and a melting point depression which was an indication of compatibility was evident at the same time. Dynamic mechanical analysis confirmed the proton nuclear magnetic resonance and differential scanning calorimetry results. The secondary viscoelastic transitions of each phase in blend samples were also probed. Increment of peak area in the loss factor has implied the miscibility of blend due to formation of poly(ethylene terephthalate/poly(ethylene naphthalate random copolymer.

  9. Thermal and mechanical properties of fatty acid starch esters.

    Science.gov (United States)

    Winkler, H; Vorwerg, W; Rihm, R

    2014-02-15

    The current study examined thermal and mechanical properties of fatty acid starch esters (FASEs). All highly soluble esters were obtained by the sustainable, homogeneous transesterification of fatty acid vinyl esters in dimethylsulfoxide (DMSO). Casted films of products with a degree of substitution (DS) of 1.40-1.73 were compared with highly substituted ones (DS 2.20-2.63). All films were free of any plasticizer additives. Hydrophobic surfaces were characterized by contact angle measurements. Dynamic scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA) revealed thermal transitions (T(g), T(m)) which were influenced by the internal plasticizing effect of the ester groups. Thermal gravimetric analysis (TGA) measurements showed the increased thermal stability toward native starch. Tensile tests revealed the decreasing strength and stiffness of the products with increasing ester-group chain length while the elongation increased up to the ester group laurate and after that decreased. Esters of the longest fatty acids, palmitate and stearate turned out to be brittle materials due to super molecular structures of the ester chains such as confirmed by X-ray. Summarized products with a DS 1.40-1.73 featured more "starch-like" properties with tensile strength up to outstanding 43 MPa, while products with a DS >2 behaved more "oil-like". Both classes of esters should be tested as a serious alternative to commercial starch blends and petrol-based plastics. The term Cnumber is attributed to the number of total C-Atoms of the fatty acid (e.g. C6=Hexanoate). Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Tracking the mechanical dynamics of human embryonic stem cell chromatin

    Directory of Open Access Journals (Sweden)

    Hinde Elizabeth

    2012-12-01

    Full Text Available Abstract Background A plastic chromatin structure has emerged as fundamental to the self-renewal and pluripotent capacity of embryonic stem (ES cells. Direct measurement of chromatin dynamics in vivo is, however, challenging as high spatiotemporal resolution is required. Here, we present a new tracking-based method which can detect high frequency chromatin movement and quantify the mechanical dynamics of chromatin in live cells. Results We use this method to study how the mechanical properties of chromatin movement in human embryonic stem cells (hESCs are modulated spatiotemporally during differentiation into cardiomyocytes (CM. Notably, we find that pluripotency is associated with a highly discrete, energy-dependent frequency of chromatin movement that we refer to as a ‘breathing’ state. We find that this ‘breathing’ state is strictly dependent on the metabolic state of the cell and is progressively silenced during differentiation. Conclusions We thus propose that the measured chromatin high frequency movements in hESCs may represent a hallmark of pluripotency and serve as a mechanism to maintain the genome in a transcriptionally accessible state. This is a result that could not have been observed without the high spatial and temporal resolution provided by this novel tracking method.

  11. The dynamical mechanical properties of tungsten under compression at working temperature range of divertors

    International Nuclear Information System (INIS)

    Zhu, C.C.; Song, Y.T.; Peng, X.B.; Wei, Y.P.; Mao, X.; Li, W.X.; Qian, X.Y.

    2016-01-01

    In the divertor structure of ITER and EAST with mono-block module, tungsten plays not only a role of armor material but also a role of structural material, because electromagnetic (EM) impact will be exerted on tungsten components in VDEs or CQ. The EM loads can reach to 100 MN, which would cause high strain rates. In addition, directly exposed to high-temperature plasma, the temperature regime of divertor components is complex. Aiming at studying dynamical response of tungsten divertors under EM loads, an experiment on tungsten employed in EAST divertors was performed using a Kolsky bar system. The testing strain rates and temperatures is derived from actual working conditions, which makes the constitutive equation concluded by using John-Cook model and testing data very accurate and practical. The work would give a guidance to estimate the dynamical response, fatigue life and damage evolution of tungsten divertor components under EM impact loads. - Graphical abstract: From the comparison between the experimental curves and the predicted curves calculated by adopting the corrected m, it is very clear that the new model is of great capability to explain the deformation behavior of the tungsten material under dynamic compression at high temperatures. (EC, PC and PCM refers to experimental curve, predicted curve and predicted curve with a corrected m. Different colors represent different scenarios.). - Highlights: • Test research on dynamic properties of tungsten at working temperature range and strain rate range of divertors. • Constitutive equation descrbing strain hardening, strain rate hardening and temperature softening. • A guidance to estimate dynamical response and damage evolution of tungsten divertor components under impact.

  12. Effect of Mesoporous Silica and Hydroxyapatite Nanoparticles on the Tensile and Dynamic Mechanical Thermal Properties of Polypropylene and Polypropylene Foam

    Directory of Open Access Journals (Sweden)

    Alireza Albooyeh

    2014-12-01

    Full Text Available The main purpose of this paper is the experimental study on the tensile and dynamic - mechanical thermal properties of polypropylene (PP and polypropylene foam reinforced with mesoporous silica (MCM-41, hydroxyapatite (HA and the composite of mesoporous silica and hydroxyapatite (MCM41-HA nanoparticles. Nanocomposites and nanocomposite foams containing PP, maleic anhydride grafted polypropylene, different nanoparticles and chemical blowing agent (for foam samples are mixed using the melt-compounding technique in a twin-screw extruder. The results of the tests show that at the same nanoparticles content, all the nanofillers cause better mechanical properties than neat PP and PP foam. Also, due to the porous structure of the foam samples, these samples have the higher damping characteristics and lower tensile properties than the solid samples. Because of higher rigidity and higher strength of HA nanoparticles, the greatest increase in modulus and tensile strength occurs by adding these nanoparticles to neat PP and PP foam. The highest damping factor is obtained by adding MCM-41-HA nanoparticles to PP and PP foam, because of the porous nature of the MCM-41 particles which were reinforced by HA particles. The results of differential scanning calorimetry show that the addition of different nanoparticles does not have any significant effect on crystallinity and melting behavior of PP. Scanning electron microscopy images show that the nanomaterials were fine and uniformly dispersed within the polymer matrix. Furthermore, the addition of different nanoparticles to PP foam causes to increase the cell density, to reduce the cell sizes and to improve the cell sizes distribution. In this respect, the lowest cell sizes and the highest cell density are created by adding HA and MCM41-HA  nanopaticles to PP foams.

  13. Transverse mechanical properties of cell walls of single living plant cells probed by laser-generated acoustic waves.

    Science.gov (United States)

    Gadalla, Atef; Dehoux, Thomas; Audoin, Bertrand

    2014-05-01

    Probing the mechanical properties of plant cell wall is crucial to understand tissue dynamics. However, the exact symmetry of the mechanical properties of this anisotropic fiber-reinforced composite remains uncertain. For this reason, biologically relevant measurements of the stiffness coefficients on individual living cells are a challenge. For this purpose, we have developed the single-cell optoacoustic nanoprobe (SCOPE) technique, which uses laser-generated acoustic waves to probe the stiffness, thickness and viscosity of live single-cell subcompartments. This all-optical technique offers a sub-micrometer lateral resolution, nanometer in-depth resolution, and allows the non-contact measurement of the mechanical properties of live turgid tissues without any assumption of mechanical symmetry. SCOPE experiments reveal that single-cell wall transverse stiffness in the direction perpendicular to the epidermis layer of onion cells is close to that of cellulose. This observation demonstrates that cellulose microfibrils are the main load-bearing structure in this direction, and suggests strong bonding of microfibrils by hemicelluloses. Altogether our measurement of the viscosity at high frequencies suggests that the rheology of the wall is dominated by glass-like dynamics. From a comparison with literature, we attribute this behavior to the influence of the pectin matrix. SCOPE's ability to unravel cell rheology and cell anisotropy defines a new class of experiments to enlighten cell nano-mechanics.

  14. Developing descriptors to predict mechanical properties of nanotubes.

    Science.gov (United States)

    Borders, Tammie L; Fonseca, Alexandre F; Zhang, Hengji; Cho, Kyeongjae; Rusinko, Andrew

    2013-04-22

    Descriptors and quantitative structure property relationships (QSPR) were investigated for mechanical property prediction of carbon nanotubes (CNTs). 78 molecular dynamics (MD) simulations were carried out, and 20 descriptors were calculated to build quantitative structure property relationships (QSPRs) for Young's modulus and Poisson's ratio in two separate analyses: vacancy only and vacancy plus methyl functionalization. In the first analysis, C(N2)/C(T) (number of non-sp2 hybridized carbons per the total carbons) and chiral angle were identified as critical descriptors for both Young's modulus and Poisson's ratio. Further analysis and literature findings indicate the effect of chiral angle is negligible at larger CNT radii for both properties. Raman spectroscopy can be used to measure C(N2)/C(T), providing a direct link between experimental and computational results. Poisson's ratio approaches two different limiting values as CNT radii increases: 0.23-0.25 for chiral and armchair CNTs and 0.10 for zigzag CNTs (surface defects <3%). In the second analysis, the critical descriptors were C(N2)/C(T), chiral angle, and M(N)/C(T) (number of methyl groups per total carbons). These results imply new types of defects can be represented as a new descriptor in QSPR models. Finally, results are qualified and quantified against experimental data.

  15. Effect of Ultrasonic Vibration on Mechanical Properties of 3D Printing Non-Crystalline and Semi-Crystalline Polymers.

    Science.gov (United States)

    Li, Guiwei; Zhao, Ji; Wu, Wenzheng; Jiang, Jili; Wang, Bofan; Jiang, Hao; Fuh, Jerry Ying Hsi

    2018-05-17

    Fused deposition modeling 3D printing has become the most widely used additive manufacturing technology because of its low manufacturing cost and simple manufacturing process. However, the mechanical properties of the 3D printing parts are not satisfactory. Certain pressure and ultrasonic vibration were applied to 3D printed samples to study the effect on the mechanical properties of 3D printed non-crystalline and semi-crystalline polymers. The tensile strength of the semi-crystalline polymer polylactic acid was increased by 22.83% and the bending strength was increased by 49.05%, which were almost twice the percentage increase in the tensile strength and five times the percentage increase in the bending strength of the non-crystalline polymer acrylonitrile butadiene styrene with ultrasonic strengthening. The dynamic mechanical properties of the non-crystalline and semi-crystalline polymers were both improved after ultrasonic enhancement. Employing ultrasonic energy can significantly improve the mechanical properties of samples without modifying the 3D printed material or adjusting the forming process parameters.

  16. Thermal and dynamic mechanical characterization of thermoplastic polyurethane/organoclay nanocomposites prepared by melt compounding

    International Nuclear Information System (INIS)

    Barick, A.K.; Tripathy, D.K.

    2010-01-01

    Thermoplastic polyurethane (TPU) nanocomposites based on organically modified layered silicate (OMLS) were prepared by melt intercalation process followed by compression molding. Different percentage of organoclays was incorporated into the TPU matrix in order to examine the influence of the nanoscaled fillers on nanostructure morphology and material properties. The microscopic morphology of the nanocomposites was evaluated by wide angle X-ray diffraction (WAXD), transmission electron microscopy (TEM), and atomic force microscopy (AFM). The observation revealed that both nanoclay-polymer interactions and shear stress developed during melt mixing are responsible for the effectively organoclay dispersion in TPU matrix resulting intercalated/exfoliated morphology. Thermal stability of the nanocomposites measured by thermogravimetric analysis (TGA) was improved significantly with the addition of nanoclay. The differential scanning calorimetry (DSC) analysis reveals that melting point of the nanocomposites increased with incorporation of nanoclay. The dynamic mechanical properties of the TPU nanocomposites were analyzed using a dynamic mechanical thermal analyzer (DMTA), which indicates that the storage modulus (E'), loss modulus (E''), and glass transition temperature (T g ) are significantly increased with increasing nanoclay content.

  17. Nonlinear structural mechanics theory, dynamical phenomena and modeling

    CERN Document Server

    Lacarbonara, Walter

    2013-01-01

    Nonlinear Structural Mechanics: Theory, Dynamical Phenomena and Modeling offers a concise, coherent presentation of the theoretical framework of nonlinear structural mechanics, computational methods, applications, parametric investigations of nonlinear phenomena and their mechanical interpretation towards design. The theoretical and computational tools that enable the formulation, solution, and interpretation of nonlinear structures are presented in a systematic fashion so as to gradually attain an increasing level of complexity of structural behaviors, under the prevailing assumptions on the geometry of deformation, the constitutive aspects and the loading scenarios. Readers will find a treatment of the foundations of nonlinear structural mechanics towards advanced reduced models, unified with modern computational tools in the framework of the prominent nonlinear structural dynamic phenomena while tackling both the mathematical and applied sciences. Nonlinear Structural Mechanics: Theory, Dynamical Phenomena...

  18. Modulation of neuronal dynamic range using two different adaptation mechanisms

    Directory of Open Access Journals (Sweden)

    Lei Wang

    2017-01-01

    Full Text Available The capability of neurons to discriminate between intensity of external stimulus is measured by its dynamic range. A larger dynamic range indicates a greater probability of neuronal survival. In this study, the potential roles of adaptation mechanisms (ion currents in modulating neuronal dynamic range were numerically investigated. Based on the adaptive exponential integrate-and-fire model, which includes two different adaptation mechanisms, i.e. subthreshold and suprathreshold (spike-triggered adaptation, our results reveal that the two adaptation mechanisms exhibit rather different roles in regulating neuronal dynamic range. Specifically, subthreshold adaptation acts as a negative factor that observably decreases the neuronal dynamic range, while suprathreshold adaptation has little influence on the neuronal dynamic range. Moreover, when stochastic noise was introduced into the adaptation mechanisms, the dynamic range was apparently enhanced, regardless of what state the neuron was in, e.g. adaptive or non-adaptive. Our model results suggested that the neuronal dynamic range can be differentially modulated by different adaptation mechanisms. Additionally, noise was a non-ignorable factor, which could effectively modulate the neuronal dynamic range.

  19. Selected mechanical properties of modified beech wood

    Directory of Open Access Journals (Sweden)

    Jiří Holan

    2008-01-01

    Full Text Available This thesis deals with an examination of mechanical properties of ammonia treated beach wood with a trademark Lignamon. For determination mechanical properties were used procedures especially based on ČSN. From the results is noticeable increased density of wood by 22% in comparison with untreated beach wood, which makes considerable increase of the most mechanical wood properties. Considering failure strength was raised by 32% and modulus of elasticity was raised at average about 46%.

  20. MECHANICS OF DYNAMIC POWDER COMPACTION PROCESS

    OpenAIRE

    Nurettin YAVUZ

    1996-01-01

    In recent years, interest in dynamic compaction methods of metal powders has increased due to the need to improve compaction properties and to increase production rates of compacts. In this paper, review of dynamic and explosive compaction of metal powders are given. An attempt is made to get a better understanding of the compaction process with the mechanicis of powder compaction.

  1. Quantum mechanics and dynamics in phase space

    International Nuclear Information System (INIS)

    Zlatev, I.S.

    1979-01-01

    Attention is paid to formal similarity of quantum mechanics and classical statistical physics. It is supposed that quantum mechanics can be reformulated by means of the quasiprobabilistic distributions (QPD). The procedure of finding a possible dynamics of representative points in a phase space is described. This procedure would lead to an equation of the Liouville type for the given QPD. It is shown that there is always a dynamics for which the phase volume is preserved and there is another dynamics for which the equations of motion are ''canonical''. It follows from the paper that in terms of the QPD the quantum mechanics is analogous to the classical statistical mechanics and it can be interpreted as statistics of phase points, their motion obeying the canonical equations. The difference consists in the fact that in the classical statistical physics constructed is statistics of points in a phase space which depict real, existing, observable states of the system under consideration. In the quantum mechanics constructed is statistics of points in a phase space which correspond to the ''substrate'' of quantum-mechanical objects which have no any physical sense and cannot be observed separately

  2. Thermal-mechanical properties of a graphitic-nanofibers reinforced epoxy.

    Science.gov (United States)

    Salehi-Khojin, Amin; Jana, Soumen; Zhong, Wei-Hong

    2007-03-01

    We previously developed a series of reactive graphitic nanofibers (r-GNFs) reinforced epoxy (nano-epoxy) as composite matrices, which have shown good wetting and adhesion properties with continuous fiber. In this work, the thermal-mechanical properties of the nano-epoxy system containing EponTM Resin 828 and Epi-cure Curing Agent W were characterized. Results from three-point bending tests showed that the flexural strength and flexural modulus of this system with 0.30 wt% of reactive nanofibers were increased by 16%, and 21% respectively, over pure epoxy. Fracture toughness increased by ca. 40% for specimens with 0.50 wt% of r-GNFs. By dynamic mechanical analysis (DMA) test, specimens with 0.30 wt% of r-GNFs showed a significant increase in storage modulus E' (by ca. 122%) and loss modulus E" (by ca. 111%) with respect to that of pure epoxy. Also thermo-dilatometry analysis (TDA) was used to measure dimensional change of specimens as a function of temperature, and then, coefficients of thermal expansion (CTE) before and after glass transition temperature (Tg) were obtained. Results implied that nano-epoxy materials had good dimensional stability and reduced CTE values when compared to those of pure epoxy.

  3. Cellular dynamical mechanisms for encoding the time and place of events along spatiotemporal trajectories in episodic memory.

    Science.gov (United States)

    Hasselmo, Michael E; Giocomo, Lisa M; Brandon, Mark P; Yoshida, Motoharu

    2010-12-31

    Understanding the mechanisms of episodic memory requires linking behavioral data and lesion effects to data on the dynamics of cellular membrane potentials and population interactions within brain regions. Linking behavior to specific membrane channels and neurochemicals has implications for therapeutic applications. Lesions of the hippocampus, entorhinal cortex and subcortical nuclei impair episodic memory function in humans and animals, and unit recording data from these regions in behaving animals indicate episodic memory processes. Intracellular recording in these regions demonstrates specific cellular properties including resonance, membrane potential oscillations and bistable persistent spiking that could underlie the encoding and retrieval of episodic trajectories. A model presented here shows how intrinsic dynamical properties of neurons could mediate the encoding of episodic memories as complex spatiotemporal trajectories. The dynamics of neurons allow encoding and retrieval of unique episodic trajectories in multiple continuous dimensions including temporal intervals, personal location, the spatial coordinates and sensory features of perceived objects and generated actions, and associations between these elements. The model also addresses how cellular dynamics could underlie unit firing data suggesting mechanisms for coding continuous dimensions of space, time, sensation and action. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Investigation into mechanical properties of joints of heterogeneous materials brazed with high-temperature solders

    International Nuclear Information System (INIS)

    Lomenko, V.I.; Merkushev, V.P.; Borodina, L.M.; Sycheva, T.S.; Tokhtina, O.A.; Frolov, N.N.

    1988-01-01

    Mechanical properties of copper joints with copper, 12Kh18M10T steel and KhD50 composite obtained by vacuum brazing by copper-titanium solder as compared with properties of joints brazed by PSr 72 and PMFOTsr 6-4-0.03 solders in hydrogen are studied. Dependences of joints strength on temperature of contact - reactive vacuum brazing are obtained. Possible applications of joints of dissimilar materials in electrovacuum devices subjected to the effect of dynamic loadings are established

  5. Role of surface on the size-dependent mechanical properties of copper nanowire under tensile load: A molecular dynamics simulation

    International Nuclear Information System (INIS)

    Liu, Wei-Ting; Hsiao, Chun-I.; Hsu, Wen-Dung

    2014-01-01

    In this study we have used atomistic simulations to investigate the role of surface on the size-dependent mechanical properties of nanowires. In particular, we have performed computational investigation on single crystal face-centered cubic copper nano-wires with diameters ranging from 2 to 20 nm. The wire axis for all the nanowires are considered along the [0 0 1] direction. Characterization of the initial optimized structures revealed clear differences in interatomic spacing, stress, and potential energy in all the nanowires. The mechanical properties with respect to wire diameter are evaluated by applying tension along the [0 0 1] direction until yielding. We have discussed the stress–strain relationships, Young's modulus, and the variation in potential energy from surface to the center of the wire for all the cases. Our results indicate that the mechanical response (including yield strain, Young's modulus, and resilience) is directly related to the proportion of surface to bulk type atoms present in each nanowire. Thus the size-dependent mechanical properties of single crystal copper nanowire within elastic region are attributed to the surface to volume ratio (surface effect). Using the calculated response, we have formulated a mathematical relationship, which predicts the nonlinear correlation between the mechanical properties and the diameter of the wire.

  6. Role of surface on the size-dependent mechanical properties of copper nanowire under tensile load: A molecular dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wei-Ting [Department of Materials Science and Engineering, National Cheng Kung University, Tainan City 70101 Taiwan (China); Hsiao, Chun-I. [Department of Materials Science and Engineering, National Cheng Kung University, Tainan City 70101 Taiwan (China); Promotion Center for Global Materials Research, National Cheng Kung University, Tainan City 70101 Taiwan (China); Hsu, Wen-Dung, E-mail: wendung@mail.ncku.edu.tw [Department of Materials Science and Engineering, National Cheng Kung University, Tainan City 70101 Taiwan (China); Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan City 70101 Taiwan (China); Promotion Center for Global Materials Research, National Cheng Kung University, Tainan City 70101 Taiwan (China)

    2014-01-15

    In this study we have used atomistic simulations to investigate the role of surface on the size-dependent mechanical properties of nanowires. In particular, we have performed computational investigation on single crystal face-centered cubic copper nano-wires with diameters ranging from 2 to 20 nm. The wire axis for all the nanowires are considered along the [0 0 1] direction. Characterization of the initial optimized structures revealed clear differences in interatomic spacing, stress, and potential energy in all the nanowires. The mechanical properties with respect to wire diameter are evaluated by applying tension along the [0 0 1] direction until yielding. We have discussed the stress–strain relationships, Young's modulus, and the variation in potential energy from surface to the center of the wire for all the cases. Our results indicate that the mechanical response (including yield strain, Young's modulus, and resilience) is directly related to the proportion of surface to bulk type atoms present in each nanowire. Thus the size-dependent mechanical properties of single crystal copper nanowire within elastic region are attributed to the surface to volume ratio (surface effect). Using the calculated response, we have formulated a mathematical relationship, which predicts the nonlinear correlation between the mechanical properties and the diameter of the wire.

  7. Electro-mechanical dynamics of spiral waves in a discrete 2D model of human atrial tissue.

    Directory of Open Access Journals (Sweden)

    Paul Brocklehurst

    Full Text Available We investigate the effect of mechano-electrical feedback and atrial fibrillation induced electrical remodelling (AFER of cellular ion channel properties on the dynamics of spiral waves in a discrete 2D model of human atrial tissue. The tissue electro-mechanics are modelled using the discrete element method (DEM. Millions of bonded DEM particles form a network of coupled atrial cells representing 2D cardiac tissue, allowing simulations of the dynamic behaviour of electrical excitation waves and mechanical contraction in the tissue. In the tissue model, each cell is modelled by nine particles, accounting for the features of individual cellular geometry; and discrete inter-cellular spatial arrangement of cells is also considered. The electro-mechanical model of a human atrial single-cell was constructed by strongly coupling the electrophysiological model of Colman et al. to the mechanical myofilament model of Rice et al., with parameters modified based on experimental data. A stretch-activated channel was incorporated into the model to simulate the mechano-electrical feedback. In order to investigate the effect of mechano-electrical feedback on the dynamics of spiral waves, simulations of spiral waves were conducted in both the electromechanical model and the electrical-only model in normal and AFER conditions, to allow direct comparison of the results between the models. Dynamics of spiral waves were characterized by tracing their tip trajectories, stability, excitation frequencies and meandering range of tip trajectories. It was shown that the developed DEM method provides a stable and efficient model of human atrial tissue with considerations of the intrinsically discrete and anisotropic properties of the atrial tissue, which are challenges to handle in traditional continuum mechanics models. This study provides mechanistic insights into the complex behaviours of spiral waves and the genesis of atrial fibrillation by showing an important role of

  8. Electro-mechanical dynamics of spiral waves in a discrete 2D model of human atrial tissue.

    Science.gov (United States)

    Brocklehurst, Paul; Ni, Haibo; Zhang, Henggui; Ye, Jianqiao

    2017-01-01

    We investigate the effect of mechano-electrical feedback and atrial fibrillation induced electrical remodelling (AFER) of cellular ion channel properties on the dynamics of spiral waves in a discrete 2D model of human atrial tissue. The tissue electro-mechanics are modelled using the discrete element method (DEM). Millions of bonded DEM particles form a network of coupled atrial cells representing 2D cardiac tissue, allowing simulations of the dynamic behaviour of electrical excitation waves and mechanical contraction in the tissue. In the tissue model, each cell is modelled by nine particles, accounting for the features of individual cellular geometry; and discrete inter-cellular spatial arrangement of cells is also considered. The electro-mechanical model of a human atrial single-cell was constructed by strongly coupling the electrophysiological model of Colman et al. to the mechanical myofilament model of Rice et al., with parameters modified based on experimental data. A stretch-activated channel was incorporated into the model to simulate the mechano-electrical feedback. In order to investigate the effect of mechano-electrical feedback on the dynamics of spiral waves, simulations of spiral waves were conducted in both the electromechanical model and the electrical-only model in normal and AFER conditions, to allow direct comparison of the results between the models. Dynamics of spiral waves were characterized by tracing their tip trajectories, stability, excitation frequencies and meandering range of tip trajectories. It was shown that the developed DEM method provides a stable and efficient model of human atrial tissue with considerations of the intrinsically discrete and anisotropic properties of the atrial tissue, which are challenges to handle in traditional continuum mechanics models. This study provides mechanistic insights into the complex behaviours of spiral waves and the genesis of atrial fibrillation by showing an important role of the mechano

  9. Microstructures and mechanical properties of aging materials

    International Nuclear Information System (INIS)

    Liaw, P.K.; Viswanathan, R.; Murty, K.L.; Simonen, E.P.; Frear, D.

    1993-01-01

    This book contains a collection of papers presented at the symposium on ''Microstructures and Mechanical Properties of Aging Materials,'' that was held in Chicago, IL. November 2-5, 1992 in conjunction with the Fall Meeting of The Minerals, Metals and Materials Society (TMS). The subjects of interest in the symposium included: (1) mechanisms of microstructural degradation, (2) effects of microstructural degradation on mechanical behavior, (3) development of life prediction methodology for in-service structural and electronic components, (4) experimental techniques to monitor degradation of microstructures and mechanical properties, and (5) effects of environment on microstructural degradation and mechanical properties. Individual papers have been processed separately for inclusion in the appropriate data bases

  10. Stacking order dependent mechanical properties of graphene/MoS{sub 2} bilayer and trilayer heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Elder, Robert M., E-mail: robert.elder26.ctr@mail.mil, E-mail: mahesh.neupane.ctr@mail.mil; Neupane, Mahesh R., E-mail: robert.elder26.ctr@mail.mil, E-mail: mahesh.neupane.ctr@mail.mil; Chantawansri, Tanya L. [U.S. Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005 (United States)

    2015-08-17

    Transition metal dichalcogenides (TMDC) such as molybdenum disulfide (MoS{sub 2}) are two-dimensional materials that show promise for flexible electronics and piezoelectric applications, but their weak mechanical strength is a barrier to practical use. In this work, we perform nanoindentation simulations using atomistic molecular dynamics to study the mechanical properties of heterostructures formed by combining MoS{sub 2} with graphene. We consider both bi- and tri-layer heterostructures formed with MoS{sub 2} either supported or encapsulated by graphene. Mechanical properties, such as Young's modulus, bending modulus, ultimate tensile strength, and fracture strain, are extracted from nanoindentation simulations and compared to the monolayer and homogeneous bilayer systems. We observed that the heterostructures, regardless of the stacking order, are mechanically more robust than the mono- and bi-layer MoS{sub 2}, mainly due to the mechanical reinforcement provided by the graphene layer. The magnitudes of ultimate strength and fracture strain are similar for both the bi- and tri-layer heterostructures, but substantially larger than either the mono- and bi-layer MoS{sub 2}. Our results demonstrate the potential of graphene-based heterostructures to improve the mechanical properties of TMDC materials.

  11. Phase Morphology and Mechanical Properties of Cyclic Butylene Terephthalate Oligomer-Containing Rubbers: Effect of Mixing Temperature.

    Science.gov (United States)

    Halász, István Zoltán; Bárány, Tamás

    2016-08-24

    In this work, the effect of mixing temperature (T mix ) on the mechanical, rheological, and morphological properties of rubber/cyclic butylene terephthalate (CBT) oligomer compounds was studied. Apolar (styrene butadiene rubber, SBR) and polar (acrylonitrile butadiene rubber, NBR) rubbers were modified by CBT (20 phr) for reinforcement and viscosity reduction. The mechanical properties were determined in tensile, tear, and dynamical mechanical analysis (DMTA) tests. The CBT-caused viscosity changes were assessed by parallel-plate rheometry. The morphology was studied by scanning electron microscopy (SEM). CBT became better dispersed in the rubber matrices with elevated mixing temperatures (at which CBT was in partially molten state), which resulted in improved tensile properties. With increasing mixing temperature the size of the CBT particles in the compounds decreased significantly, from few hundred microns to 5-10 microns. Compounding at temperatures above 120 °C and 140 °C for NBR and SBR, respectively, yielded reduced tensile mechanical properties most likely due to the degradation of the base rubber. The viscosity reduction by CBT was more pronounced in mixes with coarser CBT dispersions prepared at lower mixing temperatures.

  12. Dynamic Mechanical Properties and Fracture Surface Morphologies of Core-Shell Rubber (CSR) Toughened Epoxy at Liquid Nitrogen (Ln2) Temperatures

    Science.gov (United States)

    Wang, J.; Magee, D.; Schneider, J. A.

    2009-01-01

    The dynamic mechanical properties and fracture surface morphologies were evaluated for a commercial epoxy resin toughened with two types of core-shell rubber (CSR) toughening agents (Kane Ace(Registered TradeMark) MX130 and MX960). The impact resistance (R) was evaluated by the resulting breaking energy measured in Charpy impact tests conducted on an instrumented drop tower. The resulting fracture surface morphologies were examined using Scanning Electron Microscopy (SEM). Fractographic observations of the CSR toughened epoxy tested at ambient temperature, showed a fracture as characterized by slender dendrite textures with large voids. The increasing number of dendrites and decreasing size of scale-like texture with more CSR particles corresponded with increased R. As the temperature decreased to Liquid Nitrogen (LN 2), the fracture surfaces showed a fracture characterized by a rough, torn texture containing many river markings and deep furrows.

