WorldWideScience

Sample records for dynamic material flow

  1. Calculation of the dynamic air flow resistivity of fibre materials

    DEFF Research Database (Denmark)

    Tarnow, Viggo

    1997-01-01

    The acoustic attenuation of acoustic fiber materials is mainly determined by the dynamic resistivity to an oscillating air flow. The dynamic resistance is calculated for a model with geometry close to the geometry of real fibre material. The model constists of parallel cylinders placed randomly.......The second procedure is an extension to oscillating air flow of the Brinkman self-consistent procedure for dc flow. The procedures are valid for volume concentrations of cylinders less than 0.1. The calculations show that for the density of fibers of interest for acoustic fibre materials the simple self...

  2. Discrete event dynamic system (DES)-based modeling for dynamic material flow in the pyroprocess

    International Nuclear Information System (INIS)

    Lee, Hyo Jik; Kim, Kiho; Kim, Ho Dong; Lee, Han Soo

    2011-01-01

    A modeling and simulation methodology was proposed in order to implement the dynamic material flow of the pyroprocess. Since the static mass balance provides the limited information on the material flow, it is hard to predict dynamic behavior according to event. Therefore, a discrete event system (DES)-based model named, PyroFlow, was developed at the Korea Atomic Energy Research Institute (KAERI). PyroFlow is able to calculate dynamic mass balance and also show various dynamic operational results in real time. By using PyroFlow, it is easy to rapidly predict unforeseeable results, such as throughput in unit process, accumulated product in buffer and operation status. As preliminary simulations, bottleneck analyses in the pyroprocess were carried out and consequently it was presented that operation strategy had influence on the productivity of the pyroprocess.

  3. Material Cycles and Chemicals: Dynamic Material Flow Analysis of Contaminants in Paper Recycling

    DEFF Research Database (Denmark)

    Pivnenko, Kostyantyn; Laner, David; Astrup, Thomas Fruergaard

    2016-01-01

    material source-segregation and collection was the least effective strategy for reducing chemical contamination, if the overall recycling rates should be maintained at the current level (approximately 70% for Europe). The study provides a consistent approach for evaluating contaminant levels in material......This study provides a systematic approach for assessment of contaminants in materials for recycling. Paper recycling is used as an illustrative example. Three selected chemicals, bisphenol A (BPA), diethylhexyl phthalate (DEHP) and mineral oil hydrocarbons (MOHs), are evaluated within the paper...... cycle. The approach combines static material flow analysis (MFA) with dynamic material and substance flow modeling. The results indicate that phasing out of chemicals is the most effective measure for reducing chemical contamination. However, this scenario was also associated with a considerable lag...

  4. Debris flow analysis with a one dimensional dynamic run-out model that incorporates entrained material

    Science.gov (United States)

    Luna, Byron Quan; Remaître, Alexandre; van Asch, Theo; Malet, Jean-Philippe; van Westen, Cees

    2010-05-01

    Estimating the magnitude and the intensity of rapid landslides like debris flows is fundamental to evaluate quantitatively the hazard in a specific location. Intensity varies through the travelled course of the flow and can be described by physical features such as deposited volume, velocities, height of the flow, impact forces and pressures. Dynamic run-out models are able to characterize the distribution of the material, its intensity and define the zone where the elements will experience an impact. These models can provide valuable inputs for vulnerability and risk calculations. However, most dynamic run-out models assume a constant volume during the motion of the flow, ignoring the important role of material entrained along its path. Consequently, they neglect that the increase of volume enhances the mobility of the flow and can significantly influence the size of the potential impact area. An appropriate erosion mechanism needs to be established in the analyses of debris flows that will improve the results of dynamic modeling and consequently the quantitative evaluation of risk. The objective is to present and test a simple 1D debris flow model with a material entrainment concept based on limit equilibrium considerations and the generation of excess pore water pressure through undrained loading of the in situ bed material. The debris flow propagation model is based on a one dimensional finite difference solution of a depth-averaged form of the Navier-Stokes equations of fluid motions. The flow is treated as a laminar one phase material, which behavior is controlled by a visco-plastic Coulomb-Bingham rheology. The model parameters are evaluated and the model performance is tested on a debris flow event that occurred in 2003 in the Faucon torrent (Southern French Alps).

  5. Simulant-material experimental investigation of flow dynamics in the CRBR Upper-Core Structure

    International Nuclear Information System (INIS)

    Wilhelm, D.; Starkovich, V.S.; Chapyak, E.J.

    1982-09-01

    The results of a simulant-material experimental investigation of flow dynamics in the Clinch River Breeder Reactor (CRBR) Upper Core Structure are described. The methodology used to design the experimental apparatus and select test conditions is detailed. Numerous comparisons between experimental data and SIMMER-II Code calculations are presented with both advantages and limitations of the SIMMER modeling features identified

  6. Towards a dynamic assessment of raw materials criticality: Linking agent-based demand — With material flow supply modelling approaches

    International Nuclear Information System (INIS)

    Knoeri, Christof; Wäger, Patrick A.; Stamp, Anna; Althaus, Hans-Joerg; Weil, Marcel

    2013-01-01

    Emerging technologies such as information and communication-, photovoltaic- or battery technologies are expected to increase significantly the demand for scarce metals in the near future. The recently developed methods to evaluate the criticality of mineral raw materials typically provide a ‘snapshot’ of the criticality of a certain material at one point in time by using static indicators both for supply risk and for the impacts of supply restrictions. While allowing for insights into the mechanisms behind the criticality of raw materials, these methods cannot account for dynamic changes in products and/or activities over time. In this paper we propose a conceptual framework intended to overcome these limitations by including the dynamic interactions between different possible demand and supply configurations. The framework integrates an agent-based behaviour model, where demand emerges from individual agent decisions and interaction, into a dynamic material flow model, representing the materials' stocks and flows. Within the framework, the environmental implications of substitution decisions are evaluated by applying life-cycle assessment methodology. The approach makes a first step towards a dynamic criticality assessment and will enhance the understanding of industrial substitution decisions and environmental implications related to critical metals. We discuss the potential and limitation of such an approach in contrast to state-of-the-art methods and how it might lead to criticality assessments tailored to the specific circumstances of single industrial sectors or individual companies. - Highlights: ► Current criticality assessment methods provide a ‘snapshot’ at one point in time. ► They do not account for dynamic interactions between demand and supply. ► We propose a conceptual framework to overcomes these limitations. ► The framework integrates an agent-based behaviour model with a dynamic material flow model. ► The approach proposed makes

  7. Towards a dynamic assessment of raw materials criticality: linking agent-based demand--with material flow supply modelling approaches.

    Science.gov (United States)

    Knoeri, Christof; Wäger, Patrick A; Stamp, Anna; Althaus, Hans-Joerg; Weil, Marcel

    2013-09-01

    Emerging technologies such as information and communication-, photovoltaic- or battery technologies are expected to increase significantly the demand for scarce metals in the near future. The recently developed methods to evaluate the criticality of mineral raw materials typically provide a 'snapshot' of the criticality of a certain material at one point in time by using static indicators both for supply risk and for the impacts of supply restrictions. While allowing for insights into the mechanisms behind the criticality of raw materials, these methods cannot account for dynamic changes in products and/or activities over time. In this paper we propose a conceptual framework intended to overcome these limitations by including the dynamic interactions between different possible demand and supply configurations. The framework integrates an agent-based behaviour model, where demand emerges from individual agent decisions and interaction, into a dynamic material flow model, representing the materials' stocks and flows. Within the framework, the environmental implications of substitution decisions are evaluated by applying life-cycle assessment methodology. The approach makes a first step towards a dynamic criticality assessment and will enhance the understanding of industrial substitution decisions and environmental implications related to critical metals. We discuss the potential and limitation of such an approach in contrast to state-of-the-art methods and how it might lead to criticality assessments tailored to the specific circumstances of single industrial sectors or individual companies. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Numerical investigations on flow dynamics of prismatic granular materials using the discrete element method

    Science.gov (United States)

    Hancock, W.; Weatherley, D.; Wruck, B.; Chitombo, G. P.

    2012-04-01

    The flow dynamics of granular materials is of broad interest in both the geosciences (e.g. landslides, fault zone evolution, and brecchia pipe formation) and many engineering disciplines (e.g chemical engineering, food sciences, pharmaceuticals and materials science). At the interface between natural and human-induced granular media flow, current underground mass-mining methods are trending towards the induced failure and subsequent gravitational flow of large volumes of broken rock, a method known as cave mining. Cave mining relies upon the undercutting of a large ore body, inducement of fragmentation of the rock and subsequent extraction of ore from below, via hopper-like outlets. Design of such mines currently relies upon a simplified kinematic theory of granular flow in hoppers, known as the ellipsoid theory of mass movement. This theory assumes that the zone of moving material grows as an ellipsoid above the outlet of the silo. The boundary of the movement zone is a shear band and internal to the movement zone, the granular material is assumed to have a uniformly high bulk porosity compared with surrounding stagnant regions. There is however, increasing anecdotal evidence and field measurements suggesting this theory fails to capture the full complexity of granular material flow within cave mines. Given the practical challenges obstructing direct measurement of movement both in laboratory experiments and in-situ, the Discrete Element Method (DEM [1]) is a popular alternative to investigate granular media flow. Small-scale DEM studies (c.f. [3] and references therein) have confirmed that movement within DEM silo flow models matches that predicted by ellipsoid theory, at least for mono-disperse granular material freely outflowing at a constant rate. A major draw-back of these small-scale DEM studies is that the initial bulk porosity of the simulated granular material is significantly higher than that of broken, prismatic rock. In this investigation, more

  9. Quasi-dynamic Material Flow Analysis applied to the Austrian Phosphorus cycle

    Science.gov (United States)

    Zoboli, Ottavia; Rechberger, Helmut

    2013-04-01

    Phosphorus (P) is one of the key elements that sustain life on earth and that allow achieving the current high levels of food production worldwide. It is a non-renewable resource, without any existing substitute. Because of its current dissipative use by mankind and to its very slow geochemical cycle, this resource is rapidly depleting and it is strongly connected to the problem of ensuring food security. Moreover P is also associated to important environmental problems. Its extraction often generates hazardous wastes, while its accumulation in water bodies can lead to eutrophication, with consequent severe ecological damages. It is therefore necessary to analyze and understand in detail the system of P, in regard to its use and management, to identify the processes that should be targeted in order to reduce the overall consumption of this resource. This work aims at establishing a generic quasi-dynamic model, which describes the Austrian P-budget and which allows investigating the trends of P use in the past, but also selected future scenarios. Given the importance of P throughout the whole anthropogenic metabolism, the model is based on a comprehensive system that encompasses several economic sectors, from agriculture and animal husbandry to industry, consumption and waste and wastewater treatment. Furthermore it includes the hydrosphere, to assess the losses of P into water bodies, due to the importance of eutrophication problems. The methodology applied is Material Flow Analysis (MFA), which is a systemic approach to assess and balance the stocks and flows of a material within a system defined in space and time. Moreover the model is integrated in the software STAN, a freeware tailor-made for MFA. Particular attention is paid to the characteristics and the quality of the data, in order to include data uncertainty and error propagation in the dynamic balance.

  10. Influence of bed material entrainment and non-Newtonian rheology on turbulent geophysical flows dynamics. Numerical study

    Science.gov (United States)

    Eglit, M. E.; Yakubenko, A. E.; Yakubenko, T. A.

    2017-10-01

    This paper deals with the mathematical and numerical modeling of the propagation stage of geophysical gravity-driven flows, such as snow avalanches, mudflows, and rapid landslides. New mathematical models are presented which are based on full, not-depth-averaged equations of mechanics of continuous media. The models account for three important issues: non-Newtonian rheology of the moving material, entrainment of the bed material by the flow, and turbulence. The main objective is to investigate the effect of these three factors on the flow dynamics and on the value of the entrainment rate. To exclude the influence of many other factors, e.g., the complicated slope topography, only the motion down a long uniform slope with a constant inclination angle is studied numerically. Moreover, the entire flow from the front to the rear area was not modeled, but only its middle part where the flow is approximately uniform in length. One of the qualitative results is that in motion along homogeneous slope the mass entrainment increases the flow velocity and depth while the entrainment rate at large time tends to become constant which depends on the physical properties of the flow and the underlying material but not on the current values of the flow velocity and depth.

  11. Investigation of the fluid flow dynamic parameters for Newtonian and non-Newtonian materials: an approach to understanding the fluid flow-like structures within fault zones

    Science.gov (United States)

    Tanaka, H.; Shiomi, Y.; Ma, K.-F.

    2017-11-01

    To understand the fault zone fluid flow-like structure, namely the ductile deformation structure, often observed in the geological field (e.g., Ramsay and Huber The techniques of modern structure geology, vol. 1: strain analysis, Academia Press, London, 1983; Hobbs and Ord Structure geology: the mechanics of deforming metamorphic rocks, Vol. I: principles, Elsevier, Amsterdam, 2015), we applied a theoretical approach to estimate the rate of deformation, the shear stress and the time to form a streak-line pattern in the boundary layer of viscous fluids. We model the dynamics of streak lines in laminar boundary layers for Newtonian and pseudoplastic fluids and compare the results to those obtained via laboratory experiments. The structure of deformed streak lines obtained using our model is consistent with experimental observations, indicating that our model is appropriate for understanding the shear rate, flow time and shear stress based on the profile of deformed streak lines in the boundary layer in Newtonian and pseudoplastic viscous materials. This study improves our understanding of the transportation processes in fluids and of the transformation processes in fluid-like materials. Further application of this model could facilitate understanding the shear stress and time history of the fluid flow-like structure of fault zones observed in the field.[Figure not available: see fulltext.

  12. A regionally-linked, dynamic material flow modelling tool for rolled, extruded and cast aluminium products

    DEFF Research Database (Denmark)

    Bertram, M.; Ramkumar, S.; Rechberger, H.

    2017-01-01

    A global aluminium flow modelling tool, comprising nine trade linked regions, namely China, Europe, Japan, Middle East, North America, Other Asia, Other Producing Countries, South America and Rest of World, has been developed. The purpose of the Microsoft Excel-based tool is the quantification...... of regional stocks and flows of rolled, extruded and casting alloys across space and over time, giving the industry the ability to evaluate the potential to recycle aluminium scrap most efficiently. The International Aluminium Institute will update the tool annually and publish a visualisation of results...

  13. Interaction of ozone with plastic and metallic materials in a dynamic flow system

    Energy Technology Data Exchange (ETDEWEB)

    Altshuller, A P; Wartburg, A F

    1961-01-01

    The loss of ozone in the p.p.h.m. range after passing through or over various plastic and metallic substances has been investigated. The materials used include Teflon, glass, stainless steel, aluminium, polyethylene and polyvinyl tubing, Mylar film, and aluminium foil. Unused Teflon passes ozone without loss. Glass tubing, after a short exposure to ozone, passes ozone without loss. Stainless steel tubing, aluminum tubing or foil and Mylar film must be exposed to ozone in the p.p.h.m. range for several hours before 90% or more of the ozone initially present can be passed through or over these materials. More rapid conditioning to ozone can be achieved by several five to fifteen-minute exposures to about 10 p.p.m. of ozone. Polyethylene and Nalgon tubing even after many hours of exposure to ozone will pass only 75 to 80% of the ozone initially present in the gas stream. Some types of polyvinyl tubing are unsatisfactory for use with ozone irrespective of the amount of exposure to ozone. Flowrates below 1000 c/sup 3//min. will increase losses of ozone. Except for Teflon and glass, materials should not be used in ozone analysis under any circumstances at low flowrates until they are thoroughly conditioned. Results obtained with stainless steel, aluminium and polyethylene indicate that conditioning to ozone once obtained will persist for at least two weeks.

  14. Air cleaning efficiency of deodorant materials under dynamic conditions: effect of air flow rate

    DEFF Research Database (Denmark)

    Mizutani, Chiyomi; Bivolarova, Mariya Petrova; Melikov, Arsen Krikor

    2014-01-01

    Unpleasant odor is a serious problem in hospitals and elderly facilities. One of the unpleasant odors is ammonia originating from human urine and sweat. The air cleaning efficiency of porous activated carbon fiber fabric which has been treated with acid, and porous activated carbon fiber fabric...... mixed with ammonia gas at a concentration of 20 ppm and velocities of 0.05, 0.15, 0.3 and 1.2 m/s. The activated carbon fibers treated with acid had a high deodorizing effect for ammonia (0.8) at a velocity of 0.05 m/s. The deodorizing effect of this material decreased with the increase in the velocity....... The porous activated carbon fiber fabric did not have a deodorant effect....

  15. Assessment of the effects of the Japanese shift to lead-free solders and its impact on material substitution and environmental emissions by a dynamic material flow analysis

    International Nuclear Information System (INIS)

    Fuse, Masaaki; Tsunemi, Kiyotaka

    2012-01-01

    Lead-free electronics has been extensively studied, whereas their adoption by society and their impact on material substitution and environmental emissions are not well understood. Through a material flow analysis (MFA), this paper explores the life cycle flows for solder-containing metals in Japan, which leads the world in the shift to lead-free solders in electronics. The results indicate that the shift has been progressing rapidly for a decade, and that substitutes for lead in solders, which include silver and copper, are still in the early life cycle stages. The results also show, however, that such substitution slows down during the late life cycle stages owing to long electronic product lifespans. This deceleration of material substitution in the solder life cycle may not only preclude a reduction in lead emissions to air but also accelerate an increase in silver emissions to air and water. As an effective measure against ongoing lead emissions, our scenario analysis suggests an aggressive recycling program for printed circuit boards that utilizes an existing recycling scheme. -- Highlights: ► We model the life cycle flows for solder-containing metals in Japan. ► The Japanese shift to lead-free solders progresses rapidly for a decade. ► Substitution for lead in solders slows down during the late life cycle stages. ► The deceleration of substitution precludes a reduction in lead emissions to air.

  16. Radial flow gas dynamic laser

    International Nuclear Information System (INIS)

    Damm, F.C.

    1975-01-01

    The unique gas dynamic laser provides outward radial supersonic flow from a toroidal shaped stacked array of a plurality of nozzles, through a diffuser having ring shaped and/or linear shaped vanes, and through a cavity which is cylindrical and concentric with the stacked array, with the resultant laser beam passing through the housing parallel to the central axis of the diffuser which is coincident with the axis of the gas dynamic laser. Therefore, greater beam extraction flexibility is attainable, because of fewer flow shock disturbances, as compared to the conventional unidirectional flow gas dynamic laser in which unidirectional supersonic flow sweeps through a rectangular cavity and is exhausted through a two-dimensional diffuser. (auth)

  17. Multiphase Flow Dynamics 5 Nuclear Thermal Hydraulics

    CERN Document Server

    Kolev, Nikolay Ivanov

    2012-01-01

    The present Volume 5 of the successful book package "Multiphase Flow Dynamics" is devoted to nuclear thermal hydraulics which is a substantial part of nuclear reactor safety. It provides knowledge and mathematical tools for adequate description of the process of transferring the fission heat released in materials due to nuclear reactions into its environment. It step by step introduces into the heat release inside the fuel, temperature fields in the fuels, the "simple" boiling flow in a pipe described using ideas of different complexity like equilibrium, non equilibrium, homogeneity, non homogeneity. Then the "simple" three-fluid boiling flow in a pipe is described by gradually involving the mechanisms like entrainment and deposition, dynamic fragmentation, collisions, coalescence, turbulence. All heat transfer mechanisms are introduced gradually discussing their uncertainty. Different techniques are introduced like boundary layer treatments or integral methods. Comparisons with experimental data at each step...

  18. Multiphase flow dynamics 5 nuclear thermal hydraulics

    CERN Document Server

    Kolev, Nikolay Ivanov

    2015-01-01

    This Volume 5 of the successful book package "Multiphase Flow Dynamics" is devoted to nuclear thermal hydraulics which is a substantial part of nuclear reactor safety. It provides knowledge and mathematical tools for adequate description of the process of transferring the fission heat released in materials due to nuclear reactions into its environment. It step by step introduces into the heat release inside the fuel, temperature fields in the fuels, the "simple" boiling flow in a pipe described using ideas of different complexity like equilibrium, non equilibrium, homogeneity, non homogeneity. Then the "simple" three-fluid boiling flow in a pipe is described by gradually involving the mechanisms like entrainment and deposition, dynamic fragmentation, collisions, coalescence, turbulence. All heat transfer mechanisms are introduced gradually discussing their uncertainty. Different techniques are introduced like boundary layer treatments or integral methods. Comparisons with experimental data at each step demons...

  19. Dynamic fracture characterization of material

    International Nuclear Information System (INIS)

    Kobayashi, A.S.; Emery, A.F.; Liaw, B.M.

    1981-01-01

    The influences of a wide range of material properties, i.e. of A533B steel, a silicon nitride ceramic and a Homalite-100 photoelastic polymer, as well as the influences of the specimen sizes on the dynamic fracture response of fracture specimens are presented in this paper. The results of a numerical study show that the dynamic fracture responses of these fracture specimens of proportional dimensions were indistinguishable provided the normalized dynamic fracture toughness versus normalized crack velocity relations of the three materials coincide. The limited results suggest that should the normalized dynamic fracture toughness versus normalized crack velocity relations between prototype and model materials coincide, then dynamic fracture experiments on scaled models can be used to infer the dynamic fracture response of the prototype. (orig./HP)

  20. Materials in the economy; material flows, scarcity, and the environment

    Science.gov (United States)

    Wagner, Lorie A.

    2002-01-01

    The importance of materials to the economy of the United States is described, including the levels of consumption and uses of materials. The paths (or flows) that materials take from extraction, through processing, to consumer products, and then final disposition are illustrated. Scarcity and environmental issues as they relate to the flow of materials are discussed. Examples for the three main themes of the report (material flows, scarcity, and the environment) are presented.

  1. Traffic flow dynamics data, models and simulation

    CERN Document Server

    Treiber, Martin

    2013-01-01

    This textbook provides a comprehensive and instructive coverage of vehicular traffic flow dynamics and modeling. It makes this fascinating interdisciplinary topic, which to date was only documented in parts by specialized monographs, accessible to a broad readership. Numerous figures and problems with solutions help the reader to quickly understand and practice the presented concepts. This book is targeted at students of physics and traffic engineering and, more generally, also at students and professionals in computer science, mathematics, and interdisciplinary topics. It also offers material for project work in programming and simulation at college and university level. The main part, after presenting different categories of traffic data, is devoted to a mathematical description of the dynamics of traffic flow, covering macroscopic models which describe traffic in terms of density, as well as microscopic many-particle models in which each particle corresponds to a vehicle and its driver. Focus chapters on ...

  2. Multiphase Flow Dynamics 1 Fundamentals

    CERN Document Server

    Kolev, Nikolay Ivanov

    2012-01-01

    Multi-phase flows are part of our natural environment such as tornadoes, typhoons, air and water pollution and volcanic activities as well as part of industrial technology such as power plants, combustion engines, propulsion systems, or chemical and biological industry. The industrial use of multi-phase systems requires analytical and numerical strategies for predicting their behavior. In its fourth extended edition the successful monograph package “Multiphase Flow Dynmics” contains theory, methods and practical experience for describing complex transient multi-phase processes in arbitrary geometrical configurations, providing a systematic presentation of the theory and practice of numerical multi-phase fluid dynamics. In the present first volume the local volume and time averaging is used to derive a complete set of conservation equations for three fluids each of them having multi components as constituents. Large parts of the book are devoted on the design of successful numerical methods for solving the...

  3. Multiphase flow dynamics 1 fundamentals

    CERN Document Server

    Kolev, Nikolay Ivanov

    2015-01-01

    In its fifth extended edition the successful monograph package “Multiphase Flow Dynamics” contains theory, methods and practical experience for describing complex transient multi-phase processes in arbitrary geometrical configurations, providing a systematic presentation of the theory and practice of numerical multi-phase fluid dynamics. In the present first volume the local volume and time averaging is used to derive a complete set of conservation equations for three fluids each of them having multi components as constituents. Large parts of the book are devoted on the design of successful numerical methods for solving the obtained system of partial differential equations. Finally the analysis is repeated for boundary fitted curvilinear coordinate systems designing methods applicable for interconnected multi-blocks. This fifth edition includes various updates, extensions, improvements and corrections, as well as  a completely new chapter containing the basic physics describing the multi-phase flow in tu...

  4. Multiphase flow dynamics 1 fundamentals

    CERN Document Server

    Kolev, Nikolay Ivanov

    2004-01-01

    Multi-phase flows are part of our natural environment such as tornadoes, typhoons, air and water pollution and volcanic activities as well as part of industrial technology such as power plants, combustion engines, propulsion systems, or chemical and biological industry. The industrial use of multi-phase systems requires analytical and numerical strategies for predicting their behavior. In its third extended edition this monograph contains theory, methods and practical experience for describing complex transient multi-phase processes in arbitrary geometrical configurations, providing a systematic presentation of the theory and practice of numerical multi-phase fluid dynamics. In the present first volume the fundamentals of multiphase dynamics are provided. This third edition includes various updates, extensions and improvements in all book chapters.

  5. Reconstruction of dynamical equations for traffic flow

    OpenAIRE

    Kriso, S.; Friedrich, R.; Peinke, J.; Wagner, P.

    2001-01-01

    Traffic flow data collected by an induction loop detector on the highway close to Koeln-Nord are investigated with respect to their dynamics including the stochastic content. In particular we present a new method, with which the flow dynamics can be extracted directly from the measured data. As a result a Langevin equation for the traffic flow is obtained. From the deterministic part of the flow dynamics, stable fixed points are extracted and set into relation with common features of the fund...

  6. The material flow of salt

    International Nuclear Information System (INIS)

    Kostick, D.S.

    1993-01-01

    Salt (NaCl) is a universal mineral commodity used by virtually every person in the world. Although a very common mineral today, at one time it was considered as precious as gold in certain cultures. This study traces the material flow of salt from its origin through the postconsumer phase of usage. The final disposition of salt in the estimated 14,000 different uses, grouped into several macrocategories, is traced from the dispersive loss of salt into the environment to the ultimate disposal of salt-base products into the waste stream after consumption. The base year for this study is 1990, in which an estimated 196 million short tons of municipal solid waste was discarded by the US population. Approximately three-fourths of domestic salt consumed is released to the environment and unrecovered while about one-fourth is discharged to landfills and incinerators as products derived from salt. Cumulative historical domestic production, trade, and consumption data have been compiled to illustrate the long-term trends within the US salt industry and the cumulative contribution that highway deicing salt has had on the environment. Salt is an important component of drilling fluids in well drilling. It is used to flocculate and to increase the density of the drilling fluid in order to overcome high down-well gas pressures. Whenever drilling activities encounter salt formations, salt is added to the drilling fluid to saturate the solution and minimize the dissolution within the salt strata. Salt is also used to increase the set rate of concrete in cemented casings. This subsector includes companies engaged in oil, gas, and crude petroleum exploration and in refining and compounding lubricating oil. It includes SIC major groups 13 and 29. 13 refs., 14 figs., 6 tabs

  7. Accurate treatment of material interface dynamics in the calculation of one-dimensional two-phase flows by the integral method of characteristics

    International Nuclear Information System (INIS)

    Shin, Y.W.; Wiedermann, A.H.

    1984-01-01

    Accurate numerical methods for treating the junction and boundary conditions needed in the transient two-phase flows of a piping network were published earlier by us; the same methods are used to formulate the treatment of the material interface as a moving boundary. The method formulated is used in a computer program to calculate sample problems designed to test the numerical methods as to their ability and the accuracy limits for calculation of the transient two-phase flows in the piping network downstream of a PWR pressurizer. Independent exact analytical solutions for the sample problems are used as the basis of a critical evaluation of the proposed numerical methods. The evaluation revealed that the proposed boundary scheme indeed generates very accurate numerical results. However, in some extreme flow conditions, numerical difficulties were experienced that eventually led to numerical instability. This paper discusses further a special technique to overcome the difficulty

  8. Dynamics of assembly production flow

    Science.gov (United States)

    Ezaki, Takahiro; Yanagisawa, Daichi; Nishinari, Katsuhiro

    2015-06-01

    Despite recent developments in management theory, maintaining a manufacturing schedule remains difficult because of production delays and fluctuations in demand and supply of materials. The response of manufacturing systems to such disruptions to dynamic behavior has been rarely studied. To capture these responses, we investigate a process that models the assembly of parts into end products. The complete assembly process is represented by a directed tree, where the smallest parts are injected at leaves and the end products are removed at the root. A discrete assembly process, represented by a node on the network, integrates parts, which are then sent to the next downstream node as a single part. The model exhibits some intriguing phenomena, including overstock cascade, phase transition in terms of demand and supply fluctuations, nonmonotonic distribution of stockout in the network, and the formation of a stockout path and stockout chains. Surprisingly, these rich phenomena result from only the nature of distributed assembly processes. From a physical perspective, these phenomena provide insight into delay dynamics and inventory distributions in large-scale manufacturing systems.

  9. Autogenic dynamics of debris-flow fans

    Science.gov (United States)

    van den Berg, Wilco; de Haas, Tjalling; Braat, Lisanne; Kleinhans, Maarten

    2015-04-01

    Alluvial fans develop their semi-conical shape by cyclic avulsion of their geomorphologically active sector from a fixed fan apex. These cyclic avulsions have been attributed to both allogenic and autogenic forcings and processes. Autogenic dynamics have been extensively studied on fluvial fans through physical scale experiments, and are governed by cyclic alternations of aggradation by unconfined sheet flow, fanhead incision leading to channelized flow, channel backfilling and avulsion. On debris-flow fans, however, autogenic dynamics have not yet been directly observed. We experimentally created debris-flow fans under constant extrinsic forcings, and show that autogenic dynamics are a fundamental intrinsic process on debris-flow fans. We found that autogenic cycles on debris-flow fans are driven by sequences of backfilling, avulsion and channelization, similar to the cycles on fluvial fans. However, the processes that govern these sequences are unique for debris-flow fans, and differ fundamentally from the processes that govern autogenic dynamics on fluvial fans. We experimentally observed that backfilling commenced after the debris flows reached their maximum possible extent. The next debris flows then progressively became shorter, driven by feedbacks on fan morphology and flow-dynamics. The progressively decreasing debris-flow length caused in-channel sedimentation, which led to increasing channel overflow and wider debris flows. This reduced the impulse of the liquefied flow body to the flow front, which then further reduced flow velocity and runout length, and induced further in-channel sedimentation. This commenced a positive feedback wherein debris flows became increasingly short and wide, until the channel was completely filled and the apex cross-profile was plano-convex. At this point, there was no preferential transport direction by channelization, and the debris flows progressively avulsed towards the steepest, preferential, flow path. Simultaneously

  10. Online traffic flow model applying dynamic flow-density relation

    International Nuclear Information System (INIS)

    Kim, Y.

    2002-01-01

    This dissertation describes a new approach of the online traffic flow modelling based on the hydrodynamic traffic flow model and an online process to adapt the flow-density relation dynamically. The new modelling approach was tested based on the real traffic situations in various homogeneous motorway sections and a motorway section with ramps and gave encouraging simulation results. This work is composed of two parts: first the analysis of traffic flow characteristics and second the development of a new online traffic flow model applying these characteristics. For homogeneous motorway sections traffic flow is classified into six different traffic states with different characteristics. Delimitation criteria were developed to separate these states. The hysteresis phenomena were analysed during the transitions between these traffic states. The traffic states and the transitions are represented on a states diagram with the flow axis and the density axis. For motorway sections with ramps the complicated traffic flow is simplified and classified into three traffic states depending on the propagation of congestion. The traffic states are represented on a phase diagram with the upstream demand axis and the interaction strength axis which was defined in this research. The states diagram and the phase diagram provide a basis for the development of the dynamic flow-density relation. The first-order hydrodynamic traffic flow model was programmed according to the cell-transmission scheme extended by the modification of flow dependent sending/receiving functions, the classification of cells and the determination strategy for the flow-density relation in the cells. The unreasonable results of macroscopic traffic flow models, which may occur in the first and last cells in certain conditions are alleviated by applying buffer cells between the traffic data and the model. The sending/receiving functions of the cells are determined dynamically based on the classification of the

  11. Instantaneous aerosol dynamics in a turbulent flow

    KAUST Repository

    Zhou, Kun

    2012-01-01

    Dibutyl phthalate aerosol particles evolution dynamics in a turbulent mixing layer is simulated by means of direct numerical simulation for the flow field and the direct quadrature method of moments for the aerosol evolution. Most par

  12. AN OVERVIEW ON PULSATILE FLOW DYNAMICS

    OpenAIRE

    Çarpinlioğlu, Melda Özdinç

    2015-01-01

    Pulsatile flow dynamics in reference to the relevant experimental research on the manner between the time periods of 1997- 2015 is presented in this paper. The flow field under discussion is generated through a rigid circular cross-sectional pipe as an axial slightly- compressible and sinusoidal one in a controlled range of the oscillation parameters. Laminar and turbulent flow regimes are considered with a particular emphasis devoted to the transitional characteristics of laminar pulsatile f...

  13. Traffic flow dynamics. Data, models and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Treiber, Martin [Technische Univ. Dresden (Germany). Inst. fuer Wirtschaft und Verkehr; Kesting, Arne [TomTom Development Germany GmbH, Berlin (Germany)

    2013-07-01

    First comprehensive textbook of this fascinating interdisciplinary topic which explains advances in a way that it is easily accessible to engineering, physics and math students. Presents practical applications of traffic theory such as driving behavior, stability analysis, stop-and-go waves, and travel time estimation. Presents the topic in a novel and systematic way by addressing both microscopic and macroscopic models with a focus on traffic instabilities. Revised and extended edition of the German textbook ''Verkehrsdynamik und -simulation''. This textbook provides a comprehensive and instructive coverage of vehicular traffic flow dynamics and modeling. It makes this fascinating interdisciplinary topic, which to date was only documented in parts by specialized monographs, accessible to a broad readership. Numerous figures and problems with solutions help the reader to quickly understand and practice the presented concepts. This book is targeted at students of physics and traffic engineering and, more generally, also at students and professionals in computer science, mathematics, and interdisciplinary topics. It also offers material for project work in programming and simulation at college and university level. The main part, after presenting different categories of traffic data, is devoted to a mathematical description of the dynamics of traffic flow, covering macroscopic models which describe traffic in terms of density, as well as microscopic many-particle models in which each particle corresponds to a vehicle and its driver. Focus chapters on traffic instabilities and model calibration/validation present these topics in a novel and systematic way. Finally, the theoretical framework is shown at work in selected applications such as traffic-state and travel-time estimation, intelligent transportation systems, traffic operations management, and a detailed physics-based model for fuel consumption and emissions.

  14. Flow chemistry meets advanced functional materials.

    Science.gov (United States)

    Myers, Rebecca M; Fitzpatrick, Daniel E; Turner, Richard M; Ley, Steven V

    2014-09-22

    Flow chemistry and continuous processing techniques are beginning to have a profound impact on the production of functional materials ranging from quantum dots, nanoparticles and metal organic frameworks to polymers and dyes. These techniques provide robust procedures which not only enable accurate control of the product material's properties but they are also ideally suited to conducting experiments on scale. The modular nature of flow and continuous processing equipment rapidly facilitates reaction optimisation and variation in function of the products. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Fluid dynamics of bubbly flows

    International Nuclear Information System (INIS)

    Ziegenhein, Thomas

    2016-01-01

    Bubbly flows can be found in many applications in chemical, biological and power engineering. Reliable simulation tools of such flows that allow the design of new processes and optimization of existing one are therefore highly desirable. CFD-simulations applying the multi-fluid approach are very promising to provide such a design tool for complete facilities. In the multi-fluid approach, however, closure models have to be formulated to model the interaction between the continuous and dispersed phase. Due to the complex nature of bubbly flows, different phenomena have to be taken into account and for every phenomenon different closure models exist. Therefore, reliable predictions of unknown bubbly flows are not yet possible with the multi-fluid approach. A strategy to overcome this problem is to define a baseline model in which the closure models including the model constants are fixed so that the limitations of the modeling can be evaluated by validating it on different experiments. Afterwards, the shortcomings are identified so that the baseline model can be stepwise improved without losing the validity for the already validated cases. This development of a baseline model is done in the present work by validating the baseline model developed at the Helmholtz-Zentrum Dresden-Rossendorf mainly basing on experimental data for bubbly pipe flows to bubble columns, bubble plumes and air-lift reactors that are relevant in chemical and biological engineering applications. In the present work, a large variety of such setups is used for validation. The buoyancy driven bubbly flows showed thereby a transient behavior on the scale of the facility. Since such large scales are characterized by the geometry of the facility, turbulence models cannot describe them. Therefore, the transient simulation of bubbly flows with two equation models based on the unsteady Reynolds-averaged Navier-Stokes equations is investigated. In combination with the before mentioned baseline model these

  16. Fluid dynamics of bubbly flows

    Energy Technology Data Exchange (ETDEWEB)

    Ziegenhein, Thomas

    2016-07-08

    Bubbly flows can be found in many applications in chemical, biological and power engineering. Reliable simulation tools of such flows that allow the design of new processes and optimization of existing one are therefore highly desirable. CFD-simulations applying the multi-fluid approach are very promising to provide such a design tool for complete facilities. In the multi-fluid approach, however, closure models have to be formulated to model the interaction between the continuous and dispersed phase. Due to the complex nature of bubbly flows, different phenomena have to be taken into account and for every phenomenon different closure models exist. Therefore, reliable predictions of unknown bubbly flows are not yet possible with the multi-fluid approach. A strategy to overcome this problem is to define a baseline model in which the closure models including the model constants are fixed so that the limitations of the modeling can be evaluated by validating it on different experiments. Afterwards, the shortcomings are identified so that the baseline model can be stepwise improved without losing the validity for the already validated cases. This development of a baseline model is done in the present work by validating the baseline model developed at the Helmholtz-Zentrum Dresden-Rossendorf mainly basing on experimental data for bubbly pipe flows to bubble columns, bubble plumes and air-lift reactors that are relevant in chemical and biological engineering applications. In the present work, a large variety of such setups is used for validation. The buoyancy driven bubbly flows showed thereby a transient behavior on the scale of the facility. Since such large scales are characterized by the geometry of the facility, turbulence models cannot describe them. Therefore, the transient simulation of bubbly flows with two equation models based on the unsteady Reynolds-averaged Navier-Stokes equations is investigated. In combination with the before mentioned baseline model these

  17. Dynamic probabilistic material flow analysis of nano-SiO2, nano iron oxides, nano-CeO2, nano-Al2O3, and quantum dots in seven European regions.

    Science.gov (United States)

    Wang, Yan; Nowack, Bernd

    2018-04-01

    Static environmental exposure assessment models based on material flow analysis (MFA) have previously been used to estimate flows of engineered nanomaterials (ENMs) to the environment. However, such models do not account for changes in the system behavior over time. Dynamic MFA used in this study includes the time-dependent development of the modelling system by considering accumulation of ENMs in stocks and the environment, and the dynamic release of ENMs from nano-products. In addition, this study also included regional variations in population, waste management systems, and environmental compartments, which subsequently influence the environmental release and concentrations of ENMs. We have estimated the flows and release concentrations of nano-SiO 2 , nano-iron oxides, nano-CeO 2 , nano-Al 2 O 3 , and quantum dots in the EU and six geographical sub-regions in Europe (Central Europe, Northern Europe, Southern Europe, Eastern Europe, South-eastern Europe, and Switzerland). The model predicts that a large amount of ENMs are accumulated in stocks (not considering further transformation). For example, in the EU 2040 Mt of nano-SiO 2 are stored in the in-use stock, 80,400 tonnes have been accumulated in sediments and 65,600 tonnes in natural and urban soil from 1990 to 2014. The magnitude of flows in waste management processes in different regions varies because of differences in waste handling. For example, concentrations in landfilled waste are lowest in South-eastern Europe due to dilution by the high amount of landfilled waste in the region. The flows predicted in this work can serve as improved input data for mechanistic environmental fate models and risk assessment studies compared to previous estimates using static models. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Information flow dynamics in the brain

    Science.gov (United States)

    Rabinovich, Mikhail I.; Afraimovich, Valentin S.; Bick, Christian; Varona, Pablo

    2012-03-01

    Timing and dynamics of information in the brain is a hot field in modern neuroscience. The analysis of the temporal evolution of brain information is crucially important for the understanding of higher cognitive mechanisms in normal and pathological states. From the perspective of information dynamics, in this review we discuss working memory capacity, language dynamics, goal-dependent behavior programming and other functions of brain activity. In contrast with the classical description of information theory, which is mostly algebraic, brain flow information dynamics deals with problems such as the stability/instability of information flows, their quality, the timing of sequential processing, the top-down cognitive control of perceptual information, and information creation. In this framework, different types of information flow instabilities correspond to different cognitive disorders. On the other hand, the robustness of cognitive activity is related to the control of the information flow stability. We discuss these problems using both experimental and theoretical approaches, and we argue that brain activity is better understood considering information flows in the phase space of the corresponding dynamical model. In particular, we show how theory helps to understand intriguing experimental results in this matter, and how recent knowledge inspires new theoretical formalisms that can be tested with modern experimental techniques.

  19. Reflections on Daily Runs and Material Flows

    DEFF Research Database (Denmark)

    Gommesen, Niels Jørgen

    2014-01-01

    This essay reflects on the material flows and intensive states that surround us in our everyday lives, to provide an understanding of the ways in which they permeate and affect our bodies and cause a change in them, when we are moving through a landscape alongside various materialities, rhythms...... and movements. Based on my felt experiences during daily runs, it analyzes these vibrant land-scapes as heterogeneous assemblages, as collectives co-constituted between human-nonhuman actors, to study the material flows that move our bodies and expose them to new organizations. It sums up, that technologies......, milieus and human-nonhuman beings that lives alongside each other, have an immediate impact on each other caused by the circulating intensities within the heterogeneous collectives. We discover that changes in one context interface with changes in another, rhythms resonate and create new movements...

  20. Emerging insights into the dynamics of submarine debris flows

    Directory of Open Access Journals (Sweden)

    A. Elverhøi

    2005-01-01

    Full Text Available Recent experimental and theoretical work on the dynamics of submarine debris flows is summarized. Hydroplaning was first discovered in laboratory flows and later shown to likely occur in natural debris flows as well. It is a prime mechanism for explaining the extremely long runout distances observed in some natural debris flows even of over-consolidated clay materials. Moreover, the accelerations and high velocities reached by the flow head in a short time appear to fit well with the required initial conditions of observed tsunamis as obtained from back-calculations. Investigations of high-speed video recordings of laboratory debris flows were combined with measurements of total and pore pressure. The results are pointing towards yet another important role of ambient water: Water that intrudes from the water cushion underneath the hydroplaning head and through cracks in the upper surface of the debris flow may drastically soften initially stiff clayey material in the 'neck' of the flow, where significant stretching occurs due to the reduced friction at the bottom of the hydroplaning head. This self-reinforcing process may lead to the head separating from the main body and becoming an 'outrunner' block as clearly observed in several natural debris flows. Comparison of laboratory flows with different material composition indicates a gradual transition from hydroplaning plug flows of stiff clay-rich material, with a very low suspension rate, to the strongly agitated flow of sandy materials that develop a pronounced turbidity current. Statistical analysis of the great number of distinguishable lobes in the Storegga slide complex reveals power-law scaling behavior of the runout distance with the release mass over many orders of magnitude. Mathematical flow models based on viscoplastic material behavior (e.g. BING successfully reproduce the observed scaling behavior only for relatively small clay-rich debris flows while granular (frictional models

  1. Particle algorithms for population dynamics in flows

    International Nuclear Information System (INIS)

    Perlekar, Prasad; Toschi, Federico; Benzi, Roberto; Pigolotti, Simone

    2011-01-01

    We present and discuss particle based algorithms to numerically study the dynamics of population subjected to an advecting flow condition. We discuss few possible variants of the algorithms and compare them in a model compressible flow. A comparison against appropriate versions of the continuum stochastic Fisher equation (sFKPP) is also presented and discussed. The algorithms can be used to study populations genetics in fluid environments.

  2. Vesicle dynamics in shear and capillary flows

    International Nuclear Information System (INIS)

    Noguchi, Hiroshi; Gompper, Gerhard

    2005-01-01

    The deformation of vesicles in flow is studied by a mesoscopic simulation technique, which combines multi-particle collision dynamics for the solvent with a dynamically triangulated surface model for the membrane. Shape transitions are investigated both in simple shear flows and in cylindrical capillary flows. We focus on reduced volumes, where the discocyte shape of fluid vesicles is stable, and the prolate shape is metastable. In simple shear flow at low membrane viscosity, the shear induces a transformation from discocyte to prolate with increasing shear rate, while at high membrane viscosity, the shear induces a transformation from prolate to discocyte, or tumbling motion accompanied by oscillations between these two morphologies. In capillary flow, at small flow velocities the symmetry axis of the discocyte is found not to be oriented perpendicular to the cylinder axis. With increasing flow velocity, a transition to a prolate shape occurs for fluid vesicles, while vesicles with shear-elastic membranes (like red blood cells) transform into a coaxial parachute-like shape

  3. Nonlinear dynamics of two-phase flow

    International Nuclear Information System (INIS)

    Rizwan-uddin

    1986-01-01

    Unstable flow conditions can occur in a wide variety of laboratory and industry equipment that involve two-phase flow. Instabilities in industrial equipment, which include boiling water reactor (BWR) cores, steam generators, heated channels, cryogenic fluid heaters, heat exchangers, etc., are related to their nonlinear dynamics. These instabilities can be of static (Ledinegg instability) or dynamic (density wave oscillations) type. Determination of regions in parameters space where these instabilities can occur and knowledge of system dynamics in or near these regions is essential for the safe operation of such equipment. Many two-phase flow engineering components can be modeled as heated channels. The set of partial differential equations that describes the dynamics of single- and two-phase flow, for the special case of uniform heat flux along the length of the channel, can be reduced to a set of two coupled ordinary differential equations [in inlet velocity v/sub i/(t) and two-phase residence time tau(t)] involving history integrals: a nonlinear ordinary functional differential equation and an integral equation. Hence, to solve these equations, the dependent variables must be specified for -(nu + tau) ≤ t ≤ 0, where nu is the single-phase residence time. This system of nonlinear equations has been solved analytically using asymptotic expansion series for finite but small perturbations and numerically using finite difference techniques

  4. Dynamic membrane filtration in tangential flow

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Oil-containing waste water is produced in many cleaning processes and also on production of compressed air. Dynamic membrane filtration in the tangential flow mode has proved effective in the treatment of these stable emulsions. The possible applications of ceramic membrane filters are illustrated for a variety of examples. (orig.) [de

  5. Energy and material flows of megacities.

    Science.gov (United States)

    Kennedy, Christopher A; Stewart, Iain; Facchini, Angelo; Cersosimo, Igor; Mele, Renata; Chen, Bin; Uda, Mariko; Kansal, Arun; Chiu, Anthony; Kim, Kwi-Gon; Dubeux, Carolina; Lebre La Rovere, Emilio; Cunha, Bruno; Pincetl, Stephanie; Keirstead, James; Barles, Sabine; Pusaka, Semerdanta; Gunawan, Juniati; Adegbile, Michael; Nazariha, Mehrdad; Hoque, Shamsul; Marcotullio, Peter J; González Otharán, Florencia; Genena, Tarek; Ibrahim, Nadine; Farooqui, Rizwan; Cervantes, Gemma; Sahin, Ahmet Duran

    2015-05-12

    Understanding the drivers of energy and material flows of cities is important for addressing global environmental challenges. Accessing, sharing, and managing energy and material resources is particularly critical for megacities, which face enormous social stresses because of their sheer size and complexity. Here we quantify the energy and material flows through the world's 27 megacities with populations greater than 10 million people as of 2010. Collectively the resource flows through megacities are largely consistent with scaling laws established in the emerging science of cities. Correlations are established for electricity consumption, heating and industrial fuel use, ground transportation energy use, water consumption, waste generation, and steel production in terms of heating-degree-days, urban form, economic activity, and population growth. The results help identify megacities exhibiting high and low levels of consumption and those making efficient use of resources. The correlation between per capita electricity use and urbanized area per capita is shown to be a consequence of gross building floor area per capita, which is found to increase for lower-density cities. Many of the megacities are growing rapidly in population but are growing even faster in terms of gross domestic product (GDP) and energy use. In the decade from 2001-2011, electricity use and ground transportation fuel use in megacities grew at approximately half the rate of GDP growth.

  6. Multiphase Flow Dynamics 2 Mechanical Interactions

    CERN Document Server

    Kolev, Nikolay Ivanov

    2012-01-01

    Multi-phase flows are part of our natural environment such as tornadoes, typhoons, air and water pollution and volcanic activities as well as part of industrial technology such as power plants, combustion engines, propulsion systems, or chemical and biological industry. The industrial use of multi-phase systems requires analytical and numerical strategies for predicting their behavior. .In its fourth extended edition the successful monograph package “Multiphase Flow Daynmics” contains theory, methods and practical experience for describing complex transient multi-phase processes in arbitrary geometrical configurations, providing a systematic presentation of the theory and practice of numerical multi-phase fluid dynamics. In the present second volume the methods for describing the mechanical interactions in multiphase dynamics are provided. This fourth edition includes various updates, extensions, improvements and corrections.   "The literature in the field of multiphase flows is numerous. Therefore, it i...

  7. Granular materials flow like complex fluids

    Science.gov (United States)

    Kou, Binquan; Cao, Yixin; Li, Jindong; Xia, Chengjie; Li, Zhifeng; Dong, Haipeng; Zhang, Ang; Zhang, Jie; Kob, Walter; Wang, Yujie

    2017-11-01

    Granular materials such as sand, powders and foams are ubiquitous in daily life and in industrial and geotechnical applications. These disordered systems form stable structures when unperturbed, but in the presence of external influences such as tapping or shear they `relax', becoming fluid in nature. It is often assumed that the relaxation dynamics of granular systems is similar to that of thermal glass-forming systems. However, so far it has not been possible to determine experimentally the dynamic properties of three-dimensional granular systems at the particle level. This lack of experimental data, combined with the fact that the motion of granular particles involves friction (whereas the motion of particles in thermal glass-forming systems does not), means that an accurate description of the relaxation dynamics of granular materials is lacking. Here we use X-ray tomography to determine the microscale relaxation dynamics of hard granular ellipsoids subject to an oscillatory shear. We find that the distribution of the displacements of the ellipsoids is well described by a Gumbel law (which is similar to a Gaussian distribution for small displacements but has a heavier tail for larger displacements), with a shape parameter that is independent of the amplitude of the shear strain and of the time. Despite this universality, the mean squared displacement of an individual ellipsoid follows a power law as a function of time, with an exponent that does depend on the strain amplitude and time. We argue that these results are related to microscale relaxation mechanisms that involve friction and memory effects (whereby the motion of an ellipsoid at a given point in time depends on its previous motion). Our observations demonstrate that, at the particle level, the dynamic behaviour of granular systems is qualitatively different from that of thermal glass-forming systems, and is instead more similar to that of complex fluids. We conclude that granular materials can relax

  8. Robust optimal control of material flows in demand-driven supply networks

    NARCIS (Netherlands)

    Laumanns, M.; Lefeber, A.A.J.

    2006-01-01

    We develop a model based on stochastic discrete-time controlleddynamical systems in order to derive optimal policies for controllingthe material flow in supply networks. Each node in the network isdescribed as a transducer such that the dynamics of the material andinformation flows within the entire

  9. Topological fluid dynamics of interfacial flows

    DEFF Research Database (Denmark)

    Brøns, Morten

    1994-01-01

    The topological description of flows in the vicinity of a solid boundary, that is familiar from the aerodynamics literature, has recently been extended to the case of flow at a liquid–gas interface or a free surface by Lugt [Phys. Fluids 30, 3647 (1987)]. Lugt's work is revisited in a more general...... setting, including nonconstant curvature of the interface and gradients of surface tension, using tools of modern nonlinear dynamics. Bifurcations of the flow pattern occur at degenerate configurations. Using the theory of unfolding, this paper gives a complete description of the bifurcations that depend...... on terms up to the second order. The general theory of this paper is applied to the topology of streamlines during the breaking of a wave and to the flow below a stagnant surface film. Physics of Fluids is copyrighted by The American Institute of Physics....

  10. Edge Sheared Flows and Blob Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Myra, J.; D' Ippolito, D.; Russell, D., E-mail: jrmyra@lodestar.com [Lodestar Research Corporation, Boulder (United States); Davis, W. M.; Zweben, S. [Princeton Plasma Physics Laboratory, Princeton (United States); Terry, J.; LaBombard, B. [Massachusetts Institute of Technology, Cambridge (United States)

    2012-09-15

    Full text: A study of sheared flows in the edge and scrape-off layer (SOL) and their interaction with blob-filaments is presented. Edge sheared flows are believed to be important for the L-H, and H-L transitions. Blob generation and dynamics impacts both the (near-separatrix) scrape-off-layer (SOL) width critical for power handling in the divertor, and the interaction of plasma in the far SOL with plasma-facing components. These topics are critical for ITER and future devices. A fluid-based 2D curvature-interchange model embedded in the SOLT code is employed to study these issues. Sheared binormal flows both regulate the power flux crossing the separatrix and control the character of emitted turbulence structures such as blob-filaments. At a critical power level (depending on parameters) the laminar flows containing intermittent, but bound, structures give way to full-blown blob emissions signifying a transition from quasi-diffusive to convective transport. In order to diagnose sheared flows in experiments and assess their interaction with blobs, a blob-tracking algorithm has been developed and applied to both NSTX and Alcator C-Mod data. Blob motion and ellipticity can be affected by sheared flows, and are diagnosed and compared with seeded blob simulations. A picture of the interaction of blobs and sheared flows is emerging from advances in the theory and simulation of edge turbulence, combined with ever-improving capabilities for edge diagnostics and their analysis. (author)

  11. Multiphase Flow Dynamics 3 Thermal Interactions

    CERN Document Server

    Kolev, Nikolay Ivanov

    2012-01-01

    Multi-phase flows are part of our natural environment such as tornadoes, typhoons, air and water pollution and volcanic activities as well as part of industrial technology such as power plants, combustion engines, propulsion systems, or chemical and biological industry. The industrial use of multi-phase systems requires analytical and numerical strategies for predicting their behavior. .In its fourth extended edition the successful monograph package “Multiphase Flow Daynmics” contains theory, methods and practical experience for describing complex transient multi-phase processes in arbitrary geometrical configurations, providing a systematic presentation of the theory and practice of numerical multi-phase fluid dynamics. In the present third volume methods for describing of the thermal interactions in multiphase dynamics are provided. In addition a large number of valuable experiments is collected and predicted using the methods introduced in this monograph. In this way the accuracy of the methods is reve...

  12. Behavior of Brittle Materials Under Dynamic Loading

    National Research Council Canada - National Science Library

    Kanel, G

    2000-01-01

    Dynamic loading of brittle materials is related to many applications, including explosive excavation of rocks, design of ceramic armor, meteor impact on spacecraft windows, particle damage to turbine blades, etc...

  13. Deformed Materials: Towards a Theory of Materials Morphology Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Sethna, James P [Laboratory of Atomic and Solid State Physics, Cornell University

    2017-06-28

    describing the shapes of avalanches and how they are affected by the edges of the microscope viewing window, we found that slow creep of dislocations can trigger an oscillating response explaining recent experiments, we explained avalanches under external voltage, and we have studied how avalanches in experiments on the microscale relate to deformation of large samples. Inside the crystals forming the metal, the dislocations arrange into mysterious cellular structures, usually ignored in theories of plasticity. Writing a natural continuum theory for dislocation dynamics, we found that it spontaneously formed walls -- much like models of traffic jams and sonic booms. These walls formed rather realistic cellular structures, which we examined in great detail -- our walls formed fractal structures with fascinating scaling properties, related to those found in turbulent fluids. We found, however, that the numerical and mathematical tools available to solve our equations were not flexible enough to incorporate materials-specific information, and our models did not show the dislocation avalanches seen experimentally. In the last year of this grant, we wrote an invited review article, explaining how plastic flow in metals shares features with other stressed materials, and how tools of statistical physics used in these other systems might be crucial for understanding plasticity.

  14. Dynamic properties of ceramic materials

    International Nuclear Information System (INIS)

    Grady, D.E.

    1995-02-01

    The present study offers new data and analysis on the transient shock strength and equation-of-state properties of ceramics. Various dynamic data on nine high strength ceramics are provided with wave profile measurements, through velocity interferometry techniques, the principal observable. Compressive failure in the shock wave front, with emphasis on brittle versus ductile mechanisms of deformation, is examined in some detail. Extensive spall strength data are provided and related to the theoretical spall strength, and to energy-based theories of the spall process. Failure waves, as a mechanism of deformation in the transient shock process, are examined. Strength and equation-of-state analysis of shock data on silicon carbide, boron carbide, tungsten carbide, silicon dioxide and aluminum nitride is presented with particular emphasis on phase transition properties for the latter two. Wave profile measurements on selected ceramics are investigated for evidence of rate sensitive elastic precursor decay in the shock front failure process

  15. Minimum cost dynamic flows: The series-parallel case

    NARCIS (Netherlands)

    Klinz, Bettina; Woeginger, Gerhard

    2004-01-01

    A dynamic network consists of a directed graph with capacities, costs, and integral transit times on the arcs. In the minimum-cost dynamic flow problem (MCDFP), the goal is to compute, for a given dynamic network with source s, sink t, and two integers v and T, a feasible dynamic flow from s to t of

  16. Recent developments in dynamic testing of materials

    Directory of Open Access Journals (Sweden)

    Gilat Amos

    2015-01-01

    Full Text Available New techniques for dynamic characterization of materials that have been developed in the last three years (since the last DYMAT conference in 2012, and results from recent dynamic testing of Inconel 718 are presented. The first development is a dynamic punch test in which three dimensional Digital Image Correlation (DIC is used to measure the deformation of the rear surface of a specimen as it being penetrated. The second experimental technique that is under development is a dynamic tension experiment in which full-field strain measurement with DIC and full-field temperature measurement are done simultaneously during the test.

  17. Lattice dynamics and molecular dynamics simulation of complex materials

    International Nuclear Information System (INIS)

    Chaplot, S.L.

    1997-01-01

    In this article we briefly review the lattice dynamics and molecular dynamics simulation techniques, as used for complex ionic and molecular solids, and demonstrate a number of applications through examples of our work. These computational studies, along with experiments, have provided microscopic insight into the structure and dynamics, phase transitions and thermodynamical properties of a variety of materials including fullerene, high temperature superconducting oxides and geological minerals as a function of pressure and temperature. The computational techniques also allow the study of the structures and dynamics associated with disorder, defects, surfaces, interfaces etc. (author)

  18. Flow dynamics around downwelling submarine canyons

    Directory of Open Access Journals (Sweden)

    J. M. Spurgin

    2014-10-01

    Full Text Available Flow dynamics around a downwelling submarine canyon were analysed with the Massachusetts Institute of Technology general circulation model. Blanes Canyon (northwestern Mediterranean was used for topographic and initial forcing conditions. Fourteen scenarios were modelled with varying forcing conditions. Rossby and Burger numbers were used to determine the significance of Coriolis acceleration and stratification (respectively and their impacts on flow dynamics. A new non-dimensional parameter (χ was introduced to determine the significance of vertical variations in stratification. Some simulations do see brief periods of upwards displacement of water during the 10-day model period; however, the presence of the submarine canyon is found to enhance downwards advection of density in all model scenarios. High Burger numbers lead to negative vorticity and a trapped anticyclonic eddy within the canyon, as well as an increased density anomaly. Low Burger numbers lead to positive vorticity, cyclonic circulation, and weaker density anomalies. Vertical variations in stratification affect zonal jet placement. Under the same forcing conditions, the zonal jet is pushed offshore in more uniformly stratified domains. The offshore jet location generates upwards density advection away from the canyon, while onshore jets generate downwards density advection everywhere within the model domain. Increasing Rossby values across the canyon axis, as well as decreasing Burger values, increase negative vertical flux at shelf break depth (150 m. Increasing Rossby numbers lead to stronger downwards advection of a passive tracer (nitrate, as well as stronger vorticity within the canyon. Results from previous studies are explained within this new dynamic framework.

  19. Dynamic methods of air traffic flow management

    Directory of Open Access Journals (Sweden)

    Jacek SKORUPSKI

    2011-01-01

    Full Text Available Air traffic management is a complex hierarchical system. Hierarchy levels can be defined according to decision making time horizon or to analyze area volume. For medium time horizon and wide analysis area, the air traffic flow management services were established. Their main task is to properly co-ordinate air traffic in European airspace, so as to minimize delays arising in congested sectors. Those services have to assure high safety level at the same time. Thus it is a very complex task, with many goals, many decision variables and many constraints.In the paper review of the methods developed for aiding air traffic flow management services is presented. More detailed description of a dynamic method is given. This method is based on stochastic capacity and scenario analysis. Some problems in utilization of presented methods are also pointed out, so are the next research possibilities.

  20. Instantaneous aerosol dynamics in a turbulent flow

    KAUST Repository

    Zhou, Kun

    2012-01-01

    Dibutyl phthalate aerosol particles evolution dynamics in a turbulent mixing layer is simulated by means of direct numerical simulation for the flow field and the direct quadrature method of moments for the aerosol evolution. Most par-ticles are nucleated in a thin layer region corresponding to a specific narrow temperature range near the cool stream side. However, particles undergo high growth rate on the hot stream side due to condensation. Coagulation decreases the total particle number density at a rate which is highly correlated to the in-stantaneous number density.

  1. Advanced Plasmonic Materials for Dynamic Color Display.

    Science.gov (United States)

    Shao, Lei; Zhuo, Xiaolu; Wang, Jianfang

    2018-04-01

    Plasmonic structures exhibit promising applications in high-resolution and durable color generation. Research on advanced hybrid plasmonic materials that allow dynamically reconfigurable color control has developed rapidly in recent years. Some of these results may give rise to practically applicable reflective displays in living colors with high performance and low power consumption. They will attract broad interest from display markets, compared with static plasmonic color printing, for example, in applications such as digital signage, full-color electronic paper, and electronic device screens. In this progress report, the most promising recent examples of utilizing advanced plasmonic materials for the realization of dynamic color display are highlighted and put into perspective. The performances, advantages, and disadvantages of different technologies are discussed, with emphasis placed on both the potential and possible limitations of various hybrid materials for dynamic plasmonic color display. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Experience with dynamic material control subsystems

    International Nuclear Information System (INIS)

    Severe, W.R.; Hagen, J.; Siebelist, R.; Wagner, R.P.; Olson, W.M.

    1977-01-01

    Operation of a Dynamic Material Control (DYMAC) prototype system has yielded some useful information for installing the final system. We discovered a bias between two methods for measuring filtrates. Evaluation of a unit process dynamic balance brought to light an operating procedure that weakens the accountability goals of the DYMAC system. We were able to correct both situations for the final system and learned that we must regularly monitor the system once it is operational for similar discrepancies

  3. Estimation of flow stress of radiation induced F/M steels using molecular dynamics and discrete dislocation dynamics approach

    International Nuclear Information System (INIS)

    More, Ameya; Dutta, B.K.; Durgaprasad, P.V.; Arya, A.K.

