WorldWideScience

Sample records for dynamic isotope power

  1. Brayton dynamic isotope power systems update

    International Nuclear Information System (INIS)

    Davis, K.A.; Pietsch, A.; Casagrande, R.D.

    1986-01-01

    Brayton dynamic power systems are uniquely suited for space applications. They are compact and highly efficient, offer inherent reliability due to only one moving part, and utilize a single phase and inert working fluid. Additional features include gas bearings, constant speed, and operation at essentially constant temperature. The design, utilizing an inert gas working fluid and gas bearing, is unaffected by zero gravity and can be easily started and restarted in space at low temperatures. This paper describes the salient features of the BIPS as a Dynamic Isotope Power System (DIPS), summarizes the development work to date, establishes the maturity of the design, provides an update on materials technology, and reviews systems integration considerations

  2. Small Stirling dynamic isotope power system for multihundred-watt robotic missions

    International Nuclear Information System (INIS)

    Bents, D.J.

    1991-01-01

    Free Piston Stirling Engine (FPSE) and linear alternator (LA) technology is combined with radioisotope heat sources to produce a compact dynamic isotope power system (DIPS) suitable for multihundred watt space application which appears competitive with advance radioisotope thermoelectric generators (RTGs). The small Stirling DIPS is scalable to multihundred watt power levels or lower. The FPSE/LA is a high efficiency convertor in sizes ranging from tens of kilowatts down to only a few watts. At multihundred watt unit size, the FPSE can be directly integrated with the General Purpose Heat Source (GPHS) via radiative coupling; the resulting dynamic isotope power system has a size and weight that compares favorably with the advanced modular (Mod) RTG, but requires less than a third the amount of isotope fuel. Thus the FPSE extends the high efficiency advantage of dynamic systems into a power range never previously considered competitive for DIPS. This results in lower fuel cost and reduced radiological hazard per delivered electrical watt. 33 refs

  3. Dynamic Isotope Power System: technology verification phase, program plan, 1 October 1978

    International Nuclear Information System (INIS)

    1979-01-01

    The technology verification phase program plan of the Dynamic Isotope Power System (DIPS) project is presented. DIPS is a project to develop a 0.5 to 2.0 kW power system for spacecraft using an isotope heat source and a closed-cycle Rankine power-system with an organic working fluid. The technology verification phase's purposes are to increase the system efficiency to over 18%, to demonstrate system reliability, and to provide an estimate for flight test scheduling. Progress toward these goals is reported

  4. Small Stirling dynamic isotope power system for robotic space missions

    International Nuclear Information System (INIS)

    Bents, D.J.

    1992-08-01

    The design of a multihundred-watt Dynamic Isotope Power System (DIPS), based on the US Department of Energy (DOE) General Purpose Heat Source (GPHS) and small (multihundred-watt) free-piston Stirling engine (FPSE), is being pursued as a potential lower cost alternative to radioisotope thermoelectric generators (RTG's). The design is targeted at the power needs of future unmanned deep space and planetary surface exploration missions ranging from scientific probes to Space Exploration Initiative precursor missions. Power level for these missions is less than a kilowatt. The incentive for any dynamic system is that it can save fuel and reduce costs and radiological hazard. Unlike DIPS based on turbomachinery conversion (e.g. Brayton), this small Stirling DIPS can be advantageously scaled to multihundred-watt unit size while preserving size and mass competitiveness with RTG's. Stirling conversion extends the competitive range for dynamic systems down to a few hundred watts--a power level not previously considered for dynamic systems. The challenge for Stirling conversion will be to demonstrate reliability and life similar to RTG experience. Since the competitive potential of FPSE as an isotope converter was first identified, work has focused on feasibility of directly integrating GPHS with the Stirling heater head. Thermal modeling of various radiatively coupled heat source/heater head geometries has been performed using data furnished by the developers of FPSE and GPHS. The analysis indicates that, for the 1050 K heater head configurations considered, GPHS fuel clad temperatures remain within acceptable operating limits. Based on these results, preliminary characterizations of multihundred-watt units have been established

  5. Comparison of dynamic isotope power systems for distributed planet surface applications

    Science.gov (United States)

    Bents, David J.; Mckissock, Barbara I.; Hanlon, James C.; Schmitz, Paul C.; Rodriguez, Carlos D.; Withrow, Colleen A.

    1991-01-01

    Dynamic isotope power system (DIPS) alternatives were investigated and characterized for the surface mission elements associated with a lunar base and subsequent manned Mars expedition. System designs based on two convertor types were studied. These systems were characterized parametrically and compared over the steady-state electrical output power range 0.2 to 20 kWe. Three methods of thermally integrating the heat source and the Stirling heater head were considered, depending on unit size. Figures of merit were derived from the characterizations and compared over the parametric range. Design impacts of mission environmental factors are discussed and quantitatively assessed.

  6. A dynamic isotope power system for Space Exploration Initiative surface transport systems

    International Nuclear Information System (INIS)

    Hunt, M.E.; Harty, R.B.; Cataldo, R.

    1992-03-01

    The Dynamic Isotope Power System (DIPS) Demonstration Program, sponsored by the U.S. Department of Energy with support funding from NASA, is currently focused on the development of a standardized 2.5-kWe portable generator for multiple applications on the lunar or Martian surface. A variety of remote and mobile potential applications have been identified by NASA, including surface rovers for both short- and extended-duration missions, remote power to science packages, and backup to central base power. Recent work focused on refining the 2.5-kWe design and emphasizing the compatibility of the system with potential surface transport systems. Work included an evaluation of the design to ensure compatibility with the Martian atmosphere while imposing only a minor mass penalty on lunar operations. Additional work included a study performed to compare the DIPS with regenerative fuel cell systems for lunar mobile and remote power systems. Power requirements were reviewed and a modular system chosen for the comparison. 4 refs

  7. Dynamic simulation of hydrogen isotope distillation unit

    International Nuclear Information System (INIS)

    Le Lann, J.M.; Latge, C.; Joulia, X.; Sere-Peyrigain, P.

    1995-01-01

    Dynamic simulation of hydrogen isotope distillation unit involved in the complex environment of a fusion power plant can be a powerful technique in view to analyze the tritium hazard potential. In this paper, issues related to the development of such a dynamic simulator with model formulation and the numerical treatment of the resulting Differential-Algebraic equation (DAE) system are properly adressed. The typical dynamic characteristics of such columns are quantitatively and qualitatively enlighted on case study with very large disturbances. The developed system has proven to be beneficial for understanding the dynamic behaviour and further for developing control schemes. (orig.)

  8. Dynamic simulation of hydrogen isotope distillation unit

    International Nuclear Information System (INIS)

    Le Lann, J.M.; Joulia, X.; Sere-Peyrigain, P.

    1994-01-01

    Dynamic simulation of hydrogen isotope distillation unit involved in the complex environment of a fusion power plant can be a powerful technique in view to analyze the tritium hazard potential. Issues related to the development of such a dynamic simulator with model formulation and the numerical treatment of the resulting Differential-Algebraic equation (DAE) system are properly addressed. The typical dynamic characteristics of such columns are quantitatively and qualitatively enlightened on case study with very large disturbances. The developed system has proven to be beneficial for understanding the dynamic behaviour and further for developing control schemes. (author) 12 refs.; 4 figs

  9. A dynamic isotope power system portable generator for the Moon or Mars

    International Nuclear Information System (INIS)

    Johnson, R.A.; Hunt, M.E.; Mason, L.S.

    1991-01-01

    The Dynamic Isotope Power Systems (DIPS) Demonstration Program is focused on a standardized 2.5 kWe portable generator for multipole uses on the Lunar or Martian surface. A variety of potential remote or mobile applications has been identified by the National Aeronautics and Space Administration (NASA). These applications include remote power to science packages, surface rovers for both short and extended duration missions, and back up to central base power. In this paper, reviews conducted on alternative power sources for these applications are described. These include the comparison of DIPS to regenerative fuel cells (RFCs) related to such things as mass, complexity, and life cycle costs, and concluded that each power source has application. Recent work is presented refining the 2.5 kWe design to assure compatibility with the Martian environment while imposing only a minor mass penalty on Lunar operations. This was accomplished by limiting temperatures, except in the heat source unit (HSU), to the nonrefractory materials regime and protecting the necessary refractories in the HSU from the environment. Design changes to the HSU are described. Finally, work related to recent concerns regarding astronaut radiation doses is described. This work includes the bases for the calculations to determine the necessary shielding or operational limitations

  10. Dynamical symmetry breaking in barium isotopes

    International Nuclear Information System (INIS)

    Rawat, Bir Singh; Chattopadhyay, P.K.

    1997-01-01

    The isotopes of Xe with mass numbers 124, 126, 128, 130 and the isotopes of barium with mass numbers 128, 130, 132, 134 were shown to correspond to the O(6) dynamical symmetry of IBM. In the investigation of the dynamical symmetry breaking in this region, the barium isotopes for departures from O(6) symmetry have been studied

  11. Technology verification phase. Dynamic isotope power system. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Halsey, D.G.

    1982-03-10

    The Phase I requirements of the Kilowatt Isotope Power System (KIPS) program were to make a detailed Flight System Conceptual Design (FSCD) for an isotope fueled organic Rankine cycle power system and to build and test a Ground Demonstration System (GDS) which simulated as closely as possible the operational characteristics of the FSCD. The activities and results of Phase II, the Technology Verification Phase, of the program are reported. The objectives of this phase were to increase system efficiency to 18.1% by component development, to demonstrate system reliability by a 5000 h endurance test and to update the flight system design. During Phase II, system performance was improved from 15.1% to 16.6%, an endurance test of 2000 h was performed while the flight design analysis was limited to a study of the General Purpose Heat Source, a study of the regenerator manufacturing technique and analysis of the hardness of the system to a laser threat. It was concluded from these tests that the GDS is basically prototypic of a flight design; all components necessary for satisfactory operation were demonstrated successfully at the system level; over 11,000 total h of operation without any component failure attested to the inherent reliability of this type of system; and some further development is required, specifically in the area of performance. (LCL)

  12. Technology verification phase. Dynamic isotope power system. Final report

    International Nuclear Information System (INIS)

    Halsey, D.G.

    1982-01-01

    The Phase I requirements of the Kilowatt Isotope Power System (KIPS) program were to make a detailed Flight System Conceptual Design (FSCD) for an isotope fueled organic Rankine cycle power system and to build and test a Ground Demonstration System (GDS) which simulated as closely as possible the operational characteristics of the FSCD. The activities and results of Phase II, the Technology Verification Phase, of the program are reported. The objectives of this phase were to increase system efficiency to 18.1% by component development, to demonstrate system reliability by a 5000 h endurance test and to update the flight system design. During Phase II, system performance was improved from 15.1% to 16.6%, an endurance test of 2000 h was performed while the flight design analysis was limited to a study of the General Purpose Heat Source, a study of the regenerator manufacturing technique and analysis of the hardness of the system to a laser threat. It was concluded from these tests that the GDS is basically prototypic of a flight design; all components necessary for satisfactory operation were demonstrated successfully at the system level; over 11,000 total h of operation without any component failure attested to the inherent reliability of this type of system; and some further development is required, specifically in the area of performance

  13. Program plan for the Brayton Isotope Power System. Phase I. Design, fabrication and test of the Brayton Isotope Power System

    International Nuclear Information System (INIS)

    1975-01-01

    Phase I of an overall program for the development of a 500 to 2000 W(e) (EOM), 7-y life, power system for space vehicles is discussed. The system uses a closed Brayton dynamic system to convert energy from an isotope heat source at a net efficiency greater than 25 percent. This first phase, a 35-month effort, is for the conceptual design of a 1300 W(e), 450 lb flight system and the design, fabrication, and test of a ground demonstration system. The flight system will use, for the baseline design, two of the multihundred-watt (MHW) heat sources being developed. The Ground Demonstration System will simulate, as closely as possible, the Brayton Isotope Power Flight System and will utilize components and technology being developed for the Mini-Brayton rotating unit, recuperator and heat source assembly, respectively. The Ground Demonstration System includes a performance test and a 1000-h endurance test

  14. Exploring the isotopic niche: isotopic variance, physiological incorporation, and the temporal dynamics of foraging

    Directory of Open Access Journals (Sweden)

    Justin Douglas Yeakel

    2016-01-01

    Full Text Available Consumer foraging behaviors are dynamic, changing in response to prey availability, seasonality, competition, and even the consumer's physiological state. The isotopic composition of a consumer is a product of these factors as well as the isotopic `landscape' of its prey, i.e. the isotopic mixing space. Stable isotope mixing models are used to back-calculate the most likely proportional contribution of a set of prey to a consumer's diet based on their respective isotopic distributions, however they are disconnected from ecological process. Here we build a mechanistic framework that links the ecological and physiological processes of an individual consumer to the isotopic distribution that describes its diet, and ultimately to the isotopic composition of its own tissues, defined as its `isotopic niche’. By coupling these processes, we systematically investigate under what conditions the isotopic niche of a consumer changes as a function of both the geometric properties of its mixing space and foraging strategies that may be static or dynamic over time. Results of our derivations reveal general insight into the conditions impacting isotopic niche width as a function of consumer specialization on prey, as well as the consumer's ability to transition between diets over time. We show analytically that moderate specialization on isotopically unique prey can serve to maximize a consumer's isotopic niche width, while temporally dynamic diets will tend to result in peak isotopic variance during dietary transitions. We demonstrate the relevance of our theoretical findings by examining a marine system composed of nine invertebrate species commonly consumed by sea otters. In general, our analytical framework highlights the complex interplay of mixing space geometry and consumer dietary behavior in driving expansion and contraction of the isotopic niche. Because this approach is established on ecological mechanism, it is well-suited for enhancing the

  15. Band head spin assignment of superdeformed bands in Hg isotopes through power index formula

    Science.gov (United States)

    Sharma, Honey; Mittal, H. M.

    2018-05-01

    The power index formula has been used to obtain the band head spin (I 0) of all the superdeformed (SD) bands in Hg isotopes. A least squares fitting approach is used. The root mean square deviations between the determined and the observed transition energies are calculated by extracting the model parameters using the power index formula. Whenever definite spins are available, the determined and the observed transition energies are in accordance with each other. The computed values of dynamic moment of inertia J (2) obtained by using the power index formula and its deviation with the rotational frequency is also studied. Excellent agreement is shown between the calculated and the experimental results for J (2) versus the rotational frequency. Hence, the power index formula works very well for all the SD bands in Hg isotopes expect for 195Hg(2, 3, 4).

  16. Controlled power supply for isotopes separator

    International Nuclear Information System (INIS)

    Lavaitte, A.; Pottier, J.

    1953-01-01

    This equipment is destined to equip the separator of isotopes who is the subject of the CEA report n 138. It includes: - a controlled power supply in voltage. - a controlled power supply in current. The spectra of fluctuations of these assembly is different in the two cases. (authors) [fr

  17. Controlled power supply for isotopes separator; Alimentations regulees pour separateur d'isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Lavaitte, A; Pottier, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1953-07-01

    This equipment is destined to equip the separator of isotopes who is the subject of the CEA report n 138. It includes: - a controlled power supply in voltage. - a controlled power supply in current. The spectra of fluctuations of these assembly is different in the two cases. (authors) [French] Cet equipement est destine a equiper le separateur d'isotopes qui fait l'objet du rapport C.E.A. n 138. Il comprend: - une alimentation regulee en tension. - une alimentation regulee en courant. Le spectre de fluctuations de ces ensembles est different dans les deux cas. (auteurs)

  18. Special Application Thermoelectric Micro Isotope Power Sources

    International Nuclear Information System (INIS)

    Heshmatpour, Ben; Lieberman, Al; Khayat, Mo; Leanna, Andrew; Dobry, Ted

    2008-01-01

    Promising design concepts for milliwatt (mW) size micro isotope power sources (MIPS) are being sought for use in various space and terrestrial applications, including a multitude of future NASA scientific missions and a range of military applications. To date, the radioisotope power sources (RPS) used on various space and terrestrial programs have provided power levels ranging from one-half to several hundred watts. In recent years, the increased use of smaller spacecraft and planned new scientific space missions by NASA, special terrestrial and military applications suggest the need for lower power, including mW level, radioisotope power sources. These power sources have the potential to enable such applications as long-lived meteorological or seismological stations distributed across planetary surfaces, surface probes, deep space micro-spacecraft and sub-satellites, terrestrial sensors, transmitters, and micro-electromechanical systems. The power requirements are in the range of 1 mW to several hundred mW. The primary technical requirements for space applications are long life, high reliability, high specific power, and high power density, and those for some special military uses are very high power density, specific power, reliability, low radiological induced degradation, and very low radiation leakage. Thermoelectric conversion is of particular interest because of its technological maturity and proven reliability. This paper summarizes the thermoelectric, thermal, and radioisotope heat source designs and presents the corresponding performance for a number of mW size thermoelectric micro isotope power sources

  19. Isotopic Tracing of Thallium Contamination in Soils Affected by Emissions from Coal-Fired Power Plants.

    Science.gov (United States)

    Vaněk, Aleš; Grösslová, Zuzana; Mihaljevič, Martin; Trubač, Jakub; Ettler, Vojtěch; Teper, Leslaw; Cabala, Jerzy; Rohovec, Jan; Zádorová, Tereza; Penížek, Vít; Pavlů, Lenka; Holubík, Ondřej; Němeček, Karel; Houška, Jakub; Drábek, Ondřej; Ash, Christopher

    2016-09-20

    Here, for the first time, we report the thallium (Tl) isotope record in moderately contaminated soils with contrasting land management (forest and meadow soils), which have been affected by emissions from coal-fired power plants. Our findings clearly demonstrate that Tl of anthropogenic (high-temperature) origin with light isotope composition was deposited onto the studied soils, where heavier Tl (ε(205)Tl ∼ -1) naturally occurs. The results show a positive linear relationship (R(2) = 0.71) between 1/Tl and the isotope record, as determined for all the soils and bedrocks, also indicative of binary Tl mixing between two dominant reservoirs. We also identified significant Tl isotope variations within the products from coal combustion and thermo-desorption experiments with local Tl-rich coal pyrite. Bottom ash exhibited the heaviest Tl isotope composition (ε(205)Tl ∼ 0), followed by fly ash (ε(205)Tl between -2.5 and -2.8) and volatile Tl fractions (ε(205)Tl between -6.2 and -10.3), suggesting partial Tl isotope fractionations. Despite the evident role of soil processes in the isotope redistributions, we demonstrate that Tl contamination can be traced in soils and propose that the isotope data represent a possible tool to aid our understanding of postdepositional Tl dynamics in surface environments for the future.

  20. High Flux Isotope Reactor power upgrade status

    International Nuclear Information System (INIS)

    Rothrock, R.B.; Hale, R.E.; Cheverton, R.D.

    1997-01-01

    A return to 100-MW operation is being planned for the High Flux Isotope Reactor (HFIR). Recent improvements in fuel element manufacturing procedures and inspection equipment will be exploited to reduce hot spot and hot streak factors sufficiently to permit the power upgrade without an increase in primary coolant pressure. Fresh fuel elements already fabricated for future use are being evaluated individually for power upgrade potential based on their measured coolant channel dimensions

  1. Soil organic matter (SOM) dynamics determined by stable isotope techniques

    International Nuclear Information System (INIS)

    Gerzabek, M. H.

    1998-09-01

    Being aware of limitations and possible bias the 13 C natural abundance technique using the different 13 C enrichments in plants with differing photosynthetic pathways in a powerful tool to quantify turnover processes, both in long-term field studies and short-term laboratory experiments. Special care is needed in choosing reference plots and the proper number of replicate samples. The combination of 13 C and 14 C measurements has a high potential for a further improvement of isotope techniques in SOM studies. Natural abundance of 15 N is less powerful with respect to quantification of SOM processes than the isotope dilution technique. However its usefulness could be distinctly improved by introducing other stable isotopes into the studies.(author)

  2. Kilowatt Isotope Power System: component report for the Ground Demonstration System Accumulator

    International Nuclear Information System (INIS)

    Brainard, E.L.

    1978-01-01

    The Model Number ORC1A3A01 System Accumulator for the Kilowatt Isotope Power System was expulsion tested and demonstrated to be in compliance with the requirements of Sundstrand Explusion Test Procedure, TP 400. Test requirements of TP 400 were extracted from the Kilowatt Isotope Power System, Ground Demonstration System Test Plan

  3. Brayton Isotope Power System. Phase I. (Ground demonstration system) Configuration Control Document (CCD)

    International Nuclear Information System (INIS)

    1976-01-01

    The configuration control document (CCD) defines the BIPS-GDS configuration. The GDS configuration is similar to a conceptual flight system design, referred to as the BIPS-FS, which is discussed in App. I. The BIPS is being developed by ERDA as a 500 to 2000 W(e), 7-y life, space power system utilizing a closed Brayton cycle gas turbine engine to convert thermal energy (from an isotope heat source) to electrical energy at a net efficiency exceeding 25 percent. The CCD relates to Phase I of an ERDA Program to qualify a dynamic system for launch in the early 1980's. Phase I is a 35-month effort to provide an FS conceptual design and GDS design, fabrication, and test. The baseline is a 7-year life, 450-pound, 4800 W(t), 1300 W(e) system which will use two multihundred watt (MHW) isotope heat sources being developed

  4. Real-time isotope monitoring network at the Biosphere 2 Landscape Evolution Observatory resolves meter-to-catchment scale flow dynamics

    Science.gov (United States)

    Volkmann, T. H. M.; Van Haren, J. L. M.; Kim, M.; Harman, C. J.; Pangle, L.; Meredith, L. K.; Troch, P. A.

    2017-12-01

    Stable isotope analysis is a powerful tool for tracking flow pathways, residence times, and the partitioning of water resources through catchments. However, the capacity of stable isotopes to characterize catchment hydrological dynamics has not been fully exploited as commonly used methodologies constrain the frequency and extent at which isotopic data is available across hydrologically-relevant compartments (e.g. soil, plants, atmosphere, streams). Here, building upon significant recent developments in laser spectroscopy and sampling techniques, we present a fully automated monitoring network for tracing water isotopes through the three model catchments of the Landscape Evolution Observatory (LEO) at the Biosphere 2, University of Arizona. The network implements state-of-the-art techniques for monitoring in great spatiotemporal detail the stable isotope composition of water in the subsurface soil, the discharge outflow, and the atmosphere above the bare soil surface of each of the 330-m2 catchments. The extensive valving and probing systems facilitate repeated isotope measurements from a total of more than five-hundred locations across the LEO domain, complementing an already dense array of hydrometric and other sensors installed on, within, and above each catchment. The isotope monitoring network is operational and was leveraged during several months of experimentation with deuterium-labelled rain pulse applications. Data obtained during the experiments demonstrate the capacity of the monitoring network to resolve sub-meter to whole-catchment scale flow and transport dynamics in continuous time. Over the years to come, the isotope monitoring network is expected to serve as an essential tool for collaborative interdisciplinary Earth science at LEO, allowing us to disentangle changes in hydrological behavior as the model catchments evolve in time through weathering and colonization by plant communities.

  5. Brayton Isotope Power System (BIPS) facility specification

    International Nuclear Information System (INIS)

    1976-01-01

    General requirements for the Brayton Isotope Power System (BIPS)/Ground Demonstration System (GDS) assembly and test facility are defined. The facility will include provisions for a complete test laboratory for GDS checkout, performance, and endurance testing, and a contamination-controlled area for assembly, fabrication, storage, and storage preparation of GDS components. Specifications, schedules, and drawings are included

  6. Brayton Isotope Power System (BIPS) facility specification

    Energy Technology Data Exchange (ETDEWEB)

    1976-05-31

    General requirements for the Brayton Isotope Power System (BIPS)/Ground Demonstration System (GDS) assembly and test facility are defined. The facility will include provisions for a complete test laboratory for GDS checkout, performance, and endurance testing, and a contamination-controlled area for assembly, fabrication, storage, and storage preparation of GDS components. Specifications, schedules, and drawings are included.

  7. Organic Rankine Kilowatt Isotope Power System. Final phase I report

    International Nuclear Information System (INIS)

    1978-01-01

    On 1 August 1975 under Department of Energy Contract EN-77-C-02-4299, Sundstrand Energy Systems commenced development of a Kilowatt Isotope Power System (KIPS) directed toward satisfying the higher power requirements of satellites of the 1980s and beyond. The KIPS is a 238 PuO 2 fueled organic Rankine cycle turbine power system which will provide design output power in the range of 500 to 2000 W/sub (e)/ with a minimum of system changes. The principal objectives of the Phase 1 development effort were to: conceptually design a flight system; design a Ground Demonstration System (GDS) that is prototypic of the flight system in order to prove the feasibility of the flight system design; fabricate and assemble the GDS; and performance and endurance test the GDS using electric heaters in lieu of the isotope heat source. Results of the work performed under the Phase 1 contract to 1 July 1978 are presented

  8. Molecular dynamics simulation of hydrogen isotope injection into graphene

    International Nuclear Information System (INIS)

    Nakamura, Hiroaki; Takayama, Arimichi; Ito, Atsushi

    2007-07-01

    We reveal the hydrogen isotope effect of three chemical reactions, i.e., the reflection, the absorption and the penetration ratios, by classical molecular dynamics simulation with a modified Brenner's reactive empirical bond order (REBO) potential. We find that the reflection by π-electron does not depend on the mass of the incident isotope, but the peak of the reflection by nuclear moves to higher side of incident energy. In addition to the reflection, we also find that the absorption ratio in the positive z side of the graphene becomes larger, as the mass of the incident isotope becomes larger. On the other hand, the absorption ratio in the negative z side of the graphene becomes smaller. Last, it is found that the penetration ratio does not depend on the mass of the incident isotope because the graphene potential is not affected by the mass. (author)

  9. Dynamics of mobile form of plutonium isotopes in soils within 10-km zone of Chernobyl NPP

    International Nuclear Information System (INIS)

    Shuktomova, I.I.