  13. Time-varying properties of renal autoregulatory mechanisms

    DEFF Research Database (Denmark)

    Zou, Rui; Cupples, Will A; Yip, K P

    2002-01-01

    In order to assess the possible time-varying properties of renal autoregulation, time-frequency and time-scaling methods were applied to renal blood flow under broad-band forced arterial blood pressure fluctuations and single-nephron renal blood flow with spontaneous oscillations obtained from...... normotensive (Sprague-Dawley, Wistar, and Long-Evans) rats, and spontaneously hypertensive rats. Time-frequency analyses of normotensive and hypertensive blood flow data obtained from either the whole kidney or the single-nephron show that indeed both the myogenic and tubuloglomerular feedback (TGF) mechanisms...... have time-varying characteristics. Furthermore, we utilized the Renyi entropy to measure the complexity of blood-flow dynamics in the time-frequency plane in an effort to discern differences between normotensive and hypertensive recordings. We found a clear difference in Renyi entropy between...

  14. Apparatus for dynamic and static measurements of mechanical properties of solids and of flux-lattice in type-II superconductors at low frequency (10 - 5-10 Hz) and temperature (4.7-500 K)

    Science.gov (United States)

    D'Anna, G.; Benoit, W.

    1990-12-01

    A forced torsional pendulum which permits us to examine anelastic mechanical properties of solids as well as for flux-lattice in type-II superconductors, has been built to explore the low frequency and low temperature range. It works on the principle of dynamic frequency response function measurement and appears to be a powerful instrument for studying structural defect motions as well as flux line dynamics. As an additional quantity, the magnetization or the plastic strain can be statically measured by the same apparatus.

  15. Estimating the biophysical properties of neurons with intracellular calcium dynamics.

    Science.gov (United States)

    Ye, Jingxin; Rozdeba, Paul J; Morone, Uriel I; Daou, Arij; Abarbanel, Henry D I

    2014-06-01

    We investigate the dynamics of a conductance-based neuron model coupled to a model of intracellular calcium uptake and release by the endoplasmic reticulum. The intracellular calcium dynamics occur on a time scale that is orders of magnitude slower than voltage spiking behavior. Coupling these mechanisms sets the stage for the appearance of chaotic dynamics, which we observe within certain ranges of model parameter values. We then explore the question of whether one can, using observed voltage data alone, estimate the states and parameters of the voltage plus calcium (V+Ca) dynamics model. We find the answer is negative. Indeed, we show that voltage plus another observed quantity must be known to allow the estimation to be accurate. We show that observing both the voltage time course V(t) and the intracellular Ca time course will permit accurate estimation, and from the estimated model state, accurate prediction after observations are completed. This sets the stage for how one will be able to use a more detailed model of V+Ca dynamics in neuron activity in the analysis of experimental data on individual neurons as well as functional networks in which the nodes (neurons) have these biophysical properties.

  16. MWCNTs/Cellulose Hydrogels Prepared from NaOH/Urea Aqueous Solution with Improved Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Yingpu Zhang

    2015-01-01

    Full Text Available Novel high strength composite hydrogels were designed and synthesized by introducing multiwalled carbon nanotubes (MWCNTs into cellulose/NaOH/urea aqueous solution and then cross-linked by epichlorohydrin. MWCNTs were used to modify the matrix of cellulose. The structure and morphology of the hydrogels were characterized by Fourier transform infrared (FT-IR spectroscopy, high resolution transmission electron microscopy (HR-TEM, and scanning electron microscopy (SEM. The results from swelling testing revealed that the equilibrium swelling ratio of hydrogels decreased with the increment of MWCNTs content. Thermogravimetric analysis (TGA and dynamic mechanical analysis (DMA results demonstrated that the introduction of MWCNT into cellulose hydrogel networks remarkably improved both thermal and mechanical properties of the composite hydrogels. The preparation of MWCNTs modifiedcellulose-based composites with improved mechanical properties was the first important step towards the development of advanced functional materials.

  17. Mechanical and thermal properties of phthalonitrile resin reinforced with silicon carbide particles

    International Nuclear Information System (INIS)

    Derradji, Mehdi; Ramdani, Noureddine; Zhang, Tong; Wang, Jun; Feng, Tian-tian; Wang, Hui; Liu, Wen-bin

    2015-01-01

    Highlights: • SiC microparticles improve the mechanical properties of phthalonitrile resin. • Excellent thermal stability achieved by adding SiC particles in phthalonitrile resin. • Adding 20 wt.% of SiC microparticles increases the T g by 38 °C. • Silane coupling agent can enhance the adhesion and dispersion of particles/matrix. - Abstract: A new type of composite based on phthalonitrile resin reinforced with silicon carbide (SiC) microparticles was prepared. For various weight ratios ranging between 0% and 20%, the effect of the micro-SiC particles on the mechanical and thermal properties has been studied. Results from thermal analysis revealed that the starting decomposition temperature and the residual weight were significantly improved upon adding the reinforcing phase. At the maximum micro-SiC loading, dynamic mechanical analysis (DMA) showed an important enhancement in both the storage modulus and glass transition temperature (T g ), reaching 3.1 GPa and 338 °C, respectively. The flexural strength and modulus as well as the microhardness were significantly enhanced by adding the microfillers. Tensile test revealed enhancements in the composites toughness upon adding the microparticles. Polarization optical microscope (POM) and scanning electron microscope (SEM) analysis confirmed that mechanical and thermal properties improvements are essentially attributed to the good dispersion and adhesion between the particles and the resin

  18. Program of assessment of mechanical and corrosion mechanical properties of reactor internals materials due to operation conditions in WWERs

    International Nuclear Information System (INIS)

    Ruscak, M.; Zamboch, M.

    1998-01-01

    Reactor internals are subject to three principle operation influences: neutron and gamma irradiation, mechanical stresses, both static and dynamic, and coolant chemistry. Several cases of damage have been reported in previous years in both boiling and pressure water reactors. They are linked with the term of irradiation assisted stress corrosion cracking as a possible damage mechanism. In WWERs, the principal material used for reactor internals is austenitic titanium stabilized stainless steel 08Kh18N10T, however high strength steels are used as well. To assess the changes of mechanical properties and to determine whether sensitivity to intergranular cracking can be increased by high neutron fluences, the experimental program has been started. The goal is to assure safe operation of the internals as well as life management for all planned operation period. The program consists of tests of material properties, both mechanical and corrosion-mechanical. Detailed neutron fluxes calculation as well as stress and deformation calculations are part of the assessment. Model of change will be proposed in order to plan inspections of the facility. In situ measurements of internals will be used to monitor exact status of structure during operation. Tensile specimens manufactured from both base metal and model weld joint have been irradiated to the total fluences of 3-20 dpa. Changes of mechanical properties are tested by the tensile test, stress corrosion cracking tests are performed in the autoclave with water loop and active loading. Operation temperature, pressure and water chemistry are chosen for the tests. (author)

  19. Mechanical Properties of Composite Materials

    Directory of Open Access Journals (Sweden)

    Mitsuhiro Okayasu

    2014-10-01

    Full Text Available An examination has been made of the mechanical and failure properties of several composite materials, such as a short and a long carbon fiber reinforced plastic (short- and long-CFRP and metal based composite material. The short CFRP materials were used for a recycled CFRP which fabricated by the following process: the CFRP, consisting of epoxy resin with carbon fiber, is injected to a rectangular plate cavity after mixing with acrylonitrile butadiene styrene resin with different weight fractions of CFRP. The fatigue and ultimate tensile strength (UTS increased with increasing CFRP content. These correlations, however, break down, especially for tensile strength, as the CFPR content becomes more than 70%. Influence of sample temperature on the bending strength of the long-CFRP was investigated, and it appears that the strength slightly degreases with increasing the temperature, due to the weakness in the matrix. Broken fiber and pull-out or debonding between the fiber and matrix were related to the main failure of the short- and long-CFRP samples. Mechanical properties of metal based composite materials have been also investigated, where fiber-like high hardness CuAl2 structure is formed in aluminum matrix. Excellent mechanical properties were obtained in this alloy, e.g., the higher strength and the higher ductility, compared tothe same alloy without the fiber-like structure. There are strong anisotropic effects on the mechanical properties due to the fiber-like metal composite in a soft Al based matrix.

  20. Molecular modeling of polycarbonate materials: Glass transition and mechanical properties

    Science.gov (United States)

    Palczynski, Karol; Wilke, Andreas; Paeschke, Manfred; Dzubiella, Joachim

    2017-09-01

    Linking the experimentally accessible macroscopic properties of thermoplastic polymers to their microscopic static and dynamic properties is a key requirement for targeted material design. Classical molecular dynamics simulations enable us to study the structural and dynamic behavior of molecules on microscopic scales, and statistical physics provides a framework for relating these properties to the macroscopic properties. We take a first step toward creating an automated workflow for the theoretical prediction of thermoplastic material properties by developing an expeditious method for parameterizing a simple yet surprisingly powerful coarse-grained bisphenol-A polycarbonate model which goes beyond previous coarse-grained models and successfully reproduces the thermal expansion behavior, the glass transition temperature as a function of the molecular weight, and several elastic properties.

  1. Striking dynamics and kinetic properties of boxing and MMA gloves

    Directory of Open Access Journals (Sweden)

    Benjamin Lee

    2014-08-01

    Full Text Available With the growing popularity of Mixed Martial Arts (MMA as a competitive sport, questions regarding the dynamic response and properties of MMA gloves arise. High-energy impacts from punches are very similar to boxing yet MMA competition requires the use of 4 oz fingerless glove, compared to the larger full enclosure boxing glove. This work assessed the kinetic properties and strike dynamics of MMA gloves and compared findings with traditional boxing gloves. Gloves mounted on a molded fist were impacted repetitively on an instrumental anvil designed for impact, over a 5 hour period resulting in 10,000 continuous and consistent strikes. Kinetic data from impacts were sampled at the beginning of the data collection and subsequently every 30 minutes (every 1,000 strikes. MMA gloves produced 4-5 times greater peak force and 5 times faster load rate compared to the boxing glove. However, MMA gloves also showed signs of material fatigue, with peak force increasing by 35% and rate of loading increasing by 60% over the duration of the test. Boxing glove characteristics did deteriorate but to a lesser extent. In summary, the kinetic properties of MMA glove differed substantially from the boxing glove resulting in impacts characterized by higher peak forces and more rapid development of force. Material properties including stiffness and thickness play a role in the kinetic characteristics upon impact, and can be inferred to alter injury mechanisms of blunt force trauma.

  2. Molecular dynamics study on the evolution of interfacial dislocation network and mechanical properties of Ni-based single crystal superalloys

    Science.gov (United States)

    Li, Nan-Lin; Wu, Wen-Ping; Nie, Kai

    2018-05-01

    The evolution of misfit dislocation network at γ /γ‧ phase interface and tensile mechanical properties of Ni-based single crystal superalloys at various temperatures and strain rates are studied by using molecular dynamics (MD) simulations. From the simulations, it is found that with the increase of loading, the dislocation network effectively inhibits dislocations emitted in the γ matrix cutting into the γ‧ phase and absorbs the matrix dislocations to strengthen itself which increases the stability of structure. Under the influence of the temperature, the initial mosaic structure of dislocation network gradually becomes irregular, and the initial misfit stress and the elastic modulus slowly decline as temperature increasing. On the other hand, with the increase of the strain rate, it almost has no effect on the elastic modulus and the way of evolution of dislocation network, but contributes to the increases of the yield stress and tensile strength. Moreover, tension-compression asymmetry of Ni-based single crystal superalloys is also presented based on MD simulations.

  3. Mechanical characterization of the P56 mouse brain under large-deformation dynamic indentation

    Science.gov (United States)

    MacManus, David B.; Pierrat, Baptiste; Murphy, Jeremiah G.; Gilchrist, Michael D.

    2016-02-01

    The brain is a complex organ made up of many different functional and structural regions consisting of different types of cells such as neurons and glia, as well as complex anatomical geometries. It is hypothesized that the different regions of the brain exhibit significantly different mechanical properties, which may be attributed to the diversity of cells and anisotropy of neuronal fibers within individual brain regions. The regional dynamic mechanical properties of P56 mouse brain tissue in vitro and in situ at velocities of 0.71-4.28 mm/s, up to a deformation of 70 μm are presented and discussed in the context of traumatic brain injury. The experimental data obtained from micro-indentation measurements were fit to three hyperelastic material models using the inverse Finite Element method. The cerebral cortex elicited a stiffer response than the cerebellum, thalamus, and medulla oblongata regions for all velocities. The thalamus was found to be the least sensitive to changes in velocity, and the medulla oblongata was most compliant. The results show that different regions of the mouse brain possess significantly different mechanical properties, and a significant difference also exists between the in vitro and in situ brain.

  4. Study of anisotropic mechanical properties for aeronautical PMMA

    Directory of Open Access Journals (Sweden)

    Wei Shang

    Full Text Available For the properties of polymer are relative to its structure, the main purpose of the present work is to investigate the mechanical properties of the aeronautical PMMA which has been treated by the directional tensile technology. Isodyne images reveal the stress state in directional PMMA. And then, an anisotropic mechanical model is established. Furthermore, all mechanical parameters are measured by the digital image correlation method. Finally, based on the anisotropic mechanical model and mechanical parameters, the FEM numerical simulation and experimental methods are applied to analyze the fracture mechanical properties along different directions.

  5. Influence of some crosslinking agents on thermal and mechanical properties of electron beam irradiated polylactide

    Energy Technology Data Exchange (ETDEWEB)

    Rytlewski, Piotr, E-mail: prytlewski@ukw.edu.p [Department of Materials Engineering, Kazimierz Wielki University, ul. Chodkiewicza 30, 85-064 Bydgoszcz (Poland); Malinowski, RafaL [Institute for Engineering of Polymer Materials and Dyes, ul. M. SkLodowskiej-Curie 55, 87-100 Torun (Poland); Moraczewski, Krzysztof [Department of Materials Engineering, Kazimierz Wielki University, ul. Chodkiewicza 30, 85-064 Bydgoszcz (Poland); Zenkiewicz, Marian [Institute for Engineering of Polymer Materials and Dyes, ul. M. SkLodowskiej-Curie 55, 87-100 Torun (Poland)

    2010-10-15

    The aim of this article was to determine and compare the influence of trimethylopropane trimethacylate (TMPTA) and trially isocyanurate (TAIC) crosslinking agents on thermal and mechanical properties of electron beam irradiated polylactide (PLA). The blends were made of PLA mixed with 3 wt% of TMPTA (PLA/TMPTA), and PLA mixed with 3 wt% of TAIC (PLA/TAIC). Injection moulded samples were irradiated with the use of high energy (10 MeV) electron beam at various radiation doses to crosslinking PLA macromolecules. Thermal and mechanical properties were investigated by means of differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), tensile strength, and impact strength measurements. The samples were also characterized by Fourier transform infrared spectroscopy (FTIR). It was found that under the influence of electron irradiation PLA/TMPTA samples underwent degradation while PLA/TAIC samples became crosslinked. Tensile and impact strengths of PLA/TMPTA samples decreased with increasing radiation dose while an enhancement of these properties for PLA/TAIC samples was observed.

  6. Influence of some crosslinking agents on thermal and mechanical properties of electron beam irradiated polylactide

    International Nuclear Information System (INIS)

    Rytlewski, Piotr; Malinowski, RafaL; Moraczewski, Krzysztof; Zenkiewicz, Marian

    2010-01-01

    The aim of this article was to determine and compare the influence of trimethylopropane trimethacylate (TMPTA) and trially isocyanurate (TAIC) crosslinking agents on thermal and mechanical properties of electron beam irradiated polylactide (PLA). The blends were made of PLA mixed with 3 wt% of TMPTA (PLA/TMPTA), and PLA mixed with 3 wt% of TAIC (PLA/TAIC). Injection moulded samples were irradiated with the use of high energy (10 MeV) electron beam at various radiation doses to crosslinking PLA macromolecules. Thermal and mechanical properties were investigated by means of differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), tensile strength, and impact strength measurements. The samples were also characterized by Fourier transform infrared spectroscopy (FTIR). It was found that under the influence of electron irradiation PLA/TMPTA samples underwent degradation while PLA/TAIC samples became crosslinked. Tensile and impact strengths of PLA/TMPTA samples decreased with increasing radiation dose while an enhancement of these properties for PLA/TAIC samples was observed.

  7. Molecular Dynamics Simulations with Quantum Mechanics/Molecular Mechanics and Adaptive Neural Networks.

    Science.gov (United States)

    Shen, Lin; Yang, Weitao

    2018-03-13

    Direct molecular dynamics (MD) simulation with ab initio quantum mechanical and molecular mechanical (QM/MM) methods is very powerful for studying the mechanism of chemical reactions in a complex environment but also very time-consuming. The computational cost of QM/MM calculations during MD simulations can be reduced significantly using semiempirical QM/MM methods with lower accuracy. To achieve higher accuracy at the ab initio QM/MM level, a correction on the existing semiempirical QM/MM model is an attractive idea. Recently, we reported a neural network (NN) method as QM/MM-NN to predict the potential energy difference between semiempirical and ab initio QM/MM approaches. The high-level results can be obtained using neural network based on semiempirical QM/MM MD simulations, but the lack of direct MD samplings at the ab initio QM/MM level is still a deficiency that limits the applications of QM/MM-NN. In the present paper, we developed a dynamic scheme of QM/MM-NN for direct MD simulations on the NN-predicted potential energy surface to approximate ab initio QM/MM MD. Since some configurations excluded from the database for NN training were encountered during simulations, which may cause some difficulties on MD samplings, an adaptive procedure inspired by the selection scheme reported by Behler [ Behler Int. J. Quantum Chem. 2015 , 115 , 1032 ; Behler Angew. Chem., Int. Ed. 2017 , 56 , 12828 ] was employed with some adaptions to update NN and carry out MD iteratively. We further applied the adaptive QM/MM-NN MD method to the free energy calculation and transition path optimization on chemical reactions in water. The results at the ab initio QM/MM level can be well reproduced using this method after 2-4 iteration cycles. The saving in computational cost is about 2 orders of magnitude. It demonstrates that the QM/MM-NN with direct MD simulations has great potentials not only for the calculation of thermodynamic properties but also for the characterization of

  8. Small-scale mechanical property characterization of ferrite formed during deformation of super-cooled austenite by nanoindentation

    International Nuclear Information System (INIS)

    Ahn, Tae-Hong; Um, Kyung-Keun; Choi, Jong-Kyo; Kim, Do Hyun; Oh, Kyu Hwan; Kim, Miyoung; Han, Heung Nam

    2009-01-01

    The mechanical properties of dynamically and statically transformed ferrites were analyzed using a nanoindentater-EBSD (Electron BackScattered Diffraction) correlation technique, which can distinguish indenting positions according to the grains in the specimen. The dilatometry and the band slope and contrast maps by EBSD were used to evaluate the volume fractions of two kinds of ferrite and pearlite. Fine ferrites induced by a dynamic transformation had higher nano-hardness than the statically transformed coarse ferrites. Transmission electron microscopy (TEM) showed the dynamic ferrites to have a higher dislocation density than the statically transformed ferrites.

  9. Structural, dynamic, and vibrational properties during heat transfer in Si/Ge superlattices: A Car-Parrinello molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Pengfei; Zhang, Yuwen, E-mail: zhangyu@missouri.edu [Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, Missouri 65211 (United States); Yang, Mo [College of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093 (China)

    2013-12-21

    The structural, dynamic, and vibrational properties during heat transfer process in Si/Ge superlattices are studied by analyzing the trajectories generated by the ab initio Car-Parrinello molecular dynamics simulation. The radial distribution functions and mean square displacements are calculated and further discussions are made to explain and probe the structural changes relating to the heat transfer phenomenon. Furthermore, the vibrational density of states of the two layers (Si/Ge) are computed and plotted to analyze the contributions of phonons with different frequencies to the heat conduction. Coherent heat conduction of the low frequency phonons is found and their contributions to facilitate heat transfer are confirmed. The Car-Parrinello molecular dynamics simulation outputs in the work show reasonable thermophysical results of the thermal energy transport process and shed light on the potential applications of treating the heat transfer in the superlattices of semiconductor materials from a quantum mechanical molecular dynamics simulation perspective.

  10. Structural, dynamic, and vibrational properties during heat transfer in Si/Ge superlattices: A Car-Parrinello molecular dynamics study

    International Nuclear Information System (INIS)

    Ji, Pengfei; Zhang, Yuwen; Yang, Mo

    2013-01-01

    The structural, dynamic, and vibrational properties during heat transfer process in Si/Ge superlattices are studied by analyzing the trajectories generated by the ab initio Car-Parrinello molecular dynamics simulation. The radial distribution functions and mean square displacements are calculated and further discussions are made to explain and probe the structural changes relating to the heat transfer phenomenon. Furthermore, the vibrational density of states of the two layers (Si/Ge) are computed and plotted to analyze the contributions of phonons with different frequencies to the heat conduction. Coherent heat conduction of the low frequency phonons is found and their contributions to facilitate heat transfer are confirmed. The Car-Parrinello molecular dynamics simulation outputs in the work show reasonable thermophysical results of the thermal energy transport process and shed light on the potential applications of treating the heat transfer in the superlattices of semiconductor materials from a quantum mechanical molecular dynamics simulation perspective

  11. Structural, dynamic, and vibrational properties during heat transfer in Si/Ge superlattices: A Car-Parrinello molecular dynamics study

    Science.gov (United States)

    Ji, Pengfei; Zhang, Yuwen; Yang, Mo

    2013-12-01

    The structural, dynamic, and vibrational properties during heat transfer process in Si/Ge superlattices are studied by analyzing the trajectories generated by the ab initio Car-Parrinello molecular dynamics simulation. The radial distribution functions and mean square displacements are calculated and further discussions are made to explain and probe the structural changes relating to the heat transfer phenomenon. Furthermore, the vibrational density of states of the two layers (Si/Ge) are computed and plotted to analyze the contributions of phonons with different frequencies to the heat conduction. Coherent heat conduction of the low frequency phonons is found and their contributions to facilitate heat transfer are confirmed. The Car-Parrinello molecular dynamics simulation outputs in the work show reasonable thermophysical results of the thermal energy transport process and shed light on the potential applications of treating the heat transfer in the superlattices of semiconductor materials from a quantum mechanical molecular dynamics simulation perspective.

  12. A computational approach for inferring the cell wall properties that govern guard cell dynamics.

    Science.gov (United States)

    Woolfenden, Hugh C; Bourdais, Gildas; Kopischke, Michaela; Miedes, Eva; Molina, Antonio; Robatzek, Silke; Morris, Richard J

    2017-10-01

    Guard cells dynamically adjust their shape in order to regulate photosynthetic gas exchange, respiration rates and defend against pathogen entry. Cell shape changes are determined by the interplay of cell wall material properties and turgor pressure. To investigate this relationship between turgor pressure, cell wall properties and cell shape, we focused on kidney-shaped stomata and developed a biomechanical model of a guard cell pair. Treating the cell wall as a composite of the pectin-rich cell wall matrix embedded with cellulose microfibrils, we show that strong, circumferentially oriented fibres are critical for opening. We find that the opening dynamics are dictated by the mechanical stress response of the cell wall matrix, and as the turgor rises, the pectinaceous matrix stiffens. We validate these predictions with stomatal opening experiments in selected Arabidopsis cell wall mutants. Thus, using a computational framework that combines a 3D biomechanical model with parameter optimization, we demonstrate how to exploit subtle shape changes to infer cell wall material properties. Our findings reveal that proper stomatal dynamics are built on two key properties of the cell wall, namely anisotropy in the form of hoop reinforcement and strain stiffening. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd and Society for Experimental Biology.

  13. Assessment of nanoscopic dynamic mechanical properties and B-C-N triad effect on MWCNT/h-BNNP nanofillers reinforced HDPE hybrid composite using oscillatory nanoindentation: An insight into medical applications.

    Science.gov (United States)

    Badgayan, Nitesh Dhar; Sahu, Santosh Kumar; Samanta, Sutanu; Rama Sreekanth, P S

    2018-04-01

    A thrust on improvement of different properties of polymer has taken a contemporary route with advent of nanofillers. Although several nanofillers are existent; MultiWalled Carbon Nanotubes- (MWCNTs) and h-Boron Nitride nanoplatelets-(h-BNNPs) unique combination of 1D and 2D dimensional geometry aids an advantage of B-C-N triad elemental effects on properties of tested samples. The current study aims to investigate the effects of MWCNT and h-BNNP reinforcement in High Density Polyethylene (HDPE) for high load bearing areas of medical applications requiring both elastic and viscous behavior. The results were analyzed keeping a view of its application in areas like HDPE based fracture fixation plates, acetabular cups and others. The composite and hybrid samples with different loadings were prepared after surface modification of nanofillers by mechanical mixing and molding technique. The dynamic nano-mechanical properties like storage modulus, loss modulus and tan delta were assessed for each sample during frequency swept from 10 to 220 Hz. The viscoelastic properties like h c /h m , H/E, elastic-plastic deformation were investigated and evaluated. At a frequency of 10 Hz, the storage and loss modulus of 0.1 CNT increased by 37.56% and decreased by 23.52% respectively on comparison with pure HDPE. This infers a good elastic as well as viscous behavior. Overall elastic behavior of 0.1 CNT was confirmed from tan delta evaluation. The interaction between B-C-N elemental triad had significant effect on creep strength, visco-damping property (h c /h m and H/E), elastic plastic displacement and pile-up and sink-in behavior. Highest creep strength and visco-damping property was exhibited by 0.25 CNT/0.15 BNNP hybrid. The elastic-plastic displacement of hybrid composite was noted as least, which decreased by 30% on comparison with pure HDPE. It can be inferred that presence of 1D-MWCNT and 2D-h-BNNP had significant effect on important dynamic viscoelastic and creep

  14. Mechanical Properties of Organic Semiconductors for Stretchable, Highly Flexible, and Mechanically Robust Electronics.

    Science.gov (United States)

    Root, Samuel E; Savagatrup, Suchol; Printz, Adam D; Rodriquez, Daniel; Lipomi, Darren J

    2017-05-10

    Mechanical deformability underpins many of the advantages of organic semiconductors. The mechanical properties of these materials are, however, diverse, and the molecular characteristics that permit charge transport can render the materials stiff and brittle. This review is a comprehensive description of the molecular and morphological parameters that govern the mechanical properties of organic semiconductors. Particular attention is paid to ways in which mechanical deformability and electronic performance can coexist. The review begins with a discussion of flexible and stretchable devices of all types, and in particular the unique characteristics of organic semiconductors. It then discusses the mechanical properties most relevant to deformable devices. In particular, it describes how low modulus, good adhesion, and absolute extensibility prior to fracture enable robust performance, along with mechanical "imperceptibility" if worn on the skin. A description of techniques of metrology precedes a discussion of the mechanical properties of three classes of organic semiconductors: π-conjugated polymers, small molecules, and composites. The discussion of each class of materials focuses on molecular structure and how this structure (and postdeposition processing) influences the solid-state packing structure and thus the mechanical properties. The review concludes with applications of organic semiconductor devices in which every component is intrinsically stretchable or highly flexible.

  15. Dynamical mechanical analysis of photocrosslinked hyperbranched urethane acrylates

    Directory of Open Access Journals (Sweden)

    BRANKO DUNJIC

    2004-06-01

    Full Text Available A series of acrylate functionalized samples based on hyperbranched hydroxy-terminated polyesters with different molecular weights and different degrees of acrylation were synthesized. The obtained urethane acrylates were slightly yellow viscose liquids. Their composition was characterized by FTIR and 1H-NMR spectroscopy and their molecular weights were measured by GPC. All the synthesized samples were diluted with 25 wt.% 1,4-butanediol dimethacrylate (BDDM. The rheological properties of the uncured samples and the dynamic mechanical properties of the UV cured samples were examined. All the samples exhibit Newtonian behavior, which indicates the absence of physical entanglements in these polymers. The viscosity increases with increasing number of acrylic groups per molecule. The glass transition temperature of the UV cured samples increases with increasing the number of acrylic groups per molecule. The value of the storage modulus in the rubber-elastic plateau and the cross-link density increase with increasing number of acrylic groups per molecule. The formed networks are inhomogeneous and the residual unsaturation is the highest in the samples with the largest number of acrylic groups per molecule.

  16. Preparation, characterization and mechanical properties of rare-earth-based nanocomposites

    Directory of Open Access Journals (Sweden)

    Musbah S.S.

    2012-01-01

    Full Text Available This study reports research related to different preparation methods and characterization of polymer nanocomposites for optical applications. The Eu-ion doped Gd2O3 nanophosphor powder with different nanoparticle content was embedded in the matrix of PMMA. Preparation was carried out by mixing molding (bulk, electrospinning (nanofibers and solution casting (thin films with neat particles and particles coated with AMEO silane. Among the pros and cons for proposed methods, the mixing molding enables to avoid solvent use while the best deagglomeration and nanoparticle distribution is gained using the electrospinning method. The results of dynamic mechanical analysis (DMA and nanoindentation revealed that the storage modulus of the composites was higher than that of pure PMMA and increased with nanophosphor content. Surface modification of particles improved the mechanical properties of nanocomposites.

  17. Advances in the study of mechanical properties and constitutive law in the field of wood research

    Science.gov (United States)

    Zhao, S.; Zhao, J. X.; Han, G. Z.

    2016-07-01

    This paper presents an overview of mechanical properties and constitutive law for wood. Current research on the mechanical properties of wood have mostly focused on density, grain, moisture, and other natural factors. It has been established that high density, dense grain, and high moisture lead to higher strength. In most literature, wood has been regarded as an anisotropic material because of its fiber. A microscopic view is used in research of wood today, in this way, which has allowed for clear observation of anisotropy. In general, wood has higher strength under a dynamic load, and no densification. The constitutive model is the basis of numerical analysis. An anisotropic model of porous and composite materials has been used for wood, but results were poor, and new constitutions have been introduced. According to the literature, there is no single theory that is widely accepted for the dynamic load. Research has shown that grain and moisture are key factors in wood strength, but there has not been enough study on dynamic loads so far. Hill law has been the most common method of simulation. Models that consider high strain rate are attracting more and more attention.