    2012-01-01

    Fe-Cr based Ferritic/Martensitic (F/M) steels are the candidate structural materials for future fusion reactors. In this work, a multi-scale approach comprising atomistic Molecular Dynamics (MD) simulations and Discrete Dislocation Dynamics (DDD) simulations are used to model the effect of irradiation dose on the flow stress of F/M steels. At the atomic scale, molecular dynamics simulations are used to study the dislocation interaction with irradiation induced defects, i.e. voids and He bubbles. Whereas, the DDD simulations are used to estimate the change in flow stress of the material as a result of irradiation hardening. (author)

  4. Measurements of granular flow dynamics with high speed digital images

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jingeol [Univ. of Florida, Gainesville, FL (United States)

    1994-01-01

    The flow of granular materials is common to many industrial processes. This dissertation suggests and validates image processing algorithms applied to high speed digital images to measure the dynamics (velocity, temperature and volume fraction) of dry granular solids flowing down an inclined chute under the action of gravity. Glass and acrylic particles have been used as granular solids in the experiment. One technique utilizes block matching for spatially averaged velocity measurements of the glass particles. This technique is compared with the velocity measurement using an optic probe which is a conventional granular flow velocity measurement device. The other technique for measuring the velocities of individual acrylic particles is developed with correspondence using a Hopfield network. This technique first locates the positions of particles with pattern recognition techniques, followed by a clustering technique, which produces point patterns. Also, several techniques are compared for particle recognition: synthetic discriminant function (SDF), minimum average correlation energy (MACE) filter, modified minimum average correlation energy (MMACE) filter and variance normalized correlation. The author proposes an MMACE filter which improves generalization of the MACE filter by adjusting the amount of averaged spectrum of training images in the spectrum whitening stages of the MACE filter. Variance normalized correlation is applied to measure the velocity and temperature of flowing glass particles down the inclined chute. The measurements are taken for the steady and wavy flow and qualitatively compared with a theoretical model of granular flow.

  5. Sandia Dynamic Materials Program Strategic Plan.

    Energy Technology Data Exchange (ETDEWEB)

    Flicker, Dawn Gustine [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Benage, John F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Desjarlais, Michael P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Knudson, Marcus D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Leifeste, Gordon T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lemke, Raymond W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mattsson, Thomas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wise, Jack L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-05-01

    Materials in nuclear and conventional weapons can reach multi-megabar pressures and 1000s of degree temperatures on timescales ranging from microseconds to nanoseconds. Understanding the response of complex materials under these conditions is important for designing and assessing changes to nuclear weapons. In the next few decades, a major concern will be evaluating the behavior of aging materials and remanufactured components. The science to enable the program to underwrite decisions quickly and confidently on use, remanufacturing, and replacement of these materials will be critical to NNSA’s new Stockpile Responsiveness Program. Material response is also important for assessing the risks posed by adversaries or proliferants. Dynamic materials research, which refers to the use of high-speed experiments to produce extreme conditions in matter, is an important part of NNSA’s Stockpile Stewardship Program.

  6. Dynamics of crater formations in immersed granular materials

    Science.gov (United States)

    Varas, G.; Vidal, V.; Géminard, J.

    2009-12-01

    Craters are part of the widespread phenomena observed in nature. Among the main applications to natural phenomena, aside from meteorite impact craters, are the formation and growth of volcanic edifices, by successive ejecta emplacement and/or erosion. The time evolution and dynamics play a crucial role here, as the competition between volcanic-jet mass-flux (degassing and ejecta) and crater-size evolution may control directly the eruptive regime. Crater morphology in dry granular material has been extensively studied, both experimentally and theoretically. Most of these studies investigate the final, steady crater shape resulting from the collision of solid bodies with the material surface and scaling laws are derived. In immersed granular material, craters generated by an underwater vortex ring, or underwater impact craters generated by landslide, have been reported. In a previous experimental study, Gostiaux et al. [Gran. Matt., 2002] have investigated the dynamics of air flowing through an immersed granular layer. They reported that, depending on the flow rate, the system exhibits two qualitatively different regimes: At small flow rate, the bubbling regime during which bubbles escape the granular layer independently one from another; At large flow rate, the open-channel regime which corresponds to the formation of a channel crossing the whole thickness of the granular bed through which air escapes almost continuously. At intermediate flow rate, a spontaneous alternation between these two regimes is observed. Here, we report the dynamics of crater formations at the free surface of an immersed granular bed, locally crossed by an ascending gas flow. We reproduce the experimental conditions of Gostiaux et al. (2002) in two dimensions: In a vertical Hele-Shaw cell, the crater consists of two sand piles which develop around the location of the gas emission. We observe that the typical size of the crater increases logarithmically with time, independently of the gas

  7. Dynamic mechanical properties of buffer material

    International Nuclear Information System (INIS)

    Takaji, Kazuhiko; Taniguchi, Wataru

    1999-11-01

    The buffer material is expected to maintain its low water permeability, self-sealing properties, radionuclides adsorption and retardation properties, thermal conductivity, chemical buffering properties, overpack supporting properties, stress buffering properties, etc. over a long period of time. Natural clay is mentioned as a material that can relatively satisfy above. Among the kinds of natural clay, bentonite when compacted is superior because (i) it has exceptionally low water permeability and properties to control the movement of water in buffer, (ii) it fills void spaces in the buffer and fractures in the host rock as it swells upon water uptake, (iii) it has the ability to exchange cations and to adsorb cationic radioelements. In order to confirm these functions for the purpose of safety assessment, it is necessary to evaluate buffer properties through laboratory tests and engineering-scale tests, and to make assessments based on the ranges in the data obtained. This report describes the procedures, test conditions, results and examinations on the buffer material of dynamic triaxial tests, measurement of elastic wave velocity and liquefaction tests that aim at getting hold of dynamic mechanical properties. We can get hold of dependency on the shearing strain of the shearing modulus and hysteresis damping constant, the application for the mechanical model etc. by dynamic triaxial tests, the acceptability of maximum shearing modulus obtained from dynamic triaxial tests etc. by measurement of elastic wave velocity and dynamic strength caused by cyclic stress etc. by liquefaction tests. (author)

  8. Dynamic Flow Management Problems in Air Transportation

    Science.gov (United States)

    Patterson, Sarah Stock

    1997-01-01

    In 1995, over six hundred thousand licensed pilots flew nearly thirty-five million flights into over eighteen thousand U.S. airports, logging more than 519 billion passenger miles. Since demand for air travel has increased by more than 50% in the last decade while capacity has stagnated, congestion is a problem of undeniable practical significance. In this thesis, we will develop optimization techniques that reduce the impact of congestion on the national airspace. We start by determining the optimal release times for flights into the airspace and the optimal speed adjustment while airborne taking into account the capacitated airspace. This is called the Air Traffic Flow Management Problem (TFMP). We address the complexity, showing that it is NP-hard. We build an integer programming formulation that is quite strong as some of the proposed inequalities are facet defining for the convex hull of solutions. For practical problems, the solutions of the LP relaxation of the TFMP are very often integral. In essence, we reduce the problem to efficiently solving large scale linear programming problems. Thus, the computation times are reasonably small for large scale, practical problems involving thousands of flights. Next, we address the problem of determining how to reroute aircraft in the airspace system when faced with dynamically changing weather conditions. This is called the Air Traffic Flow Management Rerouting Problem (TFMRP) We present an integrated mathematical programming approach for the TFMRP, which utilizes several methodologies, in order to minimize delay costs. In order to address the high dimensionality, we present an aggregate model, in which we formulate the TFMRP as a multicommodity, integer, dynamic network flow problem with certain side constraints. Using Lagrangian relaxation, we generate aggregate flows that are decomposed into a collection of flight paths using a randomized rounding heuristic. This collection of paths is used in a packing integer

  9. Material properties under intensive dynamic loading

    CERN Document Server

    Cherne, Frank J; Zhernokletov, Mikhail V; Glushak, B L; Zocher, Marvin A

    2007-01-01

    Understanding the physical and thermomechanical response of materials subjected to intensive dynamic loading is a challenge of great significance in engineering today. This volume assumes the task of gathering both experimental and diagnostic methods in one place, since not much information has been previously disseminated in the scientific literature.

  10. Dynamic frictional contact for elastic viscoplastic material

    Directory of Open Access Journals (Sweden)

    Kenneth L. Kuttler

    2007-05-01

    Full Text Available Using a general theory for evolution inclusions, existence and uniqueness theorems are obtained for weak solutions to a frictional dynamic contact problem for elastic visco-plastic material. An existence theorem in the case where the friction coefficient is discontinuous is also presented.

  11. Thin film plasma coatings from dielectric free-flowing materials

    International Nuclear Information System (INIS)

    Timofeeva, L.A.; Katrich, S.A.; Solntsev, L.A.

    1994-01-01

    Fabrication of thin film plasma coatings from insulating free-flowing materials is considered. Molybdenum-tart ammonium coating of 3...5 μ thickness deposited on glassy carbon, aluminium, silicon, nickel, cast iron and steel substrates in 'Bulat-ZT' machine using insulating free-flowing materials cathod was found to form due to adsorption, absorption and dissuasion processes. The use of insulating free-flowing materials coatings allow to exclude pure metals cathods in plasma-plating process

  12. Coarse-grained debris flow dynamics on erodible beds

    Science.gov (United States)

    Lanzoni, Stefano; Gregoretti, Carlo; Stancanelli, Laura Maria

    2017-03-01

    A systematic set of flume experiments is used to investigate the features of velocity profiles within the body of coarse-grained debris flows and the dependence of the transport sediment concentration on the relevant parameters (runoff discharge, bed slope, grain size, and form). The flows are generated in a 10 m long laboratory flume, initially filled with a layer consisting of loose debris. After saturation, a prescribed water discharge is suddenly supplied over the granular bed, and the runoff triggers a debris flow wave that reaches nearly steady conditions. Three types of material have been used in the tests: gravel with mean grain size of 3 and 5 mm, and 3 mm glass spheres. Measured parameters included: triggering water discharge, volumetric sediment discharge, sediment concentration, flow depth, and velocity profiles. The dynamic similarity with full-sized debris flows is discussed on the basis of the relevant dimensionless parameters. Concentration data highlight the dependence on the slope angle and the importance of the quasi-static friction angle. The effects of flow rheology on the shape of velocity profiles are analyzed with attention to the role of different stress-generating mechanisms. A remarkable collapse of the dimensionless profiles is obtained by scaling the debris flow velocity with the runoff velocity, and a power law characterization is proposed following a heuristic approach. The shape of the profiles suggests a smooth transition between the different rheological regimes (collisional and frictional) that establish in the upper and lower regions of the flow and is compatible with the presence of multiple length scales dictated by the type of contacts (instantaneous or long lasting) between grains.

  13. Dynamics of a fluid flow on Mars: Lava or mud?

    Science.gov (United States)

    Wilson, Lionel; Mouginis-Mark, Peter J.

    2014-05-01

    A distinctive flow deposit southwest of Cerberus Fossae on Mars is analyzed. The flow source is a ∼20 m deep, ∼12 × 1.5 km wide depression within a yardang associated with the Medusae Fossae Formation. The flow traveled for ∼40 km following topographic lows to leave a deposit on average 3-4 km wide. The surface morphology of the deposit suggests that it was produced by the emplacement of a fluid flowing in a laminar fashion and possessing a finite yield strength. We use topographic data from a digital elevation model (DEM) to model the dynamics of the motion and infer that the fluid had a Bingham rheology with a plastic viscosity of ∼1 Pa s and a yield strength of ∼185 Pa. Although the low viscosity is consistent with the properties of komatiite-like lava, the combination of values of viscosity and yield strength, as well as the surface morphology of the flow, suggests that this was a mud flow. Comparison with published experimental data implies a solids content close to 60% by volume and a grain size dominated by silt-size particles. Comparison of the ∼1.5 km3 deposit volume with the ∼0.03 km3 volume of the source depression implies that ∼98% of the flow material was derived from depth in the crust. There are similarities between the deposit studied here, which we infer to be mud, and other flow deposits on Mars currently widely held to be lavas. This suggests that a re-appraisal of many of these deposits is now in order.

  14. Quantitative flow analysis of swimming dynamics with coherent Lagrangian vortices.

    Science.gov (United States)

    Huhn, F; van Rees, W M; Gazzola, M; Rossinelli, D; Haller, G; Koumoutsakos, P

    2015-08-01

    Undulatory swimmers flex their bodies to displace water, and in turn, the flow feeds back into the dynamics of the swimmer. At moderate Reynolds number, the resulting flow structures are characterized by unsteady separation and alternating vortices in the wake. We use the flow field from simulations of a two-dimensional, incompressible viscous flow of an undulatory, self-propelled swimmer and detect the coherent Lagrangian vortices in the wake to dissect the driving momentum transfer mechanisms. The detected material vortex boundary encloses a Lagrangian control volume that serves to track back the vortex fluid and record its circulation and momentum history. We consider two swimming modes: the C-start escape and steady anguilliform swimming. The backward advection of the coherent Lagrangian vortices elucidates the geometry of the vorticity field and allows for monitoring the gain and decay of circulation and momentum transfer in the flow field. For steady swimming, momentum oscillations of the fish can largely be attributed to the momentum exchange with the vortex fluid. For the C-start, an additionally defined jet fluid region turns out to balance the high momentum change of the fish during the rapid start.

  15. Irreversible energy flow in forced Vlasov dynamics

    KAUST Repository

    Plunk, Gabriel G.

    2014-10-01

    © EDP Sciences, Società Italiana di Fisica, Springer-Verlag. The recent paper of Plunk [G.G. Plunk, Phys. Plasmas 20, 032304 (2013)] considered the forced linear Vlasov equation as a model for the quasi-steady state of a single stable plasma wavenumber interacting with a bath of turbulent fluctuations. This approach gives some insight into possible energy flows without solving for nonlinear dynamics. The central result of the present work is that the forced linear Vlasov equation exhibits asymptotically zero (irreversible) dissipation to all orders under a detuning of the forcing frequency and the characteristic frequency associated with particle streaming. We first prove this by direct calculation, tracking energy flow in terms of certain exact conservation laws of the linear (collisionless) Vlasov equation. Then we analyze the steady-state solutions in detail using a weakly collisional Hermite-moment formulation, and compare with numerical solution. This leads to a detailed description of the Hermite energy spectrum, and a proof of no dissipation at all orders, complementing the collisionless Vlasov result.

  16. Irreversible energy flow in forced Vlasov dynamics

    KAUST Repository

    Plunk, Gabriel G.; Parker, Joseph T.

    2014-01-01

    © EDP Sciences, Società Italiana di Fisica, Springer-Verlag. The recent paper of Plunk [G.G. Plunk, Phys. Plasmas 20, 032304 (2013)] considered the forced linear Vlasov equation as a model for the quasi-steady state of a single stable plasma wavenumber interacting with a bath of turbulent fluctuations. This approach gives some insight into possible energy flows without solving for nonlinear dynamics. The central result of the present work is that the forced linear Vlasov equation exhibits asymptotically zero (irreversible) dissipation to all orders under a detuning of the forcing frequency and the characteristic frequency associated with particle streaming. We first prove this by direct calculation, tracking energy flow in terms of certain exact conservation laws of the linear (collisionless) Vlasov equation. Then we analyze the steady-state solutions in detail using a weakly collisional Hermite-moment formulation, and compare with numerical solution. This leads to a detailed description of the Hermite energy spectrum, and a proof of no dissipation at all orders, complementing the collisionless Vlasov result.

  17. Fluid flow dynamics in MAS systems

    Science.gov (United States)

    Wilhelm, Dirk; Purea, Armin; Engelke, Frank

    2015-08-01

    The turbine system and the radial bearing of a high performance magic angle spinning (MAS) probe with 1.3 mm-rotor diameter has been analyzed for spinning rates up to 67 kHz. We focused mainly on the fluid flow properties of the MAS system. Therefore, computational fluid dynamics (CFD) simulations and fluid measurements of the turbine and the radial bearings have been performed. CFD simulation and measurement results of the 1.3 mm-MAS rotor system show relatively low efficiency (about 25%) compared to standard turbo machines outside the realm of MAS. However, in particular, MAS turbines are mainly optimized for speed and stability instead of efficiency. We have compared MAS systems for rotor diameter of 1.3-7 mm converted to dimensionless values with classical turbomachinery systems showing that the operation parameters (rotor diameter, inlet mass flow, spinning rate) are in the favorable range. This dimensionless analysis also supports radial turbines for low speed MAS probes and diagonal turbines for high speed MAS probes. Consequently, a change from Pelton type MAS turbines to diagonal turbines might be worth considering for high speed applications. CFD simulations of the radial bearings have been compared with basic theoretical values proposing considerably smaller frictional loss values. The discrepancies might be due to the simple linear flow profile employed for the theoretical model. Frictional losses generated inside the radial bearings result in undesired heat-up of the rotor. The rotor surface temperature distribution computed by CFD simulations show a large temperature gradient over the rotor.

  18. High Speed Dynamics in Brittle Materials

    Science.gov (United States)

    Hiermaier, Stefan

    2015-06-01

    Brittle Materials under High Speed and Shock loading provide a continuous challenge in experimental physics, analysis and numerical modelling, and consequently for engineering design. The dependence of damage and fracture processes on material-inherent length and time scales, the influence of defects, rate-dependent material properties and inertia effects on different scales make their understanding a true multi-scale problem. In addition, it is not uncommon that materials show a transition from ductile to brittle behavior when the loading rate is increased. A particular case is spallation, a brittle tensile failure induced by the interaction of stress waves leading to a sudden change from compressive to tensile loading states that can be invoked in various materials. This contribution highlights typical phenomena occurring when brittle materials are exposed to high loading rates in applications such as blast and impact on protective structures, or meteorite impact on geological materials. A short review on experimental methods that are used for dynamic characterization of brittle materials will be given. A close interaction of experimental analysis and numerical simulation has turned out to be very helpful in analyzing experimental results. For this purpose, adequate numerical methods are required. Cohesive zone models are one possible method for the analysis of brittle failure as long as some degree of tension is present. Their recent successful application for meso-mechanical simulations of concrete in Hopkinson-type spallation tests provides new insight into the dynamic failure process. Failure under compressive loading is a particular challenge for numerical simulations as it involves crushing of material which in turn influences stress states in other parts of a structure. On a continuum scale, it can be modeled using more or less complex plasticity models combined with failure surfaces, as will be demonstrated for ceramics. Models which take microstructural

  19. Optical dynamic deformation measurements at translucent materials.

    Science.gov (United States)

    Philipp, Katrin; Koukourakis, Nektarios; Kuschmierz, Robert; Leithold, Christoph; Fischer, Andreas; Czarske, Jürgen

    2015-02-15

    Due to their high stiffness-to-weight ratio, glass fiber-reinforced polymers are an attractive material for rotors, e.g., in the aerospace industry. A fundamental understanding of the material behavior requires non-contact, in-situ dynamic deformation measurements. The high surface speeds and particularly the translucence of the material limit the usability of conventional optical measurement techniques. We demonstrate that the laser Doppler distance sensor provides a powerful and reliable tool for monitoring radial expansion at fast rotating translucent materials. We find that backscattering in material volume does not lead to secondary signals as surface scattering results in degradation of the measurement volume inside the translucent medium. This ensures that the acquired signal contains information of the rotor surface only, as long as the sample surface is rough enough. Dynamic deformation measurements of fast-rotating fiber-reinforced polymer composite rotors with surface speeds of more than 300 m/s underline the potential of the laser Doppler sensor.

  20. Dynamic nonlinear elasticity in geo materials

    International Nuclear Information System (INIS)

    Ostrovsky, L.A.; Johnson, P.A.

    2001-01-01

    The nonlinear elastic behaviour of earth materials is an extremely rich topic, one that has broad implications to earth and materials sciences, including strong ground motion, rock physics, nondestructive evaluation and materials science. The mechanical properties of rock appear to place it in a broader class of materials, it can be named the Structural nonlinear elasticity class (also Mesoscopic/nano scale elasticity, or MS/NSE class). These terms are in contrast to materials that display classical, Atomic Elasticity, such as most fluids and monocrystalline solids. The difference between these two categories of materials is both in intensity and origin of their nonlinear response. The nonlinearity of atomic elastic materials is due to the atomic/molecular lattice anharmonicity. The latter is relatively small because the intermolecular forces are extremely strong. In contrast, the materials considered below contain small soft features that it is called the bond system (cracks, grain contacts, dislocations, etc.) within a hard matrix and relaxation (slow dynamical effects) are characteristic, non of which appear in atomic elastic materials. The research begins with a brief historical background from nonlinear acoustics to the recent developments in rock nonlinearity. This is followed by an overview of some representative laboratory measurements which serve as primary indicators of nonlinear behaviour, followed by theoretical development, and finally, mention a variety of observations of nonlinearity under field conditions and applications to nondestructive testing of materials. The goal is not to survey all papers published in the are but to demonstrate some experimental and theoretical results and ideas that will the reader to become oriented in this broad and rapidly growing area bridging macro-, meso- and microscale (nano scale) phenomena in physics, materials science, and geophysics

  1. Effect of material flows on energy intensity in process industries

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Liru; Aye, Lu [International Technologies Center (IDTC), Department of Civil and Environmental Engineering, The University of Melbourne, Victoria 3010 (Australia); Lu, Zhongwu [Institute of Materials and Metallurgy, Northeastern University, Shenyang 110004 (China); Zhang, Peihong [Department of Municipal and Environmental Engineering, Shenyang Architecture University, Shenyang 110168 (China)

    2006-09-15

    Many energy-intensive process industries have complex material flows, which have a strong effect on the overall energy intensity of the final product (OEIF). This problem, however, has only been recognised qualitatively due to the lack of quantitative analysis methods. This paper presents an in-depth quantitative analysis of the effect of material flows on energy intensity in process industries. Based on the concept of a standard material flow diagram (SMFD), as used in steel manufacturing, the SMFD for a generic process industry was first developed. Then material flow scenarios were addressed in a practical material flow diagram (PMFD) using the characteristics of practical process industries. The effect of each material flow deviating from a SMFD on the OEIF was analysed. The steps involved in analysing the effect of material flows in a PMFD on its energy intensity are also discussed in detail. Finally, using 1999 statistical data from the Chinese Zhenzhou alumina refinery plant, the PMFD and SMFD for this plant were constructed as a case study. The effect of material flows on the overall energy intensity of alumina (OEIA) was thus analysed quantitatively. To decrease OEIA, the process variations which decrease the product ratios could be employed in all except in multi-supplied fraction cases. In these cases, the fractions from the stream with lower energy intensities should be increased. (author)

  2. Dynamics of Liquids Confined in Porous Materials

    DEFF Research Database (Denmark)

    Berg, Marcella Cabrera

    mobility of the hydrogen atoms, mostly from water, present in conventional GIC. Water plays a big part in the setting process in GIC. It is the reaction medium in which the cations leach to crosslink. Furthermore, water also hydrates the siliceous hydrogel and the metal polyacrylate salts. In matured GIC...... dynamics in such complex hierarchical structure, where different motions occur in a broad range of time scales and simultaneously, can be difficult. So in this Ph.D. thesis, the experimental data was combined with preliminary classical molecular dynamics simulations (MD), aiming to investigate...... the different nanoscale water dynamics in the GIC. This unique approach opens new possibilities to better explore all the information contained in the neutron spectroscopy data. Selected materials were investigated by first understanding the molecular motions of the different aqueous polyacrylic acid solutions...

  3. Flow through a Two-Scale Porosity Material

    Directory of Open Access Journals (Sweden)

    A. G. Andersson

    2009-01-01

    Full Text Available Flow through a two-scale porous medium is here investigated by a unique comparison between simulations performed with computational fluid dynamics and the boundary element method with microparticle image velocimetry in model geometries.

  4. Dynamic exercise enhances regional cerebral artery mean flow velocity

    DEFF Research Database (Denmark)

    Linkis, P; Jørgensen, L G; Olesen, H L

    1995-01-01

    Dynamic exercise enhances regional cerebral artery mean flow velocity. J. Appl. Physiol. 78(1): 12-16, 1995.--Anterior (ACA) and middle (MCA) cerebral artery mean flow velocities (Vmean) and pulsatility indexes were determined using transcranial Doppler in 14 subjects during dynamic exercise afte...

  5. Modelling flow dynamics in water distribution networks using ...

    African Journals Online (AJOL)

    One such approach is the Artificial Neural Networks (ANNs) technique. The advantage of ANNs is that they are robust and can be used to model complex linear and non-linear systems without making implicit assumptions. ANNs can be trained to forecast flow dynamics in a water distribution network. Such flow dynamics ...

  6. Development of evaluation method on flow-induced vibration and corrosion of components in two-phase flow by coupled analysis. 1. Evaluation of effects of flow-induced vibration on structural material integrity

    International Nuclear Information System (INIS)

    Naitoh, Masanori; Uchida, Shunsuke; Koshizuka, Seiichi; Ninokata, Hisashi; Anahara, Naoki; Dosaki, Koji; Katono, Kenichi; Akiyama, Minoru; Saitoh, Hiroaki

    2007-01-01

    Problems in major components and structural materials in nuclear power plants have often been caused by flow induced vibration, corrosion and their overlapping effects. In order to establish safe and reliable plant operation, it is necessary to predict future problems for structural materials based on combined analyses of flow dynamics and corrosion and to mitigate them before they become serious issues for plant operation. An innovative method for flow induced vibration of structures in two phase flow by combined analyses of three dimensional flow dynamics and structures is to be introduced. (author)

  7. Dynamic self-organization in particle-laden channel flow

    NARCIS (Netherlands)

    Geurts, Bernardus J.; Vreman, A.W.

    2006-01-01

    We study dynamic flow-structuring and mean-flow properties of turbulent particle-laden riser-flow at significant particle volume fractions of about 1.5%. We include particle–particle as well as particle–fluid interactions through inelastic collisions and drag forces, in a so-called four-way coupled

  8. The Supply Chain Triangle: How Synchronisation, Stability, and Productivity of Material Flows Interact

    Directory of Open Access Journals (Sweden)

    Florian Klug

    2013-01-01

    Full Text Available Empirical evidence created a commonly accepted understanding that synchronisation and stability of material flows impact its productivity. This crucial link between synchronous and stable material flows by time and quantity to create a supply chain with the highest throughput rates is at the heart of lean thinking. Although this supply chain triangle has generally been acknowledged over many years, it is necessary to reach a finer understanding of these dynamics. Therefore, we will develop and study supply chains with the help of fluid dynamics. A multistage, continuous material flow is modelled through a conservation law for material density. Unlike similar approaches, our model is not based on some quasi steady-state assumptions about the stochastic behaviour of the involved supply chain but rather on a simple deterministic rule for material flow density. These models allow us to take into account the nonlinear, dynamical interactions of different supply chain echelons and to test synchronised and stable flow with respect to its potential impacts. Numerical simulations verify that the model is able to simulate transient supply chain phenomena. Moreover, a quantification method relating to the fundamental link between synchronisation, stability, and productivity of supply chains has been found.

  9. Computational fluid dynamics incompressible turbulent flows

    CERN Document Server

    Kajishima, Takeo

    2017-01-01

    This textbook presents numerical solution techniques for incompressible turbulent flows that occur in a variety of scientific and engineering settings including aerodynamics of ground-based vehicles and low-speed aircraft, fluid flows in energy systems, atmospheric flows, and biological flows. This book encompasses fluid mechanics, partial differential equations, numerical methods, and turbulence models, and emphasizes the foundation on how the governing partial differential equations for incompressible fluid flow can be solved numerically in an accurate and efficient manner. Extensive discussions on incompressible flow solvers and turbulence modeling are also offered. This text is an ideal instructional resource and reference for students, research scientists, and professional engineers interested in analyzing fluid flows using numerical simulations for fundamental research and industrial applications. • Introduces CFD techniques for incompressible flow and turbulence with a comprehensive approach; • Enr...

  10. Deformation and flow of polymeric materials

    CERN Document Server

    Münstedt, Helmut

    2014-01-01

    This book describes the properties of single polymer molecules and polymeric materials and the methods how to characterize them. Molar masses, molar mass distributions and branching structure are discussed in detail. These properties are decisive for a deeper understanding of structure/properties relationships of polymeric materials. This book therefore describes and discusses them in detail. The mechanical behavior as a function of time and temperature is a key subject of the book. The authors present it on the basis of many original results they have obtained in their long research careers. They present the temperature dependence of mechanical properties of various polymeric materials in a wide temperature range: from cryogenic temperatures to the melt. Besides an extensive data collection on the transitions of various different polymeric materials, they also carefully present the physical explanations of the observed phenomena. Glass transition and melting temperatures are discussed, particularly, with the...

  11. Global nuclear material flow/control model

    International Nuclear Information System (INIS)

    Dreicer, J.S.; Rutherford, D.S.; Fasel, P.K.; Riese, J.M.

    1997-01-01

    This is the final report of a two-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The nuclear danger can be reduced by a system for global management, protection, control, and accounting as part of an international regime for nuclear materials. The development of an international fissile material management and control regime requires conceptual research supported by an analytical and modeling tool which treats the nuclear fuel cycle as a complete system. The prototype model developed visually represents the fundamental data, information, and capabilities related to the nuclear fuel cycle in a framework supportive of national or an international perspective. This includes an assessment of the global distribution of military and civilian fissile material inventories, a representation of the proliferation pertinent physical processes, facility specific geographic identification, and the capability to estimate resource requirements for the management and control of nuclear material. The model establishes the foundation for evaluating the global production, disposition, and safeguards and security requirements for fissile nuclear material and supports the development of other pertinent algorithmic capabilities necessary to undertake further global nuclear material related studies

  12. Improved dynamic CT angiography visualization by flow territory masking

    Directory of Open Access Journals (Sweden)

    Søren Christensen

    2015-01-01

    Full Text Available Backgound and Purpose: Computerized tomography (CT perfusion (or CTP source images from CT scanners with small detector widths can be used to create a dynamic CT angiogram (CTA similar to digital subtraction angiography (DSA. Because CTP studies use a single intravenous injection, all arterial territories enhance simultaneously, and individual arterial territories [i.e., anterior cerebral artery (ACA, middle cerebral artery (MCA, and posterior cerebral artery (PCA] cannot be delineated. This limits the ability to assess collateral flow patterns on dynamic CTAs. The aim of this study was to devise and test a postprocessing method to selectively color-label the major arterial territories on dynamic CTA. Materials and Methods: We identified 22 acute-stroke patients who underwent CTP on a 320-slice CT scanner within 6 h from symptom onset. For each case, two investigators independently generated an arterial territory map from CTP bolus arrival maps using a semiautomated method. The volumes of the arterial territories were calculated for each map and the average relative difference between these volumes was calculated for each case as a measure of interrater agreement. Arterial territory maps were superimposed on the dynamic CTA to create a vessel-selective dynamic CTA with color-coding of the main arterial territories. Two experts rated the arterial territory maps and the color-coded CTAs for consistency with expected arterial territories on a 3-point scale (excellent, moderate, poor. Results: Arterial territory maps were generated for all 22 patients. The median difference in arterial territory volumes between investigators was 2.2% [interquartile range (IQR 0.6-8.5%]. Based on expert review, the arterial territory maps and the vessel-selective dynamic CTAs showed excellent consistency with the expected arterial territories in 18 of 22 patients, moderate consistency in 2 patients, and poor consistency in another 2 patients. Conclusion: Using a

  13. Energy flow theory of nonlinear dynamical systems with applications

    CERN Document Server

    Xing, Jing Tang

    2015-01-01

    This monograph develops a generalised energy flow theory to investigate non-linear dynamical systems governed by ordinary differential equations in phase space and often met in various science and engineering fields. Important nonlinear phenomena such as, stabilities, periodical orbits, bifurcations and chaos are tack-led and the corresponding energy flow behaviors are revealed using the proposed energy flow approach. As examples, the common interested nonlinear dynamical systems, such as, Duffing’s oscillator, Van der Pol’s equation, Lorenz attractor, Rössler one and SD oscillator, etc, are discussed. This monograph lights a new energy flow research direction for nonlinear dynamics. A generalised Matlab code with User Manuel is provided for readers to conduct the energy flow analysis of their nonlinear dynamical systems. Throughout the monograph the author continuously returns to some examples in each chapter to illustrate the applications of the discussed theory and approaches. The book can be used as ...

  14. Isotope specific arbitrary material flow meter

    Science.gov (United States)

    Barty, Christopher P. J.; Post, John C.; Jones, Edwin

    2016-10-25

    A laser-based mono-energetic gamma-ray source is used to provide non-destructive and non-intrusive, quantitative determination of the absolute amount of a specific isotope contained within pipe as part of a moving fluid or quasi-fluid material stream.

  15. Flux flow and flux dynamics in high-Tc superconductors

    International Nuclear Information System (INIS)

    Bennett, L.H.; Turchinskaya, M.; Swartzendruber, L.J.; Roitburd, A.; Lundy, D.; Ritter, J.; Kaiser, D.L.

    1991-01-01

    Because high temperature superconductors, including BYCO and BSSCO, are type 2 superconductors with relatively low H(sub c 1) values and high H(sub c 2) values, they will be in a critical state for many of their applications. In the critical state, with the applied field between H(sub c 1) and H(sub c 2), flux lines have penetrated the material and can form a flux lattice and can be pinned by structural defects, chemical inhomogeneities, and impurities. A detailed knowledge of how flux penetrates the material and its behavior under the influence of applied fields and current flow, and the effect of material processing on these properties, is required in order to apply, and to improve the properties of these superconductors. When the applied field is changed rapidly, the time dependence of flux change can be divided into three regions, an initial region which occurs very rapidly, a second region in which the magnetization has a 1n(t) behavior, and a saturation region at very long times. A critical field is defined for depinning, H(sub c,p) as that field at which the hysteresis loop changes from irreversible to reversible. As a function of temperature, it is found that H(sub c,p) is well described by a power law with an exponent between 1.5 and 2.5. The behavior of H(sub c,p) for various materials and its relationship to flux flow and flux dynamics are discussed

  16. Dynamic nuclear polarization of irradiated target materials

    International Nuclear Information System (INIS)

    Seely, M.L.

    1982-01-01

    Polarized nucleon targets used in high energy physics experiments usually employ the method of dynamic nuclear polarization (DNP) to polarize the protons or deuterons in an alcohol. DNP requires the presence of paramagnetic centers, which are customarily provided by a chemical dopant. These chemically doped targets have a relatively low polarizable nucleon content and suffer from loss of polarization when subjected to high doses of ionizing radiation. If the paramagnetic centers formed when the target is irradiated can be used in the DNP process, it becomes possible to produce targets using materials which have a relatively high polarizable nucleon content, but which are not easily doped by chemical means. Furthermore, the polarization of such targets may be much more radiation resistant. Dynamic nuclear polarization in ammonia, deuterated ammonia, ammonium hydroxide, methylamine, borane ammonia, butonal, ethane and lithium borohydride has been studied. These studies were conducted at the Stanford Linear Accelerator Center using the Yale-SLAC polarized target system. Results indicate that the use of ammonia and deuterated ammonia as polarized target materials would make significant increases in polarized target performance possible

  17. Automatized material and radioactivity flow control tool in decommissioning process

    International Nuclear Information System (INIS)

    Rehak, I.; Vasko, M.; Daniska, V.; Schultz, O.

    2009-01-01

    In this presentation the automatized material and radioactivity flow control tool in decommissioning process is discussed. It is concluded that: computer simulation of the decommissioning process is one of the important attributes of computer code Omega; one of the basic tools of computer optimisation of decommissioning waste processing are the tools of integral material and radioactivity flow; all the calculated parameters of materials are stored in each point of calculation process and they can be viewed; computer code Omega represents opened modular system, which can be improved; improvement of the module of optimisation of decommissioning waste processing will be performed in the frame of improvement of material procedures and scenarios.

  18. Information systems for material flow management in construction processes

    Science.gov (United States)

    Mesároš, P.; Mandičák, T.

    2015-01-01

    The article describes the options for the management of material flows in the construction process. Management and resource planning is one of the key factors influencing the effectiveness of construction project. It is very difficult to set these flows correctly. The current period offers several options and tools to do this. Information systems and their modules can be used just for the management of materials in the construction process.

  19. Thermo-Fluid Dynamics of Two-Phase Flow

    CERN Document Server

    Ishii, Mamrou

    2011-01-01

    "Thermo-fluid Dynamics of Two-Phase Flow, Second Edition" is focused on the fundamental physics of two-phase flow. The authors present the detailed theoretical foundation of multi-phase flow thermo-fluid dynamics as they apply to: Nuclear reactor transient and accident analysis; Energy systems; Power generation systems; Chemical reactors and process systems; Space propulsion; Transport processes. This edition features updates on two-phase flow formulation and constitutive equations and CFD simulation codes such as FLUENT and CFX, new coverage of the lift force model, which is of part

  20. Dynamic Modeling Strategy for Flow Regime Transition in Gas-Liquid Two-Phase Flows

    Directory of Open Access Journals (Sweden)

    Xia Wang

    2012-12-01

    Full Text Available In modeling gas-liquid two-phase flows, the concept of flow regimes has been widely used to characterize the global interfacial structure of the flows. Nearly all constitutive relations that provide closures to the interfacial transfers in two-phase flow models, such as the two-fluid model, are flow regime dependent. Current nuclear reactor safety analysis codes, such as RELAP5, classify flow regimes using flow regime maps or transition criteria that were developed for steady-state, fully-developed flows. As two-phase flows are dynamic in nature, it is important to model the flow regime transitions dynamically to more accurately predict the two-phase flows. The present work aims to develop a dynamic modeling strategy to determine flow regimes in gas-liquid two-phase flows through introduction of interfacial area transport equations (IATEs within the framework of a two-fluid model. The IATE is a transport equation that models the interfacial area concentration by considering the creation of the interfacial area, fluid particle (bubble or liquid droplet disintegration, boiling and evaporation, and the destruction of the interfacial area, fluid particle coalescence and condensation. For flow regimes beyond bubbly flows, a two-group IATE has been proposed, in which bubbles are divided into two groups based on their size and shapes, namely group-1 and group-2 bubbles. A preliminary approach to dynamically identify the flow regimes is discussed, in which discriminators are based on the predicted information, such as the void fraction and interfacial area concentration. The flow regime predicted with this method shows good agreement with the experimental observations.

  1. ON THE ANALYSIS OF IMPEDANCE-DRIVEN REVERSE FLOW DYNAMICS

    Directory of Open Access Journals (Sweden)

    LEE V. C.-C.

    2017-02-01

    Full Text Available Impedance pump is a simple valve-less pumping mechanism, where an elastic tube is joined to a more rigid tube, at both ends. By inducing a periodic asymmetrical compression on the elastic tube will produce a unidirectional flow within the system. This pumping concept offers a low energy, low noise alternative, which makes it an effective driving mechanism, especially for micro-fluidic systems. In addition, the wave-based mechanism through which pumping occurs infers many benefits in terms of simplicity of design and manufacturing. Adjustment of simple parameters such as the excitation frequencies or compression locations will reverse the direction of flow, providing a very versatile range of flow outputs. This paper describes the experimental analysis of such impedance-driven flow with emphasis on the dynamical study of the reverse flow in open-loop environment. In this study, tapered section with converging steps is introduced at both ends of the elastic tube to amplify the magnitude of reverse flow. Study conducted shows that the reverse peak flow is rather significant with estimate of 23% lower than the forward peak flow. The flow dynamics on the other hand has shown to exhibit different characteristics as per the forward peak flow. The flow characteristics is then studied and showed that the tapered sections altered the impedance within the system and hence induce a higher flow in the reverse direction.

  2. Performance analysis of flow lines with non-linear flow of material

    CERN Document Server

    Helber, Stefan

    1999-01-01

    Flow line design is one of the major tasks in production management. The decision to install a set of machines and buffers is often highly irreversible. It determines both cost and revenue to a large extent. In order to assess the economic impact of any possible flow line design, production rates and inventory levels have to be estimated. These performance measures depend on the allocation of buffers whenever the flow of material is occasionally disrupted, for example due to machine failures or quality problems. The book describes analytical methods that can be used to evaluate flow lines much faster than with simulation techniques. Based on these fast analytical techniques, it is possible to determine a flow line design that maximizes the net present value of the flow line investment. The flow of material through the line may be non-linear, for example due to assembly operations or quality inspections.

  3. A Dynamic Growth Model for Flows of Foreign Direct Investment

    OpenAIRE

    Yi-Hui Chiang; Yiming Li; Chih-Young Hung

    2007-01-01

    In this work, we for the first time study the dynamic flows of the foreign direct investment (FDI) with a dynamic growth theory. We define the FDI flow as a process which transmits throughout a given social system by way of diverse communication channels. In model formulation, seven assumptions are thus proposed and the foreign capital policy of the host country is considered as an external influence; in addition, the investment policy of the investing country is modeled as an internal influe...

  4. Dynamics of zonal flows in helical systems.

    Science.gov (United States)

    Sugama, H; Watanabe, T-H

    2005-03-25

    A theory for describing collisionless long-time behavior of zonal flows in helical systems is presented and its validity is verified by gyrokinetic-Vlasov simulation. It is shown that, under the influence of particles trapped in helical ripples, the response of zonal flows to a given source becomes weaker for lower radial wave numbers and deeper helical ripples while a high-level zonal-flow response, which is not affected by helical-ripple-trapped particles, can be maintained for a longer time by reducing their bounce-averaged radial drift velocity. This implies a possibility that helical configurations optimized for reducing neoclassical ripple transport can simultaneously enhance zonal flows which lower anomalous transport.

  5. Dynamical eigenfunction decomposition of turbulent channel flow

    Science.gov (United States)

    Ball, K. S.; Sirovich, L.; Keefe, L. R.

    1991-01-01

    The results of an analysis of low-Reynolds-number turbulent channel flow based on the Karhunen-Loeve (K-L) expansion are presented. The turbulent flow field is generated by a direct numerical simulation of the Navier-Stokes equations at a Reynolds number Re(tau) = 80 (based on the wall shear velocity and channel half-width). The K-L procedure is then applied to determine the eigenvalues and eigenfunctions for this flow. The random coefficients of the K-L expansion are subsequently found by projecting the numerical flow field onto these eigenfunctions. The resulting expansion captures 90 percent of the turbulent energy with significantly fewer modes than the original trigonometric expansion. The eigenfunctions, which appear either as rolls or shearing motions, possess viscous boundary layers at the walls and are much richer in harmonics than the original basis functions.

  6. Canopy Dynamics in Nanoscale Ionic Materials

    KAUST Repository

    Jespersen, Michael L.

    2010-07-27

    Nanoscale ionic materials (NIMS) are organic - inorganic hybrids in which a core nanostructure is functionalized with a covalently attached corona and an ionically tethered organic canopy. NIMS are engineered to be liquids under ambient conditions in the absence of solvent and are of interest for a variety of applications. We have used nuclear magnetic resonance (NMR) relaxation and pulse-field gradient (PFG) diffusion experiments to measure the canopy dynamics of NIMS prepared from 18-nm silica cores modified by an alkylsilane monolayer possessing terminal sulfonic acid functionality, paired with an amine-terminated ethylene oxide/propylene oxide block copolymer canopy. Carbon NMR studies show that the block copolymer canopy is mobile both in the bulk and in the NIMS and that the fast (ns) dynamics are insensitive to the presence of the silica nanoparticles. Canopy diffusion in the NIMS is slowed relative to the neat canopy, but not to the degree predicted from the diffusion of hard-sphere particles. Canopy diffusion is not restricted to the surface of the nanoparticles and shows unexpected behavior upon addition of excess canopy. Taken together, these data indicate that the liquid-like behavior in NIMS is due to rapid exchange of the block copolymer canopy between the ionically modified nanoparticles. © 2010 American Chemical Society.

  7. Canopy Dynamics in Nanoscale Ionic Materials

    KAUST Repository

    Jespersen, Michael L.; Mirau, Peter A.; Meerwall, Ernst von; Vaia, Richard A.; Rodriguez, Robert; Giannelis, Emmanuel P.

    2010-01-01

    Nanoscale ionic materials (NIMS) are organic - inorganic hybrids in which a core nanostructure is functionalized with a covalently attached corona and an ionically tethered organic canopy. NIMS are engineered to be liquids under ambient conditions in the absence of solvent and are of interest for a variety of applications. We have used nuclear magnetic resonance (NMR) relaxation and pulse-field gradient (PFG) diffusion experiments to measure the canopy dynamics of NIMS prepared from 18-nm silica cores modified by an alkylsilane monolayer possessing terminal sulfonic acid functionality, paired with an amine-terminated ethylene oxide/propylene oxide block copolymer canopy. Carbon NMR studies show that the block copolymer canopy is mobile both in the bulk and in the NIMS and that the fast (ns) dynamics are insensitive to the presence of the silica nanoparticles. Canopy diffusion in the NIMS is slowed relative to the neat canopy, but not to the degree predicted from the diffusion of hard-sphere particles. Canopy diffusion is not restricted to the surface of the nanoparticles and shows unexpected behavior upon addition of excess canopy. Taken together, these data indicate that the liquid-like behavior in NIMS is due to rapid exchange of the block copolymer canopy between the ionically modified nanoparticles. © 2010 American Chemical Society.

  8. Computational fluid dynamics (CFD) simulation of hot air flow ...

    African Journals Online (AJOL)

    Computational Fluid Dynamics simulation of air flow distribution, air velocity and pressure field pattern as it will affect moisture transient in a cabinet tray dryer is performed using SolidWorks Flow Simulation (SWFS) 2014 SP 4.0 program. The model used for the drying process in this experiment was designed with Solid ...

  9. Dynamics and statistics of heavy particles in turbulent flows

    NARCIS (Netherlands)

    Cencini, M.; Bec, J.; Biferale, L.; Boffetta, G.; Celani, A.; Lanotte, A.; Musacchio, S.; Toschi, F.

    2006-01-01

    We present the results of direct numerical simulations (DNS) of turbulent flows seeded with millions of passive inertial particles. The maximum Reynolds number is Re¿~ 200. We consider particles much heavier than the carrier flow in the limit when the Stokes drag force dominates their dynamical

  10. Are international fund flows related to exchange rate dynamics?

    NARCIS (Netherlands)

    Li, Suxiao; de Haan, Jakob; Scholtens, Bert

    2018-01-01

    Employing monthly data for 53 countries between 1996 and 2015, we investigate the relationship between international fund flows and exchange rate dynamics. We find strong co-movement between funds flows (as measured with the EPFR Global data base) and bilateral real exchange rates vis-à-vis the USD.

  11. Non-Adiabatic Molecular Dynamics Methods for Materials Discovery

    Energy Technology Data Exchange (ETDEWEB)

    Furche, Filipp [Univ. of California, Irvine, CA (United States); Parker, Shane M. [Univ. of California, Irvine, CA (United States); Muuronen, Mikko J. [Univ. of California, Irvine, CA (United States); Roy, Saswata [Univ. of California, Irvine, CA (United States)

    2017-04-04

    The flow of radiative energy in light-driven materials such as photosensitizer dyes or photocatalysts is governed by non-adiabatic transitions between electronic states and cannot be described within the Born-Oppenheimer approximation commonly used in electronic structure theory. The non-adiabatic molecular dynamics (NAMD) methods based on Tully surface hopping and time-dependent density functional theory developed in this project have greatly extended the range of molecular materials that can be tackled by NAMD simulations. New algorithms to compute molecular excited state and response properties efficiently were developed. Fundamental limitations of common non-linear response methods were discovered and characterized. Methods for accurate computations of vibronic spectra of materials such as black absorbers were developed and applied. It was shown that open-shell TDDFT methods capture bond breaking in NAMD simulations, a longstanding challenge for single-reference molecular dynamics simulations. The methods developed in this project were applied to study the photodissociation of acetaldehyde and revealed that non-adiabatic effects are experimentally observable in fragment kinetic energy distributions. Finally, the project enabled the first detailed NAMD simulations of photocatalytic water oxidation by titania nanoclusters, uncovering the mechanism of this fundamentally important reaction for fuel generation and storage.

  12. Influence of dynamic material properties on the design criteria of containment structures for fast breeder reactors

    International Nuclear Information System (INIS)

    Albertini, C.; Montagnani, M.

    1978-01-01

    Effects of defects in materials, created by welding processes and irradiation, are examined taking into account the influence of strain-rate. Materials examined are austenitic stainless steels, such as AISI 316 L and H, AISI 304 L. The influence of such parameters on the flow curves of these materials requires the introduction of additional safety coefficients in calculating the response of dynamically loaded structures such as the pressure vessel in the case of an accident. Furthermore the effects of dynamic multi-axial loading and wave propagation should be taken into account in the safety analysis. Running experiments in dynamic biaxial loading conditions are introduced. (author)

  13. A hydrodynamic model for granular material flows including segregation effects

    Science.gov (United States)

    Gilberg, Dominik; Klar, Axel; Steiner, Konrad

    2017-06-01

    The simulation of granular flows including segregation effects in large industrial processes using particle methods is accurate, but very time-consuming. To overcome the long computation times a macroscopic model is a natural choice. Therefore, we couple a mixture theory based segregation model to a hydrodynamic model of Navier-Stokes-type, describing the flow behavior of the granular material. The granular flow model is a hybrid model derived from kinetic theory and a soil mechanical approach to cover the regime of fast dilute flow, as well as slow dense flow, where the density of the granular material is close to the maximum packing density. Originally, the segregation model has been formulated by Thornton and Gray for idealized avalanches. It is modified and adapted to be in the preferred form for the coupling. In the final coupled model the segregation process depends on the local state of the granular system. On the other hand, the granular system changes as differently mixed regions of the granular material differ i.e. in the packing density. For the modeling process the focus lies on dry granular material flows of two particle types differing only in size but can be easily extended to arbitrary granular mixtures of different particle size and density. To solve the coupled system a finite volume approach is used. To test the model the rotational mixing of small and large particles in a tumbler is simulated.

  14. Architected squirt-flow materials for energy dissipation

    Science.gov (United States)

    Cohen, Tal; Kurzeja, Patrick; Bertoldi, Katia

    2017-12-01

    In the present study we explore material architectures that lead to enhanced dissipation properties by taking advantage of squirt-flow - a local flow mechanism triggered by heterogeneities at the pore level. While squirt-flow is a known dominant source of dissipation and seismic attenuation in fluid saturated geological materials, we study its untapped potential to be incorporated in highly deformable elastic materials with embedded fluid-filled cavities for future engineering applications. An analytical investigation, that isolates the squirt-flow mechanism from other potential dissipation mechanisms and considers an idealized setting, predicts high theoretical levels of dissipation achievable by squirt-flow and establishes a set of guidelines for optimal dissipation design. Particular architectures are then investigated via numerical simulations showing that a careful design of the internal voids can lead to an increase of dissipation levels by an order of magnitude, compared with equivalent homogeneous void distributions. Therefore, we suggest squirt-flow as a promising mechanism to be incorporated in future architected materials to effectively and reversibly dissipate energy.

  15. Amendment to Validated dynamic flow model

    DEFF Research Database (Denmark)

    Knudsen, Torben

    2011-01-01

    The purpose of WP2 is to establish flow models relating the wind speed at turbines in a farm. Until now, active control of power reference has not been included in these models as only data with standard operation has been available. In this report the first data series with power reference excit...... turbine in undisturbed flow. For this data set both the multiplicative model and in particular the simple first order transfer function model can predict the down wind wind speed from upwind wind speed and loading.......The purpose of WP2 is to establish flow models relating the wind speed at turbines in a farm. Until now, active control of power reference has not been included in these models as only data with standard operation has been available. In this report the first data series with power reference...

  16. Turbomachinery Flow Physics and Dynamic Performance

    CERN Document Server

    Schobeiri, Meinhard T

    2012-01-01

    With this second revised and extended edition, the readers have a solid source of information for designing state-of-the art turbomachinery components and systems at hand.   Based on fundamental principles of turbomachinery thermo-fluid mechanics, numerous CFD based calculation methods are being developed to simulate the complex 3-dimensional, highly unsteady turbulent flow within turbine or compressor stages. The objective of this book is to present the fundamental principles of turbomachinery fluid-thermodynamic design process of turbine and compressor components, power generation and aircraft gas turbines in a unified and compact manner. The book provides senior undergraduate students, graduate students and engineers in the turbomachinery industry with a solid background of turbomachinery flow physics and performance fundamentals that are essential for understanding turbomachinery performance and flow complexes.   While maintaining the unifying character of the book structure in this second revised and e...

  17. Flow dynamics of volume-heated boiling pools

    International Nuclear Information System (INIS)

    Ginsberg, T.; Jones, O.C.; Chen, J.C.

    1979-01-01

    Safety analyses of fast breeder reactors require understanding of the two-phase fluid dynamic and heat transfer characteristics of volume-heated boiling pool systems. Design of direct contact three-phase boilers, of practical interest in the chemical industries also requires understanding of the fundamental two-phase flow and heat transfer behavior of volume boiling systems. Several experiments have been recently reported relevant to the boundary heat-loss mechanisms of boiling pool systems. Considerably less is known about the two-phase fluid dynamic behavior of such systems. This paper describes an experimental investigation of the steady-state flow dynamics of volume-heated boiling pool systems

  18. Shear Layer Dynamics in Resonating Cavity Flows

    National Research Council Canada - National Science Library

    Ukeiley, Lawrence

    2004-01-01

    .... The PIV data was also combined with the surface pressure measurements through the application of the Quadratic Stochastic Estimation procedure to provide time resolved snapshots of the flow field. Examination of these results indicate the strong pumping action of the cavity regardless of whether resonance existed and was used to visualize the large scale structures interacting with the aft wall.

  19. ASSESSMENT OF PLASTIC FLOWS AND STOCKS IN SERBIA USING MATERIAL FLOW ANALYSIS

    Directory of Open Access Journals (Sweden)

    Goran Vujić

    2010-01-01

    Full Text Available Material flow analysis (MFA was used to assess the amounts of plastic materials flows and stocks that are annually produced, consumed, imported, exported, collected, recycled, and disposed in the landfills in Serbia. The analysis revealed that approximatelly 269,000 tons of plastic materials are directly disposed in uncontrolled landfills in Serbia without any preatretment, and that siginificant amounts of these materials have already accumulated in the landfills. The substantial amounts of landfilled plastics represent not only a loss of valuable recourses, but also pose a seriuos treath to the environment and human health, and if the trend of direct plastic landfilling is continued, Serbia will face with grave consecequnces.

  20. A dynamic model of renal blood flow autoregulation

    DEFF Research Database (Denmark)

    Holstein-Rathlou, N H; Marsh, D J

    1994-01-01

    To test whether a mathematical model combining dynamic models of the tubuloglomerular feedback (TGF) mechanism and the myogenic mechanism was sufficient to explain dynamic autoregulation of renal blood flow, we compared model simulations with experimental data. To assess the dynamic characteristics...... of renal autoregulation, a broad band perturbation of the arterial pressure was employed in both the simulations and the experiments. Renal blood flow and tubular pressure were used as response variables in the comparison. To better approximate the situation in vivo where a large number of individual...... data, which shows a unimodal curve for the admittance phase. The ability of the model to reproduce the experimental data supports the hypothesis that dynamic autoregulation of renal blood flow is due to the combined action of TGF and the myogenic response....

  1. An information system for sustainable materials management with material flow accounting and waste input–output analysis

    Directory of Open Access Journals (Sweden)

    Pi-Cheng Chen

    2017-05-01

    Full Text Available Sustainable materials management focuses on the dynamics of materials in economic and environmental activities to optimize material use efficiency and reduce environmental impact. A preliminary web-based information system is thus developed to analyze the issues of resource consumption and waste generation, enabling countries to manage resources and wastes from a life cycle perspective. This pioneering system features a four-layer framework that integrates information on physical flows and economic activities with material flow accounting and waste input–output table analysis. Within this framework, several applications were developed for different waste and resource management stakeholders. The hierarchical and interactive dashboards allow convenient overview of economy-wide material accounts, waste streams, and secondary resource circulation. Furthermore, the system can trace material flows through associated production supply chain and consumption activities. Integrated with economic models; this system can predict the possible overloading on the current waste management facility capacities and provide decision support for designing strategies to approach resource sustainability. The limitations of current system are specified for directing further enhancement of functionalities.

  2. Applying flow chemistry: methods, materials, and multistep synthesis.

    Science.gov (United States)

    McQuade, D Tyler; Seeberger, Peter H

    2013-07-05

    The synthesis of complex molecules requires control over both chemical reactivity and reaction conditions. While reactivity drives the majority of chemical discovery, advances in reaction condition control have accelerated method development/discovery. Recent tools include automated synthesizers and flow reactors. In this Synopsis, we describe how flow reactors have enabled chemical advances in our groups in the areas of single-stage reactions, materials synthesis, and multistep reactions. In each section, we detail the lessons learned and propose future directions.

  3. A Theory of Material Spike Formation in Flow Separation

    Science.gov (United States)

    Serra, Mattia; Haller, George

    2017-11-01

    We develop a frame-invariant theory of material spike formation during flow separation over a no-slip boundary in two-dimensional flows with arbitrary time dependence. This theory identifies both fixed and moving separation, is effective also over short-time intervals, and admits a rigorous instantaneous limit. Our theory is based on topological properties of material lines, combining objectively stretching- and rotation-based kinematic quantities. The separation profile identified here serves as the theoretical backbone for the material spike from its birth to its fully developed shape, and remains hidden to existing approaches. Finally, our theory can be used to rigorously explain the perception of off-wall separation in unsteady flows, and more importantly, provide the conditions under which such a perception is justified. We illustrate our results in several examples including steady, time-periodic and unsteady analytic velocity fields with flat and curved boundaries, and an experimental dataset.

  4. Linking material and energy flow analyses and social theory

    Energy Technology Data Exchange (ETDEWEB)

    Schiller, Frank [The Open University, Faculty of Maths, Computing and Technology, Walton Hall, Milton Keynes, MK7 6AA (United Kingdom)

    2009-04-15

    The paper explores the potential of Habermas' theory of communicative action to alter the social reflexivity of material and energy flow analysis. With his social macro theory Habermas has provided an alternative, critical justification for social theory that can be distinguished from economic libertarianism and from political liberalism. Implicitly, most flow approaches draw from these theoretical traditions rather than from discourse theory. There are several types of material and energy flow analyses. While these concepts basically share a system theoretical view, they lack a specific interdisciplinary perspective that ties the fundamental insight of flows to disciplinary scientific development. Instead of simply expanding micro-models to the social macro-dimension social theory suggests infusing the very notion of flows to the progress of disciplines. With regard to the functional integration of society, material and energy flow analyses can rely on the paradigm of ecological economics and at the same time progress the debate between strong and weak sustainability within the paradigm. However, placing economics at the centre of their functional analyses may still ignore the broader social integration of society, depending on their pre-analytic outline of research and the methods used. (author)

  5. Linking material and energy flow analyses and social theory

    International Nuclear Information System (INIS)

    Schiller, Frank

    2009-01-01

    The paper explores the potential of Habermas' theory of communicative action to alter the social reflexivity of material and energy flow analysis. With his social macro theory Habermas has provided an alternative, critical justification for social theory that can be distinguished from economic libertarianism and from political liberalism. Implicitly, most flow approaches draw from these theoretical traditions rather than from discourse theory. There are several types of material and energy flow analyses. While these concepts basically share a system theoretical view, they lack a specific interdisciplinary perspective that ties the fundamental insight of flows to disciplinary scientific development. Instead of simply expanding micro-models to the social macro-dimension social theory suggests infusing the very notion of flows to the progress of disciplines. With regard to the functional integration of society, material and energy flow analyses can rely on the paradigm of ecological economics and at the same time progress the debate between strong and weak sustainability within the paradigm. However, placing economics at the centre of their functional analyses may still ignore the broader social integration of society, depending on their pre-analytic outline of research and the methods used. (author)

  6. Modeling axisymmetric flows dynamics of films, jets, and drops

    CERN Document Server

    Middleman, Stanley

    1995-01-01

    This concise book is intended to fulfill two purposes: to provide an important supplement to classic texts by carrying fluid dynamics students on into the realm of free boundary flows; and to demonstrate the art of mathematical modeling based on knowledge, intuition, and observation. In the authors words, the overall goal is make the complex simple, without losing the essence--the virtue--of the complexity.Modeling Axisymmetric Flows: Dynamics of Films, Jets, and Drops is the first book to cover the topics of axisymmetric laminar flows; free-boundary flows; and dynamics of drops, jets, and films. The text also features comparisons of models to experiments, and it includes a large selection of problems at the end of each chapter.Key Features* Contains problems at the end of each chapter* Compares real-world experimental data to theory* Provides one of the first comprehensive examinations of axisymmetric laminar flows, free-boundary flows, and dynamics of drops, jets, and films* Includes development of basic eq...

  7. Reservoir resistivity characterization incorporating flow dynamics

    KAUST Repository

    Arango, Santiago; Sun, Shuyu; Hoteit, Ibrahim; Katterbauer, Klemens

    2016-01-01

    Systems and methods for reservoir resistivity characterization are provided, in various aspects, an integrated framework for the estimation of Archie's parameters for a strongly heterogeneous reservoir utilizing the dynamics of the reservoir are provided. The framework can encompass a Bayesian estimation/inversion method for estimating the reservoir parameters, integrating production and time lapse formation conductivity data to achieve a better understanding of the subsurface rock conductivity properties and hence improve water saturation imaging.

  8. Reservoir resistivity characterization incorporating flow dynamics

    KAUST Repository

    Arango, Santiago

    2016-04-07

    Systems and methods for reservoir resistivity characterization are provided, in various aspects, an integrated framework for the estimation of Archie\\'s parameters for a strongly heterogeneous reservoir utilizing the dynamics of the reservoir are provided. The framework can encompass a Bayesian estimation/inversion method for estimating the reservoir parameters, integrating production and time lapse formation conductivity data to achieve a better understanding of the subsurface rock conductivity properties and hence improve water saturation imaging.

  9. An evaluation of Dynamic TOPMODEL for low flow simulation

    Science.gov (United States)

    Coxon, G.; Freer, J. E.; Quinn, N.; Woods, R. A.; Wagener, T.; Howden, N. J. K.

    2015-12-01

    Hydrological models are essential tools for drought risk management, often providing input to water resource system models, aiding our understanding of low flow processes within catchments and providing low flow predictions. However, simulating low flows and droughts is challenging as hydrological systems often demonstrate threshold effects in connectivity, non-linear groundwater contributions and a greater influence of water resource system elements during low flow periods. These dynamic processes are typically not well represented in commonly used hydrological models due to data and model limitations. Furthermore, calibrated or behavioural models may not be effectively evaluated during more extreme drought periods. A better understanding of the processes that occur during low flows and how these are represented within models is thus required if we want to be able to provide robust and reliable predictions of future drought events. In this study, we assess the performance of dynamic TOPMODEL for low flow simulation. Dynamic TOPMODEL was applied to a number of UK catchments in the Thames region using time series of observed rainfall and potential evapotranspiration data that captured multiple historic droughts over a period of several years. The model performance was assessed against the observed discharge time series using a limits of acceptability framework, which included uncertainty in the discharge time series. We evaluate the models against multiple signatures of catchment low-flow behaviour and investigate differences in model performance between catchments, model diagnostics and for different low flow periods. We also considered the impact of surface water and groundwater abstractions and discharges on the observed discharge time series and how this affected the model evaluation. From analysing the model performance, we suggest future improvements to Dynamic TOPMODEL to improve the representation of low flow processes within the model structure.

  10. Alveolar Thin Layer Flows and Surfactant Dynamics

    Science.gov (United States)

    Roumie, Ahmad; Jbaily, Abdulrahman; Szeri, Andrew J.

    2017-11-01

    Pulmonary surfactants play a vital role in everyday respiration. They regulate surface tension in the lungs by diffusing through the hypophase, a liquid layer that lines the interior surface of the alveoli, and adsorbing to the existing air-fluid interface. This decreases the equilibrium surface tension value by as much as a factor of 3, minimizing breathing effort and preventing lung collapse at the end of exhalation. Given that the hypophase thickness h lies within the range 0.1 μm < h <0.5 μm , and that the average alveolar radius R is 100 μm , for some purposes the hypophase may usefully be modeled as a fluid layer on a flat sheet representing the alveolar wall. Moreover, because of the large aspect ratio, the lubrication approximation can be applied. The aim of the present work is to study the interaction between the straining of the alveolar wall and the fluid flow in the hypophase. The analysis is governed by the relative magnitudes of the time scales of surfactant diffusion, adsorption, desorption, viscous dissipation and sheet straining. Cases of particular interest include non-uniform surfactant concentration at the interface, leading to Marangoni flows and a non-uniform hypophase thickness profile. The analytical formulation and numerical simulations are presented. This work is motivated by a need to understand alveolar deformation during breathing, and to do so in a way that derives from improved understanding of the fluid mechanics of the problem.

