WorldWideScience

Sample records for dynamic magnetic fields

  1. Magnetic field induced dynamical chaos.

    Science.gov (United States)

    Ray, Somrita; Baura, Alendu; Bag, Bidhan Chandra

    2013-12-01

    In this article, we have studied the dynamics of a particle having charge in the presence of a magnetic field. The motion of the particle is confined in the x-y plane under a two dimensional nonlinear potential. We have shown that constant magnetic field induced dynamical chaos is possible even for a force which is derived from a simple potential. For a given strength of the magnetic field, initial position, and velocity of the particle, the dynamics may be regular, but it may become chaotic when the field is time dependent. Chaotic dynamics is very often if the field is time dependent. Origin of chaos has been explored using the Hamiltonian function of the dynamics in terms of action and angle variables. Applicability of the present study has been discussed with a few examples.

  2. Dynamic rheological properties of viscoelastic magnetic fluids in uniform magnetic fields

    International Nuclear Information System (INIS)

    Yamaguchi, Hiroshi; Niu Xiaodong; Ye Xiaojiang; Li Mingjun; Iwamoto, Yuhiro

    2012-01-01

    The dynamic rheological properties of viscoelastic magnetic fluids in externally applied uniform magnetic fields are investigated by a laboratory-made cone-plate rheometer in this study. In particular, the effects of the magnetic field on the viscoelastic properties (the complex dynamic modulus) of the viscoelastic magnetic fluids are studied. In the investigation, three viscoelastic magnetic fluids are made by mixing a magnetic fluid and a viscoelastic fluid with different mass ratios. As a supplementation to the experimental investigation, a theoretical analysis is also presented. The present study shows that the viscosity and elasticity of the viscoelastic magnetic fluids are significantly influenced by the magnetic field and the concentrations of the magnetic particles in the test fluids. Theoretical analysis qualitatively explains the present findings. - Highlights: ► The dynamic rheological properties of the viscoelastic magnetic fluids in uniform magnetic fields are investigated. ► Both the magnetic field strength and the concentration of the magnetic particles in the fluids have significant effects on the viscosity and elasticity of the viscoelastic magnetic fluids. ► Theoretical prediction and analysis qualitatively explains the present findings.

  3. Dynamic shielding of the magnetic fields

    Directory of Open Access Journals (Sweden)

    RAU, M.

    2010-11-01

    Full Text Available The paper presents a comparative study of the methods used to control and compensate the direct and alternative magnetic fields. Two frequently used methods in the electromagnetic compatibility of the complex biomagnetism installations were analyzed. The two methods refer to the use of inductive magnetic field sensors (only for alternative fields and of fluxgate magnetometers as active transducers which measures both the direct and alternative components of the magnetic field. The applications of the dynamic control of the magnetic field are: control of the magnetic field of the military ships, control of parasite magnetic field produced by power transformers and the electrical networks, protection of the mass spectrometers, electronic microscopes, SQUID and optical pumping magnetometers for applications in biomagnetism.

  4. Electron dynamics in inhomogeneous magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Nogaret, Alain, E-mail: A.R.Nogaret@bath.ac.u [Department of Physics, University of Bath, Bath BA2 7AY (United Kingdom)

    2010-06-30

    This review explores the dynamics of two-dimensional electrons in magnetic potentials that vary on scales smaller than the mean free path. The physics of microscopically inhomogeneous magnetic fields relates to important fundamental problems in the fractional quantum Hall effect, superconductivity, spintronics and graphene physics and spins out promising applications which will be described here. After introducing the initial work done on electron localization in random magnetic fields, the experimental methods for fabricating magnetic potentials are presented. Drift-diffusion phenomena are then described, which include commensurability oscillations, magnetic channelling, resistance resonance effects and magnetic dots. We then review quantum phenomena in magnetic potentials including magnetic quantum wires, magnetic minibands in superlattices, rectification by snake states, quantum tunnelling and Klein tunnelling. The third part is devoted to spintronics in inhomogeneous magnetic fields. This covers spin filtering by magnetic field gradients and circular magnetic fields, electrically induced spin resonance, spin resonance fluorescence and coherent spin manipulation. (topical review)

  5. Dynamical mass generation in QED with weak magnetic fields

    International Nuclear Information System (INIS)

    Ayala, A.; Rojas, E.; Bashir, A.; Raya, A.

    2006-01-01

    We study the dynamical generation of masses for fundamental fermions in quenched quantum electrodynamics in the presence of magnetic fields using Schwinger-Dyson equations. We show that, contrary to the case where the magnetic field is strong, in the weak field limit eB << m(0)2, where m(0) is the value of the dynamically generated mass in the absence of the magnetic field, masses are generated above a critical value of the coupling and that this value is the same as in the case with no magnetic field. We carry out a numerical analysis to study the magnetic field dependence of the mass function above critical coupling and show that in this regime the dynamically generated mass and the chiral condensate for the lowest Landau level increase proportionally to (eB)2

  6. Electric arc behaviour in dynamic magnetic fields

    International Nuclear Information System (INIS)

    Put'ko, V.F.

    2000-01-01

    The behaviour of an electric arc in different time-dependent (dynamic) magnetic fields was investigated. New possibilities were found for spatial and energy stabilisation of a discharge, for intensifying heat exchange, extending the electric arc and distributed control of electric arc plasma. Rotating, alternating and travelling magnetic fields were studied. It was found that under the effect of a relatively low frequency of variations of dynamic magnetic fields (f 1000 Hz) the arc stabilised at the axis of the discharge chamber, the pulsation level decreased and discharge stability increased. The borders between these two arc existence modes were formed by a certain critical field variation frequency the period of which was determined by the heat relaxation time of the discharge. (author)

  7. Effect of sample shape on nonlinear magnetization dynamics under an external magnetic field

    International Nuclear Information System (INIS)

    Vagin, Dmitry V.; Polyakov, Oleg P.

    2008-01-01

    Effect of sample shape on the nonlinear collective dynamics of magnetic moments in the presence of oscillating and constant external magnetic fields is studied using the Landau-Lifshitz-Gilbert (LLG) approach. The uniformly magnetized sample is considered to be an ellipsoidal axially symmetric particle described by demagnetization factors and uniaxial crystallographic anisotropy formed some angle with an applied field direction. It is investigated as to how the change in particle shape affects its nonlinear magnetization dynamics. To produce a regular study, all results are presented in the form of bifurcation diagrams for all sufficient dynamics regimes of the considered system. In this paper, we show that the sample's (particle's) shape and its orientation with respect to the external field (system configuration) determine the character of magnetization dynamics: deterministic behavior and appearance of chaotic states. A simple change in the system's configuration or in the shapes of its parts can transfer it from chaotic to periodic or even static regime and back. Moreover, the effect of magnetization precession stall and magnetic moments alignment parallel or antiparallel to the external oscillating field is revealed and the way of control of such 'polarized' states is found. Our results suggest that varying the particle's shape and fields' geometry may provide a useful way of magnetization dynamics control in complex magnetic systems

  8. Fractional dynamics of charged particles in magnetic fields

    Science.gov (United States)

    Coronel-Escamilla, A.; Gómez-Aguilar, J. F.; Alvarado-Méndez, E.; Guerrero-Ramírez, G. V.; Escobar-Jiménez, R. F.

    2016-02-01

    In many physical applications the electrons play a relevant role. For example, when a beam of electrons accelerated to relativistic velocities is used as an active medium to generate Free Electron Lasers (FEL), the electrons are bound to atoms, but move freely in a magnetic field. The relaxation time, longitudinal effects and transverse variations of the optical field are parameters that play an important role in the efficiency of this laser. The electron dynamics in a magnetic field is a means of radiation source for coupling to the electric field. The transverse motion of the electrons leads to either gain or loss energy from or to the field, depending on the position of the particle regarding the phase of the external radiation field. Due to the importance to know with great certainty the displacement of charged particles in a magnetic field, in this work we study the fractional dynamics of charged particles in magnetic fields. Newton’s second law is considered and the order of the fractional differential equation is (0;1]. Based on the Grünwald-Letnikov (GL) definition, the discretization of fractional differential equations is reported to get numerical simulations. Comparison between the numerical solutions obtained on Euler’s numerical method for the classical case and the GL definition in the fractional approach proves the good performance of the numerical scheme applied. Three application examples are shown: constant magnetic field, ramp magnetic field and harmonic magnetic field. In the first example the results obtained show bistability. Dissipative effects are observed in the system and the standard dynamic is recovered when the order of the fractional derivative is 1.

  9. Magnetic-flux dynamics of high-Tc superconductors in weak magnetic fields

    DEFF Research Database (Denmark)

    Il’ichev, E. V.; Jacobsen, Claus Schelde

    1994-01-01

    Aspects of magnetic-flux dynamics in different types of samples of the high-temperature superconductor YBa2Cu3Ox have been investigated in magnetic fields below 1 Oe and at 77 K. The experiments were carried out in an arrangement including a field coil, a flat sample perpendicular to the field...

  10. The magnetic field dependent dynamic properties of magnetorheological elastomers based on hard magnetic particles

    Science.gov (United States)

    Wen, Qianqian; Wang, Yu; Gong, Xinglong

    2017-07-01

    In this study, novel magnetorheological elastomers based on hard magnetic particles (H-MREs) were developed and the magnetic field dependent dynamic properties of the H-MREs were further investigated. The storage modulus of H-MREs could not only be increased by increasing magnetic field but also be decreased by the increasing magnetic field of opposite orientation. For the anisotropic H-MREs with 80 wt% NdFeB particles, the field-induced increasing and decreasing modulus was 426 kPa and 118 kPa respectively. Moreover, the dynamic performances of H-MREs significantly depended on the pre-structure magnetic field, magnetizing field and test magnetic field. The H-MREs were initially magnetized and formed the chain-like microstructure by the pre-structure magnetic field. The field-induced increasing and decreasing modulus of H-MREs both raised with increasing of the magnetizing field. When the magnetizing field increased from 400 to 1200 kA m-1, the field induced decreasing modulus of the 80 wt% isotropic H-MREs raised from 3 to 47 kPa. The magnetic field dependent curves of H-MREs’ storage modulus were asymmetric if the magnetizing field was higher than the test magnetic field. Based on the dipolar model of MREs and magnetic properties of hard magnetic material, a reasonable explanation was proposed to understand the H-MREs’ field dependent mechanical behaviors.

  11. Dynamical anisotropic response of black phosphorus under magnetic field

    Science.gov (United States)

    Liu, Xuefeng; Lu, Wei; Zhou, Xiaoying; Zhou, Yang; Zhang, Chenglong; Lai, Jiawei; Ge, Shaofeng; Sekhar, M. Chandra; Jia, Shuang; Chang, Kai; Sun, Dong

    2018-04-01

    Black phosphorus (BP) has emerged as a promising material candidate for next generation electronic and optoelectronic devices due to its high mobility, tunable band gap and highly anisotropic properties. In this work, polarization resolved ultrafast mid-infrared transient reflection spectroscopy measurements are performed to study the dynamical anisotropic optical properties of BP under magnetic fields up to 9 T. The relaxation dynamics of photoexcited carrier is found to be insensitive to the applied magnetic field due to the broadening of the Landau levels and large effective mass of carriers. While the anisotropic optical response of BP decreases with increasing magnetic field, its enhancement due to the excitation of hot carriers is similar to that without magnetic field. These experimental results can be well interpreted by the magneto-optical conductivity of the Landau levels of BP thin film, based on an effective k · p Hamiltonian and linear response theory. These findings suggest attractive possibilities of multi-dimensional control of anisotropic response (AR) of BP with light, electric and magnetic field, which further introduces BP to the fantastic magnetic field sensitive applications.

  12. Orbital effect of the magnetic field in dynamical mean-field theory

    Science.gov (United States)

    Acheche, S.; Arsenault, L.-F.; Tremblay, A.-M. S.

    2017-12-01

    The availability of large magnetic fields at international facilities and of simulated magnetic fields that can reach the flux-quantum-per-unit-area level in cold atoms calls for systematic studies of orbital effects of the magnetic field on the self-energy of interacting systems. Here we demonstrate theoretically that orbital effects of magnetic fields can be treated within single-site dynamical mean-field theory with a translationally invariant quantum impurity problem. As an example, we study the one-band Hubbard model on the square lattice using iterated perturbation theory as an impurity solver. We recover the expected quantum oscillations in the scattering rate, and we show that the magnetic fields allow the interaction-induced effective mass to be measured through the single-particle density of states accessible in tunneling experiments. The orbital effect of magnetic fields on scattering becomes particularly important in the Hofstadter butterfly regime.

  13. Magnetic stochasticity in magnetically confined fusion plasmas chaos of field lines and charged particle dynamics

    CERN Document Server

    Abdullaev, Sadrilla

    2014-01-01

    This is the first book to systematically consider the modern aspects of chaotic dynamics of magnetic field lines and charged particles in magnetically confined fusion plasmas.  The analytical models describing the generic features of equilibrium magnetic fields and  magnetic perturbations in modern fusion devices are presented. It describes mathematical and physical aspects of onset of chaos, generic properties of the structure of stochastic magnetic fields, transport of charged particles in tokamaks induced by magnetic perturbations, new aspects of particle turbulent transport, etc. The presentation is based on the classical and new unique mathematical tools of Hamiltonian dynamics, like the action--angle formalism, classical perturbation theory, canonical transformations of variables, symplectic mappings, the Poincaré-Melnikov integrals. They are extensively used for analytical studies as well as for numerical simulations of magnetic field lines, particle dynamics, their spatial structures and  statisti...

  14. Tunable dynamic response of magnetic gels: Impact of structural properties and magnetic fields

    Science.gov (United States)

    Tarama, Mitsusuke; Cremer, Peet; Borin, Dmitry Y.; Odenbach, Stefan; Löwen, Hartmut; Menzel, Andreas M.

    2014-10-01

    Ferrogels and magnetic elastomers feature mechanical properties that can be reversibly tuned from outside through magnetic fields. Here we concentrate on the question of how their dynamic response can be adjusted. The influence of three factors on the dynamic behavior is demonstrated using appropriate minimal models: first, the orientational memory imprinted into one class of the materials during their synthesis; second, the structural arrangement of the magnetic particles in the materials; and third, the strength of an external magnetic field. To illustrate the latter point, structural data are extracted from a real experimental sample and analyzed. Understanding how internal structural properties and external influences impact the dominant dynamical properties helps to design materials that optimize the requested behavior.

  15. The dynamic behavior of magnetic fluid adsorbed to small permanent magnet in alternating magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Sudo, Seiichi, E-mail: sudo@akita-pu.ac.j [Faculty of Systems Science and Technology, Akita Prefectural University, Ebinokuchi 84-4, Yurihonjo 015-0055 (Japan); Asano, Daisaku [Faculty of Systems Science and Technology, Akita Prefectural University, Ebinokuchi 84-4, Yurihonjo 015-0055 (Japan); Takana, Hidemasa; Nishiyama, Hideya [Institute of Fluid Science, Tohoku University, Katahira 2-1-1, Aobaku, Sendai 980-8577 (Japan)

    2011-05-15

    The dynamic behavior of a magnetic fluid adsorbed to a small NdFeB permanent magnet subjected to an alternating magnetic field was studied with a high speed video camera system. The directions of alternating magnetic field are parallel and opposite to that of the permanent magnet. It was found that the surface of magnetic fluid responds to the external alternating magnetic field in elongation and contraction with a lot of spikes. Generation of a capillary magnetic fluid jet was observed in the neighbourhood of a specific frequency of alternating field. The effect of gravitational force on surface phenomena of magnetic fluid adsorbed to the permanent magnet was revealed. - Research Highlights: Magnetic fluid of the system responds to alternating magnetic field with higher frequencies. Large-amplitude surface motions of magnetic fluid occur at the specific frequencies of the external field. Capillary jets of magnetic fluid are generated at the natural frequency of the system.

  16. Dynamics of molecular superrotors in an external magnetic field

    Science.gov (United States)

    Korobenko, Aleksey; Milner, Valery

    2015-08-01

    We excite diatomic oxygen and nitrogen to high rotational states with an optical centrifuge and study their dynamics in an external magnetic field. Ion imaging is employed to directly visualize, and follow in time, the rotation plane of the molecular superrotors. The two different mechanisms of interaction between the magnetic field and the molecular angular momentum in paramagnetic oxygen and non-magnetic nitrogen lead to qualitatively different behaviour. In nitrogen, we observe the precession of the molecular angular momentum around the field vector. In oxygen, strong spin-rotation coupling results in faster and richer dynamics, encompassing the splitting of the rotation plane into three separate components. As the centrifuged molecules evolve with no significant dispersion of the molecular wave function, the observed magnetic interaction presents an efficient mechanism for controlling the plane of molecular rotation.

  17. Dynamic magnetic behavior of the mixed-spin bilayer system in an oscillating field within the mean-field theory

    International Nuclear Information System (INIS)

    Ertaş, Mehmet; Keskin, Mustafa

    2012-01-01

    The dynamic magnetic behavior of the mixed Ising bilayer system (σ=2 and S=5/2), with a crystal-field interaction in an oscillating field are studied, within the mean-field approach, by using the Glauber-type stochastic dynamics for both ferromagnetic/ferromagnetic and antiferromagnetic/ferromagnetic interactions. The time variations of average magnetizations and the temperature dependence of the dynamic magnetizations are investigated. The dynamic phase diagrams are presented in the reduced temperature and magnetic field amplitude plane and they exhibit several ordered phases, coexistence phase regions and critical points as well as a re-entrant behavior depending on interaction parameters. -- Highlights: ► Dynamic magnetic behavior of the mixed Ising bilayer system is investigated within the Glauber-type stochastic dynamics. ► The time variations of average magnetizations are studied to find the phases. ► The temperature dependence of the dynamic magnetizations is investigated to obtain the dynamic phase transition points. ► The dynamic phase diagrams are presented and they exhibit several ordered phases, coexistence phase regions and critical points as well as a re-entrant behavior.

  18. Dynamic magnetic behavior of the mixed-spin bilayer system in an oscillating field within the mean-field theory

    Energy Technology Data Exchange (ETDEWEB)

    Ertaş, Mehmet [Department of Physics, Erciyes University, 38039 Kayseri (Turkey); Keskin, Mustafa, E-mail: keskin@erciyes.edu.tr [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)

    2012-07-23

    The dynamic magnetic behavior of the mixed Ising bilayer system (σ=2 and S=5/2), with a crystal-field interaction in an oscillating field are studied, within the mean-field approach, by using the Glauber-type stochastic dynamics for both ferromagnetic/ferromagnetic and antiferromagnetic/ferromagnetic interactions. The time variations of average magnetizations and the temperature dependence of the dynamic magnetizations are investigated. The dynamic phase diagrams are presented in the reduced temperature and magnetic field amplitude plane and they exhibit several ordered phases, coexistence phase regions and critical points as well as a re-entrant behavior depending on interaction parameters. -- Highlights: ► Dynamic magnetic behavior of the mixed Ising bilayer system is investigated within the Glauber-type stochastic dynamics. ► The time variations of average magnetizations are studied to find the phases. ► The temperature dependence of the dynamic magnetizations is investigated to obtain the dynamic phase transition points. ► The dynamic phase diagrams are presented and they exhibit several ordered phases, coexistence phase regions and critical points as well as a re-entrant behavior.

  19. Dynamics of molecular superrotors in an external magnetic field

    International Nuclear Information System (INIS)

    Korobenko, Aleksey; Milner, Valery

    2015-01-01

    We excite diatomic oxygen and nitrogen to high rotational states with an optical centrifuge and study their dynamics in an external magnetic field. Ion imaging is employed to directly visualize, and follow in time, the rotation plane of the molecular superrotors. The two different mechanisms of interaction between the magnetic field and the molecular angular momentum in paramagnetic oxygen and non-magnetic nitrogen lead to qualitatively different behaviour. In nitrogen, we observe the precession of the molecular angular momentum around the field vector. In oxygen, strong spin–rotation coupling results in faster and richer dynamics, encompassing the splitting of the rotation plane into three separate components. As the centrifuged molecules evolve with no significant dispersion of the molecular wave function, the observed magnetic interaction presents an efficient mechanism for controlling the plane of molecular rotation. (paper)

  20. Dynamically important magnetic fields near accreting supermassive black holes.

    Science.gov (United States)

    Zamaninasab, M; Clausen-Brown, E; Savolainen, T; Tchekhovskoy, A

    2014-06-05

    Accreting supermassive black holes at the centres of active galaxies often produce 'jets'--collimated bipolar outflows of relativistic particles. Magnetic fields probably play a critical role in jet formation and in accretion disk physics. A dynamically important magnetic field was recently found near the Galactic Centre black hole. If this is common and if the field continues to near the black hole event horizon, disk structures will be affected, invalidating assumptions made in standard models. Here we report that jet magnetic field and accretion disk luminosity are tightly correlated over seven orders of magnitude for a sample of 76 radio-loud active galaxies. We conclude that the jet-launching regions of these radio-loud galaxies are threaded by dynamically important fields, which will affect the disk properties. These fields obstruct gas infall, compress the accretion disk vertically, slow down the disk rotation by carrying away its angular momentum in an outflow and determine the directionality of jets.

  1. Real time visualization of dynamic magnetic fields with a nanomagnetic ferrolens

    Science.gov (United States)

    Markoulakis, Emmanouil; Rigakis, Iraklis; Chatzakis, John; Konstantaras, Antonios; Antonidakis, Emmanuel

    2018-04-01

    Due to advancements in nanomagnetism and latest nanomagnetic materials and devices, a new potential field has been opened up for research and applications which was not possible before. We herein propose a new research field and application for nanomagnetism for the visualization of dynamic magnetic fields in real-time. In short, Nano Magnetic Vision. A new methodology, technique and apparatus were invented and prototyped in order to demonstrate and test this new application. As an application example the visualization of the dynamic magnetic field on a transmitting antenna was chosen. Never seen before high-resolution, photos and real-time color video revealing the actual dynamic magnetic field inside a transmitting radio antenna rod has been captured for the first time. The antenna rod is fed with six hundred volts, orthogonal pulses. This unipolar signal is in the very low frequency (i.e. VLF) range. The signal combined with an extremely short electrical length of the rod, ensures the generation of a relatively strong fluctuating magnetic field, analogue to the signal transmitted, along and inside the antenna. This field is induced into a ferrolens and becomes visible in real-time within the normal human eyes frequency spectrum. The name we have given to the new observation apparatus is, SPIONs Superparamagnetic Ferrolens Microscope (SSFM), a powerful passive scientific observation tool with many other potential applications in the near future.

  2. Dynamic phase transitions and dynamic phase diagrams of the spin-2 Blume-Capel model under an oscillating magnetic field within the effective-field theory

    Energy Technology Data Exchange (ETDEWEB)

    Ertas, Mehmet [Department of Physics, Erciyes University, 38039 Kayseri (Turkey); Institute of Science, Erciyes University, 38039 Kayseri (Turkey); Deviren, Bayram [Department of Physics, Nevsehir University, 50300 Nevsehir (Turkey); Keskin, Mustafa, E-mail: keskin@erciyes.edu.tr [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)

    2012-03-15

    The dynamic phase transitions are studied in the kinetic spin-2 Blume-Capel model under a time-dependent oscillating magnetic field using the effective-field theory with correlations. The effective-field dynamic equation for the average magnetization is derived by employing the Glauber transition rates and the phases in the system are obtained by solving this dynamic equation. The nature (first- or second-order) of the dynamic phase transition is characterized by investigating the thermal behavior of the dynamic magnetization and the dynamic phase transition temperatures are obtained. The dynamic phase diagrams are constructed in the reduced temperature and magnetic field amplitude plane and are of seven fundamental types. Phase diagrams contain the paramagnetic (P), ferromagnetic-2 (F{sub 2}) and three coexistence or mixed phase regions, namely the F{sub 2}+P, F{sub 1}+P and F{sub 2}+F{sub 1}+P, which strongly depend on the crystal-field interaction (D) parameter. The system also exhibits the dynamic tricritical behavior. - Highlights: Black-Right-Pointing-Pointer Dynamic phase transitions are studied in spin-2 BC model using EFT. Black-Right-Pointing-Pointer Dynamic phase diagrams are constructed in (T/zJ, h/zJ) plane. Black-Right-Pointing-Pointer Seven fundamental types of dynamic phase diagrams are found in the system. Black-Right-Pointing-Pointer System exhibits dynamic tricritical behavior.

  3. Dynamic phase diagrams of the Ising metamagnet in an oscillating magnetic field within the effective-field theory

    Energy Technology Data Exchange (ETDEWEB)

    Deviren, Bayram [Department of Physics, Nevsehir University, 50300 Nevsehir (Turkey); Institute of Science, Erciyes University, 38039 Kayseri (Turkey); Keskin, Mustafa, E-mail: keskin@erciyes.edu.t [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)

    2010-07-12

    Dynamic aspects of a two-sublattice Ising metamagnet on honeycomb, square and hexagonal lattices under the presence of a time-dependent oscillating external magnetic field are studied by using the effective-field theory with correlations. The set of effective-field dynamic equations is derived by employing Glauber transition rates. The phases in the system are obtained by solving these dynamic equations. The thermal behavior of the dynamic staggered magnetization, the hysteresis loop area and correlation are investigated in order to characterize the nature of the dynamic transitions and to obtain dynamic phase transition temperatures. The phase diagrams are constructed in two different planes, and exhibit dynamic tricritical behavior, which strongly depends on interaction parameters. In order to investigate the spin correlation effect on the dynamic phase diagrams of the system, the results are also given within the framework of the dynamic mean-field approximation.

  4. Dynamic phase diagrams of the Ising metamagnet in an oscillating magnetic field within the effective-field theory

    International Nuclear Information System (INIS)

    Deviren, Bayram; Keskin, Mustafa

    2010-01-01

    Dynamic aspects of a two-sublattice Ising metamagnet on honeycomb, square and hexagonal lattices under the presence of a time-dependent oscillating external magnetic field are studied by using the effective-field theory with correlations. The set of effective-field dynamic equations is derived by employing Glauber transition rates. The phases in the system are obtained by solving these dynamic equations. The thermal behavior of the dynamic staggered magnetization, the hysteresis loop area and correlation are investigated in order to characterize the nature of the dynamic transitions and to obtain dynamic phase transition temperatures. The phase diagrams are constructed in two different planes, and exhibit dynamic tricritical behavior, which strongly depends on interaction parameters. In order to investigate the spin correlation effect on the dynamic phase diagrams of the system, the results are also given within the framework of the dynamic mean-field approximation.

  5. Disaggregation and separation dynamics of magnetic particles in a microfluidic flow under an alternating gradient magnetic field

    Science.gov (United States)

    Cao, Quanliang; Li, Zhenhao; Wang, Zhen; Qi, Fan; Han, Xiaotao

    2018-05-01

    How to prevent particle aggregation in the magnetic separation process is of great importance for high-purity separation, while it is a challenging issue in practice. In this work, we report a novel method to solve this problem for improving the selectivity of size-based separation by use of a gradient alternating magnetic field. The specially designed magnetic field is capable of dynamically adjusting the magnetic field direction without changing the direction of magnetic gradient force acting on the particles. Using direct numerical simulations, we show that particles within a certain center-to-center distance are inseparable under a gradient static magnetic field since they are easy aggregated and then start moving together. By contrast, it has been demonstrated that alternating repulsive and attractive interaction forces between particles can be generated to avoid the formation of aggregations when the alternating gradient magnetic field with a given alternating frequency is applied, enabling these particles to be continuously separated based on size-dependent properties. The proposed magnetic separation method and simulation results have the significance for fundamental understanding of particle dynamic behavior and improving the separation efficiency.

  6. Dynamics of colloidal systems of magnetic nanoparticles under influence of magnetic fields investigated by XPCS

    International Nuclear Information System (INIS)

    Schavkan, Alexander

    2017-05-01

    This thesis investigates structural properties and the underlying microscopic dynamics of suspensions of α-FeOOH goethite platelets in water under the influence of magnetic fields. Goethite particles show unusual physical properties and a rich phase diagram, which makes their suspensions an object of high interest for research in the area of ''smart nanoparticles''. Five nanoparticle concentrations were chosen such that different liquid crystal phases could be studied. The suspensions of platelets of these chosen concentrations were exposed to magnetic fields of varying strength. Small angle X-ray scattering and X-ray photon correlation spectroscopy data were taken and evaluated. The appearing phases and phase transitions were studied as a function of concentration and applied magnetic field. For this purpose, order parameters, ellipticity, radial and azimuthal peak positions and widths of scattering features were investigated to clarify the structural properties in detail. For the analysis of the underlying dynamics, the relaxation rates and the shape of measured time correlation functions were evaluated. The results show that with increasing magnetic field a partial realignment of the platelets occurs. This realignment is connected to the magnetic properties of the particles. The dynamics of the corresponding phases revealed a dependence on the concentration of nanoparticles in the suspension. At a concentration of c=20 vol% the transition from the nematic to the anti-nematic phase traverses a mixed state. The nematic and anti-nematic phases show ballistic motion and very similar properties, even though a realignment of the particles from an orientation with the long axis parallel to the applied magnetic field in the nematic phase to an orientation with the long axis perpendicular to the magnetic field in the anti-nematic phase occurs. The mixed state of 20 vol%-suspension exhibits a diffusive motion of the particles and different characteristics. A significant

  7. Dynamics of colloidal systems of magnetic nanoparticles under influence of magnetic fields investigated by XPCS

    Energy Technology Data Exchange (ETDEWEB)

    Schavkan, Alexander

    2017-05-15

    This thesis investigates structural properties and the underlying microscopic dynamics of suspensions of α-FeOOH goethite platelets in water under the influence of magnetic fields. Goethite particles show unusual physical properties and a rich phase diagram, which makes their suspensions an object of high interest for research in the area of ''smart nanoparticles''. Five nanoparticle concentrations were chosen such that different liquid crystal phases could be studied. The suspensions of platelets of these chosen concentrations were exposed to magnetic fields of varying strength. Small angle X-ray scattering and X-ray photon correlation spectroscopy data were taken and evaluated. The appearing phases and phase transitions were studied as a function of concentration and applied magnetic field. For this purpose, order parameters, ellipticity, radial and azimuthal peak positions and widths of scattering features were investigated to clarify the structural properties in detail. For the analysis of the underlying dynamics, the relaxation rates and the shape of measured time correlation functions were evaluated. The results show that with increasing magnetic field a partial realignment of the platelets occurs. This realignment is connected to the magnetic properties of the particles. The dynamics of the corresponding phases revealed a dependence on the concentration of nanoparticles in the suspension. At a concentration of c=20 vol% the transition from the nematic to the anti-nematic phase traverses a mixed state. The nematic and anti-nematic phases show ballistic motion and very similar properties, even though a realignment of the particles from an orientation with the long axis parallel to the applied magnetic field in the nematic phase to an orientation with the long axis perpendicular to the magnetic field in the anti-nematic phase occurs. The mixed state of 20 vol%-suspension exhibits a diffusive motion of the particles and different

  8. Fast-forward of quantum adiabatic dynamics in electro-magnetic field

    OpenAIRE

    Masuda, Shumpei; Nakamura, Katsuhiro

    2010-01-01

    We show a method to accelerate quantum adiabatic dynamics of wavefunctions under electro-magnetic field by developing the previous theory (Masuda & Nakamura 2008 and 2010). Firstly we investigate the orbital dynamics of a charged particle. We derive the driving field which accelerates quantum adiabatic dynamics in order to obtain the final adiabatic states except for the spatially uniform phase such as the adiabatic phase in any desired short time. Fast-forward of adiabatic squeezing and tran...

  9. On planar quantum dynamics of a magnetic dipole moment in the presence of electric and magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Edilberto O. [Universidade Federal do Maranhao, Departamento de Fisica, Sao Luis, MA (Brazil)

    2014-10-15

    The planar quantum dynamics of a neutral particle with a magnetic dipole moment in the presence of electric and magnetic fields is considered. The criteria to establish the planar dynamics reveal that the resulting nonrelativistic Hamiltonian has a simplified expression without making approximations, and some terms have crucial importance for the system dynamics. (orig.)

  10. Thermal behavior of dynamic magnetizations, hysteresis loop areas and correlations of a cylindrical Ising nanotube in an oscillating magnetic field within the effective-field theory and the Glauber-type stochastic dynamics approach

    International Nuclear Information System (INIS)

    Deviren, Bayram; Keskin, Mustafa

    2012-01-01

    The dynamical aspects of a cylindrical Ising nanotube in the presence of a time-varying magnetic field are investigated within the effective-field theory with correlations and Glauber-type stochastic approach. Temperature dependence of the dynamic magnetizations, dynamic total magnetization, hysteresis loop areas and correlations are investigated in order to characterize the nature of dynamic transitions as well as to obtain the dynamic phase transition temperatures and compensation behaviors. Some characteristic phenomena are found depending on the ratio of the physical parameters in the surface shell and core, i.e., five different types of compensation behaviors in the Néel classification nomenclature exist in the system. -- Highlights: ► Kinetic cylindrical Ising nanotube is investigated using the effective-field theory. ► The dynamic magnetizations, hysteresis loop areas and correlations are calculated. ► The effects of the exchange interactions have been studied in detail. ► Five different types of compensation behaviors have been found. ► Some characteristic phenomena are found depending on ratio of physical parameters.

  11. Thermal behavior of dynamic magnetizations, hysteresis loop areas and correlations of a cylindrical Ising nanotube in an oscillating magnetic field within the effective-field theory and the Glauber-type stochastic dynamics approach

    Energy Technology Data Exchange (ETDEWEB)

    Deviren, Bayram, E-mail: bayram.deviren@nevsehir.edu.tr [Department of Physics, Nevsehir University, 50300 Nevsehir (Turkey); Keskin, Mustafa [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)

    2012-02-20

    The dynamical aspects of a cylindrical Ising nanotube in the presence of a time-varying magnetic field are investigated within the effective-field theory with correlations and Glauber-type stochastic approach. Temperature dependence of the dynamic magnetizations, dynamic total magnetization, hysteresis loop areas and correlations are investigated in order to characterize the nature of dynamic transitions as well as to obtain the dynamic phase transition temperatures and compensation behaviors. Some characteristic phenomena are found depending on the ratio of the physical parameters in the surface shell and core, i.e., five different types of compensation behaviors in the Néel classification nomenclature exist in the system. -- Highlights: ► Kinetic cylindrical Ising nanotube is investigated using the effective-field theory. ► The dynamic magnetizations, hysteresis loop areas and correlations are calculated. ► The effects of the exchange interactions have been studied in detail. ► Five different types of compensation behaviors have been found. ► Some characteristic phenomena are found depending on ratio of physical parameters.

  12. Spin-lattice dynamics simulation of external field effect on magnetic order of ferromagnetic iron

    Directory of Open Access Journals (Sweden)

    C. P. Chui

    2014-03-01

    Full Text Available Modeling of field-induced magnetization in ferromagnetic materials has been an active topic in the last dozen years, yet a dynamic treatment of distance-dependent exchange integral has been lacking. In view of that, we employ spin-lattice dynamics (SLD simulations to study the external field effect on magnetic order of ferromagnetic iron. Our results show that an external field can increase the inflection point of the temperature. Also the model provides a better description of the effect of spin correlation in response to an external field than the mean-field theory. An external field has a more prominent effect on the long range magnetic order than on the short range counterpart. Furthermore, an external field allows the magnon dispersion curves and the uniform precession modes to exhibit magnetic order variation from their temperature dependence.

  13. Interaction quench dynamics in the Kondo model in the presence of a local magnetic field.

    Science.gov (United States)

    Heyl, M; Kehrein, S

    2010-09-01

    In this work we investigate the quench dynamics in the Kondo model on the Toulouse line in the presence of a local magnetic field. It is shown that this setup can be realized by either applying the local magnetic field directly or by preparing the system in a macroscopically spin-polarized initial state. In the latter case, the magnetic field results from a subtlety in applying the bosonization technique where terms that are usually referred to as finite-size corrections become important in the present non-equilibrium setting. The transient dynamics are studied by analyzing exact analytical results for the local spin dynamics. The timescale for the relaxation of the local dynamical quantities turns out to be exclusively determined by the Kondo scale. In the transient regime, one observes damped oscillations in the local correlation functions with a frequency set by the magnetic field.

  14. Electric field control of magnon-induced magnetization dynamics in multiferroics.

    Science.gov (United States)

    Risinggård, Vetle; Kulagina, Iryna; Linder, Jacob

    2016-08-24

    We consider theoretically the effect of an inhomogeneous magnetoelectric coupling on the magnon-induced dynamics of a ferromagnet. The magnon-mediated magnetoelectric torque affects both the homogeneous magnetization and magnon-driven domain wall motion. In the domains, we predict a reorientation of the magnetization, controllable by the applied electric field, which is almost an order of magnitude larger than that observed in other physical systems via the same mechanism. The applied electric field can also be used to tune the domain wall speed and direction of motion in a linear fashion, producing domain wall velocities several times the zero field velocity. These results show that multiferroic systems offer a promising arena to achieve low-dissipation magnetization rotation and domain wall motion by exciting spin-waves.

  15. The dynamic response and perturbation of magnetic field vector of orthotropic cylinders under various shock loads

    International Nuclear Information System (INIS)

    Dai, H.L.; Wang, X.

    2006-01-01

    In this paper, an analytical method is introduced to solve the problem for the dynamic stress-focusing and centred-effect of perturbation of the magnetic field vector in orthotropic cylinders under thermal and mechanical shock loads. Analytical expressions for the dynamic stresses and the perturbation of the magnetic field vector are obtained by means of finite Hankel transforms and Laplace transforms. The response histories of dynamic stresses and the perturbation of the field vector are also obtained. In practical examples, the dynamic focusing effect on both magnetoelastic stress and perturbation of the axial magnetic field vector in an orthotropic cylinder subjected to various shock loads is presented and discussed

  16. The effect of external magnetic field changing on the correlated quantum dot dynamics

    Science.gov (United States)

    Mantsevich, V. N.; Maslova, N. S.; Arseyev, P. I.

    2018-06-01

    The non-stationary response of local magnetic moment to abrupt switching "on" and "off" of external magnetic field was studied for a single-level quantum dot (QD) coupled to a reservoir. We found that transient processes look different for the shallow and deep localized energy level. It was demonstrated that for deep energy level the relaxation rates of the local magnetic moment strongly differ in the case of magnetic field switching "on" or "off". Obtained results can be applied in the area of dynamic memory devices stabilization in the presence of magnetic field.

  17. Impact of Dynamic Magnetic fields on the CLIC Main Beam

    CERN Document Server

    Snuverink, J; Jach, C; Jeanneret, JB; Schulte, D; Stulle, F

    2010-01-01

    The Compact Linear Collider (CLIC) accelerator has strong precision requirements on the position of the beam. The beam position will be sensitive to external dynamic magnetic fields (stray fields) in the nanotesla regime. The impact of these fields on the CLIC main beam has been studied by performing simulations on the lattices and tolerances have been determined. Several mitigation techniques will be discussed.

  18. Aggregation dynamics and magnetic properties of magnetic micrometer-sized particles dispersed in a fluid under the action of rotating magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Llera, María [Instituto de Ciencias, Universidad Nacional de General Sarmiento, Buenos Aires (Argentina); Codnia, Jorge [Instituto de Ciencias, Universidad Nacional de General Sarmiento, Buenos Aires (Argentina); Centro de Investigaciones en Láseres y Aplicaciones, CITEDEF-CONICET, Buenos Aires (Argentina); Jorge, Guillermo A., E-mail: gjorge@ungs.edu.ar [Instituto de Ciencias, Universidad Nacional de General Sarmiento, Buenos Aires (Argentina)

    2015-06-15

    We present a dynamic study of soft magnetic, commercial Fe and Ni micrometer-sized particles dispersed in oleic acid and subjected to a variable (rotating) magnetic field in the horizontal plane. A very complex structure is formed after the particles decant towards the bottom liquid–solid interface and the magnetic field is applied for several minutes. The dynamics of structure formation was studied by means of the registration and analysis of microscopic video images, through a Matlab image analysis script. Several parameters, such as the number of clusters, the perimeter-based fractal dimension and circularity, were calculated as a function of time. The time evolution of the number of clusters was found to follow a power-law behavior, with an exponent consistent with that found in other studies for magnetic systems, whereas the typical formation time depends on the particle diameter and field configuration. Complementarily, the magnetic properties of the formed structure were studied, reproducing the experiment with liquid paraffin as the containing fluid, and then letting it solidify. The sample obtained was studied by vibrating sample magnetometry. The magnetization curves show that the material obtained is a planar magnetically anisotropic material, which could eventually be used as an anisotropic magnetic sensor or actuator. - Highlights: • Dynamic study of Fe and Ni particles in oleic acid under rotating fields. • A very complex system of interconnected clusters was observed. • Larger particles had a smaller aggregation time. • A power law behavior of the number of clusters vs. time. • A Fe-paraffin sample with planar anisotropy characterized.

  19. Aggregation dynamics and magnetic properties of magnetic micrometer-sized particles dispersed in a fluid under the action of rotating magnetic fields

    International Nuclear Information System (INIS)

    Llera, María; Codnia, Jorge; Jorge, Guillermo A.

    2015-01-01

    We present a dynamic study of soft magnetic, commercial Fe and Ni micrometer-sized particles dispersed in oleic acid and subjected to a variable (rotating) magnetic field in the horizontal plane. A very complex structure is formed after the particles decant towards the bottom liquid–solid interface and the magnetic field is applied for several minutes. The dynamics of structure formation was studied by means of the registration and analysis of microscopic video images, through a Matlab image analysis script. Several parameters, such as the number of clusters, the perimeter-based fractal dimension and circularity, were calculated as a function of time. The time evolution of the number of clusters was found to follow a power-law behavior, with an exponent consistent with that found in other studies for magnetic systems, whereas the typical formation time depends on the particle diameter and field configuration. Complementarily, the magnetic properties of the formed structure were studied, reproducing the experiment with liquid paraffin as the containing fluid, and then letting it solidify. The sample obtained was studied by vibrating sample magnetometry. The magnetization curves show that the material obtained is a planar magnetically anisotropic material, which could eventually be used as an anisotropic magnetic sensor or actuator. - Highlights: • Dynamic study of Fe and Ni particles in oleic acid under rotating fields. • A very complex system of interconnected clusters was observed. • Larger particles had a smaller aggregation time. • A power law behavior of the number of clusters vs. time. • A Fe-paraffin sample with planar anisotropy characterized

  20. Magnetohydrodynamic Modeling of Solar Coronal Dynamics with an Initial Non-force-free Magnetic Field

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, A.; Bhattacharyya, R.; Kumar, Sanjay [Udaipur Solar Observatory, Physical Research Laboratory, Dewali, Bari Road, Udaipur-313001 (India)

    2017-05-01

    The magnetic fields in the solar corona are generally neither force-free nor axisymmetric and have complex dynamics that are difficult to characterize. Here we simulate the topological evolution of solar coronal magnetic field lines (MFLs) using a magnetohydrodynamic model. The simulation is initialized with a non-axisymmetric non-force-free magnetic field that best correlates with the observed vector magnetograms of solar active regions (ARs). To focus on these ideas, simulations are performed for the flaring AR 11283 noted for its complexity and well-documented dynamics. The simulated dynamics develops as the initial Lorentz force pushes the plasma and facilitates successive magnetic reconnections at the two X-type null lines present in the initial field. Importantly, the simulation allows for the spontaneous development of mass flow, unique among contemporary works, that preferentially reconnects field lines at one of the X-type null lines. Consequently, a flux rope consisting of low-lying twisted MFLs, which approximately traces the major polarity inversion line, undergoes an asymmetric monotonic rise. The rise is attributed to a reduction in the magnetic tension force at the region overlying the rope, resulting from the reconnection. A monotonic rise of the rope is in conformity with the standard scenario of flares. Importantly, the simulated dynamics leads to bifurcations of the flux rope, which, being akin to the observed filament bifurcation in AR 11283, establishes the appropriateness of the initial field in describing ARs.

  1. Large N dynamics in QED in a magnetic field

    International Nuclear Information System (INIS)

    Gusynin, V.P.; Miransky, V.A.; Shovkovy, I.A.

    2003-01-01

    The expression for the dynamical mass of fermions in QED in a magnetic field is obtained for a large number of the fermion flavor N in the framework of 1/N expansion. The existence of a threshold value N thr , dividing the theories with essentially different dynamics, is established. For the number of flavors N thr , the dynamical mass is very sensitive to the value of the coupling constant α b , related to the magnetic scale μ=√(vertical bar eB vertical bar). For N of the order of N thr or larger, a dynamics similar to that in the Nambu-Jona-Lasinio model with a cutoff of the order of √(vertical bar eB vertical bar) and the dimensional coupling constant G∼1/(N vertical bar eB vertical bar) takes place. In this case, the value of the dynamical mass is essentially α b independent (the dynamics with an infrared stable fixed point). The value of N thr separates a weak coupling dynamics (with α-tilde b ≡Nα b b > or approx. 1) and is of the order of 1/α b

  2. Dynamic effects on the stretching of the magnetic field by a plasma flow

    Energy Technology Data Exchange (ETDEWEB)

    Nunez, Manuel [Departamento de Analisis Matematico, Universidad de Valladolid, 47005 Valladolid (Spain)

    2003-08-22

    A key mechanism in the growth of magnetic energy in kinematic dynamos is the stretching of the magnetic field vector by making it point in an unstable direction of the strain matrix. Our objective is to study whether this feature may be maintained in an ideal plasma when also considering the back reaction of the magnetic field upon the flow through the Lorentz force. Several effects occur: in addition to the nonlocal ones exerted by the total pressure, a complex geometry of magnetic field lines decreases the rate of growth of magnetic energy, rotation of the flow enhances it and above all the rate of growth decreases with minus the square of the eigenvalue associated with the magnetic field direction. Thus local dynamics tend to rapidly quench the stretching of the field.

  3. Dynamic phase transitions in a cylindrical Ising nanowire under a time-dependent oscillating magnetic field

    International Nuclear Information System (INIS)

    Deviren, Bayram; Kantar, Ersin; Keskin, Mustafa

    2012-01-01

    The dynamic phase transitions in a cylindrical Ising nanowire system under a time-dependent oscillating external magnetic field for both ferromagnetic and antiferromagnetic interactions are investigated within the effective-field theory with correlations and the Glauber-type stochastic dynamics approach. The effective-field dynamic equations for the average longitudinal magnetizations on the surface shell and core are derived by employing the Glauber transition rates. Temperature dependence of the dynamic magnetizations, the dynamic total magnetization, the hysteresis loop areas and the dynamic correlations are investigated in order to characterize the nature (first- or second-order) of the dynamic transitions as well as the dynamic phase transition temperatures and the compensation behaviors. The system strongly affected by the surface situations. Some characteristic phenomena are found depending on the ratio of the physical parameters in the surface shell and the core. According to the values of Hamiltonian parameters, five different types of compensation behaviors in the Néel classification nomenclature exist in the system. The system also exhibits a reentrant behavior. - Highlights: ► The dynamic aspects of a cylindrical Ising nanowire are investigated in detail. ► The dynamic magnetizations, hysteresis loop areas and correlations are calculated. ► We studied both the FM and AFM interactions within the EFT with correlations. ► Some characteristic phenomena are found depending on the interaction parameters. ► We obtained five different types of compensation behaviors and reentrant behavior.

  4. Dynamic phase transitions in a cylindrical Ising nanowire under a time-dependent oscillating magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Deviren, Bayram [Department of Physics, Nevsehir University, 50300 Nevsehir (Turkey); Kantar, Ersin [Department of Physics, Erciyes University, 38039 Kayseri (Turkey); Keskin, Mustafa, E-mail: keskin@erciyes.edu.tr [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)

    2012-07-15

    The dynamic phase transitions in a cylindrical Ising nanowire system under a time-dependent oscillating external magnetic field for both ferromagnetic and antiferromagnetic interactions are investigated within the effective-field theory with correlations and the Glauber-type stochastic dynamics approach. The effective-field dynamic equations for the average longitudinal magnetizations on the surface shell and core are derived by employing the Glauber transition rates. Temperature dependence of the dynamic magnetizations, the dynamic total magnetization, the hysteresis loop areas and the dynamic correlations are investigated in order to characterize the nature (first- or second-order) of the dynamic transitions as well as the dynamic phase transition temperatures and the compensation behaviors. The system strongly affected by the surface situations. Some characteristic phenomena are found depending on the ratio of the physical parameters in the surface shell and the core. According to the values of Hamiltonian parameters, five different types of compensation behaviors in the Neel classification nomenclature exist in the system. The system also exhibits a reentrant behavior. - Highlights: Black-Right-Pointing-Pointer The dynamic aspects of a cylindrical Ising nanowire are investigated in detail. Black-Right-Pointing-Pointer The dynamic magnetizations, hysteresis loop areas and correlations are calculated. Black-Right-Pointing-Pointer We studied both the FM and AFM interactions within the EFT with correlations. Black-Right-Pointing-Pointer Some characteristic phenomena are found depending on the interaction parameters. Black-Right-Pointing-Pointer We obtained five different types of compensation behaviors and reentrant behavior.

  5. Dynamics of Dust in a Plasma Sheath with Magnetic Field

    International Nuclear Information System (INIS)

    Duan Ping; Liu Jinyuan; Gon Ye; Liu Yue; Wang Xiaogang

    2007-01-01

    Dynamics of dust in a plasma sheath with a magnetic field was investigated using a single particle model. The result shows that the radius, initial position, initial velocity of the dust particles and the magnetic field do effect their movement and equilibrium position in the plasma sheath. Generally, the dust particles with the same size, whatever original velocity and position they have, will locate at the same position in the end under the net actions of electrostatic, gravitational, neutral collisional, and Lorentz forces. But the dust particles will not locate in the plasma sheath if their radius is beyond a certain value

  6. Magnetic Field

    DEFF Research Database (Denmark)

    Olsen, Nils

    2015-01-01

    he Earth has a large and complicated magnetic field, the major part of which is produced by a self-sustaining dynamo operating in the fluid outer core. Magnetic field observations provide one of the few tools for remote sensing the Earth’s deep interior, especially regarding the dynamics...... of the fluid flow at the top of the core. However, what is measured at or near the surface of the Earth is the superposition of the core field and fields caused by magnetized rocks in the Earth’s crust, by electric currents flowing in the ionosphere, magnetosphere, and oceans, and by currents induced...... in the Earth by time-varying external fields. These sources have their specific characteristics in terms of spatial and temporal variations, and their proper separation, based on magnetic measurements, is a major challenge. Such a separation is a prerequisite for remote sensing by means of magnetic field...

  7. Dynamics of solar magnetic fields. VI. Force-free magnetic fields and motions of magnetic foot-points

    International Nuclear Information System (INIS)

    Low, B.C.; Nakagawa, Y.

    1975-01-01

    A mathematical model is developed to consider the evolution of force-free magnetic fields in relation to the displacements of their foot-points. For a magnetic field depending on only two Cartesian coordinates and time, the problem reduces to solving a nonlinear elliptic partial differential equation. As illustration of the physical process, two specific examples of evolving force-free magnetic fields are examined in detail, one evolving with rising and the other with descending field lines. It is shown that these two contrasting behaviors of the field lines correspond to sheared motions of their foot-points of quite different characters. The physical implications of these two examples of evolving force-free magnetic fields are discussed. (auth)

  8. Applied magnetic field angle dependence of the static and dynamic magnetic properties in FeCo films during the deposition

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Derang; Zhu, Zengtai; Feng, Hongmei; Pan, Lining; Cheng, Xiaohong; Wang, Zhenkun [Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Wang, Jianbo [Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Liu, Qingfang, E-mail: liuqf@lzu.edu.cn [Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000 (China)

    2016-10-15

    FeCo films were prepared by a simple and convenient electrodeposition method. An external magnetic field was applied to the film to induce magnetic anisotropy during deposition. Comparing with the previous work, the angle between the direction of applied magnetic field and film plane is changed from in-plane to out-plane. The influence of the applied magnetic field on magnetic properties was investigated. As a result, it can be found that the in-plane anisotropy is driven by the in-plane component of the magnetic field applied during growth. In addition, the result can also be confirmed by the dynamic magnetic anisotropy of the film obtained by vector network analyzer ferromagnetic resonance technique. - Highlights: • FeCo films were prepared by electrodeposition method. • An external magnetic field was applied to induce anisotropy during deposition. • The direction of applied magnetic field is changed from in-plane to out-plane. • The magnetic properties of films were investigated by vector network analyzer. • The in-plane anisotropy is driven by the in-plane component of the field.

  9. Dynamic hysteresis behaviors for the two-dimensional mixed spin (2, 5/2) ferrimagnetic Ising model in an oscillating magnetic field

    Science.gov (United States)

    Ertaş, Mehmet

    2015-09-01

    Keskin and Ertaş (2009) presented a study of the magnetic properties of a mixed spin (2, 5/2) ferrimagnetic Ising model within an oscillating magnetic field. They employed dynamic mean-field calculations to find the dynamic phase transition temperatures, the dynamic compensation points of the model and to present the dynamic phase diagrams. In this work, we extend the study and investigate the dynamic hysteresis behaviors for the two-dimensional (2D) mixed spin (2, 5/2) ferrimagnetic Ising model on a hexagonal lattice in an oscillating magnetic field within the framework of dynamic mean-field calculations. The dynamic hysteresis curves are obtained for both the ferromagnetic and antiferromagnetic interactions and the effects of the Hamiltonian parameters on the dynamic hysteresis behaviors are discussed in detail. The thermal behaviors of the coercivity and remanent magnetizations are also investigated. The results are compared with some theoretical and experimental works and a qualitatively good agreement is found. Finally, the dynamic phase diagrams depending on the frequency of an oscillating magnetic field in the plane of the reduced temperature versus magnetic field amplitude is examined and it is found that the dynamic phase diagrams display richer dynamic critical behavior for higher values of frequency than for lower values.

  10. Spin tunnelling dynamics for spin-1 Bose-Einstein condensates in a swept magnetic field

    International Nuclear Information System (INIS)

    Wang Guanfang; Fu Libin; Liu Jie

    2008-01-01

    We investigate the spin tunnelling of spin-1 Bose-Einstein condensates in a linearly swept magnetic field with a mean-field treatment. We focus on the two typical alkali Bose atoms 87 Rb and 23 Na condensates and study their tunnelling dynamics according to the sweep rates of the external magnetic fields. In the adiabatic (i.e. slowly sweeping) and sudden (i.e. fast sweeping) limits, no tunnelling is observed. For the case of moderate sweep rates, the tunnelling dynamics is found to be very sensitive to the sweep rates, so the plots of tunnelling probability versus sweep rate only become resolvable at a resolution of 10 -4 G s -1 . Moreover, a conserved quantity standing for the magnetization in experiments is found to affect dramatically the dynamics of the spin tunnelling. Theoretically we have given a complete interpretation of the above findings, and our studies could stimulate the experimental study of spinor Bose-Einstein condensates

  11. Dynamic Phase Transitions In The Spin-2 Ising System Under An Oscillating Magnetic Field Within The Effective-Field Theory

    International Nuclear Information System (INIS)

    Ertas, Mehmet; Keskin, Mustafa; Deviren, Bayram

    2010-01-01

    The dynamic phase transitions are studied in the spin-2 Ising model under a time-dependent oscillating magnetic field by using the effective-field theory with correlations. The effective-field dynamic equation is derived by employing the Glauber transition rates and the phases in the system are obtained by solving this dynamic equation. The nature (first- or second-order) of the dynamic phase transition is characterized by investigating the thermal behavior of the dynamic order parameter and the dynamic phase transition temperatures are obtained. The dynamic phase diagrams are presented in (T/zJ, h/zJ) plane.

  12. Magnetic reconnection through the current sheets as the universal process for plasma dynamics in nonuniform magnetic fields

    International Nuclear Information System (INIS)

    Frank, A.G.; Bogdanov, S.Yu.; Burilina, V.B.; Kyrie, N.P.

    1997-01-01

    Laboratory experiments are reported, in which we studied the possibilities of the formation of current sheets (CS) in different magnetic configurations, as well as the magnetic reconnection phenomena. In 2D magnetic fields with null-lines the CS formation was shown to be a typical process in both linear and nonlinear regimes. The problem of CS formation is of a fundamental importance in the general case of 3D magnetic configurations. We have revealed experimentally, that the formation of CS occurs in the various 3D configurations, both containing magnetic null-points and without them. At the same time, the CS parameters essentially depend on the local characteristics of the configuration. We may conclude therefore, that the self-organization of CS represents the universal process for the plasma dynamics in the nonuniform magnetic fields. (author)

  13. Electron-Cloud Pinch Dynamics in Presence of Lattice Magnet Fields

    CERN Document Server

    Franchetti, G

    2011-01-01

    The pinch of the electron cloud due to a passing proton bunch was extensively studied in a field free region and in a dipolar magnetic field. For the latter study, a strong field approximation helped to formulate the equations of motion and to understand the complex electron pinch dynamics, which exhibited some similarities with the field-free situation. Here we extend the analysis to the case of electron pinch in quadrupoles and in sextupoles. We discuss the limits of validity for the strong field approximation and we evaluate the relative magnitude of the peak tune shift along the bunch expected for the different fields.

  14. Blume-Capel ferromagnet driven by propagating and standing magnetic field wave: Dynamical modes and nonequilibrium phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Acharyya, Muktish, E-mail: muktish.physics@presiuniv.ac.in; Halder, Ajay, E-mail: ajay.rs@presiuniv.ac.in

    2017-03-15

    The dynamical responses of Blume-Capel (S=1) ferromagnet to the plane propagating (with fixed frequency and wavelength) and standing magnetic field waves are studied separately in two dimensions by extensive Monte Carlo simulation. Depending on the values of temperature, amplitude of the propagating magnetic field and the strength of anisotropy, two different dynamical phases are observed. For a fixed value of anisotropy and the amplitude of the propagating magnetic field, the system undergoes a dynamical phase transition from a driven spin wave propagating phase to a pinned or spin frozen state as the system is cooled down. The time averaged magnetisation over a full cycle of the propagating magnetic field plays the role of the dynamic order parameter. A comprehensive phase diagram is plotted in the plane formed by the amplitude of the propagating wave and the temperature of the system. It is found that the phase boundary shrinks inward as the anisotropy increases. The phase boundary, in the plane described by the strength of the anisotropy and temperature, is also drawn. This phase boundary was observed to shrink inward as the field amplitude increases. - Highlights: • The Blume-Capel ferromagnet in propagating and standing magnetic wave. • Monte Carlo single spin flip Metropolis algorithm is employed. • The dynamical modes are observed. • The nonequilibrium phase transitions are studied. • The phase boundaries are drawn.

  15. Finite-size effects on the dynamic susceptibility of CoPhOMe single-chain molecular magnets in presence of a static magnetic field

    Science.gov (United States)

    Pini, M. G.; Rettori, A.; Bogani, L.; Lascialfari, A.; Mariani, M.; Caneschi, A.; Sessoli, R.

    2011-09-01

    The static and dynamic properties of the single-chain molecular magnet Co(hfac)2NITPhOMe (CoPhOMe) (hfac = hexafluoroacetylacetonate, NITPhOMe = 4'-methoxy-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) are investigated in the framework of the Ising model with Glauber dynamics, in order to take into account both the effect of an applied magnetic field and a finite size of the chains. For static fields of moderate intensity and short chain lengths, the approximation of a monoexponential decay of the magnetization fluctuations is found to be valid at low temperatures; for strong fields and long chains, a multiexponential decay should rather be assumed. The effect of an oscillating magnetic field, with intensity much smaller than that of the static one, is included in the theory in order to obtain the dynamic susceptibility χ(ω). We find that, for an open chain with N spins, χ(ω) can be written as a weighted sum of N frequency contributions, with a sum rule relating the frequency weights to the static susceptibility of the chain. Very good agreement is found between the theoretical dynamic susceptibility and the ac susceptibility measured in moderate static fields (Hdc≤2 kOe), where the approximation of a single dominating frequency for each segment length turns out to be valid. For static fields in this range, data for the relaxation time, τ versus Hdc, of the magnetization of CoPhOMe at low temperature are also qualitatively reproduced by theory, provided that finite-size effects are included.

  16. Temperature-dependent dynamic mechanical properties of magnetorheological elastomers under magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Benxiang, E-mail: jubenxiang@qq.com [National Instrument Functional Materials Engineering Technology Research Center, Chongqing 400707 (China); Tang, Rui; Zhang, Dengyou; Yang, Bailian [National Instrument Functional Materials Engineering Technology Research Center, Chongqing 400707 (China); Yu, Miao; Liao, Changrong [College of Optoelectronic Engineering, Chongqing University, Chongqing 400044 (China)

    2015-01-15

    Both anisotropic and isotropic magnetorheological elastomer (MRE) samples were fabricated by using as-prepared polyurethane (PU) matrix and carbonyl iron particles. Temperature-dependent dynamic mechanical properties of MRE were investigated and analyzed. Due to the unique structural features of as-prepared matrix, temperature has a greater impact on the properties of as-prepared MRE, especially isotropic MRE. With increasing of temperature and magnetic field, MR effect of isotropic MRE can reach up to as high as 4176.5% at temperature of 80 °C, and the mechanism of the temperature-dependent in presence of magnetic field was discussed. These results indicated that MRE is a kind of temperature-dependent material, and can be cycled between MRE and MR plastomer (MRP) by varying temperature. - Highlights: • Both anisotropic and isotropic MRE were fabricated by using as-prepared matrix. • Temperature-dependent properties of MRE under magnetic field were investigated. • As-prepared MRE can transform MRE to MRP by adjusting temperature.

  17. Observation of the dynamics of magnetic nanoparticles induced by a focused laser beam by using dark-field microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Hai-Dong, E-mail: dhdong@scau.edu.cn [Department of Applied Physics, College of Science, South China Agricultural University, Guangzhou 510642 (China); Li, Guang-Can [Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006 (China); Li, Hai [Department of Applied Physics, College of Science, South China Agricultural University, Guangzhou 510642 (China)

    2014-08-01

    The dynamics of Fe{sub 3}O{sub 4} magnetic nanoparticles under the irradiation of a tightly focused laser beam was investigated by using a high-intensity dark-field microscopy. A depletion region of magnetic nanoparticles was found at the center of the laser beam where the dissipative force (absorption and scattering forces) dominated the dynamics of the magnetic nanoparticles. In contrast, the dynamics of magnetic nanoparticles was dominated by thermal and mass diffusions at the edge of the laser beam where the dissipative force was negligible. In addition, the transient variation in the concentration of magnetic nanoparticles was characterized by recording the transient scattering light intensity. The coefficients of thermal diffusion, mass diffusion and the Soret effect for this kind of magnetic nanoparticles were successfully extracted by using this technique. - Highlights: • The dynamics of magnetic nanoparticles induced by a focused laser beam was investigated by using dark-field microscopy. • The experimental results revealed that the dynamics of magnetic nanoparticles was dominated by different mechanisms. • A convenient technique to measure the Soret coefficient of nanoparticles was provided.

  18. Magnetic field line random walk in two-dimensional dynamical turbulence

    Science.gov (United States)

    Wang, J. F.; Qin, G.; Ma, Q. M.; Song, T.; Yuan, S. B.

    2017-08-01

    The field line random walk (FLRW) of magnetic turbulence is one of the important topics in plasma physics and astrophysics. In this article, by using the field line tracing method, the mean square displacement (MSD) of FLRW is calculated on all possible length scales for pure two-dimensional turbulence with the damping dynamical model. We demonstrate that in order to describe FLRW with the damping dynamical model, a new dimensionless quantity R is needed to be introduced. On different length scales, dimensionless MSD shows different relationships with the dimensionless quantity R. Although the temporal effect affects the MSD of FLRW and even changes regimes of FLRW, it does not affect the relationship between the dimensionless MSD and dimensionless quantity R on all possible length scales.

  19. Magnetic ground state of low-doped manganites probed by spin dynamics under magnetic field

    International Nuclear Information System (INIS)

    Kober, P.; Hennion, M.; Moussa, F.; Ivanov, A.; Regnault, L.-P.; Pinsard, L.; Revcolevschi, A.

    2004-01-01

    We present a neutron scattering study of spin dynamics under magnetic field in La 0.9 Ca 0.1 MnO 3 . In zero field, the spin wave spectrum consists of two branches, a high and a low-energy one. In applied field, the high-energy branch splits into two branches due to twinned domains. The gap of the new intermediate-energy branch strongly decreases above a spin-flop transition that occurs for H//b and H>2 T. Furthermore, this branch, that we could attribute to the twinned domain H//b, shows a q-discontinuity under field. The low-energy branch, measurable only around ferromagnetic zone centers at H=0, appears at all q-values under field

  20. L10-MnGa based magnetic tunnel junction for high magnetic field sensor

    Science.gov (United States)

    Zhao, X. P.; Lu, J.; Mao, S. W.; Yu, Z. F.; Wang, H. L.; Wang, X. L.; Wei, D. H.; Zhao, J. H.

    2017-07-01

    We report on the investigation of the magnetic tunnel junction structure designed for high magnetic field sensors with a perpendicularly magnetized L10-MnGa reference layer and an in-plane magnetized Fe sensing layer. A large linear tunneling magnetoresistance ratio up to 27.4% and huge dynamic range up to 5600 Oe have been observed at 300 K, with a low nonlinearity of 0.23% in the optimized magnetic tunnel junction (MTJ). The field response of tunneling magnetoresistance is discussed to explain the field sensing properties in the dynamic range. These results indicate that L10-MnGa based orthogonal MTJ is a promising candidate for a high performance magnetic field sensor with a large dynamic range, high endurance and low power consumption.

  1. Detection of fast oscillating magnetic fields using dynamic multiple TR imaging and Fourier analysis.

    Directory of Open Access Journals (Sweden)

    Ki Hwan Kim

    Full Text Available Neuronal oscillations produce oscillating magnetic fields. There have been trials to detect neuronal oscillations using MRI, but the detectability in in vivo is still in debate. Major obstacles to detecting neuronal oscillations are (i weak amplitudes, (ii fast oscillations, which are faster than MRI temporal resolution, and (iii random frequencies and on/off intervals. In this study, we proposed a new approach for direct detection of weak and fast oscillating magnetic fields. The approach consists of (i dynamic acquisitions using multiple times to repeats (TRs and (ii an expanded frequency spectral analysis. Gradient echo echo-planar imaging was used to test the feasibility of the proposed approach with a phantom generating oscillating magnetic fields with various frequencies and amplitudes and random on/off intervals. The results showed that the proposed approach could precisely detect the weak and fast oscillating magnetic fields with random frequencies and on/off intervals. Complex and phase spectra showed reliable signals, while no meaningful signals were observed in magnitude spectra. A two-TR approach provided an absolute frequency spectrum above Nyquist sampling frequency pixel by pixel with no a priori target frequency information. The proposed dynamic multiple-TR imaging and Fourier analysis are promising for direct detection of neuronal oscillations and potentially applicable to any pulse sequences.

  2. External magnetic field induced anomalies of spin nuclear dynamics in thin antiferromagnetic films

    International Nuclear Information System (INIS)

    Tarasenko, S.V.

    1995-01-01

    It is shown that if the thickness of homogeneously magnetized plate of high-axial antiferromagnetic within H external magnetic field becomes lower the critical one, then the effect of dynamic magnetoelastic interaction on Soul-Nakamura exchange of nuclear spins results in formation of qualitatively new types of spreading nuclear spin waves no else compared neither within the model of unrestricted magnetic nor at H = 0 in case of thin plate of high-axial antiferromagnetic. 10 refs

  3. Monte Carlo simulated dynamical magnetization of single-chain magnets

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jun; Liu, Bang-Gui, E-mail: bgliu@iphy.ac.cn

    2015-03-15

    Here, a dynamical Monte-Carlo (DMC) method is used to study temperature-dependent dynamical magnetization of famous Mn{sub 2}Ni system as typical example of single-chain magnets with strong magnetic anisotropy. Simulated magnetization curves are in good agreement with experimental results under typical temperatures and sweeping rates, and simulated coercive fields as functions of temperature are also consistent with experimental curves. Further analysis indicates that the magnetization reversal is determined by both thermal-activated effects and quantum spin tunnelings. These can help explore basic properties and applications of such important magnetic systems. - Highlights: • Monte Carlo simulated magnetization curves are in good agreement with experimental results. • Simulated coercive fields as functions of temperature are consistent with experimental results. • The magnetization reversal is understood in terms of the Monte Carlo simulations.

  4. Ultrafast magnetization dynamics

    OpenAIRE

    Woodford, Simon

    2008-01-01

    This thesis addresses ultrafast magnetization dynamics from a theoretical perspective. The manipulation of magnetization using the inverse Faraday effect has been studied, as well as magnetic relaxation processes in quantum dots. The inverse Faraday effect – the generation of a magnetic field by nonresonant, circularly polarized light – offers the possibility to control and reverse magnetization on a timescale of a few hundred femtoseconds. This is important both for the technological advant...

  5. Mechanics of magnetic fluid column in strong magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Polunin, V.M.; Ryapolov, P.A., E-mail: r-piter@yandex.ru; Platonov, V.B.

    2017-06-01

    Elastic-and magnetic properties of magnetic fluid confined by ponderomotive force in a tube fixed in horizontal position are considered. The system is placed in a strong magnetic field under the influence of external static and dynamic perturbations. An experimental setup has been developed. A theoretical basis of the processes of magnetic colloid elastic deformation has been proposed. The values of the static ponderomotive elasticity coefficient and the elasticity coefficient under dynamic action are experimentally determined. The calculations of the saturation magnetization for two magnetic fluid samples, carried out according to the equation containing the dynamic elasticity coefficient, are in good agreement with the experimental magnetization curve. The described method is of interest when studying magnetophoresis and aggregation of nanoparticles in magnetic colloids.