    1996-01-01

    The dynamics of the mobile forms of plutonium isotopes depending on the time of there presence in environment were studied on samples of five soil varieties within the limits of the 10-km zone of Chernobyl NPP. Seasonal dynamic study of the extracted plutonium isotopes showed the increase (5-10 fold) in the amount of mobile forms of radionuclides in all soil samples. Studying the dynamics of total sum of mobile forms of isotopes in soils showed their decrease in general

  10. Basic separative power of multi-component isotopes separation in a gas centrifuge

    International Nuclear Information System (INIS)

    Jiang, Hongmin; Lei, Zengguang; Zhuge, Fu

    2008-01-01

    On condition that the overall separation factor per unit exists in centrifuge for multi-component isotopes separation, the relations between separative power of each component and molecular weight have been investigated in the paper while the value function and the separative power of binary-component separation are adopted. The separative power of each component is proportional to the square of the molecular weight difference between its molecular weight and the average molecular weight of other remnant components. In addition, these relations are independent on the number of the components and feed concentrations. The basic separative power and related expressions, suggested in the paper, can be used for estimating the separative power of each component and analyzing the separation characteristics. The most valuable application of the basic separative power is to evaluate the separative capacity of centrifuge for multi-component isotopes. (author)

  11. Kinetic coefficients in isotopically disordered crystals

    International Nuclear Information System (INIS)

    Zhernov, Arkadii P; Inyushkin, Alexander V

    2002-01-01

    Peculiarities of the behavior of kinetic coefficients, like thermal conductivity, electric conductivity, and thermoelectric power, in isotopically disordered materials are reviewed in detail. New experimental and theoretical results on the isotope effects in the thermal conductivity of diamond, Ge, and Si semiconductors are presented. The suppression effect of phonon-drag thermopower in the isotopically disordered Ge crystals is discussed. The influence of dynamic and static crystal lattice deformations on the electric conductivity of metals as well as on the ordinary phonon spectrum deformations is considered. (reviews of topical problems)

  12. Chemical Ligation and Isotope Labeling to Locate Dynamic Effects during Catalysis by Dihydrofolate Reductase.

    Science.gov (United States)

    Luk, Louis Y P; Ruiz-Pernía, J Javier; Adesina, Aduragbemi S; Loveridge, E Joel; Tuñón, Iñaki; Moliner, Vincent; Allemann, Rudolf K

    2015-07-27

    Chemical ligation has been used to alter motions in specific regions of dihydrofolate reductase from E. coli and to investigate the effects of localized motional changes on enzyme catalysis. Two isotopic hybrids were prepared; one with the mobile N-terminal segment containing heavy isotopes ((2) H, (13) C, (15) N) and the remainder of the protein with natural isotopic abundance, and the other one with only the C-terminal segment isotopically labeled. Kinetic investigations indicated that isotopic substitution of the N-terminal segment affected only a physical step of catalysis, whereas the enzyme chemistry was affected by protein motions from the C-terminal segment. QM/MM studies support the idea that dynamic effects on catalysis mostly originate from the C-terminal segment. The use of isotope hybrids provides insights into the microscopic mechanism of dynamic coupling, which is difficult to obtain with other studies, and helps define the dynamic networks of intramolecular interactions central to enzyme catalysis. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

  13. Solid state isotopic power source for computer chips

    International Nuclear Information System (INIS)

    Brown, P.M.

    1992-01-01

    This paper reports that recent developments in materials technology now make it possible to fabricate nonthermal thin-film isotopic energy converters (REC) with a specific power of 24 W/kg and 5 to 10 year working life at 5 to 10 Watts. This creates applications never before possible, such as placing the power supply directly on integrated circuit chips. The efficiency of the REC is about 25% which is two to three times greater than the 6 to 8% capabilities of current thermoelectric systems

  14. Interference of scalp and skull with dynamic isotope studies of brain

    International Nuclear Information System (INIS)

    Oldendorf, W.H.

    1972-01-01

    The overlying scalp and skull create artifacts in external brain counting measurements in which isotope appears in these tissues. It is much less of a problem in dynamic studies since high levels of superficial isotope are not found in the first few seconds after introduction into the blood by any anatomic route. Diffusible tracers concentrate somewhat less in the scalp and skull than in the brain immediately after injection by any route. Nondiffusible tracers of low molecular weight attain a much higher concentration in the scalp than the brain only after about the first minute because of passage from plasma to scalp extracellular fluid. This equilibration does not occur in brain because of the blood-brain barrier. Scalp and skull thus create much less of a problem with brief dynamic studies than with chronic long-term studies. Some physical considerations of external collimation are discussed, and means are suggested to minimize superficial isotope contributions to brain counts. (U.S.)

  15. Dynamic isotope studies in liver disease

    Energy Technology Data Exchange (ETDEWEB)

    Weits, J

    1978-01-01

    Much information in the field of liver research has been gained by dynamic isotope studies. Clinically, these studies can help to settle selection criteria for different types of surgical shunt, which relieve the complications of portal hypertension. By performing splenoportoscintigraphy, splenic and portal vein thrombosis can be easily and safely excluded. So-called hypoxaemia of cirrhosis can most easily be diagnosed. Suprahepatic caval vein obstruction in a patient with cryptogenic liver disease is easily excluded by a radionuclide cavogram after injection of pertechnetate into a foot vein.

  16. Use of isotope techniques in lake dynamics investigations. Proceedings of a final research co-ordination meeting

    International Nuclear Information System (INIS)

    2001-03-01

    The Co-ordinated Research Programme (CRP) on the Use of Isotope Techniques in Lake Dynamics Investigations was launched with the aim of assessing the potential of environmental isotope techniques in studying the dynamics of surface water bodies and related problems such as: dynamics of solutes; sediment focusing; establishment of water balance components; vulnerability to pollution. The CRP enabled a number of isotope and geochemical studies to be carried out on small and large water bodies, with the general aim of understanding of the dynamics of these systems under the growing anthropogenic influence. This publication is a compilation of the papers presented at the final Research Co-ordination Meeting (RCM) held in Rehovot, Israel, from 10 to 13 March 1997. Individual contributions have been indexed separately

  17. Infrastructure for thulium-170 isotope power systems for autonomous underwater vehicle fleets

    International Nuclear Information System (INIS)

    Walter, C.E.

    1991-07-01

    The radioisotope thulium-170 is a safe and environmentally benign heat source for providing the high endurance and energy densities needed by advanced power systems for autonomous underwater vehicles (AUV). Thulium Isotope Power (TIP) systems have an endurance of ∼3000 h, and gravimetric and volumetric energy densities of 3 x 10 4 Wh/kg and 3 x 10 8 Wh/m 3 , respectively. These energy densities are more than 200 times higher than those currently provided by Ag-Zn battery technology. In order to capitalize on these performance levels with about one hundred AUVs in continuous use, it will be necessary to establish an infrastructure for isotope production and heat-source refurbishment. The infrastructure cost is not trivial, and studies are needed to determine its optimum configuration. The major component of the projected infrastructure is the nuclear reactor used to produce Tm- 170 by neutron absorption in Tm-169. The reactor design should ideally be optimized for TM-170 production. Using the byproduct ''waste'' heat beneficially would help defray the cost of isotope production. However, generating electric power with the reactor would compromise both the cost of electricity and the isotope production capacity. A coastal location for the reactor would be most convenient from end-use considerations, and the ''waste'' heat could be used to desalinate seawater in water-thirsty states. 13 refs., 6 figs., 2 tabs

  18. Dynamic Power Management for Portable Hybrid Power-Supply Systems Utilizing Approximate Dynamic Programming

    Directory of Open Access Journals (Sweden)

    Jooyoung Park

    2015-05-01

    Full Text Available Recently, the optimization of power flows in portable hybrid power-supply systems (HPSSs has become an important issue with the advent of a variety of mobile systems and hybrid energy technologies. In this paper, a control strategy is considered for dynamically managing power flows in portable HPSSs employing batteries and supercapacitors. Our dynamic power management strategy utilizes the concept of approximate dynamic programming (ADP. ADP methods are important tools in the fields of stochastic control and machine learning, and the utilization of these tools for practical engineering problems is now an active and promising research field. We propose an ADP-based procedure based on optimization under constraints including the iterated Bellman inequalities, which can be solved by convex optimization carried out offline, to find the optimal power management rules for portable HPSSs. The effectiveness of the proposed procedure is tested through dynamic simulations for smartphone workload scenarios, and simulation results show that the proposed strategy can successfully cope with uncertain workload demands.

  19. Dynamic Reactive Power Compensation of Large Scale Wind Integrated Power System

    DEFF Research Database (Denmark)

    Rather, Zakir Hussain; Chen, Zhe; Thøgersen, Paul

    2015-01-01

    wind turbines especially wind farms with additional grid support functionalities like dynamic support (e,g dynamic reactive power support etc.) and ii) refurbishment of existing conventional central power plants to synchronous condensers could be one of the efficient, reliable and cost effective option......Due to progressive displacement of conventional power plants by wind turbines, dynamic security of large scale wind integrated power systems gets significantly compromised. In this paper we first highlight the importance of dynamic reactive power support/voltage security in large scale wind...... integrated power systems with least presence of conventional power plants. Then we propose a mixed integer dynamic optimization based method for optimal dynamic reactive power allocation in large scale wind integrated power systems. One of the important aspects of the proposed methodology is that unlike...

  20. Stable isotope-resolved analysis with quantitative dissolution dynamic nuclear polarization

    DEFF Research Database (Denmark)

    Lerche, Mathilde Hauge; Yigit, Demet; Frahm, Anne Birk

    2018-01-01

    Metabolite profiles and their isotopomer distributions can be studied non-invasively in complex mixtures with NMR. The advent of dissolution Dynamic Nuclear Polarization (dDNP) and isotope enrichment add sensitivity and resolution to such met-abolic studies. Metabolic pathways and networks can be...

  1. Structure of Li, Be And B isotopes studied with quantum molecular dynamic model

    International Nuclear Information System (INIS)

    Abdel-Hafiez, A.; Saleh, Z.A.

    2000-01-01

    Quantum molecular dynamics (QMD) is applied to study the ground state properties of Li, Be and B isotopes. The model Hamiltonian includes both two-and three-body density dependent interactions, a Coulomb term, and a momentum dependent Pauli potential. With parameters which guarantee the infinite nuclear matter properties, the QMD model can only reproduce the binding energies for Be and B isotopes. The experimental root mean square radii of the Li, Be and B isotopes are not sufficiently reproduced by these parameters. It is shown, however, that the binding energies and root mean square radii of these isotopes can simultaneously be reproduced in the lower density limit of the potential parameters

  2. Isotopic differentiation and sublattice melting in dense dynamic ice

    Science.gov (United States)

    Hermann, Andreas; Ashcroft, N. W.; Hoffmann, Roald

    2013-12-01

    The isotopes of hydrogen provide a unique exploratory laboratory for examining the role of zero point energy (ZPE) in determining the structural and dynamic features of the crystalline ices of water. There are two critical regions of high pressure: (i) near 1 TPa and (ii) near the predicted onset of metallization at around 5 TPa. At the lower pressure of the two, we see the expected small isotopic effects on phase transitions. Near metallization, however, the effects are much greater, leading to a situation where tritiated ice could skip almost entirely a phase available to the other isotopomers. For the higher pressure ices, we investigate in some detail the enthalpics of a dynamic proton sublattice, with the corresponding structures being quite ionic. The resistance toward diffusion of single protons in the ground state structures of high-pressure H2O is found to be large, in fact to the point that the ZPE reservoir cannot overcome these. However, the barriers toward a three-dimensional coherent or concerted motion of protons can be much lower, and the ensuing consequences are explored.

  3. Flow dynamics in distillation columns packed with Dixon rings as used in isotope separation

    International Nuclear Information System (INIS)

    Gilath, C.; Cohen, H.; Wolf, D.

    1977-01-01

    Packed distillation columns are common in isotope separation. The pressure drop serves as an indication for the hydrodynamic state of the column. Models were formulated for flow and pressure drop dynamics in packed distillation columns. These models were confirmed on columns packed with Dixon rings and operated with water for separation of oxygen isotopes. Liquid holdup displacement is very important in isotope separation practice. Experiments proved that distillation columns packed with Dixon rings exhibit a behaviour close to plug flow. (author)

  4. Quantifying mercury isotope dynamics in captive Pacific bluefin tuna (Thunnus orientalis

    Directory of Open Access Journals (Sweden)

    Sae Yun Kwon

    2016-02-01

    Full Text Available Abstract Analyses of mercury (Hg isotope ratios in fish tissues are used increasingly to infer sources and biogeochemical processes of Hg in natural aquatic ecosystems. Controlled experiments that can couple internal Hg isotope behavior with traditional isotope tracers (δ13C, δ15N can improve the applicability of Hg isotopes as natural ecological tracers. In this study, we investigated changes in Hg isotope ratios (δ202Hg, Δ199Hg during bioaccumulation of natural diets in the pelagic Pacific bluefin tuna (Thunnus orientalis; PBFT. Juvenile PBFT were fed a mixture of natural prey and a dietary supplement (60% Loligo opalescens, 31% Sardinops sagax, 9% gel supplement in captivity for 2914 days, and white muscle tissues were analyzed for Hg isotope ratios and compared to time in captivity and internal turnover of δ13C and δ15N. PBFT muscle tissues equilibrated to Hg isotope ratios of the dietary mixture within ∼700 days, after which we observed a cessation in further shifts in Δ199Hg, and small but significant negative δ202Hg shifts from the dietary mixture. The internal behavior of Δ199Hg is consistent with previous fish studies, which showed an absence of Δ199Hg fractionation during Hg bioaccumulation. The negative δ202Hg shifts can be attributed to either preferential excretion of Hg with higher δ202Hg values or individual variability in captive PBFT feeding preferences and/or consumption rates. The overall internal behavior of Hg isotopes is similar to that described for δ13C and δ15N, though observed Hg turnover was slower compared to carbon and nitrogen. This improved understanding of internal dynamics of Hg isotopes in relation to δ13C and δ15N enhances the applicability of Hg isotope ratios in fish tissues for tracing Hg sources in natural ecosystems.

  5. Rhodium self-powered detector for monitoring neutron fluence, energy production, and isotopic composition of fuel

    International Nuclear Information System (INIS)

    Sokolov, A.P.; Pochivalin, G.P.; Shipovskikh, Yu.M.; Garusov, Yu.V.; Chernikov, O.G.; Shevchenko, V.G.

    1993-01-01

    The use of self-powered detectors (SPDs) with a rhodium emitter customarily involves monitoring of neutron fields in the core of a nuclear reactor. Since current in an SPD is generated primarily because of the neutron flux, which is responsible for the dynamics of particular nuclear transformations, including fission reactions of heavy isotopes, the detector signal can be attributed unambiguously to energy release at the location of the detector. Computation modeling performed with the KOMDPS package of programs of the current formation in a rhodium SPD along with the neutron-physical processes that occur in the reactor core makes it possible to take account of the effect of the principal factors characterizing the operating conditions and the design features of the fuel channel and the detector, reveal quantitative relations between the generated signal and individual physical parameters, and determine the metrological parameters of the detector. The formation and transport of changed particles in the sensitive part of the SPC is calculated by the Monte Carlo method. The emitter activation, neutron transport, and dynamics of the isotopic composition in the fuel channel containing the SPD are determined by solving the kinetic equation in the multigroup representation of the neutron spectrum, using the discrete ordinate method. In this work the authors consider the operation of a rhodium SPD in a bundle of 49 fuel channels of the RBMK-1000 reactor with a fuel enrichment of 2.4% from the time it is inserted into a fresh channel

  6. Isotope investigation on groundwater recharge and dynamics in shallow and deep alluvial aquifers of southwest Punjab.

    Science.gov (United States)

    Keesari, Tirumalesh; Sharma, Diana A; Rishi, Madhuri S; Pant, Diksha; Mohokar, Hemant V; Jaryal, Ajay Kumar; Sinha, U K

    2017-11-01

    Groundwater samples collected from the alluvial aquifers of southwest Punjab, both shallow and deep zones were measured for environmental tritium ( 3 H) and stable isotopes ( 2 H and 18 O) to evaluate the source of recharge and aquifer dynamics. The shallow groundwater shows wide variation in isotopic signature (δ 18 O: -11.3 to -5.0‰) reflecting multiple sources of recharge. The average isotopic signature of shallow groundwaters (δ 18 O: -6.73 ± 1.03‰) is similar to that of local precipitation (-6.98 ± 1.66‰) indicating local precipitation contributes to a large extent compared to other sources. Other sources have isotopically distinct signatures due to either high altitude recharge (canal sources) or evaporative enrichment (irrigation return flow). Deep groundwater shows relatively depleted isotopic signature (δ 18 O: -8.6‰) and doesn't show any evaporation effect as compared to shallow zone indicating recharge from precipitation occurring at relatively higher altitudes. Environmental tritium indicates that both shallow ( 3 H: 5 - 10 T.U.) and deeper zone ( 3 H: 1.5 - 2.5 T.U.) groundwaters are modern. In general the inter-aquifer connections seem to be unlikely except a few places. Environmental isotope data suggests that shallow groundwater is dynamic, local and prone to changes in land use patterns while deep zone water is derived from distant sources, less dynamic and not impacted by surface manifestations. A conceptual groundwater flow diagram is presented. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. High dynamic range isotope ratio measurements using an analog electron multiplier

    Czech Academy of Sciences Publication Activity Database

    Williams, P.; Lorinčík, Jan; Franzreb, K.; Herwig, R.

    2013-01-01

    Roč. 45, č. 1 (2013), s. 549-552 ISSN 0142-2421 R&D Projects: GA MŠk ME 894 Institutional support: RVO:67985882 Keywords : Isotope ratios * electron multiplier * dynamic range Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.393, year: 2013

  8. Effects of temperature and isotopic substitution on electron attachment dynamics of guanine–cytosine base pair: Ring-polymer and classical molecular dynamics simulations

    International Nuclear Information System (INIS)

    Minoshima, Yusuke; Seki, Yusuke; Takayanagi, Toshiyuki; Shiga, Motoyuki

    2016-01-01

    Highlights: • Dynamics of excess electron attachment to guanine–cytosine base pair. • Ring-polymer and classical molecular dynamics simulations are performed. • Temperature and isotope substitution effects are investigated. - Abstract: The dynamical process of electron attachment to a guanine–cytosine pair in the normal (h-GC) and deuterated (d-GC) forms has been studied theoretically by semiclassical ring-polymer molecular dynamics (RPMD) simulations using the empirical valence bond model. The initially formed dipole-bound anion is converted rapidly to the valence-bound anion within about 0.1 ps in both h-GC and d-GC. However, the subsequent proton transfer in h-GC occurs with a rate five times greater than the deuteron transfer in d-GC. The change of rates with isotopic substitution and temperature variation in the RPMD simulations are quantitatively and qualitatively different from those in the classical molecular dynamics (MD) simulations, demonstrating the importance of nuclear quantum effects on the dynamics of this system.

  9. Effects of temperature and isotopic substitution on electron attachment dynamics of guanine–cytosine base pair: Ring-polymer and classical molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Minoshima, Yusuke; Seki, Yusuke [Department of Chemistry, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570 (Japan); Takayanagi, Toshiyuki, E-mail: tako@mail.saitama-u.ac.jp [Department of Chemistry, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570 (Japan); Shiga, Motoyuki [Center for Computational Science and E-Systems, Japan Atomic Energy Agency, 148-4, Kashiwanoha Campus, 178-4 Wakashiba, Kashiwa, Chiba 277-0871 (Japan)

    2016-06-15

    Highlights: • Dynamics of excess electron attachment to guanine–cytosine base pair. • Ring-polymer and classical molecular dynamics simulations are performed. • Temperature and isotope substitution effects are investigated. - Abstract: The dynamical process of electron attachment to a guanine–cytosine pair in the normal (h-GC) and deuterated (d-GC) forms has been studied theoretically by semiclassical ring-polymer molecular dynamics (RPMD) simulations using the empirical valence bond model. The initially formed dipole-bound anion is converted rapidly to the valence-bound anion within about 0.1 ps in both h-GC and d-GC. However, the subsequent proton transfer in h-GC occurs with a rate five times greater than the deuteron transfer in d-GC. The change of rates with isotopic substitution and temperature variation in the RPMD simulations are quantitatively and qualitatively different from those in the classical molecular dynamics (MD) simulations, demonstrating the importance of nuclear quantum effects on the dynamics of this system.

  10. The study of the dynamics of migration main radiologically significant isotopes in the near and far field Chernobyl nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Bondarkov, M.; Bondarkov, D.; Maksymenko, A. [Chornobyl Center for Nuclear Safety, Radioactive Waste and Radioecology (Ukraine); Zheltonozhskaya, M.; Zheltonozhsky, V. [Institute for nuclear research (Ukraine)

    2014-07-01

    The study of the migration of {sup 90}Sr, {sup 137}Cs, {sup 241}Am and Pu isotopes in soil near Chernobyl nuclear power plant area, as well as the Chernigov region, Ukraine is described. Experiments were conducted using a semiconductor spectrometry and radiochemical separation of isotopes needed. The experimental data obtained were processed using a mathematical model that takes into account in convective component (fit parameter V-- linear velocity of radionuclide movement dependent upon soil moisture) and diffusive one (fit parameter D- diffusion coefficient) migration of isotopes. The parameter values in V and D of migration, in turn, allow us to estimate halftime of decontamination top five-centimeter layer of soil. The results obtained in this paper halftime of decontamination for the various isotopes and their comparison with those obtained by us and by other authors in the past 10-20 years, confirms the trend previously noticed by a significant speeding migration Radiostrontium compared with Radiocesium. It is shown that for all the types studied soils in the late phase of Chernobyl accident halftime of decontamination of the top 5 - cm soil layer for radiostrontium, and for radioactive cesium in the order of magnitude or more greater than the period of the physical half-life of the radionuclide that is, matching in the late phase of the accident change the exposure dose of radiation is mainly determined by the physical decay of the radionuclide. According to the estimated periods decontamination upper soil horizons of different migration mobility of radionuclides in soils exclusion zone reduced in number: {sup 90}Sr> {sup 137}Cs> {sup 241}Am ≥ {sup 238-240}Pu, migration mobility of isotopes of transuranic elements is very low. Document available in abstract form only. (authors)

  11. Isotope effects in lithium hydride and lithium deuteride crystals by molecular dynamics simulations.

    Science.gov (United States)

    Dammak, Hichem; Antoshchenkova, Ekaterina; Hayoun, Marc; Finocchi, Fabio

    2012-10-31

    Molecular dynamics (MD) simulations have been carried out to study isotope effects in lithium hydride and lithium deuteride crystals. Quantum effects on nuclear motion have been included through a quantum thermal bath (QTB). The interatomic forces were described either within the density functional theory (DFT) in the generalized gradient approximation (GGA) or by the phenomenological approach using the shell model. For both models, the isotopic shift in the lattice parameter can be successfully predicted by QTB-MD simulations. The slope of the experimental isotopic shift in pressure is satisfactorily reproduced by QTB-MD within DFT-GGA, in contrast to both density functional perturbation theory and QTB-MD with the shell model. We have analyzed the reasons for these discrepancies through the vibrational densities of states and the isotopic shifts in bulk modulus. The results illustrate the importance of anharmonic contributions to vibrations and to the isotopic pressure shift between LiH and LiD.

  12. An innovational application of digital power supply controller on SSRF dynamic power supply

    International Nuclear Information System (INIS)

    Chen Huanguang; Li Rui; Guo Chunlong; Shen Tianjian; Li Deming

    2008-01-01

    Control structure of dynamic power supply using PSI controller in SLS and Diamond is introduced. For designing dynamic power supply using PSI controller in the booster of SSRF, an innovative application of PSI digital power supply controller has been developed. In the commissioning of SSRF, the dynamic power supplies performed perfectly. (authors)

  13. High-power CO laser with RF discharge for isotope separation employing condensation repression

    Science.gov (United States)

    Baranov, I. Ya.; Koptev, A. V.

    2008-10-01

    High-power CO laser can be the effective tool in such applications as isotope separation using the free-jet CRISLA method. The way of transfer from CO small-scale experimental installation to industrial high-power CO lasers is proposed through the use of a low-current radio-frequency (RF) electric discharge in a supersonic stream without an electron gun. The calculation model of scaling CO laser with RF discharge in supersonic stream was developed. The developed model allows to calculate parameters of laser installation and optimize them with the purpose of reception of high efficiency and low cost of installation as a whole. The technical decision of industrial CO laser for isotope separation employing condensation repression is considered. The estimated cost of laser is some hundred thousand dollars USA and small sizes of laser head give possibility to install it in any place.

  14. Mars power system concept definition study. Volume 1: Study results

    Science.gov (United States)

    Littman, Franklin D.

    1994-01-01

    A preliminary top level study was completed to define power system concepts applicable to Mars surface applications. This effort included definition of power system requirements and selection of power systems with the potential for high commonality. These power systems included dynamic isotope, Proton Exchange Membrane (PEM) regenerative fuel cell, sodium sulfur battery, photovoltaic, and reactor concepts. Design influencing factors were identified. Characterization studies were then done for each concept to determine system performance, size/volume, and mass. Operations studies were done to determine emplacement/deployment maintenance/servicing, and startup/shutdown requirements. Technology development roadmaps were written for each candidate power system (included in Volume 2). Example power system architectures were defined and compared on a mass basis. The dynamic isotope power system and nuclear reactor power system architectures had significantly lower total masses than the photovoltaic system architectures. Integrated development and deployment time phasing plans were completed for an example DIPS and reactor architecture option to determine the development strategies required to meet the mission scenario requirements.