  11. Dynamic flow control strategies of vehicle SCR Urea Dosing System

    Science.gov (United States)

    Lin, Wei; Zhang, Youtong; Asif, Malik

    2015-03-01

    Selective Catalyst Reduction(SCR) Urea Dosing System(UDS) directly affects the system accuracy and the dynamic response performance of a vehicle. However, the UDS dynamic response is hard to keep up with the changes of the engine's operating conditions. That will lead to low NO X conversion efficiency or NH3 slip. In order to optimize the injection accuracy and the response speed of the UDS in dynamic conditions, an advanced control strategy based on an air-assisted volumetric UDS is presented. It covers the methods of flow compensation and switching working conditions. The strategy is authenticated on an UDS and tested in different dynamic conditions. The result shows that the control strategy discussed results in higher dynamic accuracy and faster dynamic response speed of UDS. The inject deviation range is improved from being between -8% and 10% to -4% and 2% and became more stable than before, and the dynamic response time was shortened from 200 ms to 150 ms. The ETC cycle result shows that after using the new strategy the NH3 emission is reduced by 60%, and the NO X emission remains almost unchanged. The trade-off between NO X conversion efficiency and NH3 slip is mitigated. The studied flow compensation and switching working conditions can improve the dynamic performance of the UDS significantly and make the UDS dynamic response keep up with the changes of the engine's operating conditions quickly.

  12. FBR structural material test facility in flowing sodium environment

    International Nuclear Information System (INIS)

    Shanmugasundaram, M.; Kumar, Hemant; Ravi, S.

    2016-01-01

    In Fast Breeder Reactor (FBR), components such as Control and Safety Rod Drive Mechanism (CSRDM), Diverse Safety Rod Drive Mechanism (DSRDM), Transfer arm and primary sodium pumps etc., are experiencing friction and wear between the moving parts in contact with liquid sodium at high temperature. Hence, it is essential to evaluate the friction and wear behaviour to validate the design of components. In addition, the above core structural reactor components such as core cover plate, control plugs etc., undergoes thermal striping which is random thermal cycling induced by flow stream resulting from the mixing of non isothermal jets near that component. This leads to development of surface cracks and assist in crack growth which in turn may lead to failure of the structural component. Further, high temperature components are often subjected to low cycle fatigue due to temperature gradient induced cyclic thermal stresses caused by start-ups, shutdowns and transients. Also steady state operation at elevated temperature introduces creep and the combination of creep and fatigue leads to creep-fatigue interactions. Therefore, resistance to low cycle fatigue, creep and creep-fatigue are important considerations in the design of FBR components. Liquid sodium is used as coolant and hence the study of the above properties in dynamic sodium are equally important. In view of the above, facility for materials testing in sodium (INSOT) has been constructed and in operation for conducting the experiments such as tribology, thermal stripping, low cycle fatigue, creep and creep-fatigue interaction etc. The salient features of the operation and maintenance of creep and fatigue loops of INSOT facility are discussed in detail. (author)

  13. Computational Analysis of Material Flow During Friction Stir Welding of AA5059 Aluminum Alloys

    Science.gov (United States)

    Grujicic, M.; Arakere, G.; Pandurangan, B.; Ochterbeck, J. M.; Yen, C.-F.; Cheeseman, B. A.; Reynolds, A. P.; Sutton, M. A.

    2012-09-01

    Workpiece material flow and stirring/mixing during the friction stir welding (FSW) process are investigated computationally. Within the numerical model of the FSW process, the FSW tool is treated as a Lagrangian component while the workpiece material is treated as an Eulerian component. The employed coupled Eulerian/Lagrangian computational analysis of the welding process was of a two-way thermo-mechanical character (i.e., frictional-sliding/plastic-work dissipation is taken to act as a heat source in the thermal-energy balance equation) while temperature is allowed to affect mechanical aspects of the model through temperature-dependent material properties. The workpiece material (AA5059, solid-solution strengthened and strain-hardened aluminum alloy) is represented using a modified version of the classical Johnson-Cook model (within which the strain-hardening term is augmented to take into account for the effect of dynamic recrystallization) while the FSW tool material (AISI H13 tool steel) is modeled as an isotropic linear-elastic material. Within the analysis, the effects of some of the FSW key process parameters are investigated (e.g., weld pitch, tool tilt-angle, and the tool pin-size). The results pertaining to the material flow during FSW are compared with their experimental counterparts. It is found that, for the most part, experimentally observed material-flow characteristics are reproduced within the current FSW-process model.

  14. Non-Steady Oscillatory Flow in Coarse Granular Materials

    DEFF Research Database (Denmark)

    Andersen, O. H.; Gent, M. R. A. van; Meer, J. W. van der

    1992-01-01

    Stationary and oscillatory flow through coarse granular materials have been investigated experimentally at Delft Hydraulics in their oscillating water tunnel with the objective of determining the coefficients of the extended Forchheimer equation. Cylinders, spheres and different types of rock have....... Further, for the non-stationary term, the virtual mass coefficient will be derived....

  15. Visual Analysis of Inclusion Dynamics in Two-Phase Flow.

    Science.gov (United States)

    Karch, Grzegorz Karol; Beck, Fabian; Ertl, Moritz; Meister, Christian; Schulte, Kathrin; Weigand, Bernhard; Ertl, Thomas; Sadlo, Filip

    2018-05-01

    In single-phase flow visualization, research focuses on the analysis of vector field properties. In two-phase flow, in contrast, analysis of the phase components is typically of major interest. So far, visualization research of two-phase flow concentrated on proper interface reconstruction and the analysis thereof. In this paper, we present a novel visualization technique that enables the investigation of complex two-phase flow phenomena with respect to the physics of breakup and coalescence of inclusions. On the one hand, we adapt dimensionless quantities for a localized analysis of phase instability and breakup, and provide detailed inspection of breakup dynamics with emphasis on oscillation and its interplay with rotational motion. On the other hand, we present a parametric tightly linked space-time visualization approach for an effective interactive representation of the overall dynamics. We demonstrate the utility of our approach using several two-phase CFD datasets.

  16. Lattice fluid dynamics from perfect discretizations of continuum flows

    International Nuclear Information System (INIS)

    Katz, E.; Wiese, U.

    1998-01-01

    We use renormalization group methods to derive equations of motion for large scale variables in fluid dynamics. The large scale variables are averages of the underlying continuum variables over cubic volumes and naturally exist on a lattice. The resulting lattice dynamics represents a perfect discretization of continuum physics, i.e., grid artifacts are completely eliminated. Perfect equations of motion are derived for static, slow flows of incompressible, viscous fluids. For Hagen-Poiseuille flow in a channel with a square cross section the equations reduce to a perfect discretization of the Poisson equation for the velocity field with Dirichlet boundary conditions. The perfect large scale Poisson equation is used in a numerical simulation and is shown to represent the continuum flow exactly. For nonsquare cross sections one can use a numerical iterative procedure to derive flow equations that are approximately perfect. copyright 1998 The American Physical Society

  17. Flow behavior and mobility of contaminated waste rock materials in the abandoned Imgi mine in Korea

    Science.gov (United States)

    Jeong, S. W.; Wu, Y.-H.; Cho, Y. C.; Ji, S. W.

    2018-01-01

    Incomplete mine reclamation can cause ecological and environmental impacts. This paper focuses on the geotechnical and rheological characteristics of waste rock materials, which are mainly composed of sand-size particles, potentially resulting in mass movement (e.g., slide or flow) and extensive acid mine drainage. To examine the potential for contaminant mobilization resulting from physicochemical processes in abandoned mines, a series of scenario-based debris flow simulations was conducted using Debris-2D to identify different hazard scenarios and volumes. The flow behavior of waste rock materials was examined using a ball-measuring rheometric apparatus, which can be adapted for large particle samples, such as debris flow. Bingham yield stresses determined in controlled shear rate mode were used as an input parameter in the debris flow modeling. The yield stresses ranged from 100 to 1000 Pa for shear rates ranging from 10- 5 to 102 s- 1. The results demonstrated that the lowest yield stress could result in high mobility of debris flow (e.g., runout distance > 700 m from the source area for 60 s); consequently, the material contaminants may easily reach the confluence of the Suyoung River through a mountain stream. When a fast slide or debris flow occurs at or near an abandoned mine area, it may result in extremely dynamic and destructive geomorphological changes. Even for the highest yield stress of debris flow simulation (i.e., τy = 2000 Pa), the released debris could flow into the mountain stream; therefore, people living near abandoned mines may become exposed to water pollution throughout the day. To maintain safety at and near abandoned mines, the physicochemical properties of waste materials should be monitored, and proper mitigation measures post-mining should be considered in terms of both their physical damage and chemical pollution potential.

  18. CASH-FLOW SENSITIVITY TO PAYMENTS FOR MATERIAL RESSOURCES

    Directory of Open Access Journals (Sweden)

    Lavinia Elena BRÎNDESCU OLARIU

    2014-12-01

    Full Text Available The financing decision is taken based on the expectations concerning the future cash-flows generated in the operating activity, which should provide coverage for the debt service and allow for an increase of the shareholders’ wealth. Still, the future cash-flows are affected by risk, which makes the sensitivity analysis a very important part of the decision process. The current research sets to evaluate the sensitivity of the payment capacity to variations of the payments for raw materials and consumables. The study employs 391 forecasted yearly cash-flow statements collected from 50 companies together with detailed information concerning the hypotheses of the forecasts. The results of the study allow for the establishment of benchmarks for the payment capacity’s sensitivity, the determination of the mechanisms through which the variation of payments for raw materials and consumables impacts the payment capacity, as well as the identification of the possible causes of such a variation.

  19. Dynamic MLD analysis with flow graphs

    International Nuclear Information System (INIS)

    Jenab, K.; Sarfaraz, A.; Dhillon, B.S.; Seyed Hosseini, S.M.

    2012-01-01

    Master Logic Diagram (MLD) depicts the interrelationships among the independent functions and dependent support functions. Using MLD, the manner in which all functions, sub-functions interact to achieve the overall system objective can be investigated. This paper reports a probabilistic model to analyze an MLD by translating the interrelationships to a graph model. The proposed model uses the flow-graph concept and Moment Generating Function (MGF) to analyze the dependency matrix representing the MLD with embedded self-healing function/sub-functions. The functions/sub-functions are featured by failure detection and recovery mechanisms. The newly developed model provides the probability of the system failure, and system mean and standard deviation time to failure in the MLD. An illustrative example is demonstrated to present the application of the model.

  20. Dynamics and Instabilities of Free Surface and Vortex Flows

    DEFF Research Database (Denmark)

    Tophøj, Laust Emil Hjerrild

    2012-01-01

    This PhD thesis consists of two main parts. The first part describes the dynamics of an ideal fluid on a stationary free surface of a given shape. It turns out that one can formulate a set of self-contained equations of momentum conservation for the tangential flow, with no reference to the flow ......)]. Finally, an experimental work on elastic collisions of wet spheres is briefly discussed....

  1. Deterministic chaotic dynamics of Raba River flow (Polish Carpathian Mountains)

    Science.gov (United States)

    Kędra, Mariola

    2014-02-01

    Is the underlying dynamics of river flow random or deterministic? If it is deterministic, is it deterministic chaotic? This issue is still controversial. The application of several independent methods, techniques and tools for studying daily river flow data gives consistent, reliable and clear-cut results to the question. The outcomes point out that the investigated discharge dynamics is not random but deterministic. Moreover, the results completely confirm the nonlinear deterministic chaotic nature of the studied process. The research was conducted on daily discharge from two selected gauging stations of the mountain river in southern Poland, the Raba River.

  2. Development of dynamic PIV for droplet jet flow

    International Nuclear Information System (INIS)

    Okamoto, K.; Hong, S. D.; Bi, W. T.; Sugii, Y.; Madarame, H.; Hayami, H.

    2003-01-01

    The Particle Image Velocimetry (PIV) can capture velocity vector fields with high spatial resolution. In this study, the Dynamic PIV system up to 10kHz temporal resolution was developed with combining the High-speed camera and high speed Laser with Double pulse option. The 1024 x 1024 pixel images with frame straddling were captured in 2kHz. Also, PIV data were measured in 512 x 256 pixel in 10kHz. The system had been applied to capture the water droplet flow. The transient characteristics of the droplet flow can be clearly captured using the developed Dynamic PIV System

  3. Analysis of Material Flow in Screw Extrusion of Aluminum

    International Nuclear Information System (INIS)

    Haugen, Bjoern; Oernskar, Magnus; Welo, Torgeir; Wideroee, Fredrik

    2010-01-01

    Screw extrusion of aluminum is a new process for production of aluminum profiles. The commercial potential could be large. Little experimental and numerical work has been done with respect to this process.The material flow of hot aluminum in a screw extruder has been analyzed using finite element formulations for the non-Newtonian Navier-Stokes equations. Aluminum material properties are modeled using the Zener-Holloman material model. Effects of stick-slip conditions are investigated with respect to pressure build up and mixing quality of the extrusion process.The numerical results are compared with physical experiments using an experimental screw extruder.

  4. Material flow and microstructural evolution during friction stir spot welding of AZ31 magnesium alloy

    International Nuclear Information System (INIS)

    Yuan, W.; Mishra, R.S.; Carlson, B.; Verma, R.; Mishra, R.K.

    2012-01-01

    Material flow and local texture evolution during friction stir spot welding (FSSW) of AZ31 magnesium alloy was characterized by varying tool rotation rates. Texture at various locations of the welded region was measured using electron backscatter diffraction (EBSD). Material flow is significantly influenced by tool rotation rate with a conical step spiral pin tool, and FSSW introduces a unique basal fiber texture in the welded region. Results indicate that local texture evolution is dominated by shear deformation through material flow. The tool shoulder applies both shear and compressive deformation to the upper region material; however, the rotating pin introduces only shear deformation to the adjacent material. As the tool rotation rate increases, the effect of both tool shoulder and pin becomes more prominent by introducing a higher degree of basal pole tilt with respect to the initial rolling texture at the periphery of the pin, but less tilt in the upper region beneath the tool shoulder undersurface. The equiaxed fine grain structure in the stir zone appears to result from the twinning-induced dynamic recrystallization and discontinuous dynamic recrystallization.

  5. Flow and Jamming of Granular Materials in a Two-dimensional Hopper

    Science.gov (United States)

    Tang, Junyao

    Flow in a hopper is both a fertile testing ground for understanding fundamental granular flow rheology and industrially highly relevant. Despite increasing research efforts in this area, a comprehensive physical theory is still lacking for both jamming and flow of granular materials in a hopper. In this work, I have designed a two dimensional (2D) hopper experiment using photoelastic particles (particles' shape: disk or ellipse), with the goal to build a bridge between macroscopic phenomenon of hopper flow and microscopic particle-scale dynamics. Through synchronized data of particle tracking and stress distributions in particles, I have shown differences between my data of the time-averaged velocity/stress profile of 2D hopper flow with previous theoretical predictions. I have also demonstrated the importance of a mechanical stable arch near the opening on controlling hopper flow rheology and suggested a heuristic phase diagram for the hopper flow/jamming transition. Another part of this thesis work is focused on studying the impact of particle shape of particles on hopper flow. By comparing particle-tracking and photoelastic data for ellipses and disks at the appropriate length scale, I have demonstrated an important role for the rotational freedom of elliptical particles in controlling flow rheology through particle tracking and stress analysis. This work has been supported by International Fine Particle Research Institute (IFPRI) .

  6. Dynamics of nuclear fuel assemblies in vertical flow channels

    International Nuclear Information System (INIS)

    Mason, V.A.

    1988-01-01

    DYNMOD is a computer program designed to predict the dynamic behaviour of nuclear fuel assemblies in axial flow. The calculations performed by DYNMOD and the input data required by the program are described in this report. Examples of DYNMOD usage and a brief assessment of the accuracy of the dynamic model are also presented. It is intended that the report will be used as a reference manual by users of DYNMOD

  7. Rarefield gas dynamics fundamentals, simulations and micro flows

    CERN Document Server

    Shen, Ching

    2006-01-01

    This book elucidates the methods of molecular gas dynamics or rarefied gas dynamics which treat the problems of gas flows when the discrete molecular effects of the gas prevail under the circumstances of low density, the emphasis being on the basis of the methods, the direct simulation Monte Carlo method applied to the simulation of non-equilibrium effects and the frontier subjects related to low speed microscale rarefied gas flows. It provides a solid basis for the study of molecular gas dynamics for senior students and graduates in the aerospace and mechanical engineering departments of universities and colleges. It gives a general acquaintance of modern developments of rarefied gas dynamics in various regimes and leads to the frontier topics of non-equilibrium rarefied gas dynamics and low speed microscale gas dynamics. It will be also of benefit to the scientific and technical researchers engaged in aerospace high altitude aerodynamic force and heating design and in the research on gas flow in MEMS.

  8. Modeling of the Bosphorus exchange flow dynamics

    Science.gov (United States)

    Sözer, Adil; Özsoy, Emin

    2017-04-01

    The fundamental hydrodynamic behavior of the Bosphorus Strait is investigated through a numerical modeling study using alternative configurations of idealized or realistic geometry. Strait geometry and basin stratification conditions allow for hydraulic controls and are ideally suited to support the maximal-exchange regime, which determines the rate of exchange of waters originating from the adjacent Black and Mediterranean Seas for a given net transport. Steady-state hydraulic controls are demonstrated by densimetric Froude number calculations under layered flow approximations when corrections are applied to account for high velocity shears typically observed in the Bosphorus. Analyses of the model results reveal many observed features of the strait, including critical transitions at hydraulic controls and dissipation by turbulence and hydraulic jumps. It is found that the solution depends on initialization, especially with respect to the basin initial conditions. Significant differences between the controlled maximal-exchange and drowned solutions suggest that a detailed modeling implementation involving coupling with adjacent basins needs to take full account of the Bosphorus Strait in terms of the physical processes to be resolved.

  9. Numerical Simulation of Temperature Distribution and Material Flow During Friction Stir Welding 2017A Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    Mimouni Oussama

    2016-01-01

    Full Text Available This study describes the use of fluid dynamic code, FLUENT to model the flow of metal in the AA2017A case around the welding tool pin (FSW. A standard threaded tool profile is used for the analysis of phenomena during welding such as heat generation and flow of the material are included. The main objective is to gain a better understanding of the flow of material around a tool. The model showed a large number of phenomena similar to those of the real process. The model has also generated a sufficient amount of heat, which leads to a good estimate of the junction temperature. These results were obtained using a viscosity which is near the solidus softening.

  10. Reutilisation-extended material flows and circular economy in China.

    Science.gov (United States)

    Li, Nan; Zhang, Tianzhu; Liang, Sai

    2013-06-01

    Circular economy (CE), with its basic principle of Reduce, Reuse, and Recycle, has been determined as the key strategy for the national development plan by the Chinese government. Given the economy-wide material flow analysis (EW-MFA) that leaves the inner flow of resource reutilisation unidentified, the reutilisation-extended EW-MFA is first introduced to evaluate and analyse the material input, solid waste generation, and reutilisation simultaneously. The total amount of comprehensive reutilisation (CR) is divided into three sub-flows, namely, reutilisation, recycle, and reuse. Thus, this model is used to investigate the resource CR in China from 2000 to 2010. China's total amount of CR and its sub-flows, as well as the CR rate, remain to have a general upward trend. By the year 2010, about 60% of the overall solid waste generation had already been reutilised, and more than 20% of the total resource requirement was reutilised resource. Moreover, the growth patterns of the CR sub flows show different characteristics. Interpretations of resource reutilisation-related laws and regulations of CE and the corresponding policy suggestions are proposed based on the results. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Computational simulation of heat transfer in laser melted material flow

    International Nuclear Information System (INIS)

    Shankar, V.; Gnanamuthu, D.

    1986-01-01

    A computational procedure has been developed to study the heat transfer process in laser-melted material flow associated with surface heat treatment of metallic alloys to improve wear-and-tear and corrosion resistance. The time-dependent incompressible Navier-Stokes equations are solved, accounting for both convective and conductive heat transfer processes. The convection, induced by surface tension and high surface temperature gradients, sets up a counterrotating vortex flow within the molten pool. This recirculating material flow is responsible for determining the molten pool shape and the associated cooling rates which affect the solidifying material composition. The numerical method involves an implicit triple-approximate factorization scheme for the energy equation, and an explicit treatment for the momentum and the continuity equations. An experimental setup, using a continuous wave CO 2 laser beam as a heat source, has been carried out to generate data for validation of the computational model. Results in terms of the depth, width, and shape of the molten pool and the heat-affected zone for various power settings and shapes of the laser, and for various travel speeds of the workpiece, compare very well with experimental data. The presence of the surface tension-induced vortex flow is demonstrated

  12. Characterization of Flow Dynamics and Reduced-Order Description of Experimental Two-Phase Pipe Flow

    Science.gov (United States)

    Viggiano, Bianca; SkjæRaasen, Olaf; Tutkun, Murat; Cal, Raul Bayoan

    2017-11-01

    Multiphase pipe flow is investigated using proper orthogonal decomposition for tomographic X-ray data, where holdup, cross sectional phase distributions and phase interface characteristics are obtained. Instantaneous phase fractions of dispersed flow and slug flow are analyzed and a reduced order dynamical description is generated. The dispersed flow displays coherent structures in the first few modes near the horizontal center of the pipe, representing the liquid-liquid interface location while the slug flow case shows coherent structures that correspond to the cyclical formation and breakup of the slug in the first 10 modes. The reconstruction of the fields indicate that main features are observed in the low order dynamical descriptions utilizing less than 1 % of the full order model. POD temporal coefficients a1, a2 and a3 show interdependence for the slug flow case. The coefficients also describe the phase fraction holdup as a function of time for both dispersed and slug flow. These flows are highly applicable to petroleum transport pipelines, hydroelectric power and heat exchanger tubes to name a few. The mathematical representations obtained via proper orthogonal decomposition will deepen the understanding of fundamental multiphase flow characteristics.

  13. Improving flow distribution in influent channels using computational fluid dynamics.

    Science.gov (United States)

    Park, No-Suk; Yoon, Sukmin; Jeong, Woochang; Lee, Seungjae

    2016-10-01

    Although the flow distribution in an influent channel where the inflow is split into each treatment process in a wastewater treatment plant greatly affects the efficiency of the process, and a weir is the typical structure for the flow distribution, to the authors' knowledge, there is a paucity of research on the flow distribution in an open channel with a weir. In this study, the influent channel of a real-scale wastewater treatment plant was used, installing a suppressed rectangular weir that has a horizontal crest to cross the full channel width. The flow distribution in the influent channel was analyzed using a validated computational fluid dynamics model to investigate (1) the comparison of single-phase and two-phase simulation, (2) the improved procedure of the prototype channel, and (3) the effect of the inflow rate on flow distribution. The results show that two-phase simulation is more reliable due to the description of the free-surface fluctuations. It should first be considered for improving flow distribution to prevent a short-circuit flow, and the difference in the kinetic energy with the inflow rate makes flow distribution trends different. The authors believe that this case study is helpful for improving flow distribution in an influent channel.

  14. Eight energy and material flow characteristics of urban ecosystems.

    Science.gov (United States)

    Bai, Xuemei

    2016-11-01

    Recent decades have seen an expanding literature exploring urban energy and material flows, loosely branded as urban metabolism analysis. However, this has occurred largely in parallel to the mainstream studies of cities as ecosystems. This paper aims to conceptually bridge these two distinctive fields of research, by (a) identifying the common aspects between them; (b) identifying key characteristics of urban ecosystems that can be derived from energy and material flow analysis, namely energy and material budget and pathways; flow intensity; energy and material efficiency; rate of resource depletion, accumulation and transformation; self-sufficiency or external dependency; intra-system heterogeneity; intersystem and temporal variation; and regulating mechanism and governing capacity. I argue that significant ecological insight can be, or has the potential to be, drawn from the rich and rapidly growing empirical findings of urban metabolism studies to understand the behaviour of cities as human-dominated, complex systems. A closer intellectual linkage and cross pollination between urban metabolism and urban ecosystem studies will advance our scientific understanding and better inform urban policy and management practices.

  15. An introduction to the mathematical theory of dynamic materials

    CERN Document Server

    Lurie, Konstantin A

    2017-01-01

    Mathematical treatment to properties of dynamic materials, material substances whose properties are variable in space and time are examined in this book. This new edition emphasizes the differences between material optimization techniques in statics and dynamics. Systems with one spatial coordinate and time are used to illustrate essentials of temporal property change in this setting and prompt forthcoming extensions and technical improvements. Since the release of the first edition, a number of new results have created a more complete picture of unusual effects hidden in spatio-temporal material geometry. This renewed look has revealed a conceptually new mechanism of relaxation of material optimization problems in dynamics, which has led to additional resources for optimization previously concealed in the property layouts. Dynamic materials are studied in this book from the following perspectives: ability to appear in dissimilar implementations, universality as formations that are thermodynamically open, and...

  16. Dynamics of renal blood flow autoregulation in rats

    DEFF Research Database (Denmark)

    Holstein-Rathlou, N H; Wagner, A J; Marsh, D J

    1991-01-01

    Two separate components could be resolved in tests of the dynamic autoregulation of renal blood flow. The slow component corresponds to the frequency at which spontaneous proximal tubular pressure oscillations are found, and are most likely due to the operation of the TGF. The high frequency...

  17. Particle hopping vs. fluid-dynamical models for traffic flow

    Energy Technology Data Exchange (ETDEWEB)

    Nagel, K.

    1995-12-31

    Although particle hopping models have been introduced into traffic science in the 19509, their systematic use has only started recently. Two reasons for this are, that they are advantageous on modem computers, and that recent theoretical developments allow analytical understanding of their properties and therefore more confidence for their use. In principle, particle hopping models fit between microscopic models for driving and fluiddynamical models for traffic flow. In this sense, they also help closing the conceptual gap between these two. This paper shows connections between particle hopping models and traffic flow theory. It shows that the hydrodynamical limits of certain particle hopping models correspond to the Lighthill-Whitham theory for traffic flow, and that only slightly more complex particle hopping models produce already the correct traffic jam dynamics, consistent with recent fluid-dynamical models for traffic flow. By doing so, this paper establishes that, on the macroscopic level, particle hopping models are at least as good as fluid-dynamical models. Yet, particle hopping models have at least two advantages over fluid-dynamical models: they straightforwardly allow microscopic simulations, and they include stochasticity.

  18. Coupling-constant flows and dynamical symmetry breaking

    International Nuclear Information System (INIS)

    Yamagishi, H.

    1981-01-01

    The Coleman-Weinberg theory is reformulated in terms of flows in coupling-constant space. It is shown that the existence of dynamical symmetry breaking is governed essentially by the b functions. An application is made to the massless Weinberg-Salam model

  19. Translanguaging as Dynamic Activity Flows in CLIL Classrooms

    Science.gov (United States)

    Lin, Angel M. Y.; He, Peichang

    2017-01-01

    In this article, the role of translanguaging in facilitating content and language integrated learning (CLIL) is examined in connection with the notion of academic language across the curriculum in multilingual contexts. Ethnographic naturalistic observations and interviews were conducted to analyse translanguaging in the dynamic flow of…

  20. Instabilities and vortex dynamics in shear flow of magnetized plasmas

    International Nuclear Information System (INIS)

    Tajima, T.; Horton, W.; Morrison, P.J.; Schutkeker, J.; Kamimura, T.; Mima, K.; Abe, Y.

    1990-03-01

    Gradient-driven instabilities and the subsequent nonlinear evolution of generated vortices in sheared E x B flows are investigated for magnetized plasmas with and without gravity (magnetic curvature) and magnetic shear by using theory and implicit particle simulations. In the linear eigenmode analysis, the instabilities considered are the Kelvin-Helmholtz (K-H) instability and the resistive interchange instability. The presence of the shear flow can stabilize these instabilities. The dynamics of the K-H instability and the vortex dynamics can be uniformly described by the initial flow pattern with a vorticity localization parameter ε. The observed growth of the K-H modes is exponential in time for linearly unstable modes, secular for marginal mode, and absent until driven nonlinearly for linearly stable modes. The distance between two vortex centers experiences rapid merging while the angle θ between the axis of vortices and the external shear flow increases. These vortices proceed toward their overall coalescence, while shedding small-scale vortices and waves. The main features of vortex dynamics of the nonlinear coalescence and the tilt or the rotational instabilities of vortices are shown to be given by using a low dimension Hamiltonian representation for interacting vortex cores in the shear flow. 24 refs., 19 figs., 1 tab

  1. Dynamic ADMM for Real-time Optimal Power Flow: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Dall-Anese, Emiliano [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-02-23

    This paper considers distribution networks featuring distributed energy resources (DERs), and develops a dynamic optimization method to maximize given operational objectives in real time while adhering to relevant network constraints. The design of the dynamic algorithm is based on suitable linearizations of the AC power flow equations, and it leverages the so-called alternating direction method of multipliers (ADMM). The steps of the ADMM, however, are suitably modified to accommodate appropriate measurements from the distribution network and the DERs. With the aid of these measurements, the resultant algorithm can enforce given operational constraints in spite of inaccuracies in the representation of the AC power flows, and it avoids ubiquitous metering to gather the state of non-controllable resources. Optimality and convergence of the propose algorithm are established in terms of tracking of the solution of a convex surrogate of the AC optimal power flow problem.

  2. Dynamics and rheology under continuous shear flow studied by x-ray photon correlation spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fluerasu, Andrei [Brookhaven National Laboratory, NSLS-II, Upton, NY 11973 (United States); Kwasniewski, Pawel; Caronna, Chiara; Madsen, Anders [European Synchrotron Radiation Facility, ID10 (Troika), Grenoble 38043 (France); Destremaut, Fanny; Salmon, Jean-Baptiste [LOF, UMR 5258 CNRS-Rhodia Bordeaux 1, 33608 Pessac (France)], E-mail: fluerasu@bnl.gov

    2010-03-15

    X-ray photon correlation spectroscopy (XPCS) has emerged as a unique technique allowing the measurement of dynamics of materials on mesoscopic lengthscales. One of the most common problems associated with the use of bright x-ray beams is beam-induced radiation damage, and this is likely to become an even more limiting factor at future synchrotron and free-electron laser sources. Flowing the sample during data acquisition is one of the simplest methods allowing the radiation damage to be limited. In addition to distributing the dose over many different scatterers, the method also enables new functionalities such as time-resolved studies. Here, we further develop a recently proposed experimental technique that combines XPCS and continuously flowing samples. More specifically, we use a model colloidal suspension to show how the macroscopic advective response to flow and the microscopic dissipative dynamics (diffusion) can be quantified from the x-ray data. Our results show very good quantitative agreement with a Poisseuille-flow hydrodynamical model combined with Brownian mechanics. The method has many potential applications, e.g. in the study of dynamics of glasses and gels under continuous shear/flow, protein aggregation processes and the interplay between dynamics and rheology in complex fluids.

  3. Field-Flow Fractionation of Carbon Nanotubes and Related Materials

    Energy Technology Data Exchange (ETDEWEB)

    John P. Selegue

    2011-11-17

    During the grant period, we carried out FFF studies of carbonaceous soot, single-walled and multi-walled carbon nanotubes, carbon nano-onions and polyoxometallates. FFF alone does not provide enough information to fully characterize samples, so our suite of characterization techniques grew to include light scattering (especially Photon Correlation Spectroscopy), scanning and transmission electron microscopy, thermogravimetric analysis and spectroscopic methods. We developed convenient techniques to deposit and examine minute FFF fractions by electron microscopy. In collaboration with Arthur Cammers (University of Kentucky), we used Flow Field-Flow Fractionation (Fl-FFF) to monitor the solution-phase growth of keplerates, a class of polyoxometallate (POM) nanoparticles. We monitored the evolution of Mo-POM nanostructures over the course of weeks by by using flow field-flow fractionation and corroborated the nanoparticle structures by using transmission electron microscopy (TEM). Total molybdenum in the solution and precipitate phases was monitored by using inductively coupled plasma analyses, and total Mo-POM concentration by following the UV-visible spectra of the solution phase. We observe crystallization-driven formation of (Mo132) keplerate and solution phase-driven evolution of structurally related nanoscopic species (3-60 nm). FFF analyses of other classes of materials were less successful. Attempts to analyze platelets of layered materials, including exfoliated graphite (graphene) and TaS2 and MoS2, were disappointing. We were not able to optimize flow conditions for the layered materials. The metal sulfides react with the aqueous carrier liquid and settle out of suspension quickly because of their high density.

  4. Systematic Evaluation of Uncertainty in Material Flow Analysis

    DEFF Research Database (Denmark)

    Laner, David; Rechberger, Helmut; Astrup, Thomas Fruergaard

    2014-01-01

    Material flow analysis (MFA) is a tool to investigate material flows and stocks in defined systems as a basis for resource management or environmental pollution control. Because of the diverse nature of sources and the varying quality and availability of data, MFA results are inherently uncertain....... Uncertainty analyses have received increasing attention in recent MFA studies, but systematic approaches for selection of appropriate uncertainty tools are missing. This article reviews existing literature related to handling of uncertainty in MFA studies and evaluates current practice of uncertainty analysis......) and exploratory MFA (identification of critical parameters and system behavior). Whereas mathematically simpler concepts focusing on data uncertainty characterization are appropriate for descriptive MFAs, statistical approaches enabling more-rigorous evaluation of uncertainty and model sensitivity are needed...

  5. Charge carrier dynamics in photovoltaic materials

    NARCIS (Netherlands)

    Jensen, S.A.

    2014-01-01

    We employ the experimental technique THz Time Domain spectroscopy (THz-TDS) to study the optoelectronic properties of potential photovoltaic materials. This all-optical method is useful for probing photoconductivities in a range of materials on ultrafast timescales without the application of

  6. Material flow-based economic assessment of landfill mining processes.

    Science.gov (United States)

    Kieckhäfer, Karsten; Breitenstein, Anna; Spengler, Thomas S

    2017-02-01

    This paper provides an economic assessment of alternative processes for landfill mining compared to landfill aftercare with the goal of assisting landfill operators with the decision to choose between the two alternatives. A material flow-based assessment approach is developed and applied to a landfill in Germany. In addition to landfill aftercare, six alternative landfill mining processes are considered. These range from simple approaches where most of the material is incinerated or landfilled again to sophisticated technology combinations that allow for recovering highly differentiated products such as metals, plastics, glass, recycling sand, and gravel. For the alternatives, the net present value of all relevant cash flows associated with plant installation and operation, supply, recycling, and disposal of material flows, recovery of land and landfill airspace, as well as landfill closure and aftercare is computed with an extensive sensitivity analyses. The economic performance of landfill mining processes is found to be significantly influenced by the prices of thermal treatment (waste incineration as well as refuse-derived fuels incineration plant) and recovered land or airspace. The results indicate that the simple process alternatives have the highest economic potential, which contradicts the aim of recovering most of the resources. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Molecular dynamics study of Ar flow and He flow inside carbon nanotube junction as a molecular nozzle and diffuser

    Directory of Open Access Journals (Sweden)

    Itsuo Hanasaki, Akihiro Nakatani and Hiroshi Kitagawa

    2004-01-01

    Full Text Available A carbon nanotube junction consists of two connected nanotubes with different diameters. It has been extensively investigated as a molecular electronic device since carbon nanotubes can be metallic and semiconductive, depending on their structure. However, a carbon nanotube junction can also be viewed as a nanoscale nozzle andv diffuser. Here, we focus on the nanotube junction from the perspective of an intersection between machine, material and device. We have conducted a molecular dynamics simulation of the molecular flow inside a modeled (12,12–(8,8 nanotube junction. A strong gravitational field and a periodic boundary condition are applied in the flow direction. We investigated dense-Ar flows and dense-He flows while controlling the temperature of the nanotube junction. The results show that Ar atoms tend to be near to the wall and the density of the Ar is higher in the wide (12,12 nanotube than in the narrow (8,8 nanotube, while it is lower in the wide tube when no flow occurs. The streaming velocities of both the Ar and the He are higher in the narrow nanotube than in the wide nanotube, but the velocity of the Ar is higher than the velocity of the He and the temperature of the flowing Ar is higher than the temperature of the He when the same magnitude of gravitational field is applied.

  8. Nephron blood flow dynamics measured by laser speckle contrast imaging

    DEFF Research Database (Denmark)

    von Holstein-Rathlou, Niels-Henrik; Sosnovtseva, Olga V; Pavlov, Alexey N

    2011-01-01

    Tubuloglomerular feedback (TGF) has an important role in autoregulation of renal blood flow and glomerular filtration rate (GFR). Because of the characteristics of signal transmission in the feedback loop, the TGF undergoes self-sustained oscillations in single-nephron blood flow, GFR, and tubular...... simultaneously. The interacting nephron fields are likely to be more extensive. We have turned to laser speckle contrast imaging to measure the blood flow dynamics of 50-100 nephrons simultaneously on the renal surface of anesthetized rats. We report the application of this method and describe analytic...... pressure and flow. Nephrons interact by exchanging electrical signals conducted electrotonically through cells of the vascular wall, leading to synchronization of the TGF-mediated oscillations. Experimental studies of these interactions have been limited to observations on two or at most three nephrons...

  9. A direct Eulerian method for the simulation of multi-material compressible flows with material sliding

    International Nuclear Information System (INIS)

    Motte, R.; Braeunig, J.P.; Peybernes, M.

    2012-01-01

    As the simulation of compressible flows with several materials is essential for applications studied within the CEA-DAM, the authors propose an approach based on finite volumes with centred variables for the resolution of compressible Euler equations. Moreover, they allow materials to slide with respect to each other as it is the case for water and air, for example. A conservation law is written for each material in a hybrid grid, and a condition of contact between materials under the form of fluxes is expressed. It is illustrated by the case of an intense shock propagating in water and interacting with an air bubble which will be strongly deformed and compressed

  10. Modelling the Solid Waste Flow into Sungai Ikan Landfill Sites by Material Flow Analysis Method

    Science.gov (United States)

    Ghani, Latifah A.; Ali, Nora'aini; Hassan, Nur Syafiqah A.

    2017-12-01

    The purpose of this paper is to model the material flow of solid waste flows at Kuala Terengganu by using Material Flow Analysis (MFA) method, generated by STAN Software Analysis. Sungai Ikan Landfill has been operated for about 10 years. Average, Sungai Ikan Landfill receive an amount around 260 tons per day of solid waste. As for the variety source of the solid waste coming from, leachates that accumulated has been tested and measured. Highest reading of pH of the leachate is 8.29 which is still in the standard level before discharging the leachate to open water which pH in between 8.0-9.0. The percentages of the solid waste has been calculated and seven different types of solid waste has been segregated. That is, plastics, organic waste, paper, polystyrene, wood, fabric and can. The estimation of the solid waste that will be end as a residue are around 244 tons per day.

  11. An autonomous dynamical system captures all LCSs in three-dimensional unsteady flows.

    Science.gov (United States)

    Oettinger, David; Haller, George

    2016-10-01

    Lagrangian coherent structures (LCSs) are material surfaces that shape the finite-time tracer patterns in flows with arbitrary time dependence. Depending on their deformation properties, elliptic and hyperbolic LCSs have been identified from different variational principles, solving different equations. Here we observe that, in three dimensions, initial positions of all variational LCSs are invariant manifolds of the same autonomous dynamical system, generated by the intermediate eigenvector field, ξ 2 (x 0 ), of the Cauchy-Green strain tensor. This ξ 2 -system allows for the detection of LCSs in any unsteady flow by classical methods, such as Poincaré maps, developed for autonomous dynamical systems. As examples, we consider both steady and time-aperiodic flows, and use their dual ξ 2 -system to uncover both hyperbolic and elliptic LCSs from a single computation.

  12. Comparative study of incompressible and isothermal compressible flow solvers for cavitating flow dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sun Ho [Korea Maritime and Ocean University, Busan (Korea, Republic of); Rhee, Shin Hyung [Seoul National University, Seoul (Korea, Republic of)

    2015-08-15

    Incompressible flow solvers are generally used for numerical analysis of cavitating flows, but with limitations in handling compressibility effects on vapor phase. To study compressibility effects on vapor phase and cavity interface, pressure-based incompressible and isothermal compressible flow solvers based on a cell-centered finite volume method were developed using the OpenFOAM libraries. To validate the solvers, cavitating flow around a hemispherical head-form body was simulated and validated against the experimental data. The cavity shedding behavior, length of a re-entrant jet, drag history, and the Strouhal number were compared between the two solvers. The results confirmed that computations of the cavitating flow including compressibility effects improved the reproduction of cavitation dynamics.

  13. Dynamic behaviors of cavitation bubble for the steady cavitating flow

    Science.gov (United States)

    Cai, Jun; Huai, Xiulan; Li, Xunfeng

    2009-12-01

    In this paper, by introducing the flow velocity item into the classical Rayleigh-Plesset dynamic equation, a new equation, which does not involve the time term and can describe the motion of cavitation bubble in the steady cavitating flow, has been obtained. By solving the new motion equation using Runge-Kutta fourth order method with adaptive step size control, the dynamic behaviors of cavitation bubble driven by the varying pressure field downstream of a venturi cavitation reactor are numerically simulated. The effects of liquid temperature (corresponding to the saturated vapor pressure of liquid), cavitation number and inlet pressure of venturi on radial motion of bubble and pressure pulse due to the radial motion are analyzed and discussed in detail. Some dynamic behaviors of bubble different from those in previous papers are displayed. In addition, the internal relationship between bubble dynamics and process intensification is also discussed. The simulation results reported in this work reveal the variation laws of cavitation intensity with the flow conditions of liquid, and will lay a foundation for the practical application of hydrodynamic cavitation technology.

  14. Water Flow in Karst Aquifer Considering Dynamically Variable Saturation Conduit

    Science.gov (United States)

    Tan, Chaoqun; Hu, Bill X.

    2017-04-01

    The karst system is generally conceptualized as dual-porosity system, which is characterized by low conductivity and high storage continuum matrix and high conductivity and quick flow conduit networks. And so far, a common numerical model for simulating flow in karst aquifer is MODFLOW2005-CFP, which is released by USGS in 2008. However, the steady-state approach for conduit flow in CFP is physically impractical when simulating very dynamic hydraulics with variable saturation conduit. So, we adopt the method proposed by Reimann et al. (2011) to improve current model, in which Saint-Venant equations are used to model the flow in conduit. Considering the actual background that the conduit is very big and varies along flow path and the Dirichlet boundary varies with rainfall in our study area in Southwest China, we further investigate the influence of conduit diameter and outflow boundary on numerical model. And we also analyze the hydraulic process in multi-precipitation events. We find that the numerical model here corresponds well with CFP for saturated conduit, and it could depict the interaction between matrix and conduit during very dynamic hydraulics pretty well compare with CFP.

  15. Computational fluid dynamics simulations of light water reactor flows

    International Nuclear Information System (INIS)

    Tzanos, C.P.; Weber, D.P.

    1999-01-01

    Advances in computational fluid dynamics (CFD), turbulence simulation, and parallel computing have made feasible the development of three-dimensional (3-D) single-phase and two-phase flow CFD codes that can simulate fluid flow and heat transfer in realistic reactor geometries with significantly reduced reliance, especially in single phase, on empirical correlations. The objective of this work was to assess the predictive power and computational efficiency of a CFD code in the analysis of a challenging single-phase light water reactor problem, as well as to identify areas where further improvements are needed

  16. Analysis of liver blood flow by dynamic hepatic scintigraphy

    International Nuclear Information System (INIS)

    Xie Tianhao; Jia Shiquan

    1996-01-01

    Liver blood flow was studied in 45 patients with solitary malignant liver cancer, 17 patients with multiple liver metastases, 18 patients with benign liver tumor and 20 control subjects by dynamic hepatic scintigraphy. The hepatic perfusion index (HPI) in control subjects, patients with liver malignant cancer and benign tumor was 0.33 +- 0.069, 0.589 +- 0.084, 0.384 +-0.046 respectively, and the mesenteric fraction (MF) was 0.56 +- 0.054, 0.246 +- 0.064, 0.524 +- 0.086 respectively. In conclusion, flow scintigraphy is a non-invasive, sensitive and repeatable method for detection of liver tumor

  17. Approaching multiphase flows from the perspective of computational fluid dynamics

    International Nuclear Information System (INIS)

    Banas, A.O.

    1992-01-01

    Thermalhydraulic simulation methodologies based on subchannel and porous-medium concepts are briefly reviewed and contrasted with the general approach of Computational Fluid Dynamics (CFD). An outline of the advanced CFD methods for single-phase turbulent flows is followed by a short discussion of the unified formulation of averaged equations for turbulent and multiphase flows. Some of the recent applications of CFD at Chalk River Laboratories are discussed, and the complementary role of CFD with regard to the established thermalhydraulic methods of analysis is indicated. (author). 8 refs

  18. Relating water and air flow characteristics in coarse granular materials

    DEFF Research Database (Denmark)

    Andreasen, Rune Røjgaard; Canga, Eriona; Poulsen, Tjalfe Gorm

    2013-01-01

    Water pressure drop as a function of velocity controls w 1 ater cleaning biofilter operation 2 cost. At present this relationship in biofilter materials must be determined experimentally as no 3 universal link between pressure drop, velocity and filter material properties have been established. 4...... Pressure drop - velocity in porous media is much simpler and faster to measure for air than for water. 5 For soils and similar materials, observations show a strong connection between pressure drop – 6 velocity relations for air and water, indicating that water pressure drop – velocity may be estimated 7...... from air flow data. The objective of this study was, therefore, to investigate if this approach is valid 8 also for coarse granular biofilter media which usually consists of much larger particles than soils. In 9 this paper the connection between the pressure drop – velocity relationships for air...

  19. Ultrafast dynamic ellipsometry and spectroscopies of laser shocked materials

    Energy Technology Data Exchange (ETDEWEB)

    Mcgrane, Shawn David [Los Alamos National Laboratory; Bolme, Cindy B [Los Alamos National Laboratory; Whitley, Von H [Los Alamos National Laboratory; Moore, David S [Los Alamos National Laboratory

    2010-01-01

    Ultrafast ellipsometry and transient absorption spectroscopies are used to measure material dynamics under extreme conditions of temperature, pressure, and volumetric compression induced by shock wave loading with a chirped, spectrally clipped shock drive pulse.

  20. Outlook of the world steel cycle based on the stock and flow dynamics.

    Science.gov (United States)

    Hatayama, Hiroki; Daigo, Ichiro; Matsuno, Yasunari; Adachi, Yoshihiro

    2010-08-15

    We present a comprehensive analysis of steel use in the future compiled using dynamic material flow analysis (MFA). A dynamic MFA for 42 countries depicted the global in-use stock and flow up to the end of 2005. On the basis of the transition of steel stock for 2005, the growth of future steel stock was then estimated considering the economic growth for every country. Future steel demand was estimated using dynamic analysis under the new concept of "stocks drive flows". The significant results follow. World steel stock reached 12.7 billion t in 2005, and has doubled in the last 25 years. The world stock in 2005 mainly consisted of construction (60%) and vehicles (10%). Stock in these end uses will reach 55 billion t in 2050, driven by a 10-fold increase in Asia. Steel demand will reach 1.8 billion t in 2025, then slightly decrease, and rise again by replacement of buildings. The forecast of demand clearly represents the industrial shift; at first the increase is dominated by construction, and then, after 2025, demand for construction decreases and demand for vehicles increases instead. This study thus provides the dynamic mechanism of steel stock and flow toward the future, which contributes to the design of sustainable steel use.

  1. Size-Tuned Plastic Flow Localization in Irradiated Materials at the Submicron Scale

    Science.gov (United States)

    Cui, Yinan; Po, Giacomo; Ghoniem, Nasr

    2018-05-01

    Three-dimensional discrete dislocation dynamics (3D-DDD) simulations reveal that, with reduction of sample size in the submicron regime, the mechanism of plastic flow localization in irradiated materials transitions from irradiation-controlled to an intrinsic dislocation source controlled. Furthermore, the spatial correlation of plastic deformation decreases due to weaker dislocation interactions and less frequent cross slip as the system size decreases, thus manifesting itself in thinner dislocation channels. A simple model of discrete dislocation source activation coupled with cross slip channel widening is developed to reproduce and physically explain this transition. In order to quantify the phenomenon of plastic flow localization, we introduce a "deformation localization index," with implications to the design of radiation-resistant materials.

  2. 3D flow simulation of liquid lead in the erosion test facility for ADS materials

    International Nuclear Information System (INIS)

    Muscher, Heinrich; Kieser, Martin; Weisenburger, Alfons; Mueller, Georg

    2009-01-01

    Future nuclear reactor concepts, such as GEN IV or ADS use liquid lead for neutron multiplication and coolant purposes. The design concepts assumes that the structural material is in contact with the liquid metal at temperatures up to 600 C and a flow rate of 20 m/s. Therefore a significant effect of liquid metal corrosion/erosion is expected. The paper describes the fluid dynamical simulation of the ADS erosion test facility. Earlier studies on the laminar flow modeling were completed by introduction of transient behavior and extended to 3D-models. The results for liquid lead should be transferable to LBE (lead bismuth eutectic). Further work has to include a mass transport model for modeling of the global isothermal erosion rate of the structural material dependent on time (for liquid lead and LBE).

  3. A simple delay model for two-phase flow dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Clausse, A.; Delmastro, D.F.; Juanico`, L.E. [Centro Atomico Bariloche (Argentina)

    1995-09-01

    A model based in delay equations for density-wave oscillations is presented. High Froude numbers and moderate ones were considered. The equations were numerically analyzed and compared with more sophisticated models. The influence of the gravity term was studied. Different kinds of behavior were found, particularly sub-critical and super-critical Hopf bifurcations. Moreover the present approach can be used to better understand the complicated dynamics of boiling flows systems.

  4. Simulations of ductile flow in brittle material processing

    Energy Technology Data Exchange (ETDEWEB)

    Luh, M.H.; Strenkowski, J.S.

    1988-12-01

    Research is continuing on the effects of thermal properties of the cutting tool and workpiece on the overall temperature distribution. Using an Eulerian finite element model, diamond and steel tools cutting aluminum have been simulated at various, speeds, and depths of cut. The relative magnitude of the thermal conductivity of the tool and the workpiece is believed to be a primary factor in the resulting temperature distribution in the workpiece. This effect is demonstrated in the change of maximum surface temperatures for diamond on aluminum vs. steel on aluminum. As a preliminary step toward the study of ductile flow in brittle materials, the relative thermal conductivities of diamond on polycarbonate is simulated. In this case, the maximum temperature shifts from the rake face of the tool to the surface of the machined workpiece, thus promoting ductile flow in the workpiece surface.

  5. Importance of material matching in the calibration of asymmetric flow field-flow fractionation: material specificity and nanoparticle surface coating effects on retention time

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Haiou [U.S. Food and Drug Administration, Office of Regulatory Affairs, Arkansas Regional Laboratory (United States); Quevedo, Ivan R. [Universidad Iberoamericana, Departamento de Ingeniería y Ciencias Químicas (Mexico); Linder, Sean W.; Fong, Andrew; Mudalige, Thilak K., E-mail: Thilak.Mudalige@fda.hhs.gov [U.S. Food and Drug Administration, Office of Regulatory Affairs, Arkansas Regional Laboratory (United States)

    2016-10-15

    Asymmetric flow field-flow fractionation (AF4) coupled with dynamic light scattering or multiangle light scattering detectors is a promising technique for the size-based separation of colloidal particles (nano- and submicron scale) and the online determination of the particle size of the separated fractions in aqueous suspensions. In most cases, the applications of these detectors are problematic due to the material-specific properties of the analyte that results in erroneous calculations, and as an alternative, different nanoparticle size standards are required to properly calibrate the size-based retention in AF4. The availability of nanoparticle size standards in different materials is limited, and this deviation from ideal conditions of retention is mainly due to material-specific and particle coating-specific membrane–particle interactions. Here, we present an experimental method on the applicability of polystyrene nanoparticles (PS NP) as standard for AF4 calibration and compare with gold nanoparticle (Au NP) standards having different nominal sizes and surface functionalities.

  6. Importance of material matching in the calibration of asymmetric flow field-flow fractionation: material specificity and nanoparticle surface coating effects on retention time

    International Nuclear Information System (INIS)

    Qu, Haiou; Quevedo, Ivan R.; Linder, Sean W.; Fong, Andrew; Mudalige, Thilak K.

    2016-01-01

    Asymmetric flow field-flow fractionation (AF4) coupled with dynamic light scattering or multiangle light scattering detectors is a promising technique for the size-based separation of colloidal particles (nano- and submicron scale) and the online determination of the particle size of the separated fractions in aqueous suspensions. In most cases, the applications of these detectors are problematic due to the material-specific properties of the analyte that results in erroneous calculations, and as an alternative, different nanoparticle size standards are required to properly calibrate the size-based retention in AF4. The availability of nanoparticle size standards in different materials is limited, and this deviation from ideal conditions of retention is mainly due to material-specific and particle coating-specific membrane–particle interactions. Here, we present an experimental method on the applicability of polystyrene nanoparticles (PS NP) as standard for AF4 calibration and compare with gold nanoparticle (Au NP) standards having different nominal sizes and surface functionalities.

  7. Dynamic Initiation and Propagation of Multiple Cracks in Brittle Materials

    Directory of Open Access Journals (Sweden)

    Xiaodan Ren

    2013-07-01

    Full Text Available Brittle materials such as rock and ceramic usually exhibit apparent increases of strength and toughness when subjected to dynamic loading. The reasons for this phenomenon are not yet well understood, although a number of hypotheses have been proposed. Based on dynamic fracture mechanics, the present work offers an alternate insight into the dynamic behaviors of brittle materials. Firstly, a single crack subjected to stress wave excitations is investigated to obtain the dynamic crack-tip stress field and the dynamic stress intensity factor. Second, based on the analysis of dynamic stress intensity factor, the fracture initiation sizes and crack size distribution under different loading rates are obtained, and the power law with the exponent of −2/3 is derived to describe the fracture initiation size. Third, with the help of the energy balance concept, the dynamic increase of material strength is directly derived based on the proposed multiple crack evolving criterion. Finally, the model prediction is compared with the dynamic impact experiments, and the model results agree well with the experimentally measured dynamic increasing factor (DIF.

  8. Hydro-dynamic damping theory in flowing water

    Science.gov (United States)

    Monette, C.; Nennemann, B.; Seeley, C.; Coutu, A.; Marmont, H.

    2014-03-01

    Fluid-structure interaction (FSI) has a major impact on the dynamic response of the structural components of hydroelectric turbines. On mid-head to high-head Francis runners, the rotor-stator interaction (RSI) phenomenon always has to be considered carefully during the design phase to avoid operational issues later on. The RSI dynamic response amplitudes are driven by three main factors: (1) pressure forcing amplitudes, (2) excitation frequencies in relation to natural frequencies and (3) damping. The prediction of the two first factors has been largely documented in the literature. However, the prediction of fluid damping has received less attention in spite of being critical when the runner is close to resonance. Experimental damping measurements in flowing water on hydrofoils were presented previously. Those results showed that the hydro-dynamic damping increased linearly with the flow. This paper presents development and validation of a mathematical model, based on momentum exchange, to predict damping due to fluid structure interaction in flowing water. The model is implemented as an analytical procedure for simple structures, such as cantilever beams, but is also implemented in more general ways using three different approaches for more complex structures such as runner blades: a finite element procedure, a CFD modal work based approach and a CFD 1DOF approach. The mathematical model and all three implementation approaches are shown to agree well with experimental results.

  9. A note on the theory of fast money flow dynamics

    Science.gov (United States)

    Sokolov, A.; Kieu, T.; Melatos, A.

    2010-08-01

    The gauge theory of arbitrage was introduced by Ilinski in [K. Ilinski, preprint arXiv:hep-th/9710148 (1997)] and applied to fast money flows in [A. Ilinskaia, K. Ilinski, preprint arXiv:cond-mat/9902044 (1999); K. Ilinski, Physics of finance: gauge modelling in non-equilibrium pricing (Wiley, 2001)]. The theory of fast money flow dynamics attempts to model the evolution of currency exchange rates and stock prices on short, e.g. intra-day, time scales. It has been used to explain some of the heuristic trading rules, known as technical analysis, that are used by professional traders in the equity and foreign exchange markets. A critique of some of the underlying assumptions of the gauge theory of arbitrage was presented by Sornette in [D. Sornette, Int. J. Mod. Phys. C 9, 505 (1998)]. In this paper, we present a critique of the theory of fast money flow dynamics, which was not examined by Sornette. We demonstrate that the choice of the input parameters used in [K. Ilinski, Physics of finance: gauge modelling in non-equilibrium pricing (Wiley, 2001)] results in sinusoidal oscillations of the exchange rate, in conflict with the results presented in [K. Ilinski, Physics of finance: gauge modelling in non-equilibrium pricing (Wiley, 2001)]. We also find that the dynamics predicted by the theory are generally unstable in most realistic situations, with the exchange rate tending to zero or infinity exponentially.

  10. Compaction dynamics of crunchy granular material

    Directory of Open Access Journals (Sweden)

    Guillard François

    2017-01-01

    Full Text Available Compaction of brittle porous material leads to a wide variety of densification patterns. Static compaction bands occurs naturally in rocks or bones, and have important consequences in industry for the manufacturing of powder tablets or metallic foams for example. Recently, oscillatory compaction bands have been observed in brittle porous media like snow or cereals. We will discuss the great variety of densification patterns arising during the compaction of puffed rice, including erratic compaction at low velocity, one or several travelling compaction bands at medium velocity and homogeneous compaction at larger velocity. The conditions of existence of each pattern are studied thanks to a numerical spring lattice model undergoing breakage and is mapped to the phase diagram of the patterns based on dimensionless characteristic quantities. This also allows to rationalise the evolution of the compaction behaviour during a single test. Finally, the localisation of compaction bands is linked to the strain rate sensitivity of the material.

  11. Compaction dynamics of crunchy granular material

    Science.gov (United States)

    Guillard, François; Golshan, Pouya; Shen, Luming; Valdès, Julio R.; Einav, Itai

    2017-06-01

    Compaction of brittle porous material leads to a wide variety of densification patterns. Static compaction bands occurs naturally in rocks or bones, and have important consequences in industry for the manufacturing of powder tablets or metallic foams for example. Recently, oscillatory compaction bands have been observed in brittle porous media like snow or cereals. We will discuss the great variety of densification patterns arising during the compaction of puffed rice, including erratic compaction at low velocity, one or several travelling compaction bands at medium velocity and homogeneous compaction at larger velocity. The conditions of existence of each pattern are studied thanks to a numerical spring lattice model undergoing breakage and is mapped to the phase diagram of the patterns based on dimensionless characteristic quantities. This also allows to rationalise the evolution of the compaction behaviour during a single test. Finally, the localisation of compaction bands is linked to the strain rate sensitivity of the material.

  12. Dynamics of flexible fibers transported in confined viscous flows

    Science.gov (United States)

    Cappello, Jean; Duprat, Camille; Du Roure, Olivia; Nagel, Mathias; Gallaire, François; Lindner, Anke

    2017-11-01

    The dynamics of elongated objects has been extensively studied in unbounded media as for example the sedimentation of fibers at low Reynolds numbers. It has recently been shown that these transport dynamics are strongly modified by bounding walls. Here we focus on the dynamics of flexible fibers confined by the top and bottom walls of a microchannel and transported in pressure-driven flows. We combine well-controlled microfluidic experiments and simulations using modified Brinkmann equations. We control shape, orientation, and mechanical properties of our fibers using micro-fabrication techniques and in-situ characterization methods. These elastic fibers can be deformed by viscous and pressure forces leading to very rich transport dynamics coupling lateral drift with shape evolution. We show that the bending of a perpendicular fiber is proportional to an elasto-viscous number and we fully characterize the influence of the confinement on the deformation of the fiber. Experiments on parallel flexible fibers reveal the existence of a buckling threshold. The European Research Council is acknowledged for funding the work through a consolidator Grant (ERC PaDyFlow 682367).

  13. DYNAM, Once Through Boiling Flow with Steam Superheat, Laplace Transformation

    International Nuclear Information System (INIS)

    Schlueter, G.; Efferding, L.E.

    1973-01-01

    1 - Description of problem or function: DYNAM performs a dynamic analysis of once-through boiling flow oscillations with steam superheat. The model describing the superheat regime (single- phase, variable density fluid) for subcritical pressure operation is also applicable to the study of once-through operation using supercritical pressure water. 2 - Method of solution: Linearized partial differential conservation equations are solved using Laplace transformation of the temporal terms and integration of the spatial variations. DYNAM is written in complex variable notation. 3 - Restrictions on the complexity of the problem - Maxima of: 30 intervals used to describe the power distribution in the non-boiling and boiling regions, 29 boiling nodes, 7 intervals and corresponding friction multipliers read in per case, 14 exit qualities read in per case, 40 superheat nodes, 10 coefficients read in for the phi 2 vs, x-polynomial fit, 48 frequencies at which open-loop frequency response is desired, 48 frequencies at which signal output is desired

  14. Flow dynamics and energy efficiency of flow in the left ventricle during myocardial infarction.

    Science.gov (United States)

    Vasudevan, Vivek; Low, Adriel Jia Jun; Annamalai, Sarayu Parimal; Sampath, Smita; Poh, Kian Keong; Totman, Teresa; Mazlan, Muhammad; Croft, Grace; Richards, A Mark; de Kleijn, Dominique P V; Chin, Chih-Liang; Yap, Choon Hwai

    2017-10-01

    Cardiovascular disease is a leading cause of death worldwide, where myocardial infarction (MI) is a major category. After infarction, the heart has difficulty providing sufficient energy for circulation, and thus, understanding the heart's energy efficiency is important. We induced MI in a porcine animal model via circumflex ligation and acquired multiple-slice cine magnetic resonance (MR) images in a longitudinal manner-before infarction, and 1 week (acute) and 4 weeks (chronic) after infarction. Computational fluid dynamic simulations were performed based on MR images to obtain detailed fluid dynamics and energy dynamics of the left ventricles. Results showed that energy efficiency flow through the heart decreased at the acute time point. Since the heart was observed to experience changes in heart rate, stroke volume and chamber size over the two post-infarction time points, simulations were performed to test the effect of each of the three parameters. Increasing heart rate and stroke volume were found to significantly decrease flow energy efficiency, but the effect of chamber size was inconsistent. Strong complex interplay was observed between the three parameters, necessitating the use of non-dimensional parameterization to characterize flow energy efficiency. The ratio of Reynolds to Strouhal number, which is a form of Womersley number, was found to be the most effective non-dimensional parameter to represent energy efficiency of flow in the heart. We believe that this non-dimensional number can be computed for clinical cases via ultrasound and hypothesize that it can serve as a biomarker for clinical evaluations.

  15. Damage mechanisms and metallic materials development in multiphase flow

    International Nuclear Information System (INIS)

    Zheng, Yugui; Liu, Wei; Yao, Zhiming; Ke, Wei

    2002-01-01

    The investigation on the synergistic effects among corrosion, slurry erosion and cavitation erosion has special significance for hydraulic turbines operated in Yangtze River and Yellow River where the high concentration solid particles exist in water. Two typical metallic materials i.e. Cr-Mn-N stainless steel and Ni-Ti shapememory-alloy, and two typical materials used for hydraulic turbines 20SiMn and 0Cr13Ni5Mo as compared materials were selected in order to investigate the roles of work-hardening ability and martensitic transformation as well as pseudoelastics in damage mechanism in multiphase flow. Both modified rotating disk rig and ultrasonic vibration facility were used to simulate the possible damage mechanism of materials in multiphase flow. The effects of corrosion on cavitation erosion were investigated through adding 3wt% NaCl. The degradation mechanism was analyzed by electrochemical test, SEM observation, hardness and roughness measurement. The results showed that there was a strong synergistic interaction among electrochemical corrosion, slurry erosion and cavitation erosion for 20SiMn in liquid-solid two-phase medium. In contrast, corrosion played little role for 0Cr13Ni5Mo. Cr-Mn-N stainless steel with high Mn content showed better resistance to cavitation erosion and slurry erosion than 0Cr13Ni5Mo, which was mainly due to its good work-hardening ability as well as strain-induced martensite transformation. The cavitation micro-cracks for Cr-Mn-N stainless steel were parallel to the specimen surface in contrast with 0Cr13Ni5Mo whose micro-cracks were perpendicular to the surface. Ni-Ti alloy with pseudoelasticity showed excellent resistance to combined interaction of cavitation erosion and slurry erosion

  16. Droplet sizes, dynamics and deposition in vertical annular flow

    International Nuclear Information System (INIS)

    Lopes, J.C.B.; Dukler, A.E.