  6. Magnetic field errors tolerances of Nuclotron booster

    Science.gov (United States)

    Butenko, Andrey; Kazinova, Olha; Kostromin, Sergey; Mikhaylov, Vladimir; Tuzikov, Alexey; Khodzhibagiyan, Hamlet

    2018-04-01

    Generation of magnetic field in units of booster synchrotron for the NICA project is one of the most important conditions for getting the required parameters and qualitative accelerator operation. Research of linear and nonlinear dynamics of ion beam 197Au31+ in the booster have carried out with MADX program. Analytical estimation of magnetic field errors tolerance and numerical computation of dynamic aperture of booster DFO-magnetic lattice are presented. Closed orbit distortion with random errors of magnetic fields and errors in layout of booster units was evaluated.

  7. Dynamic compensation temperatures in a mixed spin-1 and spin-3/2 Ising system under a time-dependent oscillating magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Keskin, Mustafa, E-mail: keskin@erciyes.edu.t [Department of Physics, Erciyes University, 38039 Kayseri (Turkey); Kantar, Ersin [Institute of Science, Erciyes University, 38039 Kayseri (Turkey)

    2010-09-15

    We study the existence of dynamic compensation temperatures in the mixed spin-1 and spin-3/2 Ising ferrimagnetic system Hamiltonian with bilinear and crystal-field interactions in the presence of a time-dependent oscillating external magnetic field on a hexagonal lattice. We employ the Glauber transitions rates to construct the mean-field dynamic equations. We investigate the time dependence of an average sublattice magnetizations, the thermal behavior of the dynamic sublattice magnetizations and the total magnetization. From these studies, we find the phases in the system, and characterize the nature (continuous or discontinuous) of transitions as well as obtain the dynamic phase transition (DPT) points and the dynamic compensation temperatures. We also present dynamic phase diagrams, including the compensation temperatures, in the five different planes. A comparison is made with the results of the available mixed spin Ising systems.

  8. Dynamic compensation temperatures in a mixed spin-1 and spin-3/2 Ising system under a time-dependent oscillating magnetic field

    International Nuclear Information System (INIS)

    Keskin, Mustafa; Kantar, Ersin

    2010-01-01

    We study the existence of dynamic compensation temperatures in the mixed spin-1 and spin-3/2 Ising ferrimagnetic system Hamiltonian with bilinear and crystal-field interactions in the presence of a time-dependent oscillating external magnetic field on a hexagonal lattice. We employ the Glauber transitions rates to construct the mean-field dynamic equations. We investigate the time dependence of an average sublattice magnetizations, the thermal behavior of the dynamic sublattice magnetizations and the total magnetization. From these studies, we find the phases in the system, and characterize the nature (continuous or discontinuous) of transitions as well as obtain the dynamic phase transition (DPT) points and the dynamic compensation temperatures. We also present dynamic phase diagrams, including the compensation temperatures, in the five different planes. A comparison is made with the results of the available mixed spin Ising systems.

  9. Dynamical properties of magnetized two-dimensional one-component plasma

    Science.gov (United States)

    Dubey, Girija S.; Gumbs, Godfrey; Fessatidis, Vassilios

    2018-05-01

    Molecular dynamics simulation are used to examine the effect of a uniform perpendicular magnetic field on a two-dimensional interacting electron system. In this simulation we include the effect of the magnetic field classically through the Lorentz force. Both the Coulomb and the magnetic forces are included directly in the electron dynamics to study their combined effect on the dynamical properties of the 2D system. Results are presented for the velocity autocorrelation function and the diffusion constants in the presence and absence of an external magnetic field. Our simulation results clearly show that the external magnetic field has an effect on the dynamical properties of the system.

  10. Non-equilibrium reversible dynamics of work production in four-spin system in a magnetic field

    Directory of Open Access Journals (Sweden)

    E.A. Ivanchenko

    2011-06-01

    Full Text Available A closed system of the equations for the local Bloch vectors and spin correlation functions is obtained by decomplexification of the Liouville-von Neumann equation for 4 magnetic particles with the exchange interaction that takes place in an arbitrary time-dependent external magnetic field. The analytical and numerical analysis of the quantum thermodynamic variables is carried out depending on separable mixed initial state and the magnetic field modulation. Under unitary evolution, non-equilibrium reversible dynamics of power production in the finite environment is investigated.

  11. Dynamic regimes in YBCO in applied magnetic field probed by swept frequency microwave measurements

    International Nuclear Information System (INIS)

    Sarti, S; Silva, E; Giura, M; Fastampa, R; Boffa, M; Cucolo, A M

    2004-01-01

    We report measurements of the microwave resistivity in YBa 2 Cu 3 O 7-δ (YBCO), in the presence of an applied magnetic field. Measurements are performed as a function of frequency, over a continuum spectrum between 6 and 20 GHz, by means of a Corbino disc geometry. These data allow for a direct identification of different dynamical regimes in the dissipation of YBCO in the presence of an applied magnetic field. While at high temperatures a frequency independent resistivity is observed, at lower temperatures we find a marked frequency dependence. The line in the (H,T) plane at which this change in the dynamical regime is observed is clearly identified and discussed in terms of vortex motion and fluctuational resistivity

  12. Dynamic magnetizations and dynamic phase transitions in a transverse cylindrical Ising nanowire

    International Nuclear Information System (INIS)

    Deviren, Bayram; Ertaş, Mehmet; Keskin, Mustafa

    2012-01-01

    In this paper, we extend the paper of Kaneyoshi (2010 J. Magn. Magn. Mater. 322 3410-5) to investigate the dynamic magnetizations and dynamic phase transitions of a transverse cylindrical Ising nanowire system by using the effective field theory with correlations and the Glauber-type stochastic dynamics under a time-dependent oscillating external magnetic field. The dynamic effective field equations for the average longitudinal and transverse magnetizations on the surface shell and core are derived by using the Glauber transition rates. Temperature dependences of the dynamic longitudinal magnetizations, the transverse magnetizations and the total magnetizations are investigated in order to characterize the nature (first- or second-order) of the dynamic transitions as well as the dynamic phase transition temperatures and the compensation behaviors. The system is strongly affected by the surface situations. Some characteristic phenomena are found depending on the ratio of the physical parameters in the surface shell and the core. According to the values of Hamiltonian parameters, four different types of compensation behaviors in the Néel classification nomenclature exist in the system. The results are compared with some theoretical works and good overall agreement is observed. (paper)

  13. Dynamic phase transitions and dynamic phase diagrams in the kinetic spin-5/2 Blume–Capel model in an oscillating external magnetic field: Effective-field theory and the Glauber-type stochastic dynamics approach

    International Nuclear Information System (INIS)

    Ertaş, Mehmet; Keskin, Mustafa; Deviren, Bayram

    2012-01-01

    Using an effective field theory with correlations, we study a kinetic spin-5/2 Blume–Capel model with bilinear exchange interaction and single-ion crystal field on a square lattice. The effective-field dynamic equation is derived by employing the Glauber transition rates. First, the phases in the kinetic system are obtained by solving this dynamic equation. Then, the thermal behavior of the dynamic magnetization, the hysteresis loop area and correlation are investigated in order to characterize the nature of the dynamic transitions and to obtain dynamic phase transition temperatures. Finally, we present the phase diagrams in two planes, namely (T/zJ, h 0 /zJ) and (T/zJ, D/zJ), where T absolute temperature, h 0 , the amplitude of the oscillating field, D, crystal field interaction or single-ion anisotropy constant and z denotes the nearest-neighbor sites of the central site. The phase diagrams exhibit four fundamental phases and ten mixed phases which are composed of binary, ternary and tetrad combination of fundamental phases, depending on the crystal field interaction parameter. Moreover, the phase diagrams contain a dynamic tricritical point (T), a double critical end point (B), a multicritical point (A) and zero-temperature critical point (Z). - Highlights: ► The effective-field theory is used to study the kinetic spin-5/2 Ising Blume–Capel model. ► Time variations of average order parameter have been studied to find phases in the system. ► The dynamic magnetization, hysteresis loop area and correlation have been calculated. ► The dynamic phase boundaries of the system depend on D/zJ. ► The dynamic phase diagrams are presented in the (T/zJ, h 0 /zJ) and (D/zJ, T/zJ) planes.

  14. Dynamic phase transitions and dynamic phase diagrams in the kinetic spin-5/2 Blume-Capel model in an oscillating external magnetic field: Effective-field theory and the Glauber-type stochastic dynamics approach

    Energy Technology Data Exchange (ETDEWEB)

    Ertas, Mehmet [Department of Physics, Erciyes University, 38039 Kayseri (Turkey); Keskin, Mustafa, E-mail: keskin@erciyes.edu.tr [Department of Physics, Erciyes University, 38039 Kayseri (Turkey); Deviren, Bayram [Department of Physics, Nevsehir University, 50300 Nevsehir (Turkey)

    2012-04-15

    Using an effective field theory with correlations, we study a kinetic spin-5/2 Blume-Capel model with bilinear exchange interaction and single-ion crystal field on a square lattice. The effective-field dynamic equation is derived by employing the Glauber transition rates. First, the phases in the kinetic system are obtained by solving this dynamic equation. Then, the thermal behavior of the dynamic magnetization, the hysteresis loop area and correlation are investigated in order to characterize the nature of the dynamic transitions and to obtain dynamic phase transition temperatures. Finally, we present the phase diagrams in two planes, namely (T/zJ, h{sub 0}/zJ) and (T/zJ, D/zJ), where T absolute temperature, h{sub 0}, the amplitude of the oscillating field, D, crystal field interaction or single-ion anisotropy constant and z denotes the nearest-neighbor sites of the central site. The phase diagrams exhibit four fundamental phases and ten mixed phases which are composed of binary, ternary and tetrad combination of fundamental phases, depending on the crystal field interaction parameter. Moreover, the phase diagrams contain a dynamic tricritical point (T), a double critical end point (B), a multicritical point (A) and zero-temperature critical point (Z). - Highlights: Black-Right-Pointing-Pointer The effective-field theory is used to study the kinetic spin-5/2 Ising Blume-Capel model. Black-Right-Pointing-Pointer Time variations of average order parameter have been studied to find phases in the system. Black-Right-Pointing-Pointer The dynamic magnetization, hysteresis loop area and correlation have been calculated. Black-Right-Pointing-Pointer The dynamic phase boundaries of the system depend on D/zJ. Black-Right-Pointing-Pointer The dynamic phase diagrams are presented in the (T/zJ, h{sub 0}/zJ) and (D/zJ, T/zJ) planes.

  15. Dynamical analysis of the magnetic field line evolution in tokamaks with ergodic limiters

    Energy Technology Data Exchange (ETDEWEB)

    Ullmann, Kai; Caldas, Ibere L. [Sao Paulo Univ., SP (Brazil). Inst. de Fisica

    1997-12-31

    Full text. Magnetic ergodic limiters are commonly used to control chaos in the tokamak border and several models have been developed to study the influence of these limiters on the magnetic field line evolution in the tokamak vessel. In this work we derive a bidimensional symplectic mapping describing this evolution with toroidal corrections. Poincare plots presenting typical Hamiltonian behaviour, such as island chains and hetero clinic and homo clinic orbits are obtained. Then we perform the dynamical analysis of these Poincare plots using standard algorithms such as calculation of Lyapunov exponents, safety factors, FFT spectra and parameters space plots to perform the dynamical analysis. (author)

  16. Magnetic field in expanding quark-gluon plasma

    Science.gov (United States)

    Stewart, Evan; Tuchin, Kirill

    2018-04-01

    Intense electromagnetic fields are created in the quark-gluon plasma by the external ultrarelativistic valence charges. The time evolution and the strength of this field are strongly affected by the electrical conductivity of the plasma. Yet, it has recently been observed that the effect of the magnetic field on the plasma flow is small. We compute the effect of plasma flow on magnetic field and demonstrate that it is less than 10%. These observations indicate that the plasma hydrodynamics and the dynamics of electromagnetic field decouple. Thus, it is a very good approximation, on the one hand, to study QGP in the background electromagnetic field generated by external sources and, on the other hand, to investigate the dynamics of magnetic field in the background plasma. We also argue that the wake induced by the magnetic field in plasma is negligible.

  17. Dynamic phase transitions of the Blume–Emery–Griffiths model under an oscillating external magnetic field by the path probability method

    Energy Technology Data Exchange (ETDEWEB)

    Ertaş, Mehmet, E-mail: mehmetertas@erciyes.edu.tr; Keskin, Mustafa

    2015-03-01

    By using the path probability method (PPM) with point distribution, we study the dynamic phase transitions (DPTs) in the Blume–Emery–Griffiths (BEG) model under an oscillating external magnetic field. The phases in the model are obtained by solving the dynamic equations for the average order parameters and a disordered phase, ordered phase and four mixed phases are found. We also investigate the thermal behavior of the dynamic order parameters to analyze the nature dynamic transitions as well as to obtain the DPT temperatures. The dynamic phase diagrams are presented in three different planes in which exhibit the dynamic tricritical point, double critical end point, critical end point, quadrupole point, triple point as well as the reentrant behavior, strongly depending on the values of the system parameters. We compare and discuss the dynamic phase diagrams with dynamic phase diagrams that were obtained within the Glauber-type stochastic dynamics based on the mean-field theory. - Highlights: • Dynamic magnetic behavior of the Blume–Emery–Griffiths system is investigated by using the path probability method. • The time variations of average magnetizations are studied to find the phases. • The temperature dependence of the dynamic magnetizations is investigated to obtain the dynamic phase transition points. • We compare and discuss the dynamic phase diagrams with dynamic phase diagrams that were obtained within the Glauber-type stochastic dynamics based on the mean-field theory.

  18. Dynamic phase transitions of the Blume–Emery–Griffiths model under an oscillating external magnetic field by the path probability method

    International Nuclear Information System (INIS)

    Ertaş, Mehmet; Keskin, Mustafa

    2015-01-01

    By using the path probability method (PPM) with point distribution, we study the dynamic phase transitions (DPTs) in the Blume–Emery–Griffiths (BEG) model under an oscillating external magnetic field. The phases in the model are obtained by solving the dynamic equations for the average order parameters and a disordered phase, ordered phase and four mixed phases are found. We also investigate the thermal behavior of the dynamic order parameters to analyze the nature dynamic transitions as well as to obtain the DPT temperatures. The dynamic phase diagrams are presented in three different planes in which exhibit the dynamic tricritical point, double critical end point, critical end point, quadrupole point, triple point as well as the reentrant behavior, strongly depending on the values of the system parameters. We compare and discuss the dynamic phase diagrams with dynamic phase diagrams that were obtained within the Glauber-type stochastic dynamics based on the mean-field theory. - Highlights: • Dynamic magnetic behavior of the Blume–Emery–Griffiths system is investigated by using the path probability method. • The time variations of average magnetizations are studied to find the phases. • The temperature dependence of the dynamic magnetizations is investigated to obtain the dynamic phase transition points. • We compare and discuss the dynamic phase diagrams with dynamic phase diagrams that were obtained within the Glauber-type stochastic dynamics based on the mean-field theory

  19. Trapped magnetic field measurements on HTS bulk by peak controlled pulsed field magnetization

    International Nuclear Information System (INIS)

    Ida, Tetsuya; Watasaki, Masahiro; Kimura, Yosuke; Miki, Motohiro; Izumi, Mitsuru

    2010-01-01

    For the past several years, we have studied the high-temperature superconducting (HTS) synchronous motor assembled with melt-textured Gd-Ba-Cu-O bulk magnets. If the single pulse field magnetizes a bulk effectively, size of electrical motor will become small for the strong magnetic field of the HTS magnets without reducing output power of motor. In the previous study, we showed that the HTS bulk was magnetized to excellent cone-shape magnetic field distribution by using the waveform control pulse magnetization (WCPM) method. The WCPM technique made possible the active control of the waveform on which magnetic flux motion depended. We generated the pulse waveform with controlled risetime for HTS bulk magnetization to suppress the magnetic flux motion which decreases magnetization efficiency. The pulsed maximum magnetic flux density with slow risetime is not beyond the maximum magnetic flux density which is trapped by the static field magnetization. But, as for applying the pulse which has fast risetime, the magnetic flux which exceed greatly the threshold penetrates the bulk and causes the disorder of the trapped magnetic distribution. This fact suggests the possibility that the threshold at pulsed magnetization influences the dynamic magnetic flux motion. In this study, Gd-Ba-Cu-O bulk is magnetized by the controlled arbitrary trapezoidal shape pulse, of which the maximum magnetic flux density is controlled not to exceed the threshold. We will present the trapped magnetic characteristics and the technique to generate the controlled pulsed field.

  20. Canonicalization and symplectic simulation of the gyrocenter dynamics in time-independent magnetic fields

    International Nuclear Information System (INIS)

    Zhang, Ruili; Tang, Yifa; Zhu, Beibei; Liu, Jian; Xiao, Jianyuan; Qin, Hong

    2014-01-01

    The gyrocenter dynamics of charged particles in time-independent magnetic fields is a non-canonical Hamiltonian system. The canonical description of the gyrocenter has both theoretical and practical importance. We provide a general procedure of the gyrocenter canonicalization, which is expressed by the series of a small variable ϵ depending only on the parallel velocity u and can be expressed in a recursive manner. We prove that the truncation of the series to any given order generates a set of exact canonical coordinates for a system, whose Lagrangian approximates to that of the original gyrocenter system in the same order. If flux surfaces exist for the magnetic field, the series stops simply at the second order and an exact canonical form of the gyrocenter system is obtained. With the canonicalization schemes, the canonical symplectic simulation of gyrocenter dynamics is realized for the first time. The canonical symplectic algorithm has the advantage of good conservation properties and long-term numerical accuracy, while avoiding numerical instability. It is worth mentioning that explicitly expressing the canonical Hamiltonian in new coordinates is usually difficult and impractical. We give an iteration procedure that is easy to implement in the original coordinates associated with the coordinate transformation. This is crucial for modern large-scale simulation studies in plasma physics. The dynamics of gyrocenters in the dipole magnetic field and in the toroidal geometry are simulated using the canonical symplectic algorithm by comparison with the higher-order non symplectic Runge-Kutta scheme. The overwhelming superiorities of the symplectic method for the gyrocenter system are evidently exhibited

  1. Magnetic field line reconnection experiments

    International Nuclear Information System (INIS)

    Gekelman, W.; Stenzel, R.L.; Wild, N.

    1982-01-01

    A laboratory experiment concerned with the basic physics of magnetic field line reconnection is discussed. Stimulated by important processes in space plasmas and anomalous transport in fusion plasmas the work addresses the following topics: Dynamic magnetic fields in a high beta plasma, magnetic turbulence, plasma dynamics and energy transport. First, the formation of magnetic neutral sheets, tearing and island coalescence are shown. Nonstationary magnetic fluctuations are statistically evaluated displaying the correlation tensor in the #betta#-k domain for mode identification. Then, the plasma properties are analyzed with particular emphasis on transport processes. Although the classical fluid flow across the separatrix can be observed, the fluctuation processes strongly modify the plasma dynamics. Direct measurements of the fluid force density and ion acceleration indicate the presence of an anomalous scattering process characterized by an effective scattering tensor. Turbulence also enhances the plasma resistivity by one to two orders of magnitude. Measurements of the three-dimensional electron distribution function using a novel energy analyzer exhibit the formation of runaway electrons in the current sheet. Associated micro-instabilities are observed. Finally, a macroscopic disruptive instability of the current sheet is observed. Excess magnetic field energy is converted at a double layer into particle kinetic energy and randomized through beam-plasma instabilities. These laboratory results are compared with related observations in space and fusion plasmas. (Auth.)

  2. Brief communication "Modeling tornado dynamics and the generation of infrasound, electric and magnetic fields"

    Directory of Open Access Journals (Sweden)

    E. D. Schmitter

    2010-02-01

    Full Text Available Recent observations endorse earlier measurements of time varying electric and magnetic fields generated by tornadoes and dust devils. These signals may provide a means for early warning but together with a proper modeling approach can also provide insight into geometry and dynamics of the vortices. Our model calculations show the existence of pressure resonances characterized as acoustic duct modes with well defined frequencies. These resonances not only generate infrasound but also modulate the charge density and the velocity field and in this way lead to electric and magnetic field oscillations in the 0.5–20-Hz range that can be monitored from a distance of several kilometers.

  3. Dynamics of magnetic fields in Maxwell, Yang-Mills and Chern-Simons theories on the torus

    International Nuclear Information System (INIS)

    Burgess, M.; McLachlan, A.; Toms, D.J.

    1992-01-01

    The problem of uniform magnetic fields passing perpendicularly through a 2-torus, Abelian and Non-Abelian, is considered. Focus is on dynamical effects of non-integrable phases on the torus at non zero B and from magnetic fields themselves in the vacuum. The spectrum is computed and is shown to be always independent of the non-integrable phases on the torus. It is concluded that a Chern-Simons term will always be induced by radiative corrections to fermions on the torus when B ≠ 0. The special case of an electromagnetically uncharged anyon gas in noted and shown to be a system whose spectrum can depend on the non-integrable phases in the two torus directions, subject to a consistency requirement. In three and four dimensions, dynamical symmetry breaking of non-Abelian fields and associated condensate formation is possible by radiative corrections. The classification on non-Abelian magnetic fields in terms of ''flux integers'' is discussed, and a method for obtaining such integers for an arbitrary gauge algebra is presented. This provides a rigorous generalisation of Hooft's su (2) classification. 72 refs., 5 figs

  4. Theoretical Investigation of Dynamic Properties of Magnetic Molecule Systems as Probed by NMR and Pulsed Fields Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Rousochatzakis, Ioannis [Iowa State Univ., Ames, IA (United States)

    2005-12-17

    The field of molecular magnetism[l-6] has become a subject of intense theoretical and experimental interest and has rapidly evolved during the last years. This inter-disciplinary field concerns magnetic systems at the molecular or "nanoscopic" level, whose realization has become feasible due to recent advances in the field of chemical synthesis. The present theoretical work provides a first step towards exploiting the possibilities that are offered by probing magnetic molecules using external magnetic fields with high sweep rates. These probes, apart for providing information specific to magnetic molecules, offer the possibility of conducting a detailed study of the relaxational behavior of interacting spin systems as a result of their coupling with a "heat bath" and in particular the excitations of the host lattice. Development of a broad theoretical framework for dealing with relaxational phenomena induced by dynamical magnetic fields is indeed a worthy goal.

  5. The Juno Magnetic Field Investigation

    Science.gov (United States)

    Connerney, J. E. P.; Benn, M.; Bjarno, J. B.; Denver, T.; Espley, J.; Jorgensen, J. L.; Jorgensen, P. S.; Lawton, P.; Malinnikova, A.; Merayo, J. M.; Murphy, S.; Odom, J.; Oliversen, R.; Schnurr, R.; Sheppard, D.; Smith, E. J.

    2017-11-01

    The Juno Magnetic Field investigation (MAG) characterizes Jupiter's planetary magnetic field and magnetosphere, providing the first globally distributed and proximate measurements of the magnetic field of Jupiter. The magnetic field instrumentation consists of two independent magnetometer sensor suites, each consisting of a tri-axial Fluxgate Magnetometer (FGM) sensor and a pair of co-located imaging sensors mounted on an ultra-stable optical bench. The imaging system sensors are part of a subsystem that provides accurate attitude information (to ˜20 arcsec on a spinning spacecraft) near the point of measurement of the magnetic field. The two sensor suites are accommodated at 10 and 12 m from the body of the spacecraft on a 4 m long magnetometer boom affixed to the outer end of one of 's three solar array assemblies. The magnetometer sensors are controlled by independent and functionally identical electronics boards within the magnetometer electronics package mounted inside Juno's massive radiation shielded vault. The imaging sensors are controlled by a fully hardware redundant electronics package also mounted within the radiation vault. Each magnetometer sensor measures the vector magnetic field with 100 ppm absolute vector accuracy over a wide dynamic range (to 16 Gauss = 1.6 × 106 nT per axis) with a resolution of ˜0.05 nT in the most sensitive dynamic range (±1600 nT per axis). Both magnetometers sample the magnetic field simultaneously at an intrinsic sample rate of 64 vector samples per second. The magnetic field instrumentation may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. The attitude determination system compares images with an on-board star catalog to provide attitude solutions (quaternions) at a rate of up to 4 solutions per second, and may be configured to acquire images of selected targets for science and engineering analysis. The system tracks and catalogs objects that pass through the imager field of

  6. Dynamics of the plasma injected into the gap of a plasma opening switch across a strong magnetic field

    International Nuclear Information System (INIS)

    Dolgachev, G. I.; Maslennikov, D. D.; Ushakov, A. G.; Fedotkin, A. S.; Khodeev, I. A.; Shvedov, A. A.

    2011-01-01

    A method is proposed to increase the linear charge density transferred through a plasma opening switch (POS) and, accordingly, reduce the POS diameter by enhancing the external magnetic field in the POS gap. Results are presented from experimental studies of the dynamics of the plasma injected into the POS gap across a strong magnetic field. The possibility of closing the POS gap by the plasma injected across an external magnetic field of up to 60 kG is demonstrated.

  7. Atom dynamics in laser fields

    International Nuclear Information System (INIS)

    Jang, Su; Mi, No Gin

    2004-12-01

    This book introduces coherent dynamics of internal state, spread of atoms wave speed, semiclassical atoms density matrix such as dynamics equation in both still and moving atoms, excitation of atoms in movement by light, dipole radiating power, quantum statistical mechanics by atoms in movement, semiclassical atoms in movement, atoms in movement in the uniform magnetic field including effects of uniform magnetic field, atom cooling using laser such as Doppler cooling, atom traps using laser and mirrors, radiant heat which particles receive, and near field interactions among atoms in laser light.

  8. Effects of seed magnetic fields on magnetohydrodynamic implosion structure and dynamics

    KAUST Repository

    Mostert, W.

    2014-12-01

    The effects of various seed magnetic fields on the dynamics of cylindrical and spherical implosions in ideal magnetohydrodynamics are investigated. Here, we present a fundamental investigation of this problem utilizing cylindrical and spherical Riemann problems under three seed field configurations to initialize the implosions. The resulting flows are simulated numerically, revealing rich flow structures, including multiple families of magnetohydrodynamic shocks and rarefactions that interact non-linearly. We fully characterize these flow structures, examine their axi- and spherisymmetry-breaking behaviour, and provide data on asymmetry evolution for different field strengths and driving pressures for each seed field configuration. We find that out of the configurations investigated, a seed field for which the implosion centre is a saddle point in at least one plane exhibits the least degree of asymmetry during implosion.

  9. Influence of magnetic fields on structural martensitic transitions

    Energy Technology Data Exchange (ETDEWEB)

    Lashley, J C [Los Alamos National Laboratory; Cooley, J C [Los Alamos National Laboratory; Smith, J L [Los Alamos National Laboratory; Fisher, R A [NON LANL; Modic, K A [Los Alamos National Laboratory; Yang, X- D [TEMPLE UNIV; Riseborough, P S [TEMPLE UNIV.; Opeil, C P [BOSTON COLLEGE; Finlayson, T R [UNIV OF MELBOURNE; Goddard, P A [UNIV OF OXFORD; Silhanek, A V [INPAC

    2009-01-01

    We show evidence that a structural martensitic transition is related to significant changes in the electronic structure, as revealed in thermodynamic measurements made in high-magnetic fields. The magnetic field dependence is considered unusual as many influential investigations of martensitic transitions have emphasized that the structural transitions are primarily lattice dynamical and are driven by the entropy due to the phonons. We provide a theoretical framework which can be used to describe the effect of magnetic field on the lattice dynamics in which the field dependence originates from the dielectric constant.

  10. Dynamic phase transition properties for the mixed spin-(1/2, 1) Ising model in an oscillating magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Ertaş, Mehmet, E-mail: mehmetertas@erciyes.edu.tr; Keskin, Mustafa

    2015-08-15

    Herein we study the dynamic phase transition properties for the mixed spin-(1/2, 1) Ising model on a square lattice under a time-dependent magnetic field by means of the effective-field theory (EFT) with correlations based on Glauber dynamics. We present the dynamic phase diagrams in the reduced magnetic field amplitude and reduced temperature plane and find that the phase diagrams exhibit dynamic tricitical behavior, multicritical and zero-temperature critical points as well as reentrant behavior. We also investigate the influence of frequency (ω) and observe that for small values of ω the mixed phase disappears, but for high values it appears and the system displays reentrant behavior as well as a critical end point. - Highlights: • Dynamic behaviors of a ferrimagnetic mixed spin (1/2, 1) Ising system are studied. • We examined the effects of the Hamiltonian parameters on the dynamic behaviors. • The phase diagrams are obtained in (T-h) plane. • The dynamic phase diagrams exhibit the dynamic tricritical and reentrant behaviors.

  11. Dynamic phase transition properties for the mixed spin-(1/2, 1) Ising model in an oscillating magnetic field

    International Nuclear Information System (INIS)

    Ertaş, Mehmet; Keskin, Mustafa

    2015-01-01

    Herein we study the dynamic phase transition properties for the mixed spin-(1/2, 1) Ising model on a square lattice under a time-dependent magnetic field by means of the effective-field theory (EFT) with correlations based on Glauber dynamics. We present the dynamic phase diagrams in the reduced magnetic field amplitude and reduced temperature plane and find that the phase diagrams exhibit dynamic tricitical behavior, multicritical and zero-temperature critical points as well as reentrant behavior. We also investigate the influence of frequency (ω) and observe that for small values of ω the mixed phase disappears, but for high values it appears and the system displays reentrant behavior as well as a critical end point. - Highlights: • Dynamic behaviors of a ferrimagnetic mixed spin (1/2, 1) Ising system are studied. • We examined the effects of the Hamiltonian parameters on the dynamic behaviors. • The phase diagrams are obtained in (T-h) plane. • The dynamic phase diagrams exhibit the dynamic tricritical and reentrant behaviors

  12. Static properties and spin dynamics of the ferromagnetic spin-1 Bose gas in a magnetic field

    International Nuclear Information System (INIS)

    Kis-Szabo, Krisztian; Szepfalusy, Peter; Szirmai, Gergely

    2005-01-01

    The properties of spin-1 Bose gases with ferromagnetic interactions in the presence of a nonzero magnetic field are studied. The equation of state and thermodynamic quantities are worked out with the help of a mean-field approximation. The phase diagram besides Bose-Einstein condensation contains a first-order transition where two values of the magnetization coexist. The dynamics is investigated with the help of the random phase approximation. The soft mode corresponding to the critical point of the magnetic phase transition is found to behave like in conventional theory

  13. Dynamical cancellation of pulse-induced transients in a metallic shielded room for ultra-low-field magnetic resonance imaging

    International Nuclear Information System (INIS)

    Zevenhoven, Koos C. J.; Ilmoniemi, Risto J.; Dong, Hui; Clarke, John

    2015-01-01

    Pulse-induced transients such as eddy currents can cause problems in measurement techniques where a signal is acquired after an applied preparatory pulse. In ultra-low-field magnetic resonance imaging, performed in magnetic fields typically of the order of 100 μT, the signal-to-noise ratio is enhanced in part by prepolarizing the proton spins with a pulse of much larger magnetic field and in part by detecting the signal with a Superconducting QUantum Interference Device (SQUID). The pulse turn-off, however, can induce large eddy currents in the shielded room, producing an inhomogeneous magnetic-field transient that both seriously distorts the spin dynamics and exceeds the range of the SQUID readout. It is essential to reduce this transient substantially before image acquisition. We introduce dynamical cancellation (DynaCan), a technique in which a precisely designed current waveform is applied to a separate coil during the later part and turn off of the polarizing pulse. This waveform, which bears no resemblance to the polarizing pulse, is designed to drive the eddy currents to zero at the precise moment that the polarizing field becomes zero. We present the theory used to optimize the waveform using a detailed computational model with corrections from measured magnetic-field transients. SQUID-based measurements with DynaCan demonstrate a cancellation of 99%. Dynamical cancellation has the great advantage that, for a given system, the cancellation accuracy can be optimized in software. This technique can be applied to both metal and high-permeability alloy shielded rooms, and even to transients other than eddy currents

  14. NON-EQUILIBRIUM CHEMISTRY OF DYNAMICALLY EVOLVING PRESTELLAR CORES. II. IONIZATION AND MAGNETIC FIELD

    International Nuclear Information System (INIS)

    Tassis, Konstantinos; Willacy, Karen; Yorke, Harold W.; Turner, Neal J.

    2012-01-01

    We study the effect that non-equilibrium chemistry in dynamical models of collapsing molecular cloud cores has on measurements of the magnetic field in these cores, the degree of ionization, and the mean molecular weight of ions. We find that OH and CN, usually used in Zeeman observations of the line-of-sight magnetic field, have an abundance that decreases toward the center of the core much faster than the density increases. As a result, Zeeman observations tend to sample the outer layers of the core and consistently underestimate the core magnetic field. The degree of ionization follows a complicated dependence on the number density at central densities up to 10 5 cm –3 for magnetic models and 10 6 cm –3 in non-magnetic models. At higher central densities, the scaling approaches a power law with a slope of –0.6 and a normalization which depends on the cosmic-ray ionization rate ζ and the temperature T as (ζT) 1/2 . The mean molecular weight of ions is systematically lower than the usually assumed value of 20-30, and, at high densities, approaches a value of 3 due to the asymptotic dominance of the H + 3 ion. This significantly lower value implies that ambipolar diffusion operates faster.

  15. Trial Application of Pulse-Field Magnetization to Magnetically Levitated Conveyor System

    Directory of Open Access Journals (Sweden)

    Yoshihito Miyatake

    2012-01-01

    Full Text Available Magnetically levitated conveyor system using superconductors is discussed. The system is composed of a levitated conveyor, magnetic rails, a linear induction motor, and some power supplies. In the paper, pulse-field magnetization is applied to the system. Then, the levitation height and the dynamics of the conveyor are controlled. The static and dynamic characteristics of the levitated conveyor are discussed.

  16. Overview of magnetic nonlinear beam dynamics in the RHIC

    International Nuclear Information System (INIS)

    Luo, Y.; Bai, M.; Beebe-Wang, J.; Bengtsson, J.; Calaga, R.; Fischer, W.; Jain, A.; Pilat, F.; Ptitsyn, V.; Malitsky, N.; Robert-Demolaize, G.; Satogata, T.; Tepikian, S.; Tomas, R.; Trbojevic, D.

    2009-01-01

    In this article we review our studies of nonlinear beam dynamics due to the nonlinear magnetic field errors in the Relativistic Heavy Ion Collider (RHIC). Nonlinear magnetic field errors, including magnetic field errors in interaction regions (IRs), chromatic sextupoles, and sextupole components from arc main dipoles are discussed. Their effects on beam dynamics and beam dynamic aperture are evaluated. The online methods to measure and correct the IR nonlinear field errors, second order chromaticities, and horizontal third order resonance are presented. The overall strategy for nonlinear corrections in RHIC is discussed

  17. Geosynchronous magnetic field responses to fast solar wind dynamic pressure enhancements: MHD field model

    Directory of Open Access Journals (Sweden)

    T. R. Sun

    2012-08-01

    Full Text Available We performed global MHD simulations of the geosynchronous magnetic field in response to fast solar wind dynamic pressure (Pd enhancements. Taking three Pd enhancement events in 2000 as examples, we found that the main features of the total field B and the dominant component Bz can be efficiently predicted by the MHD model. The predicted B and Bz varies with local time, with the highest level near noon and a slightly lower level around mid-night. However, it is more challenging to accurately predict the responses of the smaller component at the geosynchronous orbit (i.e., Bx and By. In contrast, the limitations of T01 model in predicting responses to fast Pd enhancements are presented.

  18. Monitoring the Earth's Dynamic Magnetic Field

    Science.gov (United States)

    Love, Jeffrey J.; Applegate, David; Townshend, John B.

    2008-01-01

    The mission of the U.S. Geological Survey's Geomagnetism Program is to monitor the Earth's magnetic field. Using ground-based observatories, the Program provides continuous records of magnetic field variations covering long timescales; disseminates magnetic data to various governmental, academic, and private institutions; and conducts research into the nature of geomagnetic variations for purposes of scientific understanding and hazard mitigation. The program is an integral part of the U.S. Government's National Space Weather Program (NSWP), which also includes programs in the National Aeronautics and Space Administration (NASA), the Department of Defense (DOD), the National Oceanic and Atmospheric Administration (NOAA), and the National Science Foundation (NSF). The NSWP works to provide timely, accurate, and reliable space weather warnings, observations, specifications, and forecasts, and its work is important for the U.S. economy and national security. Please visit the National Geomagnetism Program?s website, http://geomag.usgs.gov, where you can learn more about the Program and the science of geomagnetism. You can find additional related information at the Intermagnet website, http://www.intermagnet.org.

  19. Self-consistent mean field theory studies of the thermodynamics and quantum spin dynamics of magnetic Skyrmions.

    Science.gov (United States)

    Wieser, R

    2017-05-04

    A self-consistent mean field theory is introduced and used to investigate the thermodynamics and spin dynamics of an S  =  1 quantum spin system with a magnetic Skyrmion. The temperature dependence of the Skyrmion profile as well as the phase diagram are calculated. In addition, the spin dynamics of a magnetic Skyrmion is described by solving the time dependent Schrödinger equation with additional damping term. The Skyrmion annihilation process driven by an electric field is used to compare the trajectories of the quantum mechanical simulation with a semi-classical description for the spin expectation values using a differential equation similar to the classical Landau-Lifshitz-Gilbert equation.

  20. Propagation Dynamics Associated with Resonant Magnetic Perturbation Fields in High-Confinement Mode Plasmas inside the KSTAR Tokamak.

    Science.gov (United States)

    Xiao, W W; Evans, T E; Tynan, G R; Yoon, S W; Jeon, Y M; Ko, W H; Nam, Y U; Oh, Y K

    2017-11-17

    The propagation dynamics of resonant magnetic perturbation fields in KSTAR H-mode plasmas with injection of small edge perturbations produced by a supersonic molecular beam injection is reported for the first time. The results show that the perturbation field first excites a plasma response on the q=3 magnetic surface and then propagates inward to the q=2 surface with a radially averaged propagation velocity of resonant magnetic perturbations field equal to 32.5  m/ s. As a result, the perturbation field brakes the toroidal rotation on the q=3 surface first causing a momentum transport perturbation that propagates both inward and outward. A higher density fluctuation level is observed. The propagation velocity of the resonant magnetic perturbations field is larger than the radial propagation velocity of the perturbation in the toroidal rotation.

  1. Monte Carlo study of dynamic phase transition in Ising metamagnet driven by oscillating magnetic field

    International Nuclear Information System (INIS)

    Acharyya, Muktish

    2011-01-01

    The dynamical responses of Ising metamagnet (layered antiferromagnet) in the presence of a sinusoidally oscillating magnetic field are studied by Monte Carlo simulation. The time average staggered magnetisation plays the role of dynamic order parameter. A dynamical phase transition was observed and a phase diagram was plotted in the plane formed by field amplitude and temperature. The dynamical phase boundary is observed to shrink inward as the relative antiferromagnetic strength decreases. The results are compared with that obtained from pure ferromagnetic system. The shape of dynamic phase boundary observed to be qualitatively similar to that obtained from previous meanfield calculations. - Highlights: → The time average staggered magnetisation plays the role of dynamic order parameter. → A dynamical phase transition was observed and a phase diagram was plotted in the plane formed by field amplitude and temperature. → The dynamical phase boundary is observed to shrink inward as the relative antiferromagnetic strength decreases. → The results are compared with that obtained from pure ferromagnetic system. → The shape of dynamic phase boundary observed to be qualitatively similar to that obtained from previous meanfield calculation.

  2. Dynamical response of the Ising model to the time dependent magnetic field with white noise

    Science.gov (United States)

    Akıncı, Ümit

    2018-03-01

    The effect of the white noise in time dependent magnetic field on the dynamic behavior of the Ising model has been investigated within the effective field theory based on Glauber type of stochastic process. Discrete white noise has been chosen from both Gaussian and uniform probability distributions. Detailed investigation on probability distribution of dynamical order parameter results that, both type of noise distributions yield the same probability distribution related to the dynamical order parameter, namely Gaussian probability distribution. The variation of the parameters that describe the probability distribution of dynamical order parameter (mean value and standard deviation) with temperature and strength of the noise have been inspected. Also, it has been shown that, rising strength of the noise can induce dynamical phase transition in the system.

  3. Dynamic compensation temperature in the kinetic spin-1 Ising model in an oscillating external magnetic field on alternate layers of a hexagonal lattice

    International Nuclear Information System (INIS)

    Temizer, Umuet; Keskin, Mustafa; Canko, Osman

    2009-01-01

    The dynamic behavior of a two-sublattice spin-1 Ising model with a crystal-field interaction (D) in the presence of a time-varying magnetic field on a hexagonal lattice is studied by using the Glauber-type stochastic dynamics. The lattice is formed by alternate layers of spins σ=1 and S=1. For this spin arrangement, any spin at one lattice site has two nearest-neighbor spins on the same sublattice, and four on the other sublattice. The intersublattice interaction is antiferromagnetic. We employ the Glauber transition rates to construct the mean-field dynamical equations. Firstly, we study time variations of the average magnetizations in order to find the phases in the system, and the temperature dependence of the average magnetizations in a period, which is also called the dynamic magnetizations, to obtain the dynamic phase transition (DPT) points as well as to characterize the nature (continuous and discontinuous) of transitions. Then, the behavior of the total dynamic magnetization as a function of the temperature is investigated to find the types of the compensation behavior. Dynamic phase diagrams are calculated for both DPT points and dynamic compensation effect. Phase diagrams contain the paramagnetic (p) and antiferromagnetic (af) phases, the p+af and nm+p mixed phases, nm is the non-magnetic phase, and the compensation temperature or the L-type behavior that strongly depend on the interaction parameters. For D 0 >3.8275, H 0 is the magnetic field amplitude, the compensation effect does not appear in the system.

  4. Dynamic compensation temperature in the kinetic spin-1 Ising model in an oscillating external magnetic field on alternate layers of a hexagonal lattice

    Energy Technology Data Exchange (ETDEWEB)

    Temizer, Umuet [Department of Physics, Bozok University, 66100 Yozgat (Turkey); Keskin, Mustafa [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)], E-mail: keskin@erciyes.edu.tr; Canko, Osman [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)

    2009-10-15

    The dynamic behavior of a two-sublattice spin-1 Ising model with a crystal-field interaction (D) in the presence of a time-varying magnetic field on a hexagonal lattice is studied by using the Glauber-type stochastic dynamics. The lattice is formed by alternate layers of spins {sigma}=1 and S=1. For this spin arrangement, any spin at one lattice site has two nearest-neighbor spins on the same sublattice, and four on the other sublattice. The intersublattice interaction is antiferromagnetic. We employ the Glauber transition rates to construct the mean-field dynamical equations. Firstly, we study time variations of the average magnetizations in order to find the phases in the system, and the temperature dependence of the average magnetizations in a period, which is also called the dynamic magnetizations, to obtain the dynamic phase transition (DPT) points as well as to characterize the nature (continuous and discontinuous) of transitions. Then, the behavior of the total dynamic magnetization as a function of the temperature is investigated to find the types of the compensation behavior. Dynamic phase diagrams are calculated for both DPT points and dynamic compensation effect. Phase diagrams contain the paramagnetic (p) and antiferromagnetic (af) phases, the p+af and nm+p mixed phases, nm is the non-magnetic phase, and the compensation temperature or the L-type behavior that strongly depend on the interaction parameters. For D<2.835 and H{sub 0}>3.8275, H{sub 0} is the magnetic field amplitude, the compensation effect does not appear in the system.

  5. Dynamical Origin of Highly Efficient Energy Dissipation in Soft Magnetic Nanoparticles for Magnetic Hyperthermia Applications

    Science.gov (United States)

    Kim, Min-Kwan; Sim, Jaegun; Lee, Jae-Hyeok; Kim, Miyoung; Kim, Sang-Koog

    2018-05-01

    We explore robust magnetization-dynamic behaviors in soft magnetic nanoparticles in single-domain states and find their related high-efficiency energy-dissipation mechanism using finite-element micromagnetic simulations. We also make analytical derivations that provide deeper physical insights into the magnetization dynamics associated with Gilbert damping parameters under applications of time-varying rotating magnetic fields of different strengths and frequencies and static magnetic fields. Furthermore, we find that the mass-specific energy-dissipation rate at resonance in the steady-state regime changes remarkably with the strength of rotating fields and static fields for given damping constants. The associated magnetization dynamics are well interpreted with the help of the numerical calculation of analytically derived explicit forms. The high-efficiency energy-loss power can be obtained using soft magnetic nanoparticles in the single-domain state by tuning the frequency of rotating fields to the resonance frequency; what is more, it is controllable via the rotating and static field strengths for a given intrinsic damping constant. We provide a better and more efficient means of achieving specific loss power that can be implemented in magnetic hyperthermia applications.

  6. Future pulsed magnetic field applications in dynamic high pressure research

    International Nuclear Information System (INIS)

    Fowler, C.M.; Caird, R.S.; Hawke, R.S.; Burgess, T.J.

    1977-01-01

    The generation of large pressures by magnetic fields to obtain equation of state information is of fairly recent origin. Magnetic fields used in compression experiments produce an almost isentropic sample compression. Axial magnetic field compression is discussed together with a few results chosen to show both advantages and limitations of the method. Magnetic compression with azimuthal fields is then considered. Although there are several potential pitfalls, the possibilities are encouraging for obtaining very large pressures. Next, improved diagnostic techniques are considered. An x-ray ''streaking camera'' is proposed for volume measurements and a more detailed discussion is given on the use of the shift of the ruby fluorescence lines for pressure measurements. Finally, some additional flux compression magnetic field sources are discussed briefly. 5 figures, 2 tables

  7. Rotatable Small Permanent Magnet Array for Ultra-Low Field Nuclear Magnetic Resonance Instrumentation: A Concept Study.

    Science.gov (United States)

    Vogel, Michael W; Giorni, Andrea; Vegh, Viktor; Pellicer-Guridi, Ruben; Reutens, David C

    2016-01-01

    We studied the feasibility of generating the variable magnetic fields required for ultra-low field nuclear magnetic resonance relaxometry with dynamically adjustable permanent magnets. Our motivation was to substitute traditional electromagnets by distributed permanent magnets, increasing system portability. The finite element method (COMSOL®) was employed for the numerical study of a small permanent magnet array to calculate achievable magnetic field strength, homogeneity, switching time and magnetic forces. A manually operated prototype was simulated and constructed to validate the numerical approach and to verify the generated magnetic field. A concentric small permanent magnet array can be used to generate strong sample pre-polarisation and variable measurement fields for ultra-low field relaxometry via simple prescribed magnet rotations. Using the array, it is possible to achieve a pre-polarisation field strength above 100 mT and variable measurement fields ranging from 20-50 μT with 200 ppm absolute field homogeneity within a field-of-view of 5 x 5 x 5 cubic centimetres. A dynamic small permanent magnet array can generate multiple highly homogeneous magnetic fields required in ultra-low field nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) instruments. This design can significantly reduce the volume and energy requirements of traditional systems based on electromagnets, improving portability considerably.

  8. Field-dependent dynamic responses from dilute magnetic nanoparticle dispersions

    DEFF Research Database (Denmark)

    Fock, Jeppe; Balceris, Christoph; Costo, Rocio

    2018-01-01

    The response of magnetic nanoparticles (MNPs) to an oscillating magnetic field outside the linear response region is important for several applications including magnetic hyperthermia, magnetic resonance imaging and biodetection. The size and magnetic moment are two critical parameters for the pe...

  9. Ultrafast magnetization dynamics in diluted magnetic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Morandi, O [INRIA Nancy Grand-Est and Institut de Recherche en Mathematiques Avancees, 7 rue Rene Descartes, F-67084 Strasbourg (France); Hervieux, P-A; Manfredi, G [Institut de Physique et Chimie des Materiaux de Strasbourg, 23 rue du Loess, F-67037 Strasbourg (France)], E-mail: morandi@dipmat.univpm.it

    2009-07-15

    We present a dynamical model that successfully explains the observed time evolution of the magnetization in diluted magnetic semiconductor quantum wells after weak laser excitation. Based on the pseudo-fermion formalism and a second-order many-particle expansion of the exact p-d exchange interaction, our approach goes beyond the usual mean-field approximation. It includes both the sub-picosecond demagnetization dynamics and the slower relaxation processes that restore the initial ferromagnetic order in a nanosecond timescale. In agreement with experimental results, our numerical simulations show that, depending on the value of the initial lattice temperature, a subsequent enhancement of the total magnetization may be observed within the timescale of a few hundred picoseconds.

  10. Mathematical formulation to predict the harmonics of the superconducting Large Hadron Collider magnets. II. Dynamic field changes and scaling laws

    Directory of Open Access Journals (Sweden)

    Nicholas J. Sammut

    2007-08-01

    Full Text Available A superconducting particle accelerator like the LHC (Large Hadron Collider at CERN, can only be controlled well if the effects of the magnetic field multipoles on the beam are compensated. The demands on a control system solely based on beam feedback may be too high for the requirements to be reached at the specified bandwidth and accuracy. Therefore, we designed a suitable field description for the LHC (FIDEL as part of the machine control baseline to act as a feed-forward magnetic field prediction system. FIDEL consists of a physical and empirical parametric field model based on magnetic measurements at warm and in cryogenic conditions. The performance of FIDEL is particularly critical at injection when the field decays, and in the initial part of the acceleration when the field snaps back. These dynamic components are both current and time dependent and are not reproducible from cycle to cycle since they also depend on the magnet powering history. In this paper a qualitative and quantitative description of the dynamic field behavior substantiated by a set of scaling laws is presented.

  11. Spin-torque oscillation in large size nano-magnet with perpendicular magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Linqiang, E-mail: LL6UK@virginia.edu [Department of Physics, University of Virginia, Charlottesville, VA 22904 (United States); Kabir, Mehdi [Department of Electrical & Computer Engineering, University of Virginia, Charlottesville, VA 22904 (United States); Dao, Nam; Kittiwatanakul, Salinporn [Department of Materials Science & Engineering, University of Virginia, Charlottesville, VA 22904 (United States); Cyberey, Michael [Department of Electrical Engineering, University of Virginia, Charlottesville, VA 22904 (United States); Wolf, Stuart A. [Department of Physics, University of Virginia, Charlottesville, VA 22904 (United States); Department of Materials Science & Engineering, University of Virginia, Charlottesville, VA 22904 (United States); Institute of Defense Analyses, Alexandria, VA 22311 (United States); Stan, Mircea [Department of Electrical & Computer Engineering, University of Virginia, Charlottesville, VA 22904 (United States); Lu, Jiwei [Department of Materials Science & Engineering, University of Virginia, Charlottesville, VA 22904 (United States)

    2017-06-15

    Highlights: • 500 nm size nano-pillar device was fabricated by photolithography techniques. • A magnetic hybrid structure was achieved with perpendicular magnetic fields. • Spin torque switching and oscillation was demonstrated in the large sized device. • Micromagnetic simulations accurately reproduced the experimental results. • Simulations demonstrated the synchronization of magnetic inhomogeneities. - Abstract: DC current induced magnetization reversal and magnetization oscillation was observed in 500 nm large size Co{sub 90}Fe{sub 10}/Cu/Ni{sub 80}Fe{sub 20} pillars. A perpendicular external field enhanced the coercive field separation between the reference layer (Co{sub 90}Fe{sub 10}) and free layer (Ni{sub 80}Fe{sub 20}) in the pseudo spin valve, allowing a large window of external magnetic field for exploring the free-layer reversal. A magnetic hybrid structure was achieved for the study of spin torque oscillation by applying a perpendicular field >3 kOe. The magnetization precession was manifested in terms of the multiple peaks on the differential resistance curves. Depending on the bias current and applied field, the regions of magnetic switching and magnetization precession on a dynamical stability diagram has been discussed in details. Micromagnetic simulations are shown to be in good agreement with experimental results and provide insight for synchronization of inhomogeneities in large sized device. The ability to manipulate spin-dynamics on large size devices could be proved useful for increasing the output power of the spin-transfer nano-oscillators (STNOs).

  12. Effect of the interplanetary magnetic field azimuthal component on dynamics of magnetospheric substorms

    International Nuclear Information System (INIS)

    Troshichev, O.A.; Kotikov, A.L.; Bolotinskaya, B.D.

    1987-01-01

    The effect of azimuthal component of interplanetary magnetic field (IMF) on the dynamics of magnetospheric substorms is considered. The turning of the azimuthal component of IMF from the positive direction to the negative one and, vice versa, negative and positive impulses in B y -component at B z z -component to the North, positive impulses in B z -component, are investigated. The importance of corresponding variations in magnetic activity level is evaluated. It is shown that turning of B y -component from the positive direction to the negative one increases magnetic activity, whereas the reverse transition affects but slightly the level of magnetic activity in the Northern auroral zone. The turning of B z -component to the North also results in the increase of magnetic activity but with a less intensity than in the case of the negative turning in B y -component

  13. Magnetic droplet soliton nucleation in oblique fields

    Science.gov (United States)

    Mohseni, Morteza; Hamdi, M.; Yazdi, H. F.; Banuazizi, S. A. H.; Chung, S.; Sani, S. R.; Åkerman, Johan; Mohseni, Majid

    2018-05-01

    We study the auto-oscillating magnetodynamics in orthogonal spin-torque nano-oscillators (STNOs) as a function of the out-of-plane (OOP) magnetic-field angle. In perpendicular fields and at OOP field angles down to approximately 50°, we observe the nucleation of a droplet. However, for field angles below 50°, experiments indicate that the droplet gives way to propagating spin waves, in agreement with our micromagnetic simulations. Theoretical calculations show that the physical mechanism behind these observations is the sign changing of spin-wave nonlinearity (SWN) by angle. In addition, we show that the presence of a strong perpendicular magnetic anisotropy free layer in the system reverses the angular dependence of the SWN and dynamics in STNOs with respect to the known behavior determined for the in-plane magnetic anisotropy free layer. Our results are of fundamental interest in understanding the rich dynamics of nanoscale solitons and spin-wave dynamics in STNOs.

  14. Lasers plasmas and magnetic field

    International Nuclear Information System (INIS)

    Albertazzi, Bruno

    2014-01-01

    We studied the coupling between a laser produced plasmas and a magnetic field in two cases: 1) in the context of Inertial Fusion Confinement (ICF), we first studied how magnetic fields are self generated during the interaction between a target and a laser, then 2) to progress in the understanding of the large-scale shaping of astrophysical jets, we studied the influence of an externally applied magnetic field on the dynamics of a laser-produced plasma expanding into vacuum. The first part of this thesis is thus dedicated to a numerical and experimental study of the self generated magnetic fields that are produced following the irradiation of a solid target by a high power laser (having pulse duration in the nanosecond and picosecond regimes). These fields play an important role in the frame of ICF since they influence the dynamics of the electrons produced during the laser-matter interaction, and thus condition the success of ICF experiments. The second part of this thesis is a numerical and experimental study of the influence of an externally applied magnetic field on the morphology of a laser produced plasma freely otherwise expanding into vacuum. This work aims at better understanding the observed large-scale collimation of astrophysical jets which cannot be understood in the frame of existing models. We notably show that a purely axial magnetic field can force an initially isotropic laboratory flow, scaled to be representative of a flow emerging from a Young Star Object, in a re-collimation shock, from which emerges a narrow, well collimated jet. We also show that the plasma heating induced at the re-collimation point could explain the 'puzzling' observations of stationary X ray emission zones embedded within astrophysical jets. (author) [fr

  15. Vlasov simulations of electron hole dynamics in inhomogeneous magnetic field

    Science.gov (United States)

    Kuzichev, Ilya; Vasko, Ivan; Agapitov, Oleksiy; Mozer, Forrest; Artemyev, Anton

    2017-04-01

    Electron holes (EHs) or phase space vortices are solitary electrostatic waves existing due to electrons trapped within EH electrostatic potential. Since the first direct observation [1], EHs have been widely observed in the Earth's magnetosphere: in reconnecting current sheets [2], injection fronts [3], auroral region [4], and many other space plasma systems. EHs have typical spatial scales up to tens of Debye lengths, electric field amplitudes up to hundreds of mV/m and propagate along magnetic field lines with velocities of about electron thermal velocity [5]. The role of EHs in energy dissipation and supporting of large-scale potential drops is under active investigation. The accurate interpretation of spacecraft observations requires understanding of EH evolution in inhomogeneous plasma. The critical role of plasma density gradients in EH evolution was demonstrated in [6] using PIC simulations. Interestingly, up to date no studies have addressed a role of magnetic field gradients in EH evolution. In this report, we use 1.5D gyrokinetic Vlasov code to demonstrate the critical role of magnetic field gradients in EH dynamics. We show that EHs propagating into stronger (weaker) magnetic field are decelerated (accelerated) with deceleration (acceleration) rate dependent on the magnetic field gradient. Remarkably, the reflection points of decelerating EHs are independent of the average magnetic field gradient in the system and depend only on the EH parameters. EHs are decelerated (accelerated) faster than would follow from the "quasi-particle" concept assuming that EH is decelerated (accelerated) entirely due to the mirror force acting on electrons trapped within EH. We demonstrate that EH propagation in inhomogeneous magnetic fields results in development of a net potential drop along an EH, which depends on the magnetic field gradient. The revealed features will be helpful for interpreting spacecraft observations and results of advanced particle simulations. In

  16. Dynamics of liquid metal droplets and jets influenced by a strong axial magnetic field

    Science.gov (United States)

    Hernández, D.; Karcher, Ch

    2017-07-01

    Non-contact electromagnetic control and shaping of liquid metal free surfaces is crucial in a number of high-temperature metallurgical processes like levitation melting and electromagnetic sealing, among others. Other examples are the electromagnetic bending or stabilization of liquid metal jets that frequently occur in casting or fusion applications. Within this context, we experimentally study the influence of strong axial magnetic fields on the dynamics of falling metal droplets and liquid metal jets. GaInSn in eutectic composition is used as test melt being liquid at room temperature. In the experiments, we use a cryogen-free superconducting magnet (CFM) providing steady homogeneous fields of up to 5 T and allowing a tilt angle between the falling melt and the magnet axis. We vary the magnetic flux density, the tilt angle, the liquid metal flow rate, and the diameter and material of the nozzle (electrically conducting/insulating). Hence, the experiments cover a parameter range of Hartmann numbers Ha, Reynolds numbers Re, and Weber numbers We within 0 rotation ceases and the droplets are stretched in the field direction. Moreover, we observe that the jet breakup into droplets (spheroidization) is suppressed, and in the case of electrically conducting nozzles and tilt, the jets are bent towards the field axis.

  17. Quantum fluid dynamics based current-density functional study of a helium atom in a strong time-dependent magnetic field

    International Nuclear Information System (INIS)

    Vikas

    2011-01-01

    Evolution of the helium atom in a strong time-dependent (TD) magnetic field (B) of strength up to 10 11 G is investigated through a quantum fluid dynamics (QFD) based current-density functional theory (CDFT). The TD-QFD-CDFT computations are performed through numerical solution of a single generalized nonlinear Schroedinger equation employing vector exchange-correlation potentials and scalar exchange-correlation density functionals that depend both on the electronic charge-density and the current-density. The results are compared with that obtained from a B-TD-QFD-DFT approach (based on conventional TD-DFT) under similar numerical constraints but employing only scalar exchange-correlation potential dependent on electronic charge-density only. The B-TD-QFD-DFT approach, at a particular TD magnetic field-strength, yields electronic charge- and current-densities as well as exchange-correlation potential resembling with that obtained from the time-independent studies involving static (time-independent) magnetic fields. However, TD-QFD-CDFT electronic charge- and current-densities along with the exchange-correlation potential and energy differ significantly from that obtained using B-TD-QFD-DFT approach, particularly at field-strengths >10 9 G, representing dynamical effects of a TD field. The work concludes that when a helium atom is subjected to a strong TD magnetic field of order >10 9 G, the conventional TD-DFT based approach differs 'dynamically' from the CDFT based approach under similar computational constraints. (author)

  18. Chaotic magnetic field line in toroidal plasmas

    International Nuclear Information System (INIS)

    Hatori, Tadatsugu; Abe, Yoshihiko; Urata, Kazuhiro; Irie, Haruyuki.

    1989-05-01

    This is an introductory review of chaotic magnetic field line in plasmas, together with some new results, with emphasis on the long-time tail and the fractional Brownian motion of the magnetic field line. The chaotic magnetic field line in toroidal plasmas is a typical chaotic phenomena in the Hamiltonian dynamical systems. The onset of stochasticity induced by a major magnetic perturbation is thought to cause a macroscopic rapid phenomena called the current disruption in the tokamak discharges. Numerical simulations on the basis of magnetohydrodynamics reveal in fact the disruptive phenomena. Some dynamical models which include the area-preserving mapping such as the standard mapping, and the two-wave Hamiltonian system can model the stochastic magnetic field. Theoretical results with use of the functional integral representation are given regarding the long-time tail on the basis of the radial twist mapping. It is shown that application of renormalization group technique to chaotic orbit in the two-wave Hamiltonian system proves decay of the velocity autocorrelation function with the power law. Some new numerical results are presented which supports these theoretical results. (author)

  19. Fluid dynamics of the magnetic field dependent thermosolutal convection and viscosity between coaxial contracting discs

    Science.gov (United States)

    Khan, Aamir; Shah, Rehan Ali; Shuaib, Muhammad; Ali, Amjad

    2018-06-01

    The effects of magnetic field dependent (MFD) thermosolutal convection and MFD viscosity of the fluid dynamics are investigated between squeezing discs rotating with different velocities. The unsteady constitutive expressions of mass conservation, modified Navier-Stokes, Maxwell and MFD thermosolutal convection are coupled as a system of ordinary differential equations. The corresponding solutions for the transformed radial and azimuthal momentum as well as solutions for the azimuthal and axial induced magnetic field equations are determined, also the MHD pressure and torque which the fluid exerts on the upper disc is derived and discussed in details. In the case of smooth discs the self-similar equations are solved using Homotopy Analysis Method (HAM) with appropriate initial guesses and auxiliary parameters to produce an algorithm with an accelerated and assured convergence. The validity and accuracy of HAM results is proved by comparison of the HAM solutions with numerical solver package BVP4c. It has been shown that magnetic Reynolds number causes to decrease magnetic field distributions, fluid temperature, axial and tangential velocity. Also azimuthal and axial components of magnetic field have opposite behavior with increase in MFD viscosity. Applications of the study include automotive magneto-rheological shock absorbers, novel aircraft landing gear systems, heating up or cooling processes, biological sensor systems and biological prosthetic etc.

  20. Magnetic resonance phenomena in dynamics of relativistic particles

    International Nuclear Information System (INIS)

    Ternov, I.M.; Bordovitsyn, V.A.

    1987-01-01

    A relativistic generalization of Rabi's formula for magnetic resonance is given. On this basis, we consider fast and slow passage through resonance. We define a magnetic resonance exterior field as usual, using unit vectors of a Cartesian coordinate system, a homogeneous magnetic field, and the amplitude of a rotating magnetic field. For the description of spin dynamics we use the Bargmann-Michel-Telegdi equation

  1. Nonequilibrium dynamics of a mixed spin-1/2 and spin-3/2 Ising ferrimagnetic system with a time dependent oscillating magnetic field source

    Energy Technology Data Exchange (ETDEWEB)

    Vatansever, Erol [Dokuz Eylül University, Graduate School of Natural and Applied Sciences, TR-35160 Izmir (Turkey); Polat, Hamza, E-mail: hamza.polat@deu.edu.tr [Department of Physics, Dokuz Eylül University, TR-35160 Izmir (Turkey)

    2015-10-15

    Nonequilibrium phase transition properties of a mixed Ising ferrimagnetic model consisting of spin-1/2 and spin-3/2 on a square lattice under the existence of a time dependent oscillating magnetic field have been investigated by making use of Monte Carlo simulations with a single-spin flip Metropolis algorithm. A complete picture of dynamic phase boundary and magnetization profiles have been illustrated and the conditions of a dynamic compensation behavior have been discussed in detail. According to our simulation results, the considered system does not point out a dynamic compensation behavior, when it only includes the nearest-neighbor interaction, single-ion anisotropy and an oscillating magnetic field source. As the next-nearest-neighbor interaction between the spins-1/2 takes into account and exceeds a characteristic value which sensitively depends upon values of single-ion anisotropy and only of amplitude of external magnetic field, a dynamic compensation behavior occurs in the system. Finally, it is reported that it has not been found any evidence of dynamically first-order phase transition between dynamically ordered and disordered phases, which conflicts with the recently published molecular field investigation, for a wide range of selected system parameters. - Highlights: • Spin-1/2 and spin-3/2 Ising ferrimagnetic model is examined. • The system is exposed to time-dependent magnetic field. • Kinetic Monte Carlo simulation technique is used. • Any evidence of first-order phase transition has not been found.

  2. Analysis of PM Magnetization Field Effects on the Unbalanced Magnetic Forces due to Rotor Eccentricity in BLDC Motors

    Directory of Open Access Journals (Sweden)

    S. Mahdiuon-Rad

    2013-08-01

    Full Text Available This paper investigates both static and dynamic eccentricities in single phase brushless DC (BLDC motors and analyzes the effect of the PM magnetization field on unbalanced magnetic forces acting on the rotor. Three common types of PM magnetization field patterns including radial, parallel and sinusoidal magnetizations are considered. In both static and dynamic eccentricities, harmonic components of the unbalanced magnetic forces on the rotor are extracted and analyzed. Based on simulation results, the magnetization fields that produce the lowest and highest unbalanced magnetic forces are determined in rotor eccentricity conditions.

  3. EVOLUTION AND DISTRIBUTION OF MAGNETIC FIELDS FROM ACTIVE GALACTIC NUCLEI IN GALAXY CLUSTERS. II. THE EFFECTS OF CLUSTER SIZE AND DYNAMICAL STATE

    International Nuclear Information System (INIS)

    Xu Hao; Li Hui; Collins, David C.; Li, Shengtai; Norman, Michael L.

    2011-01-01

    Theory and simulations suggest that magnetic fields from radio jets and lobes powered by their central super massive black holes can be an important source of magnetic fields in the galaxy clusters. This is Paper II in a series of studies where we present self-consistent high-resolution adaptive mesh refinement cosmological magnetohydrodynamic simulations that simultaneously follow the formation of a galaxy cluster and evolution of magnetic fields ejected by an active galactic nucleus. We studied 12 different galaxy clusters with virial masses ranging from 1 x 10 14 to 2 x 10 15 M sun . In this work, we examine the effects of the mass and merger history on the final magnetic properties. We find that the evolution of magnetic fields is qualitatively similar to those of previous studies. In most clusters, the injected magnetic fields can be transported throughout the cluster and be further amplified by the intracluster medium (ICM) turbulence during the cluster formation process with hierarchical mergers, while the amplification history and the magnetic field distribution depend on the cluster formation and magnetism history. This can be very different for different clusters. The total magnetic energies in these clusters are between 4 x 10 57 and 10 61 erg, which is mainly decided by the cluster mass, scaling approximately with the square of the total mass. Dynamically older relaxed clusters usually have more magnetic fields in their ICM. The dynamically very young clusters may be magnetized weakly since there is not enough time for magnetic fields to be amplified.

  4. Nonlinear dynamics of a magnetically driven Duffing-type spring–magnet oscillator in the static magnetic field of a coil

    International Nuclear Information System (INIS)

    Donoso, Guillermo; Ladera, Celso L

    2012-01-01

    We study the nonlinear oscillations of a forced and weakly dissipative spring–magnet system moving in the magnetic fields of two fixed coaxial, hollow induction coils. As the first coil is excited with a dc current, both a linear and a cubic magnet-position dependent force appear on the magnet–spring system. The second coil, located below the first, excited with an ac current, provides the oscillating magnetic driving force on the system. From the magnet–coil interactions, we obtain, analytically, the nonlinear motion equation of the system, found to be a forced and damped cubic Duffing oscillator moving in a quartic potential. The relative strengths of the coefficients of the motion equation can be easily set by varying the coils’ dc and ac currents. We demonstrate, theoretically and experimentally, the nonlinear behaviour of this oscillator, including its oscillation modes and nonlinear resonances, the fold-over effect, the hysteresis and amplitude jumps, and its chaotic behaviour. It is an oscillating system suitable for teaching an advanced experiment in nonlinear dynamics both at senior undergraduate and graduate levels. (paper)

  5. Classical and macroquantum dynamics of charged particles in a magnetic field

    International Nuclear Information System (INIS)

    Varma, R.K.