  15. Uranium-isotope enrichment: application bounds of the separative power and separation work concepts

    Energy Technology Data Exchange (ETDEWEB)

    Novelli, P.

    1981-05-01

    The aim of this paper is a critical re-examination of the concepts of separative power, separation work and value function in order to understand if their extension to the new enrichment processes such as Laser Isotope Separation is possible.

  16. Kilowatt isotope power system, Phase II Plan. Volume IV. Teledyne FSCD vs GDS

    Energy Technology Data Exchange (ETDEWEB)

    1978-03-15

    This Volume contains Teledyne's input to the Kilowatt Isotope Power System Phase II Plan. Included is a description of the Flight System Heat Generation System, Flight System Radiator, Thermal Insulation Stability, GDS Heat Generation System and GDS Radiator.

  17. Importance of resonance parameters of fertile nuclei and of 239Pu isotope for fast power reactors

    International Nuclear Information System (INIS)

    Barre, J.Y.; Khairallah, A.

    1975-01-01

    The importance of resonance parameters of fertile nuclei and of 239 Pu isotope for fast power reactors will be restricted, in this presentation, to mixed oxide-uranium-plutonium fuelled sodium-cooled and uranium-oxide-sodium reflected fast reactors. The power range lies between 200 and 2000 MWe. Among the topics of this specialist meeting, the isotopes to be considered are, primarly 239 Pu then 238 U and 240 Pu. Resonance parameters are mainly used in fast power reactor calculations through the well-known concept of self shielding factors. After a short description of the determination and the use of these self-shielding factors, their sensitivities to resonance parameters are characterized from some specific examples: those sensitivities are small. Then, the main design parameters sensitive to the amplitude of self-shielding factors are considered: critical enrichment, global breeding gain. The relative importance of isotope, reaction rate and energy range are mentionned. In a third part, the Doppler effect, sensitive to the temperature variation of self-shielding factors, is considered in the same way. Finally, it is concluded that the present knowledge of resonance parameters for 238 U, 239 Pu and 240 Pu is sufficient for fast power reactors from a designer point of view [fr

  18. High-Voltage Power Supply System for Laser Isotope Separation

    Energy Technology Data Exchange (ETDEWEB)

    Ketaily, E.C.; Buckner, R.P.; Uhrik, R.L.

    1979-06-26

    This report presents several concepts for Laser High-Voltage Power Supply (HVPS) Systems for a Laser Isotope Separation facility. Selection of equipments and their arrangement into operational systems is based on proven designs and on application concepts now being developed. This report has identified a number of alternative system arrangements and has provided preliminary cost estimates for each. The report includes a recommendation for follow-on studies that will further define the optimum Laser HVPS Systems. Brief descriptions are given of Modulator/Regulator circuit trade-offs, system control interfaces, and their impact on costs.

  19. High-Voltage Power Supply System for Laser Isotope Separation

    International Nuclear Information System (INIS)

    Ketaily, E.C.; Buckner, R.P.; Uhrik, R.L.

    1979-01-01

    This report presents several concepts for Laser High-Voltage Power Supply (HVPS) Systems for a Laser Isotope Separation facility. Selection of equipments and their arrangement into operational systems is based on proven designs and on application concepts now being developed. This report has identified a number of alternative system arrangements and has provided preliminary cost estimates for each. The report includes a recommendation for follow-on studies that will further define the optimum Laser HVPS Systems. Brief descriptions are given of Modulator/Regulator circuit trade-offs, system control interfaces, and their impact on costs

  20. Nitrate denitrification with nitrite or nitrous oxide as intermediate products: Stoichiometry, kinetics and dynamics of stable isotope signatures.

    Science.gov (United States)

    Vavilin, V A; Rytov, S V

    2015-09-01

    A kinetic analysis of nitrate denitrification by a single or two species of denitrifying bacteria with glucose or ethanol as a carbon source and nitrite or nitrous oxide as intermediate products was performed using experimental data published earlier (Menyailo and Hungate, 2006; Vidal-Gavilan et al., 2013). Modified Monod kinetics was used in the dynamic biological model. The special equations were added to the common dynamic biological model to describe how isotopic fractionation between N species changes. In contrast to the generally assumed first-order kinetics, in this paper, the traditional Rayleigh equation describing stable nitrogen and oxygen isotope fractionation in nitrate was derived from the dynamic isotopic equations for any type of kinetics. In accordance with the model, in Vidal-Gavilan's experiments, the maximum specific rate of nitrate reduction was proved to be less for ethanol compared to glucose. Conversely, the maximum specific rate of nitrite reduction was proved to be much less for glucose compared to ethanol. Thus, the intermediate nitrite concentration was negligible for the ethanol experiment, while it was significant for the glucose experiment. In Menyailo's and Hungate's experiments, the low value of maximum specific rate of nitrous oxide reduction gives high intermediate value of nitrous oxide concentration. The model showed that the dynamics of nitrogen and oxygen isotope signatures are responding to the biological dynamics. Two microbial species instead of single denitrifying bacteria are proved to be more adequate to describe the total process of nitrate denitrification to dinitrogen. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Shape mixing dynamics in the low-lying states of proton-rich Kr isotopes

    International Nuclear Information System (INIS)

    Sato, Koichi; Hinohara, Nobuo

    2011-01-01

    We study the oblate-prolate shape mixing in the low-lying states of proton-rich Kr isotopes using the five-dimensional quadrupole collective Hamiltonian. The collective Hamiltonian is derived microscopically by means of the CHFB (constrained Hartree-Fock-Bogoliubov) + Local QRPA (quasiparticle random phase approximation) method, which we have developed recently on the basis of the adiabatic self-consistent collective coordinate method. The results of the numerical calculation show the importance of large-amplitude collective vibrations in the triaxial shape degree of freedom and rotational effects on the oblate-prolate shape mixing dynamics in the low-lying states of these isotopes.

  2. Brayton isotope power system, phase I. Final report

    International Nuclear Information System (INIS)

    1978-01-01

    The Phase I program resulted in the development and ground demonstration of a dynamic power conversion system. The two key contractual objectives of 25% conversion efficiency and 1000 h of endurance testing were successfully met. As a result of the Phase I effort, the BIPS is a viable candidate for further development into a flight system capable of sustained operation in space. It represents the only known dynamic space power system to demonstrate the performance and endurance coupled with the simplicity necessary for reliable operation. This final report follows thirty-five monthly reports. For expediency, it makes liberal use of referenced documents which have been submitted to DOE during the course of the program

  3. Optimization and application of ICPMS with dynamic reaction cell for precise determination of 44Ca/40Ca isotope ratios.

    Science.gov (United States)

    Boulyga, Sergei F; Klötzli, Urs; Stingeder, Gerhard; Prohaska, Thomas

    2007-10-15

    An inductively coupled plasma mass spectrometer with dynamic reaction cell (ICP-DRC-MS) was optimized for determining (44)Ca/(40)Ca isotope ratios in aqueous solutions with respect to (i) repeatability, (ii) robustness, and (iii) stability. Ammonia as reaction gas allowed both the removal of (40)Ar+ interference on (40)Ca+ and collisional damping of ion density fluctuations of an ion beam extracted from an ICP. The effect of laboratory conditions as well as ICP-DRC-MS parameters such a nebulizer gas flow rate, rf power, lens potential, dwell time, or DRC parameters on precision and mass bias was studied. Precision (calculated using the "unbiased" or "n - 1" method) of a single isotope ratio measurement of a 60 ng g(-1) calcium solution (analysis time of 6 min) is routinely achievable in the range of 0.03-0.05%, which corresponded to the standard error of the mean value (n = 6) of 0.012-0.020%. These experimentally observed RSDs were close to theoretical precision values given by counting statistics. Accuracy of measured isotope ratios was assessed by comparative measurements of the same samples by ICP-DRC-MS and thermal ionization mass spectrometry (TIMS) by using isotope dilution with a (43)Ca-(48)Ca double spike. The analysis time in both cases was 1 h per analysis (10 blocks, each 6 min). The delta(44)Ca values measured by TIMS and ICP-DRC-MS with double-spike calibration in two samples (Ca ICP standard solution and digested NIST 1486 bone meal) coincided within the obtained precision. Although the applied isotope dilution with (43)Ca-(48)Ca double-spike compensates for time-dependent deviations of mass bias and allows achieving accurate results, this approach makes it necessary to measure an additional isotope pair, reducing the overall analysis time per isotope or increasing the total analysis time. Further development of external calibration by using a bracketing method would allow a wider use of ICP-DRC-MS for routine calcium isotopic measurements, but it

  4. Dynamic Reactive Power Control in Offshore HVDC Connected Wind Power Plants

    DEFF Research Database (Denmark)

    Sakamuri, Jayachandra N.; Cutululis, Nicolaos Antonio; Rather, Zakir Hussain

    2016-01-01

    This paper presents a coordinated reactive power control for a HVDC connected cluster of offshore wind power plants (WPPs). The reactive power reference for the WPP cluster is estimated by an optimization algorithm aiming at minimum active power losses in the offshore AC Grid. For each optimal......, such as wind turbine (WT) terminal, collector cable, and export cable, on the dynamic voltage profile of the offshore grid is investigated. Furthermore, the dynamic reactive power contribution from WTs from different WPPs of the cluster for such faults has also been studied....... reactive power set point, the OWPP cluster controller generates reactive power references for each WPP which further sends the AC voltage/ reactive power references to the associated WTs based on their available reactive power margin. The impact of faults at different locations in the offshore grid...

  5. Solar dynamic power system definition study

    Science.gov (United States)

    Wallin, Wayne E.; Friefeld, Jerry M.

    1988-01-01

    The solar dynamic power system design and analysis study compared Brayton, alkali-metal Rankine, and free-piston Stirling cycles with silicon planar and GaAs concentrator photovoltaic power systems for application to missions beyond the Phase 2 Space Station level of technology for all power systems. Conceptual designs for Brayton and Stirling power systems were developed for 35 kWe and 7 kWe power levels. All power systems were designed for 7-year end-of-life conditions in low Earth orbit. LiF was selected for thermal energy storage for the solar dynamic systems. Results indicate that the Stirling cycle systems have the highest performance (lowest weight and area) followed by the Brayton cycle, with photovoltaic systems considerably lower in performance. For example, based on the performance assumptions used, the planar silicon power system weight was 55 to 75 percent higher than for the Stirling system. A technology program was developed to address areas wherein significant performance improvements could be realized relative to the current state-of-the-art as represented by Space Station. In addition, a preliminary evaluation of hardenability potential found that solar dynamic systems can be hardened beyond the hardness inherent in the conceptual designs of this study.

  6. Derivation of basic equations for rigorous dynamic simulation of cryogenic distillation column for hydrogen isotope separation

    International Nuclear Information System (INIS)

    Kinoshita, Masahiro; Naruse, Yuji

    1981-08-01

    The basic equations are derived for rigorous dynamic simulation of cryogenic distillation columns for hydrogen isotope separation. The model accounts for such factors as differences in latent heat of vaporization among the six isotopic species of molecular hydrogen, decay heat of tritium, heat transfer through the column wall and nonideality of the solutions. Provision is also made for simulation of columns with multiple feeds and multiple sidestreams. (author)

  7. Loop containment (joint integrity) assessment Brayton Isotope Power System flight system

    International Nuclear Information System (INIS)

    1976-01-01

    The Brayton Isotope Power System (BIPS) contains a large number of joints. Since the failure of a joint would result in loss of the working fluid and consequential failure of the BIPS, the integrity of the joints is of paramount importance. The reliability of the ERDA BIPS loop containment (joint integrity) is evaluated. The conceptual flight system as presently configured is depicted. A brief description of the flight system is given

  8. Preliminary Failure Modes, Effects and Criticality Analysis (FMECA) of the conceptual Brayton Isotope Power System (BIPS) Flight System

    International Nuclear Information System (INIS)

    Miller, L.G.

    1976-01-01

    A failure modes, effects and criticality analysis (FMECA) was made of the Brayton Isotope Power System Flight System (BIPS-FS) as presently conceived. The components analyzed include: Mini-BRU; Heat Source Assembly (HSA); Mini-Brayton Recuperator (MBR); Space Radiator; Ducts and Bellows, Insulation System; Controls; and Isotope Heat Source (IHS)

  9. Kilowatt isotope power system phase II plan. Volume II: flight System Conceptual Design (FSCD)

    International Nuclear Information System (INIS)

    1978-03-01

    The Kilowatt Isotope Power System (KIPS) Flight System Conceptual Design (FSCD) is described. Included are a background, a description of the flight system conceptual design, configuration of components, flight system performance, Ground Demonstration System test results, and advanced development tests

  10. A comparison of radioisotope Brayton and Stirling system for lunar surface mobile power

    International Nuclear Information System (INIS)

    Harty, R.B.

    1991-01-01

    A study was performed by the Rocketdyne Division of Rockwell 2.5-kWe modular dynamic isotope power system (DIPS) using a Stirling power conversion system. The results of this study were compared with similar results performed under the DIPS program using a Brayton power conversion system. The study indicated that the Stirling power module has 20% lower mass and 40% lower radiator area than the Brayton module. However, the study also revealed that because the Stirling power module requires a complex heat pipe arrangment to transport heat from the isotope to the Stirling heater head and a pumped NaK heat rejection loop, the Stirling module is much more difficult to integrate with the isotope heat source and heat rejection system

  11. Dynamic modeling of IGCC power plants

    International Nuclear Information System (INIS)

    Casella, F.; Colonna, P.

    2012-01-01

    Integrated Gasification Combined Cycle (IGCC) power plants are an effective option to reduce emissions and implement carbon-dioxide sequestration. The combination of a very complex fuel-processing plant and a combined cycle power station leads to challenging problems as far as dynamic operation is concerned. Dynamic performance is extremely relevant because recent developments in the electricity market push toward an ever more flexible and varying operation of power plants. A dynamic model of the entire system and models of its sub-systems are indispensable tools in order to perform computer simulations aimed at process and control design. This paper presents the development of the lumped-parameters dynamic model of an entrained-flow gasifier, with special emphasis on the modeling approach. The model is implemented into software by means of the Modelica language and validated by comparison with one set of data related to the steady operation of the gasifier of the Buggenum power station in the Netherlands. Furthermore, in order to demonstrate the potential of the proposed modeling approach and the use of simulation for control design purposes, a complete model of an exemplary IGCC power plant, including its control system, has been developed, by re-using existing models of combined cycle plant components; the results of a load dispatch ramp simulation are presented and shortly discussed. - Highlights: ► The acausal dynamic model of an entrained gasifier has been developed. ► The model can be used to perform system optimization and control studies. ► The model has been validated using field data. ► Model use is illustrated with an example showing the transient of an IGCC plant.

  12. Kilowatt isotope power system. Phase II plan. Volume V. Safety, quality assurance and reliability

    International Nuclear Information System (INIS)

    1978-01-01

    The development of a Kilowatt Isotope Power System (KIPS) was begun in 1975 for the purpose of satisfying the power requirements of satellites in the 1980's. The KIPS is a 238 PuO 2 -fueled organic Rankine cycle turbine power system to provide a design output of 500 to 2000 W. Included in this volume are: launch and flight safety considerations; quality assurance techniques and procedures to be followed through system fabrication, assembly and inspection; and the reliability program made up of reliability prediction analysis, failure mode analysis and criticality analysis

  13. Preliminary design study of an alternate heat source assembly for a Brayton isotope power system

    Science.gov (United States)

    Strumpf, H. J.

    1978-01-01

    Results are presented for a study of the preliminary design of an alternate heat source assembly (HSA) intended for use in the Brayton isotope power system (BIPS). The BIPS converts thermal energy emitted by a radioactive heat source into electrical energy by means of a closed Brayton cycle. A heat source heat exchanger configuration was selected and optimized. The design consists of a 10 turn helically wound Hastelloy X tube. Thermal analyses were performed for various operating conditions to ensure that post impact containment shell (PICS) temperatures remain within specified limits. These limits are essentially satisfied for all modes of operation except for the emergency cooling system for which the PICS temperatures are too high. Neon was found to be the best choice for a fill gas for auxiliary cooling system operation. Low cycle fatigue life, natural frequency, and dynamic loading requirements can be met with minor modifications to the existing HSA.

  14. Aggregated Wind Park Models for Analysing Power System Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Poeller, Markus; Achilles, Sebastian [DIgSILENT GmbH, Gomaringen (Germany)

    2003-11-01

    The increasing amount of wind power generation in European power systems requires stability analysis considering interaction between wind-farms and transmission systems. Dynamics introduced by dispersed wind generators at the distribution level can usually be neglected. However, large on- and offshore wind farms have a considerable influence to power system dynamics and must definitely be considered for analyzing power system dynamics. Compared to conventional power stations, wind power plants consist of a large number of generators of small size. Therefore, representing every wind generator individually increases the calculation time of dynamic simulations considerably. Therefore, model aggregation techniques should be applied for reducing calculation times. This paper presents aggregated models for wind parks consisting of fixed or variable speed wind generators.

  15. Sulphur isotopes as tracers of the influence of a coal-fired power plant on a Scots pine forest in Catalonia (NE Spain)

    Science.gov (United States)

    Puig, R.; Àvila, A.; Soler, A.

    Stable sulphur isotopes and major ionic composition were analysed in precipitation and throughfall samples from a Scots pine ( Pinus sylvestris, L.) forest near the Cercs coal-fired power plant (Catalonia, NE Spain). The purpose of the study was to determine the main sources of sulphur deposition on this pine forest. Sulphur isotope measurements from the SO 2 power plant stack emissions were used to identify the isotopic signature of this source. Net throughfall fluxes of sulphur (26.1 kg S ha 1 yr -1) and nitrogen (16.3 kg N ha -1 yr -1) were higher—5-25 times higher for S and 5-15 times for N—at this site than in other forests in Catalonia. Sulphur isotope analysis confirmed that the net throughfall fluxes of sulphur were mostly due to the dry deposition of the SO 2 power plant emissions onto the pine canopies. Two potential atmospheric end-members were distinguished: regional background rainwater (δ 34S=+7.2‰) and power plant emissions (δ 34S=-2.8‰). By applying a two-component sulphur isotope mixing model, we found that during periods of low power plant activity (⩽10 emission h day -1), 62% of the throughfall sulphate could be attributed to the power plant emissions. At higher activity periods (⩾14 emission h day -1), this contribution rose to 73%. Although power plant contribution to bulk deposition was lower in both cases (34% and 45%), the possible influence of sulphate coming with long-range transport events from the polluted areas in the Mediterranean basin (δ 34S≈0‰) was not discarded.

  16. The determination of minor isotope abundances in naturally occurring uranium materials. The tracing power of isotopic signatures for uranium

    International Nuclear Information System (INIS)

    Ovaskainen, R.

    1999-01-01

    The mass spectrometric determination of minor abundant isotopes, 234 U and 236 U in naturally occurring uranium materials requires instruments of high abundance sensitivity and the use of highly sensitive detection systems. In this study the thermal ionisation mass spectrometer Finnigan MAT 262RPQ was used. It was equipped with 6 Faraday cups and a Secondary Electron Multiplier (SEM), which was operated in pulse counting mode for the detection of extremely low ion currents. The dynamic measurement range was increased considerably combining these two different detectors. The instrument calibration was performed carefully. The linearity of each detector, the deadtime of the ion counting detector, the detector normalisation factor, the baseline of each detector and the mass discrimination in the ion source were checked and optimised. A measurement technique based on the combination of a Gas Source Mass Spectrometry (GSMS) and a Thermal Ionisation Mass Spectrometry (TIMS) was developed for the accurate determination of isotopic composition in naturally occurring uranium materials. Because the expected ratio of n( 234 U)/n( 238 U) exceeded the dynamic measurement range of the Faraday detectors of the TIMS instrument, an experimental design using a combination of two detectors was developed. The n( 234 U)/n( 235 U) and n( 236 U)/n( 235 U) ratios were determined using ion counting in combination with the decelerating device. The n( 235 U)/n( 238 U) ratio was determined by the Faraday detector. This experimental design allowed the detector cross calibration to be circumvented. Precisions of less than 1 percent for the n( 234 U)/n( 235 U) ratios and 5-25 percent for the n( 236 U)/n( 235 U) ratios were achieved. The purpose of the study was to establish a register of isotopic signatures for natural uranium materials. The amount ratio, and isotopic composition of 18 ore concentrates, collected by the International Atomic Energy Agency (IAEA) from uranium milling and mining

  17. Electron linac for medical isotope production with improved energy efficiency and isotope recovery

    Science.gov (United States)

    Noonan, John; Walters, Dean; Virgo, Matt; Lewellen, John

    2015-09-08

    A method and isotope linac system are provided for producing radio-isotopes and for recovering isotopes. The isotope linac is an energy recovery linac (ERL) with an electron beam being transmitted through an isotope-producing target. The electron beam energy is recollected and re-injected into an accelerating structure. The ERL provides improved efficiency with reduced power requirements and provides improved thermal management of an isotope target and an electron-to-x-ray converter.

  18. Reliability program plan for the Kilowatt Isotope Power System (KIPS) technology verification phase

    International Nuclear Information System (INIS)

    1978-01-01

    Ths document is an integral part of the Kilowatt Isotope Power System (KIPS) Program Plan. This document defines the KIPS Reliability Program Plan for the Technology Verification Phase. This document delineates the reliability assurance tasks that are to be accomplished by Sundstrand and its suppliers during the design, fabrication and testing of the KIPS

  19. In-situ Isotopic Analysis at Nanoscale using Parallel Ion Electron Spectrometry: A Powerful New Paradigm for Correlative Microscopy

    Science.gov (United States)

    Yedra, Lluís; Eswara, Santhana; Dowsett, David; Wirtz, Tom

    2016-01-01

    Isotopic analysis is of paramount importance across the entire gamut of scientific research. To advance the frontiers of knowledge, a technique for nanoscale isotopic analysis is indispensable. Secondary Ion Mass Spectrometry (SIMS) is a well-established technique for analyzing isotopes, but its spatial-resolution is fundamentally limited. Transmission Electron Microscopy (TEM) is a well-known method for high-resolution imaging down to the atomic scale. However, isotopic analysis in TEM is not possible. Here, we introduce a powerful new paradigm for in-situ correlative microscopy called the Parallel Ion Electron Spectrometry by synergizing SIMS with TEM. We demonstrate this technique by distinguishing lithium carbonate nanoparticles according to the isotopic label of lithium, viz. 6Li and 7Li and imaging them at high-resolution by TEM, adding a new dimension to correlative microscopy. PMID:27350565

  20. Dynamic Performance of the ITER Reactive Power Compensation System

    International Nuclear Information System (INIS)

    Sheng Zhicai; Fu Peng; Xu Liuwei

    2011-01-01

    Dynamic performance of a reactive power compensation (RPC) system for the international thermonuclear experimental reactor (ITER) power supply is presented. Static var compensators (SVCs) are adopted to mitigate voltage fluctuation and reduce the reactive power down to a level acceptable for the French/European 400 kV grid. A voltage feedback and load power feedforward controller for SVC is proposed, with the feedforward loop intended to guarantee short response time and the feedback loop ensuring good dynamics and steady characteristics of SVC. A mean filter was chosen to measure the control signals to improve the dynamic response. The dynamic performance of the SVC is verified by simulations using PSCAD/EMTDC codes.

  1. Stable isotopes and elasmobranchs: tissue types, methods, applications and assumptions.

    Science.gov (United States)

    Hussey, N E; MacNeil, M A; Olin, J A; McMeans, B C; Kinney, M J; Chapman, D D; Fisk, A T

    2012-04-01

    Stable-isotope analysis (SIA) can act as a powerful ecological tracer with which to examine diet, trophic position and movement, as well as more complex questions pertaining to community dynamics and feeding strategies or behaviour among aquatic organisms. With major advances in the understanding of the methodological approaches and assumptions of SIA through dedicated experimental work in the broader literature coupled with the inherent difficulty of studying typically large, highly mobile marine predators, SIA is increasingly being used to investigate the ecology of elasmobranchs (sharks, skates and rays). Here, the current state of SIA in elasmobranchs is reviewed, focusing on available tissues for analysis, methodological issues relating to the effects of lipid extraction and urea, the experimental dynamics of isotopic incorporation, diet-tissue discrimination factors, estimating trophic position, diet and mixing models and individual specialization and niche-width analyses. These areas are discussed in terms of assumptions made when applying SIA to the study of elasmobranch ecology and the requirement that investigators standardize analytical approaches. Recommendations are made for future SIA experimental work that would improve understanding of stable-isotope dynamics and advance their application in the study of sharks, skates and rays. © 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.

  2. Kilowatt isotope power system. Phase II plan. Volume I. Phase II program plan

    International Nuclear Information System (INIS)

    1978-01-01

    The development of a Kilowatt Isotope Power System (KIPS) was begun in 1975 for the purpose of satisfying the power requirements of satellites in the 1980's. The KIPS is a 238 PuO 2 -fueled organic Rankine cycle turbine power system to provide a design output of 500 to 2000 W. Phase II of the overall 3-phase KIPS program is described. This volume presents a program plan for qualifying the organic Rankine power system for flight test in 1982. The program plan calls for the design and fabrication of the proposed flight power system; conducting a development and a qualification program including both environmental and endurance testing, using an electrical and a radioisotope heat source; planning for flight test and spacecraft integration; and continuing ground demonstration system testing to act as a flight system breadboard and to accumulate life data

  3. On structural identifiability analysis of the cascaded linear dynamic systems in isotopically non-stationary 13C labelling experiments.