    1985-10-01

    The role of droplets in vertical upwards annular flow is investigated, focusing on the droplet size distributions, dynamics, and deposition phenomena. An experimental program was performed based on a new laser optical technique developed in these laboratories and implemented here for annular flow. This permitted the simultaneous measurement of droplet size, axial and radial velocity. The dependence of droplet size distributions on flow conditions is analyzed. The Upper-Log Normal function proves to be a good model for the size distribution. The mechanism controlling the maximum stable drop size was found to result from the interaction of the pressure fluctuations of the turbulent flow of the gas core with the droplet. The average axial droplet velocity showed a weak dependence on gas rates. This can be explained once the droplet size distribution and droplet size-velocity relationship are analyzed simultaneously. The surprising result from the droplet conditional analysis is that larger droplet travel faster than smaller ones. This dependence cannot be explained if the drag curves used do not take into account the high levels of turbulence present in the gas core in annular flow. If these are considered, then interesting new situations of multiplicity and stability of droplet terminal velocities are encountered. Also, the observed size-velocity relationship can be explained. A droplet deposition is formulated based on the particle inertia control. This permitted the calculation of rates of drop deposition directly from the droplet size and velocities data

  17. Fluid dynamics following flow shut-off in bottle filling

    Science.gov (United States)

    Thete, Sumeet; Appathurai, Santosh; Gao, Haijing; Basaran, Osman

    2012-11-01

    Bottle filling is ubiquitous in industry. Examples include filling of bottles with shampoos and cleaners, engine oil and pharmaceuticals. In these examples, fluid flows out of a nozzle to fill bottles in an assembly line. Once the required volume of fluid has flowed out of the nozzle, the flow is shut off. However, an evolving fluid thread or string may remain suspended from the nozzle following flow shut-off and persist. This stringing phenomenon can be detrimental to a bottle filling operation because it can adversely affect line speed and filling accuracy by causing uncertainty in fill volume, product loss and undesirable marring of the bottles' exterior surfaces. The dynamics of stringing are studied numerically primarily by using the 1D, slender-jet approximation of the flow equations. A novel feature entails development and use of a new boundary condition downstream of the nozzle exit to expedite the computations. While the emphasis is on stringing of Newtonian fluids and use of 1D approximations, results will also be presented for situations where (a) the fluids are non-Newtonian and (b) the full set of equations are solved without invoking the 1D approximation. Phase diagrams will be presented that identify conditions for which stringing can be problematic.

  18. Magnetic flux dynamics in superconducting materials

    International Nuclear Information System (INIS)

    Hernandez Nieves, Alexander

    2004-01-01

    The magnetization curves, the Bean-Livingston barrier in type I and type II superconductors, the ac magnetic response, the effects of thermal fluctuations on the magnetic behavior and the different dissipation mechanism at microwave frequencies are investigated in mesoscopic superconductors.For small mesoscopic samples we study the peaks and discontinuous jumps found in the magnetization as a function of magnetic field.To interpret these jumps we consider that vortices located inside the sample induce a reinforcement of the Bean- Livingston surface barrier at fields greater than the first penetration field Hp1.This leads to multiple penetration fields Hpi Hp1;Hp2;Hp3;... for vortex entrance in mesoscopic samples.For low-T c mesoscopic superconductors we found that the meta-stable states due to the surface barrier have a large half-life time, which leads to the hysteresis in the magnetization curves as observed experimentally.A very different behavior appears for high-T c mesoscopic superconductors where thermally activated vortex entrance/exit through surface barriers is frequent.This leads to a reduction of the magnetization and a non-integer average number of flux quanta penetrating the superconductor.At microwave frequencies we found that each vortex penetration event produces a significant suppression of the ac losses since the imaginary part of the ac susceptibility X ( H d c) as a function of the magnetic field (Hdc) increases before the penetration of vortices and then it decreases abruptly after vortices have entered into the sample.We show that nascent vortices (vortices that are partly inside the sample and nucleated at the surface) play an important role in the dynamic behavior of mesoscopic samples. In type I macroscopic superconductors with first-principles simulations of the TDGL equations we have been able to reproduce several features of the intermediate state observed in experiments.Particularly, droplet and striped patterns are obtained depending

  19. Debris flow run-out simulation and analysis using a dynamic model

    Science.gov (United States)

    Melo, Raquel; van Asch, Theo; Zêzere, José L.

    2018-02-01

    Only two months after a huge forest fire occurred in the upper part of a valley located in central Portugal, several debris flows were triggered by intense rainfall. The event caused infrastructural and economic damage, although no lives were lost. The present research aims to simulate the run-out of two debris flows that occurred during the event as well as to calculate via back-analysis the rheological parameters and the excess rain involved. Thus, a dynamic model was used, which integrates surface runoff, concentrated erosion along the channels, propagation and deposition of flow material. Afterwards, the model was validated using 32 debris flows triggered during the same event that were not considered for calibration. The rheological and entrainment parameters obtained for the most accurate simulation were then used to perform three scenarios of debris flow run-out on the basin scale. The results were confronted with the existing buildings exposed in the study area and the worst-case scenario showed a potential inundation that may affect 345 buildings. In addition, six streams where debris flow occurred in the past and caused material damage and loss of lives were identified.

  20. Dynamic Materials do the Trick in Participatory Business Modeling

    DEFF Research Database (Denmark)

    Caglio, Agnese; Buur, Jacob

    In this position paper we suggest that design material with dynamic behaviour is particularly suited to scaffold groups of diverse participants in discussing the ‘if – then’ causalities of business models. Based on video data from a number of innovation project workshops we present a comparison...... matrix of five different material types for participatory business modeling. The comparison matrix highlights patterns in the use of materials, and how they allow people to participate, negotiate and make meaning....

  1. A new algorithm for extended nonequilibrium molecular dynamics simulations of mixed flow

    NARCIS (Netherlands)

    Hunt, T.A.; Hunt, Thomas A.; Bernardi, Stefano; Todd, B.D.

    2010-01-01

    In this work, we develop a new algorithm for nonequilibrium molecular dynamics of fluids under planar mixed flow, a linear combination of planar elongational flow and planar Couette flow. To date, the only way of simulating mixed flow using nonequilibrium molecular dynamics techniques was to impose

  2. Muscle blood flow at onset of dynamic exercise in humans.

    Science.gov (United States)

    Rådegran, G; Saltin, B

    1998-01-01

    To evaluate the temporal relationship between blood flow, blood pressure, and muscle contractions, we continuously measured femoral arterial inflow with ultrasound Doppler at onset of passive exercise and voluntary, one-legged, dynamic knee-extensor exercise in humans. Blood velocity and inflow increased (P dicrotic and diastolic blood pressure notches, respectively. Mechanical hindrance occurred (P dicrotic notch. The increase in blood flow (Q) was characterized by a one-component (approximately 15% of peak power output), two-component (approximately 40-70% of peak power output), or three-component exponential model (> or = 75% of peak power output), where Q(t) = Qpassive + delta Q1.[1 - e-(t - TD1/tau 1)]+ delta Q2.[1 - e-(t - TD2/tau 2)]+ delta Q3.[1 - e-(t - TD3/tau 3)]; Qpassive, the blood flow during passive leg movement, equals 1.17 +/- 0.11 l/min; TD is the onset latency; tau is the time constant; delta Q is the magnitude of blood flow rise; and subscripts 1-3 refer to the first, second, and third components of the exponential model, respectively. The time to reach 50% of the difference between passive and voluntary asymptotic blood flow was approximately 2.2-8.9 s. The blood flow leveled off after approximately 10-150 s, related to the power outputs. It is concluded that the elevation in blood flow with the first duty cycle(s) is due to muscle mechanical factors, but vasodilators initiate a more potent amplification within the second to fourth contraction.

  3. Evaluation of flow accelerated corrosion by coupled analysis of corrosion and flow dynamics (2), flow dynamics calculations for determining mixing factors and mass transfer coefficients

    International Nuclear Information System (INIS)

    Uehara, Yasushi; Uchida, Shunsuke; Naitoh, Masanori; Okada, Hidetoshi; Koshizuka, Seiichi

    2009-01-01

    In order to predict and mitigate flow accelerated corrosion (FAC) of carbon steel piping in PWR and BWR secondary systems, computer program packages for evaluating FAC have been developed by coupling one through three dimensional (1-3D) computational flow dynamics (CFD) models and corrosion models. To evaluate corrosive conditions, e.g., oxygen concentration and electrochemical corrosion potential (ECP) along the flow path, flow pattern and temperature in each elemental volume were obtained with 1D computational flow dynamics (CFD) codes. Precise flow turbulence and mass transfer coefficients at the structure surface were calculated with 3D CFD codes to determine wall thinning rates. One of the engineering options is application of k-ε calculation as a 3D CFD code, which has limitation of detail evaluation of flow distribution at very surface of large scale piping. A combination of k-ε calculation and wall function was proposed to evaluate precise distribution of mass transfer coefficients with reasonable CPU volume and computing time and, at the same time, reasonable accuracy. (author)

  4. Petrological Geodynamics of Mantle Melting II. AlphaMELTS + Multiphase Flow: Dynamic Fractional Melting

    Science.gov (United States)

    Tirone, Massimiliano

    2018-03-01

    In this second installment of a series that aims to investigate the dynamic interaction between the composition and abundance of the solid mantle and its melt products, the classic interpretation of fractional melting is extended to account for the dynamic nature of the process. A multiphase numerical flow model is coupled with the program AlphaMELTS, which provides at the moment possibly the most accurate petrological description of melting based on thermodynamic principles. The conceptual idea of this study is based on a description of the melting process taking place along a 1-D vertical ideal column where chemical equilibrium is assumed to apply in two local sub-systems separately on some spatial and temporal scale. The solid mantle belongs to a local sub-system (ss1) that does not interact chemically with the melt reservoir which forms a second sub-system (ss2). The local melt products are transferred in the melt sub-system ss2 where the melt phase eventually can also crystallize into a different solid assemblage and will evolve dynamically. The main difference with the usual interpretation of fractional melting is that melt is not arbitrarily and instantaneously extracted from the mantle, but instead remains a dynamic component of the model, hence the process is named dynamic fractional melting (DFM). Some of the conditions that may affect the DFM model are investigated in this study, in particular the effect of temperature, mantle velocity at the boundary of the mantle column. A comparison is made with the dynamic equilibrium melting (DEM) model discussed in the first installment. The implications of assuming passive flow or active flow are also considered to some extent. Complete data files of most of the DFM simulations, four animations and two new DEM simulations (passive/active flow) are available following the instructions in the supplementary material.

  5. Dynamic characteristics of a perforated cylindrical shell for flow distribution in SMART

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Seungho; Choi, Youngin; Ha, Kyungrok [Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Park, Kyoung-Su, E-mail: pks6348@yonsei.ac.kr [Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Park, No-Cheol; Park, Young-Pil [Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Jeong, Kyeong-Hoon; Park, Jin-Seok [Korea Atomic Energy Research Institute, 1045 Daedeokdaero, Yuseong, Daejeon 305-303 (Korea, Republic of)

    2011-10-15

    Highlights: > A 1/12 scaled-down flow skirt is manufactured and a modal test is performed. > A finite element model predicts the added mass effect of the perforated cylindrical shell. > Modal characteristics are extracted by considering the fluid-structure interaction. - Abstract: The System-integrated Modular Advanced ReacTor (SMART) is a small nuclear reactor under development in Korea. It is equipped with a perforated cylindrical shell, which is called a flow skirt, in the lower plenum of the reactor for uniform flow distribution and to prevent inflow of debris into the core. This perforated cylindrical shell can be excited by external forces such as seismic or pump pulsation loads. The dynamic characteristics of the perforated cylindrical shell must be identified for further dynamic analysis. This research explores the modal analysis of the scaled-down flow skirt model submerged in coolant water. For the numerical simulation, finite element analysis is carried out to extract modal characteristics of the structure considering the fluid-structure interaction and we introduce the NAVMI factor for similarity analysis. In the finite element model, the whole shape of the perforated cylindrical shell is simulated instead of using the effective material properties. In addition, a 1/12 scaled-down flow skirt is manufactured, and an experiment is designed using an exciter and waterproof accelerometers for the modal test. Due to excellent agreement between the modal test results and the finite element analysis results such as natural frequencies and mode shapes, the finite element model is validated and can be used to predict the dynamic characteristics of the real flow skirt. Moreover, the natural frequency of the real flow skirt can be calculated from the NAVMI factor and is in good agreement with the FEM result.

  6. Flow vibrations and dynamic instability of heat exchanger tube bundles

    International Nuclear Information System (INIS)

    Granger, S.; Langre, E. de

    1995-01-01

    This paper presents a review of external-flow-induced vibration of heat exchanger tube bundles. Attention is focused on a dynamic instability, known as ''fluidelastic instability'', which can develop when flow is transverse to the tube axis. The main physical models proposed in the literature are successively reviewed in a critical way. As a consequence, some concepts are clarified, some a priori plausible misinterpretations are rejected and finally, certain basic mechanisms, induced by the flow-structure interaction and responsible for the ultimate onset of fluidelastic instability, are elucidated. Design tools and methods for predictive analysis of industrial cases are then presented. The usual design tool is the ''stability map'', i.e. an empirical correlation which must be interpreted in a conservative way. Of course, when using this approach, the designer must also consider reasonable safety margins. In the area of predictive analysis, the ''unsteady semi-analytical models'' seem to be a promising and efficient methodology. A modern implementation of these ideas mix an original experimental approach for taking fluid dynamic forces into account, together with non-classical numerical methods of mechanical vibration. (authors). 20 refs., 9 figs

  7. Wake flow control using a dynamically controlled wind turbine

    Science.gov (United States)

    Castillo, Ricardo; Wang, Yeqin; Pol, Suhas; Swift, Andy; Hussain, Fazle; Westergaard, Carsten; Texas Tech University Team

    2016-11-01

    A wind tunnel based "Hyper Accelerated Wind Farm Kinematic-Control Simulator" (HAWKS) is being built at Texas Tech University to emulate controlled wind turbine flow physics. The HAWKS model turbine has pitch, yaw and speed control which is operated in real model time, similar to that of an equivalent full scale turbine. Also, similar to that of a full scale wind turbine, the controls are developed in a Matlab Simulink environment. The current diagnostic system consists of power, rotor position, rotor speed measurements and PIV wake characterization with four cameras. The setup allows up to 7D downstream of the rotor to be mapped. The purpose of HAWKS is to simulate control strategies at turnaround times much faster than CFD and full scale testing. The fundamental building blocks of the simulator have been tested, and demonstrate wake steering for both static and dynamic turbine actuation. Parameters which have been studied are yaw, rotor speed and combinations hereof. The measured wake deflections for static yaw cases are in agreement with previously reported research implying general applicability of the HAWKS platform for the purpose of manipulating the wake. In this presentation the general results will be introduced followed by an analysis of the wake turbulence and coherent structures when comparing static and dynamic flow cases. The outcome of such studies could ultimately support effective wind farm wake flow control strategies. Texas Emerging Technology Fund (ETF).

  8. Experimental Investigation of Hysteretic Dynamic Capillarity Effect in Unsaturated Flow

    Science.gov (United States)

    Zhuang, Luwen; Hassanizadeh, S. Majid; Qin, Chao-Zhong; de Waal, Arjen

    2017-11-01

    The difference between average pressures of two immiscible fluids is commonly assumed to be the same as macroscopic capillary pressure, which is considered to be a function of saturation only. However, under transient conditions, a dependence of this pressure difference on the time rate of saturation change has been observed by many researchers. This is commonly referred to as dynamic capillarity effect. As a first-order approximation, the dynamic term is assumed to be linearly dependent on the time rate of change of saturation, through a material coefficient denoted by τ. In this study, a series of laboratory experiments were carried out to quantify the dynamic capillarity effect in an unsaturated sandy soil. Primary, main, and scanning drainage experiments, under both static and dynamic conditions, were performed on a sandy soil in a small cell. The value of the dynamic capillarity coefficient τ was calculated from the air-water pressure differences and average saturation values during static and dynamic drainage experiments. We found a dependence of τ on saturation, which showed a similar trend for all drainage conditions. However, at any given saturation, the value of τ for primary drainage was larger than the value for main drainage and that was in turn larger than the value for scanning drainage. Each data set was fit a simple log-linear equation, with different values of fitting parameters. This nonuniqueness of the relationship between τ and saturation and possible causes is discussed.

  9. A numerical model for dynamic crustal-scale fluid flow

    Science.gov (United States)

    Sachau, Till; Bons, Paul; Gomez-Rivas, Enrique; Koehn, Daniel

    2015-04-01

    Fluid flow in the crust is often envisaged and modeled as continuous, yet minimal flow, which occurs over large geological times. This is a suitable approximation for flow as long as it is solely controlled by the matrix permeability of rocks, which in turn is controlled by viscous compaction of the pore space. However, strong evidence (hydrothermal veins and ore deposits) exists that a significant part of fluid flow in the crust occurs strongly localized in both space and time, controlled by the opening and sealing of hydrofractures. We developed, tested and applied a novel computer code, which considers this dynamic behavior and couples it with steady, Darcian flow controlled by the matrix permeability. In this dual-porosity model, fractures open depending on the fluid pressure relative to the solid pressure. Fractures form when matrix permeability is insufficient to accommodate fluid flow resulting from compaction, decompression (Staude et al. 2009) or metamorphic dehydration reactions (Weisheit et al. 2013). Open fractures can close when the contained fluid either seeps into the matrix or escapes by fracture propagation: mobile hydrofractures (Bons, 2001). In the model, closing and sealing of fractures is controlled by a time-dependent viscous law, which is based on the effective stress and on either Newtonian or non-Newtonian viscosity. Our simulations indicate that the bulk of crustal fluid flow in the middle to lower upper crust is intermittent, highly self-organized, and occurs as mobile hydrofractures. This is due to the low matrix porosity and permeability, combined with a low matrix viscosity and, hence, fast sealing of fractures. Stable fracture networks, generated by fluid overpressure, are restricted to the uppermost crust. Semi-stable fracture networks can develop in an intermediate zone, if a critical overpressure is reached. Flow rates in mobile hydrofractures exceed those in the matrix porosity and fracture networks by orders of magnitude

  10. The potential value of dynamic materials control in international safeguards

    International Nuclear Information System (INIS)

    Keepin, G.R.; Lovett, J.E.

    1979-01-01

    The difficulties inherent in conventional materials accountancy based on semi-annual or annual shutdown cleanout physical inventories have been recognized for many years. The increasing importance of international nuclear materials safeguards, coupled with the availability of advanced non-destructive measurement technology which could be installed on or near process lines, has led to the development of the concept of advanced or dynamic materials control. The potential benefits of dynamic materials control in terms of significantly improved detection capabilities (ranging from a few kilograms of plutonium down to perhaps a few hundred grams, even for large-scale bulk processing facilities), and even more dramatically improved detection timeliness (typically a few days, and potentially only a few hours, in advanced facilities), are reviewed. At least twelve major dynamic material control systems already in existence or in the process of being installed are noted, and some of the essential characteristics are discussed. Some currently unresolved questions are explored, and future prospects for the concept of dynamic material control in international safeguards are reviewed. (author)

  11. Statistical dynamical subgrid-scale parameterizations for geophysical flows

    International Nuclear Information System (INIS)

    O'Kane, T J; Frederiksen, J S

    2008-01-01

    Simulations of both atmospheric and oceanic circulations at given finite resolutions are strongly dependent on the form and strengths of the dynamical subgrid-scale parameterizations (SSPs) and in particular are sensitive to subgrid-scale transient eddies interacting with the retained scale topography and the mean flow. In this paper, we present numerical results for SSPs of the eddy-topographic force, stochastic backscatter, eddy viscosity and eddy-mean field interaction using an inhomogeneous statistical turbulence model based on a quasi-diagonal direct interaction approximation (QDIA). Although the theoretical description on which our model is based is for general barotropic flows, we specifically focus on global atmospheric flows where large-scale Rossby waves are present. We compare and contrast the closure-based results with an important earlier heuristic SSP of the eddy-topographic force, based on maximum entropy or statistical canonical equilibrium arguments, developed specifically for general ocean circulation models (Holloway 1992 J. Phys. Oceanogr. 22 1033-46). Our results demonstrate that where strong zonal flows and Rossby waves are present, such as in the atmosphere, maximum entropy arguments are insufficient to accurately parameterize the subgrid contributions due to eddy-eddy, eddy-topographic and eddy-mean field interactions. We contrast our atmospheric results with findings for the oceans. Our study identifies subgrid-scale interactions that are currently not parameterized in numerical atmospheric climate models, which may lead to systematic defects in the simulated circulations.

  12. Energy and ancillary service dispatch through dynamic optimal power flow

    International Nuclear Information System (INIS)

    Costa, A.L.; Costa, A. Simoes

    2007-01-01

    This paper presents an approach based on dynamic optimal power flow (DOPF) to clear both energy and spinning reserve day-ahead markets. A competitive environment is assumed, where agents can offer active power for both demand supply and ancillary services. The DOPF jointly determines the optimal solutions for both energy dispatch and reserve allocation. A non-linear representation for the electrical network is employed, which is able to take transmission losses and power flow limits into account. An attractive feature of the proposed approach is that the final optimal solution will automatically meet physical constraints such as generating limits and ramp rate restrictions. In addition, the proposed framework allows the definition of multiple zones in the network for each time interval, in order to ensure a more adequate distribution of reserves throughout the power system. (author)

  13. Mapping flow distortion on oceanographic platforms using computational fluid dynamics

    Directory of Open Access Journals (Sweden)

    N. O'Sullivan

    2013-10-01

    Full Text Available Wind speed measurements over the ocean on ships or buoys are affected by flow distortion from the platform and by the anemometer itself. This can lead to errors in direct measurements and the derived parametrisations. Here we computational fluid dynamics (CFD to simulate the errors in wind speed measurements caused by flow distortion on the RV Celtic Explorer. Numerical measurements were obtained from the finite-volume CFD code OpenFOAM, which was used to simulate the velocity fields. This was done over a range of orientations in the test domain from −60 to +60° in increments of 10°. The simulation was also set up for a range of velocities, ranging from 5 to 25 m s−1 in increments of 0.5 m s−1. The numerical analysis showed close agreement to experimental measurements.

  14. Design of advanced materials for linear and nonlinear dynamics

    DEFF Research Database (Denmark)

    Frandsen, Niels Morten Marslev

    to reveal the fundamental dynamic characteristics and thus the relevant design parameters.The thesis is built around the characterization of two one-dimensional, periodic material systems. The first is a nonlinear mass-spring chain with periodically varying material properties, representing a simple......The primary catalyst of this PhD project has been an ambition to design advanced materials and structural systems including, and possibly even exploiting, nonlinear phenomena such as nonlinear modal interaction leading to energy conversion between modes. An important prerequisite for efficient...... but general model of inhomogeneous structural materials with nonlinear material characteristics. The second material system is an “engineered” material in the sense that a classical structural element, a linear elastic and homogeneous rod, is “enhanced” by applying a mechanism on its surface, amplifying...

  15. In-Vivo High Dynamic Range Vector Flow Imaging

    DEFF Research Database (Denmark)

    Villagómez Hoyos, Carlos Armando; Stuart, Matthias Bo; Jensen, Jørgen Arendt

    2015-01-01

    example with a high dynamic velocity range. Velocities with an order of magnitude apart are detected on the femoral artery of a 41 years old healthy individual. Three distinct heart cycles are captured during a 3 secs acquisition. The estimated vector velocities are compared against each other within...... the heart cycle. The relative standard deviation of the measured velocity magnitude between the three peak systoles was found to be 5.11% with a standard deviation on the detected angle of 1.06◦ . In the diastole, it was 1.46% and 6.18◦ , respectively. Results proves that the method is able to estimate flow...

  16. Molecular dynamics simulations of oscillatory flows in microfluidic channels

    DEFF Research Database (Denmark)

    Hansen, J.S.; Ottesen, Johnny T.

    2006-01-01

    In this paper we apply the direct non-equilibrium molecular dynamics technique to oscillatory flows of fluids in microscopic channels. Initially, we show that the microscopic simulations resemble the macroscopic predictions based on the Navier–Stokes equation very well for large channel width, high...... density and low temperature. Further simulations for high temperature and low density show that the non-slip boundary condition traditionally used in the macroscopic equation is greatly compromised when the fluid–wall interactions are the same as the fluid–fluid interactions. Simulations of a system...

  17. Increasing the Dynamic Range of Synthetic Aperture Vector Flow Imaging

    DEFF Research Database (Denmark)

    Villagómez Hoyos, Carlos Armando; Stuart, Matthias Bo; Jensen, Jørgen Arendt

    2014-01-01

    images. The emissions for the two imaging modes are interleaved 1-to-1 ratio, providing a high frame rate equal to the effective pulse repetition frequency of each imaging mode. The direction of the flow is estimated, and the velocity is then determined in that direction. This method Works for all angles...... standard deviations are 1.59% and 6.12%, respectively. The presented method can improve the estimates by synthesizing a lower pulse repetition frequency, thereby increasing the dynamic range of the vector velocity imaging....

  18. Transverse flow reactor studies of the dynamics of radical reactions

    Energy Technology Data Exchange (ETDEWEB)

    Macdonald, R.G. [Argonne National Laboratory, IL (United States)

    1993-12-01

    Radical reactions are in important in combustion chemistry; however, little state-specific information is available for these reactions. A new apparatus has been constructed to measure the dynamics of radical reactions. The unique feature of this apparatus is a transverse flow reactor in which an atom or radical of known concentration will be produced by pulsed laser photolysis of an appropriate precursor molecule. The time dependence of individual quantum states or products and/or reactants will be followed by rapid infrared laser absorption spectroscopy. The reaction H + O{sub 2} {yields} OH + O will be studied.

  19. Constrained dynamics of an inertial particle in a turbulent flow

    International Nuclear Information System (INIS)

    Obligado, M; Baudet, C; Gagne, Y; Bourgoin, M

    2011-01-01

    Most of theoretical and numerical works for free advected particles in a turbulent flow, which only consider the drag force acting on the particles, fails to predict recent experimental results for the transport of finite size particles. These questions have motivated a series of experiments trying to emphasize the actual role of the drag force by imposing this one as an unambiguous leading forcing term acting on a particle in a turbulent background. This is achieved by considering the constrained dynamics of towed particles in a turbulent environment. In the present work, we focus on the influence of particles inertia on its velocity and acceleration Lagrangian statistics and energy spectral density. Our results are consistent with a filtering scenario resulting from the viscous response time of an inertial particle whose dynamics is coupled to the surrounding fluid via strong contribution of drag.

  20. Channel Geometry and Flood Flows: Quantifying over-bank flow dynamics during high-flow events in North Carolina's floodplains

    Science.gov (United States)

    Lovette, J. P.; Duncan, J. M.; Vimal, S.; Band, L. E.

    2015-12-01

    Natural riparian areas play numerous roles in the maintenance and improvement of stream water quality. Both restoration of riparian areas and improvement of hydrologic connectivity to the stream are often key goals of river restoration projects. These management actions are designed to improve nutrient removal by slowing and treating overland flow delivered from uplands and by storing, treating, and slowly releasing streamwater from overbank inundation during flood events. A major question is how effective this storage of overbank flow is at treating streamwater based on the cumulative time stream discharge at a downstream location has spent in shallower, slower overbank flow. The North Carolina Floodplain Mapping Program maintains a detailed statewide Flood Risk Information System (FRIS) using HEC-RAS modeling, lidar, and detailed surveyed river cross-sections. FRIS provides extensive information regarding channel geometry on approximately 39,000 stream reaches (a slightly coarser spatial resolution than the NHD+v2 dataset) with tens of cross-sections for each reach. We use this FRIS data to calculate volume and discharge from floodplain riparian areas separately from in-channel flow during overbank events. Preliminary results suggest that a small percentage of total annual discharge interacts with the full floodplain extent along a stream reach due to the infrequency of overbank flow events. However, with the significantly different physical characteristics of the riparian area when compared to the channel itself, this overbank flow can provide unique services to water quality. Our project aims to use this information in conjunction with data from the USGS SPARROW program to target non-point source hotspots of Nitrogen and Phosphorus addition and removal. By better understanding the flow dynamics within riparian areas during high flow events, riparian restoration projects can be carried out with improved efficacy.

  1. Managing critical materials with a technology-specific stocks and flows model.

    Science.gov (United States)

    Busch, Jonathan; Steinberger, Julia K; Dawson, David A; Purnell, Phil; Roelich, Katy

    2014-01-21

    The transition to low carbon infrastructure systems required to meet climate change mitigation targets will involve an unprecedented roll-out of technologies reliant upon materials not previously widespread in infrastructure. Many of these materials (including lithium and rare earth metals) are at risk of supply disruption. To ensure the future sustainability and resilience of infrastructure, circular economy policies must be crafted to manage these critical materials effectively. These policies can only be effective if supported by an understanding of the material demands of infrastructure transition and what reuse and recycling options are possible given the future availability of end-of-life stocks. This Article presents a novel, enhanced stocks and flows model for the dynamic assessment of material demands resulting from infrastructure transitions. By including a hierarchical, nested description of infrastructure technologies, their components, and the materials they contain, this model can be used to quantify the effectiveness of recovery at both a technology remanufacturing and reuse level and a material recycling level. The model's potential is demonstrated on a case study on the roll-out of electric vehicles in the UK forecast by UK Department of Energy and Climate Change scenarios. The results suggest policy action should be taken to ensure Li-ion battery recycling infrastructure is in place by 2025 and NdFeB motor magnets should be designed for reuse. This could result in a reduction in primary demand for lithium of 40% and neodymium of 70%.

  2. Logistics of Materials Flow in an Iron Foundry

    Directory of Open Access Journals (Sweden)

    Kukla S.

    2013-09-01

    Full Text Available The article presents issues related to creating and realizing added value by logistic processes and processing in a casting enterprise. It discusses possibilities of improving systems of casts production by evaluating labour intensity of casts manufacture and analyzing manufacturing prime costs. Operations with added value, processes indirectly creating added value and operations without added value have been specified. The problem was presented on the example of materials flow design in a foundry, where casts are manufactured in expendable moulds and using automated foundry lines. On the basis of the Pareto analysis, a group of casts was specified whose manufacture significantly influences the functioning of the whole enterprise. Finishing treatment operations have been particularly underlined, as they are performed away from the line and are among the most labour-consuming processes during casts production.

  3. A material flow of lithium batteries in Taiwan

    International Nuclear Information System (INIS)

    Chang, T.C.; You, S.J.; Yu, B.S.; Yao, K.F.

    2009-01-01

    Li batteries, including secondary and cylindrical/button primary Li batteries, are used worldwide in computers, communications and consumer electronics products. However, there are several dangerous issues that occur during the manufacture, shipping, and storage of Li batteries. This study analyzes the material flow of lithium batteries and their valuable heavy metals in Taiwan for the year 2006 by material flow analysis. According to data from the Taiwan Environmental Protection Administration, Taiwan External Trade Development Council, Bureau of Foreign Trade, Directorate General of Customs, and the Li batteries manufactures/importers/exporters. It was found that 2,952,696 kg of Li batteries was input into Taiwan for the year 2006, including 2,256,501 kg of imported Li batteries and 696,195 kg of stock Li batteries in 2005. In addition, 1,113,867 and 572,215 kg of Li batteries was domestically produced and sold abroad, revealing that 3,494,348 kg of different types of Li batteries was sold in Taiwan. Of these domestically sold batteries, 504,663 and 146,557 kg were treated domestically and abroad. Thus, a total of 2,843,128 kg of Li batteries was stored by individual/industry users or illegally disposed. In addition, it was also observed that 2,120,682 kg of heavy metals contained in Li batteries, including Ni, Co, Al, Cu and Ni, was accumulated in Taiwan, with a recycled value of 38.8 million USD. These results suggest that these heavy metals should be recovered by suitable collection, recycling and reuse procedures

  4. A comprehensive dynamic modeling approach for giant magnetostrictive material actuators

    International Nuclear Information System (INIS)

    Gu, Guo-Ying; Zhu, Li-Min; Li, Zhi; Su, Chun-Yi

    2013-01-01

    In this paper, a comprehensive modeling approach for a giant magnetostrictive material actuator (GMMA) is proposed based on the description of nonlinear electromagnetic behavior, the magnetostrictive effect and frequency response of the mechanical dynamics. It maps the relationships between current and magnetic flux at the electromagnetic part to force and displacement at the mechanical part in a lumped parameter form. Towards this modeling approach, the nonlinear hysteresis effect of the GMMA appearing only in the electrical part is separated from the linear dynamic plant in the mechanical part. Thus, a two-module dynamic model is developed to completely characterize the hysteresis nonlinearity and the dynamic behaviors of the GMMA. The first module is a static hysteresis model to describe the hysteresis nonlinearity, and the cascaded second module is a linear dynamic plant to represent the dynamic behavior. To validate the proposed dynamic model, an experimental platform is established. Then, the linear dynamic part and the nonlinear hysteresis part of the proposed model are identified in sequence. For the linear part, an approach based on axiomatic design theory is adopted. For the nonlinear part, a Prandtl–Ishlinskii model is introduced to describe the hysteresis nonlinearity and a constrained quadratic optimization method is utilized to identify its coefficients. Finally, experimental tests are conducted to demonstrate the effectiveness of the proposed dynamic model and the corresponding identification method. (paper)

  5. Using Metaheuristic and Fuzzy System for the Optimization of Material Pull in a Push-Pull Flow Logistics Network

    Directory of Open Access Journals (Sweden)

    Afshin Mehrsai

    2013-01-01

    Full Text Available Alternative material flow strategies in logistics networks have crucial influences on the overall performance of the networks. Material flows can follow push, pull, or hybrid systems. To get the advantages of both push and pull flows in networks, the decoupling-point strategy is used as coordination mean. At this point, material pull has to get optimized concerning customer orders against pushed replenishment-rates. To compensate the ambiguity and uncertainty of both dynamic flows, fuzzy set theory can practically be applied. This paper has conceptual and mathematical parts to explain the performance of the push-pull flow strategy in a supply network and to give a novel solution for optimizing the pull side employing Conwip system. Alternative numbers of pallets and their lot-sizes circulating in the assembly system are getting optimized in accordance with a multi-objective problem; employing a hybrid approach out of meta-heuristics (genetic algorithm and simulated annealing and fuzzy system. Two main fuzzy sets as triangular and trapezoidal are applied in this technique for estimating ill-defined waiting times. The configured technique leads to smoother flows between push and pull sides in complex networks. A discrete-event simulation model is developed to analyze this thesis in an exemplary logistics network with dynamics.

  6. AC Calorimetric Design for Dynamic of Biological Materials

    OpenAIRE

    Shigeo Imaizumi

    2006-01-01

    We developed a new AC calorimeter for the measurement of dynamic specific heat capacity in liquids, including aqueous suspensions of biological materials. This method has several advantages. The first is that a high-resolution measurement of heat capacity, inmillidegrees, can be performed as a function of temperature, even with a very small sample. Therefore, AC calorimeter is a powerful tool to study critical behavior a tphase transition in biological materials. The second advantage is that ...

  7. Studies of the dynamic properties of materials using neutron scattering

    International Nuclear Information System (INIS)

    Lovesey, S.W.; Windsor, C.G.

    1985-09-01

    The dynamic properties of materials using the neutron scattering technique is reviewed. The basic properties of both nuclear scattering and magnetic scattering are summarized. The experimental methods used in neutron scattering are described, along with access to neutron sources, and neutron inelastic instruments. Applied materials science using inelastic neutron scattering; rotational tunnelling of a methyl group; molecular diffusion from quasi-elastic scattering; and the diffusion of colloidal particles and poly-nuclear complexes; are also briefly discussed. (U.K.)

  8. Material and Energy Flows in the Production of Cathode and Anode Materials for Lithium Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, Jennifer B. [Argonne National Lab. (ANL), Argonne, IL (United States); James, Christine [Michigan State Univ., East Lansing, MI (United States); Gaines, Linda [Argonne National Lab. (ANL), Argonne, IL (United States); Gallagher, Kevin [Argonne National Lab. (ANL), Argonne, IL (United States); Dai, Qiang [Argonne National Lab. (ANL), Argonne, IL (United States); Kelly, Jarod C. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-09-01

    The Greenhouse gases, Regulated Emissions and Energy use in Transportation (GREET) model has been expanded to include four new cathode materials that can be used in the analysis of battery-powered vehicles: lithium nickel cobalt manganese oxide (LiNi0.4Co0.2Mn0.4O2 [NMC]), lithium iron phosphate (LiFePO4 [LFP]), lithium cobalt oxide (LiCoO2 [LCO]), and an advanced lithium cathode (0.5Li2MnO3∙0.5LiNi0.44Co0.25Mn0.31O2 [LMR-NMC]). In GREET, these cathode materials are incorporated into batteries with graphite anodes. In the case of the LMR-NMC cathode, the anode is either graphite or a graphite-silicon blend. Lithium metal is also an emerging anode material. This report documents the material and energy flows of producing each of these cathode and anode materials from raw material extraction through the preparation stage. For some cathode materials, we considered solid state and hydrothermal preparation methods. Further, we used Argonne National Laboratory’s Battery Performance and Cost (BatPaC) model to determine battery composition (e.g., masses of cathode, anode, electrolyte, housing materials) when different cathode materials were used in the battery. Our analysis concluded that cobalt- and nickel-containing compounds are the most energy intensive to produce.

  9. Particle and Blood Cell Dynamics in Oscillatory Flows Final Report

    International Nuclear Information System (INIS)

    Restrepo, Juan M.

    2008-01-01

    Our aim has been to uncover fundamental aspects of the suspension and dislodgement of particles in wall-bounded oscillatory flows, in flows characterized by Reynolds numbers encompassing the situation found in rivers and near shores (and perhaps in some industrial processes). Our research tools are computational and our coverage of parameter space fairly broad. Computational means circumvent many complications that make the measurement of the dynamics of particles in a laboratory setting an impractical task, especially on the broad range of parameter space we plan to report upon. The impact of this work on the geophysical problem of sedimentation is boosted considerably by the fact that the proposed calculations can be considered ab-initio, in the sense that little to no modeling is done in generating dynamics of the particles and of the moving fluid: we use a three-dimensional Navier Stokes solver along with straightforward boundary conditions. Hence, to the extent that Navier Stokes is a model for an ideal incompressible isotropic Newtonian fluid, the calculations yield benchmark values for such things as the drag, buoyancy, and lift of particles, in a highly controlled environment. Our approach will be to make measurements of the lift, drag, and buoyancy of particles, by considering progressively more complex physical configurations and physics.

  10. Development and demonstration program for dynamic nuclear materials control

    International Nuclear Information System (INIS)

    Augustson, R.H.; Baron, N.; Ford, R.F.; Ford, W.; Hagen, J.; Li, T.K.; Marshall, R.S.; Reams, V.S.; Severe, W.R.; Shirk, D.G.

    1978-01-01

    A significant portion of the Los Alamos Scientific Laboratory Safeguards Program is directed toward the development and demonstration of dynamic nuclear materials control. The building chosen for the demonstration system is the new Plutonium Processing Facility in Los Alamos, which houses such operations as metal-to-oxide conversion, fuel pellet fabrication, and scrap recovery. A DYnamic MAterials Control (DYMAC) system is currently being installed in the facility as an integral part of the processing operation. DYMAC is structured around interlocking unit-process accounting areas. It relies heavily on nondestructive assay measurements made in the process line to draw dynamic material balances in near real time. In conjunction with the nondestructive assay instrumentation, process operators use interactive terminals to transmit additional accounting and process information to a dedicated computer. The computer verifies and organizes the incoming data, immediately updates the inventory records, monitors material in transit using elapsed time, and alerts the Nuclear Materials Officer in the event that material balances exceed the predetermined action limits. DYMAC is part of the United States safeguards system under control of the facility operator. Because of its advanced features, the system will present a new set of inspection conditions to the IAEA, whose response is the subject of a study being sponsored by the US-IAEA Technical Assistance Program. The central issue is how the IAEA can use the increased capabilities of such a system and still maintain independent verification

  11. Scoping Future Policy Dynamics in Raw Materials Through Scenarios Testing

    Science.gov (United States)

    Correia, Vitor; Keane, Christopher; Sturm, Flavius; Schimpf, Sven; Bodo, Balazs

    2017-04-01

    The International Raw Materials Observatory (INTRAW) project is working towards a sustainable future for the European Union in access to raw materials, from an availability, economical, and environmental framework. One of the major exercises for the INTRAW project is the evaluation of potential future scenarios for 2050 to frame economic, research, and environmental policy towards a sustainable raw materials supply. The INTRAW consortium developed three possible future scenarios that encompass defined regimes of political, economic, and technological norms. The first scenario, "Unlimited Trade," reflects a world in which free trade continues to dominate the global political and economic environment, with expectations of a growing demand for raw materials from widely distributed global growth. The "National Walls" scenario reflects a world where nationalism and economic protectionism begins to dominate, leading to stagnating economic growth and uneven dynamics in raw materials supply and demand. The final scenario, "Sustainability Alliance," examines the dynamics of a global political and economic climate that is focused on environmental and economic sustainability, leading towards increasingly towards a circular raw materials economy. These scenarios were reviewed, tested, and provided simulations of impacts with members of the Consortium and a panel of global experts on international raw materials issues which led to expected end conditions for 2050. Given the current uncertainty in global politics, these scenarios are informative to identifying likely opportunities and crises. The details of these simulations and expected responses to the research demand, technology investments, and economic components of raw materials system will be discussed.

  12. Texture Development and Material Flow Behavior During Refill Friction Stir Spot Welding of AlMgSc

    Science.gov (United States)

    Shen, Junjun; Lage, Sara B. M.; Suhuddin, Uceu F. H.; Bolfarini, Claudemiro; dos Santos, Jorge F.

    2018-01-01

    The microstructural evolution during refill friction stir spot welding of an AlMgSc alloy was studied. The primary texture that developed in all regions, with the exception of the weld center, was determined to be 〈110〉 fibers and interpreted as a simple shear texture with the 〈110〉 direction aligned with the shear direction. The material flow is mainly driven by two components: the simple shear acting on the horizontal plane causing an inward-directed spiral flow and the extrusion acting on the vertical plane causing an upward-directed or downward-directed flow. Under such a complex material flow, the weld center, which is subjected to minimal local strain, is the least recrystallized. In addition to the geometric effects of strain and grain subdivision, thermally activated high-angle grain boundary migration, particularly continuous dynamic recrystallization, drives the formation of refined grains in the stirred zone.

  13. 20. German materials flow congress; 20. Deutscher Materialfluss-Kongress

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    Within the 20th German Material Flow Meeting of the VDI Wissensforum GmbH (Duesseldorf, Federal Republic of Germany) at 14th to 15th April, 2011 in Garching (Federal Republic of Germany) the following lectures were held: (1) From group logistics to service provider - The innovation process of Hermes Fulfilment GmbH (D. Urbanke); (2) Production structures of the future - Challenges for fabrics through the ages (M. Schenk); (3) Value-driven supply of materials for the implementation of a switching cabinet of great diesel engines (S. Meissner); (4) Material and optimisation of productions with APS - Real operation since January 2008 (M. Mayer); (5) Automation of the material flow in the production - Fully automatic supply of production using the multi-shuttle technology at Siemens site Amberg (M. Paehr); (6) Sustainable enhancement of the process efficiency at Demag Cranes Group (R. Harkort); (7) 'Activity-based logistics' Logistics at Strauss Innovation (A. Witte); (8) A new dimension in e-commerce: Handling of retours at the company Next (UK) - Tendencies and developments in E-Commerce - Handling of increasing quota of retours - A new intralogistic concept approach for handling retours - Green logistics at mail-order companies (V. Welsch); (9) Requirements concerning a tailor-made distribution logistics at office management wholesale trade (R. Barth); (10) New concepts for te distribution logistics - Trading Logistics Center Schweinfurt - The perfect combination of processes and technology for the delivery of an international free spare parts market (T. Nuss); (11) LEAN, BI, APS: Opposition or complementation (A. de Windt); (12) Next E-commerce Generations: How brand manufacturers generate new online sales channels via the utilisation of existing trading structures (M. Thomas); (13) From bus assembly to service provider for spare part logistics - Choice of location (U.J. Unger); (14) Design and implementation of a modular overall logistic system (M

  14. POD- Mapping and analysis of hydroturbine exit flow dynamics

    Science.gov (United States)

    Kjeldsen, Morten; Finstad, Pal Henrik

    2012-11-01

    Pairwise radial dynamic measurements of the swirling draft tube flow have been made at the 25 MW Svorka power plant in Surnadal operating at 48% load at 6 radial and 7 angular positions. The data is analyzed with traditional methods as well as with POD. The measurements were made in the turbine draft tube/exit flow in an axial measurement plane about 1200mm downstream the turbine runner. The draft tube diameter in the measurement plane is about 1300mm. The flow rate during measurements was close to 5.8m3/s. Two probes were used; both of length Le=700 mm and made of stainless steel with an outer diameter of Do=20 mm and inner diameter Di=4mm. At the end of each probe a full bridge cylindrical KULITE xcl152, 0-3.5, was mounted. 90 seconds samples at 10 kS/s were taken. The POD analysis largely follows that of Tutkun et al. (see e.g. AIAA J., 45,5,2008). The analysis shows that 26% of the pressure pulsation energy can be addressed to azimuthal mode 1. The work has been supported by Energy Norway.

  15. Stochastic Rotation Dynamics simulations of wetting multi-phase flows

    Science.gov (United States)

    Hiller, Thomas; Sanchez de La Lama, Marta; Brinkmann, Martin

    2016-06-01

    Multi-color Stochastic Rotation Dynamics (SRDmc) has been introduced by Inoue et al. [1,2] as a particle based simulation method to study the flow of emulsion droplets in non-wetting microchannels. In this work, we extend the multi-color method to also account for different wetting conditions. This is achieved by assigning the color information not only to fluid particles but also to virtual wall particles that are required to enforce proper no-slip boundary conditions. To extend the scope of the original SRDmc algorithm to e.g. immiscible two-phase flow with viscosity contrast we implement an angular momentum conserving scheme (SRD+mc). We perform extensive benchmark simulations to show that a mono-phase SRDmc fluid exhibits bulk properties identical to a standard SRD fluid and that SRDmc fluids are applicable to a wide range of immiscible two-phase flows. To quantify the adhesion of a SRD+mc fluid in contact to the walls we measure the apparent contact angle from sessile droplets in mechanical equilibrium. For a further verification of our wettability implementation we compare the dewetting of a liquid film from a wetting stripe to experimental and numerical studies of interfacial morphologies on chemically structured surfaces.

  16. Material and Energy Flows in the Production of Cathode and Anode Materials for Lithium Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, Jennifer B. [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division; James, Christine [Michigan State Univ., East Lansing, MI (United States). Chemical Engineering and Materials Science Dept.; Gaines, Linda G. [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division; Gallagher, Kevin [Argonne National Lab. (ANL), Argonne, IL (United States). Chemical Sciences and Engineering Division

    2014-09-30

    The Greenhouse gases, Regulated Emissions and Energy use in Transportation (GREET) model has been expanded to include four new cathode materials that can be used in the analysis of battery-powered vehicles: lithium nickel cobalt manganese oxide (LiNi0.4Co0.2Mn0.4O2 [NMC]), lithium iron phosphate (LiFePO4 [LFP]), lithium cobalt oxide (LiCoO2 [LCO]), and an advanced lithium cathode (0.5Li2MnO3∙0.5LiNi0.44Co0.25Mn0.31O2 [LMR-NMC]). In GREET, these cathode materials are incorporated into batteries with graphite anodes. In the case of the LMR-NMC cathode, the anode is either graphite or a graphite-silicon blend. This report documents the material and energy flows of producing each of these cathode and anode materials from raw material extraction through the preparation stage. For some cathode materials, we considered solid state and hydrothermal preparation methods. Further, we used Argonne National Laboratory’s Battery Performance and Cost (BatPaC) model to determine battery composition (e.g., masses of cathode, anode, electrolyte, housing materials) when different cathode materials were used in the battery. Our analysis concluded that cobalt- and nickel-containing compounds are the most energy intensive to produce.

  17. Dynamic compressive mechanical response of a soft polymer material

    NARCIS (Netherlands)

    Fan, J.T.; Weerheijm, J.; Sluys, L.J.

    2015-01-01

    The dynamic mechanical behaviour of a soft polymer material (Clear Flex 75) was studied using a split Hopkinson pressure bar (SHPB) apparatus. Mechanical properties have been determined at moderate to high strain rates. Real time deformation and fracture were recorded using a high-speed camera.

  18. Nonlinear dynamic characterization of two-dimensional materials

    NARCIS (Netherlands)

    Davidovikj, D.; Alijani, F.; Cartamil Bueno, S.J.; van der Zant, H.S.J.; Amabili, M.; Steeneken, P.G.

    2017-01-01

    Owing to their atomic-scale thickness, the resonances of two-dimensional (2D) material membranes show signatures of nonlinearities at forces of only a few picoNewtons. Although the linear dynamics of membranes is well understood, the exact relation between the nonlinear response and the resonator's

  19. Dynamics of the cross flow heat exchanger for heating purposes

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, K [Karlsruhe Univ. (TH) (Germany, F.R.). Inst. fuer Mess- und Regelungstechnik mit Maschinenlaboratorium

    1980-09-01

    A series of publications is available on the dynamic behaviour of heat exchangers (or heat transmitters, respectively), the subject of which is to deal with direct methods or with refined starting models for this general theme. The bridging between both these manners of advance remained as a problem. The author tried in his own investigation to solve the problem, and indeed by the selection of the correct starting model. He succeeded in this way, in that he removed conceptually a finned pipe from an arbitrary place of a heat exchanger and, furthermore, cut out from this particular pipe an arbitrary section. This section now does not stand alone for itself because the processes, which occur upstream of this section at the air-side and the water-side, are the input quantities of the section, which changes them due to its static and dynamic behaviour and emits them again as output quantities. The author, therefore, treats at first the dynamic behaviour of the section, which is represented in a signal flow diagram and which is used to derive approximate solutions from it. Furthermore, the author discusses the evident derivation of the total behaviour of heat exchangers.

  20. Computational domain discretization in numerical analysis of flow within granular materials

    Science.gov (United States)

    Sosnowski, Marcin

    2018-06-01

    The discretization of computational domain is a crucial step in Computational Fluid Dynamics (CFD) because it influences not only the numerical stability of the analysed model but also the agreement of obtained results and real data. Modelling flow in packed beds of granular materials is a very challenging task in terms of discretization due to the existence of narrow spaces between spherical granules contacting tangentially in a single point. Standard approach to this issue results in a low quality mesh and unreliable results in consequence. Therefore the common method is to reduce the diameter of the modelled granules in order to eliminate the single-point contact between the individual granules. The drawback of such method is the adulteration of flow and contact heat resistance among others. Therefore an innovative method is proposed in the paper: single-point contact is extended to a cylinder-shaped volume contact. Such approach eliminates the low quality mesh elements and simultaneously introduces only slight distortion to the flow as well as contact heat transfer. The performed analysis of numerous test cases prove the great potential of the proposed method of meshing the packed beds of granular materials.

  1. Effect of Flow Velocity on Corrosion Rate and Corrosion Protection Current of Marine Material

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seong Jong [Kunsan National University, Kunsan (Korea, Republic of); Han, Min Su; Jang, Seok Ki; Kim, Seong Jong [Mokpo National Maritime University, Mokpo (Korea, Republic of)

    2015-10-15

    In spite of highly advanced paint coating techniques, corrosion damage of marine metal and alloys increase more and more due to inherent micro-cracks and porosities in coatings formed during the coating process. Furthermore, flowing seawater conditions promote the breakdown of the protective oxide of the materials introducing more oxygen into marine environments, leading to the acceleration of corrosion. Various corrosion protection methods are available to prevent steel from marine corrosion. Cathodic protection is one of the useful corrosion protection methods by which the potential of the corroded metal is intentionally lowered to an immune state having the advantage of providing additional protection barriers to steel exposed to aqueous corrosion or soil corrosion, in addition to the coating. In the present investigation, the effect of flow velocity was examined for the determination of the optimum corrosion protection current density in cathodic protection as well as the corrosion rate of the steel. It is demonstrated from the result that the material corrosion under dynamic flowing conditions seems more prone to corrosion than under static conditions.

  2. Spatiotemporal evolution of cavitation dynamics exhibited by flowing microbubbles during ultrasound exposure.

    Science.gov (United States)

    Choi, James J; Coussios, Constantin-C

    2012-11-01

    Ultrasound and microbubble-based therapies utilize cavitation to generate bioeffects, yet cavitation dynamics during individual pulses and across consecutive pulses remain poorly understood under physiologically relevant flow conditions. SonoVue(®) microbubbles were made to flow (fluid velocity: 10-40 mm/s) through a vessel in a tissue-mimicking material and were exposed to ultrasound [frequency: 0.5 MHz, peak-rarefactional pressure (PRP): 150-1200 kPa, pulse length: 1-100,000 cycles, pulse repetition frequency (PRF): 1-50 Hz, number of pulses: 10-250]. Radiated emissions were captured on a linear array, and passive acoustic mapping was used to spatiotemporally resolve cavitation events. At low PRPs, stable cavitation was maintained throughout several pulses, thus generating a steady rise in energy with low upstream spatial bias within the focal volume. At high PRPs, inertial cavitation was concentrated in the first 6.3 ± 1.3 ms of a pulse, followed by an energy reduction and high upstream bias. Multiple pulses at PRFs below a flow-dependent critical rate (PRF(crit)) produced predictable and consistent cavitation dynamics. Above the PRF(crit), energy generated was unpredictable and spatially biased. In conclusion, key parameters in microbubble-seeded flow conditions were matched with specific types, magnitudes, distributions, and durations of cavitation; this may help in understanding empirically observed in vivo phenomena and guide future pulse sequence designs.

  3. Dynamics of blood flow: twenty years of achievement

    International Nuclear Information System (INIS)

    Rosendorff, C.

    1988-01-01

    The physiology of blood circulation has evolved from the descriptive phenomenology of William Harvey's time to an interdisciplinary science, involving elements of fluid dynamics, vessel wall mechanics, electrophysiology, cell biology, biochemistry and molecular biology. Most of these new developments have occured during the lifetime of the South African Medical Research Council. Highlights of the research undertaken by the Council regarding circulatory physiology are given. In the 1960s the use of xenon-133 to study the flow of blood to the brain resulted in the first systematic description of cerebral blood flow and its control by sympathetic nerves. During the 1970s this technique was refined and the use of radioactive microspheres for the measurement of tissue blood flow was developed. Research concerning the control of blood vessels in the kidney was also carried out, and this showed that the sympathetic nerves control renal blood flow by releasing a local hormone called renin. The renal release of renin was later recognised as being important in the control of blood pressure. Another development was the discovery that vascular sensitivity to noradrenaline was increased in certain types of liver diseases. An analysis of the blood of patients with obstructive jaundice showed that the substance responsible for this noradrenaline effect was a combination of cholesterol and lipo-protein. This led to the theory that excessive cholesterol in the blood may be dangerous. In the late 1970s a shift in research emphasis to coronary artery physiology occurred and the 1980s saw research move into the area of cell biology

  4. Gas flow characteristics of a time modulated APPJ: the effect of gas heating on flow dynamics

    International Nuclear Information System (INIS)

    Zhang, S; Sobota, A; Van Veldhuizen, E M; Bruggeman, P J

    2015-01-01

    This work investigates the flow dynamics of a radio-frequency (RF) non-equilibrium argon atmospheric pressure plasma jet. The RF power is at a frequency of 50 Hz or 20 kHz. Combined flow pattern visualizations (obtained by shadowgraphy) and gas temperature distributions (obtained by Rayleigh scattering) are used to study the formation of transient vortex structures in initial flow field shortly after the plasma is switched on and off in the case of 50 Hz modulation. The transient vortex structures correlate well with observed temperature differences. Experimental results of the fast modulated (20 kHz) plasma jet that does not induce changes of the gas temperature are also presented. The latter result suggests that momentum transfer by ions does not have dominant effect on the flow pattern close to the tube. It is argued that the increased gas temperature and corresponding gas velocity increase at the tube exit due to the plasma heating increases the admixing of surrounding air and reduces the effective potential core length. With increasing plasma power a reduction of the effective potential core length is observed with a minimum length for 5.6 W after which the length extends again. Possible mechanisms related to viscosity effects and ionic momentum transfer are discussed. (paper)

  5. Multi-Objective Emergency Material Vehicle Dispatching and Routing under Dynamic Constraints in an Earthquake Disaster Environment

    Directory of Open Access Journals (Sweden)

    Jincheng Jiang

    2017-05-01

    Full Text Available Emergency material vehicle dispatching and routing (EMVDR is an important task in emergency relief after large-scale earthquake disasters. However, EMVDR is subject to dynamic disaster environment, with uncertainty surrounding elements such as the transportation network and relief materials. Accurate and dynamic emergency material dispatching and routing is difficult. This paper proposes an effective and efficient multi-objective multi-dynamic-constraint emergency material vehicle dispatching and routing model. Considering travel time, road capacity, and material supply and demand, the proposed EMVDR model is to deliver emergency materials from multiple emergency material depositories to multiple disaster points while satisfying the objectives of maximizing transport efficiency and minimizing the difference of material urgency degrees among multiple disaster points at any one time. Furthermore, a continuous-time dynamic network flow method is developed to solve this complicated model. The collected data from Ludian earthquake were used to conduct our experiments in the post-quake and the results demonstrate that: (1 the EMVDR model adapts to the dynamic disaster environment very well; (2 considering the difference of material urgency degree, the material loss ratio is −10.7%, but the variance of urgency degree decreases from 2.39 to 0.37; (3 the EMVDR model shows good performance in time and space, which allows for decisions to be made nearly in real time. This paper can provide spatial decision-making support for emergency material relief in large-scale earthquake disasters.

  6. Cellular Manufacturing System with Dynamic Lot Size Material Handling

    Science.gov (United States)

    Khannan, M. S. A.; Maruf, A.; Wangsaputra, R.; Sutrisno, S.; Wibawa, T.

    2016-02-01

    Material Handling take as important role in Cellular Manufacturing System (CMS) design. In several study at CMS design material handling was assumed per pieces or with constant lot size. In real industrial practice, lot size may change during rolling period to cope with demand changes. This study develops CMS Model with Dynamic Lot Size Material Handling. Integer Linear Programming is used to solve the problem. Objective function of this model is minimizing total expected cost consisting machinery depreciation cost, operating costs, inter-cell material handling cost, intra-cell material handling cost, machine relocation costs, setup costs, and production planning cost. This model determines optimum cell formation and optimum lot size. Numerical examples are elaborated in the paper to ilustrate the characterictic of the model.

  7. Ill-posedness of Dynamic Equations of Compressible Granular Flow

    Science.gov (United States)

    Shearer, Michael; Gray, Nico

    2017-11-01

    We introduce models for 2-dimensional time-dependent compressible flow of granular materials and suspensions, based on the rheology of Pouliquen and Forterre. The models include density dependence through a constitutive equation in which the density or volume fraction of solid particles with material density ρ* is taken as a function of an inertial number I: ρ = ρ * Φ(I), in which Φ(I) is a decreasing function of I. This modelling has different implications from models relying on critical state soil mechanics, in which ρ is treated as a variable in the equations, contributing to a flow rule. The analysis of the system of equations builds on recent work of Barker et al in the incompressible case. The main result is the identification of a criterion for well-posedness of the equations. We additionally analyze a modification that applies to suspensions, for which the rheology takes a different form and the inertial number reflects the role of the fluid viscosity.

  8. Development of a dynamic flow imaging phantom for dynamic contrast-enhanced CT

    International Nuclear Information System (INIS)

    Driscoll, B.; Keller, H.; Coolens, C.

    2011-01-01

    Purpose: Dynamic contrast enhanced CT (DCE-CT) studies with modeling of blood flow and tissue perfusion are becoming more prevalent in the clinic, with advances in wide volume CT scanners allowing the imaging of an entire organ with sub-second image frequency and sub-millimeter accuracy. Wide-spread implementation of perfusion DCE-CT, however, is pending fundamental validation of the quantitative parameters that result from dynamic contrast imaging and perfusion modeling. Therefore, the goal of this work was to design and construct a novel dynamic flow imaging phantom capable of producing typical clinical time-attenuation curves (TACs) with the purpose of developing a framework for the quantification and validation of DCE-CT measurements and kinetic modeling under realistic flow conditions. Methods: The phantom is based on a simple two-compartment model and was printed using a 3D printer. Initial analysis of the phantom involved simple flow measurements and progressed to DCE-CT experiments in order to test the phantoms range and reproducibility. The phantom was then utilized to generate realistic input TACs. A phantom prediction model was developed to compute the input and output TACs based on a given set of five experimental (control) parameters: pump flow rate, injection pump flow rate, injection contrast concentration, and both control valve positions. The prediction model is then inversely applied to determine the control parameters necessary to generate a set of desired input and output TACs. A protocol was developed and performed using the phantom to investigate image noise, partial volume effects and CT number accuracy under realistic flow conditionsResults: This phantom and its surrounding flow system are capable of creating a wide range of physiologically relevant TACs, which are reproducible with minimal error between experiments (σ/μ 2 ) for the input function between 0.95 and 0.98, while the maximum enhancement differed by no more than 3.3%. The

  9. Exploiting the Dynamics of Soft Materials for Machine Learning.

    Science.gov (United States)

    Nakajima, Kohei; Hauser, Helmut; Li, Tao; Pfeifer, Rolf

    2018-06-01

    Soft materials are increasingly utilized for various purposes in many engineering applications. These materials have been shown to perform a number of functions that were previously difficult to implement using rigid materials. Here, we argue that the diverse dynamics generated by actuating soft materials can be effectively used for machine learning purposes. This is demonstrated using a soft silicone arm through a technique of multiplexing, which enables the rich transient dynamics of the soft materials to be fully exploited as a computational resource. The computational performance of the soft silicone arm is examined through two standard benchmark tasks. Results show that the soft arm compares well to or even outperforms conventional machine learning techniques under multiple conditions. We then demonstrate that this system can be used for the sensory time series prediction problem for the soft arm itself, which suggests its immediate applicability to a real-world machine learning problem. Our approach, on the one hand, represents a radical departure from traditional computational methods, whereas on the other hand, it fits nicely into a more general perspective of computation by way of exploiting the properties of physical materials in the real world.

  10. Dynamics of vortex interactions in two-dimensional flows

    DEFF Research Database (Denmark)

    Juul Rasmussen, J.; Nielsen, A.H.; Naulin, V.

    2002-01-01

    The dynamics and interaction of like-signed vortex structures in two dimensional flows are investigated by means of direct numerical solutions of the two-dimensional Navier-Stokes equations. Two vortices with distributed vorticity merge when their distance relative to their radius, d/R-0l. is below...... a critical value, a(c). Using the Weiss-field, a(c) is estimated for vortex patches. Introducing an effective radius for vortices with distributed vorticity, we find that 3.3 ... is effectively producing small scale structures and the relation to the enstrophy "cascade" in developed 2D turbulence is discussed. The influence of finite viscosity on the merging is also investigated. Additionally, we examine vortex interactions on a finite domain, and discuss the results in connection...

  11. The unsaturated flow in porous media with dynamic capillary pressure

    Science.gov (United States)

    Milišić, Josipa-Pina

    2018-05-01

    In this paper we consider a degenerate pseudoparabolic equation for the wetting saturation of an unsaturated two-phase flow in porous media with dynamic capillary pressure-saturation relationship where the relaxation parameter depends on the saturation. Following the approach given in [13] the existence of a weak solution is proved using Galerkin approximation and regularization techniques. A priori estimates needed for passing to the limit when the regularization parameter goes to zero are obtained by using appropriate test-functions, motivated by the fact that considered PDE allows a natural generalization of the classical Kullback entropy. Finally, a special care was given in obtaining an estimate of the mixed-derivative term by combining the information from the capillary pressure with the obtained a priori estimates on the saturation.