    2003-01-01

    The investigations relating to the dynamics of charged particles in a magnetic field carried out over more than 40 years have been reviewed with special reference to the problem of nonadiabaticity due to field inhomogeneity, and time dependence. A detailed overview is presented of the standard approaches to one of the main problems namely the determination of the residence times of charged particles in an adiabatic magnetic trap which involves nonadiabaticity in a crucial way. In a major departure from the standard approach, a new paradigm described here as 'macroquantum dynamics' was advanced by the author to address the problem of residence times. The evolution and development of this new paradigm is next presented as the main focus of the review. This consists of a probability amplitude Schroedinger-like formalism for the classical macrodomain, which has been shown to be a description of the system in the correspondence limit of large Landau quantum numbers. It is demonstrated that this represents a remarkable persistence of matter wave behaviour well into the classical macrodomain, leading to unexpected experimental consequences. Experimental results confirming some of the spectacular predictions of this formalism are presented. These refer to the existence of macroscopic matter wave interference phenomena and the observation of the curl-free vector potential a la Aharonov-Bohm in the macrodomain. The problem of the nonadiabatic leakage of particles from an adiabatic trap takes the appearance here of the quantum-like tunneling of the adiabatic potential. The multiplicity of residence times predicted by the set of Schroedinger-like equations have been well confirmed by experiments. A critical comparison is finally presented of the classical vs. macroquantum description of the system in the macrodomain. The new paradigm thus represents an entirely new and unexpected manifestation of quantum dynamics in the classical macrodomain

  6. Magnetic field induced incommensurate resonance in cuprate superconductors

    International Nuclear Information System (INIS)

    Zhang Jingge; Cheng Li; Guo Huaiming; Feng Shiping

    2009-01-01

    The influence of a uniform external magnetic field on the dynamical spin response of cuprate superconductors in the superconducting state is studied based on the kinetic energy driven superconducting mechanism. It is shown that the magnetic scattering around low and intermediate energies is dramatically changed with a modest external magnetic field. With increasing the external magnetic field, although the incommensurate magnetic scattering from both low and high energies is rather robust, the commensurate magnetic resonance scattering peak is broadened. The part of the spin excitation dispersion seems to be an hourglass-like dispersion, which breaks down at the heavily low energy regime. The theory also predicts that the commensurate resonance scattering at zero external magnetic field is induced into the incommensurate resonance scattering by applying an external magnetic field large enough

  7. The ARASE (ERG) magnetic field investigation

    Science.gov (United States)

    Matsuoka, Ayako; Teramoto, Mariko; Nomura, Reiko; Nosé, Masahito; Fujimoto, Akiko; Tanaka, Yoshimasa; Shinohara, Manabu; Nagatsuma, Tsutomu; Shiokawa, Kazuo; Obana, Yuki; Miyoshi, Yoshizumi; Mita, Makoto; Takashima, Takeshi; Shinohara, Iku

    2018-03-01

    The fluxgate magnetometer for the Arase (ERG) spacecraft mission was built to investigate particle acceleration processes in the inner magnetosphere. Precise measurements of the field intensity and direction are essential in studying the motion of particles, the properties of waves interacting with the particles, and magnetic field variations induced by electric currents. By observing temporal field variations, we will more deeply understand magnetohydrodynamic and electromagnetic ion-cyclotron waves in the ultra-low-frequency range, which can cause production and loss of relativistic electrons and ring-current particles. The hardware and software designs of the Magnetic Field Experiment (MGF) were optimized to meet the requirements for studying these phenomena. The MGF makes measurements at a sampling rate of 256 vectors/s, and the data are averaged onboard to fit the telemetry budget. The magnetometer switches the dynamic range between ± 8000 and ± 60,000 nT, depending on the local magnetic field intensity. The experiment is calibrated by preflight tests and through analysis of in-orbit data. MGF data are edited into files with a common data file format, archived on a data server, and made available to the science community. Magnetic field observation by the MGF will significantly improve our knowledge of the growth and decay of radiation belts and ring currents, as well as the dynamics of geospace storms.

  8. Self-field effects on electron dynamics in free-electron lasers with axial magnetic field

    International Nuclear Information System (INIS)

    Mirzanejhad, S.; Maraghechi, B.; Mohsenpour, T.

    2004-01-01

    A self-consistent method for the analysis of self-magnetic field for a free-electron laser with a one-dimensional helical wiggler and an axial guide magnetic field is presented. The equilibrium orbits and their stability, under the influence of self-electric and self-magnetic fields, are analyzed. New unstable orbits, in the first part of the Group I orbits and in the resonance region of the Group II orbits, are found. It is shown that an increase in the defocusing effect of self-fields will widen the unstable orbits. An anomalous self-field regime is found where an increase in the defocusing effect of self-fields can have stabilizing effect on the resonance region

  9. Relativistic dynamics of point magnetic moment

    Science.gov (United States)

    Rafelski, Johann; Formanek, Martin; Steinmetz, Andrew

    2018-01-01

    The covariant motion of a classical point particle with magnetic moment in the presence of (external) electromagnetic fields is revisited. We are interested in understanding extensions to the Lorentz force involving point particle magnetic moment (Stern-Gerlach force) and how the spin precession dynamics is modified for consistency. We introduce spin as a classical particle property inherent to Poincaré symmetry of space-time. We propose a covariant formulation of the magnetic force based on a `magnetic' 4-potential and show how the point particle magnetic moment relates to the Amperian (current loop) and Gilbertian (magnetic monopole) descriptions. We show that covariant spin precession lacks a unique form and discuss the connection to g-2 anomaly. We consider the variational action principle and find that a consistent extension of the Lorentz force to include magnetic spin force is not straightforward. We look at non-covariant particle dynamics, and present a short introduction to the dynamics of (neutral) particles hit by a laser pulse of arbitrary shape.

  10. Dynamics expansion of laser produced plasma with different materials in magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Rabia Qindeel; Noriah Bte Bidin; Yaacob Mat daud [Laser Technology Laboratory, Physics Department, Universiti Teknologi Malaysia, Skudai 81310, Johor (Malaysia)], E-mail: plasmaqindeel@yahoo.com

    2008-12-01

    The dynamics expansion of the plasma generated by laser ablation of different materials has been investigated. The dynamics and confinement of laser generated plasma plumes are expanding across variable magnetic fields. A Q-switched neodymium-doped yttrium aluminum garnet laser with 1064 nm, 8 ns pulse width and 0.125 J laser energy was used to generate plasma that was allowed to expand across variable magnetic within 0.1 - 0.8 T. The expansions of laser-produced plasma of different materials are characterized by using constant laser power. CCD video camera was used to visualize and record the activities in the focal region. The plasma plume length, width and area were measured by using Matrox Inpector 2.1 and video Test 0.5 software. Spectrums of plasma beam from different materials are studied via spectrometer. The results show that the plasma generated by aluminum target is the largest than Brass and copper. The optical radiation from laser generated plasma beam spectrums are obtained in the range of UV to visible light.

  11. Dynamic magnetic hysteresis behavior and dynamic phase transition in the spin-1 Blume-Capel model

    Energy Technology Data Exchange (ETDEWEB)

    Deviren, Bayram, E-mail: bayram.deviren@nevsehir.edu.tr [Department of Physics, Nevsehir University, 50300 Nevsehir (Turkey); Keskin, Mustafa [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)

    2012-03-15

    The nature (time variation) of response magnetization m(wt) of the spin-1 Blume-Capel model in the presence of a periodically varying external magnetic field h(wt) is studied by employing the effective-field theory (EFT) with correlations as well as the Glauber-type stochastic dynamics. We determine the time variations of m(wt) and h(wt) for various temperatures, and investigate the dynamic magnetic hysteresis behavior. We also investigate the temperature dependence of the dynamic magnetization, hysteresis loop area and correlation near the transition point in order to characterize the nature (first- or second-order) of the dynamic transitions as well as obtain the dynamic phase transition temperatures. The hysteresis loops are obtained for different reduced temperatures and we find that the areas of the loops are decreasing with the increasing of the reduced temperatures. We also present the dynamic phase diagrams and compare the results of the EFT with the results of the dynamic mean-field approximation. The phase diagrams exhibit many dynamic critical points, such as tricritical ( Bullet ), zero-temperature critical (Z), triple (TP) and multicritical (A) points. According to values of Hamiltonian parameters, besides the paramagnetic (P), ferromagnetic (F) fundamental phases, one coexistence or mixed phase region, (F+P) and the reentrant behavior exist in the system. The results are in good agreement with some experimental and theoretical results. - Highlights: Black-Right-Pointing-Pointer Kinetic spin-1 Blume-Capel model is studied using the effective-field theory. Black-Right-Pointing-Pointer We investigated the dynamic magnetic hysteresis behavior. Black-Right-Pointing-Pointer Dynamic magnetization, hysteresis loop area and correlation are investigated. Black-Right-Pointing-Pointer System exhibits tricritical, zero-temperature, triple and multicritical points. Black-Right-Pointing-Pointer We present the dynamic phase diagrams and compare the results of the EFT

  12. Dynamically controlled energy dissipation for fast magnetic vortex switching

    Science.gov (United States)

    Badea, R.; Berezovsky, J.

    2017-09-01

    Manipulation of vortex states in magnetic media provides new routes towards information storage and processing technology. The typical slow relaxation times (˜100 ns) of magnetic vortex dynamics may present an obstacle to the realization of these applications. Here, we investigate how a vortex state in a ferromagnetic microdisk can be manipulated in a way that translates the vortex core while enhancing energy dissipation to rapidly damp the vortex dynamics. We use time-resolved differential magneto-optical Kerr effect microscopy to measure the motion of the vortex core in response to applied magnetic fields. We first map out how the vortex core becomes sequentially trapped by pinning sites as it translates across the disk. After applying a fast magnetic field step to translate the vortex from one pinning site to another, we observe long-lived dynamics of the vortex as it settles to the new equilibrium. We then demonstrate how the addition of a short (<10 ns) magnetic field pulse can induce additional energy dissipation, strongly damping the long-lived dynamics. A model of the vortex dynamics using the Thiele equation of motion explains the mechanism behind this effect.

  13. Population and phase dynamics of F=1 spinor condensates in an external magnetic field

    International Nuclear Information System (INIS)

    Romano, D.R.; Passos, E.J.V. de

    2004-01-01

    We show that the classical dynamics underlying the mean-field description of homogeneous mixtures of spinor F=1 Bose-Einstein condensates in an external magnetic field is integrable as a consequence of number conservation and axial symmetry in spin space. The population dynamics depends only on the quadratic term of the Zeeman energy and on the strength of the spin-dependent term of the atom-atom interaction. We determine the equilibrium populations as function of the ratio of these two quantities and the miscibility of the hyperfine components in the ground state spinors are thoroughly discussed. Outside the equilibrium, the populations are always a periodic function of time where the periodic motion can be a libration or a rotation. Our studies also indicate the absence of metastability

  14. Magnetic Thermometer: Thermal effect on the Agglomeration of Magnetic Nanoparticles by Magnetic field

    Science.gov (United States)

    Jin, Daeseong; Kim, Hackjin

    2018-03-01

    We have investigated the agglomeration of magnetite nanoparticles in the aqueous solution under magnetic field by measuring temporal change of magnetic weight. The magnetic weight corresponds to the force due to the magnetization of magnetic materials. Superparamagnetic magnetite nanoparticles are synthesized and used in this work. When the aqueous solution of magnetite nanoparticle is placed under magnetic field, the magnetic weight of the sample jumps instantaneously by Neel and Brown mechanisms and thereafter increases steadily following a stretched exponential function as the nanoparticles agglomerate, which results from the distribution of energy barriers involved in the dynamics. Thermal motions of nanoparticles in the agglomerate perturb the ordered structure of the agglomerate to reduce the magnetic weight. Fluctuation of the structural order of the agglomerate by temperature change is much faster than the formation of agglomerate and explained well with the Boltzmann distribution, which suggests that the magnetic weight of the agglomerate works as a magnetic thermometer.

  15. Dynamics of a rarefied plasma in a magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Sagdeyev, R S; Kadomtsev, B B; Rudakov, L I; Vedyonov, A A

    1958-07-01

    The nature of the motion and properties of high temperature plasma in a magnetic field is of particular interest for the problem of producing controlled thermonuclear reactions. The most general theoretical approach to such problems lies in the description of the plasma by the Boltzmann and Maxwell equations that connect the self-consistent electric and magnetic fields with the ion and electron distribution functions. The exact equations for the motion of plasma in an electromagnetic field can only be solved in certain simple cases especially because the fields are influenced by the collective motion of all the particles. For a certain class of problems it is possible to work out a procedure for decreasing the number of variables and thus simplify the characteristic equations. In this work the following cases are considered and equations derived: equations for the macroscopic motion of the plasma; hydrodynamics of a low pressure plasma; instability of plasma in a magnetic field with an anisotropic ion velocity distribution; stability of a pinched cylindrical plasma using the kinetic equation; non-linear one-dimensional motion of a rarefied plasma.

  16. Current-induced magnetization dynamics in nanomagnets

    International Nuclear Information System (INIS)

    Bertotti, G.; Serpico, C.; Mayergoyz, I.D.; Bonin, R.; D'Aquino, M.

    2007-01-01

    An overview is given of the various approaches that have been proposed for the interpretation of spin-transfer-driven magnetization dynamics. Models of critical currents and critical fields for switching as well as for the onset of magnetization oscillations are discussed, together with methods for the construction of field-current stability diagrams. Finally, the role of thermal fluctuations is analyzed. Particular emphasis is given to the study of uniformly magnetized nanomagnets, which represents an essential step before moving to the numerical computation of more complex micromagnetic configurations

  17. Current-induced magnetization dynamics in nanomagnets

    Energy Technology Data Exchange (ETDEWEB)

    Bertotti, G. [INRIM-Istituto Nazionale di Ricerca Metrologica, Strada delle Cacce 91, 10135 Turin (Italy)]. E-mail: g.bertotti@inrim.it; Serpico, C. [Department of Electrical Engineering, Universita degli Studi Federico II, Via Claudio 21, 80125 Naples (Italy); Mayergoyz, I.D. [Department of Electrical and Computer Engineering, University of Maryland, College Park, MD 20742 (United States); Bonin, R. [INRIM-Istituto Nazionale di Ricerca Metrologica, Strada delle Cacce 91, 10135 Turin (Italy); D' Aquino, M. [Department of Electrical Engineering, Universita degli Studi Federico II, Via Claudio 21, 80125 Naples (Italy)

    2007-09-15

    An overview is given of the various approaches that have been proposed for the interpretation of spin-transfer-driven magnetization dynamics. Models of critical currents and critical fields for switching as well as for the onset of magnetization oscillations are discussed, together with methods for the construction of field-current stability diagrams. Finally, the role of thermal fluctuations is analyzed. Particular emphasis is given to the study of uniformly magnetized nanomagnets, which represents an essential step before moving to the numerical computation of more complex micromagnetic configurations.

  18. Chaos and nonlinear dynamics of single-particle orbits in a magnetotaillike magnetic field

    Science.gov (United States)

    Chen, J.; Palmadesso, P. J.

    1986-01-01

    The properties of charged-particle motion in Hamiltonian dynamics are studied in a magnetotaillike magnetic field configuration. It is shown by numerical integration of the equation of motion that the system is generally nonintegrable and that the particle motion can be classified into three distinct types of orbits: bounded integrable orbits, unbounded stochastic orbits, and unbounded transient orbits. It is also shown that different regions of the phase space exhibit qualitatively different responses to external influences. The concept of 'differential memory' in single-particle distributions is proposed. Physical implications for the dynamical properties of the magnetotail plasmas and the possible generation of non-Maxwellian features in the distribution functions are discussed.

  19. Dynamics of simple magnetorheological suspensions under rotating magnetic fields with modulated Mason number

    International Nuclear Information System (INIS)

    Calderon, Oscar G; Melle, Sonia

    2002-01-01

    We study theoretically the dynamics of a system of two magnetizable particles suspended in a non-magnetic fluid subject to a rotating magnetic field when a modulation on the Mason number (ratio of viscous to magnetic forces) is applied. We find, using a periodic modulation, that a resonant-like phenomenon between the periodic modulation of the Mason number and the intrinsic radial oscillation of the system without modulation occurs. For a random perturbation of the Mason number, we obtain an optimum noise strength at which the average interparticle distance reaches the lowest value. When a weak periodic modulation and a noise source are included in the Mason number, stochastic resonance (SR) is found for different frequencies and amplitudes of the modulation. An interpretation of this SR phenomenon is made by means of a threshold crossing mechanism

  20. Magnetic bead micromixer: Influence of magnetic element geometry and field amplitude

    DEFF Research Database (Denmark)

    Lund-Olesen, Torsten; Buus, Bjarke B.; Howalt, Jakob

    2008-01-01

    A scheme for the silicon microfabrication of lab-on-a-chip systems with mixing based on dynamic plugs of magnetic beads is presented. The systems consist of a microfluidic channel integrated with a number of soft magnetic elements by the sides of the channel. The elements are magnetized by a homo......A scheme for the silicon microfabrication of lab-on-a-chip systems with mixing based on dynamic plugs of magnetic beads is presented. The systems consist of a microfluidic channel integrated with a number of soft magnetic elements by the sides of the channel. The elements are magnetized...... by a homogeneous external ac magnetic field. The systems are scalable with respect to the number of magnetic bead plugs and number of parallel channels, and thus they have high potential for use in biological separation using functionalized magnetic beads. The mixing efficiency is characterized for two different...

  1. DARK MATTER, MAGNETIC FIELDS, AND THE ROTATION CURVE OF THE MILKY WAY

    International Nuclear Information System (INIS)

    Ruiz-Granados, B.; Battaner, E.; Florido, E.; Calvo, J.; Rubiño-Martín, J. A.

    2012-01-01

    The study of the disk rotation curve of our Galaxy at large distances provides an interesting scenario for us to test whether magnetic fields should be considered as a non-negligible dynamical ingredient. By assuming a bulge, an exponential disk for the stellar and gaseous distributions, and a dark halo and disk magnetic fields, we fit the rotation velocity of the Milky Way. In general, when the magnetic contribution is added to the dynamics, a better description of the rotation curve is obtained. Our main conclusion is that magnetic fields should be taken into account for the Milky Way dynamics. Azimuthal magnetic field strengths of B φ ∼ 2 μG at distances of ∼2 R 0 (16 kpc) are able to explain the rise-up for the rotation curve in the outer disk.

  2. Magnetic field effects on ultrafast lattice compression dynamics of Si(111) crystal when excited by linearly-polarized femtosecond laser pulses

    Science.gov (United States)

    Hatanaka, Koji; Odaka, Hideho; Ono, Kimitoshi; Fukumura, Hiroshi

    2007-03-01

    Time-resolved X-ray diffraction measurements of Si (111) single crystal are performed when excited by linearly-polarized femtosecond laser pulses (780 nm, 260 fs, negatively-chirped, 1 kHz) under a magnetic field (0.47 T). Laser fluence on the sample surface is 40 mJ/cm^2, which is enough lower than the ablation threshold at 200 mJ/cm^2. Probing X-ray pulses of iron characteristic X-ray lines at 0.193604 and 0.193998 nm are generated by focusing femtosecond laser pulses onto audio-cassette tapes in air. Linearly-polarized femtosecond laser pulse irradiation onto Si(111) crystal surface induces transient lattice compression in the picosecond time range, which is confirmed by transient angle shift of X-ray diffraction to higher angles. Little difference of compression dynamics is observed when the laser polarization is changed from p to s-pol. without a magnetic field. On the other hand, under a magnetic field, the lattice compression dynamics changes when the laser is p-polarized which is vertical to the magnetic field vector. These results may be assigned to photo-carrier formation and energy-band distortion.

  3. Relativistic dynamics of point magnetic moment

    Energy Technology Data Exchange (ETDEWEB)

    Rafelski, Johann; Formanek, Martin; Steinmetz, Andrew [The University of Arizona, Department of Physics, Tucson, AZ (United States)

    2018-01-15

    The covariant motion of a classical point particle with magnetic moment in the presence of (external) electromagnetic fields is revisited. We are interested in understanding extensions to the Lorentz force involving point particle magnetic moment (Stern-Gerlach force) and how the spin precession dynamics is modified for consistency. We introduce spin as a classical particle property inherent to Poincare symmetry of space-time. We propose a covariant formulation of the magnetic force based on a 'magnetic' 4-potential and show how the point particle magnetic moment relates to the Amperian (current loop) and Gilbertian (magnetic monopole) descriptions. We show that covariant spin precession lacks a unique form and discuss the connection to g - 2 anomaly. We consider the variational action principle and find that a consistent extension of the Lorentz force to include magnetic spin force is not straightforward. We look at non-covariant particle dynamics, and present a short introduction to the dynamics of (neutral) particles hit by a laser pulse of arbitrary shape. (orig.)

  4. Chiral symmetry breaking in a semilocalized magnetic field

    Science.gov (United States)

    Cao, Gaoqing

    2018-03-01

    In this work, we explore the pattern of chiral symmetry breaking and restoration in a solvable magnetic field configuration within the Nambu-Jona-Lasinio model. The special semilocalized static magnetic field can roughly mimic the realistic situation in peripheral heavy ion collisions; thus, the study is important for the dynamical evolution of quark matter. We find that the magnetic-field-dependent contribution from discrete spectra usually dominates over the contribution from continuum spectra and chiral symmetry breaking is locally catalyzed by both the magnitude and scale of the magnetic field. The study is finally extended to the case with finite temperature or chemical potential.

  5. Dynamics of plasma−dust structures formed in a trap created in the narrowing of a current channel in a magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Dzlieva, E. S., E-mail: plasmadust@yandex.ru; Karasev, V. Yu., E-mail: v.karasev@spbu.ru; Pavlov, S. I. [St. Petersburg State University (Russian Federation)

    2016-02-15

    The geometry and dynamics of plasma−dust structures in a longitudinal magnetic field is studied experimentally. The structures are formed in a glow-discharge trap created in the double electric layer produced as a result of discharge narrowing by means of a dielectric insert introduced in the discharge tube. Studies of structures formed in the new type of glow-discharge trap are of interest from the standpoint of future experiments with complex plasmas in superstrong magnetic fields in which the dust component is magnetized. Different types of dielectric inserts were used: conical and plane ones with symmetric and asymmetric apertures. Conditions for the existence of stable dust structures are determined for dust grains of different density and different dispersity. According to the experimental results, the angular velocity of dust rotation is ≥10 s{sup –1}, which is the fastest type of dust motion for all types of discharges in a magnetic field. The rotation is interpreted by analyzing the dynamics of individual dust grains.

  6. Velocity dependence of enhanced dynamic hyperfine field for Pd ions swiftly recoiling in magnetized Fe

    International Nuclear Information System (INIS)

    Stuchbery, A.E.; Ryan, G.C.; Bolotin, H.H.; Sie, S.H.

    1980-01-01

    The velocity-dependence of the magnitude of the enchanced dynamic hyperfine magnetic field (EDF) manifest at nuclei of 108 Pd ions swiftly recoiling through thin magnetized Fe has been investigated at ion velocities higher than have heretofore been examined for the heavier nuclides (i.e., at initial recoil velocities (v/Zv 0 )=0.090 and 0.160, v 0 =c/137). These results for 108 Pd, when taken in conjunction with those of prior similar measurements for 106 Pd at lower velocities, and fitted to a velocity dependence for the EDF, give for the Pd isotopes over the extended velocity range 1.74 0 )<=7.02, p=0.41+-0.15; a result incompatible with previous attributions of a linear velocity dependence for the field

  7. Dynamic phase diagrams of a cylindrical Ising nanowire in the presence of a time dependent magnetic field

    International Nuclear Information System (INIS)

    Kantar, Ersin; Ertaş, Mehmet; Keskin, Mustafa

    2014-01-01

    The dynamic phase diagrams of a cylindrical Ising nanowire in the presence of a time dependent magnetic field are obtained by using the effective-field theory with correlations based on the Glauber-type stochastic dynamics. According to the values of interaction parameters, a number of interesting properties have been found in the dynamic phase diagrams, such as many dynamic critical points (tricritical point, double critical end point, critical end point, zero temperature critical point, multicritical point, tetracritical point, and triple point) as well as reentrant phenomena. - Highlights: • The cylindrical Ising nanowire is investigated within the Glauber dynamics based on EFT. • The time variations of average order parameters to find phases are studied. • The dynamic phase diagrams are found for the different interaction parameters. • The system displays the critical points as well as a reentrant behavior

  8. Dynamic phase diagrams of a cylindrical Ising nanowire in the presence of a time dependent magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Kantar, Ersin; Ertaş, Mehmet, E-mail: mehmetertas@erciyes.edu.tr; Keskin, Mustafa

    2014-06-01

    The dynamic phase diagrams of a cylindrical Ising nanowire in the presence of a time dependent magnetic field are obtained by using the effective-field theory with correlations based on the Glauber-type stochastic dynamics. According to the values of interaction parameters, a number of interesting properties have been found in the dynamic phase diagrams, such as many dynamic critical points (tricritical point, double critical end point, critical end point, zero temperature critical point, multicritical point, tetracritical point, and triple point) as well as reentrant phenomena. - Highlights: • The cylindrical Ising nanowire is investigated within the Glauber dynamics based on EFT. • The time variations of average order parameters to find phases are studied. • The dynamic phase diagrams are found for the different interaction parameters. • The system displays the critical points as well as a reentrant behavior.

  9. ON THE MAGNETISM AND DYNAMICS OF PROMINENCE LEGS HOSTING TORNADOES

    International Nuclear Information System (INIS)

    Martínez González, M. J.; Ramos, A. Asensio; Arregui, I.; Collados, M.; Beck, C.; Rodríguez, J. de la Cruz

    2016-01-01

    Solar tornadoes are dark vertical filamentary structures observed in the extreme ultraviolet associated with prominence legs and filament barbs. Their true nature and relationship to prominences requires an understanding of their magnetic structure and dynamic properties. Recently, a controversy has arisen: is the magnetic field organized forming vertical, helical structures or is it dominantly horizontal? And concerning their dynamics, are tornadoes really rotating or is it just a visual illusion? Here we analyze four consecutive spectro-polarimetric scans of a prominence hosting tornadoes on its legs, which helps us shed some light on their magnetic and dynamical properties. We show that the magnetic field is very smooth in all the prominence, which is probably an intrinsic property of the coronal field. The prominence legs have vertical helical fields that show slow temporal variation that is probably related to the motion of the fibrils. Concerning the dynamics, we argue that (1) if rotation exists, it is intermittent, lasting no more than one hour, and (2) the observed velocity pattern is also consistent with an oscillatory velocity pattern (waves).

  10. ON THE MAGNETISM AND DYNAMICS OF PROMINENCE LEGS HOSTING TORNADOES

    Energy Technology Data Exchange (ETDEWEB)

    Martínez González, M. J.; Ramos, A. Asensio; Arregui, I.; Collados, M. [Instituto de Astrofísica de Canarias, Vía Láctea s/n, E-38205 La Laguna, Tenerife (Spain); Beck, C. [National Solar Observatory, Sacramento Peak P.O. Box 62, Sunspot, NM 88349 (United States); Rodríguez, J. de la Cruz [Institute for Solar Physics, Department of Astronomy, Stockholm University, Albanova University Center, SE-10691 Stockholm (Sweden)

    2016-07-10

    Solar tornadoes are dark vertical filamentary structures observed in the extreme ultraviolet associated with prominence legs and filament barbs. Their true nature and relationship to prominences requires an understanding of their magnetic structure and dynamic properties. Recently, a controversy has arisen: is the magnetic field organized forming vertical, helical structures or is it dominantly horizontal? And concerning their dynamics, are tornadoes really rotating or is it just a visual illusion? Here we analyze four consecutive spectro-polarimetric scans of a prominence hosting tornadoes on its legs, which helps us shed some light on their magnetic and dynamical properties. We show that the magnetic field is very smooth in all the prominence, which is probably an intrinsic property of the coronal field. The prominence legs have vertical helical fields that show slow temporal variation that is probably related to the motion of the fibrils. Concerning the dynamics, we argue that (1) if rotation exists, it is intermittent, lasting no more than one hour, and (2) the observed velocity pattern is also consistent with an oscillatory velocity pattern (waves).

  11. Magnetic fields and massive star formation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qizhou; Keto, Eric; Ho, Paul T. P.; Ching, Tao-Chung; Chen, How-Huan [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Qiu, Keping [School of Astronomy and Space Science, Nanjing University, 22 Hankou Road, Nanjing 210093 (China); Girart, Josep M.; Juárez, Carmen [Institut de Ciències de l' Espai, (CSIC-IEEC), Campus UAB, Facultat de Ciències, C5p 2, E-08193 Bellaterra, Catalonia (Spain); Liu, Hauyu; Tang, Ya-Wen; Koch, Patrick M.; Rao, Ramprasad; Lai, Shih-Ping [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 106, Taiwan (China); Li, Zhi-Yun [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904 (United States); Frau, Pau [Observatorio Astronómico Nacional, Alfonso XII, 3 E-28014 Madrid (Spain); Li, Hua-Bai [Department of Physics, The Chinese University of Hong Kong, Hong Kong (China); Padovani, Marco [Laboratoire de Radioastronomie Millimétrique, UMR 8112 du CNRS, École Normale Supérieure et Observatoire de Paris, 24 rue Lhomond, F-75231 Paris Cedex 05 (France); Bontemps, Sylvain [OASU/LAB-UMR5804, CNRS, Université Bordeaux 1, F-33270 Floirac (France); Csengeri, Timea, E-mail: qzhang@cfa.harvard.edu [Max Planck Institute for Radioastronomy, Auf dem Hügel 69, D-53121 Bonn (Germany)

    2014-09-10

    Massive stars (M > 8 M {sub ☉}) typically form in parsec-scale molecular clumps that collapse and fragment, leading to the birth of a cluster of stellar objects. We investigate the role of magnetic fields in this process through dust polarization at 870 μm obtained with the Submillimeter Array (SMA). The SMA observations reveal polarization at scales of ≲0.1 pc. The polarization pattern in these objects ranges from ordered hour-glass configurations to more chaotic distributions. By comparing the SMA data with the single dish data at parsec scales, we found that magnetic fields at dense core scales are either aligned within 40° of or perpendicular to the parsec-scale magnetic fields. This finding indicates that magnetic fields play an important role during the collapse and fragmentation of massive molecular clumps and the formation of dense cores. We further compare magnetic fields in dense cores with the major axis of molecular outflows. Despite a limited number of outflows, we found that the outflow axis appears to be randomly oriented with respect to the magnetic field in the core. This result suggests that at the scale of accretion disks (≲ 10{sup 3} AU), angular momentum and dynamic interactions possibly due to close binary or multiple systems dominate over magnetic fields. With this unprecedentedly large sample of massive clumps, we argue on a statistical basis that magnetic fields play an important role during the formation of dense cores at spatial scales of 0.01-0.1 pc in the context of massive star and cluster star formation.

  12. Monolayer phosphorene under time-dependent magnetic field

    Science.gov (United States)

    Nascimento, J. P. G.; Aguiar, V.; Guedes, I.

    2018-02-01

    We obtain the exact wave function of a monolayer phosphorene under a low-intensity time-dependent magnetic field using the dynamical invariant method. We calculate the quantum-mechanical energy expectation value and the transition probability for a constant and an oscillatory magnetic field. For the former we observe that the Landau level energy varies linearly with the quantum numbers n and m and the magnetic field intensity B0. No transition takes place. For the latter, we observe that the energy oscillates in time, increasing linearly with the Landau level n and m and nonlinearly with the magnetic field. The (k , l) →(n , m) transitions take place only for l = m. We investigate the (0,0) →(n , 0) and (1 , l) and (2 , l) probability transitions.

  13. Collisionless reconnection: magnetic field line interaction

    Directory of Open Access Journals (Sweden)

    R. A. Treumann

    2012-10-01

    Full Text Available Magnetic field lines are quantum objects carrying one quantum Φ0 = 2πh/e of magnetic flux and have finite radius λm. Here we argue that they possess a very specific dynamical interaction. Parallel field lines reject each other. When confined to a certain area they form two-dimensional lattices of hexagonal structure. We estimate the filling factor of such an area. Anti-parallel field lines, on the other hand, attract each other. We identify the physical mechanism as being due to the action of the gauge potential field, which we determine quantum mechanically for two parallel and two anti-parallel field lines. The distortion of the quantum electrodynamic vacuum causes a cloud of virtual pairs. We calculate the virtual pair production rate from quantum electrodynamics and estimate the virtual pair cloud density, pair current and Lorentz force density acting on the field lines via the pair cloud. These properties of field line dynamics become important in collisionless reconnection, consistently explaining why and how reconnection can spontaneously set on in the field-free centre of a current sheet below the electron-inertial scale.

  14. The hydrogen atom in a magnetic field. Spectrum from the Coulomb dynamical group approach

    International Nuclear Information System (INIS)

    Delande, D.; Gay, J.C.

    1986-01-01

    Some sample results are presented for the problems of the hydrogen atom in a magnetic field. The energies have been computed for a typical Rydberg situation of atomic physics interest using limited computer facilities. The use of the Coulomb dynamical group allows a complete description of the symmetries and a rational choice of a Sturmian type basis set. Moreover, comparison with Rayleigh-Schrodinger perturbative expansions of the energies is performed. (author)

  15. Transformable ferroelectric control of dynamic magnetic permeability

    Science.gov (United States)

    Jiang, Changjun; Jia, Chenglong; Wang, Fenglong; Zhou, Cai; Xue, Desheng

    2018-02-01

    Magnetic permeability, which measures the response of a material to an applied magnetic field, is crucial to the performance of magnetic devices and related technologies. Its dynamic value is usually a complex number with real and imaginary parts that describe, respectively, how much magnetic power can be stored and lost in the material. Control of permeability is therefore closely related to energy redistribution within a magnetic system or energy exchange between magnetic and other degrees of freedom via certain spin-dependent interactions. To avoid a high power consumption, direct manipulation of the permeability with an electric field through magnetoelectric coupling leads to high efficiency and simple operation, but remains a big challenge in both the fundamental physics and material science. Here we report unambiguous evidence of ferroelectric control of dynamic magnetic permeability in a Co /Pb (Mg1/3Nb2/3) 0.7Ti0.3O3 (Co/PMN-PT) heterostructure, in which the ferroelectric PMN-PT acts as an energy source for the ferromagnetic Co film via an interfacial linear magnetoelectric interaction. The electric field tuning of the magnitude and line shape of the permeability offers a highly localized means of controlling magnetization with ultralow power consumption. Additionally, the emergence of negative permeability promises a new way of realizing functional nanoscale metamaterials with adjustable refraction index.

  16. Observations of vector magnetic fields with a magneto-optic filter

    Science.gov (United States)

    Cacciani, Alessandro; Varsik, John; Zirin, Harold

    1990-01-01

    The use of the magnetooptic filter to observe solar magnetic fields in the potassium line at 7699 A is described. The filter has been used in the Big Bear videomagnetograph since October 23. It gives a high sensitivity and dynamic range for longitudnal magnetic fields and enables measurement of transverse magnetic fields using the sigma component. Examples of the observations are presented.

  17. Fatigue life of metal treated by magnetic field

    International Nuclear Information System (INIS)

    Zhao-Long, Liu; Hai-Yun, Hu; Tian-You, Fan; Xiu-San, Xing

    2009-01-01

    This paper investigates theoretically the influence of magnetization on fatigue life by using non-equilibrium statistical theory of fatigue fracture for metals. The fatigue microcrack growth rate is obtained from the dynamic equation of microcrack growth, where the influence of magnetization is described by an additional term in the potential energy of microcrack. The statistical value of fatigue life of metal under magnetic field is derived, which is expressed in terms of magnetic field and macrophysical as well as microphysical quantities. The fatigue life of AISI 4140 steel in static magnetic field from this theory is basically consistent with the experimental data. (cross-disciplinary physics and related areas of science and technology)

  18. Restricted lithium ion dynamics in PEO-based block copolymer electrolytes measured by high-field nuclear magnetic resonance relaxation

    Science.gov (United States)

    Huynh, Tan Vu; Messinger, Robert J.; Sarou-Kanian, Vincent; Fayon, Franck; Bouchet, Renaud; Deschamps, Michaël

    2017-10-01

    The intrinsic ionic conductivity of polyethylene oxide (PEO)-based block copolymer electrolytes is often assumed to be identical to the conductivity of the PEO homopolymer. Here, we use high-field 7Li nuclear magnetic resonance (NMR) relaxation and pulsed-field-gradient (PFG) NMR diffusion measurements to probe lithium ion dynamics over nanosecond and millisecond time scales in PEO and polystyrene (PS)-b-PEO-b-PS electrolytes containing the lithium salt LiTFSI. Variable-temperature longitudinal (T1) and transverse (T2) 7Li NMR relaxation rates were acquired at three magnetic field strengths and quantitatively analyzed for the first time at such fields, enabling us to distinguish two characteristic time scales that describe fluctuations of the 7Li nuclear electric quadrupolar interaction. Fast lithium motions [up to O (ns)] are essentially identical between the two polymer electrolytes, including sub-nanosecond vibrations and local fluctuations of the coordination polyhedra between lithium and nearby oxygen atoms. However, lithium dynamics over longer time scales [O (10 ns) and greater] are slower in the block copolymer compared to the homopolymer, as manifested experimentally by their different transverse 7Li NMR relaxation rates. Restricted dynamics and altered thermodynamic behavior of PEO chains anchored near PS domains likely explain these results.

  19. Dynamic and biocompatible thermo-responsive magnetic hydrogels that respond to an alternating magnetic field

    Science.gov (United States)

    Crippa, Federica; Moore, Thomas L.; Mortato, Mariangela; Geers, Christoph; Haeni, Laetitia; Hirt, Ann M.; Rothen-Rutishauser, Barbara; Petri-Fink, Alke

    2017-04-01

    Magnetic thermo-responsive hydrogels are a new class of materials that have recently attracted interest in biomedicine due to their ability to change phase upon magnetic stimulation. They have been used for drug release, magnetic hyperthermia treatment, and can potentially be engineered as stimuli-responsive substrates for cell mechanobiology. In this regard, we propose a series of magnetic thermo-responsive nanocomposite substrates that undergo cyclical swelling and de-swelling phases when actuated by an alternating magnetic field in aqueous environment. The synthetized substrates are obtained with a facile and reproducible method from poly-N-isopropylacrylamide and superparamagnetic iron oxide nanoparticles. Their conformation and the temperature-related, magnetic, and biological behaviors were characterized via scanning electron microscopy, swelling ratio analysis, vibrating sample magnetometry, alternating magnetic field stimulation and indirect viability assays. The nanocomposites showed no cytotoxicity with fibroblast cells, and exhibited swelling/de-swelling behavior near physiological temperatures (around 34 °C). Therefore these magnetic thermo-responsive hydrogels are promising materials as stimuli-responsive substrates allowing the study of cell-behavior by changing the hydrogel properties in situ.

  20. The Magnetic Field of Planet Earth

    DEFF Research Database (Denmark)

    Hulot, G.; Finlay, Chris; Constable, C. G.

    2010-01-01

    The magnetic field of the Earth is by far the best documented magnetic field of all known planets. Considerable progress has been made in our understanding of its characteristics and properties, thanks to the convergence of many different approaches and to the remarkable fact that surface rocks...... yr) to the longest (virtually the age of the Earth) time scales are finally reviewed, underlining the respective roles of the magnetohydodynamics at work in the core, and of the slow dynamic evolution of the planet as a whole....

  1. Effect of a high-frequency magnetic field on the resonant behavior displayed by a spin-1/2 particle under the influence of a rotating magnetic field

    International Nuclear Information System (INIS)

    Casado-Pascual, Jesus

    2010-01-01

    Graphical abstract: In this paper, we investigate the role of a high-frequency magnetic field in the resonant behavior displayed by a spin-1/2 particle under the influence of a rotating magnetic field. We propose two alternative methods for analyzing the system dynamics, namely, the averaging method and the multiple scale method. - Abstract: In this paper, we investigate the role of a high-frequency magnetic field in the resonant behavior displayed by a spin-1/2 particle under the influence of a rotating magnetic field. We propose two alternative methods for analyzing the system dynamics, namely, the averaging method and the multiple scale method. The analytical results achieved by applying these two methods are compared with those obtained from the numerical solution of the Schroedinger equation. This comparison leads to the conclusion that the multiple scale method provides a better understanding of the system dynamics than the averaging method. In particular, the averaging method predicts the complete destruction of the resonant behavior by an appropriate choice of the parameter values of the high-frequency magnetic field. This conclusion is disproved both by the numerical results, and also by the results obtained from the multiple scale method.

  2. Magnetic effects on the solvent properties investigated by molecular dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Moosavi, Fatemeh, E-mail: moosavibaigi@um.ac.ir; Gholizadeh, Mostafa

    2014-03-15

    This paper investigates how an external constant magnetic field in the Z-direction affects the performance of a solvent. The molecular dynamics simulation comprised common inorganic and organic solvents including water, acetone, acetonitrile, toluene, and n-hexane at the ambient temperature and pressure. A static magnetic field applied in the simulation process is able to reduce the solvent mobility in the solution in order to enhance the solvent–solute reaction. Simulation results show that the diffusivity decreases because of increasing the effective interactions. Besides, magnetic field reduces the volume of the solvent and increases the strength of the hydrogen bonds by maximizing attractive electrostatic and vdW interactions caused by changes in the radial distribution function of the solvents. Hydrogen-bonding characteristics of solvents investigated by molecular dynamics simulations were evidence for the hydrogen bonding strength of O···H that is a more efficient intermolecular hydrogen-bonding in comparison with N···H. - Highlights: • Molecular dynamics simulation technique investigates the effect of magnetic field on transport dynamics inside the solvent bulk. • External constant magnetic field influences on intermolecular interactions, thermophysics, and transport properties of the solvents. • Applying magnetic field strengthened hydrogen bond maximizes attractive electrostatic interactions, charge distribution becomes stronger, and the molecule mobility is demoted. • The low diffusivity of the solvents in the solutions increases the performance of the interactions and promotes the interactions. • On introducing a magnetic field of flux density parallel to the Z-direction, solvent acts as an obstacle to diffusion of solutes.

  3. Manipulating the magnetic anisotropy and magnetization dynamics by stress: Numerical calculation and experiment

    Science.gov (United States)

    Correa, M. A.; Bohn, F.

    2018-05-01

    We perform a theoretical and experimental investigation of the magnetic properties and magnetization dynamics of a ferromagnetic magnetostrictive multilayer grown onto a flexible substrate and submitted to external stress. We calculate the magnetic behavior and magnetoimpedance effect for a trilayered system from an approach that considers a magnetic permeability model for planar geometry and a magnetic free energy density which takes into account induced uniaxial and magnetoelastic anisotropy contributions. We verify remarkable modifications of the magnetic anisotropy with external stress, as well as we show that the dynamic magnetic response is strongly affected by these changes. We discuss the magnetic features that lead to modifications of the frequency limits where distinct mechanisms are responsible by the magnetoimpedance variations, enabling us to manipulate the resonance fields. To test the robustness of the approach, we directly compare theoretical results with experimental data. Thus, we provide experimental evidence to confirm the validity of the theoretical approach, as well as to manipulate the resonance fields to tune the MI response according to real applications in devices.

  4. Magnetic dynamics of weakly and strongly interacting hematite nanoparticles

    DEFF Research Database (Denmark)

    Hansen, Mikkel Fougt; Bender Koch, Christian; Mørup, Steen

    2000-01-01

    The magnetic dynamics of two differently treated samples of hematite nanoparticles from the same batch with a particle size of about 20 nm have been studied by Mossbauer spectroscopy. The dynamics of the first sample, in which the particles are coated and dispersed in water, is in accordance with...... down by interparticle interactions and a magnetically split spectrum is retained at room temperature. The temperature variation or the magnetic hyperfine field, corresponding to different quantiles in the hyperfine field distribution, can be consistently described by a mean field model...... for "superferromagnetism" in which the magnetic anisotropy is included. The coupling between the particles is due to exchange interactions and the interaction strength can be accounted for by just a few exchange bridges between surface atoms in neighboring crystallites....

  5. Three dimensional magnetohydrodynamic simulation of linearly polarised Alfven wave dynamics in Arnold-Beltrami-Childress magnetic field

    International Nuclear Information System (INIS)

    Tsiklauri, D.

    2014-01-01

    Previous studies (e.g., Malara et al., Astrophys. J. 533, 523 (2000)) considered small-amplitude Alfven wave (AW) packets in Arnold-Beltrami-Childress (ABC) magnetic field using WKB approximation. They draw a distinction between 2D AW dissipation via phase mixing and 3D AW dissipation via exponentially divergent magnetic field lines. In the former case, AW dissipation time scales as S 1∕3 and in the latter as log(S), where S is the Lundquist number. In this work, linearly polarised Alfven wave dynamics in ABC magnetic field via direct 3D magnetohydrodynamic (MHD) numerical simulation is studied for the first time. A Gaussian AW pulse with length-scale much shorter than ABC domain length and a harmonic AW with wavelength equal to ABC domain length are studied for four different resistivities. While it is found that AWs dissipate quickly in the ABC field, contrary to an expectation, it is found the AW perturbation energy increases in time. In the case of the harmonic AW, the perturbation energy growth is transient in time, attaining peaks in both velocity and magnetic perturbation energies within timescales much smaller than the resistive time. In the case of the Gaussian AW pulse, the velocity perturbation energy growth is still transient in time, attaining a peak within few resistive times, while magnetic perturbation energy continues to grow. It is also shown that the total magnetic energy decreases in time and this is governed by the resistive evolution of the background ABC magnetic field rather than AW damping. On contrary, when the background magnetic field is uniform, the total magnetic energy decrease is prescribed by AW damping, because there is no resistive evolution of the background. By considering runs with different amplitudes and by analysing the perturbation spectra, possible dynamo action by AW perturbation-induced peristaltic flow and inverse cascade of magnetic energy have been excluded. Therefore, the perturbation energy growth is attributed to

  6. Three dimensional magnetohydrodynamic simulation of linearly polarised Alfven wave dynamics in Arnold-Beltrami-Childress magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Tsiklauri, D. [School of Physics and Astronomy, Queen Mary University of London, London E1 4NS (United Kingdom)

    2014-05-15

    Previous studies (e.g., Malara et al., Astrophys. J. 533, 523 (2000)) considered small-amplitude Alfven wave (AW) packets in Arnold-Beltrami-Childress (ABC) magnetic field using WKB approximation. They draw a distinction between 2D AW dissipation via phase mixing and 3D AW dissipation via exponentially divergent magnetic field lines. In the former case, AW dissipation time scales as S{sup 1∕3} and in the latter as log(S), where S is the Lundquist number. In this work, linearly polarised Alfven wave dynamics in ABC magnetic field via direct 3D magnetohydrodynamic (MHD) numerical simulation is studied for the first time. A Gaussian AW pulse with length-scale much shorter than ABC domain length and a harmonic AW with wavelength equal to ABC domain length are studied for four different resistivities. While it is found that AWs dissipate quickly in the ABC field, contrary to an expectation, it is found the AW perturbation energy increases in time. In the case of the harmonic AW, the perturbation energy growth is transient in time, attaining peaks in both velocity and magnetic perturbation energies within timescales much smaller than the resistive time. In the case of the Gaussian AW pulse, the velocity perturbation energy growth is still transient in time, attaining a peak within few resistive times, while magnetic perturbation energy continues to grow. It is also shown that the total magnetic energy decreases in time and this is governed by the resistive evolution of the background ABC magnetic field rather than AW damping. On contrary, when the background magnetic field is uniform, the total magnetic energy decrease is prescribed by AW damping, because there is no resistive evolution of the background. By considering runs with different amplitudes and by analysing the perturbation spectra, possible dynamo action by AW perturbation-induced peristaltic flow and inverse cascade of magnetic energy have been excluded. Therefore, the perturbation energy growth is

  7. Dynamic and statistical thermodynamic properties of electrons in a thin quantum well in a parallel magnetic field

    International Nuclear Information System (INIS)

    Horing, Norman J Morgenstern; Glasser, M Lawrence; Dong Bing

    2006-01-01

    We carry out a theoretical analysis of quantum well electron dynamics in a parallel magnetic field of arbitrary strength, for a narrow quantum well. An explicit analytical closed-form solution is obtained for the retarded Green's function for Landau-quantized electrons in skipping states of motion between the narrow well walls, effectively involving in-plane translational motion, and hybridized with the zero-field lowest subband energy eigenstate. The dispersion relation for electron eigenstates is examined, and we find a plethora of such discrete Landau-quantized modes coupled to the subband state. In the weak field limit, we determine low magnetic field corrections to the lowest subband state energy associated with close-packing (phase averaging) of the Landau levels in the skipping states. At higher fields the discrete energy levels of the well lie between adjacent Landau levels, but they are not equally spaced, albeit undamped. Furthermore, we also examine the associated thermodynamic Green's function for Landau-quantized electrons in a thin quantum well in a parallel magnetic field and construct the (grand) thermodynamic potential (logarithm of the grand partition function) determining the statistical thermodynamics of the system

  8. Explosion of soliton in a magnetic field

    International Nuclear Information System (INIS)

    Nishinari, K.; Abe, K.; Satsuma, J.

    1994-01-01

    A dynamics of a solitary pulse of the electrostatic ion cyclotron wave that propagates perpendicular to an applied magnetic field is considered. It is shown that the solitary wave will be singular in some range of parameters in the system, such as the plasma density and the magnitude of an applied magnetic field. This fact shows that there is a possibility of controlling the place where explosion of the solitary wave occurs

  9. The magnetization dynamics of nano-contact spin-torque vortex oscillators

    Science.gov (United States)

    Keatley, Paul

    The operation of nano-contact (NC) spin-torque vortex oscillators (STVOs) is underpinned by vortex gyration in response to spin-torque delivered by high density current passing through the magnetic layers of a spin valve. Gyration directly beneath the NC yields radio frequency (RF) emission through the giant magnetoresistance (GMR) effect, which can be readily detected electronically. The magnetization dynamics that extend beyond the NC perimeter contribute little to the GMR signal, but are crucial for synchronization of multiple NC-STVOs that share the same spin valve film. In this work time-resolved scanning Kerr microscopy (TRSKM) was used to directly image the extended dynamics of STVOs phase-locked to an injected RF current. In this talk the dynamics of single 250-nm diameter NCs, and a pair of 100-nm diameter NCs, will be presented. In general the Kerr images reveal well-defined localized and far-field dynamics, driven by spin-torque and RF current Oersted fields respectively. The RF frequency, RF Oersted field, direction of an in-plane magnetic field, and equilibrium magnetic state, all influenced the spatial character of the dynamics observed in single NCs. In the pair of NCs, two modes were observed in the RF emission. Kerr images revealed that a vortex was formed beneath each NC and that the mode with enhanced spectral amplitude and line quality appeared to be correlated with two localized regions oscillating with similar amplitude and phase, while a second weaker mode exhibited amplitude and phase differences. This suggests that the RF emission was generated by collective modes of vortex gyration dynamically coupled via magnetization dynamics and dipolar interactions of the shared magnetic layers. Within the constraints of injection locking, this work demonstrates that TRSKM can provide valuable insight into the spatial character and time-evolution of magnetization dynamics generated by NC-STVOs and the conditions that may favor their synchronization

  10. Effect of magnetic field on selectivity of three-step photoionization

    International Nuclear Information System (INIS)

    Lim, Chang Hwan; Rho, Si Pyo; Ko, Kwang Hoon; Kim, Chul Joong; Izawa, Yasukazu

    2001-01-01

    Effect of magnetic field on selectivity by linearly polarized lasers was analyzed by formulating the density matrix equations. To investigate the effect of magnetic field on the selectivity of AVLIS, we proposed a general Hamiltonian for multilevel atomic system in magnetic field. The population dynamics of magnetic sublevels have been observed by solving the Liouville equation. Mixing between magnetic sublevels was observed in each state during the laser excitations when the magnetic field perpendicular to the quantization axis was applied to the atomic system. The magnetic field dependence on ionization rate of even isotopes was also discussed. In the magnetic field dependence, two ionization peaks were appeared because of the interference between Rabi and Larmor frequency during the ionization process. The permissible intensities of magnetic field were predicted to obtain enough selectivity for the target isotopes of zirconium and gadolinium in the AVLIS process based on the polarization selection rule

  11. Directed Magnetic Particle Transport above Artificial Magnetic Domains Due to Dynamic Magnetic Potential Energy Landscape Transformation.

    Science.gov (United States)

    Holzinger, Dennis; Koch, Iris; Burgard, Stefan; Ehresmann, Arno

    2015-07-28

    An approach for a remotely controllable transport of magnetic micro- and/or nanoparticles above a topographically flat exchange-bias (EB) thin film system, magnetically patterned into parallel stripe domains, is presented where the particle manipulation is achieved by sub-mT external magnetic field pulses. Superparamagnetic core-shell particles are moved stepwise by the dynamic transformation of the particles' magnetic potential energy landscape due to the external magnetic field pulses without affecting the magnetic state of the thin film system. The magnetic particle velocity is adjustable in the range of 1-100 μm/s by the design of the substrate's magnetic field landscape (MFL), the particle-substrate distance, and the magnitude of the applied external magnetic field pulses. The agglomeration of magnetic particles is avoided by the intrinsic magnetostatic repulsion of particles due to the parallel alignment of the particles' magnetic moments perpendicular to the transport direction and parallel to the surface normal of the substrate during the particle motion. The transport mechanism is modeled by a quantitative theory based on the precise knowledge of the sample's MFL and the particle-substrate distance.

  12. Cosmic Magnetic Fields

    Science.gov (United States)

    Sánchez Almeida, J.; Martínez González, M. J.

    2018-05-01

    Magnetic fields play an important role in many astrophysical processes. They are difficult to detect and characterize since often their properties have to be inferred through interpreting the polarization of the light. Magnetic fields are also challenging to model and understand. Magnetized plasmas behave following highly non-linear differential equations having no general solution, so that every astrophysical problem represents a special case to be studied independently. Hence, magnetic fields are often an inconvenient subject which is overlooked or simply neglected (the elephant in the room, as they are dubbed in poster of the school). Such difficulty burdens the research on magnetic fields, which has evolved to become a very technical subject, with many small disconnected communities studying specific aspects and details. The school tried to amend the situation by providing a unifying view of the subject. The students had a chance to understand the behavior of magnetic fields in all astrophysical contexts, from cosmology to the Sun, and from starbursts to AGNs. The school was planed to present a balanced yet complete review of our knowledge, with excursions into the unknown to point out present and future lines of research. The subject of Cosmic Magnetic Fields was split into seven different topics: cosmic magnetic field essentials, solar magnetic fields, stellar magnetic fields, the role of magnetic fields on AGN feedback, magnetic fields in galaxies, magnetic fields in galaxy clusters and at larger scales, and primordial magnetic fields and magnetic fields in the early Universe. The corresponding lectures were delivered by seven well known and experienced scientists that have played key roles in the major advances of the field during the last years: F. Cattaneo, P. Judge, O. Kochukhov, R. Keppens, R. Beck, K. Dolag, and F. Finelli. Their lectures were recorded and are freely available at the IAC website: http://iactalks.iac.es/talks/serie/19.

  13. Femtosecond laser spectroscopy of spins: Magnetization dynamics in thin magnetic films with spatio-temporal resolution

    International Nuclear Information System (INIS)

    Carpene, E.; Mancini, E.; Dallera, C.; Puppin, E.; De Silvestri, S.

    2010-01-01

    Based on the Magneto-Optical Kerr Effect (MOKE), we have developed an experimental set-up that allows us to fully characterize the magnetization dynamics in thin magnetic films by measuring all three real space components of the magnetization vector M. By means of the pump-probe technique it is possible to extract the time dependence of each individual projection with sub-picosecond resolution. This method has been exploited to investigate the temporal evolution of the magnetization (modulus and orientation) induced by an ultrashort laser pulse in thin epitaxial iron films. According to our results, we deduced that the initial, sub-picosecond demagnetization is established at the electronic level through electron-magnon excitations. The subsequent dynamics is characterized by a precessional motion on the 100 ps time scale, around an effective, time-dependent magnetic field. Following the full dynamics of M, the temporal evolution of the magneto-crystalline anisotropy constant can be unambiguously determined, providing the experimental evidence that the precession is triggered by the rapid, optically-induced misalignment between the magnetization vector and the effective magnetic field. These results suggest a possible pathway toward the ultrarapid switching of the magnetization.

  14. The Role of Magnetic Fields in Star Formation

    Science.gov (United States)

    Pipher, Judith

    2018-06-01

    The SOFIA instrument complement makes available the capability to characterize the physical properties (turbulence, dynamics, magnetic field structure and strength, gas density) of the molecular cloud filaments in which stars form.HAWC+, the newest SOFIA instrument, provides a unique opportunity to probe the complex roles that magnetic fields play in the star formation process on spatial scales intermediate to those explored by Planck (5’ scale), to those of ALMA at the smallest spatial scales (powerful tools to further our understanding of the fundamental physics of both low mass and high mass star formation, including the role that magnetic fields play in each.

  15. Proton radiography of dynamic electric and magnetic fields in laser-produced high-energy-density plasmas

    International Nuclear Information System (INIS)

    Li, C. K.; Seguin, F. H.; Frenje, J. A.; Manuel, M.; Casey, D.; Sinenian, N.; Petrasso, R. D.; Amendt, P. A.; Landen, O. L.; Rygg, J. R.; Town, R. P. J.; Betti, R.; Meyerhofer, D. D.; Delettrez, J.; Knauer, J. P.; Marshall, F.; Sangster, T. C.; Smalyuk, V. A.; Soures, J. M.; Shvarts, D.

    2009-01-01

    Time-gated, monoenergetic-proton radiography provides unique measurements of the electric (E) and magnetic (B) fields produced in laser-foil interactions and during the implosion of inertial-confinement-fusion capsules. These experiments resulted in the first observations of several new and important features: (1) observations of the generation, decay dynamics, and instabilities of megagauss B fields in laser-driven planar plastic foils, (2) the observation of radial E fields inside an imploding capsule, which are initially directed inward, reverse direction during deceleration, and are likely related to the evolution of the electron pressure gradient, and (3) the observation of many radial filaments with complex electromagnetic field striations in the expanding coronal plasmas surrounding the capsule. The physics behind and implications of such observed fields are discussed.

  16. Macroscopic spin-orbit coupling in non-uniform magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Tabat, N.; Edelman, H. S.; Song, D. [Semaphore Scientific, Inc., St. Cloud, Minnesota 56301 (United States); Vogt, T. [Department of Electrical and Computer Engineering, St. Cloud State University, St. Cloud, Minnesota 56301 (United States)

    2015-03-02

    Translational dynamics of aggregated magnetic nano-particles placed in a rotating external magnetic field is described. It is observed and explained that aggregates that spin within a radially decreasing field strength must execute an orbital motion of their center of mass in a sense that counters their spin rotation. This orbital motion is tightly coupled to the spin dynamics of the aggregates. An analytical model for the canonical variables describing the orbital motion is derived and shown to be in good agreement with the measured values.

  17. Macroscopic spin-orbit coupling in non-uniform magnetic fields

    International Nuclear Information System (INIS)

    Tabat, N.; Edelman, H. S.; Song, D.; Vogt, T.

    2015-01-01

    Translational dynamics of aggregated magnetic nano-particles placed in a rotating external magnetic field is described. It is observed and explained that aggregates that spin within a radially decreasing field strength must execute an orbital motion of their center of mass in a sense that counters their spin rotation. This orbital motion is tightly coupled to the spin dynamics of the aggregates. An analytical model for the canonical variables describing the orbital motion is derived and shown to be in good agreement with the measured values

  18. Designing magnets with prescribed magnetic fields

    International Nuclear Information System (INIS)

    Liu Liping

    2011-01-01

    We present a novel design method capable of finding the magnetization densities that generate prescribed magnetic fields. The method is based on the solution to a simple variational inequality and the resulting designs have simple piecewise-constant magnetization densities. By this method, we obtain new designs of magnets that generate commonly used magnetic fields: uniform magnetic fields, self-shielding fields, quadrupole fields and sextupole fields. Further, it is worth noting that this method is not limited to the presented examples, and in particular, three-dimensional designs can be constructed in a similar manner. In conclusion, this novel design method is anticipated to have broad applications where specific magnetic fields are important for the performance of the devices.

  19. Indoor localization using magnetic fields

    Science.gov (United States)

    Pathapati Subbu, Kalyan Sasidhar

    Indoor localization consists of locating oneself inside new buildings. GPS does not work indoors due to multipath reflection and signal blockage. WiFi based systems assume ubiquitous availability and infrastructure based systems require expensive installations, hence making indoor localization an open problem. This dissertation consists of solving the problem of indoor localization by thoroughly exploiting the indoor ambient magnetic fields comprising mainly of disturbances termed as anomalies in the Earth's magnetic field caused by pillars, doors and elevators in hallways which are ferromagnetic in nature. By observing uniqueness in magnetic signatures collected from different campus buildings, the work presents the identification of landmarks and guideposts from these signatures and further develops magnetic maps of buildings - all of which can be used to locate and navigate people indoors. To understand the reason behind these anomalies, first a comparison between the measured and model generated Earth's magnetic field is made, verifying the presence of a constant field without any disturbances. Then by modeling the magnetic field behavior of different pillars such as steel reinforced concrete, solid steel, and other structures like doors and elevators, the interaction of the Earth's field with the ferromagnetic fields is described thereby explaining the causes of the uniqueness in the signatures that comprise these disturbances. Next, by employing the dynamic time warping algorithm to account for time differences in signatures obtained from users walking at different speeds, an indoor localization application capable of classifying locations using the magnetic signatures is developed solely on the smart phone. The application required users to walk short distances of 3-6 m anywhere in hallway to be located with accuracies of 80-99%. The classification framework was further validated with over 90% accuracies using model generated magnetic signatures representing

  20. Interstellar Magnetic Fields and Polarimetry of Dust Emission

    Science.gov (United States)

    Dowell, Darren

    2010-01-01

    Magnetic fields are an important ingredient in the stormy cosmos. Magnetic fields: (1) are intimately involved with winds from Active Galactic Nuclei (AGN) and stars (2) create at least some of the structures observed in the ISM (3) modulate the formation of clouds, cores, and stars within a turbulent medium (4) may be dynamically important in protostellar accretion disks (5) smooth weak shocks (C-shocks).

  1. Earth's Magnetic Field

    DEFF Research Database (Denmark)

    This volume provides a comprehensive view on the different sources of the geomagnetic field both in the Earth’s interior and from the field’s interaction with the terrestrial atmosphere and the solar wind. It combines expertise from various relevant areas of geomagnetic and near Earth space...... research with the aim to better characterise the state and dynamics of Earth’s magnetic field. Advances in the exploitation of geomagnetic observations hold a huge potential not only for an improved quantitative description of the field source but also for a better understanding of the underlying processes...... and space observations, and on state-of-the-art empirical models and physics-based simulations. Thus, it provides an in-depth overview over recent achievements, current limitations and challenges, and future opportunities in the field of geomagnetism and space sciences....

  2. Dynamic and biocompatible thermo-responsive magnetic hydrogels that respond to an alternating magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Crippa, Federica; Moore, Thomas L.; Mortato, Mariangela; Geers, Christoph; Haeni, Laetitia [Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg (Switzerland); Hirt, Ann M. [Institute for Geophysics, ETH Zurich, Sonneggstrasse 5, CH-8092 Zurich (Switzerland); Rothen-Rutishauser, Barbara [Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg (Switzerland); Petri-Fink, Alke, E-mail: alke.fink@unifr.ch [Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg (Switzerland); Chemistry Department, University of Fribourg, Chemin du Musée 9, CH-1700 Fribourg Switzerland (Switzerland)

    2017-04-01

    Magnetic thermo-responsive hydrogels are a new class of materials that have recently attracted interest in biomedicine due to their ability to change phase upon magnetic stimulation. They have been used for drug release, magnetic hyperthermia treatment, and can potentially be engineered as stimuli-responsive substrates for cell mechanobiology. In this regard, we propose a series of magnetic thermo-responsive nanocomposite substrates that undergo cyclical swelling and de-swelling phases when actuated by an alternating magnetic field in aqueous environment. The synthetized substrates are obtained with a facile and reproducible method from poly-N-isopropylacrylamide and superparamagnetic iron oxide nanoparticles. Their conformation and the temperature-related, magnetic, and biological behaviors were characterized via scanning electron microscopy, swelling ratio analysis, vibrating sample magnetometry, alternating magnetic field stimulation and indirect viability assays. The nanocomposites showed no cytotoxicity with fibroblast cells, and exhibited swelling/de-swelling behavior near physiological temperatures (around 34 °C). Therefore these magnetic thermo-responsive hydrogels are promising materials as stimuli-responsive substrates allowing the study of cell-behavior by changing the hydrogel properties in situ. - Highlights: • A magnetic thermo-responsive hydrogel for mechanobiology is proposed. • Hydrogels change phase upon magnetic stimulation near physiological temperature. • Phase changes are reversible and triggered in an aqueous environment. • The hydrogels are biocompatible for murine fibroblast cells.

  3. Magnetic Fields in the Solar Convection Zone

    Directory of Open Access Journals (Sweden)

    Fan Yuhong

    2004-07-01

    Full Text Available Recent studies of the dynamic evolution of magnetic flux tubes in the solar convection zone are reviewed with focus on emerging flux tubes responsible for the formation of solar active regions. The current prevailing picture is that active regions on the solar surface originate from strong toroidal magnetic fields generated by the solar dynamo mechanism at the thin tachocline layer at the base of the solar convection zone. Thus the magnetic fields need to traverse the entire convection zone before they reach the photosphere to form the observed solar active regions. This review discusses results with regard to the following major topics: 1. the equilibrium properties of the toroidal magnetic fields stored in the stable overshoot region at the base of the convection zone, 2. the buoyancy instability associated with the toroidal magnetic fields and the formation of buoyant magnetic flux tubes, 3. the rise of emerging flux loops through the solar convective envelope as modeled by the thin flux tube calculations which infer that the field strength of the toroidal magnetic fields at the base of the solar convection zone is significantly higher than the value in equipartition with convection, 4. the minimum twist needed for maintaining cohesion of the rising flux tubes, 5. the rise of highly twisted kink unstable flux tubes as a possible origin of d -sunspots, 6. the evolution of buoyant magnetic flux tubes in 3D stratified convection, 7. turbulent pumping of magnetic flux by penetrative compressible convection, 8. an alternative mechanism for intensifying toroidal magnetic fields to significantly super-equipartition field strengths by conversion of the potential energy associated with the superadiabatic stratification of the solar convection zone, and finally 9. a brief overview of our current understanding of flux emergence at the surface and post-emergence evolution of the subsurface magnetic fields.

  4. TANGLED MAGNETIC FIELDS IN SOLAR PROMINENCES

    International Nuclear Information System (INIS)

    Van Ballegooijen, A. A.; Cranmer, S. R.

    2010-01-01

    Solar prominences are an important tool for studying the structure and evolution of the coronal magnetic field. Here we consider so-called hedgerow prominences, which consist of thin vertical threads. We explore the possibility that such prominences are supported by tangled magnetic fields. A variety of different approaches are used. First, the dynamics of plasma within a tangled field is considered. We find that the contorted shape of the flux tubes significantly reduces the flow velocity compared to the supersonic free fall that would occur in a straight vertical tube. Second, linear force-free models of tangled fields are developed, and the elastic response of such fields to gravitational forces is considered. We demonstrate that the prominence plasma can be supported by the magnetic pressure of a tangled field that pervades not only the observed dense threads but also their local surroundings. Tangled fields with field strengths of about 10 G are able to support prominence threads with observed hydrogen density of the order of 10 11 cm -3 . Finally, we suggest that the observed vertical threads are the result of Rayleigh-Taylor instability. Simulations of the density distribution within a prominence thread indicate that the peak density is much larger than the average density. We conclude that tangled fields provide a viable mechanism for magnetic support of hedgerow prominences.

  5. Single-shot imaging with higher-dimensional encoding using magnetic field monitoring and concomitant field correction.

    Science.gov (United States)

    Testud, Frederik; Gallichan, Daniel; Layton, Kelvin J; Barmet, Christoph; Welz, Anna M; Dewdney, Andrew; Cocosco, Chris A; Pruessmann, Klaas P; Hennig, Jürgen; Zaitsev, Maxim

    2015-03-01

    PatLoc (Parallel Imaging Technique using Localized Gradients) accelerates imaging and introduces a resolution variation across the field-of-view. Higher-dimensional encoding employs more spatial encoding magnetic fields (SEMs) than the corresponding image dimensionality requires, e.g. by applying two quadratic and two linear spatial encoding magnetic fields to reconstruct a 2D image. Images acquired with higher-dimensional single-shot trajectories can exhibit strong artifacts and geometric distortions. In this work, the source of these artifacts is analyzed and a reliable correction strategy is derived. A dynamic field camera was built for encoding field calibration. Concomitant fields of linear and nonlinear spatial encoding magnetic fields were analyzed. A combined basis consisting of spherical harmonics and concomitant terms was proposed and used for encoding field calibration and image reconstruction. A good agreement between the analytical solution for the concomitant fields and the magnetic field simulations of the custom-built PatLoc SEM coil was observed. Substantial image quality improvements were obtained using a dynamic field camera for encoding field calibration combined with the proposed combined basis. The importance of trajectory calibration for single-shot higher-dimensional encoding is demonstrated using the combined basis including spherical harmonics and concomitant terms, which treats the concomitant fields as an integral part of the encoding. © 2014 Wiley Periodicals, Inc.

  6. Dynamic behaviors of spin-1/2 bilayer system within Glauber-type stochastic dynamics based on the effective-field theory

    International Nuclear Information System (INIS)

    Ertaş, Mehmet; Kantar, Ersin; Keskin, Mustafa

    2014-01-01

    The dynamic phase transitions (DPTs) and dynamic phase diagrams of the kinetic spin-1/2 bilayer system in the presence of a time-dependent oscillating external magnetic field are studied by using Glauber-type stochastic dynamics based on the effective-field theory with correlations for the ferromagnetic/ferromagnetic (FM/FM), antiferromagnetic/ferromagnetic (AFM/FM) and antiferromagnetic/antiferromagnetic (AFM/AFM) interactions. The time variations of average magnetizations and the temperature dependence of the dynamic magnetizations are investigated. The dynamic phase diagrams for the amplitude of the oscillating field versus temperature were presented. The results are compared with the results of the same system within Glauber-type stochastic dynamics based on the mean-field theory. - Highlights: • The Ising bilayer system is investigated within the Glauber dynamics based on EFT. • The time variations of average order parameters to find phases are studied. • The dynamic phase diagrams are found for the different interaction parameters. • The system displays the critical points as well as a re-entrant behavior

  7. Dynamic behaviors of spin-1/2 bilayer system within Glauber-type stochastic dynamics based on the effective-field theory

    Energy Technology Data Exchange (ETDEWEB)

    Ertaş, Mehmet; Kantar, Ersin, E-mail: ersinkantar@erciyes.edu.tr; Keskin, Mustafa

    2014-05-01

    The dynamic phase transitions (DPTs) and dynamic phase diagrams of the kinetic spin-1/2 bilayer system in the presence of a time-dependent oscillating external magnetic field are studied by using Glauber-type stochastic dynamics based on the effective-field theory with correlations for the ferromagnetic/ferromagnetic (FM/FM), antiferromagnetic/ferromagnetic (AFM/FM) and antiferromagnetic/antiferromagnetic (AFM/AFM) interactions. The time variations of average magnetizations and the temperature dependence of the dynamic magnetizations are investigated. The dynamic phase diagrams for the amplitude of the oscillating field versus temperature were presented. The results are compared with the results of the same system within Glauber-type stochastic dynamics based on the mean-field theory. - Highlights: • The Ising bilayer system is investigated within the Glauber dynamics based on EFT. • The time variations of average order parameters to find phases are studied. • The dynamic phase diagrams are found for the different interaction parameters. • The system displays the critical points as well as a re-entrant behavior.