    Science.gov (United States)

    Lin, Weilu; Wang, Zejian; Huang, Mingzhi; Zhuang, Yingping; Zhang, Siliang

    2018-06-01

    The isotopically non-stationary 13C labelling experiments, as an emerging experimental technique, can estimate the intracellular fluxes of the cell culture under an isotopic transient period. However, to the best of our knowledge, the issue of the structural identifiability analysis of non-stationary isotope experiments is not well addressed in the literature. In this work, the local structural identifiability analysis for non-stationary cumomer balance equations is conducted based on the Taylor series approach. The numerical rank of the Jacobian matrices of the finite extended time derivatives of the measured fractions with respect to the free parameters is taken as the criterion. It turns out that only one single time point is necessary to achieve the structural identifiability analysis of the cascaded linear dynamic system of non-stationary isotope experiments. The equivalence between the local structural identifiability of the cascaded linear dynamic systems and the local optimum condition of the nonlinear least squares problem is elucidated in the work. Optimal measurements sets can then be determined for the metabolic network. Two simulated metabolic networks are adopted to demonstrate the utility of the proposed method. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Considerations in the design of a high power medical isotope production reactor

    International Nuclear Information System (INIS)

    Ball, Russell M.; Nordyke, William H.; Brown, Roy

    2002-01-01

    For the low enriched aqueous homogeneous reactor to be economic in the production of medical isotopes, such as Mo-99 and Sr-89, the power level should be of the order of 100 kWth. This is double the earlier designs and this paper discusses the design changes which must be considered to meet this goal. The topics considered are: 1. Heat removal from the reactor solution; 2. Recombination of radiolytic gases; 3. Adequate radiation shielding; 4. Stability of reactor power with fluctuating reactivity; 5. Adequate cooling of the reflector; 6. Independent shutdown mechanisms; 7. Required volume of the reactor; 8. Economic implementation. (author)

  5. Multi-time scale dynamics in power electronics-dominated power systems

    Science.gov (United States)

    Yuan, Xiaoming; Hu, Jiabing; Cheng, Shijie

    2017-09-01

    Electric power infrastructure has recently undergone a comprehensive transformation from electromagnetics to semiconductors. Such a development is attributed to the rapid growth of power electronic converter applications in the load side to realize energy conservation and on the supply side for renewable generations and power transmissions using high voltage direct current transmission. This transformation has altered the fundamental mechanism of power system dynamics, which demands the establishment of a new theory for power system control and protection. This paper presents thoughts on a theoretical framework for the coming semiconducting power systems.

  6. The determination of minor isotope abundances in naturally occurring uranium materials. The tracing power of isotopic signatures for uranium

    Energy Technology Data Exchange (ETDEWEB)

    Ovaskainen, R

    1999-11-01

    The mass spectrometric determination of minor abundant isotopes, {sup 234}U and {sup 236}U in naturally occurring uranium materials requires instruments of high abundance sensitivity and the use of highly sensitive detection systems. In this study the thermal ionisation mass spectrometer Finnigan MAT 262RPQ was used. It was equipped with 6 Faraday cups and a Secondary Electron Multiplier (SEM), which was operated in pulse counting mode for the detection of extremely low ion currents. The dynamic measurement range was increased considerably combining these two different detectors. The instrument calibration was performed carefully. The linearity of each detector, the deadtime of the ion counting detector, the detector normalisation factor, the baseline of each detector and the mass discrimination in the ion source were checked and optimised. A measurement technique based on the combination of a Gas Source Mass Spectrometry (GSMS) and a Thermal Ionisation Mass Spectrometry (TIMS) was developed for the accurate determination of isotopic composition in naturally occurring uranium materials. Because the expected ratio of n({sup 234}U)/n({sup 238}U) exceeded the dynamic measurement range of the Faraday detectors of the TIMS instrument, an experimental design using a combination of two detectors was developed. The n({sup 234}U)/n({sup 235}U) and n({sup 236}U)/n({sup 235}U) ratios were determined using ion counting in combination with the decelerating device. The n({sup 235}U)/n({sup 238}U) ratio was determined by the Faraday detector. This experimental design allowed the detector cross calibration to be circumvented. Precisions of less than 1 percent for the n({sup 234}U)/n({sup 235}U) ratios and 5-25 percent for the n({sup 236}U)/n({sup 235}U) ratios were achieved. The purpose of the study was to establish a register of isotopic signatures for natural uranium materials. The amount ratio, and isotopic composition of 18 ore concentrates, collected by the International

  7. Dynamic impedance compensation for wireless power transfer using conjugate power

    Science.gov (United States)

    Liu, Suqi; Tan, Jianping; Wen, Xue

    2018-02-01

    Wireless power transfer (WPT) via coupled magnetic resonances has been in development for over a decade. However, the frequency splitting phenomenon occurs in the over-coupled region. Thus, the output power of the two-coil system achieves the maximum output power at the two splitting angular frequencies, and not at the natural resonant angular frequency. According to the maximum power transfer theorem, the impedance compensation method was adopted in many WPT projects. However, it remains a challenge to achieve the maximum output power and transmission efficiency in a fixed-frequency mode. In this study, dynamic impedance compensation for WPT was presented by utilizing the compensator within a virtual three-coil WPT system. First, the circuit model was established and transfer characteristics of a system were studied by utilizing circuit theories. Second, the power superposition of the WPT system was carefully researched. When a pair of compensating coils was inserted into the transmitter loop, the conjugate power of the compensator loop was created via magnetic coupling of the two compensating coils that insert into the transmitter loop. The mechanism for dynamic impedance compensation for wireless power transfer was then provided by investigating a virtual three-coil WPT system. Finally, the experimental circuit of a virtual three-coil WPT system was designed, and experimental results are consistent with the theoretical analysis, which achieves the maximum output power and transmission efficiency.

  8. Dynamic impedance compensation for wireless power transfer using conjugate power

    Directory of Open Access Journals (Sweden)

    Suqi Liu

    2018-02-01

    Full Text Available Wireless power transfer (WPT via coupled magnetic resonances has been in development for over a decade. However, the frequency splitting phenomenon occurs in the over-coupled region. Thus, the output power of the two-coil system achieves the maximum output power at the two splitting angular frequencies, and not at the natural resonant angular frequency. According to the maximum power transfer theorem, the impedance compensation method was adopted in many WPT projects. However, it remains a challenge to achieve the maximum output power and transmission efficiency in a fixed-frequency mode. In this study, dynamic impedance compensation for WPT was presented by utilizing the compensator within a virtual three-coil WPT system. First, the circuit model was established and transfer characteristics of a system were studied by utilizing circuit theories. Second, the power superposition of the WPT system was carefully researched. When a pair of compensating coils was inserted into the transmitter loop, the conjugate power of the compensator loop was created via magnetic coupling of the two compensating coils that insert into the transmitter loop. The mechanism for dynamic impedance compensation for wireless power transfer was then provided by investigating a virtual three-coil WPT system. Finally, the experimental circuit of a virtual three-coil WPT system was designed, and experimental results are consistent with the theoretical analysis, which achieves the maximum output power and transmission efficiency.

  9. FABGEN, a transient power-generation and isotope birth rate calculator

    International Nuclear Information System (INIS)

    Roland, H.C.

    1975-04-01

    A description is given of the FABGEN program, a fast-running program for calculating fuel element power-generation rates and selected fission product birth rates in a known neutron flux as functions of time. A first forward difference calculation is used, and the time step is one day. Provisions are made for including various fuel element lengths, variation of thermal flux with time, and use of different fertile isotopes. Five different fission products may be specified for birth-rate calculations. A daily summary may be output, or totals by days may be accumulated for final output. (U.S.)

  10. Nitrogen isotopes suggest a change in nitrogen dynamics between the Late Pleistocene and modern time in Yukon, Canada

    Science.gov (United States)

    Longstaffe, Fred J.; Zazula, Grant

    2018-01-01

    A magnificent repository of Late Pleistocene terrestrial megafauna fossils is contained in ice-rich loess deposits of Alaska and Yukon, collectively eastern Beringia. The stable carbon (δ13C) and nitrogen (δ15N) isotope compositions of bone collagen from these fossils are routinely used to determine paleodiet and reconstruct the paleoecosystem. This approach requires consideration of changes in C- and N-isotope dynamics over time and their effects on the terrestrial vegetation isotopic baseline. To test for such changes between the Late Pleistocene and modern time, we compared δ13C and δ15N for vegetation and bone collagen and structural carbonate of some modern, Yukon, arctic ground squirrels with vegetation and bones from Late Pleistocene fossil arctic ground squirrel nests preserved in Yukon loess deposits. The isotopic discrimination between arctic ground squirrel bone collagen and their diet was measured using modern samples, as were isotopic changes during plant decomposition; Over-wintering decomposition of typical vegetation following senescence resulted in a minor change (~0–1 ‰) in δ13C of modern Yukon grasses. A major change (~2–10 ‰) in δ15N was measured for decomposing Yukon grasses thinly covered by loess. As expected, the collagen-diet C-isotope discrimination measured for modern samples confirms that modern vegetation δ13C is a suitable proxy for the Late Pleistocene vegetation in Yukon Territory, after correction for the Suess effect. The N-isotope composition of vegetation from the fossil arctic ground squirrel nests, however, is determined to be ~2.8 ‰ higher than modern grasslands in the region, after correction for decomposition effects. This result suggests a change in N dynamics in this region between the Late Pleistocene and modern time. PMID:29447202

  11. Features of adsorbed chemical elements and their isotopes distribution in iodine air filters AU-1500 of nuclear power plant

    International Nuclear Information System (INIS)

    Neklyudov, I.M.; Dovbnya, A.N.; Dikiy, N.P.; Ledenyov, O.P.; Lyashko, Yu.V.

    2013-01-01

    The main aim of research is to investigate the physical features of spatial distribution of the adsorbed chemical elements and their isotopes in the granular filtering medium in the iodine air filters of the type of AU-1500 in the forced-exhaust ventilation at the nuclear power plant. The ?-activation analysis method is applied to accurately characterize the distribution of the adsorbed radioactive chemical elements and their isotopes in the granular filtering medium in the AU-1500 iodine air filter after its long term operation at the nuclear power plant. The typical spectrum of the detected chemical elements and their isotopes in the AU-1500 iodine air filter, which was exposed by the irradiation of bremsstrahlung gamma-quantum producing by the accelerating electrons in the tantalum target, are obtained. The spatial distributions of the detected chemical element 127 I and some other chemical elements and their isotopes in the layer of absorber, which was made of the cylindrical coal granules of the type of SKT-3, in the AU-1500 iodine air filter are also researched. The possible influences by the standing wave of air pressure in the iodine air filter on the spatial distribution of the chemical elements and their isotopes in the iodine air filter are discussed. The comprehensive analysis of obtained research results on the distribution of the adsorbed chemical elements and their isotopes in the absorber of iodine air filter is performed.

  12. On dewetting dynamics of solid films of hydrogen isotopes and its influence on tritium β spectroscopy

    International Nuclear Information System (INIS)

    Fleischmann, L.; Bonn, J.; Bornschein, B.; Otten, E.W.; Przyrembel, M.; Weinheimer, Ch.

    2000-01-01

    The dewetting dynamics of solid films of hydrogen isotopes, quench-condensed on a graphite substrate, was measured at various temperatures below desorption by observing the stray light from the film. A schematic model describing the dewetting process by surface diffusion is presented, which agrees qualitatively with our data. The activation energies of different hydrogen isotopes for surface diffusion were determined. The time constant for dewetting of a quench-condensed T 2 film at the working temperature of 1.86 K of the mainz neutrino mass experiment was extrapolated. (orig.)

  13. System design specification Brayton Isotope Power System (BIPS) Flight System (FS), and Ground Demonstration System (GDS)

    International Nuclear Information System (INIS)

    1976-01-01

    The system design specification for ground demonstration, development, and flight qualification of a Brayton Isotope Power System (BIPS) is presented. The requirements for both a BIPS conceptual Flight System (FS) and a Ground Demonstration System (GDS) are defined

  14. Computer study of isotope production for medical and industrial applications in high power accelerators

    Science.gov (United States)

    Mashnik, S. G.; Wilson, W. B.; Van Riper, K. A.

    2001-07-01

    Methods for radionuclide production calculation in a high power proton accelerator have been developed and applied to study production of 22 isotopes. These methods are readily applicable both to accelerator and reactor environments and to the production of other radioactive and stable isotopes. We have also developed methods for evaluating cross sections from a wide variety of sources into a single cross section set and have produced an evaluated library covering about a third of all natural elements that may be expanded to other reactions. A 684 page detailed report on this study, with 37 tables and 264 color figures, is available on the Web at http://t2.lanl.gov/publications/.

  15. Grassroots Leadership: Encounters with Power Dynamics and Oppression

    Science.gov (United States)

    Kezar, Adrianna

    2011-01-01

    This article focuses on the nature of power dynamics that faculty and staff grassroots leaders encounter as they attempt to create change. I identified five distinctive types of power dynamics--"oppression," "silencing," "controlling," "inertia," and "micro-aggressions" from the most overt to more subtle and covert forms. Staff experience multiple…

  16. Dynamic intersectoral models with power-law memory

    Science.gov (United States)

    Tarasova, Valentina V.; Tarasov, Vasily E.

    2018-01-01

    Intersectoral dynamic models with power-law memory are proposed. The equations of open and closed intersectoral models, in which the memory effects are described by the Caputo derivatives of non-integer orders, are derived. We suggest solutions of these equations, which have the form of linear combinations of the Mittag-Leffler functions and which are characterized by different effective growth rates. Examples of intersectoral dynamics with power-law memory are suggested for two sectoral cases. We formulate two principles of intersectoral dynamics with memory: the principle of changing of technological growth rates and the principle of domination change. It has been shown that in the input-output economic dynamics the effects of fading memory can change the economic growth rate and dominant behavior of economic sectors.

  17. Application of Isotope Techniques for Assessing Nutrient Dynamics in River Basins

    International Nuclear Information System (INIS)

    2013-05-01

    Nutrients are necessary for the growth and survival of animals, plants and other organisms. However, industrial, agricultural and urban development has dramatically increased nutrient levels in river systems, including nitrogen and phosphorus containing substances, degrading water quality, causing acidification and eutrophication and affecting aquatic ecosystems. Nutrient assessment and management in river systems has been an important part of water resource management for the past few decades, but the provision of appropriate and effective nutrient assessment and management continues to be a challenge for water resource managers and policy makers. Difficulties in assessment and management are due in part to the fact that nutrients in rivers may originate from a variety of sources, take numerous pathways and transform into other substances. This publication presents the application of isotope techniques as a powerful tool for evaluating the sources, pathways, transformation, and fate of nutrients in river systems, focusing on nitrogen, phosphorus and carbon containing substances. Eleven researchers using various isotope techniques for different aspects of nutrient studies and two IAEA officers met in a technical meeting and discussed a publication that could assist water resource managers in dealing with nutrient assessment and management issues in river systems. These researchers also recognized the need for careful consideration in selecting appropriate isotope techniques in view of not only technical, but also financial, human resources and logistical capabilities, among others. These contributors are listed as major authors in the later pages of this document. This publication aims at serving water resource managers as a guidebook on the application of isotope techniques in nutrient assessment and management, but it is also expected to be of practical aid for other interested and concerned individuals and organization.

  18. Application of Isotope Techniques for Assessing Nutrient Dynamics in River Basins

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-05-15

    Nutrients are necessary for the growth and survival of animals, plants and other organisms. However, industrial, agricultural and urban development has dramatically increased nutrient levels in river systems, including nitrogen and phosphorus containing substances, degrading water quality, causing acidification and eutrophication and affecting aquatic ecosystems. Nutrient assessment and management in river systems has been an important part of water resource management for the past few decades, but the provision of appropriate and effective nutrient assessment and management continues to be a challenge for water resource managers and policy makers. Difficulties in assessment and management are due in part to the fact that nutrients in rivers may originate from a variety of sources, take numerous pathways and transform into other substances. This publication presents the application of isotope techniques as a powerful tool for evaluating the sources, pathways, transformation, and fate of nutrients in river systems, focusing on nitrogen, phosphorus and carbon containing substances. Eleven researchers using various isotope techniques for different aspects of nutrient studies and two IAEA officers met in a technical meeting and discussed a publication that could assist water resource managers in dealing with nutrient assessment and management issues in river systems. These researchers also recognized the need for careful consideration in selecting appropriate isotope techniques in view of not only technical, but also financial, human resources and logistical capabilities, among others. These contributors are listed as major authors in the later pages of this document. This publication aims at serving water resource managers as a guidebook on the application of isotope techniques in nutrient assessment and management, but it is also expected to be of practical aid for other interested and concerned individuals and organization.

  19. Research on the groundwater flow dynamics of Lamas basin by isotope methods

    International Nuclear Information System (INIS)

    Onhon, E.; Sayin, M.; Basaran, N.; Can, D.; Yuce, G.; Pelen, N.; Kaplan, A.

    1996-01-01

    The main objective of Lamas Project is to define the relation between the recharge to highlands and the discharge realized by the springs along the Mediterranean coast and thus assist to the development of karst water resources by preparing a dependable evaluation of the water budget. The investigation area covers almost 4400 square kilometers where the elevation rises from 0 to 2900 m. Lamas is the main river crossing the area from northwest to southeast with a yield between 13.48 to 2.77 cu.m/s. the karstification in the area has at least reached 300 m in depth. The water samples were collected from 16 springs, 3 drilled wells, stream and two meteorological stations, to define the groundwater dynamics and investigate the relation between the sampling points and to assist the establishment of an evaluation in isotope hydrology. By taking into consideration the unmeasured discharges along the coast line, the infiltration from the precipitation is approximately 50-60 %. The water in the aquifer is isotopically affected by the infiltration of low altitude precipitation. The hydrogeological and isotope hydrology investigations have reached the conclusions that the karst water resources can be developed by drilling of deep wells near the karst springs. (author). 9 refs, 7 figs, 2 tabs

  20. Power system dynamics and stability with synchrophasor measurement and power system toolbox

    CERN Document Server

    Sauer, Peter W; Chow, Joe H

    2017-01-01

    This new edition addresses the needs of dynamic modeling and simulation relevant to power system planning, design, and operation, including a systematic derivation of synchronous machine dynamic models together with speed and voltage control subsystems. Reduced-order modeling based on integral manifolds is used as a firm basis for understanding the derivations and limitations of lower-order dynamic models. Following these developments, a multi-machine model interconnected through the transmission network is formulated and simulated using numerical simulation methods. Energy function methods are discussed for direct evaluation of stability. Small-signal analysis is used for determining the electromechanical modes and mode-shapes, and for power system stabilizer design. Time-synchronized high-sampling-rate phasor measurement units (PMUs) to monitor power system disturbances ave been implemented throughout North America and many other countries. In this second edition, new chapters on synchrophasor measurement ...

  1. Power Aware Dynamic Provisioning of HPC Networks

    Energy Technology Data Exchange (ETDEWEB)

    Groves, Taylor [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Grant, Ryan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-10-01

    Future exascale systems are under increased pressure to find power savings. The network, while it consumes a considerable amount of power is often left out of the picture when discussing total system power. Even when network power is being considered, the references are frequently a decade or older and rely on models that lack validation on modern inter- connects. In this work we explore how dynamic mechanisms of an Infiniband network save power and at what granularity we can engage these features. We explore this within the context of the host controller adapter (HCA) on the node and for the fabric, i.e. switches, using three different mechanisms of dynamic link width, frequency and disabling of links for QLogic and Mellanox systems. Our results show that while there is some potential for modest power savings, real world systems need to improved responsiveness to adjustments in order to fully leverage these savings. This page intentionally left blank.

  2. Almost twenty years' search of transuranium isotopes in effluents discharged to air from nuclear power plants with VVER reactors.

    Science.gov (United States)

    Hölgye, Z; Filgas, R

    2006-04-01

    Airborne effluents of 5 stacks (stacks 1-5) of three nuclear power plants, with 9 pressurized water reactors VVER of 4,520 MWe total power, were searched for transuranium isotopes in different time periods. The search started in 1985. The subject of this work is a presentation of discharge data for the period of 1998-2003 and a final evaluation. It was found that 238Pu, 239,240Pu, 241Am, 242Cm, and 244Cm can be present in airborne effluents. Transuranium isotope contents in most of the quarterly effluent samples from stacks 2, 4 and 5 were not measurable. Transuranium isotopes were present in the effluents from stack l during all 9 years of the study and from stack 3 since the 3rd quarter of 1996 as a result of a defect in the fuel cladding. A relatively high increase of transuranium isotopes in effluents from stack 3 occurred in the 3rd quarter of 1999, and a smaller increase occurred in the 3rd quarter of 2003. In each instance 242Cm prevailed in the transuranium isotope mixtures. 238Pu/239,240Pu, 241Am/239,240Pu, 242Cm/239,240Pu, and 244Cm/239,240Pu ratios in fuel for different burn-up were calculated, and comparison of these ratios in fuel and effluents was performed.

  3. Handbook of electrical power system dynamics modeling, stability, and control

    CERN Document Server

    Eremia, Mircea

    2013-01-01

    Complete guidance for understanding electrical power system dynamics and blackouts This handbook offers a comprehensive and up-to-date treatment of power system dynamics. Addressing the full range of topics, from the fundamentals to the latest technologies in modeling, stability, and control, Handbook of Electrical Power System Dynamics provides engineers with hands-on guidance for understanding the phenomena leading to blackouts so they can design the most appropriate solutions for a cost-effective and reliable operation. Focusing on system dynamics, the book details

  4. A system dynamics model for stock and flow of tritium in fusion power plant

    Energy Technology Data Exchange (ETDEWEB)

    Kasada, Ryuta, E-mail: r-kasada@iae.kyoto-u.ac.jp [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Kwon, Saerom [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 (Japan); Konishi, Satoshi [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Sakamoto, Yoshiteru; Yamanishi, Toshihiko; Tobita, Kenji [Japan Atomic Energy Agency, Rokkasho-mura, Kamikita-gun, Aomori-ken 039-3212 (Japan)

    2015-10-15

    Highlights: • System dynamics model of tritium fuel cycle was developed for analyzing stock and flow of tritium in fusion power plants. • Sensitivity of tritium build-up to breeding ratio parameters has been assessed to two plant concepts having 3 GW and 1.5 GW fusion power. • D-D start-up absolutely without initial loading of tritium is possible for both of the 3 GW and 1.5 GW fusion power plant concepts. • Excess stock of tritium is generated by the steady state operation with the value of tritium breeding ratio over unity. - Abstract: In order to analyze self-efficiency of tritium fuel cycle (TFC) and share the systems thinking of TFC among researchers and engineers in the vast area of fusion reactor technology, we develop a system dynamics (SD) TFC model using a commercial software STELLA. The SD-TFC model is illustrated as a pipe diagram which consists of tritium stocks, such as plasma, fuel clean up, isotope separation, fueling with storage and blanket, and pipes connecting among them. By using this model, we survey a possibility of D-D start-up without initial loading of tritium on two kinds of fusion plant having different plasma parameters. The D-D start-up scenario can reduce the necessity of initial loading of tritium through the production in plasma by D-D reaction and in breeding blanket by D-D neutron. The model is also used for considering operation scenario to avoid excess stock of tritium which must be produced at tritium breeding ratio over unity.

  5. Radio-isotope powered light source

    International Nuclear Information System (INIS)

    Spottiswoode, N.L.; Ryden, D.J.

    1979-01-01

    The light source described comprises a radioisotope fuel source, thermal insulation against heat loss, a biological shield against the escape of ionizing radiation and a material having a surface which attains incandescence when subject to isotope decay heat. There is then a means for transferring this heat to produce incandescence of the surface and thus emit light. A filter associated with the surface permits a relatively high transmission of visible radiation but has a relatively high reflectance in the infra red spectrum. Such light sources require the minimum of attention and servicing and are therefore suitable for use in navigational aids such as lighthouses and lighted buoys. The isotope fuel sources and thus the insulation and shielding and the incandescent material can be chosen for the use required and several sources, materials, means of housing etc. are detailed. Operation and efficiency are discussed. (U.K.)

  6. Isotope hydrology and its impact in the developing world

    International Nuclear Information System (INIS)

    Verhagen, B.Th.

    2003-01-01

    Ground water has increasingly taken its place in the provision of safe, potable supply in the developing world. Large investments have been made in infrastructural development for rural ground water supply schemes, but far too little attention has been given to assess the sustainability of these supplies. Overexploitation of aquifers, evident in failing boreholes and deteriorating water quality, has become a world-wide concern. Developments in physics half a century ago established the basis of isotope hydrology. Radioactive isotopes give information on ground water dynamics and recharge rates whilst non-radioactive - or stable - isotopes indicate origins of ground water and delineate ground water bodies. Environmental isotope hydrology is increasingly seen as a powerful discipline in assessing ground water systems. This is particularly important in developing environments, where historical data is rarely available. Brief examples are presented of isotope applications to collaborative ground water studies conducted at the University of the Witwatersrand. Recharge estimates based on isotope 'snapshot' data conform well with results from subsequent long-term water level observations in the Kalahari of Botswana. The importance is demonstrated of irrigation return flow and pollution hazard to the Lomagundi dolomite of Zimbabwe. Isotopes suggest the source of high nitrate concentrations to an important ground water supply in Tanzania. Mechanisms of the release of arsenic into millions of tube wells in Bangladesh are put into perspective. Isotope hydrology as appropriate technology is highlighted in terms of its cost-effectiveness and the investigative empowerment of local investigators. (author)

  7. Stable isotope analysis of precipitation samples obtained via crowdsourcing reveals the spatiotemporal evolution of Superstorm Sandy.