  18. Stochastic modelling in design of mechanical properties of nanometals

    International Nuclear Information System (INIS)

    Tengen, T.B.; Wejrzanowski, T.; Iwankiewicz, R.; Kurzydlowski, K.J.

    2010-01-01

    Polycrystalline nanometals are being fabricated through different processing routes and conditions. The consequence is that nanometals having the same mean grain size may have different grain size dispersion and, hence, may have different material properties. This has often led to conflicting reports from both theoretical and experimental findings about the evolutions of the mechanical properties of nanomaterials. The present paper employs stochastic model to study the impact of microstructure evolution during grain growth on the mechanical properties of polycrystalline nanometals. The stochastic model for grain growth and the stochastic model for changes in mechanical properties of nanomaterials are proposed. The model for the mechanical properties developed is tested on aluminium samples.Many salient features of the mechanical properties of the aluminium samples are revealed. The results show that the different mechanisms of grain growth impart different nature of response to the material mechanical properties. The conventional, homologous and anomalous temperature dependences of the yield stress have also been revealed to be due to different nature of interactions of the microstructures during evolution.

  19. Accelerated Testing of Polymeric Composites Using the Dynamic Mechanical Analyzer

    Science.gov (United States)

    Abdel-Magid, Becky M.; Gates, Thomas S.

    2000-01-01

    Creep properties of IM7/K3B composite material were obtained using three accelerated test methods at elevated temperatures. Results of flexural creep tests using the dynamic mechanical analyzer (DMA) were compared with results of conventional tensile and compression creep tests. The procedures of the three test methods are described and the results are presented. Despite minor differences in the time shift factor of the creep compliance curves, the DMA results compared favorably with the results from the tensile and compressive creep tests. Some insight is given into establishing correlations between creep compliance in flexure and creep compliance in tension and compression. It is shown that with careful consideration of the limitations of flexure creep, a viable and reliable accelerated test procedure can be developed using the DMA to obtain the viscoelastic properties of composites in extreme environments.

  20. Microstructure, mechanical properties, bio-corrosion properties and antibacterial properties of Ti-Ag sintered alloys.

    Science.gov (United States)

    Chen, Mian; Zhang, Erlin; Zhang, Lan

    2016-05-01

    In this research, Ag element was selected as an antibacterial agent to develop an antibacterial Ti-Ag alloy by a powder metallurgy. The microstructure, phase constitution, mechanical properties, corrosion resistance and antibacterial properties of the Ti-Ag sintered alloys have been systematically studied by X-ray diffraction (XRD), scanning electron microscope (SEM), compressive test, electrochemical measurements and antibacterial test. The effects of the Ag powder size and the Ag content on the antibacterial property and mechanical property as well as the anticorrosion property have been investigated. The microstructure results have shown that Ti-Ag phase, residual pure Ag and Ti were the mainly phases in Ti-Ag(S75) sintered alloy while Ti2Ag was synthesized in Ti-Ag(S10) sintered alloy. The mechanical test indicated that Ti-Ag sintered alloy showed a much higher hardness and the compressive yield strength than cp-Ti but the mechanical properties were slightly reduced with the increase of Ag content. Electrochemical results showed that Ag powder size had a significant effect on the corrosion resistance of Ti-Ag sintered alloy. Ag content increased the corrosion resistance in a dose dependent way under a homogeneous microstructure. Antibacterial tests have demonstrated that antibacterial Ti-Ag alloy was successfully prepared. It was also shown that the Ag powder particle size and the Ag content influenced the antibacterial activity seriously. The reduction in the Ag powder size was benefit to the improvement in the antibacterial property and the Ag content has to be at least 3wt.% in order to obtain a strong and stable antibacterial activity against Staphylococcus aureus bacteria. The bacterial mechanism was thought to be related to the Ti2Ag and its distribution. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Dynamic mechanical behaviors of Fangshan marble

    Directory of Open Access Journals (Sweden)

    Wei Yao

    2017-10-01

    Full Text Available Dynamic strength parameters are extensively used in mining engineering and rock mechanics. However, there are no widely accepted dynamic failure models for rocks. In this study, the dynamic punching shear strength, uniaxial compressive strength (UCS and tensile strength of fine-grained Fangshan marble (FM are first measured by using a split Hopkinson pressure bar (SHPB system. The pulse-shaping technique is then implemented to maintain the dynamic force balance in SHPB tests. Experimental results show that the dynamic punching shear strength, UCS and tensile strength increase with the loading rate. A recently developed dynamic Mohr-Coulomb theory is then used to interpret the testing data. In this model, the angle of internal friction ϕ is assumed to be independent of loading rate and is obtained using the static strength values. According to the dynamic Mohr-Coulomb theory, the dynamic UCS and the dynamic tensile strength are predicted from the dynamic punching shear strength. Furthermore, based on this dynamic theory, the dynamic UCS is predicted from the dynamic tensile strength. The consistency between the predicted and measured dynamic strengths demonstrates that the dynamic Mohr-Coulomb theory is applicable to FM.

  2. Mechanical properties of ordered alloys

    International Nuclear Information System (INIS)

    Kroupa, F.

    1977-06-01

    A survey is given of the metallophysical fundamentals of the mechanical properties of ordered two-phase alloys. Alloys of this type have a superlattice structure in a substitution mixed crystal. Ordering is achieved by slow cooling or by annealing below the critical temperature, during which ordering domains (antiphase domains) are formed. At a high degree of ordering, the dislocations are concentrated to form pairs, so-called super-dislocations. The mechanical properties may be selectively changed by varying different parameters (size of the ordering domains, degree of ordering, energy of the antiphase boundaries) by a special composition and heat treatment.(GSC) [de

  3. Skin mechanical properties and modeling: A review.

    Science.gov (United States)

    Joodaki, Hamed; Panzer, Matthew B

    2018-04-01

    The mechanical properties of the skin are important for various applications. Numerous tests have been conducted to characterize the mechanical behavior of this tissue, and this article presents a review on different experimental methods used. A discussion on the general mechanical behavior of the skin, including nonlinearity, viscoelasticity, anisotropy, loading history dependency, failure properties, and aging effects, is presented. Finally, commonly used constitutive models for simulating the mechanical response of skin are discussed in the context of representing the empirically observed behavior.

  4. Influence of Rapid Freeze-Thaw Cycling on the Mechanical Properties of Sustainable Strain-Hardening Cement Composite (2SHCC

    Directory of Open Access Journals (Sweden)

    Seok-Joon Jang

    2014-02-01

    Full Text Available This paper provides experimental results to investigate the mechanical properties of sustainable strain-hardening cement composite (2SHCC for infrastructures after freeze-thaw actions. To improve the sustainability of SHCC materials in this study, high energy-consumptive components—silica sand, cement, and polyvinyl alcohol (PVA fibers—in the conventional SHCC materials are partially replaced with recycled materials such as recycled sand, fly ash, and polyethylene terephthalate (PET fibers, respectively. To investigate the mechanical properties of green SHCC that contains recycled materials, the cement, PVA fiber and silica sand were replaced with 10% fly ash, 25% PET fiber, and 10% recycled aggregate based on preliminary experimental results for the development of 2SHCC material, respectively. The dynamic modulus of elasticity and weight for 2SHCC material were measured at every 30 cycles of freeze-thaw. The effects of freeze-thaw cycles on the mechanical properties of sustainable SHCC are evaluated by conducting compressive tests, four-point flexural tests, direct tensile tests and prism splitting tests after 90, 180, and 300 cycles of rapid freeze-thaw. Freeze-thaw testing was conducted according to ASTM C 666 Procedure A. Test results show that after 300 cycles of freezing and thawing actions, the dynamic modulus of elasticity and mass loss of damaged 2SHCC were similar to those of virgin 2SHCC, while the freeze-thaw cycles influence mechanical properties of the 2SHCC material except for compressive behavior.

  5. Modification of mechanical and thermal property of chitosan–starch blend films

    International Nuclear Information System (INIS)

    Tuhin, Mohammad O.; Rahman, Nazia; Haque, M.E.; Khan, Ruhul A.; Dafader, N.C.; Islam, Rafiqul; Nurnabi, Mohammad; Tonny, Wafa

    2012-01-01

    Chitosan–starch blend films (thickness 0.2 mm) of different composition were prepared by casting and their mechanical properties were studied. To improve the properties of chitosan–starch films, glycerol and mustard oil of different composition were used. Chitosan–starch films, incorporated with glycerol and mustard oil, were further modified with monomer 2-hydroxyethyl methacrylate (HEMA) using gamma radiation. The modified films showed improvement in both tensile strength and elongation at break than the pure chitosan–starch films. Water uptake of the films reduced significantly than the pure chitosan–starch film. Thermo gravimetric analysis (TGA) and dynamic mechanical analysis (DMA) showed that the modified films experience less thermal degradation than the pure films. Scanning electron microscopy (SEM) and FTIR were used to investigate the morphology and molecular interaction of the blend film, respectively. - Highlights: ► Chitosan–starch blend films (thickness 0.2 mm) were prepared by casting. ► To improve the properties of chitosan–starch films, glycerol and mustard oil of different composition were used. ► Chitosan–starch films, incorporated with glycerol and mustard oil, were further modified with monomer 2-hydroxyethyl methacrylate (HEMA) using gamma radiation. ► Properties of the modified films such as tensile strength, elongation at break, water uptake, TGA, DMA, SEM, FTIR were studied. ► Results indicate that modification of chitosan–starch film with mustard oil improved the properties of the blend films which could be further modified by HEMA using gamma radiation.

  6. Peptide-Graphene Interactions Enhance the Mechanical Properties of Silk Fibroin.

    Science.gov (United States)

    Cheng, Yuan; Koh, Leng-Duei; Li, Dechang; Ji, Baohua; Zhang, Yingyan; Yeo, Jingjie; Guan, Guijian; Han, Ming-Yong; Zhang, Yong-Wei

    2015-10-07

    Studies reveal that biomolecules can form intriguing molecular structures with fascinating functionalities upon interaction with graphene. Then, interesting questions arise. How does silk fibroin interact with graphene? Does such interaction lead to an enhancement in its mechanical properties? In this study, using large-scale molecular dynamics simulations, we first examine the interaction of graphene with several typical peptide structures of silk fibroin extracted from different domains of silk fibroin, including pure amorphous (P1), pure crystalline (P2), a segment from N-terminal (P3), and a combined amorphous and crystalline segment (P4), aiming to reveal their structural modifications. Our study shows that graphene can have intriguing influences on the structures formed by the peptides with sequences representing different domains of silk fibroin. In general, for protein domains with stable structure and strong intramolecular interaction (e.g., β-sheets), graphene tends to compete with the intramolecular interactions and thus weaken the interchain interaction and reduce the contents of β-sheets. For the silk domains with random or less ordered secondary structures and weak intramolecular interactions, graphene tends to enhance the stability of peptide structures; in particular, it increases the contents of helical structures. Thereafter, tensile simulations were further performed on the representative peptides to investigate how such structure modifications affect their mechanical properties. It was found that the strength and resilience of the peptides are enhanced through their interaction with graphene. The present work reveals interesting insights into the interactions between silk peptides and graphene, and contributes in the efforts to enhance the mechanical properties of silk fibroin.

  7. Molecular-dynamics simulations of crosslinking and confinement effects on structure, segmental mobility and mechanics of filled elastomers

    Science.gov (United States)

    Davris, Theodoros; Lyulin, Alexey V.

    2016-05-01

    The significant drop of the storage modulus under uniaxial deformation (Payne effect) restrains the performance of the elastomer-based composites and the development of possible new applications. In this paper molecular-dynamics (MD) computer simulations using LAMMPS MD package have been performed to study the mechanical properties of a coarse-grained model of this family of nanocomposite materials. Our goal is to provide simulational insights into the viscoelastic properties of filled elastomers, and try to connect the macroscopic mechanics with composite microstructure, the strength of the polymer-filler interactions and the polymer mobility at different scales. To this end we simulate random copolymer films capped between two infinite solid (filler aggregate) walls. We systematically vary the strength of the polymer-substrate adhesion interactions, degree of polymer confinement (film thickness), polymer crosslinking density, and study their influence on the equilibrium and non-equilibrium structure, segmental dynamics, and the mechanical properties of the simulated systems. The glass-transition temperature increases once the mesh size became smaller than the chain radius of gyration; otherwise it remained invariant to mesh-size variations. This increase in the glass-transition temperature was accompanied by a monotonic slowing-down of segmental dynamics on all studied length scales. This observation is attributed to the correspondingly decreased width of the bulk density layer that was obtained in films whose thickness was larger than the end-to-end distance of the bulk polymer chains. To test this hypothesis additional simulations were performed in which the crystalline walls were replaced with amorphous or rough walls.

  8. Mechanical properties of chemically modified portuguese pinewood

    OpenAIRE

    Lopes, Duarte B; Mai, Carsten; Militz, Holger

    2014-01-01

    To turn wood into a construction material with enhanced properties, many methods of chemical modification have been developed in the last few decades. In this work, mechanical properties of pine wood were chemically modified, compared and evaluated. Maritime pine wood (Pinus pinaster) was modified with four chemical processes: 1,3-dimethylol-4,5- dihydroxyethyleneurea, N-methylol melamine formaldehyde, tetra-alkoxysilane and wax. The following mechanical properties were assessed experiment...

  9. Relationship between transit time and mechanical properties of a cell through a stenosed microchannel.

    Science.gov (United States)

    Ye, Ting; Shi, Huixin; Phan-Thien, Nhan; Lim, Chwee Teck; Li, Yu

    2018-01-24

    The changes in the mechanical properties of a cell are not only the cause of some diseases, but can also be a biomarker for some disease states. In recent times, microfluidic devices with built-in constrictions have been widely used to measure these changes. The transit time in such devices, defined as the time that a cell takes to pass through a constriction, has been found to be a crucial factor associated with the cell mechanical properties. Here, we use smoothed dissipative particle dynamics (SDPD), a particle-based numerical method, to explore the relationship between the transit time and mechanical properties of a cell. Three expressions of the transit time are developed from our simulation data, with respect to the stenosed size of constrictions, the shear modulus and bending modulus of cells, respectively. We show that a convergent constriction (the inlet is wider than the outlet), and a sharp-corner constriction (the constriction outlet is narrow) are better in identifying the differences in the transit time of cells. Moreover, the transit time increases and gradually approaches a constant as the shear modulus of cells increases, but increases first and then decreases as the bending modulus increases. These results suggest that the mechanical properties of cells can indeed be measured by analyzing their transit time, based on the recommended microfluidic device.

  10. Prediction of mechanical properties for hexagonal boron nitride nanosheets using molecular mechanics model

    Energy Technology Data Exchange (ETDEWEB)

    Natsuki, Toshiaki [Shinshu University, Faculty of Textile Science and Technology, Ueda (Japan); Shinshu University, Institute of Carbon Science and Technology, Nagano (Japan); Natsuki, Jun [Shinshu University, Institute of Carbon Science and Technology, Nagano (Japan)

    2017-04-15

    Mechanical behaviors of nanomaterials are not easy to be evaluated in the laboratory because of their extremely small size and difficulty controlling. Thus, a suitable model for the estimation of the mechanical properties for nanomaterials becomes very important. In this study, the elastic properties of boron nitride (BN) nanosheets, including the elastic modulus, the shear modulus, and the Poisson's ratio, are predicted using a molecular mechanics model. The molecular mechanics force filed is established to directly incorporate the Morse potential function into the constitutive model of nanostructures. According to the molecular mechanics model, the chirality effect of hexagonal BN nanosheets on the elastic modulus is investigated through a closed-form solution. The simulated result shows that BN nanosheets exhibit an isotropic elastic property. The present analysis yields a set of very simple formulas and is able to be served as a good approximation on the mechanical properties for the BN nanosheets. (orig.)

  11. Prediction of mechanical properties for hexagonal boron nitride nanosheets using molecular mechanics model

    International Nuclear Information System (INIS)

    Natsuki, Toshiaki; Natsuki, Jun

    2017-01-01

    Mechanical behaviors of nanomaterials are not easy to be evaluated in the laboratory because of their extremely small size and difficulty controlling. Thus, a suitable model for the estimation of the mechanical properties for nanomaterials becomes very important. In this study, the elastic properties of boron nitride (BN) nanosheets, including the elastic modulus, the shear modulus, and the Poisson's ratio, are predicted using a molecular mechanics model. The molecular mechanics force filed is established to directly incorporate the Morse potential function into the constitutive model of nanostructures. According to the molecular mechanics model, the chirality effect of hexagonal BN nanosheets on the elastic modulus is investigated through a closed-form solution. The simulated result shows that BN nanosheets exhibit an isotropic elastic property. The present analysis yields a set of very simple formulas and is able to be served as a good approximation on the mechanical properties for the BN nanosheets. (orig.)

  12. Novel silicon allotropes: Stability, mechanical, and electronic properties

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Qingyang; Chai, Changchun; Zhao, Yingbo; Yang, Yintang; Yu, Xinhai; Liu, Yang; Zhang, Junqin [Key Laboratory of Ministry of Education for Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi' an 710071 (China); Wei, Qun, E-mail: weiaqun@163.com; Yao, Ronghui [School of Physics and Optoelectronic Engineering, Xidian University, Xi' an 710071 (China); Yan, Haiyan [College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013 (China); Xing, Mengjiang [Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650051 (China)

    2015-11-14

    One quasi-direct gap phase (Amm2) and three indirect gap phases (C2/m-16, C2/m-20, and I-4) of silicon allotropes are proposed. The detailed theoretical study on the structure, density of states, elastic properties, sound velocities, and Debye temperature of these four phases is carried out by using first principles calculations. The elastic constants of these four phases are calculated by strain-stress method. The elastic constants and the phonon calculations manifest all novel silicon allotropes in this paper are mechanically and dynamically stable at ambient condition. The B/G values indicate that these four phases of silicon are brittle materials at ambient pressure. The anisotropy properties show that C2/m-20 phase exhibits a larger anisotropy in its elastic modulus, shear elastic anisotropic factors, and several anisotropic indices than others. We have found that the Debye temperature of the four novel silicon allotropes gradually reduces in the order of C2/m-20 > Amm2 > C2/m-16 > I-4 at ambient pressure.

  13. Phase Morphology and Mechanical Properties of Cyclic Butylene Terephthalate Oligomer-Containing Rubbers: Effect of Mixing Temperature

    Directory of Open Access Journals (Sweden)

    István Zoltán Halász

    2016-08-01

    Full Text Available In this work, the effect of mixing temperature (Tmix on the mechanical, rheological, and morphological properties of rubber/cyclic butylene terephthalate (CBT oligomer compounds was studied. Apolar (styrene butadiene rubber, SBR and polar (acrylonitrile butadiene rubber, NBR rubbers were modified by CBT (20 phr for reinforcement and viscosity reduction. The mechanical properties were determined in tensile, tear, and dynamical mechanical analysis (DMTA tests. The CBT-caused viscosity changes were assessed by parallel-plate rheometry. The morphology was studied by scanning electron microscopy (SEM. CBT became better dispersed in the rubber matrices with elevated mixing temperatures (at which CBT was in partially molten state, which resulted in improved tensile properties. With increasing mixing temperature the size of the CBT particles in the compounds decreased significantly, from few hundred microns to 5–10 microns. Compounding at temperatures above 120 °C and 140 °C for NBR and SBR, respectively, yielded reduced tensile mechanical properties most likely due to the degradation of the base rubber. The viscosity reduction by CBT was more pronounced in mixes with coarser CBT dispersions prepared at lower mixing temperatures.

  14. Dually cross-linked single network poly(acrylic acid) hydrogels with superior mechanical properties and water absorbency.

    Science.gov (United States)

    Zhong, Ming; Liu, Yi-Tao; Liu, Xiao-Ying; Shi, Fu-Kuan; Zhang, Li-Qin; Zhu, Mei-Fang; Xie, Xu-Ming

    2016-06-28

    Poly(acrylic acid) (PAA) hydrogels with superior mechanical properties, based on a single network structure with dual cross-linking, are prepared by one-pot free radical polymerization. The network structure of the PAA hydrogels is composed of dual cross-linking: a dynamic and reversible ionic cross-linking among the PAA chains enabled by Fe(3+) ions, and a sparse covalent cross-linking enabled by a covalent cross-linker (Bis). Under deformation, the covalently cross-linked PAA chains remain intact to maintain their original configuration, while the Fe(3+)-enabled ionic cross-linking among the PAA chains is broken to dissipate energy and then recombined. It is found that the mechanical properties of the PAA hydrogels are significantly influenced by the contents of covalent cross-linkers, Fe(3+) ions and water, which can be adjusted within a substantial range and thus broaden the applications of the hydrogels. Meanwhile, the PAA hydrogels have excellent recoverability based on the dynamic and reversible ionic cross-linking enabled by Fe(3+) ions. Moreover, the swelling capacity of the PAA hydrogels is as high as 1800 times in deionized water due to the synergistic effects of ionic and covalent cross-linkings. The combination of balanced mechanical properties, efficient recoverability, high swelling capacity and facile preparation provides a new method to obtain high-performance hydrogels.

  15. Wheat gluten/montmorillonite biocomposites: Effect of pH on the mechanical properties and clay dispersion

    Directory of Open Access Journals (Sweden)

    E. Cortes-Trivino

    2018-07-01

    Full Text Available The addition of inorganic fillers into a bioplastic could increase its mechanical properties, which will be influenced strongly by the type of the clay dispersion. In this work, we have used montmorillonite nanoclays (MMT to prepare biocomposites by means of an extrusion process. We present herein the effect of the pH and the addition of montmorillonite nanoclays (MMT on the barrier and mechanical properties of wheat gluten based bioplastics. The pH of the samples was modified by adding aqueous solution of a strong acid or base (H2SO4 and NaOH. Tensile, dynamic mechanical thermal analysis (DMTA, water absorption and X-ray tests were carried out to study the influence of the above-mentioned variables on the physicochemical properties and rheological behaviour of bioplastics and biocomposites obtained. Tensile results showed that both Young’s modulus and tensile strength are higher at unmodified pH. However, the addition of MMT to an alkaline biopolymer matrix produced remarkable improvements in the rheological and mechanical properties because of a high exfoliation of the nanoclay noticeable in X-ray results. To summarise, extrusion process and the use of nanoclays present an excellent opportunity to develop wheat gluten bioplastics able to replace conventional products.

  16. Compound speckles and their statistical and dynamical properties

    DEFF Research Database (Denmark)

    Hanson, Steen Grüner; Jakobsen, Michael Linde; Skov Hansen, Rene

    2008-01-01

    Two issues will be treated in this presentation, both focusing on gaining a deeper understanding of dynamic speckles, aiming at the use for probing dynamical properties of scattering structures. The first issue to be addressed is the dynamics of speckles arising from illuminating a solid surface...

  17. Spinorial space-time and the origin of Quantum Mechanics. The dynamical role of the physical vacuum

    International Nuclear Information System (INIS)

    Gonzalez-Mestres, Luis

    2016-01-01

    Is Quantum Mechanics really and ultimate principle of Physics described by a set of intrinsic exact laws? Are standard particles the ultimate constituents of matter? The two questions appear to be closely related, as a preonic structure of the physical vacuum would have an influence on the properties of quantum particles. Although the first preon models were just « quark-like » and assumed preons to be direct constituents of the conventional « elementary » particles, we suggested in 1995 that preons could instead be constituents of the physical vacuum (the superbradyon hypothesis). Standard particles would then be excitations of the preonic vacuum and have substantially different properties from those of preons themselves (critical speed…). The standard laws of Particle Physics would be approximate expressions generated from basic preon dynamics. In parallel, the mathematical properties of space-time structures such as the spinoral space-time (SST) we introduced in 1996-97 can have strong implications for Quantum Mechanics and even be its real origin. We complete here our recent discussion of the subject by pointing out that: i) Quantum Mechanics corresponds to a natural set of properties of vacuum excitations in the presence of a SST geometry ; ii) the recently observed entanglement at long distances would be a logical property if preons are superluminal (superbradyons), so that superluminal signals and correlations can propagate in vacuum ; iii) in a specific description, the function of space-time associated to the extended internal structure of a spin-1/2 particle at very small distances may be incompatible with a continuous motion at space and time scales where the internal structure of vacuum can be felt. In the dynamics associated to iii), and using the SST approach to space-time, a contradiction can appear between macroscopic and microscopic space-times due to an overlap in the time variable directly related to the fact that a spinorial function takes

  18. Role of surface on the size-dependent mechanical properties of copper nano-wire under tensile load: A molecular dynamics simulation

    Science.gov (United States)

    Liu, Wei-Ting; Hsiao, Chun-I.; Hsu, Wen-Dung

    2014-01-01

    In this study we have used atomistic simulations to investigate the role of surface on the size-dependent mechanical properties of nano-wires. In particular, we have performed computational investigation on single crystal face-centered cubic copper nano-wires with diameters ranging from 2 to 20 nm. The wire axis for all the nano-wires are considered along the [0 0 1] direction. Characterization of the initial optimized structures revealed clear differences in interatomic spacing, stress, and potential energy in all the nano-wires. The mechanical properties with respect to wire diameter are evaluated by applying tension along the [0 0 1] direction until yielding. We have discussed the stress-strain relationships, Young's modulus, and the variation in potential energy from surface to the center of the wire for all the cases. Our results indicate that the mechanical response (including yield strain, Young's modulus, and resilience) is directly related to the proportion of surface to bulk type atoms present in each nano-wire. Thus the size-dependent mechanical properties of single crystal copper nano-wire within elastic region are attributed to the surface to volume ratio (surface effect). Using the calculated response, we have formulated a mathematical relationship, which predicts the nonlinear correlation between the mechanical properties and the diameter of the wire.

  19. Mechanical Cushion Design Influence on Cylinder Dynamics

    DEFF Research Database (Denmark)

    Borghi, Massimo; Milani, Massimo; Conrad, Finn

    2005-01-01

    The paper deals with the simulation and the experimental verification of the dynamic behaviour of a linear actuator equipped with different configurations of mechanical cushion. A numerical model, developed and tailored to describe the influence of different modulation of the discharged flow....... experimental comparison, involving the piston velocity and the cylinder chambers pressure. After, with the aim of highlighting the effect of mechanical cushions design on a two effect linear actuator dynamic performances, the characteristics modulation of four alternative cushioning systems are determined...

  20. Influence of Structure and Composition on Dynamic Viscoelastic Property of Cartilaginous Tissue: Criteria for Classification between Hyaline Cartilage and Fibrocartilage Based on Mechanical Function

    Science.gov (United States)

    Miyata, Shogo; Tateishi, Tetsuya; Furukawa, Katsuko; Ushida, Takashi

    Recently, many types of methodologies have been developed to regenerate articular cartilage. It is important to assess whether the reconstructed cartilaginous tissue has the appropriate mechanical functions to qualify as hyaline (articular) cartilage. In some cases, the reconstructed tissue may become fibrocartilage and not hyaline cartilage. In this study, we determined the dynamic viscoelastic properties of these two types of cartilage by using compression and shear tests, respectively. Hyaline cartilage specimens were harvested from the articular surface of bovine knee joints and fibrocartilage specimens were harvested from the meniscus tissue of the same. The results of this study revealed that the compressive energy dissipation of hyaline cartilage showed a strong dependence on testing frequency at low frequencies, while that of fibrocartilage did not. Therefore, the compressive energy dissipation that is indicated by the loss tangent could become the criterion for the in vitro assessment of the mechanical function of regenerated cartilage.

  1. Estimation of mechanical properties of nanomaterials using artificial intelligence methods

    Science.gov (United States)

    Vijayaraghavan, V.; Garg, A.; Wong, C. H.; Tai, K.

    2014-09-01

    Computational modeling tools such as molecular dynamics (MD), ab initio, finite element modeling or continuum mechanics models have been extensively applied to study the properties of carbon nanotubes (CNTs) based on given input variables such as temperature, geometry and defects. Artificial intelligence techniques can be used to further complement the application of numerical methods in characterizing the properties of CNTs. In this paper, we have introduced the application of multi-gene genetic programming (MGGP) and support vector regression to formulate the mathematical relationship between the compressive strength of CNTs and input variables such as temperature and diameter. The predictions of compressive strength of CNTs made by these models are compared to those generated using MD simulations. The results indicate that MGGP method can be deployed as a powerful method for predicting the compressive strength of the carbon nanotubes.

  2. Effect of Mechanical Alloying Atmospheres and Oxygen Concentration on Mechanical Properties of ODS Ferritic Steels

    International Nuclear Information System (INIS)

    Noh, Sanghoon; Choi, Byoungkwon; Han, Changhee; Kim, Kibaik; Kang, Sukhoon; Chun, Youngbum; Kim, Taekyu

    2013-01-01

    Finely dispersed nano-oxide particles with a high number density in the homogeneous grain matrix are essential to achieve superior mechanical properties at high temperatures, and these unique microstructures can be obtained through the mechanical alloying (MA) and hot consolidation process. The microstructure and mechanical property of ODS steel significantly depends on its powder property and the purity after the MA process. These contents should be carefully controlled to improve the mechanical property at elevated temperature. In particular, appropriate the control of oxygen concentration improves the mechanical property of ODS steel at high temperature. An effective method is to control the mechanical alloying atmosphere by high purity inert gas. In the present study, the effects of mechanical alloying atmospheres and oxygen concentration on the mechanical property of ODS steel were investigated. ODS ferritic alloys were fabricated in various atmospheres, and the HIP process was used to investigate the effects of MA atmospheres and oxygen concentration on the microstructure and mechanical property. ODS ferritic alloys milled in an Ar-H 2 mixture, and He is effective to reduce the excess oxygen concentration. The YH 2 addition made an extremely reduced oxygen concentration by the internal oxygen reduction reaction and resulted in a homogeneous microstructure and superior creep strength

  3. Mechanical properties of nuclear waste glasses

    International Nuclear Information System (INIS)

    Connelly, A.J.; Hand, R.J.; Bingham, P.A.; Hyatt, N.C.