  8. Effect of alignment of easy axes on dynamic magnetization of immobilized magnetic nanoparticles

    Science.gov (United States)

    Yoshida, Takashi; Matsugi, Yuki; Tsujimura, Naotaka; Sasayama, Teruyoshi; Enpuku, Keiji; Viereck, Thilo; Schilling, Meinhard; Ludwig, Frank

    2017-04-01

    In some biomedical applications of magnetic nanoparticles (MNPs), the particles are physically immobilized. In this study, we explore the effect of the alignment of the magnetic easy axes on the dynamic magnetization of immobilized MNPs under an AC excitation field. We prepared three immobilized MNP samples: (1) a sample in which easy axes are randomly oriented, (2) a parallel-aligned sample in which easy axes are parallel to the AC field, and (3) an orthogonally aligned sample in which easy axes are perpendicular to the AC field. First, we show that the parallel-aligned sample has the largest hysteresis in the magnetization curve and the largest harmonic magnetization spectra, followed by the randomly oriented and orthogonally aligned samples. For example, 1.6-fold increase was observed in the area of the hysteresis loop of the parallel-aligned sample compared to that of the randomly oriented sample. To quantitatively discuss the experimental results, we perform a numerical simulation based on a Fokker-Planck equation, in which probability distributions for the directions of the easy axes are taken into account in simulating the prepared MNP samples. We obtained quantitative agreement between experiment and simulation. These results indicate that the dynamic magnetization of immobilized MNPs is significantly affected by the alignment of the easy axes.

  9. Superparamagnetic microbead transport induced by a magnetic field on large-area magnetic antidot arrays

    Science.gov (United States)

    Ouk, Minae; Beach, Geoffrey S. D.

    2017-12-01

    A method is presented for directed transport of superparamagnetic microbeads (SPBs) on magnetic antidot patterned substrates by applying a rotating elliptical magnetic field. We find a critical frequency for transport, beyond which the bead dynamics transitions from stepwise locomotion to local oscillation. We also find that the out-of-plane (HOOP) and in-plane (HIP) field magnitudes play crucial roles in triggering bead motion. Namely, we find threshold values in HOOP and HIP that depend on bead size, which can be used to independently and remotely address specific bead populations in a multi-bead mixture. These behaviors are explained in terms of the dynamic potential energy lansdscapes computed from micromagnetic simulations of the substrate magnetization configuration. Finally, we show that large-area magnetic patterns suitable for particle transport and sorting can be fabricated through a self-assembly lithography technique, which provides a simple, cost-effective means to integrate magnetic actuation into microfluidic systems.

  10. Spin dynamics on cyclic iron wheels in high magnetic fields

    International Nuclear Information System (INIS)

    Schnelzer, Lars

    2008-01-01

    In the present thesis the spin dynamics of cyclic spin-cluster compounds, the so called ''ferric wheels'' were studied by means of the NMR. In the iron wheels Li/Na rate at Fe 6 (tea) 6 and Cs rate at Fe 8 (tea) 8 as probes of NMR both the protons and the centrally lying alkali atoms 7 Li, 23 Na, and 133 Cs were available. For this purpose measurements in the magnetic field region up to B=20 T and at temperatures between room temperature and T=50 mK were performed. The longitudinal relaxation rate was temperature dependently studied at two field values on the lithium cluster and a frequency independent maximum of the relaxation rate at a temperature of T∼30 K resulted. Different behaviour showed the measurement on the sodium cluster. the longitudinal relaxation rate slopes linearly with the temperature and shows no maximum. The two quadrupole satellites of the 23 Na could be resolved. From the distance of the satellites to the central transition both on the field gradient of the iron ring and on the orientation of the symmetry axis to the external magnetic field could be concluded. The determined field gradient of the Na rate at Fe 6 (tea) 6 of eq=4.78(11).10 20 V/m 2 was in very good agreement with the present theoretically calculated value. The orientation of the crystal was determined to θ(c,B)=62.8 . The very low splitting of the 7 Li NMR spectrum of the lithium cluster allows to give as upper limit for the value of the field gradient eq=1.82(11).10 20 V/m 2 . From the seven lines of the cesium spectrum theoretically to be expected five were resolved. The evaluation yielded for the cesium ring a value of eq=-1.3(1).10 21 V/m 2 . The study of the field-dependent line position of the 23 Na NMR line led to the determination of the parameter of the transferred hyperfine interaction to A tHf /2π=140 kHz. For the first time on a cyclic iron cluster a level crossing could be studied by means of the central ion. The temperature dependence of the longitudinal

  11. Dynamics of Plasma Jets and Bubbles Launched into a Transverse Background Magnetic Field

    Science.gov (United States)

    Zhang, Yue

    2017-10-01

    A coaxial magnetized plasma gun has been utilized to launch both plasma jets (open B-field) and plasma bubbles (closed B-field) into a transverse background magnetic field in the HelCat (Helicon-Cathode) linear device at the University of New Mexico. These situations may have bearing on fusion plasmas (e.g. plasma injection for tokamak fueling, ELM pacing, or disruption mitigation) and astrophysical settings (e.g. astrophysical jet stability, coronal mass ejections, etc.). The magnetic Reynolds number of the gun plasma is 100 , so that magnetic advection dominates over magnetic diffusion. The gun plasma ram pressure, ρjetVjet2 >B02 / 2μ0 , the background magnetic pressure, so that the jet or bubble can easily penetrate the background B-field, B0. When the gun axial B-field is weak compared to the gun azimuthal field, a current-driven jet is formed with a global helical magnetic configuration. Applying the transverse background magnetic field, it is observed that the n = 1 kink mode is stabilized, while magnetic probe measurements show contrarily that the safety factor q(a) drops below unity. At the same time, a sheared axial jet velocity is measured. We conclude that the tension force arising from increasing curvature of the background magnetic field induces the measured sheared flow gradient above the theoretical kink-stabilization threshold, resulting in the emergent kink stabilization of the injected plasma jet. In the case of injected bubbles, spheromak-like plasma formation is verified. However, when the spheromak plasma propagates into the transverse background magnetic field, the typical self-closed global symmetry magnetic configuration does not hold any more. In the region where the bubble toroidal field opposed the background B-field, the magneto-Rayleigh-Taylor (MRT) instability has been observed. Details of the experiment setup, diagnostics, experimental results and theoretical analysis will be presented. Supported by the National Science Foundation

  12. Experimental investigations of ablation stream interaction dynamics in tungsten wire arrays: Interpenetration, magnetic field advection, and ion deflection

    Energy Technology Data Exchange (ETDEWEB)

    Swadling, G. F.; Lebedev, S. V.; Hall, G. N.; Suzuki-Vidal, F.; Burdiak, G. C.; Pickworth, L.; De Grouchy, P.; Skidmore, J.; Khoory, E.; Suttle, L.; Bennett, M.; Hare, J. D.; Clayson, T.; Bland, S. N.; Smith, R. A.; Stuart, N. H.; Patankar, S.; Robinson, T. S. [Blackett Laboratory, Imperial College, London SW7 2BW (United Kingdom); Harvey-Thompson, A. J. [Sandia National Laboratories, PO Box 5800, Albuquerque, New Mexico 87185-1193 (United States); Rozmus, W. [Department of Physics, University of Alberta, Edmonton, Alberta T6G 2J1 (Canada); and others

    2016-05-15

    Experiments have been carried out to investigate the collisional dynamics of ablation streams produced by cylindrical wire array z-pinches. A combination of laser interferometric imaging, Thomson scattering, and Faraday rotation imaging has been used to make a range of measurements of the temporal evolution of various plasma and flow parameters. This paper presents a summary of previously published data, drawing together a range of different measurements in order to give an overview of the key results. The paper focuses mainly on the results of experiments with tungsten wire arrays. Early interferometric imaging measurements are reviewed, then more recent Thomson scattering measurements are discussed; these measurements provided the first direct evidence of ablation stream interpenetration in a wire array experiment. Combining the data from these experiments gives a view of the temporal evolution of the tungsten stream collisional dynamics. In the final part of the paper, we present new experimental measurements made using an imaging Faraday rotation diagnostic. These experiments investigated the structure of magnetic fields near the array axis directly; the presence of a magnetic field has previously been inferred based on Thomson scattering measurements of ion deflection near the array axis. Although the Thomson and Faraday measurements are not in full quantitative agreement, the Faraday data do qualitatively supports the conjecture that the observed deflections are induced by a static toroidal magnetic field, which has been advected to the array axis by the ablation streams. It is likely that detailed modeling will be needed in order to fully understand the dynamics observed in the experiment.

  13. Acceleration of the charged particles due to chaotic scattering in the combined black hole gravitational field and asymptotically uniform magnetic field

    International Nuclear Information System (INIS)

    Stuchlik, Zdenek; Kolos, Martin

    2016-01-01

    To test the role of large-scale magnetic fields in accretion processes, we study the dynamics of the charged test particles in the vicinity of a black hole immersed into an asymptotically uniform magnetic field. Using the Hamiltonian formalism of the charged particle dynamics, we examine chaotic scattering in the effective potential related to the black hole gravitational field combined with the uniform magnetic field. Energy interchange between the translational and oscillatory modes of the charged particle dynamics provides a mechanism for charged particle acceleration along the magnetic field lines. This energy transmutation is an attribute of the chaotic charged particle dynamics in the combined gravitational and magnetic fields only, the black hole rotation is not necessary for such charged particle acceleration. The chaotic scatter can cause a transition to the motion along the magnetic field lines with small radius of the Larmor motion or vanishing Larmor radius, when the speed of the particle translational motion is largest and it can be ultra-relativistic. We discuss the consequences of the model of ionization of test particles forming a neutral accretion disc, or heavy ions following off-equatorial circular orbits, and we explore the fate of heavy charged test particles after ionization where no kick of heavy ions is assumed and only the switch-on effect of the magnetic field is relevant. We demonstrate that acceleration and escape of the ionized particles can be efficient along the Kerr black hole symmetry axis parallel to the magnetic field lines. We show that a strong acceleration of the ionized particles to ultra-relativistic velocities is preferred in the direction close to the magnetic field lines. Therefore, the process of ionization of Keplerian discs around the Kerr black holes can serve as a model of relativistic jets. (orig.)

  14. Acceleration of the charged particles due to chaotic scattering in the combined black hole gravitational field and asymptotically uniform magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Stuchlik, Zdenek; Kolos, Martin [Silesian University in Opava, Faculty of Philosophy and Science, Institute of Physics and Research Centre of Theoretical Physics and Astrophysics, Opava (Czech Republic)

    2016-01-15

    To test the role of large-scale magnetic fields in accretion processes, we study the dynamics of the charged test particles in the vicinity of a black hole immersed into an asymptotically uniform magnetic field. Using the Hamiltonian formalism of the charged particle dynamics, we examine chaotic scattering in the effective potential related to the black hole gravitational field combined with the uniform magnetic field. Energy interchange between the translational and oscillatory modes of the charged particle dynamics provides a mechanism for charged particle acceleration along the magnetic field lines. This energy transmutation is an attribute of the chaotic charged particle dynamics in the combined gravitational and magnetic fields only, the black hole rotation is not necessary for such charged particle acceleration. The chaotic scatter can cause a transition to the motion along the magnetic field lines with small radius of the Larmor motion or vanishing Larmor radius, when the speed of the particle translational motion is largest and it can be ultra-relativistic. We discuss the consequences of the model of ionization of test particles forming a neutral accretion disc, or heavy ions following off-equatorial circular orbits, and we explore the fate of heavy charged test particles after ionization where no kick of heavy ions is assumed and only the switch-on effect of the magnetic field is relevant. We demonstrate that acceleration and escape of the ionized particles can be efficient along the Kerr black hole symmetry axis parallel to the magnetic field lines. We show that a strong acceleration of the ionized particles to ultra-relativistic velocities is preferred in the direction close to the magnetic field lines. Therefore, the process of ionization of Keplerian discs around the Kerr black holes can serve as a model of relativistic jets. (orig.)

  15. Fluid Dynamics of Magnetic Nanoparticles in Simulated Blood Vessels

    Science.gov (United States)

    Blue, Lauren; Sewell, Mary Kathryn; Brazel, Christopher S.

    2008-11-01

    Magnetic nanoparticles (MNPs) can be used to locally target therapies and offer the benefit of using an AC magnetic field to combine hyperthermia treatment with the triggered release of therapeutic agents. Here, we investigate localization of MNPs in a simulated environment to understand the relationship between magnetic field intensity and bulk fluid dynamics to determine MNP retention in a simulated blood vessel. As MNPs travel through blood vessels, they can be slowed or trapped in a specific area by applying a magnetic field. Magnetic cobalt ferrite nanoparticles were synthesized and labeled with a fluorescent rhodamine tag to visualize patterns in a flow cell, as monitored by a fluorescence microscope. Particle retention was determined as a function of flow rate, concentration, and magnetic field strength. Understanding the relationship between magnetic field intensity, flow behavior and nanoparticle characteristics will aid in the development of therapeutic systems specifically targeted to diseased tissue.

  16. Domain-wall dynamics in glass-coated magnetic microwires

    International Nuclear Information System (INIS)

    Varga, R.; Zhukov, A.; Usov, N.; Blanco, J.M.; Gonzalez, J.; Zhukova, V.; Vojtanik, P.

    2007-01-01

    Glass-coated magnetic microwires with positive magnetostriction show peculiar domain structure that consists mostly of one large domain with magnetization-oriented axially. It was shown that small closure domains appear at the end of the microwire in order to decrease the stray fields. As a result of such domain structure, the magnetization reversal in axial direction runs through the depinning of one of such closure domains and subsequent propagation of the corresponding domain wall. Quite unusual domain-wall (DW) dynamics of the DW propagation predicted previously from the theory has been found in such amorphous microwires. In this paper, we are dealing with the DW dynamics of glass-coated microwires with small positive magnetostriction. The DW damping coming from the structural relaxation dominates at low temperatures as a result of the decrease of the mobility of the structural atomic-level defects. Negative critical propagation field points to the possible DW propagation without applied magnetic field. Probable explanation could be in terms of the effective mass of the DW

  17. RG analysis of magnetic catalysis in dynamical symmetry breaking

    International Nuclear Information System (INIS)

    Hong, Deog Ki; Kim, Youngman

    1996-01-01

    We perform the renormalization group analysis on the dynamical symmetry breaking under strong external magnetic field, studied recently by Gusynin, Miransky and Shovkovy. We find that any attractive four-Fermi interaction becomes strong in the low energy, thus leading to dynamical symmetry breaking. When the four-Fermi interaction is absent, the β-function for the electromagnetic coupling vanishes in the leading order in 1/N. By solving the Schwinger-Dyson equation for the fermion propagator, we show that in 1/N expansion, for any electromagnetic coupling, dynamical symmetry breaking occurs due to the presence of Landau energy gap by the external magnetic field. 5 refs

  18. MAGNETIC FIELD MEASUREMENTS FOR FAST-CHANGING MAGNETIC FIELDS

    International Nuclear Information System (INIS)

    2004-01-01

    Several recent applications for fast ramped magnets have been found that require rapid measurement of the field quality during the ramp. (In one instance, accelerator dipoles will be ramped at 1 T/sec, with measurements needed to the accuracy typically required for accelerators.) We have built and tested a new type of magnetic field measuring system to meet this need. The system consists of 16 stationary pickup windings mounted on a cylinder. The signals induced in the windings in a changing magnetic field are sampled and analyzed to obtain the field harmonics. To minimize costs, printed circuit boards were used for the pickup windings and a combination of amplifiers and ADPs used for the voltage readout system. New software was developed for the analysis. Magnetic field measurements of a model dipole developed for the SIS200 accelerator at GSI are presented. The measurements are needed to insure that eddy currents induced by the fast ramps do not impact the field quality needed for successful accelerator operation

  19. Field driven magnetic racetrack memory accompanied with the interfacial Dzyaloshinskii-Moriya interaction

    Science.gov (United States)

    Kim, June-Seo; Lee, Hyeon-Jun; Hong, Jung-Il; You, Chun-Yeol

    2018-06-01

    The in-plane magnetic field pulse driven domain wall motion on a perpendicularly magnetized nanowire is numerically investigated by performing micromagnetic simulations and magnetic domain wall dynamics are evaluated analytically with one-dimensional collective coordinate models including the interfacial Dzyaloshinskii-Moriya interaction. With the action of the precession torque, the chirality and the magnetic field direction dependent displacements of the magnetic domain walls are clearly observed. In order to move Bloch type and Neel type domain walls, a longitudinal and a transverse in-plane magnetic field pulse are required, respectively. The domain wall type (Bloch or Neel) can easily be determined by the dynamic motion of the domain walls under the applied pulse fields. By applying a temporally asymmetric in-plane field pulse and successive notches in the perpendicularly magnetized nanowire strip line with a proper interval, the concept of racetrack memory based on the synchronous displacements of the chirality dependent multiple domain walls is verified to be feasible. Requirement of multiple domain walls with homogeneous chirality is achieved with the help of Dzyaloshinskii-Moriya interaction.

  20. Spin-transfer torque induced dynamics of magnetic vortices in nanopillars

    International Nuclear Information System (INIS)

    Sluka, Volker

    2011-01-01

    The subject of this work are lithographically defined cylindrical nanopillars containing a stack of two Iron disks separated by a nonmagnetic spacer. The dimensions of the ferromagnetic disks are chosen such that at low magnetic fields, the so-called magnetic vortex is stabilized. In zero field, the magnetization of these objects is basically parallel to the disk plane and circulates the disk center. In doing so, the build-up of large in-plane stray fields is avoided. At the center of this distribution however, exchange forces turn the magnetization out of the disk plane, resulting in the formation of what is referred to as the vortex core. Magnetic vortices have attracted much attention in recent years. This interest is in large parts due to the highly interesting dynamic properties of these structures. In this work the static and dynamic properties of magnetic vortices and their behavior under the influence of spin-transfer torque are investigated. This is achieved by measuring the static and time dependent magnetoresistance under the influence of external magnetic fields. The samples allow the formation of a large variety of states. First, the focus is set on configurations, where one disk is in a vortex state while the other one is homogeneously magnetized. It is shown that spin-transfer torque excites the vortex gyrotropic mode in this configuration. The dependence of the mode frequency on the magnetic field is analyzed. The measurements show that as the vortex center of gyration shifts through the disk under the action of the magnetic field, the effective potential in which it is moving undergoes a change in shape. This shape change is reflected in a V-shaped field dependence of the gyration frequency. Analytical calculations are performed to investigate the effect of the asymmetry of the spin-transfer torque efficiency function on the vortex dynamics. It is shown that by means of asymmetry, spin-transfer torque can transfer energy to a gyrating vortex even

  1. Particle Acceleration, Magnetic Field Generation in Relativistic Shocks

    Science.gov (United States)

    Nishikawa, Ken-Ichi; Hardee, P.; Hededal, C. B.; Richardson, G.; Sol, H.; Preece, R.; Fishman, G. J.

    2005-01-01

    Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic jet front propagating through an ambient plasma with and without initial magnetic fields. We find only small differences in the results between no ambient and weak ambient parallel magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates particles perpendicular and parallel to the jet propagation direction. New simulations with an ambient perpendicular magnetic field show the strong interaction between the relativistic jet and the magnetic fields. The magnetic fields are piled up by the jet and the jet electrons are bent, which creates currents and displacement currents. At the nonlinear stage, the magnetic fields are reversed by the current and the reconnection may take place. Due to these dynamics the jet and ambient electron are strongly accelerated in both parallel and perpendicular directions.

  2. Effect of Weak Magnetic Field on Bacterial Growth

    Science.gov (United States)

    Masood, Samina

    Effects of weak magnetic fields are observed on the growth of various bacterial strains. Different sources of a constant magnetic field are used to demonstrate that ion transport in the nutrient broth and bacterial cellular dynamics is perturbed in the presence of weak magnetic field which affects the mobility and absorption of nutrients in cells and hence their doubling rate. The change is obvious after a few hours of exposure and keeps on increasing with time for all the observed species. The growth rate depends on the field strength and the nature of the magnetic field. The field effect varies with the shape and the structure of the bacterial cell wall as well as the concentration of nutrient broth. We closely study the growth of three species Escherichia coli, Pseudomonas aeruginosa and Staphylococcus epidermidis with the same initial concentrations at the same temperature in the same laboratory environment. Our results indicate that the weak static field of a few gauss after a few hours gives a measurable change in the growth rates of all bacterial species. This shows that the same magnetic field has different effects on different species in the same environment.

  3. Dynamic interaction between rotor and axially-magnetized passive magnetic bearing considering magnetic eccentricity

    DEFF Research Database (Denmark)

    Enemark, Søren; Santos, Ilmar

    2014-01-01

    with a multibody system composed of rigid rotor and flexible foundation. The magnetic eccentricities of the shaft magnets are modelled using the distances (amplitudes) and directions (phase angles) between the shaft axis and the centre of the magnetic fields generated. A perturbation method, i.e. harmonic......-linear stiffness. In this investigation passive magnetic bearings using axially- aligned neodymium cylinder magnets are investigated. The cylinder magnets are axially magnetised for rotor as well as bearings. Compared to bearings with radial magnetisation, the magnetic stiffness of axially-aligned bearings...... is considerably lower, nevertheless they allow for asymmetric stiffness mounting, and it could be beneficial for rotor stabilization. A theoretical model is proposed to describe the non-linear rotor-bearing dynamics. It takes into account non-linear behaviour of the magnetic forces and their interaction...

  4. Dynamic processes in the generation of quasisteady magnetic fields in a laser plasma

    International Nuclear Information System (INIS)

    Aleksich, N.; Andreev, N.E.; Bychenko, V.Yu.

    1991-01-01

    Research on the generation of quasisteady magnetic fields (QSMF) in plasma under the action of strong electro-magnetic fields has long attracted attention in connection with its role when high-power laser radiation interacts with matter. In connection with the problem of laser thermonuclear fusion, a great deal of attention has been devoted to the generation of QSMF through resonant conversion of the heating radiation into electron plasma oscillations near the critical surface. Under conditions which are of interest for present-day experiments, this conversion is nonlinear due to the ponderomotive action of the radiation on the plasma plays an important role; when it is taken into account the picture of the nonlinear interaction between the radiation and the plasma changes fundamentally. Moreover, thus far QSMF generation under the action of the heating radiation has been studied mainly without including both (nonlinearity and plasma expansion) of these factors, although in the numerical simulation of the problem QSMF has been studied for a comparatively long time. The present work presents results of a theoretical study of QSMF excitation made using the LAST code, which treats the self-consistent dynamical nonlinear picture of the plasma electrodynamics and hydrodynamics

  5. Molecular Dynamics of Water in Wood Studied by Fast Field Cycling Nuclear Magnetic Resonance Relaxometry

    Directory of Open Access Journals (Sweden)

    Xinyu Li

    2016-01-01

    Full Text Available Water plays a very important role in wood and wood products. The molecular motion of water in wood is susceptible to thermal activation. Thermal energy makes water molecules more active and weakens the force between water and wood; therefore, the water molecules dynamic properties are greatly influenced. Molecular dynamics study is important for wood drying; this paper therefore focuses on water molecular dynamics in wood through fast field cycling nuclear magnetic resonance relaxometry techniques. The results show that the spin-lattice relaxation rate decreases with the Larmor frequency. Nuclear magnetic resonance dispersion profiles at different temperatures could separate the relaxation contribution of water in bigger pores and smaller pores. The T1 distribution from wide to narrow at 10 MHz Larmor frequency reflects the shrinkage of pore size with the higher temperature. The dependence of spin-lattice relaxation rate on correlation time for water molecular motion based on BPP (proposed by Bloembergen, Purcell, and Pound theory shows that water correlation time increases with higher temperature, and its activation energy, calculated using the Arrhenius transformation equation, is 9.06±0.53 kJ/mol.

  6. Global dynamics of dust grains in magnetic planets

    International Nuclear Information System (INIS)

    Inarrea, Manuel; Lanchares, Victor; Palacian, Jesus F.; Pascual, Ana I.; Salas, J. Pablo; Yanguas, Patricia

    2005-01-01

    We study the dynamics of a charged particle orbiting a rotating magnetic planet. The system is modelled by the Hamiltonian of the two-body problem perturbed by an axially-symmetric potential. The perturbation consists in a magnetic dipole field and a corotational electric field. After an averaging process we arrive at a one degree of freedom Hamiltonian system for which we obtain its relative equilibria and bifurcations. It is shown that the system exhibits a complex and rich dynamics. In particular, dramatic changes in the phase flow take place in the vicinity of a circular equatorial orbit, that in the case of Saturn is located inside the E-ring

  7. Global dynamics of dust grains in magnetic planets

    Energy Technology Data Exchange (ETDEWEB)

    Inarrea, Manuel [Universidad de La Rioja, Area de Fisica Aplicada, 26006 Logrono (Spain)]. E-mail: manuel.inarrea@dq.unirioja.es; Lanchares, Victor [Universidad de La Rioja, Departamento de Matematicas y Computacion, 26004 Logrono (Spain); Palacian, Jesus F. [Universidad Publica de Navarra, Departamento de Matematica e Informatica, 31006 Pamplona (Spain); Pascual, Ana I. [Universidad de La Rioja, Departamento de Matematicas y Computacion, 26004 Logrono (Spain); Salas, J. Pablo [Universidad de La Rioja, Area de Fisica Aplicada, 26006 Logrono (Spain); Yanguas, Patricia [Universidad Publica de Navarra, Departamento de Matematica e Informatica, 31006 Pamplona (Spain)

    2005-05-02

    We study the dynamics of a charged particle orbiting a rotating magnetic planet. The system is modelled by the Hamiltonian of the two-body problem perturbed by an axially-symmetric potential. The perturbation consists in a magnetic dipole field and a corotational electric field. After an averaging process we arrive at a one degree of freedom Hamiltonian system for which we obtain its relative equilibria and bifurcations. It is shown that the system exhibits a complex and rich dynamics. In particular, dramatic changes in the phase flow take place in the vicinity of a circular equatorial orbit, that in the case of Saturn is located inside the E-ring.

  8. Magneto-Rayleigh-Taylor instability driven by a rotating magnetic field

    Science.gov (United States)

    Duan, Shuchao; Xie, Weiping; Cao, Jintao; Li, Ding

    2018-04-01

    In this paper, we analyze theoretically the magneto-Rayleigh-Taylor instability driven by a rotating magnetic field. Slab configurations of finite thickness are treated both with and without using the Wenzel-Kramers-Brillouin approximation. Regardless of the slab thickness, the directional rotation of the driving magnetic field contributes to suppressing these instabilities. The two factors of the finite thickness and directional rotation of the magnetic field cooperate to enhance suppression, with the finite thickness playing a role only when the orientation of the magnetic field is time varying. The suppression becomes stronger as the driving magnetic field rotates faster, and all modes are suppressed, in contrast to the case of a non-rotating magnetic field, for which the vertical mode cannot be suppressed. This implies that the dynamically alternate configuration of a Theta-pinch and a Z-pinch may be applicable to the concept of Theta-Z liner inertial fusion.

  9. Magnetic field measuring system for remapping the ORIC magnetic field

    International Nuclear Information System (INIS)

    Mosko, S.W.; Hudson, E.D.; Lord, R.S.; Hensley, D.C.; Biggerstaff, J.A.

    1977-01-01

    The Holifield Heavy Ion Research Facility will integrate a new 25 MV tandem electrostatic acccelerator into the existing cyclotron laboratory which includes the Oak Ridge Isochronous Cyclotron (ORIC). Computations of ion paths for beam injection from the new tandem into ORIC require field mapping in the regions traversed by the beam. Additional field data is also desired for the higher levels (approx.19 kG) now used for most heavy ion beams. The magnetic field measurement system uses 39 flip coil/current integrator sets with computer controlled data scanning. The coils are spaced radially at 1 inch intervals in an arm which can be rotated azimuthally in 2 degree increments. The entire flip coil assembly can be shifted to larger radii to measure fields beyond the pole boundary. Temperature stabilization of electronic circuitry permits a measurement resolution of +-1 gauss over a dynamic range of +-25,000 gauss. The system will process a scan of 8000 points in about one hour

  10. Structure and evolution of magnetic fields associated with solar eruptions

    International Nuclear Information System (INIS)

    Wang Haimin; Liu Chang

    2015-01-01

    This paper reviews the studies of solar photospheric magnetic field evolution in active regions and its relationship to solar flares. It is divided into two topics, the magnetic structure and evolution leading to solar eruptions and rapid changes in the photospheric magnetic field associated with eruptions. For the first topic, we describe the magnetic complexity, new flux emergence, flux cancelation, shear motions, sunspot rotation and magnetic helicity injection, which may all contribute to the storage and buildup of energy that trigger solar eruptions. For the second topic, we concentrate on the observations of rapid and irreversible changes of the photospheric magnetic field associated with flares, and the implication on the restructuring of the three-dimensional magnetic field. In particular, we emphasize the recent advances in observations of the photospheric magnetic field, as state-of-the-art observing facilities (such as Hinode and Solar Dynamics Observatory) have become available. The linkages between observations, theories and future prospectives in this research area are also discussed. (invited reviews)

  11. Efficient Analysis of Simulations of the Sun's Magnetic Field

    Science.gov (United States)

    Scarborough, C. W.; Martínez-Sykora, J.

    2014-12-01

    Dynamics in the solar atmosphere, including solar flares, coronal mass ejections, micro-flares and different types of jets, are powered by the evolution of the sun's intense magnetic field. 3D Radiative Magnetohydrodnamics (MHD) computer simulations have furthered our understanding of the processes involved: When non aligned magnetic field lines reconnect, the alteration of the magnetic topology causes stored magnetic energy to be converted into thermal and kinetic energy. Detailed analysis of this evolution entails tracing magnetic field lines, an operation which is not time-efficient on a single processor. By utilizing a graphics card (GPU) to trace lines in parallel, conducting such analysis is made feasible. We applied our GPU implementation to the most advanced 3D Radiative-MHD simulations (Bifrost, Gudicksen et al. 2011) of the solar atmosphere in order to better understand the evolution of the modeled field lines.

  12. Trapped field recovery of bulk superconductor magnets by static field magnetization

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Z., E-mail: zigang@kaiyodai.ac.jp [Laboratory of Applied Physics, Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, Tokyo 135-8533 (Japan); Tsuzuki, K.; Miki, M.; Felder, B.; Hara, S.; Izumi, M. [Laboratory of Applied Physics, Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, Tokyo 135-8533 (Japan)

    2011-11-15

    A series of initial trapped fields after ZFC or FC magnetization are used to simulate the attenuated trapped field. It is possible and easy to recover the lost trapped field and regain the best trapped field performance as before. In the re-magnetization process, the initial magnetic flux inside the bulk magnets will help to recover the trapped field. The optimum recovery field is recommended to be 2.5 times the saturation field of the bulk at LN2 temperature. Thanks to the trapped field of bulk high-temperature superconductors, they can be used as field-pole magnets in the high temperature superconducting (HTS) rotating machines. For example, an output power of 10 kW at 720 rpm was realized by an average trapped field of 0.56 T of eight melt-textured GdBa{sub 2}Cu{sub 3}O{sub y} (Gd-123) bulks at liquid nitrogen temperature in TUMSAT in 2004. Similarly to the HTS machines involving 1G or 2G wires, the trapped field of the bulk is possibly sensitive and even can be attenuated by the AC component field during the operation. Hence, it is necessary to recover the trapped field once being decreased to some extent in the practical application. From this point, we have investigated the trapped field recovery of HTS bulk magnets by static field magnetization in the paper. A series of different initial trapped fields after zero-field-cooling or field-cooling magnetization are used to simulate the attenuated trapped field. By comparing the trapped field peak and its distribution, the trapped field was found to be able to recover by the static field magnetization method with a stronger excitation field and the initial trapped flux inside the bulk also has an influence on the recovery process. The optimum recovery field was found to be about 2.5 times the saturated trapped field of the bulk at liquid nitrogen temperature, by which the bulk can regain the former best trapped field performance.

  13. Macroscopic Magnetization Control by Symmetry Breaking of Photoinduced Spin Reorientation with Intense Terahertz Magnetic Near Field

    Science.gov (United States)

    Kurihara, Takayuki; Watanabe, Hiroshi; Nakajima, Makoto; Karube, Shutaro; Oto, Kenichi; Otani, YoshiChika; Suemoto, Tohru

    2018-03-01

    We exploit an intense terahertz magnetic near field combined with femtosecond laser excitation to break the symmetry of photoinduced spin reorientation paths in ErFeO3 . We succeed in aligning macroscopic magnetization reaching up to 80% of total magnetization in the sample to selectable orientations by adjusting the time delay between terahertz and optical pump pulses. The spin dynamics are well reproduced by equations of motion, including time-dependent magnetic potential. We show that the direction of the generated magnetization is determined by the transient direction of spin tilting and the magnetic field at the moment of photoexcitation.

  14. General planar transverse domain walls realized by optimized transverse magnetic field pulses in magnetic biaxial nanowires

    Science.gov (United States)

    Li, Mei; Wang, Jianbo; Lu, Jie

    2017-02-01

    The statics and field-driven dynamics of transverse domain walls (TDWs) in magnetic nanowires (NWs) have attracted continuous interests because of their theoretical significance and application potential in future magnetic logic and memory devices. Recent results demonstrate that uniform transverse magnetic fields (TMFs) can greatly enhance the wall velocity, meantime leave a twisting in the TDW azimuthal distribution. For application in high-density NW devices, it is preferable to erase the twisting so as to minimize magnetization frustrations. Here we report the realization of a completely planar TDW with arbitrary tilting attitude in a magnetic biaxial NW under a TMF pulse with fixed strength and well-designed orientation profile. We smooth any twisting in the TDW azimuthal plane thus completely decouple the polar and azimuthal degrees of freedom. The analytical differential equation describing the polar angle distribution is derived and the resulting solution is not the Walker-ansatz form. With this TMF pulse comoving, the field-driven dynamics of the planar TDW is investigated with the help of the asymptotic expansion method. It turns out the comoving TMF pulse increases the wall velocity under the same axial driving field. These results will help to design a series of modern magnetic devices based on planar TDWs.

  15. Dynamic divertor control using resonant mixed toroidal harmonic magnetic fields during ELM suppression in DIII-D

    Science.gov (United States)

    Jia, M.; Sun, Y.; Paz-Soldan, C.; Nazikian, R.; Gu, S.; Liu, Y. Q.; Abrams, T.; Bykov, I.; Cui, L.; Evans, T.; Garofalo, A.; Guo, W.; Gong, X.; Lasnier, C.; Logan, N. C.; Makowski, M.; Orlov, D.; Wang, H. H.

    2018-05-01

    Experiments using Resonant Magnetic Perturbations (RMPs), with a rotating n = 2 toroidal harmonic combined with a stationary n = 3 toroidal harmonic, have validated predictions that divertor heat and particle flux can be dynamically controlled while maintaining Edge Localized Mode (ELM) suppression in the DIII-D tokamak. Here, n is the toroidal mode number. ELM suppression over one full cycle of a rotating n = 2 RMP that was mixed with a static n = 3 RMP field has been achieved. Prominent heat flux splitting on the outer divertor has been observed during ELM suppression by RMPs in low collisionality regime in DIII-D. Strong changes in the three dimensional heat and particle flux footprint in the divertor were observed during the application of the mixed toroidal harmonic magnetic perturbations. These results agree well with modeling of the edge magnetic field structure using the TOP2D code, which takes into account the plasma response from the MARS-F code. These results expand the potential effectiveness of the RMP ELM suppression technique for the simultaneous control of divertor heat and particle load required in ITER.

  16. DC magnetic field sensing based on the nonlinear magnetoelectric effect in magnetic heterostructures

    International Nuclear Information System (INIS)

    Burdin, Dmitrii; Chashin, Dmitrii; Ekonomov, Nikolai; Fetisov, Leonid; Fetisov, Yuri; Shamonin, Mikhail

    2016-01-01

    Recently, highly sensitive magnetic field sensors using the magnetoelectric effect in composite ferromagnetic-piezoelectric layered structures have been demonstrated. However, most of the proposed concepts are not useful for measuring dc magnetic fields, because the conductivity of piezoelectric layers results in a strong decline of the sensor’s sensitivity at low frequencies. In this paper, a novel functional principle of magnetoelectric sensors for dc magnetic field measurements is described. The sensor employs the nonlinear effect of voltage harmonic generation in a composite magnetoelectric structure under the simultaneous influence of a strong imposed ac magnetic field and a weak dc magnetic field to be measured. This physical effect arises due to the nonlinear dependence of the magnetostriction in the ferromagnetic layer on the magnetic field. A sensor prototype comprising of a piezoelectric fibre transducer sandwiched between two layers of the amorphous ferromagnetic Metglas ® alloy was fabricated. The specifications regarding the magnetic field range, frequency characteristics, and noise level were studied experimentally. The prototype showed the responsivity of 2.5 V mT −1 and permitted the measurement of dc magnetic fields in the range of ∼10 nT to about 0.4 mT. Although sensor operation is based on the nonlinear effect, the sensor response can be made linear with respect to the measured magnetic field in a broad dynamic range extending over 5 orders of magnitude. The underlying physics is explained through a simplified theory for the proposed sensor. The functionality, differences and advantages of the magnetoelectric sensor compare well with fluxgate magnetometers. The ways to enhance the sensor performance are considered. (paper)

  17. Interplay of domain walls and magnetization rotation on dynamic magnetization process in iron/polymer–matrix soft magnetic composites

    Energy Technology Data Exchange (ETDEWEB)

    Dobák, Samuel, E-mail: samuel.dobak@student.upjs.sk [Institute of Physics, Faculty of Science, Pavol Jozef Šafárik University, Park Angelinum 9, 041 54 Košice (Slovakia); Füzer, Ján; Kollár, Peter [Institute of Physics, Faculty of Science, Pavol Jozef Šafárik University, Park Angelinum 9, 041 54 Košice (Slovakia); Fáberová, Mária; Bureš, Radovan [Institute of Materials Research, Slovak Academy of Sciences, Watsonova 47, 043 53 Košice (Slovakia)

    2017-03-15

    This study sheds light on the dynamic magnetization process in iron/resin soft magnetic composites from the viewpoint of quantitative decomposition of their complex permeability spectra into the viscous domain wall motion and magnetization rotation. We present a comprehensive view on this phenomenon over the broad family of samples with different average particles dimension and dielectric matrix content. The results reveal the pure relaxation nature of magnetization processes without observation of spin resonance. The smaller particles and higher amount of insulating resin result in the prevalence of rotations over domain wall movement. The findings are elucidated in terms of demagnetizing effects rising from the heterogeneity of composite materials. - Highlights: • A first decomposition of complex permeability into domain wall and rotation parts in soft magnetic composites. • A pure relaxation nature of dynamic magnetization processes. • A complete loss separation in soft magnetic composites. • The domain walls activity is considerably suppressed in composites with smaller iron particles and higher matrix content. • The demagnetizing field acts as a significant factor at the dynamic magnetization process.

  18. Fast Advection of Magnetic Fields by Hot Electrons

    International Nuclear Information System (INIS)

    Willingale, L.; Thomas, A. G. R.; Krushelnick, K.; Nilson, P. M.; Kaluza, M. C.; Dangor, A. E.; Evans, R. G.; Fernandes, P.; Haines, M. G.; Kamperidis, C.; Kingham, R. J.; Ridgers, C. P.; Sherlock, M.; Wei, M. S.; Najmudin, Z.; Bandyopadhyay, S.; Notley, M.; Minardi, S.; Tatarakis, M.; Rozmus, W.

    2010-01-01

    Experiments where a laser-generated proton beam is used to probe the megagauss strength self-generated magnetic fields from a nanosecond laser interaction with an aluminum target are presented. At intensities of 10 15 W cm -2 and under conditions of significant fast electron production and strong heat fluxes, the electron mean-free-path is long compared with the temperature gradient scale length and hence nonlocal transport is important for the dynamics of the magnetic field in the plasma. The hot electron flux transports self-generated magnetic fields away from the focal region through the Nernst effect [A. Nishiguchi et al., Phys. Rev. Lett. 53, 262 (1984)] at significantly higher velocities than the fluid velocity. Two-dimensional implicit Vlasov-Fokker-Planck modeling shows that the Nernst effect allows advection and self-generation transports magnetic fields at significantly faster than the ion fluid velocity, v N /c s ≅10.

  19. One-loop QCD thermodynamics in a strong homogeneous and static magnetic field

    Science.gov (United States)

    Rath, Shubhalaxmi; Patra, Binoy Krishna

    2017-12-01

    We have studied how the equation of state of thermal QCD with two light flavors is modified in a strong magnetic field. We calculate the thermodynamic observables of hot QCD matter up to one-loop, where the magnetic field affects mainly the quark contribution and the gluon part is largely unaffected except for the softening of the screening mass. We have first calculated the pressure of a thermal QCD medium in a strong magnetic field, where the pressure at fixed temperature increases with the magnetic field faster than the increase with the temperature at constant magnetic field. This can be understood from the dominant scale of thermal medium in the strong magnetic field, being the magnetic field, in the same way that the temperature dominates in a thermal medium in the absence of magnetic field. Thus although the presence of a strong magnetic field makes the pressure of hot QCD medium larger, the dependence of pressure on the temperature becomes less steep. Consistent with the above observations, the entropy density is found to decrease with the temperature in the presence of a strong magnetic field which is again consistent with the fact that the strong magnetic field restricts the dynamics of quarks to two dimensions, hence the phase space becomes squeezed resulting in the reduction of number of microstates. Moreover the energy density is seen to decrease and the speed of sound of thermal QCD medium increases in the presence of a strong magnetic field. These findings could have phenomenological implications in heavy ion collisions because the expansion dynamics of the medium produced in non-central ultra-relativistic heavy ion collisions is effectively controlled by both the energy density and the speed of sound.

  20. Dynamic ELM and divertor control using resonant toroidal multi-mode magnetic fields in DIII-D and EAST

    Science.gov (United States)

    Sun, Youwen

    2017-10-01

    A rotating n = 2 Resonant Magnetic Perturbation (RMP) field combined with a stationary n = 3 RMP field has validated predictions that access to ELM suppression can be improved, while divertor heat and particle flux can also be dynamically controlled in DIII-D. Recent observations in the EAST tokamak indicate that edge magnetic topology changes, due to nonlinear plasma response to magnetic perturbations, play a critical role in accessing ELM suppression. MARS-F code MHD simulations, which include the plasma response to the RMP, indicate the nonlinear transition to ELM suppression is optimized by configuring the RMP coils to drive maximal edge stochasticity. Consequently, mixed toroidal multi-mode RMP fields, which produce more densely packed islands over a range of additional rational surfaces, improve access to ELM suppression, and further spread heat loading on the divertor. Beneficial effects of this multi-harmonic spectrum on ELM suppression have been validated in DIII-D. Here, the threshold current required for ELM suppression with a mixed n spectrum, where part of the n = 3 RMP field is replaced by an n = 2 field, is smaller than the case with pure n = 3 field. An important further benefit of this multi-mode approach is that significant changes of 3D particle flux footprint profiles on the divertor are found in the experiment during the application of a rotating n = 2 RMP field superimposed on a static n = 3 RMP field. This result was predicted by modeling studies of the edge magnetic field structure using the TOP2D code which takes into account plasma response from MARS-F code. These results expand physics understanding and potential effectiveness of the technique for reliably controlling ELMs and divertor power/particle loading distributions in future burning plasma devices such as ITER. Work supported by USDOE under DE-FC02-04ER54698 and NNSF of China under 11475224.

  1. Magnetism From Fundamentals to Nanoscale Dynamics

    CERN Document Server

    Stöhr, Joachim

    2006-01-01

    The present text book gives an comprehensive account of magnetism, spanning the historical development, the physical foundations and the continuing research underlying the field, one of the oldest yet still vibrant field of physics. It covers both the classical and quantum mechanical aspects of magnetism and novel experimental techniques. Perhaps uniquely, it also discusses spin transport and magnetization dynamics phenomena associated with atomically and spin engineered nano-structures against the backdrop of spintronics and magnetic storage and memory applications. Despite the existence of various books on the topic, a fresh text book that reviews the fundamental physical concepts and uses them in a coherent fashion to explain some of the forefront problems and applications today was thought useful by the authors and their colleagues. Magnetism is written for students on the late undergraduate and the graduate levels and should also serve as a state-of-the-art reference for scientists in academia and resear...

  2. Dynamical spin accumulation in large-spin magnetic molecules

    Science.gov (United States)

    Płomińska, Anna; Weymann, Ireneusz; Misiorny, Maciej

    2018-01-01

    The frequency-dependent transport through a nanodevice containing a large-spin magnetic molecule is studied theoretically in the Kondo regime. Specifically, the effect of magnetic anisotropy on dynamical spin accumulation is of primary interest. Such accumulation arises due to finite components of frequency-dependent conductance that are off diagonal in spin. Here, employing the Kubo formalism and the numerical renormalization group method, we demonstrate that the dynamical transport properties strongly depend on the relative orientation of spin moments in electrodes of the device, as well as on intrinsic parameters of the molecule. In particular, the effect of dynamical spin accumulation is found to be greatly affected by the type of magnetic anisotropy exhibited by the molecule, and it develops for frequencies corresponding to the Kondo temperature. For the parallel magnetic configuration of the device, the presence of dynamical spin accumulation is conditioned by the interplay of ferromagnetic-lead-induced exchange field and the Kondo correlations.

  3. mxCSM: A 100-slit, 6-Wavelength Wide-Field Coronal Spectropolarimeter for the Study of the Dynamics and the Magnetic Fields of the Solar Corona

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Haosheng, E-mail: lin@ifa.hawaii.edu [Institute for Astronomy, University of Hawaii, Pukalani, HI (United States)

    2016-03-30

    Tremendous progress has been made in the field of observational coronal magnetometry in the first decade of the Twenty-First century. With the successful construction of the Coronal Multichannel Magnetometer (CoMP) instrument, observations of the linear polarization of the coronal emission lines (CELs), which carry information about the azimuthal direction of the coronal magnetic fields, are now routinely available. However, reliable and regular measurements of the circular polarization signals of the CELs remain illusive. The CEL circular polarization signals allow us to infer the magnetic field strength in the corona, and is critically important for our understanding of the solar corona. Current telescopes and instrument can only measure the coronal magnetic field strength over a small field of view. Furthermore, the observations require very long integration time that preclude the study of dynamic events even when only a small field of view is required. This paper describes a new instrument concept that employs large-scale multiplexing technology to enhance the efficiency of current coronal spectropolarimeter by more than two orders of magnitude. This will allow for the instrument to increase the integration time at each spatial location by the same factor, while also achieving a large field of view coverage. We will present the conceptual design of a 100-slit coronal spectropolarimeter that can observe six CELs simultaneously. Instruments based on this concept will allow us to study the evolution of the coronal magnetic field even with coronagraphs with modest aperture.

  4. Dynamic resistance of a high-T c coated conductor wire in a perpendicular magnetic field at 77 K

    Science.gov (United States)

    Jiang, Zhenan; Toyomoto, Ryuki; Amemiya, Naoyuki; Zhang, Xingyou; Bumby, Chris W.

    2017-03-01

    Superconducting high-T c coated conductor (CC) wires comprise a ceramic thin film with a large aspect ratio. This geometry can lead to significant dissipative losses when exposed to an alternating magnetic field. Here we report experimental measurements of the ‘dynamic resistance’ of commercially available SuperPower and Fujikura CC wires in an AC perpendicular field. The onset of dynamic resistance occurs at a threshold field amplitude, which is determined by the total DC transport current and the penetration field of the conductor. We show that the field-dependence of the normalised magnetisation loss provides an unambiguous value for this threshold field at zero transport current. From this insight we then obtain an expression for the dynamic resistance in perpendicular field. This approach implies a linear relationship between dynamic resistance and applied field amplitude, and also between threshold field and transport current and this is consistent with our experimental data. The analytical expression obtained yields values that closely agree with measurements obtained across a wide range of frequencies and transport currents, and for multiple CC wires produced by different wire manufacturers and with significantly differing dimensions and critical currents. We further show that at high transport currents, the measured DC resistance includes an additional nonlinear term which is due to flux-flow resistance incurred by the DC transport current. This occurs once the field-dependent critical current of the wire falls below the DC transport current for part of each field cycle. Our results provide an effective and simple approach to calculating the dynamic resistance of a CC wire, at current and field magnitudes consistent with those expected in superconducting machines.

  5. Fringe field interference of neighbor magnets in China spallation neutron source

    International Nuclear Information System (INIS)

    Li, L.; Kang, W.; Wu, X.; Deng, C.D.; Li, S.; Yang, M.; Zhou, J.X.; Liu, Y.Q.; Wu, Y.W.

    2016-01-01

    In CSNS accelerator construction, the field measurement of all RCS magnets have been finished and the magnets have been installed in the tunnel before the end of 2015. The electromagnetic quadrupoles have a large aperture and the core-to-core distance between magnets is rather short in some places. The corrector magnet or the sextupole magnet is closer to one of the quadrupole magnets which caused certain interference. The interference caused by magnetic fringe field has been appeared and it becomes a significant issue in beam dynamics for beam loss control in this high-intensity proton accelerator. We have performed 3D computing simulations to study integral field distributions between the quadrupole and the corrector magnets, and the sextupole and the other quadrupole magnets. The effect of the magnetic fringe field and the interference has been investigated with different distances of the neighbor magnets. The simulation and the field measurement results will be introduced in this paper.

  6. Magnetic flux dynamics in superconducting materials

    International Nuclear Information System (INIS)

    Hernandez Nieves, Alexander

    2004-01-01

    The magnetization curves, the Bean-Livingston barrier in type I and type II superconductors, the ac magnetic response, the effects of thermal fluctuations on the magnetic behavior and the different dissipation mechanism at microwave frequencies are investigated in mesoscopic superconductors.For small mesoscopic samples we study the peaks and discontinuous jumps found in the magnetization as a function of magnetic field.To interpret these jumps we consider that vortices located inside the sample induce a reinforcement of the Bean- Livingston surface barrier at fields greater than the first penetration field Hp1.This leads to multiple penetration fields Hpi Hp1;Hp2;Hp3;... for vortex entrance in mesoscopic samples.For low-T c mesoscopic superconductors we found that the meta-stable states due to the surface barrier have a large half-life time, which leads to the hysteresis in the magnetization curves as observed experimentally.A very different behavior appears for high-T c mesoscopic superconductors where thermally activated vortex entrance/exit through surface barriers is frequent.This leads to a reduction of the magnetization and a non-integer average number of flux quanta penetrating the superconductor.At microwave frequencies we found that each vortex penetration event produces a significant suppression of the ac losses since the imaginary part of the ac susceptibility X ( H d c) as a function of the magnetic field (Hdc) increases before the penetration of vortices and then it decreases abruptly after vortices have entered into the sample.We show that nascent vortices (vortices that are partly inside the sample and nucleated at the surface) play an important role in the dynamic behavior of mesoscopic samples. In type I macroscopic superconductors with first-principles simulations of the TDGL equations we have been able to reproduce several features of the intermediate state observed in experiments.Particularly, droplet and striped patterns are obtained depending

  7. Magnetic response to applied electrostatic field in external magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Adorno, T.C. [Universidade de Sao Paulo, Instituto de Fisica, Caixa Postal 66318, Sao Paulo, SP (Brazil); University of Florida, Department of Physics, Gainesville, FL (United States); Gitman, D.M. [Universidade de Sao Paulo, Instituto de Fisica, Caixa Postal 66318, Sao Paulo, SP (Brazil); Tomsk State University, Department of Physics, Tomsk (Russian Federation); Shabad, A.E. [P. N. Lebedev Physics Institute, Moscow (Russian Federation)

    2014-04-15

    We show, within QED and other possible nonlinear theories, that a static charge localized in a finite domain of space becomes a magnetic dipole, if it is placed in an external (constant and homogeneous) magnetic field in the vacuum. The magnetic moment is quadratic in the charge, depends on its size and is parallel to the external field, provided the charge distribution is at least cylindrically symmetric. This magneto-electric effect is a nonlinear response of the magnetized vacuum to an applied electrostatic field. Referring to the simple example of a spherically symmetric applied field, the nonlinearly induced current and its magnetic field are found explicitly throughout the space; the pattern of the lines of force is depicted, both inside and outside the charge, which resembles that of a standard solenoid of classical magnetostatics. (orig.)

  8. Omnigenous magnetic fields

    International Nuclear Information System (INIS)

    Stupakov, G.V.

    1982-01-01

    In omnigenous magnetic fields particles' drift surfaces coincide with plasma magnetic surfaces. In this paper we formulate equations of omnigenous magnetic fields in natural curvilinear coordinates. An analysis of fields which are omnigenous only in the paraxial approximation is presented. (author)

  9. Dynamical quenching of tunneling in molecular magnets

    International Nuclear Information System (INIS)

    José Santander, María; Nunez, Alvaro S.; Roldán-Molina, A.; Troncoso, Roberto E.

    2015-01-01

    It is shown that a single molecular magnet placed in a rapidly oscillating magnetic field displays the phenomenon of quenching of tunneling processes. The results open a way to manipulate the quantum states of molecular magnets by means of radiation in the terahertz range. Our analysis separates the time evolution into slow and fast components thereby obtaining an effective theory for the slow dynamics. This effective theory presents quenching of the tunnel effect, in particular, stands out its difference with the so-called coherent destruction of tunneling. We support our prediction with numerical evidence based on an exact solution of Schrödinger's equation. - Highlights: • Single molecular magnets under rapidly oscillating magnetic fields is studied. • It is shown that this system displays the quenching of tunneling processes. • Our findings provide a control of quantum molecular magnets via terahertz radiation

  10. Dynamical quenching of tunneling in molecular magnets

    Energy Technology Data Exchange (ETDEWEB)

    José Santander, María, E-mail: maria.jose.noemi@gmail.com [Recursos Educativos Quántica, Santiago (Chile); Departamento de Física, Universidad de Santiago de Chile and CEDENNA, Avda. Ecuador 3493, Santiago (Chile); Nunez, Alvaro S., E-mail: alnunez@dfi.uchile.cl [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Casilla 487-3, Santiago (Chile); Roldán-Molina, A. [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Avenida Universidad 330, Curauma, Valparaíso (Chile); Troncoso, Roberto E., E-mail: r.troncoso.c@gmail.com [Centro para el Desarrollo de la Nanociencia y la Nanotecnología, CEDENNA, Avda. Ecuador 3493, Santiago 9170124 (Chile); Departamento de Física, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso (Chile)

    2015-12-15

    It is shown that a single molecular magnet placed in a rapidly oscillating magnetic field displays the phenomenon of quenching of tunneling processes. The results open a way to manipulate the quantum states of molecular magnets by means of radiation in the terahertz range. Our analysis separates the time evolution into slow and fast components thereby obtaining an effective theory for the slow dynamics. This effective theory presents quenching of the tunnel effect, in particular, stands out its difference with the so-called coherent destruction of tunneling. We support our prediction with numerical evidence based on an exact solution of Schrödinger's equation. - Highlights: • Single molecular magnets under rapidly oscillating magnetic fields is studied. • It is shown that this system displays the quenching of tunneling processes. • Our findings provide a control of quantum molecular magnets via terahertz radiation.

  11. Investigation on magnetic field dependent modulus of epoxidized natural rubber based magnetorheological elastomer

    International Nuclear Information System (INIS)

    Yunus, N. A.; Mazlan, S. A.; Ubaidillah; Aziz, S. A. A.; Khairi, M. H. Ahmad; Wahab, N. A. A.; Shilan, S. T.

    2016-01-01

    This paper presents an investigation on the use of epoxidized natural rubber (ENR) as a matrix of magnetorheological elastomers (MREs). Isotropic ENR-based MRE samples were synthesized by homogeneously mixed the ENR compound with carbonyl iron particles (CIPs). The microstructure of the sample was observed, and the magnetic field-dependent moduli were analyzed using rheometer. The influences of excitation frequency, CIPs content and magnetic field on the field-dependent moduli of ENR-based MREs were evaluated through dynamic shear test. The microstructure of MRE samples demonstrated the dispersed CIPs in the ENR matrix. The remarkable increment of storage and loss moduli of the ENR-based MREs has exhibited the magnetically controllable storage and loss moduli of the samples when exposed to the magnetic field. Consequently, the CIPs content, frequency and magnetic field were significantly influenced the dynamic moduli of the ENR-based MREs. (paper)

  12. Hofstadter spectrum in electric and magnetic fields

    International Nuclear Information System (INIS)

    Kunold, Alejandro; Torres, Manuel

    2005-01-01

    The problem of Bloch electrons in two dimensions subjected to magnetic and intense electric fields is investigated. Magnetic translations, electric evolution, and energy translation operators are used to specify the solutions of the Schroedinger equation. For rational values of the magnetic flux quanta per unit cell and commensurate orientations of the electric field relative to the original lattice, an extended superlattice can be defined and a complete set of mutually commuting space-time symmetry operators is obtained. Dynamics of the system is governed by a finite difference equation that exactly includes the effects of: an arbitrary periodic potential, an electric field orientated in a commensurable direction of the lattice, and coupling between Landau levels. A weak periodic potential broadens each Landau level in a series of minibands, separated by the corresponding minigaps. The addition of the electric field induces a series of avoided and exact crossing of the quasienergies, for sufficiently strong electric field the spectrum evolves into equally spaced discreet levels, in this 'magnetic Stark ladder' the energy separation is an integer multiple of hE/aB, with a the lattice parameter

  13. Dynamics of self-generated magnetic fields in stagnation phase and their effects on hot spark formation

    International Nuclear Information System (INIS)

    Hata, Akiro; Mima, Kunioki; Nagatomo, Hideo; Sunahara, Atsushi; Nishiguchi, Akio

    2006-01-01

    The generalized temporal evolution equation of a magnetic field is derived for high density laser-fusion plasmas. Magnetic field generation and convection are simulated by using the 2D hydrodynamic code together with the magnetic field equation. It is found that magnetic fields are generated and compressed in association with the Rayleigh-Taylor instability of an imploding shell. In particular, the magnetic field convection by the Nernst effect is found to play an important role in the amplification of magnetic fields. The maximum magnetic field reaches 30 MG at maximum compression. This magnetic field may reduce the electron heat conduction around the hot spark. Therefore, it is concluded that the ignition condition for non-uniform implosion is influenced by self-generated magnetic fields. (author)

  14. Nuclear magnetic resonance and earth magnetic field

    International Nuclear Information System (INIS)

    Anon.

    1998-01-01

    Nuclear magnetic resonance concerns nuclei whose spin is different from 0. These nuclei exposed to a magnetic field is comparable to a peg top spinning around its axis while being moved by a precession movement called Larmor precession. This article presents an experiment whose aim is to reveal nuclear magnetism of nuclei by observing Larmor precession phenomena due to the earth magnetic field. The earth magnetic field being too weak, it is necessary to increase the magnetization of the sample during a polarization phase. First the sample is submitted to a magnetic field B perpendicular to the earth magnetic field B 0 , then B is cut off and the nuclei move back to their equilibrium position by executing a precession movement due to B 0 field. (A.C.)

  15. Dynamic analysis on magnetic fluid interface validated by physical laws

    Energy Technology Data Exchange (ETDEWEB)

    Mizuta, Yo, E-mail: yomizuta@eng.hokudai.ac.jp

    2017-06-01

    Numerical analyses of magnetic fluid especially for fast phenomena such as the transition among interface profiles require rigorous as well as efficient method under arbitrary interface profiles and applied magnetic field distributions. Preceded by the magnetic analysis for this purpose, the present research has attempted to investigate interface dynamic phenomena. As an example of these phenomena, this paper shows the wavenumber spectrum of the interface profile and the sum of interface stresses changing in time, since the change of the balance among the interface stresses causing the transition can be observed conveniently. As time advances, wavenumber components increase due to the nonlinear interaction of waves. It is further argued that such analyses should be validated by the law of conservation of energy, the relation between the interface energy density and the interface stress, and the magnetic laws. - Highlights: • Numerical analysis for dynamic interface phenomena of magnetic fluid is attempted. • This analysis intends fast processes during transition of interface profile. • Wavenumber spectra of interface elevation and sum of stresses are shown. • Under magnetic field close to transition, components increase drastically in time. • Validation rules by physical laws of energy and magnetic field are shown.

  16. Physical aspects of magnetic hyperthermia: Low-frequency ac field absorption in a magnetic colloid

    International Nuclear Information System (INIS)

    Raikher, Yu. L.; Stepanov, V.I.

    2014-01-01

    A uniaxially anisotropic superparamagnetic particle suspended in a viscous fluid and subjected to an ac field is considered. Consistently taking into account both internal (Néel) and external (Brownian) magnetic relaxations, a simple expression for the dynamic susceptibility is obtained. This result, with regard to the ac field energy absorption, is compared to the common heuristic approach. This is done for a model polydisperse colloid containing maghemite nanoparticles, which are assumed to posses either bulk or surface magnetic anisotropy. It is shown that viscous losses caused by the particle motion in a fluid matrix make important contribution to the full magnetic response of a ferrocolloid and, thus, its ability to absorb the ac field energy. The obtained exact expression, which takes in both dissipation mechanisms, paves the way to correct optimization of the nanoparticle-mediated heating effect. - Highlights: • A uniaxially anisotropic superparamagnetic particle suspended in a viscous fluid and subjected to an ac field is considered. • Consistently taking into account both internal (Néel) and external (Brownian) magnetic relaxations, a simple expression for the dynamic susceptibility is obtained. • This result, with regard to the ac field energy absorption, is compared to the common heuristic approach using as a benchmark a model polydisperse colloid containing maghemite nanoparticles, which are assumed to posses either bulk or surface magnetic anisotropy. • It is shown that viscous losses caused by the particle motion in a fluid matrix make important contribution to the full magnetic response of a ferrocolloid and, thus, its ability to absorb the ac field energy. • The obtained exact expression, which takes in both dissipation mechanisms, paves the way to correct optimization of the nanoparticle-mediated heating effect

  17. Field errors in superconducting magnets

    International Nuclear Information System (INIS)

    Barton, M.Q.

    1982-01-01

    The mission of this workshop is a discussion of the techniques for tracking particles through arbitrary accelerator field configurations to look for dynamical effects that are suggested by various theoretical models but are not amenable to detailed analysis. A major motivation for this type of study is that many of our accelerator projects are based on the use of superconducting magnets which have field imperfections that are larger and of a more complex nature than those of conventional magnets. Questions such as resonances, uncorrectable closed orbit effects, coupling between planes, and diffusion mechanisms all assume new importance. Since, simultaneously, we are trying to do sophisticated beam manipulations such as stacking, high current accelerator, long life storage, and low loss extraction, we clearly need efficient and accurate tracking programs to proceed with confidence

  18. Effect of alignment of easy axes on dynamic magnetization of immobilized magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Takashi, E-mail: t_yoshi@ees.kyushu-u.ac.jp [Department of Electrical and Electronic Engineering, Kyushu University, Fukuoka 819-0395 (Japan); Matsugi, Yuki; Tsujimura, Naotaka; Sasayama, Teruyoshi; Enpuku, Keiji [Department of Electrical and Electronic Engineering, Kyushu University, Fukuoka 819-0395 (Japan); Viereck, Thilo; Schilling, Meinhard; Ludwig, Frank [Institut für Elektrische Messtechnik und Grundlagen der Elektrotechnik, TU Braunschweig, Braunschweig 38106 (Germany)

    2017-04-01

    In some biomedical applications of magnetic nanoparticles (MNPs), the particles are physically immobilized. In this study, we explore the effect of the alignment of the magnetic easy axes on the dynamic magnetization of immobilized MNPs under an AC excitation field. We prepared three immobilized MNP samples: (1) a sample in which easy axes are randomly oriented, (2) a parallel-aligned sample in which easy axes are parallel to the AC field, and (3) an orthogonally aligned sample in which easy axes are perpendicular to the AC field. First, we show that the parallel-aligned sample has the largest hysteresis in the magnetization curve and the largest harmonic magnetization spectra, followed by the randomly oriented and orthogonally aligned samples. For example, 1.6-fold increase was observed in the area of the hysteresis loop of the parallel-aligned sample compared to that of the randomly oriented sample. To quantitatively discuss the experimental results, we perform a numerical simulation based on a Fokker-Planck equation, in which probability distributions for the directions of the easy axes are taken into account in simulating the prepared MNP samples. We obtained quantitative agreement between experiment and simulation. These results indicate that the dynamic magnetization of immobilized MNPs is significantly affected by the alignment of the easy axes. - Highlights: • We clarify how the alignment of easy axis of MNP affects the AC magnetization. • Parallel-aligned immobilized MNPs exhibit the largest AC hysteresis loop. • Parallel-aligned immobilized MNPs exhibit the largest harmonic magnetization spectra. • The AC magnetization is strongly affected by the alignment of the easy axes.

  19. Field quality of LHC superconducting dipole magnets

    International Nuclear Information System (INIS)

    Mishra, R.K.

    2003-01-01

    The author reports here the main results of field measurements performed so far on the LHC superconducting dipoles at superfluid helium temperature. The main field strength at injection, collision conditions and higher order multipoles are discussed. Superconducting magnets exhibit additional field imperfections due to diamagnetic properties of superconducting cables, apart from geometric error, saturation of iron yoke and eddy currents error. Dynamic effects on field harmonics, such as field decay at injection and subsequent snap back are also discussed. (author)

  20. Magnetic field effects in hybrid perovskite devices

    Science.gov (United States)

    Zhang, C.; Sun, D.; Sheng, C.-X.; Zhai, Y. X.; Mielczarek, K.; Zakhidov, A.; Vardeny, Z. V.

    2015-05-01

    Magnetic field effects have been a successful tool for studying carrier dynamics in organic semiconductors as the weak spin-orbit coupling in these materials gives rise to long spin relaxation times. As the spin-orbit coupling is strong in organic-inorganic hybrid perovskites, which are promising materials for photovoltaic and light-emitting applications, magnetic field effects are expected to be negligible in these optoelectronic devices. We measured significant magneto-photocurrent, magneto-electroluminescence and magneto-photoluminescence responses in hybrid perovskite devices and thin films, where the amplitude and shape are correlated to each other through the electron-hole lifetime, which depends on the perovskite film morphology. We attribute these responses to magnetic-field-induced spin-mixing of the photogenerated electron-hole pairs with different g-factors--the Δg model. We validate this model by measuring large Δg (~ 0.65) using field-induced circularly polarized photoluminescence, and electron-hole pair lifetime using picosecond pump-probe spectroscopy.

  1. Nonlinear Dynamics of a Magnetically Driven Duffing-Type Spring-Magnet Oscillator in the Static Magnetic Field of a Coil

    Science.gov (United States)

    Donoso, Guillermo; Ladera, Celso L.

    2012-01-01

    We study the nonlinear oscillations of a forced and weakly dissipative spring-magnet system moving in the magnetic fields of two fixed coaxial, hollow induction coils. As the first coil is excited with a dc current, both a linear and a cubic magnet-position dependent force appear on the magnet-spring system. The second coil, located below the…

  2. Surface flux density distribution characteristics of bulk high-T c superconductor in external magnetic field

    International Nuclear Information System (INIS)

    Nishikawa, H.; Torii, S.; Yuasa, K.

    2005-01-01

    This paper describes the measured results of the two-dimensional flux density distribution of a YBCO bulk under applied AC magnetic fields with various frequency. Melt-processed oxide superconductors have been developed in order to obtain strong pinning forces. Various electric mechanical systems or magnetic levitation systems use those superconductors. The major problem is that cracks occur because the bulk superconductors are brittle. The bulk may break in magnetizing process after cracks make superconducting state instable. The trapped flux density and the permanent current characteristics of bulk superconductors have been analyzed, so as to examine the magnetizing processes or superconducting states of the bulk. In those studies, the two-dimensional surface flux density distributions of the bulk in static fields are discussed. On the other hand, the distributions in dynamic fields are little discussed. We attempted to examine the states of the bulk in the dynamic fields, and made a unique experimental device which has movable sensors synchronized with AC applied fields. As a result, the two-dimensional distributions in the dynamic fields are acquired by recombining the one-dimensional distributions. The dynamic states of the flux of the bulk and the influences of directions of cracks are observed from the distributions. In addition, a new method for measuring two-dimensional flux density distribution under dynamic magnetic fields is suggested

  3. Auroral electrojet dynamics during magnetic storms, connection with plasma precipitation and large-scale structure of the magnetospheric magnetic field

    Directory of Open Access Journals (Sweden)

    Y. I. Feldstein

    1999-04-01

    magnetospheric magnetic field paraboloid model the influence of the ring current and magnetospheric tail plasma sheet currents on large-scale magnetosphere structure is considered.Key words. Ionosphere (particle precipitation · Magnetospheric physics (current systems; magnetospheric configuration and dynamics.