    Directory of Open Access Journals (Sweden)

    Stephen P Good

    Full Text Available Extra-tropical cyclones, such as 2012 Superstorm Sandy, pose a significant climatic threat to the northeastern United Sates, yet prediction of hydrologic and thermodynamic processes within such systems is complicated by their interaction with mid-latitude water patterns as they move poleward. Fortunately, the evolution of these systems is also recorded in the stable isotope ratios of storm-associated precipitation and water vapor, and isotopic analysis provides constraints on difficult-to-observe cyclone dynamics. During Superstorm Sandy, a unique crowdsourced approach enabled 685 precipitation samples to be obtained for oxygen and hydrogen isotopic analysis, constituting the largest isotopic sampling of a synoptic-scale system to date. Isotopically, these waters span an enormous range of values (> 21‰ for δ(18O, > 160‰ for δ(2H and exhibit strong spatiotemporal structure. Low isotope ratios occurred predominantly in the west and south quadrants of the storm, indicating robust isotopic distillation that tracked the intensity of the storm's warm core. Elevated values of deuterium-excess (> 25‰ were found primarily in the New England region after Sandy made landfall. Isotope mass balance calculations and Lagrangian back-trajectory analysis suggest that these samples reflect the moistening of dry continental air entrained from a mid-latitude trough. These results demonstrate the power of rapid-response isotope monitoring to elucidate the structure and dynamics of water cycling within synoptic-scale systems and improve our understanding of storm evolution, hydroclimatological impacts, and paleo-storm proxies.

  8. Stable isotope analysis of precipitation samples obtained via crowdsourcing reveals the spatiotemporal evolution of Superstorm Sandy.

    Science.gov (United States)

    Good, Stephen P; Mallia, Derek V; Lin, John C; Bowen, Gabriel J

    2014-01-01

    Extra-tropical cyclones, such as 2012 Superstorm Sandy, pose a significant climatic threat to the northeastern United Sates, yet prediction of hydrologic and thermodynamic processes within such systems is complicated by their interaction with mid-latitude water patterns as they move poleward. Fortunately, the evolution of these systems is also recorded in the stable isotope ratios of storm-associated precipitation and water vapor, and isotopic analysis provides constraints on difficult-to-observe cyclone dynamics. During Superstorm Sandy, a unique crowdsourced approach enabled 685 precipitation samples to be obtained for oxygen and hydrogen isotopic analysis, constituting the largest isotopic sampling of a synoptic-scale system to date. Isotopically, these waters span an enormous range of values (> 21‰ for δ(18)O, > 160‰ for δ(2)H) and exhibit strong spatiotemporal structure. Low isotope ratios occurred predominantly in the west and south quadrants of the storm, indicating robust isotopic distillation that tracked the intensity of the storm's warm core. Elevated values of deuterium-excess (> 25‰) were found primarily in the New England region after Sandy made landfall. Isotope mass balance calculations and Lagrangian back-trajectory analysis suggest that these samples reflect the moistening of dry continental air entrained from a mid-latitude trough. These results demonstrate the power of rapid-response isotope monitoring to elucidate the structure and dynamics of water cycling within synoptic-scale systems and improve our understanding of storm evolution, hydroclimatological impacts, and paleo-storm proxies.

  9. Studying dynamics of indicators of nuclear power stations exploitation (the case of US nuclear power stations)

    OpenAIRE

    Varshavsky, Leonid

    2013-01-01

    Analysis of external and internal factors influencing significant improvement of economic indicators of US nuclear power stations in the 1990s is carried out. Approaches to modeling dynamics of capacity factors of nuclear power stations are proposed. Comparative analysis of dynamics of capacity factors and occupational radiation exposure for various generations of US nuclear power plants is carried out. Dynamical characteristics of «learning by doing» effects for analyzed indicators are measu...

  10. Capturing Dynamics in the Power Grid: Formulation of Dynamic State Estimation through Data Assimilation

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Ning [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Huang, Zhenyu [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Meng, Da [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Elbert, Stephen T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wang, Shaobu [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Diao, Ruisheng [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-03-31

    With the increasing complexity resulting from uncertainties and stochastic variations introduced by intermittent renewable energy sources, responsive loads, mobile consumption of plug-in vehicles, and new market designs, more and more dynamic behaviors are observed in everyday power system operation. To operate a power system efficiently and reliably, it is critical to adopt a dynamic paradigm so that effective control actions can be taken in time. The dynamic paradigm needs to include three fundamental components: dynamic state estimation; look-ahead dynamic simulation; and dynamic contingency analysis (Figure 1). These three components answer three basic questions: where the system is; where the system is going; and how secure the system is against accidents. The dynamic state estimation provides a solid cornerstone to support the other 2 components and is the focus of this study.

  11. Dynamic market behaviour of autonomous network based power systems

    NARCIS (Netherlands)

    Jokic, A.; Wittebol, E.H.M.; Bosch, van den P.P.J.

    2006-01-01

    Dynamic models of real-time markets are important since they lead to additional insights of the behavior and stability of power system markets. The main topic of this paper is the analysis of real-time market dynamics in a novel power system structure that is based on the concept of autonomous

  12. Fault diagnosis for dynamic power system

    International Nuclear Information System (INIS)

    Thabet, A.; Abdelkrim, M.N.; Boutayeb, M.; Didier, G.; Chniba, S.

    2011-01-01

    The fault diagnosis problem for dynamic power systems is treated, the nonlinear dynamic model based on a differential algebraic equations is transformed with reduced index to a simple dynamic model. Two nonlinear observers are used for generating the fault signals for comparison purposes, one of them being an extended Kalman estimator and the other a new extended kalman filter with moving horizon with a study of convergence based on the choice of matrix of covariance of the noises of system and measurements. The paper illustrates a simulation study applied on IEEE 3 buses test system.

  13. OOK power model based dynamic error testing for smart electricity meter

    International Nuclear Information System (INIS)

    Wang, Xuewei; Chen, Jingxia; Jia, Xiaolu; Zhu, Meng; Yuan, Ruiming; Jiang, Zhenyu

    2017-01-01

    This paper formulates the dynamic error testing problem for a smart meter, with consideration and investigation of both the testing signal and the dynamic error testing method. To solve the dynamic error testing problems, the paper establishes an on-off-keying (OOK) testing dynamic current model and an OOK testing dynamic load energy (TDLE) model. Then two types of TDLE sequences and three modes of OOK testing dynamic power are proposed. In addition, a novel algorithm, which helps to solve the problem of dynamic electric energy measurement’s traceability, is derived for dynamic errors. Based on the above researches, OOK TDLE sequence generation equipment is developed and a dynamic error testing system is constructed. Using the testing system, five kinds of meters were tested in the three dynamic power modes. The test results show that the dynamic error is closely related to dynamic power mode and the measurement uncertainty is 0.38%. (paper)

  14. OOK power model based dynamic error testing for smart electricity meter

    Science.gov (United States)

    Wang, Xuewei; Chen, Jingxia; Yuan, Ruiming; Jia, Xiaolu; Zhu, Meng; Jiang, Zhenyu

    2017-02-01

    This paper formulates the dynamic error testing problem for a smart meter, with consideration and investigation of both the testing signal and the dynamic error testing method. To solve the dynamic error testing problems, the paper establishes an on-off-keying (OOK) testing dynamic current model and an OOK testing dynamic load energy (TDLE) model. Then two types of TDLE sequences and three modes of OOK testing dynamic power are proposed. In addition, a novel algorithm, which helps to solve the problem of dynamic electric energy measurement’s traceability, is derived for dynamic errors. Based on the above researches, OOK TDLE sequence generation equipment is developed and a dynamic error testing system is constructed. Using the testing system, five kinds of meters were tested in the three dynamic power modes. The test results show that the dynamic error is closely related to dynamic power mode and the measurement uncertainty is 0.38%.

  15. Analyzing powers and isotope ratios for the natAg(rvec p, intermediate-mass fragment) reaction at 200 MeV

    International Nuclear Information System (INIS)

    Renshaw, E.; Yennello, S.J.; Kwiatkowski, K.; Planeta, R.; Woo, L.W.; Viola, V.E.

    1991-01-01

    Analyzing powers and isotope ratios have been measured for ejectiles with Z≤7 emitted at forward angles in the 200-MeV rvec p+ nat Ag reaction. The observed analyzing powers are consistent with zero, and thus do not provide evidence for a significant contribution from cluster knockout, or similar direct formation mechanisms. Fragment kinetic-energy spectra above the Coulomb peak are compared with a coalescence calculation. The isotopic composition of the elemental kinetic-energy spectra is found to favor N/Z≥1 nuclei for fragment energies near the exit-channel Coulomb energy, whereas species with N/Z≤1 are more abundant in the high-energy spectral tails. This behavior is consistent with the predictions of an accreting source calculation

  16. Stable isotope composition of mercury forms in flue gases from a typical coal-fired power plant, Inner Mongolia, northern China

    International Nuclear Information System (INIS)

    Tang, Shunlin; Feng, Chaohui; Feng, Xinbin; Zhu, Jianming; Sun, Ruoyu; Fan, Huipeng; Wang, Lina; Li, Ruiyang; Mao, Tonghua; Zhou, Ting

    2017-01-01

    Highlights: • The first speciated Hg isotope ratios in coal combustion flue gases are presented. • Significant Hg isotope kinetic MDF was observed during Hg forms transformation. • Emitted gaseous Hg highly enriches in heavy Hg isotopes relative to feed coal. - Abstract: Mercury forms emitted from coal combustion via air pollution control devices are speculated to carry different Hg isotope signatures. Yet, their Hg isotope composition is still not reported. Here, we present the first onsite Hg isotope data for gaseous elemental Hg (GEM) and gaseous oxidized Hg (GOM) of flue gases from a typical lignite-fired power plant (CFPP). Significant mass dependent fractionation (MDF) and insignificant mass independent fractionation (MIF) are observed between feed coal and coal combustion products. As compared to feed coal (δ 202 Hg = −2.04 ± 0.25‰), bottom ash, GEM and GOM in flue gases before and after wet flue gas desulfurization system significantly enrich heavy Hg isotopes by 0.7–2.6‰ in δ 202 Hg, while fly ash, desulfurization gypsum and waste water show slight but insignificant enrichment of light Hg isotopes. GEM is significantly enriched heavy Hg isotopes compared to GOM and Hg in fly ash. Our observations verify the previous speculation on Hg isotope fractionation mechanism in CFPPs, and suggest a kinetically-controlled mass dependent Hg isotope fractionation during transformation of Hg forms in flue gases. Finally, our data are compared to Hg isotope compositions of atmospheric Hg pools, suggesting that coal combustion Hg emission is likely an important atmospheric Hg contributor.

  17. Stable isotope composition of mercury forms in flue gases from a typical coal-fired power plant, Inner Mongolia, northern China

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Shunlin, E-mail: tangshunlin@hpu.edu.cn [Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo, Henan Province, 454000 (China); Feng, Chaohui [Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo, Henan Province, 454000 (China); Feng, Xinbin [State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550002 (China); Zhu, Jianming [Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo, Henan Province, 454000 (China); State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing, 100086 (China); Sun, Ruoyu, E-mail: ruoyu.sun@tju.edu.cn [CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026 (China); Fan, Huipeng; Wang, Lina; Li, Ruiyang; Mao, Tonghua [Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo, Henan Province, 454000 (China); Zhou, Ting [State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550002 (China)

    2017-04-15

    Highlights: • The first speciated Hg isotope ratios in coal combustion flue gases are presented. • Significant Hg isotope kinetic MDF was observed during Hg forms transformation. • Emitted gaseous Hg highly enriches in heavy Hg isotopes relative to feed coal. - Abstract: Mercury forms emitted from coal combustion via air pollution control devices are speculated to carry different Hg isotope signatures. Yet, their Hg isotope composition is still not reported. Here, we present the first onsite Hg isotope data for gaseous elemental Hg (GEM) and gaseous oxidized Hg (GOM) of flue gases from a typical lignite-fired power plant (CFPP). Significant mass dependent fractionation (MDF) and insignificant mass independent fractionation (MIF) are observed between feed coal and coal combustion products. As compared to feed coal (δ{sup 202}Hg = −2.04 ± 0.25‰), bottom ash, GEM and GOM in flue gases before and after wet flue gas desulfurization system significantly enrich heavy Hg isotopes by 0.7–2.6‰ in δ{sup 202}Hg, while fly ash, desulfurization gypsum and waste water show slight but insignificant enrichment of light Hg isotopes. GEM is significantly enriched heavy Hg isotopes compared to GOM and Hg in fly ash. Our observations verify the previous speculation on Hg isotope fractionation mechanism in CFPPs, and suggest a kinetically-controlled mass dependent Hg isotope fractionation during transformation of Hg forms in flue gases. Finally, our data are compared to Hg isotope compositions of atmospheric Hg pools, suggesting that coal combustion Hg emission is likely an important atmospheric Hg contributor.

  18. Isotopic research in Antarctica

    International Nuclear Information System (INIS)

    Schuetze, H.

    1983-01-01

    Since 1978 scientists of the Central Institute of Isotope- and Radiation Research of the Academy of Sciences of the GDR have participated in antarctic research. Substantial results have been achieved in research on isotope ratios, on the dynamics of water resources, on concentration of deuterium in lichens, and on age determination of a mummified seal and a penguin colony

  19. FPGA Dynamic Power Minimization through Placement and Routing Constraints

    Directory of Open Access Journals (Sweden)

    Deepak Agarwal

    2006-08-01

    Full Text Available Field-programmable gate arrays (FPGAs are pervasive in embedded systems requiring low-power utilization. A novel power optimization methodology for reducing the dynamic power consumed by the routing of FPGA circuits by modifying the constraints applied to existing commercial tool sets is presented. The power optimization techniques influence commercial FPGA Place and Route (PAR tools by translating power goals into standard throughput and placement-based constraints. The Low-Power Intelligent Tool Environment (LITE is presented, which was developed to support the experimentation of power models and power optimization algorithms. The generated constraints seek to implement one of four power optimization approaches: slack minimization, clock tree paring, N-terminal net colocation, and area minimization. In an experimental study, we optimize dynamic power of circuits mapped into 0.12 μm Xilinx Virtex-II FPGAs. Results show that several optimization algorithms can be combined on a single design, and power is reduced by up to 19.4%, with an average power savings of 10.2%.

  20. Isotope production

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Dewi M.

    1995-07-15

    Some 2 0% of patients using radiopharmaceuticals receive injections of materials produced by cyclotrons. There are over 200 cyclotrons worldwide; around 35 are operated by commercial companies solely for the production of radio-pharmaceuticals with another 25 accelerators producing medically useful isotopes. These neutron-deficient isotopes are usually produced by proton bombardment. All commonly used medical isotopes can be generated by 'compact' cyclotrons with energies up to 40 MeV and beam intensities in the range 50 to 400 microamps. Specially designed target systems contain gram-quantities of highly enriched stable isotopes as starting materials. The targets can accommodate the high power densities of the proton beams and are designed for automated remote handling. The complete manufacturing cycle includes large-scale target production, isotope generation by cyclotron beam bombardment, radio-chemical extraction, pharmaceutical dispensing, raw material recovery, and labelling/packaging prior to the rapid delivery of these short-lived products. All these manufacturing steps adhere to the pharmaceutical industry standards of Good Manufacturing Practice (GMP). Unlike research accelerators, commercial cyclotrons are customized 'compact' machines usually supplied by specialist companies such as IBA (Belgium), EBCO (Canada) or Scanditronix (Sweden). The design criteria for these commercial cyclotrons are - small magnet dimensions, power-efficient operation of magnet and radiofrequency systems, high intensity extracted proton beams, well defined beam size and automated computer control. Performance requirements include rapid startup and shutdown, high reliability to support the daily production of short-lived isotopes and low maintenance to minimize the radiation dose to personnel. In 1987 a major step forward in meeting these exacting industrial requirements came when IBA, together with the University of Louvain-La-Neuve in Belgium, developed the Cyclone-30

  1. Phase change energy storage for solar dynamic power systems

    Science.gov (United States)

    Chiaramonte, F. P.; Taylor, J. D.

    1992-01-01

    This paper presents the results of a transient computer simulation that was developed to study phase change energy storage techniques for Space Station Freedom (SSF) solar dynamic (SD) power systems. Such SD systems may be used in future growth SSF configurations. Two solar dynamic options are considered in this paper: Brayton and Rankine. Model elements consist of a single node receiver and concentrator, and takes into account overall heat engine efficiency and power distribution characteristics. The simulation not only computes the energy stored in the receiver phase change material (PCM), but also the amount of the PCM required for various combinations of load demands and power system mission constraints. For a solar dynamic power system in low earth orbit, the amount of stored PCM energy is calculated by balancing the solar energy input and the energy consumed by the loads corrected by an overall system efficiency. The model assumes an average 75 kW SD power system load profile which is connected to user loads via dedicated power distribution channels. The model then calculates the stored energy in the receiver and subsequently estimates the quantity of PCM necessary to meet peaking and contingency requirements. The model can also be used to conduct trade studies on the performance of SD power systems using different storage materials.

  2. Transient competitive complexation in biological kinetic isotope fractionation explains nonsteady isotopic effects: Theory and application to denitrification in soils

    Science.gov (United States)

    Maggi, Federico; Riley, William J.

    2009-12-01

    The theoretical formulation of biological kinetic isotope fractionation often assumes first-order or Michaelis-Menten kinetics, the latter solved under the quasi-steady state assumption. Both formulations lead to a constant isotope fractionation factor, therefore they may return incorrect estimations of isotopic effects and misleading interpretations of isotopic signatures when fractionation is not a steady process. We have analyzed the isotopic signature of denitrification in biogeochemical soil systems by Menyailo and Hungate (2006) in which high and variable 15N-N2O enrichment during N2O production and inverse isotope fractionation during N2O consumption could not be explained with first-order kinetics and the Rayleigh equation, or with Michaelis-Menten kinetics. When Michaelis-Menten kinetics were coupled to Monod kinetics to describe biomass and enzyme dynamics, and the quasi-steady state assumption was relaxed, transient Michaelis-Menten-Monod kinetics accurately reproduced the observed concentrations, and variable and inverse isotope fractionations. These results imply a substantial revision in modeling isotopic effects, suggesting that steady state kinetics such as first-order, Rayleigh, and classic Michaelis-Menten kinetics should be superseded by transient kinetics in conjunction with biomass and enzyme dynamics.

  3. Dynamic Frequency Control in Power Networks

    OpenAIRE

    Zhao, Changhong; Mallada Garcia, Enrique; Low, Steven H.

    2016-01-01

    Node controllers in power distribution networks in accordance with embodiments of the invention enable dynamic frequency control. One embodiment includes a node controller comprising a network interface a processor; and a memory containing a frequency control application; and a plurality of node operating parameters describing the operating parameters of a node, where the node is selected from a group consisting of at least one generator node in a power distribution network wherein the proces...

  4. Dynamic Frequency Response of Wind Power Plants

    DEFF Research Database (Denmark)

    Altin, Müfit

    according to their grid codes. In these scenarios particularly with high wind power penetration cases, conventional power plants (CPPs) such as old thermal power plants are planned to be replaced with wind power plants (WPPs). Consequently, the power system stability will be affected and the control...... to maintain sustainable and reliable operation of the power system for these targets, transmission system operators (TSOs) have revised the grid code requirements. Also, the TSOs are planning the future development of the power system with various wind penetration scenarios to integrate more wind power...... capability of WPPs would be investigated. The objective of this project is to analyze and identify the power system requirements for the synchronizing power support and inertial response control of WPPs in high wind power penetration scenarios. The dynamic frequency response of WPPs is realized...

  5. Use of Local Dynamic Electricity Prices for Indirect Control of DER Power Units

    DEFF Research Database (Denmark)

    Nørgård, Per Bromand; Isleifsson, Fridrik Rafn

    2013-01-01

    the grid voltage. The algorithms generating the local prices are dynamically adjusted according to the actual realised responses to the dynamic prices. Results are presented from an adapted version of the control principle implemented and tested in DTUs experimental research power system, SYSLAB, including...... wind power, solar power, flexible load and electrical storage. The local power price generation is based on the actual Nord Pool DK2 Spot prices on hourly basis as the quasi-stationary global electricity price, and the local SYSLAB's power exchange with the national grid as basis for the dynamic price...... system. A challenge is to find a cheap, simple and robust way to requests the proper power regulation by the DER power units. The use of broadcasted, dynamic power prices and volunteer responses is one option. The paper presents a proposal for and an illustration of advanced generation of local, dynamic...

  6. 10- to 30-kWe space power system using the uranium-zirconium hydride reactor and organic Rankine power conversion system

    International Nuclear Information System (INIS)

    Determan, W.R.; Bost, D.S.

    1987-01-01

    The UZrH reactor-ORC power system has been reviewed to determine its feasibility issues and characterize the system size, mass, and efficiency in the 10- to 30-kWe power range. The major component technologies required for this concept were reviewed to determine their technology status rating for early deployment of the system on near-term missions. Dynamic Isotope Power System (DIPS) technology is directly applicable to the UZrH reactor-ORC concept in the areas of power system reliability and survivability. The UZrH reactor-ORC concept provides a truly state-of-the-art system for use in future military and civilian space power programs. 9 references

  7. Efficiency Analysis of a Wave Power Generation System by Using Multibody Dynamics

    International Nuclear Information System (INIS)

    Kim, Min Soo; Sohn, Jeong Hyun; Kim, Jung Hee; Sung, Yong Jun

    2016-01-01

    The energy absorption efficiency of a wave power generation system is calculated as the ratio of the wave power to the power of the system. Because absorption efficiency depends on the dynamic behavior of the wave power generation system, a dynamic analysis of the wave power generation system is required to estimate the energy absorption efficiency of the system. In this study, a dynamic analysis of the wave power generation system under wave loads is performed to estimate the energy absorption efficiency. RecurDyn is employed to carry out the dynamic analysis of the system, and the Morison equation is used for the wave load model. According to the results, the lower the wave height and the shorter the period, the higher is the absorption efficiency of the system

  8. Efficiency Analysis of a Wave Power Generation System by Using Multibody Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Soo; Sohn, Jeong Hyun [Pukyong National Univ., Busan (Korea, Republic of); Kim, Jung Hee; Sung, Yong Jun [INGINE Inc., Seoul (Korea, Republic of)

    2016-06-15

    The energy absorption efficiency of a wave power generation system is calculated as the ratio of the wave power to the power of the system. Because absorption efficiency depends on the dynamic behavior of the wave power generation system, a dynamic analysis of the wave power generation system is required to estimate the energy absorption efficiency of the system. In this study, a dynamic analysis of the wave power generation system under wave loads is performed to estimate the energy absorption efficiency. RecurDyn is employed to carry out the dynamic analysis of the system, and the Morison equation is used for the wave load model. According to the results, the lower the wave height and the shorter the period, the higher is the absorption efficiency of the system.

  9. Conceptualisation of Snowpack Isotope Dynamics in Spatially Distributed Tracer-Aided Runoff Models in Snow Influenced Northern Cathments

    Science.gov (United States)

    Ala-aho, P. O. A.; Tetzlaff, D.; Laudon, H.; McNamara, J. P.; Soulsby, C.

    2016-12-01

    We use the Spatially distributed Tracer-Aided Rainfall-Runoff (STARR) modelling framework to explore non-stationary flow and isotope response in three northern headwater catchments. The model simulates dynamic, spatially variable tracer concentration in different water stores and fluxes within a catchment, which can constrain internal catchment mixing processes, flow paths and associated water ages. To date, a major limitation in using such models in snow-dominated catchments has been the difficulties in paramaterising the isotopic transformations in snowpack accumulation and melt. We use high quality long term datasets for hydrometrics and stable water isotopes collected in three northern study catchments for model calibration and testing. The three catchments exhibit different hydroclimatic conditions, soil and vegetation types, and topographic relief, which brings about variable degree of snow dominance across the catchments. To account for the snow influence we develop novel formulations to estimate the isotope evolution in the snowpack and melt. Algorithms for the isotopic evolution parameterize an isotopic offset between snow evaporation and melt fluxes and the remaining snow storage. The model for each catchment is calibrated to match both streamflow and tracer concentration at the stream outlet to ensure internal consistency of the system behaviour. The model is able to reproduce the streamflow along with the spatio-temporal differences in tracer concentrations across the three studies catchments reasonably well. Incorporating the spatially distributed snowmelt processes and associated isotope transformations proved essential in capturing the stream tracer reponse for strongly snow-influenced cathments. This provides a transferrable tool which can be used to understand spatio-temporal variability of mixing and water ages for different storages and flow paths in other snow influenced, environments.

  10. Comparison of isotopic turnover dynamics in two different muscles of a coral reef fish during the settlement phase

    Directory of Open Access Journals (Sweden)

    Laura Gajdzik

    2015-09-01

    Full Text Available The temporal variation in carbon and nitrogen isotopic compositions (noted as δ13C and δ15N was investigated in the convict surgeonfish (Acanthurus triostegus at Moorea (French Polynesia. Over a period of 24 days, juveniles were reared in aquaria and subjected to two different feeding treatments: granules or algae. The dynamics of δ13C and δ15N in two muscles (the adductor mandibulae complex and the epaxial musculature having different functions were compared. At the end of experiments, a steady-state isotopic system in each muscle tissue was not reached. Especially for the algal treatment, we found different patterns of variation in isotopic compositions over time between the two muscles. The turnovers of δ13C showed opposite trends for each muscle but differences are mitigated by starvation and by the metamorphosis. Our study highlighted that the metabolism of coral reef fish may be subjected to catabolism or anabolism of non-protein precursors at settlement, inducing variation in isotopic compositions that are not linked to diet change.

  11. Actinide isotopic analysis systems

    International Nuclear Information System (INIS)

    Koenig, Z.M.; Ruhter, W.D.; Gunnink, R.

    1990-01-01

    This manual provides instructions and procedures for using the Lawrence Livermore National Laboratory's two-detector actinide isotope analysis system to measure plutonium samples with other possible actinides (including uranium, americium, and neptunium) by gamma-ray spectrometry. The computer program that controls the system and analyzes the gamma-ray spectral data is driven by a menu of one-, two-, or three-letter options chosen by the operator. Provided in this manual are descriptions of these options and their functions, plus detailed instructions (operator dialog) for choosing among the options. Also provided are general instructions for calibrating the actinide isotropic analysis system and for monitoring its performance. The inventory measurement of a sample's total plutonium and other actinides content is determined by two nondestructive measurements. One is a calorimetry measurement of the sample's heat or power output, and the other is a gamma-ray spectrometry measurement of its relative isotopic abundances. The isotopic measurements needed to interpret the observed calorimetric power measurement are the relative abundances of various plutonium and uranium isotopes and americium-241. The actinide analysis system carries out these measurements. 8 figs

  12. Solar dynamic power module design

    Science.gov (United States)

    Secunde, Richard R.; Labus, Thomas L.; Lovely, Ronald G.