  12. The Dynamics of the Impact of Past Performance on Mutual Fund Flows

    NARCIS (Netherlands)

    Goriaev, A.P.; Nijman, T.E.; Werker, B.J.M.

    2002-01-01

    This study reconsiders the determinants of flows into US growth funds, focusing in particular on the dynamics of the impact of past performance on flows.We model the flow-performance relationship at the monthly frequency, allowing for dependence of the sensitivity of flows to past performance on

  13. Boostream: a dynamic fluid flow process to assemble nanoparticles at liquid interface

    Science.gov (United States)

    Delléa, Olivier; Lebaigue, Olivier

    2017-12-01

    CEA-LITEN develops an original process called Boostream® to manipulate, assemble and connect micro- or nanoparticles of various materials, sizes, shapes and functions to obtain monolayer colloidal crystals (MCCs). This process uses the upper surface of a liquid film flowing down a ramp to assemble particles in a manner that is close to the horizontal situation of a Langmuir-Blodgett film construction. In presence of particles at the liquid interface, the film down-flow configuration exhibits an unusual hydraulic jump which results from the fluid flow accommodation to the particle monolayer. In order to master our process, the fluid flow has been modeled and experimentally characterized by optical means, such as with the moiré technique that consists in observing the reflection of a succession of periodic black-and-red fringes on the liquid surface mirror. The fringe images are deformed when reflected by the curved liquid surface associated with the hydraulic jump, the fringe deformation being proportional to the local slope of the surface. This original experimental setup allowed us to get the surface profile in the jump region and to measure it along with the main process parameters (liquid flow rate, slope angle, temperature sensitive fluid properties such as dynamic viscosity or surface tension, particle sizes). This work presents the experimental setup and its simple model, the different experimental characterization techniques used and will focus on the way the hydraulic jump relies on the process parameters.

  14. Theoretical Study on the Dynamic Behavior of Pipes Conveying Gas-Liquid Flow

    Directory of Open Access Journals (Sweden)

    Enrique Ortiz-Vidal L.

    2018-01-01

    Full Text Available The dynamic behavior of clamped-clamped straight pipes conveying gas-liquid two-phase flow is theoretically investigated, specifically the effect of the flow parameters on the frequency of the system. First, the equation of motion is derived based on the classic Païdoussis formulation. Assuming Euler-Bernoulli beam theory, small-deflection approximation and no-slip homogeneous model, a coupled fluid-structure fourth-order partial differential equation (PDE is obtained. Then, the equation of motion is rendered dimensionless and discretized through Galerkin’s method. That method transforms the PDE into a set of Ordinary Differential Equations (ODEs. The system frequency is obtained by solving the system of ODEs by allowing the determinant to be equal to zero. System frequencies for different geometries, structural properties and flow conditions have been calculated. The results show that the system frequency decreases with increasing two-phase flow velocity. By contrast, the former increases with increasing homogeneous void fraction. These theoretical results are in agreement with experimental findings reported in the literature. Furthermore, even for typical two phase flow conditions, the system can become unstable for inadequate chooses of geometry or material of the pipe.

  15. PLASTICITY OF SELECTED METALLIC MATERIALS IN DYNAMIC DEFORMATION CONDITIONS

    Directory of Open Access Journals (Sweden)

    Jacek PAWLICKI

    2014-06-01

    Full Text Available Characteristics of a modernized flywheel machine has been presented in the paper. The laboratory stand enables to perform dynamic tensile tests and impact bending with a linear velocity of the enforcing element in the range of 5÷40 m/s. A new data acquisition system, based on the tensometric sensors, allows for significant qualitative improvement of registered signals. Some preliminary dynamic forming tests were performed for the selected group of metallic materials. Subsequent microstructural examinations and identification of the fracture type enabled to describe a correlation between strain rate, strain and microstructure.

  16. Effect of weld line shape on material flow during friction stir welding of aluminum and steel

    International Nuclear Information System (INIS)

    Yasui, Toshiaki; Ando, Naoyuki; Morinaka, Shinpei; Mizushima, Hiroki; Fukumoto, Masahiro

    2014-01-01

    The effect of weld line shape on material flow during the friction stir welding of aluminum and steel was investigated. The material flow velocity was evaluated with simulated experiments using plasticine as the simulant material. The validity of the simulated experiments was verified by the marker material experiments on aluminum. The circumferential velocity of material around the probe increased with the depth from the weld surface. The effect is significant in cases where the advancing side is located on the outside of curve and those with higher curvature. Thus, there is an influence of weld line shape on material flow

  17. Dynamic response of piping system subject to flow acoustic excitation

    International Nuclear Information System (INIS)

    Wang, T.; Sun, Y.S.

    1988-01-01

    Through the use of a theoretically derived and test data-calibrated forcing function, the dynamic response of a piping system subject to flow-acoustic induced vibration is analyzed. It is shown that the piping behavior can be predicted when consideration is given to both the wall flexural vibration and the piping system vibration. Piping responded as a system to the transversal excitation due to the swirling motion of the fluid flow, as well as flexurally to the high-frequency acoustic excitations. The transverse piping system response was calculated using a lumped mass piping model. The piping model has more stringent requirements than its counterpart for waterhammer and seismic modeling due to the shorter spiral wavelength and higher frequency of the forcing function. Proper modeling ensured that both the moment stress caused by system excitation and the local stress induced by the support reaction load were properly accounted for. Flexural vibration not only poses a threat to nipples and branch connections, but also contributes substantially to the resultant total stress experienced by the pipe. The forcing function approach has the advantage that the critical locations on the piping system can be identified by means of analysis, facilitating surveillance and inspection, as well as fatigue evaluation

  18. Dynamic interaction between myocardial contraction and coronary flow.

    Science.gov (United States)

    Beyar, R; Sideman, S

    1997-01-01

    Phasic coronary flow is determined by the dynamic interaction between central hemodynamics and myocardial and ventricular mechanics. Various models, including the waterfall, intramyocardial pump and myocardial structural models, have been proposed for the coronary circulation. Concepts such as intramyocardial pressure, local elastance and others have been proposed to help explain the coronary compression by the myocardium. Yet some questions remain unresolved, and a new model has recently been proposed, linking a muscle collagen fibrous model to a physiologically based coronary model, and accounting for transport of fluids across the capillaries and lymphatic flow between the interstitial space and the venous system. One of the unique features of this model is that the intramyocardial pressure (IMP) in the interstitial space is calculated from the balance of forces and fluid transport in the system, and is therefore dependent on the coronary pressure conditions, the myocardial function and the transport properties of the system. The model predicts a wide range of experimentally observed phenomena associated with coronary compression.

  19. Dynamic evolution process of turbulent channel flow after opposition control

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Mingwei; Tian, De; Yongqian, Liu, E-mail: gmwncepu@163.com [State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources (North China Electric Power University), Beijing102206 (China)

    2017-02-15

    Dynamic evolution of turbulent channel flow after application of opposition control (OC), together with the mechanism of drag reduction, is studied through direct numerical simulation (DNS). In the simulation, the pressure gradient is kept constant, and the flow rate increases due to drag reduction. In the transport of mean kinetic energy (MKE), one part of the energy from the external pressure is dissipated by the mean shear, and the other part is transported to the turbulent kinetic energy (TKE) through a TKE production term (TKP). It is found that the increase of MKE is mainly induced by the reduction of TKP that is directly affected by OC. Further analysis shows that the suppression of the redistribution term of TKE in the wall normal direction plays a key role in drag reduction, which represses the wall normal velocity fluctuation and then reduces TKP through the attenuation of its main production term. When OC is suddenly applied, an acute imbalance of energy in space is induced by the wall blowing and suction. Both the skin-friction and TKP terms exhibit a transient growth in the initial phase of OC, which can be attributed to the local effect of 〈 v ′ v ′〉 and 〈− u ′ v ′〉 in the viscous sublayer. (paper)

  20. Neural network modeling of chaotic dynamics in nuclear reactor flows

    International Nuclear Information System (INIS)

    Welstead, S.T.

    1992-01-01

    Neural networks have many scientific applications in areas such as pattern classification and time series prediction. The universal approximation property of these networks, however, can also be exploited to provide researchers with tool for modeling observed nonlinear phenomena. It has been shown that multilayer feed forward networks can capture important global nonlinear properties, such as chaotic dynamics, merely by training the network on a finite set of observed data. The network itself then provides a model of the process that generated the data. Characterizations such as the existence and general shape of a strange attractor and the sign of the largest Lyapunov exponent can then be extracted from the neural network model. In this paper, the author applies this idea to data generated from a nonlinear process that is representative of convective flows that can arise in nuclear reactor applications. Such flows play a role in forced convection heat removal from pressurized water reactors and boiling water reactors, and decay heat removal from liquid-metal-cooled reactors, either by natural convection or by thermosyphons

  1. Pulsatility role in cylinder flow dynamics at low Reynolds number

    KAUST Repository

    Qamar, Adnan

    2012-01-01

    We present dynamics of pulsatile flow past a stationary cylinder characterized by three non-dimensional parameters: the Reynolds number (Re), non-dimensional amplitude (A) of the pulsatile flow velocity, and Keulegan-Carpenter number (KC = Uo/Dωc). This work is motivated by the development of total artificial lungs (TAL) device, which is envisioned to provide ambulatory support to patients. Results are presented for 0.2 ≤ A ≤ 0.6 and 0.57 ≤ KC ≤ 2 at Re = 5 and 10, which correspond to the operating range of TAL. Two distinct fluid regimes are identified. In both regimes, the size of the separated zone is much greater than the uniform flow case, the onset of separation is function of KC, and the separation vortex collapses rapidly during the last fraction of the pulsatile cycle. The vortex size is independent of KC, but with an exponential dependency on A. In regime I, the separation point remains attached to the cylinder surface. In regime II, the separation point migrates upstream of the cylinder. Two distinct vortex collapse mechanisms are observed. For A < 0.4 and all KC and Re values, collapse occurs on the cylinder surface, whereas for A > 0.4 the separation vortex detaches from the cylinder surface and collapses at a certain distance downstream of the cylinder. The average drag coefficient is found to be independent of A and KC, and depends only on Re. However, for A > 0.4, for a fraction of the pulsatile cycle, the instantaneous drag coefficient is negative indicating a thrust production. © 2012 American Institute of Physics.

  2. Dynamic cycling in atrial size and flow during obstructive apnoea.

    Science.gov (United States)

    Pressman, Gregg S; Cepeda-Valery, Beatriz; Codolosa, Nicolas; Orban, Marek; Samuel, Solomon P; Somers, Virend K

    2016-01-01

    Obstructive sleep apnoea (OSA) is strongly associated with cardiovascular disease. However, acute cardiovascular effects of repetitive airway obstruction are poorly understood. While past research used a sustained Mueller manoeuver to simulate OSA we employed a series of gasping efforts to better simulate true obstructive apnoeas. This report describes acute changes in cardiac anatomy and flow related to sudden changes in intrathoracic pressure. 26 healthy, normal weight participants performed 5-6 gasping efforts (target intrathoracic pressure -40 mm Hg) while undergoing Doppler echocardiography. 14 participants had sufficient echocardiographic images to allow comparison of atrial areas during the manoeuver with baseline measurements. Mitral and tricuspid E-wave and A-wave velocities postmanoeuver were compared with baseline in all participants. Average atrial areas changed little during the manoeuver, but variance in both atrial areas was significantly greater than baseline. Further, an inverse relationship was noted with left atrial collapse and right atrial enlargement at onset of inspiratory effort. Significant inverse changes were noted in Doppler flow when comparing the first beat postmanoeuver (pMM1) with baseline. Mitral E-wave velocity increased 9.1 cm/s while tricuspid E-wave velocity decreased 7.0 cm/s; by the eighth beat postmanoeuver (pMM8) values were not different from baseline. Mitral and tricuspid A-wave velocities were not different from baseline at pMM1, but both were significantly higher by pMM8. Repetitive obstructive apnoeas produce dynamic, inverse changes in atrial size and Doppler flow across the atrioventricular valves. These observations have important implications for understanding the pathophysiology of OSA.

  3. Modeling self-consistent multi-class dynamic traffic flow

    Science.gov (United States)

    Cho, Hsun-Jung; Lo, Shih-Ching

    2002-09-01

    In this study, we present a systematic self-consistent multiclass multilane traffic model derived from the vehicular Boltzmann equation and the traffic dispersion model. The multilane domain is considered as a two-dimensional space and the interaction among vehicles in the domain is described by a dispersion model. The reason we consider a multilane domain as a two-dimensional space is that the driving behavior of road users may not be restricted by lanes, especially motorcyclists. The dispersion model, which is a nonlinear Poisson equation, is derived from the car-following theory and the equilibrium assumption. Under the concept that all kinds of users share the finite section, the density is distributed on a road by the dispersion model. In addition, the dynamic evolution of the traffic flow is determined by the systematic gas-kinetic model derived from the Boltzmann equation. Multiplying Boltzmann equation by the zeroth, first- and second-order moment functions, integrating both side of the equation and using chain rules, we can derive continuity, motion and variance equation, respectively. However, the second-order moment function, which is the square of the individual velocity, is employed by previous researches does not have physical meaning in traffic flow. Although the second-order expansion results in the velocity variance equation, additional terms may be generated. The velocity variance equation we propose is derived from multiplying Boltzmann equation by the individual velocity variance. It modifies the previous model and presents a new gas-kinetic traffic flow model. By coupling the gas-kinetic model and the dispersion model, a self-consistent system is presented.

  4. Flow Equation Approach to the Statistics of Nonlinear Dynamical Systems

    Science.gov (United States)

    Marston, J. B.; Hastings, M. B.

    2005-03-01

    The probability distribution function of non-linear dynamical systems is governed by a linear framework that resembles quantum many-body theory, in which stochastic forcing and/or averaging over initial conditions play the role of non-zero . Besides the well-known Fokker-Planck approach, there is a related Hopf functional methodootnotetextUriel Frisch, Turbulence: The Legacy of A. N. Kolmogorov (Cambridge University Press, 1995) chapter 9.5.; in both formalisms, zero modes of linear operators describe the stationary non-equilibrium statistics. To access the statistics, we investigate the method of continuous unitary transformationsootnotetextS. D. Glazek and K. G. Wilson, Phys. Rev. D 48, 5863 (1993); Phys. Rev. D 49, 4214 (1994). (also known as the flow equation approachootnotetextF. Wegner, Ann. Phys. 3, 77 (1994).), suitably generalized to the diagonalization of non-Hermitian matrices. Comparison to the more traditional cumulant expansion method is illustrated with low-dimensional attractors. The treatment of high-dimensional dynamical systems is also discussed.

  5. Modeling the Structure and Effectiveness of Intelligence Organizations: Dynamic Information Flow Simulation

    National Research Council Canada - National Science Library

    Behrman, Robert; Carley, Kathleen

    2003-01-01

    This paper describes the Dynamic Information Flow Simulation (DIFS), an abstract model for analyzing the structure and function of intelligence support organizations and the activities of entities within...

  6. Modeling the dynamic crush of impact mitigating materials

    International Nuclear Information System (INIS)

    Logan, R.W.; McMichael, L.D.

    1995-01-01

    Crushable materials are commonly utilized in the design of structural components to absorb energy and mitigate shock during the dynamic impact of a complex structure, such as an automobile chassis or drum-type shipping container. The development and application of several finite-element material models which have been developed at various times at LLNL for DYNA3D will be discussed. Between the models, they are able to account for several of the predominant mechanisms which typically influence the dynamic mechanical behavior of crushable materials. One issue we addressed was that no single existing model would account for the entire gambit of constitutive features which are important for crushable materials. Thus, we describe the implementation and use of an additional material model which attempts to provide a more comprehensive model of the mechanics of crushable material behavior. This model combines features of the pre-existing DYNA models and incorporates some new features as well in an invariant large-strain formulation. In addition to examining the behavior of a unit cell in uniaxial compression, two cases were chosen to evaluate the capabilities and accuracy of the various material models in DYNA. In the first case, a model for foam filled box beams was developed and compared to test data from a 4-point bend test. The model was subsequently used to study its effectiveness in energy absorption in an aluminum extrusion, spaceframe, vehicle chassis. The second case examined the response of the AT-400A shipping container and the performance of the overpack material during accident environments selected from 10CFR71 and IAEA regulations

  7. Canopy Dynamics in Nanoscale Ionic Materials Probed by NMR

    Science.gov (United States)

    Mirau, Peter

    2013-03-01

    Nanoscale ionic materials (NIMs) are hybrids prepared from ionically functionalized nanoparticles (NP) neutralized by oligomeric polymer counter-ions. NIMs are designed to behave as liquids under ambient conditions in the absence of solvent and have no volatile organic content, making them useful for a number of applications. We have used NMR relaxation and pulse-field gradient NMR to probe local and collective canopy dynamics in NIMs based on silica nanoparticles (NP), fullerols and proteins in order to understand the relationship between the core and canopy structure and the bulk properties. The NMR studies show that the canopy dynamics depend on the degree of neutralization, the canopy radius of gyration and molecular crowding at the ionically modified NP surface. The viscosity in NIMs can be directly controlled with the addition of ions that enhance the exchange rate for polymers at the NP surface. These results show that NIMs for many applications can be prepared by controlling the dynamics of the NP interface.

  8. Microalgae fractionation using steam explosion, dynamic and tangential cross-flow membrane filtration.

    Science.gov (United States)

    Lorente, E; Hapońska, M; Clavero, E; Torras, C; Salvadó, J

    2017-08-01

    In this study, the microalga Nannochloropsis gaditana was subjected to acid catalysed steam explosion treatment and the resulting exploded material was subsequently fractionated to separate the different fractions (lipids, sugars and solids). Conventional and vibrational membrane setups were used with several polymeric commercial membranes. Two different routes were followed: 1) filtration+lipid solvent extraction and 2) lipid solvent extraction+filtration. Route 1 revealed to be much better since the used membrane for filtration was able to permeate the sugar aqueous phase and retained the fraction containing lipids; after this, an extraction required a much lower amount of solvent and a better recovering yield. Filtration allowed complete lipid rejection. Dynamic filtration improved permeability compared to the tangential cross-flow filtration. Best membrane performance was achieved using a 5000Da membrane with the dynamic system, obtaining a permeability of 6L/h/m 2 /bar. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Concepts for dynamic modelling of energy-related flows in manufacturing

    International Nuclear Information System (INIS)

    Wright, A.J.; Oates, M.R.; Greenough, R.

    2013-01-01

    Highlights: ► Modelling of the thermal flows in factories and processes is usually separate. ► We propose a set of key features for an integrated thermal model. ► Such models can be used to improve the efficiency of manufacturing processes. - Abstract: Industry uses around one third of the world’s energy, and accounts for about 40% of global carbon dioxide emissions. There is increasing economic and social pressure to improve efficiency and create closed-loop industrial systems, in which energy efficiency plays a key role. This paper describes some of the key concepts involved in modelling the energy flows in manufacturing, both for the building services and the industrial processes. Detailed dynamic energy simulation of buildings is well established and routinely used, working on a time series basis – but current tools are inadequate to model the energy flows of many industrial processes. There are also well-established models of manufacturing flows, used to optimise production efficiency, but typically not modelling energy, and usually representing production and material flows as event-driven processes. The THERM project has developed new software tools to model energy-related and other utility flows in manufacturing, incorporating these into existing thermal models of factory buildings. This makes it possible to map out the whole energy system, and hence to test efficiency measures, to understand the effect of processes on building energy use, to investigate recycling of heat or cooling into other processes or building conditioning, and so on. The paper describes some of the key concepts and modelling approaches involved in developing these models, and gives examples of some real processes modelled in factories. It concludes that such models are entirely feasible and potentially very useful, although to develop a tool which comprehensively models both energy and manufacturing flows would be a major undertaking

  10. Material flow in butt friction stir welds in AA2024-T3

    International Nuclear Information System (INIS)

    Schmidt, H.N.B.; Dickerson, T.L.; Hattel, J.H.

    2006-01-01

    The properties of a workpiece joined by friction stir welding (FSW) are directly related to the material flow around the tool. In the present work, the material flow is investigated by traditional metallography as well as X-ray and computer tomography (CT). By introducing a thin copper strip in the workpiece and welding through it, thus, acting as a marker material, detailed information about the flow field is gathered. The two- and three-dimensional CT images are used in parallel with micrographs for visualization of the flow field. Two procedures for estimating the average velocities for material flowing through the shear layer are presented. The procedures depend on the configuration of marker material relative to the welding direction, i.e. longitudinal and transverse. As such, the present work constitutes the first attempt in the literature to estimate flow velocities in FSW based on thorough experimental investigations

  11. Tensile properties and flow behavior analysis of modified 9Cr–1Mo steel clad tube material

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Kanwarjeet, E-mail: kanwar722@yahoo.com; Latha, S.; Nandagopal, M.; Mathew, M.D.; Laha, K.; Jayakumar, T.

    2014-11-15

    The tensile properties and flow behavior of modified 9Cr–1Mo steel clad tube have been investigated in the framework of various constitutive equations for a wide range of temperatures (300–923 K) and strain rates (3 × 10{sup −3} s{sup −1}, 3 × 10{sup −4} s{sup −1} and 3 × 10{sup −5} s{sup −1}). The tensile flow behavior of modified 9Cr–1Mo steel clad tube was most accurately described by Voce equation. The variation of instantaneous work hardening rate (θ = dσ/dε) and σθ with stress (σ) indicated two stage behavior characterized by rapid decrease at low stresses (transient stage) followed by a gradual decrease in high stresses (Stage III). The variation of work hardening parameters and work hardening rate in terms of θ vs. σ and σθ vs. σ with temperature exhibited three distinct regimes. Rapid decrease in flow stress and work hardening parameters and rapid shift of θ vs. σ and σθ vs. σ towards low stresses with increase in temperature indicated dynamic recovery at high temperatures. Tensile properties of the material have been best predicted from Voce equation.

  12. Tensile properties and flow behavior analysis of modified 9Cr-1Mo steel clad tube material

    Science.gov (United States)

    Singh, Kanwarjeet; Latha, S.; Nandagopal, M.; Mathew, M. D.; Laha, K.; Jayakumar, T.

    2014-11-01

    The tensile properties and flow behavior of modified 9Cr-1Mo steel clad tube have been investigated in the framework of various constitutive equations for a wide range of temperatures (300-923 K) and strain rates (3 × 10-3 s-1, 3 × 10-4 s-1 and 3 × 10-5 s-1). The tensile flow behavior of modified 9Cr-1Mo steel clad tube was most accurately described by Voce equation. The variation of instantaneous work hardening rate (θ = dσ/dε) and σθ with stress (σ) indicated two stage behavior characterized by rapid decrease at low stresses (transient stage) followed by a gradual decrease in high stresses (Stage III). The variation of work hardening parameters and work hardening rate in terms of θ vs. σ and σθ vs. σ with temperature exhibited three distinct regimes. Rapid decrease in flow stress and work hardening parameters and rapid shift of θ vs. σ and σθ vs. σ towards low stresses with increase in temperature indicated dynamic recovery at high temperatures. Tensile properties of the material have been best predicted from Voce equation.

  13. Tensile properties and flow behavior analysis of modified 9Cr–1Mo steel clad tube material

    International Nuclear Information System (INIS)

    Singh, Kanwarjeet; Latha, S.; Nandagopal, M.; Mathew, M.D.; Laha, K.; Jayakumar, T.

    2014-01-01

    The tensile properties and flow behavior of modified 9Cr–1Mo steel clad tube have been investigated in the framework of various constitutive equations for a wide range of temperatures (300–923 K) and strain rates (3 × 10 −3 s −1 , 3 × 10 −4 s −1 and 3 × 10 −5 s −1 ). The tensile flow behavior of modified 9Cr–1Mo steel clad tube was most accurately described by Voce equation. The variation of instantaneous work hardening rate (θ = dσ/dε) and σθ with stress (σ) indicated two stage behavior characterized by rapid decrease at low stresses (transient stage) followed by a gradual decrease in high stresses (Stage III). The variation of work hardening parameters and work hardening rate in terms of θ vs. σ and σθ vs. σ with temperature exhibited three distinct regimes. Rapid decrease in flow stress and work hardening parameters and rapid shift of θ vs. σ and σθ vs. σ towards low stresses with increase in temperature indicated dynamic recovery at high temperatures. Tensile properties of the material have been best predicted from Voce equation

  14. Semiquantifying regional cerebral blood flow by dynamic CT scanning

    International Nuclear Information System (INIS)

    Takeuchi, Totaro; Kasahara, Eishi; Takahashi, Eriko; Kojima, Seiichi; Ogawa, Haruhiko; Suzuki, Keiko; Miyamae, Tatsuya; Yamazaki, Setsuo.

    1990-01-01

    The study was undertaken to evaluate the semi-quantitative significance of the absolute value obtained by calculating the regional cerebral blood flow index (rCBFI) from dynamic CT in comparison with SPECT. rCBFI was calculated from mean transit time (MTT) and blood capacity index (BCI) obtained by rapidly infusing 50 ml of Omnipurk into the elbow vein by the use of Hitachi's W-600. [rCBFI=BCI/MTT unit/sec (U/S)] measurment of the rCBF by SPECT was made according to the semi-quantitative method by Matsuda et al. by the use of SHIMADZU's improved type HEADTOME SET-050 with rapid infusion of 123 I-IMP in 3.5 m Ci from the elbow vein. Patients in whom no abnormality was observed in the cardiopulmonary function were enrolled as subjects. The rCBFI in each intracranial site was calculated from dynamic CT in 10 normal adults (aged 35-60, averaging 46.7) as subjects and compared with the rCBF obtained from SPECT in the same cases and same site. Comparative investigation was made similarly between rCBFI and rCBF regarding 10 patients with tracranial diseases (age 29-65, averaging 51.2). The mean rCBFIs in the normal adults obtained from dynamic CT were 1.15±0.18 U/S in the frontal lobar cortex, 1.28±0.19 U/S in the temporal lobar cortex, 1.43±0.1 U/S in the occipital lobar cortex, 1.27±0.2 U/S in the basal ganglia region and 0.43±0.1 U/S in the white matter. On the other hand, the mean rCBFs by SPECT were 47.36±3.93 ml/100 g/min, 55.19±2.22 ml/100 g/min, 61.92±5.42 ml/100 g/min, 54.38±3.51 ml/100 g/min and 38.68±6.18 ml/100 g/min, respectively. Positive correlation was observed between rCBFIs and rCBFs of 10 normal adults and 10 patients with intracranial disease, totalling 20 cases (r=0.79, P<0.005). The rCBFI by dynamic CT has a correlation with the rCBF by SPECT, suggesting the possibility of its evaluation as an absolute value, though semi-quantitatively. (author)

  15. The dynamics of a channel-fed lava flow on Pico Partido volcano, Lanzarote

    Science.gov (United States)

    Woodcock, Duncan; Harris, Andrew

    2006-09-01

    A short length of channel on Pico Partido volcano, Lanzarote, provides us the opportunity to examine the dynamics of lava flowing in a channel that extends over a sudden break in slope. The 1 2-m-wide, 0.5 2-m-deep channel was built during the 1730 1736 eruptions on Lanzarote and exhibits a sinuous, well-formed channel over a steep (11° slope) 100-m-long proximal section. Over-flow units comprising smooth pahoehoe sheet flow, as well as evidence on the inner channel walls for multiple (at least 11) flow levels, attest to unsteady flow in the channel. In addition, superelevation is apparent at each of the six bends along the proximal channel section. Superelevation results from banking of the lava as it moves around the bend thus causing preferential construction of the outer bank. As a result, the channel profile at each bend is asymmetric with an outer bank that is higher than the inner bank. Analysis of superelevation indicates flow velocities of ~8 m s 1. Our analysis of the superelevation features is based on an inertia-gravity balance, which we show is appropriate, even though the down-channel flow is in laminar flow. We use a viscosity-gravity balance model, together with the velocities calculated from superelevation, to obtain viscosities in the range 25 60 Pa s (assuming that the lava behaved as a Newtonian liquid). Estimated volume fluxes are in the range 7 12 m3 s 1. An apparent down-flow increase in derived volume flux may have resulted from variable supply or bulking up of the flow due to vesiculation. Where the channel moves over a sharp break in slope and onto slopes of ~6°, the channel becomes less well defined and widens considerably. At the break of slope, an elongate ridge extends across the channel. We speculate that this ridge was formed as a result of a reduction in velocity immediately below the break of slope to allow deposition of entrained material or accretion of lava to the channel bed as a result of a change in flow regime or depth.

  16. A multi points ultrasonic detection method for material flow of belt conveyor

    Science.gov (United States)

    Zhang, Li; He, Rongjun

    2018-03-01

    For big detection error of single point ultrasonic ranging technology used in material flow detection of belt conveyor when coal distributes unevenly or is large, a material flow detection method of belt conveyor is designed based on multi points ultrasonic counter ranging technology. The method can calculate approximate sectional area of material by locating multi points on surfaces of material and belt, in order to get material flow according to running speed of belt conveyor. The test results show that the method has smaller detection error than single point ultrasonic ranging technology under the condition of big coal with uneven distribution.

  17. Analysis of material flow in metal forming processes by using computer simulation and experiment with model material

    International Nuclear Information System (INIS)

    Kim, Heon Young; Kim, Dong Won

    1993-01-01

    The objective of the present study is to analyze material flow in the metal forming processes by using computer simulation and experiment with model material, plasticine. A UBET program is developed to analyze the bulk flow behaviour of various metal forming problems. The elemental strain-hardening effect is considered in an incremental manner and the element system is automatically regenerated at every deforming step in the program. The material flow behaviour in closed-die forging process with rib-web type cavity are analyzed by UBET and elastic-plastic finite element method, and verified by experiments with plasticine. There were good agreements between simulation and experiment. The effect of corner rounding on material flow behavior is investigated in the analysis of backward extrusion with square die. Flat punch indentation process is simulated by UBET, and the results are compared with that of elastic-plastic finite element method. (Author)

  18. Evaluation of steady flow torques and pressure losses in a rotary flow control valve by means of computational fluid dynamics

    International Nuclear Information System (INIS)

    Okhotnikov, Ivan; Noroozi, Siamak; Sewell, Philip; Godfrey, Philip

    2017-01-01

    Highlights: • A novel design of a rotary flow control valve driven by a stepper motor is proposed. • The intended use of the valve in the high flow rate independent metering hydraulic system is suggested. • Pressure drops, steady flow torques of the valve for various flow rates and orifice openings are studied by means of computational fluid dynamics. • The discharge coefficient and flow jet angles dependencies on the orifice opening are obtained. • A design method to decrease the flow forces without reducing the flow rate in single-staged valves is demonstrated. - Abstract: In this paper, a novel design of a rotary hydraulic flow control valve has been presented for high flow rate fluid power systems. High flow rates in these systems account for substantial flow forces acting on the throttling elements of the valves and cause the application of mechanically sophisticated multi-staged servo valves for flow regulation. The suggested design enables utilisation of single-stage valves in power hydraulics operating at high flow rates regimes. A spool driver and auxiliary mechanisms of the proposed valve design were discussed and selection criteria were suggested. Analytical expressions for metering characteristics as well as steady flow torques have been derived. Computational fluid dynamics (CFD) analysis of steady state flow regimes was conducted to evaluate the hydraulic behaviour of the proposed valve. This study represents a special case of an independent metering concept applied to the design of power hydraulic systems with direct proportional valve control operating at flow rates above 150 litres per minute. The result gained using parametric CFD simulations predicted the induced torque and the pressure drops due to a steady flow. Magnitudes of these values prove that by minimising the number of spool's mobile metering surfaces it is possible to reduce the flow-generated forces in the new generation of hydraulic valves proposed in this study

  19. Study of melt flow dynamics and influence on quality for CO{sub 2} laser fusion cutting

    Energy Technology Data Exchange (ETDEWEB)

    Riveiro, A; Quintero, F; Lusquinos, F; Comesana, R; Pou, J [Applied Physics Department, University of Vigo, ETSII, Lagoas-Marcosende, 9, 36310 Vigo (Spain)

    2011-04-06

    The understanding of melt flow dynamics during fusion laser cutting is still a topic of great importance because this determines the quality characteristics of the processed workpiece. Despite the complexity of the experimental study of the physical processes involved in this technique, fusion laser cutting can be visualized during the processing of glass because this material absorbs the laser radiation provided by a CO{sub 2} laser but shows transparency to visible radiation. Then, we present in this work the results of the study of the melt flow dynamics during laser cutting of glass. Under different experimental conditions, the dynamics of the cutting front and its complete geometry (front wall inclination), and the evolution of the melt along the cut edge were analysed using a high-speed video camera to study the process. A phenomenon concerning the plasma plume formed during the process was observed, which has not been previously reported in the literature. This can displace the normal shock wave (MSD) commonly formed in the inlet kerf and can affect the assist gas flow into the kerf. On the other hand, the analysis of the recorded images allowed the determination of not only the amount of molten material along the cut edge but also the direction and velocity of the melt. Relevant processing parameters affecting the flow of molten material were assessed. These results were used as a basis to explain the different processes involved in the generation of dross, a typical imperfection appearing in laser cutting.

  20. Dynamic subgrid scale model of large eddy simulation of cross bundle flows

    International Nuclear Information System (INIS)

    Hassan, Y.A.; Barsamian, H.R.

    1996-01-01

    The dynamic subgrid scale closure model of Germano et. al (1991) is used in the large eddy simulation code GUST for incompressible isothermal flows. Tube bundle geometries of staggered and non-staggered arrays are considered in deep bundle simulations. The advantage of the dynamic subgrid scale model is the exclusion of an input model coefficient. The model coefficient is evaluated dynamically for each nodal location in the flow domain. Dynamic subgrid scale results are obtained in the form of power spectral densities and flow visualization of turbulent characteristics. Comparisons are performed among the dynamic subgrid scale model, the Smagorinsky eddy viscosity model (that is used as the base model for the dynamic subgrid scale model) and available experimental data. Spectral results of the dynamic subgrid scale model correlate better with experimental data. Satisfactory turbulence characteristics are observed through flow visualization

  1. Liquid metal batteries - materials selection and fluid dynamics

    Science.gov (United States)

    Weier, T.; Bund, A.; El-Mofid, W.; Horstmann, G. M.; Lalau, C.-C.; Landgraf, S.; Nimtz, M.; Starace, M.; Stefani, F.; Weber, N.

    2017-07-01

    Liquid metal batteries are possible candidates for massive and economically feasible large-scale stationary storage and as such could be key components of future energy systems based mainly or exclusively on intermittent renewable electricity sources. The completely liquid interior of liquid metal batteries and the high current densities give rise to a multitude of fluid flow phenomena that will primarily influence the operation of future large cells, but might be important for today’s smaller cells as well. The paper at hand starts with a discussion of the relative merits of using molten salts or ionic liquids as electrolytes for liquid metal cells and touches the choice of electrode materials. This excursus into electrochemistry is followed by an overview of investigations on magnetohydrodynamic instabilities in liquid metal batteries, namely the Tayler instability and electromagnetically excited gravity waves. A section on electro-vortex flows complements the discussion of flow phenomena. Focus of the flow related investigations lies on the integrity of the electrolyte layer and related critical parameters.

  2. Network-induced oscillatory behavior in material flow networks and irregular business cycles

    Science.gov (United States)

    Helbing, Dirk; Lämmer, Stefen; Witt, Ulrich; Brenner, Thomas

    2004-11-01

    Network theory is rapidly changing our understanding of complex systems, but the relevance of topological features for the dynamic behavior of metabolic networks, food webs, production systems, information networks, or cascade failures of power grids remains to be explored. Based on a simple model of supply networks, we offer an interpretation of instabilities and oscillations observed in biological, ecological, economic, and engineering systems. We find that most supply networks display damped oscillations, even when their units—and linear chains of these units—behave in a nonoscillatory way. Moreover, networks of damped oscillators tend to produce growing oscillations. This surprising behavior offers, for example, a different interpretation of business cycles and of oscillating or pulsating processes. The network structure of material flows itself turns out to be a source of instability, and cyclical variations are an inherent feature of decentralized adjustments.

  3. Fluid dynamics characterization of riser in a FCC cold flow model using gas radiotracer

    International Nuclear Information System (INIS)

    Santos, Valdemir A. dos; Lima, Emerson A.O.

    2013-01-01

    Was carried out the characterization of a diameter small riser of a cold flow model of a circulating fluidized bed (CFB), with aid of a radioactive tracer. Compressed air and catalytic cracking of petroleum flow through solids pneumatic transport regime, made of transparent material (glass, acrylic, PVC, polycarbonate) for study of problems in Fluid Catalytic Cracking (FCC) unit and development of methods of measurement of fluid dynamic parameters. The CFB model consisted of a mixer component solid-gas (compressed air at 25 deg C and 200 kN/m 2 ; cracking catalyst with an average diameter of 72μm and specific mass of 1,500 kg/m 3 ), comprising a riser pipe glass 0.02m internal diameter and 1.8m height, a gas solid separation vessel by flash effect, with the filter in the gas outlet, and a return column (a glass tube with an internal diameter of 0.0254m) to redirect the catalyst for the riser base. Recorded data allowed studies on residence time distribution of the gaseous phase in the riser, with the identification and characterization of the flow of gas-solid components in the CFB riser of small diameter. A plug flow type with deviations due to back mixing of catalyst close to the walls, associated with the density difference between this component was observed. (author)

  4. Spatio-temporal organization of dynamics in a two-dimensional periodically driven vortex flow: A Lagrangian flow network perspective.

    Science.gov (United States)

    Lindner, Michael; Donner, Reik V

    2017-03-01

    We study the Lagrangian dynamics of passive tracers in a simple model of a driven two-dimensional vortex resembling real-world geophysical flow patterns. Using a discrete approximation of the system's transfer operator, we construct a directed network that describes the exchange of mass between distinct regions of the flow domain. By studying different measures characterizing flow network connectivity at different time-scales, we are able to identify the location of dynamically invariant structures and regions of maximum dispersion. Specifically, our approach allows us to delimit co-existing flow regimes with different dynamics. To validate our findings, we compare several network characteristics to the well-established finite-time Lyapunov exponents and apply a receiver operating characteristic analysis to identify network measures that are particularly useful for unveiling the skeleton of Lagrangian chaos.

  5. One-dimensional energy flow model for poroelastic material

    International Nuclear Information System (INIS)

    Kim, Jung Soo; Kang, Yeon June

    2009-01-01

    This paper presents a one-dimensional energy flow model to investigate the energy behavior for poroelastic media coupled with acoustical media. The proposed energy flow model is expressed by an independent energy governing equation that is classified into each wave component propagating in poroelastic media. The energy governing equation is derived using the General Energetic Method (GEM). To facilitate a comparison with the classical solution based on the conventional displacement-base formulation, approximate solutions of energy density and intensity are obtained. Furthermore, the limitations and usability of the proposed energy flow model for poroelastic media are described.

  6. Nonlinear dynamics in flow through unsaturated fractured-porous media: Status and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Faybishenko, Boris

    2002-11-27

    The need has long been recognized to improve predictions of flow and transport in partially saturated heterogeneous soils and fractured rock of the vadose zone for many practical applications, such as remediation of contaminated sites, nuclear waste disposal in geological formations, and climate predictions. Until recently, flow and transport processes in heterogeneous subsurface media with oscillating irregularities were assumed to be random and were not analyzed using methods of nonlinear dynamics. The goals of this paper are to review the theoretical concepts, present the results, and provide perspectives on investigations of flow and transport in unsaturated heterogeneous soils and fractured rock, using the methods of nonlinear dynamics and deterministic chaos. The results of laboratory and field investigations indicate that the nonlinear dynamics of flow and transport processes in unsaturated soils and fractured rocks arise from the dynamic feedback and competition between various nonlinear physical processes along with complex geometry of flow paths. Although direct measurements of variables characterizing the individual flow processes are not technically feasible, their cumulative effect can be characterized by analyzing time series data using the models and methods of nonlinear dynamics and chaos. Identifying flow through soil or rock as a nonlinear dynamical system is important for developing appropriate short- and long-time predictive models, evaluating prediction uncertainty, assessing the spatial distribution of flow characteristics from time series data, and improving chemical transport simulations. Inferring the nature of flow processes through the methods of nonlinear dynamics could become widely used in different areas of the earth sciences.

  7. Nonlinear dynamics in flow through unsaturated fractured porous media: Status and perspectives

    International Nuclear Information System (INIS)

    Faybishenko, Boris

    2002-01-01

    The need has long been recognized to improve predictions of flow and transport in partially saturated heterogeneous soils and fractured rock of the vadose zone for many practical applications, such as remediation of contaminated sites, nuclear waste disposal in geological formations, and climate predictions. Until recently, flow and transport processes in heterogeneous subsurface media with oscillating irregularities were assumed to be random and were not analyzed using methods of nonlinear dynamics. The goals of this paper are to review the theoretical concepts, present the results, and provide perspectives on investigations of flow and transport in unsaturated heterogeneous soils and fractured rock, using the methods of nonlinear dynamics and deterministic chaos. The results of laboratory and field investigations indicate that the nonlinear dynamics of flow and transport processes in unsaturated soils and fractured rocks arise from the dynamic feedback and competition between various nonlinear physical processes along with complex geometry of flow paths. Although direct measurements of variables characterizing the individual flow processes are not technically feasible, their cumulative effect can be characterized by analyzing time series data using the models and methods of nonlinear dynamics and chaos. Identifying flow through soil or rock as a nonlinear dynamical system is important for developing appropriate short- and long-time predictive models, evaluating prediction uncertainty, assessing the spatial distribution of flow characteristics from time series data, and improving chemical transport simulations. Inferring the nature of flow processes through the methods of nonlinear dynamics could become widely used in different areas of the earth sciences

  8. Flow-pattern identification and nonlinear dynamics of gas-liquid two-phase flow in complex networks.

    Science.gov (United States)

    Gao, Zhongke; Jin, Ningde

    2009-06-01

    The identification of flow pattern is a basic and important issue in multiphase systems. Because of the complexity of phase interaction in gas-liquid two-phase flow, it is difficult to discern its flow pattern objectively. In this paper, we make a systematic study on the vertical upward gas-liquid two-phase flow using complex network. Three unique network construction methods are proposed to build three types of networks, i.e., flow pattern complex network (FPCN), fluid dynamic complex network (FDCN), and fluid structure complex network (FSCN). Through detecting the community structure of FPCN by the community-detection algorithm based on K -mean clustering, useful and interesting results are found which can be used for identifying five vertical upward gas-liquid two-phase flow patterns. To investigate the dynamic characteristics of gas-liquid two-phase flow, we construct 50 FDCNs under different flow conditions, and find that the power-law exponent and the network information entropy, which are sensitive to the flow pattern transition, can both characterize the nonlinear dynamics of gas-liquid two-phase flow. Furthermore, we construct FSCN and demonstrate how network statistic can be used to reveal the fluid structure of gas-liquid two-phase flow. In this paper, from a different perspective, we not only introduce complex network theory to the study of gas-liquid two-phase flow but also indicate that complex network may be a powerful tool for exploring nonlinear time series in practice.

  9. Determining tumor blood flow parameters from dynamic image measurements

    Science.gov (United States)

    Libertini, Jessica M.

    2008-11-01

    Many recent cancer treatments focus on preventing angiogenesis, the process by which a tumor promotes the growth of large and efficient capillary beds for the increased nourishment required to support the tumor's rapid growth[l]. To measure the efficacy of these treatments in a timely fashion, there is an interest in using data from dynamic sequences of contrast-enhanced medical imaging, such as MRI and CT, to measure blood flow parameters such as perfusion, permeability-surface-area product, and the relative volumes of the plasma and extracellular-extravascular space. Starting with a two compartment model presented by the radiology community[2], this work challenges the application of a simplification to this problem, which was originally developed to model capillary reuptake[3]. While the primary result of this work is the demonstration of the inaccuracy of this simplification, the remainder of the paper is dedicated to presenting alternative methods for calculating the perfusion and plasma volume coefficients. These methods are applied to model data sets based on real patient data, and preliminary results are presented.

  10. Zonal-flow dynamics from a phase-space perspective

    Science.gov (United States)

    Ruiz, D. E.; Parker, J. B.; Shi, E. L.; Dodin, I. Y.

    2017-10-01

    The wave kinetic equation (WKE) describing drift-wave (DW) turbulence is widely used in the studies of zonal flows (ZFs) emerging from DW turbulence. However, this formulation neglects the exchange of enstrophy between DWs and ZFs and also ignores effects beyond the geometrical-optics (GO) limit. Here we present a new theory that captures both of these effects, while still treating DW quanta (``driftons'') as particles in phase space. In this theory, the drifton dynamics is described by an equation of the Wigner-Moyal type, which is analogous to the phase-space formulation of quantum mechanics. The ``Hamiltonian'' and the ``dissipative'' parts of the DW-ZF interactions are clearly identified. Moreover, this theory can be interpreted as a phase-space representation of the second-order cumulant expansion (CE2). In the GO limit, this formulation features additional terms missing in the traditional WKE that ensure conservation of the total enstrophy of the system, in addition to the total energy, which is the only conserved invariant in previous theories based on the traditional WKE. Numerical simulations are presented to illustrate the importance of these additional terms. Supported by the U.S. DOE through Contract Nos. DE-AC02-09CH11466 and DE-AC52-07NA27344, by the NNSA SSAA Program through DOE Research Grant No. DE-NA0002948, and by the U.S. DOD NDSEG Fellowship through Contract No. 32-CFR-168a.

  11. Headwater sediment dynamics in a debris flow catchment constrained by high-resolution topographic surveys

    Science.gov (United States)

    Loye, Alexandre; Jaboyedoff, Michel; Theule, Joshua Isaac; Liébault, Frédéric

    2016-06-01

    Debris flows have been recognized to be linked to the amounts of material temporarily stored in torrent channels. Hence, sediment supply and storage changes from low-order channels of the Manival catchment, a small tributary valley with an active torrent system located exclusively in sedimentary rocks of the Chartreuse Massif (French Alps), were surveyed periodically for 16 months using terrestrial laser scanning (TLS) to study the coupling between sediment dynamics and torrent responses in terms of debris flow events, which occurred twice during the monitoring period. Sediment transfer in the main torrent was monitored with cross-section surveys. Sediment budgets were generated seasonally using sequential TLS data differencing and morphological extrapolations. Debris production depends strongly on rockfall occurring during the winter-early spring season, following a power law distribution for volumes of rockfall events above 0.1 m3, while hillslope sediment reworking dominates debris recharge in spring and autumn, which shows effective hillslope-channel coupling. The occurrence of both debris flow events that occurred during the monitoring was linked to recharge from previous debris pulses coming from the hillside and from bedload transfer. Headwater debris sources display an ambiguous behaviour in sediment transfer: low geomorphic activity occurred in the production zone, despite rainstorms inducing debris flows in the torrent; still, a general reactivation of sediment transport in headwater channels was observed in autumn without new debris supply, suggesting that the stored debris was not exhausted. The seasonal cycle of sediment yield seems to depend not only on debris supply and runoff (flow capacity) but also on geomorphic conditions that destabilize remnant debris stocks. This study shows that monitoring the changes within a torrent's in-channel storage and its debris supply can improve knowledge on recharge thresholds leading to debris flow.

  12. Fundamental changes of granular flows dynamics, deposition and erosion processes at high slope angles: insights from laboratory experiments.

    Science.gov (United States)

    Farin, Maxime; Mangeney, Anne; Roche, Olivier

    2014-05-01

    Geophysical granular flows commonly interact with their substrate in various ways depending on the mechanical properties of the underlying material. Granular substrates, resulting from deposition of earlier flows or various geological events, are often eroded by avalanches [see Hungr and Evans, 2004 for review]. The entrainment of underlying debris by the flow is suspected to affect flow dynamics because qualitative and quantitative field observations suggest that it can increase the flow velocity and deposit extent, depending on the geological setting and flow type [Sovilla et al., 2006; Iverson et al., 2011]. Direct measurement of material entrainment in nature, however, is very difficult. We conducted laboratory experiments on granular column collapse over an inclined channel with and without an erodible bed of granular material. The controlling parameters were the channel slope angle, the granular column volume and its aspect ratio (i.e. height over length), the inclination of the column with respect to the channel base, the channel width, and the thickness and compaction of the erodible bed. For slope angles below a critical value θc, between 10° and 16°, the runout distance rf is proportional to the initial column height h0 and is unaffected by the presence of an erodible bed. On steeper slopes, the flow dynamics change fundamentally since a last phase of slow propagation develops at the end of the flow front deceleration, and prolongates significantly the flow duration. This phase has similar characteristics that steady, uniform flows. The slow propagation phase lasts longer for increasing slope angle, column volume, column inclination with respect to the slope, and channel width, and for decreasing column aspect ratio. It is however independent of the maximum front velocity and, on an erodible bed, of the maximum depth of excavation within the bed. Both on rigid and erodible beds, the increase of the slow propagation phase duration has a crucial effect

  13. Flow Mode Dependent Partitioning Processes of Preferential Flow Dynamics in Unsaturated Fractures - Findings From Analogue Percolation Experiments

    Science.gov (United States)

    Kordilla, J.; Noffz, T.; Dentz, M.; Sauter, M.

    2017-12-01

    To assess the vulnerability of an aquifer system it is of utmost importance to recognize the high potential for a rapid mass transport offered by ow through unsaturated fracture networks. Numerical models have to reproduce complex effects of gravity-driven flow dynamics to generate accurate predictions of flow and transport. However, the non-linear characteristics of free surface flow dynamics and partitioning behaviour at unsaturated fracture intersections often exceed the capacity of classical volume-effective modelling approaches. Laboratory experiments that manage to isolate single aspects of the mass partitioning process can enhance the understanding of underlying dynamics, which ultimately influence travel time distributions on multiple scales. Our analogue fracture network consists of synthetic cubes with dimensions of 20 x 20 x 20 cm creating simple geometries of a single or a cascade of consecutive horizontal fractures. Gravity-driven free surface flow (droplets; rivulets) is established via a high precision multichannel dispenser at flow rates ranging from 1.5 to 4.5 ml/min. Single-inlet experiments show the influence of variable flow rate, atmospheric pressure and temperature on the stability of flow modes and allow to delineate a droplet and rivulet regime. The transition between these regimes exhibits mixed flow characteristics. In addition, multi-inlet setups with constant total infow rates decrease the variance induced by erratic free-surface flow dynamics. We investigate the impacts of variable aperture widths, horizontal offsets of vertical fracture surfaces, and alternating injection methods for both flow regimes. Normalized fracture inflow rates allow to demonstrate and compare the effects of variable geometric features. Firstly, the fracture filling can be described by plug flow. At later stages it transitions into a Washburn-type flow, which we compare to an analytical solution for the case of rivulet flow. Observations show a considerably

  14. Effects of material properties on soft contact dynamics

    International Nuclear Information System (INIS)

    Khurshid, A.; Malik, M.A.; Ghafoor, A.

    2009-01-01

    The superiority of deformable human fingertips as compared to hard robot gripper fingers for grasping and manipulation has led to a number of investigations with robot hands employing elastomers or materials such as fluids or powders beneath a membrane at the fingertips. In this paper, to analyze the stability of dynamic control of an object grasped between two soft fingertips through a soft interface using the viscoelastic material between the manipulating fingers and a manipulated object is modeled through bond graph method (BGM). The fingers are made viscoelastic by using springs and dampers. Detailed bond graph modeling (BGM) of the contact phenomenon with two soft-finger contacts considered to be placed against each other on the opposite sides of the grasped object as is generally the case in a manufacturing environment is presented. The stiffness of the springs is exploited in order to achieve the stability in the soft-grasping which includes friction between the soft finger contact surfaces and the object, The paper also analyses stability of dynamic control through a soft interface between a manipulating finger and a manipulated object. It is shown in the paper that the system stability depends on the visco-elastic material properties of the soft interface. Method of root locus is used to analyze this phenomenon. The paper shows how the weight of the object coming downward is controlled by the friction between the fingers and the object during the application of contact forces by varying the damping and the stiffness in the soft finger. (author)

  15. Active Self-Assembled Spinners: dynamic crystals, transport and induced surface flows

    Science.gov (United States)

    Snezhko, Alexey; Kokot, Gasper

    Strongly interacting colloids driven out-of-equilibrium by an external periodic forcing often develop nontrivial collective dynamics. Active magnetic colloids proved to be excellent model experimental systems to explore emergent behavior and active (out-of-equilibrium) self-assembly phenomena. Ferromagnetic micro-particles, suspended at a liquid interface and energized by a rotational homogeneous alternating magnetic field applied along the supporting interface, spontaneously form ensembles of synchronized self-assembled spinners with well-defined characteristic length. The size and the torque of an individual self-assembled spinner are controlled by the frequency of the driving magnetic field. Experiments reveal a rich collective dynamics in large ensembles of synchronized magnetic spinners that spontaneously form dynamic spinner lattices at the interface in a certain range of the excitation parameters. Non-trivial dynamics inside of the formed spinner lattices is observed. Transport of passive cargo particles and structure of the underlying self-induced surface flows is analyzed. The research was supported by the U.S. DOE, Office of Basic Energy Sciences, Division of Materials Science and Engineering.

  16. Ultrafast dynamic ellipsometry and spectroscopy of laser shocked materials

    Energy Technology Data Exchange (ETDEWEB)

    Mcgrane, Shawn David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bolme, Cindy B [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Whitley, Von H [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Moore, David S [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2010-01-01

    Shock waves create extreme states of matter with very high pressures, temperatures, and volumetric compressions, at an exceedingly rapid rate of change. We review how to use a beamsplitter and a note card to turn a typical chirp pulse amplified femtosecond laser system into an ultrafast shock dynamics machine. Open scientific questions that can be addressed with such an apparatus are described. We report on the development of several single shot time resolved diagnostics needed to answer these questions. These single shot diagnostics are expected to be broadly applicable to other types of laser ablation experiments. Experimental results measured from shocked material dynamics of several systems are detailed. Finally, we report on progress towards using transient absorption as a measure of electronic excitation and coherent Raman as a picosecond probe of temperature in shock compressed condensed matter.

  17. Dynamics of flow behind backward-facing step in a narrow channel

    Directory of Open Access Journals (Sweden)

    Uruba V.

    2013-04-01

    Full Text Available The results and their analysis from experiments obtained by TR-PIV are presented on the model of backward-facing step in a narrow channel. The recirculation zone is studied in details. Mean structures are evaluated from fluctuating velocity fields. Then dynamics of the flow is characterized with help of POD (BOD technique. Substantial differences in high energy dynamical structures behaviour within the back-flow region and further downstream behind the flow reattachment have been found.

  18. Analysis of the flow dynamics characteristics of an axial piston pump based on the computational fluid dynamics method

    Directory of Open Access Journals (Sweden)

    Bin Zhang

    2017-01-01

    Full Text Available To improve its working performance, the flow ripple characteristics of an axial piston pump were investigated with software which uses computational fluid dynamics (CFD technology. The simulation accuracy was significantly optimized through the use of the improved compressible fluid model. Flow conditions of the pump were tested using a pump flow ripple test rig, and the simulation results of the CFD model showed good agreement with the experimental data. Additionally, the composition of the flow ripple was analyzed using the improved CFD model, and the results showed that the compression ripple makes up 88% of the flow ripple. The flow dynamics of the piston pump is mainly caused by the pressure difference between the intake and discharge ports of the valve plates and the fluid oil compressibility.

  19. Shearographic System for Dynamic Analysis of Materials under Heat Stress

    Directory of Open Access Journals (Sweden)

    Nelson A. Correa-Rojas

    2013-11-01

    Full Text Available Shearography is a tool for monitoring and inspecting of structural flaws and imperfections in different types of industrial, automotive and aeronautics applications. It is based on digital correlation of two speckle patterns in two states of interest: with and without load. The technique has the special quality of being very robust against environmental disturbances. We present a shearographic system to analyze the dynamic behavior of the strain that suffers a material in response to changes in temperature throughout the thermal load process.

  20. The use of a flow test and a flow model in evaluating the durability of various nuclear waste-form materials

    International Nuclear Information System (INIS)

    Barkatt, A.; Barkatt, A.; Boroomand, M.A.

    1983-01-01

    The comprehensive predictive model described in this paper has been briefly outlined for a single particular set of repository parameters in an earlier paper. A general detailed derivation and a detailed illustration of the use of this method in comparative evaluation of a variety of waste-form materials are given. The model focuses on the long-term leach rate of materials under all possible water flow rates through a repository site, given any exposure configuration (i.e., ratio between the exposed area of the waste form and the volume of water with which it is in effective contact) which is considered most representative of the actual repository conditions. The model permits direct calculation of the annual fractional release rate of the major matrix elements as well as of any other components of a waste form. This makes it possible to evaluate how well various waste forms meet long-term durability criteria such as those proposed by the U.S. Nuclear Regulatory Commission, makes it possible to obtain such release rates, corresponding to the entire range of flow conditions expected in a repository down to very slow flow rates by conducting dynamic laboratory tests at practical rates of leachant exchange at relatively high surfaceto-volume ratios, following the leachate composition until the leach rates approach constant values, and normalizing the data to the surface-to-volume ratio expected under repository conditions. The purpose of this paper is to outline the general derivation of the model and to describe the results of applying the model in dynamic leach tests carried out on five different waste-form materials over the entire range of effective flow rates expected under repository conditions

  1. Dynamics of lava flow - Thickness growth characteristics of steady two-dimensional flow

    Science.gov (United States)

    Park, S.; Iversen, J. D.

    1984-01-01

    The thickness growth characteristics of flowing lava are investigated using a heat balance model and a two-dimensional model for flow of a Bingham plastic fluid down an inclined plane. It is found that yield strength plays a crucial role in the thickening of a lava flow of given flow rate. To illustrate this point, downstream thickness profiles and yield strength distributions were calculated for flows with mass flow rates of 10,000 and 100,000 kg/m-sec. Higher flow rates led to slow cooling rates which resulted in slow rate of increase of yield strength and thus greater flow lengths.

  2. Dynamically Reconfigurable Metadevice Employing Nanostructured Phase-Change Materials.

    Science.gov (United States)

    Zhu, Zhihua; Evans, Philip G; Haglund, Richard F; Valentine, Jason G

    2017-08-09

    Mastering dynamic free-space spectral control and modulation in the near-infrared (NIR) and optical regimes remains a challenging task that is hindered by the available functional materials at high frequencies. In this work, we have realized an efficient metadevice capable of spectral control by minimizing the thermal mass of a vanadium dioxide phase-change material (PCM) and placing the PCM at the feed gap of a bow-tie field antenna. The device has an experimentally measured tuning range of up to 360 nm in the NIR and a modulation depth of 33% at the resonant wavelength. The metadevice is configured for integrated and local heating, leading to faster switching and more precise spatial control compared with devices based on phase-change thin films. We envisage that the combined advantages of this device will open new opportunities for signal processing, memory, security, and holography at optical frequencies.

  3. A Nonlocal Peridynamic Plasticity Model for the Dynamic Flow and Fracture of Concrete.

    Energy Technology Data Exchange (ETDEWEB)

    Vogler, Tracy; Lammi, Christopher James

    2014-10-01

    A nonlocal, ordinary peridynamic constitutive model is formulated to numerically simulate the pressure-dependent flow and fracture of heterogeneous, quasi-brittle ma- terials, such as concrete. Classical mechanics and traditional computational modeling methods do not accurately model the distributed fracture observed within this family of materials. The peridynamic horizon, or range of influence, provides a characteristic length to the continuum and limits localization of fracture. Scaling laws are derived to relate the parameters of peridynamic constitutive model to the parameters of the classical Drucker-Prager plasticity model. Thermodynamic analysis of associated and non-associated plastic flow is performed. An implicit integration algorithm is formu- lated to calculate the accumulated plastic bond extension and force state. The gov- erning equations are linearized and the simulation of the quasi-static compression of a cylinder is compared to the classical theory. A dissipation-based peridynamic bond failure criteria is implemented to model fracture and the splitting of a concrete cylinder is numerically simulated. Finally, calculation of the impact and spallation of a con- crete structure is performed to assess the suitability of the material and failure models for simulating concrete during dynamic loadings. The peridynamic model is found to accurately simulate the inelastic deformation and fracture behavior of concrete during compression, splitting, and dynamically induced spall. The work expands the types of materials that can be modeled using peridynamics. A multi-scale methodology for simulating concrete to be used in conjunction with the plasticity model is presented. The work was funded by LDRD 158806.

  4. Dynamics of shallow flows with and without background rotation

    NARCIS (Netherlands)

    Durán Matute, M.

    2010-01-01

    Large-scale oceanic and atmospheric flows tend to behave in a two-dimensional way. To further understand such flows, a large scientific effort has been devoted to the study of perfect two-dimensional flows. For the last 30 years, there has been a large interest in experimentally validating the

  5. Thermo-fluid dynamics of two-phase flow

    CERN Document Server

    Ishii, Mamoru; Ishii, Mamoru; Ishii, M

    2006-01-01

    Provides a very systematic treatment of two phase flow problems from a theoretical perspectiveProvides an easy to follow treatment of modeling and code devlopemnt of two phase flow related phenomenaCovers new results of two phase flow research such as coverage of fuel cells technology.

  6. Tokamak turbulence in self-regulated differentially rotating flow and L-H transition dynamics

    International Nuclear Information System (INIS)

    Terry, P.W.; Carreras, B.A.; Sidikman, K.

    1992-01-01

    An analytical study of turbulence in the presence of turbulently generated differentially rotating flow is presented as a paradigm for fluctuation dynamics in L- and H-mode plasmas. Using a drift wave model, the role of both flow shear and flow curvature (second radial derivative of the poloidal ExB flow) is detailed in linear and saturated turbulence phases. In the strong turbulence saturated state, finite amplitude-induced modification of the fluctuation structure near low order rational surfaces strongly inhibits flow shear suppression. Suppression by curvature is not diminished, but it occurs through a frequency shift. A description of L-H mode transition dynamics based on the self-consistent linking of turbulence suppression by differentially rotating flow and generation of flow by turbulent momentum transport is presented. In this model, rising edge temperature triggers a transition characterized by spontaneous generation of differentially rotating flow and decreasing turbulence intensity

  7. Up-Scaled Supercritical Flow Synthesis of Hybrid Materials

    DEFF Research Database (Denmark)

    Hellstern, Henrik Christian; Becker, Jacob; Hald, Peter

    A new, up-scaled supercritical flow synthesis apparatus is currently under construction in Aarhus. A module based system allows for a range of parameter studies with improved parameter control. The dual-reactor setup enables both single phase and core-shell nanoparticle synthesis, and the large...