  4. The Magnetic Nanoparticle Movement in Magnetic Fluid Characterized by the Laser Dynamic Speckle Interferometry

    Directory of Open Access Journals (Sweden)

    Xijun Wang

    2014-01-01

    Full Text Available A dual scanning laser speckle interferometry experiment was designed to observe the dynamic behavior of the magnetic fluid actuated by a magnetic field. In order to improve the spatial resolution of the dynamic speckle measurement, the phase delay scanning was used to compensate the additional phase variation which was caused by the transverse scanning. The correlation coefficients corresponding to the temporal dynamic speckle patterns within the same time interval scattering from the nanoparticles were calculated in the experiment on nanoscale magnetic clusters. In the experiment, the speckle of the magnetic nanoparticle fluid movement has been recorded by the lens unmounted CCD within the interferometry strips, although the speckle led to the distinguished annihilation of the light coherence. The results have showed that the nanoparticle fluid dynamic properties appeared synergistically in the fringe speckles. The analyses of the nanoparticle's relative speed and the speckle pattern moving amount in the fringes have proved the nanoparticle’s movement in a laminar flow in the experiment.

  5. Probing α -RuCl3 Beyond Magnetic Order: Effects of Temperature and Magnetic Field

    Science.gov (United States)

    Winter, Stephen M.; Riedl, Kira; Kaib, David; Coldea, Radu; Valentí, Roser

    2018-02-01

    Recent studies have brought α -RuCl3 to the forefront of experimental searches for materials realizing Kitaev spin-liquid physics. This material exhibits strongly anisotropic exchange interactions afforded by the spin-orbit coupling of the 4 d Ru centers. We investigate the dynamical response at finite temperature and magnetic field for a realistic model of the magnetic interactions in α -RuCl3 . These regimes are thought to host unconventional paramagnetic states that emerge from the suppression of magnetic order. Using exact diagonalization calculations of the quantum model complemented by semiclassical analysis, we find a very rich evolution of the spin dynamics as the applied field suppresses the zigzag order and stabilizes a quantum paramagnetic state that is adiabatically connected to the fully polarized state at high fields. At finite temperature, we observe large redistributions of spectral weight that can be attributed to the anisotropic frustration of the model. These results are compared to recent experiments and provide a road map for further studies of these regimes.

  6. Novel Electrochemical Phenomena in Magnetic Fields(Research in High Magnetic Fields)

    OpenAIRE

    Mogi, Iwao; Kamiko, Masao

    1996-01-01

    Recent two topics are given of electrochemical studies in steady magnetic fields at the High Field Laboratory of Tohoku University. One is the magnetic-field-induced diffusion-limited-aggregation in the pattern formation of silver electrodeposits . The other is the magnetic field effect on the learning effect in a dopant-exchange process of an organic conducting polymer polypyrrole.

  7. mxCSM: A 100-slit, 6-wavelength wide-field coronal spectropolarimeter for the study of the dynamics and the magnetic fields of the solar corona

    Directory of Open Access Journals (Sweden)

    Haosheng eLin

    2016-03-01

    Full Text Available remendous progress has been made in the field of observational coronal magnetometry in the first decade of the 21st century. With the successful construction of the Coronal Multichannel Magnetometer (CoMP instrument, observations of the linear polarization of the coronal emission lines (CELs, which carry information about the azimuthal direction of the coronal magnetic fields, are now routinely available. However, reliable and regular measurements of the circular polarization signals of the CELs remain illusive. The CEL circular polarization signals allow us to infer the magnetic field strength in the corona, and is critically important {bf of} our understanding of the solar corona. Current telescopes and instrument can only measure the coronal magnetic field strength over a small field of view. Furthermore, the observations require very long integration time that preclude the study of dynamic events even when only a small field of view is required. This paper describes a new instrument concept that employees large-scale multiplexing technology to enhance the efficiency of current coronal spectropolarimeter by more than two orders of magnitude. This will allow for the instrument to increase of the integration time at each spatial location by the same factor, while also achieving a large field of view coverage. We will present the conceptual design of a 100-slit coronal spectropolarimeter that can observe six coronal emission lines simultaneously. Instruments based on this concept will allow us to study the evolution of the coronal magnetic field even with coronagraphs with modest aperture.

  8. Global dynamics of magnetic reconnection in VINETA II

    Energy Technology Data Exchange (ETDEWEB)

    Bohlin, Hannes

    2014-12-12

    Magnetic reconnection is a fundamental plasma process where a change in field line connectivity occurs in a current sheet at the boundary between regions of opposing magnetic fields. In this process, energy stored in the magnetic field is converted into kinetic and thermal energy, which provides a source of plasma heating and energetic particles. Magnetic reconnection plays a key role in many space and laboratory plasma phenomena, e.g. solar flares, Earth's magnetopause dynamics and instabilities in tokamaks. A new linear device (VINETAII) has been designed for the study of the fundamental physical processes involved in magnetic reconnection. The plasma parameters are such that magnetic reconnection occurs in a collision-dominated regime. A plasma gun creates a localized current sheet, and magnetic reconnection is driven by modulating the plasma current and the magnetic field structure. The plasma current is shown to flow in response to a combination of an externally induced electric field and electrostatic fields in the plasma, and is highly affected by axial sheath boundary conditions. Further, the current is changed by an additional axial magnetic field (guide field), and the current sheet geometry was demonstrated to be set by a combination of magnetic mapping and cross-field plasma diffusion. With increasing distance from the plasma gun, magnetic mapping results in an increase of the current sheet length and a decrease of the width. The control parameter is the ratio of the guide field to the reconnection magnetic field strength. Cross-field plasma diffusion leads to a radial expansion of the current sheet at low guide fields. Plasma currents are also observed in the azimuthal plane and were found to originate from a combination of the field-aligned current component and the diamagnetic current generated by steep in-plane pressure gradients in combination with the guide field. The reconnection rate, defined via the inductive electric field, is shown to be

  9. Nonlinear dynamics and chaotization of oscillations of a virtual cathode in an annular electron beam in a uniform external magnetic field

    International Nuclear Information System (INIS)

    Kurkin, S. A.; Koronovski, A. A.; Hramov, A. E.

    2009-01-01

    Results are presented from a numerical study of the effect of an external magnetic field on the conditions and mechanisms for the formation of a virtual cathode in a relativistic electron beam. Characteristic features of the nonlinear dynamics of an electron beam with a virtual cathode are considered when the external magnetic field is varied. Various mechanisms are investigated by which the virtual cathode oscillations become chaotic and their spectrum becomes a multifrequency spectrum, thereby complicating the dynamics of the vircator system. A general mechanism for chaotization of the oscillations of a virtual cathode in a vircator system is revealed: the electron structures that form in an electron beam interact by means of a common space charge field to give rise to additional internal feedback. That the oscillations of a virtual cathode change from the chaotic to the periodic regime is due to the suppression of the mechanism for forming secondary electron structures.

  10. Pulsed magnetic field generation suited for low-field unilateral nuclear magnetic resonance systems

    Science.gov (United States)

    Gaunkar, Neelam Prabhu; Selvaraj, Jayaprakash; Theh, Wei-Shen; Weber, Robert; Mina, Mani

    2018-05-01

    Pulsed magnetic fields can be used to provide instantaneous localized magnetic field variations. In presence of static fields, pulsed field variations are often used to apply torques and in-effect to measure behavior of magnetic moments in different states. In this work, the design and experimental performance of a pulsed magnetic field generator suited for low static field nuclear magnetic resonance (NMR) applications is presented. One of the challenges of low bias field NMR measurements is low signal to noise ratio due to the comparable nature of the bias field and the pulsed field. Therefore, a circuit is designed to apply pulsed currents through an inductive load, leading to generation of pulsed magnetic fields which can temporarily overpower the effect of the bias field on magnetic moments. The designed circuit will be tuned to operate at the precession frequency of 1H (protons) placed in a bias field produced by permanent magnets. The designed circuit parameters may be tuned to operate under different bias conditions. Therefore, low field NMR measurements can be performed for different bias fields. Circuit simulations were used to determine design parameters, corresponding experimental measurements will be presented in this work.

  11. Doped spin ladders under magnetic field

    International Nuclear Information System (INIS)

    Roux, G.

    2007-07-01

    This thesis deals with the physics of doped two-leg ladders which are a quasi one-dimensional and unconventional superconductor. We particularly focus on the properties under magnetic field. Models for strongly correlated electrons on ladders are studied using exact diagonalization and density-matrix renormalization group (DMRG). Results are also enlightened by using the bosonization technique. Taking into account a ring exchange it highlights the relation between the pairing of holes and the spin gap. Its influence on the dynamics of the magnetic fluctuations is also tackled. Afterwards, these excitations are probed by the magnetic field by coupling it to the spin degree of freedom of the electrons through Zeeman effect. We show the existence of doping-dependent magnetization plateaus and also the presence of an inhomogeneous superconducting phase (FFLO phase) associated with an exceeding of the Pauli limit. When a flux passes through the ladder, the magnetic field couples to the charge degree of freedom of the electrons via orbital effect. The diamagnetic response of the doped ladder probes the commensurate phases of the t-J model at low J/t. Algebraic transverse current fluctuations are also found once the field is turned on. Lastly, we report numerical evidences of a molecular superfluid phase in the 3/2-spin attractive Hubbard model: at a density low enough, bound states of four fermions, called quartets, acquire dominant superfluid fluctuations. The observed competition between the superfluid and density fluctuations is connected to the physics of doped ladders. (author)

  12. Magnetic field of the magnetospheric ring current and its dynamics during magnetic storms

    International Nuclear Information System (INIS)

    Feldstein, Y.I.; Grafe, A.; Pisarsky, V.Yu.; Prigansova, A.; Sumaruk, P.V.

    1990-01-01

    This review examines models existing in the literature which describe the magnetic field produced by the ring current (DR) at the Earth's surface based on the energy balance equation. The parameters of this equation, the injection function F and decay parameter τ are considered to depend on parameters of the interplanetary medium and the DR intensity. The existing models are shown to be able to describe the DR variations with sufficient accuracy (r.m.s. deviation δ between the experimental and modelled values of DR for 170 magnetic storms is 5 < δ < 15 nT, and the correlation coefficient between the two is 0.85 < r < 1). The models describe that part of the geomagnetic field variation at low latitudes during a magnetic storm that is controlled by the geoeffective characteristics of the interplanetary medium and which thus responds immediately to its variations (the driven part). The values of τ are significantly less during the main phase of a magnetic storm than during the recovery phase. This reflects the difference in the main mechanisms of ion loss from the ring current during the two phases of the storm. These are the interaction of ions with hydromagnetic waves during the main phase of the storm with its intervals of intense plasma injection into the inner magnetosphere, and charge exchange with the cold hydrogen geocorona during the recovery phase. (author)

  13. Controlling laser-induced magnetization reversal dynamics in a rare-earth iron garnet across the magnetization compensation point

    Science.gov (United States)

    Deb, Marwan; Molho, Pierre; Barbara, Bernard; Bigot, Jean-Yves

    2018-04-01

    In this work we explore the ultrafast magnetization dynamics induced by femtosecond laser pulses in a doped film of gadolinium iron garnet over a broad temperature range including the magnetization compensation point TM. By exciting the phonon-assisted 6S→4G and 6S→4P electronic d -d transitions simultaneously by one- and two-photon absorption processes, we find out that the transfer of heat energy from the lattice to the spin has, at a temperature slightly below TM, a large influence on the magnetization dynamics. In particular, we show that the speed and the amplitude of the magnetization dynamics can be strongly increased when increasing either the external magnetic field or the laser energy density. The obtained results are explained by a magnetization reversal process across TM. Furthermore, we find that the dynamics has unusual characteristics which can be understood by considering the weak spin-phonon coupling in magnetic garnets. These results open new perspectives for controlling the magnetic state of magnetic dielectrics using an ultrashort optically induced heat pulse.

  14. Piezoelectric response of a PZT thin film to magnetic fields from permanent magnet and coil combination

    Science.gov (United States)

    Guiffard, B.; Seveno, R.

    2015-01-01

    In this study, we report the magnetically induced electric field E 3 in Pb(Zr0.57Ti0.43)O3 (PZT) thin films, when they are subjected to both dynamic magnetic induction (magnitude B ac at 45 kHz) and static magnetic induction ( B dc) generated by a coil and a single permanent magnet, respectively. It is found that highest sensitivity to B dc——is achieved for the thin film with largest effective electrode. This magnetoelectric (ME) effect is interpreted in terms of coupling between eddy current-induced Lorentz forces (stress) in the electrodes of PZT and piezoelectricity. Such coupling was evidenced by convenient modelling of experimental variations of electric field magnitude with both B ac and B dc induction magnitudes, providing imperfect open circuit condition was considered. Phase angle of E 3 versus B dc could also be modelled. At last, the results show that similar to multilayered piezoelectric-magnetostrictive composite film, a PZT thin film made with a simple manufacturing process can behave as a static or dynamic magnetic field sensor. In this latter case, a large ME voltage coefficient of under B dc = 0.3 T was found. All these results may provide promising low-cost magnetic energy harvesting applications with microsized systems.

  15. Dynamics of particle suspensions subjected to biaxial and triaxial magnetic fields: vortex mixing and isothermal magnetic advection

    Science.gov (United States)

    Martin, James

    2010-03-01

    We have developed several new magnetic methods for stimulating functional fluid flows. These methods depend on adding magnetic particles to the fluids and subjecting them to spatially uniform, time-dependent magnetic fields. The key aspect is the nature of the particles and the way in which the direction and magnitude of the magnetic field changes with time. The first of these new methods, which we call vortex field mixing, gives rise to vigorous fluid mixing that occurs uniformly throughout the sample volume, eliminating the stagnation regions that plague standard methods. This method is ideally suited for microfluidic devices, but can used for mixing at any scale. The second method involves the stimulation of organized fluid flow fields that can efficiently transfer heat and mass along any desired direction. This isothermal magnetic advection has the functionality of natural convection, but because the effect does not depend on gravity or the existence of a thermal gradient, it can be used to stimulate flow where natural convection fails. It is possible to cool under or beside a hot object, in the microgravity environments of space, and without any concern over the magnitude of the thermal gradient.

  16. Quantum dynamics of an electric charge in an oscillating pulsed magnetic field

    International Nuclear Information System (INIS)

    Oliveira, I.S.; Guimaraes, A.P.; Silva, X.A. da

    1996-11-01

    The motion of a charged particle under the action of a time-dependent oscillating magnetic field has been investigated. For one and two magnetic pulses were obtained analytical expressions for the free current decay and current echo in agreement with a recently proposed classical description of electrical current in fields E and B. When the resonance condition is achieved, the axis of quantization is turned over by 90 degrees. The results suggest a magnetic pulsed resonant method to separate charged particles in a beam. (author). 12 refs

  17. Influence of External Magnetic Fields on Tunneling of Spin-1 Bose Condensate

    International Nuclear Information System (INIS)

    Yu Zhaoxian; Jiao Zhiyong; Sun Jinzuo

    2005-01-01

    In this letter, we have studied the influence of the external magnetic fields on tunneling of the spin-1 Bose condensate. We find that the population transfer between spin-0 and spin-±1 exhibits the step structure under the external cosinusoidal magnetic field and a combination of static and cosinusoidal one, respectively. Compared with the longitudinal component of the external magnetic field, the smaller the transverse component of the magnetic field is, the larger the time scale of exhibiting the step structure does. The tunneling current may exhibit periodically oscillation behavior when the ratio of the transverse component of the magnetic field is smaller than that of the longitudinal component, otherwise it exhibits a damply oscillating behavior. This means that the dynamical spin localization can be adjusted by the external magnetic fields.

  18. The structure of magnetic field in the TEXTOR-DED

    International Nuclear Information System (INIS)

    Finken, K.H.; Abdullaev, S.S.; Jakubowski, M.; Lehnen, M.; Nicolai, A.; Spatschek, K.H.

    2005-01-01

    The main component of the Dynamic Ergodic Divertor (DED) consists of a set of coils installed in the TEXTOR tokamak which creates resonant magnetic perturbations, preferentially at the plasma edge. The main purpose of the DED is to study the effect of the magnetic perturbations on the tokamak plasma. In particular, on the transport of the heat and particles to wall, the plasma confinement and rotation. This report is devoted to the systematic theoretical study of magnetic field and its structure in the TEXTOR-DED. It contains the description of the DED coil system in different operational regimes, the magnetic field created by this coil system, the study of formation of chaotic magnetic field lines and the structure of stochastic (ergodic) zone of field lines at the plasma edge and on the divertor plates, determination of field line diffusion coefficients and the Kolmogorov lengths. The modern mapping method for integration of Hamiltonian field line equations is employed for these studies. A description of the numerical Gourdon code to study the ergodic zone of the DED is also given. The experimental observations of the structure magnetic field lines performed recently in the TEXTOR-DED and their comparison with the modelling are also briefly discussed. (orig.)

  19. Identification of different processes in magnetization dynamics of API steels using magnetic Barkhausen noise

    International Nuclear Information System (INIS)

    Pérez-Benítez, J A; Espina-Hernández, J H; Le Man, Tu; Caleyo, F; Hallen, J M

    2015-01-01

    This work presents a method to identify processes in magnetization dynamics using the angular dependence of the magnetic Barkhausen noise. The analysis reveals that three different processes of the magnetization dynamics could be identified using the angular dependence of the magnetic Barkhausen noise energy. The first process is the reversed domain nucleation which is related to the magneto-crystalline energy of the material, and the second and third ones are associated with 180° and 90° domain walls motions, respectively. Additionally, two transition regions were identified and they are located between the regions associated with the aforementioned processes. The causes involving these processes are analyzed and a method for establishing their location in the Barkhausen noise signal with respect to the applied magnetic field intensity is proposed. (paper)

  20. The dynamic ergodic divertor in TEXTOR-A novel tool for studying magnetic perturbation field effects

    International Nuclear Information System (INIS)

    Neubauer, O.; Czymek, G.; Finken, K.H.; Giesen, B.; Huettemann, P.W.; Lambertz, H.T.; Schruff, J.

    2005-01-01

    Recently TEXTOR has been upgraded by the installation of the dynamic ergodic divertor (DED). The purpose of the DED is to influence transport parameters in plasma edge and core and to study the resulting effects on heat exhaust, edge cooling, impurity screening, plasma confinement and stability. Alternatively, the DED creates static or rotating multipolar helical magnetic perturbation fields of different mode patterns. A set of 16 helical coils has been installed on the inboard high-field side of the vacuum vessel. Rotating fields of up to 10 kHz can be generated. A novel coil design has been developed which fulfills the various mechanical, electrical, high frequency, thermal, and vacuum requirements. In addition to the various technical aspects of the DED design, implementation and commissioning, highlights of recent experiments will be presented. In particular the impact of the perturbation field on MHD stability and plasma rotation will be addressed

  1. Stability analysis of perpendicular magnetic trilayers with a field-like spin torque

    International Nuclear Information System (INIS)

    Wang, Ri-Xing; Zhao, Jing-Li; He, Peng-Bin; Gu, Guan-Nan; Li, Zai-Dong; Pan, An-Lian; Liu, Quan-Hui

    2013-01-01

    We have analytically studied the magnetization dynamics in magnetic trilayers with perpendicular anisotropy for both free and pinned layers. By linear stability analysis, we obtain the phase diagram parameterized by the current, magnetic field and relative strength of the field-like spin torque to Slonczewski torque. Under the control of the current and external magnetic field, several magnetic states, such as quasi-parallel and quasi-antiparallel stable states, out-of-plane precession, and bistable states can be realized. The precession frequency can be expressed as a function of the current and external magnetic field. In addition, the presence of field-like spin torque can change the switching current and precession frequency. - Highlights: ► The phase diagram is obtained by linear stability analysis. ► The precession frequency can be controlled by the current and magnetic field. ► Field-like spin torque can change instability current and precession frequency.

  2. Generalized moment analysis of magnetic field correlations for accumulations of spherical and cylindrical magnetic pertubers

    Directory of Open Access Journals (Sweden)

    Felix Tobias Kurz

    2016-12-01

    Full Text Available In biological tissue, an accumulation of similarly shaped objects with a susceptibility difference to the surrounding tissue generates a local distortion of the external magnetic field in magnetic resonance imaging. It induces stochastic field fluctuations that characteristically influence proton spin diffusion in the vicinity of these magnetic perturbers. The magnetic field correlation that is associated with such local magnetic field inhomogeneities can be expressed in the form of a dynamic frequency autocorrelation function that is related to the time evolution of the measured magnetization. Here, an eigenfunction expansion for two simple magnetic perturber shapes, that of spheres and cylinders, is considered for restricted spin diffusion in a simple model geometry. Then, the concept of generalized moment analysis, an approximation technique that is applied in the study of (non-reactive processes that involve Brownian motion, allows to provide analytical expressions for the correlation function for different exponential decay forms. Results for the biexponential decay for both spherical and cylindrical magnetized objects are derived and compared with the frequently used (less accurate monoexponential decay forms. They are in asymptotic agreement with the numerically exact value of the correlation function for long and short times.

  3. Laser-induced extreme magnetic field in nanorod targets

    Science.gov (United States)

    Lécz, Zsolt; Andreev, Alexander

    2018-03-01

    The application of nano-structured target surfaces in laser-solid interaction has attracted significant attention in the last few years. Their ability to absorb significantly more laser energy promises a possible route for advancing the currently established laser ion acceleration concepts. However, it is crucial to have a better understanding of field evolution and electron dynamics during laser-matter interactions before the employment of such exotic targets. This paper focuses on the magnetic field generation in nano-forest targets consisting of parallel nanorods grown on plane surfaces. A general scaling law for the self-generated quasi-static magnetic field amplitude is given and it is shown that amplitudes up to 1 MT field are achievable with current technology. Analytical results are supported by three-dimensional particle-in-cell simulations. Non-parallel arrangements of nanorods has also been considered which result in the generation of donut-shaped azimuthal magnetic fields in a larger volume.

  4. Self magnetic field effects on energy deposition by intense relativistic electron beams

    International Nuclear Information System (INIS)

    Nardi, E.; Peleg, E.; Zinamon, Z.

    1977-01-01

    The effect of the penetration of the self magnetic field of an intense relativsistic electron beam on the process of beam-target interaction is calculated. The diffusion of the magnetic field and the hydrodynamic expansion of the target are dynamically taken into account. It is found that at beam intensities of interest for pellet fusion considerable range shortening occurs by magnetic stopping. (author)

  5. Estimation of a planetary magnetic field using a reduced magnetohydrodynamic model

    Directory of Open Access Journals (Sweden)

    C. Nabert

    2017-03-01

    Full Text Available Knowledge of planetary magnetic fields provides deep insights into the structure and dynamics of planets. Due to the interaction of a planet with the solar wind plasma, a rather complex magnetic environment is generated. The situation at planet Mercury is an example of the complexities occurring as this planet's field is rather weak and the magnetosphere rather small. New methods are presented to separate interior and exterior magnetic field contributions which are based on a dynamic inversion approach using a reduced magnetohydrodynamic (MHD model and time-varying spacecraft observations. The methods select different data such as bow shock location information or magnetosheath magnetic field data. Our investigations are carried out in preparation for the upcoming dual-spacecraft BepiColombo mission set out to precisely estimate Mercury's intrinsic magnetic field. To validate our new approaches, we use THEMIS magnetosheath observations to estimate the known terrestrial dipole moment. The terrestrial magnetosheath provides observations from a strongly disturbed magnetic environment, comparable to the situation at Mercury. Statistical and systematic errors are considered and their dependence on the selected data sets are examined. Including time-dependent upstream solar wind variations rather than averaged conditions significantly reduces the statistical error of the estimation. Taking the entire magnetosheath data along the spacecraft's trajectory instead of only the bow shock location into account further improves accuracy of the estimated dipole moment.

  6. Ferrofluid aggregation in chains under the influence of a magnetic field

    International Nuclear Information System (INIS)

    Ivanov, Alexey O.; Kantorovich, Sofia S.; Mendelev, Valentin S.; Pyanzina, Elena S.

    2006-01-01

    The paper is devoted to the basic problem of chain aggregate formation in magnetic fluids under the influence of an external magnetic field. Chain distribution in dynamic equilibrium is obtained on the basis of free energy minimization method under the condition when the interparticle dipole-dipole interaction between the nearest neighboring ferroparticles in each chain is taken into account. The modified mean field approach is used for considering the dipole-dipole interaction between all particles in a ferrofluid. The model describes well the molecular dynamics simulations of magnetostatic properties for monodisperse ferrofluids containing chain aggregates

  7. Confinement of laser plasma expansion with strong external magnetic field

    Science.gov (United States)

    Tang, Hui-bo; Hu, Guang-yue; Liang, Yi-han; Tao, Tao; Wang, Yu-lin; Hu, Peng; Zhao, Bin; Zheng, Jian

    2018-05-01

    The evolutions of laser ablation plasma, expanding in strong (∼10 T) transverse external magnetic field, were investigated in experiments and simulations. The experimental results show that the magnetic field pressure causes the plasma decelerate and accumulate at the plasma-field interface, and then form a low-density plasma bubble. The saturation size of the plasma bubble has a scaling law on laser energy and magnetic field intensity. Magnetohydrodynamic simulation results support the observation and find that the scaling law (V max ∝ E p /B 2, where V max is the maximum volume of the plasma bubble, E p is the absorbed laser energy, and B is the magnetic field intensity) is effective in a broad laser energy range from several joules to kilo-joules, since the plasma is always in the state of magnetic field frozen while expanding. About 15% absorbed laser energy converts into magnetic field energy stored in compressed and curved magnetic field lines. The duration that the plasma bubble comes to maximum size has another scaling law t max ∝ E p 1/2/B 2. The plasma expanding dynamics in external magnetic field have a similar character with that in underdense gas, which indicates that the external magnetic field may be a feasible approach to replace the gas filled in hohlraum to suppress the wall plasma expansion and mitigate the stimulated scattering process in indirect drive ignition.

  8. DIFFUSION OF MAGNETIC FIELD AND REMOVAL OF MAGNETIC FLUX FROM CLOUDS VIA TURBULENT RECONNECTION

    International Nuclear Information System (INIS)

    Santos-Lima, R.; De Gouveia Dal Pino, E. M.; Lazarian, A.; Cho, J.

    2010-01-01

    The diffusion of astrophysical magnetic fields in conducting fluids in the presence of turbulence depends on whether magnetic fields can change their topology via reconnection in highly conducting media. Recent progress in understanding fast magnetic reconnection in the presence of turbulence reassures that the magnetic field behavior in computer simulations and turbulent astrophysical environments is similar, as far as magnetic reconnection is concerned. This makes it meaningful to perform MHD simulations of turbulent flows in order to understand the diffusion of magnetic field in astrophysical environments. Our studies of magnetic field diffusion in turbulent medium reveal interesting new phenomena. First of all, our three-dimensional MHD simulations initiated with anti-correlating magnetic field and gaseous density exhibit at later times a de-correlation of the magnetic field and density, which corresponds well to the observations of the interstellar media. While earlier studies stressed the role of either ambipolar diffusion or time-dependent turbulent fluctuations for de-correlating magnetic field and density, we get the effect of permanent de-correlation with one fluid code, i.e., without invoking ambipolar diffusion. In addition, in the presence of gravity and turbulence, our three-dimensional simulations show the decrease of the magnetic flux-to-mass ratio as the gaseous density at the center of the gravitational potential increases. We observe this effect both in the situations when we start with equilibrium distributions of gas and magnetic field and when we follow the evolution of collapsing dynamically unstable configurations. Thus, the process of turbulent magnetic field removal should be applicable both to quasi-static subcritical molecular clouds and cores and violently collapsing supercritical entities. The increase of the gravitational potential as well as the magnetization of the gas increases the segregation of the mass and magnetic flux in the

  9. Dynamic analysis of magnetic nanoparticles crossing cell membrane

    Energy Technology Data Exchange (ETDEWEB)

    Pedram, Maysam Z. [Department of Mechanical Engineering, Sharif University of Tech., Azadi Ave., Tehran (Iran, Islamic Republic of); Shamloo, Amir, E-mail: shamloo@sharif.edu [Department of Mechanical Engineering, Sharif University of Tech., Azadi Ave., Tehran (Iran, Islamic Republic of); Ghafar-Zadeh, Ebrahim [Biologically-Inspired Sensors and Actuators Laboratory, Department of Electrical Engineering and Computer science, York University, Keel Street, Toronto (Canada); Alasty, Aria, E-mail: aalasti@sharif.edu [Department of Mechanical Engineering, Sharif University of Tech., Azadi Ave., Tehran (Iran, Islamic Republic of)

    2017-05-01

    Nowadays, nanoparticles (NPs) are used in a variety of biomedical applications including brain disease diagnostics and subsequent treatments. Among the various types of NPs, magnetic nanoparticles (MNPs) have been implemented by many research groups for an array of life science applications. In this paper, we studied MNPs controlled delivery into the endothelial cells using a magnetic field. Dynamics equations of MNPs were defined in the continuous domain using control theory methods and were applied to crossing the cell membrane. This study, dedicated to clinical and biomedical research applications, offers a guideline for the generation of a magnetic field required for the delivery of MNPs.

  10. Influence of time dependent longitudinal magnetic fields on the cooling process, exchange bias and magnetization reversal mechanism in FM core/AFM shell nanoparticles: a Monte Carlo study.

    Science.gov (United States)

    Yüksel, Yusuf; Akıncı, Ümit

    2016-12-07

    Using Monte Carlo simulations, we have investigated the dynamic phase transition properties of magnetic nanoparticles with ferromagnetic core coated by an antiferromagnetic shell structure. Effects of field amplitude and frequency on the thermal dependence of magnetizations, magnetization reversal mechanisms during hysteresis cycles, as well as on the exchange bias and coercive fields have been examined, and the feasibility of applying dynamic magnetic fields on the particle have been discussed for technological and biomedical purposes.

  11. Lifting particle coordinate changes of magnetic moment type to Vlasov-Maxwell Hamiltonian dynamics

    International Nuclear Information System (INIS)

    Morrison, P. J.; Vittot, M.; Guillebon, L. de

    2013-01-01

    Techniques for coordinate changes that depend on both dependent and independent variables are developed and applied to the Maxwell-Vlasov Hamiltonian theory. Particle coordinate changes with a new velocity variable dependent on the magnetic field, with spatial coordinates unchanged, are lifted to the field theoretic level, by transforming the noncanonical Poisson bracket and Hamiltonian structure of the Vlasov-Maxwell dynamics. Several examples are given including magnetic coordinates, where the velocity is decomposed into components parallel and perpendicular to the local magnetic field, and the case of spherical velocity coordinates. An example of the lifting procedure is performed to obtain a simplified version of gyrokinetics, where the magnetic moment is used as a coordinate and the dynamics is reduced by elimination of the electric field energy in the Hamiltonian.

  12. Magnetoplasmons in gapped graphene in a periodically modulated magnetic field

    KAUST Repository

    Tahir, Muhammad

    2016-01-08

    Motivated by recent experiments on long-lived magnetoplasmons in the presence of a perpendicular magnetic field, we investigate the dynamical dielectric response function of graphene in contact with a substrate using the random phase approximation. We add a periodically modulated magnetic field within the graphene plane and address both the inter and intra Landau band magnetoplasmons. Verification of the predicted magnetic modulation effects is possible by experiments analogous to those for the zero gap limit. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA.

  13. Effects of a strong magnetic field on internal gravity waves: trapping, phase mixing, reflection and dynamical chaos

    Science.gov (United States)

    Loi, Shyeh Tjing; Papaloizou, John C. B.

    2018-04-01

    The spectrum of oscillation modes of a star provides information not only about its material properties (e.g. mean density), but also its symmetries. Spherical symmetry can be broken by rotation and/or magnetic fields. It has been postulated that strong magnetic fields in the cores of some red giants are responsible for their anomalously weak dipole mode amplitudes (the "dipole dichotomy" problem), but a detailed understanding of how gravity waves interact with strong fields is thus far lacking. In this work, we attack the problem through a variety of analytical and numerical techniques, applied to a localised region centred on a null line of a confined axisymmetric magnetic field which is approximated as being cylindrically symmetric. We uncover a rich variety of phenomena that manifest when the field strength exceeds a critical value, beyond which the symmetry is drastically broken by the Lorentz force. When this threshold is reached, the spatial structure of the g-modes becomes heavily altered. The dynamics of wave packet propagation transitions from regular to chaotic, which is expected to fundamentally change the organisation of the mode spectrum. In addition, depending on their frequency and the orientation of field lines with respect to the stratification, waves impinging on different parts of the magnetised region are found to undergo either reflection or trapping. Trapping regions provide an avenue for energy loss through Alfvén wave phase mixing. Our results may find application in various astrophysical contexts, including the dipole dichotomy problem, the solar interior, and compact star oscillations.

  14. Dynamics and morphology of chiral magnetic bubbles in perpendicularly magnetized ultra-thin films

    Science.gov (United States)

    Sarma, Bhaskarjyoti; Garcia-Sanchez, Felipe; Nasseri, S. Ali; Casiraghi, Arianna; Durin, Gianfranco

    2018-06-01

    We study bubble domain wall dynamics using micromagnetic simulations in perpendicularly magnetized ultra-thin films with disorder and Dzyaloshinskii-Moriya interaction. Disorder is incorporated into the material as grains with randomly distributed sizes and varying exchange constant at the edges. As expected, magnetic bubbles expand asymmetrically along the axis of the in-plane field under the simultaneous application of out-of-plane and in-plane fields. Remarkably, the shape of the bubble has a ripple-like part which causes a kink-like (steep decrease) feature in the velocity versus in-plane field curve. We show that these ripples originate due to the nucleation and interaction of vertical Bloch lines. Furthermore, we show that the Dzyaloshinskii-Moriya interaction field is not constant but rather depends on the in-plane field. We also extend the collective coordinate model for domain wall motion to a magnetic bubble and compare it with the results of micromagnetic simulations.

  15. Magnetic Fields Versus Gravity

    Science.gov (United States)

    Hensley, Kerry

    2018-04-01

    Deep within giant molecular clouds, hidden by dense gas and dust, stars form. Unprecedented data from the Atacama Large Millimeter/submillimeter Array (ALMA) reveal the intricate magnetic structureswoven throughout one of the most massive star-forming regions in the Milky Way.How Stars Are BornThe Horsehead Nebulasdense column of gas and dust is opaque to visible light, but this infrared image reveals the young stars hidden in the dust. [NASA/ESA/Hubble Heritage Team]Simple theory dictates that when a dense clump of molecular gas becomes massive enough that its self-gravity overwhelms the thermal pressure of the cloud, the gas collapses and forms a star. In reality, however, star formation is more complicated than a simple give and take between gravity and pressure. Thedusty molecular gas in stellar nurseries is permeated with magnetic fields, which are thought to impede the inward pull of gravity and slow the rate of star formation.How can we learn about the magnetic fields of distant objects? One way is by measuring dust polarization. An elongated dust grain will tend to align itself with its short axis parallel to the direction of the magnetic field. This systematic alignment of the dust grains along the magnetic field lines polarizes the dust grains emission perpendicular to the local magnetic field. This allows us to infer the direction of the magnetic field from the direction of polarization.Magnetic field orientations for protostars e2 and e8 derived from Submillimeter Array observations (panels a through c) and ALMA observations (panels d and e). Click to enlarge. [Adapted from Koch et al. 2018]Tracing Magnetic FieldsPatrick Koch (Academia Sinica, Taiwan) and collaborators used high-sensitivity ALMA observations of dust polarization to learn more about the magnetic field morphology of Milky Way star-forming region W51. W51 is one of the largest star-forming regions in our galaxy, home to high-mass protostars e2, e8, and North.The ALMA observations reveal

  16. Specific absorption rate dependence on temperature in magnetic field hyperthermia measured by dynamic hysteresis losses (ac magnetometry)

    Science.gov (United States)

    Garaio, Eneko; Sandre, Olivier; Collantes, Juan-Mari; Garcia, Jose Angel; Mornet, Stéphane; Plazaola, Fernando

    2015-01-01

    Magnetic nanoparticles (NPs) are intensively studied for their potential use for magnetic hyperthermia, a treatment that has passed a phase II clinical trial against severe brain cancer (glioblastoma) at the end of 2011. Their heating power, characterized by the ‘specific absorption rate (SAR)’, is often considered temperature independent in the literature, mainly because of the difficulties that arise from the measurement methodology. Using a dynamic magnetometer presented in a recent paper, we measure here the thermal dependence of SAR for superparamagnetic iron oxide (maghemite) NPs of four different size-ranges corresponding to mean diameters around 12 nm, 14 nm, 15 nm and 16 nm. The article reports a parametrical study extending from 10 to 60 {}^\\circ C in temperature, from 75 to 1031 kHz in frequency, and from 2 to 24 kA m-1 in magnetic field strength. It was observed that SAR values of smaller NPs decrease with temperature whereas for the larger sample (16 nm) SAR values increase with temperature. The measured variation of SAR with temperature is frequency dependent. This behaviour is fully explained within the scope of linear response theory based on Néel and Brown relaxation processes, using independent magnetic measurements of the specific magnetization and the magnetic anisotropy constant. A good quantitative agreement between experimental values and theoretical values is confirmed in a tri-dimensional space that uses as coordinates the field strength, the frequency and the temperature.

  17. Interaction of the geomagnetic field with northward interplanetary magnetic field

    Science.gov (United States)

    Bhattarai, Shree Krishna

    The interaction of the solar wind with Earth's magnetic field causes the transfer of momentum and energy from the solar wind to geospace. The study of this interaction is gaining significance as our society is becoming more and more space based, due to which, predicting space weather has become more important. The solar wind interacts with the geomagnetic field primarily via two processes: viscous interaction and the magnetic reconnection. Both of these interactions result in the generation of an electric field in Earth's ionosphere. The overall topology and dynamics of the magnetosphere, as well as the electric field imposed on the ionosphere, vary with speed, density, and magnetic field orientation of the solar wind as well as the conductivity of the ionosphere. In this dissertation, I will examine the role of northward interplanetary magnetic field (IMF) and discuss the global topology of the magnetosphere and the interaction with the ionosphere using results obtained from the Lyon-Fedder-Mobarry (LFM) simulation. The electric potentials imposed on the ionosphere due to viscous interaction and magnetic reconnection are called the viscous and the reconnection potentials, respectively. A proxy to measure the overall effect of these potentials is to measure the cross polar potential (CPP). The CPP is defined as the difference between the maximum and the minimum of the potential in a given polar ionosphere. I will show results from the LFM simulation showing saturation of the CPP during periods with purely northward IMF of sufficiently large magnitude. I will further show that the viscous potential, which was assumed to be independent of IMF orientation until this work, is reduced during periods of northward IMF. Furthermore, I will also discuss the implications of these results for a simulation of an entire solar rotation.

  18. Artificial magnetic-field quenches in synthetic dimensions

    Science.gov (United States)

    Yılmaz, F.; Oktel, M. Ö.

    2018-02-01

    Recent cold atom experiments have realized models where each hyperfine state at an optical lattice site can be regarded as a separate site in a synthetic dimension. In such synthetic ribbon configurations, manipulation of the transitions between the hyperfine levels provide direct control of the hopping in the synthetic dimension. This effect was used to simulate a magnetic field through the ribbon. Precise control over the hopping matrix elements in the synthetic dimension makes it possible to change this artificial magnetic field much faster than the time scales associated with atomic motion in the lattice. In this paper, we consider such a magnetic-flux quench scenario in synthetic dimensions. Sudden changes have not been considered for real magnetic fields as such changes in a conducting system would result in large induced currents. Hence we first study the difference between a time varying real magnetic field and an artificial magnetic field using a minimal six-site model. This minimal model clearly shows the connection between gauge dependence and the lack of on-site induced scalar potential terms. We then investigate the dynamics of a wave packet in an infinite two- or three-leg ladder following a flux quench and find that the gauge choice has a dramatic effect on the packet dynamics. Specifically, a wave packet splits into a number of smaller packets moving with different velocities. Both the weights and the number of packets depend on the implemented gauge. If an initial packet, prepared under zero flux in an n -leg ladder, is quenched to Hamiltonian with a vector potential parallel to the ladder, it splits into at most n smaller wave packets. The same initial wave packet splits into up to n2 packets if the vector potential is implemented to be along the rungs. Even a trivial difference in the gauge choice such as the addition of a constant to the vector potential produces observable effects. We also calculate the packet weights for arbitrary initial and

  19. Numerically modelling the large scale coronal magnetic field

    Science.gov (United States)

    Panja, Mayukh; Nandi, Dibyendu

    2016-07-01

    The solar corona spews out vast amounts of magnetized plasma into the heliosphere which has a direct impact on the Earth's magnetosphere. Thus it is important that we develop an understanding of the dynamics of the solar corona. With our present technology it has not been possible to generate 3D magnetic maps of the solar corona; this warrants the use of numerical simulations to study the coronal magnetic field. A very popular method of doing this, is to extrapolate the photospheric magnetic field using NLFF or PFSS codes. However the extrapolations at different time intervals are completely independent of each other and do not capture the temporal evolution of magnetic fields. On the other hand full MHD simulations of the global coronal field, apart from being computationally very expensive would be physically less transparent, owing to the large number of free parameters that are typically used in such codes. This brings us to the Magneto-frictional model which is relatively simpler and computationally more economic. We have developed a Magnetofrictional Model, in 3D spherical polar co-ordinates to study the large scale global coronal field. Here we present studies of changing connectivities between active regions, in response to photospheric motions.

  20. Effective-field theory for dynamic phase diagrams of the kinetic spin-3/2 Blume–Capel model under a time oscillating longitudinal field

    Energy Technology Data Exchange (ETDEWEB)

    Ertaş, Mehmet [Department of Physics, Erciyes University, 38039 Kayseri (Turkey); Kocakaplan, Yusuf [Institute of Science, Erciyes University, 38039 Kayseri (Turkey); Keskin, Mustafa, E-mail: keskin@erciyes.edu.tr [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)

    2013-12-15

    Dynamic phase diagrams are presented for the kinetic spin-3/2 Blume–Capel model under a time oscillating longitudinal field by use of the effective-field theory with correlations. The dynamic equation of the average magnetization is obtained for the square lattice by utilizing the Glauber-type stochastic process. Dynamic phase diagrams are presented in the reduced temperature and the magnetic field amplitude plane. We also investigated the effect of longitudinal field frequency. Finally, the discussion and comparison of the phase diagrams are given. - Highlights: • Dynamic behaviors in the spin-3/2 Blume–Capel system is investigated by the effective-field theory based on the Glauber-type stochastic dynamics. • The dynamic phase transitions and dynamic phase diagrams are obtained. • The effects of the longitudinal field frequency on the dynamic phase diagrams of the system are investigated. • Dynamic phase diagrams exhibit several ordered phases, coexistence phase regions and several critical points as well as a re-entrant behavior.

  1. Effective-field theory for dynamic phase diagrams of the kinetic spin-3/2 Blume–Capel model under a time oscillating longitudinal field

    International Nuclear Information System (INIS)

    Ertaş, Mehmet; Kocakaplan, Yusuf; Keskin, Mustafa

    2013-01-01

    Dynamic phase diagrams are presented for the kinetic spin-3/2 Blume–Capel model under a time oscillating longitudinal field by use of the effective-field theory with correlations. The dynamic equation of the average magnetization is obtained for the square lattice by utilizing the Glauber-type stochastic process. Dynamic phase diagrams are presented in the reduced temperature and the magnetic field amplitude plane. We also investigated the effect of longitudinal field frequency. Finally, the discussion and comparison of the phase diagrams are given. - Highlights: • Dynamic behaviors in the spin-3/2 Blume–Capel system is investigated by the effective-field theory based on the Glauber-type stochastic dynamics. • The dynamic phase transitions and dynamic phase diagrams are obtained. • The effects of the longitudinal field frequency on the dynamic phase diagrams of the system are investigated. • Dynamic phase diagrams exhibit several ordered phases, coexistence phase regions and several critical points as well as a re-entrant behavior

  2. Magnetic-Field-Enhanced Incommensurate Magnetic Order in the Underdoped High-Temperature Superconductor YBa2Cu3O6.45

    DEFF Research Database (Denmark)

    Haug, D.; Hinkov, V.; Suchaneck, A.

    2009-01-01

    We present a neutron-scattering study of the static and dynamic spin correlations in the underdoped high-temperature superconductor YBa2Cu3O6.45 in magnetic fields up to 15 T. The field strongly enhances static incommensurate magnetic order at low temperatures and induces a spectral-weight shift...

  3. Dynamics of the EEG of human brain in the gradient magnetic fields of geological faults in different geographical and climatic zones

    Science.gov (United States)

    Pobachenko, S. V.; Sokolov, M. V.; Grigoriev, P. E.; Vasilieva, I. V.

    2017-11-01

    There are presented the results of experimental studies of the dynamics of indices of the functional state of a person located within the zones characterized by anomalous parameters of spatial distribution of magnetic field vector values. It is shown that these geophysical modifications have a pronounced effect on the dynamics of electrical activity indices of the human brain, regardless of geographic and climatic conditions.

  4. Non-potential Field Formation in the X-shaped Quadrupole Magnetic Field Configuration

    Energy Technology Data Exchange (ETDEWEB)

    Kawabata, Y.; Shimizu, T. [Department of Earth and Planetary Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Inoue, S., E-mail: kawabata.yusuke@ac.jaxa.jp [Max-Planck-Institute for Solar System Research, Justus-von-Liebig-Weg 3 D-37077 Göttingen (Germany)

    2017-06-20

    Some types of solar flares are observed in X-shaped quadrupolar field configuration. To understand the magnetic energy storage in such a region, we studied non-potential field formation in an X-shaped quadrupolar field region formed in the active region NOAA 11967, which produced three X-shaped M-class flares on 2014 February 2. Nonlinear force-free field modeling was applied to a time series of vector magnetic field maps from the Solar Optical Telescope on board Hinode and the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory . Our analysis of the temporal three-dimensional magnetic field evolution shows that the sufficient free energy had already been stored more than 10 hr before the occurrence of the first M-class flare and that the storage was observed in a localized region. In this localized region, quasi-separatrix layers (QSLs) started to develop gradually from 9 hr before the first M-class flare. One of the flare ribbons that appeared in the first M-class flare was co-spatial with the location of the QSLs, suggesting that the formation of the QSLs is important in the process of energy release. These QSLs do not appear in the potential field calculation, indicating that they were created by the non-potential field. The formation of the QSLs was associated with the transverse photospheric motion of the pre-emerged flux and the emergence of a new flux. This observation indicates that the occurrence of the flares requires the formation of QSLs in the non-potential field in which free magnetic energy is stored in advance.

  5. Trapped field recovery of bulk superconductor magnets by static field magnetization

    Science.gov (United States)

    Deng, Z.; Tsuzuki, K.; Miki, M.; Felder, B.; Hara, S.; Izumi, M.

    2011-11-01

    Thanks to the trapped field of bulk high-temperature superconductors, they can be used as field-pole magnets in the high temperature superconducting (HTS) rotating machines. For example, an output power of 10 kW at 720 rpm was realized by an average trapped field of 0.56 T of eight melt-textured GdBa2Cu3Oy (Gd-123) bulks at liquid nitrogen temperature in TUMSAT in 2004. Similarly to the HTS machines involving 1G or 2G wires, the trapped field of the bulk is possibly sensitive and even can be attenuated by the AC component field during the operation. Hence, it is necessary to recover the trapped field once being decreased to some extent in the practical application. From this point, we have investigated the trapped field recovery of HTS bulk magnets by static field magnetization in the paper. A series of different initial trapped fields after zero-field-cooling or field-cooling magnetization are used to simulate the attenuated trapped field. By comparing the trapped field peak and its distribution, the trapped field was found to be able to recover by the static field magnetization method with a stronger excitation field and the initial trapped flux inside the bulk also has an influence on the recovery process. The optimum recovery field was found to be about 2.5 times the saturated trapped field of the bulk at liquid nitrogen temperature, by which the bulk can regain the former best trapped field performance.

  6. Explicit higher order symplectic integrator for s-dependent magnetic field

    International Nuclear Information System (INIS)

    Wu, Y.; Forest, E.; Robin, D.S.

    2001-01-01

    We derive second and higher order explicit symplectic integrators for the charged particle motion in an s-dependent magnetic field with the paraxial approximation. The Hamiltonian of such a system takes the form of H (summation) k (p k - a k (rvec q), s) 2 + V((rvec q), s). This work solves a long-standing problem for modeling s-dependent magnetic elements. Important applications of this work include the studies of the charged particle dynamics in a storage ring with strong field wigglers, arbitrarily polarized insertion devices,and super-conducting magnets with strong fringe fields. Consequently, this work will have a significant impact on the optimal use of the above magnetic devices in the light source rings as well as in next generation linear collider damping rings

  7. Magnetic field dependence of ultrasound velocity in high-Tc superconductors

    International Nuclear Information System (INIS)

    Higgins, M.J.; Goshorn, D.P.; Bhattacharya, S.; Johnston, D.C.

    1989-01-01

    The magnetic field dependence of ultrasound velocity in the superconductor La 1.8 Sr 0.2 CuO 4-y is studied. The sound velocity anomaly near T c is shown to be unambiguously related to superconductivity. Below T c , the sound velocity is found to be sensitive to the dynamics of a pinned flux lattice. A combination of sound velocity and magnetization measurements suggests three regimes of pinning behavior. A generic pinning ''phase diagram'' is obtained in the superconducting state. An anomalous peak effect in the magnetization is also observed at intermediate field strengths

  8. Ion motion in the current sheet with sheared magnetic field – Part 2: Non-adiabatic effects

    Directory of Open Access Journals (Sweden)

    A. V. Artemyev

    2013-10-01

    Full Text Available We investigate dynamics of charged particles in current sheets with the sheared magnetic field. In our previouspaper (Artemyev et al., 2013 we studied the particle motion in such magnetic field configurations on the basis of the quasi-adiabatic theory and conservation of the quasi-adiabatic invariant. In this paper we concentrate on violation of the adiabaticity due to jumps of this invariant and the corresponding effects of stochastization of a particle motion. We compare effects of geometrical and dynamical jumps, which occur due to the presence of the separatrix in the phase plane of charged particle motion. We show that due to the presence of the magnetic field shear, the average value of dynamical jumps is not equal to zero. This effect results in the decrease of the time interval necessary for stochastization of trapped particle motion. We investigate also the effect of the magnetic field shear on transient trajectories, which cross the current sheet boundaries. Presence of the magnetic field shear leads to the asymmetry of reflection and transition of particles in the current sheet. We discuss the possible influence of single-particle effects revealed in this paper on the current sheet structure and dynamics.

  9. Magnetic Field Effects on Plasma Plumes

    Science.gov (United States)

    Ebersohn, F.; Shebalin, J.; Girimaji, S.; Staack, D.

    2012-01-01

    Here, we will discuss our numerical studies of plasma jets and loops, of basic interest for plasma propulsion and plasma astrophysics. Space plasma propulsion systems require strong guiding magnetic fields known as magnetic nozzles to control plasma flow and produce thrust. Propulsion methods currently being developed that require magnetic nozzles include the VAriable Specific Impulse Magnetoplasma Rocket (VASIMR) [1] and magnetoplasmadynamic thrusters. Magnetic nozzles are functionally similar to de Laval nozzles, but are inherently more complex due to electromagnetic field interactions. The two crucial physical phenomenon are thrust production and plasma detachment. Thrust production encompasses the energy conversion within the nozzle and momentum transfer to a spacecraft. Plasma detachment through magnetic reconnection addresses the problem of the fluid separating efficiently from the magnetic field lines to produce maximum thrust. Plasma jets similar to those of VASIMR will be studied with particular interest in dual jet configurations, which begin as a plasma loops between two nozzles. This research strives to fulfill a need for computational study of these systems and should culminate with a greater understanding of the crucial physics of magnetic nozzles with dual jet plasma thrusters, as well as astrophysics problems such as magnetic reconnection and dynamics of coronal loops.[2] To study this problem a novel, hybrid kinetic theory and single fluid magnetohydrodynamic (MHD) solver known as the Magneto-Gas Kinetic Method is used.[3] The solver is comprised of a "hydrodynamic" portion based on the Gas Kinetic Method and a "magnetic" portion that accounts for the electromagnetic behaviour of the fluid through source terms based on the resistive MHD equations. This method is being further developed to include additional physics such as the Hall effect. Here, we will discuss the current level of code development, as well as numerical simulation results

  10. The Origin and Dynamics of Solar Magnetism

    CERN Document Server

    Thompson, M. J; Culhane, J. L; Nordlund, Å; Solanki, S. K; Zahn, J.-P

    2009-01-01

    The articles collected in this volume present all aspects of solar magnetism: from its origin in the solar dynamo to its evolution and dynamics that create the variability of solar phenomena, its well-known 11-year activity cycle that leads to the ever-changing pattern of sunspots and active regions on the Sun. Several contributions deal with the solar dynamo, the driver of many solar phenomena. Other contributions treat the transport and emergence of the magnetic flux through the outer layers of the Sun. The coupling of magnetic fields from the surface to the solar corona and beyond is also described, together with current studies on the predictability of solar activity. This book is aimed at researchers and graduate students working in solar physics and space science. It provides a full review of our current understanding of solar magnetism by the foremost experts in the field.

  11. Electron Gas Dynamic Conductivity Tensor on the Nanotube Surface in Magnetic Field

    Directory of Open Access Journals (Sweden)

    A. M. Ermolaev

    2011-01-01

    Full Text Available Kubo formula was derived for the electron gas conductivity tensor on the nanotube surface in longitudinal magnetic field considering spatial and time dispersion. Components of the degenerate and nondegenerate electron gas conductivity tensor were calculated. The study has showed that under high electron density, the conductivity undergoes oscillations of de Haas-van Alphen and Aharonov-Bohm types with the density of electrons and magnetic field changes.

  12. Particle Acceleration, Magnetic Field Generation, and Emission in Relativistic Shocks

    Science.gov (United States)

    Nishikawa, Ken-IchiI.; Hededal, C.; Hardee, P.; Richardson, G.; Preece, R.; Sol, H.; Fishman, G.

    2004-01-01

    Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (m) code, we have investigated particle acceleration associated with a relativistic jet front propagating through an ambient plasma with and without initial magnetic fields. We find only small differences in the results between no ambient and weak ambient parallel magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates particles perpendicular and parallel to the jet propagation direction. New simulations with an ambient perpendicular magnetic field show the strong interaction between the relativistic jet and the magnetic fields. The magnetic fields are piled up by the jet and the jet electrons are bent, which creates currents and displacement currents. At the nonlinear stage, the magnetic fields are reversed by the current and the reconnection may take place. Due to these dynamics the jet and ambient electron are strongly accelerated in both parallel and perpendicular directions.

  13. Strain sensors for high field pulse magnets

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Christian [Los Alamos National Laboratory; Zheng, Yan [Los Alamos National Laboratory; Easton, Daniel [Los Alamos National Laboratory; Farinholt, Kevin M [Los Alamos National Laboratory; Park, Gyuhae [Los Alamos National Laboratory

    2009-01-01

    In this paper we present an investigation into several strain sensing technologies that are being considered to monitor mechanical deformation within the steel reinforcement shells used in high field pulsed magnets. Such systems generally operate at cryogenic temperatures to mitigate heating issues that are inherent in the coils of nondestructive, high field pulsed magnets. The objective of this preliminary study is to characterize the performance of various strain sensing technologies at liquid nitrogen temperatures (-196 C). Four sensor types are considered in this investigation: fiber Bragg gratings (FBG), resistive foil strain gauges (RFSG), piezoelectric polymers (PVDF), and piezoceramics (PZT). Three operational conditions are considered for each sensor: bond integrity, sensitivity as a function of temperature, and thermal cycling effects. Several experiments were conducted as part of this study, investigating adhesion with various substrate materials (stainless steel, aluminum, and carbon fiber), sensitivity to static (FBG and RFSG) and dynamic (RFSG, PVDF and PZT) load conditions, and sensor diagnostics using PZT sensors. This work has been conducted in collaboration with the National High Magnetic Field Laboratory (NHMFL), and the results of this study will be used to identify the set of sensing technologies that would be best suited for integration within high field pulsed magnets at the NHMFL facility.

  14. Magnetic Field Calculator

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Magnetic Field Calculator will calculate the total magnetic field, including components (declination, inclination, horizontal intensity, northerly intensity,...

  15. Characterization and modeling of magnetic domain wall dynamics using reconstituted hysteresis loops from Barkhausen noise

    Energy Technology Data Exchange (ETDEWEB)

    Ducharne, B., E-mail: Benjamin.ducharne@insa-lyon.fr; Le, M.Q.; Sebald, G.; Cottinet, P.J.; Guyomar, D.; Hebrard, Y.

    2017-06-15

    Highlights: • Barkhausen noise energy versus excitation field hysteresis cycles MBN{sub energy}(H). • Difference in the dynamics of the induction field B and of the MBN{sub energy}. • Dynamic behavior of MBN{sub energy}(H) cycles is first-order. • Dynamic behavior of B(H) cycles is non-entire order. - Abstract: By means of a post-processing technique, we succeeded in plotting magnetic Barkhausen noise energy hysteresis cycles MBN{sub energy}(H). These cycles were compared to the usual hysteresis cycles, displaying the evolution of the magnetic induction field B versus the magnetic excitation H. The divergence between these comparisons as the excitation frequency was increased gave rise to the conclusion that there was a difference in the dynamics of the induction field and of the MBN{sub energy} related to the domain wall movements. Indeed, for the MBN{sub energy} hysteresis cycle, merely the domain wall movements were involved. On the other hand, for the usual B(H) cycle, two dynamic contributions were observed: domain wall movements and diffusion of the magnetic field excitation. From a simulation point of view, it was demonstrated that over a large frequency bandwidth a correct dynamic behavior of the domain wall movement MBN{sub energy}(H) cycle could be taken into account using first-order derivation whereas fractional orders were required for the B(H) cycles. The present article also gives a detailed description of how to use the developed process to obtain the MBN{sub energy}(H) hysteresis cycle as well as its evolution as the frequency increases. Moreover, this article provides an interesting explanation of the separation of magnetic loss contributions through a magnetic sample: a wall movement contribution varying according to first-order dynamics and a diffusion contribution which in a lump model can be taken into account using fractional order dynamics.

  16. Strong Magnetic Field Characterisation

    Science.gov (United States)

    2012-04-01

    an advertised surface field of approximately 0.5 T were used to supply the static magnetic field source. The disc magnet had a diameter of 50 mm and... colour bar indicates the magnetic field strength set to an arbitrary 0.25 T. The white area has a field >0.25 T. The size of the arrow is proportional...9 shows the magnetic field strength along a slice in the XZ plane. The colours represent the total UNCLASSIFIED 10 UNCLASSIFIED DSTO-TR-2699

  17. Spin dynamics in micron-sized magnetic elements using time-resolved XMCD-PEEM

    International Nuclear Information System (INIS)

    Fukumoto, K.; Kinoshita, T.

    2011-01-01

    Ultrafast dynamics of magnetic spin structures in ultrasmall ferromagnets is now a prominent topic concerning the next generation of memory devices. In particular, the unique dynamics of vortex spin structures in disk-shaped magnets has attracted much attention. To understand the mechanism and to explore even more unique features, we constructed a time-resolved X-ray magnetic circular dichroism (XMCD) with a photoelectron emission microscopy (PEEM) system onto the soft X-ray beamline BL25SU in SPring-8. We observed oscillatory motions of vortex cores after magnetic field pulses as reported in other articles. The time evolution of spin structures the fast magnetic field pulse was also successfully observed. We found that for disks with a larger radius, displacement of the vortex core was not linear with the field amplitude, and there was a delay of the core motion. At the same time, deformation of the vortex structures was observed. (author)

  18. Magnetic field sensor for isotropically sensing an incident magnetic field in a sensor plane

    Science.gov (United States)

    Pant, Bharat B. (Inventor); Wan, Hong (Inventor)

    2001-01-01

    A magnetic field sensor that isotropically senses an incident magnetic field. This is preferably accomplished by providing a magnetic field sensor device that has one or more circular shaped magnetoresistive sensor elements for sensing the incident magnetic field. The magnetoresistive material used is preferably isotropic, and may be a CMR material or some form of a GMR material. Because the sensor elements are circular in shape, shape anisotropy is eliminated. Thus, the resulting magnetic field sensor device provides an output that is relatively independent of the direction of the incident magnetic field in the sensor plane.

  19. Acceleration of superparamagnetic particles with magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Stange, R., E-mail: Robert.stange@tu-dresden.de; Lenk, F.; Bley, T.; Boschke, E.

    2017-04-01

    High magnetic capture efficiency in the context of Biomagnetic Separation (BMS) using superparamagnetic particles (SMPs) requires efficient mixing and high relative velocities between cellular and other targets and SMPs. For this purpose, batch processes or microfluidic systems are commonly used. Here, we analyze the characteristics of an in-house developed batch process experimental setup, the Electromagnetic Sample Mixer (ESM) described earlier. This device uses three electromagnets to increase the relative velocity between SMPs and targets. We carry out simulations of the magnetic field in the ESM and in a simpler paradigmatic setup, and thus were able to calculate the force field acting on the SMPs and to simulate their relative velocities and fluid dynamics due to SMP movement. In this way we were able to show that alternate charging of the magnets induces a double circular stream of SMPs in the ESM, resulting in high relative velocities of SMPs to the targets. Consequently, due to the conservation of momentum, the fluid experiences an acceleration induced by the SMPs. We validated our simulations by microscopic observation of the SMPs in the magnetic field, using a homemade apparatus designed to accommodate a long working-distance lens. By comparing the results of modeling this paradigmatic setup with the experimental observations, we determined that the velocities of the SMPs corresponded to the results of our simulations. - Highlights: • Investigation of a batch process setup for complex forming at Biomagnetic Separation. • Simulation of fluid flow characteristics in this Electro Magnetic Samplemixer. • Simulation of relative velocities between magnetic particles and fluid in the setup. • Simulation of fluid flow induced by the acceleration of magnet particles. • Validation of magnetic fields and flow characteristics in paradigmatic setups. • Reached relative velocity is higher than the sedimentation velocity of the particles • Alternating

  20. Fragmentation of a Filamentary Cloud Permeated by a Perpendicular Magnetic Field

    Energy Technology Data Exchange (ETDEWEB)

    Hanawa, Tomoyuki [Center for Frontier Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, Chiba 263-8522 (Japan); Kudoh, Takahiro [Faculty of Education, Nagasaki University, 1-14 Bonkyo-machi, Nagasaki, Nagasaki 852-8521 (Japan); Tomisaka, Kohji [Division of Theoretical Astronomy, National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan)

    2017-10-10

    We examine the linear stability of an isothermal filamentary cloud permeated by a perpendicular magnetic field. Our model cloud is assumed to be supported by gas pressure against self-gravity in the unperturbed state. For simplicity, the density distribution is assumed to be symmetric around the axis. Also for simplicity, the initial magnetic field is assumed to be uniform, and turbulence is not taken into account. The perturbation equation is formulated to be an eigenvalue problem. The growth rate is obtained as a function of the wavenumber for fragmentation along the axis and the magnetic field strength. The growth rate depends critically on the outer boundary. If the displacement vanishes in regions very far from the cloud axis (fixed boundary), cloud fragmentation is suppressed by a moderate magnetic field, which means the plasma beta is below 1.67 on the cloud axis. If the displacement is constant along the magnetic field in regions very far from the cloud, the cloud is unstable even when the magnetic field is infinitely strong. The cloud is deformed by circulation in the plane perpendicular to the magnetic field. The unstable mode is not likely to induce dynamical collapse, since it is excited even when the whole cloud is magnetically subcritical. For both boundary conditions, the magnetic field increases the wavelength of the most unstable mode. We find that the magnetic force suppresses compression perpendicular to the magnetic field especially in regions of low density.

  1. Magnetic field line Hamiltonian

    International Nuclear Information System (INIS)

    Boozer, A.H.

    1985-02-01

    The basic properties of the Hamiltonian representation of magnetic fields in canonical form are reviewed. The theory of canonical magnetic perturbation theory is then developed and applied to the time evolution of a magnetic field embedded in a toroidal plasma. Finally, the extension of the energy principle to tearing modes, utilizing the magnetic field line Hamiltonian, is outlined

  2. Electron-electron interactions in graphene field-induced quantum dots in a high magnetic field

    DEFF Research Database (Denmark)

    Orlof, A.; Shylau, Artsem; Zozoulenko, I. V.

    2015-01-01

    We study the effect of electron-electron interaction in graphene quantum dots defined by an external electrostatic potential and a high magnetic field. To account for the electron-electron interaction, we use the Thomas-Fermi approximation and find that electron screening causes the formation...... of compressible strips in the potential profile and the electron density. We numerically solve the Dirac equations describing the electron dynamics in quantum dots, and we demonstrate that compressible strips lead to the appearance of plateaus in the electron energies as a function of the magnetic field. Finally...

  3. MAGNETIC FIELD IN ATYPICAL PROMINENCE STRUCTURES: BUBBLE, TORNADO, AND ERUPTION

    Energy Technology Data Exchange (ETDEWEB)

    Levens, P. J.; Labrosse, N. [SUPA School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Schmieder, B. [LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, Univ. Paris Diderot, Sorbonne Paris Cité, 5 place Jules Janssen, F-92195 Meudon (France); López Ariste, A. [IRAP—CNRS UMR 5277, 14, Av. E. Belin, F-31400 Toulouse (France); Dalmasse, K. [CISL/HAO, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000 (United States); Gelly, B., E-mail: p.levens.1@research.gla.ac.uk, E-mail: brigitte.schmieder@obspm.fr [CNRS UMR 3718 THEMIS, La Laguna, Tenerife (Spain)

    2016-08-01

    Spectropolarimetric observations of prominences have been obtained with the THEMIS telescope during four years of coordinated campaigns. Our aim is now to understand the conditions of the cool plasma and magnetism in “atypical” prominences, namely when the measured inclination of the magnetic field departs, to some extent, from the predominantly horizontal field found in “typical” prominences. What is the role of the magnetic field in these prominence types? Are plasma dynamics more important in these cases than the magnetic support? We focus our study on three types of “atypical” prominences (tornadoes, bubbles, and jet-like prominence eruptions) that have all been observed by THEMIS in the He i D{sub 3} line, from which the Stokes parameters can be derived. The magnetic field strength, inclination, and azimuth in each pixel are obtained by using the inversion method of principal component analysis on a model of single scattering in the presence of the Hanle effect. The magnetic field in tornadoes is found to be more or less horizontal, whereas for the eruptive prominence it is mostly vertical. We estimate a tendency toward higher values of magnetic field strength inside the bubbles than outside in the surrounding prominence. In all of the models in our database, only one magnetic field orientation is considered for each pixel. While sufficient for most of the main prominence body, this assumption appears to be oversimplified in atypical prominence structures. We should consider these observations as the result of superposition of multiple magnetic fields, possibly even with a turbulent field component.

  4. Dynamic behavior of a nematic liquid crystal mixed with CoFe2O4 ferromagnetic nanoparticles in a magnetic field

    Directory of Open Access Journals (Sweden)

    Emil Petrescu

    2017-11-01

    Full Text Available The dynamic behavior of a mixture of 4-cyano-4′-pentylbiphenyl (5CB with 1% CoFe2O4 nanoparticles was analyzed. Experimental data indicate a high stability of the nematic director in the mixture compared to a reference 5CB sample in the magnetic field. The ferrite nanoparticles agglomerate forming long chains as observed in polarized microscopy images. These chains have a very high influence on the magneto-optic effect of the cell. When the magnetic field is applied on the mixture, the chains tend to align with the field direction but, due to their large size, they remain oriented obliquely between the support plates. Thus, the nematic molecules anchored on their surface can not reorient with the field and only a small distortion angle of the liquid crystal molecular director is observed. A comparison with a previously developed theoretical model confirms this small deviation.

  5. Magnetic fluid bridge in a non-uniform magnetic field

    International Nuclear Information System (INIS)

    Pelevina, D.A.; Naletova, V.A.; Turkov, V.A.

    2017-01-01

    The shape of a magnetic fluid bridge between a horizontal ferrite rod of circular cross-section and a horizontal plate above the rod in a vertical applied uniform magnetic field is studied. Various static shapes of the bridges are obtained theoretically and experimentally for the same magnetic field value. Abrupt changes and the hysteresis of the bridge shape in alternating magnetic fields are observed experimentally. - Highlights: • Magnetic fluid bridge between rod and horizontal plate in magnetic field is studied. • Magnetic field is created by a ferrite rod in a uniform vertical magnetic field. • Various static bridge shapes for fixed field are obtained in theory and experiment. • A good agreement of experimental and theoretical results is obtained. • Hysteresis of the bridge shape in alternating field is observed experimentally.

  6. Magnetic fluid bridge in a non-uniform magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Pelevina, D.A., E-mail: pelevina.daria@gmail.com; Naletova, V.A.; Turkov, V.A.

    2017-06-01

    The shape of a magnetic fluid bridge between a horizontal ferrite rod of circular cross-section and a horizontal plate above the rod in a vertical applied uniform magnetic field is studied. Various static shapes of the bridges are obtained theoretically and experimentally for the same magnetic field value. Abrupt changes and the hysteresis of the bridge shape in alternating magnetic fields are observed experimentally. - Highlights: • Magnetic fluid bridge between rod and horizontal plate in magnetic field is studied. • Magnetic field is created by a ferrite rod in a uniform vertical magnetic field. • Various static bridge shapes for fixed field are obtained in theory and experiment. • A good agreement of experimental and theoretical results is obtained. • Hysteresis of the bridge shape in alternating field is observed experimentally.