    2011-01-01

    The mechanical properties of nuclear waste glasses are important as they will determine the degree of cracking that may occur either on cooling or following a handling accident. Recent interest in the vitrification of intermediate level radioactive waste (ILW) as well as high level radioactive waste (HLW) has led to the development of new waste glass compositions that have not previously been characterised. Therefore the mechanical properties, including Young's modulus, Poisson's ratio, hardness, indentation fracture toughness and brittleness of a series of glasses designed to safely incorporate wet ILW have been investigated. The results are presented and compared with the equivalent properties of an inactive simulant of the current UK HLW glass and other nuclear waste glasses from the literature. The higher density glasses tend to have slightly lower hardness and indentation fracture toughness values and slightly higher brittleness values, however, it is shown that the variations in mechanical properties between these different glasses are limited, are well within the range of published values for nuclear waste glasses, and that the surveyed data for all radioactive waste glasses fall within relatively narrow range.

  4. Propensity of bond exchange as a window into the mechanical properties of metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, W.; Wang, X. L., E-mail: xlwang@um.cityu.edu.hk; Lan, S. [Department of Physics and Materials Science, City University of Hong Kong, Hong Kong (China); Pan, S. P. [College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Lu, Z. P. [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China)

    2015-02-09

    We investigated the mechanical properties of Zr-Cu-Al bulk metallic glasses, by compression experiment and molecular dynamics simulations. From the simulation, we found that the large, solvent atom, Zr, has high propensity of bond exchange compared to those of the smaller solute atoms. The difference in bond exchange is consistent with the observed disparity in mechanical behaviors: Zr-rich metallic glass exhibits low elastic modulus and large plastic strain. X-ray photoelectron spectroscopy measurements suggest that the increased propensity in bond exchange is related to the softening of Zr bonds with increasing Zr content.

  5. Mechanical and electro-mechanical properties of three-dimensional nanoporous graphene-poly(vinylidene fluoride composites

    Directory of Open Access Journals (Sweden)

    G. P. Zheng

    2016-09-01

    Full Text Available Three-dimensional nanoporous graphene monoliths are utilized to prepare graphene-poly(vinylidene fluoride nanocomposites with enhanced mechanical and electro-mechanical properties. Pre-treatment of the polymer (poly(vinylidene fluoride, PVDF with graphene oxides (GOs facilitates the formation of uniform and thin PVDF films with a typical thickness below 100 nm well coated at the graphene nano-sheets. Besides their excellent compressibility, ductility and mechanical strength, the nanoporous graphene-PVDF nanocomposites are found to possess high sensitivity in strain-dependent electrical conductivity. The improved mechanical and electro-mechanical properties are ascribed to the enhanced crystalline β phase in PVDF which possesses piezoelectricity. The mechanical relaxation analyses on the interfaces between graphene and PVDF reveal that the improved mechanical and electro-mechanical properties could result from the interaction between the –C=O groups in the nanoporous graphene and the –CF2 groups in PVDF, which also explains the important role of GOs in the preparation of the graphene-polymer nanocomposites with superior combined mechanical and electro-mechanical properties.

  6. Computational modelling of thermo-mechanical and transport properties of carbon nanotubes

    International Nuclear Information System (INIS)

    Rafii-Tabar, H.

    2004-01-01

    Over the recent years, numerical modelling and computer-based simulation of the properties of carbon nanotubes have become the focal points of research in computational nano-science and its associated fields of computational condensed matter physics and materials modelling. Modelling of the mechanical, thermal and transport properties of nanotubes via numerical simulations forms the central part of this research, concerned with the nano-scale mechanics and nano-scale thermodynamics of nanotubes, and nano-scale adsorption, storage and flow properties in nanotubes. A review of these properties, obtained via computational modelling studies, is presented here. We first introduce the physics of carbon nanotubes, and then present the computational simulation tools that are appropriate for conducting a modelling study at the nano-scales. These include the molecular dynamics (MD), the Monte Carlo (MC), and the ab initio MD simulation methods. A complete range of inter-atomic potentials, of two-body and many-body varieties, that underlie all the modelling studies considered in this review is also given. Mechanical models from continuum-based elasticity theory that have been extensively employed in computing the energetics of nanotubes, or interpret the results from atomistic modelling, are presented and discussed. These include models based on the continuum theory of curved plates, shells, vibrating rods and bending beams. The validity of these continuum-based models has also been examined and the conditions under which they are applicable to nanotube modelling have been listed. Pertinent concepts from continuum theories of stress analysis are included, and the relevant methods for conducting the computation of the stress tensor, elastic constants and elastic modulii at the atomic level are also given. We then survey a comprehensive range of modelling studies concerned with the adsorption and storage of gases, and flow of fluids, in carbon nanotubes of various types. This

  7. Computational modelling of thermo-mechanical and transport properties of carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Rafii-Tabar, H

    2004-02-01

    Over the recent years, numerical modelling and computer-based simulation of the properties of carbon nanotubes have become the focal points of research in computational nano-science and its associated fields of computational condensed matter physics and materials modelling. Modelling of the mechanical, thermal and transport properties of nanotubes via numerical simulations forms the central part of this research, concerned with the nano-scale mechanics and nano-scale thermodynamics of nanotubes, and nano-scale adsorption, storage and flow properties in nanotubes. A review of these properties, obtained via computational modelling studies, is presented here. We first introduce the physics of carbon nanotubes, and then present the computational simulation tools that are appropriate for conducting a modelling study at the nano-scales. These include the molecular dynamics (MD), the Monte Carlo (MC), and the ab initio MD simulation methods. A complete range of inter-atomic potentials, of two-body and many-body varieties, that underlie all the modelling studies considered in this review is also given. Mechanical models from continuum-based elasticity theory that have been extensively employed in computing the energetics of nanotubes, or interpret the results from atomistic modelling, are presented and discussed. These include models based on the continuum theory of curved plates, shells, vibrating rods and bending beams. The validity of these continuum-based models has also been examined and the conditions under which they are applicable to nanotube modelling have been listed. Pertinent concepts from continuum theories of stress analysis are included, and the relevant methods for conducting the computation of the stress tensor, elastic constants and elastic modulii at the atomic level are also given. We then survey a comprehensive range of modelling studies concerned with the adsorption and storage of gases, and flow of fluids, in carbon nanotubes of various types. This

  8. Influence of Surface Coating of Magnetic Nanoparticles on Mechanical Properties of Polymer Nanocomposites

    Science.gov (United States)

    Yarar, Ecem; Karakas, Gizem; Rende, Deniz; Ozisik, Rahmi; Malta, Seyda

    Polymer nanocomposites have emerged as promising materials due to improved properties when compared with conventional bulk polymers. Nanofillers are natural or synthetic organic/inorganic particles that are less than 100 nm in at least one dimension. Even the addition of trace amounts of nanofillers to polymers may lad to unique combinations of properties. Among variety of inorganic nanofillers, iron oxide magnetic nanoparticles are of great interest due to their unique physical and chemical properties, such as low toxicity, biocompatibility, large magnetization and conductivity, owing to their extremely small size and large specific surface area. In this study, approximately 8-10 nm magnetic nanoparticles coated with either citric acid or oleic acid are synthesized and blended with poly(methyl methacrylate) (PMMA) or poly(ethylene oxide) (PEO). The hydrophobicity/hydrophillicity of the polymer and the surface coating on the iron oxide nanoparticles are exploited to control the dispersion state of nanoparticles, and the effect of dispersion on mechanical and thermal properties of the nanocomposite are investigated via experimental methods such as dynamic mechanical analysis and differential scanning calorimetry. This material is based upon work partially supported by the National Science Foundation under Grant No. CMMI-1538730 and TUBITAK 112M666.

  9. Mechanical and biological properties of the micro-/nano-grain functionally graded hydroxyapatite bioceramics for bone tissue engineering.

    Science.gov (United States)

    Zhou, Changchun; Deng, Congying; Chen, Xuening; Zhao, Xiufen; Chen, Ying; Fan, Yujiang; Zhang, Xingdong

    2015-08-01

    Functionally graded materials (FGM) open the promising approach for bone tissue repair. In this study, a novel functionally graded hydroxyapatite (HA) bioceramic with micrograin and nanograin structure was fabricated. Its mechanical properties were tailored by composition of micrograin and nanograin. The dynamic mechanical analysis (DMA) indicated that the graded HA ceramics had similar mechanical property compared to natural bones. Their cytocompatibility was evaluated via fluorescent microscopy and MTT colorimetric assay. The viability and proliferation of rabbit bone marrow mesenchymal stem cells (BMSCs) on ceramics indicated that this functionally graded HA ceramic had better cytocompatibility than conventional HA ceramic. This study demonstrated that functionally graded HA ceramics create suitable structures to satisfy both the mechanical and biological requirements of bone tissues. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Effect of cyclic electron irradiation on mechanical properties of austenite steel

    International Nuclear Information System (INIS)

    Tsepelev, A.B.; Sadykhov, S.I.O.; Chernov, A.I.; Sevost'yanov, M.A.

    2006-01-01

    To check the supposition on the possibility of radiation-stimulated process enhancement under cyclic irradiation conditions an experimental investigation is carried out to elucidate the effect of the mode of irradiation (continuous or cyclic) on mechanical properties of chromium-manganese austenitic stainless steel type 10Kh12G20V. The effect of some radiation hardening is observed under cyclic irradiation, however, the data obtained cannot be considered as good evidence for the validity of proposed model of dynamic preference if the scatter in experimental data is taken into account [ru

  11. Reactive Molecular Dynamics Simulations to Understand Mechanical Response of Thaumasite under Temperature and Strain Rate Effects.

    Science.gov (United States)

    Hajilar, Shahin; Shafei, Behrouz; Cheng, Tao; Jaramillo-Botero, Andres

    2017-06-22

    Understanding the structural, thermal, and mechanical properties of thaumasite is of great interest to the cement industry, mainly because it is the phase responsible for the aging and deterioration of civil infrastructures made of cementitious materials attacked by external sources of sulfate. Despite the importance, effects of temperature and strain rate on the mechanical response of thaumasite had remained unexplored prior to the current study, in which the mechanical properties of thaumasite are fully characterized using the reactive molecular dynamics (RMD) method. With employing a first-principles based reactive force field, the RMD simulations enable the description of bond dissociation and formation under realistic conditions. From the stress-strain curves of thaumasite generated in the x, y, and z directions, the tensile strength, Young's modulus, and fracture strain are determined for the three orthogonal directions. During the course of each simulation, the chemical bonds undergoing tensile deformations are monitored to reveal the bonds responsible for the mechanical strength of thaumasite. The temperature increase is found to accelerate the bond breaking rate and consequently the degradation of mechanical properties of thaumasite, while the strain rate only leads to a slight enhancement of them for the ranges considered in this study.

  12. Mechanical and Electrical Properties of Sulfur-Containing Polymeric Materials Prepared via Inverse Vulcanization

    Directory of Open Access Journals (Sweden)

    Sergej Diez

    2017-02-01

    Full Text Available Recently, new methods have been developed for the utilization of elemental sulfur as a feedstock for novel polymeric materials. One promising method is the inverse vulcanization, which is used to prepare polymeric structures derived from sulfur and divinyl comonomers. However, the mechanical and electrical properties of the products are virtually unexplored. Hence, in the present study, we synthesized a 200 g scale of amorphous, hydrophobic as well as translucent, hyperbranched polymeric sulfur networks that provide a high thermal resistance (>220 °C. The polymeric material properties of these sulfur copolymers can be controlled significantly by varying the monomers as well as the feed content. The investigated comonomers are divinylbenzene (DVB and 1,3-diisopropenylbenzene (DIB. Plastomers with low elastic content and high shape retention containing 12.5%–30% DVB as well as low viscose waxy plastomers with a high flow behavior containing a high DVB content of 30%–35% were obtained. Copolymers with 15%–30% DIB act, on the one hand, as thermoplastics and, on the other hand, as vitreous thermosets with a DIB of 30%–35%. Results of the thermogravimetric analysis (TGA, the dynamic scanning calorimetry (DSC and mechanical characterization, such as stress–strain experiments and dynamic mechanical thermal analysis, are discussed with the outcome that they support the assumption of a polymeric cross-linked network structure in the form of hyper-branched polymers.

  13. Improvement in mechanical properties of high concentration particle doped thermoset composites

    International Nuclear Information System (INIS)

    Ahmed, N.

    2009-01-01

    The paper relates to high concentration particle doped composites based on thermosetting polymer systems in which the sequential addition of particles of certain size distribution is followed by curing and casting of the slurry to form a thermoset composite. Conventionally, at a threshold of beyond 90% of particles by weight of the polymer using triglyceride, the mechanical properties of the composite exhibit a sharp decline. The present research mitigates this behavior by incorporating a unique combination of cross-linking agents in the base polymer to impart exceptional mechanical properties to the composite. More specifically, the base polymer consists of butadiene, with triglyceride as cross-linking agent together with hydroxy-alkane as the chain extension precursors, when tune to the appropriate level of hard segment ratio in the polymer. An added advantage according to the present work resides in the analytical nature of butadiene pre-polymer as opposed to natural product; traditional composites based on natural sources are hampered by their inconsistent chemical composition and poor shelf life in the fabricated composite. The thermoset composite according the present research exhibits superior tensile strength (200-300 psi) properties using particle loading as high as 92% by weight of the fabricated composite as measured on a Tinius Olsen machine. Dynamic Mechanical Testing reveals interesting combination of storage and loss moduli in the fabricated specimens as a function of optimizing the thermal response of the viscoelastic composite to imposed vibration loading. (author)

  14. Controlling Hydrogel Mechanics via Bio-Inspired Polymer-Nanoparticle Bond Dynamics.

    Science.gov (United States)

    Li, Qiaochu; Barrett, Devin G; Messersmith, Phillip B; Holten-Andersen, Niels

    2016-01-26

    Interactions between polymer molecules and inorganic nanoparticles can play a dominant role in nanocomposite material mechanics, yet control of such interfacial interaction dynamics remains a significant challenge particularly in water. This study presents insights on how to engineer hydrogel material mechanics via nanoparticle interface-controlled cross-link dynamics. Inspired by the adhesive chemistry in mussel threads, we have incorporated iron oxide nanoparticles (Fe3O4 NPs) into a catechol-modified polymer network to obtain hydrogels cross-linked via reversible metal-coordination bonds at Fe3O4 NP surfaces. Unique material mechanics result from the supra-molecular cross-link structure dynamics in the gels; in contrast to the previously reported fluid-like dynamics of transient catechol-Fe(3+) cross-links, the catechol-Fe3O4 NP structures provide solid-like yet reversible hydrogel mechanics. The structurally controlled hierarchical mechanics presented here suggest how to develop hydrogels with remote-controlled self-healing dynamics.

  15. Microstructure, mechanical properties, bio-corrosion properties and antibacterial properties of Ti–Ag sintered alloys

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Mian [Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, Northeastern University, Shenyang 110819 (China); Zhang, Erlin, E-mail: zhangel@atm.neu.edu.cn [Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, Northeastern University, Shenyang 110819 (China); Zhang, Lan [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China)

    2016-05-01

    In this research, Ag element was selected as an antibacterial agent to develop an antibacterial Ti–Ag alloy by a powder metallurgy. The microstructure, phase constitution, mechanical properties, corrosion resistance and antibacterial properties of the Ti–Ag sintered alloys have been systematically studied by X-ray diffraction (XRD), scanning electron microscope (SEM), compressive test, electrochemical measurements and antibacterial test. The effects of the Ag powder size and the Ag content on the antibacterial property and mechanical property as well as the anticorrosion property have been investigated. The microstructure results have shown that Ti–Ag phase, residual pure Ag and Ti were the mainly phases in Ti–Ag(S75) sintered alloy while Ti{sub 2}Ag was synthesized in Ti–Ag(S10) sintered alloy. The mechanical test indicated that Ti–Ag sintered alloy showed a much higher hardness and the compressive yield strength than cp-Ti but the mechanical properties were slightly reduced with the increase of Ag content. Electrochemical results showed that Ag powder size had a significant effect on the corrosion resistance of Ti–Ag sintered alloy. Ag content increased the corrosion resistance in a dose dependent way under a homogeneous microstructure. Antibacterial tests have demonstrated that antibacterial Ti–Ag alloy was successfully prepared. It was also shown that the Ag powder particle size and the Ag content influenced the antibacterial activity seriously. The reduction in the Ag powder size was benefit to the improvement in the antibacterial property and the Ag content has to be at least 3 wt.% in order to obtain a strong and stable antibacterial activity against Staphylococcus aureus bacteria. The bacterial mechanism was thought to be related to the Ti{sub 2}Ag and its distribution. - Highlights: • Ti–Ag alloy with up to 99% antibacterial rate was developed by powder metallurgy. • The effects of the Ag powder size and the Ag content on the

  16. Variability of mechanical properties of nuclear pressure vessel steels

    International Nuclear Information System (INIS)

    Petrequin, P.; Soulat, P.

    1980-01-01

    Causes of variability of mechanical properties nuclear pressure vessel steels are reviewed and discussed. The effects of product shape and size, processing history and heat treatment are investigated. Some quantitative informations are given on the scatter of mechanical properties of typical pressure vessel components. The necessity of using recommended or standardized properties for comparing mechanical properties before and after irradiation in pin pointed. (orig.) [de

  17. Experimental Analysis of Tensile Mechanical Properties of Sprayed FRP

    Directory of Open Access Journals (Sweden)

    Zhao Yang

    2016-01-01

    Full Text Available To study the tensile mechanical properties of sprayed FRP, 13 groups of specimens were tested through uniaxial tensile experiments, being analyzed about stress-strain curve, tensile strength, elastic modulus, breaking elongation, and other mechanical properties. Influencing factors on tensile mechanical properties of sprayed FRP such as fiber type, resin type, fiber volume ratio, fiber length, and composite thickness were studied in the paper too. The results show that both fiber type and resin type have an obvious influence on tensile mechanical properties of sprayed FRP. There will be a specific fiber volume ratio for sprayed FRP to obtain the best tensile mechanical property. The increase of fiber length can lead to better tensile performance, while that of composite thickness results in property degradation. The study can provide reference to popularization and application of sprayed FRP material used in structure reinforcement.

  18. Experimental Investigation on Shock Mechanical Properties of Red Sandstone under Preloaded 3D Static Stresses

    Directory of Open Access Journals (Sweden)

    Niu Yong

    2015-11-01

    Full Text Available Triaxial impact mechanical performance experiment was performed to study the mechanical properties of red sandstone subjected to three-dimensional (3D coupled static and dynamic loads, i.e., three confining pressures (0, 5, and 10 MPa and three axial pressures (11, 27, and 43 MPa. A modified 3D split Hopkinson pressure bar testing system was used. The change trend in the deformation of red sandstone and the strength and failure modes under axial pressures and confining pressures were analyzed. Results show that, when the confining pressure is constant, the compressive strength, secant modulus, and energy absorbed per unit volume of red sandstone initially increases and subsequently decreases, whereas the average strain rate exhibits an opposite trend. When the axial pressure is constant, both the compressive strength and secant modulus of red sandstone are enhanced, but the average strain rate is decreased with increasing confining pressure. The energy absorbed per unit volume is initially increased and subsequently decreased as the confining pressure increases. Red sandstone exhibits a cone-shaped compression–shear failure mode under the 3D coupled static and dynamic loads. The conclusions serve as theoretical basis on the mechanical properties of deep medium-strength rock under a high ground stress and external load disturbance condition

  19. Mechanical properties of the human Achilles tendon, in vivo

    DEFF Research Database (Denmark)

    Kongsgaard, M; Nielsen, C H; Hegnsvad, S

    2011-01-01

    Ultrasonography has been widely applied for in vivo measurements of tendon mechanical properties. Assessments of human Achilles tendon mechanical properties have received great interest. Achilles tendon injuries predominantly occur in the tendon region between the Achilles-soleus myotendinous...... junction and Achilles-calcaneus osteotendinous junction i.e. in the free Achilles tendon. However, there has been no adequate ultrasound based method for quantifying the mechanical properties of the free human Achilles tendon. This study aimed to: 1) examine the mechanical properties of the free human...

  20. Thermodynamical and dynamical properties of charged BTZ black holes

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Zi-Yu; Wang, Bin [Shanghai Jiao Tong University, Department of Physics and Astronomy, Center for Astronomy and Astrophysics, Shanghai (China); Zhang, Cheng-Yong [Peking University, Center for High-Energy Physics, Beijing (China); Kord Zangeneh, Mahdi [Shanghai Jiao Tong University, Department of Physics and Astronomy, Center for Astronomy and Astrophysics, Shanghai (China); Shahid Chamran University of Ahvaz, Physics Department, Faculty of Science, Ahvaz (Iran, Islamic Republic of); Research Institute for Astronomy and Astrophysics of Maragha (RIAAM)-Maragha, P. O. Box: 55134-441, Maragha (Iran, Islamic Republic of); Shiraz University, Physics Department and Biruni Observatory, College of Sciences, Shiraz (Iran, Islamic Republic of); Saavedra, Joel [Pontificia Universidad Catolica de Valparaiso, Instituto de Fisica, Valparaiso (Chile)

    2017-06-15

    We investigate the spacetime properties of BTZ black holes in the presence of the Maxwell field and Born-Infeld field and find rich properties in the spacetime structures when the model parameters are varied. Employing Landau-Lifshitz theory, we examine the thermodynamical phase transition in the charged BTZ black holes. We further study the dynamical perturbation in the background of the charged BTZ black holes and find different properties in the dynamics when the thermodynamical phase transition occurs. (orig.)

  1. Mechanical Properties of Moringa ( Moringa oleifera ) Seeds in ...

    African Journals Online (AJOL)

    Mechanical properties are very important in the design of machines and the analysis of the behaviour of products during agricultural processing. In this research work, the mechanical properties of Moringa were determined as design parameters for the development of an oil expeller for the crop. The properties were the ...

  2. Food mechanical properties and dietary ecology.

    Science.gov (United States)

    Berthaume, Michael A

    2016-01-01

    Interdisciplinary research has benefitted the fields of anthropology and engineering for decades: a classic example being the application of material science to the field of feeding biomechanics. However, after decades of research, discordances have developed in how mechanical properties are defined, measured, calculated, and used due to disharmonies between and within fields. This is highlighted by "toughness," or energy release rate, the comparison of incomparable tests (i.e., the scissors and wedge tests), and the comparison of incomparable metrics (i.e., the stress and displacement-limited indices). Furthermore, while material scientists report on a myriad of mechanical properties, it is common for feeding biomechanics studies to report on just one (energy release rate) or two (energy release rate and Young's modulus), which may or may not be the most appropriate for understanding feeding mechanics. Here, I review portions of materials science important to feeding biomechanists, discussing some of the basic assumptions, tests, and measurements. Next, I provide an overview of what is mechanically important during feeding, and discuss the application of mechanical property tests to feeding biomechanics. I also explain how 1) toughness measures gathered with the scissors, wedge, razor, and/or punch and die tests on non-linearly elastic brittle materials are not mechanical properties, 2) scissors and wedge tests are not comparable and 3) the stress and displacement-limited indices are not comparable. Finally, I discuss what data gathered thus far can be best used for, and discuss the future of the field, urging researchers to challenge underlying assumptions in currently used methods to gain a better understanding between primate masticatory morphology and diet. © 2016 Wiley Periodicals, Inc.

  3. Coupling Langevin Dynamics With Continuum Mechanics: Exposing the Role of Sarcomere Stretch Activation Mechanisms to Cardiac Function

    Directory of Open Access Journals (Sweden)

    Takumi Washio

    2018-04-01

    Full Text Available High-performance computing approaches that combine molecular-scale and macroscale continuum mechanics have long been anticipated in various fields. Such approaches may enrich our understanding of the links between microscale molecular mechanisms and macroscopic properties in the continuum. However, there have been few successful examples to date owing to various difficulties associated with overcoming the large spatial (from 1 nm to 10 cm and temporal (from 1 ns to 1 ms gaps between the two scales. In this paper, we propose an efficient parallel scheme to couple a microscopic model using Langevin dynamics for a protein motor with a finite element continuum model of a beating heart. The proposed scheme allows us to use a macroscale time step that is an order of magnitude longer than the microscale time step of the Langevin model, without loss of stability or accuracy. This reduces the overhead required by the imbalanced loads of the microscale computations and the communication required when switching between scales. An example of the Langevin dynamics model that demonstrates the usefulness of the coupling approach is the molecular mechanism of the actomyosin system, in which the stretch-activation phenomenon can be successfully reproduced. This microscopic Langevin model is coupled with a macroscopic finite element ventricle model. In the numerical simulations, the Langevin dynamics model reveals that a single sarcomere can undergo spontaneous oscillation (15 Hz accompanied by quick lengthening due to cooperative movements of the myosin molecules pulling on the common Z-line. Also, the coupled simulations using the ventricle model show that the stretch-activation mechanism contributes to the synchronization of the quick lengthening of the sarcomeres at the end of the systolic phase. By comparing the simulation results given by the molecular model with and without the stretch-activation mechanism, we see that this synchronization contributes to

  4. Rigid body dynamics of mechanisms

    CERN Document Server

    Hahn, Hubert

    2003-01-01

    The second volume of Rigid Body Dynamics of Mechanisms covers applications via a systematic method for deriving model equations of planar and spatial mechanisms. The necessary theoretical foundations have been laid in the first volume that introduces the theoretical mechanical aspects of mechatronic systems. Here the focus is on the application of the modeling methodology to various examples of rigid-body mechanisms, simple planar ones as well as more challenging spatial problems. A rich variety of joint models, active constraints, plus active and passive force elements is treated. The book is intended for self-study by working engineers and students concerned with the control of mechanical systems, i.e. robotics, mechatronics, vehicles, and machine tools. The examples included are a likely source from which to choose models for university lectures.

  5. Bio-composites based on polypropylene reinforced with Almond Shells particles: Mechanical and thermal properties

    International Nuclear Information System (INIS)

    Essabir, H.; Nekhlaoui, S.; Malha, M.; Bensalah, M.O.; Arrakhiz, F.Z.; Qaiss, A.; Bouhfid, R.

    2013-01-01

    Highlights: • Almond Shells (ASs) particles have been used as reinforcement in polypropylene matrix. • The SEBS-g-MA has been used to improve the adhesion between matrix and particles. • The mechanical and thermal properties of the composite have been improved by the AS. - Abstract: In this work, Almond Shells (ASs) particles are used as reinforcement in a thermoplastic matrix as polypropylene (PP). Composites containing Almond Shells (ASs) particles with and without compatibilizer (maleic anhydride grafted polypropylene; SEBS-g-MA) for various particle content (5, 10, 15, 20, 25, 30 wt.%) was investigated by means of studying their mechanical, thermal and rheological properties. The composites were prepared in a twin-screw extruder and assessed by means of X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), tensile testing and Dynamic Mechanical Analysis (DMA). Results show a clear improvement in mechanical and rheological properties from the use of Almond Shells particles in the matrix without and with maleic anhydride compatibilizer, corresponding to a gain in Young’s modulus of 56.2% and 35% respectively, at 30 wt.% particle loading. Thermal analysis revealed that incorporation of particle in the composites resulted in increase in the initial thermal decomposition temperatures

  6. Characterization of site-specific biomechanical properties of human meniscus-Importance of collagen and fluid on mechanical nonlinearities.

    Science.gov (United States)

    Danso, E K; Mäkelä, J T A; Tanska, P; Mononen, M E; Honkanen, J T J; Jurvelin, J S; Töyräs, J; Julkunen, P; Korhonen, R K

    2015-06-01

    Meniscus adapts to joint loads by depth- and site-specific variations in its composition and structure. However, site-specific mechanical characteristics of intact meniscus under compression are poorly known. In particular, mechanical nonlinearities caused by different meniscal constituents (collagen and fluid) are not known. In the current study, in situ indentation testing was conducted to determine site-specific elastic, viscoelastic and poroelastic properties of intact human menisci. Lateral and medial menisci (n=26) were harvested from the left knee joint of 13 human cadavers. Indentation tests, using stress-relaxation and dynamic (sinusoidal) loading protocols, were conducted for menisci at different sites (anterior, middle, posterior, n=78). Sample- and site-specific axisymmetric finite element models with fibril-reinforced poroelastic properties were fitted to the corresponding stress-relaxation curves to determine the mechanical parameters. Elastic moduli, especially the instantaneous and dynamic moduli, showed site-specific variation only in the medial meniscus (pmeniscus. The phase angle showed no statistically significant variation between the sites (p>0.05). The values for the strain-dependent fibril network modulus (nonlinear behaviour of collagen) were significantly different (pmeniscus only between the middle and posterior sites. For the strain-dependent permeability coefficient, only anterior and middle sites showed a significant difference (pmeniscus. This parameter demonstrated a significant difference (pmeniscus shows more site-dependent variation in the mechanical properties as compared to lateral meniscus. In particular, anterior horn of medial meniscus was the stiffest and showed the most nonlinear mechanical behaviour. The nonlinearity was related to both collagen fibrils and fluid. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Carbon nano fibers reinforced composites origami inspired mechanical metamaterials with passive and active properties

    Science.gov (United States)

    Kshad, Mohamed Ali E.; D'Hondt, Clement; Naguib, Hani E.