    1989-01-01

    Studies have shown that the use of solar dynamic (SD) power for the growth areas of the Space Station Freedom program will result in life cycle cost savings when compared to power supplied by photovoltaic sources. In the SD power module, a concentrator collects and focuses solar energy into a heat receiver which has integral thermal energy storage. A Power Conversion Unit (PCU) based on the closed Brayton cycle removes thermal energy from the receiver and converts that energy to electrical energy. Since the closed Brayton cycle is a single phase gas cycle, the conversion hardware (heat exchangers, turbine, compressor, etc.) can be designed for operation in low earth orbit, and tested with confidence in test facilities on earth before launch into space. The concentrator subassemblies will be aligned and the receiver/PCU/radiator combination completely assembled and charged with gas and cooling liquid on earth before launch to, and assembly on, orbit.

  13. Dynamic security issues in autonomous power systems with increasing wind power penetration

    DEFF Research Database (Denmark)

    Margaris, I.D.; Hansen, Anca Daniela; Sørensen, Poul Ejnar

    2011-01-01

    Asynchronous Generator (DFAG) and Permanent Magnet Synchronous Generator (PMSG) – are applied and issues regarding interaction with the power system are investigated. This paper provides conclusions about the dynamic security of non-interconnected power systems with high wind power penetration based...... on a complete model representation of the individual components of the system; three different types of conventional generators are included in the model, while the protection system is also incorporated. The load shedding following faults is finally discussed....

  14. Power dynamics and questioning in elementary science lessons

    Science.gov (United States)

    Reinsvold, Lori Ann

    Discourse interactions between a teacher and students in an inquiry-based fourth-grade science classroom were analyzed to investigate how power dynamics and questioning strategies within elementary science lessons help support students in building their science understanding. Five inquiry-based classroom sessions were observed; verbal interactions were audio- and video-recorded. Research data consisted of observation transcripts, teacher interviews, student work, and instructional materials. Analyses were conducted on the frequencies of utterances, participation roles, power categories, and questioning categories. Results revealed that when students used more frequent power, (a) no significant differences were noted between frequencies of teacher and student talk, (b) the teacher posed more questions than did the students, and (c) students explained what they knew and asked questions to clarify their understanding. When the teacher used more frequent power, she asked questions to provide students opportunities to negotiate investigative processes and explain what they knew and how they knew it. Evidence of student understanding of the science concepts was found in how students used subject matter to discuss what they knew and how they knew it. Pre-service and in-service teachers should be encouraged to consider how their use of power and questioning strategies can engage students to reflect on how they build understanding of science concepts. Teachers can use Professional Learning Communities to reflect on how their practice engages students. Future research should be employed to observe classrooms across an entire school year to determine how power and questioning dynamics flow among students and teachers and change over time. Research can also be used to understand the influence of gender and culture on power and questioning dynamics in classroom settings.

  15. Dynamic multi-stage dispatch of isolated wind–diesel power systems

    International Nuclear Information System (INIS)

    Hu, Yu; Morales, Juan M.; Pineda, Salvador; Sánchez, María Jesús; Solana, Pablo

    2015-01-01

    Highlights: • Optimal decision-making model for isolated hybrid wind–diesel power system is proposed. • Wind power uncertainty and conditional operating cost are considered. • Battery wear cost of the energy storage system is included in the model. • The results are compared with deterministic dispatch strategies. - Abstract: An optimal dispatch strategy is crucial for an isolated wind–diesel power system to save diesel fuel and maintain the system stability. The uncertainty associated with the stochastic character of the wind is, though, a challenging problem for this optimization. In this paper, a dynamic multi-stage decision-making model is proposed to determine the diesel power output that minimizes the cost of running and maintaining the wind–diesel power system. Optimized operational decisions for each time period are generated dynamically considering the path-dependent nature of the optimal dispatch policy, given the plausible future realizations of the wind power production. A numerical case study is analyzed and it is demonstrated that the proposed stochastic dynamic optimization model significantly outperforms the traditional deterministic dispatch strategies

  16. Solar Dynamic Power System Stability Analysis and Control

    Science.gov (United States)

    Momoh, James A.; Wang, Yanchun

    1996-01-01

    The objective of this research is to conduct dynamic analysis, control design, and control performance test of solar power system. Solar power system consists of generation system and distribution network system. A bench mark system is used in this research, which includes a generator with excitation system and governor, an ac/dc converter, six DDCU's and forty-eight loads. A detailed model is used for modeling generator. Excitation system is represented by a third order model. DDCU is represented by a seventh order system. The load is modeled by the combination of constant power and constant impedance. Eigen-analysis and eigen-sensitivity analysis are used for system dynamic analysis. The effects of excitation system, governor, ac/dc converter control, and the type of load on system stability are discussed. In order to improve system transient stability, nonlinear ac/dc converter control is introduced. The direct linearization method is used for control design. The dynamic analysis results show that these controls affect system stability in different ways. The parameter coordination of controllers are recommended based on the dynamic analysis. It is concluded from the present studies that system stability is improved by the coordination of control parameters and the nonlinear ac/dc converter control stabilize system oscillation caused by the load change and system fault efficiently.

  17. Brayton Isotope Power System, Design Integrity Checklist (BIPS-DIC)

    Energy Technology Data Exchange (ETDEWEB)

    Miller, L.G.

    1976-06-10

    A preliminary Failure Modes, Effects and Criticality Analysis (FMECA) for the BIPS Flight System (FS) was published as AiResearch Report 76-311709 dated January 12, 1976. The FMECA presented a thorough review of the conceptual BIPS FS to identify areas of concern and activities necessary to avoid premature failures. In order to assure that the actions recommended by the FMECA are effected in both the FS and the Ground Demonstration System (GDS), a checklist (the BIPS-DIC) was prepared for the probability of occurrence of those failure modes that rated highest in criticality ranking. This checklist was circulated as an attachment to AiResearch Coordination Memo No. BIPS-GDS-A0106 dated January 23, 1976. The Brayton Isotope Power System-Design Integrity Checklist (BIPS-DIC) has been revised and is presented. Additional entries have been added that reference failure modes determined to rank highest in criticality ranking. The checklist will be updated periodically.

  18. Numerical analysis of power system transients and dynamics

    CERN Document Server

    Ametani, Akihiro

    2015-01-01

    This book describes the three major power system transient and dynamics simulation tools based on a circuit-theory based approach which are most widely used all over the world (EMTP-ATP, EMTP-RV and EMTDC/PSCAD), together with other powerful simulation tools such as XTAP.

  19. Nitrogen Dynamic Study on Rice Mutant Lines Using 15N Isotope Techniques

    International Nuclear Information System (INIS)

    Ahmad Nazrul Abd Wahid; Shyful Azizi Abdul Rahman; Abdul Rahim Harun

    2015-01-01

    Malaysian Nuclear Agency in collaboration with UPM and MARDI has produced two types of rice mutant lines of MR219, viz. MR219-4 and MR219-9 developed under rice radiation mutagenenesis programme for adaptability to aerobic conditions. Aerobic cultivating is rice cultivation system on well drained soil and using minimal water input. At Malaysian Nuclear Agency, a nitrogen fertilization study in aerobic condition for the rice mutant lines was carried out in the shade house and field. The study is intended to examine and assess the dynamics of nitrogen by rice mutant lines through the different soil water management and nitrogen levels. Direct 15 N isotopic tracer method was used in this study, whereby the 15 N labeled urea fertilizer was utilized as a tracer for nitrogen nutrient uptake by the test crops. This paper is intended to highlight the progress that has been made in the study of the nitrogen dynamics on MR219-4 and MR219-9 rice mutant lines. (author)

  20. Power functional theory for the dynamic test particle limit

    International Nuclear Information System (INIS)

    Brader, Joseph M; Schmidt, Matthias

    2015-01-01

    For classical Brownian systems both in and out of equilibrium we extend the power functional formalism of Schmidt and Brader (2013 J. Chem. Phys. 138 214101) to mixtures of different types of particles. We apply the framework to develop an exact dynamical test particle theory for the self and distinct parts of the van Hove function, which characterize tagged and collective particle motion. The memory functions that induce non-Markovian dynamics are related to functional derivatives of the excess (over ideal) free power dissipation functional. The method offers an alternative to the recently found nonequilibrium Ornstein–Zernike relation for dynamic pair correlation functions. (paper)

  1. Dynamic Power Dispatch Considering Electric Vehicles and Wind Power Using Decomposition Based Multi-Objective Evolutionary Algorithm

    Directory of Open Access Journals (Sweden)

    Boyang Qu

    2017-12-01

    Full Text Available The intermittency of wind power and the large-scale integration of electric vehicles (EVs bring new challenges to the reliability and economy of power system dispatching. In this paper, a novel multi-objective dynamic economic emission dispatch (DEED model is proposed considering the EVs and uncertainties of wind power. The total fuel cost and pollutant emission are considered as the optimization objectives, and the vehicle to grid (V2G power and the conventional generator output power are set as the decision variables. The stochastic wind power is derived by Weibull probability distribution function. Under the premise of meeting the system energy and user’s travel demand, the charging and discharging behavior of the EVs are dynamically managed. Moreover, we propose a two-step dynamic constraint processing strategy for decision variables based on penalty function, and, on this basis, the Multi-Objective Evolutionary Algorithm Based on Decomposition (MOEA/D algorithm is improved. The proposed model and approach are verified by the 10-generator system. The results demonstrate that the proposed DEED model and the improved MOEA/D algorithm are effective and reasonable.

  2. Spreading dynamics of power-law fluid droplets

    International Nuclear Information System (INIS)

    Liang Zhanpeng; Peng Xiaofeng; Wang Xiaodong; Lee, D-J; Su Ay

    2009-01-01

    This paper aims at providing a summary of the theoretical models available for non-Newtonian fluid spreading dynamics. Experimental findings and model predictions for a Newtonian fluid spreading test are briefly reviewed. Then how the complete wetting and partial wetting power-law fluids spread over a solid substrate is examined. The possible extension of Newtonian fluid models to power-law fluids is also discussed.

  3. Dynamic state estimation techniques for large-scale electric power systems

    International Nuclear Information System (INIS)

    Rousseaux, P.; Pavella, M.

    1991-01-01

    This paper presents the use of dynamic type state estimators for energy management in electric power systems. Various dynamic type estimators have been developed, but have never been implemented. This is primarily because of dimensionality problems posed by the conjunction of an extended Kalman filter with a large scale power system. This paper precisely focuses on how to circumvent the high dimensionality, especially prohibitive in the filtering step, by using a decomposition-aggregation hierarchical scheme; to appropriately model the power system dynamics, the authors introduce new state variables in the prediction step and rely on a load forecasting method. The combination of these two techniques succeeds in solving the overall dynamic state estimation problem not only in a tractable and realistic way, but also in compliance with real-time computational requirements. Further improvements are also suggested, bound to the specifics of the high voltage electric transmission systems

  4. Isotope hydrology. Raigon aquifer hydrochemistry - Uruguay

    International Nuclear Information System (INIS)

    Plata Bedmar, A.; Dellepere, A.; Roma, M.T; Ramirez, M.; Garat, S.; Padros, D.; Caristo, R.; Lavanca, R.; Aranda, E.; Michelis, G.; Monroi, F.; Luaces, A.

    2001-01-01

    The purpose of this study is the Raigon Acuifer investigation by isotopic techniques as well as the dynamic behavior in the water resources. These techniques are based on the natural water isotope deuterium, oxygen-18, tritium and carbon-14 measurement. The hydrochemistry is used like a complementary tool

  5. Isotope Brayton ground demonstration testing and flight qualification. Volume 1. Technical program

    Energy Technology Data Exchange (ETDEWEB)

    1974-12-09

    A program is proposed for the ground demonstration, development, and flight qualification of a radioisotope nuclear heated dynamic power system for use on space missions beginning in the 1980's. This type of electrical power system is based upon and combines two aerospace technologies currently under intense development; namely, the MHW isotope heat source and the closed Brayton cycle gas turbine. This power system represents the next generation of reliable, efficient economic electrical power equipment for space, and will be capable of providing 0.5 to 2.0 kW of electric power to a wide variety of spacecraft for earth orbital and interplanetary missions. The immediate design will be based upon the requirements for the Air Force SURVSATCOM mission. The proposal is presented in three volumes plus an Executive Summary. This volume describes the tasks in the technical program.

  6. Dynamic multi-stage dispatch of isolated wind–diesel power systems

    DEFF Research Database (Denmark)

    Hu, Yu; Morales González, Juan Miguel; Pineda, Salvador

    2015-01-01

    -stage decision-making model is proposed to determine the diesel power output that minimizes the cost of running and maintaining the wind–diesel power system. Optimized operational decisions for each time period are generated dynamically considering the path-dependent nature of the optimal dispatch policy, given......An optimal dispatch strategy is crucial for an isolated wind–diesel power system to save diesel fuel and maintain the system stability. The uncertainty associated with the stochastic character of the wind is, though, a challenging problem for this optimization. In this paper, a dynamic multi...

  7. Dynamic power balance analysis in JET

    International Nuclear Information System (INIS)

    Matthews, G F; Silburn, S A; Challis, C D; Iglesias, D; King, D; Eich, T; Sieglin, B; Contributors, JET

    2017-01-01

    The full scale realisation of nuclear fusion as an energy source requires a detailed understanding of power and energy balance in current experimental devices. In this we explore whether a global power balance model in which some of the calibration factors applied to the source or sink terms are fitted to the data can provide insight into possible causes of any discrepancies in power and energy balance seen in the JET tokamak. We show that the dynamics in the power balance can only be properly reproduced by including the changes in the thermal stored energy which therefore provides an additional opportunity to cross calibrate other terms in the power balance equation. Although the results are inconclusive with respect to the original goal of identifying the source of the discrepancies in the energy balance, we do find that with optimised parameters an extremely good prediction of the total power measured at the outer divertor target can be obtained over a wide range of pulses with time resolution up to ∼25 ms. (paper)

  8. Study of soil erosion dynamics on the arable lands of Lublin Upland using isotope techniques (137Cs)

    International Nuclear Information System (INIS)

    Zglobicki, W.; Reszka, M.

    2002-01-01

    One of the consequences of agricultural activity are changes of significant element of the environment, that is terrain relief. Since sixties the radioactive isotope of cesium, 137 Cs, is applied in the examination of the dynamics of the erosion processes. This method is based on the idea that the circulation of this isotope in the environment accompanies to physical transport of soil. Studies proved that cesium is firmly bond by adsorption complex of the soil. Chemical and biochemical processes have limited influence on the transportation of the cesium. By the examination of the horizontal changes of the total cesium activity one can determine a type and intensity of the processes responsible for its migration and thus the migration of the soil particles

  9. A Numerical Approach for Hybrid Simulation of Power System Dynamics Considering Extreme Icing Events

    DEFF Research Database (Denmark)

    Chen, Lizheng; Zhang, Hengxu; Wu, Qiuwei

    2017-01-01

    numerical simulation scheme integrating icing weather events with power system dynamics is proposed to extend power system numerical simulation. A technique is developed to efficiently simulate the interaction of slow dynamics of weather events and fast dynamics of power systems. An extended package for PSS...

  10. Dynamic Simulator for Nuclear Power Plants (DSNP)

    International Nuclear Information System (INIS)

    Saphier, D.

    1976-01-01

    A new simulation language DSNP (Dynamic Simulator for Nuclear Power Plants) is being developed. It is a simple block oriented simulation language with an extensive library of component and auxiliary modules. Each module is a self-contained unit of a part of a physical component to be found in nuclear power plants. Each module will be available in four levels of sophistication, the fourth being a user supplied model. A module can be included in the simulation by a single statement. The precompiler translates DSNP statements into FORTRAN statements, takes care of the module parameters and the intermodular communication blocks, prepares proper data files and I/0 statements and searches the various libraries for the appropriate component modules. The documentation is computerized and all the necessary information for a particular module can be retrieved by a special document generator. The DSNP will be a flexible tool which will allow dynamic simulations to be performed on a large variety of nuclear power plants or specific components of these plants

  11. Low energy methods of molecular laser isotope separation

    International Nuclear Information System (INIS)

    Makarov, G N

    2015-01-01

    Of the many proposals to date for laser-assisted isotope separation methods, isotope-selective infrared (IR) multiphoton dissociation (MPD) of molecules has been the most fully developed. This concept served as the basis for the development and operation of the carbon isotope separation facility in Kaliningrad, Russia. The extension of this method to heavy elements, including uranium, is hindered by, among other factors, the high power consumption and the lack of high-efficiency high-power laser systems. In this connection, research and development covering low energy methods for the laser separation of isotopes (including those of heavy atoms) is currently in high demand. This paper reviews approaches to the realization of IR-laser-induced isotope-selective processes, some of which are potentially the basis on which low-energy methods for molecular laser isotope separation can be developed. The basic physics and chemistry, application potential, and strengths and weaknesses of these approaches are discussed. Potentially promising alternatives to the title methods are examined. (reviews of topical problems)

  12. Characteristics of isotope-selective chemical reactor with gas-separating device

    International Nuclear Information System (INIS)

    Gorshunov, N.M.; Kalitin, S.A.; Laguntsov, N.I.; Neshchimenko, Yu.P.; Sulaberidze, G.A.

    1988-01-01

    A study was made on characteristics of separating stage, composed of isotope-selective chemical (or photochemical) reactor and membrane separating cascade (MSC), designated for separation of isotope-enriched products from lean reagents. MSC represents the counterflow cascade for separation of two-component mixtures. Calculations show that for the process of carton isotope separation the electric power expences for MSC operation are equal to 20 kWxh/g of CO 2 final product at 13 C isotope content in it equal to 75%. Application of the membrane gas-separating cascade at rather small electric power expenses enables to perform cascading of isotope separation in the course of nonequilibrium chemical reactions

  13. Dynamics of radioactive lead isotopes in the global environmental atmosphere

    International Nuclear Information System (INIS)

    Koike, Yuya; Kosako, Toshiso

    2006-01-01

    Fundamental information of radioactive lead isotopes, which used as the atmospheric tracer in the global environmental atmosphere, is reviewed. Emanation and exhalation of Rn and Tn, parent nuclide, is stated. Some reports on measurement and application of short-lived lead isotopes are reported. Transfer of radioactive lead isotopes in the atmosphere, vertical profiles of radon, thoron, and short-lived lead isotopes for different turbulent mixing conditions, deposition to aerosol, basic processes of Rn decay product behavior in air defining 'unattached' and 'aerosol-attached' activities, seasonal variation of atmospheric 210 Pb concentration at Beijing and Chengdu, seasonal variation of atmospheric 212 Pb concentration at several observation sites in Japan Islands, and variation in the atmospheric concentration of 212 Pb along with SO 2 are shown. (S.Y.)

  14. Natural Ca Isotope Composition of Urine as a Rapid Measure of Bone Mineral Balance

    Science.gov (United States)

    Skulan, J.; Gordon, G. W.; Morgan, J.; Romaniello, S. J.; Smith, S. M.; Anbar, A. D.

    2011-12-01

    Naturally occurring stable Ca isotope variations in urine are emerging as a powerful tool to detect changes in bone mineral balance. Bone formation depletes soft tissue of light Ca isotopes while bone resorption releases isotopically light Ca into soft tissue. Previously published work found that variations in Ca isotope composition could be detected at 4 weeks of bed rest in a 90-day bed rest study (data collected at 4, 8 and 12 weeks). A new 30-day bed rest study involved 12 patients on a controlled diet, monitored for 7 days prior to bed rest and 7 days post bed rest. Samples of urine, blood and food were collected throughout the study. Four times daily blood samples and per void urine samples were collected to monitor diurnal or high frequency variations. An improved chemical purification protocol, followed by measurement using multiple collector inductively coupled plasma mass spectrometry (MC-ICP-MS) allowed accurate and precise determinations of mass-dependent Ca isotope variations in these biological samples to better than ±0.2% (δ44/42Ca) on studies as seen by X-ray measurements. This Ca isotope technique should accelerate the pace of discovery of new treatments for bone disease and provide novel insights into the dynamics of bone metabolism.

  15. Development of nuclear battery using isotope sources

    International Nuclear Information System (INIS)

    Chang, Won Jun

    2004-02-01

    Until now, the development of the useful micro electromechanical systems has the problems because previous batteries (solar, chemical, etc) did not satisfy the requirements related to power supply. At this point of time, nuclear battery using isotope sources is rising the solution of this problem. Nuclear battery can provide superior out-put power and lifetime. So a new type of micro power source (nuclear battery) for micro electromechanical systems has been designed and analyzed. In this work, I designed the three parts, isotope source, conversion device, and shielding. I chose suitable sources, and designed semiconductor using the chosen isotope sources. Power is generated by radiation exciting electrons in the semiconductor depletion region. The efficiency of the nuclear battery depends upon the pn-junction. In this study the several conceptual nuclear batteries using radioactive materials are described with pn-junction. And for the safety, I designed the shielding to protect the environment by reducing the kinetic energy of beta particles

  16. ISOTOPE METHODS IN HOMOGENEOUS CATALYSIS.

    Energy Technology Data Exchange (ETDEWEB)

    BULLOCK,R.M.; BENDER,B.R.

    2000-12-01

    The use of isotope labels has had a fundamentally important role in the determination of mechanisms of homogeneously catalyzed reactions. Mechanistic data is valuable since it can assist in the design and rational improvement of homogeneous catalysts. There are several ways to use isotopes in mechanistic chemistry. Isotopes can be introduced into controlled experiments and followed where they go or don't go; in this way, Libby, Calvin, Taube and others used isotopes to elucidate mechanistic pathways for very different, yet important chemistries. Another important isotope method is the study of kinetic isotope effects (KIEs) and equilibrium isotope effect (EIEs). Here the mere observation of where a label winds up is no longer enough - what matters is how much slower (or faster) a labeled molecule reacts than the unlabeled material. The most careti studies essentially involve the measurement of isotope fractionation between a reference ground state and the transition state. Thus kinetic isotope effects provide unique data unavailable from other methods, since information about the transition state of a reaction is obtained. Because getting an experimental glimpse of transition states is really tantamount to understanding catalysis, kinetic isotope effects are very powerful.

  17. Isotope Exchange in Oxide Catalyst

    Science.gov (United States)

    Hess, Robert V.; Miller, Irvin M.; Schryer, David R.; Sidney, Barry D.; Wood, George M., Jr.; Hoyt, Ronald F.; Upchurch, Billy T.; Brown, Kenneth G.

    1987-01-01

    Replacement technique maintains level of CO2/18 in closed-cycle CO2 lasers. High-energy, pulsed CO2 lasers using rare chemical isotopes must be operated in closed cycles to conserve gas. Rare isotopes operated in closed cycles to conserve gas. Rare isotopes as CO2/18 used for improved transmission of laser beam in atmosphere. To maintain laser power, CO2 must be regenerated, and O2 concentration kept below few tenths of percent. Conditions achieved by recombining CO and O2.

  18. Broadband non-selective excitation of plutonium isotopes for isotope ratio measurements in resonance ionization mass spectrometry: a theoretical study.

    Science.gov (United States)

    Sankari, M

    2012-10-15

    Making isotope ratio measurements with minimum isotope bias has always been a challenging task to mass spectrometrists, especially for the specific case of plutonium, owing to the strategic importance of the element. In order to use resonance ionization mass spectrometry (RIMS) as a tool for isotope ratio measurements, optimization of the various laser parameters and other atomic and system parameters is critical to minimize isotopic biases. Broadband simultaneous non-selective excitation of the isotopes of plutonium in the triple resonance excitation scheme with λ(1) = 420.77 nm, λ(2) = 847.28 nm, and λ(3) = 767.53 nm based on density matrix formalism has been theoretically computed for the determination of isotope ratios. The effects of the various laser parameters and other factors such as the atomization temperature and the dimensions of the atomic beam on the estimation of isotope ratios were studied. The effects of Doppler broadening, and time-dependent excitation parameters such as Rabi frequencies, ionization rate and the effect of non-Lorenztian lineshape have all been incorporated. The average laser powers and bandwidths for the three-excitation steps were evaluated for non-selective excitation. The laser intensity required to saturate the three-excitation steps were studied. The two-dimensional lineshape contour and its features were investigated, while the reversal of peak asymmetry of two-step and two-photon excitation peaks under these conditions is discussed. Optimized powers for the non-selective ionization of the three transitions were calculated as 545 mW, 150 mW and 545 mW and the laser bandwidth for all the three steps was ~20 GHz. The isotopic bias between the resonant and off-resonant isotope under the optimized conditions was no more than 9%, which is better than an earlier reported value. These optimized laser power and bandwidth conditions are better than in the earlier experimental work since these comprehensive calculations yield

  19. Food-web dynamics and isotopic niches in deep-sea communities residing in a submarine canyon and on the adjacent open slopes

    Science.gov (United States)

    Demopoulos, Amanda W.J.; McClain-Counts, Jennifer; Ross, Steve W.; Brooke, Sandra; Mienis, Furu

    2017-01-01

    Examination of food webs and trophic niches provide insights into organisms' functional ecology, yet few studies have examined trophodynamics within submarine canyons, where the interaction of canyon morphology and oceanography influences habitat provision and food deposition. Using stable isotope analysis and Bayesian ellipses, we documented deep-sea food-web structure and trophic niches in Baltimore Canyon and the adjacent open slopes in the US Mid-Atlantic Region. Results revealed isotopically diverse feeding groups, comprising approximately 5 trophic levels. Regression analysis indicated that consumer isotope data are structured by habitat (canyon vs. slope), feeding group, and depth. Benthic feeders were enriched in 13C and 15N relative to suspension feeders, consistent with consuming older, more refractory organic matter. In contrast, canyon suspension feeders had the largest and more distinct isotopic niche, indicating they consume an isotopically discrete food source, possibly fresher organic material. The wider isotopic niche observed for canyon consumers indicated the presence of feeding specialists and generalists. High dispersion in δ13C values for canyon consumers suggests that the isotopic composition of particulate organic matter changes, which is linked to depositional dynamics, resulting in discrete zones of organic matter accumulation or resuspension. Heterogeneity in habitat and food availability likely enhances trophic diversity in canyons. Given their abundance in the world's oceans, our results from Baltimore Canyon suggest that submarine canyons may represent important havens for trophic diversity.