  7. Control of Spin Wave Dynamics in Spatially Twisted Magnetic Structures

    Science.gov (United States)

    2017-06-27

    control the spin wave dynamics of magnetic structures twisted spatially, we prepared the exchange-coupled films with the hard magnetic L10-FePt and...information writing of magnetic storage and spintronic applications. Introduction and Objective: Recent rapid progress in the research field of nano...scaled bilayer elements is also an important aim of this project. Approach/Method: The exchange-coupled films with the hard magnetic L10-FePt and

  8. Dynamics of magnetization in ferromagnet with spin-transfer torque

    Science.gov (United States)

    Li, Zai-Dong; He, Peng-Bin; Liu, Wu-Ming

    2014-11-01

    We review our recent works on dynamics of magnetization in ferromagnet with spin-transfer torque. Driven by constant spin-polarized current, the spin-transfer torque counteracts both the precession driven by the effective field and the Gilbert damping term different from the common understanding. When the spin current exceeds the critical value, the conjunctive action of Gilbert damping and spin-transfer torque leads naturally the novel screw-pitch effect characterized by the temporal oscillation of domain wall velocity and width. Driven by space- and time-dependent spin-polarized current and magnetic field, we expatiate the formation of domain wall velocity in ferromagnetic nanowire. We discuss the properties of dynamic magnetic soliton in uniaxial anisotropic ferromagnetic nanowire driven by spin-transfer torque, and analyze the modulation instability and dark soliton on the spin wave background, which shows the characteristic breather behavior of the soliton as it propagates along the ferromagnetic nanowire. With stronger breather character, we get the novel magnetic rogue wave and clarify its formation mechanism. The generation of magnetic rogue wave mainly arises from the accumulation of energy and magnons toward to its central part. We also observe that the spin-polarized current can control the exchange rate of magnons between the envelope soliton and the background, and the critical current condition is obtained analytically. At last, we have theoretically investigated the current-excited and frequency-adjusted ferromagnetic resonance in magnetic trilayers. A particular case of the perpendicular analyzer reveals that the ferromagnetic resonance curves, including the resonant location and the resonant linewidth, can be adjusted by changing the pinned magnetization direction and the direct current. Under the control of the current and external magnetic field, several magnetic states, such as quasi-parallel and quasi-antiparallel stable states, out

  9. The Juno Magnetic Field Investigation

    DEFF Research Database (Denmark)

    Connerney, J. E. P.; Benn, Mathias; Bjarnø, Jonas Bækby

    2017-01-01

    The Juno Magnetic Field investigation (MAG) characterizes Jupiter’s planetary magnetic field and magnetosphere, providing the first globally distributed and proximate measurements of the magnetic field of Jupiter. The magnetic field instrumentation consists of two independent magnetometer sensor ...

  10. Dynamic regulation of GDP binding to G proteins revealed by magnetic field-dependent NMR relaxation analyses.

    Science.gov (United States)

    Toyama, Yuki; Kano, Hanaho; Mase, Yoko; Yokogawa, Mariko; Osawa, Masanori; Shimada, Ichio

    2017-02-22

    Heterotrimeric guanine-nucleotide-binding proteins (G proteins) serve as molecular switches in signalling pathways, by coupling the activation of cell surface receptors to intracellular responses. Mutations in the G protein α-subunit (Gα) that accelerate guanosine diphosphate (GDP) dissociation cause hyperactivation of the downstream effector proteins, leading to oncogenesis. However, the structural mechanism of the accelerated GDP dissociation has remained unclear. Here, we use magnetic field-dependent nuclear magnetic resonance relaxation analyses to investigate the structural and dynamic properties of GDP bound Gα on a microsecond timescale. We show that Gα rapidly exchanges between a ground-state conformation, which tightly binds to GDP and an excited conformation with reduced GDP affinity. The oncogenic D150N mutation accelerates GDP dissociation by shifting the equilibrium towards the excited conformation.

  11. Application of dynamic and transition magnetic fields for determination of magnetic moments of short-lived nuclear states

    International Nuclear Information System (INIS)

    Burgov, N.A.

    1986-01-01

    Problem of measuring magnetic momenta of short-living nuclear states is discussed. Different methods for measuring magnetic momenta using interionic and transient magnetic fields were considered. Possibility for determining a value g by means of measuring correlation attenuation is investigated as well as measuring magnetic momenta by means of inclined foils. At present 2 + level magnetic momenta for many odd-odd nuclei have been determined by means of the above methods. The methods are only ones for determining magnetic momenta of nuclear levels with small lifetimes up to tenth and hundredth of shares of picoseconds

  12. Dynamic transformation of self-assembled structures using anisotropic magnetized hydrogel microparticles

    Science.gov (United States)

    Yoshida, Satoru; Takinoue, Masahiro; Iwase, Eiji; Onoe, Hiroaki

    2016-08-01

    This paper describes a system through which the self-assembly of anisotropic hydrogel microparticles is achieved, which also enables dynamic transformation of the assembled structures. Using a centrifuge-based microfluidic device, anisotropic hydrogel microparticles encapsulating superparamagnetic materials on one side are fabricated, which respond to a magnetic field. We successfully achieve dynamic assembly using these hydrogel microparticles and realize three different self-assembled structures (single and double pearl chain structures, and close-packed structures), which can be transformed to other structures dynamically via tuning of the precessional magnetic field. We believe that the developed system has potential application as an effective platform for a dynamic cell manipulation and cultivation system, in biomimetic autonomous microrobot organization, and that it can facilitate further understanding of the self-organization and complex systems observed in nature.

  13. The Galactic magnetic fields

    International Nuclear Information System (INIS)

    Han Jinlin

    2006-01-01

    A good progress has been made on studies of Galactic magnetic fields in last 10 years. I describe what we want to know about the Galactic magnetic fields, and then review we current knowledge about magnetic fields in the Galactic disk, the Galactic halo and the field strengths. I also listed many unsolved problems on this area

  14. Magnetic fields in diffuse media

    CERN Document Server

    Pino, Elisabete; Melioli, Claudio

    2015-01-01

    This volume presents the current knowledge of magnetic fields in diffuse astrophysical media. Starting with an overview of 21st century instrumentation to observe astrophysical magnetic fields, the chapters cover observational techniques, origin of magnetic fields, magnetic turbulence, basic processes in magnetized fluids, the role of magnetic fields for cosmic rays, in the interstellar medium and for star formation. Written by a group of leading experts the book represents an excellent overview of the field. Nonspecialists will find sufficient background to enter the field and be able to appreciate the state of the art.

  15. Improving Keyhole Stability by External Magnetic Field in Full Penetration Laser Welding

    Science.gov (United States)

    Li, Min; Xu, Jiajun; Huang, Yu; Rong, Youmin

    2018-05-01

    An external magnetic field was used to improve the keyhole stability in full penetration laser welding 316L steel. The increase of magnetic field strength gave rise to a shorter flying time of the spatter, a weaker size and brightness of the spatter, and a larger spreading area of vapor plume. This suggested that the dynamic behavior of the keyhole was stabilized by the external magnetic field. In addition, a stronger magnetic field could result in a more homogeneous distribution of laser energy, which increased the width of the weld zone, and the height of the bottom weld zone from 381 μm (0 mT) to 605 μm (50 mT). Dendrite and cellular crystal near the weld center disappeared, and grain size was refined. The external magnetic field was beneficial to the keyhole stability and improved the joint quality, because the weld pool was stirred by a Lorentz force resulting from the coupling effect of the magnetic field and inner thermocurrent.

  16. Production of large volume, strongly magnetized laser-produced plasmas by use of pulsed external magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Albertazzi, B. [LULI, Ecole Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau (France); INRS-EMT, Varennes, Quebec J3X 1S2 (Canada); Beard, J.; Billette, J.; Portugall, O. [LNCMI, UPR 3228, CNRS-UFJ-UPS-INSA, 31400 Toulouse (France); Ciardi, A. [LERMA, Observatoire de Paris, Ecole Normale Superieure, Universite Pierre et Marie Curie, CNRS UMR 8112, Paris (France); Vinci, T.; Albrecht, J.; Chen, S. N.; Da Silva, D.; Hirardin, B.; Nakatsutsumi, M.; Romagnagni, L.; Simond, S.; Veuillot, E.; Fuchs, J. [LULI, Ecole Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau (France); Burris-Mog, T.; Dittrich, S.; Herrmannsdoerfer, T.; Kroll, F.; Nitsche, S. [Helmholtz-Zentrum Dresden-Rossendorf, P.O. Box 510119, 01314 Dresden (Germany); and others

    2013-04-15

    The production of strongly magnetized laser plasmas, of interest for laboratory astrophysics and inertial confinement fusion studies, is presented. This is achieved by coupling a 16 kV pulse-power system. This is achieved by coupling a 16 kV pulse-power system, which generates a magnetic field by means of a split coil, with the ELFIE laser facility at Ecole Polytechnique. In order to influence the plasma dynamics in a significant manner, the system can generate, repetitively and without debris, high amplitude magnetic fields (40 T) in a manner compatible with a high-energy laser environment. A description of the system and preliminary results demonstrating the possibility to magnetically collimate plasma jets are given.

  17. Dynamics of Magnetized Plasma Jets and Bubbles Launched into a Background Magnetized Plasma

    Science.gov (United States)

    Wallace, B.; Zhang, Y.; Fisher, D. M.; Gilmore, M.

    2016-10-01

    The propagation of dense magnetized plasma, either collimated with mainly azimuthal B-field (jet) or toroidal with closed B-field (bubble), in a background plasma occurs in a number of solar and astrophysical cases. Such cases include coronal mass ejections moving in the background solar wind and extragalactic radio lobes expanding into the extragalactic medium. Understanding the detailed MHD behavior is crucial for correctly modeling these events. In order to further the understanding of such systems, we are investigating the injection of dense magnetized jets and bubbles into a lower density background magnetized plasma using a coaxial plasma gun and a background helicon or cathode plasma. In both jet and bubble cases, the MHD dynamics are found to be very different when launched into background plasma or magnetic field, as compared to vacuum. In the jet case, it is found that the inherent kink instability is stabilized by velocity shear developed due to added magnetic tension from the background field. In the bubble case, rather than directly relaxing to a minimum energy Taylor state (spheromak) as in vacuum, there is an expansion asymmetry and the bubble becomes Rayleigh-Taylor unstable on one side. Recent results will be presented. Work supported by the Army Research Office Award No. W911NF1510480.

  18. Influence of the maximum applied magnetic field on the angular dependence of Magnetic Barkhausen Noise in API5L steels

    Energy Technology Data Exchange (ETDEWEB)

    Martínez-Ortiz, P. [Laboratorio de Evaluación No Destructiva Electromagnética (LENDE), ESIME-SEPI, Edif. Z-4, Instituto Politécnico Nacional, Zacatenco, México D.F. (Mexico); Pérez-Benítez, J.A., E-mail: japerezb@ipn.mx [Laboratorio de Evaluación No Destructiva Electromagnética (LENDE), ESIME-SEPI, Edif. Z-4, Instituto Politécnico Nacional, Zacatenco, México D.F. (Mexico); Espina-Hernández, J.H. [Laboratorio de Evaluación No Destructiva Electromagnética (LENDE), ESIME-SEPI, Edif. Z-4, Instituto Politécnico Nacional, Zacatenco, México D.F. (Mexico); Caleyo, F. [Departamento de Ingeniería Metalúrgica, ESIQIE, UPALM Edif. 7, Instituto Politécnico Nacional, Zacatenco, C.P. 07738 México D.F. (Mexico); Mehboob, N.; Grössinger, R. [Institute of Solid State Physics, Vienna University of Technology, Vienna A-1040 (Austria); Hallen, J.M. [Departamento de Ingeniería Metalúrgica, ESIQIE, UPALM Edif. 7, Instituto Politécnico Nacional, Zacatenco, C.P. 07738 México D.F. (Mexico)

    2016-03-01

    This work studies the influence of the maximum applied magnetic field on the angular dependence of the energy of the Magnetic Barkhausen Noise signal in three different API5L pipeline steels. The results show that the shape of the angular dependence of the Magnetic Barkhausen Noise energy changes with the increase of the amplitude of the applied magnetic field. This phenomenon is a consequence of the presence of unlike magnetization processes at different magnitudes of the applied magnetic field. The outcomes reveal the importance of controlling the value of the maximum applied field as parameter for the improvement of the MBN angular dependence measurements. - Highlights: • Study the angular dependence of MBN with applied field in three pipeline steels. • Reveals the change of this angular dependence with the increase applied field. • Explains this dependence based on the domain wall dynamics theory.

  19. Influence of the maximum applied magnetic field on the angular dependence of Magnetic Barkhausen Noise in API5L steels

    International Nuclear Information System (INIS)

    Martínez-Ortiz, P.; Pérez-Benítez, J.A.; Espina-Hernández, J.H.; Caleyo, F.; Mehboob, N.; Grössinger, R.; Hallen, J.M.

    2016-01-01

    This work studies the influence of the maximum applied magnetic field on the angular dependence of the energy of the Magnetic Barkhausen Noise signal in three different API5L pipeline steels. The results show that the shape of the angular dependence of the Magnetic Barkhausen Noise energy changes with the increase of the amplitude of the applied magnetic field. This phenomenon is a consequence of the presence of unlike magnetization processes at different magnitudes of the applied magnetic field. The outcomes reveal the importance of controlling the value of the maximum applied field as parameter for the improvement of the MBN angular dependence measurements. - Highlights: • Study the angular dependence of MBN with applied field in three pipeline steels. • Reveals the change of this angular dependence with the increase applied field. • Explains this dependence based on the domain wall dynamics theory.

  20. Particle Dynamics around Weakly Magnetized Reissner-Nordström Black Hole

    International Nuclear Information System (INIS)

    Jamil, Mubasher; Majeed, Bushra; Hussain, Saqib

    2015-01-01

    Considering the geometry of Reissner-Nordström (RN) black hole immersed in magnetic field, we have studied the dynamics of neutral and charged particles. A collision of particles in the inner stable circular orbit is considered and the conditions for the escape of colliding particles from the vicinity of black hole are given. The trajectories of the escaping particle are discussed. Also, the velocity required for this escape is calculated. It is observed that there is more than one stable region if magnetic field is present in the accretion disk of black hole, so the stability of ISCO increases in the presence of magnetic field. Effect of magnetic field on the angular motion of neutral and charged particles is observed graphically.

  1. Fast superconducting magnetic field switch

    Science.gov (United States)

    Goren, Yehuda; Mahale, Narayan K.

    1996-01-01

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles.

  2. Fast superconducting magnetic field switch

    International Nuclear Information System (INIS)

    Goren, Y.; Mahale, N.K.

    1996-01-01

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles. 6 figs

  3. A dynamic model of the eye nystagmus response to high magnetic fields.

    Science.gov (United States)

    Glover, Paul M; Li, Yan; Antunes, Andre; Mian, Omar S; Day, Brian L

    2014-02-07

    It was recently shown that high magnetic fields evoke nystagmus in human subjects with functioning vestibular systems. The proposed mechanism involves interaction between ionic currents in the endolymph of the vestibular labyrinth and the static magnetic field. This results in a Lorentz force that causes endolymph flow to deflect the cupulae of the semi-circular canals to evoke a vestibular-ocular reflex (VOR). This should be analogous to stimulation by angular acceleration or caloric irrigation. We made measurements of nystagmus slow-phase velocities in healthy adults experiencing variable magnetic field profiles of up to 7 T while supine on a bed that could be moved smoothly into the bore of an MRI machine. The horizontal slow-phase velocity data were reliably modelled by a linear transfer function incorporating a low-pass term and a high-pass adaptation term. The adaptation time constant was estimated at 39.3 s from long exposure trials. When constrained to this value, the low-pass time constant was estimated at 13.6 ± 3.6 s (to 95% confidence) from both short and long exposure trials. This confidence interval overlaps with values obtained previously using angular acceleration and caloric stimulation. Hence it is compatible with endolymph flow causing a cupular deflection and therefore supports the hypothesis that the Lorentz force is a likely transduction mechanism of the magnetic field-evoked VOR.

  4. A dynamic model of the eye nystagmus response to high magnetic fields

    International Nuclear Information System (INIS)

    Glover, Paul M; Li, Yan; Antunes, Andre; Mian, Omar S; Day, Brian L

    2014-01-01

    It was recently shown that high magnetic fields evoke nystagmus in human subjects with functioning vestibular systems. The proposed mechanism involves interaction between ionic currents in the endolymph of the vestibular labyrinth and the static magnetic field. This results in a Lorentz force that causes endolymph flow to deflect the cupulae of the semi-circular canals to evoke a vestibular–ocular reflex (VOR). This should be analogous to stimulation by angular acceleration or caloric irrigation. We made measurements of nystagmus slow-phase velocities in healthy adults experiencing variable magnetic field profiles of up to 7 T while supine on a bed that could be moved smoothly into the bore of an MRI machine. The horizontal slow-phase velocity data were reliably modelled by a linear transfer function incorporating a low-pass term and a high-pass adaptation term. The adaptation time constant was estimated at 39.3 s from long exposure trials. When constrained to this value, the low-pass time constant was estimated at 13.6 ± 3.6 s (to 95% confidence) from both short and long exposure trials. This confidence interval overlaps with values obtained previously using angular acceleration and caloric stimulation. Hence it is compatible with endolymph flow causing a cupular deflection and therefore supports the hypothesis that the Lorentz force is a likely transduction mechanism of the magnetic field-evoked VOR. (paper)

  5. Behaviour of magnetic superconductors in a magnetic field

    International Nuclear Information System (INIS)

    Buzdin, A.I.

    1984-01-01

    The behaviour of magnetic superconductors with close ferromagnetic and superconducting transition temperatures in a magnetic field is considered. It is shown that on lowering of the temperature the superconducting transition changes from a second to first order transition. The respective critical fields and dependence of the magnetization on the magnetic field and temperature are found. The magnetization discontinuity in the vortex core in magnetic superconductors is noted. Due to this property and the relatively large scattering cross section, magnetic superconductors are convenient for studying the superconducting vortex lattice by neutron diffraction techniques

  6. Proton probe measurement of fast advection of magnetic fields by hot electrons

    International Nuclear Information System (INIS)

    Willingale, L; Thomas, A G R; Nilson, P M; Kaluza, M C; Dangor, A E; Evans, R G; Fernandes, P; Haines, M G; Kamperidis, C; Kingham, R J; Ridgers, C P; Sherlock, M; Wei, M S; Najmudin, Z; Krushelnick, K; Bandyopadhyay, S; Notley, M; Minardi, S; Rozmus, W; Tatarakis, M

    2011-01-01

    A laser generated proton beam was used to measure the megagauss strength self-generated magnetic fields from a nanosecond laser interaction with an aluminum target. At intensities of 10 15 W cm −2 , the significant hot electron production and strong heat fluxes result in non-local transport becoming important to describe the magnetic field dynamics. Two-dimensional implicit Vlasov–Fokker–Planck modeling shows that fast advection of the magnetic field from the focal region occurs via the Nernst effect at significantly higher velocities than the sound speed, v N /c s ≈ 10.

  7. New hybrid magnet system for structure research at highest magnetic fields and temperatures in the millikelvin region

    International Nuclear Information System (INIS)

    Smeibidl, Peter; Ehmler, Hartmut; Tennant, Alan; Bird, Mark

    2012-01-01

    The Helmholtz Centre Berlin (HZB) is a user facility for the study of structure and dynamics with neutrons and synchrotron radiation with special emphasis on experiments under extreme conditions. Neutron scattering is uniquely suited to study magnetic properties on a microscopic length scale, because neutrons have comparable wavelengths and, due to their magnetic moment, they interact with the atomic magnetic moments. At HZB a dedicated instrument for neutron scattering at extreme magnetic fields and low temperatures is under construction, the Extreme Environment Diffractometer ExED. It is projected according to the time-of-flight principle for elastic and inelastic neutron scattering and for the special geometric constraints of analysing samples in a high field magnet. The new hybrid magnet will not only allow for novel experiments, it will be at the forefront of development in magnet technology itself. With a set of superconducting and resistive coils a maximum field above 30 T will be possible. To compromise between the needs of the magnet design for highest fields and the concept of the neutron instrument, the magnetic field will be generated by means of a coned, resistive inner solenoid and a superconducting outer solenoid with horizontal field orientation. To allow for experiments down to Millikelvin Temperatures the installation of a 3 He or a dilution cryostat with a closed cycle precooling stage is foreseen.

  8. A levitation force and magnetic field distribution measurement system in three dimensions

    International Nuclear Information System (INIS)

    Yang, W.M.; Chao, X.X.; Shu, Z.B.; Zhu, S.H.; Wu, X.L.; Bian, X.B.; Liu, P.

    2006-01-01

    A levitation force and magnetic field distribution measurement system in three dimension has been designed and constructed, which can be used for the levitation force measurement between a superconductor and a magnet, or magnet to magnet in three dimensions; and for the measurement of magnetic field distribution in three dimensions according to your need in space. It can also give out the dynamical changing result of magnetic field density with time during levitation force measurement. If we change the sensor of the detector of the measurement system, it also can be used for other kinds of measurement of physical properties. It is a good device for the measurement of magnetic properties of materials. In addition the device can also be used to work at carving in three dimensions

  9. Scaling the energy conversion rate from magnetic field reconnection to different bodies

    International Nuclear Information System (INIS)

    Mozer, F. S.; Hull, A.

    2010-01-01

    Magnetic field reconnection is often invoked to explain electromagnetic energy conversion in planetary magnetospheres, stellar coronae, and other astrophysical objects. Because of the huge dynamic range of magnetic fields in these bodies, it is important to understand energy conversion as a function of magnetic field strength and related parameters. It is conjectured theoretically and shown experimentally that the energy conversion rate per unit area in reconnection scales as the cube of an appropriately weighted magnetic field strength divided by the square root of an appropriately weighted density. With this functional dependence, the energy release in flares on the Sun, the large and rapid variation of the magnetic flux in the tail of Mercury, and the apparent absence of reconnection on Jupiter and Saturn, may be understood. Electric fields at the perihelion of the Solar Probe Plus mission may be tens of V/m.

  10. Nonlinear dynamic behaviour of a rotor-foundation system coupled through passive magnetic bearings with magnetic anisotropy - Theory and experiment

    DEFF Research Database (Denmark)

    Enemark, Søren; Santos, Ilmar F.

    2016-01-01

    In this work, the nonlinear dynamic behaviour of a vertical rigid rotor interacting with a flexible foundation by means of two passive magnetic bearings is quantified and evaluated. The quantification is based on theoretical and experimental investigation of the non-uniformity (anisotropy......) of the magnetic field and the weak nonlinearity of the magnetic forces. Through mathematical modelling the nonlinear equations of motion are established for describing the shaft and bearing housing lateral dynamics coupled via the nonlinear and non-uniform magnetic forces. The equations of motion are solved...

  11. Method of regulating magnetic field of magnetic pole center

    International Nuclear Information System (INIS)

    Watanabe, Masao; Yamada, Teruo; Kato, Norihiko; Toda, Yojiro; Kaneda, Yasumasa.

    1978-01-01

    Purpose: To provide the subject method comprising using a plurality of magnetic metal pieces having different thicknesses, regulating very easily symmetry of the field of the magnetic pole center depending upon the combination of said metal pieces, thereby obtaining a magnetic field of high precision. Method: The regulation of magnetic field at the central part of the magnetic field is not depending only upon processing of the center plug, axial movement of trim coil and ion source but by providing a magnetic metal piece such as an iron ring, primary higher harmonics of the field at the center of the magnetic field can be regulated simply while the position of the ion source slit is on the equipotential surface in the field. (Yoshihara, H.)

  12. Magnetization reversal in ultrashort magnetic field pulses

    International Nuclear Information System (INIS)

    Bauer, M.; Lopusnik, R.; Fassbender, J.; Hillebrands, B.

    2000-01-01

    We report the switching properties of a thin magnetic film subject to an ultrashort, laterally localized magnetic field pulse, obtained by numerical investigations. The magnetization distribution in the film is calculated on a grid assuming Stoner-like coherent rotation within the grid square size. Perpendicularly and in-plane magnetized films exhibit a magnetization reversal due to a 4 ps magnetic field pulse. Outside the central region the pulse duration is short compared to the precession period. In this area the evolution of the magnetization during the field pulse does not depend strongly on magnetic damping and/or pulse shape. However, the final magnetization distribution is affected by the magnetic damping. Although the pulse duration is short compared to the precession period, the time needed for the relaxation of the magnetization to the equilibrium state is rather large. The influence of the different magnetic anisotropy contributions and the magnetic damping parameter enters into the magnetization reversal process. Comparing the case of perpendicular anisotropy with different kinds of in-plane anisotropies, a principal difference is found due to the symmetry of the shape anisotropy with respect to the anisotropy in question

  13. Magnetic fields at Neptune

    International Nuclear Information System (INIS)

    Ness, N.F.; Acuna, M.H.; Burlaga, L.F.; Connerney, J.E.P.; Lepping, R.P.; Neubauer, F.M.

    1989-01-01

    The National Aeronautics and Space Administration Goddard Space Flight Center-University of Delaware Bartol Research Institute magnetic field experiment on the Voyager 2 spacecraft discovered a strong and complex intrinsic magnetic field of Neptune and an associated magnetosphere and magnetic tail. A maximum magnetic field of nearly 10,000 nanoteslas (1 nanotesla = 10 -5 gauss) was observed near closest approach, at a distance of 1.18 R N . The planetary magnetic field between 4 and 15 R N can be well represented by an offset tilted magnetic dipole (OTD), displaced from the center of Neptune by the surprisingly large amount of 0.55 R N and inclined by 47 degrees with respect to the rotation axis. Within 4 R N , the magnetic field representation must include localized sources or higher order magnetic multipoles, or both, which are not yet well determined. As the spacecraft exited the magnetosphere, the magnetic tail appeared to be monopolar, and no crossings of an imbedded magnetic field reversal or plasma neutral sheet were observed. The auroral zones are most likely located far from the rotation poles and may have a complicated geometry. The rings and all the known moons of Neptune are imbedded deep inside the magnetosphere, except for Nereid, which is outside when sunward of the planet. The radiation belts will have a complex structure owing to the absorption of energetic particles by the moons and rings of Neptune and losses associated with the significant changes in the diurnally varying magnetosphere configuration. In an astrophysical context, the magnetic field of Neptune, like that of Uranus, may be described as that of an oblique rotator

  14. Neutron stars, magnetic fields, and gravitational waves

    International Nuclear Information System (INIS)

    Lamb, F.K.

    2001-01-01

    The r-modes of rapidly spinning young neutron stars have recently attracted attention as a promising source of detectable gravitational radiation. These neutron stars are expected to have magnetic fields ∼ 10 12 G. The r-mode velocity perturbation causes differential motion of the fluid in the star; this is a kinematic effect. In addition, the radiation-reaction associated with emission of gravitational radiation by r-waves drives additional differential fluid motions; this is a dynamic effect. These differential fluid motions distort the magnetic fields of neutron stars and may therefore play an important role in determining the structure of neutron star magnetic fields. If the stellar field is ∼ 10 16 (Ω/Ω B ) G or stronger, the usual r-modes are no longer normal modes of the star; here Ω and Ω B are the angular velocities of the star and at which mass shedding occurs. Much weaker magnetic fields can prevent gravitational radiation from amplifying the r-modes or damp existing r-mode oscillations on a relatively short timescale by extracting energy from the modes faster than gravitational wave emission can pump energy into them. The onset of proton superconductivity in the cores of newly formed magnetic neutron stars typically increases the effect on the r-modes of the magnetic field in the core by many orders of magnitude. Once the core has become superconducting, magnetic fields of the order of 10 12 G or greater are usually sufficient to damp r-modes that have been excited by emission of gravitational radiation and to suppress any further emission. A rapid drop in the strength of r-mode gravitational radiation from young neutron stars may therefore signal the onset of superconductivity in the core and provide a lower bound on the strength of the magnetic field there. Hence, measurements of r-mode gravitational waves from newly formed neutron stars may provide valuable diagnostic information about magnetic field strengths, cooling processes, and the

  15. Superposition of DC magnetic fields by cascading multiple magnets in magnetic loops

    Directory of Open Access Journals (Sweden)

    Fei Sun

    2015-09-01

    Full Text Available A novel method that can effectively collect the DC magnetic field produced by multiple separated magnets is proposed. With the proposed idea of a magnetic loop, the DC magnetic field produced by these separated magnets can be effectively superimposed together. The separated magnets can be cascaded in series or in parallel. A novel nested magnetic loop is also proposed to achieve a higher DC magnetic field in the common air region without increasing the DC magnetic field in each magnetic loop. The magnetic loop can be made by a magnetic hose, which is designed by transformation optics and can be realized by the combination of super-conductors and ferromagnetic materials.

  16. MULTISCALE DYNAMICS OF SOLAR MAGNETIC STRUCTURES

    International Nuclear Information System (INIS)

    Uritsky, Vadim M.; Davila, Joseph M.

    2012-01-01

    Multiscale topological complexity of the solar magnetic field is among the primary factors controlling energy release in the corona, including associated processes in the photospheric and chromospheric boundaries. We present a new approach for analyzing multiscale behavior of the photospheric magnetic flux underlying these dynamics as depicted by a sequence of high-resolution solar magnetograms. The approach involves two basic processing steps: (1) identification of timing and location of magnetic flux origin and demise events (as defined by DeForest et al.) by tracking spatiotemporal evolution of unipolar and bipolar photospheric regions, and (2) analysis of collective behavior of the detected magnetic events using a generalized version of the Grassberger-Procaccia correlation integral algorithm. The scale-free nature of the developed algorithms makes it possible to characterize the dynamics of the photospheric network across a wide range of distances and relaxation times. Three types of photospheric conditions are considered to test the method: a quiet photosphere, a solar active region (NOAA 10365) in a quiescent non-flaring state, and the same active region during a period of M-class flares. The results obtained show (1) the presence of a topologically complex asymmetrically fragmented magnetic network in the quiet photosphere driven by meso- and supergranulation, (2) the formation of non-potential magnetic structures with complex polarity separation lines inside the active region, and (3) statistical signatures of canceling bipolar magnetic structures coinciding with flaring activity in the active region. Each of these effects can represent an unstable magnetic configuration acting as an energy source for coronal dissipation and heating.

  17. Parametric instabilities in shallow water magnetohydrodynamics of astrophysical plasma in external magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Klimachkov, D.A., E-mail: klimachkovdmitry@gmail.com [Space Research Institute of Russian Academy of Science, 84/32, Profsoyuznaya str., Moscow, 117997 (Russian Federation); Petrosyan, A.S. [Space Research Institute of Russian Academy of Science, 84/32, Profsoyuznaya str., Moscow, 117997 (Russian Federation); Moscow Institute of Physics and Technology (State University), 9 Institutskyi per., Dolgoprudny, Moscow Region, 141700 (Russian Federation)

    2017-01-15

    This article deals with magnetohydrodynamic (MHD) flows of a thin rotating layer of astrophysical plasma in external magnetic field. We use the shallow water approximation to describe thin rotating plasma layer with a free surface in a vertical external magnetic field. The MHD shallow water equations with external vertical magnetic field are revised by supplementing them with the equations that are consequences of the magnetic field divergence-free conditions and reveal the existence of third component of the magnetic field in such approximation providing its relation with the horizontal magnetic field. It is shown that the presence of a vertical magnetic field significantly changes the dynamics of the wave processes in astrophysical plasma compared to the neutral fluid and plasma layer in a toroidal magnetic field. The equations for the nonlinear wave packets interactions are derived using the asymptotic multiscale method. The equations for three magneto-Poincare waves interactions, for three magnetostrophic waves interactions, for the interactions of two magneto-Poincare waves and for one magnetostrophic wave and two magnetostrophic wave and one magneto-Poincare wave interactions are obtained. The existence of parametric decay and parametric amplifications is predicted. We found following four types of parametric decay instabilities: magneto-Poincare wave decays into two magneto-Poincare waves, magnetostrophic wave decays into two magnetostrophic waves, magneto-Poincare wave decays into one magneto-Poincare wave and one magnetostrophic wave, magnetostrophic wave decays into one magnetostrophic wave and one magneto-Poincare wave. Following mechanisms of parametric amplifications are found: parametric amplification of magneto-Poincare waves, parametric amplification of magnetostrophic waves, magneto-Poincare wave amplification in magnetostrophic wave presence and magnetostrophic wave amplification in magneto-Poincare wave presence. The instabilities growth rates

  18. The effects of pseudo magnetic fields in molecular spectra and scattering

    International Nuclear Information System (INIS)

    Kendrick, B.K.

    1996-01-01

    Pseudo magnetic fields appear in the Born-Oppenheimer method for molecules when conical intersections or electronic angular momenta are taken into account. These fields are not real magnetic fields but they have the same mathematical properties and can lead to real observable effects in the dynamics of molecules. A general vector potential (gauge theory) approach for including these field effects in the Born-Oppenheimer method is introduced and applied to H + O 2 scattering and the vibrational spectrum of Na 3 (X) for zero total angular momentum (J = 0). The scattering results for HO 2 show significant shifts in the resonance energies and lifetimes due to a magnetic solenoid type field originating from the C 2v conical intersection in HO 2 . Significant changes in the state-to-state transition probabilities are also observed. The non-degenerate A 1 and A 2 vibrational spectra of Na 3 (X) show significant shifts in the energy levels due to a magnetic solenoid type field originating from the D 3h conical intersection in Na 3 . These two examples show that the effects of pseudo magnetic fields can be significant and in many cases they must be included in order to obtain agreement between theory and experiment. The newly developed gauge theory techniques for treating pseudo magnetic fields are also relevant for including the effects of real magnetic fields

  19. Analytical and computational study of magnetization switching in kinetic Ising systems with demagnetizing fields

    DEFF Research Database (Denmark)

    Richards, H.L.; Rikvold, P.A.

    1996-01-01

    particularly promising as materials for high-density magnetic recording media. In this paper we use analytic arguments and Monte Carlo simulations to quantitatively study the effects of the demagnetizing field on the dynamics of magnetization switching in two-dimensional, single-domain, kinetic Ising systems....... For systems in the weak-field ''stochastic region,'' where magnetization switching is on average effected by the nucleation and growth of a single droplet, the simulation results can be explained by a simple model in which the free energy is a function only of magnetization. In the intermediate......-field ''multidroplet region,'' a generalization of Avrami's law involving a magnetization-dependent effective magnetic field gives good agreement with the simulations. The effects of the demagnetizing field do not qualitatively change the droplet-theoretical picture of magnetization switching in highly anisotropic...

  20. Chrometric properties of curvilinear beam transport channels with reverses of longitudinal magnetic field

    International Nuclear Information System (INIS)

    Kapchinskij, M.I.; Korenev, I.L.; Roginskij, L.A.

    1990-01-01

    Dynamics of charged particle beams in curvilinear transport channels comprising sections with counter direction of longitudinal focusing magnetic field is considered. It is shown that such magnetic field reverses reduce sufficiently the particle deflections conditioned by momentum spread of longitudinal motion and their application allows one to completely project the achromatic channel

  1. Dynamical supersymmetry breaking on magnetized tori and orbifolds

    Directory of Open Access Journals (Sweden)

    Hiroyuki Abe

    2016-10-01

    Full Text Available We construct several dynamical supersymmetry breaking (DSB models within a single ten-dimensional supersymmetric Yang–Mills (SYM theory, compactified on magnetized tori with or without orbifolding. We study the case that the supersymmetry breaking is triggered by a strong dynamics of SU(NC SYM theory with NF flavors contained in the four-dimensional effective theory. We show several configurations of magnetic fluxes and orbifolds, those potentially yield, below the compactification scale, the field contents and couplings required for triggering DSB. We especially find a class of self-complete DSB models on orbifolds, where all the extra fields are eliminated by the orbifold projection and DSB successfully occurs within the given framework. Comments on some perspectives for associating the obtained DSB models with the other sectors, such as the visible sector and another hidden sector for, e.g., stabilizing moduli, are also given.

  2. Magnetic imaging with full-field soft X-ray microscopies

    International Nuclear Information System (INIS)

    Fischer, Peter; Im, Mi-Young; Baldasseroni, Chloe; Bordel, Catherine; Hellman, Frances; Lee, Jong-Soo; Fadley, Charles S.

    2013-01-01

    Progress toward a fundamental understanding of magnetism continues to be of great scientific interest and high technological relevance. To control magnetization on the nanoscale, external magnetic fields and spin polarized currents are commonly used. In addition, novel concepts based on spin manipulation by electric fields or photons are emerging which benefit from advances in tailoring complex magnetic materials. Although the nanoscale is at the very origin of magnetic behavior, there is a new trend toward investigating mesoscale magnetic phenomena, thus adding complexity and functionality, both of which will become crucial for future magnetic devices. Advanced analytical tools are thus needed for the characterization of magnetic properties spanning the nano- to the meso-scale. Imaging magnetic structures with high spatial and temporal resolution over a large field of view and in three dimensions is therefore a key challenge. A variety of spectromicroscopic techniques address this challenge by taking advantage of variable-polarization soft X-rays, thus enabling X-ray dichroism effects provide magnetic contrast. These techniques are also capable of quantifying in an element-, valence- and site-sensitive way the basic properties of ferro(i)- and antiferro-magnetic systems, such as spin and orbital moments, spin configurations from the nano- to the meso-scale and spin dynamics with sub-ns time resolution. This paper reviews current achievements and outlines future trends with one of these spectromicroscopies, magnetic full field transmission soft X-ray microscopy (MTXM) using a few selected examples of recent research on nano- and meso-scale magnetic phenomena. The complementarity of MTXM to X-ray photoemission electron microscopy (X-PEEM) is also emphasized

  3. Magnetic imaging with full-field soft X-ray microscopies

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Peter, E-mail: PJFischer@lbl.gov [Center for X-ray Optics, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Im, Mi-Young [Center for X-ray Optics, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Baldasseroni, Chloe [Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA 94720 (United States); Bordel, Catherine; Hellman, Frances [Department of Physics, University of California Berkeley, Berkeley, CA 94720 (United States); Material Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94270 (United States); Lee, Jong-Soo [Department of Energy Systems Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 711-873 (Korea, Republic of); Fadley, Charles S. [Department of Physics, University of California Davis, Davis, CA 95616 (United States); Material Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94270 (United States)

    2013-08-15

    Progress toward a fundamental understanding of magnetism continues to be of great scientific interest and high technological relevance. To control magnetization on the nanoscale, external magnetic fields and spin polarized currents are commonly used. In addition, novel concepts based on spin manipulation by electric fields or photons are emerging which benefit from advances in tailoring complex magnetic materials. Although the nanoscale is at the very origin of magnetic behavior, there is a new trend toward investigating mesoscale magnetic phenomena, thus adding complexity and functionality, both of which will become crucial for future magnetic devices. Advanced analytical tools are thus needed for the characterization of magnetic properties spanning the nano- to the meso-scale. Imaging magnetic structures with high spatial and temporal resolution over a large field of view and in three dimensions is therefore a key challenge. A variety of spectromicroscopic techniques address this challenge by taking advantage of variable-polarization soft X-rays, thus enabling X-ray dichroism effects provide magnetic contrast. These techniques are also capable of quantifying in an element-, valence- and site-sensitive way the basic properties of ferro(i)- and antiferro-magnetic systems, such as spin and orbital moments, spin configurations from the nano- to the meso-scale and spin dynamics with sub-ns time resolution. This paper reviews current achievements and outlines future trends with one of these spectromicroscopies, magnetic full field transmission soft X-ray microscopy (MTXM) using a few selected examples of recent research on nano- and meso-scale magnetic phenomena. The complementarity of MTXM to X-ray photoemission electron microscopy (X-PEEM) is also emphasized.

  4. Dynamic magnetic susceptibility of systems with long-range magnetic order

    International Nuclear Information System (INIS)

    Vannette, Matthew Dano

    2009-01-01

    The utility of the TDR as an instrument in the study of magnetically ordered materials has been expanded beyond the simple demonstration purposes. Results of static applied magnetic field dependent measurements of the dynamic magnetic susceptibility, ?, of various ferromagnetic (FM) and antiferromagnetic (AFM) materials showing a range of transition temperatures (1-800 K) are presented. Data was collected primarily with a tunnel diode resonator (TDR) at different radio-frequencies (∼10-30 MHz). In the vicinity of TC local moment ferromagnets show a very sharp, narrow peak in ? which is suppressed in amplitude and shifted to higher temperatures as the static bias field is increased. Unexpectedly, critical scaling analysis fails for these data. It is seen that these data are frequency dependent, however there is no simple method whereby measurement frequency can be changed in a controllable fashion. In contrast, itinerant ferromagnets show a broad maximum in ? well below TC which is suppressed and shifts to lower temperatures as the dc bias field is increased. The data on itinerant ferromagnets is fitted to a semi-phenomenological model that suggests the sample response is dominated by the uncompensated minority spins in the conduction band. Concluding remarks suggest possible scenarios to achieve frequency resolved data using the TDR as well as other fields in which the apparatus may be exploited.

  5. Magnetic Excitations and Continuum of a Possibly Field-Induced Quantum Spin Liquid in α-RuCl_{3}.

    Science.gov (United States)

    Wang, Zhe; Reschke, S; Hüvonen, D; Do, S-H; Choi, K-Y; Gensch, M; Nagel, U; Rõõm, T; Loidl, A

    2017-12-01

    We report on terahertz spectroscopy of quantum spin dynamics in α-RuCl_{3}, a system proximate to the Kitaev honeycomb model, as a function of temperature and magnetic field. We follow the evolution of an extended magnetic continuum below the structural phase transition at T_{s2}=62  K. With the onset of a long-range magnetic order at T_{N}=6.5  K, spectral weight is transferred to a well-defined magnetic excitation at ℏω_{1}=2.48  meV, which is accompanied by a higher-energy band at ℏω_{2}=6.48  meV. Both excitations soften in a magnetic field, signaling a quantum phase transition close to B_{c}=7  T, where a broad continuum dominates the dynamical response. Above B_{c}, the long-range order is suppressed, and on top of the continuum, emergent magnetic excitations evolve. These excitations follow clear selection rules and exhibit distinct field dependencies, characterizing the dynamical properties of a possibly field-induced quantum spin liquid.

  6. Magnetic resonance of field-frozen and zero-field-frozen magnetic fluids

    International Nuclear Information System (INIS)

    Pereira, A.R.; Pelegrini, F.; Neto, K. Skeff; Buske, N.; Morais, P.C.

    2004-01-01

    In this study magnetic resonance was used to investigate magnetic fluid samples frozen under zero and non-zero (15 kG) external fields. The magnetite-based sample containing 2x10 17 particle/cm 3 was investigated from 100 to 400 K. Analysis of the temperature dependence of the resonance field revealed bigger magnetic structures in the frozen state than in the liquid phase. Also, differences in the mesoscopic organization in the frozen state may explain the data obtained from samples frozen under zero and non-zero fields

  7. Self-generation of magnetic fields

    International Nuclear Information System (INIS)

    Dolan, T.J.

    2000-01-01

    The stars generate self-magnetic fields on large spatial scales and long time scales,and laser-produced plasmas generate intense self-magnetic fields on very short spatial and time scales. Two questions are posed : (1) Could a self-magnetic field be generated in a laboratory plasma with intermediate spatial and time scales? (2) If a self-magnetic field were generated,would it evolve towards a minimum energy state? If the answers turned out to be affirmative,then self-magnetic fields could possibly have interesting applications

  8. Generation of high magnetic fields using superconducting magnets

    International Nuclear Information System (INIS)

    Kiyoshi, T.; Otsuka, A.; Kosuge, M.; Yuyama, M.; Nagai, H.; Matsumoto, F.

    2006-01-01

    High-field superconducting magnets have opened new frontiers for several kinds of applications, such as fusion reactors, particle accelerators, and nuclear magnetic resonance (NMR) spectrometers. The present record for the highest field in a fully superconducting state is 23.4 T. It was achieved with a combination of NbTi, Nb 3 Sn, and Bi-2212 conductors in 1999. Since high T c (critical temperature) superconductors (HTS) have sufficiently high critical current density even in excess of 30 T, they are promising for use as high-field superconducting magnets. However, several problems still remain to be resolved for practical applications, and the use of HTS coils will be limited to the inner part of a high-field magnet system in the near future. The required technologies to develop a high-field superconducting magnet with a field of up to 28 T have already been established. Such a magnet is certain to provide information to all leading research areas

  9. Theoretical study of in-plane response of magnetic field sensor to magnetic beads magnetized by the sensor self-field

    DEFF Research Database (Denmark)

    Hansen, Troels Borum Grave; Damsgaard, Christian Danvad; Dalslet, Bjarke Thomas

    2010-01-01

    We present a theoretical study of the spatially averaged in-plane magnetic field on square and rectangular magnetic field sensors from a single magnetic bead, a monolayer of magnetic beads, and a half-space filled with magnetic beads being magnetized by the magnetic self-field due to the applied...... bias current through the sensor. The analysis of the single bead response shows that beads always contribute positively to the average magnetic field as opposed to the case for an applied homogeneous magnetic field where the sign of the signal depends on the bead position. General expressions...... and analytical approximations are derived for the sensor response to beads as function of the bead distribution, the bias current, the geometry and size of the sensor, and the bead characteristics. Consequences for the sensor design are exemplified and it is described how the contribution from the self...

  10. Determination of errors in derived magnetic field directions in geosynchronous orbit: results from a statistical approach

    Science.gov (United States)

    Chen, Yue; Cunningham, Gregory; Henderson, Michael

    2016-09-01

    This study aims to statistically estimate the errors in local magnetic field directions that are derived from electron directional distributions measured by Los Alamos National Laboratory geosynchronous (LANL GEO) satellites. First, by comparing derived and measured magnetic field directions along the GEO orbit to those calculated from three selected empirical global magnetic field models (including a static Olson and Pfitzer 1977 quiet magnetic field model, a simple dynamic Tsyganenko 1989 model, and a sophisticated dynamic Tsyganenko 2001 storm model), it is shown that the errors in both derived and modeled directions are at least comparable. Second, using a newly developed proxy method as well as comparing results from empirical models, we are able to provide for the first time circumstantial evidence showing that derived magnetic field directions should statistically match the real magnetic directions better, with averaged errors ˜ 5°. In addition, our results suggest that the errors in derived magnetic field directions do not depend much on magnetospheric activity, in contrast to the empirical field models. Finally, as applications of the above conclusions, we show examples of electron pitch angle distributions observed by LANL GEO and also take the derived magnetic field directions as the real ones so as to test the performance of empirical field models along the GEO orbits, with results suggesting dependence on solar cycles as well as satellite locations. This study demonstrates the validity and value of the method that infers local magnetic field directions from particle spin-resolved distributions.

  11. Piezoelectric response of a PZT thin film to magnetic fields from permanent magnet and coil combination

    Energy Technology Data Exchange (ETDEWEB)

    Guiffard, B.; Seveno, R. [Universite de Nantes, Lunam Universite, IETR UMR CNRS 6164, Nantes (France)

    2014-07-10

    In this study, we report the magnetically induced electric field E{sub 3} in Pb(Zr{sub 0.57}Ti{sub 0.43})O{sub 3} (PZT) thin films, when they are subjected to both dynamic magnetic induction (magnitude B{sub ac} at 45 kHz) and static magnetic induction (B{sub dc}) generated by a coil and a single permanent magnet, respectively. It is found that highest sensitivity to B{sub dc} - Δ vertical stroke E{sub 3} vertical stroke ΔB{sub dc} - is achieved for the thin film with largest effective electrode. This magnetoelectric (ME) effect is interpreted in terms of coupling between eddy current-induced Lorentz forces (stress) in the electrodes of PZT and piezoelectricity. Such coupling was evidenced by convenient modelling of experimental variations of electric field magnitude with both B{sub ac} and B{sub dc} induction magnitudes, providing imperfect open circuit condition was considered. Phase angle of E{sub 3} versus B{sub dc} could also be modelled. At last, the results show that similar to multilayered piezoelectric-magnetostrictive composite film, a PZT thin film made with a simple manufacturing process can behave as a static or dynamic magnetic field sensor. In this latter case, a large ME voltage coefficient of α = vertical stroke E{sub 3} vertical stroke /B{sub ac} = 3.55 V/cm Oe under B{sub dc} = 0.3 T was found. All these results may provide promising low-cost magnetic energy harvesting applications with microsized systems. (orig.)

  12. Numerical and experimental investigations of coupled electromagnetic and thermal fields in superconducting accelerator magnets

    International Nuclear Information System (INIS)

    Mierau, Anna

    2013-01-01

    The new international facility for antiproton and ion research FAIR will be built in Darmstadt (Germany). The existing accelerator facility of GSI Helmholtzzentrum for Heavy Ion Research will serve as a pre-accelerator for the new facility. FAIR will provide high-energy antiproton and ion beams with unprecedented intensity and quality for fundamental research of states of matter and the evolution of the universe. The central component of FAIR's accelerator and storage rings complex is a double-ring accelerator consisting of two heavy ion synchrotrons SIS100 and SIS300. The SIS100 is the primary accelerator of FAIR. The desired beam properties of SIS100 require a design of the machine much more challenging than the conventional design of existing proton and ion synchrotrons. The key technical components of each synchrotron are the special electromagnets, which allow guiding the charged particles on their orbits in the synchrotron during the acceleration processes. For a stable operation of the SIS100's the magnets have to produce extremely homogeneous magnetic fields. Furthermore, the SIS100 high-intensity ion beam modes, for example with U 28+ ions, require an ultra-high vacuum in the beam pipe of the synchrotron, which can be generated effectively only at low temperatures below 15 K. Due to the field quality requirements for the magnets, the properties of the dynamic vacuum in the beam pipe but also in order to minimise future operating costs, fast ramped superconducting magnets will be used to guide the beam in SIS100. These magnets have been developed at GSI within the framework of the FAIR project. Developing a balanced design of a superconducting accelerator magnet requires a sound understanding of the interaction between its thermal and electromagnetic fields. Of special importance in this case are the magnetic field properties such as the homogeneity of the static magnetic field in the aperture of the magnet, and the dynamic heat losses of the whole magnet

  13. Dynamics and structure of self-generated magnetics fields on solids following high contrast, high intensity laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Albertazzi, B. [LULI, École Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau (France); INRS-EMT, 1650 bd L. Boulet, J3X1S2, Varennes, Québec (Canada); Graduate School of Engineering, University of Osaka, Suita, Osaka 565-087 (Japan); Chen, S. N.; Fuchs, J., E-mail: julien.fuchs@polytechnique.fr [LULI, École Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau (France); Institute of Applied Physics, 46 Ulyanov Street, 603950 Nizhny Novgorod (Russian Federation); Antici, P. [INRS-EMT, 1650 bd L. Boulet, J3X1S2, Varennes, Québec (Canada); Dept. SBAI, Universita di Roma “La Sapienza,” Via A. Scarpa 14, 00161 Rome (Italy); Böker, J.; Swantusch, M.; Willi, O. [Institut für Laser-und Plasmaphysik, Heinrich-Heine-Universität, Düsseldorf (Germany); Borghesi, M. [School of Mathematics and Physics, The Queen' s University, Belfast (United Kingdom); Breil, J.; Feugeas, J. L.; Nicolaï, Ph.; Tikhonchuk, V. T.; D' Humières, E. [CELIA, University of Bordeaux - CNRS - CEA, 33405 Talence (France); Dervieux, V.; Nakatsutsumi, M.; Romagnagni, L. [LULI, École Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau (France); Lancia, L. [Dept. SBAI, Universita di Roma “La Sapienza,” Via A. Scarpa 14, 00161 Rome (Italy); Shepherd, R. [LLNL, East Av., Livermore, California 94550 (United States); Sentoku, Y. [Department of Physics, University of Nevada, Reno, Nevada 89557-0058 (United States); Starodubtsev, M. [Institute of Applied Physics, 46 Ulyanov Street, 603950 Nizhny Novgorod (Russian Federation); and others

    2015-12-15

    The dynamics of self-generated magnetic B-fields produced following the interaction of a high contrast, high intensity (I > 10{sup 19 }W cm{sup −2}) laser beam with thin (3 μm thick) solid (Al or Au) targets is investigated experimentally and numerically. Two main sources drive the growth of B-fields on the target surfaces. B-fields are first driven by laser-generated hot electron currents that relax over ∼10–20 ps. Over longer timescales, the hydrodynamic expansion of the bulk of the target into vacuum also generates B-field induced by non-collinear gradients of density and temperature. The laser irradiation of the target front side strongly localizes the energy deposition at the target front, in contrast to the target rear side, which is heated by fast electrons over a much larger area. This induces an asymmetry in the hydrodynamic expansion between the front and rear target surfaces, and consequently the associated B-fields are found strongly asymmetric. The sole long-lasting (>30 ps) B-fields are the ones growing on the target front surface, where they remain of extremely high strength (∼8–10 MG). These B-fields have been recently put by us in practical use for focusing laser-accelerated protons [B. Albertazzi et al., Rev. Sci. Instrum. 86, 043502 (2015)]; here we analyze in detail their dynamics and structure.

  14. Static and dynamic evaluation of pelvic floor disorders with an open low-field tilting magnet

    International Nuclear Information System (INIS)

    Fiaschetti, V.; Pastorelli, D.; Squillaci, E.; Funel, V.; Rascioni, M.; Meschini, A.; Salimbeni, C.; Sileri, P.; Franceschilli, L.; Simonetti, G.

    2013-01-01

    Aim: To assess the feasibility of magnetic resonance defaecography (MRD) in pelvic floor disorders using an open tilting magnet with a 0.25 T static field and to compare the results obtained from the same patient both in supine and orthostatic positions. Materials and methods: From May 2010 to November 2011, 49 symptomatic female subjects (mean age 43.5 years) were enrolled. All the patients underwent MRD in the supine and orthostatic positions using three-dimensional (3D) hybrid contrast-enhanced (HYCE) sequences and dynamic gradient echo (GE) T1-weighted sequences. All the patients underwent conventional defaecography (CD) to correlate both results. Two radiologists evaluated the examinations; inter and intra-observer concordance was measured. The results obtained in the two positions were compared between them and with CD. Results: The comparison between CD and MRD found statistically significant differences in the evaluation of anterior and posterior rectocoele during defaecation in both positions and of rectal prolapse under the pubo-coccygeal line (PCL) during evacuation, only in the supine position (versus MRD orthostatic: rectal prolapse p < 0.0001; anterior rectocoele p < 0.001; posterior rectocoele p = 0.008; versus CD: rectal prolapse p < 0.0001; anterior rectocoele p < 0.001; posterior rectocoele p = 0.01). The value of intra-observer intra-class correlation coefficient (ICC) ranged from good to excellent; the interobserver ICC from moderate to excellent. Conclusion: MRD is feasible with an open low-field tilting magnet, and it is more accurate in the orthostatic position than in the supine position to evaluate pelvic floor disorders

  15. Realistic ion optical transfer maps for Super-FRS magnets from numerical field data

    Energy Technology Data Exchange (ETDEWEB)

    Kazantseva, Erika; Boine-Frankenheim, Oliver [Technische Universitaet Darmstadt (Germany)

    2016-07-01

    In large aperture accelerators such as Super-FRS, the non-linearity of the magnetic field in bending elements leads to the non-linear beam dynamics, which cannot be described by means of linear ion optics. Existing non-linear approach is based on the Fourier harmonics formalism and is not working if horizontal aperture is bigger as vertical or vice versa. In Super-FRS dipole the horizontal aperture is much bigger than the vertical. Hence, it is necessary to find a way to create the higher order transfer map for this dipole to accurately predict the particle dynamics in the realistic magnetic fields in the whole aperture. The aim of this work is to generate an accurate high order transfer map of magnetic elements from measured or simulated 3D magnetic field data. Using differential algebraic formalism allows generating transfer maps automatically via numerical integration of ODEs of motion in beam physics coordinates along the reference path. To make the transfer map accurate for all particles in the beam, the magnetic field along the integration path should be represented by analytical function, matching with the real field distribution in the volume of interest. Within this work the steps of high order realistic transfer map production starting from the field values on closed box, covering the volume of interest, will be analyzed in detail.

  16. Magnetic fields for transporting charged beams

    International Nuclear Information System (INIS)

    Parzen, G.

    1976-01-01

    The transport of charged particle beams requires magnetic fields that must be shaped correctly and very accurately. During the last 20 years or so, many studies have been made, both analytically and through the use of computer programs, of various magnetic shapes that have proved to be useful. Many of the results for magnetic field shapes can be applied equally well to electric field shapes. A report is given which gathers together the results that have more general significance and would be useful in designing a configuration to produce a desired magnetic field shape. The field shapes studied include the fields in dipoles, quadrupoles, sextupoles, octupoles, septum magnets, combined-function magnets, and electrostatic septums. Where possible, empirical formulas are proposed, based on computer and analytical studies and on magnetic field measurements. These empirical formulas are often easier to use than analytical formulas and often include effects that are difficult to compute analytically. In addition, results given in the form of tables and graphs serve as illustrative examples. The field shapes studied include uniform fields produced by window-frame magnets, C-magnets, H-magnets, and cosine magnets; linear fields produced by various types of quadrupoles; quadratic and cubic fields produced by sextupoles and octupoles; combinations of uniform and linear fields; and septum fields with sharp boundaries

  17. Reservoir computer predictions for the Three Meter magnetic field time evolution

    Science.gov (United States)

    Perevalov, A.; Rojas, R.; Lathrop, D. P.; Shani, I.; Hunt, B. R.

    2017-12-01

    The source of the Earth's magnetic field is the turbulent flow of liquid metal in the outer core. Our experiment's goal is to create Earth-like dynamo, to explore the mechanisms and to understand the dynamics of the magnetic and velocity fields. Since it is a complicated system, predictions of the magnetic field is a challenging problem. We present results of mimicking the three Meter experiment by a reservoir computer deep learning algorithm. The experiment is a three-meter diameter outer sphere and a one-meter diameter inner sphere with the gap filled with liquid sodium. The spheres can rotate up to 4 and 14 Hz respectively, giving a Reynolds number near to 108. Two external electromagnets apply magnetic fields, while an array of 31 external and 2 internal Hall sensors measure the resulting induced fields. We use this magnetic probe data to train a reservoir computer to predict the 3M time evolution and mimic waves in the experiment. Surprisingly accurate predictions can be made for several magnetic dipole time scales. This shows that such a complicated MHD system's behavior can be predicted. We gratefully acknowledge support from NSF EAR-1417148.

  18. Cognition and sensation in very high static magnetic fields: a randomized case-crossover study with different field strengths.

    Science.gov (United States)

    Heinrich, Angela; Szostek, Anne; Meyer, Patric; Nees, Frauke; Rauschenberg, Jaane; Gröbner, Jens; Gilles, Maria; Paslakis, Georgios; Deuschle, Michael; Semmler, Wolfhard; Flor, Herta

    2013-01-01

    To establish the extent to which representative cognitive functions in subjects undergoing magnetic resonance (MR) imaging are acutely impaired by static magnetic fields of varying field strengths. This study was approved by the local ethics committee, and informed consent was obtained from all subjects. In this single-blind case-crossover study, 41 healthy subjects underwent an extensive neuropsychologic examination while in MR units of differing field strengths (1.5, 3.0, and 7.0 T), including a mock imager with no magnetic field as a control condition. Subjects were blinded to field strength. Tests were performed while subjects were lying still in the MR unit and while the examination table was moved. The tests covered a representative set of cognitive functions, such as memory, eye-hand coordination, attention, reaction time, and visual discrimination. Subjective sensory perceptions were also assessed. Effects were analyzed with a repeated-measures analysis of variance; the within-subject factors were field strength (0, 1.5, 3.0, and 7.0 T) and state (static, dynamic). Static magnetic fields were not found to have a significant effect on cognitive function at any field strength. However, sensory perceptions did vary according to field strength. Dizziness, nystagmus, phosphenes, and head ringing were related to the strength of the static magnetic field. Static magnetic fields as high as 7.0 T did not have a significant effect on cognition. RSNA, 2012

  19. Magnetically modified biocells in constant magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Abramov, E.G.; Panina, L.K. [Saint Petersburg State University, St. Petersburg (Russian Federation); Kolikov, V.A., E-mail: kolikov1@yandex.ru [Institute for Electrophysics and Electric Power of the RAS, St. Petersburg (Russian Federation); Bogomolova, E.V. [Botanical Institute of the RAS after V.L.Komarov, St. Petersburg (Russian Federation); Snetov, V.N. [Institute for Electrophysics and Electric Power of the RAS, St. Petersburg (Russian Federation); Cherepkova, I.A. [Saint Petersburg State Institute of Technology, St. Petersburg (Russian Federation); Kiselev, A.A. [Institute for Electrophysics and Electric Power of the RAS, St. Petersburg (Russian Federation)

    2017-02-01

    Paper addresses the inverse problem in determining the area, where the external constant magnetic field captures the biological cells modified by the magnetic nanoparticles. Zero velocity isolines, in area where the modified cells are captured by the magnetic field were determined by numerical method for two locations of the magnet. The problem was solved taking into account the gravitational field, magnetic induction, density of medium, concentration and size of cells, and size and magnetization of nanoparticles attached to the cell. Increase in the number of the nanoparticles attached to the cell and decrease in the cell’ size, enlarges the area, where the modified cells are captured and concentrated by the magnet. Solution is confirmed by the visible pattern formation of the modified cells Saccharomyces cerevisiae. - Highlights: • The inverse problem was solved for finding zero velocity isolines of magnetically modified biological cells. • Solution of the inverse problem depends on the size of cells and the number of nanoparticles attached to the single cell. • The experimental data are in agreement with theoretical solution.

  20. Hydromagnetic instabilities and magnetic field amplification in core collapse supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Cerda-Duran, P; Obergaulinger, M; Mueller, E [Max-Planck-Institut fuer Astrophysik, Karl-Schwarzschild-st. 1, 85748 Garching (Germany); Aloy, M A; Font, J A, E-mail: cerda@mpa-garching.mpg.de [Departamento de Astronomia y Astrofisica, Universidad de Valencia, 46100 Burjassot, Valencia (Spain)

    2011-09-22

    Some of the most violent events in the universe, the gamma ray burst, could be related to the gravitational collapse of massive stellar cores. The recent association of long GRBs to some class of type Ic supernova seems to support this view. In such scenario fast rotation, strong magnetic fields and general relativistic effects are key ingredients. It is thus important to understand the mechanism that amplifies the magnetic field under that conditions. I present global simulations of the magneto-rotational collapse of stellar cores in general relativity and semi-global simulations of hydromagnetic instabilities under core collapse conditions. I discuss effect of the magneto-rotational instability and the magnetic field amplification during the collapse, the uncertainties in this process and the dynamical effects in the supernova explosion.

  1. Identification of a Group's Physiological Synchronization with Earth's Magnetic Field.

    Science.gov (United States)

    Timofejeva, Inga; McCraty, Rollin; Atkinson, Mike; Joffe, Roza; Vainoras, Alfonsas; Alabdulgader, Abdullah A; Ragulskis, Minvydas

    2017-09-01

    A new analysis technique for the evaluation of the degree of synchronization between the physiological state of a group of people and changes in the Earth's magnetic field based on their cardiac inter-beat intervals was developed and validated. The new analysis method was then used to identify clusters of similar synchronization patterns in a group of 20 individuals over a two-week period. The algorithm for the identification of slow wave dynamics for every person was constructed in order to determine meaningful interrelationships between the participants and the local magnetic field data. The results support the hypothesis that the slow wave rhythms in heart rate variability can synchronize with changes in local magnetic field data, and that the degree of synchronization is affected by the quality of interpersonal relationships.

  2. Faraday diamagnetism under slowly oscillating magnetic fields

    Science.gov (United States)

    Kimura, Tsunehisa; Kimura, Fumiko; Kimura, Yosuke

    2018-04-01

    Diamagnetism is a universal phenomenon of materials arising from the orbital motion of electrons bound to atoms, which is commonly known as Langevin diamagnetism. The orbital motion also occurs according to the Faraday's law of induction when the applied magnetic field is oscillating. However, the influence of this dynamic effect on the magnetism of materials has seldom been studied. Here, we propose a new type diamagnetism coined Faraday diamagnetism. The magnitude of this diamagnetism evaluated by an atomic electric circuit model was as large as that of Langevin diamagnetism. The predicted scale of Faraday diamagnetism was supported by experiments.

  3. Magnetic field driven domain-wall propagation in magnetic nanowires

    International Nuclear Information System (INIS)

    Wang, X.R.; Yan, P.; Lu, J.; He, C.

    2009-01-01

    The mechanism of magnetic field induced magnetic domain-wall (DW) propagation in a nanowire is revealed: A static DW cannot exist in a homogeneous magnetic nanowire when an external magnetic field is applied. Thus, a DW must vary with time under a static magnetic field. A moving DW must dissipate energy due to the Gilbert damping. As a result, the wire has to release its Zeeman energy through the DW propagation along the field direction. The DW propagation speed is proportional to the energy dissipation rate that is determined by the DW structure. The negative differential mobility in the intermediate field is due to the transition from high energy dissipation at low field to low energy dissipation at high field. For the field larger than the so-called Walker breakdown field, DW plane precesses around the wire, leading to the propagation speed oscillation.

  4. Magnetization reversal mechanisms under oblique magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Ntallis, N.; Efthimiadis, K.G., E-mail: kge@auth.gr

    2017-03-01

    In this work finite element micromagnetic simulations were performed in order to study the reversal mechanisms of spherical ferromagnetic particles with uniaxial magnetocrystalline anisotropy, when they are magnetized along an oblique direction with respect to the anisotropy axis. Magnetization loops are taken in different directions of external magnetic field, at different anisotropy constants and particle sizes. In the simulation results, the three reversal mechanisms (coherent, curling and domains) are observed and new phenomena arise due to the action of oblique magnetic fields. Moreover, the dependence of the critical fields with respect to the angle of the external field is presented. - Highlights: • Finite element micromagnetic simulation of the three different reversal mechanisms. • For the curling mechanism, the new phenomenon is the rotation of the vortex. • In the domain reversal mechanism, the formed domain wall is smaller than 180°. • In soft ferromagnetic particles a rearrangement of the magnetic domains is observed.

  5. Cosmological magnetic fields - V

    Indian Academy of Sciences (India)

    Magnetic fields seem to be everywhere that we can look in the universe, from our own ... The field tensor is observer-independent, while the electric and magnetic .... based on string theory [11], in which vacuum fluctuations of the field are ...

  6. Computational Analysis of Static and Dynamic Behaviour of Magnetic Suspensions and Magnetic Bearings

    Science.gov (United States)

    Britcher, Colin P. (Editor); Groom, Nelson J.

    1996-01-01

    Static modelling of magnetic bearings is often carried out using magnetic circuit theory. This theory cannot easily include nonlinear effects such as magnetic saturation or the fringing of flux in air-gaps. Modern computational tools are able to accurately model complex magnetic bearing geometries, provided some care is exercised. In magnetic suspension applications, the magnetic fields are highly three-dimensional and require computational tools for the solution of most problems of interest. The dynamics of a magnetic bearing or magnetic suspension system can be strongly affected by eddy currents. Eddy currents are present whenever a time-varying magnetic flux penetrates a conducting medium. The direction of flow of the eddy current is such as to reduce the rate-of-change of flux. Analytic solutions for eddy currents are available for some simplified geometries, but complex geometries must be solved by computation. It is only in recent years that such computations have been considered truly practical. At NASA Langley Research Center, state-of-the-art finite-element computer codes, 'OPERA', 'TOSCA' and 'ELEKTRA' have recently been installed and applied to the magnetostatic and eddy current problems. This paper reviews results of theoretical analyses which suggest general forms of mathematical models for eddy currents, together with computational results. A simplified circuit-based eddy current model proposed appears to predict the observed trends in the case of large eddy current circuits in conducting non-magnetic material. A much more difficult case is seen to be that of eddy currents in magnetic material, or in non-magnetic material at higher frequencies, due to the lower skin depths. Even here, the dissipative behavior has been shown to yield at least somewhat to linear modelling. Magnetostatic and eddy current computations have been carried out relating to the Annular Suspension and Pointing System, a prototype for a space payload pointing and vibration

  7. Magnetoplasmons in gapped graphene in a periodically modulated magnetic field

    KAUST Repository

    Tahir, Muhammad; Schwingenschlö gl, Udo

    2016-01-01

    Motivated by recent experiments on long-lived magnetoplasmons in the presence of a perpendicular magnetic field, we investigate the dynamical dielectric response function of graphene in contact with a substrate using the random phase approximation

  8. High-field superferric MR magnet

    International Nuclear Information System (INIS)

    Huson, F.R.; Carcagno, R.; Colvin, J.

    1987-01-01

    Current large-bore (>20 cm), high-field (2-T) MR magnets have major implementation disadvantages, mostly related to the extensive stray field of traditional air-core superconducting magnets. To circumvent this problem, the authors designed, constructed, and tested a 30-cm prototype superconducting, self-shielded, high field magnet. This unshimmed superferric magnet can operate between 0.5 and 4 T with a field quality of about one part per million over one quarter of its aperture. The magnet can be ramped from one field strength to another in approximately 10 minutes. The 5-Gauss line extends less than 1 meter outside the magnet structure. Further details, including MR measurements and images, are demonstrated, as well as 1-meter bore scale-up projections

  9. Dynamic Model of MR Dampers Based on a Hysteretic Magnetic Circuit

    Directory of Open Access Journals (Sweden)

    Pengfei Guo

    2018-01-01

    Full Text Available As a key to understand dynamic performances of MR dampers, a comprehensive dynamic magnetic circuit model is proposed in this work on the basis of Ampere’s and Gauss’s laws. It takes into account not only the magnetic saturation, which many existing studies have focused on, but also the magnetic hysteresis and eddy currents in a MR damper. The hysteresis of steel parts of MR dampers is described by Jiles-Atherton (J-A models, and the eddy current is included based on the field separation. Compared with the FEM results, the proposed model is validated in low- and high-frequency studies for the predictions of the magnetic saturation, the hysteresis, and the effect of eddy currents. A simple multiphysics model is developed to demonstrate how to combine the proposed magnetic circuit model with the commonly used Bingham fluid model. The damping force in the high-frequency case obviously lags behind the coil current, which exhibits a hysteresis loop in the current-force plane. The lag of damping force even exists in a low-frequency varying magnetic field and becomes more severe in the presence of eddy currents.