    2017-10-01

    Core panels used for compression or impact damping are designed to dissipate energy and to reduce the transferred force and energy. They are designed to have high strain and deformation with low density. The geometrical configuration of such cores plays a significant role in redistributing the applied forces to dampen the compression and impact energy. Origami structures are renowned for affording large macroscopic deformation which can be employed for force redistribution and energy damping. The material selection for the fabrication of origami structures affects the core capacity to withstand compression and impact loads. Polymers are characterized by their high compression and impact resistance; the drawback of polymers is the low stiffness and elastic moduli compared with metallic materials. This work is focused on the study of the effect of Carbon Nano Fibers (CNF) on the global mechanical properties of the origami panel cores made of polymeric blends. The base matrix materials used were Polylactic Acid (PLA) and Thermoplastic Polyurethane (TPU) blends, and the percentages of the PLA/TPU were 100/0, 20/80, 65/35, 50/50, 20/80, and 0/100 as a percentage of weight. The weight percentages of CNF added to the polymeric blends were 1%, 3%, and 5%. This paper deals with the fabrication process of the polymeric reinforced blends and the origami cores, in order to predict the best fabrication conditions. The dynamic scanning calorimetry and the dynamic mechanical analyzer were used to test the reinforced blended base material for thermomechanical and viscoelastic properties. The origami core samples were fabricated using per-molded geometrical features and then tested for compression and impact properties. The results of the study were compared with previous published results which showed that there is considerable enhancement in the mechanical properties of the origami cores compared with the pure blended polymeric origami cores. The active properties of the origami

  8. Propriedades Mecânicas e Dinâmico-mecânicas de Composições de Policloropreno com Negro de Fumo Mechanical and Dynamic Mechanical Properties of Chloroprene Rubber Compositions with Carbon Black

    Directory of Open Access Journals (Sweden)

    Agnes F. Martins

    2002-01-01

    Full Text Available As cargas são fundamentais em composições elastoméricas sendo classificadas, segundo desempenho mecânico, em reforçadoras ou não. O negro de fumo é a carga de reforço mais utilizada nessas composições, não só pelas excelentes propriedades que confere ao artefato, mas também pelo baixo preço e facilidade de processamento. As propriedades dinâmico-mecânicas de sistemas poliméricos são modificadas pela adição de cargas, o que acarreta mudanças nos módulos elástico (E' e viscoso (E", bem como na razão entre eles, isto é, a tangente de perda (tan delta. Neste trabalho, são estudadas as propriedades mecânicas e dinâmico-mecânicas de composições de policloropreno (CR com negro de fumo (NF. O teor de negro de fumo incorporado variou entre 0 e 45 phr. A composição contendo 40 phr de carga apresentou o melhor conjunto das propriedades estudadas.Often used in elastomeric compositions, fillers can be classified, according to their mechanical performance, as reinforcing or non-reinforcing fillers. Carbon black is the most used reinforcing filler in rubber compositions, either because of the excellent properties it confers to the rubber article, or due to its low cost and easy processing. When added to polymer systems, fillers are known to cause a considerable change in both dynamic moduli, viscous (E" and elastic (E', and also in the loss factor (tan delta, which is the ratio between those two parameters. In this work, the mechanical and dynamic mechanical properties of compositions of chloroprene rubber (CR with carbon black (CB were investigated. The filler content varied from 0 to 45 phr. The composition containing 40 phr of carbon black showed the best set of results.

  9. Mechanical properties of highly defective graphene: from brittle rupture to ductile fracture.

    Science.gov (United States)

    Xu, Lanqing; Wei, Ning; Zheng, Yongping

    2013-12-20

    Defects are generally believed to deteriorate the superlative performance of graphene-based devices but may also be useful when carefully engineered to tailor the local properties and achieve new functionalities. Central to most defect-associated applications is the defect coverage and arrangement. In this work, we investigate, by molecular dynamics simulations, the mechanical properties and fracture dynamics of graphene sheets with randomly distributed vacancies or Stone-Wales defects under tensile deformations over a wide defect coverage range. With defects presented, an sp-sp(2) bonding network and an sp-sp(2)-sp(3) bonding network are observed in vacancy-defected and Stone-Wales-defected graphene, respectively. The ultimate strength degrades gradually with increasing defect coverage and saturates in the high-ratio regime, whereas the fracture strain presents an unusual descending-saturating-improving trend. In the dense vacancy defect situation, the fracture becomes more plastic and super-ductility is observed. Further fracture dynamics analysis reveals that the crack trapping by sp-sp(2) and sp-sp(2)-sp(3) rings and the crack-tip blunting account for the ductile fracture, whereas geometric rearrangement on the entire sheet for vacancy defects and geometric rearrangement on the specific defect sites for Stone-Wales defects account for their distinctive rules of the evolution of the fracture strain.

  10. Theoretical study of phonon dispersion, elastic, mechanical and thermodynamic properties of barium chalcogenides

    Science.gov (United States)

    Musari, A. A.; Orukombo, S. A.

    2018-03-01

    Barium chalcogenides are known for their high-technological importance and great scientific interest. Detailed studies of their elastic, mechanical, dynamical and thermodynamic properties were carried out using density functional theory and plane-wave pseudo potential method within the generalized gradient approximation. The optimized lattice constants were in good agreement when compared with experimental data. The independent elastic constants, calculated from a linear fit of the computed stress-strain function, were used to determine the Young’s modulus (E), bulk modulus (B), shear modulus (G), Poisson’s ratio (σ) and Zener’s anisotropy factor (A). Also, the Debye temperature and sound velocities for barium chalcogenides were estimated from the three independent elastic constants. The calculations of phonon dispersion showed that there are no negative frequencies throughout the Brillouin zone. Hence barium chalcogenides have dynamically stable NaCl-type crystal structure. Finally, their thermodynamic properties were calculated in the temperature range of 0-1000 K and their constant-volume specific heat capacities at room-temperature were reported.

  11. Dynamical symmetry as a tool to understanding properties of supersymmetric partner potentials. Example of so(2,1) symmetry

    International Nuclear Information System (INIS)

    Wehrhahn, R.F.; Cooper, I.L.

    1992-05-01

    Analysis of the dynamical symmetry of a system is used to predict properties arising from its supersymmetric quantum mechanical treatment. Two applications of the so(2,1) algebra, the Coulomb potential and Morse oscillator potential which display different structure with respect to the dynamical symmetry, are studied. This difference is shown to be responsible for the behaviour of the respective supersymmetric partner potentials. (orig.)

  12. Enhancement of mechanical properties of 123 superconductors

    Science.gov (United States)

    Balachandran, Uthamalingam

    1995-01-01

    A composition and method of preparing YBa.sub.2 Cu.sub.3 O.sub.7-x superconductor. Addition of tin oxide containing compounds to YBCO superconductors results in substantial improvement of fracture toughness and other mechanical properties without affect on T.sub.c. About 5-20% additions give rise to substantially improved mechanical properties.

  13. Magnesium Alloy WE43 and WE43-T5 - Mechanical and Thermal Properties

    Science.gov (United States)

    Xiang, Chongchen

    Magnesium alloys are promising in aerospace, automotive and electronic industries due to low density, high specific strength and excellent machinability. A rare earth element alloy (WE43) is studied in as cast and heat treated conditions. Multiscale characterization is conducted to understand the nanomechanical response using a nanoindentor and microscale behavior using tensile tests. Further, compressive characterization is conducted across six orders of strain rate magnitudes from 10-3 to 3x103 s -1 under the range of liquid nitrogen (-196°C) to room temperature (25°C). Based on the results, a constitutive model is developed to estimate the plastic behavior of as-cast WE43 and WE43-T5 at different strain rates and under different temperatures. In addition, dynamic properties are studied using a dynamic mechanical analyzer at 1-100 Hz loading frequencies and the temperature range from 35°C to 500°C. Only Yttrium-rich cuboidal phase and zirconium-rich phase were present in WE43-T5 alloy and the eutectic phase was absent. Also, the grain size was reduced due to the hot rolling process. The difference in microstructure reflects into the mechanical properties. WE43-T5 specimens have improved mechanical properties over the as-cast alloy. Two transition temperatures are found at 210 and 250°C based on the storage and loss moduli results. The Mg24Y5 peak is found in the high temperature x-ray diffraction results along with a new Mg12Nd peak at those two temperature points. The corrosion behavior, studied by 7-day immersion in 3.5% NaCl solution, shows that the heat treated alloy has significantly lower corrosion rate than the as-cast alloy due to the absence of the eutectic mixture in the microstructure. With rapidly growing applications of magnesium alloys, particularly with rare earth elements, this study is expected to provide critical data and structure-property correlations that will help the scientific community.

  14. Comparisons of microstructures and texture and mechanical properties of magnesium alloy fabricated by compound extrusion and direct extrusion

    Energy Technology Data Exchange (ETDEWEB)

    Hu, H.-J., E-mail: hhj@cqut.edu.cn [Chongqing University of Technology, Chongqing 400050 (China); PLA Chongqing Logistics Engineering College, 401311 (China); Ying, Y.-L. [Chongqing University of Technology, Chongqing 400050 (China); Ou, Z.-W. [PLA Chongqing Logistics Engineering College, 401311 (China); Wang, X.-Q. [The University of Alabama, Tuscaloosa, AL 35487 (United States)

    2017-05-17

    In this study, microstructure evolution, textures and mechanical properties of AZ61 magnesium alloy were investigated by optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and tensile tests. The samples were processed by a new compound extrusion (CE) which combines direct extrusion (DE) and two steps of equal channel anger extrusion (ECAE). The results show that CE process can refine the microstructure more effectively than the DE process. The CE-fabricated samples have a weaker texture (0002), and a more fine and homogeneous microstructures, which attributes to the additional two steps of ECAE in CE process. In CE process, twin dynamic recrystallization and rotational dynamic recrystallization occurred, which enhances the refinement of the grains and weakening of the texture. In addition, the samples fabricated by CE process display a higher tensile properties (yield strength, tensile strength and elongation) with an excellent balance of strength and tensile ductility. Based on this study, severe plastic deformation (SPD) techniques combining conventional DE and two steps ECAE into a single process are feasibility to improve the mechanical properties of AZ61 Mg alloy.

  15. Dynamical properties of magnetized two-dimensional one-component plasma

    Science.gov (United States)

    Dubey, Girija S.; Gumbs, Godfrey; Fessatidis, Vassilios

    2018-05-01

    Molecular dynamics simulation are used to examine the effect of a uniform perpendicular magnetic field on a two-dimensional interacting electron system. In this simulation we include the effect of the magnetic field classically through the Lorentz force. Both the Coulomb and the magnetic forces are included directly in the electron dynamics to study their combined effect on the dynamical properties of the 2D system. Results are presented for the velocity autocorrelation function and the diffusion constants in the presence and absence of an external magnetic field. Our simulation results clearly show that the external magnetic field has an effect on the dynamical properties of the system.

  16. Enhancement of mechanical properties of 123 superconductors

    Science.gov (United States)

    Balachandran, U.

    1995-04-25

    A composition and method are disclosed of preparing YBa{sub 2}Cu{sub 3}O{sub 7{minus}x} superconductor. Addition of tin oxide containing compounds to YBCO superconductors results in substantial improvement of fracture toughness and other mechanical properties without affect on T{sub c}. About 5-20% additions give rise to substantially improved mechanical properties.

  17. Hygrothermal effects on dynamic mechanical snalysis and fracture behavior of polymeric composites

    Directory of Open Access Journals (Sweden)

    Michelle Leali Costa

    2005-09-01

    Full Text Available Polymer composites used above their glass transition temperatures Tg present a substantial degradation of physical properties; therefore a material's glass transition temperature and its change with moisture absorption are of practical importance. Little attention has been paid to the role of the adhesive bonding between the reinforcing fiber and matrix, particularly for BMI matrix. In this work the effect of moisture on the dynamic mechanical behavior and the fiber/matrix interface was investigated. Two systems were evaluated: carbon fabric/epoxy and carbon fabric/bismaleimide laminates. The results demonstrated that the moisture absorbed by the laminates causes either reversible or irreversible plasticization of the matrix. The humidity combined with the temperature effects may cause significant changes in the Tg matrix and toughness affecting the laminate strength. Moisture absorption was correlated to the fracture mode of the laminate demonstrating the deleterious effect of moisture on the interface. This leads to debonding between fiber and matrix. This behavior was investigated by scanning electron microscopy and dynamic mechanical analysis.

  18. Study on Mechanical Properties of Barite Concrete under Impact Load

    Science.gov (United States)

    Chen, Z. F.; Cheng, K.; Wu, D.; Gan, Y. C.; Tao, Q. W.

    2018-03-01

    In order to research the mechanical properties of Barite concrete under impact load, a group of concrete compression tests was carried out under the impact load by using the drop test machine. A high-speed camera was used to record the failure process of the specimen during the impact process. The test results show that:with the increase of drop height, the loading rate, the peak load, the strain under peak load, the strain rate and the dynamic increase factor (DIF) all increase gradually. The ultimate tensile strain is close to each other, and the time of impact force decreases significantly, showing significant strain rate effect.

  19. Relationships between the curing conditions and some mechanical properties of hybrid thermosetting materials

    International Nuclear Information System (INIS)

    Dias Filho, Newton L.; Aquino, Hermes A. de; Cardoso, Celso X.

    2006-01-01

    The relationship between the heat of polymerization (ΑH) and activation energy (E a ) parameters, obtained by differential scanning calorimetry (DSC) and the ratio of epoxy resin to hardener of the thermosetting materials based on an organic-inorganic hybrid epoxy resin (OG) was investigated. Activation energy (E a ) and heat of polymerization (ΑH) increased with an increasing OG content, up to 70 wt %. Further increase in OG content to 80 wt % reduced E a and ΑH. Dynamic mechanical analysis indicates that the maximum cross-link density is obtained at 83 wt % OG, whereas fracture toughness and tensile modulus mechanical properties are maximized at 70 wt % OG. (author)

  20. Vibrational and mechanical properties of single layer MXene structures: a first-principles investigation

    Science.gov (United States)

    Yorulmaz, Uğur; Özden, Ayberk; Perkgöz, Nihan K.; Ay, Feridun; Sevik, Cem

    2016-08-01

    MXenes, carbides, nitrides and carbonitrides of early transition metals are the new members of two dimensional materials family given with a formula of {{{M}}}n+1 X n . Recent advances in chemical exfoliation and CVD growth of these crystals together with their promising performance in electrochemical energy storage systems have triggered the interest in these two dimensional structures. In this work, we employ first principles calculations for n = 1 structures of Sc, Ti, Zr, Mo and Hf pristine MXenes and their fully surface terminated forms with F and O. We systematically investigated the dynamical and mechanical stability of both pristine and fully terminated MXene structures to determine the possible MXene candidates for experimental realization. In conjunction with an extensive stability analysis, we report Raman and infrared active mode frequencies for the first time, providing indispensable information for the experimental elaboration of MXene field. After determining dynamically stable MXenes, we provide their phonon dispersion relations, electronic and mechanical properties.

  1. Mechanical behavior of ultrafine-grained materials under combined static and dynamic loadings

    Directory of Open Access Journals (Sweden)

    Guo Y.Z.

    2015-01-01

    Full Text Available Ultrafine-grained (UFG materials have extensive prospects for engineering application due to their excellent mechanical properties. However, the grain size decrease reduces their strain hardening ability and makes UFG materials more susceptible to deformation instability such as shear localization. In most cases, critical shear strain is taken as the criterion for formation of shear localization under impact loading or adiabatic shear band (ASB. Recently, some researchers found that the formation of ASB was determined only by the dynamic loading process and had nothing to do with its static loading history. They proposed for coarse-grained metals a dynamic stored energy-based criterion for ASB and verified it by some experiments. In this study, we will focus on the shear localization behavior of UFG metals such as UFG titanium and magnesium alloy AZ31. Quasi-static loading and dynamic loading will be applied on the same specimen alternately. The shear localization behavior will be analyzed and the criterion of its formation will be evaluated.

  2. Optimization of mechanical properties, biocorrosion properties and antibacterial properties of wrought Ti-3Cu alloy by heat treatment

    Directory of Open Access Journals (Sweden)

    Mianmian Bao

    2018-03-01

    Full Text Available Previous study has shown that Ti-3Cu alloy shows good antibacterial properties (>90% antibacterial rate, but the mechanical properties still need to be improved. In this paper, a series of heat-treatment processes were selected to adjust the microstructure in order to optimize the properties of Ti-3Cu alloy. Microstructure, mechanical properties, biocorrosion properties and antibacterial properties of wrought Ti-3Cu alloy at different conditions was systematically investigated by X-ray diffraction, optical microscope, scanning electron microscope, transmission electron microscopy, electrochemical measurements, tensile test, fatigue test and antibacterial test. Heat treatment could significantly improve the mechanical properties, corrosion resistance and antibacterial rate due to the redistribution of copper elements and precipitation of Ti2Cu phase. Solid solution treatment increased the yield strength from 400 to 740 MPa and improved the antibacterial rate from 33% to 65.2% while aging treatment enhanced the yield strength to 800–850 MPa and antibacterial rate (>91.32%. It was demonstrated that homogeneous distribution and fine Ti2Cu phase plays a very important role in mechanical properties, corrosion resistance and antibacterial properties.

  3. Optimization of mechanical properties, biocorrosion properties and antibacterial properties of wrought Ti-3Cu alloy by heat treatment.

    Science.gov (United States)

    Bao, Mianmian; Liu, Ying; Wang, Xiaoyan; Yang, Lei; Li, Shengyi; Ren, Jing; Qin, Gaowu; Zhang, Erlin

    2018-03-01

    Previous study has shown that Ti-3Cu alloy shows good antibacterial properties (>90% antibacterial rate), but the mechanical properties still need to be improved. In this paper, a series of heat-treatment processes were selected to adjust the microstructure in order to optimize the properties of Ti-3Cu alloy. Microstructure, mechanical properties, biocorrosion properties and antibacterial properties of wrought Ti-3Cu alloy at different conditions was systematically investigated by X-ray diffraction, optical microscope, scanning electron microscope, transmission electron microscopy, electrochemical measurements, tensile test, fatigue test and antibacterial test. Heat treatment could significantly improve the mechanical properties, corrosion resistance and antibacterial rate due to the redistribution of copper elements and precipitation of Ti 2 Cu phase. Solid solution treatment increased the yield strength from 400 to 740 MPa and improved the antibacterial rate from 33% to 65.2% while aging treatment enhanced the yield strength to 800-850 MPa and antibacterial rate (>91.32%). It was demonstrated that homogeneous distribution and fine Ti 2 Cu phase plays a very important role in mechanical properties, corrosion resistance and antibacterial properties.

  4. Effect of Ultrasonic Treatment in the Static and Dynamic Mechanical Behavior of AZ91D Mg Alloy

    Directory of Open Access Journals (Sweden)

    Helder Puga

    2015-11-01

    Full Text Available The present study evaluates the effect of high-intensity ultrasound (US in the static and dynamic mechanical behavior of AZ91D by microstructural modification. The characterization of samples revealed that US treatment promoted the refinement of dendrite cell size, reduced the thickness, and changed the β-Mg17Al12 intermetallic phase to a globular shape, promoted its uniform distribution along the grain boundaries and reduced the level of porosity. In addition to microstructure refinement, US treatment improved the alloy mechanical properties, namely the ultimate tensile strength (40.7% and extension (150% by comparison with values obtained for castings produced without US vibration. Moreover, it is suggested that the internal friction, enhanced by the reduction of grain size, is compensated by the homogenization of the secondary phase and reduction of porosity. It seems that by the use of US treatment, it is possible to enhance static mechanical properties without compromising the damping properties in AZ91D alloys.

  5. Cognitive mechanisms for explaining dynamics of aesthetic appreciation

    Science.gov (United States)

    Carbon, Claus-Christian

    2011-01-01

    For many domains aesthetic appreciation has proven to be highly reliable. Evaluations of facial attractiveness, for instance, show high internal consistencies and impressively high inter-rater reliabilities, even across cultures. This indicates general mechanisms underlying such evaluations. It is, however, also obvious that our taste for specific objects is not always stable—in some realms such stability is hardly conceivable at all since aesthetic domains such as fashion, design, or art are inherently very dynamic. Gaining insights into the cognitive mechanisms that trigger and enable corresponding changes of aesthetic appreciation is of particular interest for psychologists as this will probably reveal essential mechanisms of aesthetic evaluations per se. The present paper develops a two-step model, dynamically adapting itself, which accounts for typical dynamics of aesthetic appreciation found in different research areas such as art history, philosophy, and psychology. The first step assumes singular creative sources creating and establishing innovative material towards which, in a second step, people adapt by integrating it into their visual habits. This inherently leads to dynamic changes of the beholders— aesthetic appreciation. PMID:23145254

  6. Dynamic Analysis of Hammer Mechanism "Twin Hammer" of Impact Wrench

    Science.gov (United States)

    Konečný, M.; Slavík, J.

    This paper describes function of the hammer mechanism "Twin hammer" the impact wrench, calculation of dynamic forces exerted on the mechanism and determining the contact pressures between the parts of the mechanism. The modelling of parts was performed in system Pro ENGINEER—standard. The simulation and finding dynamic forces was performed in advanced module Pro ENGINEER—mechanism design and finding contacts pressures in modul Pro ENGENEER—mechanica.

  7. Structure–mechanics property relationship of waste derived biochars

    Energy Technology Data Exchange (ETDEWEB)

    Das, Oisik, E-mail: odas566@aucklanduni.ac.nz [Department of Civil and Environmental Engineering, University of Auckland, Auckland 1142 (New Zealand); Sarmah, Ajit K., E-mail: a.sarmah@auckland.ac.nz [Department of Civil and Environmental Engineering, University of Auckland, Auckland 1142 (New Zealand); Bhattacharyya, Debes, E-mail: d.bhattacharyya@auckland.ac.nz [Department of Mechanical Engineering, Center for Advanced Composite Materials, University of Auckland, Auckland 1142 (New Zealand)

    2015-12-15

    The widespread applications of biochar in agriculture and environmental remediation made the scientific community ignore its mechanical properties. Hence, to examine the scope of biochar's structural applications, its mechanical properties have been investigated in this paper through nanoindentation technique. Seven waste derived biochars, made under different pyrolysis conditions and from diverse feedstocks, were studied via nanoindentation, infrared spectroscopy, X–ray crystallography, thermogravimetry, and electron microscopy. Following this, an attempt was made to correlate the biochars' hardness/modulus with reaction conditions and their chemical properties. The pine wood biochar made at 900 °C and 60 min residence time was found to have the highest hardness and elastic modulus of 4.29 and 25.01 GPa, respectively. It was shown that a combination of higher heat treatment (≥ 500 °C) temperature and longer residence time (~ 60 min) increases the values of hardness and modulus. It was further realized that pyrolysis temperature was a more dominant factor than residence time in determining the final mechanical properties of biochar particles. The degree of aromaticity and crystallinity of the biochar were also correlated with higher values of hardness and modulus. - Highlights: • Characterization was done on waste based biochars which included nanoindentation. • Pine saw dust biochar made at 900 °C for 60 min had highest hardness/modulus. • Combination of temperature/residence time affect biochar's mechanical propertie.s • Aromaticity and crystallinity positively affected biochar's mechanical properties.

  8. Structure–mechanics property relationship of waste derived biochars

    International Nuclear Information System (INIS)

    Das, Oisik; Sarmah, Ajit K.; Bhattacharyya, Debes

    2015-01-01

    The widespread applications of biochar in agriculture and environmental remediation made the scientific community ignore its mechanical properties. Hence, to examine the scope of biochar's structural applications, its mechanical properties have been investigated in this paper through nanoindentation technique. Seven waste derived biochars, made under different pyrolysis conditions and from diverse feedstocks, were studied via nanoindentation, infrared spectroscopy, X–ray crystallography, thermogravimetry, and electron microscopy. Following this, an attempt was made to correlate the biochars' hardness/modulus with reaction conditions and their chemical properties. The pine wood biochar made at 900 °C and 60 min residence time was found to have the highest hardness and elastic modulus of 4.29 and 25.01 GPa, respectively. It was shown that a combination of higher heat treatment (≥ 500 °C) temperature and longer residence time (~ 60 min) increases the values of hardness and modulus. It was further realized that pyrolysis temperature was a more dominant factor than residence time in determining the final mechanical properties of biochar particles. The degree of aromaticity and crystallinity of the biochar were also correlated with higher values of hardness and modulus. - Highlights: • Characterization was done on waste based biochars which included nanoindentation. • Pine saw dust biochar made at 900 °C for 60 min had highest hardness/modulus. • Combination of temperature/residence time affect biochar's mechanical propertie.s • Aromaticity and crystallinity positively affected biochar's mechanical properties.

  9. Environmental/dynamic mechanical equipment qualification and dynamic electrical equipment qualification program (EDQP)

    International Nuclear Information System (INIS)

    Hunter, J.A.

    1984-01-01

    Equipment qualification research is being conducted to investigate acceptable criteria, requirements, and methodologies for the dynamic (including seismic) and environmental qualification of mechanical equipment and for the dynamic (including seismic) qualification of electrical equipment. The program is organized into three elements: (1) General Research, (2) Environmental Research, and (3) Dynamic Research. This paper presents the highlights of the results to date in these three elements of the program

  10. Snow mechanics and avalanche formation: field experiments on the dynamic response of the snow cover

    Science.gov (United States)

    Schweizer, Jürg; Schneebeli, Martin; Fierz, Charles; Föhn, Paul M. B.

    1995-11-01

    Knowledge about snow mechanics and snow avalanche formation forms the basis of any hazard mitigation measures. The crucial point is the snow stability. The most relevant mechanical properties - the compressive, tensile and shear strength of the individual snow layers within the snow cover - vary substantially in space and time. Among other things the strength of the snow layers depends strongly on the state of stress and the strain rate. The evaluation of the stability of the snow cover is hence a difficult task involving many extrapolations. To gain insight in the release mechanism of slab avalanches triggered by skiers, the skier's impact is measured with a load cell at different depths within the snow cover and for different snow conditions. The study focused on the effects of the dynamic loading and of the damping by snow compaction. In accordance with earlier finite-element (FE) calculations the results show the importance of the depth of the weak layer or interface and the snow conditions, especially the sublayering. In order to directly measure the impact force and to study the snow properties in more detail, a new instrument, called rammrutsch was developed. It combines the properties of the rutschblock with the defined impact properties of the rammsonde. The mechanical properties are determined using (i) the impact energy of the rammrutsch and (ii) the deformations of the snow cover measured with accelerometers and digital image processing of video sequences. The new method is well suited to detect and to measure the mechanical processes and properties of the fracturing layers. The duration of one test is around 10 minutes and the method seems appropriate for determining the spatial variability of the snow cover. A series of experiments in a forest opening showed a clear difference in the snow stability between sites below trees and ones in the free field of the opening.

  11. Structure, thermodynamics, and dynamical properties of supercooled liquids

    International Nuclear Information System (INIS)

    Kambayashi, Shaw

    1992-12-01

    The equilibrium properties of supercooled liquids with repulsive soft-sphere potentials, u(r) = ε(σ/r) n , have been obtained by solving the integral equation of the theory of liquids and by performing constant-temperature molecular dynamics (MD) simulations. A thermodynamically consistent approximation, proposed recently by Rogers and Young (RY), has been examined for the supercooled soft-sphere fluids. Then, a new approximation for the integral equation, called MHNCS (modified hypernetted-chain integral equation for highly supercooled soft-sphere fluids) approximation, is proposed. The solution of the MHNCS integral equation for highly supercooled liquid states agrees well with the results of computer simulations. The MHNCS integral equation has also been applied for binary soft-sphere mixtures. Dynamical properties of soft-sphere fluids have been investigated by molecular dynamics (MD) simulations. The reduced diffusion constant is found to be insensitive to the choice of the softness of the potential. On the other hand, the spectrum of the velocity autocorrelation function shows a pronounced dependence on the softness of the potential. These significant dynamical properties dependent on the softness parameter (n) are consistent to dynamical behavior observed in liquid alkali metals and liquefied inert gases. The self-part of the density-density autocorrelation function obtained shows a clear nonexponential decay in intermediate time, as the liquid-glass transition is approached. (J.P.N.) 105 refs

  12. Metal Additive Manufacturing: A Review of Mechanical Properties

    Science.gov (United States)

    Lewandowski, John J.; Seifi, Mohsen

    2016-07-01

    This article reviews published data on the mechanical properties of additively manufactured metallic materials. The additive manufacturing techniques utilized to generate samples covered in this review include powder bed fusion (e.g., EBM, SLM, DMLS) and directed energy deposition (e.g., LENS, EBF3). Although only a limited number of metallic alloy systems are currently available for additive manufacturing (e.g., Ti-6Al-4V, TiAl, stainless steel, Inconel 625/718, and Al-Si-10Mg), the bulk of the published mechanical properties information has been generated on Ti-6Al-4V. However, summary tables for published mechanical properties and/or key figures are included for each of the alloys listed above, grouped by the additive technique used to generate the data. Published values for mechanical properties obtained from hardness, tension/compression, fracture toughness, fatigue crack growth, and high cycle fatigue are included for as-built, heat-treated, and/or HIP conditions, when available. The effects of test orientation/build direction on properties, when available, are also provided, along with discussion of the potential source(s) (e.g., texture, microstructure changes, defects) of anisotropy in properties. Recommendations for additional work are also provided.

  13. Magnetic properties of novel dynamic self-assembled structures generated on the liquid/air interface

    International Nuclear Information System (INIS)

    Snezhko, A.; Aranson, I.S.

    2007-01-01

    We report on experimental and theoretical studies of magnetic properties of recently discovered dynamic multi-segment self-organized structures ('magnetic snakes'). Magnetic order and response of such snakes are determined by a novel unconventional mechanism provided by a self-induced surface wave. It gives rise to a nontrivial magnetic order: the segments of the snake exhibit long-range antiferromagnetic order mediated by the surface waves, while each segment is composed of ferromagnetically aligned chains of microparticles. Magnetic properties of the snakes are probed by in-plane magnetic field. A phenomenological model is proposed to explain the experimental observations

  14. Static and dynamic biomechanical properties of the regenerating rabbit Achilles tendon.

    Science.gov (United States)

    Nagasawa, Koji; Noguchi, Masahiko; Ikoma, Kazuya; Kubo, Toshikazu

    2008-07-01

    Since tendons show viscoelastic behavior, dynamic viscoelastic properties should be assessed in addition to static biomechanical properties. We evaluated differences between static and dynamic biomechanical properties of the regenerating rabbit Achilles tendon following tenotomy. At 3, 6, or 12 weeks after right Achilles tenotomy, the right (regenerating) and left (control) tendons were collected with the calcaneus from 49 rabbits. A unidirectional failure test and a dynamic viscoelastic test were conducted. Tensile strength and Young's modulus (static biomechanical properties) in the regenerating group at Week 6 were significantly greater than at Week 3, while at Week 12, these were significantly greater than at Week 6. However, even at Week 12, both parameters were less than in the control group. The value of tan delta represents dynamic viscoelasticity, a smaller tan delta indicates greater elasticity. tan delta for the regenerating group was significantly greater than for the control group at Week 3, but regenerating and control groups did not significantly differ at Week 6. No marked change was seen from Weeks 6 to 12 in the regenerating group, and no significant difference in tan delta was evident between the regenerating and control groups at Week 12. Dynamic biomechanical properties of regenerating rabbit Achilles tendons may improve more rapidly than static biomechanical properties. Ability to tolerate dynamic movement in the healing Achilles tendon may improve more rapidly than ability to withstand static stresses.

  15. Mechanical properties of fracture zones

    International Nuclear Information System (INIS)

    Leijon, B.