  8. Notes on Well-Posed, Ensemble Averaged Conservation Equations for Multiphase, Multi-Component, and Multi-Material Flows

    International Nuclear Information System (INIS)

    Ray A. Berry

    2005-01-01

    At the INL researchers and engineers routinely encounter multiphase, multi-component, and/or multi-material flows. Some examples include: Reactor coolant flows Molten corium flows Dynamic compaction of metal powders Spray forming and thermal plasma spraying Plasma quench reactor Subsurface flows, particularly in the vadose zone Internal flows within fuel cells Black liquor atomization and combustion Wheat-chaff classification in combine harvesters Generation IV pebble bed, high temperature gas reactor The complexity of these flows dictates that they be examined in an averaged sense. Typically one would begin with known (or at least postulated) microscopic flow relations that hold on the ''small'' scale. These include continuum level conservation of mass, balance of species mass and momentum, conservation of energy, and a statement of the second law of thermodynamics often in the form of an entropy inequality (such as the Clausius-Duhem inequality). The averaged or macroscopic conservation equations and entropy inequalities are then obtained from the microscopic equations through suitable averaging procedures. At this stage a stronger form of the second law may also be postulated for the mixture of phases or materials. To render the evolutionary material flow balance system unique, constitutive equations and phase or material interaction relations are introduced from experimental observation, or by postulation, through strict enforcement of the constraints or restrictions resulting from the averaged entropy inequalities. These averaged equations form the governing equation system for the dynamic evolution of these mixture flows. Most commonly, the averaging technique utilized is either volume or time averaging or a combination of the two. The flow restrictions required for volume and time averaging to be valid can be severe, and violations of these restrictions are often found. A more general, less restrictive (and far less commonly used) type of averaging known as

  9. Investigation of dynamic fracture behavior in functionally graded materials

    International Nuclear Information System (INIS)

    Yang, X B; Qin, Y P; Zhuang, Z; You, X C

    2008-01-01

    The fast running crack in functionally graded materials (FGMs) is investigated through numerical simulations under impact loading. Some fracture characterizations such as crack propagation and arrest are evaluated by the criterion of the crack tip opening angle. Based on the experimental results, the whole propagation process of the fast running crack is simulated by the finite element program. Thus, the dynamic fracture parameters can be obtained during the crack growing process. In this paper, the crack direction is assumed to be the graded direction of the materials, and the property gradation in FGMs is considered by varying the elastic modulus exponentially along the graded direction and keeping the mass density and Poisson's ratio constant. The influences of the non-homogeneity, the loading ratio and the crack propagation speed on the dynamic fracture response of FGMs are analyzed through the test and numerical analysis. Considering the potential application of FGMs in natural-gas transmission engineering, a functionally graded pipeline is designed to arrest the fast running crack for a short period in high pressure large diameter natural-gas pipelines

  10. Information Flow Through Stages of Complex Engineering Design Projects: A Dynamic Network Analysis Approach

    DEFF Research Database (Denmark)

    Parraguez, Pedro; Eppinger, Steven D.; Maier, Anja

    2015-01-01

    The pattern of information flow through the network of interdependent design activities is thought to be an important determinant of engineering design process results. A previously unexplored aspect of such patterns relates to the temporal dynamics of information transfer between activities...... design process and thus support theory-building toward the evolution of information flows through systems engineering stages. Implications include guidance on how to analyze and predict information flows as well as better planning of information flows in engineering design projects according...

  11. Review of selected dynamic material control functions for international safeguards

    International Nuclear Information System (INIS)

    Lowry, L.L.

    1980-09-01

    With the development of Dynamic Special Nuclear Material Accounting and Control systems used in nuclear manufacturing and reprocessing plants, there arises the question as to how these systems affect the IAEA inspection capabilities. The systems in being and under development provide information and control for a variety of purposes important to the plant operator, the safeguards purpose being one of them. This report attempts to judge the usefulness of these dynamic systems to the IAEA and have defined 12 functions that provide essential information to it. If the information acquired by these dynamic systems is to be useful to the IAEA, the inspectors must be able to independently verify it. Some suggestions are made as to how this might be done. But, even if it should not be possible to verify all the data, the availability to the IAEA of detailed, simultaneous, and plant-wide information would tend to inhibit a plant operator from attempting to generate a floating or fictitious inventory. Suggestions are made that might be helpful in the design of future software systems, an area which has proved to be fatally deficient in some systems and difficult in all

  12. Constraints on the design of flow measuring structures over a large dynamic flow range

    International Nuclear Information System (INIS)

    Hickey, M.J.; Holmes, R.M.

    1979-01-01

    Topographical restraints for design storm flow are described as sharp-crested weirs for low flows in series with broad-crested weirs for the high flows. These design selections are considered to be most economical while providing the specified flow measuring capabilities for movement of radionuclides from the solid waste disposal areas into the surface streams around ORNL

  13. Differences in dynamic autoregulation of renal blood flow between SHR and WKY rats

    DEFF Research Database (Denmark)

    Chen, Y M; Holstein-Rathlou, N H

    1993-01-01

    by chaotic fluctuations. We sought to determine whether this change was associated with a change in the dynamic autoregulation of renal blood flow. In halothane-anesthetized 250- to 320-g SHR and WKY rats, renal blood flow was measured during "white noise" forcing of arterial blood pressure. The frequency...... conclude that the change in the dynamics of TGF leads to a change in the dynamic autoregulation of renal blood flow between SHR and WKY rats. This change results in a more efficient dynamic autoregulation of renal blood flow in the SHR compared with the WKY rats. The functional consequences of this......In halothane-anesthetized Wistar-Kyoto (WKY) rats the single-nephron blood flow and the proximal tubule pressure oscillate at a frequency of 35-50 mHz because of the operation of the tubuloglomerular feedback (TGF) mechanism. In spontaneously hypertensive rats (SHR) the oscillations are replaced...

  14. Impacts of small scale flow regulation on sediment dynamics in an ecologically important upland river.

    Science.gov (United States)

    Quinlan, E; Gibbins, C N; Batalla, R J; Vericat, D

    2015-03-01

    Flow regulation is widely recognized as affecting fluvial processes and river ecosystems. Most impact assessments have focused on large dams and major water transfer schemes, so relatively little is known about the impacts of smaller dams, weirs and water diversions. This paper assesses sediment dynamics in an upland river (the Ehen, NW England) whose flows are regulated by a small weir and tributary diversion. The river is important ecologically due to the presence of the endangered freshwater pearl mussel Margaritifera margaritifera, a species known to be sensitive to sedimentary conditions. Fine sediment yield for the 300-m long study reach was estimated to be 0.057 t km(-2) year(-1), a very low value relative to other upland UK rivers. Mean in-channel storage of fine sediment was also low, estimated at an average of around 40 g m(-2). Although the study period was characterized by frequent high flow events, little movement of coarser bed material was observed. Data therefore indicate an extremely stable fluvial system within the study reach. The implication of this stability for pearl mussels is discussed.

  15. Numerical investigation of debris materials prior to debris flow hazards using satellite images

    Science.gov (United States)

    Zhang, N.; Matsushima, T.

    2018-05-01

    The volume of debris flows occurred in mountainous areas is mainly affected by the volume of debris materials deposited at the valley bottom. Quantitative evaluation of debris materials prior to debris flow hazards is important to predict and prevent hazards. At midnight on 7th August 2010, two catastrophic debris flows were triggered by the torrential rain from two valleys in the northern part of Zhouqu City, NW China, resulting in 1765 fatalities and huge economic losses. In the present study, a depth-integrated particle method is adopted to simulate the debris materials, based on 2.5 m resolution satellite images. In the simulation scheme, the materials are modeled as dry granular solids, and they travel down from the slopes and are deposited at the valley bottom. The spatial distributions of the debris materials are investigated in terms of location, volume and thickness. Simulation results show good agreement with post-disaster satellite images and field observation data. Additionally, the effect of the spatial distributions of the debris materials on subsequent debris flows is also evaluated. It is found that the spatial distributions of the debris materials strongly influence affected area, runout distance and flow discharge. This study might be useful in hazard assessments prior to debris flow hazards by investigating diverse scenarios in which the debris materials are unknown.

  16. Visualization and PIV measurement of unsteady flow around a darrieus wind turbine in dynamic stall

    Energy Technology Data Exchange (ETDEWEB)

    Shibuya, Satoshi; Fujisawa, Nobuyuki; Takano, Tsuyoshi [Dept. of Mechanical and Production Engineering, Niigata Univ., Niigata (Japan)

    1999-07-01

    Flow around a Darrieus wind turbine in dynamic stall is studied by flow visualization and PIV (particle image velocimeter) measurement in a rotating frame of reference, which allows the successive observation of the dynamic stall over the blade. The qualitative features of the flow field in dynamic stall observed by the flow visualization, such as the formation and shedding of the stall vortices, are quantitatively reproduced in the instantaneous velocity distributions near the blade by using PIV. These results indicate that two pairs of stall vortices are generated from the blade during one rotation of the blade and that the size and the generating blade angle of the stall vortices are enlarged as the tip-speed ratio decreases. These stall vortices are produced by the in-flow motion from the outer surface to the inner surface through the trailing edge of the blade and the flow separation over the inner surface of the blade. (author)

  17. Two-dimensional fluid dynamics in a sharply bent channel: Laminar flow, separation bubble, and vortex dynamics

    Science.gov (United States)

    Matsumoto, Daichi; Fukudome, Koji; Wada, Hirofumi

    2016-10-01

    Understanding the hydrodynamic properties of fluid flow in a curving pipe and channel is important for controlling the flow behavior in technologies and biomechanics. The nature of the resulting flow in a bent pipe is extremely complicated because of the presence of a cross-stream secondary flow. In an attempt to disentangle this complexity, we investigate the fluid dynamics in a bent channel via the direct numerical simulation of the Navier-Stokes equation in two spatial dimensions. We exploit the absence of secondary flow from our model and systematically investigate the flow structure along the channel as a function of both the bend angle and Reynolds number of the laminar-to-turbulent regime. We numerically suggest a scaling relation between the shape of the separation bubble and the flow conductance, and construct an integrated phase diagram.

  18. Dynamics of Unusual Debris Flows on Martian Sand Dunes

    Science.gov (United States)

    Miyamoto, Hideaki; Dohm, James M.; Baker, Victor R.; Beyer, Ross A.; Bourke, Mary

    2004-01-01

    Gullies that dissect sand dunes in Russell impact crater often display debris flow-like deposits in their distal reaches. The possible range of both the rheological properties and the flow rates are estimated using a numerical simulation code of a Bingham plastic flow to help explain the formation of these features. Our simulated results are best explained by a rapid debris flow. For example, a debris flow with the viscosity of 10(exp 2) Pa s and the yield strength of 10(exp 2) Pa can form the observed deposits with a flow rate of 0.5 cu m/s sustained over several minutes and total discharged water volume on the order of hundreds of cubic meters, which may be produced by melting a surface layer of interstitial ice within the dune deposits to several centimeters depth.

  19. Data uncertainties in material flow analysis: Municipal solid waste management system in Maputo City, Mozambique.

    Science.gov (United States)

    Dos Muchangos, Leticia Sarmento; Tokai, Akihiro; Hanashima, Atsuko

    2017-01-01

    Material flow analysis can effectively trace and quantify the flows and stocks of materials such as solid wastes in urban environments. However, the integrity of material flow analysis results is compromised by data uncertainties, an occurrence that is particularly acute in low-and-middle-income study contexts. This article investigates the uncertainties in the input data and their effects in a material flow analysis study of municipal solid waste management in Maputo City, the capital of Mozambique. The analysis is based on data collected in 2007 and 2014. Initially, the uncertainties and their ranges were identified by the data classification model of Hedbrant and Sörme, followed by the application of sensitivity analysis. The average lower and upper bounds were 29% and 71%, respectively, in 2007, increasing to 41% and 96%, respectively, in 2014. This indicates higher data quality in 2007 than in 2014. Results also show that not only data are partially missing from the established flows such as waste generation to final disposal, but also that they are limited and inconsistent in emerging flows and processes such as waste generation to material recovery (hence the wider variation in the 2014 parameters). The sensitivity analysis further clarified the most influencing parameter and the degree of influence of each parameter on the waste flows and the interrelations among the parameters. The findings highlight the need for an integrated municipal solid waste management approach to avoid transferring or worsening the negative impacts among the parameters and flows.

  20. In vitro adhesion of staphylococci to diamond-like carbon polymer hybrids under dynamic flow conditions.

    Science.gov (United States)

    Soininen, Antti; Levon, Jaakko; Katsikogianni, Maria; Myllymaa, Katja; Lappalainen, Reijo; Konttinen, Yrjö T; Kinnari, Teemu J; Tiainen, Veli-Matti; Missirlis, Yannis

    2011-03-01

    This study compares the ability of selected materials to inhibit adhesion of two bacterial strains commonly implicated in implant-related infections. These two strains are Staphylococcus aureus (S-15981) and Staphylococcus epidermidis (ATCC 35984). In experiments we tested six different materials, three conventional implant metals: titanium, tantalum and chromium, and three diamond-like carbon (DLC) coatings: DLC, DLC-polydimethylsiloxane hybrid (DLC-PDMS-h) and DLC-polytetrafluoroethylene hybrid (DLC-PTFE-h) coatings. DLC coating represents extremely hard material whereas DLC hybrids represent novel nanocomposite coatings. The two DLC polymer hybrid films were chosen for testing due to their hardness, corrosion resistance and extremely good non-stick (hydrophobic and oleophobic) properties. Bacterial adhesion assay tests were performed under dynamic flow conditions by using parallel plate flow chambers (PPFC). The results show that adhesion of S. aureus to DLC-PTFE-h and to tantalum was significantly (P DLC-PDMS-h (0.671 ± 0.001 × 10(7)/cm(2) and 0.751 ± 0.002 × 10(7)/cm(2) vs. 1.055 ± 0.002 × 10(7)/cm(2), respectively). No significant differences were detected between other tested materials. Hence DLC-PTFE-h coating showed as low susceptibility to S. aureus adhesion as all the tested conventional implant metals. The adherence of S. epidermidis to biomaterials was not significantly (P DLC-PTFE-h films could be used as a biomaterial coating without increasing the risk of implant-related infections.

  1. Dynamics of zonal flows and self-regulating drift-wave turbulence

    International Nuclear Information System (INIS)

    Diamond, P.H.; Fleischer, J.; Rosenbluth, M.N.; Hinton, F.L.; Malkov, M.; Smolyakov, A.

    1999-01-01

    We present a theory of zonal flow - drift wave dynamics. Zonal flows are generated by modulational instability of a drift wave spectrum, and are damped by collisions. Drift waves undergo random shearing-induced refraction, resulting in increased mean square radial wavenumber. Drift waves and zonal flows together form a simple dynamical system, which has a single stable fixed point. In this state, the fluctuation intensity and turbulent diffusivity are ultimately proportional to the collisional zonal flow damping. The implications of these results for transport models is discussed. (author)

  2. Dynamics of zonal flows and self-regulating drift-wave turbulence

    International Nuclear Information System (INIS)

    Diamond, P.H.; Fleischer, J.; Rosenbluth, M.; Hinton, F.L.; Malkov, M.; Smolyakov, A.

    2001-01-01

    We present a theory of zonal flow - drift wave dynamics. Zonal flows are generated by modulational instability of a drift wave spectrum, and are damped by collisions. Drift waves undergo random shearing-induced refraction, resulting in increased mean square radial wavenumber. Drift waves and zonal flows together form a simple dynamical system, which has a single stable fixed point. In this state, the fluctuation intensity and turbulent diffusivity are ultimately proportional to the collisional zonal flow damping. The implications of these results for transport models is discussed. (author)

  3. Dynamics of polymers in elongational flow studied by the neutron spin-echo technique

    International Nuclear Information System (INIS)

    Rheinstaedter, Maikel C.; Sattler, Rainer; Haeussler, Wolfgang; Wagner, Christian

    2010-01-01

    The nanoscale fluctuation dynamics of semidilute high molecular weight polymer solutions of polyethylenoxide (PEO) in D 2 O under non-equilibrium flow conditions were studied by the neutron spin-echo technique. The sample cell was in contraction flow geometry and provided a pressure driven flow with a high elongational component that stretched the polymers most efficiently. Neutron scattering experiments in dilute polymer solutions are challenging because of the low polymer concentration and corresponding small quasi-elastic signals. A relaxation process with relaxation times of about 10 ps was observed, which shows anisotropic dynamics with applied flow.

  4. Combination of material flow analysis and substance flow analysis: a powerful approach for decision support in waste management.

    Science.gov (United States)

    Stanisavljevic, Nemanja; Brunner, Paul H

    2014-08-01

    The novelty of this paper is the demonstration of the effectiveness of combining material flow analysis (MFA) with substance flow analysis (SFA) for decision making in waste management. Both MFA and SFA are based on the mass balance principle. While MFA alone has been applied often for analysing material flows quantitatively and hence to determine the capacities of waste treatment processes, SFA is more demanding but instrumental in evaluating the performance of a waste management system regarding the goals "resource conservation" and "environmental protection". SFA focuses on the transformations of wastes during waste treatment: valuable as well as hazardous substances and their transformations are followed through the entire waste management system. A substance-based approach is required because the economic and environmental properties of the products of waste management - recycling goods, residues and emissions - are primarily determined by the content of specific precious or harmful substances. To support the case that MFA and SFA should be combined, a case study of waste management scenarios is presented. For three scenarios, total material flows are quantified by MFA, and the mass flows of six indicator substances (C, N, Cl, Cd, Pb, Hg) are determined by SFA. The combined results are compared to the status quo in view of fulfilling the goals of waste management. They clearly point out specific differences between the chosen scenarios, demonstrating potentials for improvement and the value of the combination of MFA/SFA for decision making in waste management. © The Author(s) 2014.

  5. Mathematical Modeling of the Concentrated Energy Flow Effect on Metallic Materials

    Directory of Open Access Journals (Sweden)

    Sergey Konovalov

    2016-12-01

    Full Text Available Numerous processes take place in materials under the action of concentrated energy flows. The most important ones include heating together with the temperature misdistribution throughout the depth, probable vaporization on the surface layer, melting to a definite depth, and hydrodynamic flotation; generation of thermo-elastic waves; dissolution of heterogeneous matrix particles; and formation of nanolayers. The heat-based model is presented in an enthalpy statement involving changes in the boundary conditions, which makes it possible to consider melting and vaporization on the material surface. As a result, a linear dependence of penetration depth vs. energy density has been derived. The model of thermo-elastic wave generation is based on the system of equations on the uncoupled one-dimensional problem of dynamic thermo-elasticity for a layer with the finite thickness. This problem was solved analytically by the symbolic method. It has been revealed for the first time that the generated stress pulse comprises tension and compression zones, which are caused by increases and decreases in temperature on the boundary. The dissolution of alloying elements is modeled on the example of a titanium-carbon system in the process of electron beam action. The mathematical model is proposed to describe it, and a procedure is suggested to solve the problem of carbon distribution in titanium carbide and liquid titanium-carbide solution in terms of the state diagram and temperature changes caused by phase transitions. Carbon concentration vs. spatial values were calculated for various points of time at diverse initial temperatures of the cell. The dependence of carbon particle dissolution on initial temperature and radius of the particle were derived. A hydrodynamic model based on the evolution of Kelvin-Helmholtz instability in shear viscous flows has been proposed to specify the formation of nanostructures in materials subjected to the action of concentrated

  6. Experimental study of poloidal flow effect on magnetic island dynamics in LHD and TJ-II

    International Nuclear Information System (INIS)

    Narushima, Y.; Sakakibara, S.; Castejon, F.

    2010-11-01

    The dynamics of a magnetic island are studied by focusing on the poloidal flows in the helical devices LHD and TJ-II. The temporal increment of the ExB poloidal flow prior to the magnetic island transition from growth to healing is observed. The direction of the poloidal flow is in the electron-diamagnetic direction in LHD and in the ion-diamagnetic direction in TJ-II. From the magnetic diagnostics, it is observed that a current structure flowing in the plasma moves ∼π rad poloidally in the electron-diamagnetic direction during the transition in LHD experiments. These experimental observations from LHD and TJ-II show that the temporal increment of the poloidal flow is followed by the transition (growth to healing) of the magnetic island regardless of the flow direction and clarify the fact that significant poloidal flow affects the magnetic island dynamics. (author)

  7. Complex network analysis of phase dynamics underlying oil-water two-phase flows

    Science.gov (United States)

    Gao, Zhong-Ke; Zhang, Shan-Shan; Cai, Qing; Yang, Yu-Xuan; Jin, Ning-De

    2016-01-01

    Characterizing the complicated flow behaviors arising from high water cut and low velocity oil-water flows is an important problem of significant challenge. We design a high-speed cycle motivation conductance sensor and carry out experiments for measuring the local flow information from different oil-in-water flow patterns. We first use multivariate time-frequency analysis to probe the typical features of three flow patterns from the perspective of energy and frequency. Then we infer complex networks from multi-channel measurements in terms of phase lag index, aiming to uncovering the phase dynamics governing the transition and evolution of different oil-in-water flow patterns. In particular, we employ spectral radius and weighted clustering coefficient entropy to characterize the derived unweighted and weighted networks and the results indicate that our approach yields quantitative insights into the phase dynamics underlying the high water cut and low velocity oil-water flows. PMID:27306101

  8. Development and Demonstration of Material Properties Database and Software for the Simulation of Flow Properties in Cementitious Materials

    Energy Technology Data Exchange (ETDEWEB)

    Smith, F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Flach, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-03-30

    This report describes work performed by the Savannah River National Laboratory (SRNL) in fiscal year 2014 to develop a new Cementitious Barriers Project (CBP) software module designated as FLOExcel. FLOExcel incorporates a uniform database to capture material characterization data and a GoldSim model to define flow properties for both intact and fractured cementitious materials and estimate Darcy velocity based on specified hydraulic head gradient and matric tension. The software module includes hydraulic parameters for intact cementitious and granular materials in the database and a standalone GoldSim framework to manipulate the data. The database will be updated with new data as it comes available. The software module will later be integrated into the next release of the CBP Toolbox, Version 3.0. This report documents the development efforts for this software module. The FY14 activities described in this report focused on the following two items that form the FLOExcel package; 1) Development of a uniform database to capture CBP data for cementitious materials. In particular, the inclusion and use of hydraulic properties of the materials are emphasized; and 2) Development of algorithms and a GoldSim User Interface to calculate hydraulic flow properties of degraded and fractured cementitious materials. Hydraulic properties are required in a simulation of flow through cementitious materials such as Saltstone, waste tank fill grout, and concrete barriers. At SRNL these simulations have been performed using the PORFLOW code as part of Performance Assessments for salt waste disposal and waste tank closure.

  9. Material Flow Analysis of NdFeB magnets for Denmark: A comprehensive waste flow sampling and analysis approach

    DEFF Research Database (Denmark)

    Habib, Komal; Schibye, Peter Klausen; Vestbø, Andreas Peter

    2014-01-01

    for considerable size and weight reduction in modern applications. This study aims to explore the current and future potential of secondary supply of neodymium and dysprosium from recycling of NdFeB magnets. For this purpose, Material Flow Analysis (MFA) has been carried out to perform the detailed mapping...

  10. Measurement of Liquid-Metal Two-Phase Flow with a Dynamic Neutron Radiography

    International Nuclear Information System (INIS)

    Cha, J. E.; Lim, I. C.; Kim, H. R.; Kim, C. M.; Nam, H. Y.; Saito, Y.

    2005-01-01

    The dynamic neutron radiography(DNR) has complementary characteristics to X-ray radiography and is suitable to visualization and measurement of a multi-phase flow research in a metallic duct and liquid metal flow. The flow-field information of liquid metal system is very important for the safety analysis of fast breeder reactor and the design of the spallation target of accelerator driven system. A DNR technique was applied to visualize the flow field in the gas-liquid metal two-phase flow with the HANARO-beam facility. The lead bismuth eutectic and the nitrogen gas were used to construct the two-phase flow field in the natural circulation U-channel. The two-phase flow images in the riser were taken at various combinations of the liquid flow and gas flow with high frame-rate neutron radiography at 1000 fps

  11. Visualization and analysis of flow patterns of human carotid bifurcation by computational fluid dynamics

    International Nuclear Information System (INIS)

    Xue Yunjing; Gao Peiyi; Lin Yan

    2007-01-01

    Objective: To investigate flow patterns at carotid bifurcation in vivo by combining computational fluid dynamics (CFD)and MR angiography imaging. Methods: Seven subjects underwent contrast-enhanced MR angiography of carotid artery in Siemens 3.0 T MR. Flow patterns of the carotid artery bifurcation were calculated and visualized by combining MR vascular imaging post-processing and CFD. Results: The flow patterns of the carotid bifurcations in 7 subjects were varied with different phases of a cardiac cycle. The turbulent flow and back flow occurred at bifurcation and proximal of internal carotid artery (ICA) and external carotid artery (ECA), their occurrence and conformation were varied with different phase of a cardiac cycle. The turbulent flow and back flow faded out quickly when the blood flow to the distal of ICA and ECA. Conclusion: CFD combined with MR angiography can be utilized to visualize the cyclical change of flow patterns of carotid bifurcation with different phases of a cardiac cycle. (authors)

  12. Evaluation method of corrosive conditions in cooling systems of nuclear power plants by combined analyses of flow dynamics and corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, Shunsuke [Nuclear Power Engineering Corporation (NUPEC), Tokyo (Japan); Atomic Energy Society of Japan (AESJ) (Japan). Research Committee on Water Chemistry Standard; Naitoh, Masanori [Nuclear Power Engineering Corporation (NUPEC), Tokyo (Japan); Atomic Energy Society of Japan (AESJ) (Japan). Computational Science and Engineering Div.; Uehara, Yasushi; Okada, Hidetoshi [Nuclear Power Engineering Corporation (NUPEC), Tokyo (Japan); Hotta, Koji [ITOCHU Techno-Solutions Corporation (Japan); Ichikawa, Ryoko [Mizuho Information and Research Inst., Inc. (Japan); Koshizuka, Seiichi [Tokyo Univ. (Japan)

    2007-03-15

    Problems in major components and structural materials in nuclear power plants have often been caused by flow induced vibration, corrosion and their overlapping effects. In order to establish safe and reliable plant operation, it is necessary to predict future problems for structural materials based on combined analyses of flow dynamics and corrosion and to mitigate them before they become serious issues for plant operation. The analysis models are divided into two types. 1. Prediction models for future problems with structural materials: Distributions of oxidant concentrations along flow paths are obtained by solving water radiolysis reactions in the boiling water reactor (BWR) primary cooling water and hydrazine-oxygen reactions in the pressurized water reactor (PWR) secondary cooling water. Then, the electrochemical corrosion potential (ECP) at the point of interest is also obtained by the mixed potential model using oxidant concentration. Higher ECP enhances the possibility of intergranular stress corrosion cracking (IGSCC) in the BWR primary system, while lower ECP enhances flow accelerated corrosion (FAC) in the PWR secondary system. 2. Evaluation models of wall thinning caused by flow accelerated corrosion: The degree of wall thinning is evaluated at a location with a higher possibility of FAC occurrence, and lifetime is estimated for preventive maintenance. General features of models are reviewed in this paper and the prediction models for oxidant concentrations are briefly introduced. (orig.)

  13. Evaluation method of corrosive conditions in cooling systems of nuclear power plants by combined analyses of flow dynamics and corrosion

    International Nuclear Information System (INIS)

    Uchida, Shunsuke; Hotta, Koji; Ichikawa, Ryoko; Koshizuka, Seiichi

    2007-01-01

    Problems in major components and structural materials in nuclear power plants have often been caused by flow induced vibration, corrosion and their overlapping effects. In order to establish safe and reliable plant operation, it is necessary to predict future problems for structural materials based on combined analyses of flow dynamics and corrosion and to mitigate them before they become serious issues for plant operation. The analysis models are divided into two types. 1. Prediction models for future problems with structural materials: Distributions of oxidant concentrations along flow paths are obtained by solving water radiolysis reactions in the boiling water reactor (BWR) primary cooling water and hydrazine-oxygen reactions in the pressurized water reactor (PWR) secondary cooling water. Then, the electrochemical corrosion potential (ECP) at the point of interest is also obtained by the mixed potential model using oxidant concentration. Higher ECP enhances the possibility of intergranular stress corrosion cracking (IGSCC) in the BWR primary system, while lower ECP enhances flow accelerated corrosion (FAC) in the PWR secondary system. 2. Evaluation models of wall thinning caused by flow accelerated corrosion: The degree of wall thinning is evaluated at a location with a higher possibility of FAC occurrence, and lifetime is estimated for preventive maintenance. General features of models are reviewed in this paper and the prediction models for oxidant concentrations are briefly introduced. (orig.)

  14. Characterization of cardiac flow in heart disease patients by computational fluid dynamics and 4D flow MRI

    Science.gov (United States)

    Lantz, Jonas; Gupta, Vikas; Henriksson, Lilian; Karlsson, Matts; Persson, Ander; Carhall, Carljohan; Ebbers, Tino

    2017-11-01

    In this study, cardiac blood flow was simulated using Computational Fluid Dynamics and compared to in vivo flow measurements by 4D Flow MRI. In total, nine patients with various heart diseases were studied. Geometry and heart wall motion for the simulations were obtained from clinical CT measurements, with 0.3x0.3x0.3 mm spatial resolution and 20 time frames covering one heartbeat. The CFD simulations included pulmonary veins, left atrium and ventricle, mitral and aortic valve, and ascending aorta. Mesh sizes were on the order of 6-16 million cells, depending on the size of the heart, in order to resolve both papillary muscles and trabeculae. The computed flow field agreed visually very well with 4D Flow MRI, with characteristic vortices and flow structures seen in both techniques. Regression analysis showed that peak flow rate as well as stroke volume had an excellent agreement for the two techniques. We demonstrated the feasibility, and more importantly, fidelity of cardiac flow simulations by comparing CFD results to in vivo measurements. Both qualitative and quantitative results agreed well with the 4D Flow MRI measurements. Also, the developed simulation methodology enables ``what if'' scenarios, such as optimization of valve replacement and other surgical procedures. Funded by the Wallenberg Foundation.

  15. Influence of steady shear flow on dynamic viscoelastic properties of ...

    Indian Academy of Sciences (India)

    Unknown

    temporary network formed by the fibres, their entangle- ment etc. The structural density is also a function of vol- ume fraction of reinforcing fibres (Amari et al 1992). The complex flow pattern encountered during moulding/ stamping are generally far from simple steady or oscilla- tory shear flow. Therefore, it is important to ...

  16. Dynamic Characteristics of Rotating Stall in Mixed Flow Pump

    Directory of Open Access Journals (Sweden)

    Xiaojun Li

    2013-01-01

    Full Text Available Rotating stall, a phenomenon that causes flow instabilities and pressure hysteresis by propagating at some fraction of the impeller rotational speed, can occur in centrifugal impellers, mixed impellers, radial diffusers, or axial diffusers. Despite considerable efforts devoted to the study of rotating stall in pumps, the mechanics of this phenomenon are not sufficiently understood. The propagation mechanism and onset of rotating stall are not only affected by inlet flow but also by outlet flow as well as the pressure gradient in the flow passage. As such, the complexity of these concepts is not covered by the classical explanation. To bridge this research gap, the current study investigated prerotation generated at the upstream of the impeller, leakage flow at the tip clearance between the casing and the impeller, and strong reserve flow at the inlet of the diffuser. Understanding these areas will clarify the origin of the positive slope of the head-flow performance curve for a mixed flow pump. Nonuniform pressure distribution and adverse pressure gradient were also introduced to evaluate the onset and development of rotating stall within the diffuser.

  17. Stratigraphy, sedimentology and inferred flow dynamics from the July 2015 block-and-ash flow deposits at Volcán de Colima, Mexico

    Science.gov (United States)

    Macorps, Elodie; Charbonnier, Sylvain J.; Varley, Nick R.; Capra, Lucia; Atlas, Zachary; Cabré, Josep

    2018-01-01

    The July 2015 block-and-ash flow (BAF) events represent the first documented series of large-volume and long-runout BAFs generated from sustained dome collapses at Volcán de Colima. This eruption is particularly exceptional at this volcano due to (1) the large volume of BAF material emplaced (0.0077 ± 0.001 km3), (2) the long runout reached by the associated BAFs (max. 10 km), and (3) the short period ( 18 h) over which two main long-sustained dome collapse events occurred (on 10 and 11 July, respectively). Stratigraphy and sedimentology of the 2015 BAF deposits exposed in the southern flank of the volcano based on lithofacies description, grain size measurements and clast componentry allowed the recognition of three main deposit facies (i.e., valley-confined, overbank and ash-cloud surge deposits). Correlations and lithofacies variations inside three main flow units from both the valley-confined and overbank deposits left from the emplacement of the second series of BAFs on 11 July provide detailed information about: (1) the distribution, volumes and sedimentological characteristics of the different units; (2) flow parameters (i.e., velocity and dynamic pressure) and mobility metrics as inferred from associated deposits; and (3) changes in the dynamics of the different flows and their material during emplacement. These data were coupled with geomorphic analyses to assess the role of the topography in controlling the behaviour and impacts of the successive BAF pulses on the volcano flanks. Finally, these findings are used to propose a conceptual model for transport and deposition mechanisms of the July 2015 BAFs at Volcán de Colima. In this model, deposition occurs by rapid stepwise aggradation of successive BAF pulses. Flow confinement in a narrow and sinuous channel enhance the mobility and runout of individual channelized BAF pulses. When these conditions occur, the progressive valley infilling from successive sustained dome-collapse events promote the

  18. Analysis of nuclear material flow for experimental DUPIC fuel fabrication process at DFDF

    International Nuclear Information System (INIS)

    Lee, H. H.; Park, J. J.; Shin, J. M.; Lee, J. W.; Yang, M. S.; Baik, S. Y.; Lee, E. P.

    1999-08-01

    This report describes facilities necessary for manufacturing experiment for DUPIC fuel, manufacturing process and equipment. Nuclear material flows among facilities, in PIEF and IMEF, for irradiation test, for post examination of DUPIC fuel, for quality control, for chemical analysis and for treatment of radioactive waste have been analyzed in details. This may be helpful for DUPIC project participants and facility engineers working in related facilities to understand overall flow for nuclear material and radioactive waste. (Author). 14 refs., 15 tabs., 41 figs

  19. Analysis of nuclear material flow for experimental DUPIC fuel fabrication process at DFDF

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H. H.; Park, J. J.; Shin, J. M.; Lee, J. W.; Yang, M. S.; Baik, S. Y.; Lee, E. P

    1999-08-01

    This report describes facilities necessary for manufacturing experiment for DUPIC fuel, manufacturing process and equipment. Nuclear material flows among facilities, in PIEF and IMEF, for irradiation test, for post examination of DUPIC fuel, for quality control, for chemical analysis and for treatment of radioactive waste have been analyzed in details. This may be helpful for DUPIC project participants and facility engineers working in related facilities to understand overall flow for nuclear material and radioactive waste. (Author). 14 refs., 15 tabs., 41 figs.

  20. Stress Distribution in Graded Cellular Materials Under Dynamic Compression

    Directory of Open Access Journals (Sweden)

    Peng Wang

    Full Text Available Abstract Dynamic compression behaviors of density-homogeneous and density-graded irregular honeycombs are investigated using cell-based finite element models under a constant-velocity impact scenario. A method based on the cross-sectional engineering stress is developed to obtain the one-dimensional stress distribution along the loading direction in a cellular specimen. The cross-sectional engineering stress is contributed by two parts: the node-transitive stress and the contact-induced stress, which are caused by the nodal force and the contact of cell walls, respectively. It is found that the contact-induced stress is dominant for the significantly enhanced stress behind the shock front. The stress enhancement and the compaction wave propagation can be observed through the stress distributions in honeycombs under high-velocity compression. The single and double compaction wave modes are observed directly from the stress distributions. Theoretical analysis of the compaction wave propagation in the density-graded honeycombs based on the R-PH (rigid-plastic hardening idealization is carried out and verified by the numerical simulations. It is found that stress distribution in cellular materials and the compaction wave propagation characteristics under dynamic compression can be approximately predicted by the R-PH shock model.

  1. Hierarchical Canopy Dynamics of Electrolyte-Doped Nanoscale Ionic Materials

    KAUST Repository

    Jespersen, Michael L.

    2013-12-23

    Nanoscale ionic materials (NIMs) are organic-inorganic hybrids prepared from ionically functionalized nanoparticles (NP) neutralized by oligomeric polymer counterions. NIMs are designed to behave as liquids under ambient conditions in the absence of solvent and have no volatile organic content, making them useful for a number of applications. We have used nuclear magnetic resonance relaxation and pulsed-field gradient NMR to probe local and collective canopy dynamics in NIMs based on 18-nm silica NPs with a covalently bound anionic corona, neutralized by amine-terminated ethylene oxide/propylene oxide block copolymers. The NMR relaxation studies show that the nanosecond-scale canopy dynamics depend on the degree of neutralization, the canopy radius of gyration, and crowding at the ionically modified NP surface. Two canopy populations are observed in the diffusion experiments, demonstrating that one fraction of the canopy is bound to the NP surface on the time scale (milliseconds) of the diffusion experiment and is surrounded by a more mobile layer of canopy that is unable to access the surface due to molecular crowding. The introduction of electrolyte ions (Na+ or Mg2+) screens the canopy-corona electrostatic interactions, resulting in a reduced bulk viscosity and faster canopy exchange. The magnitude of the screening effect depends upon ion concentration and valence, providing a simple route for tuning the macroscopic properties of NIMs. © 2013 American Chemical Society.

  2. Hierarchical Canopy Dynamics of Electrolyte-Doped Nanoscale Ionic Materials

    KAUST Repository

    Jespersen, Michael L.; Mirau, Peter A.; von Meerwall, Ernst D.; Koerner, Hilmar; Vaia, Richard A.; Fernandes, Nikhil J.; Giannelis, Emmanuel P.

    2013-01-01

    Nanoscale ionic materials (NIMs) are organic-inorganic hybrids prepared from ionically functionalized nanoparticles (NP) neutralized by oligomeric polymer counterions. NIMs are designed to behave as liquids under ambient conditions in the absence of solvent and have no volatile organic content, making them useful for a number of applications. We have used nuclear magnetic resonance relaxation and pulsed-field gradient NMR to probe local and collective canopy dynamics in NIMs based on 18-nm silica NPs with a covalently bound anionic corona, neutralized by amine-terminated ethylene oxide/propylene oxide block copolymers. The NMR relaxation studies show that the nanosecond-scale canopy dynamics depend on the degree of neutralization, the canopy radius of gyration, and crowding at the ionically modified NP surface. Two canopy populations are observed in the diffusion experiments, demonstrating that one fraction of the canopy is bound to the NP surface on the time scale (milliseconds) of the diffusion experiment and is surrounded by a more mobile layer of canopy that is unable to access the surface due to molecular crowding. The introduction of electrolyte ions (Na+ or Mg2+) screens the canopy-corona electrostatic interactions, resulting in a reduced bulk viscosity and faster canopy exchange. The magnitude of the screening effect depends upon ion concentration and valence, providing a simple route for tuning the macroscopic properties of NIMs. © 2013 American Chemical Society.

  3. Fluid dynamics of cryogenic two-phase flows

    International Nuclear Information System (INIS)

    Verfondern, K.; Jahn, W.

    2004-01-01

    The objective of this study was to examine the flow behavior of a methane hydrate/methane-liquid hydrogen dispersed two-phase fluid through a given design of a moderator chamber for the ESS target system. The calculations under simplified conditions, e.g., taking no account of heat input from outside, have shown that the computer code used, CFX, was able to simulate the behavior of the two-phase flow through the moderator chamber, producing reasonable results up to a certain level of the solid phase fraction, that allowed a continuous flow process through the chamber. Inlet flows with larger solid phase fractions than 40 vol% were found to be a ''problem'' for the computer code. From the computer runs based on fractions between 20 and 40 vol%, it was observed that with increasing solid phase fraction at the inlet, the resulting flow pattern revealed a strong tendency for blockage within the chamber, supported by the ''heavy weight'' of the pellets compared to the carrying liquid. Locations which are prone to the development of such uneven flow behavior are the areas around the turning points in the semispheres and near the exit of the moderator. The considered moderator chamber with horizontal inlet and outlet flow for a solid-liquid two-phase fluid does not seem to be an appropriate design. (orig.)

  4. Flow dynamic study of a single-phase square NCL using recurrence ...

    Indian Academy of Sciences (India)

    Department of Mechanical Engineering, Jadavpur University, Kolkata 700 032, India ... With increase in heater power, a change in loop fluid flow dynamics has been observed. For ... reactor core cooling, solar water heaters, gas turbine.

  5. Technical report on prototype intelligent network flow optimization (INFLO) dynamic speed harmonization and queue warning.

    Science.gov (United States)

    2015-06-01

    This Technical Report on Prototype Intelligent Network Flow Optimization (INFLO) Dynamic Speed Harmonization and : Queue Warning is the final report for the project. It describes the prototyping, acceptance testing and small-scale : demonstration of ...

  6. Safe and Sustainable: Optimizing Material Flows in a Circular Economy

    DEFF Research Database (Denmark)

    Fantke, Peter

    (unsustainable). When maximizing resource use efficiency and reducing carbon and other emissions through recycling (sustainable), direct consumer exposure is often increased through cross-contamination of recycled materials (unsafe). Hence, circular economy currently fails to unite the required expertise...... to imultaneously increase sustainability and reduce exposure to chemicals in materials reused across life cycles of different products. For a way out of this dilemma, a paradigm shift is needed towards a comprehensive and quantitative assessment framework.......Increasing the sustainability of a globally connected economy is gaining wide attention in a world with limited natural resources and growing chemical pollution. The circular economy has emerged as away to reduce carbon and other emissions, while increasing resource efficiency over several product...

  7. Thermally activated creep and fluidization in flowing disordered materials

    Science.gov (United States)

    Merabia, Samy; Detcheverry, François

    2016-11-01

    When submitted to a constant mechanical load, many materials display power law creep followed by fluidization. A fundamental understanding of these processes is still far from being achieved. Here, we characterize creep and fluidization on the basis of a mesoscopic viscoplastic model that includes thermally activated yielding events and a broad distribution of energy barriers, which may be lowered under the effect of a local deformation. We relate the creep exponent observed before fluidization to the width of barrier distribution and to the specific form of stress redistribution following yielding events. We show that Andrade creep is accompanied by local strain hardening driven by stress redistribution and find that the fluidization time depends exponentially on the applied stress. The simulation results are interpreted in the light of a mean-field analysis, and should help in rationalizing the creep phenomenology in disordered materials.

  8. Homotopical Dynamics IV: Hopf invariants and hamiltonian flows

    OpenAIRE

    Cornea, Octavian

    2001-01-01

    In a non-compact context the first natural step in the search for periodic orbits of a hamiltonian flow is to detect bounded ones. In this paper we show that, in a non-compact setting, certain algebraic topological constraints imposed to a gradient flow of the hamiltonian function $f$ imply the existence of bounded orbits for the hamiltonian flow of $f$. Once the existence of bounded orbits is established, under favorable circumstances, application of the $C^{1}$-closing lemma leads to period...

  9. Dynamic modelling for two-phase flow systems

    International Nuclear Information System (INIS)

    Guerra, M.A.

    1991-06-01

    Several models for two-phase flow have been studied, developing a thermal-hydraulic analysis code with one of these models. The program calculates, for one-dimensional cases with variable flow area, the transient behaviour of system process variables, when the boundary conditions (heat flux, flow rate, enthalpy and pressure) are functions of time. The modular structure of the code, eases the program growth. In fact, the present work is the basis for a general purpose accident and transient analysis code in nuclear reactors. Code verification has been made against RETRAN-02 results. Satisfactory results have been achieved with the present version of the code. (Author) [es

  10. Simulation of capillary flow with a dynamic contact angle

    NARCIS (Netherlands)

    van Mourik, S; Veldman, AEP; Dreyer, ME

    2005-01-01

    A number of theoretical and empirical dynamic contact angle (DCA) models have been tested in a numerical simulation of liquid reorientation in microgravity for which experimental validation data are available. It is observed that the DCA can have a large influence on liquid dynamics in microgravity.

  11. Modification of structural materials by pulsed plasma flows

    International Nuclear Information System (INIS)

    Bandura, A.N.; Garkusha, I.E.; Byrka, O.V.; Makhlaj, V.A.

    2011-01-01

    Features of surface modification and materials alloying from gas and metallic plasma as a result of the plasma ions mixing with the steel substrate in liquid phase are investigated in this paper.The experiments have been carried out with pulsed plasma gun, which generates plasma streams with ion energy up to 2 keV, plasma density 2x10 14 cm -3 , average specific power of 10 MW/cm 2 and plasma energy density in the range of (5-40) J/cm 2 . The nitrogen, helium, other gases and their mixtures can be used as working gases. The regime of plasma treatment was chosen with variation of both the discharge voltage and the distance of the material surface from the gun output. Modification of thin (0.5-2 µm) PVD coatings of MoN, C+W, TiN, TiC, Cr, Cr+CrN and others by the pulsed plasma streams are analyzed also. It is shown that pulsed plasma treatment results in essential improvement of physical and mechanical properties of exposed materials. For example, microhardness of samples with Cr coating, after plasma treatment, increased in 2,5 times. Mechanisms of surface modification of a different alloys and coating irradiated with pulsed plasma streams of different ions are discussed. (authors)

  12. Magnetic resonance velocity mapping of 3D cerebrospinal fluid flow dynamics in hydrocephalus: preliminary results

    International Nuclear Information System (INIS)

    Stadlbauer, Andreas; Salomonowitz, Erich; Brenneis, Christian; Ungersboeck, Karl; Riet, Wilma van der; Buchfelder, Michael; Ganslandt, Oliver

    2012-01-01

    To investigate the detectability of CSF flow alterations in the ventricular system of patients with hydrocephalus using time-resolved 3D MR velocity mapping. MR velocity mapping was performed in 21 consecutive hydrocephalus patients and 21 age-matched volunteers using a 3D phase-contrast (PC) sequence. Velocity vectors and particle path lines were calculated for visualisation of flow dynamics. CSF flow was classified as ''hypomotile flow'' if it showed attenuated dynamics and as ''hypermotile flow'' if it showed increased dynamics compared with volunteers. Diagnostic efficacy was compared with routine 2D cine PC-MRI. Seven patients showed hypomotile CSF flow: six had non-communicating hydrocephalus due to aqueductal stenosis. One showed oscillating flow between the lateral ventricles after craniotomy for intracranial haemorrhage. Seven patients showed normal flow: six had hydrocephalus ex vacuo due to brain atrophy. One patient who underwent ventriculostomy 10 years ago showed a flow path through the opening. Seven patients showed hypermotile flow: three had normal pressure hydrocephalus, three had dementia, and in one the diagnosis remained unclear. The diagnostic efficacy of velocity mapping was significantly higher except for that of aqueductal stenosis. Our approach may be useful for diagnosis, therapy planning, and follow-up of different kinds of hydrocephalus. (orig.)

  13. Magnetic resonance velocity mapping of 3D cerebrospinal fluid flow dynamics in hydrocephalus: preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Stadlbauer, Andreas [Landesklinikum St. Poelten, MR Physics Group, Department of Radiology, St. Poelten (Austria); University of Erlangen-Nuremberg, Department of Neurosurgery, Erlangen (Germany); Salomonowitz, Erich [Landesklinikum St. Poelten, MR Physics Group, Department of Radiology, St. Poelten (Austria); Brenneis, Christian [Landesklinikum St. Poelten, Department of Neurology, St. Poelten (Austria); Ungersboeck, Karl [Landesklinikum St. Poelten, Department of Neurosurgery, St. Poelten (Austria); Riet, Wilma van der [European MRI Consultancy (EMRIC), Strasbourg (France); Buchfelder, Michael; Ganslandt, Oliver [University of Erlangen-Nuremberg, Department of Neurosurgery, Erlangen (Germany)

    2012-01-15

    To investigate the detectability of CSF flow alterations in the ventricular system of patients with hydrocephalus using time-resolved 3D MR velocity mapping. MR velocity mapping was performed in 21 consecutive hydrocephalus patients and 21 age-matched volunteers using a 3D phase-contrast (PC) sequence. Velocity vectors and particle path lines were calculated for visualisation of flow dynamics. CSF flow was classified as ''hypomotile flow'' if it showed attenuated dynamics and as ''hypermotile flow'' if it showed increased dynamics compared with volunteers. Diagnostic efficacy was compared with routine 2D cine PC-MRI. Seven patients showed hypomotile CSF flow: six had non-communicating hydrocephalus due to aqueductal stenosis. One showed oscillating flow between the lateral ventricles after craniotomy for intracranial haemorrhage. Seven patients showed normal flow: six had hydrocephalus ex vacuo due to brain atrophy. One patient who underwent ventriculostomy 10 years ago showed a flow path through the opening. Seven patients showed hypermotile flow: three had normal pressure hydrocephalus, three had dementia, and in one the diagnosis remained unclear. The diagnostic efficacy of velocity mapping was significantly higher except for that of aqueductal stenosis. Our approach may be useful for diagnosis, therapy planning, and follow-up of different kinds of hydrocephalus. (orig.)

  14. Standard test method for dynamic tear testing of metallic materials

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1983-01-01

    1.1 This test method covers the dynamic tear (DT) test using specimens that are 3/16 in. to 5/8 in. (5 mm to 16 mm) inclusive in thickness. 1.2 This test method is applicable to materials with a minimum thickness of 3/16 in. (5 mm). 1.3 The pressed-knife procedure described for sharpening the notch tip generally limits this test method to materials with a hardness level less than 36 HRC. Note 1—The designation 36 HRC is a Rockwell hardness number of 36 on Rockwell C scale as defined in Test Methods E 18. 1.4 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  15. Void fraction measurement in two-phase flow processes via symbolic dynamic filtering of ultrasonic signals

    International Nuclear Information System (INIS)

    Chakraborty, Subhadeep; Keller, Eric; Talley, Justin; Srivastav, Abhishek; Ray, Asok; Kim, Seungjin

    2009-01-01

    This communication introduces a non-intrusive method for void fraction measurement and identification of two-phase flow regimes, based on ultrasonic sensing. The underlying algorithm is built upon the recently reported theory of a statistical pattern recognition method called symbolic dynamic filtering (SDF). The results of experimental validation, generated on a laboratory test apparatus, show a one-to-one correspondence between the flow measure derived from SDF and the void fraction measured by a conductivity probe. A sharp change in the slope of flow measure is found to be in agreement with a transition from fully bubbly flow to cap-bubbly flow. (rapid communication)

  16. The promising gas-dynamic schemes of vacuum deposition from the supersonic gas mixture flows

    International Nuclear Information System (INIS)

    Maltsev, R V; Rebrov, A K

    2008-01-01

    Gas jet deposition (GJD) becomes promising method of thin film and nanoparticle deposition. This paper is focused on elaboration of new methods of GJD based on different gas dynamic schemes of flow formation and interaction with substrate. Using direct statistical simulation method, the analysis was performed for: a) interaction of the jet from the sonic nozzle with a substrate; b) fan flow in the result of interaction of two opposite jets; c) convergent flow from the ring nozzle, directional to the axis; d) interaction of the jet after convergent flow with the substrate; e) fan flow in the result of interaction of two opposite jets after convergent expansion

  17. Nonlinear dynamics near the stability margin in rotating pipe flow

    Science.gov (United States)

    Yang, Z.; Leibovich, S.

    1991-01-01

    The nonlinear evolution of marginally unstable wave packets in rotating pipe flow is studied. These flows depend on two control parameters, which may be taken to be the axial Reynolds number R and a Rossby number, q. Marginal stability is realized on a curve in the (R, q)-plane, and the entire marginal stability boundary is explored. As the flow passes through any point on the marginal stability curve, it undergoes a supercritical Hopf bifurcation and the steady base flow is replaced by a traveling wave. The envelope of the wave system is governed by a complex Ginzburg-Landau equation. The Ginzburg-Landau equation admits Stokes waves, which correspond to standing modulations of the linear traveling wavetrain, as well as traveling wave modulations of the linear wavetrain. Bands of wavenumbers are identified in which the nonlinear modulated waves are subject to a sideband instability.

  18. Quantum dynamical time evolutions as stochastic flows on phase space

    International Nuclear Information System (INIS)

    Combe, P.; Rodriguez, R.; Guerra, F.; Sirigue, M.; Sirigue-Collin, M.

    1984-01-01

    We are mainly interested in describing the time development of the Wigner functions by means of stochastic processes. In the second section we recall the main properties of the Wigner functions as well as those of their Fourier transform. In the next one we derive the evolution equation of these functions for a class of Hamiltonians and we give a probabilistic expression for the solution of these equations by means of a stochastic flow in phase space which reminds of the classical flows. In the last section we remark that the previously defined flow can be extended to the bounded continuous functions on phase space and that this flow conserves the cone generated by the Wigner functions. (orig./HSI)

  19. Dynamic emission tomography of regional cerebral blood flow

    International Nuclear Information System (INIS)

    Lassen, N.A.

    1984-01-01

    The author reviews three tomographic methods for measuring the regional cerebral blood flow: single photon transmission tomography; dual photon emission tomography; and single photon emission tomography. The latter technique is discussed in detail. (Auth.)

  20. Computational fluid dynamics analysis of a mixed flow pump impeller

    African Journals Online (AJOL)

    ATHARVA

    International Journal of Engineering, Science and Technology ... From the CFD analysis software and advanced post processing tools the complex flow inside the ... The numerical simulation can provide quite accurate information on the fluid ...

  1. Benchmarking computational fluid dynamics models of lava flow simulation for hazard assessment, forecasting, and risk management

    Science.gov (United States)

    Dietterich, Hannah; Lev, Einat; Chen, Jiangzhi; Richardson, Jacob A.; Cashman, Katharine V.

    2017-01-01

    Numerical simulations of lava flow emplacement are valuable for assessing lava flow hazards, forecasting active flows, designing flow mitigation measures, interpreting past eruptions, and understanding the controls on lava flow behavior. Existing lava flow models vary in simplifying assumptions, physics, dimensionality, and the degree to which they have been validated against analytical solutions, experiments, and natural observations. In order to assess existing models and guide the development of new codes, we conduct a benchmarking study of computational fluid dynamics (CFD) models for lava flow emplacement, including VolcFlow, OpenFOAM, FLOW-3D, COMSOL, and MOLASSES. We model viscous, cooling, and solidifying flows over horizontal planes, sloping surfaces, and into topographic obstacles. We compare model results to physical observations made during well-controlled analogue and molten basalt experiments, and to analytical theory when available. Overall, the models accurately simulate viscous flow with some variability in flow thickness where flows intersect obstacles. OpenFOAM, COMSOL, and FLOW-3D can each reproduce experimental measurements of cooling viscous flows, and OpenFOAM and FLOW-3D simulations with temperature-dependent rheology match results from molten basalt experiments. We assess the goodness-of-fit of the simulation results and the computational cost. Our results guide the selection of numerical simulation codes for different applications, including inferring emplacement conditions of past lava flows, modeling the temporal evolution of ongoing flows during eruption, and probabilistic assessment of lava flow hazard prior to eruption. Finally, we outline potential experiments and desired key observational data from future flows that would extend existing benchmarking data sets.

  2. Dynamic surface-pressure instrumentation for rods in parallel flow

    International Nuclear Information System (INIS)

    Mulcahy, T.M.; Lawrence, W.

    1979-01-01

    Methods employed and experience gained in measuring random fluid boundary layer pressures on the surface of a small diameter cylindrical rod subject to dense, nonhomogeneous, turbulent, parallel flow in a relatively noise-contaminated flow loop are described. Emphasis is placed on identification of instrumentation problems; description of transducer construction, mounting, and waterproofing; and the pretest calibration required to achieve instrumentation capable of reliable data acquisition

  3. Zonal Flow Dynamics and Size-scaling of Anomalous Transport

    International Nuclear Information System (INIS)

    Liu Chen; White, Roscoe B.; Zonca, F.

    2003-01-01

    Nonlinear equations for the slow space-time evolution of the radial drift wave envelope and zonal flow amplitude have been self-consistently derived for a model nonuniform tokamak equilibrium within the coherent 4-wave drift wave-zonal flow modulation interaction model of Chen, Lin, and White [Phys. Plasmas 7 (2000) 3129]. Solutions clearly demonstrate turbulence spreading due to nonlinearly enhanced dispersiveness and, consequently, the device-size dependence of the saturated wave intensities and transport coefficients

  4. Fundamental change of granular flows dynamics, deposition and erosion processes at sufficiently high slope angles: insights from laboratory experiments

    Science.gov (United States)

    Farin, M.; Mangeney, A.; Roche, O.

    2013-12-01

    Geophysical granular flows commonly interact with their substrate in various ways depending on the mechanical properties of the underlying material. Granular substrates, resulting from deposition of earlier flows or various geological events, are often eroded by avalanches [see Hungr and Evans, 2004 for review]. The entrainment of underlying debris by the flow is suspected to affect flow dynamics because qualitative and quantitative field observations suggest that it can increase the flow velocity and deposit extent, depending on the geological setting and flow type [Sovilla et al., 2006; Iverson et al., 2011]. Direct measurement of material entrainment in nature, however, is very difficult. We conducted laboratory experiments on granular column collapse over an inclined channel with and without an erodible bed of granular material. The controlling parameters were the channel slope angle, the granular column volume and its aspect ratio (i.e. height over length), the inclination of the column with respect to the channel base, the channel width, and the thickness and compaction of the erodible bed. For slope angles below a critical value θc, between 10° and 16°, the runout distance rf is proportional to the initial column height h0 and is unaffected by the presence of an erodible bed. On slopes greater than θc, the flow dynamics change fundamentally since a last phase of slow propagation develops at the end of the flow front deceleration, and prolongates significantly the flow duration. This phase has similar characteristics that steady, uniform flows. The slow propagation phase lasts longer for increasing column volume, column inclination with respect to the slope, and channel width, and for decreasing column aspect ratio. It is however independent of the maximum front velocity and, on an erodible bed, of the maximum depth of excavation within the bed. Both on rigid and erodible beds, the increase of the slow propagation phase duration has a crucial effect on

  5. Dynamic Characteristics of The DSI-Type Constant-Flow Valves

    Science.gov (United States)

    Kang, Yuan; Hu, Sheng-Yan; Chou, Hsien-Chin; Lee, Hsing-Han

    Constant flow valves have been presented in industrial applications or academic studies, which compensate recess pressures of a hydrostatic bearing to resist load fluctuating. The flow rate of constant-flow valves can be constant in spite of the pressure changes in recesses, however the design parameters must be specified. This paper analyzes the dynamic responses of DSI-type constant-flow valves that is designed as double pistons on both ends of a spool with single feedback of working pressure and regulating restriction at inlet. In this study the static analysis presents the specific relationships among design parameters for constant flow rate and the dynamic analyses give the variations around the constant flow rate as the working pressure fluctuates.

  6. Reduction of gas flow nonuniformity in gas turbine engines by means of gas-dynamic methods

    Science.gov (United States)

    Matveev, V.; Baturin, O.; Kolmakova, D.; Popov, G.

    2017-08-01

    Gas flow nonuniformity is one of the main sources of rotor blade vibrations in the gas turbine engines. Usually, the flow circumferential nonuniformity occurs near the annular frames, located in the flow channel of the engine. This leads to the increased dynamic stresses in blades and as a consequence to the blade damage. The goal of the research was to find an acceptable method of reducing the level of gas flow nonuniformity as the source of dynamic stresses in the rotor blades. Two different methods were investigated during this research. Thus, this study gives the ideas about methods of improving the flow structure in gas turbine engine. On the basis of existing conditions (under development or existing engine) it allows the selection of the most suitable method for reducing gas flow nonuniformity.

  7. Vesicle dynamics in a confined Poiseuille flow: from steady state to chaos.

    Science.gov (United States)

    Aouane, Othmane; Thiébaud, Marine; Benyoussef, Abdelilah; Wagner, Christian; Misbah, Chaouqi

    2014-09-01

    Red blood cells (RBCs) are the major component of blood, and the flow of blood is dictated by that of RBCs. We employ vesicles, which consist of closed bilayer membranes enclosing a fluid, as a model system to study the behavior of RBCs under a confined Poiseuille flow. We extensively explore two main parameters: (i) the degree of confinement of vesicles within the channel and (ii) the flow strength. Rich and complex dynamics for vesicles are revealed, ranging from steady-state shapes (in the form of parachute and slipper shapes) to chaotic dynamics of shape. Chaos occurs through a cascade of multiple periodic oscillations of the vesicle shape. We summarize our results in a phase diagram in the parameter plane (degree of confinement and flow strength). This finding highlights the level of complexity of a flowing vesicle in the small Reynolds number where the flow is laminar in the absence of vesicles and can be rendered turbulent due to elasticity of vesicles.

  8. Identification and control of factors influencing flow-accelerated corrosion in HRSG units using computational fluid dynamics modeling, full-scale air flow testing, and risk analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pietrowski, Ronald L. [The Consolidated Edison Company of New York, Inc., New York, NY (United States)

    2010-11-15

    In 2009, Consolidated Edison's East River heat recovery steam generator units 10 and 20 both experienced economizer tube failures which forced each unit offline. Extensive inspections indicated that the primary failure mechanism was flow-accelerated corrosion (FAC). The inspections revealed evidence of active FAC in all 7 of the economizer modules, with the most advanced stages of degradation being noted in center modules. Analysis determined that various factors were influencing and enabling this corrosion mechanism. Computational fluid dynamics and full-scale air flow testing showed very turbulent feedwater flow prevalent in areas of the modules corresponding with the pattern of FAC damage observed through inspection. It also identified preferential flow paths, with higher flow velocities, in certain tubes directly under the inlet nozzles. A FAC risk analysis identified more general susceptibility to FAC in the areas experiencing damage due to feedwater pH, operating temperatures, local shear fluid forces, and the chemical composition of the original materials of construction. These, in combination, were the primary root causes of the failures. Corrective actions were identified, analyzed, and implemented, resulting in equipment replacements and repairs. (orig.)

  9. Research of thermoluminescence dating for ancient debris flow materials in Qingshui river basin of Beijing

    International Nuclear Information System (INIS)

    Liu Junxin; Wei Mingjian; Zhou Rui; Zhang Bin; Liu Tiantian

    2012-01-01

    The thermoluminescence age of the samples for ancient debris flow terraces material of Lingshan and Hongshuikou, which are in Qingshui River Basin of Beijing, was studied using the thermo luminescence technology. The age increases with the increasing depth of two ancient debris flow profile, and the deeper debris flow deposits material the more of the environmental radiation dose is. The trend with depth of U, Th and K contents and annual dose is consistency. And the change with depth of Th content is more discrete than that of U, K contents. (authors)

  10. Dynamic modeling of renal blood flow in Dahl hypertensive and normotensive rats

    DEFF Research Database (Denmark)

    Knudsen, Torben; Elmer, Henrik; Knudsen, Morten H

    2004-01-01

    A method is proposed in this paper which allows characterization of renal autoregulatory dynamics and efficiency using quantitative mathematical methods. Based on data from rat experiments, where arterial blood pressure and renal blood flow are measured, a quantitative model for renal blood flow...

  11. Forecasting Multivariate Road Traffic Flows Using Bayesian Dynamic Graphical Models, Splines and Other Traffic Variables

    NARCIS (Netherlands)

    Anacleto, Osvaldo; Queen, Catriona; Albers, Casper J.

    Traffic flow data are routinely collected for many networks worldwide. These invariably large data sets can be used as part of a traffic management system, for which good traffic flow forecasting models are crucial. The linear multiregression dynamic model (LMDM) has been shown to be promising for

  12. CrossFlow: Cross-Organizational Workflow Management in Dynamic Virtual Enterprises

    NARCIS (Netherlands)

    Grefen, P.W.P.J.; Aberer, Karl; Hoffner, Yigal; Ludwig, Heiko

    In this report, we present the approach to cross-organizational workflow management of the CrossFlow project. CrossFlow is a European research project aiming at the support of cross-organizational workflows in dynamic virtual enterprises. The cooperation in these virtual enterprises is based on

  13. CrossFlow : cross-organizational workflow management in dynamic virtual enterprises

    NARCIS (Netherlands)

    Grefen, P.W.P.J.; Aberer, K.; Hoffner, Y.

    2000-01-01

    This paper gives a detailed overview of the approach to cross-organizational workflow management developed in the CrossFlow project. CrossFlow is a European research project aiming at the support of cross-organizational workflows in dynamic virtual enterprises. The cooperation in these virtual

  14. Continuous positive airway pressure alters cranial blood flow and cerebrospinal fluid dynamics at the craniovertebral junction

    Directory of Open Access Journals (Sweden)

    Theresia I. Yiallourou

    2015-09-01

    Conclusion: Application of CPAP via a full-fitted mask at 15 cm H2O was found to have a significant effect on intracranial venous outflow and spinal CSF flow at the C2 vertebral level in healthy adult-age awake volunteers. CPAP can be used to non-invasively provoke changes in intracranial and CSF flow dynamics.

  15. Exploring the Relationship of Exit Flow and Jam Density in Panic Scenarios Using Animal Dynamics

    NARCIS (Netherlands)

    Sobhani, A.; Sarvi, M.; Duives, D.C.; Ejtemai, O.; Aghabayk, K.; Hoogendoorn, S.P.