  20. Dynamic Power Tariff for Congestion Management in Distribution Networks

    DEFF Research Database (Denmark)

    Huang, Shaojun; Wu, Qiuwei; Shahidehpour, Mohammad

    2018-01-01

    This paper proposes dynamic power tariff (DPT), a new concept for congestion management in distribution networks with high penetration of electric vehicles (EVs), and heat pumps (HPs). The DPT concept is proposed to overcome a drawback of the dynamic tariff (DT) method, i.e., DPT can replace...... the price sensitivity parameter in the DT method, which is relatively unrealistic in practice. Based on the control theory, a control model with two control loops, i.e., the power flow control and voltage control, is established to analyze the congestion management process by the DPT method. Furthermore...

  1. Dynamic analysis of a pumped-storage hydropower plant with random power load

    Science.gov (United States)

    Zhang, Hao; Chen, Diyi; Xu, Beibei; Patelli, Edoardo; Tolo, Silvia

    2018-02-01

    This paper analyzes the dynamic response of a pumped-storage hydropower plant in generating mode. Considering the elastic water column effects in the penstock, a linearized reduced order dynamic model of the pumped-storage hydropower plant is used in this paper. As the power load is always random, a set of random generator electric power output is introduced to research the dynamic behaviors of the pumped-storage hydropower plant. Then, the influences of the PI gains on the dynamic characteristics of the pumped-storage hydropower plant with the random power load are analyzed. In addition, the effects of initial power load and PI parameters on the stability of the pumped-storage hydropower plant are studied in depth. All of the above results will provide theoretical guidance for the study and analysis of the pumped-storage hydropower plant.

  2. Isotope effect on hydrated electron relaxation dynamics studied with time-resolved liquid jet photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Elkins, Madeline H.; Williams, Holly L. [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Neumark, Daniel M., E-mail: dneumark@berkeley.edu [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2016-05-14

    The excited state relaxation dynamics of the solvated electron in H{sub 2}O and D{sub 2}O are investigated using time-resolved photoelectron spectroscopy in a liquid microjet. The data show that the initial excited state decays on a time scale of 75 ± 12 fs in H{sub 2}O and 102 ± 8 fs in D{sub 2}O, followed by slower relaxation on time scales of 400 ± 70 fs and 390 ± 70 fs that are isotopically invariant within the precision of our measurements. Based on the time evolution of the transient signals, the faster and slower time constants are assigned to p → s internal conversion (IC) of the hydrated electron and relaxation on the ground electronic state, respectively. This assignment is consistent with the non-adiabatic mechanism for relaxation of the hydrated electron and yields an isotope effect of 1.4 ± 0.2 for IC of the hydrated electron.

  3. Isotope effect on hydrated electron relaxation dynamics studied with time-resolved liquid jet photoelectron spectroscopy

    Science.gov (United States)

    Elkins, Madeline H.; Williams, Holly L.; Neumark, Daniel M.

    2016-05-01

    The excited state relaxation dynamics of the solvated electron in H2O and D2O are investigated using time-resolved photoelectron spectroscopy in a liquid microjet. The data show that the initial excited state decays on a time scale of 75 ± 12 fs in H2O and 102 ± 8 fs in D2O, followed by slower relaxation on time scales of 400 ± 70 fs and 390 ± 70 fs that are isotopically invariant within the precision of our measurements. Based on the time evolution of the transient signals, the faster and slower time constants are assigned to p → s internal conversion (IC) of the hydrated electron and relaxation on the ground electronic state, respectively. This assignment is consistent with the non-adiabatic mechanism for relaxation of the hydrated electron and yields an isotope effect of 1.4 ± 0.2 for IC of the hydrated electron.

  4. Dynamic assessment for life extension of nuclear power plants (NPPs) using system dynamics (SD) method

    International Nuclear Information System (INIS)

    Woo, Tae Ho

    2012-01-01

    It has been proposed to extend the life of nuclear power plants (NPPs) for the economic purpose. Especially, the primary systems in reactor are considered in the thermohydraulic and neutronic aspect, which is related to the safety system. The electric power and the lifespan of components are expressed as economic situation. In addition, political considerations are given by the presidential change and the nuclear non-proliferation characteristics. The dynamical investigation using system dynamics (SD) shows the effective time for the life extension of the NPPs by Monte-Carlo simulations. This non-linear algorithm is incorporated with the feedback loop of the event sequences. The expected event is related to the past event, which affects to the dynamical simulations of lifetime in the NPPs. In the conclusions, the safety guarantee as well as the economic profit in the re-use of long term operated power plants is presented, which is mentioned as the transient time between 2019 and 2021 in this paper. (orig.)

  5. Dynamic assessment for life extension of nuclear power plants (NPPs) using system dynamics (SD) method

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Tae Ho [Seoul National Univ. (Korea, Republic of). Dept. of Nuclear Engineering

    2012-12-15

    It has been proposed to extend the life of nuclear power plants (NPPs) for the economic purpose. Especially, the primary systems in reactor are considered in the thermohydraulic and neutronic aspect, which is related to the safety system. The electric power and the lifespan of components are expressed as economic situation. In addition, political considerations are given by the presidential change and the nuclear non-proliferation characteristics. The dynamical investigation using system dynamics (SD) shows the effective time for the life extension of the NPPs by Monte-Carlo simulations. This non-linear algorithm is incorporated with the feedback loop of the event sequences. The expected event is related to the past event, which affects to the dynamical simulations of lifetime in the NPPs. In the conclusions, the safety guarantee as well as the economic profit in the re-use of long term operated power plants is presented, which is mentioned as the transient time between 2019 and 2021 in this paper. (orig.)

  6. Stability of power systems coupled with market dynamics

    Science.gov (United States)

    Meng, Jianping

    This Ph.D. thesis presented here spans two relatively independent topics. The first part, Chapter 2 is self-contained, and is dedicated to studies of new algorithms for power system state estimation. The second part, encompassing the remaining chapters, is dedicated to stability analysis of power system coupled with market dynamics. The first part of this thesis presents improved Newton's methods employing efficient vectorized calculations of higher order derivatives in power system state estimation problems. The improved algorithms are proposed based on an exact Newton's method using the second order terms. By efficiently computing an exact gain matrix, combined with a special optimal multiplier method, the new algorithms show more reliable convergence compared with the existing methods of normal equations, orthogonal decomposition, and Hachtel's sparse tableau. Our methods are able to handle ill-conditioned problems, yet show minimal penalty in computational cost for well-conditioned cases. These claims are illustrated through the standard IEEE 118 and 300 bus test examples. The second part of the thesis focuses on stability analysis of market/power systems. The work presented is motivated by an emerging problem. As the frequency of market based dispatch updates increases, there will inevitably be interaction between the dynamics of markets determining the generator dispatch commands, and the physical response of generators and network interconnections, necessitating the development of stability analysis for such coupled systems. We begin with numeric tests using different market models, with detailed machine/exciter/turbine/governor dynamics, in the New England 39 bus test system. A progression of modeling refinements are introduced, including such non-ideal effects as time delays. Electricity market parameter identification algorithms are also studied based on real time data from the PJM electricity market. Finally our power market model is augmented by optimal

  7. Decoding the dynamics of cellular metabolism and the action of 3-bromopyruvate and 2-deoxyglucose using pulsed stable isotope-resolved metabolomics.

    Science.gov (United States)

    Pietzke, Matthias; Zasada, Christin; Mudrich, Susann; Kempa, Stefan

    2014-01-01

    Cellular metabolism is highly dynamic and continuously adjusts to the physiological program of the cell. The regulation of metabolism appears at all biological levels: (post-) transcriptional, (post-) translational, and allosteric. This regulatory information is expressed in the metabolome, but in a complex manner. To decode such complex information, new methods are needed in order to facilitate dynamic metabolic characterization at high resolution. Here, we describe pulsed stable isotope-resolved metabolomics (pSIRM) as a tool for the dynamic metabolic characterization of cellular metabolism. We have adapted gas chromatography-coupled mass spectrometric methods for metabolomic profiling and stable isotope-resolved metabolomics. In addition, we have improved robustness and reproducibility and implemented a strategy for the absolute quantification of metabolites. By way of examples, we have applied this methodology to characterize central carbon metabolism of a panel of cancer cell lines and to determine the mode of metabolic inhibition of glycolytic inhibitors in times ranging from minutes to hours. Using pSIRM, we observed that 2-deoxyglucose is a metabolic inhibitor, but does not directly act on the glycolytic cascade.

  8. Mobile nuclear power systems

    International Nuclear Information System (INIS)

    Andersson, B.

    1988-11-01

    This report is meant to present a general survey of the mobile nuclear power systems and not a detailed review of their technical accomplishments. It is based in published material mainly up to 1987. Mobile nuclear power systems are of two fundamentally different kinds: nuclear reactors and isotopic generators. In the reactors the energy comes from nuclear fission and in the isotopic generators from the radioactive decay of suitable isotopes. The reactors are primarily used as power sourves on board nuclear submarines and other warships but have also been used in the space and in remote places. Their thermal power has ranged from 30 kWth (in a satellite) to 175 MWth (on board an aircraft carrier). Isotopic generators are suitable only for small power demands and have been used on board satellites and spaceprobes, automatic weatherstations, lighthouses and marine installations for navigation and observation. (author)

  9. The Alaska Water Isotope Network (AKWIN): Precipitation, lake, river and stream dynamics

    Science.gov (United States)

    Rogers, M.; Welker, J. M.; Toohey, R.

    2011-12-01

    The hydrologic cycle is central to the structure and function of northern landscapes. The movement of water creates interactions between terrestrial, aquatic, marine and atmospheric processes. Understanding the processes and the spatial patterns that govern the isotopic (δ18O & δD) characteristics of the hydrologic cycle is especially important today as: a) modern climate/weather-isotope relations allow for more accurate interpretation of climate proxies and the calibration of atmospheric models, b) water isotopes facilitate understanding the role of storm tracks in regulating precipitation isotopic variability, c) water isotopes allow for estimates of glacial melt water inputs into aquatic systems, d) water isotopes allow for quantification of surface and groundwater interactions, e) water isotopes allow for quantification of permafrost meltwater use by plant communities, f) water isotopes aid in migratory bird forensics, g) water isotopes are critical to estimating field metabolic rates, h) water isotopes allow for crop and diet forensics and i) water isotopes can provide insight into evaporation and transpiration processes. As part of a new NSF MRI project at the Environment and Natural Resources Institute (ENRI) at the University of Alaska Anchorage and as an extension of the US Network for Isotopes in Precipitation (USNIP); we are forming AKWIN. The network will utilize long-term weekly sampling at Denali National Park and Caribou Poker Creek Watershed (USNIP sites-1989 to present), regular sampling across Alaska involving land management agencies (USGS, NPS, USFWS, EPA), educators, volunteers and citizen scientists, UA extended campuses, individual research projects, opportunistic sampling and published data to construct isoscapes and time series databases and information packages. We will be using a suite of spatial and temporal analysis methods to characterize water isotopes across Alaska and will provide web portals for data products. Our network is

  10. Dynamic Modeling and Simulation on a Hybrid Power System for Electric Vehicle Applications

    Directory of Open Access Journals (Sweden)

    Hong-Wen He

    2010-11-01

    Full Text Available Hybrid power systems, formed by combining high-energy-density batteries and high-power-density ultracapacitors in appropriate ways, provide high-performance and high-efficiency power systems for electric vehicle applications. This paper first establishes dynamic models for the ultracapacitor, the battery and a passive hybrid power system, and then based on the dynamic models a comparative simulation between a battery only power system and the proposed hybrid power system was done under the UDDS (Urban Dynamometer Driving Schedule. The simulation results showed that the hybrid power system could greatly optimize and improve the efficiency of the batteries and their dynamic current was also decreased due to the participation of the ultracapacitors, which would have a good influence on batteries’ cycle life. Finally, the parameter matching for the passive hybrid power system was studied by simulation and comparisons.

  11. Dynamic influences of wind power on the power system

    Energy Technology Data Exchange (ETDEWEB)

    Rosas, Pedro

    2003-03-01

    The thesis first presents the basics influences of wind power on the power system stability and quality by pointing out the main power quality issues of wind power in a small-scale case and following, the expected large-scale problems are introduced. Secondly, a dynamic wind turbine model that supports power quality assessment of wind turbines is presented. Thirdly, an aggregate wind farm model that support power quality and stability analysis from large wind farms is presented. The aggregate wind farm model includes the smoothing of the relative power fluctuation from a wind farm compared to a single wind turbine. Finally, applications of the aggregate wind farm model to the power systems are presented. The power quality and stability characteristics influenced by large-scale wind power are illustrated with three cases. In this thesis, special emphasis has been given to appropriate models to represent the wind acting on wind farms. The wind speed model to a single wind turbine includes turbulence and tower shadow effects from the wind and the rotational sampling turbulence due to the rotation of the blades. In a park scale, the wind speed model to the wind farm includes the spatial coherence between different wind turbines. Here the wind speed model is applied to a constant rotational speed wind turbine/farm, but the model is suitable to variable speed wind turbine/farm as well. The cases presented here illustrate the influences of the wind power on the power system quality and stability. The flicker and frequency deviations are the main power quality parameters presented. The power system stability concentrates on the voltage stability and on the power system oscillations. From the cases studied, voltage and the frequency variations were smaller than expected from the large-scale wind power integration due to the low spatial correlation of the wind speed. The voltage quality analysed in a Brazilian power system and in the Nordel power system from connecting large

  12. Isotope hydrology: A historical overview of achievements

    International Nuclear Information System (INIS)

    1997-01-01

    The IAEA's efforts in the water sector cover all aspects of the three main categories of isotope methodologies, such as the use of radioactive isotopes as tracers for site-specific investigations related to water movement; the use of sealed radioactive sources for in-situ measurement of hydrological field parameters; and the use of naturally occurring isotopic species for the assessment and study of water occurrence, genesis and flow pathways/dynamics at regional-scale hydrological systems

  13. Comparison of three gamma ray isotopic determination codes: FRAM, MGA, and TRIFID

    International Nuclear Information System (INIS)

    Cremers, T.L.; Malcom, J.E.; Bonner, C.A.

    1994-01-01

    The determination of the isotopic distribution of plutonium and the americium concentration is required for the assay of nuclear material by calorimetry or neutron coincidence counting. The isotopic information is used in calorimetric assay to compute the effective specific power from the measured isotopic fractions and the known specific power of each isotope. The effective specific power is combined with the heat measurement to obtain the mass of plutonium in the assayed nuclear material. The response of neutron coincidence counters is determined by the 240 Pu isotopic fraction with contributions from the other even plutonium isotopes. The effect of the 240 Pu isotopic fraction and the other neutron contributing isotopes are combined as 240 Pu effective. This is used to calculate the mass of nuclear material from the neutron counting data in a manner analogous to the effective specific power in calorimeter. Comparisons of the precision and accuracy of calorimetric assay and neutron coincidence counting often focus only on the precision and accuracy of the heat measurement (calorimetry) compared to the precision and accuracy of the neutron coincidence counting statistics. The major source of uncertainty for both calorimetric assay and neutron coincidence counting often lies in the determination of the plutonium isotopic distribution ad determined by gamma ray spectroscopy. Thus, the selection of the appropriate isotopic distribution code is of paramount importance to good calorimetric assay and neutron coincidence counting. Three gamma ray isotopic distribution codes, FRAM, MGA, and TRIFID have been compared at the Los Alamos Plutonium Facility under carefully controlled conditions of similar count rates, count times, and 240 Pu isotopic fraction

  14. Markov switching of the electricity supply curve and power prices dynamics

    Science.gov (United States)

    Mari, Carlo; Cananà, Lucianna

    2012-02-01

    Regime-switching models seem to well capture the main features of power prices behavior in deregulated markets. In a recent paper, we have proposed an equilibrium methodology to derive electricity prices dynamics from the interplay between supply and demand in a stochastic environment. In particular, assuming that the supply function is described by a power law where the exponent is a two-state strictly positive Markov process, we derived a regime switching dynamics of power prices in which regime switches are induced by transitions between Markov states. In this paper, we provide a dynamical model to describe the random behavior of power prices where the only non-Brownian component of the motion is endogenously introduced by Markov transitions in the exponent of the electricity supply curve. In this context, the stochastic process driving the switching mechanism becomes observable, and we will show that the non-Brownian component of the dynamics induced by transitions from Markov states is responsible for jumps and spikes of very high magnitude. The empirical analysis performed on three Australian markets confirms that the proposed approach seems quite flexible and capable of incorporating the main features of power prices time-series, thus reproducing the first four moments of log-returns empirical distributions in a satisfactory way.

  15. Diverging effects of isotopic fractionation upon molecular diffusion of noble gases in water: mechanistic insights through ab initio molecular dynamics simulations.

    Science.gov (United States)

    Pinto de Magalhães, Halua; Brennwald, Matthias S; Kipfer, Rolf

    2017-03-22

    Atmospheric noble gases are routinely used as natural tracers to analyze gas transfer processes in aquatic systems. Their isotopic ratios can be employed to discriminate between different physical transport mechanisms by comparison to the unfractionated atmospheric isotope composition. In many applications of aquatic systems molecular diffusion was thought to cause a mass dependent fractionation of noble gases and their isotopes according to the square root ratio of their masses. However, recent experiments focusing on isotopic fractionation within a single element challenged this broadly accepted assumption. The determined fractionation factors of Ne, Ar, Kr and Xe isotopes revealed that only Ar follows the prediction of the so-called square root relation, whereas within the Ne, Kr and Xe elements no mass-dependence was found. The reason for this unexpected divergence of Ar is not yet understood. The aim of our computational exercise is to establish the molecular-resolved mechanisms behind molecular diffusion of noble gases in water. We make the hypothesis that weak intermolecular interactions are relevant for the dynamical properties of noble gases dissolved in water. Therefore, we used ab initio molecular dynamics to explicitly account for the electronic degrees of freedom. Depending on the size and polarizability of the hydrophobic particles such as noble gases, their motion in dense and polar liquids like water is subject to different diffusive regimes: the inter-cavity hopping mechanism of small particles (He, Ne) breaks down if a critical particle size achieved. For the case of large particles (Kr, Xe), the motion through the water solvent is governed by mass-independent viscous friction leading to hydrodynamical diffusion. Finally, Ar falls in between the two diffusive regimes, where particle dispersion is propagated at the molecular collision time scale of the surrounding water molecules.

  16. Isotope yield ratios as a probe of the reaction dynamics

    International Nuclear Information System (INIS)

    Trautmann, W.; Hildenbrand, K.D.; Lynen, U.; Mueller, W.F.J.; Rabe, H.J.; Sann, H.; Stelzer, H.; Trockel, R.; Wada, R.; Brummund, N.; Glasow, R.; Kampert, K.H.; Santo, R.; Eckert, E.M.; Pochodzalla, J.; Bock, I.; Pelte, D.

    1987-04-01

    Isotopically resolved yields of particles and complex fragments from 12 C and 18 O induced reactions on 53 Ni, 54 Ni, Ag, and 197 Au in the intermediate range of bombarding energies 30 MeV ≤ E/A ≤ 84 MeV were measured. The systematic variation of the deduced isotope yield ratios with projectile and target is used to determine the degree of N/Z equilibration achieved and to establish time scales for the reaction process. A quantum statistical model is employed in order to derive entropies of the emitting systems from the measured isotope yield ratios. (orig.)

  17. Dual isotope notch observer for isotope identification, assay and imaging with mono-energetic gamma-ray sources

    Science.gov (United States)

    Barty, Christopher P.J.

    2013-02-05

    A dual isotope notch observer for isotope identification, assay and imaging with mono-energetic gamma-ray sources includes a detector arrangement consists of three detectors downstream from the object under observation. The latter detector, which operates as a beam monitor, is an integrating detector that monitors the total beam power arriving at its surface. The first detector and the middle detector each include an integrating detector surrounding a foil. The foils of these two detectors are made of the same atomic material, but each foil is a different isotope, e.g., the first foil may comprise U235 and second foil may comprise U238. The integrating detectors surrounding these pieces of foil measure the total power scattered from the foil and can be similar in composition to the final beam monitor. Non-resonant photons will, after calibration, scatter equally from both foils.

  18. Stable Oxygen-18 and Deuterium Isotopes

    DEFF Research Database (Denmark)

    Müller, Sascha

    The application of stable Oxygen-18 (18O) and Deuterium (2H) isotopes, as a tracer for fluxes between different compartments of the water cycle was subject of the present PhD-thesis. During a three year period, temporal data from a wide range of water cycle constituents was collected from...... the Skjern River catchment, Denmark. The presented applications focused on studying the isotopic 'input signal' to the hydrosphere in the form of precipitation, the isotopic 'output signal' with its related dynamic processes at a coastal saltwater-freshwater interface (groundwater isotopes) and the temporal...... development within a given lowland headwater catchment (stream water isotopes). Based on our investigations on the precipitation isotopic composition a local meteoric water line (LMWL) was constructed and expressed as: δ2H=7.4 δ18O + 5.36‰. Moreover, we showed that under maritime temperature climate influence...

  19. Pulsewidth modulated DC-to-DC power conversion circuits, dynamics, and control designs

    CERN Document Server

    Choi, Byungcho

    2013-01-01

    This is the definitive reference for anyone involved in pulsewidth modulated DC-to-DC power conversion Pulsewidth Modulated DC-to-DC Power Conversion: Circuits, Dynamics, and Control Designs provides engineers, researchers, and students in the power electronics field with comprehensive and complete guidance to understanding pulsewidth modulated (PWM) DC-to-DC power converters. Presented in three parts, the book addresses the circuitry and operation of PWM DC-to-DC converters and their dynamic characteristics, along with in-depth discussions of control design of PWM DC-to

  20. An Isotopic view of water and nitrogen transport through the ...

    Science.gov (United States)

    Groundwater nitrate contamination affects thousands of households in Oregon’s southern Willamette Valley and many more across the Pacific Northwest. The southern Willamette Valley Groundwater Management Area (SWV GWMA) was established in 2004 due to nitrate levels in the groundwater exceeding the human health standard of 10 mg nitrate-N L-1. Much of the nitrogen inputs to the GWMA comes from agricultural nitrogen use, and thus efforts to reduce N inputs to groundwater are focused upon improving N management. However, the effectiveness of these improvements on groundwater quality is unclear because of the complexity of nutrient transport through the vadose zone and long groundwater residence times. Our objective was to focus on vadose zone transport and understand the dynamics and timing of N and water movement below the rooting zone in relation to N management and water inputs. Stable isotopes are a powerful tool for tracking water movement, and understanding nitrogen transformations within the vadose zone. In partnership with local farmers, and state agencies, we established lysimeters and groundwater wells in multiple agricultural fields in the GWMA, and have monitored nitrate, nitrate isotopes, and water isotopes weekly for multiple years. Our results indicate that vadose zone transport is highly complex, and the residence time of water collected in lysimeters was much longer than expected. While input precipitation water isotopes were highly variab

  1. Simulation and study on reactivity disturbs dynamic character of HTR-10 nuclear power system

    International Nuclear Information System (INIS)

    Huang Xiaojin; Feng Yuankun

    2002-01-01

    In order to not only know 10 MW High Temperature Gas Cooled Reactor (HTR-10) nuclear power system's dynamic character more deeply but also to satisfy requirements of control system's design and analysis, the dynamic model of HTR-10 nuclear power system is established on the basis of dynamic model of HTR-10 nuclear system, which supplies turbine and generate electricity system model. Using this model, system's main variables' dynamic processes are simulated when control rod takes step reactivity disturb. The concussive progresses which is caused by reactivity disturb are analyzed. The results indicate that fuel temperature changing more slowly than nuclear power makes reactivity negative feedback not to restrain power changing, and then power concussive progress comes to being

  2. Mercury isotope signatures of seawater discharged from a coal-fired power plant equipped with a seawater flue gas desulfurization system.

    Science.gov (United States)

    Lin, Haiying; Peng, Jingji; Yuan, Dongxing; Lu, Bingyan; Lin, Kunning; Huang, Shuyuan

    2016-07-01

    Seawater flue gas desulfurization (SFGD) systems are commonly used to remove acidic SO2 from the flue gas with alkaline seawater in many coastal coal-fired power plants in China. However, large amount of mercury (Hg) originated from coal is also transferred into seawater during the desulfurization (De-SO2) process. This research investigated Hg isotopes in seawater discharged from a coastal plant equipped with a SFGD system for the first time. Suspended particles of inorganic minerals, carbon residuals and sulfides are enriched in heavy Hg isotopes during the De-SO2 process. δ(202)Hg of particulate mercury (PHg) gradually decreased from -0.30‰ to -1.53‰ in study sea area as the distance from the point of discharge increased. The results revealed that physical mixing of contaminated De-SO2 seawater and uncontaminated fresh seawater caused a change in isotopic composition of PHg isotopes in the discharging area; and suggested that both De-SO2 seawater and local background contributed to PHg. The impacted sea area predicted with isotopic tracing technique was much larger than that resulted from a simple comparison of pollutant concentration. It was the first attempt to apply mercury isotopic composition signatures with two-component mixing model to trace the mercury pollution and its influence in seawater. The results could be beneficial to the coal-fired plants with SFGD systems to assess and control Hg pollution in sea area. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. STAR Power, an Interactive Educational Fusion CD with a Dynamic, Shaped Tokamak Power Plant Simulator

    Science.gov (United States)

    Leuer, J. A.; Lee, R. L.; Kellman, A. G.; Chapman Nutt, G. C., Jr.; Holley, G.; Larsen, T. A.