    1993-05-01

    Available data on mechanical characteristics of fracture zones are compiled and discussed. The aim is to improve the basis for adequate representation of fracture zones in geomechanical models. The sources of data researched are primarily borehole investigations and case studies in rock engineering, involving observations of fracture zones subjected to artificial load change. Boreholes only yield local information about the components of fracture zones, i.e. intact rock, fractures and various low-strength materials. Difficulties are therefore encountered in evaluating morphological and mechanical properties of fracture zones from borehole data. Although often thought of as macroscopically planar features, available field data consistently show that fracture zones are characterized by geometrical irregularities such as thickness variations, surface undulation and jogs. These irregularities prevail on all scales. As a result, fracture zones are on all scales characterized by large, in-plane variation of strength- and deformational properties. This has important mechanical consequences in terms of non-uniform stress transfer and complex mechanisms of shear deformation. Field evidence for these findings, in particular results from the underground research laboratory in Canada and from studies of induced fault slip in deep mines, is summarized and discussed. 79 refs

  16. Mechanical properties of self-curing concrete (SCUC

    Directory of Open Access Journals (Sweden)

    Magda I. Mousa

    2015-12-01

    Full Text Available The mechanical properties of concrete containing self-curing agents are investigated in this paper. In this study, two materials were selected as self-curing agents with different amounts, and the addition of silica fume was studied. The self-curing agents were, pre-soaked lightweight aggregate (Leca; 0.0%, 10%, 15%, and 20% of volume of sand; or polyethylene-glycol (Ch.; 1%, 2%, and 3% by weight of cement. To carry out this study the cement content of 300, 400, 500 kg/m3, water/cement ratio of 0.5, 0.4, 0.3 and 0.0%, 15% silica fume of weight of cement as an additive were used in concrete mixes. The mechanical properties were evaluated while the concrete specimens were subjected to air curing regime (in the laboratory environment with 25 °C, 65% R.H. during the experiment. The results show that, the use of self-curing agents in concrete effectively improved the mechanical properties. The concrete used polyethylene-glycol as self-curing agent, attained higher values of mechanical properties than concrete with saturated Leca. In all cases, either 2% Ch. or 15% Leca was the optimum ratio compared with the other ratios. Higher cement content and/or lower water/cement ratio lead(s to more efficient performance of self-curing agents in concrete. Incorporation of silica fume into self-curing concrete mixture enhanced all mechanical properties, not only due to its pozzolanic reaction, but also due to its ability to retain water inside concrete.

  17. PVA/Polysaccharides Blended Films: Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Fábio E. F. Silva

    2013-01-01

    Full Text Available Blends of polyvinyl alcohol (PVA and angico gum (AG and/or cashew gum (CG were used to produce films by casting method. Morphological and mechanical properties of these films were studied and compared to the properties of a commercial collagen membrane of bovine origin (MBO. The films presented thickness varying from 70 to 140 μm (PVA/AG and 140 to 200 μm (PVA/CG. Macroscopic analysis showed that a PVA/CG film was very similar to MBO regarding the color and transparency. The higher values of tensile strength (TS and elastic modulus (EM were observed in the film. On the other hand, PVA/CG and PVA/CG-AG presented the highest value of percentage of elongation (E%. Pearson’s Correlation Analysis revealed a positive correlation between TS and EM and a negative correlation between E% and EM. The PVA/CG film presented mechanical properties very similar to MBO, with the advantage of a higher E% (11.96 than MBO (2.94. The properties of the PVA blended films depended on the polysaccharide added in the blend, as well as the acid used as a catalyst. However, all produced films presented interesting mechanical characteristics which enables several biotechnological applications.

  18. Mechanical properties of human atherosclerotic intima tissue.

    Science.gov (United States)

    Akyildiz, Ali C; Speelman, Lambert; Gijsen, Frank J H

    2014-03-03

    Progression and rupture of atherosclerotic plaques in coronary and carotid arteries are the key processes underlying myocardial infarctions and strokes. Biomechanical stress analyses to compute mechanical stresses in a plaque can potentially be used to assess plaque vulnerability. The stress analyses strongly rely on accurate representation of the mechanical properties of the plaque components. In this review, the composition of intima tissue and how this changes during plaque development is discussed from a mechanical perspective. The plaque classification scheme of the American Heart Association is reviewed and plaques originating from different vascular territories are compared. Thereafter, an overview of the experimental studies on tensile and compressive plaque intima properties are presented and the results are linked to the pathology of atherosclerotic plaques. This overview revealed a considerable variation within studies, and an enormous dispersion between studies. Finally, the implications of the dispersion in experimental data on the clinical applications of biomechanical plaque modeling are presented. Suggestions are made on mechanical testing protocol for plaque tissue and on using a standardized plaque classification scheme. This review identifies the current status of knowledge on plaque mechanical properties and the future steps required for a better understanding of the plaque type specific material properties. With this understanding, biomechanical plaque modeling may eventually provide essential support for clinical plaque risk stratification. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Properties and mechanisms of olfactory learning and memory

    Directory of Open Access Journals (Sweden)

    Michelle T Tong

    2014-07-01

    Full Text Available Memories are dynamic physical phenomena with psychometric forms as well as characteristic timescales. Most of our understanding of the cellular mechanisms underlying the neurophysiology of memory, however, derives from one-trial learning paradigms that, while powerful, do not fully embody the gradual, representational, and statistical aspects of cumulative learning. The early olfactory system -- particularly olfactory bulb -- comprises a reasonably well-understood and experimentally accessible neuronal network with intrinsic plasticity that underlies both one-trial (adult aversive, neonatal and cumulative (adult appetitive odor learning. These olfactory circuits employ many of the same molecular and structural mechanisms of memory as, for example, hippocampal circuits following inhibitory avoidance conditioning, but the temporal sequences of post-conditioning molecular events are likely to differ owing to the need to incorporate new information from ongoing learning events into the evolving memory trace. Moreover, the shapes of acquired odor representations, and their gradual transformation over the course of cumulative learning, also can be directly measured, adding an additional representational dimension to the traditional metrics of memory strength and persistence. In this review, we describe some established molecular and structural mechanisms of memory with a focus on the timecourses of post-conditioning molecular processes. We describe the properties of odor learning intrinsic to the olfactory bulb and review the utility of the olfactory system of adult rodents as a memory system in which to study the cellular mechanisms of cumulative learning.

  20. The effect of various quantum mechanically derived partial atomic charges on the bulk properties of chloride-based ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Zolghadr, Amin Reza, E-mail: arzolghadr@shirazu.ac.ir [Department of Chemistry, Shiraz University, Shiraz 71946-84795 (Iran, Islamic Republic of); Ghatee, Mohammad Hadi [Department of Chemistry, Shiraz University, Shiraz 71946-84795 (Iran, Islamic Republic of); Moosavi, Fatemeh [Department of Chemistry, Ferdowsi University of Mashhad, Mashhad 91779 (Iran, Islamic Republic of)

    2016-08-22

    Partial atomic charges using various quantum mechanical calculations for [C{sub n}mim]Cl (n = 1, 4) ionic liquids (ILs) are obtained and used for development of molecular dynamics simulation (MD) force fields. The isolated ion pairs are optimized using HF, B3LYP, and MP2 methods for electronic structure with 6-311++G(d,p) basis set. Partial atomic charges are assigned to the atomic center with CHELPG and NBO methods. The effect of these sets of partial charges on the static and dynamic properties of ILs is evaluated by performing a series of MD simulations and comparing the essential thermodynamic properties with the available experimental data and available molecular dynamics simulation results. In contrast to the general trends reported for ionic liquids with BF{sub 4}, PF{sub 6}, and iodide anions (in which restrained electrostatic potential (RESP) charges are preferred), partial charges derived by B3LYP-NBO method are relatively good in prediction of the structural, dynamical, and thermodynamic energetic properties of the chloride based ILs.

  1. Physical and mechanical properties of cast 17-4 PH stainless steel

    International Nuclear Information System (INIS)

    Rack, H.J.

    1981-02-01

    The physical and mechanical properties of an overaged 17-4 PH stainless steel casting have been examined. The tensile and compressive properties of cast 17-4 PH are only influenced to a slight degree by changing test temperature and strain rate. However, both the Charpy impact energy and dynamic fracture toughness exhibit a tough-to-brittle transition with decreasing temperature - this transition being related to a change in fracture mode from ductile, dimple to cleavage-like. Finally, although the overaged 17-4 PH casting had a relatively low room temperature Charpy impact energy when compared to wrought 17-4 PH, its fracture toughness was at least comparable to that of wrought 17-4 PH. This observation suggests that prior correlations between Charpy impact energies and fracture toughness, as derived from wrought materials, must be approached with caution when applied to cast alloys

  2. Probing cell mechanical properties with microfluidic devices

    Science.gov (United States)

    Rowat, Amy

    2012-02-01

    Exploiting flow on the micron-scale is emerging as a method to probe cell mechanical properties with 10-1000x advances in throughput over existing technologies. The mechanical properties of cells and the cell nucleus are implicated in a wide range of biological contexts: for example, the ability of white blood cells to deform is central to immune response; and malignant cells show decreased stiffness compared to benign cells. We recently developed a microfluidic device to probe cell and nucleus mechanical properties: cells are forced to deform through a narrow constrictions in response to an applied pressure; flowing cells through a series of constrictions enables us to probe the ability of hundreds of cells to deform and relax during flow. By tuning the constriction width so it is narrower than the width of the cell nucleus, we can specifically probe the effects of nuclear physical properties on whole cell deformability. We show that the nucleus is the rate-limiting step in cell passage: inducing a change in its shape to a multilobed structure results in cells that transit more quickly; increased levels of lamin A, a nuclear protein that is key for nuclear shape and mechanical stability, impairs the passage of cells through constrictions. We are currently developing a new class of microfluidic devices to simultaneously probe the deformability of hundreds of cell samples in parallel. Using the same soft lithography techniques, membranes are fabricated to have well-defined pore distribution, width, length, and tortuosity. We design the membranes to interface with a multiwell plate, enabling simultaneous measurement of hundreds of different samples. Given the wide spectrum of diseases where altered cell and nucleus mechanical properties are implicated, such a platform has great potential, for example, to screen cells based on their mechanical phenotype against a library of drugs.

  3. Predicting the elastic properties of double-walled carbon nanotubes by molecular dynamics simulation

    International Nuclear Information System (INIS)

    Zhang Chenli; Shen Huishen

    2008-01-01

    Molecular dynamics simulation is performed on a double-walled carbon nanotube (DWCNT) to predict its elastic properties based on a double-walled shear deformable shell model. By direct buckling measurement, we present here a method for uniquely determining the effective wall thickness for the shell model. Accounting for two different kinds of DWCNTs by adding an inner or outer tube to a fiducial tube, the mechanical properties of DWCNTs are carefully investigated as compared with those of the fiducial tube. It is found that the predicted values of Young's and shear moduli depend strongly on the construction and helicity of DWCNTs, while the dependence on nanotube length is relatively small. The results also confirm that the temperature variation has a significant effect on the elastic properties of DWCNTs

  4. Anharmonicity, mechanical instability, and thermodynamic properties of the Cr-Re σ-phase

    Energy Technology Data Exchange (ETDEWEB)

    Palumbo, Mauro, E-mail: mauro.palumbo@rub.de; Fries, Suzana G. [ICAMS, Ruhr University Bochum, Universität Str. 150, D-44801 Bochum (Germany); Pasturel, Alain [SIMAP, UMR CNRS-INPG-UJF 5266, BP 75, F-38402 Saint Martin d’Hères (France); Alfè, Dario [Department of Earth Sciences, Department of Physics and Astronomy, London Centre for Nanotechnology and Thomas Young Centre-UCL, University College London, Gower Street, London WC1E 6BT (United Kingdom)

    2014-04-14

    Using density-functional theory in combination with the direct force method and molecular dynamics we investigate the vibrational properties of a binary Cr-Re σ-phase. In the harmonic approximation, we have computed phonon dispersion curves and density of states, evidencing structural and chemical effects. We found that the σ-phase is mechanically unstable in some configurations, for example, when all crystallographic sites are occupied by Re atoms. By using a molecular-dynamics-based method, we have analysed the anharmonicity in the system and found negligible effects (∼0.5 kJ/mol) on the Helmholtz energy of the binary Cr-Re σ-phase up to 2000 K (∼0.8T{sub m}). Finally, we show that the vibrational contribution has significant consequences on the disordering of the σ-phase at high temperature.

  5. A comparative study on dynamic mechanical performance of concrete and rock

    Directory of Open Access Journals (Sweden)

    Xia Zhengbing

    2015-10-01

    Full Text Available of underground cavities and field-leveling excavation. Dynamic mechanical performance of rocks has been gradually attached importance both in China and abroad. Concrete and rock are two kinds of the most frequently used engineering materials and also frequently used as experimental objects currently. To compare dynamic mechanical performance of these two materials, this study performed dynamic compression test with five different strain rates on concrete and rock using Split Hopkinson Pressure Bar (SHPB to obtain basic dynamic mechanical parameters of them and then summarized the relationship of dynamic compressive strength, peak strain and strain rate of two materials. Moreover, specific energy absorption is introduced to confirm dynamic damage mechanisms of concrete and rock materials. This work can not only help to improve working efficiency to the largest extent but also ensure the smooth development of engineering, providing rich theoretical guidance for development of related engineering in the future

  6. Source properties of dynamic rupture pulses with off-fault plasticity

    KAUST Repository

    Gabriel, A.-A.

    2013-08-01

    Large dynamic stresses near earthquake rupture fronts may induce an inelastic response of the surrounding materials, leading to increased energy absorption that may affect dynamic rupture. We systematically investigate the effects of off-fault plastic energy dissipation in 2-D in-plane dynamic rupture simulations under velocity-and-state-dependent friction with severe weakening at high slip velocity. We find that plasticity does not alter the nature of the transitions between different rupture styles (decaying versus growing, pulse-like versus crack-like, and subshear versus supershear ruptures) but increases their required background stress and nucleation size. We systematically quantify the effect of amplitude and orientation of background shear stresses on the asymptotic properties of self-similar pulse-like ruptures: peak slip rate, rupture speed, healing front speed, slip gradient, and the relative contribution of plastic strain to seismic moment. Peak slip velocity and rupture speed remain bounded. From fracture mechanics arguments, we derive a nonlinear relation between their limiting values, appropriate also for crack-like and supershear ruptures. At low background stress, plasticity turns self-similar pulses into steady state pulses, for which plastic strain contributes significantly to the seismic moment. We find that the closeness to failure of the background stress state is an adequate predictor of rupture speed for relatively slow events. Our proposed relations between state of stress and earthquake source properties in the presence of off-fault plasticity may contribute to the improved interpretation of earthquake observations and to pseudodynamic source modeling for ground motion prediction.

  7. Role of the Z band in the mechanical properties of the heart.

    Science.gov (United States)

    Goldstein, M A; Schroeter, J P; Michael, L H

    1991-05-01

    In striated muscle the mechanism of contraction involves the cooperative movement of contractile and elastic components. This review emphasizes a structural approach that describes the cellular and extracellular components with known anatomical, biochemical, and physical properties that make them candidates for these contractile and elastic components. Classical models of contractile and elastic elements and their underlying assumptions are presented. Mechanical properties of cardiac and skeletal muscle are compared and contrasted and then related to ultrastructure. Information from these approaches leads to the conclusion that the Z band is essential for muscle contraction. Our review of Z band structure shows the Z band at the interface where extracellular components meet the cell surface. The Z band is also the interface from cell surface to myofibril, from extra-myofibrillar to myofibril, and finally from sarcomere to sarcomere. Our studies of Z band in defined physiologic states show that this lattice is an integral part of the contractile elements and can function as an elastic component. The Z band is a complex dynamic lattice uniquely suited to play several roles in muscle contraction.

  8. Dynamic Matching Markets and the Deferred Acceptance Mechanism

    DEFF Research Database (Denmark)

    Kennes, John; Monte, Daniel; Tumennasan, Norovsambuu

    In many dynamic matching markets, priorities depend on previous allocations. In such environments, agents on the proposing side can manipulate the period-by-period deferred acceptance (DA) mechanism. We show that the fraction of agents with incentives to manipulate the DA mechanism approaches zero...... as the market size increases. In addition, we provide a novel al- gorithm to calculate the percentage of markets that can be manipulated. Based on randomly generated data, we find that the DA becomes approximately non-manipulable when the schools capacity reaches 20. Our theoretical and simulation results...... together justify the implementation of the period-by-period DA mechanism in dynamic markets....

  9. Studies on microstructure, mechanical and corrosion properties of high nitrogen stainless steel shielded metal arc welds

    Science.gov (United States)

    Mohammed, Raffi; Madhusudhan Reddy, G.; Srinivasa Rao, K.

    2018-03-01

    The present work is aimed at studying the microstructure, mechanical and corrosion properties of high nitrogen stainless steel shielded metal arc (SMA) welds made with Cromang-N electrode. Basis for selecting this electrode is to increase the solubility of nitrogen in weld metal due to high chromium and manganese content. Microstructures of the welds were characterized using optical microscopy (OM), field emission scanning electron microscopy (FESEM) and electron back scattered diffraction (EBSD) mainly to determine the morphology, phase analysis, grain size and orientation image mapping. Hardness, tensile and ductility bend tests were carried out to determine mechanical properties. Potentio-dynamic polarization testing was carried out to study the pitting corrosion resistance using a GillAC basic electrochemical system. Constant load type testing was carried out to study stress corrosion cracking (SCC) behaviour of welds. The investigation results shown that the selected Cr–Mn–N type electrode resulted in favourable microstructure and completely solidified as single phase coarse austenite. Mechanical properties of SMA welds are found to be inferior when compared to that of base metal and is due to coarse and dendritic structure.

  10. Dynamic mechanical behaviour of nanoparticle loaded biodegradable PVA films for vaginal drug delivery.

    Science.gov (United States)

    Traore, Yannick L; Fumakia, Miral; Gu, Jijin; Ho, Emmanuel A

    2018-03-01

    In this study, we investigated the viscoelastic and mechanical behaviour of polyvinyl alcohol films formulated along with carrageenan, plasticizing agents (polyethylene glycol and glycerol), and when loaded with nanoparticles as a model for potential applications as microbicides. The storage modulus, loss modulus and glass transition temperature were determined using a dynamic mechanical analyzer. Films fabricated from 2% to 5% polyvinyl alcohol containing 3 mg or 5 mg of fluorescently labeled nanoparticles were evaluated. The storage modulus and loss modulus values of blank films were shown to be higher than the nanoparticle-loaded films. Glass transition temperature determined using the storage modulus, and loss modulus was between 40-50℃ and 35-40℃, respectively. The tensile properties evaluated showed that 2% polyvinyl alcohol films were more elastic but less resistant to breaking compared to 5% polyvinyl alcohol films (2% films break around 1 N load and 5% films break around 7 N load). To our knowledge, this is the first study to evaluate the influence of nanoparticle and film composition on the physico-mechanical properties of polymeric films for vaginal drug delivery.

  11. Mechanical properties of highly defective graphene: from brittle rupture to ductile fracture

    International Nuclear Information System (INIS)

    Xu, Lanqing; Wei, Ning; Zheng, Yongping

    2013-01-01

    Defects are generally believed to deteriorate the superlative performance of graphene-based devices but may also be useful when carefully engineered to tailor the local properties and achieve new functionalities. Central to most defect-associated applications is the defect coverage and arrangement. In this work, we investigate, by molecular dynamics simulations, the mechanical properties and fracture dynamics of graphene sheets with randomly distributed vacancies or Stone–Wales defects under tensile deformations over a wide defect coverage range. With defects presented, an sp–sp 2 bonding network and an sp–sp 2 –sp 3 bonding network are observed in vacancy-defected and Stone–Wales-defected graphene, respectively. The ultimate strength degrades gradually with increasing defect coverage and saturates in the high-ratio regime, whereas the fracture strain presents an unusual descending–saturating–improving trend. In the dense vacancy defect situation, the fracture becomes more plastic and super-ductility is observed. Further fracture dynamics analysis reveals that the crack trapping by sp–sp 2 and sp–sp 2 –sp 3 rings and the crack-tip blunting account for the ductile fracture, whereas geometric rearrangement on the entire sheet for vacancy defects and geometric rearrangement on the specific defect sites for Stone–Wales defects account for their distinctive rules of the evolution of the fracture strain. (paper)

  12. Mechanical properties of natural fibre reinforced polymer composites

    Indian Academy of Sciences (India)

    In the present communication, a study on the synthesis and mechanical properties of new series of green composites involving Hibiscus sabdariffa fibre as a reinforcing material in urea–formaldehyde (UF) resin based polymer matrix has been reported. Static mechanical properties of randomly oriented intimately mixed ...

  13. Dynamic properties of a metal photo-thermal micro-actuator.

    Science.gov (United States)

    Shi, B; Zhang, H J; Wang, B; Yi, F T; Jiang, J Z; Zhang, D X

    2015-02-20

    This work presents the design, modeling, simulation, and characterization of a metal bent-beam photo-thermal micro-actuator. The mechanism of actuation is based on the thermal expansion of the micro-actuator which is irradiated by a laser, achieving noncontact control of the power supply. Models for micro-actuators were established and finite-element simulations were carried out to investigate the effects of various parameters on actuation properties. It is found that the thermal expansion coefficient, thermal conductivity, and the geometry size largely affected actuation behavior whereas heat capacity, density, and Young's modulus did not. Experiments demonstrated the dynamic properties of a Ni micro-actuator fabricated via LIGA technology with 1100/30/100 μm (long/wide/thick) arms. The tip displacement of the micro-actuator could achieve up to 42 μm driven by a laser beam (1064 nm wavelength, 1.2 W power, and a driving frequency of 1 HZ). It is found that the tip displacement decreases with increasing laser driving frequency. For 8 Hz driving frequency, 17 μm (peak-valley value) can be still reached, which is large enough for the application as micro-electro-mechanical systems. Metal photo-thermal micro actuators have advantages such as large displacement, simple structure, and large temperature tolerance, and therefore they will be promising in the fields of micro/nanotechnology.

  14. Mechanical properties of carbon nanotubes

    Science.gov (United States)

    Salvetat, J.-P.; Bonard, J.-M.; Thomson, N. H.; Kulik, A. J.; Forró, L.; Benoit, W.; Zuppiroli, L.

    A variety of outstanding experimental results on the elucidation of the elastic properties of carbon nanotubes are fast appearing. These are based mainly on the techniques of high-resolution transmission electron microscopy (HRTEM) and atomic force microscopy (AFM) to determine the Young's moduli of single-wall nanotube bundles and multi-walled nanotubes, prepared by a number of methods. These results are confirming the theoretical predictions that carbon nanotubes have high strength plus extraordinary flexibility and resilience. As well as summarising the most notable achievements of theory and experiment in the last few years, this paper explains the properties of nanotubes in the wider context of materials science and highlights the contribution of our research group in this rapidly expanding field. A deeper understanding of the relationship between the structural order of the nanotubes and their mechanical properties will be necessary for the development of carbon-nanotube-based composites. Our research to date illustrates a qualitative relationship between the Young's modulus of a nanotube and the amount of disorder in the atomic structure of the walls. Other exciting results indicate that composites will benefit from the exceptional mechanical properties of carbon nanotubes, but that the major outstanding problem of load transfer efficiency must be overcome before suitable engineering materials can be produced.

  15. A discrete electromechanical model for human cardiac tissue: effects of stretch-activated currents and stretch conditions on restitution properties and spiral wave dynamics.

    Science.gov (United States)

    Weise, Louis D; Panfilov, Alexander V

    2013-01-01

    We introduce an electromechanical model for human cardiac tissue which couples a biophysical model of cardiac excitation (Tusscher, Noble, Noble, Panfilov, 2006) and tension development (adjusted Niederer, Hunter, Smith, 2006 model) with a discrete elastic mass-lattice model. The equations for the excitation processes are solved with a finite difference approach, and the equations of the mass-lattice model are solved using Verlet integration. This allows the coupled problem to be solved with high numerical resolution. Passive mechanical properties of the mass-lattice model are described by a generalized Hooke's law for finite deformations (Seth material). Active mechanical contraction is initiated by changes of the intracellular calcium concentration, which is a variable of the electrical model. Mechanical deformation feeds back on the electrophysiology via stretch-activated ion channels whose conductivity is controlled by the local stretch of the medium. We apply the model to study how stretch-activated currents affect the action potential shape, restitution properties, and dynamics of spiral waves, under constant stretch, and dynamic stretch caused by active mechanical contraction. We find that stretch conditions substantially affect these properties via stretch-activated currents. In constantly stretched medium, we observe a substantial decrease in conduction velocity, and an increase of action potential duration; whereas, with dynamic stretch, action potential duration is increased only slightly, and the conduction velocity restitution curve becomes biphasic. Moreover, in constantly stretched medium, we find an increase of the core size and period of a spiral wave, but no change in rotation dynamics; in contrast, in the dynamically stretching medium, we observe spiral drift. Our results may be important to understand how altered stretch conditions affect the heart's functioning.

  16. A discrete electromechanical model for human cardiac tissue: effects of stretch-activated currents and stretch conditions on restitution properties and spiral wave dynamics.

    Directory of Open Access Journals (Sweden)

    Louis D Weise

    Full Text Available We introduce an electromechanical model for human cardiac tissue which couples a biophysical model of cardiac excitation (Tusscher, Noble, Noble, Panfilov, 2006 and tension development (adjusted Niederer, Hunter, Smith, 2006 model with a discrete elastic mass-lattice model. The equations for the excitation processes are solved with a finite difference approach, and the equations of the mass-lattice model are solved using Verlet integration. This allows the coupled problem to be solved with high numerical resolution. Passive mechanical properties of the mass-lattice model are described by a generalized Hooke's law for finite deformations (Seth material. Active mechanical contraction is initiated by changes of the intracellular calcium concentration, which is a variable of the electrical model. Mechanical deformation feeds back on the electrophysiology via stretch-activated ion channels whose conductivity is controlled by the local stretch of the medium. We apply the model to study how stretch-activated currents affect the action potential shape, restitution properties, and dynamics of spiral waves, under constant stretch, and dynamic stretch caused by active mechanical contraction. We find that stretch conditions substantially affect these properties via stretch-activated currents. In constantly stretched medium, we observe a substantial decrease in conduction velocity, and an increase of action potential duration; whereas, with dynamic stretch, action potential duration is increased only slightly, and the conduction velocity restitution curve becomes biphasic. Moreover, in constantly stretched medium, we find an increase of the core size and period of a spiral wave, but no change in rotation dynamics; in contrast, in the dynamically stretching medium, we observe spiral drift. Our results may be important to understand how altered stretch conditions affect the heart's functioning.

  17. Gas Bubble Dynamics under Mechanical Vibrations

    Science.gov (United States)

    Mohagheghian, Shahrouz; Elbing, Brian

    2017-11-01

    The scientific community has a limited understanding of the bubble dynamics under mechanical oscillations due to over simplification of Navier-Stockes equation by neglecting the shear stress tensor and not accounting for body forces when calculating the acoustic radiation force. The current work experimental investigates bubble dynamics under mechanical vibration and resulting acoustic field by measuring the bubble size and velocity using high-speed imaging. The experimental setup consists of a custom-designed shaker table, cast acrylic bubble column, compressed air injection manifold and an optical imaging system. The mechanical vibrations resulted in accelerations between 0.25 to 10 times gravitational acceleration corresponding to frequency and amplitude range of 8 - 22Hz and 1 - 10mm respectively. Throughout testing the void fraction was limited to <5%. The bubble size is larger than resonance size and smaller than acoustic wavelength. The amplitude of acoustic pressure wave was estimated using the definition of Bjerknes force in combination with Rayleigh-Plesset equation. Physical behavior of the system was capture and classified. Bubble size, velocity as well as size and spatial distribution will be presented.

  18. Exploration of mechanisms underlying the strain-rate-dependent mechanical property of single chondrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Trung Dung; Gu, YuanTong, E-mail: yuantong.gu@qut.edu.au [School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, Queensland (Australia)

    2014-05-05

    Based on the characterization by Atomic Force Microscopy, we report that the mechanical property of single chondrocytes has dependency on the strain-rates. By comparing the mechanical deformation responses and the Young's moduli of living and fixed chondrocytes at four different strain-rates, we explore the deformation mechanisms underlying this dependency property. We found that the strain-rate-dependent mechanical property of living cells is governed by both of the cellular cytoskeleton and the intracellular fluid when the fixed chondrocytes are mainly governed by their intracellular fluid, which is called the consolidation-dependent deformation behavior. Finally, we report that the porohyperelastic constitutive material model which can capture the consolidation-dependent behavior of both living and fixed chondrocytes is a potential candidature to study living cell biomechanics.

  19. Emergent Properties in Natural and Artificial Dynamical Systems

    CERN Document Server

    Aziz-Alaoui, M.A

    2006-01-01

    An important part of the science of complexity is the study of emergent properties arising through dynamical processes in various types of natural and artificial systems. This is the aim of this book, which is the outcome of a discussion meeting within the first European conference on complex systems. It presents multidisciplinary approaches for getting representations of complex systems and using different methods to extract emergent structures. This carefully edited book studies emergent features such as self organization, synchronization, opening on stability and robustness properties. Invariant techniques are presented which can express global emergent properties in dynamical and in temporal evolution systems. This book demonstrates how artificial systems such as a distributed platform can be used for simulation used to search emergent placement during simulation execution.

  20. System dynamics for mechanical engineers

    CERN Document Server

    Davies, Matthew

    2015-01-01

    This textbook is ideal for mechanical engineering students preparing to enter the workforce during a time of rapidly accelerating technology, where they will be challenged to join interdisciplinary teams. It explains system dynamics using analogies familiar to the mechanical engineer while introducing new content in an intuitive fashion. The fundamentals provided in this book prepare the mechanical engineer to adapt to continuous technological advances with topics outside traditional mechanical engineering curricula by preparing them to apply basic principles and established approaches to new problems. This book also: ·         Reinforces the connection between the subject matter and engineering reality ·         Includes an instructor pack with the online publication that describes in-class experiments with minimal preparation requirements ·         Provides content dedicated to the modeling of modern interdisciplinary technological subjects, including opto-mechanical systems, high...