    2014-01-01

    There are few studies investigating crowd dynamics in panic situations. They used measures such as exit flow rate to explore the exit performance in evacuation scenarios. However, there is limited research exploring the relationship of exit flow rate and density behind the exit for panic scenarios.

  16. The plastic flow localization effect on crystalline material

    International Nuclear Information System (INIS)

    Pajot, A.

    2011-01-01

    Irradiation affects the mechanical properties of materials. In particular, an increase of yield strength followed by a decrease of ductility and a reduction of the elongation to fracture are observed above a threshold irradiation dose. The last two phenomena are correlated with the appearance of bands free of defects (clear bands) in which plastic deformation is confined. These bands also determine accumulation of dislocations at grain boundaries, thereby favouring local grain decohesion and possibly initiating fracture. Clear bands have an important impact on metal resistance, nevertheless our level of understanding is not sufficient to evaluate quantitatively their effect on the loss of ductility and reduction of elongation to fracture that are observed experimentally. A clear band is a microstructural defect, created when loading an irradiated material. Its complex interaction with defects on the nano scale affects the behaviour of the metal at the macroscopic scale. A full understanding implies the application of a multi scale modeling approach. This explains why, even though clear bands have first been

  17. Simulation of Material Flow Through a Sample Divider

    Directory of Open Access Journals (Sweden)

    Jiří Rozbroj

    2018-03-01

    Full Text Available The prerequisite for a modern approach to innovative procedures of the development of current or even newly created equipment for the transport of particulate materials is the utilization of simulation methods, such as the Discrete Element Method (DEM. This article focuses on the basic, or initial, validation of movement of material through the sample divider. The mechanical-physical properties of brown coal were measured. Based on these parameters the preliminary input values for EDEM Academic were selected, and a simulation of the dividing process was run. The key monitored parameters included density and friction coefficient. Experiments on a realistic model of the equipment were performed and assessed. The total weights of brown coal at the exit from the divider were determined for a specific speed of the divider. The aim of this task was to simulate the realistically determined weight division of the brown coal sample. The result from the DEM was compared with the results of measurement on a realistic model.

  18. Thermal/chemical degradation of ceramic cross-flow filter materials

    Energy Technology Data Exchange (ETDEWEB)

    Alvin, M.A.; Lane, J.E.; Lippert, T.E.

    1989-11-01

    This report summarizes the 14-month, Phase 1 effort conducted by Westinghouse on the Thermal/Chemical Degradation of Ceramic Cross-Flow Filter Materials program. In Phase 1 expected filter process conditions were identified for a fixed-bed, fluid-bed, and entrained-bed gasification, direct coal fired turbine, and pressurized fluidized-bed combustion system. Ceramic cross-flow filter materials were also selected, procured, and subjected to chemical and physical characterization. The stability of each of the ceramic cross-flow materials was assessed in terms of potential reactions or phase change as a result of process temperature, and effluent gas compositions containing alkali and fines. In addition chemical and physical characterization was conducted on cross-flow filters that were exposed to the METC fluid-bed gasifier and the New York University pressurized fluidized-bed combustor. Long-term high temperature degradation mechanisms were proposed for each ceramic cross-flow material at process operating conditions. An experimental bench-scale test program is recommended to be conducted in Phase 2, generating data that support the proposed cross-flow filter material thermal/chemical degradation mechanisms. Papers on the individual subtasks have been processed separately for inclusion on the data base.

  19. Visualizing electron dynamics in organic materials: Charge transport through molecules and angular resolved photoemission

    Science.gov (United States)

    Kümmel, Stephan

    Being able to visualize the dynamics of electrons in organic materials is a fascinating perspective. Simulations based on time-dependent density functional theory allow to realize this hope, as they visualize the flow of charge through molecular structures in real-space and real-time. We here present results on two fundamental processes: Photoemission from organic semiconductor molecules and charge transport through molecular structures. In the first part we demonstrate that angular resolved photoemission intensities - from both theory and experiment - can often be interpreted as a visualization of molecular orbitals. However, counter-intuitive quantum-mechanical electron dynamics such as emission perpendicular to the direction of the electrical field can substantially alter the picture, adding surprising features to the molecular orbital interpretation. In a second study we calculate the flow of charge through conjugated molecules. The calculations show in real time how breaks in the conjugation can lead to a local buildup of charge and the formation of local electrical dipoles. These can interact with neighboring molecular chains. As a consequence, collections of ''molecular electrical wires'' can show distinctly different characteristics than ''classical electrical wires''. German Science Foundation GRK 1640.

  20. Material flow enhancement in production assembly lines under application of zoned order picking systems

    Directory of Open Access Journals (Sweden)

    D. Živanić

    2014-10-01

    Full Text Available Introduced research work relates to the possibility of material flow enhancement in production systems, with the apostrophe on material order picking in production assembly lines. The paper presents basic rules and the results related to formed computer models of zoned order picking systems under the application of developed bound cavities method.

  1. Nutrient enrichment reduces constraints on material flows in a detritus-based food web

    Science.gov (United States)

    Wyatt F. Cross; Bruce Wallace; Amy D. Rosemond

    2007-01-01

    Most aquatic and terrestrial ecosystems are experiencing increased nutrient availability, which is affecting their structure and function. By altering community composition and productivity of consumers, enrichment can indirectly cause changes in the pathways and magnitude of material flows in food webs. These changes, in turn, have major consequences for material...

  2. Collective dynamics of particles from viscous to turbulent flows

    CERN Document Server

    2017-01-01

    The book surveys the state-of-the-art methods that are currently available to model and simulate the presence of rigid particles in a fluid flow. For particles that are very small relative to the characteristic flow scales and move without interaction with other particles, effective equations of motion for particle tracking are formulated and applied (e.g. in gas-solid flows). For larger particles, for particles in liquid-solid flows and for particles that interact with each other or possibly modify the overall flow detailed model are presented. Special attention is given to the description of the approximate force coupling method (FCM) as a more general treatment for small particles, and derivations in the context of low Reynolds numbers for the particle motion as well as application at finite Reynolds numbers are provided. Other topics discussed in the book are the relation to higher resolution immersed boundary methods, possible extensions to non-spherical particles and examples of applications of such met...

  3. Investigation of Swirling Flow in Rod Bundle Subchannels Using Computational Fluid Dynamics

    International Nuclear Information System (INIS)

    Holloway, Mary V.; Beasley, Donald E.; Conner, Michael E.

    2006-01-01

    The fluid dynamics for turbulent flow through rod bundles representative of those used in pressurized water reactors is examined using computational fluid dynamics (CFD). The rod bundles of the pressurized water reactor examined in this study consist of a square array of parallel rods that are held on a constant pitch by support grids spaced axially along the rod bundle. Split-vane pair support grids are often used to create swirling flow in the rod bundle in an effort to improve the heat transfer characteristics for the rod bundle during both normal operating conditions and in accident condition scenarios. Computational fluid dynamics simulations for a two subchannel portion of the rod bundle were used to model the flow downstream of a split-vane pair support grid. A high quality computational mesh was used to investigate the choice of turbulence model appropriate for the complex swirling flow in the rod bundle subchannels. Results document a central swirling flow structure in each of the subchannels downstream of the split-vane pairs. Strong lateral flows along the surface of the rods, as well as impingement regions of lateral flow on the rods are documented. In addition, regions of lateral flow separation and low axial velocity are documented next to the rods. Results of the CFD are compared to experimental particle image velocimetry (PIV) measurements documenting the lateral flow structures downstream of the split-vane pairs. Good agreement is found between the computational simulation and experimental measurements for locations close to the support grid. (authors)

  4. Estimation of vessel diameter and blood flow dynamics from laser speckle images

    DEFF Research Database (Denmark)

    Postnov, Dmitry D.; Tuchin, Valery V.; Sosnovtseva, Olga

    2016-01-01

    Laser speckle imaging is a rapidly developing method to study changes of blood velocity in the vascular networks. However, to assess blood flow and vascular responses it is crucial to measure vessel diameter in addition to blood velocity dynamics. We suggest an algorithm that allows for dynamical...

  5. Alignment dynamics of diffusive scalar gradient in a two-dimensional model flow

    Science.gov (United States)

    Gonzalez, M.

    2018-04-01

    The Lagrangian two-dimensional approach of scalar gradient kinematics is revisited accounting for molecular diffusion. Numerical simulations are performed in an analytic, parameterized model flow, which enables considering different regimes of scalar gradient dynamics. Attention is especially focused on the influence of molecular diffusion on Lagrangian statistical orientations and on the dynamics of scalar gradient alignment.

  6. On the Mutual Dynamics of Interregional Gross Migration Flows in Space and Time

    DEFF Research Database (Denmark)

    Mitze, Timo

    2016-01-01

    This paper applies spatial dynamic panel data models to analyse the labor market dimension of interregional population flows among German federal states in the period 1993–2009. Making use of recent improvements in the estimation of space-time dynamic panel data models and the computation of mean...

  7. Large eddy simulation of spanwise rotating turbulent channel flow with dynamic variants of eddy viscosity model

    Science.gov (United States)

    Jiang, Zhou; Xia, Zhenhua; Shi, Yipeng; Chen, Shiyi

    2018-04-01

    A fully developed spanwise rotating turbulent channel flow has been numerically investigated utilizing large-eddy simulation. Our focus is to assess the performances of the dynamic variants of eddy viscosity models, including dynamic Vreman's model (DVM), dynamic wall adapting local eddy viscosity (DWALE) model, dynamic σ (Dσ ) model, and the dynamic volumetric strain-stretching (DVSS) model, in this canonical flow. The results with dynamic Smagorinsky model (DSM) and direct numerical simulations (DNS) are used as references. Our results show that the DVM has a wrong asymptotic behavior in the near wall region, while the other three models can correctly predict it. In the high rotation case, the DWALE can get reliable mean velocity profile, but the turbulence intensities in the wall-normal and spanwise directions show clear deviations from DNS data. DVSS exhibits poor predictions on both the mean velocity profile and turbulence intensities. In all three cases, Dσ performs the best.

  8. Nuclear dynamics with the (finite range) Gogny force: flow effects

    International Nuclear Information System (INIS)

    Sebille, F.; Royer, G.; Schuck, P.; Gregoire, C.

    1988-01-01

    We introduce for the first time the effective finite range interaction of Gogny in the semi-classical description of heavy ion reactions based on the Landau-Vlasov equation. The characteristics of the flow for heavy ion collisions are studied as functions of the incident energy, the impact parameter and the mass number. The momentum dependence in the mean field together with the non linearities in the collision kernel decrease the flow in contradiction with other calculations; the origins of this discrepancy are studied in details

  9. Dynamic response of materials on subnanosecond time scales, and beryllium properties for inertial confinement fusion

    International Nuclear Information System (INIS)

    Swift, Damian C.; Tierney, Thomas E.; Luo Shengnian; Paisley, Dennis L.; Kyrala, George A.; Hauer, Allan; Greenfield, Scott R.; Koskelo, Aaron C.; McClellan, Kenneth J.; Lorenzana, Hector E.; Kalantar, Daniel; Remington, Bruce A.; Peralta, Pedro; Loomis, Eric

    2005-01-01

    During the past few years, substantial progress has been made in developing experimental techniques capable of investigating the response of materials to dynamic loading on nanosecond time scales and shorter, with multiple diagnostics probing different aspects of the behavior. These relatively short time scales are scientifically interesting because plastic flow and phase changes in common materials with simple crystal structures--such as iron--may be suppressed, allowing unusual states to be induced and the dynamics of plasticity and polymorphism to be explored. Loading by laser-induced ablation can be particularly convenient: this technique has been used to impart shocks and isentropic compression waves from ∼1 to 200 GPa in a range of elements and alloys, with diagnostics including line imaging surface velocimetry, surface displacement (framed area imaging), x-ray diffraction (single crystal and polycrystal), ellipsometry, and Raman spectroscopy. A major motivation has been the study of the properties of beryllium under conditions relevant to the fuel capsule in inertial confinement fusion: magnetically driven shock and isentropic compression shots at Z were used to investigate the equation of state and shock melting characteristics, complemented by laser ablation experiments to investigate plasticity and heterogeneous response from the polycrystalline microstructure. These results will help to constrain acceptable tolerances on manufacturing, and possible loading paths, for inertial fusion ignition experiments at the National Ignition Facility. Laser-based techniques are being developed further for future material dynamics experiments, where it should be possible to obtain high quality data on strength and phase changes up to at least 1 TPa

  10. Chaos in a dynamic model of urban transportation network flow based on user equilibrium states

    International Nuclear Information System (INIS)

    Xu Meng; Gao Ziyou

    2009-01-01

    In this study, we investigate the dynamical behavior of network traffic flow. We first build a two-stage mathematical model to analyze the complex behavior of network flow, a dynamical model, which is based on the dynamical gravity model proposed by Dendrinos and Sonis [Dendrinos DS, Sonis M. Chaos and social-spatial dynamic. Berlin: Springer-Verlag; 1990] is used to estimate the number of trips. Considering the fact that the Origin-Destination (O-D) trip cost in the traffic network is hard to express as a functional form, in the second stage, the user equilibrium network assignment model was used to estimate the trip cost, which is the minimum cost of used path when user equilibrium (UE) conditions are satisfied. It is important to use UE to estimate the O-D cost, since a connection is built among link flow, path flow, and O-D flow. The dynamical model describes the variations of O-D flows over discrete time periods, such as each day and each week. It is shown that even in a system with dimensions equal to two, chaos phenomenon still exists. A 'Chaos Propagation' phenomenon is found in the given model.

  11. Anaerobic horizontal flow reactor with polyethylene terephthalate as support material

    Directory of Open Access Journals (Sweden)

    Marcelo Muñoz

    2016-06-01

    Full Text Available A pilot anaerobic reactor was installed to remove the organic load of wastewater from dairy industry. It uses a bacterial inoculum previously acclimated to the substrate. It was disposed horizontally and filled with pieces of polyethylene terephthalate (PET, from plastic bottles. The reactor was operated at room temperature, during 100 days, in three phases: 1 the reactor was stabilized with volumetric organic load from 0.013 to 0.500 kg/day.m³; 2 the hydraulic retention time was of 1 day and the volumetric organic load of 3 kg/day.m³; 3 the volumetric organic load was incremented from 4 to 6.6 kg/day.m³ and the hydraulic retention time was 1 day. Organic material removal efficiencies was of 85%, and approximately 75% were obtained in the second and third phase, respectively. The Y value was 0.15, indicating that 0.15 kg of biomass were generated by kg of QDO supplied to the reactor. Finally, the biomass generated inside the reactor was analyzed, obtaining a value of 18868 mg/L, which is a higher value than those of conventional systems.

  12. A dynamic globalization model for large eddy simulation of complex turbulent flow

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hae Cheon; Park, No Ma; Kim, Jin Seok [Seoul National Univ., Seoul (Korea, Republic of)

    2005-07-01

    A dynamic subgrid-scale model is proposed for large eddy simulation of turbulent flows in complex geometry. The eddy viscosity model by Vreman [Phys. Fluids, 16, 3670 (2004)] is considered as a base model. A priori tests with the original Vreman model show that it predicts the correct profile of subgrid-scale dissipation in turbulent channel flow but the optimal model coefficient is far from universal. Dynamic procedures of determining the model coefficient are proposed based on the 'global equilibrium' between the subgrid-scale dissipation and viscous dissipation. An important feature of the proposed procedures is that the model coefficient determined is globally constant in space but varies only in time. Large eddy simulations with the present dynamic model are conducted for forced isotropic turbulence, turbulent channel flow and flow over a sphere, showing excellent agreements with previous results.

  13. Mode decomposition and Lagrangian structures of the flow dynamics in orbitally shaken bioreactors

    Science.gov (United States)

    Weheliye, Weheliye Hashi; Cagney, Neil; Rodriguez, Gregorio; Micheletti, Martina; Ducci, Andrea

    2018-03-01

    In this study, two mode decomposition techniques were applied and compared to assess the flow dynamics in an orbital shaken bioreactor (OSB) of cylindrical geometry and flat bottom: proper orthogonal decomposition and dynamic mode decomposition. Particle Image Velocimetry (PIV) experiments were carried out for different operating conditions including fluid height, h, and shaker rotational speed, N. A detailed flow analysis is provided for conditions when the fluid and vessel motions are in-phase (Fr = 0.23) and out-of-phase (Fr = 0.47). PIV measurements in vertical and horizontal planes were combined to reconstruct low order models of the full 3D flow and to determine its Finite-Time Lyapunov Exponent (FTLE) within OSBs. The combined results from the mode decomposition and the FTLE fields provide a useful insight into the flow dynamics and Lagrangian coherent structures in OSBs and offer a valuable tool to optimise bioprocess design in terms of mixing and cell suspension.

  14. Permeable barrier materials for strontium immobilization: Unsaturated flow apparatus determination of hydraulic conductivity -- Column sorption experiments

    International Nuclear Information System (INIS)

    Moody, T.E.; Conca, J.

    1996-09-01

    Selected materials were tested to emulate a permeable barrier and to examine the (1) capture efficiency of these materials relating to the immobilization of strontium-90 and hexavalent chromium (Cr 6+ ) in Hanford Site groundwater; and (2) hydraulic conductivity of the barrier material relative to the surrounding area. The emplacement method investigated was a permeable reactive barrier to treat contaminated groundwater as it passes through the barrier. The hydraulic conductivity function was measured for each material, and retardation column experiments were performed for each material. Measurements determining the hydraulic conductivity at unsaturated through saturated water content were executed using the Unsaturated Flow Apparatus

  15. Rescheduling of Railway Rolling Stock with Dynamic Passenger Flows

    NARCIS (Netherlands)

    L.G. Kroon (Leo); G. Maróti (Gábor); L.K. Nielsen (Lars Kjaer)

    2010-01-01

    textabstractTraditional rolling stock rescheduling applications either treat passengers as static objects whose influence on the system is unchanged in a disrupted situation, or they treat passenger behavior as a given input. In case of disruptions however, we may expect the flow of passengers to

  16. Pulsatility role in cylinder flow dynamics at low Reynolds number

    KAUST Repository

    Qamar, Adnan; Samtaney, Ravi; Bull, Joseph L.

    2012-01-01

    range of TAL. Two distinct fluid regimes are identified. In both regimes, the size of the separated zone is much greater than the uniform flow case, the onset of separation is function of KC, and the separation vortex collapses rapidly during the last

  17. Modelling flow dynamics in water distribution networks using ...

    African Journals Online (AJOL)

    DR OKE

    was used for modelling the flow and simulate water demand using a Matlab .... This process requires that the neural network compute the error derivative of the .... Furthermore, Matlab was used as a simulation tool; and the first step was ...

  18. European Integration, Labour Market Dynamics and Migration Flows

    Directory of Open Access Journals (Sweden)

    Martinoia, Michela

    2011-06-01

    Full Text Available The paper has two objectives. Firstly, we wish to evaluate whether a greater economic integration has effects, and of what type, on migration flows from Central and Eastern Europe (New Member States of the EU, NMS towards the fifteen countries of the European Union (EU-15. Secondly, we wish to understand what effect the migration flows from the NMS have on the labour market of the receiving countries in the EU-15. The most suitable theoretical context that seems to summarise European labour market characteristics is that of the insider/outsider model by Layard, Nickell and Jackman (Layard et al., 1991. We have modified the above mentioned model by introducing two innovations. Firstly, we constructed three measures that act as a proxy for economic integration: the Intra Regional Trade Index (IRTI, Global Trade Index (GTI and Financial Market Integration (FMI. Then we placed the three indicators into the insider/outsider model to arrive at a modified version of Layard, Nickell and Jackman (Layard et al., 1991. The second innovative contribution was the introduction of an equation modelling migration flows. The creation of this equation is inspired by the neo-classical approach to migration theory (Harris-Todaro, 1970. The theoretical model, based on rational expectations, has been solved to find the equilibrium solution and the impact multipliers. We then carried out an empirical analysis, which involved estimating a Structural Vector Autoregression Model (SVAR. The aim of this estimation was to evaluate, on the one hand, the effect that greater European integration (a positive shock to the integration indicators has on migration flows, and, on the other, to measure the type of effect that migration flows could have on the labour market of the EU-15 countries, considered as a single entity. The results of our empirical evidence show that economic integration does generate significant effects on migration flows from the enlargement countries

  19. Optimization of a new flow design for solid oxide cells using computational fluid dynamics modelling

    DEFF Research Database (Denmark)

    Duhn, Jakob Dragsbæk; Jensen, Anker Degn; Wedel, Stig

    2016-01-01

    Design of a gas distributor to distribute gas flow into parallel channels for Solid Oxide Cells (SOC) is optimized, with respect to flow distribution, using Computational Fluid Dynamics (CFD) modelling. The CFD model is based on a 3d geometric model and the optimized structural parameters include...... the width of the channels in the gas distributor and the area in front of the parallel channels. The flow of the optimized design is found to have a flow uniformity index value of 0.978. The effects of deviations from the assumptions used in the modelling (isothermal and non-reacting flow) are evaluated...... and it is found that a temperature gradient along the parallel channels does not affect the flow uniformity, whereas a temperature difference between the channels does. The impact of the flow distribution on the maximum obtainable conversion during operation is also investigated and the obtainable overall...

  20. A nonlinear dynamical system approach for the yielding behaviour of a viscoplastic material.

    Science.gov (United States)

    Burghelea, Teodor; Moyers-Gonzalez, Miguel; Sainudiin, Raazesh

    2017-03-08

    A nonlinear dynamical system model that approximates a microscopic Gibbs field model for the yielding of a viscoplastic material subjected to varying external stresses recently reported in R. Sainudiin, M. Moyers-Gonzalez and T. Burghelea, Soft Matter, 2015, 11(27), 5531-5545 is presented. The predictions of the model are in fair agreement with microscopic simulations and are in very good agreement with the micro-structural semi-empirical model reported in A. M. V. Putz and T. I. Burghelea, Rheol. Acta, 2009, 48, 673-689. With only two internal parameters, the nonlinear dynamical system model captures several key features of the solid-fluid transition observed in experiments: the effect of the interactions between microscopic constituents on the yield point, the abruptness of solid-fluid transition and the emergence of a hysteresis of the micro-structural states upon increasing/decreasing external forces. The scaling behaviour of the magnitude of the hysteresis with the degree of the steadiness of the flow is consistent with previous experimental observations. Finally, the practical usefulness of the approach is demonstrated by fitting a rheological data set measured with an elasto-viscoplastic material.

  1. Dynamic Transitions and Baroclinic Instability for 3D Continuously Stratified Boussinesq Flows

    Science.gov (United States)

    Şengül, Taylan; Wang, Shouhong

    2018-02-01

    The main objective of this article is to study the nonlinear stability and dynamic transitions of the basic (zonal) shear flows for the three-dimensional continuously stratified rotating Boussinesq model. The model equations are fundamental equations in geophysical fluid dynamics, and dynamics associated with their basic zonal shear flows play a crucial role in understanding many important geophysical fluid dynamical processes, such as the meridional overturning oceanic circulation and the geophysical baroclinic instability. In this paper, first we derive a threshold for the energy stability of the basic shear flow, and obtain a criterion for local nonlinear stability in terms of the critical horizontal wavenumbers and the system parameters such as the Froude number, the Rossby number, the Prandtl number and the strength of the shear flow. Next, we demonstrate that the system always undergoes a dynamic transition from the basic shear flow to either a spatiotemporal oscillatory pattern or circle of steady states, as the shear strength of the basic flow crosses a critical threshold. Also, we show that the dynamic transition can be either continuous or catastrophic, and is dictated by the sign of a transition number, fully characterizing the nonlinear interactions of different modes. Both the critical shear strength and the transition number are functions of the system parameters. A systematic numerical method is carried out to explore transition in different flow parameter regimes. In particular, our numerical investigations show the existence of a hypersurface which separates the parameter space into regions where the basic shear flow is stable and unstable. Numerical investigations also yield that the selection of horizontal wave indices is determined only by the aspect ratio of the box. We find that the system admits only critical eigenmodes with roll patterns aligned with the x-axis. Furthermore, numerically we encountered continuous transitions to multiple

  2. Simulations of dislocations dynamics at a mesoscopic scale: a study of plastic flow

    International Nuclear Information System (INIS)

    Devincre, Benoit

    1993-01-01

    This work is concerned with the numerical modelling of the plastic flow of crystalline materials. A new simulation technique is proposed to simulate dislocation dynamics in two and three dimensions, in an isotropic elastic continuum. The space and time scales used (≅10 -6 m and 10 -9 s) allow to take into account the elementary properties of dislocations, their short and long range interactions, their collective properties as well as the slip geometry. This original method is able to reproduce the inherent heterogeneity of plastic flow, the self-organization properties of the dislocation microstructures and the corresponding mechanical properties. In two dimensions, the simulations of cyclic deformation lead to the formation of periodic arrays of dipolar dislocation walls. These configurations are examined and discussed. A phenomenological model is proposed which predicts their characteristic wavelength as a function of the applied stress and dislocation density. A striking resemblance between the simulated behaviour and experimental data is emphasized. In three dimensions, the simulations are more realistic and can directly be compared with the experimental data. They are, however, restricted to small plastic strains, of the order of 10 -3 . The properties examined and discussed are concerned with the forest model, the internal stress, which is shown to contribute to about 20 pc of the flow stress and the mechanisms of strain hardening in relation with the models of Friedel-Saada and Kocks. The investigation of the dislocation microstructures focusses on two essential ingredients for the occurrence of self-organization, the internal stress and the intersections of non coplanar dislocations. These results suggest that, to understand the strain hardening properties as well as the formation of dislocation cells during multiple slip, one must take into account the influence of local internal stresses and cross-slip on the mechanisms of areal glide. (author) [fr

  3. Brownian dynamics simulations of polyelectrolyte adsorption in shear flow with hydrodynamic interaction

    Science.gov (United States)

    Hoda, Nazish; Kumar, Satish

    2007-12-01

    The adsorption of single polyelectrolyte molecules in shear flow is studied using Brownian dynamics simulations with hydrodynamic interaction (HI). Simulations are performed with bead-rod and bead-spring chains, and electrostatic interactions are incorporated through a screened Coulombic potential with excluded volume accounted for by the repulsive part of a Lennard-Jones potential. A correction to the Rotne-Prager-Yamakawa tensor is derived that accounts for the presence of a planar wall. The simulations show that migration away from an uncharged wall, which is due to bead-wall HI, is enhanced by increases in the strength of flow and intrachain electrostatic repulsion, consistent with kinetic theory predictions. When the wall and polyelectrolyte are oppositely charged, chain behavior depends on the strength of electrostatic screening. For strong screening, chains get depleted from a region close to the wall and the thickness of this depletion layer scales as N1/3Wi2/3 at high Wi, where N is the chain length and Wi is the Weissenberg number. At intermediate screening, bead-wall electrostatic attraction competes with bead-wall HI, and it is found that there is a critical Weissenberg number for desorption which scales as N-1/2κ-3(lB∣σq∣)3/2, where κ is the inverse screening length, lB is the Bjerrum length, σ is the surface charge density, and q is the bead charge. When the screening is weak, adsorbed chains are observed to align in the vorticity direction at low shear rates due to the effects of repulsive intramolecular interactions. At higher shear rates, the chains align in the flow direction. The simulation method and results of this work are expected to be useful for a number of applications in biophysics and materials science in which polyelectrolyte adsorption plays a key role.

  4. Experimental and analytical investigations of granular materials: Shear flow and convective heat transfer

    Science.gov (United States)

    Ahn, Hojin

    1989-12-01

    Granular materials flowing down an inclined chute were studied experimentally and analytically. Characteristics of convective heat transfer to granular flows were also investigated experimentally and numerically. Experiments on continuous, steady flows of granular materials in an inclined chute were conducted with the objectives of understanding the characteristics of chute flows and of acquiring information on the rheological behavior of granular material flow. Existing constitutive equations and governing equations were used to solve for fully developed chute flows of granular materials, and thus the boundary value problem was formulated with two parameters (the coefficient of restitution between particles, and the chute inclination) and three boundary values at the chute base wall (the values of solid fraction, granular temperature, and mean velocity at the wall). The boundary value problem was numerically solved by the shooting method. These analytical results were also compared with the present experimental values and with the computer simulations by other investigators in their literature. Experiments on heat transfer to granular flows over a flat heating plate were conducted with three sizes of glass beads, polystyrene beads, and mustard seeds. A modification on the existing model for the convective heat transfer was made using the effective Nusselt number and the effective Peclet number, which include the effects of solid fraction variations. The slightly modified model could describe the heat transfer characteristics of both fast and slow flows (supercritical and subcritical). A numerical analysis of the transfer to granular flows was also performed. The results were compared with the present experimental data, and reasonable agreement was found in the comparison.

  5. Shear test on viscoelastic granular material using Contact Dynamics simulations

    Science.gov (United States)

    Quezada, Juan Carlos; Sagnol, Loba; Chazallon, Cyrille

    2017-06-01

    By means of 3D contact dynamic simulations, the behavior of a viscoelastic granular material under shear loading is investigated. A viscoelastic fluid phase surrounding the solid particles is simulated by a contact model acting between them. This contact law was implemented in the LMGC90 software, based on the Burgers model. This model is able to simulate also the effect of creep relaxation. To validate the proposed contact model, several direct shear tests were performed, experimentally and numerically using the Leutner device. The numerical samples were created using spheres with two particle size distribution, each one identified for two layers from a road structure. Our results show a reasonable agreement between experimental and numerical data regarding the strain-stress evolution curves and the stress levels measured at failure. The proposed model can be used to simulate the mechanical behavior of multi-layer road structure and to study the influence of traffic on road deformation, cracking and particles pull-out induced by traffic loading.

  6. Cascaded image analysis for dynamic crack detection in material testing

    Science.gov (United States)

    Hampel, U.; Maas, H.-G.

    Concrete probes in civil engineering material testing often show fissures or hairline-cracks. These cracks develop dynamically. Starting at a width of a few microns, they usually cannot be detected visually or in an image of a camera imaging the whole probe. Conventional image analysis techniques will detect fissures only if they show a width in the order of one pixel. To be able to detect and measure fissures with a width of a fraction of a pixel at an early stage of their development, a cascaded image analysis approach has been developed, implemented and tested. The basic idea of the approach is to detect discontinuities in dense surface deformation vector fields. These deformation vector fields between consecutive stereo image pairs, which are generated by cross correlation or least squares matching, show a precision in the order of 1/50 pixel. Hairline-cracks can be detected and measured by applying edge detection techniques such as a Sobel operator to the results of the image matching process. Cracks will show up as linear discontinuities in the deformation vector field and can be vectorized by edge chaining. In practical tests of the method, cracks with a width of 1/20 pixel could be detected, and their width could be determined at a precision of 1/50 pixel.

  7. A theoretical study of resin flows for thermosetting materials during prepreg processing

    Science.gov (United States)

    Hou, T. H.

    1984-01-01

    A flow model which describes the process of resin consolidation during prepreg lamination was developed. The salient features of model predictions were explored. It is assumed that resin flows in all directions originate from squeezing action between two approaching adjacent fiber/fabric layers. In the horizontal direction, a squeezing flow between two nonporous parallel plates is analyzed, while in the vertical direction a poiseuille type pressure flow through porous media is assumed. Proper force and mass balance was established for the whole system which is composed of these two types of flow. A flow parameter, CF, shows to be a measure of processibility for the curing resin. For a given external load-F the responses of resin flow during prepreg lamination, as measured by CF, are categorized into three regions: (1) the low CF region where resin flows are inhibited by the high chemoviscosity during initial curing stages; (2) the median CF region where resin flows are properly controllable; and (3) the high CF region where resin flows are ceased due to fiber/fabric compression effects. Resin losses in both directions are calculated. Potential uses of this model and quality control of incoming prepreg material are discussed.

  8. Hybrid Approximate Dynamic Programming Approach for Dynamic Optimal Energy Flow in the Integrated Gas and Power Systems

    DEFF Research Database (Denmark)

    Shuai, Hang; Ai, Xiaomeng; Wen, Jinyu

    2017-01-01

    This paper proposes a hybrid approximate dynamic programming (ADP) approach for the multiple time-period optimal power flow in integrated gas and power systems. ADP successively solves Bellman's equation to make decisions according to the current state of the system. So, the updated near future...

  9. Separation Dynamics of Controlled Internal Flow in an Adverse Pressure Gradient

    Science.gov (United States)

    Peterson, C. J.; Vukasinovic, B.; Glezer, A.

    2017-11-01

    The effects of fluidic actuation on the dynamic evolution of aggressive internal flow separation is investigated at speeds up to M = 0.4 within a constant-width diffuser branching off of a primary flow duct. It is shown that a spanwise array of fluidic actuators upstream of the separation actively controls the flow constriction (and losses) within the diffuser and consequently the local pressure gradient at its entrance. The effectiveness of the actuation, as may be measured by the increased flow rate that is diverted through the diffuser, scales with its flow rate coefficient. In the presence of actuation (0.7% mass fraction), the mass flow rate in the primary duct increases by 10% while the fraction of the diverted mass flow rate in the diffuser increases by more than 45%. The flow dynamics near separation in the absence and presence of actuation are characterized using high speed particle image velocimetry and analyzed using proper orthogonal and spectral decompositions. In particular, the spectral contents of the incipient boundary layer separation are compared in the absence and presence of actuation with emphasis on the changes in local dynamics near separation as the characteristic cross stream scale of the boundary layer increases with separation delay.

  10. Dynamics of a two-phase flow through a minichannel: Transition from churn to slug flow

    Science.gov (United States)

    Górski, Grzegorz; Litak, Grzegorz; Mosdorf, Romuald; Rysak, Andrzej

    2016-04-01

    The churn-to-slug flow bifurcations of two-phase (air-water) flow patterns in a 2mm diameter minichannel were investigated. With increasing a water flow rate, we observed the transition of slugs to bubbles of different sizes. The process was recorded by a digital camera. The sequences of light transmission time series were recorded by a laser-phototransistor sensor, and then analyzed using the recurrence plots and recurrence quantification analysis (RQA). Due to volume dependence of bubbles velocities, we observed the formation of periodic modulations in the laser signal.

  11. Effect of oxidation of carbon material on suspension electrodes for flow electrode capacitive deionization.

    Science.gov (United States)

    Hatzell, Kelsey B; Hatzell, Marta C; Cook, Kevin M; Boota, Muhammad; Housel, Gabrielle M; McBride, Alexander; Kumbur, E Caglan; Gogotsi, Yury

    2015-03-03

    Flow electrode deionization (FCDI) is an emerging area for continuous and scalable deionization, but the electrochemical and flow properties of the flow electrode need to be improved to minimize energy consumption. Chemical oxidation of granular activated carbon (AC) was examined here to study the role of surface heteroatoms on rheology and electrochemical performance of a flow electrode (carbon slurry) for deionization processes. Moreover, it was demonstrated that higher mass densities could be used without increasing energy for pumping when using oxidized active material. High mass-loaded flow electrodes (28% carbon content) based on oxidized AC displayed similar viscosities (∼21 Pa s) to lower mass-loaded flow electrodes (20% carbon content) based on nonoxidized AC. The 40% increased mass loading (from 20% to 28%) resulted in a 25% increase in flow electrode gravimetric capacitance (from 65 to 83 F g(-1)) without sacrificing flowability (viscosity). The electrical energy required to remove ∼18% of the ions (desalt) from of the feed solution was observed to be significantly dependent on the mass loading and decreased (∼60%) from 92 ± 7 to 28 ± 2.7 J with increased mass densities from 5 to 23 wt %. It is shown that the surface chemistry of the active material in a flow electrode effects the electrical and pumping energy requirements of a FCDI system.

  12. Multiphase flow dynamics 2 thermal and mechanical interactions

    CERN Document Server

    Kolev, Nikolay I

    2007-01-01

    The industrial use of multi-phase systems requires analytical and numerical strategies for predicting their behavior. This book contains theory, methods and practical experience for describing complex transient multi-phase processes. It provides a systematic presentation of the theory and practice of numerical multi-phase fluid dynamics.

  13. Flow Dynamics and Nutrient Reduction in Rain Gardens

    Science.gov (United States)

    The hydrological dynamics and changes in stormwater nutrient concentrations within rain gardens were studied by introducing captured stormwater runoff to rain gardens at EPA’s Urban Water Research Facility in Edison, New Jersey. The runoff used in these experiments was collected...

  14. Blood flow and oxygenation in peritendinous tissue and calf muscle during dynamic exercise in humans

    DEFF Research Database (Denmark)

    Boushel, Robert Christopher; Langberg, H; Green, Sara Marie Ehrenreich

    2000-01-01

    1. Circulation around tendons may act as a shunt for muscle during exercise. The perfusion and oxygenation of Achilles' peritendinous tissue was measured in parallel with that of calf muscle during exercise to determine (1) whether blood flow is restricted in peritendinous tissue during exercise......, and (2) whether blood flow is coupled to oxidative metabolism. 2. Seven individuals performed dynamic plantar flexion from 1 to 9 W. Radial artery and popliteal venous blood were sampled for O2, peritendinous blood flow was determined by 133Xe-washout, calf blood flow by plethysmography, cardiac output...

  15. Collective flow as a probe of heavy-ion reaction dynamics

    International Nuclear Information System (INIS)

    Awes, T.C.

    1997-01-01

    Collective flow of nuclear matter probes the dynamics of heavy-ion reactions and can provide information about the nuclear-matter equation of state. In particular, the incident energy dependences of collective flow may be a sensitive means to deduce the existence of a Quark Gluon Plasma phase in the equation of state. Collective flow measurements from 30 A MeV to 200 A GeV incident energies are briefly reviewed. Preliminary results on collective flow from the WA98 experiment at the CERN SPS are presented

  16. Two-phase flow dynamics in a model steam generator under vertical acceleration oscillation field

    International Nuclear Information System (INIS)

    Ishida, T.; Teshima, N.; Sakurai, S.

    1992-01-01

    The influence of periodically varying acceleration on hydrodynamic response has been studied experimentally using an experimental rig which models a marine reactor subject to vertical motion. The effect on the primary loop is small, but the effect on the secondary loop is large. The variables of the secondary loop, such as circulation flow rate and water level, oscillate with acceleration. The variation of gains in frequency response is analysed. The variations of flow in the secondary loop and in the downcome water level, increase in proportion to the acceleration. The effect of the flow resistance in the secondary loop on the two-phase flow dynamics is clarified. (7 figures) (Author)

  17. Low-angle dunes in the Changjiang (Yangtze) Estuary: Flow and sediment dynamics under tidal influence

    Science.gov (United States)

    Hu, Hao; Wei, Taoyuan; Yang, Zhongyong; Hackney, Christopher R.; Parsons, Daniel R.

    2018-05-01

    It has long been highlighted that important feedbacks exist between river bed morphology, sediment transport and the turbulent flow field and that these feedbacks change in response to forcing mechanisms. However, our current understanding of bedform dynamics is largely based on studies of steady flow environments and cohesionless bed conditions. Few investigations have been made under rapidly changing flows. Here, we examine flow and sediment dynamics over low-angle dunes in unsteady flows in the Changjiang (Yangtze) Estuary, China. Topography, flow and sediment data were collected over a reach ca 1.8 km long through a semi-diurnal tidal cycle in a moderate tide of flood season. The results show that: (1) roughness length derived from the upper flow changes little with the flow reversing and displays the same value on both the ebb and flood tide. Moreover, the variability of individual bedform features plays an important role in roughness length variation. (2) Shear stress over the crest of low-angle dunes roughly represents the total spatially averaged stress over dunes in this study area, which has significant implications for advancing numerical models. (3) Changes in morphology, flow and sediment dynamics over dunes through time reveal how low-angle dunes evolve within a tidal cycle. (4) The clockwise hysteresis loops between flow dynamics and bedform features (height and aspect ratio) are also observed. The combination of suspended sediment transport and bedload transport on dune transformation and migration attributes to the clockwise hysteresis. The specific sediment composition of the riverbed, in some extent, affects the mechanism of sediment transport related to the exchange between suspended sediment and riverbed, but further investigation is needed to figure out the mechanism behind this for extended series of tides, such as spring/neap tide and tides in flooding and dry season.

  18. A compact and versatile dynamic flow cryostat for photon science

    Science.gov (United States)

    van der Linden, Peter J. E. M.; Moretti Sala, Marco; Henriquet, Christian; Rossi, Matteo; Ohgushi, Kenya; Fauth, François; Simonelli, Laura; Marini, Carlo; Fraga, Edmundo; Murray, Claire; Potter, Jonathan; Krisch, Michael

    2016-11-01

    We have developed a helium gas flow cryostat for use on synchrotron tender to hard X-ray beamlines. Very efficient sample cooling is achieved because the sample is placed directly in the cooling helium flow on a removable sample holder. The cryostat is compact and easy to operate; samples can be changed in less than 5 min at any temperature. The cryostat has a temperature range of 2.5-325 K with temperature stability better than 0.1 K. The very wide optical angle and the ability to operate in any orientation mean that the cryostat can easily be adapted for different X-ray techniques. It is already in use on different beamlines at the European Synchrotron Radiation Facility (ESRF), ALBA Synchrotron Light Facility (ALBA), and Diamond Light Source (DLS) for inelastic X-ray scattering, powder diffraction, and X-ray absorption spectroscopy. Results obtained at these beamlines are presented here.

  19. Tubuloglomerular feedback dynamics and renal blood flow autoregulation in rats

    DEFF Research Database (Denmark)

    Holstein-Rathlou, N H; Wagner, A J; Marsh, D J

    1991-01-01

    To decide whether tubuloglomerular feedback (TGF) can account for renal autoregulation, we tested predictions of a TGF simulation. Broad-band and single-frequency perturbations were applied to arterial pressure; arterial blood pressure, renal blood flow and proximal tubule pressure were measured....... Data were analyzed by linear systems analysis. Broad-band forcings of arterial pressure were also applied to the model to compare experimental results with simulations. With arterial pressure as the input and tubular pressure, renal blood flow, or renal vascular resistance as outputs, the model...... correctly predicted gain and phase only in the low-frequency range. Experimental results revealed a second component of vascular control active at 100-150 mHz that was not predicted by the simulation. Forcings at single frequencies showed that the system behaves linearly except in the band of 33-50 m...

  20. Zonal flow dynamics and control of turbulent transport in stellarators.

    Science.gov (United States)

    Xanthopoulos, P; Mischchenko, A; Helander, P; Sugama, H; Watanabe, T-H

    2011-12-09

    The relation between magnetic geometry and the level of ion-temperature-gradient (ITG) driven turbulence in stellarators is explored through gyrokinetic theory and direct linear and nonlinear simulations. It is found that the ITG radial heat flux is sensitive to details of the magnetic configuration that can be understood in terms of the linear behavior of zonal flows. The results throw light on the question of how the optimization of neoclassical confinement is related to the reduction of turbulence.

  1. Dynamic Behavior of Reverse Flow Reactor for Lean Methane Combustion

    OpenAIRE

    Yogi W. Budhi; M. Effendy; Yazid Bindar; Subagjo

    2014-01-01

    The stability of reactor operation for catalytic oxidation of lean CH4 has been investigated through modeling and simulation, particularly the influence of switching time and heat extraction on reverse flow reactor (RFR) performance. A mathematical model of the RFR was developed, based on one-dimensional pseudo-homogeneous model for mass and heat balances, incorporating heat loss through the reactor wall. The configuration of the RFR consisted of inert-catalyst-inert, with or without heat ext...

  2. Linear flow dynamics near a T/NT interface

    Science.gov (United States)

    Teixeira, Miguel; Silva, Carlos

    2011-11-01

    The characteristics of a suddenly-inserted T/NT interface separating a homogeneous and isotropic shear-free turbulence region from a non-turbulent flow region are investigated using rapid distortion theory (RDT), taking full account of viscous effects. Profiles of the velocity variances, TKE, viscous dissipation rate, turbulence length scales, and pressure statistics are derived, showing very good agreement with DNS. The normalized inviscid flow statistics at the T/NT interface do not depend on the form of the assumed TKE spectrum. In the non-turbulent region, where the flow is irrotational (except within a thin viscous boundary layer), the dissipation rate decays as z-6, where z is distance from the T/NT interface. The mean pressure exhibits a decrease towards the turbulence due to the associated velocity fluctuations, consistent with the generation of a mean entrainment velocity. The vorticity variance and dissipation rate display large maxima at the T/NT interface due to the existing inviscid discontinuities of the tangential velocity, and these maxima are quantitatively related to the thickness of the viscous boundary layer (VBL). At equilibrium, RDT suggests that the thickness of the T/NT interface scales on the Kolmogorov microscale. We acknowledge the financial support of FCT under Project PTDC/EME-MFE/099636/2008.

  3. Monthly to seasonal low flow prediction: statistical versus dynamical models

    Science.gov (United States)

    Ionita-Scholz, Monica; Klein, Bastian; Meissner, Dennis; Rademacher, Silke

    2016-04-01

    While the societal and economical impacts of floods are well documented and assessable, the impacts of lows flows are less studied and sometimes overlooked. For example, over the western part of Europe, due to intense inland waterway transportation, the economical loses due to low flows are often similar compared to the ones due to floods. In general, the low flow aspect has the tendency to be underestimated by the scientific community. One of the best examples in this respect is the facts that at European level most of the countries have an (early) flood alert system, but in many cases no real information regarding the development, evolution and impacts of droughts. Low flows, occurring during dry periods, may result in several types of problems to society and economy: e.g. lack of water for drinking, irrigation, industrial use and power production, deterioration of water quality, inland waterway transport, agriculture, tourism, issuing and renewing waste disposal permits, and for assessing the impact of prolonged drought on aquatic ecosystems. As such, the ever-increasing demand on water resources calls for better a management, understanding and prediction of the water deficit situation and for more reliable and extended studies regarding the evolution of the low flow situations. In order to find an optimized monthly to seasonal forecast procedure for the German waterways, the Federal Institute of Hydrology (BfG) is exploring multiple approaches at the moment. On the one hand, based on the operational short- to medium-range forecasting chain, existing hydrological models are forced with two different hydro-meteorological inputs: (i) resampled historical meteorology generated by the Ensemble Streamflow Prediction approach and (ii) ensemble (re-) forecasts of ECMWF's global coupled ocean-atmosphere general circulation model, which have to be downscaled and bias corrected before feeding the hydrological models. As a second approach BfG evaluates in cooperation with

  4. Spontaneous and Flow-Driven Interfacial Phase Change: Dynamics of Microemulsion Formation at the Pore Scale.

    Science.gov (United States)

    Tagavifar, Mohsen; Xu, Ke; Jang, Sung Hyun; Balhoff, Matthew T; Pope, Gary A

    2017-11-14

    The dynamic behavior of microemulsion-forming water-oil-amphiphiles mixtures is investigated in a 2.5D micromodel. The equilibrium phase behavior of such mixtures is well-understood in terms of macroscopic phase transitions. However, what is less understood and where experimental data are lacking is the coupling between the phase change and the bulk flow. Herein, we study the flow of an aqueous surfactant solution-oil mixture in porous media and analyze the dependence of phase formation and spatial phase configurations on the bulk flow rate. We find that a microemulsion forms instantaneously as a boundary layer at the initial surface of contact between the surfactant solution and oil. The boundary layer is temporally continuous because of the imposed convection. In addition to the imposed flow, we observe spontaneous pulsed Marangoni flows that drag the microemulsion and surfactant solution into the oil stream, forming large (macro)emulsion droplets. The formation of the microemulsion phase at the interface distinguishes the situation from that of the more common Marangoni flow with only two phases present. Additionally, an emulsion forms via liquid-liquid nucleation or the Ouzo effect (i.e., spontaneous emulsification) at low flow rates and via mechanical mixing at high flow rates. With regard to multiphase flow, contrary to the common belief that the microemulsion is the wetting liquid, we observe that the minor oil phase wets the solid surface. We show that a layered flow pattern is formed because of the out-of-equilibrium phase behavior at high volumetric flow rates (order of 2 m/day) where advection is much faster than the diffusive interfacial mass transfer and transverse mixing, which promote equilibrium behavior. At lower flow rates (order of 30 cm/day), however, the dynamic and equilibrium phase behaviors are well-correlated. These results clearly show that the phase change influences the macroscale flow behavior.

  5. On the computation of steady Hopper flows. II: von Mises materials in various geometries

    Science.gov (United States)

    Gremaud, Pierre A.; Matthews, John V.; O'Malley, Meghan

    2004-11-01

    Similarity solutions are constructed for the flow of granular materials through hoppers. Unlike previous work, the present approach applies to nonaxisymmetric containers. The model involves ten unknowns (stresses, velocity, and plasticity function) determined by nine nonlinear first order partial differential equations together with a quadratic algebraic constraint (yield condition). A pseudospectral discretization is applied; the resulting problem is solved with a trust region method. The important role of the hopper geometry on the flow is illustrated by several numerical experiments of industrial relevance.

  6. On the computation of steady Hopper flows II: von Mises materials in various geometries

    International Nuclear Information System (INIS)

    Gremaud, Pierre A.; Matthews, John V.; O'Malley, Meghan

    2004-01-01

    Similarity solutions are constructed for the flow of granular materials through hoppers. Unlike previous work, the present approach applies to nonaxisymmetric containers. The model involves ten unknowns (stresses, velocity, and plasticity function) determined by nine nonlinear first order partial differential equations together with a quadratic algebraic constraint (yield condition). A pseudospectral discretization is applied; the resulting problem is solved with a trust region method. The important role of the hopper geometry on the flow is illustrated by several numerical experiments of industrial relevance

  7. Elucidating Dynamical Processes Relevant to Flow Encountering Abrupt Topography (FLEAT)

    Science.gov (United States)

    2015-09-30

    Encountering Abrupt Topography (FLEAT) Bo Qiu Dept of Oceanography, University of Hawaii at Manoa 1000 Pope Rd. Honolulu, HI 96822 phone: (808) 956...c) to explore relevant dynamics by using both simplified models and OGCM output with realistic topography and surface boundary conditions...scale abyssal circulation, we propose to use the Hallberg Isopycnal Model (HIM). The HIM allows sloping isopycnals to interact with bottom topography

  8. Transitory powder flow dynamics during emptying of a continuous mixer

    OpenAIRE

    Ammarcha , Chawki; Gatumel , Cendrine; Dirion , Jean-Louis; Cabassud , Michel; Mizonov , Vadim; Berthiaux , Henri

    2013-01-01

    International audience; This article investigates the emptying process of a continuous powder mixer, from both experimental and modelling points of view. The apparatus used in this work is a pilot scale commercial mixer Gericke GCM500, for which a specific experimental protocol has been developed to determine the hold up in the mixer and the real outflow. We demonstrate that the dynamics of the process is governed by the rotational speed of the stirrer, as it fixes characteristic values of th...

  9. Dynamical system analysis of unstable flow phenomena in centrifugal blower

    Directory of Open Access Journals (Sweden)

    Garcia David

    2015-09-01

    Full Text Available Methods of dynamical system analysis were employed to analyze unsteady phenomena in a centrifugal blower. Pressure signals gathered at different control points were decomposed into their Principal Components (PCs by means of Singular Spectrum Analysis (SSA. Certain number of PCs was considered in the analysis based on their statistical correlation. Projection of the original signal onto its PCs allowed to draw the phase trajectory that clearly separated non-stable blower working conditions from its regular operation.

  10. Non-linear dynamics and alternating 'flip' solutions in ferrofluidic Taylor-Couette flow

    Science.gov (United States)

    Altmeyer, Sebastian

    2018-04-01

    This study treats with the influence of a symmetry-breaking transversal magnetic field on the nonlinear dynamics of ferrofluidic Taylor-Couette flow - flow confined between two concentric independently rotating cylinders. We detected alternating 'flip' solutions which are flow states featuring typical characteristics of slow-fast-dynamics in dynamical systems. The flip corresponds to a temporal change in the axial wavenumber and we find them to appear either as pure 2-fold axisymmetric (due to the symmetry-breaking nature of the applied transversal magnetic field) or involving non-axisymmetric, helical modes in its interim solution. The latter ones show features of typical ribbon solutions. In any case the flip solutions have a preferential first axial wavenumber which corresponds to the more stable state (slow dynamics) and second axial wavenumber, corresponding to the short appearing more unstable state (fast dynamics). However, in both cases the flip time grows exponential with increasing the magnetic field strength before the flip solutions, living on 2-tori invariant manifolds, cease to exist, with lifetime going to infinity. Further we show that ferrofluidic flow turbulence differ from the classical, ordinary (usually at high Reynolds number) turbulence. The applied magnetic field hinders the free motion of ferrofluid partials and therefore smoothen typical turbulent quantities and features so that speaking of mildly chaotic dynamics seems to be a more appropriate expression for the observed motion.

  11. Effect of flow rate on environmental variables and phytoplankton dynamics: results from field enclosures

    Science.gov (United States)

    Zhang, Haiping; Chen, Ruihong; Li, Feipeng; Chen, Ling

    2015-03-01

    To investigate the effects of flow rate on phytoplankton dynamics and related environment variables, a set of enclosure experiments with different flow rates were conducted in an artificial lake. We monitored nutrients, temperature, dissolved oxygen, pH, conductivity, turbidity, chlorophyll- a and phytoplankton levels. The lower biomass in all flowing enclosures showed that flow rate significantly inhibited the growth of phytoplankton. A critical flow rate occurred near 0.06 m/s, which was the lowest relative inhibitory rate. Changes in flow conditions affected algal competition for light, resulting in a dramatic shift in phytoplankton composition, from blue-green algae in still waters to green algae in flowing conditions. These findings indicate that critical flow rate can be useful in developing methods to reduce algal bloom occurrence. However, flow rate significantly enhanced the inter-relationships among environmental variables, in particular by inducing higher water turbidity and vegetative reproduction of periphyton ( Spirogyra). These changes were accompanied by a decrease in underwater light intensity, which consequently inhibited the photosynthetic intensity of phytoplankton. These results warn that a universal critical flow rate might not exist, because the effect of flow rate on phytoplankton is interlinked with many other environmental variables.

  12. Mimicking the Interfacial Dynamics of Flowing White Blood Cells

    Science.gov (United States)

    Santore, Maria

    2015-03-01

    The rolling of particles on surfaces, facilitated by hydrodynamic forces combined with localized surface interactions of the appropriate strengths, spatial arrangements, and ranges, is a technologically useful means of transporting and manipulating particles. One's intuition for the rolling of a marble or a car tire cannot be extrapolated down to microparticle length scales because the microparticle interactions are dominated by electrostatic, van der Waals, and hydrogen bonding interactions rather than a friction that depends on an imposed normal force. Indeed, our microparticle rolling systems are inspired by the rolling of white blood cells on the inner walls of venules as part of the innate immune response: Selectin molecules engage with their counterparts on the opposing surfaces to slow cell motion relative to that for freely flowing cells. In the resulting rolling signature, ligand-receptor binding and crack closing on the front of the cell are balanced with molecular dis-bonding and crack opening at the rear. The contact region is relatively static, allowing other interactions (for instance signaling) to occur for a finite duration. Thus, achieving particle rolling in synthetic systems is important because it facilitates particle-surface interactions in a continuous nonfouling fashion where the contact surface is continually renewed. In developing a synthetic model for this system, we employ polymers to modify flowing particles and /or planar collectors, producing heterogeneous interfaces which can support rolling or produce other motion signatures such as skipping, arrest, or free flow. We identify, in the synthetic system, combinations of variables that produce rolling and demonstrate how the distinction between rolling and arrest is not a simple matter of the adhesion strength between the particles and the collector. Rolling is a cooperative process and the coordination of binding in one location with dis-bonding in another requires appropriate length

  13. Interface tracking computations of bubble dynamics in nucleate flow boiling

    International Nuclear Information System (INIS)

    Giustini, G.

    2015-01-01

    The boiling process is of utter importance for the design and operation of water-cooled nuclear reactors. Despite continuous effort over the past decades, a fully mechanistic model of boiling in the presence of a solid surface has not yet been achieved. Uncertainties exist at fundamental level, since the microscopic phenomena governing nucleate boiling are still not understood, and as regards 'component scale' modelling, which relies heavily on empirical representations of wall boiling. Accurate models of these phenomena at sub-milli-metric scale are capable of elucidating the various processes and to produce quantitative data needed for up-scaling. Within this context, Direct Numerical Simulation (DNS) represents a powerful tool for CFD analysis of boiling flows. In this contribution, DNS coupled with an Interface Tracking method (Y. Sato, B. Niceno, Journal of Computational Physics, Volume 249, 15 September 2013, Pages 127-161) are used to analyse the hydrodynamics and heat transfer associated with heat diffusion controlled bubble growth at a solid substrate during nucleate flow boiling. The growth of successive bubbles from a single nucleation site is simulated with a computational model that includes heat conduction in the solid substrate and evaporation from the liquid film (micro-layer) present beneath the bubble. Bubble evolution is investigated and the additional (with respect to single phase convection) heat transfer mechanisms due to the ebullition cycle are quantified. The simulations show that latent heat exchange due to evaporation in the micro-layer and sensible heat exchange during the waiting time after bubble departure are the main heat transfer mechanisms. It is found that the presence of an imposed flow normal to the bubble rising path determines a complex velocity and temperature distribution near the nucleation site. This conditions can result in bubble sliding, and influence bubble shape, departure diameter and departure frequency

  14. Applications of Continuous-Flow Photochemistry in Organic Synthesis, Material Science, and Water Treatment.

    Science.gov (United States)

    Cambié, Dario; Bottecchia, Cecilia; Straathof, Natan J W; Hessel, Volker; Noël, Timothy

    2016-09-14

    Continuous-flow photochemistry in microreactors receives a lot of attention from researchers in academia and industry as this technology provides reduced reaction times, higher selectivities, straightforward scalability, and the possibility to safely use hazardous intermediates and gaseous reactants. In this review, an up-to-date overview is given of photochemical transformations in continuous-flow reactors, including applications in organic synthesis, material science, and water treatment. In addition, the advantages of continuous-flow photochemistry are pointed out and a thorough comparison with batch processing is presented.

  15. Interfacial dynamics of dissolving objects in fluid flow

    Science.gov (United States)

    Rycroft, Chris; Bazant, Martin

    2013-11-01

    An advection-diffusion-limited dissolution model of an object being eroded by a two-dimensional potential flow will be presented. By taking advantage of conformal invariance of the model, a numerical method will be introduced that tracks the evolution of the object boundary in terms of a time-dependent Laurent series. Simulations of several dissolving objects will be shown, all of which show collapse to a single point in finite time. The simulations reveal a surprising connection between the position of the collapse point and the initial Laurent coefficients, which was subsequently derived analytically using residue calculus.

  16. Preferential flow in the vadose zone and interface dynamics: Impact of microbial exudates

    Science.gov (United States)

    Li, Biting; Pales, Ashley R.; Clifford, Heather M.; Kupis, Shyla; Hennessy, Sarah; Liang, Wei-Zhen; Moysey, Stephen; Powell, Brian; Finneran, Kevin T.; Darnault, Christophe J. G.

    2018-03-01

    In the hydrological cycle, the infiltration process is a critical component in the distribution of water into the soil and in the groundwater system. The nonlinear dynamics of the soil infiltration process yield preferential flow which affects the water distribution in soil. Preferential flow is influenced by the interactions between water, soil, plants, and microorganisms. Although the relationship among the plant roots, their rhizodeposits and water transport in soil has been the subject of extensive study, the effect of microbial exudates has been studied in only a few cases. Here the authors investigated the influence of two artificial microbial exudates-catechol and riboflavin-on the infiltration process, particularly unstable fingered flow, one form of preferential flow. Flow experiments investigating the effects of types and concentrations of microbial exudates on unstable fingered flow were conducted in a two-dimensional tank that was filled with ASTM

  17. Assessment of Electromagnetic Stirrer Agitated Liquid Metal Flows by Dynamic Neutron Radiography

    Science.gov (United States)

    Ščepanskis, Mihails; Sarma, Mārtiņš; Vontobel, Peter; Trtik, Pavel; Thomsen, Knud; Jakovičs, Andris; Beinerts, Toms

    2017-04-01

    This paper presents qualitative and quantitative characterization of two-phase liquid metal flows agitated by the stirrer on rotating permanent magnets. The stirrer was designed to fulfill various eddy flows, which may have different rates of solid particle entrapment from the liquid surface and their homogenization. The flow was characterized by visualization of the tailored tracer particles by means of dynamic neutron radiography, an experimental method well suited for liquid metal flows due to low opacity of some metals for neutrons. The rather high temporal resolution of the image acquisition (32 Hz image acquisition rate) allows for the quantitative investigation of the flows up to 30 cm/s using neutron particle image velocimetry. In situ visualization of the two-phase liquid metal flow is also demonstrated.

  18. Computational Analysis of Material Flow During Friction Stir Welding of AA5059 Aluminum Alloys

    Science.gov (United States)

    2011-01-01

    structures in Finland; (b) manufacture of Al-Mg-Si-based alloy 181 FSW-joined bullet- train cabins in Japan; (c) fabrication of 182 Al-Cu-based alloy...Simonsen, Visualisation of Material 857Flow in an Autogenous Friction Stir Weld, Proc. 1st International 858Symp. FSW, Thousand Oaks, CA, 1999 85928...A.P. Reynolds, Visualization of Material Flow in an Autogenous 860Friction Stir Weld, Sci. Technol. Weld. Join., 2000, 5, p 120–124 86129. T.U. Seidel

  19. In vitro stimulation of vascular endothelial growth factor by borate-based glass fibers under dynamic flow conditions

    International Nuclear Information System (INIS)

    Chen, Sisi; Yang, Qingbo; Brow, Richard K.; Liu, Kun; Brow, Katherine A.; Ma, Yinfa

    2017-01-01

    Bioactive borate glass has been recognized to have both hard and soft tissue repair and regeneration capabilities through stimulating both osteogenesis and angiogenesis. However, the underlying biochemical and cellular mechanisms remain unclear. In this study, dynamic flow culturing modules were designed to simulate the micro-environment near the vascular depletion and hyperplasia area in wound-healing regions, thus to better investigate the mechanisms underlying the biocompatibility and functionality of borate-based glass materials. Glass fibers were dosed either upstream or in contact with the pre-seeded cells in the dynamic flow module. Two types of borate glasses, doped with (1605) or without (13-93B3) CuO and ZnO, were studied along with the silicate-based glass, 45S5. Substantial fiber dissolution in cell culture medium was observed, leading to the release of ions (boron, sodium and potassium) and the deposition of a calcium phosphate phase. Different levels of vascular endothelial growth factor secretion were observed from cells exposed to these three glass fibers, and the copper/zinc containing borate 1605 fibers exhibited the most positive influence. These results indicate that dynamic studies of in vitro bioactivity provide useful information to understand the in vivo response to bioactive borate glasses. - Highlights: • Novel dynamic flow cell culture modules were designed. • Bioactive glass fibers were evaluated for their effects on VEGF secretion. • Borate-based glass fibers stimulate VEGF secretion under dynamic condition. • CuO and ZnO doped borate-based glass fibers stimulate the greatest VEGF release.

  20. In vitro stimulation of vascular endothelial growth factor by borate-based glass fibers under dynamic flow conditions

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Sisi [Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Center for Biomedical Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Yang, Qingbo [Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Center for Biomedical Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Center for Single Nanoparticle, Single Cell, and Single Molecule Monitoring, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Brow, Richard K. [Department of Material Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Center for Biomedical Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Liu, Kun [Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Center for Single Nanoparticle, Single Cell, and Single Molecule Monitoring, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Brow, Katherine A. [Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Ma, Yinfa [Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Center for Biomedical Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Center for Single Nanoparticle, Single Cell, and Single Molecule Monitoring, Missouri University of Science and Technology, Rolla, MO 65409 (United States); and others

    2017-04-01

    Bioactive borate glass has been recognized to have both hard and soft tissue repair and regeneration capabilities through stimulating both osteogenesis and angiogenesis. However, the underlying biochemical and cellular mechanisms remain unclear. In this study, dynamic flow culturing modules were designed to simulate the micro-environment near the vascular depletion and hyperplasia area in wound-healing regions, thus to better investigate the mechanisms underlying the biocompatibility and functionality of borate-based glass materials. Glass fibers were dosed either upstream or in contact with the pre-seeded cells in the dynamic flow module. Two types of borate glasses, doped with (1605) or without (13-93B3) CuO and ZnO, were studied along with the silicate-based glass, 45S5. Substantial fiber dissolution in cell culture medium was observed, leading to the release of ions (boron, sodium and potassium) and the deposition of a calcium phosphate phase. Different levels of vascular endothelial growth factor secretion were observed from cells exposed to these three glass fibers, and the copper/zinc containing borate 1605 fibers exhibited the most positive influence. These results indicate that dynamic studies of in vitro bioactivity provide useful information to understand the in vivo response to bioactive borate glasses. - Highlights: • Novel dynamic flow cell culture modules were designed. • Bioactive glass fibers were evaluated for their effects on VEGF secretion. • Borate-based glass fibers stimulate VEGF secretion under dynamic condition. • CuO and ZnO doped borate-based glass fibers stimulate the greatest VEGF release.