  10. Effect of sample container morphology on agglomeration dynamics of magnetic nanoparticles under magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Dae Seong; Kim, Hack Jin [Dept. of Chemistry, Chungnam National University, Daejeon (Korea, Republic of)

    2016-12-15

    The superparamagnetic magnetite nanoparticles have been used extensively in medical and biological applications, and agglomeration of magnetic nanoparticles is employed in the purification of water and proteins. The magnetic weight can be measured with a conventional electronic balance. Details of the experimental setup have been previously reported. That is, complex energy landscape involved in the agglomeration is changing with progress. Simulation of colloidal magnetic particles under magnetic field shows that the chain of particles is energetically more favorable than the ring and that the transition barrier between the chain and the ring is very low. The energy barriers among entangled nanoparticles of the agglomerate seem to be much more complicated than those among colloidal particles. The energy barrier distributions at 1000 min are similar for the two containers; however, the trend of blue shift and broadening is much more evident in the case of conical tube. These results indicate that the potential energy surface for agglomeration is modified more significantly in the conical tube which makes the agglomerate denser.

  11. Magnetic field and magnetic isotope effects on photochemical reactions

    International Nuclear Information System (INIS)

    Wakasa, Masanobu

    1999-01-01

    By at present exact experiments and the theoretical analysis, it was clear that the magnetic field less than 2 T affected a radical pair reaction and biradical reaction. The radical pair life and the dissipative radical yield showed the magnetic field effects on chemical reactions. The radical pair mechanism and the triplet mechanism were known as the mechanism of magnetic field effects. The radical pair mechanism consists of four mechanisms such as the homogeneous hyperfine interaction (HFC), the delta-g mechanism, the relaxation mechanism and the level cross mechanism. In order to observe the magnetic effects of the radical pair mechanism, two conditions need, namely, the recombination rate of singlet radical pair > the dissipation rate and the spin exchange rate > the dissipation rate. A nanosecond laser photo-decomposition equipment can observe the magnetic field effects. The inversion phenomena of magnetic field effect, isolation of the relaxation mechanism and the delta-g mechanism, the magnetic field effect of heavy metal radical reaction, the magnetic field effect in homogeneous solvent, saturation of delta-g mechanism are explained. The succeeded examples of isotope concentration by the magnetic isotope effect are 17 O, 19 Si, 33 S, 73 Ge and 235 U. (S.Y.)

  12. Magnetic field and temperature dependence of the critical vortex velocity in type-II superconducting films

    Energy Technology Data Exchange (ETDEWEB)

    Grimaldi, G; Leo, A; Cirillo, C; Attanasio, C; Nigro, A; Pace, S [CNR-INFM Laboratorio Regionale SuperMat, Via Salvador Allende, I-84081 Baronissi (Italy)], E-mail: grimaldi@sa.infn.it

    2009-06-24

    We study the vortex dynamics in the instability regime induced by high dissipative states well above the critical current in Nb superconducting strips. The magnetic field and temperature behavior of the critical vortex velocity corresponding to the observed dynamic instability is ascribed to intrinsic non-equilibrium phenomena. The Larkin-Ovchinnikov (LO) theory of electronic instability in high velocity vortex motion has been applied to interpret the temperature dependence of the critical vortex velocity. The magnetic field dependence of the vortex critical velocity shows new features in the low-field regime not predicted by LO.

  13. Influence of Weak External Magnetic Field on Amorphous and Nanocrystalline Fe-based Alloys

    Science.gov (United States)

    Degmová, J.; Sitek, J.

    2010-07-01

    Nanoperm, Hitperm and Finamet amorphous and nanocrystalline alloys were measured by Mössbauer spectrometry in a weak external magnetic field of 0.5 T. It was shown that the most sensitive parameters of Mössbauer spectra are the intensities of the 2nd and the 5th lines. Rather small changes were observed also in the case of internal magnetic field values. The spectrum of nanocrystalline Nanoperm showed the increase in A23 parameter (ratio of line intensities) from 2.4 to 3.7 and decrease of internal magnetic field from 20 to 19 T for amorphous subspectrum under the influence of magnetic field. Spectrum of nanocrystalline Finemet shown decrease in A23 parameter from 3.5 to 2.6 almost without a change in the internal magnetic field value. In the case of amorphous Nanoperm and Finemet samples, the changes are almost negligible. Hitperm alloy showed the highest sensitivity to the weak magnetic field, when the A23 parameter increased from 0.4 to 2.5 in the external magnetic fields. The A23 parameter of crystalline subspectrum increased from 2.7 to 3.8 and the value of internal magnetic field corresponding to amorphous subspectrum increased from 22 to 24 T. The behavior of nanocrystalline alloys under weak external magnetic field was analyzed within the three-level relaxation model of magnetic dynamics in an assembly of single-domain particles.

  14. The Capacitive Magnetic Field Sensor

    Science.gov (United States)

    Zyatkov, D. O.; Yurchenko, A. V.; Balashov, V. B.; Yurchenko, V. I.

    2016-01-01

    The results of a study of sensitive element magnetic field sensor are represented in this paper. The sensor is based on the change of the capacitance with an active dielectric (ferrofluid) due to the magnitude of magnetic field. To prepare the ferrofluid magnetic particles are used, which have a followingdispersion equal to 50 brand 5BDSR. The dependence of the sensitivity of the capacitive element from the ferrofluid with different dispersion of magnetic particles is considered. The threshold of sensitivity and sensitivity of a measuring cell with ferrofluid by a magnetic field was determined. The experimental graphs of capacitance change of the magnitude of magnetic field are presented.

  15. Bifurcation analysis of magnetization dynamics driven by spin transfer

    International Nuclear Information System (INIS)

    Bertotti, G.; Magni, A.; Bonin, R.; Mayergoyz, I.D.; Serpico, C.

    2005-01-01

    Nonlinear magnetization dynamics under spin-polarized currents is discussed by the methods of the theory of nonlinear dynamical systems. The fixed points of the dynamics are calculated. It is shown that there may exist 2, 4, or 6 fixed points depending on the values of the external field and of the spin-polarized current. The stability of the fixed points is analyzed and the conditions for the occurrence of saddle-node and Hopf bifurcations are determined

  16. Bifurcation analysis of magnetization dynamics driven by spin transfer

    Energy Technology Data Exchange (ETDEWEB)

    Bertotti, G. [IEN Galileo Ferraris, Strada delle Cacce 91, 10135 Turin (Italy); Magni, A. [IEN Galileo Ferraris, Strada delle Cacce 91, 10135 Turin (Italy); Bonin, R. [Dipartimento di Fisica, Politecnico di Torino, Corso degli Abbruzzi, 10129 Turin (Italy)]. E-mail: bonin@ien.it; Mayergoyz, I.D. [Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland 20742 (United States); Serpico, C. [Department of Electrical Engineering, University of Napoli Federico II, via Claudio 21, 80125 Naples (Italy)

    2005-04-15

    Nonlinear magnetization dynamics under spin-polarized currents is discussed by the methods of the theory of nonlinear dynamical systems. The fixed points of the dynamics are calculated. It is shown that there may exist 2, 4, or 6 fixed points depending on the values of the external field and of the spin-polarized current. The stability of the fixed points is analyzed and the conditions for the occurrence of saddle-node and Hopf bifurcations are determined.

  17. High magnetic field MRI system

    International Nuclear Information System (INIS)

    Maeda, Hideaki; Urata, Masami; Satoh, Kozo

    1990-01-01

    A high field superconducting magnet, 4-5 T in central magnetic field, is required for magnetic resonance spectroscopic imaging (MRSI) on 31 P, essential nuclei for energy metabolism of human body. This paper reviews superconducting magnets for high field MRSI systems. Examples of the cross-sectional image and the spectrum of living animals are shown in the paper. (author)

  18. Magnetic resonance imaging: effects of magnetic field strength

    International Nuclear Information System (INIS)

    Crooks, L.E.; Arakawa, M.; Hoenninger, J.; McCarten, B.; Watts, J.; Kaufman, L.

    1984-01-01

    Magnetic resonance images of the head, abdomen, and pelvis of normal adult men were obtained using varying magnetic field strength, and measurements of T1 and T2 relaxations and of signal-to-noise (SN) ratios were determined. For any one spin echo sequence, gray/white matter contrast decreases and muscle/fat contrast increases with field. SN levels rise rapidly up to 3.0 kgauss and then change more slowly, actually dropping for muscle. The optimum field for magnetic resonance imaging depends on tissue type, body part, and imaging sequence, so that it does not have a unique value. Magnetic resonance systems that operate in the 3.0-5.0 kgauss range achieve most or all of the gains that can be achieved by higher magnetic fields

  19. Spin structure factors of Heisenberg spin chain in the presence of anisotropy and magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Rezania, H., E-mail: rezania.hamed@gmail.com

    2017-02-01

    We have theoretically studied the spin structure factors of spin chain in the presence of longitudinal field and transverse anisotropy. The possible effects of easy axis magnetization are investigated in terms of anisotropy in the Heisenberg interactions. This anisotropy is considered for exchange coupling constants perpendicular to magnetic field direction. The original spin model hamiltonian is mapped to a bosonic model via a hard core bosonic transformation where an infinite hard core repulsion is imposed to constrain one boson occupation per site. Using Green's function approach, the energy spectrum of quasiparticle excitation has been obtained. The spectrum of the bosonic gas has been implemented in order to obtain two particle propagator which corresponds to spin structure factor of original Heisenberg chain model Hamiltonian. The results show the position of peak in the longitudinal structure factor at fixed value for anisotropy moves to higher frequency with magnetic field. Also the intensity of dynamical structure factor decreases with magnetic field. A small dependence of longitudinal dynamical spin structure factor on the anisotropy is observed for fixed value of magnetic field. Our results show longitudinal static structure factor is found to be monotonically increasing with magnetic field due to increase of spins aligning along magnetic field. Furthermore the dispersion behaviors of static longitudinal and transverse structure factors for different magnetic fields and anisotropy parameters are addressed. - Highlights: • Theoretical calculation of spin structure factors of Heisenberg chain. • The investigation of the effect of anisotropy spin structure factors of Heisenberg chain. • The investigation of the effect of magnetic field on spin structure factors of Heisenberg chain.

  20. Spin structure factors of Heisenberg spin chain in the presence of anisotropy and magnetic field

    International Nuclear Information System (INIS)

    Rezania, H.

    2017-01-01

    We have theoretically studied the spin structure factors of spin chain in the presence of longitudinal field and transverse anisotropy. The possible effects of easy axis magnetization are investigated in terms of anisotropy in the Heisenberg interactions. This anisotropy is considered for exchange coupling constants perpendicular to magnetic field direction. The original spin model hamiltonian is mapped to a bosonic model via a hard core bosonic transformation where an infinite hard core repulsion is imposed to constrain one boson occupation per site. Using Green's function approach, the energy spectrum of quasiparticle excitation has been obtained. The spectrum of the bosonic gas has been implemented in order to obtain two particle propagator which corresponds to spin structure factor of original Heisenberg chain model Hamiltonian. The results show the position of peak in the longitudinal structure factor at fixed value for anisotropy moves to higher frequency with magnetic field. Also the intensity of dynamical structure factor decreases with magnetic field. A small dependence of longitudinal dynamical spin structure factor on the anisotropy is observed for fixed value of magnetic field. Our results show longitudinal static structure factor is found to be monotonically increasing with magnetic field due to increase of spins aligning along magnetic field. Furthermore the dispersion behaviors of static longitudinal and transverse structure factors for different magnetic fields and anisotropy parameters are addressed. - Highlights: • Theoretical calculation of spin structure factors of Heisenberg chain. • The investigation of the effect of anisotropy spin structure factors of Heisenberg chain. • The investigation of the effect of magnetic field on spin structure factors of Heisenberg chain.

  1. Magnetic neutral sheets in evolving fields. I - General theory. II - Formation of the solar corona

    Science.gov (United States)

    Parker, E. N.

    1983-01-01

    The problem of the hydrostatic equilibrium of a large-scale magnetic field embedded in a fluid with infinite electrical conductivity is considered. It is pointed out that a necessary condition for static equilibrium is the invariance of the small-scale pattern in the field along the large-scale direction. A varying topological pattern implies that no fluid pressure distribution exists for which the field is everywhere static. Magnetic neutral sheets form, and dynamical reconnection of the field takes place. It is shown here that the invariance is also a sufficient condition for the existence of a fluid pressure distribution producing static equilibrium. Even in the simplest cases, however, the requirements on the fluid pressure are extreme and, a priori, are unlikely. It is concluded that almost all twisted flux tubes packed together produce dynamical nonequilibrium and dissipation of their twisting. This is the basic effect underlying the long-standing conjecture that the shuffling of the footpoints of the bipolar magnetic fields in the sun is responsible for heating the active corona. Attention is then given to the consequences of this general dynamical dissipation in the magnetic fields that produce the active corona of the sun. The footpoints of the field are continually manipulated by the subphotospheric convection in such a way that the lines of force are continually wrapped and rotated about one another.

  2. Magnetic Field Grid Calculator

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Magnetic Field Properties Calculator will computes the estimated values of Earth's magnetic field(declination, inclination, vertical component, northerly...

  3. Magnetization dynamics induced by Rashba effect in a Permalloy nanodisk

    Energy Technology Data Exchange (ETDEWEB)

    Li, Huanan; Hua, Zhong, E-mail: jiyonghnli@126.com; Li, Dongfei

    2017-02-15

    Magnetic vortex dynamics mediated by spin-polarized ac current of different amplitudes and frequencies are investigated by micromagnetic simulations in a system lacking structure inversion symmetry. Micromagnetic calculations reveal that the critical current density required to induce vortex core reversal may be decreased to below 10{sup 10} A m{sup −2} due to strong transverse magnetic field by Rashba effect. We also find the spin torque of ac current plays a trivial role in magnetic vortex dynamics in a broken inversion symmetry system when the current density is on the order of 10{sup 10} A m{sup −2} and the current with frequency close to the vortex eigenfrequency is the most efficient for reversal.

  4. CALCULATING ROTATING HYDRODYNAMIC AND MAGNETOHYDRODYNAMIC WAVES TO UNDERSTAND MAGNETIC EFFECTS ON DYNAMICAL TIDES

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Xing, E-mail: xing.wei@sjtu.edu.cn [Institute of Natural Sciences and Department of Physics and Astronomy, Shanghai Jiao Tong University (China); Princeton University Observatory, Princeton, NJ 08544 (United States)

    2016-09-01

    To understand magnetic effects on dynamical tides, we study the rotating magnetohydrodynamic (MHD) flow driven by harmonic forcing. The linear responses are analytically derived in a periodic box under the local WKB approximation. Both the kinetic and Ohmic dissipations at the resonant frequencies are calculated, and the various parameters are investigated. Although magnetic pressure may be negligible compared to thermal pressure, the magnetic field can be important for the first-order perturbation, e.g., dynamical tides. It is found that the magnetic field splits the resonant frequency, namely the rotating hydrodynamic flow has only one resonant frequency, but the rotating MHD flow has two, one positive and the other negative. In the weak field regime the dissipations are asymmetric around the two resonant frequencies and this asymmetry is more striking with a weaker magnetic field. It is also found that both the kinetic and Ohmic dissipations at the resonant frequencies are inversely proportional to the Ekman number and the square of the wavenumber. The dissipation at the resonant frequency on small scales is almost equal to the dissipation at the non-resonant frequencies, namely the resonance takes its effect on the dissipation at intermediate length scales. Moreover, the waves with phase propagation that is perpendicular to the magnetic field are much more damped. It is also interesting to find that the frequency-averaged dissipation is constant. This result suggests that in compact objects, magnetic effects on tidal dissipation should be considered.

  5. Stress analysis in high-temperature superconductors under pulsed field magnetization

    Science.gov (United States)

    Wu, Haowei; Yong, Huadong; Zhou, Youhe

    2018-04-01

    Bulk high-temperature superconductors (HTSs) have a high critical current density and can trap a large magnetic field. When bulk superconductors are magnetized by the pulsed field magnetization (PFM) technique, they are also subjected to a large electromagnetic stress, and the resulting thermal stress may cause cracking of the superconductor due to the brittle nature of the sample. In this paper, based on the H-formulation and the law of heat transfer, we can obtain the distributions of electromagnetic field and temperature, which are in qualitative agreement with experiment. After that, based on the dynamic equilibrium equations, the mechanical response of the bulk superconductor is determined. During the PFM process, the change in temperature has a dramatic effect on the radial and hoop stresses, and the maximum radial and hoop stress are 24.2 {{MPa}} and 22.6 {{MPa}}, respectively. The mechanical responses of a superconductor for different cases are also studied, such as the peak value of the applied field and the size of bulk superconductors. Finally, the stresses are also presented for different magnetization methods.

  6. Absence of effects of an in-plane magnetic field in a quasi-two-dimensional electron system

    Science.gov (United States)

    Brandt, F. T.; Sánchez-Monroy, J. A.

    2018-03-01

    The dynamics of a quasi-two-dimensional electron system (q2DES) in the presence of a tilted magnetic field is reconsidered employing the thin-layer method. We derive the effective equations for relativistic and nonrelativistic q2DESs. Through a perturbative expansion, we show that while the magnetic length is much greater than the confinement width, the in-plane magnetic field only affects the particle dynamics through the spin. Therefore, effects due to an in-plane magnetic vector potential reported previously in the literature for 2D quantum rings, 2D quantum dots and graphene are fictitious. In particular, the so-called pseudo chiral magnetic effect recently proposed in graphene is not realistic.

  7. The role of magnetic fields for curvature effects in Josephson junction

    Energy Technology Data Exchange (ETDEWEB)

    Jarmoliński, A.; Dobrowolski, T., E-mail: dobrow@up.krakow.pl

    2017-06-01

    The large area Josephson junction is considered. On the basis of Maxwell equations the influence of the magnetic field on fluxion dynamics is considered. The presented studies show that assumptions presumed in the literature do not restrict experimental settings adopted in the considerations of the fluxion movement in the Josephson junction. It is shown that the particular orientation of the magnetic fields is not needed in order to study physical effects of curvature and therefore they do not restrict the experimental arrangements.

  8. Magnetic fields in cosmology

    International Nuclear Information System (INIS)

    Madsen, M.S.

    1989-01-01

    The possible role of a large-scale relic magnetic field in the history of the Universe is considered. The perturbation of the cosmic microwave back-ground radiation on large angular scales due to a homogeneous magnetic field is estimated in a simple relativistic model. This allows corresponding limits to be placed on the magnitude of any such large-scale relic magnetic field at the present time. These limits are essentially the strongest which can be set on the largest scales. A corresponding bound is obtained by use of the requirement that the field should not spoil the predictions of primordial nucleosynthesis. It is noted that the existence of large-scale cosmic magnetic fields would circumvent the limits previously set - also on the basis of nucleosynthesis considerations - on the large-scale anisotropy now present in the Universe. (author)

  9. Structure and magnetic field of periodic permanent magnetic focusing system with open magnetic rings

    International Nuclear Information System (INIS)

    Peng Long; Li Lezhong; Yang Dingyu; Zhu Xinghua; Li Yuanxun

    2011-01-01

    The magnetic field along the central axis for an axially magnetized permanent magnetic ring was investigated by analytical and finite element methods. For open magnetic rings, both calculated and measured results show that the existence of the radial magnetic field creates a remarkable cosine distribution field along the central axis. A new structure of periodic permanent magnet focusing system with open magnetic rings is proposed. The structure provides a satisfactory magnetic field with a stable peak value of 120 mT for a traveling wave tube system. - Research highlights: → For open magnetic rings, both calculated and measured results show that the existence of the radial magnetic field creates a remarkable cosine distribution field along the central axis. → A new structure of periodic permanent magnet (PPM) focusing system with open magnetic rings is proposed. → The new PPM focusing system with open magnetic rings meets the requirements for TWT system.

  10. Magnetic field measurements on the perpendicular biased RF booster cavity for the proposed TRIUMF KAON Factory

    International Nuclear Information System (INIS)

    Enchevich, I.B.; Poirier, R.L.

    1992-08-01

    The successful operation of the full scale KAON Factory Ferrite tuned Booster Accelerating Cavity Prototype allowed us to do ac magnetic field measurements in the tuner. The field measured is close to that calculated. The measured data are discussed. They may be used for reliable computation of the perturbation of the beam dynamics due to the ferrite biasing magnetic field. Methods to compensate the disturbing magnetic fields are discussed. 7 refs., 7 figs

  11. Organic magnetic field sensor

    Energy Technology Data Exchange (ETDEWEB)

    McCamey, Dane; Boehme, Christoph

    2017-01-24

    An organic, spin-dependent magnetic field sensor (10) includes an active stack (12) having an organic material with a spin-dependence. The sensor (10) also includes a back electrical contact (14) electrically coupled to a back of the active stack (12) and a front electrical contact (16) electrically coupled to a front of the active stack (12). A magnetic field generator (18) is oriented so as to provide an oscillating magnetic field which penetrates the active stack (12).

  12. The vector structure of active magnetic fields

    Science.gov (United States)

    Parker, E. N.

    1985-01-01

    Observations are needed to show the form of the strains introduced into the fields above the surface of the Sun. The longitudinal component alone does not provide the basic information, so that it has been necessary in the past to use the filamentary structure observed in H sub alpha to supplement the longitudinal information. Vector measurements provide the additional essential information to determine the strains, with the filamentary structure available as a check for consistency. It is to be expected, then, that vector measurements will permit a direct mapping of the strains imposed on the magnetic fields of active regions. It will be interesting to study the relation of those strains to the emergence of magnetic flux, flares, eruptive prominences, etc. In particular we may hope to study the relaxation of the strains via the dynamical nonequilibrium.

  13. Dynamics of collisional particles in a fluctuating magnetic field

    International Nuclear Information System (INIS)

    Spineanu, F.; Vlad, M.

    1995-01-01

    The equations of motion of a test particle in a stochastic magnetic field and interacting through collisions with a plasma are Langevin-type equations. Under reasonable assumptions on the statistical properties of the random processes (field and collisional velocity fluctuations), we perform an analytical calculation of the mean-square displacement (MSD) of the particle. The basic nonlinearity in the problem (Lagrangian argument of the random field) yields complicated averages, which we carry out using a functional formalism. The result is expressed as a series, and we find the conditions for its convergence, i.e. the limits of validity of our approach (essentially, we must restrict attention to non-chaotic regimes). Further, employing realistic bounds (spectral cut-off and limited time of observation), we derive an explicit formula for the MSD. We show that from this unique expression, we can obtain several previously known results. (author)

  14. TORSIONAL OSCILLATIONS OF A MAGNETAR WITH A TANGLED MAGNETIC FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Link, Bennett; Van Eysden, C. Anthony, E-mail: link@montana.edu, E-mail: anthonyvaneysden@montana.edu [Department of Physics, Montana State University, Bozeman, MT 59717 (United States)

    2016-05-20

    Motivated by stability considerations and observational evidence, we argue that magnetars possess highly tangled internal magnetic fields. We propose that the quasi-periodic oscillations (QPOs) seen to accompany giant flares can be explained as torsional modes supported by a tangled magnetic field, and we present a simple model that supports this hypothesis for SGR 1900+14. Taking the strength of the tangle as a free parameter, we find that the magnetic energy in the tangle must dominate that in the dipolar component by a factor of ∼14 to accommodate the observed 28 Hz QPO. Our simple model provides useful scaling relations for how the QPO spectrum depends on the bulk properties of the neutron star and the tangle strength. The energy density in the tangled field inferred for SGR 1900+14 renders the crust nearly dynamically irrelevant, a significant simplification for study of the QPO problem. The predicted spectrum is about three times denser than observed, which could be explained by preferential mode excitation or beamed emission. We emphasize that field tangling is needed to stabilize the magnetic field, so should not be ignored in treatment of the QPO problem.

  15. Measurement of the terrestrial magnetic field and its anomalies

    International Nuclear Information System (INIS)

    Duret, D.

    1994-01-01

    After a presentation of the terrestrial magnetic field and its various anomalies, the different types of magnetometers commonly used are reviewed with their characteristics and performances: scalar magnetometers (free precession and continuous polarization proton magnetometers, dynamic polarization proton magnetometers, optical pumping magnetometers, electronic resonance scalar magnetometers (without pumping)); vectorial magnetometers (flux gate magnetometers, induction magnetometers, suspended magnet magnetometers, superconducting magnetometers, integrated magnetometers, resonance directional magnetometers). The magnetometry market and applications are discussed. 20 figs., 9 tabs., 72 refs

  16. Axial magnetic field produced by axially and radially magnetized permanent rings

    International Nuclear Information System (INIS)

    Peng, Q.L.; McMurry, S.M.; Coey, J.M.D.

    2004-01-01

    Axial magnetic fields produced by axially and radially magnetized permanent magnet rings were studied. First, the axial magnetic field produced by a current loop is introduced, from which the axial field generated by an infinitely thin solenoid and by an infinitely thin current disk can be derived. Then the axial fields produced by axially and by radially magnetized permanent magnet rings can be obtained. An analytic formula for the axial fields produced by two axially magnetized rings is given. A permanent magnet with a high axial gradient field is fabricated, the measured results agree with the theoretical calculation very well. As an example, the axial periodic field produced by an arrangement of alternating axially and radially magnetized rings has been discussed

  17. Wide Band Low Noise Love Wave Magnetic Field Sensor System.

    Science.gov (United States)

    Kittmann, Anne; Durdaut, Phillip; Zabel, Sebastian; Reermann, Jens; Schmalz, Julius; Spetzler, Benjamin; Meyners, Dirk; Sun, Nian X; McCord, Jeffrey; Gerken, Martina; Schmidt, Gerhard; Höft, Michael; Knöchel, Reinhard; Faupel, Franz; Quandt, Eckhard

    2018-01-10

    We present a comprehensive study of a magnetic sensor system that benefits from a new technique to substantially increase the magnetoelastic coupling of surface acoustic waves (SAW). The device uses shear horizontal acoustic surface waves that are guided by a fused silica layer with an amorphous magnetostrictive FeCoSiB thin film on top. The velocity of these so-called Love waves follows the magnetoelastically-induced changes of the shear modulus according to the magnetic field present. The SAW sensor is operated in a delay line configuration at approximately 150 MHz and translates the magnetic field to a time delay and a related phase shift. The fundamentals of this sensor concept are motivated by magnetic and mechanical simulations. They are experimentally verified using customized low-noise readout electronics. With an extremely low magnetic noise level of ≈100 pT/[Formula: see text], a bandwidth of 50 kHz and a dynamic range of 120 dB, this magnetic field sensor system shows outstanding characteristics. A range of additional measures to further increase the sensitivity are investigated with simulations.

  18. Discretization of the total magnetic field by the nuclear spin bath in fluorine-doped ZnSe.

    Science.gov (United States)

    Zhukov, E A; Kirstein, E; Kopteva, N E; Heisterkamp, F; Yugova, I A; Korenev, V L; Yakovlev, D R; Pawlis, A; Bayer, M; Greilich, A

    2018-05-16

    The coherent spin dynamics of fluorine donor-bound electrons in ZnSe induced by pulsed optical excitation is studied in a perpendicular applied magnetic field. The Larmor precession frequency serves as a measure for the total magnetic field exerted onto the electron spins and, surprisingly, does not increase linearly with the applied field, but shows a step-like behavior with pronounced plateaus, given by multiples of the laser repetition rate. This discretization occurs by a feedback mechanism in which the electron spins polarize the nuclear spins, which in turn generate a local Overhauser field adjusting the total magnetic field accordingly. Varying the optical excitation power, we can control the plateaus, in agreement with our theoretical model. From this model, we trace the observed discretization to the optically induced Stark field, which causes the dynamic nuclear polarization.

  19. A full-field transmission x-ray microscope for time-resolved imaging of magnetic nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Ewald, J.; Nisius, T.; Abbati, G.; Baumbach, S.; Overbuschmann, J.; Wilhein, T. [Institute for X-Optics (IXO), Hochschule Koblenz, Joseph-Rovan-Allee 2, 53424 Remagen (Germany); Wessels, P.; Wieland, M.; Drescher, M. [The Hamburg Centre for Ultrafast Imaging (CUI), University of Hamburg, Luruper Chaussee 149, 22761 Hamburg (Germany); Institut für Experimentalphysik, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg (Germany); Vogel, A. [Institut für Angewandte Physik, University of Hamburg, Jungiusstraße 11, 20355 Hamburg (Germany); Viefhaus, J. [Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, 22607 Hamburg (Germany); Meier, G. [The Hamburg Centre for Ultrafast Imaging (CUI), University of Hamburg, Luruper Chaussee 149, 22761 Hamburg (Germany); Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg (Germany)

    2016-01-28

    Sub-nanosecond magnetization dynamics of small permalloy (Ni{sub 80}Fe{sub 20}) elements has been investigated with a new full-field transmission microscope at the soft X-ray beamline P04 of the high brilliance synchrotron radiation source PETRA III. The soft X-ray microscope generates a flat-top illumination field of 20 μm diameter using a grating condenser. A tilted nanostructured magnetic sample can be excited by a picosecond electric current pulse via a coplanar waveguide. The transmitted light of the sample plane is directly imaged by a micro zone plate with < 65 nm resolution onto a 2D gateable X-ray detector to select one particular bunch in the storage ring that probes the time evolution of the dynamic information successively via XMCD spectromicroscopy in a pump-probe scheme. In the experiments it was possible to generate a homogeneously magnetized state in patterned magnetic layers by a strong magnetic Oersted field pulse of 200 ps duration and directly observe the recovery to the initial flux-closure vortex patterns.

  20. Simulation of dynamic magnetic particle capture and accumulation around a ferromagnetic wire

    Energy Technology Data Exchange (ETDEWEB)

    Choomphon-anomakhun, Natthaphon [Department of Physics, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok 10330 (Thailand); Ebner, Armin D. [Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208 (United States); Natenapit, Mayuree [Department of Physics, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok 10330 (Thailand); Ritter, James A. [Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208 (United States)

    2017-04-15

    A new approach for modeling high gradient magnetic separation (HGMS)-type systems during the time-dependent capture and accumulation of magnetic particles by a ferromagnetic wire was developed. This new approach assumes the fluid (slurry) viscosity, comprised of water and magnetic particles, is a function of the magnetic particle concentration in the fluid, with imposed maxima on both the particle concentration and fluid viscosity to avoid unrealistic limits. In 2-D, the unsteady-state Navier-Stokes equations for compressible fluid flow and the unsteady-state continuity equations applied separately to the water and magnetic particle phases in the slurry were solved simultaneously, along with the Laplace equations for the magnetic potential applied separately to the slurry and wire, to evaluate the velocities and concentrations around the wire in a narrow channel using COMSOL Multiphysics. The results from this model revealed very realistic magnetically attractive and repulsive zones forming in time around the wire. These collection zones formed their own impermeable viscous phase during accumulation that was also magnetic with its area and magnetism impacting locally both the fluid flow and magnetic fields around the wire. These collection zones increased with an increase in the applied magnetic field. For a given set of conditions, the capture ability peaked and then decreased to zero at infinite time during magnetic particle accumulation in the collection zones. Predictions of the collection efficiency from a steady-state, clean collector, trajectory model could not show this behavior; it also agreed only qualitatively with the dynamic model and then only at the early stages of collection and more so at a higher applied magnetic field. Also, the collection zones decreased in size when the accumulation regions included magnetic particle magnetization (realistic) compared to when they excluded it (unrealistic). Overall, this might be the first time a mathematical

  1. Magnetic field dependent atomic tunneling in non-magnetic glasses

    International Nuclear Information System (INIS)

    Ludwig, S.; Enss, C.; Hunklinger, S.

    2003-01-01

    The low-temperature properties of insulating glasses are governed by atomic tunneling systems (TSs). Recently, strong magnetic field effects in the dielectric susceptibility have been discovered in glasses at audio frequencies at very low temperatures. Moreover, it has been found that the amplitude of two-pulse polarization echoes generated in non-magnetic multi-component glasses at radio frequencies and at very low temperatures shows a surprising non-monotonic magnetic field dependence. The magnitude of the latter effect indicates that virtually all TSs are affected by the magnetic field, not only a small subset of systems. We have studied the variation of the magnetic field dependence of the echo amplitude as a function of the delay time between the two excitation pulses and at different frequencies. Our results indicate that the evolution of the phase of resonant TSs is changed by the magnetic field

  2. Magnetic field dependent atomic tunneling in non-magnetic glasses

    Science.gov (United States)

    Ludwig, S.; Enss, C.; Hunklinger, S.

    2003-05-01

    The low-temperature properties of insulating glasses are governed by atomic tunneling systems (TSs). Recently, strong magnetic field effects in the dielectric susceptibility have been discovered in glasses at audio frequencies at very low temperatures. Moreover, it has been found that the amplitude of two-pulse polarization echoes generated in non-magnetic multi-component glasses at radio frequencies and at very low temperatures shows a surprising non-monotonic magnetic field dependence. The magnitude of the latter effect indicates that virtually all TSs are affected by the magnetic field, not only a small subset of systems. We have studied the variation of the magnetic field dependence of the echo amplitude as a function of the delay time between the two excitation pulses and at different frequencies. Our results indicate that the evolution of the phase of resonant TSs is changed by the magnetic field.

  3. Anisotropic magnetism in field-structured composites

    International Nuclear Information System (INIS)

    Martin, James E.; Venturini, Eugene; Odinek, Judy; Anderson, Robert A.

    2000-01-01

    Magnetic field-structured composites (FSCs) are made by structuring magnetic particle suspensions in uniaxial or biaxial (e.g., rotating) magnetic fields, while polymerizing the suspending resin. A uniaxial field produces chainlike particle structures, and a biaxial field produces sheetlike particle structures. In either case, these anisotropic structures affect the measured magnetic hysteresis loops, with the magnetic remanence and susceptibility increased significantly along the axis of the structuring field, and decreased slightly orthogonal to the structuring field, relative to the unstructured particle composite. The coercivity is essentially unaffected by structuring. We present data for FSCs of magnetically soft particles, and demonstrate that the altered magnetism can be accounted for by considering the large local fields that occur in FSCs. FSCs of magnetically hard particles show unexpectedly large anisotropies in the remanence, and this is due to the local field effects in combination with the large crystalline anisotropy of this material. (c) 2000 The American Physical Society

  4. Magnetic Field Topology in Jets

    Science.gov (United States)

    Gardiner, T. A.; Frank, A.

    2000-01-01

    We present results on the magnetic field topology in a pulsed radiative. jet. For initially helical magnetic fields and periodic velocity variations, we find that the magnetic field alternates along the, length of the jet from toroidally dominated in the knots to possibly poloidally dominated in the intervening regions.

  5. Radio frequency sheaths in an oblique magnetic field

    International Nuclear Information System (INIS)

    Myra, J. R.; D'Ippolito, D. A.

    2015-01-01

    The physics of radio-frequency (rf) sheaths near a conducting surface is studied for plasmas immersed in a magnetic field that makes an oblique angle θ with the surface. A set of one-dimensional equations is developed that describes the dynamics of the time-dependent magnetic presheath and non-neutral Debye sheath. The model employs Maxwell-Boltzmann electrons, and the magnetization and mobility of the ions is determined by the magnetic field strength, and wave frequency, respectively. The angle θ, assumed to be large enough to insure an electron-poor sheath, is otherwise arbitrary. Concentrating on the ion-cyclotron range of frequencies, the equations are solved numerically to obtain the rectified (dc) voltage, the rf voltage across the sheath, and the rf current flowing through the sheath. As an application of this model, the sheath voltage-current relation is used to obtain the rf sheath impedance, which in turn gives an rf sheath boundary condition for the electric field at the sheath-plasma interface that can be used in rf wave codes. In general, the impedance has both resistive and capacitive contributions, and generalizes previous sheath boundary condition models. The resistive part contributes to parasitic power dissipation at the wall

  6. Dynamical formation of spatially localized arrays of aligned nanowires in plastic films with magnetic anisotropy.

    Science.gov (United States)

    Fragouli, Despina; Buonsanti, Raffaella; Bertoni, Giovanni; Sangregorio, Claudio; Innocenti, Claudia; Falqui, Andrea; Gatteschi, Dante; Cozzoli, Pantaleo Davide; Athanassiou, Athanassia; Cingolani, Roberto

    2010-04-27

    We present a simple technique for magnetic-field-induced formation, assembling, and positioning of magnetic nanowires in a polymer film. Starting from a polymer/iron oxide nanoparticle casted solution that is allowed to dry along with the application of a weak magnetic field, nanocomposite films incorporating aligned nanocrystal-built nanowire arrays are obtained. The control of the dimensions of the nanowires and of their localization across the polymer matrix is achieved by varying the duration of the applied magnetic field, in combination with the evaporation dynamics. These multifunctional anisotropic free-standing nanocomposite films, which demonstrate high magnetic anisotropy, can be used in a wide field of technological applications, ranging from sensors to microfluidics and magnetic devices.

  7. Dynamics of particles accelerated by head-on collisions of two magnetized plasma shocks

    Science.gov (United States)

    Takeuchi, Satoshi

    2018-02-01

    A kinetic model of the head-on collision of two magnetized plasma shocks is analyzed theoretically and in numerical calculations. When two plasmas with anti-parallel magnetic fields collide, they generate magnetic reconnection and form a motional electric field at the front of the collision region. This field accelerates the particles sandwiched between both shock fronts to extremely high energy. As they accelerate, the particles are bent by the transverse magnetic field crossing the magnetic neutral sheet, and their energy gains are reduced. In the numerical calculations, the dynamics of many test particles were modeled through the relativistic equations of motion. The attainable energy gain was obtained by multiplying three parameters: the propagation speed of the shock, the magnitude of the magnetic field, and the acceleration time of the test particle. This mechanism for generating high-energy particles is applicable over a wide range of spatial scales, from laboratory to interstellar plasmas.

  8. Magnetic field measurements on board of altitude-research rockets

    International Nuclear Information System (INIS)

    Theile, B.; Luehr, H.

    1976-01-01

    Electric currents within the Earth's magneto- and ionosphere can be probed by measuring their magnetic fields. Different payloads of the national sounding rocket programme will carry magnetometers of high resolution and dynamic range. Thorough test procedures are necessary to evaluate the instrument's properties and possible interference problems. (orig.) [de

  9. Non-Maxwellian and magnetic field effects in complex plasma wakes★

    Science.gov (United States)

    Ludwig, Patrick; Jung, Hendrik; Kählert, Hanno; Joost, Jan-Philip; Greiner, Franko; Moldabekov, Zhandos; Carstensen, Jan; Sundar, Sita; Bonitz, Michael; Piel, Alexander

    2018-05-01

    In a streaming plasma, negatively charged dust particles create complex charge distributions on the downstream side of the particle, which are responsible for attractive forces between the like-charged particles. This wake phenomenon is studied by means of refined linear response theory and molecular dynamics simulations as well as in experiments. Particular attention is paid to non-Maxwellian velocity distributions that are found in the plasma sheath and to situations with strong magnetic fields, which are becoming increasingly important. Non-Maxwellian distributions and strong magnetic fields result in a substantial damping of the oscillatory wake potential. The interaction force in particle pairs is explored with the phase-resolved resonance method, which demonstrates the non-reciprocity of the interparticle forces in unmagnetized and magnetized systems.

  10. Entropic uncertainty relation of a two-qutrit Heisenberg spin model in nonuniform magnetic fields and its dynamics under intrinsic decoherence

    Science.gov (United States)

    Zhang, Zuo-Yuan; Wei, DaXiu; Liu, Jin-Ming

    2018-06-01

    The precision of measurements for two incompatible observables in a physical system can be improved with the assistance of quantum memory. In this paper, we investigate the quantum-memory-assisted entropic uncertainty relation for a spin-1 Heisenberg model in the presence of external magnetic fields, the systemic quantum entanglement (characterized by the negativity) is analyzed as contrast. Our results show that for the XY spin chain in thermal equilibrium, the entropic uncertainty can be reduced by reinforcing the coupling between the two particles or decreasing the temperature of the environment. At zero-temperature, the strong magnetic field can result in the growth of the entropic uncertainty. Moreover, in the Ising case, the variation trends of the uncertainty are relied on the choices of anisotropic parameters. Taking the influence of intrinsic decoherence into account, we find that the strong coupling accelerates the inflation of the uncertainty over time, whereas the high magnetic field contributes to its reduction during the temporal evolution. Furthermore, we also verify that the evolution behavior of the entropic uncertainty is roughly anti-correlated with that of the entanglement in the whole dynamical process. Our results could offer new insights into quantum precision measurement for the high spin solid-state systems.

  11. Low field magnetic resonance imaging

    Science.gov (United States)

    Pines, Alexander; Sakellariou, Dimitrios; Meriles, Carlos A.; Trabesinger, Andreas H.

    2010-07-13

    A method and system of magnetic resonance imaging does not need a large homogenous field to truncate a gradient field. Spatial information is encoded into the spin magnetization by allowing the magnetization to evolve in a non-truncated gradient field and inducing a set of 180 degree rotations prior to signal acquisition.

  12. Magnetic field measurements of the superEBIS superconducting magnet

    International Nuclear Information System (INIS)

    Herschcovitch, A.; Kponou, A.; Clipperton, R.; Hensel, W.; Usack, F.

    1994-01-01

    SuperEBIS was designed to have a solenoidal magnetic field of a 5 Tesla strength with a 120 cm long bore. The field was specified to be straight within 1 part in 10000 within the bore, and uniform to within 1 part in 1000 within the central 90 cm. Magnetic field measurements were performed with a computerized magnetic field measuring setup that was borrowed from W. Sampson's group. A preliminary test was made of a scheme to determine if the magnetic and mechanical axes of the solenoid coincided, and, if not, by how much

  13. Origin and Evolution of Magnetic Field in PMS Stars: Influence of Rotation and Structural Changes

    Energy Technology Data Exchange (ETDEWEB)

    Emeriau-Viard, Constance; Brun, Allan Sacha, E-mail: constance.emeriau@cea.fr, E-mail: sacha.brun@cea.fr [Laboratoire AIM Paris-Saclay CEA/DSM—CNRS—Université Paris Diderot, IRFU/DAp CEA Paris-Saclay, F-91191 Gif-sur-Yvette Cedex (France)

    2017-09-01

    During stellar evolution, especially in the pre-main-sequence phase, stellar structure and rotation evolve significantly, causing major changes in the dynamics and global flows of the star. We wish to assess the consequences of these changes on stellar dynamo, internal magnetic field topology, and activity level. To do so, we have performed a series of 3D HD and MHD simulations with the ASH code. We choose five different models characterized by the radius of their radiative zone following an evolutionary track computed by a 1D stellar evolution code. These models characterized stellar evolution from 1 to 50 Myr. By introducing a seed magnetic field in the fully convective model and spreading its evolved state through all four remaining cases, we observe systematic variations in the dynamical properties and magnetic field amplitude and topology of the models. The five MHD simulations develop a strong dynamo field that can reach an equipartition state between the kinetic and magnetic energies and even superequipartition levels in the faster-rotating cases. We find that the magnetic field amplitude increases as it evolves toward the zero-age main sequence. Moreover, the magnetic field topology becomes more complex, with a decreasing axisymmetric component and a nonaxisymmetric one becoming predominant. The dipolar components decrease as the rotation rate and the size of the radiative core increase. The magnetic fields possess a mixed poloidal-toroidal topology with no obvious dominant component. Moreover, the relaxation of the vestige dynamo magnetic field within the radiative core is found to satisfy MHD stability criteria. Hence, it does not experience a global reconfiguration but slowly relaxes by retaining its mixed stable poloidal-toroidal topology.

  14. Spin and orbital exchange interactions from Dynamical Mean Field Theory

    Energy Technology Data Exchange (ETDEWEB)

    Secchi, A., E-mail: a.secchi@science.ru.nl [Radboud University, Institute for Molecules and Materials, 6525 AJ Nijmegen (Netherlands); Lichtenstein, A.I., E-mail: alichten@physnet.uni-hamburg.de [Universitat Hamburg, Institut für Theoretische Physik, Jungiusstraße 9, D-20355 Hamburg (Germany); Katsnelson, M.I., E-mail: m.katsnelson@science.ru.nl [Radboud University, Institute for Molecules and Materials, 6525 AJ Nijmegen (Netherlands)

    2016-02-15

    We derive a set of equations expressing the parameters of the magnetic interactions characterizing a strongly correlated electronic system in terms of single-electron Green's functions and self-energies. This allows to establish a mapping between the initial electronic system and a spin model including up to quadratic interactions between the effective spins, with a general interaction (exchange) tensor that accounts for anisotropic exchange, Dzyaloshinskii–Moriya interaction and other symmetric terms such as dipole–dipole interaction. We present the formulas in a format that can be used for computations via Dynamical Mean Field Theory algorithms. - Highlights: • We give formulas for the exchange interaction tensor in strongly correlated systems. • Interactions are written in terms of electronic Green's functions and self-energies. • The method is suitable for a Dynamical Mean Field Theory implementation. • No quenching of the orbital magnetic moments is assumed. • Spin and orbital contributions to magnetism can be computed separately.

  15. INFLUENCE OF DYNAMIC MAGNETIZATION TO IMPROVE THE EFFICIENCY OF ELECTROMAGNETIC-ACOUSTIC TRANSFORMATION WITH WAVEGUIDE CONTROL RODS

    Directory of Open Access Journals (Sweden)

    D. V. Zlobin

    2017-01-01

    Full Text Available The disadvantage of the electromagnetic-acoustic (EMA method receiving ultrasonic waves are low efficiency. The traditional way to enhance its effectiveness is increase the bias field. The aim of the study was research the way to improve the efficiency of the EMA transformation, using a time-varying bias field.The researches held with the help of a specially designed installation that allows the magnetization to be performed by a constant and alternating magnetic field (dynamic bias, synchronously with the passage of the received pulse. The object of the study were rods made of different grades of steel with a diameter of 4–6 mm, in which the symmetrical zero mode S0 of the rod wave was excited by the EMA method (in the frequency range of about 40 kHz. A comparative analysis of the amplitudes and form pulses of multiple reflections during static and dynamic reversal of magnetization and with a full cycle of magnetization reversal conducted.The result of the efficiency measurements EMA reception during static and dynamic bias found a significant (up to 5 times increase in the signal amplitude on the receiving transducer. Taking into account that the main contribution to the excitation mechanism and the reception mechanism made the magnetostrictive effect on low frecuncy, it can assumed that using a dynamic bias field is impacting significant on the effective mobility of magnetic domains (that is changes the dynamic magnetic susceptibility of the material. It is established that it is possible to monitor steel at lower values of the bias field, and, consequently, to reduce the mass dimensions of the magnetic system.Thus, in the course of the researchers found of effect of dynamic bias and effect of dynamic bias increase acoustic pulse amplitude of the signal of the received EMA method. Using this method will improve the quality EMA testing by creating more efficient EMA transducer. Taking into account that the value of the detected effect

  16. Effective field theory with differential operator technique for dynamic phase transition in ferromagnetic Ising model

    International Nuclear Information System (INIS)

    Kinoshita, Takehiro; Fujiyama, Shinya; Idogaki, Toshihiro; Tokita, Masahiko

    2009-01-01

    The non-equilibrium phase transition in a ferromagnetic Ising model is investigated by use of a new type of effective field theory (EFT) which correctly accounts for all the single-site kinematic relations by differential operator technique. In the presence of a time dependent oscillating external field, with decrease of the temperature the system undergoes a dynamic phase transition, which is characterized by the period averaged magnetization Q, from a dynamically disordered state Q = 0 to the dynamically ordered state Q ≠ 0. The results of the dynamic phase transition point T c determined from the behavior of the dynamic magnetization and the Liapunov exponent provided by EFT are improved than that of the standard mean field theory (MFT), especially for the one dimensional lattice where the standard MFT gives incorrect result of T c = 0 even in the case of zero external field.

  17. Generating the optimal magnetic field for magnetic refrigeration

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Insinga, Andrea Roberto; Smith, Anders

    2016-01-01

    In a magnetic refrigeration device the magnet is the single most expensive component, and therefore it is crucially important to ensure that an effective magnetic field as possible is generated using the least amount of permanent magnets. Here we present a method for calculating the optimal...... remanence distribution for any desired magnetic field. The method is based on the reciprocity theorem, which through the use of virtual magnets can be used to calculate the optimal remanence distribution. Furthermore, we present a method for segmenting a given magnet design that always results...... in the optimal segmentation, for any number of segments specified. These two methods are used to determine the optimal magnet design of a 12-piece, two-pole concentric cylindrical magnet for use in a continuously rotating magnetic refrigeration device....

  18. Earth magnetism a guided tour through magnetic fields

    CERN Document Server

    Campbell, Wallace H

    2001-01-01

    An introductory guide to global magnetic field properties, Earth Magnetism addresses, in non-technical prose, many of the frequently asked questions about Earth''s magnetic field. Magnetism surrounds and penetrates our Earth in ways basic science courses can rarely address. It affects navigation, communication, and even the growth of crystals. As we observe and experience an 11-year solar maximum, we may witness spectacular satellite-destroying solar storms as they interact with our magnetic field. Written by an acknowledged expert in the field, this book will enrich courses in earth science, atmospheric science, geology, meteorology, geomagnetism, and geophysics. Contains nearly 200 original illustrations and eight pages of full-color plates.* Largely mathematics-free and with a wide breadth of material suitable for general readers* Integrates material from geomagnetism, paleomagnetism, and solar-terrestrial space physics.* Features nearly 200 original illustrations and 4 pages of colour plates

  19. Split-Field Magnet facility upgraded

    CERN Multimedia

    CERN PhotoLab

    1977-01-01

    The Split Field Magnet (SFM) was the largest spectrometer for particles from beam-beam collisions in the ISR. It could determine particle momenta in a large solid angle, but was designed mainly for the analysis of forward travelling particles.As the magnet was working on the ISR circulating beams, its magnetic field had to be such as to restore the correct proton orbit.The SFM, therefore, produced zero field at the crossing point and fields of opposite signs upstream and downstream of it and was completed by 2 large and 2 small compensator magnets. The gradient effects were corrected by magnetic channels equipped with movable flaps. The useful magnetic field volume was 28 m3, the induction in the median plane 1.14 T, the gap heigth 1.1 m, the length 10.5 m, the weight about 1000 ton. Concerning the detectors, the SFM was the first massive application of multiwire proportional chambers (about 70000 wires) which filled the main and the large compensator magnets. In 1976 an improved programme was started with tw...

  20. Vortex and characteristics of prestrained type-II deformable superconductors under magnetic fields

    International Nuclear Information System (INIS)

    Ma, Zeling; Wang, Xingzhe; Zhou, Youhe

    2016-01-01

    Highlights: • A numerical investigation of magnetic vortex dynamics of a deformable superconductor with prestrains is presented. • The prestrain has a remarkable influence on the magnetic vortex distribution and dynamics. • The different prestrains, i.e., pre-given compression and tension strains, result in dissimilar characteristics. • The energy density and spectrum in the deformable superconductor are demonstrated. - Abstract: Based on the time-dependent Ginzburg–Landau (TDGL) theory and the linear deformation theory, we present a numerical investigation of magnetic vortex characteristics of a type-II deformable superconductor with prestrain. The effect of prestrain on the wave function, vortex dynamics and energy density of a superconducting film is analyzed by solving the nonlinear TDGL equations in the presence of magnetic field. The results show that the prestrain has a remarkable influence on the magnetic vortex distribution and the vortex dynamics, as well as value of wave function of the superconductor. The different prestrains, i.e., pre-given compression and tension strains, result in dissimilar characteristics on a half-plane of deformable superconductor in an applied magnetic field, and the vortex distribution and entrance in a two dimensional superconducting film. The studies demonstrated that the compression prestrain may speed up the vortexes entering into the region of the superconducting film and increases the vortex number in comparison with those of free-prestrain case, while the tension prestrain shows the reversal features. The energy density and spectrum in the superconductor are further demonstrated numerically and discussed. The present investigation is an attempt to give insight into the superconductivity and electromagnetic characteristics taking into account the elastic deformation in superconductors.

  1. Cosmic magnetic fields

    CERN Document Server

    Kronberg, Philipp P

    2016-01-01

    Magnetic fields are important in the Universe and their effects contain the key to many astrophysical phenomena that are otherwise impossible to understand. This book presents an up-to-date overview of this fast-growing topic and its interconnections to plasma processes, astroparticle physics, high energy astrophysics, and cosmic evolution. The phenomenology and impact of magnetic fields are described in diverse astrophysical contexts within the Universe, from galaxies to the filaments and voids of the intergalactic medium, and out to the largest redshifts. The presentation of mathematical formulae is accessible and is designed to add insight into the broad range of topics discussed. Written for graduate students and researchers in astrophysics and related disciplines, this volume will inspire readers to devise new ways of thinking about magnetic fields in space on galaxy scales and beyond.

  2. Controlling magnetic field profiles

    International Nuclear Information System (INIS)

    Freeman, J.R.

    1979-04-01

    A method for designing solenoid magnets with controlled field profiles is discussed. The method, originated by D.B. Montgomery, minimizes both the field errors and the power consumption. An NOS time-sharing computer program for the CDC-6600, entitled MAGCOR, was constructed to provide an interactive magnet design capability. Results obtained during the design of magnets for a radial line electron accelerator are presented. 9 figures

  3. Computation of demagnetizing fields and particle distribution in magnetic fluid with inhomogeneous density

    International Nuclear Information System (INIS)

    Pshenichnikov, A.F.

    2012-01-01

    A new algorithm for calculating magnetic fields in a concentrated magnetic fluid with inhomogeneous density is proposed. Inhomogeneity of the fluid is caused by magnetophoresis. In this case, the diffusion and magnetostatic parts of the problem are tightly linked together and are solved jointly. The dynamic diffusion equation is solved by the finite volume method and, to calculate the magnetic field inside the fluid, an iterative process is performed in parallel. The solution to the problem is sought in Cartesian coordinates, and the computational domain is decomposed into rectangular elements. This technique eliminates the need to solve the related boundary-value problem for magnetic fields, accelerates computations and eliminates the error caused by the finite sizes of the outer region. Formulas describing the contribution of the rectangular element to the field intensity in the case of a plane problem are given. Magnetic and concentration fields inside the magnetic fluid filling a rectangular cavity generated under the action of the uniform external filed are calculated. - Highlights: ▶ New algorithm for calculating magnetic field intense magnetic fluid with account of magnetophoresis and diffusion of particles. ▶ We do not need to solve boundary-value problem, but we accelerate computations and eliminate some errors. ▶ We solve nonlinear flow equation by the finite volume method and calculate magnetic and focus fields in the fluid for plane case.

  4. A balloon-borne experiment to investigate the Martian magnetic field

    Science.gov (United States)

    Schwingenschuh, K.; Feldhofer, H.; Koren, W.; Jernej, I.; Stachel, M.; Riedler, W.; Slamanig, H.; Auster, H.-U.; Rustenbach, J.; Fornacon, H. K.; Schenk, H. J.; Hillenmaier, O.; Haerendel, G.; Yeroshenko, Ye.; Styashkin, V.; Zaroutzky, A.; Best, A.; Scholz, G.; Russell, C. T.; Means, J.; Pierce, D.; Luhmann, J. G.

    1996-03-01

    The Space Research Institute of the Austrian Academy, of Sciences (Graz, Austria) in cooperation with MPE (Berlin, Germany), GFZ Potsdam (Obs. Niemegk, Germany) IZMIRAN/IOFAN (Moscow, Russian) and IGPP/UCLA (Los Angeles, USA) is designing the magnetic field experiment MAGIBAL (MAGnetic field experiment aboard a martian BALloon) to investigate the magnetic field on the surface of Mars. The dual sensor fluxgate magnetometer is part of the MARS-98/MARS-TOGETHER balloon payload. During a ten days period the balloon will float over a distance of about 2000 km at altitudes between 0 and 4 km. Due to the limited power and telemetry allocation the magnetometer can transmit only one vector per ten seconds and spectral information in the frequency range from 2 - 25 Hz. The dynamic range is +/- 2000 nT. The main scientific objectives of the experiment are: • Determination of the magnetism of the Martian rocks • Investigation of the leakage of the solar wind induced magnetosphere using the correlation between orbiter and balloon observations • Measurement of the magnetic field profile between the orbiter and the surface of Mars during the descent phase of the balloon. Terrestrial test flights with a hot air balloon were performed in order to test the original MAGIBAL equipment under balloon flight conditions.

  5. Electron-Spin Precession in Dependence of the Orientation of the External Magnetic Field.

    Science.gov (United States)

    Miah, M Idrish

    2009-03-13

    Electron-spin dynamics in semiconductor-based heterostructures has been investigated in oblique magnetic fields. Spins are generated optically by a circularly polarized light, and the dynamics of spins in dependence of the orientation (theta) of the magnetic field are studied. The electron-spin precession frequency, polarization amplitude, and decay rate as a function of theta are obtained and the reasons for their dependences are discussed. From the measured data, the values of the longitudinal and transverse components of the electron g-factor are estimated and are found to be in good agreement with those obtained in earlier investigations. The possible mechanisms responsible for the observed effects are also discussed.

  6. Observations and modeling of magnetized plasma jets and bubbles launched into a transverse B-field

    Science.gov (United States)

    Fisher, Dustin M.; Zhang, Yue; Wallace, Ben; Gilmore, Mark; Manchester, Ward B., IV; van der Holst, Bart; Rogers, Barrett N.; Hsu, Scott C.

    2017-10-01

    Hot, dense, plasma structures launched from a coaxial plasma gun on the HelCat dual-source plasma device at the University of New Mexico drag frozen-in magnetic flux into the chamber's background magnetic field providing a rich set of dynamics to study magnetic turbulence, force-free magnetic spheromaks, shocks, as well as CME-like dynamics possibly relevant to the solar corona. Vector magnetic field data from an eleven-tipped B-dot rake probe and images from an ultra-fast camera will be presented in comparison with ongoing MHD modeling using the 3-D MHD BATS-R-US code developed at the University of Michigan. BATS-R-US employs an adaptive mesh refinement grid (AMR) that enables the capture and resolution of shock structures and current sheets and is uniquely suited for flux-rope expansion modeling. Recent experiments show a possible magnetic Rayleigh-Taylor (MRT) instability that appears asymmetrically at the interface between launched spheromaks (bubbles) and their entraining background magnetic field. Efforts to understand this instability using in situ measurements, new chamber boundary conditions, and ultra-fast camera data will be presented. Work supported by the Army Research Office Award No. W911NF1510480.

  7. Field dependent shape variation of magnetic fluid droplets on magnetic dots

    International Nuclear Information System (INIS)

    Lee, Chiun-Peng; Yang, Shu-Ting; Wei, Zung-Hang

    2012-01-01

    The morphology of magnetic fluid droplets on magnetic thin film dots is studied experimentally, including the aspect ratio and the contact angle variation of the droplets. Under a uniform external magnetic field, the droplet's aspect ratio increases with the external field and with the diameter of the magnetic dot due to the concentrated magnetic flux inside the magnetic fluid droplet. Similar to the electrical wetting phenomenon, the induced magnetic dipoles in the magnetic film and in the magnetic fluid near the solid–liquid interface change the solid–liquid interfacial tension, and in consequence reduce the apparent contact angle of the magnetic fluid droplet. - Highlights: ► Morphology of ferrofluid droplets on magnetic thin film dots was studied experimentally. ► Aspect ratio of ferrofluid droplets was found to increase with increasing of magnetic field. ► Liquid–solid contact angle of ferrofluid droplets was found to vary with magnetic field. ► Relationship between magnetic field and the liquid–solid interfacial tension was modeled.

  8. Surface magnetic field measurement with magnetic shielding

    Czech Academy of Sciences Publication Activity Database

    Perevertov, Oleksiy

    2010-01-01

    Roč. 61, č. 7 (2010), 66-68 ISSN 1335-3632 Grant - others:AVČR(CZ) M100100906 Institutional research plan: CEZ:AV0Z10100520 Keywords : magnetic hysteresis * magnetic field measurement * magnetic shielding * extrapolation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.270, year: 2010

  9. Using axial magnetized permanent rings to build axial gradient magnetic field

    International Nuclear Information System (INIS)

    Peng Quanling

    2003-01-01

    Axial field produced by an axially magnetized permanent ring was studied. For two permanent magnet rings, if they are magnetized in the same direction, a nearly uniform axial field can be produced; if they are magnetized in opposite direction, an axial gradient field can be produced in the region between the two permanent rings, with the field strength changing from -B 0 to B 0 . A high gradient axial magnetic field has been built by using two axially magnetized permanent rings, the measured field results agree with the PANDIRA calculation very well. It is desirable that the field gradient can be varied to match various requirements. A method to produce the variable gradient field is presented. Axial gradient field can also be used as a beam focusing facility for linear accelerator if axial periodic field can be produced. Its magnetic field is similar to that of a solenoid, in which, large stray field will leak to the outside environment. A method for shielding the outside stray field is discussed

  10. CHARGED DUST GRAIN DYNAMICS SUBJECT TO SOLAR WIND, POYNTING–ROBERTSON DRAG, AND THE INTERPLANETARY MAGNETIC FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Lhotka, Christoph; Bourdin, Philippe; Narita, Yasuhito, E-mail: christoph.lhotka@oeaw.ac.at, E-mail: philippe.bourdin@oeaw.ac.at, E-mail: yasuhito.narita@oeaw.ac.at [Space Research Institute, Austrian Academy of Sciences, Schmiedlstrasse 6, A-8042 Graz (Austria)

    2016-09-01

    We investigate the combined effect of solar wind, Poynting–Robertson drag, and the frozen-in interplanetary magnetic field on the motion of charged dust grains in our solar system. For this reason, we derive a secular theory of motion by the means of an averaging method and validate it with numerical simulations of the unaveraged equations of motions. The theory predicts that the secular motion of charged particles is mainly affected by the z -component of the solar magnetic axis, or the normal component of the interplanetary magnetic field. The normal component of the interplanetary magnetic field leads to an increase or decrease of semimajor axis depending on its functional form and sign of charge of the dust grain. It is generally accepted that the combined effects of solar wind and photon absorption and re-emmision (Poynting–Robertson drag) lead to a decrease in semimajor axis on secular timescales. On the contrary, we demonstrate that the interplanetary magnetic field may counteract these drag forces under certain circumstances. We derive a simple relation between the parameters of the magnetic field, the physical properties of the dust grain, as well as the shape and orientation of the orbital ellipse of the particle, which is a necessary conditions for the stabilization in semimajor axis.

  11. TFTR magnetic field design analyses

    International Nuclear Information System (INIS)

    Davies, K.; Iwinski, E.; McWhirter, J.M.

    1975-11-01

    The three main magnetic field windings for the TFTR are the toroidal field (TF) windings, the ohmic heating (OH) winding, and the equilibrium field (EF) winding. The following information is provided for these windings: (1) descriptions, (2) functions, (3) magnetic designs, e.g., number and location of turns, (4) design methods, and (5) descriptions of resulting magnetic fields. This report does not deal with the thermal, mechanical support, or construction details of the windings

  12. Investigations on magnetic field induced optical transparency in magnetic nanofluids

    Science.gov (United States)

    Mohapatra, Dillip Kumar; Philip, John

    2018-02-01

    We study the magnetic field induced optical transparency and its origin in magnetic nanoemulsion of droplets of average size ∼200 nm containing superparamagnetic iron oxide nanoparticles. Beyond a certain volume fraction (Φ > 0.0021) of magnetic nanoemulsion and a critical magnetic field (Hc1), the transmitted light intensity increases drastically and reaches a maximum at another critical magnetic field (Hc2), beyond which the transmitted light intensity decreases and reaches a plateau. Interestingly, the transmitted light intensity at Hc2 is found to increase linearly with Φ and the critical magnetic fields Hc1 and Hc2 follow power law decay with Φ (i.e. Hc ∼ Φ-x), with exponents 0.48 and 0.27, respectively. The light intensity recovers to its initial value when the magnetic field is switched off, indicating the perfect reversibility of the field induced transparency process. The observed straight line scattered patterns above Hc2, on a screen placed perpendicular to the incident beam, confirms the formation of rod like anisotropic nanostructures perpendicular to the direction of light propagation. The magneto-optical measurements in the emulsion confirm that the observed field induced transparency in magnetic emulsions for Φ > 0.0021 is due to the optical birefringence caused by the rod like nanostructures. The reduced birefringence is found to be proportional to the square of the applied magnetic field. This finding offers several possibilities in using magnetic nanofluids in tunable optical devices.

  13. Dynamical mean-field theoretical approach to explore the temperature-dependent magnetization in Ta-doped TiO2

    Science.gov (United States)

    Majidi, M. A.; Umar, A. S.; Rusydi, A.

    2017-04-01

    TiO2 has, in recent years, become a hot subject as it holds a promise for spintronic application. Recent experimental study on anatase Ti1-x Ta x O2 (x ~ 0.05) thin films shows that the system changes from non-magnetic to ferromagnetic due to Ti vacancies that are formed when a small percentage of Ti atoms are substituted by Ta. Motivated by those results that reveal the ferromagnetic phase at room temperature, we conduct a theoretical study on the temperature-dependent magnetization and the Currie temperature of that system. We hypothesize that when several Ti vacancies are formed in the system, each of them induces a local magnetic moment, then such moments couple each other through Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction, forming a ferromagnetic order. To study the temperature dependence of the magnetization and predict the Curie temperature, we construct a tight-binding based Hamiltonian for this system and use the method of dynamical mean-field theory to perform calculations for various temperatures. Our work is still preliminary. The model and method may need further improvement to be consistent with known existing facts. We present our preliminary results to show how the present model works.

  14. Cosmic Rays in Intermittent Magnetic Fields

    International Nuclear Information System (INIS)

    Shukurov, Anvar; Seta, Amit; Bushby, Paul J.; Wood, Toby S.; Snodin, Andrew P.

    2017-01-01

    The propagation of cosmic rays in turbulent magnetic fields is a diffusive process driven by the scattering of the charged particles by random magnetic fluctuations. Such fields are usually highly intermittent, consisting of intense magnetic filaments and ribbons surrounded by weaker, unstructured fluctuations. Studies of cosmic-ray propagation have largely overlooked intermittency, instead adopting Gaussian random magnetic fields. Using test particle simulations, we calculate cosmic-ray diffusivity in intermittent, dynamo-generated magnetic fields. The results are compared with those obtained from non-intermittent magnetic fields having identical power spectra. The presence of magnetic intermittency significantly enhances cosmic-ray diffusion over a wide range of particle energies. We demonstrate that the results can be interpreted in terms of a correlated random walk.

  15. Cosmic Rays in Intermittent Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Shukurov, Anvar; Seta, Amit; Bushby, Paul J.; Wood, Toby S. [School of Mathematics and Statistics, Newcastle University, Newcastle Upon Tyne NE1 7RU (United Kingdom); Snodin, Andrew P., E-mail: a.seta1@ncl.ac.uk, E-mail: amitseta90@gmail.com [Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800 (Thailand)

    2017-04-10

    The propagation of cosmic rays in turbulent magnetic fields is a diffusive process driven by the scattering of the charged particles by random magnetic fluctuations. Such fields are usually highly intermittent, consisting of intense magnetic filaments and ribbons surrounded by weaker, unstructured fluctuations. Studies of cosmic-ray propagation have largely overlooked intermittency, instead adopting Gaussian random magnetic fields. Using test particle simulations, we calculate cosmic-ray diffusivity in intermittent, dynamo-generated magnetic fields. The results are compared with those obtained from non-intermittent magnetic fields having identical power spectra. The presence of magnetic intermittency significantly enhances cosmic-ray diffusion over a wide range of particle energies. We demonstrate that the results can be interpreted in terms of a correlated random walk.

  16. Satellite to study earth's magnetic field

    Science.gov (United States)

    1979-01-01

    The Magnetic Field Satellite (Magsat) designed to measure the near earth magnetic field and crustal anomalies is briefly described. A scalar magnetometer to measure the magnitude of the earth's crustal magnetic field and a vector magnetometer to measure magnetic field direction as well as magnitude are included. The mission and its objectives are summarized along with the data collection and processing system.

  17. Dynamic magnetic behavior of the mixed spin (2, 5/2) Ising system with antiferromagnetic/antiferromagnetic interactions on a bilayer square lattice

    International Nuclear Information System (INIS)

    Ertaş Mehmet; Keskin Mustafa

    2013-01-01

    Using the mean-field theory and Glauber-type stochastic dynamics, we study the dynamic magnetic properties of the mixed spin (2, 5/2) Ising system for the antiferromagnetic/antiferromagnetic (AFM/AFM) interactions on the bilayer square lattice under a time varying (sinusoidal) magnetic field. The time dependence of average magnetizations and the thermal variation of the dynamic magnetizations are examined to calculate the dynamic phase diagrams. The dynamic phase diagrams are presented in the reduced temperature and magnetic field amplitude plane and the effects of interlayer coupling interaction on the critical behavior of the system are investigated. We also investigate the influence of the frequency and find that the system displays richer dynamic critical behavior for higher values of frequency than that of the lower values of it. We perform a comparison with the ferromagnetic/ferromagnetic (FM/FM) and AFM/FM interactions in order to see the effects of AFM/AFM interaction and observe that the system displays richer and more interesting dynamic critical behaviors for the AFM/AFM interaction than those for the FM/FM and AFM/FM interactions. (general)

  18. Demagnetizing fields in active magnetic regenerators

    DEFF Research Database (Denmark)

    Nielsen, Kaspar Kirstein; Bahl, Christian R.H.; Smith, Anders

    2014-01-01

    A magnetic material in an externally applied magnetic field will in general experience a spatially varying internal magnetic field due to demagnetizing effects. When the performance of active magnetic regenerators (AMRs) is evaluated using numerical models the internal field is often assumed...... is in general both a function of the overall shape of the regenerator and its morphology (packed particles, parallel plates etc.) as well as the magnetization of the material. Due to the pronounced temperature dependence of the magnetization near the Curie temperature, the demagnetization field is also...... temperature dependent. We propose a relatively straightforward method to correct sufficiently for the demagnetizing field in AMR models. We discuss how the demagnetizing field behaves in regenerators made of packed spheres under realistic operation conditions....

  19. Observing Interstellar and Intergalactic Magnetic Fields

    Science.gov (United States)

    Han, J. L.