  1. The tunable mechanical property of water-filled carbon nanotubes under an electric field

    Science.gov (United States)

    Ye, Hongfei; Zhang, Zhongqiang; Zhang, Hongwu; Chen, Zhen; Zong, Zhi; Zheng, Yonggang

    2014-03-01

    The spring-induced compression of water-filled carbon nanotubes (CNTs) under an electric field is investigated by molecular dynamics simulations. Due to the incompressibility and polarity of water, the mechanical property of CNTs can be tuned through filling with water molecules and applying an electric field. To explore the variation of the mechanical property of water-filled CNTs, the effects of the CNT length, the filling density and the electric field intensity are examined. The simulation results indicate that the water filling and electric field can result in a slight change in the elastic property (the elastic modulus and Poisson's ratio) of water-filled CNTs. However, the yield stress and average post-buckling stress exhibit a significant response to the water density and electric field intensity. As compared to hollow CNTs, the increment in yield stress of the water-filled CNTs under an electric field of 2.0 V Å-1 is up to 35.29%, which is even higher than that resulting from metal filling. The findings from this study provide a valuable theoretical basis for designing and fabricating the controlling units at the nanoscale.

  2. Effect of Cu on the microstructural and mechanical properties of as-cast ductile iron

    International Nuclear Information System (INIS)

    Tiwari, Siddhartha; Das, J.; Ray, K.K.; Kumar, Hemant; Bhaduri, A.

    2012-01-01

    The application of ductile cast iron in the heavy engineering components like, cask for the storage and transportation of radioactive materials, demands high strength with improved fracture toughness in as cast condition. The mechanical properties and fracture toughness of as-cast ductile iron (DI) is directly related to its structure property which can be controlled by proper inoculation, alloying elements and cooling rate during solidification. The aim of the present investigation is to study the effect of varying amount of Cu (0.07%, 0.11%, and 0.16%) with 1% Ni in the microstructural development of as-cast ductile iron with emphasis on its mechanical properties and fracture toughness. Three different ductile irons have been prepared using induction furnace in batches of 300 kg following industrial practice. Microstructural features (amount of phases, morphology, size and count of graphite nodules) and mechanical properties (tensile strength and hardness) of prepared DI were determined using standard methods. Dynamic fracture toughness was measured using instrumented Charpy impact test on pre-cracked specimens following the standard ISO-FDIS-26843. Additionally, fracture surfaces of broken tensile and pre-cracked specimens were observed by SEM to study the micro-mechanism of fracture. The pearlite fraction and the nodule count are found to increase with increasing amount of copper in ferritic-pearlitic matrix. The hardness and strength values are found to increase with increasing amount of pearlite whereas fracture toughness decreases. Fractographs of broken specimens exhibited decohesion of graphite, crack propagation from graphite interface and transgranular fracture of ferrite. (author)

  3. Physico-mechanical properties and thermal stability of thermoset nanocomposites based on styrene-butadiene rubber/phenolic resin blend

    Energy Technology Data Exchange (ETDEWEB)

    Shojaei, Akbar, E-mail: akbar.shojaei@sharif.edu [Department of Chemical and Petroleum Engineering, Sharif University of Technology, P.O. Box 11155-9465, Tehran (Iran, Islamic Republic of); Faghihi, Morteza [Department of Chemical and Petroleum Engineering, Sharif University of Technology, P.O. Box 11155-9465, Tehran (Iran, Islamic Republic of)

    2010-02-15

    Effect of organoclay (OC) on the performance of styrene-butadiene rubber (SBR)/phenolic resin (PH) blend prepared by two-roll mill was investigated. The influence of OC content ranging between 2.5 and 30 phr on the performance of SBR/PH was investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), interfacial energy analysis, tensile, dynamic mechanical, swelling, cure rheometry and thermogravimetric analysis (TGA). It was found that the OC is mainly localized in the SBR phase of SBR/PH blend through the kinetically favored mechanism relevant to rubber chains. The results also demonstrated the positive role of PH on the dispersion of OC. Both PH and OC showed accelerating role on the cure rate of SBR and increased the crosslinking density of the rubber phase. Additionally, the mechanical and dynamic mechanical properties of SBR were influenced by incorporation of both PH and OC. TGA showed that the OC improves thermal stability of SBR vulcanizate, while it exhibits a catalytic role in presence of PH.

  4. Physico-mechanical properties and thermal stability of thermoset nanocomposites based on styrene-butadiene rubber/phenolic resin blend

    International Nuclear Information System (INIS)

    Shojaei, Akbar; Faghihi, Morteza

    2010-01-01

    Effect of organoclay (OC) on the performance of styrene-butadiene rubber (SBR)/phenolic resin (PH) blend prepared by two-roll mill was investigated. The influence of OC content ranging between 2.5 and 30 phr on the performance of SBR/PH was investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), interfacial energy analysis, tensile, dynamic mechanical, swelling, cure rheometry and thermogravimetric analysis (TGA). It was found that the OC is mainly localized in the SBR phase of SBR/PH blend through the kinetically favored mechanism relevant to rubber chains. The results also demonstrated the positive role of PH on the dispersion of OC. Both PH and OC showed accelerating role on the cure rate of SBR and increased the crosslinking density of the rubber phase. Additionally, the mechanical and dynamic mechanical properties of SBR were influenced by incorporation of both PH and OC. TGA showed that the OC improves thermal stability of SBR vulcanizate, while it exhibits a catalytic role in presence of PH.

  5. Relationships between the curing conditions and some mechanical properties of hybrid thermosetting materials

    Energy Technology Data Exchange (ETDEWEB)

    Dias Filho, Newton L.; Aquino, Hermes A. de [UNESP, Ilha Solteira, SP (Brazil). Dept. de Fisica e Quimica]. E-mail: nldias@dfq.feis.unesp.br; Cardoso, Celso X. [UNESP, Presidente Prudente, SP (Brazil). Dept. de Fisica, Quimica e Biologia

    2006-09-15

    The relationship between the heat of polymerization ({alpha}H) and activation energy (E{sub a}) parameters, obtained by differential scanning calorimetry (DSC) and the ratio of epoxy resin to hardener of the thermosetting materials based on an organic-inorganic hybrid epoxy resin (OG) was investigated. Activation energy (E{sub a}) and heat of polymerization ({alpha}H) increased with an increasing OG content, up to 70 wt %. Further increase in OG content to 80 wt % reduced E{sub a} and {alpha}H. Dynamic mechanical analysis indicates that the maximum cross-link density is obtained at 83 wt % OG, whereas fracture toughness and tensile modulus mechanical properties are maximized at 70 wt % OG. (author)

  6. Dynamical properties of the Rabi model

    International Nuclear Information System (INIS)

    Hu, Binglu; Zhou, Huili; Chen, Shujie; Xianlong, Gao; Wang, Kelin

    2017-01-01

    We study the dynamical properties of the quantum Rabi model using a systematic expansion method. Based on the observation that the parity symmetry of the Rabi model is kept during evolution of the states, we decompose the initial state and the time-dependent one into positive and negative parity parts expanded by superposition of the coherent states. The evolutions of the corresponding positive and the negative parities are obtained, in which the expansion coefficients in the dynamical equations are known from the derived recurrence relation. (paper)

  7. Measurement of the mechanical properties of layered systems

    International Nuclear Information System (INIS)

    Blank, E.

    2002-01-01

    Thin films for integrated electronic circuitry, packaging and small structures in micro-electromechanical systems (MEMS) as well as protective coatings require mechanical testing to control fabrication processes, guarantee product quality and establish data bases for engineering purposes. They generally escape classical materials testing owing to their small size in at least one dimension and their incorporation into larger structures. The fact that material properties change in the micro- and nanometer range when sample dimensions reach the scale of defect structures, implies that sample and probe size become part of the property evaluation process. Although research into the mechanical behaviour of thin films and small structures now is established, the fundamentals of mechanical testing continue to be identified while there is a growing need for methods allowing to measure intrinsic material properties. This lecture will focus on the mechanics of thin film and small volume structures and review recently developed testing techniques for measuring materials properties, particularly indentation, bulge and bend testing. The effect of specimen and probe geometry on property evaluation will be discussed. The use of Raman spectroscopy for residual stress measurement will be illustrated. (Author)

  8. The effects of alumina nanofillers on mechanical properties of high-performance epoxy resin.

    Science.gov (United States)

    Zhang, Hui; Zhang, Hui; Tang, Longcheng; Liu, Gang; Zhang, Daijun; Zhou, Lingyun; Zhang, Zhong

    2010-11-01

    In the past decade extensive studies have been focused on mechanical properties of inorganic nanofiller/epoxy matrices. In this work we systematically investigated the mechanical properties of nano-alumina-filled E-54/4, 4-diaminodiphenylsulphone (DDS) epoxy resins, which were prepared via combining high-speed mixing with three-roll milling. Homogeneous dispersion of nano-alumina with small agglomerates was obtained in epoxy resin, which was confirmed using transmission electron microscopy (TEM). The static/dynamic modulus, tensile strength and fracture toughness of the nanocomposites were found to be simultaneously enhanced with addition of nano-alumina fillers. About 50% and 80% increases of K(IC) and G(IC) were achieved in nanocomposite filled with 18.4 wt% alumina nanofillers, as compared to that of the unfilled epoxy resin. Furthermore, the corresponding fracture surfaces of tensile and compact tension samples were examined by scanning electron microscopy (SEM) and atomic force microscopy (AFM) techniques in order to identify the relevant fracture mechanisms involved. Various fracture features including cavities/debonding of nanofiller, local plastic deformation as well as crack pinning/deflection were found to be operative in the presence of nano-alumina fillers.

  9. Evolution properties of the community members for dynamic networks

    Science.gov (United States)

    Yang, Kai; Guo, Qiang; Li, Sheng-Nan; Han, Jing-Ti; Liu, Jian-Guo

    2017-03-01

    The collective behaviors of community members for dynamic social networks are significant for understanding evolution features of communities. In this Letter, we empirically investigate the evolution properties of the new community members for dynamic networks. Firstly, we separate data sets into different slices, and analyze the statistical properties of new members as well as communities they joined in for these data sets. Then we introduce a parameter φ to describe community evolution between different slices and investigate the dynamic community properties of the new community members. The empirical analyses for the Facebook, APS, Enron and Wiki data sets indicate that both the number of new members and joint communities increase, the ratio declines rapidly and then becomes stable over time, and most of the new members will join in the small size communities that is s ≤ 10. Furthermore, the proportion of new members in existed communities decreases firstly and then becomes stable and relatively small for these data sets. Our work may be helpful for deeply understanding the evolution properties of community members for social networks.

  10. The effect of poly (lactic-co-glycolic) acid composition on the mechanical properties of electrospun fibrous mats.

    Science.gov (United States)

    Liu, X; Aho, J; Baldursdottir, S; Bohr, A; Qu, H; Christensen, L P; Rantanen, J; Yang, M

    2017-08-30

    The aim of this study was to investigate the influence of polymer molecular structure on the electrospinnability and mechanical properties of electrospun fibrous mats (EFMs). Polymers with similar molecular weight but different composition ratios (lactic acid (LA) and glycolic acid (GA)) were dissolved in binary mixtures of N,N-dimethylformamide (DMF) and tetrahydrofuran (THF). The intrinsic viscosity and rheological properties of polymer solutions were investigated prior to electrospinning. The morphology and mechanical properties of the resulting EFMs were characterized by scanning electron microscope (SEM) and dynamic mechanical analysis (DMA). Sufficiently high inter-molecular interactions were found to be a prerequisite to ensure the formation of fibers in the electrospinning process, regardless the polymer composition. The higher the amount of GA in the polymer composition, the more ordered and entangled molecules were formed after electrospinning from the solution in THF-DMF, which resulted in higher Young's modulus and tensile strength of the EFMs. In conclusion, this study shows that the mechanical properties of EFMs, which depend on the polymer molecule-solvent affinity, can be predicted by the inter-molecular interactions in the starting polymer solutions and over the drying process of electrospinning. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Dynamic fluctuations provide the basis of a conformational switch mechanism in apo cyclic AMP receptor protein.

    Directory of Open Access Journals (Sweden)

    Burcu Aykaç Fas

    Full Text Available Escherichia coli cyclic AMP Receptor Protein (CRP undergoes conformational changes with cAMP binding and allosterically promotes CRP to bind specifically to the DNA. In that, the structural and dynamic properties of apo CRP prior to cAMP binding are of interest for the comprehension of the activation mechanism. Here, the dynamics of apo CRP monomer/dimer and holo CRP dimer were studied by Molecular Dynamics (MD simulations and Gaussian Network Model (GNM. The interplay of the inter-domain hinge with the cAMP and DNA binding domains are pre-disposed in the apo state as a conformational switch in the CRP's allosteric communication mechanism. The hinge at L134-D138 displaying intra- and inter-subunit coupled fluctuations with the cAMP and DNA binding domains leads to the emergence of stronger coupled fluctuations between the two domains and describes an on state. The flexible regions at K52-E58, P154/D155 and I175 maintain the dynamic coupling of the two domains. With a shift in the inter-domain hinge position towards the N terminus, nevertheless, the latter correlations between the domains loosen and become disordered; L134-D138 dynamically interacts only with the cAMP and DNA binding domains of its own subunit, and an off state is assumed. We present a mechanistic view on how the structural dynamic units are hierarchically built for the allosteric functional mechanism; from apo CRP monomer to apo-to-holo CRP dimers.

  12. Coupling functions: Universal insights into dynamical interaction mechanisms

    Science.gov (United States)

    Stankovski, Tomislav; Pereira, Tiago; McClintock, Peter V. E.; Stefanovska, Aneta

    2017-10-01

    The dynamical systems found in nature are rarely isolated. Instead they interact and influence each other. The coupling functions that connect them contain detailed information about the functional mechanisms underlying the interactions and prescribe the physical rule specifying how an interaction occurs. A coherent and comprehensive review is presented encompassing the rapid progress made recently in the analysis, understanding, and applications of coupling functions. The basic concepts and characteristics of coupling functions are presented through demonstrative examples of different domains, revealing the mechanisms and emphasizing their multivariate nature. The theory of coupling functions is discussed through gradually increasing complexity from strong and weak interactions to globally coupled systems and networks. A variety of methods that have been developed for the detection and reconstruction of coupling functions from measured data is described. These methods are based on different statistical techniques for dynamical inference. Stemming from physics, such methods are being applied in diverse areas of science and technology, including chemistry, biology, physiology, neuroscience, social sciences, mechanics, and secure communications. This breadth of application illustrates the universality of coupling functions for studying the interaction mechanisms of coupled dynamical systems.

  13. Modeling the mechanics of cancer: effect of changes in cellular and extra-cellular mechanical properties.

    Science.gov (United States)

    Katira, Parag; Bonnecaze, Roger T; Zaman, Muhammad H

    2013-01-01

    Malignant transformation, though primarily driven by genetic mutations in cells, is also accompanied by specific changes in cellular and extra-cellular mechanical properties such as stiffness and adhesivity. As the transformed cells grow into tumors, they interact with their surroundings via physical contacts and the application of forces. These forces can lead to changes in the mechanical regulation of cell fate based on the mechanical properties of the cells and their surrounding environment. A comprehensive understanding of cancer progression requires the study of how specific changes in mechanical properties influences collective cell behavior during tumor growth and metastasis. Here we review some key results from computational models describing the effect of changes in cellular and extra-cellular mechanical properties and identify mechanistic pathways for cancer progression that can be targeted for the prediction, treatment, and prevention of cancer.

  14. Influence of Storage on Briquettes Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Brožek M.

    2014-09-01

    Full Text Available The effects of the storage place, placing manner, and storage time on mechanical properties of briquettes made from birch chips were laboratorily tested. A unique methodology developed by the present author enabling a relatively easy assessment of mechanical properties of the briquettes is described. The briquettes properties were evaluated by their density and rupture force determination. From the test results it follows that if the briquettes are stored in a well closed plastic bag, neither the place nor the storage time influence significantly their life time. When stored in a net plastic bag, the briquettes get seriously damaged, namely depending on their storage place and storage time.

  15. Effect of segregations on mechanical properties and crack propagation in spring steel

    Directory of Open Access Journals (Sweden)

    B. Žužek

    2015-10-01

    Full Text Available Considerable efforts have been made over the last decades to improve performance of spring steels, which would increase the service time of springs and also allow vehicles weight reduction. There are different possibilities of improving properties of spring steels, from modifying the chemical composition of steels to optimizing the deformation process and changing the heat treatment parameters. Another way of improving steel properties is through refining the microstructure and reducing amount of inclusions. Therefore, the focus of the current investigation was to determine the effect of more uniform and cleaner microstructure obtained through electro-slag remelting (ESR of steel on the mechanical and dynamic properties of spring steel, with special focus on the resistance to fatigue crack propagation. Effect of the microstructure refinement was evaluated in terms of tensile strength, elongation, fracture and impact toughness, and fatigue resistance under bending and tensile loading. After the mechanical tests the fracture surfaces of samples were analyzed using scanning electron microscope (SEM and the influence of microstructure properties on the crack propagation and crack propagation resistance was studied. Investigation was performed on hot rolled, soft annealed and vacuum heat treated 51CrV4 spring steel produced by conventional continuous casting and compared with steel additional refined through ESR. Results shows that elimination of segregations and microstructure refinement using additional ESR process gives some improvement in terms of better repeatability and reduced scattering, but on the other hand it has negative effect on crack propagation resistance and fatigue properties of the spring steel.

  16. Rationally designed synthetic protein hydrogels with predictable mechanical properties.

    Science.gov (United States)

    Wu, Junhua; Li, Pengfei; Dong, Chenling; Jiang, Heting; Bin Xue; Gao, Xiang; Qin, Meng; Wang, Wei; Bin Chen; Cao, Yi

    2018-02-12

    Designing synthetic protein hydrogels with tailored mechanical properties similar to naturally occurring tissues is an eternal pursuit in tissue engineering and stem cell and cancer research. However, it remains challenging to correlate the mechanical properties of protein hydrogels with the nanomechanics of individual building blocks. Here we use single-molecule force spectroscopy, protein engineering and theoretical modeling to prove that the mechanical properties of protein hydrogels are predictable based on the mechanical hierarchy of the cross-linkers and the load-bearing modules at the molecular level. These findings provide a framework for rationally designing protein hydrogels with independently tunable elasticity, extensibility, toughness and self-healing. Using this principle, we demonstrate the engineering of self-healable muscle-mimicking hydrogels that can significantly dissipate energy through protein unfolding. We expect that this principle can be generalized for the construction of protein hydrogels with customized mechanical properties for biomedical applications.

  17. Characterization and modelling of the mechanical properties of mineral wool

    DEFF Research Database (Denmark)

    Chapelle, Lucie

    2016-01-01

    and as a consequence focus on the mechanical properties of mineral wool has intensified. Also understanding the deformation mechanisms during compression of low density mineral wool is crucial since better thickness recovery after compression will result in significant savings on transport costs. The mechanical...... properties of mineral wool relate closely to the arrangement and characteristics of the fibres inside the material. Because of the complex architecture of mineral wool, the characterization and the understanding of the mechanism of deformations require a new methodology. In this PhD thesis, a methodology...... of the structure on mechanical properties can be explored. The size of the representative volume elements for the prediction of the elastic properties is determined for two types of applied boundary conditions. For sufficiently large volumes, the predicted elastic properties are consistent with results from...

  18. Mechanical properties of low dimensional materials

    Science.gov (United States)

    Saini, Deepika

    Recent advances in low dimensional materials (LDMs) have paved the way for unprecedented technological advancements. The drive to reduce the dimensions of electronics has compelled researchers to devise newer techniques to not only synthesize novel materials, but also tailor their properties. Although micro and nanomaterials have shown phenomenal electronic properties, their mechanical robustness and a thorough understanding of their structure-property relationship are critical for their use in practical applications. However, the challenges in probing these mechanical properties dramatically increase as their dimensions shrink, rendering the commonly used techniques inadequate. This dissertation focuses on developing techniques for accurate determination of elastic modulus of LDMs and their mechanical responses under tensile and shear stresses. Fibers with micron-sized diameters continuously undergo tensile and shear deformations through many phases of their processing and applications. Significant attention has been given to their tensile response and their structure-tensile properties relations are well understood, but the same cannot be said about their shear responses or the structure-shear properties. This is partly due to the lack of appropriate instruments that are capable of performing direct shear measurements. In an attempt to fill this void, this dissertation describes the design of an inexpensive tabletop instrument, referred to as the twister, which can measure the shear modulus (G) and other longitudinal shear properties of micron-sized individual fibers. An automated system applies a pre-determined twist to the fiber sample and measures the resulting torque using a sensitive optical detector. The accuracy of the instrument was verified by measuring G for high purity copper and tungsten fibers. Two industrially important fibers, IM7 carbon fiber and KevlarRTM 119, were found to have G = 17 and 2.4 GPa, respectively. In addition to measuring the shear

  19. Dynamical Systems for Creative Technology

    NARCIS (Netherlands)

    van Amerongen, J.

    2010-01-01

    Dynamical Systems for Creative Technology gives a concise description of the physical properties of electrical, mechanical and hydraulic systems. Emphasis is placed on modelling the dynamical properties of these systems. By using a system’s approach it is shown that a limited number of mathematical

  20. Mechanical properties of additively manufactured octagonal honeycombs

    Energy Technology Data Exchange (ETDEWEB)

    Hedayati, R., E-mail: rezahedayati@gmail.com [Department of Mechanical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez Ave, Tehran (Iran, Islamic Republic of); Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft (Netherlands); Sadighi, M.; Mohammadi-Aghdam, M. [Department of Mechanical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez Ave, Tehran (Iran, Islamic Republic of); Zadpoor, A.A. [Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft (Netherlands)

    2016-12-01

    Honeycomb structures have found numerous applications as structural and biomedical materials due to their favourable properties such as low weight, high stiffness, and porosity. Application of additive manufacturing and 3D printing techniques allows for manufacturing of honeycombs with arbitrary shape and wall thickness, opening the way for optimizing the mechanical and physical properties for specific applications. In this study, the mechanical properties of honeycomb structures with a new geometry, called octagonal honeycomb, were investigated using analytical, numerical, and experimental approaches. An additive manufacturing technique, namely fused deposition modelling, was used to fabricate the honeycomb from polylactic acid (PLA). The honeycombs structures were then mechanically tested under compression and the mechanical properties of the structures were determined. In addition, the Euler-Bernoulli and Timoshenko beam theories were used for deriving analytical relationships for elastic modulus, yield stress, Poisson's ratio, and buckling stress of this new design of honeycomb structures. Finite element models were also created to analyse the mechanical behaviour of the honeycombs computationally. The analytical solutions obtained using Timoshenko beam theory were close to computational results in terms of elastic modulus, Poisson's ratio and yield stress, especially for relative densities smaller than 25%. The analytical solutions based on the Timoshenko analytical solution and the computational results were in good agreement with experimental observations. Finally, the elastic properties of the proposed honeycomb structure were compared to those of other honeycomb structures such as square, triangular, hexagonal, mixed, diamond, and Kagome. The octagonal honeycomb showed yield stress and elastic modulus values very close to those of regular hexagonal honeycombs and lower than the other considered honeycombs. - Highlights: • The octagonal

  1. Mechanical properties of organic nanofibers

    DEFF Research Database (Denmark)

    Kjelstrup-Hansen, Jakob; Hansen, Ole; Rubahn, H.R.

    2006-01-01

    Intrinsic elastic and inelastic mechanical Properties of individual, self-assembled, quasi-single-crystalline para-hexaphenylene nanofibers supported on substrates with different hydrophobicities are investigated as well as the interplay between the fibers and the underlying substrates. We find...

  2. Influence of Extrusion Temperature on the Aging Behavior and Mechanical Properties of an AA6060 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Nadja Berndt

    2018-01-01

    Full Text Available Processing of AA6060 aluminum alloys for semi-products usually includes hot extrusion with subsequent artificial aging for several hours. Processing below the recrystallization temperature allows for an increased strength at a significantly reduced annealing time by combining strain hardening and precipitation hardening. In this study, we investigate the potential of cold and warm extrusion as alternative processing routes for high strength aluminum semi-products. Cast billets of the age hardening aluminum alloy AA6060 were solution annealed and then extruded at room temperature, 120 or 170 °C, followed by an aging treatment. Electron microscopy and mechanical testing were performed on the as-extruded as well as the annealed materials to characterize the resulting microstructural features and mechanical properties. All of the extruded profiles exhibit similar, strongly graded microstructures. The strain gradients and the varying extrusion temperatures lead to different stages of dynamic precipitation in the as-extruded materials, which significantly alter the subsequent aging behavior and mechanical properties. The experimental results demonstrate that extrusion below recrystallization temperature allows for high strength at a massively reduced aging time due to dynamic precipitation and/or accelerated precipitation kinetics. The highest strength and ductility were achieved by extrusion at 120 °C and subsequent short-time aging.

  3. Fractional Dynamics Applications of Fractional Calculus to Dynamics of Particles, Fields and Media

    CERN Document Server

    Tarasov, Vasily E

    2010-01-01

    "Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media" presents applications of fractional calculus, integral and differential equations of non-integer orders in describing systems with long-time memory, non-local spatial and fractal properties. Mathematical models of fractal media and distributions, generalized dynamical systems and discrete maps, non-local statistical mechanics and kinetics, dynamics of open quantum systems, the hydrodynamics and electrodynamics of complex media with non-local properties and memory are considered. This book is intended to meet the needs of scientists and graduate students in physics, mechanics and applied mathematics who are interested in electrodynamics, statistical and condensed matter physics, quantum dynamics, complex media theories and kinetics, discrete maps and lattice models, and nonlinear dynamics and chaos. Dr. Vasily E. Tarasov is a Senior Research Associate at Nuclear Physics Institute of Moscow State University and...

  4. Effects of vacuum thermal cycling on mechanical and physical properties of high performance carbon/bismaleimide composite

    International Nuclear Information System (INIS)

    Yu Qi; Chen Ping; Gao Yu; Mu Jujie; Chen Yongwu; Lu Chun; Liu Dong

    2011-01-01

    Highlights: → The level of cross-links was improved to a certain extent. → The thermal stability was firstly improved and then decreased. → The transverse and longitudinal CTE were both determined by the degree of interfacial debonding. → The mass loss ratio increases firstly and then reaches a plateau value. → The surface morphology was altered and the surface roughness increased firstly and then decreased. → The transverse tensile strength was reduced. → The flexural strength increased firstly and then decreased to a plateau value. → The ILSS increased firstly and then decreased to a plateau value. - Abstract: The aim of this article was to investigate the effects of vacuum thermal cycling on mechanical and physical properties of high performance carbon/bismaleimide (BMI) composites used in aerospace. The changes in dynamic mechanical properties and thermal stability were characterized by dynamic mechanical analysis (DMA) and thermogravimetric analysis (TGA), respectively. The changes in linear coefficient of thermal expansion (CTE) were measured in directions perpendicular and parallel to the fiber direction, respectively. The outgassing behavior of the composites were examined. The evolution of surface morphology and surface roughness were observed by atomic force microscopy (AFM). Changes in mechanical properties including transverse tensile strength, flexural strength and interlaminar shear strength (ILSS) were measured. The results indicated that the vacuum thermal cycling could improve the crosslinking degree and the thermal stability of resin matrix to a certain extent, and induce matrix outgassing and thermal stress, thereby leading to the mass loss and the interfacial debonding of the composite. The degradation in transverse tensile strength was caused by joint effects of the matrix outgassing and the interfacial debonding, while the changes in flexural strength and ILSS were affected by a competing effect between the crosslinking degree

  5. Characterization of porosity in support of mechanical property analysis

    International Nuclear Information System (INIS)

    Price, R.H.; Martin, R.J. III; Boyd, P.J.

    1992-01-01

    Previous laboratory investigations of tuff have shown that porosity has a dominant, general effect on mechanical properties. As a result, it is very important for the interpretation of mechanical property data that porosity is measured on each sample tested. Porosity alone, however, does not address all of the issues important to mechanical behavior. Variability in size and distribution of pore space produces significantly different mechanical properties. A nondestructive technique for characterizing the internal structure of the sample prior to testing is being developed and the results are being analyzed. The information obtained from this technique can help in both qualitative and quantitative interpretation of test results

  6. Mechanical properties of F82H plates with different thicknesses

    Energy Technology Data Exchange (ETDEWEB)

    Sakasegawa, Hideo, E-mail: sakasegawa.hideo@jaea.go.jp; Tanigawa, Hiroyasu

    2016-11-01

    Highlights: • Mass effect, homogeneity, and anisotropy in mechanical properties were studied. • Thickness dependence of tensile property was not observed. • Thickness dependence of Charpy impact property was observed. • Appropriate mechanical properties were obtained using an electric furnace. - Abstract: Fusion DEMO reactor requires over 11,000 tons of reduced activation ferritic/martensitic steel and it is indispensable to develop the manufacturing technology for producing large-scale components of DEMO blanket with appropriate mechanical properties. This is because mechanical properties are generally degraded with increasing production volume. In this work, we focused mechanical properties of F82H–BA12 heat which was melted in a 20 tons electric arc furnace. Plates with difference thicknesses from 18 to 100 mm{sup t} were made from its ingot through forging and hot-rolling followed by heat treatments. Tensile and Charpy impact tests were then performed on plates focusing on their homogeneity and anisotropy. From the result, their homogeneity and anisotropy were not significant. No obvious differences were observed in tensile properties between the plates with different thicknesses. However, Charpy impact property changed with increasing plate thickness, i.e. the ductile brittle transition temperature of a 100 mm{sup t} thick plate was higher than that of the other thinner plates.

  7. Mechanical properties of self-compacting concrete state-of-the-art report of the RILEM technical committee 228-MPS on mechanical properties of self-compacting concrete

    CERN Document Server

    Schutter, Geert

    2014-01-01

    The State-of-the-Art Report of RILEM Technical Committee 228-MPS on Mechanical properties of Self-Compacting Concrete (SCC) summarizes an extensive body of information related to mechanical properties and mechanical behaviour of SCC. Due attention is given to the fact that the composition of SCC varies significantly. A wide range of  mechanical properties are considered, including compressive strength, stress-strain relationship, tensile and flexural strengths, modulus of elasticity, shear strength, effect of elevated temperature, such as fire spalling and residual properties after fire, in-situ properties, creep, shrinkage, bond properties, and structural behaviour. A chapter on fibre-reinforced SCC is included, as well as a chapter on specialty SCC, such as light-weight SCC, heavy-weight SCC, preplaced aggregate SCC, special fibre reinforced SCC, and underwater concrete.