  1. Transient Flow Dynamics in Optical Micro Well Involving Gas Bubbles

    Science.gov (United States)

    Johnson, B.; Chen, C. P.; Jenkins, A.; Spearing, S.; Monaco, L. A.; Steele, A.; Flores, G.

    2006-01-01

    The Lab-On-a-Chip Application Development (LOCAD) team at NASA s Marshall Space Flight Center is utilizing Lab-On-a-Chip to support technology development specifically for Space Exploration. In this paper, we investigate the transient two-phase flow patterns in an optic well configuration with an entrapped bubble through numerical simulation. Specifically, the filling processes of a liquid inside an expanded chamber that has bubbles entrapped. Due to the back flow created by channel expansion, the entrapped bubbles tend to stay stationary at the immediate downstream of the expansion. Due to the huge difference between the gas and liquid densities, mass conservation issues associated with numerical diffusion need to be specially addressed. The results are presented in terms of the movement of the bubble through the optic well. Bubble removal strategies are developed that involve only pressure gradients across the optic well. Results show that for the bubble to be moved through the well, pressure pulsations must be utilized in order to create pressure gradients across the bubble itself.

  2. New approach for dynamic flow management within the PEMFC stack

    International Nuclear Information System (INIS)

    Varlam, Mihai; Culcer, Mihai; Carcadea, Elena; Stefanescu, Ioan; Iliescu, Mariana; Enache, Adrian

    2009-01-01

    An adequate gas and water flow management is a key issue to reach and maintain a higher output power for a PEM fuel cell stack. One of the main aspects which could limit the performance of a PEM fuel cell stack is the weak capability for a non-uniform water distribution management within the fuel cell. The produced water could become a handicap to attain the best working performance by blocking the catalytic surfaces and by preventing the mass transport process. Usually, the excess water is removed in one cell, comparatively to others from the stack and taking into account that all the cells are supplied in parallel from a common air admission pipe, a limitation of gas flow rate within that cell is created. Consequently, this constraint will reduce further the water removal speed. This feedback process will generate finally a drastic decrease of the fuel cell stack performance. A new practical solution to this water and gas non-uniformity of distributions problem is to use a sequential purge procedure of several fuel cell groups inside the stack which could guarantee a right management of water. An experimental setup has been built based on four fuel cell stack. Every fuel cell was connected to a single removal pipe via a solenoid valve. A computer-controlled hardware and software system has been designed and built, in order to generate a given opening-closing sequence for the automatic valve system. (authors)

  3. The dynamics of a non-equilibrium bubble near bio-materials

    International Nuclear Information System (INIS)

    Ohl, S W; Klaseboer, E; Khoo, B C

    2009-01-01

    In many medical treatments oscillating (non-equilibrium) bubbles appear. They can be the result of high-intensity-focused ultrasound, laser treatments or shock wave lithotripsy for example. The physics of such oscillating bubbles is often not very well understood. This is especially so if the bubbles are oscillating near (soft) bio-materials. It is well known that bubbles oscillating near (hard) materials have a tendency to form a high speed jet directed towards the material during the collapse phase of the bubble. It is equally well studied that bubbles near a free interface (air) tend to collapse with a jet directed away from this interface. If the interface is neither 'free' nor 'hard', such as often occurs in bio-materials, the resulting flow physics can be very complex. Yet, in many bio-applications, it is crucial to know in which direction the jet will go (if there is a jet at all). Some applications require a jet towards the tissue, for example to destroy it. For other applications, damage due to impacting jets is to be prevented at all cost. This paper tries to address some of the physics involved in these treatments by using a numerical method, the boundary element method (BEM), to study the dynamics of such bubbles near several bio-materials. In the present work, the behaviour of a bubble placed in a water-like medium near various bio-materials (modelled as elastic fluids) is investigated. It is found that its behaviour depends on the material properties (Young's modulus, Poisson ratio and density) of the bio-material. For soft bio-materials (fat, skin, brain and muscle), the bubble tends to split into smaller bubbles. In certain cases, the resulting bubbles develop opposing jets. For hard bio-materials (cornea, cartilage and bone), the bubble collapses towards the interface with high speed jets (between 100 and about 250 m s -1 ). A summary graph is provided identifying the combined effects of the dimensionless elasticity (κ) and density ratio (α) of

  4. Applications of flow-networks to opinion-dynamics

    Science.gov (United States)

    Tupikina, Liubov; Kurths, Jürgen

    2015-04-01

    Networks were successfully applied to describe complex systems, such as brain, climate, processes in society. Recently a socio-physical problem of opinion-dynamics was studied using network techniques. We present the toy-model of opinion-formation based on the physical model of advection-diffusion. We consider spreading of the opinion on the fixed subject, assuming that opinion on society is binary: if person has opinion then the state of the node in the society-network equals 1, if the person doesn't have opinion state of the node equals 0. Opinion can be spread from one person to another if they know each other, or in the network-terminology, if the nodes are connected. We include into the system governed by advection-diffusion equation the external field to model such effects as for instance influence from media. The assumptions for our model can be formulated as the following: 1.the node-states are influenced by the network structure in such a way, that opinion can be spread only between adjacent nodes (the advective term of the opinion-dynamics), 2.the network evolution can have two scenarios: -network topology is not changing with time; -additional links can appear or disappear each time-step with fixed probability which requires adaptive networks properties. Considering these assumptions for our system we obtain the system of equations describing our model-dynamics which corresponds well to other socio-physics models, for instance, the model of the social cohesion and the famous voter-model. We investigate the behavior of the suggested model studying "waiting time" of the system, time to get to the stable state, stability of the model regimes for different values of model parameters and network topology.

  5. Discrete Adjoint-Based Design Optimization of Unsteady Turbulent Flows on Dynamic Unstructured Grids

    Science.gov (United States)

    Nielsen, Eric J.; Diskin, Boris; Yamaleev, Nail K.

    2009-01-01

    An adjoint-based methodology for design optimization of unsteady turbulent flows on dynamic unstructured grids is described. The implementation relies on an existing unsteady three-dimensional unstructured grid solver capable of dynamic mesh simulations and discrete adjoint capabilities previously developed for steady flows. The discrete equations for the primal and adjoint systems are presented for the backward-difference family of time-integration schemes on both static and dynamic grids. The consistency of sensitivity derivatives is established via comparisons with complex-variable computations. The current work is believed to be the first verified implementation of an adjoint-based optimization methodology for the true time-dependent formulation of the Navier-Stokes equations in a practical computational code. Large-scale shape optimizations are demonstrated for turbulent flows over a tiltrotor geometry and a simulated aeroelastic motion of a fighter jet.

  6. Universal dynamics in the onset of a Hagen-Poiseuille flow

    DEFF Research Database (Denmark)

    Mortensen, Asger; Bruus, Henrik

    2006-01-01

    The dynamics in the onset of a Hagen-Poiseuille flow of an incompressible liquid in a channel of circular cross section is well-studied theoretically. We use an eigenfunction expansion in a Hilbert space formalism to generalize the results to channels of an arbitrary cross section. We find that t...... that the steady state is reached after a characteristic time scale tau=(A/P)(2)(1/nu), where A and P are the cross-sectional area and perimeter, respectively, and nu is the kinematic viscosity of the liquid. For the initial dynamics of the flow rate Q for t......The dynamics in the onset of a Hagen-Poiseuille flow of an incompressible liquid in a channel of circular cross section is well-studied theoretically. We use an eigenfunction expansion in a Hilbert space formalism to generalize the results to channels of an arbitrary cross section. We find...

  7. Derivation of tensile flow characteristics for austenitic materials from instrumented indentation technique

    International Nuclear Information System (INIS)

    Lee, K-W; Kim, K-H; Kim, J-Y; Kwon, D

    2008-01-01

    In this study, a method for deriving the tensile flow characteristics of austenitic materials from an instrumented indentation technique is presented along with its experimental verification. We proposed a modified algorithm for austenitic materials that takes their hardening behaviour into account. First, the true strain based on sine function instead of tangent function was adapted. It was proved that the sine function shows constant degrees of hardening which is a main characteristic of the hardening of austenitic materials. Second, a simple and linear constitutive equation was newly suggested to optimize indentation flow curves. The modified approach was experimentally verified by comparing tensile properties of five austenitic materials from uniaxial tensile test and instrumented indentation tests

  8. Quantifying Domestic Used Electronics Flows using a Combination of Material Flow Methodologies: A US Case Study.

    Science.gov (United States)

    Miller, T Reed; Duan, Huabo; Gregory, Jeremy; Kahhat, Ramzy; Kirchain, Randolph

    2016-06-07

    This paper describes the scope, methods, data, and results of a comprehensive quantitative analysis of generation, stock, and collection of used computers and monitors in the United States , specifically desktops, laptops, CRT monitors, and flat panel monitors in the decade leading up to 2010. Generation refers to used electronics coming directly out of use or postuse storage destined for disposal or collection, which encompasses a variety of organizations gathering used electronics for recycling or reuse. Given the lack of actual statistics on flows of used electronics, two separate approaches, the sales obsolescence method (SOM) and the survey scale-up method (SSUM), were used in order to compare the results attained and provide a range for estimated quantities. This study intentionally sought to capture the uncertainty in the estimates. To do so, uncertainty in each data set was incorporated at each stage using Monte Carlo simulations for SOM and establishing scenarios for SSUM. Considering the average results across both methods, we estimate that in 2010 the U.S. generated 130-164 thousand metric tons of used computers and 128-153 thousand tons of used monitors, of which 110-116 thousand tons of used computers and 105-106 thousand tons of used monitors were collected for further reuse, recycling, or export. While each approach has its strengths and weaknesses, both the SOM and the SSUM appear to be capable of producing reasonable ranges of estimates for the generation and collection of used electronics.

  9. Renal blood flow regulation and arterial pressure fluctuations: a case study in nonlinear dynamics

    DEFF Research Database (Denmark)

    Holstein-Rathlou, N H; Marsh, D J

    1994-01-01

    in which the kidney is obliged to operate. Were it not for renal blood flow autoregulation, it would be difficult to regulate renal excretory processes so as to maintain whole body variables within narrow bounds. Autoregulation is the noise filter on which other renal processes depend for maintaining...... a relatively noise-free environment in which to work. Because of the time-varying nature of the blood pressure, we have concentrated in this review on the now substantial body of work on the dynamics of renal blood flow regulation and the underlying mechanisms. Renal vascular control mechanisms are not simply....... The significance of deterministic chaos in the context of renal blood flow regulation is that the system regulating blood flow undergoes a physical change to a different dynamical state, and because the change is deterministic, there is every expectation that the critical change will yield itself to experimental...

  10. Dynamic gas flow during plasma operation in TMX-U

    International Nuclear Information System (INIS)

    Pickles, W.L.; Carter, M.R.; Clower, C.A.; Drake, R.P.; Hunt, A.L.; Simonen, T.C.; Turner, W.C.

    1982-01-01

    Control of the neutral density outside of the plasma radius is essential for proper operation of the various plasma configurations in TMX-U. TMX-U excess-beam, stream-gun, gas-box, and beam-reflux gases are pumped internally in regions defined by 73 0 Ti-gettered liners and warm Ti-gettered plasma liners. The array of fast and slow ion gauges - a large TMX-U diagnostic - has been used to measure the dynamic pressure in many of the liner-defined regions on three time scales. The natural divertor action, or plasma pump effect, of mirror plasmas has been measured using the ion gauge diagnostics on a fast time scale during operation of TMX-U with ECRH start-up. Routine operation of TMX-U is enhanced by the ability to verify the effectiveness of gettering and to locate leaks using pressure data collected on the two slow time scales. A computer code, DYNAVAC 6, which treats TMX-U as a set of conductance-coupled regions with pumping and sources in each region, has been used to successfully model the overall gas dynamics during all phases of TMX-U operation

  11. Quantifying Km-scale Hydrological Exchange Flows under Dynamic Flows and Their Influences on River Corridor Biogeochemistry

    Science.gov (United States)

    Chen, X.; Song, X.; Shuai, P.; Hammond, G. E.; Ren, H.; Zachara, J. M.

    2017-12-01

    Hydrologic exchange flows (HEFs) in rivers play vital roles in watershed ecological and biogeochemical functions due to their strong capacity to attenuate contaminants and process significant quantities of carbon and nutrients. While most of existing HEF studies focus on headwater systems with the assumption of steady-state flow, there is lack of understanding of large-scale HEFs in high-order regulated rivers that experience high-frequency stage fluctuations. The large variability of HEFs is a result of interactions between spatial heterogeneity in hydrogeologic properties and temporal variation in river discharge induced by natural or anthropogenic perturbations. Our 9-year spatially distributed dataset (water elevation, specific conductance, and temperature) combined with mechanistic hydrobiogeochemical simulations have revealed complex spatial and temporal dynamics in km-scale HEFs and their significant impacts on contaminant plume mobility and hyporheic biogeochemical processes along the Hanford Reach. Extended multidirectional flow behaviors of unconfined, river corridor groundwater were observed hundreds of meters inland from the river shore resulting from discharge-dependent HEFs. An appropriately sized modeling domain to capture the impact of regional groundwater flow as well as knowledge of subsurface structures controlling intra-aquifer hydrologic connectivity were essential to realistically model transient storage in this large-scale river corridor. This work showed that both river water and mobile groundwater contaminants could serve as effective tracers of HEFs, thus providing valuable information for evaluating and validating the HEF models. Multimodal residence time distributions with long tails were resulted from the mixture of long and short exchange pathways, which consequently impact the carbon and nutrient cycling within the river corridor. Improved understanding of HEFs using integrated observational and modeling approaches sheds light on

  12. The application of nonlinear dynamics in the study of ferroelectric materials

    International Nuclear Information System (INIS)

    Blochwitz, S.; Habel, R.; Diestelhorst, M.; Beige, H.

    1996-01-01

    It is well known that the structural phase transitions in ferroelectric materials are connected with strong nonlinear properties. So we can expect all features of nonlinear dynamical systems such as period-doubling cascades and chaos in a dynamical system that contains ferroelectric materials. Therefore we can apply nonlinear dynamics to these ferroelectric materials and we are doing it in two directions: (i) We study the structural phase transitions by analyzing the large signal behaviour with means of nonlinear dynamics. (ii) We control the chaotic behaviour of the system with the method proposed by Ott, Grebogi and Yorke. (authors)

  13. A model for complex flows of soft glassy materials with application to flows through fixed fiber beds

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Arijit; Koch, Donald L., E-mail: dlk15@cornell.edu [School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, New York 14853-5201 (United States)

    2015-11-15

    The soft glassy rheology (SGR) model has successfully described the time dependent simple shear rheology of a broad class of complex fluids including foams, concentrated emulsions, colloidal glasses, and solvent-free nanoparticle-organic hybrid materials (NOHMs). The model considers a distribution of mesoscopic fluid elements that hop from trap to trap at a rate which is enhanced by the work done to strain the fluid element. While an SGR fluid has a broad exponential distribution of trap energies, the rheology of NOHMs is better described by a narrower energy distribution and we consider both types of trap energy distributions in this study. We introduce a tensorial version of these models with a hopping rate that depends on the orientation of the element relative to the mean stress field, allowing a range of relative strengths of the extensional and simple shear responses of the fluid. As an application of these models we consider the flow of a soft glassy material through a dilute fixed bed of fibers. The dilute fixed bed exhibits a range of local linear flows which alternate in a chaotic manner with time in a Lagrangian reference frame. It is amenable to an analytical treatment and has been used to characterize the strong flow response of many complex fluids including fiber suspensions, dilute polymer solutions and emulsions. We show that the accumulated strain in the fluid elements has an abrupt nonlinear growth at a Deborah number of order one in a manner similar to that observed for polymer solutions. The exponential dependence of the hopping rate on strain leads to a fluid element deformation that grows logarithmically with Deborah number at high Deborah numbers. SGR fluids having a broad range of trap energies flowing through fixed beds can exhibit a range of rheological behaviors at small Deborah numbers ranging from a yield stress, to a power law response and finally to Newtonian behavior.

  14. A model for complex flows of soft glassy materials with application to flows through fixed fiber beds

    KAUST Repository

    Sarkar, Arijit; Koch, Donald L.

    2015-01-01

    © 2015 The Society of Rheology. The soft glassy rheology (SGR) model has successfully described the time dependent simple shear rheology of a broad class of complex fluids including foams, concentrated emulsions, colloidal glasses, and solvent-free nanoparticle-organic hybrid materials (NOHMs). The model considers a distribution of mesoscopic fluid elements that hop from trap to trap at a rate which is enhanced by the work done to strain the fluid element. While an SGR fluid has a broad exponential distribution of trap energies, the rheology of NOHMs is better described by a narrower energy distribution and we consider both types of trap energy distributions in this study. We introduce a tensorial version of these models with a hopping rate that depends on the orientation of the element relative to the mean stress field, allowing a range of relative strengths of the extensional and simple shear responses of the fluid. As an application of these models we consider the flow of a soft glassy material through a dilute fixed bed of fibers. The dilute fixed bed exhibits a range of local linear flows which alternate in a chaotic manner with time in a Lagrangian reference frame. It is amenable to an analytical treatment and has been used to characterize the strong flow response of many complex fluids including fiber suspensions, dilute polymer solutions and emulsions. We show that the accumulated strain in the fluid elements has an abrupt nonlinear growth at a Deborah number of order one in a manner similar to that observed for polymer solutions. The exponential dependence of the hopping rate on strain leads to a fluid element deformation that grows logarithmically with Deborah number at high Deborah numbers. SGR fluids having a broad range of trap energies flowing through fixed beds can exhibit a range of rheological behaviors at small Deborah numbers ranging from a yield stress, to a power law response and finally to Newtonian behavior.

  15. A model for complex flows of soft glassy materials with application to flows through fixed fiber beds

    KAUST Repository

    Sarkar, Arijit

    2015-11-01

    © 2015 The Society of Rheology. The soft glassy rheology (SGR) model has successfully described the time dependent simple shear rheology of a broad class of complex fluids including foams, concentrated emulsions, colloidal glasses, and solvent-free nanoparticle-organic hybrid materials (NOHMs). The model considers a distribution of mesoscopic fluid elements that hop from trap to trap at a rate which is enhanced by the work done to strain the fluid element. While an SGR fluid has a broad exponential distribution of trap energies, the rheology of NOHMs is better described by a narrower energy distribution and we consider both types of trap energy distributions in this study. We introduce a tensorial version of these models with a hopping rate that depends on the orientation of the element relative to the mean stress field, allowing a range of relative strengths of the extensional and simple shear responses of the fluid. As an application of these models we consider the flow of a soft glassy material through a dilute fixed bed of fibers. The dilute fixed bed exhibits a range of local linear flows which alternate in a chaotic manner with time in a Lagrangian reference frame. It is amenable to an analytical treatment and has been used to characterize the strong flow response of many complex fluids including fiber suspensions, dilute polymer solutions and emulsions. We show that the accumulated strain in the fluid elements has an abrupt nonlinear growth at a Deborah number of order one in a manner similar to that observed for polymer solutions. The exponential dependence of the hopping rate on strain leads to a fluid element deformation that grows logarithmically with Deborah number at high Deborah numbers. SGR fluids having a broad range of trap energies flowing through fixed beds can exhibit a range of rheological behaviors at small Deborah numbers ranging from a yield stress, to a power law response and finally to Newtonian behavior.

  16. Flowing and freezing of molten core materials during unprotected loss of flow accidents in sodium cooled fast reactors

    International Nuclear Information System (INIS)

    Maschek, W.; Royl, P.

    1988-09-01

    Flowing and freezing of mobile core materials change the fissile material distribution and core-inventory under hypothetical accident conditions and determine the path to permanent shutdown of the neutronic events and the energetic potentials. The report classifies the bondary conditions for such flowing and freezing processes by going through the different situations under which these processes can occur in the scenario of the unprotected loss of flow (ULOF) accident. The classification is based on ULOF-accident simulations for a homogeneous reactor core concept of a 300 MWe LMFBR (e. g. SNR-300), but many boundary conditions are also characteristic for other core designs. A review of the relevant experiments is then made to correlate the available experimental information with these classified boundary conditions and to look at the resulting flowing and freezing processes. Boundary conditions that have been experimentally shown to be important are assigned high priorities. The data are specifically valued in relation to these boundary conditions of high priorities. The review includes the major experimental programs with published results. The discussion shows that the results from most clean condition tests for melt relocations are valuable for a better understanding of basic phenomena and analytical model development, but are not directly applicable to real accident conditions. The database for relevant boundary conditions from the ULOF scenario is limited and largely included in integral sequence tests from which quantitative information for modelling is difficult to obtain. Needs for additional investigations are identified. The suggestions are mainly restricted to investigations of the early phase of fuel removal. They are given with reference to candidate facilities and include relocations in the subassemblies and in the inter-subassembly gaps. Particular emphasis is put on the leading edge properties and possible driving forces to which more attention

  17. Blood flow in cerebral aneurysms: comparison of phase contrast magnetic resonance and computational fluid dynamics - preliminary experience

    Energy Technology Data Exchange (ETDEWEB)

    Karmonik, C.; Benndorf, G. [The Methodist Hospital Research Inst., Houston (United States). Radiology; Klucznik, R. [The Methodist Hospital, Houston (United States). Radiology

    2008-03-15

    Purpose: computational fluid dynamics (CFD) simulations are increasingly used to model cerebral aneurysm hemodynamics. We investigated the capability of phase contrast magnetic resonance imaging (pcMRI), guided by specialized software for optimal slice definition (NOVA, Vassol Inc.) as a non-invasive method to measure intra-aneurysmal blood flow patterns in-vivo. In a novel approach, these blood flow patterns measured with pcMRI were qualitatively compared to the ones calculated with CFD. Materials end methods: the volumetric inflow rates into three unruptured cerebral aneurysms and the temporal variations of the intra-aneurysmal blood flow patterns were recorded with pcMRI. Transient CFD simulations were performed on geometric models of these aneurysms derived from 3D digital subtraction angiograms. Calculated intra-aneurysmal blood flow patterns were compared at the times of maximum and minimum arterial inflow to the ones measured with pcMRI and the temporal variations of these patterns during the cardiac cycle were investigated. Results: in all three aneurysms, the main features of intra-aneurysmal flow patterns obtained with pcMRI consisted of areas with positive velocities components and areas with negative velocities components. The measured velocities ranged from approx. {+-}60 to {+-}100 cm/sec. Comparison with calculated CFD simulations showed good correlation with regard to the spatial distribution of these areas, while differences in calculated magnitudes of velocities were found. (orig.)

  18. Blood flow in cerebral aneurysms: comparison of phase contrast magnetic resonance and computational fluid dynamics - preliminary experience

    International Nuclear Information System (INIS)

    Karmonik, C.; Benndorf, G.; Klucznik, R.

    2008-01-01

    Purpose: computational fluid dynamics (CFD) simulations are increasingly used to model cerebral aneurysm hemodynamics. We investigated the capability of phase contrast magnetic resonance imaging (pcMRI), guided by specialized software for optimal slice definition (NOVA, Vassol Inc.) as a non-invasive method to measure intra-aneurysmal blood flow patterns in-vivo. In a novel approach, these blood flow patterns measured with pcMRI were qualitatively compared to the ones calculated with CFD. Materials end methods: the volumetric inflow rates into three unruptured cerebral aneurysms and the temporal variations of the intra-aneurysmal blood flow patterns were recorded with pcMRI. Transient CFD simulations were performed on geometric models of these aneurysms derived from 3D digital subtraction angiograms. Calculated intra-aneurysmal blood flow patterns were compared at the times of maximum and minimum arterial inflow to the ones measured with pcMRI and the temporal variations of these patterns during the cardiac cycle were investigated. Results: in all three aneurysms, the main features of intra-aneurysmal flow patterns obtained with pcMRI consisted of areas with positive velocities components and areas with negative velocities components. The measured velocities ranged from approx. ±60 to ±100 cm/sec. Comparison with calculated CFD simulations showed good correlation with regard to the spatial distribution of these areas, while differences in calculated magnitudes of velocities were found. (orig.)

  19. Material and Energy Flows Associated with Select Metals in GREET 2. Molybdenum, Platinum, Zinc, Nickel, Silicon

    Energy Technology Data Exchange (ETDEWEB)

    Benavides, Pahola T. [Argonne National Lab. (ANL), Argonne, IL (United States); Dai, Qiang [Argonne National Lab. (ANL), Argonne, IL (United States); Sullivan, John L. [Argonne National Lab. (ANL), Argonne, IL (United States); Kelly, Jarod C. [Argonne National Lab. (ANL), Argonne, IL (United States); Dunn, Jennifer B. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-09-01

    In this work, we analyzed the material and energy consumption from mining to production of molybdenum, platinum, zinc, and nickel. We also analyzed the production of solar- and semiconductor-grade silicon. We described new additions to and expansions of the data in GREET 2. In some cases, we used operating permits and sustainability reports to estimate the material and energy flows for molybdenum, platinum, and nickel, while for zinc and silicon we relied on information provided in the literature.

  20. Reversal of flow in the inferior vena cava and hepatic veins on dynamic CT

    International Nuclear Information System (INIS)

    Lelij, H. van der; Mallens, W.M.C.

    1988-01-01

    A tricuspid insufficiency may not be clinically evident and may remain unknown to the clinician. The phenomenon of a reversal of inferior vena caval blood flow and hepatic veins is known to occur in tricuspid regurgitation from right ventricular angiography and duplex scanning. Demonstration of such a reversal flow on a dynamic CT scan, as in our case, has, to our knowledge, not as yet been reported

  1. Increasing blood flow to exercising muscle attenuates systemic cardiovascular responses during dynamic exercise in humans.

    Science.gov (United States)

    Ichinose, Masashi; Ichinose-Kuwahara, Tomoko; Kondo, Narihiko; Nishiyasu, Takeshi

    2015-11-15

    Reducing blood flow to working muscles during dynamic exercise causes metabolites to accumulate within the active muscles and evokes systemic pressor responses. Whether a similar cardiovascular response is elicited with normal blood flow to exercising muscles during dynamic exercise remains unknown, however. To address that issue, we tested whether cardiovascular responses are affected by increases in blood flow to active muscles. Thirteen healthy subjects performed dynamic plantarflexion exercise for 12 min at 20%, 40%, and 60% of peak workload (EX20, EX40, and EX60) with their lower thigh enclosed in a negative pressure box. Under control conditions, the box pressure was the same as the ambient air pressure. Under negative pressure conditions, beginning 3 min after the start of the exercise, the box pressure was decreased by 20, 45, and then 70 mmHg in stepwise fashion with 3-min step durations. During EX20, the negative pressure had no effect on blood flow or the cardiovascular responses measured. However, application of negative pressure increased blood flow to the exercising leg during EX40 and EX60. This increase in blood flow had no significant effect on systemic cardiovascular responses during EX40, but it markedly attenuated the pressor responses otherwise seen during EX60. These results demonstrate that during mild exercise, normal blood flow to exercising muscle is not a factor eliciting cardiovascular responses, whereas it elicits an important pressor effect during moderate exercise. This suggests blood flow to exercising muscle is a major determinant of cardiovascular responses during dynamic exercise at higher than moderate intensity. Copyright © 2015 the American Physiological Society.

  2. First-principles molecular dynamics simulation study on electrolytes for use in redox flow battery

    Science.gov (United States)

    Choe, Yoong-Kee; Tsuchida, Eiji; Tokuda, Kazuya; Ootsuka, Jun; Saito, Yoshihiro; Masuno, Atsunobu; Inoue, Hiroyuki

    2017-11-01

    Results of first-principles molecular dynamics simulations carried out to investigate structural aspects of electrolytes for use in a redox flow battery are reported. The electrolytes studied here are aqueous sulfuric acid solutions where its property is of importance for dissolving redox couples in redox flow battery. The simulation results indicate that structural features of the acid solutions depend on the concentration of sulfuric acid. Such dependency arises from increase of proton dissociation from sulfuric acid.

  3. Flow dynamics in distillation columns packed with Dixon rings as used in isotope separation

    International Nuclear Information System (INIS)

    Gilath, C.; Cohen, H.; Wolf, D.

    1977-01-01

    Packed distillation columns are common in isotope separation. The pressure drop serves as an indication for the hydrodynamic state of the column. Models were formulated for flow and pressure drop dynamics in packed distillation columns. These models were confirmed on columns packed with Dixon rings and operated with water for separation of oxygen isotopes. Liquid holdup displacement is very important in isotope separation practice. Experiments proved that distillation columns packed with Dixon rings exhibit a behaviour close to plug flow. (author)

  4. THE EFFECTS OF ACCRETION FLOW DYNAMICS ON THE BLACK HOLE SHADOW OF SAGITTARIUS A*

    Energy Technology Data Exchange (ETDEWEB)

    Pu, Hung-Yi; Asada, Keiichi [Institute of Astronomy and Astrophysics, Academia Sinica, 11F of Astronomy-Mathematics Building, AS/NTU No. 1, Taipei 10617, Taiwan (China); Akiyama, Kazunori [Massachusetts Institute of Technology, Haystack Observatory, Route 40, Westford, MA 01886 (United States)

    2016-11-01

    A radiatively inefficient accretion flow (RIAF), which is commonly characterized by its sub-Keplerian nature, is a favored accretion model for the supermassive black hole at the Galactic center, Sagittarius A*. To investigate the observable features of an RIAF, we compare the modeled shadow images, visibilities, and spectra of three flow models with dynamics characterized by (i) a Keplerian shell that is rigidly rotating outside the innermost stable circular orbit (ISCO) and infalling with a constant angular momentum inside ISCO, (ii) a sub-Keplerian motion, and (iii) a free-falling motion with zero angular momentum at infinity. At near-millimeter wavelengths, the emission is dominated by the flow within several Schwarzschild radii. The energy shift due to these flow dynamics becomes important and distinguishable, suggesting that the flow dynamics are an important model parameter for interpreting the millimeter/sub-millimeter very long baseline interferometric observations with the forthcoming, fully assembled Event Horizon Telescope (EHT). As an example, we demonstrate that structural variations of Sagittarius A* on event horizon-scales detected in previous EHT observations can be explained by the non-stationary dynamics of an RIAF.

  5. Prediction of flow- induced dynamic stress in an axial pump impeller using FEM

    International Nuclear Information System (INIS)

    Gao, J Y; Hou, Y S; Xi, S Z; Cai, Z H; Yao, P P; Shi, H L

    2013-01-01

    Axial pumps play an important role in water supply and flood control projects. Along with growing requirements for high reliability and large capacity, the dynamic stress of axial pumps has become a key problem. Unsteady flow is a significant reason which results structural dynamic stress of a pump. This paper reports on a flow-induced dynamic stress simulation in an axial pump impeller at three flow conditions by using FEM code. The pressure pulsation obtained from flow simulation using CFD code was set as the force boundary condition. The results show that the maximum stress of impeller appeared at joint between blade and root flange near trailing edge or joint between blade and root flange near leading edge. The dynamic stress of the two zones was investigated under three flow conditions (0.8Q d , 1.0Q d , 1.1Q d ) in time domain and frequency domain. The frequencies of stress at zones of maximum stress are 22.9Hz and 37.5Hz as the fundamental frequency and its harmonics. The fundamental frequencies are nearly equal to vane passing frequency (22.9 Hz) and 3 times blade passing frequency (37.5Hz). The first dominant frequency at zones of maximum stress is equal to the vane passing frequency due to rotor-stator interaction between the vane and the blade. This study would be helpful for axial pumps in reducing stress, improving structure design and fatigue life

  6. Stability of Intelligent Transportation Network Dynamics: A Daily Path Flow Adjustment considering Travel Time Differentiation

    Directory of Open Access Journals (Sweden)

    Ming-Chorng Hwang

    2015-01-01

    Full Text Available A theoretic formulation on how traffic time information distributed by ITS operations influences the trajectory of network flows is presented in this paper. The interactions between users and ITS operator are decomposed into three parts: (i travel time induced path flow dynamics (PFDTT; (ii demand induced path flow dynamics (PFDD; and (iii predicted travel time dynamics for an origin-destination (OD pair (PTTDOD. PFDTT describes the collective results of user’s daily route selection by pairwise comparison of path travel time provided by ITS services. The other two components, PTTDOD and PFDD, are concentrated on the evolutions of system variables which are predicted and observed, respectively, by ITS operators to act as a benchmark in guiding the target system towards an expected status faster. In addition to the delivered modelings, the stability theorem of the equilibrium solution in the sense of Lyapunov stability is also provided. A Lyapunov function is developed and employed to the proof of stability theorem to show the asymptotic behavior of the aimed system. The information of network flow dynamics plays a key role in traffic control policy-making. The evaluation of ITS-based strategies will not be reasonable without a well-established modeling of network flow evolutions.

  7. Research on Dynamic Dissolving Model and Experiment for Rock Salt under Different Flow Conditions

    Directory of Open Access Journals (Sweden)

    Xinrong Liu

    2015-01-01

    Full Text Available Utilizing deep rock salt cavern is not only a widely recognized energy reserve method but also a key development direction for implementing the energy strategic reserve plan. And rock salt cavern adopts solution mining techniques to realize building cavity. In view of this, the paper, based on the dissolving properties of rock salt, being simplified and hypothesized the dynamic dissolving process of rock salt, combined conditions between dissolution effect and seepage effect in establishing dynamic dissolving models of rock salt under different flow quantities. Devices were also designed to test the dynamic dissolving process for rock salt samples under different flow quantities and then utilized the finite-difference method to find the numerical solution of the dynamic dissolving model. The artificial intelligence algorithm, Particle Swarm Optimization algorithm (PSO, was finally introduced to conduct inverse analysis of parameters on the established model, whose calculation results coincide with the experimental data.

  8. Dynamic Secondary Ion Mass Spectrometry | Materials Science | NREL

    Science.gov (United States)

    Ion Mass Spectrometry (SIMS) uses a continuous, focused beam of primary ions to remove material from the surface of a sample by sputtering. The fraction of sputtered material that is ionized is extracted Identifies all elements or isotopes present in a material, from hydrogen to uranium. Different primary-ion

  9. Computer Simulation of Material Flow in Warm-forming Bimetallic Components

    Science.gov (United States)

    Kong, T. F.; Chan, L. C.; Lee, T. C.

    2007-05-01

    Bimetallic components take advantage of two different metals or alloys so that their applicable performance, weight and cost can be optimized. However, since each material has its own flow properties and mechanical behaviour, heterogeneous material flows will occur during the bimetal forming process. Those controls of process parameters are relatively more complicated than forming single metals. Most previous studies in bimetal forming have focused mainly on cold forming, and less relevant information about the warm forming has been provided. Indeed, changes of temperature and heat transfer between two materials are the significant factors which can highly influence the success of the process. Therefore, this paper presents a study of the material flow in warm-forming bimetallic components using finite-element (FE) simulation in order to determine the suitable process parameters for attaining the complete die filling. A watch-case-like component made of stainless steel (AISI-316L) and aluminium alloy (AL-6063) was used as the example. The warm-forming processes were simulated with the punch speeds V of 40, 80, and 120 mm/s and the initial temperatures of the stainless steel TiSS of 625, 675, 725, 775, 825, 875, 925, 975, and 1025 °C. The results showed that the AL-6063 flowed faster than the AISI-316L and so the incomplete die filling was only found in the AISI-316L region. A higher TiSS was recommended to avoid incomplete die filling. The reduction of V is also suggested because this can save the forming energy and prevent the damage of tooling. Eventually, with the experimental verification, the results from the simulation were in agreement with those of the experiments. On the basis of the results of this study, engineers can gain a better understanding of the material flow in warm-forming bimetallic components, and be able to determine more efficiently the punch speed and initial material temperature for the process.

  10. Preliminary Design of Industrial Symbiosis of Smes Using Material Flow Cost Accounting (MFCA) Method

    Science.gov (United States)

    Astuti, Rahayu Siwi Dwi; Astuti, Arieyanti Dwi; Hadiyanto

    2018-02-01

    Industrial symbiosis is a collaboration of several industries to share their necessities such material, energy, technology as well as waste management. As a part of industrial ecology, in principle, this system attempts to emulate ecosystem where waste of an organism is being used by another organism, therefore there is no waste in the nature. This system becomes an effort to optimize resources (material and energy) as well as minimize waste. Considerable, in a symbiosis incure material and energy flows among industries. Material and energy in an industry are known as cost carriers, thus flow analysis in this system can be conducted in perspective of material, energy and cost, or called as material flow cost accounting (MFCA) that is an economic and ecological appraisal approach. Previous researches shown that MFCA implementation could be used to evaluate an industry's environmental-related efficiency as well as in planning, business control and decision making. Moreover, the MFCA has been extended to assess environmental performance of SMEs Cluster or industrial symbiosis in SMEs Cluster, even to make preliminary design of an industrial symbiosis base on a major industry. This paper describes the use of MFCA to asses performance of SMEs industrial symbiosis and to improve the performance.

  11. Preliminary Design of Industrial Symbiosis of Smes Using Material Flow Cost Accounting (MFCA Method

    Directory of Open Access Journals (Sweden)

    Siwi Dwi Astuti Rahayu

    2018-01-01

    Full Text Available Industrial symbiosis is a collaboration of several industries to share their necessities such material, energy, technology as well as waste management. As a part of industrial ecology, in principle, this system attempts to emulate ecosystem where waste of an organism is being used by another organism, therefore there is no waste in the nature. This system becomes an effort to optimize resources (material and energy as well as minimize waste. Considerable, in a symbiosis incure material and energy flows among industries. Material and energy in an industry are known as cost carriers, thus flow analysis in this system can be conducted in perspective of material, energy and cost, or called as material flow cost accounting (MFCA that is an economic and ecological appraisal approach. Previous researches shown that MFCA implementation could be used to evaluate an industry’s environmental-related efficiency as well as in planning, business control and decision making. Moreover, the MFCA has been extended to assess environmental performance of SMEs Cluster or industrial symbiosis in SMEs Cluster, even to make preliminary design of an industrial symbiosis base on a major industry. This paper describes the use of MFCA to asses performance of SMEs industrial symbiosis and to improve the performance.

  12. 3D Multiphysical Modelling of Fluid Dynamics and Mass Transfer in Laser Welding of Dissimilar Materials

    Directory of Open Access Journals (Sweden)

    Jiazhou Wu

    2018-06-01

    Full Text Available A three-dimensional multiphysical transient model was developed to investigate keyhole formation, weld pool dynamics, and mass transfer in laser welding of dissimilar materials. The coupling of heat transfer, fluid flow, keyhole free surface evolution, and solute diffusion between dissimilar metals was simulated. The adaptive heat source model was used to trace the change of keyhole shape, and the Rayleigh scattering of the laser beam was considered. The keyhole wall was calculated using the fluid volume equation, primarily considering the recoil pressure induced by metal evaporation, surface tension, and hydrostatic pressure. Fluid flow, diffusion, and keyhole formation were considered simultaneously in mass transport processes. Welding experiments of 304L stainless steel and industrial pure titanium TA2 were performed to verify the simulation results. It is shown that spatters are shaped during the welding process. The thickness of the intermetallic reaction layer between the two metals and the diffusion of elements in the weld are calculated, which are important criteria for welding quality. The simulation results correspond well with the experimental results.

  13. Framework for optimal power flow incorporating dynamic system security

    International Nuclear Information System (INIS)

    El-Kady, M.A.; Owayedh, M.S.

    2006-01-01

    This paper introduces a novel framework and methodologies which are capable of tackling the complex issue of power system economy versus security in a practical and effective manner. At heart of achieving such a challenging and far-reaching objective is the incorporation of the Dyanamic Security Assessment (DSA) into production optimization techniques using the Transient Energy Function (TEF) method. In addition, and in parallel with the already well established concept of the system security, two new concepts pertaining to power system performance will be introduced in this paper, namely the concept of system dynamic susceptibility, which measures the level of systems weakness to a particular contingency and the concept of system consequent restorability, which measures the extent of contingency severity in terms of the required subsequent system restoration work should a particular contingency occur. (author)

  14. The Dynamics of Controlled Flow Separation within a Diverter Duct Diffuser

    Science.gov (United States)

    Peterson, C. J.; Vukasinovic, B.; Glezer, A.

    2016-11-01

    The evolution and receptivity to fluidic actuation of the flow separation within a rectangular, constant-width, diffuser that is branched off of a primary channel is investigated experimentally at speeds up to M = 0.4. The coupling between the diffuser's adverse pressure gradient and the internal separation that constricts nearly half of the flow passage through the duct is controlled using a spanwise array of fluidic actuators on the surface upstream of the diffuser's inlet plane. The dynamics of the separating surface vorticity layer in the absence and presence of actuation are investigated using high-speed particle image velocimetry combined with surface pressure measurements and total pressure distributions at the primary channel's exit plane. It is shown that the actuation significantly alters the incipient dynamics of the separating vorticity layer as the characteristic cross stream scales of the boundary layer upstream of separation and of the ensuing vorticity concentrations within the separated flow increase progressively with actuation level. It is argued that the dissipative (high frequency) actuation alters the balance between large- and small-scale motions near separation by intensifying the large-scale motions and limiting the small-scale dynamics. Controlling separation within the diffuser duct also has a profound effect on the global flow. In the presence of actuation, the mass flow rate in the primary duct increases 10% while the fraction of the diverted mass flow rate in the diffuser increases by more than 45% at 0.7% actuation mass fraction. Supported by the Boeing Company.

  15. On the evaluation of debris flows dynamics by means of mathematical models

    Directory of Open Access Journals (Sweden)

    M. Arattano

    2003-01-01

    Full Text Available The prediction of debris flow dynamic characteristics in a debris flow prone torrent is generally made through the investigation of past events. This investigation can be carried out through a survey of the marks left by past debris flows along the channel and through a detailed analysis of the type and shape of the deposits found on the debris fan. The rheological behaviour of future debris flows can then be inferred from the results of these surveys and their dynamic characteristics can be estimated applying well known formulas proposed in literature. These latter will make use of the assumptions on the rheological behaviour previously made. This type of estimation has been performed for a debris flow occurred in an instrumented basin, on the North-Eastern Italian Alps, in 1996 and the results have been compared to those obtained by means of a mathematical simulation. For the calibration of the mathematical model the limnographs recorded by three different ultrasonic gauges installed along a torrent reach on the fan were used. The comparison evidenced the importance of time data recordings for a correct prediction of the debris flows dynamics. Without the availability of data recordings, the application of formulas based only on assumptions derived from field analysis could be misleading.

  16. Dynamic electro-thermal modeling of all-vanadium redox flow battery with forced cooling strategies

    International Nuclear Information System (INIS)

    Wei, Zhongbao; Zhao, Jiyun; Xiong, Binyu

    2014-01-01

    Highlights: • A dynamic electro-thermal model is proposed for VRB with forced cooling. • The Foster network is adopted to model the battery cooling process. • Both the electrolyte temperature and terminal voltage can be accurately predicted. • The flow rate of electrolyte and coolant significantly impact battery performance. - Abstract: The present study focuses on the dynamic electro-thermal modeling for the all-vanadium redox flow battery (VRB) with forced cooling strategies. The Foster network is adopted to dynamically model the heat dissipation of VRB with heat exchangers. The parameters of Foster network are extracted by fitting the step response of it to the results of linearized CFD model. Then a complete electro-thermal model is proposed by coupling the heat generation model, Foster network and electrical model. Results show that the established model has nearly the same accuracy with the nonlinear CFD model in electrolyte temperature prediction but drastically improves the computational efficiency. The modeled terminal voltage is also benchmarked with the experimental data under different current densities. The electrolyte temperature is found to be significantly influenced by the flow rate of coolant. As compared, although the electrolyte flow rate has unremarkable impact on electrolyte temperature, its effect on system pressure drop and battery efficiency is significant. Increasing the electrolyte flow rate improves the coulombic efficiency, voltage efficiency and energy efficiency simultaneously but at the expense of higher pump power demanded. An optimal flow rate exists for each operating condition to maximize the system efficiency

  17. Material flow analysis for an industry - A case study in packaging

    Science.gov (United States)

    Amey, E.B.; Sandgren, K.

    1996-01-01

    The basic materials used in packaging are glass, metals (primarily aluminum and steel), an ever-growing range of plastics, paper and paperboard, wood, textiles for bags, and miscellaneous other materials (such as glues, inks, and other supplies). They are fabricated into rigid, semi-rigid, or flexible containers. The most common forms of these containers include cans, drums, bottles, cartons, boxes, bags, pouches, and wraps. Packaging products are, for the most part, low cost, bulky products that are manufactured close to their customers. There is virtually no import or export of packaging products. A material flow analysis can be developed that looks at all inputs to an industrial sector, inventories the losses in processing, and tracks the fate of the material after its useful life. An example is presented that identifies the material inputs to the packaging industry, and addresses the ultimate fate of the materials used. ?? 1996 International Association for Mathematical Geology.

  18. Dynamic lift on an artificial static armor layer during highly unsteady open channel flow

    OpenAIRE

    Spiller, Stephan Mark; Ruther, Nils; Friedrich, Heide

    2015-01-01

    The dynamic lift acting on a 100 mm × 100 mm section of a static armor layer during unsteady flow is directly measured in a series of physical experiments. The static armor layer is represented by an artificial streambed mold, made from an actual gravel bed. Data from a total of 190 experiments are presented, undertaken in identical conditions. Results show that during rapid discharge increases, the dynamic lift on the streambed repeatedly exhibits three clear peaks. The magnitude of the obse...

  19. Measurement of the resistivity of porous materials with an alternating air-flow method.

    Science.gov (United States)

    Dragonetti, Raffaele; Ianniello, Carmine; Romano, Rosario A

    2011-02-01

    Air-flow resistivity is a main parameter governing the acoustic behavior of porous materials for sound absorption. The international standard ISO 9053 specifies two different methods to measure the air-flow resistivity, namely a steady-state air-flow method and an alternating air-flow method. The latter is realized by the measurement of the sound pressure at 2 Hz in a small rigid volume closed partially by the test sample. This cavity is excited with a known volume-velocity sound source implemented often with a motor-driven piston oscillating with prescribed area and displacement magnitude. Measurements at 2 Hz require special instrumentation and care. The authors suggest an alternating air-flow method based on the ratio of sound pressures measured at frequencies higher than 2 Hz inside two cavities coupled through a conventional loudspeaker. The basic method showed that the imaginary part of the sound pressure ratio is useful for the evaluation of the air-flow resistance. Criteria are discussed about the choice of a frequency range suitable to perform simplified calculations with respect to the basic method. These criteria depend on the sample thickness, its nonacoustic parameters, and the measurement apparatus as well. The proposed measurement method was tested successfully with various types of acoustic materials.

  20. Experimental Analysis of the Vorticity and Turbulent Flow Dynamics of a Pitching Airfoil at Realistic Flight Conditions

    National Research Council Canada - National Science Library

    Bowersox, Rodney D; Sahoo, Dipankar

    2007-01-01

    The primary objective of this research proposal was improved understanding of the fundamental vorticity and turbulent flow physics for a dynamically stalling airfoil at realistic helicopter flight conditions...

  1. Influence of Wind Speed on Heat Flow through Polypropylene Insulating Material

    Institute of Scientific and Technical Information of China (English)

    SUN Yu-chai; CHENG Zhong-hao; FENG Xun-wei

    2006-01-01

    The heat transfer properties of polypropylene insulation at different ambient temperature against wind were analysed.A theoretical model of the combined conductive, convective and radiative heat flow through fibrous insulating material was presented. Detail study was carried out by using the finite element method. The theoretical results are in accordance to the experimental results which were accomplished in an artificial climate chamber.

  2. An artificial compressibility CBS method for modelling heat transfer and fluid flow in heterogeneous porous materials

    CSIR Research Space (South Africa)

    Malan, AG

    2011-08-01

    Full Text Available to modelling both forced convection as well as heat transfer and fluid flow through heterogeneous saturated porous materials via an edge-based finite volume discretization scheme. A volume-averaged set of local thermal disequilibrium governing equations...

  3. Material flows and economic models: an analytical comparison of SFA, LCA and partial equilibrium models

    NARCIS (Netherlands)

    Bouman, M.B.; Heijungs, R.; van der Voet, E.; van den Bergh, J.C.J.M.; Huppes, G.

    2000-01-01

    The growing concern for environmental problems in the current economy has spurred the study of the way materials and substances flow through the economy, resulting in many different types of analysis. Since all of these have their merits and shortcomings, much of the present theoretical research

  4. Trends in the balance and material flows of phosphorus in the Czech Republic.

    Czech Academy of Sciences Publication Activity Database

    Hejzlar, Josef; Vystavna, Yuliya; Kopáček, Jiří

    2016-01-01

    Roč. 2016, č. 4 (2016), s. 225-233 ISSN 1804-0195 R&D Projects: GA ČR(CZ) GA15-04034S Institutional support: RVO:60077344 Keywords : phosphorus cycle * material flow analysis * nutrient use efficiency * agricultural Subject RIV: DJ - Water Pollution ; Quality http://www.wasteforum.cz/cisla/WF_4_2016.pdf

  5. Applying Fuzzy and Probabilistic Uncertainty Concepts to the Material Flow Analysis of Palladium in Austria

    DEFF Research Database (Denmark)

    Laner, David; Rechberger, Helmut; Astrup, Thomas Fruergaard

    2015-01-01

    Material flow analysis (MFA) is a widely applied tool to investigate resource and recycling systems of metals and minerals. Owing to data limitations and restricted system understanding, MFA results are inherently uncertain. To demonstrate the systematic implementation of uncertainty analysis in ...

  6. Study of Material Flow of End-of-Life Computer Equipment (e-wastes ...

    African Journals Online (AJOL)

    In this study, a material flow model for the analysis of e-waste generation from computer equipment in Kaduna and Abuja in Nigeria has been developed and compared with that of Lagos which has been studied earlier. Data used to develop the models are the sales data from major distributors of electronics in the study ...

  7. Control of material flow in a combined backward can - forward rod extrusion

    DEFF Research Database (Denmark)

    Kuzman, K; Pfeifer, E; Bay, Niels

    1996-01-01

    of tool geometry, friction and lubrication as well as workpiece properties on balanced material flow in a combined extrusion process. The FEM analysis applying the DEFORM code has been used in order to predict the process parameters and to estimate its stability. The subsequent experimental verification...

  8. Engineering of modular material flow systems in the internet of things; Engineering von modularen Foerderanlagen im Internet der Dinge

    Energy Technology Data Exchange (ETDEWEB)

    Hompel, Michael ten; Nettstraeter, Andreas; Schier, Arkadius [Fraunhofer-Institut fuer Materialfluss und Logistik, Dortmund (Germany); Feldhorst, Sascha [TU Dortmund (Germany). Lehrstuhl fuer Foerder- und Lagerwesen

    2011-04-15

    This contribution describes new engineering concepts for modular conveyor systems. Through modularisation of mechanical material flow systems and the decentralisation of material flow control, the realisation of flexible and scalable systems is facilitated. We describe the concept of the internet of things in logistics and discuss benefits of this approach towards the efficiency of a material flow system. Subsequently, the main part of the paper deals with new ways for engineering such systems. (orig.)

  9. Synchronized renal blood flow dynamics mapped with wavelet analysis of laser speckle flowmetry data

    DEFF Research Database (Denmark)

    Brazhe, Alexey R; Marsh, Donald J; von Holstein-Rathlou, Niels-Henrik

    2014-01-01

    of rat kidneys. The regulatory mechanism in the renal microcirculation generates oscillations in arterial blood flow at several characteristic frequencies. Our approach to laser speckle image processing allows detection of frequency and phase entrainments, visualization of their patterns, and estimation......Full-field laser speckle microscopy provides real-time imaging of superficial blood flow rate. Here we apply continuous wavelet transform to time series of speckle-estimated blood flow from each pixel of the images to map synchronous patterns in instantaneous frequency and phase on the surface...... of the extent of synchronization in renal cortex dynamics....

  10. Nonlinear transport processes and fluid dynamics: Cylindrical Couette flow of Lennard-Jones fluids

    International Nuclear Information System (INIS)

    Khayat, R.E.; Eu, B.C.

    1988-01-01

    In this paper we report on calculations of flow profiles for cylindrical Couette flow of a Lennard-Jones fluid. The flow is subjected to a temperature gradient and thermoviscous effects are taken into consideration. We apply the generalized fluid dynamic equations which are provided by the modified moment method for the Boltzmann equation reported previously. The results of calculations are in good agreement with the Monte Carlo direct simulation method by K. Nanbu [Phys. Fluids 27, 2632 (1984)] for most of Knudsen numbers for which the simulation data are available

  11. In-vivo imaging of blood flow dynamics using color Doppler optical coherence tomography

    Science.gov (United States)

    Yazdanfar, Siavash; Rollins, Andrew M.; Izatt, Joseph A.

    2000-04-01

    Noninvasive quantitation of blood flow in the retinal micro circulation may elucidate the progression and treatment of ocular disorders including diabetic retinopathy, age-related degeneration, and glaucoma. Color Doppler optical coherence tomography was recently introduced as a technique allowing simultaneous micron-scale resolution cross-sectional imaging of tissue micro structure and blood flow in the human retina. Here, time-resolved imaging of dynamics of blood flow profiles was performed to measure cardiac pulsatility within retinal vessels. Retinal pulsatility has been shown to decrease throughout the progression of diabetic retinopathy.

  12. Experimental investigation of flow dynamics in the SNR-upper-core structure

    International Nuclear Information System (INIS)

    Meyer, L.

    1985-03-01

    This report describes the results of a simulant-material experimental investigation of flow dynamics in the upper-core (UCS) during a HCDA of a LMFBR. The experiments were designed to verify some of the thermal-hydraulic models in SIMMER-II. Four different liquids were used to simulate the flashing U0 2 ; and numerous parameter variations were made regarding initial pressure, temperature, and configurations of the test apparatus. The experiments showed the large effect of the heat transfer in the UCS and the relatively small effect of friction. The reduction in final kinetic energy by the presence of the UCS is shown as a function of the initial pressure and the temperature difference between core and UCS. Calculations with SIMMER-II for the wide range of experiments produced results for the kinetic energy within a factor of 2 of the experimental results without changing the crucial input parameters. The minimum droplet size during the flashing process and the structure-side heat transfer coefficient were determined to be the crucial and most sensitive parameters. This reflects deficiencies in modeling of both the flashing process and the transient heat conduction in the structure. (orig./HP) [de

  13. Turbulent flow structure at a discordant river confluence: Asymmetric jet dynamics with implications for channel morphology

    Science.gov (United States)

    Sukhodolov, Alexander N.; Krick, Julian; Sukhodolova, Tatiana A.; Cheng, Zhengyang; Rhoads, Bruce L.; Constantinescu, George S.

    2017-06-01

    Only a handful of field studies have examined turbulent flow structure at discordant confluences; the dynamics of flow at such confluences have mainly been examined in the laboratory. This paper reports results of a field-based investigation of turbulent flow structure at a discordant river confluence. These results support the hypothesis that flow at a discordant alluvial confluence with a velocity ratio greater than 2 exhibits jet-like characteristics. Scaling analysis shows that the dynamics of the jet core are quite similar to those of free jets but that the complex structure of flow at the confluence imposes strong effects that can locally suppress or enhance the spreading rate of the jet. This jet-like behavior of the flow has important implications for morphodynamic processes at these types of confluences. The highly energetic core of the jet at this discordant confluence is displaced away from the riverbed, thereby inhibiting scour; however, helical motion develops adjacent to the jet, particularly at high flows, which may promote scour. Numerical experiments demonstrate that the presence or absence of a depositional wedge at the mouth of the tributary can strongly influence detachment of the jet from the bed and the angle of the jet within the confluence.

  14. Development of subchannel void measurement sensor and multidimensional two-phase flow dynamics in rod bundle

    International Nuclear Information System (INIS)

    Arai, T.; Furuya, M.; Kanai, T.; Shirakawa, K.

    2011-01-01

    An accurate subchannel database is crucial for modeling the multidimensional two-phase flow in a rod bundle and for validating subchannel analysis codes. Based on available reference, it can be said that a point-measurement sensor for acquiring void fractions and bubble velocity distributions do not infer interactions of the subchannel flow dynamics, such as a cross flow and flow distribution, etc. In order to acquire multidimensional two-phase flow in a 10×10 rod bundle with an o.d. of 10 mm and 3110 mm length, a new sensor consisting of 11-wire by 11-wire and 10-rod by 10-rod electrodes was developed. Electric potential in the proximity region between two wires creates a void fraction in the center subchannel region, like a so-called wire mesh sensor. A unique aspect of the devised sensor is that the void fraction near the rod surface can be estimated from the electric potential in the proximity region between one wire and one rod. The additional 400 points of void fraction and phasic velocity in 10×10 bundle can therefore be acquired. The devised sensor exhibits the quasi three-dimensional flow structures, i.e. void fraction, phasic velocity and bubble chord length distributions. These quasi three-dimensional structures exhibit the complexity of two-phase flow dynamics, such as coalescence and the breakup of bubbles in transient phasic velocity distributions. (author)

  15. Lattice Boltzmann simulations for wall-flow dynamics in porous ceramic diesel particulate filters

    Science.gov (United States)

    Lee, Da Young; Lee, Gi Wook; Yoon, Kyu; Chun, Byoungjin; Jung, Hyun Wook

    2018-01-01

    Flows through porous filter walls of wall-flow diesel particulate filter are investigated using the lattice Boltzmann method (LBM). The microscopic model of the realistic filter wall is represented by randomly overlapped arrays of solid spheres. The LB simulation results are first validated by comparison to those from previous hydrodynamic theories and constitutive models for flows in porous media with simple regular and random solid-wall configurations. We demonstrate that the newly designed randomly overlapped array structures of porous walls allow reliable and accurate simulations for the porous wall-flow dynamics in a wide range of solid volume fractions from 0.01 to about 0.8, which is beyond the maximum random packing limit of 0.625. The permeable performance of porous media is scrutinized by changing the solid volume fraction and particle Reynolds number using Darcy's law and Forchheimer's extension in the laminar flow region.

  16. Multiphase Flow Dynamics 4 Turbulence, Gas Adsorption and Release, Diesel Fuel Properties

    CERN Document Server

    Kolev, Nikolay Ivanov

    2012-01-01

    The present Volume 4 of the successful monograh package “Multiphase Flow Dynamics”is devoted to selected Chapters of the multiphase fluid dynamics that are important for practical applications but did not find place in the previous volumes. The state of the art of the turbulence modeling in multiphase flows is presented. As introduction, some basics of the single phase boundary layer theory including some important scales and flow oscillation characteristics in pipes and rod bundles are presented. Then the scales characterizing the dispersed flow systems are presented. The description of the turbulence is provided at different level of complexity: simple algebraic models for eddy viscosity, simple algebraic models based on the Boussinesq hypothesis, modification of the boundary layer share due to modification of the bulk turbulence, modification of the boundary layer share due to nucleate boiling. The role of the following forces on the mathematical description of turbulent flows is discussed: the lift fo...

  17. Dynamic fluid connectivity during steady-state multiphase flow in a sandstone.

    Science.gov (United States)

    Reynolds, Catriona A; Menke, Hannah; Andrew, Matthew; Blunt, Martin J; Krevor, Samuel

    2017-08-01

    The current conceptual picture of steady-state multiphase Darcy flow in porous media is that the fluid phases organize into separate flow pathways with stable interfaces. Here we demonstrate a previously unobserved type of steady-state flow behavior, which we term "dynamic connectivity," using fast pore-scale X-ray imaging. We image the flow of N 2 and brine through a permeable sandstone at subsurface reservoir conditions, and low capillary numbers, and at constant fluid saturation. At any instant, the network of pores filled with the nonwetting phase is not necessarily connected. Flow occurs along pathways that periodically reconnect, like cars controlled by traffic lights. This behavior is consistent with an energy balance, where some of the energy of the injected fluids is sporadically converted to create new interfaces.

  18. Computational modeling of lava domes using particle dynamics to investigate the effect of conduit flow mechanics on flow patterns

    Science.gov (United States)

    Husain, Taha Murtuza

    Large (1--4 x 106 m3) to major (> 4 x 106 m3) dome collapses for andesitic lava domes such as Soufriere Hills Volcano, Montserrat are observed for elevated magma discharge rates (6--13 m3/s). The gas rich magma pulses lead to pressure build up in the lava dome that result in structural failure of the over steepened canyon-like walls which may lead to rockfall or pyroclastic flow. This indicates that dome collapse intimately related to magma extrusion rate. Variation in magma extrusion rate for open-system magma chambers is observed to follow alternating periods of high and low activity. Periodic behavior of magma exhibits a rich diversity in the nature of its eruptive history due to variation in magma chamber size, total crystal content, linear crystal growth rate and magma replenishment rate. Distinguished patterns of growth were observed at different magma flow rates ranging from endogenous to exogenous dome growth for magma with varying strengths. Determining the key parameters that control the transition in flow pattern of the magma during its lava dome building eruption is the main focus. This dissertation examines the mechanical effects on the morphology of the evolving lava dome on the extrusion of magma from a central vent using a 2D particle dynamics model. The particle dynamics model is coupled with a conduit flow model that incorporates the kinetics of crystallization and rheological stiffening to investigate important mechanisms during lava dome building eruptions. Chapter I of this dissertation explores lava dome growth and failure mechanics using a two-dimensional particle-dynamics model. The model follows the evolution of fractured lava, with solidification driven by degassing induced crystallization of magma. The particle-dynamics model emulates the natural development of dome growth and rearrangement of the lava dome which is difficult in mesh-based analyses due to mesh entanglement effects. The deformable talus evolves naturally as a frictional

  19. Rheological analysis of fine-grained natural debris-flow material

    Science.gov (United States)

    Major, Jon J.; Pierson, Thomas C.; ,

    1990-01-01

    Experiments were conducted on large samples of fine-grained material (???2mm) from a natural debris flow using a wide-gap concentric-cylinder viscometer. The rheological behavior of this material is compatible with a Bingham model at shear rates in excess of 5 sec. At lesser shear rates, rheological behavior of the material deviates from the Bingham model, and when sand concentration of the slurry exceeds 20 percent by volume, particle interaction between sand grains dominates the mechanical behavior. Yield strength and plastic viscosity are extremely sensitive to sediment concentration.

  20. Measurements of particle dynamics in slow, dense granular Couette flow

    Science.gov (United States)

    Mueth, Daniel M.

    2003-01-01

    Experimental measurements of particle dynamics on the lower surface of a three-dimensional (3D) Couette cell containing monodisperse spheres are reported. The average radial density and velocity profiles are similar to those previously measured within the bulk and on the lower surface of the 3D cell filled with mustard seeds. Observations of the evolution of particle velocities over time reveal distinct motion events, intervals where previously stationary particles move for a short duration before jamming again. The cross correlation between the velocities of two particles at a given distance r from the moving wall reveals a characteristic length scale over which the particles are correlated. The autocorrelation of a single particle’s velocity reveals a characteristic time scale τ, which decreases with increasing distance from the inner moving wall. This may be attributed to the increasing rarity at which the discrete motion events occur and the reduced duration of those events at large r. The relationship between the rms azimuthal velocity fluctuations, δvθ(r), and average shear rate, γ˙(r), was found to be δvθ∝γ˙α with α=0.52±0.04. These observations are compared with other recent experiments and with the modified hydrodynamic model recently introduced by Bocquet et al.