    2017-08-01

    Observational results of interstellar and intergalactic magnetic fields are reviewed, including the fields in supernova remnants and loops, interstellar filaments and clouds, Hii regions and bubbles, the Milky Way and nearby galaxies, galaxy clusters, and the cosmic web. A variety of approaches are used to investigate these fields. The orientations of magnetic fields in interstellar filaments and molecular clouds are traced by polarized thermal dust emission and starlight polarization. The field strengths and directions along the line of sight in dense clouds and cores are measured by Zeeman splitting of emission or absorption lines. The large-scale magnetic fields in the Milky Way have been best probed by Faraday rotation measures of a large number of pulsars and extragalactic radio sources. The coherent Galactic magnetic fields are found to follow the spiral arms and have their direction reversals in arms and interarm regions in the disk. The azimuthal fields in the halo reverse their directions below and above the Galactic plane. The orientations of organized magnetic fields in nearby galaxies have been observed through polarized synchrotron emission. Magnetic fields in the intracluster medium have been indicated by diffuse radio halos, polarized radio relics, and Faraday rotations of embedded radio galaxies and background sources. Sparse evidence for very weak magnetic fields in the cosmic web is the detection of the faint radio bridge between the Coma cluster and A1367. Future observations should aim at the 3D tomography of the large-scale coherent magnetic fields in our Galaxy and nearby galaxies, a better description of intracluster field properties, and firm detections of intergalactic magnetic fields in the cosmic web.

  20. FOREWORD: Focus on Materials Analysis and Processing in Magnetic Fields Focus on Materials Analysis and Processing in Magnetic Fields

    Science.gov (United States)

    Sakka, Yoshio; Hirota, Noriyuki; Horii, Shigeru; Ando, Tsutomu

    2009-03-01

    Recently, interest in the applications of feeble (diamagnetic and paramagnetic) magnetic materials has grown, whereas the popularity of ferromagnetic materials remains steady and high. This trend is due to the progress of superconducting magnet technology, particularly liquid-helium-free superconducting magnets that can generate magnetic fields of 10 T and higher. As the magnetic energy is proportional to the square of the applied magnetic field, the magnetic energy of such 10 T magnets is in excess of 10 000 times that of conventional 0.1 T permanent magnets. Consequently, many interesting phenomena have been observed over the last decade, such as the Moses effect, magnetic levitation and the alignment of feeble magnetic materials. Researchers in this area are widely spread around the world, but their number in Japan is relatively high, which might explain the success of magnetic field science and technology in Japan. Processing in magnetic fields is a rapidly expanding research area with a wide range of promising applications in materials science. The 3rd International Workshop on Materials Analysis and Processing in Magnetic Fields (MAP3), which was held on 14-16 May 2008 at the University of Tokyo, Japan, focused on various topics including magnetic field effects on chemical, physical, biological, electrochemical, thermodynamic and hydrodynamic phenomena; magnetic field effects on the crystal growth and processing of materials; diamagnetic levitation, the magneto-Archimedes effect, spin chemistry, magnetic orientation, control of structure by magnetic fields, magnetic separation and purification, magnetic-field-induced phase transitions, properties of materials in high magnetic fields, the development of NMR and MRI, medical applications of magnetic fields, novel magnetic phenomena, physical property measurement by magnetic fields, and the generation of high magnetic fields. This focus issue compiles 13 key papers selected from the proceedings of MAP3. Other

  1. Geminate free radical processes and magnetic field effects

    International Nuclear Information System (INIS)

    Eveson, Robert W.

    2000-01-01

    This thesis is concerned with the study of the dynamics of radical pair recombination reactions in solution by flash photolysis Electron Spin Resonance (ESR) and the influence of low static external magnetic fields upon them (MFE). An outline of the concepts of ESR is presented, followed by the theories of Chemically Induced Dynamic Electron Polarisation (CIDEP) of transient radical pairs. This is then followed by a brief review of the flash photolysis ESR apparatus and application of the Bloch equations to solve the equations of time-resolved ESR. Completing the theory section is an overview of the mechanisms by which magnetic fields alter the course of a geminate radical pair reaction in solution. Experimental CIDEP observations of the radical pair produced on photolysis of 1,3-dihydroxypropanone are simulated using polarisation theory and applied to a random-walk diffusion model to find, for the first time, the geminate reaction probability in solutions of varying viscosity. CIDEP spectra of the radical pair formed on photolysis of hydroxypropanone in contrast are not accounted for by current polarisation theory. The discrepancy is due to moderately fast relaxation of the acyl radical, CH 3 CO·, which alters the relative intensities in the ST 0 RPM pattern of the counter radical. Calculations taking into account this now provide an adequate basis for simulation of the spectrum. This method also, in principle, represents a new method for the measurement of phase relaxation times. Concluding the ESR work is a CIDEP study of 2,4,6-trimethylbenzoyl diphenylphosphine oxide. Unusual spin polarisation phenomena are found. The time-resolved optical absorption spectroscopy technique used for detecting low magnetic field effects on neutral radical pair reactions is described. Various improvements to the experiment are discussed which result in the observation of the low field effect for a neutral radical pair produced by Norrish type II chemistry. This is followed by an

  2. Five years of magnetic field management

    International Nuclear Information System (INIS)

    Durkin, C.J.; Fogarty, R.P.; Halleran, T.M.; Mark, Dr. D.A.; Mukhopadhyay, A.

    1995-01-01

    The extensive publicity of epidemiological studies inferring correlation between 60 Hz magnetic fields and childhood leukemia prompted world wide research programs that have as a goal to determine if low frequency magnetic fields represent any risk for the general population, children or utility workers. While supporting this research effort through EPRI, Con Edison embarked on a technical research program aimed to: characterize magnetic fields as to intensity and variation in time; and investigate practical means to manage these magnetic fields through currently known methods. The final goal of these research projects is to establish viable methods to reduce magnetic field intensity to desired values at reasonable distances from the sources. This goal was pursued step by step, starting with an inventory of the main sources of magnetic fields in substations, distribution and transmission facilities and generating plants. The characterization of the sources helped to identify typical cases and select specific cases, far practical applications. The next step was to analyze the specific cases and develop design criteria for managing the magnetic fields in new installations. These criteria included physical arrangement of equipment based oil calculation of magnetic fields, cancellation effect, desired maximum field intensity at specific points and shielding with high magnetic permeability metals (mu-metal and steel). This paper summarizes the authors' experiences and shows the results of the specific projects completed in recent years

  3. Magnetic field line Hamiltonian

    International Nuclear Information System (INIS)

    Boozer, A.H.

    1984-03-01

    The magnetic field line Hamiltonian and the associated canonical form for the magnetic field are important concepts both for understanding toroidal plasma physics and for practical calculations. A number of important properties of the canonical or Hamiltonian representation are derived and their importance is explained

  4. Tripolar electric field Structure in guide field magnetic reconnection

    Science.gov (United States)

    Fu, Song; Huang, Shiyong; Zhou, Meng; Ni, Binbin; Deng, Xiaohua

    2018-03-01

    It has been shown that the guide field substantially modifies the structure of the reconnection layer. For instance, the Hall magnetic and electric fields are distorted in guide field reconnection compared to reconnection without guide fields (i.e., anti-parallel reconnection). In this paper, we performed 2.5-D electromagnetic full particle simulation to study the electric field structures in magnetic reconnection under different initial guide fields (Bg). Once the amplitude of a guide field exceeds 0.3 times the asymptotic magnetic field B0, the traditional bipolar Hall electric field is clearly replaced by a tripolar electric field, which consists of a newly emerged electric field and the bipolar Hall electric field. The newly emerged electric field is a convective electric field about one ion inertial length away from the neutral sheet. It arises from the disappearance of the Hall electric field due to the substantial modification of the magnetic field and electric current by the imposed guide field. The peak magnitude of this new electric field increases linearly with the increment of guide field strength. Possible applications of these results to space observations are also discussed.

  5. Tripolar electric field Structure in guide field magnetic reconnection

    Directory of Open Access Journals (Sweden)

    S. Fu

    2018-03-01

    Full Text Available It has been shown that the guide field substantially modifies the structure of the reconnection layer. For instance, the Hall magnetic and electric fields are distorted in guide field reconnection compared to reconnection without guide fields (i.e., anti-parallel reconnection. In this paper, we performed 2.5-D electromagnetic full particle simulation to study the electric field structures in magnetic reconnection under different initial guide fields (Bg. Once the amplitude of a guide field exceeds 0.3 times the asymptotic magnetic field B0, the traditional bipolar Hall electric field is clearly replaced by a tripolar electric field, which consists of a newly emerged electric field and the bipolar Hall electric field. The newly emerged electric field is a convective electric field about one ion inertial length away from the neutral sheet. It arises from the disappearance of the Hall electric field due to the substantial modification of the magnetic field and electric current by the imposed guide field. The peak magnitude of this new electric field increases linearly with the increment of guide field strength. Possible applications of these results to space observations are also discussed.

  6. Full particle orbit effects in regular and stochastic magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Shun, E-mail: shun.ogawa@cpt.univ-mrs.fr [Aix Marseille Univ., Univ. Toulon, CNRS, CPT, Marseille (France); CEA, IRFM, F-13108 St. Paul-lez-Durance Cedex (France); Cambon, Benjamin; Leoncini, Xavier; Vittot, Michel [Aix Marseille Univ., Univ. Toulon, CNRS, CPT, Marseille (France); Castillo-Negrete, Diego del [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6169 (United States); Dif-Pradalier, Guilhem; Garbet, Xavier [CEA, IRFM, F-13108 St. Paul-lez-Durance Cedex (France)

    2016-07-15

    We present a numerical study of charged particle motion in a time-independent magnetic field in cylindrical geometry. The magnetic field model consists of an unperturbed reversed-shear (non-monotonic q-profile) helical part and a perturbation consisting of a superposition of modes. Contrary to most of the previous studies, the particle trajectories are computed by directly solving the full Lorentz force equations of motion in a six-dimensional phase space using a sixth-order, implicit, symplectic Gauss-Legendre method. The level of stochasticity in the particle orbits is diagnosed using averaged, effective Poincare sections. It is shown that when only one mode is present, the particle orbits can be stochastic even though the magnetic field line orbits are not stochastic (i.e., fully integrable). The lack of integrability of the particle orbits in this case is related to separatrix crossing and the breakdown of the global conservation of the magnetic moment. Some perturbation consisting of two modes creates resonance overlapping, leading to Hamiltonian chaos in magnetic field lines. Then, the particle orbits exhibit a nontrivial dynamics depending on their energy and pitch angle. It is shown that the regions where the particle motion is stochastic decrease as the energy increases. The non-monotonicity of the q-profile implies the existence of magnetic ITBs (internal transport barriers) which correspond to shearless flux surfaces located in the vicinity of the q-profile minimum. It is shown that depending on the energy, these magnetic ITBs might or might not confine particles. That is, magnetic ITBs act as an energy-dependent particle confinement filter. Magnetic field lines in reversed-shear configurations exhibit topological bifurcations (from homoclinic to heteroclinic) due to separatrix reconnection. We show that a similar but more complex scenario appears in the case of particle orbits that depend in a non-trivial way on the energy and pitch angle of the

  7. Terahertz probes of magnetic field induced spin reorientation in YFeO{sub 3} single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Xian; Jiang, Junjie; Ma, Guohong, E-mail: ghma@staff.shu.edu.cn [Department of Physics, Shanghai University, Shanghai 200444 (China); Jin, Zuanming [Department of Physics, Shanghai University, Shanghai 200444 (China); Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz (Germany); Wang, Dongyang; Tian, Zhen; Han, Jiaguang [Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Key Laboratory of Optoelectronics Information and Technology (Ministry of Education), Tianjin University, Tianjin 300072 (China); Cheng, Zhenxiang [Department of Physics, Shanghai University, Shanghai 200444 (China); Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, New South Wales 2522 (Australia)

    2015-03-02

    Using the terahertz time-domain spectroscopy, we demonstrate the spin reorientation of a canted antiferromagnetic YFeO{sub 3} single crystal, by evaluating the temperature and magnetic field dependence of resonant frequency and amplitude for the quasi-ferromagnetic (FM) and quasi-antiferromagnetic modes (AFM), a deeper insight into the dynamics of spin reorientation in rare-earth orthoferrites is established. Due to the absence of 4f-electrons in Y ion, the spin reorientation of Fe sublattices can only be induced by the applied magnetic field, rather than temperature. In agreement with the theoretical predication, the frequency of FM mode decreases with magnetic field. In addition, an obvious step of spin reorientation phase transition occurs with a relatively large applied magnetic field of 4 T. By comparison with the family members of RFeO{sub 3} (R = Y{sup 3+} or rare-earth ions), our results suggest that the chosen of R would tailor the dynamical rotation properties of Fe ions, leading to the designable spin switching in the orthoferrite antiferromagnetic systems.

  8. STRONG SOLAR WIND DYNAMIC PRESSURE PULSES: INTERPLANETARY SOURCES AND THEIR IMPACTS ON GEOSYNCHRONOUS MAGNETIC FIELDS

    International Nuclear Information System (INIS)

    Zuo, Pingbing; Feng, Xueshang; Wang, Yi; Xie, Yanqiong; Xu, Xiaojun

    2015-01-01

    In this investigation, we first present a statistical result of the interplanetary sources of very strong solar wind dynamic pressure pulses (DPPs) detected by WIND during solar cycle 23. It is found that the vast majority of strong DPPs reside within solar wind disturbances. Although the variabilities of geosynchronous magnetic fields (GMFs) due to the impact of positive DPPs have been well established, there appears to be no systematic investigations on the response of GMFs to negative DPPs. Here, we study both the decompression effects of very strong negative DPPs and the compression from strong positive DPPs on GMFs at different magnetic local time sectors. In response to the decompression of strong negative DPPs, GMFs on the dayside near dawn and near dusk on the nightside, are generally depressed. But near the midnight region, the responses of GMF are very diverse, being either positive or negative. For part of the events when GOES is located at the midnight sector, the GMF is found to abnormally increase as the result of magnetospheric decompression caused by negative DPPs. It is known that under certain conditions magnetic depression of nightside GMFs can be caused by the impact of positive DPPs. Here, we find that a stronger pressure enhancement may have a higher probability of producing the exceptional depression of GMF at the midnight region. Statistically, both the decompression effect of strong negative DPPs and the compression effect of strong positive DPPs depend on the magnetic local time, which are stronger at the noon sector

  9. STRONG SOLAR WIND DYNAMIC PRESSURE PULSES: INTERPLANETARY SOURCES AND THEIR IMPACTS ON GEOSYNCHRONOUS MAGNETIC FIELDS

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, Pingbing; Feng, Xueshang; Wang, Yi [SIGMA Weather Group, State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing (China); Xie, Yanqiong [College of Meteorology and Oceanography, PLA University of Science and Technology, Nanjing (China); Xu, Xiaojun, E-mail: pbzuo@spaceweather.ac.cn, E-mail: fengx@spaceweather.ac.cn [Space Science Institute, Macau University of Science and Technology, Macao (China)

    2015-10-20

    In this investigation, we first present a statistical result of the interplanetary sources of very strong solar wind dynamic pressure pulses (DPPs) detected by WIND during solar cycle 23. It is found that the vast majority of strong DPPs reside within solar wind disturbances. Although the variabilities of geosynchronous magnetic fields (GMFs) due to the impact of positive DPPs have been well established, there appears to be no systematic investigations on the response of GMFs to negative DPPs. Here, we study both the decompression effects of very strong negative DPPs and the compression from strong positive DPPs on GMFs at different magnetic local time sectors. In response to the decompression of strong negative DPPs, GMFs on the dayside near dawn and near dusk on the nightside, are generally depressed. But near the midnight region, the responses of GMF are very diverse, being either positive or negative. For part of the events when GOES is located at the midnight sector, the GMF is found to abnormally increase as the result of magnetospheric decompression caused by negative DPPs. It is known that under certain conditions magnetic depression of nightside GMFs can be caused by the impact of positive DPPs. Here, we find that a stronger pressure enhancement may have a higher probability of producing the exceptional depression of GMF at the midnight region. Statistically, both the decompression effect of strong negative DPPs and the compression effect of strong positive DPPs depend on the magnetic local time, which are stronger at the noon sector.

  10. Transmission of Mössbauer rays through ferromagnets in radio-frequency magnetic field

    International Nuclear Information System (INIS)

    Dzyublik, A. Ya.; Sadykov, E. K.; Petrov, G. I.; Arinin, V. V.; Vagizov, F. G.; Spivak, V. Yu.

    2013-01-01

    The transmission of Mössbauer radiation through a thick ferromagnetic crystal, exposed to a radio-frequency (rf) magnetic field, is studied. The quantum-mechanical dynamical scattering theory is developed, taking into account the periodical reversals of the magnetic field at the nuclei. The Mössbauer forward scattering (FS) spectra of the weak ferromagnet FeBO 3 placed into rf field are measured. It is found that the coherent gamma wave in the crystal absorbs or emits only couples of the rf photons. As a result, the FS spectra consist of equidistant lines spaced by twice the frequency of the rf field in contrast to the absorption spectra

  11. Study on magnetic field mapping within cylindrical center volume of general magnet

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Li; Lee, Sang Jin [Uiduk University, Gyeongju (Korea, Republic of)

    2016-06-15

    For the magnetic field analysis or design, it is important to know the behavior of the magnetic field in an interesting space. Magnetic field mapping becomes a useful tool for the study of magnetic field. In this paper, a numerical way for mapping the magnetic field within the cylindrical center volume of magnet is presented, based on the solution of the Laplace's equation in the cylindrical coordinate system. The expression of the magnetic field can be obtained by the magnetic flux density, which measured in the mapped volume. According to the form of the expression, the measurement points are arranged with the parallel cylindrical line (PCL) method. As example, the magnetic flux density generated by an electron cyclotron resonance ion source (ECRIS) magnet and a quadrupole magnet were mapped using the PCL method, respectively. The mapping results show the PCL arrangement method is feasible and convenience to map the magnetic field within a cylindrical center volume generated by the general magnet.

  12. Geometric Phase of the Gyromotion for Charged Particles in a Time-dependent Magnetic Field

    International Nuclear Information System (INIS)

    Liu, Jian; Qin, Hong

    2011-01-01

    We study the dynamics of the gyrophase of a charged particle in a magnetic field which is uniform in space but changes slowly with time. As the magnetic field evolves slowly with time, the changing of the gyrophase is composed of two parts. The rst part is the dynamical phase, which is the time integral of the instantaneous gyrofrequency. The second part, called geometric gyrophase, is more interesting, and it is an example of the geometric phase which has found many important applications in different branches of physics. If the magnetic field returns to the initial value after a loop in the parameter space, then the geometric gyrophase equals the solid angle spanned by the loop in the parameter space. This classical geometric gyrophase is compared with the geometric phase (the Berry phase) of the spin wave function of an electron placed in the same adiabatically changing magnetic field. Even though gyromotion is not the classical counterpart of the quantum spin, the similarities between the geometric phases of the two cases nevertheless reveal the similar geometric nature of the different physics laws governing these two physics phenomena.

  13. A fast continuous magnetic field measurement system based on digital signal processors

    International Nuclear Information System (INIS)

    Velev, G.V.; Carcagno, R.; DiMarco, J.; Kotelnikov, S.; Lamm, M.; Makulski, A.; Maroussov, V.; Nehring, R.; Nogiec, J.; Orris, D.; Poukhov, O.; Prakoshyn, F.; Schlabach, P.; Tompkins, J.C.

    2005-01-01

    In order to study dynamic effects in accelerator magnets, such as the decay of the magnetic field during the dwell at injection and the rapid so-called ''snapback'' during the first few seconds of the resumption of the energy ramp, a fast continuous harmonics measurement system was required. A new magnetic field measurement system, based on the use of digital signal processors (DSP) and Analog to Digital (A/D) converters, was developed and prototyped at Fermilab. This system uses Pentek 6102 16 bit A/D converters and the Pentek 4288 DSP board with the SHARC ADSP-2106 family digital signal processor. It was designed to acquire multiple channels of data with a wide dynamic range of input signals, which are typically generated by a rotating coil probe. Data acquisition is performed under a RTOS, whereas processing and visualization are performed under a host computer. Firmware code was developed for the DSP to perform fast continuous readout of the A/D FIFO memory and integration over specified intervals, synchronized to the probe's rotation in the magnetic field. C, C++ and Java code was written to control the data acquisition devices and to process a continuous stream of data. The paper summarizes the characteristics of the system and presents the results of initial tests and measurements

  14. Hypernuclear matter in strong magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Monika [Institute for Theoretical Physics, J.W. Goethe-University, D-60438 Frankfurt am Main (Germany); Indian Institute of Technology Rajasthan, Old Residency Road, Ratanada, Jodhpur 342011 (India); Mukhopadhyay, Banibrata [Department of Physics, Indian Institute of Science, Bangalore 560012 (India); Sedrakian, Armen, E-mail: sedrakian@th.physik.uni-frankfurt.de [Institute for Theoretical Physics, J.W. Goethe-University, D-60438 Frankfurt am Main (Germany)

    2013-01-17

    Compact stars with strong magnetic fields (magnetars) have been observationally determined to have surface magnetic fields of order of 10{sup 14}–10{sup 15} G, the implied internal field strength being several orders larger. We study the equation of state and composition of dense hypernuclear matter in strong magnetic fields in a range expected in the interiors of magnetars. Within the non-linear Boguta–Bodmer–Walecka model we find that the magnetic field has sizable influence on the properties of matter for central magnetic field B⩾10{sup 17} G, in particular the matter properties become anisotropic. Moreover, for the central fields B⩾10{sup 18} G, the magnetized hypernuclear matter shows instability, which is signalled by the negative sign of the derivative of the pressure parallel to the field with respect to the density, and leads to vanishing parallel pressure at the critical value B{sub cr}≃10{sup 19} G. This limits the range of admissible homogeneously distributed fields in magnetars to fields below the critical value B{sub cr}.

  15. Singularities of the dynamical structure factors of the spin-1/2 XXX chain at finite magnetic field

    Science.gov (United States)

    Carmelo, J. M. P.; Sacramento, P. D.; Machado, J. D. P.; Campbell, D. K.

    2015-10-01

    We study the longitudinal and transverse spin dynamical structure factors of the spin-1/2 XXX chain at finite magnetic field h, focusing in particular on the singularities at excitation energies in the vicinity of the lower thresholds. While the static properties of the model can be studied within a Fermi-liquid like description in terms of pseudoparticles, our derivation of the dynamical properties relies on the introduction of a form of the ‘pseudofermion dynamical theory’ (PDT) of the 1D Hubbard model suitably modified for the spin-only XXX chain and other models with two pseudoparticle Fermi points. Specifically, we derive the exact momentum and spin-density dependences of the exponents {{\\zeta}τ}(k) controlling the singularities for both the longitudinal ≤ft(τ =l\\right) and transverse ≤ft(τ =t\\right) dynamical structure factors for the whole momentum range k\\in ]0,π[ , in the thermodynamic limit. This requires the numerical solution of the integral equations that define the phase shifts in these exponents expressions. We discuss the relation to neutron scattering and suggest new experiments on spin-chain compounds using a carefully oriented crystal to test our predictions.

  16. Tuning Bacterial Hydrodynamics with Magnetic Fields: A Path to Bacterial Robotics

    Science.gov (United States)

    Pierce, Christopher; Mumper, Eric; Brangham, Jack; Wijesinghe, Hiran; Lower, Stephen; Lower, Brian; Yang, Fengyuan; Sooryakumar, Ratnasingham

    Magnetotactic Bacteria (MTB) are a group of motile prokaryotes that synthesize chains of lipid-bound, magnetic nano-particles. In this study, the innate magnetism of these flagellated swimmers is exploited to explore their hydrodynamics near confining surfaces, using the magnetic field as a tuning parameter. With weak (Gauss), uniform, external, magnetic ?elds and the field gradients arising from micro-magnetic surface patterns, the relative strength of hydrodynamic, magnetic and ?agellar force components is tuned through magnetic control of the bacteria's orientation and position. In addition to direct measurement of several hydrodynamic quantities related to the motility of individual cells, their tunable dynamics reveal a number of novel, highly controllable swimming behaviors with potential value in micro-robotics applications. Specifically, the experiments permit the MTB cells to be directed along parallel or divergent trajectories, suppress their flagellar forces through magnetic means, and induce transitions between planar, circulating trajectories and drifting, vertically oriented ``top-like'' motion. The implications of the work for fundamental hydrodynamics research as well as bacterially driven robotics applications will be discussed.

  17. Mercury's magnetic field and interior

    International Nuclear Information System (INIS)

    Connerney, J.E.P.; Ness, N.F.

    1988-01-01

    The magnetic-field data collected on Mercury by the Mariner-10 spacecraft present substantial evidence for an intrinsic global magnetic field. However, studies of Mercury's thermal evolution show that it is most likely that the inner core region of Mercury solidified or froze early in the planet's history. Thus, the explanation of Mercury's magnetic field in the framework of the traditional planetary dynamo is less than certain

  18. Dynamics of the solar magnetic field. V. Velocities associated with changing magnetic fields

    International Nuclear Information System (INIS)

    Levine, R.H.; Nakagawa, Y.

    1975-01-01

    Methods of determining horizontal velocities from the magnetic induction equation on the basis of a time series of magnetogram observations are discussed. For the flare of 1972 August 7, it is shown that a previously developed method of predicting positions of likely flare activity provides reasonable agreement with observations. Limitations to this type of solution of the magnetic induction equation are pointed out, and unambiguous solutions, corresponding to phenomenological determinations of velocity patterns under various physical circumstances, are presented for simple magnetic configurations. Implications for the analysis of changes in a series of magnetogram observations are discussed

  19. Magnetic monopole plasma oscillations and the survival of Galactic magnetic fields

    International Nuclear Information System (INIS)

    Parker, E.N.

    1987-01-01

    This paper explores the general nature of magnetic-monopole plasma oscillations as a theoretical possibility for the observed Galactic magnetic field in the presence of a high abundance of magnetic monopoles. The modification of the hydromagnetic induction equation by the monopole oscillations produces the half-velocity effect, in which the magnetic field is transported bodily with a velocity midway between the motion of the conducting fluid and the monopole plasma. Observational studies of the magnetic field in the Galaxy, and in other galaxies, exclude the half-velocity effect, indicating that the magnetic fields is not associated with monopole oscillations. In any case the phase mixing would destroy the oscillations in less than 100 Myr. The conclusion is that magnetic monopole oscillations do not play a significant role in the galactic magnetic fields. Hence the existence of galactic magnetic fields places a low limit on the monopole flux, so that their detection - if they exist at all - requires a collecting area at least as large as a football field. 47 references

  20. Magnetic dynamic properties of electron-doped La(0.23)Ca(0.77)MnO3 nanoparticles.

    Science.gov (United States)

    Dolgin, B; Puzniak, R; Mogilyansky, D; Wisniewski, A; Markovich, V; Jung, G

    2013-02-20

    Magnetic properties of basically antiferromagnetic La(0.23)Ca(0.77)MnO(3) particles with average sizes of 12 and 60 nm have been investigated in a wide range of magnetic fields and temperature. Particular attention has been paid to magnetization dynamics through measurements of the temperature dependence of ac-susceptibility at various frequencies, the temperature and field dependence of thermoremanent and isothermoremanent magnetization originating from nanoparticles shells, and the time decay of the remanent magnetization. Experimental results and their analysis reveal the major role in magnetic behaviour of investigated antiferromagnetic nanoparticles played by the glassy component, associated mainly with the formation of the collective state formed by ferromagnetic clusters in frustrated coordination at the surfaces of interacting antiferromagnetic nanoparticles. Magnetic behaviour of nanoparticles has been ascribed to a core-shell scenario. Magnetic transitions have been found to play an important role in determining the dynamic properties of the phase separated state of coexisting different magnetic phases.

  1. Magnetic dynamic properties of electron-doped La0.23Ca0.77MnO3 nanoparticles

    International Nuclear Information System (INIS)

    Dolgin, B; Markovich, V; Jung, G; Puzniak, R; Wisniewski, A; Mogilyansky, D

    2013-01-01

    Magnetic properties of basically antiferromagnetic La 0.23 Ca 0.77 MnO 3 particles with average sizes of 12 and 60 nm have been investigated in a wide range of magnetic fields and temperature. Particular attention has been paid to magnetization dynamics through measurements of the temperature dependence of ac-susceptibility at various frequencies, the temperature and field dependence of thermoremanent and isothermoremanent magnetization originating from nanoparticles shells, and the time decay of the remanent magnetization. Experimental results and their analysis reveal the major role in magnetic behaviour of investigated antiferromagnetic nanoparticles played by the glassy component, associated mainly with the formation of the collective state formed by ferromagnetic clusters in frustrated coordination at the surfaces of interacting antiferromagnetic nanoparticles. Magnetic behaviour of nanoparticles has been ascribed to a core–shell scenario. Magnetic transitions have been found to play an important role in determining the dynamic properties of the phase separated state of coexisting different magnetic phases. (paper)

  2. Magnetic-field-induced dose effects in MR-guided radiotherapy systems: dependence on the magnetic field strength.

    Science.gov (United States)

    Raaijmakers, A J E; Raaymakers, B W; Lagendijk, J J W

    2008-02-21

    Several institutes are currently working on the development of a radiotherapy treatment system with online MR imaging (MRI) modality. The main difference between their designs is the magnetic field strength of the MRI system. While we have chosen a 1.5 Tesla (T) magnetic field strength, the Cross Cancer Institute in Edmonton will be using a 0.2 T MRI scanner and the company Viewray aims to use 0.3 T. The magnetic field strength will affect the severity of magnetic field dose effects, such as the electron return effect (ERE): considerable dose increase at tissue air boundaries due to returning electrons. This paper has investigated how the ERE dose increase depends on the magnetic field strength. Therefore, four situations where the ERE occurs have been simulated: ERE at the distal side of the beam, the lateral ERE, ERE in cylindrical air cavities and ERE in the lungs. The magnetic field comparison values were 0.2, 0.75, 1.5 and 3 T. Results show that, in general, magnetic field dose effects are reduced at lower magnetic field strengths. At the distal side, the ERE dose increase is largest for B = 0.75 T and depends on the irradiation field size for B = 0.2 T. The lateral ERE is strongest for B = 3 T but shows no effect for B = 0.2 T. Around cylindrical air cavities, dose inhomogeneities disappear if the radius of the cavity becomes small relative to the in-air radius of the secondary electron trajectories. At larger cavities (r > 1 cm), dose inhomogeneities exist for all magnetic field strengths. In water-lung-water phantoms, the ERE dose increase takes place at the water-lung transition and the dose decreases at the lung-water transition, but these effects are minimal for B = 0.2 T. These results will contribute to evaluating the trade-off between magnetic field dose effects and image quality of MR-guided radiotherapy systems.

  3. Magnetic-field-induced dose effects in MR-guided radiotherapy systems: dependence on the magnetic field strength

    International Nuclear Information System (INIS)

    Raaijmakers, A J E; Raaymakers, B W; Lagendijk, J J W

    2008-01-01

    Several institutes are currently working on the development of a radiotherapy treatment system with online MR imaging (MRI) modality. The main difference between their designs is the magnetic field strength of the MRI system. While we have chosen a 1.5 Tesla (T) magnetic field strength, the Cross Cancer Institute in Edmonton will be using a 0.2 T MRI scanner and the company Viewray aims to use 0.3 T. The magnetic field strength will affect the severity of magnetic field dose effects, such as the electron return effect (ERE): considerable dose increase at tissue air boundaries due to returning electrons. This paper has investigated how the ERE dose increase depends on the magnetic field strength. Therefore, four situations where the ERE occurs have been simulated: ERE at the distal side of the beam, the lateral ERE, ERE in cylindrical air cavities and ERE in the lungs. The magnetic field comparison values were 0.2, 0.75, 1.5 and 3 T. Results show that, in general, magnetic field dose effects are reduced at lower magnetic field strengths. At the distal side, the ERE dose increase is largest for B = 0.75 T and depends on the irradiation field size for B = 0.2 T. The lateral ERE is strongest for B = 3 T but shows no effect for B = 0.2 T. Around cylindrical air cavities, dose inhomogeneities disappear if the radius of the cavity becomes small relative to the in-air radius of the secondary electron trajectories. At larger cavities (r > 1 cm), dose inhomogeneities exist for all magnetic field strengths. In water-lung-water phantoms, the ERE dose increase takes place at the water-lung transition and the dose decreases at the lung-water transition, but these effects are minimal for B = 0.2 T. These results will contribute to evaluating the trade-off between magnetic field dose effects and image quality of MR-guided radiotherapy systems

  4. Excitonic magnet in external field: Complex order parameter and spin currents

    Science.gov (United States)

    Geffroy, D.; Hariki, A.; Kuneš, J.

    2018-04-01

    We investigate spin-triplet exciton condensation in the two-orbital Hubbard model close to half-filling by means of dynamical mean-field theory. Employing an impurity solver that handles complex off-diagonal hybridization functions, we study the behavior of excitonic condensate in stoichiometric and doped systems subject to external magnetic field. We find a general tendency of the triplet order parameter to lie perpendicular with the applied field and identify exceptions from this rule. For solutions exhibiting k -odd spin textures, we discuss the Bloch theorem, which, in the absence of spin-orbit coupling, forbids the appearance of spontaneous net spin current. We demonstrate that the Bloch theorem is not obeyed by the dynamical mean-field theory.

  5. Non-Extensive Statistical Analysis of Solar Wind Electric, Magnetic Fields and Solar Energetic Particle time series.

    Science.gov (United States)

    Pavlos, G. P.; Malandraki, O.; Khabarova, O.; Livadiotis, G.; Pavlos, E.; Karakatsanis, L. P.; Iliopoulos, A. C.; Parisis, K.

    2017-12-01

    In this work we study the non-extensivity of Solar Wind space plasma by using electric-magnetic field data obtained by in situ spacecraft observations at different dynamical states of solar wind system especially in interplanetary coronal mass ejections (ICMEs), Interplanetary shocks, magnetic islands, or near the Earth Bow shock. Especially, we study the energetic particle non extensive fractional acceleration mechanism producing kappa distributions as well as the intermittent turbulence mechanism producing multifractal structures related with the Tsallis q-entropy principle. We present some new and significant results concerning the dynamics of ICMEs observed in the near Earth at L1 solar wind environment, as well as its effect in Earth's magnetosphere as well as magnetic islands. In-situ measurements of energetic particles at L1 are analyzed, in response to major solar eruptive events at the Sun (intense flares, fast CMEs). The statistical characteristics are obtained and compared for the Solar Energetic Particles (SEPs) originating at the Sun, the energetic particle enhancements associated with local acceleration during the CME-driven shock passage over the spacecraft (Energetic Particle Enhancements, ESPs) as well as the energetic particle signatures observed during the passage of the ICME. The results are referred to Tsallis non-extensive statistics and in particular to the estimation of Tsallis q-triplet, (qstat, qsen, qrel) of electric-magnetic field and the kappa distributions of solar energetic particles time series of the ICME, magnetic islands, resulting from the solar eruptive activity or the internal Solar Wind dynamics. Our results reveal significant differences in statistical and dynamical features, indicating important variations of the magnetic field dynamics both in time and space domains during the shock event, in terms of rate of entropy production, relaxation dynamics and non-equilibrium meta-stable stationary states.

  6. Magnetic Fields in the Early Universe

    CERN Document Server

    Grasso, D; Grasso, D

    2001-01-01

    This review concerns the origin and the possible effects of magnetic fields in the early Universe. We start by providing to the reader with a short overview of the current state of art of observations of cosmic magnetic fields. We then illustrate the arguments in favour of a primordial origin of magnetic fields in the galaxies and in the clusters of galaxies. We argue that the most promising way to test this hypothesis is to look for possible imprints of magnetic fields on the temperature and polarization anisotropies of the cosmic microwave background radiation (CMBR). With this purpose in mind, we provide a review of the most relevant effects of magnetic fields on the CMBR. A long chapter of this review is dedicated to particle physics inspired models which predict the generation of magnetic fields during the early Universe evolution. Although it is still unclear if any of these models can really explain the origin of galactic and intergalactic magnetic fields, we show that interesting effects may arise any...

  7. Development of high field superconducting magnet

    International Nuclear Information System (INIS)

    Irie, Fujio; Takeo, Masakatsu.

    1986-01-01

    Recently, in connection with nuclear fusion research, the development of high field superconducting magnets showed rapid progress. The development of high field magnets of 15 T class by the techniques of winding after heat treatment has been continued in various places, as these techniques are suitable to make large magnets. In 1985, Kyushu University attained the record of 15.5 T. However in high field magnets, there are many problems peculiar to them, and the basic research related to those is demanded. In this report, these general problems, the experience of the design and manufacture in Kyushu University and the related problems are described. The superconducting magnet installed in the Superconducting Magnet Research Center of Kyushu University attained the record of 15.5 T for the first time in March, 1985. In superconducting magnets, very difficult problem must be solved since superconductivity, heat and mechanical force are inter related. The problems of the wire materials for high field, the scale of high field magnets, the condition limiting mean current density, and the development of high field magnets in Kyushu University are described. (Kako, I.)

  8. Comparing UV/EUV line parameters and magnetic field in a quiescent prominence with tornadoes

    Science.gov (United States)

    Levens, P. J.; Labrosse, N.; Schmieder, B.; López Ariste, A.; Fletcher, L.

    2017-10-01

    Context. Understanding the relationship between plasma and the magnetic field is important for describing and explaining the observed dynamics of solar prominences. Aims: We determine if a close relationship can be found between plasma and magnetic field parameters, measured at high resolution in a well-observed prominence. Methods: A prominence observed on 15 July 2014 by the Interface Region Imaging Spectrograph (IRIS), Hinode, the Solar Dynamics Observatory (SDO), and the Télescope Héliographique pour l'Étude du Magnétisme et des Instabilités Solaires (THEMIS) is selected. We perform a robust co-alignment of data sets using a 2D cross-correlation technique. Magnetic field parameters are derived from spectropolarimetric measurements of the He I D3 line from THEMIS. Line ratios and line-of-sight velocities from the Mg II h and k lines observed by IRIS are compared with magnetic field strength, inclination, and azimuth. Electron densities are calculated using Fe xii line ratios from the Hinode Extreme-ultraviolet Imaging Spectrometer, which are compared to THEMIS and IRIS data. Results: We find Mg II k/h ratios of around 1.4 everywhere, similar to values found previously in prominences. Also, the magnetic field is strongest ( 30 G) and predominantly horizontal in the tornado-like legs of the prominence. The k3 Doppler shift is found to be between ±10 km s-1 everywhere. Electron densities at a temperature of 1.5 × 106 K are found to be around 109 cm-3. No significant correlations are found between the magnetic field parameters and any of the other plasma parameters inferred from spectroscopy, which may be explained by the large differences in the temperatures of the lines used in this study. Conclusions: This is the first time that a detailed statistical study of plasma and magnetic field parameters has been performed at high spatial resolution in a prominence. Our results provide important constraints on future models of the plasma and magnetic field in

  9. The measurement of solar magnetic fields

    International Nuclear Information System (INIS)

    Stenflo, J.O.

    1978-01-01

    Solar activity is basically caused by the interaction between magnetic fields, solar rotation and convective motions. Detailed mapping of the Sun's rapidly varying magnetic field helps in the understanding of the mechanisms of solar activity. Observations in recent years have revealed unexpected and intriguing properties of solar magnetic fields, the explanation of which has become a challenge to plasma physicists. This review deals primarily with how the Sun's magnetic field is measured, but it also includes a brief review of the present observational picture of the magnetic field, which is needed to understand the problems of how to properly interpret the observations. 215 references. (author)

  10. Measurements of magnetic field sources in schools

    International Nuclear Information System (INIS)

    Johnson, G.B.

    1992-01-01

    The Electrical Systems Division of the Electric Power Research Institute (EPRI) has initiated several research projects to investigate magnetic field levels, their characteristics, and their sources. This paper describes measurements of magnetic field sources in schools. Magnetic field measurements were made at four schools in the service areas of two utility companies. Magnetic field measurements included profiles of the magnetic field versus distance near power lines, around the perimeter of the school buildings, and at several locations within each school. Twenty-four hour measurements were also made to record the temporal variation of the magnetic field at several locations at each school. The instrumentation, measurement techniques, and magnetic field sources identified are discussed

  11. A method to solve the aircraft magnetic field model basing on geomagnetic environment simulation

    International Nuclear Information System (INIS)

    Lin, Chunsheng; Zhou, Jian-jun; Yang, Zhen-yu

    2015-01-01

    In aeromagnetic survey, it is difficult to solve the aircraft magnetic field model by flying for some unman controlled or disposable aircrafts. So a model solving method on the ground is proposed. The method simulates the geomagnetic environment where the aircraft is flying and creates the background magnetic field samples which is the same as the magnetic field arose by aircraft’s maneuvering. Then the aircraft magnetic field model can be solved by collecting the magnetic field samples. The method to simulate the magnetic environment and the method to control the errors are presented as well. Finally, an experiment is done for verification. The result shows that the model solving precision and stability by the method is well. The calculated model parameters by the method in one district can be used in worldwide districts as well. - Highlights: • A method to solve the aircraft magnetic field model on the ground is proposed. • The method solves the model by simulating dynamic geomagnetic environment as in the real flying. • The way to control the error of the method was analyzed. • An experiment is done for verification

  12. Electron-Spin Precession in Dependence of the Orientation of the External Magnetic Field

    Directory of Open Access Journals (Sweden)

    Miah M

    2009-01-01

    Full Text Available Abstract Electron-spin dynamics in semiconductor-based heterostructures has been investigated in oblique magnetic fields. Spins are generated optically by a circularly polarized light, and the dynamics of spins in dependence of the orientation (θ of the magnetic field are studied. The electron-spin precession frequency, polarization amplitude, and decay rate as a function ofθare obtained and the reasons for their dependences are discussed. From the measured data, the values of the longitudinal and transverse components of the electrong-factor are estimated and are found to be in good agreement with those obtained in earlier investigations. The possible mechanisms responsible for the observed effects are also discussed.

  13. Magnetic Field Measurements in Beam Guiding Magnets

    CERN Document Server

    Henrichsen, K N

    1998-01-01

    Electromagnets used as beam guiding elements in particle accelerators and colliders require very tight tole-rances on their magnetic fields and on their alignment along the particle path. This article describes the methods and equipment used for magnetic measurements in beam transport magnets. Descriptions are given of magnetic resonance techniques, various induction coil methods, Hall generator measurements, the fluxgate magnetometer as well as the recently developed method of beam based alignment. References of historical nature as well as citations of recent work are given. The present commercial availability of the different sensors and asso-ciated equipment is indicated. Finally we shall try to analyze possible future needs for developments in those fields.

  14. Charge and spin current oscillations in a tunnel junction induced by magnetic field pulses

    Energy Technology Data Exchange (ETDEWEB)

    Dartora, C.A., E-mail: cadartora@eletrica.ufpr.br [Electrical Engineering Department, Federal University of Parana (UFPR), C.P. 19011 Curitiba, 81.531-970 PR (Brazil); Nobrega, K.Z., E-mail: bzuza1@yahoo.com.br [Federal Institute of Education, Science and Technolgy of Maranhão (IFMA), Av. Marechal Castelo Branco, 789, São Luís, 65.076-091 MA (Brazil); Cabrera, G.G., E-mail: cabrera@ifi.unicamp.br [Instituto de Física ‘Gleb Wataghin’, Universidade Estadual de Campinas (UNICAMP), C.P. 6165, Campinas 13.083-970 SP (Brazil)

    2016-08-15

    Usually, charge and spin transport properties in tunnel junctions are studied in the DC bias regime and/or in the adiabatic regime of time-varying magnetic fields. In this letter, the temporal dynamics of charge and spin currents in a tunnel junction induced by pulsed magnetic fields is considered. At low bias voltages, energy and momentum of the conduction electrons are nearly conserved in the tunneling process, leading to the description of the junction as a spin-1/2 fermionic system coupled to time-varying magnetic fields. Under the influence of pulsed magnetic fields, charge and spin current can flow across the tunnel junction, displaying oscillatory behavior, even in the absence of DC bias voltage. A type of spin capacitance function, in close analogy to electric capacitance, is predicted.

  15. Inflationary dynamics of kinetically-coupled gauge fields

    DEFF Research Database (Denmark)

    Ferreira, Ricardo J. Z.; Ganc, Jonathan

    2015-01-01

    We investigate the inflationary dynamics of two kinetically-coupled massless U(1) gauge fields with time-varying kinetic-term coefficients. Ensuring that the system does not have strongly coupled regimes shrinks the parameter space. Also, we further restrict ourselves to systems that can be quant......We investigate the inflationary dynamics of two kinetically-coupled massless U(1) gauge fields with time-varying kinetic-term coefficients. Ensuring that the system does not have strongly coupled regimes shrinks the parameter space. Also, we further restrict ourselves to systems that can...... be quantized using the standard creation, annihilation operator algebra. This second constraint limits us to scenarios where the system can be diagonalized into the sum of two decoupled, massless, vector fields with a varying kinetic-term coefficient. Such a system might be interesting for magnetogenesis...... because of how the strong coupling problem generalizes. We explore this idea by assuming that one of the gauge fields is the Standard Model U(1) field and that the other dark gauge field has no particles charged under its gauge group. We consider whether it would be possible to transfer a magnetic field...

  16. Real-Space Application of the Mean-Field Description of Spin-Glass Dynamics

    International Nuclear Information System (INIS)

    Barrat, Alain; Berthier, Ludovic

    2001-01-01

    The out of equilibrium dynamics of finite dimensional spin glasses is considered from a point of view going beyond the standard 'mean-field theory' versus 'droplet picture' debate of the past decades. The main predictions of both theories concerning the spin-glass dynamics are discussed. It is shown, in particular, that predictions originating from mean-field ideas concerning the violations of the fluctuation-dissipation theorem apply quantitatively, provided one properly takes into account the role of a spin-glass coherence length, which plays a central role in the droplet picture. Dynamics in a uniform magnetic field is also briefly discussed

  17. Dirac equation in magnetic-solenoid field

    Energy Technology Data Exchange (ETDEWEB)

    Gavrilov, S.P. [Dept. Fisica e Quimica, UNESP, Campus de Guaratingueta (Brazil); Gitman, D.M.; Smirnov, A.A. [Instituto de Fisica, Universidade de Sao Paulo (Brazil)

    2004-07-01

    We consider the Dirac equation in the magnetic-solenoid field (the field of a solenoid and a collinear uniform magnetic field). For the case of Aharonov-Bohm solenoid, we construct self-adjoint extensions of the Dirac Hamiltonian using von Neumann's theory of deficiency indices. We find self-adjoint extensions of the Dirac Hamiltonian and boundary conditions at the AB solenoid. Besides, for the first time, solutions of the Dirac equation in the magnetic-solenoid field with a finite radius solenoid were found. We study the structure of these solutions and their dependence on the behavior of the magnetic field inside the solenoid. Then we exploit the latter solutions to specify boundary conditions for the magnetic-solenoid field with Aharonov-Bohm solenoid. (orig.)

  18. Nonlinear dynamics of attractive magnetic bearings

    Science.gov (United States)

    Hebbale, K. V.; Taylor, D. L.

    1987-01-01

    The nonlinear dynamics of a ferromagnetic shaft suspended by the force of attraction of 1, 2, or 4 independent electromagnets is presented. Each model includes a state variable feedback controller which has been designed using the pole placement method. The constitutive relationships for the magnets are derived analytically from magnetic circuit theory, and the effects of induced eddy currents due to the rotation of the journal are included using Maxwell's field relations. A rotor suspended by four electro-magnets with closed loop feedback is shown to have nine equilibrium points within the bearing clearance space. As the rotor spin speed increases, the system is shown to pass through a Hopf bifurcation (a flutter instability). Using center manifold theory, this bifurcation can be shown to be of the subcritical type, indicating an unstable limit cycle below the critical speed. The bearing is very sensitive to initial conditions, and the equilibrium position is easily upset by transient excitation. The results are confirmed by numerical simulation.

  19. Bats respond to very weak magnetic fields.

    Directory of Open Access Journals (Sweden)

    Lan-Xiang Tian

    Full Text Available How animals, including mammals, can respond to and utilize the direction and intensity of the Earth's magnetic field for orientation and navigation is contentious. In this study, we experimentally tested whether the Chinese Noctule, Nyctalus plancyi (Vespertilionidae can sense magnetic field strengths that were even lower than those of the present-day geomagnetic field. Such field strengths occurred during geomagnetic excursions or polarity reversals and thus may have played an important role in the evolution of a magnetic sense. We found that in a present-day local geomagnetic field, the bats showed a clear preference for positioning themselves at the magnetic north. As the field intensity decreased to only 1/5th of the natural intensity (i.e., 10 μT; the lowest field strength tested here, the bats still responded by positioning themselves at the magnetic north. When the field polarity was artificially reversed, the bats still preferred the new magnetic north, even at the lowest field strength tested (10 μT, despite the fact that the artificial field orientation was opposite to the natural geomagnetic field (P<0.05. Hence, N. plancyi is able to detect the direction of a magnetic field even at 1/5th of the present-day field strength. This high sensitivity to magnetic fields may explain how magnetic orientation could have evolved in bats even as the Earth's magnetic field strength varied and the polarity reversed tens of times over the past fifty million years.

  20. The Influence of magnetic field on the separation of droplets from ferrofluid jet

    Science.gov (United States)

    Fabian, M.; Burda, P.; Šviková, M.; Huňady, R.

    2017-06-01

    The influence of parallel and perpendicular homogenous magnetic field on the ferrofluid drop formation in dripping regime is studied experimentally. Experimental images are obtained using high-speed video camera with frame rate up to 25,000 fps. The detachment of a drop from the nozzle occurs via the formation of a neck which quickly narrows down until the drop pinches off. The formation of micro-thread from the primary neck is observed before the drop separation. Details of the shape and dynamics of the liquid neck are studied with regard to magnetic field. It is shown that near the detachment point scaled profiles exhibit self-similarity which is not affected by applied magnetic field.

  1. Least Squares Magnetic-Field Optimization for Portable Nuclear Magnetic Resonance Magnet Design

    International Nuclear Information System (INIS)

    Paulsen, Jeffrey L; Franck, John; Demas, Vasiliki; Bouchard, Louis-S.

    2008-01-01

    Single-sided and mobile nuclear magnetic resonance (NMR) sensors have the advantages of portability, low cost, and low power consumption compared to conventional high-field NMR and magnetic resonance imaging (MRI) systems. We present fast, flexible, and easy-to-implement target field algorithms for mobile NMR and MRI magnet design. The optimization finds a global optimum in a cost function that minimizes the error in the target magnetic field in the sense of least squares. When the technique is tested on a ring array of permanent-magnet elements, the solution matches the classical dipole Halbach solution. For a single-sided handheld NMR sensor, the algorithm yields a 640 G field homogeneous to 16,100 ppm across a 1.9 cc volume located 1.5 cm above the top of the magnets and homogeneous to 32,200 ppm over a 7.6 cc volume. This regime is adequate for MRI applications. We demonstrate that the homogeneous region can be continuously moved away from the sensor by rotating magnet rod elements, opening the way for NMR sensors with adjustable 'sensitive volumes'

  2. Microwave study of magnetic field penetration parallel to thin niobium films

    International Nuclear Information System (INIS)

    Grbic, M.S.; Janjusevic, D.; Pozek, M.; Dulcic, A.; Wagner, T.

    2007-01-01

    Complex conductivity of high quality niobium thin films has been investigated by microwave technique in parallel static magnetic field. For the 40 nm thick film no vortices can be formed and the microwave penetration is defined by the strength of the superconducting order parameter which varies with the applied magnetic field. 160 nm thick measured film allows formation of two rows of vortices. Microwave dissipiation is dominated by dynamics of vortices which is strongly affected by size effects. Results have been compared with the generalised models of complex conductivity for low-dimensional superconductor in mixed state following earlier considerations by other authors

  3. Synchrotron Applications of High Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    This workshop aims at discussing the scientific potential of X-ray diffraction and spectroscopy in magnetic fields above 30 T. Pulsed magnetic fields in the range of 30 to 40 T have recently become available at Spring-8 and the ESRF (European synchrotron radiation facility). This document gathers the transparencies of the 6 following presentations: 1) pulsed magnetic fields at ESRF: first results; 2) X-ray spectroscopy and diffraction experiments by using mini-coils: applications to valence state transition and frustrated magnet; 3) R{sub 5}(Si{sub x}Ge{sub 1-x}){sub 4}: an ideal system to be studied in X-ray under high magnetic field?; 4) high field studies at the Advanced Photon Source: present status and future plans; 5) synchrotron X-ray diffraction studies under extreme conditions; and 6) projects for pulsed and steady high magnetic fields at the ESRF.

  4. Magnetic field induced flow pattern reversal in a ferrofluidic Taylor-Couette system.

    Science.gov (United States)

    Altmeyer, Sebastian; Do, Younghae; Lai, Ying-Cheng

    2015-12-21

    We investigate the dynamics of ferrofluidic wavy vortex flows in the counter-rotating Taylor-Couette system, with a focus on wavy flows with a mixture of the dominant azimuthal modes. Without external magnetic field flows are stable and pro-grade with respect to the rotation of the inner cylinder. More complex behaviors can arise when an axial or a transverse magnetic field is applied. Depending on the direction and strength of the field, multi-stable wavy states and bifurcations can occur. We uncover the phenomenon of flow pattern reversal as the strength of the magnetic field is increased through a critical value. In between the regimes of pro-grade and retrograde flow rotations, standing waves with zero angular velocities can emerge. A striking finding is that, under a transverse magnetic field, a second reversal in the flow pattern direction can occur, where the flow pattern evolves into pro-grade rotation again from a retrograde state. Flow reversal is relevant to intriguing phenomena in nature such as geomagnetic reversal. Our results suggest that, in ferrofluids, flow pattern reversal can be induced by varying a magnetic field in a controlled manner, which can be realized in laboratory experiments with potential applications in the development of modern fluid devices.

  5. Characterization of switching field distributions in Ising-like magnetic arrays

    Science.gov (United States)

    Fraleigh, Robert D.; Kempinger, Susan; Lammert, Paul E.; Zhang, Sheng; Crespi, Vincent H.; Schiffer, Peter; Samarth, Nitin

    2017-04-01

    The switching field distribution within arrays of single-domain ferromagnetic islands incorporates both island-island interactions and quenched disorder in island geometry. Separating these two contributions is important for disentangling the effects of disorder and interactions in the magnetization dynamics of island arrays. Using submicron, spatially resolved Kerr imaging in an external magnetic field for islands with perpendicular magnetic anisotropy, we map out the evolution of island arrays during hysteresis loops. Resolving and tracking individual islands across four different lattice types and a range of interisland spacings, we can extract the individual switching fields of every island and thereby quantitatively determine the contributions of interactions and quenched disorder in the arrays. The width of the switching field distribution is found to be well fitted by a simple model comprising the sum of an array-independent contribution (interpreted as disorder induced) and a term proportional to the maximum field the entire rest of the array could exert on a single island, i.e., in a fully polarized state. This supports the claim that disorder in these arrays is primarily a single-island property and provides a methodology by which to quantify such disorder.

  6. Strongly interacting matter in magnetic fields

    CERN Document Server

    Landsteiner, Karl; Schmitt, Andreas; Yee, Ho-Ung

    2013-01-01

    The physics of strongly interacting matter in an external magnetic field is presently emerging as a topic of great cross-disciplinary interest for particle, nuclear, astro- and condensed matter physicists. It is known that strong magnetic fields are created in heavy ion collisions, an insight that has made it possible to study a variety of surprising and intriguing phenomena that emerge from the interplay of quantum anomalies, the topology of non-Abelian gauge fields, and the magnetic field. In particular, the non-trivial topological configurations of the gluon field induce a non-dissipative electric current in the presence of a magnetic field. These phenomena have led to an extended formulation of relativistic hydrodynamics, called chiral magnetohydrodynamics. Hitherto unexpected applications in condensed matter physics include graphene and topological insulators. Other fields of application include astrophysics, where strong magnetic fields exist in magnetars and pulsars. Last but not least, an important ne...

  7. Dynamic Vehicle Detection via the Use of Magnetic Field Sensors

    Directory of Open Access Journals (Sweden)

    Vytautas Markevicius

    2016-01-01

    Full Text Available The vehicle detection process plays the key role in determining the success of intelligent transport management system solutions. The measurement of distortions of the Earth’s magnetic field using magnetic field sensors served as the basis for designing a solution aimed at vehicle detection. In accordance with the results obtained from research into process modeling and experimentally testing all the relevant hypotheses an algorithm for vehicle detection using the state criteria was proposed. Aiming to evaluate all of the possibilities, as well as pros and cons of the use of anisotropic magnetoresistance (AMR sensors in the transport flow control process, we have performed a series of experiments with various vehicles (or different series from several car manufacturers. A comparison of 12 selected methods, based on either the process of determining the peak signal values and their concurrence in time whilst calculating the delay, or by measuring the cross-correlation of these signals, was carried out. It was established that the relative error can be minimized via the Z component cross-correlation and Kz criterion cross-correlation methods. The average relative error of vehicle speed determination in the best case did not exceed 1.5% when the distance between sensors was set to 2 m.

  8. Dimensionality crossover in vortex dynamics of magnetically coupled F-S-F hybrids

    International Nuclear Information System (INIS)

    Karapetrov, G; Belkin, A; Iavarone, M; Yefremenko, V; Pearson, J E; Novosad, V; Divan, R; Cambel, V

    2011-01-01

    We report on the vortex dynamics in magnetically coupled F-S-F trilayers extracted from the analysis of the resistance-current isotherms. The superconducting thin film that is conventionally in the 2D vortex limit exhibits quite different behavior when sandwiched between ferromagnetic layers. The value of the dynamic critical exponent strongly increases in the F-S-F case due to screening of the stray vortex field by the adjacent ferromagnetic layers, leading to an effective dimensional crossover in vortex dynamics. Furthermore, the directional pinning by the magnetic stripe domains induces anisotropy in the vortex glass transition temperature and causes metastable avalanche behavior at strong driving currents.

  9. Determination of the saturation magnetization, anisotropy field, mean field interaction, and switching field distribution for nanocrystalline hard magnets

    International Nuclear Information System (INIS)

    McCallum, R. William

    2005-01-01

    For a uniaxial nanocrystalline magnetic material, the determination of the saturation magnetization, M s , requires measurements of the magnetization at fields which exceed the anisotropy field. For a typical RE-Tm compound, where RE=rare earth and Tm=transition metal, this may require fields above 7 T if the approach to saturation law is used. However for an isotropic material composed of a random distribution of non-interacting uniaxial grains, both M s and the anisotropy filed, H a , may be determined by fitting the Stoner-Wohlfarth (SW) model (Philos. Trans. Roy. Soc. 240 (1948) 599) to the reversible part of the demagnetization curve in the first quadrant. Furthermore, using the mean field interaction model of Callen, Liu and Cullen [2], a quantitative measure of the interaction strength for interacting particles may be determined. In conjunction with an analytical fit to the first quadrant demagnetization curve of the SW model, this allows M s , H a and the mean field interaction constant of a nanocrystalline magnet to be determined from measurements below 5 T. Furthermore, comparison of the model solution for the reversible magnetization with experimental data in the 2nd and 3rd quadrants allows the accurate determination of the switching field distribution. In many cases the hysteresis loop may be accurately described by a normal distribution of switching fields

  10. Dynamics of laser-induced magnetization in Ce-doped yttrium aluminum garnet

    International Nuclear Information System (INIS)

    Kolesov, Roman

    2007-01-01

    Circularly polarized short laser pulse induces nonequilibrium population of spin levels in the excited state of Ce 3+ -ion embedded in yttrium aluminium garnet crystal and, consequently, the magnetization of the crystal associated with spin polarization. Dynamic behavior of laser-induced magnetization is studied as a function of the external magnetic field. It reveals spin oscillations attributed to the effect of hyperfine magnetic field produced by 27 Al nuclei on the Ce 3+ spin. A simple theoretical model explaining spin oscillations is presented. It shows that circularly polarized light induces spin coherence at the transition between Zeeman sublevels of Ce 3+ ion in the lowest 5d state. Temporal shape of laser-induced magnetization signal reveals the following parameters of this state: (1) the spin-lattice relaxation constant is ≅2x10 7 s -1 , (2) inhomogeneous spin dephasing time is ≅4 ns, and (3) the g tensor of the state seems to be isotropic with the g factor being in the range 0.7-0.9. In addition, the width of the local hyperfine field distribution is ≅40 G

  11. Non-Contact Circuit for Real-Time Electric and Magnetic Field Measurements

    Science.gov (United States)

    2015-10-01

    response, noise spectral density, and dynamic range. 15. SUBJECT TERMS electric field, magnetic field, 1Wire, low-power microcontroller 16. SECURITY...4 Fig. 4 Altium DesignerTM schematic showing the pin connections of our MSP430 microcontroller ...electrical characteristics of the attached cable. 2. Methods and Procedures The circuit’s primary design consists of a microcontroller , 8-channel digital-to

  12. Magnetic Field Measurements In Magnetized Plasmas Using Zeeman Broadening Diagnostics

    Science.gov (United States)

    Haque, Showera; Wallace, Matthew; Presura, Radu; Neill, Paul

    2017-10-01

    The Zeeman effect has been used to measure the magnetic field in high energy density plasmas. This method is limited when plasma conditions are such that the line broadening due to the high plasma density and temperature surpasses the Zeeman splitting. We have measured magnetic fields in magnetized laser plasmas under conditions where the Zeeman splitting was not spectrally resolved. The magnetic field strength was determined from the difference in widths of two doublet components, using an idea proposed by Tessarin et al. (2011). Time-gated spectra with one-dimensional space-resolution were obtained at the Nevada Terawatt Facility for laser plasmas created by 20 J, 1 ns Leopard laser pulses, and expanding in the azimuthal magnetic field produced by the 0.6 MA Zebra pulsed power generator. We explore the response of the Al III 4s 2S1/2 - 4p 2P1 / 2 , 3 / 2 doublet components to the external magnetic field spatially along the plasma. Radial magnetic field and electron density profiles were measured within the plasma plume. This work was supported by the DOE/OFES Grant DE-SC0008829 and DOE/NNSA contract DE-FC52-06NA27616.

  13. Numerical study of self-field effects on dynamics of Josephson-junction arrays

    International Nuclear Information System (INIS)

    Phillips, J.R.; Van der Zant, H.S.J.; White, J.; Orlando, T.P.

    1994-01-01

    We consider the influence of self-induced magnetic fields on dynamic properties of arrays of resistively and capacitively shunted Josephson junctions. Self-field effects are modeled by including mutual inductance interactions between every cell in the array. We find that it is important to include all mutual inductance interactions in order to understand the dynamic properties of the array, in particular subharmonic structure arising under AC current bias. (orig.)

  14. Collisionless scattering of plasma cloud in a dipole magnetic field

    International Nuclear Information System (INIS)

    Osipyan, D.A.

    2006-01-01

    Results of numerical simulation of dense plasma cloud scattering dynamics in a magnetized background and MHD indignations generation are presented. The magnetic field has dipole structure. The initial system of equations includes the Vlasov equations for ionic components of plasma, hydrodynamic approach for electrons and Maxwell's system of equations. The method of solution is based on the use of the method of particles in cells and finite difference splitting schemes. Quantitative characteristics of dependence of scattering cloud parameters from the Mach-Alfven number and parameter of magnetic laminar interaction are observed. In particular, a condition of more effective deformation of a cloud is large values of the Mach-Alfven numbers and small parameters of the magnetic laminar interaction

  15. The CMS Magnetic Field Map Performance

    CERN Document Server

    Klyukhin, V.I.; Andreev, V.; Ball, A.; Cure, B.; Herve, A.; Gaddi, A.; Gerwig, H.; Karimaki, V.; Loveless, R.; Mulders, M.; Popescu, S.; Sarycheva, L.I.; Virdee, T.

    2010-04-05

    The Compact Muon Solenoid (CMS) is a general-purpose detector designed to run at the highest luminosity at the CERN Large Hadron Collider (LHC). Its distinctive featuresinclude a 4 T superconducting solenoid with 6 m diameter by 12.5 m long free bore, enclosed inside a 10000-ton return yoke made of construction steel. Accurate characterization of the magnetic field everywhere in the CMS detector is required. During two major tests of the CMS magnet the magnetic flux density was measured inside the coil in a cylinder of 3.448 m diameter and 7 m length with a specially designed field-mapping pneumatic machine as well as in 140 discrete regions of the CMS yoke with NMR probes, 3-D Hall sensors and flux-loops. A TOSCA 3-D model of the CMS magnet has been developed to describe the magnetic field everywhere outside the tracking volume measured with the field-mapping machine. A volume based representation of the magnetic field is used to provide the CMS simulation and reconstruction software with the magnetic field ...

  16. Spin motive force driven by the magnetization dynamics in chiral magnets

    International Nuclear Information System (INIS)

    Ohe, Jun-ichiro; Shimada, Yuhki

    2015-01-01

    The magnetization dynamics induces the spin-dependent force on the conduction electrons via the s-d coupling. We have investigated numerically this force, so called 'spin-motive force', generated in chiral magnets forming the Skyrmion structure. We solve the Landau-Lifshitz-Gilbert equation and obtain the Skyrmion lattice structure (SkX) by introducing the Dzyaloshinskii-Moriya (DM) interaction. The corrective mode of the Skyrmion core is obtained by applying the in-plane AC magnetic field. The spin-motive force is generated perpendicular to the velocity of the Skyrmion core. The total voltage due to the spin-motive force is enhanced by the cascade effect of the voltage for each Skyrmion core. For the isolated magnetic disc system, the corrective mode of the Skyrmion lattice is modulated from that of the bulk system by the influence of the edge structure. The phase-locking motion of each Skyrmion core is obtained only in the lowest frequency mode in which the cascade effect of the spin-motive force still remain. (author)

  17. Electron-inertia effects on driven magnetic field reconnection

    International Nuclear Information System (INIS)

    Al-Salti, N.; Shivamoggi, B.K.

    2003-01-01

    Electron-inertia effects on the magnetic field reconnection induced by perturbing the boundaries of a slab of plasma with a magnetic neutral surface inside are considered. Energetics of the tearing mode dynamics with electron inertia which controls the linearized collisionless magnetohydrodynamics (MHD) are considered with a view to clarify the role of the plasma pressure in this process. Cases with the boundaries perturbed at rates slow or fast compared with the hydromagnetic evolution rate are considered separately. When the boundaries are perturbed at a rate slow compared with the hydromagnetic evolution rate and fast compared with the resistive diffusion rate, the plasma response for early times is according to ideal MHD. A current sheet formation takes place at the magnetic neutral surface for large times in the ideal MHD stage and plasma becomes motionless. The subsequent evolution of the current sheet is found to be divided into two distinct stages: (i) the electron-inertia stage for small times (when the current sheet is very narrow); (ii) the resistive-diffusion stage for large times. The current sheet mainly undergoes exponential damping in the electron-inertia regime while the bulk of the diffusion happens in the resistivity regime. For large times of the resistive-diffusion stage when plasma flow is present, the current sheet completely disappears and the magnetic field reconnection takes place. When the boundaries are perturbed at a rate fast compared even with the hydromagnetic evolution rate, there is no time for the development of a current sheet and the magnetic field reconnection has been found not to take place

  18. Dynamic phase transition in the kinetic spin-1 Blume-Capel model: Phase diagrams in the temperature and crystal-field interaction plane

    International Nuclear Information System (INIS)

    Keskin, M.; Canko, O.; Temizer, U.

    2007-01-01

    Within a mean-field approach, the stationary states of the kinetic spin-1 Blume-Capel model in the presence of a time-dependent oscillating external magnetic field is studied. The Glauber-type stochastic dynamics is used to describe the time evolution of the system and obtain the mean-field dynamic equation of motion. The dynamic phase-transition points are calculated and phase diagrams are presented in the temperature and crystal-field interaction plane. According to the values of the magnetic field amplitude, three fundamental types of phase diagrams are found: One exhibits a dynamic tricritical point, while the other two exhibit a dynamic zero-temperature critical point

  19. Theorem on magnet fringe field

    International Nuclear Information System (INIS)

    Wei, Jie; Talman, R.

    1995-01-01

    Transverse particle motion in particle accelerators is governed almost totally by non-solenoidal magnets for which the body magnetic field can be expressed as a series expansion of the normal (b n ) and skew (a n ) multipoles, B y + iB x = summation(b n + ia n )(x + iy) n , where x, y, and z denote horizontal, vertical, and longitudinal (along the magnet) coordinates. Since the magnet length L is necessarily finite, deflections are actually proportional to ''field integrals'' such as bar BL ≡ ∫ B(x,y,z)dz where the integration range starts well before the magnet and ends well after it. For bar a n , bar b n , bar B x , and bar B y defined this way, the same expansion Eq. 1 is valid and the ''standard'' approximation is to neglect any deflections not described by this expansion, in spite of the fact that Maxwell's equations demand the presence of longitudinal field components at the magnet ends. The purpose of this note is to provide a semi-quantitative estimate of the importance of |Δp ∝ |, the transverse deflection produced by the ion-gitudinal component of the fringe field at one magnet end relative to |Δp 0 |, the total deflection produced by passage through the whole magnet. To emphasize the generality and simplicity of the result it is given in the form of a theorem. The essence of the proof is an evaluation of the contribution of the longitudinal field B x from the vicinity of one magnet end since, along a path parallel to the magnet axis such as path BC

  20. MAGNETIC FIELDS OF STARS

    OpenAIRE

    Bychkov, V. D.; Bychkova, L. V.; Madej, J.

    2008-01-01

    Now it is known about 1212 stars of the main sequence and giants (from them 610 stars - it is chemically peculiarity (CP) stars) for which direct measurements of magnetic fields were spent (Bychkov et al.,2008). Let's consider, what representations were generated about magnetic fields (MT) of stars on the basis of available observations data.