  8. Analysis of Dynamic Properties of Piezoelectric Structure under Impact Load

    Directory of Open Access Journals (Sweden)

    Taotao Zhang

    2015-10-01

    Full Text Available An analytical model of the dynamic properties is established for a piezoelectric structure under impact load, without considering noise and perturbations in this paper. Based on the general theory of piezo-elasticity and impact mechanics, the theoretical solutions of the mechanical and electrical fields of the smart structure are obtained with the standing and traveling wave methods, respectively. The comparisons between the two methods have shown that the standing wave method is better for studying long-time response after an impact load. In addition, good agreements are found between the theoretical and the numerical results. To simulate the impact load, both triangle and step pulse loads are used and comparisons are given. Furthermore, the influence of several parameters is discussed so as to provide some advices for practical use. It can be seen that the proposed analytical model would benefit, to some extent, the design and application (especially the airport runway of the related smart devices by taking into account their impact load performance.

  9. Size-dependent mechanical properties of 2D random nanofibre networks

    International Nuclear Information System (INIS)

    Lu, Zixing; Zhu, Man; Liu, Qiang

    2014-01-01

    The mechanical properties of nanofibre networks (NFNs) are size dependent with respect to different fibre diameters. In this paper, a continuum model is developed to reveal the size-dependent mechanical properties of 2D random NFNs. Since such size-dependent behaviours are attributed to different micromechanical mechanisms, the surface effects and the strain gradient (SG) effects are, respectively, introduced into the mechanical analysis of NFNs. Meanwhile, a modified fibre network model is proposed, in which the axial, bending and shearing deformations are incorporated. The closed-form expressions of effective modulus and Poisson's ratio are obtained for NFNs. Different from the results predicted by conventional fibre network model, the present model predicts the size-dependent mechanical properties of NFNs. It is found that both surface effects and SG effects have significant influences on the effective mechanical properties. Moreover, the present results show that the shearing deformation of fibre segment is also crucial to precisely evaluate the effective mechanical properties of NFNs. This work mainly aims to provide an insight into the micromechanical mechanisms of NFNs. Besides, this work is also expected to provide a more accurate theoretical model for 2D fibre networks. (paper)

  10. Structure and mechanical properties of parts obtained by selective laser melting of metal powder based on intermetallic compounds Ni3Al

    Science.gov (United States)

    Smelov, V. G.; Sotov, A. V.; Agapovichev, A. V.; Nosova, E. A.

    2018-03-01

    The structure and mechanical properties of samples are obtained from metal powder based on intermetallic compound by selective laser melting. The chemical analysis of the raw material and static tensile test of specimens were made. Change in the samples’ structure and mechanical properties after homogenization during four and twenty-four hours were investigated. A small-sized combustion chamber of a gas turbine engine was performed by the selective laser melting method. The print combustion chamber was subjected to the gas-dynamic test in a certain temperature and time range.

  11. Probalistic Finite Elements (PFEM) structural dynamics and fracture mechanics

    Science.gov (United States)

    Liu, Wing-Kam; Belytschko, Ted; Mani, A.; Besterfield, G.

    1989-01-01

    The purpose of this work is to develop computationally efficient methodologies for assessing the effects of randomness in loads, material properties, and other aspects of a problem by a finite element analysis. The resulting group of methods is called probabilistic finite elements (PFEM). The overall objective of this work is to develop methodologies whereby the lifetime of a component can be predicted, accounting for the variability in the material and geometry of the component, the loads, and other aspects of the environment; and the range of response expected in a particular scenario can be presented to the analyst in addition to the response itself. Emphasis has been placed on methods which are not statistical in character; that is, they do not involve Monte Carlo simulations. The reason for this choice of direction is that Monte Carlo simulations of complex nonlinear response require a tremendous amount of computation. The focus of efforts so far has been on nonlinear structural dynamics. However, in the continuation of this project, emphasis will be shifted to probabilistic fracture mechanics so that the effect of randomness in crack geometry and material properties can be studied interactively with the effect of random load and environment.

  12. Mechanically induced strong red emission in samarium ions doped piezoelectric semiconductor CaZnOS for dynamic pressure sensing and imaging

    Science.gov (United States)

    Wang, Wei; Peng, Dengfeng; Zhang, Hanlu; Yang, Xiaohong; Pan, Caofeng

    2017-07-01

    Piezoelectric semiconductor with optical, electrical and mechanical multifunctions has great potential applications in future optoelectronic devices. The rich properties and applications mainly encompass the intrinsic structures and their coupling effects. Here, we report that lanthanide ions doped piezoelectric semiconductor CaZnOS:Sm3+ showing strong red emission induced by dynamic mechanical stress. Under moderate mechanical load, the doped piezoelectric semiconductor exhibits strong visible red emission to the naked eyes even under the day light. A flexible dynamic pressure sensor device is fabricated based on the prepared CaZnOS:Sm3+ powders. The mechanical-induced emission properties of the device are investigated by the optical fiber spectrometer. The linear characteristic emissions are attributed to the 4G5/2→6H5/2 (566 nm), 4G5/2→6H7/2 (580-632 nm), 4G5/2→6H9/2 (653-673 nm) and 4G5/2→6H11/2 (712-735 nm) f-f transitions of Sm3+ ions. The integral emission intensity is proportional to the value of applied pressure. By using the linear relationship between integrated emission intensity and the dynamic pressure, the real-time pressure distribution is visualized and recorded. Our results highlight that the incorporation of lanthanide luminescent ions into piezoelectric semiconductors as smart materials could be applied into the flexible mechanical-optical sensor device without additional auxiliary power, which has great potential for promising applications such as mapping of personalized handwriting, smart display, and human machine interface.

  13. Nanostructured thin films and coatings mechanical properties

    CERN Document Server

    2010-01-01

    The first volume in "The Handbook of Nanostructured Thin Films and Coatings" set, this book concentrates on the mechanical properties, such as hardness, toughness, and adhesion, of thin films and coatings. It discusses processing, properties, and performance and provides a detailed analysis of theories and size effects. The book presents the fundamentals of hard and superhard nanocomposites and heterostructures, assesses fracture toughness and interfacial adhesion strength of thin films and hard nanocomposite coatings, and covers the processing and mechanical properties of hybrid sol-gel-derived nanocomposite coatings. It also uses nanomechanics to optimize coatings for cutting tools and explores various other coatings, such as diamond, metal-containing amorphous carbon nanostructured, and transition metal nitride-based nanolayered multilayer coatings.

  14. Mechanical performance of carbon-epoxy laminates. Part I: quasi-static and impact bending properties

    Directory of Open Access Journals (Sweden)

    José Ricardo Tarpani

    2006-06-01

    Full Text Available In Part I of this study, quasi-static and impact bending properties of four aeronautical grade carbon-epoxy laminates have been determined and compared. Materials tested were unidirectional cross-ply (tape and bidirectional woven textile (fabric carbon fiber lay-up architectures, impregnated with standard and rubber-toughened resins, respectively, giving rise to 1.5 mm-thick laminates. Quasi-static mechanical properties assessed in transversal mode loading were modulus of elasticity, flexural strength and tenacity at the maximum load, whereas the net absorbed energy was determined under translaminar impact conditions. Two-dimensional woven carbon fiber reinforcements embedded in a rubber-toughened matrix presented the best mechanical performance under static loading. Under dynamic loading conditions, woven fiber fabric pre-forms were favorably sensitive to increasing impact energies regardless the nature of the employed epoxy resin. However, it was concluded that great care should be taken with this material within the low energy impact regimen.

  15. Microstructure and Mechanical Properties of Porous Mullite

    Science.gov (United States)

    Hsiung, Chwan-Hai Harold

    Mullite (3 Al2O3 : 2 SiO2) is a technologically important ceramic due to its thermal stability, corrosion resistance, and mechanical robustness. One variant, porous acicular mullite (ACM), has a unique needle-like microstructure and is the material platform for The Dow Chemical Company's diesel particulate filter AERIFY(TM). The investigation described herein focuses on the microstructure-mechanical property relationships in acicular mullites as well as those with traditional porous microstructures with the goal of illuminating the critical factors in determining their modulus, strength, and toughness. Mullites with traditional pore morphologies were made to serve as references via slipcasting of a kaolinite-alumina-starch slurry. The starch was burned out to leave behind a pore network, and the calcined body was then reaction-sintered at 1600C to form mullite. The samples had porosities of approximately 60%. Pore size and shape were altered by using different starch templates, and pore size was found to influence the stiffness and toughness. The ACM microstructure was varied along three parameters: total porosity, pore size, and needle size. Total porosity was found to dominate the mechanical behavior of ACM, while increases in needle and pore size increased the toughness at lower porosities. ACM was found to have much improved (˜130%) mechanical properties relative to its non-acicular counterpart at the same porosity. A second set of investigations studied the role of the intergranular glassy phase which wets the needle intersections of ACM. Removal of the glassy phase via an HF etch reduced the mechanical properties by ˜30%, highlighting the intergranular phase's importance to the enhanced mechanical properties of ACM. The composition of the glassy phase was altered by doping the ACM precursor with magnesium and neodymium. Magnesium doping resulted in ACM with greatly reduced fracture strength and toughness. Studies showed that the mechanical properties of the

  16. Mechanical properties used for the qualification of transport casks

    International Nuclear Information System (INIS)

    Salzbrenner, R.; Crenshaw, T.B.; Sorenson, K.B.

    1993-01-01

    The qualification process that should be sufficient for qualification of a specific cask (material/geometry combination) has been examined. The prototype cask should be tested to determine its overall variation in microstructure, chemistry, and mechanical properties. This prototype may also be subjected to 'proof testing' to demonstrate the validity of the design analysis (including the mechanical properties used in the analysis). The complete mechanical property mapping does not necessarily have to precede the proof testing (i.e., portions of the cask which experience only low (elastic) loads during the drop test are suitable for mechanical test specimens). The behavior of the prototype cask and the production casks are linked by assuring that each cask possesses at least the minimum level of one or more critical mechanical properties. This may be done by measuring the properties of interest directly, or by relying on a secondary measurement (such as subsize mechanical test results or microstructure/compositional measurements) which has been statistically correlated to the critical properties. The database required to show the correlation between the secondary measurement and the valid design property may be established by tests on the material from the prototype cask. The production controls must be demonstrated as being adequate to assure that a uniform product is produced. The testing of coring (or test block or prolongation) samples can only be viewed as providing a valid link to the benchmark results provided by the prototype cask if the process used to create follow-on casks remains essentially similar. The MOSAIK Test Program has demonstrated the qualification method through the benchmarking stage. The program did not establish for qualifying serial production casks through, for example, a correlation between small specimen parameters and valid design fracture toughness properties. Such a correlation would require additional experimental work. (J.P.N.)

  17. Supplementation of exogenous adenosine 5'-triphosphate enhances mechanical properties of 3D cell-agarose constructs for cartilage tissue engineering.

    Science.gov (United States)

    Gadjanski, Ivana; Yodmuang, Supansa; Spiller, Kara; Bhumiratana, Sarindr; Vunjak-Novakovic, Gordana

    2013-10-01

    Formation of tissue-engineered cartilage is greatly enhanced by mechanical stimulation. However, direct mechanical stimulation is not always a suitable method, and the utilization of mechanisms underlying mechanotransduction might allow for a highly effective and less aggressive alternate means of stimulation. In particular, the purinergic, adenosine 5'-triphosphate (ATP)-mediated signaling pathway is strongly implicated in mechanotransduction within the articular cartilage. We investigated the effects of transient and continuous exogenous ATP supplementation on mechanical properties of cartilaginous constructs engineered using bovine chondrocytes and human mesenchymal stem cells (hMSCs) encapsulated in an agarose hydrogel. For both cell types, we have observed significant increases in equilibrium and dynamic compressive moduli after transient ATP treatment applied in the fourth week of cultivation. Continuous ATP treatment over 4 weeks of culture only slightly improved the mechanical properties of the constructs, without major changes in the total glycosaminoglycan (GAG) and collagen content. Structure-function analyses showed that transiently ATP-treated constructs, and in particular those based on hMSCs, had the highest level of correlation between compositional and mechanical properties. Transiently treated groups showed intense staining of the territorial matrix for GAGs and collagen type II. These results indicate that transient ATP treatment can improve functional mechanical properties of cartilaginous constructs based on chondrogenic cells and agarose hydrogels, possibly by improving the structural organization of the bulk phase and territorial extracellular matrix (ECM), that is, by increasing correlation slopes between the content of the ECM components (GAG, collagen) and mechanical properties of the construct.

  18. Molecular dynamics and Monte Carlo calculations in statistical mechanics

    International Nuclear Information System (INIS)

    Wood, W.W.; Erpenbeck, J.J.

    1976-01-01

    Monte Carlo and molecular dynamics calculations on statistical mechanical systems is reviewed giving some of the more significant recent developments. It is noted that the term molecular dynamics refers to the time-averaging technique for hard-core and square-well interactions and for continuous force-law interactions. Ergodic questions, methodology, quantum mechanical, Lorentz, and one-dimensional, hard-core, and square and triangular-well systems, short-range soft potentials, and other systems are included. 268 references

  19. Tube-like natural halloysite/poly(tetrafluoroethylene) nanocomposites: simultaneous enhancement in thermal and mechanical properties

    Science.gov (United States)

    Gamini, Suresh; Vasu, V.; Bose, Suryasarathi

    2017-04-01

    In the current study, PTFE (polytetrafluroethylene) matrix is reinforced with different wt% (2%-10%) of Halloysite nanotubes (HNTs). PTFE samples are fabricated with 2 wt% increment and are designated from ‘B’to ‘F’ and designation ‘A’ refers to neat PTFE. Thermal and mechanical characterization of the fabricated composites is studied. The calorimetric measurements showed enhanced degree of crystallinity of the nanocomposites, which is from 57.83% to 74.7%. The dynamic mechanical analysis results have shown enhanced storage modulus and loss modulus and reduced damping behaviour, without affecting glass transition temperature. Moreover, significant improvements in mechanical properties are observed from the experimental results. The results are discussed and validated with the existing literature. The phase and the fracture morphology of the nanocomposites is studied using scanning electron microscope and discussed herein.

  20. Mechanism of mechanical property enhancement in nitrogen and titanium implanted 321 stainless steel

    International Nuclear Information System (INIS)

    Xu Ming; Li Liuhe; Liu Youming; Cai Xun; Chen Qiulong; Chu, Paul K.

    2006-01-01

    Ion implantation is a well-known method to modify surface mechanical properties. The improvement of the mechanical properties can usually be attributed to the formation of new strengthening phases, solution strengthening, dislocation strengthening, or grain refinement. However, in many cases, the roles of individual factors are not clear. In this study, we implanted nitrogen and titanium into 321 stainless steel samples to investigate the enhancement mechanism of the mechanical properties. Nano-indentation experiments were conducted to measure the hardness under various loadings. The N and Ti implanted 321 stainless steel samples were found to behave differently in the hardness (GPa) versus depth (nm) diagram. The effects of the radiation damage, solution strengthening, and dispersion strengthening phase were analyzed. Characterization of the modified layers was performed using techniques such as Auger electron spectroscopy (AES) and grazing incidence X-ray diffraction (GIXRD). Transmission electron microscopy (TEM) and X-ray diffraction were also applied to reveal the structure of the untreated 321 stainless steel

  1. Mechanical Cushion Design Influence on Cylinder Dynamics

    DEFF Research Database (Denmark)

    Borghi, Massimo; Milani, Massimo; Conrad, Finn

    2005-01-01

    . experimental comparison, involving the piston velocity and the cylinder chambers pressure. After, with the aim of highlighting the effect of mechanical cushions design on a two effect linear actuator dynamic performances, the characteristics modulation of four alternative cushioning systems are determined......The paper deals with the simulation and the experimental verification of the dynamic behaviour of a linear actuator equipped with different configurations of mechanical cushion. A numerical model, developed and tailored to describe the influence of different modulation of the discharged flow......-rate (and of the correspondent discharging orifice design) on the cushioning characteristics variation is firstly introduced. Then, with respect to the case of the cylindrical cushioning engagement, both the reliability and the limits of the numerical approach are highlighted through a numerical vs...

  2. SWCNT Composites, Interfacial Strength and Mechanical Properties

    DEFF Research Database (Denmark)

    Ma, Jing; Larsen, Mikael

    2013-01-01

    Abstract: Single-Walled Carbon Nanotubes (SWCNT) have despite the superior mechanical properties not fully lived up to the promise as reinforcement in SWCNT composites. The strain transfer from matrix to carbon nanotubes (CNT) is poorly understood and is caused by both fewer localized strong...... is applied to the composite materials. The effect of polymer matrix, modification and concentration of the CNTs are discussed. The strain transfer i.e. 2D band shift under tension is compared to the mechanical properties of the SWCNT composite material....

  3. Improvement in electrical, thermal and mechanical properties of epoxy by filling carbon nanotube

    Directory of Open Access Journals (Sweden)

    2008-01-01

    Full Text Available In this study, electrical, thermal and mechanical properties of multi-walled carbon nanotubes (CNTs reinforced Epon 862 epoxy have been evaluated. Firstly, 0.1, 0.2, 0.3, and 0.4 wt% CNT were infused into epoxy through a high intensity ultrasonic liquid processor and then mixed with EpiCure curing agent W using a high speed mechanical agitator. Electric conductivity, dynamic mechanical analysis (DMA, three point bending tests and fracture tests were then performed on unfilled, CNT-filled epoxy to identify the loading effect on the properties of materials. Experimental results show significant improvement in electric conductivity. The resistivity of epoxy decreased from 1014 Ω•m of neat epoxy to 10 Ω•m with 0.4% CNT. The experimental results also indicate that the frequency dependent behavior of CNT/epoxy nanocomposite can be modeled by R-C circuit, permittivity of material increase with increasing of CNT content. DMA studies revealed that filling the carbon nanotube into epoxy can produce a 90% enhancement in storage modulus and a 17°C increase in Tg. Mechanical test results showed that modulus increased with higher CNT loading percentages, but the 0.3 wt% CNT-infusion system showed the maximum strength and fracture toughness enhancement. The decrease in strength and fracture toughness in 0.4% CNT/epoxy was attributed to poor dispersions of nanotubes in the composite.

  4. Thermophysical properties of fluids: dynamic viscosity and thermal conductivity

    Science.gov (United States)

    Latini, G.

    2017-11-01

    Thermophysical properties of fluids strongly depend upon atomic and molecular structure, complex systems governed by physics laws providing the time evolution. Theoretically the knowledge of the initial position and velocity of each atom, of the interaction forces and of the boundary conditions, leads to the solution; actually this approach contains too many variables and it is generally impossible to obtain an acceptable solution. In many cases it is only possible to calculate or to measure some macroscopic properties of fluids (pressure, temperature, molar volume, heat capacities...). The ideal gas “law,” PV = nRT, was one of the first important correlations of properties and the deviations from this law for real gases were usefully proposed. Moreover the statistical mechanics leads for example to the “hard-sphere” model providing the link between the transport properties and the molecular size and speed of the molecules. Further approximations take into account the intermolecular interactions (the potential functions) which can be used to describe attractions and repulsions. In any case thermodynamics reduces experimental or theoretical efforts by relating one physical property to another: the Clausius-Clapeyron equation provides a classical example of this method and the PVT function must be known accurately. However, in spite of the useful developments in molecular theory and computers technology, often it is usual to search for physical properties when the existing theories are not reliable and experimental data are not available: the required value of the physical or thermophysical property must be estimated or predicted (very often estimation and prediction are improperly used as synonymous). In some cases empirical correlations are useful, if it is clearly defined the range of conditions on which they are based. This work is concerned with dynamic viscosity µ and thermal conductivity λ and is based on clear and important rules to be respected

  5. Halloysite reinforced epoxy composites with improved mechanical properties

    Directory of Open Access Journals (Sweden)

    Saif Muhammad Jawwad

    2016-03-01

    Full Text Available Halloysite nanotubes (HNTs reinforced epoxy composites with improved mechanical properties were prepared. The prepared HNTs reinforced epoxy composites demonstrated improved mechanical properties especially the fracture toughness and flexural strength. The flexural modulus of nanocomposite with 6% mHNTs loading was 11.8% higher than that of neat epoxy resin. In addition, the nanocomposites showed improved dimensional stability. The prepared halloysite reinforced epoxy composites were characterized by thermal gravimetric analysis (TGA. The improved properties are attributed to the unique characteristics of HNTs, uniform dispersion of reinforcement and interfacial coupling.

  6. Cure and mechanical properties of carboxylated nitrile rubber (XNBR) vulcanized by alkaline earth metal compounds

    Science.gov (United States)

    Tulyapitak, Tulyapong

    Compounds of carboxylated nitrile rubber (XNBR) with alkaline metal oxides and hydroxide were prepared, and their cure and mechanical properties were investigated. Magnesium oxide (MgO) with different specific surface areas (45, 65, and 140 m2/g) was used. Increased specific surface area and concentration of MgO resulted in higher cure rate. Optimum stiffness, tensile strength, and ultimate strain required an equimolar amount of acidity and MgO. The effect of specific surface area on tensile properties was not significant. Crosslink density of XNBR-MgO vulcanizates increased with increased amounts of MgO. ATR-IR spectroscopy showed that neutralization occurs in two steps: (1) During mixing and storage, MgO reacts with carboxyl groups (RCOOH) to give RCOOMgOH. (2) Upon curing, these react bimolecularly to form RCOOMgOOCR and Mg(OH)2. Dynamic mechanical thermal analysis revealed an ionic transition at higher temperature, in addition to the glass transition. The ionic transition shifts to higher temperature with increasing MgO concentration. Like MgO-XNBR systems, cure rates of XNBR-calcium hydroxide (Ca(OH)2) and XNBR-barium oxide (BaO) compounds increased with increased content of curing agents. Curing by these two agents resulted in ionic crosslinks. To ensure optimum tensile properties, equimolar amounts of carboxyl groups and curing agents were required. Dynamic mechanical analysis revealed the ionic transition in these two systems. It shifted to higher temperature with increased amounts of curing agents. In contrast to MgO, Ca(OH)2, and BaO, calcium oxide (CaO) gave results similar to those for thermally cured samples. No ionic transition was observed in XNBR-CaO systems. Tensile strength of XNBR depended on the strength of ionic crosslinks, which was dependent on the size of the alkaline metal ions.

  7. Mechanical Properties of Dynamically Vulcanized Thermoplastic Polyurethane (TPU/Polybutadiene Rubber (BR Blends

    Directory of Open Access Journals (Sweden)

    Ji-Hoo Kim

    2017-01-01

    Full Text Available To obtain thermoplastic polyurethane (TPU with low hardness, dynamically vulcanized TPU/polybutadiene rubber(BR(70/30 blends were prepared. The effect of dicumyl peroxide (DCP content and stabilizers on the tensile strength and elongation at break of the dynamically vulcanized blends was examined. The tensile strength and elongation at break of the dynamically vulcanized blends decrease with increasing content of DCP. The addition of optimal content of stabilizer leads to the improvement of tensile strength and elongation at break of the blends. Also, the effect of sulfur cure systems and accelerators on the tensile strength and elongation of the blends was investigated. The tensile strength and elongation at break of all the dynamically vulcanized TPU/BR (70/30 blends using 1-step processing are not higher than those of simple TPU/BR (70/30 blends. However, the tensile strength and elongation of the dynamically vulcanized blends prepared at 8 min (mixing time using 2-step processing are higher than those of the simple blends.

  8. Mechanical properties of ion-implanted alumina

    International Nuclear Information System (INIS)

    Pope, S.G.

    1988-01-01

    Monolithic oxide ceramics are being proposed as structural materials in continuously more-demanding applications. The demands being placed on these materials have caused concern pertaining to the continued growth of oxide structural ceramics due to limited toughness. The realization that ceramic strength and toughness can be affected by surface conditions has led to many surface-modification techniques, all striving to improve the mechanical properties of ceramics. Along these lines, the effects of ion implantation as a surface modification technique for improvement of the mechanical properties of alumina were studied. Initially, sapphire samples were implanted with elemental ion species that would produce oxide precipitates within the sapphire surface when annealed in an oxygen-containing atmosphere. Optimum conditions as determined from implantation into sapphire were then used to modify a polycrystalline alumina. Specific modifications in microhardness, indentation fracture toughness and flexure strength are reported for the parameters studied. Microstructure and phase relationships related to modified surfaces properties are also reported

  9. Mechanical properties of porous silicon by depth-sensing nanoindentation techniques

    International Nuclear Information System (INIS)

    Fang Zhenqian; Hu Ming; Zhang Wei; Zhang Xurui; Yang Haibo

    2009-01-01

    Porous silicon (PS) was prepared using the electrochemical corrosion method. Thermal oxidation of the as-prepared PS samples was performed at different temperatures for tuning their mechanical properties. The mechanical properties of as-prepared and oxidized PS were thoroughly investigated by depth-sensing nanoindentation techniques with the continuous stiffness measurements option. The morphology of as-prepared and oxidized PS was characterized by field emission scanning electron microscope and the effect of observed microstructure changes on the mechanical properties was discussed. It is shown that the hardness and Young's elastic modulus of as-prepared PS exhibit a strong dependence on the preparing conditions and decrease with increasing current density. In particular, the mechanical properties of oxidized PS are improved greatly compared with that of as-prepared ones and increase with increasing thermal oxidation temperature. The mechanism responsible for the mechanical property enhancement is possibly the formation of SiO 2 cladding layers encapsulating on the inner surface of the incompact sponge PS to decrease the porosity and strengthen the interconnected microstructure

  10. Mechanical properties of brain tissue by indentation : interregional variation

    NARCIS (Netherlands)

    Dommelen, van J.A.W.; Sande, van der T.P.J.; Hrapko, M.; Peters, G.W.M.

    2010-01-01

    Although many studies on the mechanical properties of brain tissue exist, some controversy concerning the possible differences in mechanical properties of white and gray matter tissue remains. Indentation experiments are conducted on white and gray matter tissue of various regions of the cerebrum

  11. Mechanical Properties of Plug Welds after Micro-Jet Cooling

    Directory of Open Access Journals (Sweden)

    Hadryś D.

    2016-12-01

    Full Text Available New technology of micro-jet welding could be regarded as a new way to improve mechanical properties of plug welds. The main purpose of that paper was analyzing of mechanical properties of plug welds made by MIG welding method with micro-jet cooling. The main way for it was comparison of plug welds made by MIG welding method with micro-jet cooling and plug welds made by ordinary MIG welding method. It is interesting for steel because higher amount of acicular ferrite (AF in weld metal deposit (WMD is obtained in MIG welding method with micro-jet cooling in relation to ordinary MIG welding method. This article presents the influence of the cooling medium and the number of micro-jet streams on mechanical properties of the welded joint. Mechanical properties were described by force which is necessary to destroy weld joint.

  12. Mechanical properties and morphology of poly(etheretherKetone)

    Science.gov (United States)

    Cebe, Peggy; Chung, Shirley; Gupta, Amitava; Hong, Su-Don

    1987-01-01

    Mechanical properties and morphology of poly(etheretherketone) (PEEK) were studied for samples having different thermal histories. Isothermal and rate-dependent crystallization were studied to ascertain the relationship between crystallinity/morphology and processing condition. Degree of crystallinity and microstructure were controlled by cooling the melt at different rates, ranging from quenching to slowly cooling, and by annealing amorphous material above the glass transition temperature Tg. It is found that degree of crystallinity was not as important as processing history in determining the room temperature mechanical properties. Samples with the same degree of crystallinity had very different tensile properties, depending on rate of cooling from the melt. All samples yielded by shear band formation and necked down. Quenched films had the largest breaking strains, drawing to 270 percent. Slowly cooled films exhibited ductile failure at relatively low strains. Best combined mechanical properties were obtained from semicrystalline films cooled at intermediate rates from the melt.

  13. Mechanical Properties of Austenitic Stainless Steel Made by Additive Manufacturing.

    Science.gov (United States)

    Luecke, William E; Slotwinski, John A

    2014-01-01

    Using uniaxial tensile and hardness testing, we evaluated the variability and anisotropy of the mechanical properties of an austenitic stainless steel, UNS S17400, manufactured by an additive process, selective laser melting. Like wrought materials, the mechanical properties depend on the orientation introduced by the processing. The recommended stress-relief heat treatment increases the tensile strength, reduces the yield strength, and decreases the extent of the discontinuous yielding. The mechanical properties, assessed by hardness, are very uniform across the build plate, but the stress-relief heat treatment introduced a small non-uniformity that had no correlation to position on the build plate. Analysis of the mechanical property behavior resulted in four conclusions. (1) The within-build and build-to-build tensile properties of the UNS S17400 stainless steel are less repeatable than mature engineering structural alloys, but similar to other structural alloys made by additive manufacturing. (2) The anisotropy of the mechanical properties of the UNS S17400 material of this study is larger than that of mature structural alloys, but is similar to other structural alloys made by additive manufacturing. (3) The tensile mechanical properties of the UNS S17400 material fabricated by selective laser melting are very different from those of wrought, heat-treated 17-4PH stainless steel. (4) The large discontinuous yielding strain in all tests resulted from the formation and propagation of Lüders bands.

  14. Assessment of dynamic softening mechanisms in Allvac 718Plus{sup TM} by EBSD analysis

    Energy Technology Data Exchange (ETDEWEB)

    Mitsche, Stefan, E-mail: stefan.mitsche@felmi-zfe.at [Institute for Electron Microscopy, Graz University of Technology, Steyrergasse 17, Graz (Austria); Sommitsch, Christof [Institute for Material Science and Welding, Christian Doppler Laboratory for Materials Modelling and Simulation, Graz University of Technology, Graz (Austria); Huber, Daniel; Stockinger, Martin [Boehler Schmiedetechnik GmbH and Co KG, Kapfenberg (Austria); Poelt, Peter [Institute for Electron Microscopy, Graz University of Technology, Steyrergasse 17, Graz (Austria)

    2011-04-25

    Research highlights: {yields} EBSD investigations of hot deformed superalloy Allvac 718Plus{sup TM}. {yields} Dynamic softening (recovery, DDRX and CDRX) in dependence on the temperature and strain rate. {yields} At high temperature (1050 deg. C) and high strain rate (10 s{sup -1}) mainly DDRX. {yields} At high temperature (1050 deg. C) and low strain rate (0.1 s{sup -1}) combination of DDRX, CDRX and recovery. - Abstract: The nickel-based superalloy Allvac 718Plus{sup TM} is a future candidate for turbine disc applications, as this new material combines the formability and cost advantages of Alloy 718 with the higher t