    2000-10-01

    We describe an interactive, educational fusion adventure game developed within our fusion education program. The theme of the adventure is start-up of a state-of-the-art fusion power plant. To gain access to the power plant control room, the student must complete several education modules, including topics on building an atom, fusion reactions, charged particle motion in electric and magnetic fields, and building a power plant. Review questions, a fusion video, library material and glossary provide additional resources. In the control room the student must start-up a complex, dynamic fusion power plant. The simulation model contains primary elements of a tokamak based device, including a magnetic shaper capable of producing limited and diverted elongated plasmas. A zero dimensional plasma model based on ITER scaling and containing rate based conservation equations provides dynamic feedback through major control parameters such as toroidal field, fueling rate and heating. The game is available for use on PC and Mac. computers. Copies will be available at the conference.

  4. Methodology of conversion of plutonium of various isotopic compositions to the equivalent plutonium as applied to system studies in nuclear power

    International Nuclear Information System (INIS)

    Yatsenko, E.M.; Chebeskov, A.N.; Kagramanyan, V.S.; Kalashnikov, A.G.

    2012-01-01

    It is shown that the developed methodology, possessing comprehensible accuracy, allows not only to correct enrichment, but also to lower uncertainty degree at carrying out the system researches of atomic engineering taking into account dynamics of change of fuel isotopic composition at its multiple recycle in fast reactors [ru

  5. Stable isotope analysis in primatology: a critical review.

    Science.gov (United States)

    Sandberg, Paul A; Loudon, James E; Sponheimer, Matt

    2012-11-01

    Stable isotope analysis has become an important tool in ecology over the last 25 years. A wealth of ecological information is stored in animal tissues in the relative abundances of the stable isotopes of several elements, particularly carbon and nitrogen, because these isotopes navigate through ecological processes in predictable ways. Stable carbon and nitrogen isotopes have been measured in most primate taxonomic groups and have yielded information about dietary content, dietary variability, and habitat use. Stable isotopes have recently proven useful for addressing more fine-grained questions about niche dynamics and anthropogenic effects on feeding ecology. Here, we discuss stable carbon and nitrogen isotope systematics and critically review the published stable carbon and nitrogen isotope data for modern primates with a focus on the problems and prospects for future stable isotope applications in primatology. © 2012 Wiley Periodicals, Inc.

  6. Soil water stable isotopes reveal evaporation dynamics at the soil–plant–atmosphere interface of the critical zone

    Directory of Open Access Journals (Sweden)

    M. Sprenger

    2017-07-01

    Full Text Available Understanding the influence of vegetation on water storage and flux in the upper soil is crucial in assessing the consequences of climate and land use change. We sampled the upper 20 cm of podzolic soils at 5 cm intervals in four sites differing in their vegetation (Scots Pine (Pinus sylvestris and heather (Calluna sp. and Erica Sp and aspect. The sites were located within the Bruntland Burn long-term experimental catchment in the Scottish Highlands, a low energy, wet environment. Sampling took place on 11 occasions between September 2015 and September 2016 to capture seasonal variability in isotope dynamics. The pore waters of soil samples were analyzed for their isotopic composition (δ2H and δ18O with the direct-equilibration method. Our results show that the soil waters in the top soil are, despite the low potential evaporation rates in such northern latitudes, kinetically fractionated compared to the precipitation input throughout the year. This fractionation signal decreases within the upper 15 cm resulting in the top 5 cm being isotopically differentiated to the soil at 15–20 cm soil depth. There are significant differences in the fractionation signal between soils beneath heather and soils beneath Scots pine, with the latter being more pronounced. But again, this difference diminishes within the upper 15 cm of soil. The enrichment in heavy isotopes in the topsoil follows a seasonal hysteresis pattern, indicating a lag time between the fractionation signal in the soil and the increase/decrease of soil evaporation in spring/autumn. Based on the kinetic enrichment of the soil water isotopes, we estimated the soil evaporation losses to be about 5 and 10 % of the infiltrating water for soils beneath heather and Scots pine, respectively. The high sampling frequency in time (monthly and depth (5 cm intervals revealed high temporal and spatial variability of the isotopic composition of soil waters, which can be critical

  7. Parareal in Time for Dynamic Simulations of Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Gurrala, Gurunath [ORNL; Dimitrovski, Aleksandar D [ORNL; Pannala, Sreekanth [ORNL; Simunovic, Srdjan [ORNL; Starke, Michael R [ORNL

    2015-01-01

    In recent years, there have been significant developments in parallel algorithms and high performance parallel computing platforms. Parareal in time algorithm has become popular for long transient simulations (e.g., molecular dynamics, fusion, reacting flows). Parareal is a parallel algorithm which divides the time interval into sub-intervals and solves them concurrently. This paper investigates the applicability of the parareal algorithm to power system dynamic simulations. Preliminary results on the application of parareal for multi-machine power systems are reported in this paper. Two widely used test systems, WECC 3-generator 9-bus system, New England 10-generator 39- bus system, is used to explore the effectiveness of the parareal. Severe 3 phase bus faults are simulated using both the classical and detailed models of multi-machine power systems. Actual Speedup of 5-7 times is observed assuming ideal parallelization. It has been observed that the speedup factors of the order of 20 can be achieved by using fast coarse approximations of power system models. Dependency of parareal convergence on fault duration and location has been observed.

  8. Dynamic Analysis & Characterization of Conventional Hydraulic Power Supply Units

    DEFF Research Database (Denmark)

    Schmidt, Lasse; Liedhegener, Michael; Bech, Michael Møller

    2016-01-01

    Hydraulic power units operated as constant supply pres-sure systems remain to be widely used in the industry, to supply valve controlled hydraulic drives etc., where the hydraulic power units are constituted by variable pumps with mechanical outlet pressure control, driven by induction motors....... In the analysis of supplied drives, both linear and rotary, emphasis is commonly placed on the drives themselves and the related loads, and the supply system dynamics is often given only little attention, and usually neglected or taken into account in a simplified fashion. The simplified supply system dynamics...... and drives will reduce the flow-to-pressure gain of the supply system, and hence increase the time constant of the sup-ply pressure dynamics. A consequence of this may be large vari-ations in the supply pressure, hence large variations in the pump shaft torque, and thereby the induction motor load torque...

  9. Optimization Scheduling Model for Wind-thermal Power System Considering the Dynamic penalty factor

    Science.gov (United States)

    PENG, Siyu; LUO, Jianchun; WANG, Yunyu; YANG, Jun; RAN, Hong; PENG, Xiaodong; HUANG, Ming; LIU, Wanyu

    2018-03-01

    In this paper, a new dynamic economic dispatch model for power system is presented.Objective function of the proposed model presents a major novelty in the dynamic economic dispatch including wind farm: introduced the “Dynamic penalty factor”, This factor could be computed by using fuzzy logic considering both the variable nature of active wind power and power demand, and it could change the wind curtailment cost according to the different state of the power system. Case studies were carried out on the IEEE30 system. Results show that the proposed optimization model could mitigate the wind curtailment and the total cost effectively, demonstrate the validity and effectiveness of the proposed model.

  10. Organic Rankine kilowatt isotope power system. First annual summary report, August 1, 1975--August 1, 1976

    International Nuclear Information System (INIS)

    1976-01-01

    Sundstrand Energy Systems is developing a Kilowatt Isotope Power System (KIPS) directed toward satisfying the higher power requirements of satellites of the 1980's. The KIPS is a plutonium oxide fueled organic Rankine cycle turbine power system which will provide design output power in the range of 500 to 2000 W(e) with a minimum of system changes. Research progress is reported on Phase I comprising: (1) flight system conceptual design and ground demonstration; (2) flight system design and ground qualification; and (3) flight system production, acceptance testing and delivery. The principal objectives of Phase I are to: (1) conceptually design the flight system, (2) based on the flight system concept, design and build the ground demonstration system (GDS), (3) conduct performance and endurance testing using electric heaters to simulate the radioisotope heat source, (4) identify and initiate long lead development efforts required to achieve the initial flight qualification hardware availability date of April 1981, and (5) finalize the flight concept design and prepare the program plan for the Phase II effort

  11. Dynamic ADMM for Real-time Optimal Power Flow: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Dall-Anese, Emiliano [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-02-23

    This paper considers distribution networks featuring distributed energy resources (DERs), and develops a dynamic optimization method to maximize given operational objectives in real time while adhering to relevant network constraints. The design of the dynamic algorithm is based on suitable linearizations of the AC power flow equations, and it leverages the so-called alternating direction method of multipliers (ADMM). The steps of the ADMM, however, are suitably modified to accommodate appropriate measurements from the distribution network and the DERs. With the aid of these measurements, the resultant algorithm can enforce given operational constraints in spite of inaccuracies in the representation of the AC power flows, and it avoids ubiquitous metering to gather the state of non-controllable resources. Optimality and convergence of the propose algorithm are established in terms of tracking of the solution of a convex surrogate of the AC optimal power flow problem.

  12. Construction of a dynamic model for a PEM power module with applications to distributed power generation. Paper no. IGEC-1-086

    International Nuclear Information System (INIS)

    Zhang, Z.; Jiang, J.; Wu, B.

    2005-01-01

    This paper deals with dynamic model construction for a PEM fuel cell power module with potential applications for distributed power generation. In particular, the effects of temperature and variations in the internal impedance as load changes have been considered. Analytical models are synthesized first by using the measurements taken at different operating conditions, and then these models are validated by performing static as well as dynamic tests on the fuel cells. The results have indicated that the models indeed represent the dynamic behaviour of the fuel cell power module accurately. (author)

  13. Dynamic Security Assessment of Danish Power System Based on Decision Trees: Today and Tomorrow

    DEFF Research Database (Denmark)

    Rather, Zakir Hussain; Liu, Leo; Chen, Zhe

    2013-01-01

    The research work presented in this paper analyzes the impact of wind energy, phasing out of central power plants and cross border power exchange on dynamic security of Danish Power System. Contingency based decision tree (DT) approach is used to assess the dynamic security of present and future...

  14. Analysis of shadowing effects on MIR photovoltaic and solar dynamic power systems

    Science.gov (United States)

    Fincannon, James

    1995-01-01

    The NASA Lewis Research Center is currently working with RSC-Energia, the Russian Space Agency, and Allied Signal in developing a flight demonstration solar dynamic power system. This type of power system is dependent upon solar flux that is reflected and concentrated into a thermal storage system to provide the thermal energy input to a closed-cycle Brayton heat engine. The solar dynamic unit will be flown on the Russian Mir space station in anticipation of use on the International Space Station Alpha. By the time the power system is launched, the Mir will be a spatially complex configuration which will have, in addition to the three-gimbaled solar dynamic unit, eleven solar array wings that are either fixed or track the Sun along one axis and a variety or repositionable habitation and experiment modules. The proximity of arrays to modules creates a situation which makes it highly probable that there will be varying solar flux due to shadowing on the solar dynamic unit and some of the arrays throughout the orbit. Shadowing causes fluctuations in the power output from the arrays and the solar dynamic power system, thus reducing the energy capabilities of the spacecraft. An assessment of the capabilities of the power system under these conditions is an important part in influencing the design and operations of the spacecraft and predicting its energy performance. This paper describes the results obtained from using the Orbiting Spacecraft Shadowing Analysis Station program that was integrated into the Station Power Analysis for Capability Evaluation (SPACE) electrical power system computer program. OSSA allows one to consider the numerous complex factors for analyzing the shadowing effects on the electrical power system including the variety of spacecraft hardware geometric configurations, yearly and daily orbital variations in the vehicle attitude and orbital maneuvers (for communications coverage, payload pointing requirements and rendezvous/docking with other

  15. Dynamic model of frequency control in Danish power system with large scale integration of wind power

    DEFF Research Database (Denmark)

    Basit, Abdul; Hansen, Anca Daniela; Sørensen, Poul Ejnar

    2013-01-01

    This work evaluates the impact of large scale integration of wind power in future power systems when 50% of load demand can be met from wind power. The focus is on active power balance control, where the main source of power imbalance is an inaccurate wind speed forecast. In this study, a Danish...... power system model with large scale of wind power is developed and a case study for an inaccurate wind power forecast is investigated. The goal of this work is to develop an adequate power system model that depicts relevant dynamic features of the power plants and compensates for load generation...... imbalances, caused by inaccurate wind speed forecast, by an appropriate control of the active power production from power plants....

  16. Dynamic state estimation assisted power system monitoring and protection

    Science.gov (United States)

    Cui, Yinan

    The advent of phasor measurement units (PMUs) has unlocked several novel methods to monitor, control, and protect bulk electric power systems. This thesis introduces the concept of "Dynamic State Estimation" (DSE), aided by PMUs, for wide-area monitoring and protection of power systems. Unlike traditional State Estimation where algebraic variables are estimated from system measurements, DSE refers to a process to estimate the dynamic states associated with synchronous generators. This thesis first establishes the viability of using particle filtering as a technique to perform DSE in power systems. The utility of DSE for protection and wide-area monitoring are then shown as potential novel applications. The work is presented as a collection of several journal and conference papers. In the first paper, we present a particle filtering approach to dynamically estimate the states of a synchronous generator in a multi-machine setting considering the excitation and prime mover control systems. The second paper proposes an improved out-of-step detection method for generators by means of angular difference. The generator's rotor angle is estimated with a particle filter-based dynamic state estimator and the angular separation is then calculated by combining the raw local phasor measurements with this estimate. The third paper introduces a particle filter-based dual estimation method for tracking the dynamic states of a synchronous generator. It considers the situation where the field voltage measurements are not readily available. The particle filter is modified to treat the field voltage as an unknown input which is sequentially estimated along with the other dynamic states. The fourth paper proposes a novel framework for event detection based on energy functions. The key idea is that any event in the system will leave a signature in WAMS data-sets. It is shown that signatures for four broad classes of disturbance events are buried in the components that constitute the

  17. Li Isotope Studies of Olivine in Mantle Xenoliths by SIMS

    Science.gov (United States)

    Bell, D. R.; Hervig, R. L.; Buseck, P. R.

    2005-01-01

    Variations in the ratio of the stable isotopes of Li are a potentially powerful tracer of processes in planetary and nebular environments [1]. Large differences in the 7Li/6Li ratio between the terrestrial upper mantle and various crustal materials make Li isotope composition a potentially powerful tracer of crustal recycling processes on Earth [2]. Recent SIMS studies of terrestrial mantle and Martian meteorite samples report intra-mineral Li isotope zoning [3-5]. Substantial Li isotope heterogeneity also exists within and between the components of chondritic meteorites [6,7]. Experimental studies of Li diffusion suggest the potential for rapid isotope exchange at elevated temperatures [8]. Large variations in 7Li, exceeding the range of unaltered basalts, occur in terrestrial mantle-derived xenoliths from individual localities [9]. The origins of these variations are not fully understood.

  18. Isotopes a very short introduction

    CERN Document Server

    Ellam, Rob

    2016-01-01

    An isotope is a variant form of a chemical element, containing a different number of neutrons in its nucleus. Most elements exist as several isotopes. Many are stable while others are radioactive, and some may only exist fleetingly before decaying into other elements. In this Very Short Introduction, Rob Ellam explains how isotopes have proved enormously important across all the sciences and in archaeology. Radioactive isotopes may be familiar from their use in nuclear weapons, nuclear power, and in medicine, as well as in carbon dating. They have been central to establishing the age of the Earth and the origins of the solar system. Combining previous and new research, Ellam provides an overview of the nature of stable and radioactive isotopes, and considers their wide range of modern applications. ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subjec...

  19. Modelling of dynamic equivalents in electric power grids

    International Nuclear Information System (INIS)

    Craciun, Diana Iuliana

    2010-01-01

    In a first part, this research thesis proposes a description of the context and new constraints of electric grids: architecture, decentralized production with the impact of distributed energy resource systems, dynamic simulation, and interest of equivalent models. Then, the author discusses the modelling of the different components of electric grids: synchronous and asynchronous machines, distributed energy resource with power electronic interface, loading models. She addresses the techniques of reduction of electric grid models: conventional reduction methods, dynamic equivalence methods using non linear approaches or evolutionary algorithm-based methods of assessment of parameters. This last approach is then developed and implemented, and a new method of computation of dynamic equivalents is described

  20. Hafnium isotope evidence for a transition in the dynamics of continental growth 3.2 Gyr ago.

    Science.gov (United States)

    Næraa, T; Scherstén, A; Rosing, M T; Kemp, A I S; Hoffmann, J E; Kokfelt, T F; Whitehouse, M J

    2012-05-30

    Earth's lithosphere probably experienced an evolution towards the modern plate tectonic regime, owing to secular changes in mantle temperature. Radiogenic isotope variations are interpreted as evidence for the declining rates of continental crustal growth over time, with some estimates suggesting that over 70% of the present continental crustal reservoir was extracted by the end of the Archaean eon. Patterns of crustal growth and reworking in rocks younger than three billion years (Gyr) are thought to reflect the assembly and break-up of supercontinents by Wilson cycle processes and mark an important change in lithosphere dynamics. In southern West Greenland numerous studies have, however, argued for subduction settings and crust growth by arc accretion back to 3.8 Gyr ago, suggesting that modern-day tectonic regimes operated during the formation of the earliest crustal rock record. Here we report in situ uranium-lead, hafnium and oxygen isotope data from zircons of basement rocks in southern West Greenland across the critical time period during which modern-like tectonic regimes could have initiated. Our data show pronounced differences in the hafnium isotope-time patterns across this interval, requiring changes in the characteristics of the magmatic protolith. The observations suggest that 3.9-3.5-Gyr-old rocks differentiated from a >3.9-Gyr-old source reservoir with a chondritic to slightly depleted hafnium isotope composition. In contrast, rocks formed after 3.2 Gyr ago register the first additions of juvenile depleted material (that is, new mantle-derived crust) since 3.9 Gyr ago, and are characterized by striking shifts in hafnium isotope ratios similar to those shown by Phanerozoic subduction-related orogens. These data suggest a transitional period 3.5-3.2 Gyr ago from an ancient (3.9-3.5 Gyr old) crustal evolutionary regime unlike that of modern plate tectonics to a geodynamic setting after 3.2 Gyr ago that involved juvenile crust generation by plate

  1. Seasonal and inter-annual dynamics of growth, non-structural carbohydrates and C stable isotopes in a Mediterranean beech forest.

    Science.gov (United States)

    Scartazza, Andrea; Moscatello, Stefano; Matteucci, Giorgio; Battistelli, Alberto; Brugnoli, Enrico

    2013-07-01

    Seasonal and inter-annual dynamics of growth, non-structural carbohydrates (NSC) and carbon isotope composition (δ(13)C) of NSC were studied in a beech forest of Central Italy over a 2-year period characterized by different environmental conditions. The net C assimilated by forest trees was mainly used to sustain growth early in the season and to accumulate storage carbohydrates in trunk and root wood in the later part of the season, before leaf shedding. Growth and NSC concentration dynamics were only slightly affected by the reduced soil water content (SWC) during the drier year. Conversely, the carbon isotope analysis on NSC revealed seasonal and inter-annual variations of photosynthetic and post-carboxylation fractionation processes, with a significant increase in δ(13)C of wood and leaf soluble sugars in the drier summer year than in the wetter one. The highly significant correlation between δ(13)C of leaf soluble sugars and SWC suggests a decrease of the canopy C isotope discrimination and, hence, an increased water-use efficiency with decreasing soil water availability. This may be a relevant trait for maintaining an acceptable plant water status and a relatively high C sink capacity during dry seasonal periods. Our results suggest a short- to medium-term homeostatic response of the Collelongo beech stand to variations in water availability and solar radiation, indicating that this Mediterranean forest was able to adjust carbon-water balance in order to prevent C depletion and to sustain plant growth and reserve accumulation during relatively dry seasons.

  2. Dynamic performance of concrete undercut anchors for Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Mahrenholtz, Christoph, E-mail: christoph@mahrenholtz.net; Eligehausen, Rolf

    2013-12-15

    Graphical abstract: - Highlights: • Behavior of undercut anchors under dynamic actions simulating earthquakes. • First high frequency load and crack cycling tests on installed concrete anchors ever. • Comprehensive review of anchor qualification for Nuclear Power Plants. - Abstract: Post-installed anchors are widely used for structural and nonstructural connections to concrete. In many countries, concrete anchors used for Nuclear Power Plants have to be qualified to ensure reliable behavior even under extreme conditions. The tests required for qualification of concrete anchors are carried out at quasi-static loading rates well below the rates to be expected for dynamic actions deriving from earthquakes, airplane impacts or explosions. To investigate potentially beneficial effects of high loading rates and cycling frequencies, performance tests on installed undercut anchors were conducted. After introductory notes on anchor technology and a comprehensive literature review, this paper discusses the qualification of anchors for Nuclear Power Plants and the testing carried out to quantify experimentally the effects of dynamic actions on the load–displacement behavior of undercut anchors.

  3. Isotopic exchange reactions. Kinetics and efficiency of the reactors using them in isotopic separation

    International Nuclear Information System (INIS)

    Ravoire, Jean

    1979-11-01

    In the first part, some definitions and the thermodynamic and kinetic isotopic effect concepts are recalled. In the second part the kinetic laws are established, in homogeneous and heterogeneous medium (one component being on occasions present in both phases), without and with isotopic effects. Emphasis is put on application to separation of isotopes, the separation factor α being close to 1, one isotope being in large excess with respect to the other one. Isotopic transfer is then given by: J = Ka (x - y/α) where x and y are the (isotopic) mole fractions in both phases, Ka may be either the rate of exchange or a transfer coefficient which can be considered as the 'same in both ways' if α-1 is small compared to the relative error on the measure of Ka. The third part is devoted to isotopic exchange reactors. Relationships between their efficiency and kinetics are established in some simple cases: plug cocurrent flow reactors, perfectly mixed reactors, countercurrent reactors without axial mixing. We treat only cases where α and the up flow to down flow ratio is close to 1 so that Murphee efficiency approximately overall efficiency (discrete stage contactors). HTU (phase 1) approximately HTU (phase 2) approximately HETP (columns). In a fourth part, an expression of the isotopic separative power of reactors is proposed and discussed [fr

  4. Interplay of community dynamics, temperature, and productivity on the hydrogen isotope signatures of lipid biomarkers

    Directory of Open Access Journals (Sweden)

    S. N. Ladd

    2017-09-01

    Full Text Available The hydrogen isotopic composition (δ2H of lipid biomarkers has diverse applications in the fields of paleoclimatology, biogeochemistry, and microbial community dynamics. Large changes in hydrogen isotope fractionation have been observed among microbes with differing core metabolisms, while environmental factors including temperature and nutrient availability can affect isotope fractionation by photoautotrophs. Much effort has gone into studying these effects under laboratory conditions with single species cultures. Moving beyond controlled environments and quantifying the natural extent of these changes in freshwater lacustrine settings and identifying their causes is essential for robust application of δ2H values of common short-chain fatty acids as a proxy of net community metabolism and of phytoplankton-specific biomarkers as a paleohydrologic proxy. This work targets the effect of community dynamics, temperature, and productivity on 2H∕1H fractionation in lipid biomarkers through a comparative time series in two central Swiss lakes: eutrophic Lake Greifen and oligotrophic Lake Lucerne. Particulate organic matter was collected from surface waters at six time points throughout the spring and summer of 2015, and δ2H values of short-chain fatty acids, as well as chlorophyll-derived phytol and the diatom biomarker brassicasterol, were measured. We paired these measurements with in situ incubations conducted with NaH13CO3, which were used to calculate the production rates of individual lipids in lake surface water. As algal productivity increased from April to June, net discrimination against 2H in Lake Greifen increased by as much as 148 ‰ for individual fatty acids. During the same time period in Lake Lucerne, net discrimination against 2H increased by as much as 58 ‰ for individual fatty acids. A large portion of this signal is likely due to a greater proportion of heterotrophically derived fatty acids in the winter and early

  5. A unifying energy-based approach to stability of power grids with market dynamics

    NARCIS (Netherlands)

    Stegink, Tjerk; De Persis, Claudio; van der Schaft, Arjan

    2017-01-01

    In this paper a unifying energy-based approach is provided to the modeling and stability analysis of power systems coupled with market dynamics. We consider a standard model of the power network with a third-order model for the synchronous generators involving voltage dynamics. By applying the

  6. Evaluation of Electric Power Procurement Strategies by Stochastic Dynamic Programming

    Science.gov (United States)

    Saisho, Yuichi; Hayashi, Taketo; Fujii, Yasumasa; Yamaji, Kenji

    In deregulated electricity markets, the role of a distribution company is to purchase electricity from the wholesale electricity market at randomly fluctuating prices and to provide it to its customers at a given fixed price. Therefore the company has to take risk stemming from the uncertainties of electricity prices and/or demand fluctuation instead of the customers. The way to avoid the risk is to make a bilateral contact with generating companies or install its own power generation facility. This entails the necessity to develop a certain method to make an optimal strategy for electric power procurement. In such a circumstance, this research has the purpose for proposing a mathematical method based on stochastic dynamic programming and additionally considering the characteristics of the start-up cost of electric power generation facility to evaluate strategies of combination of the bilateral contract and power auto-generation with its own facility for procuring electric power in deregulated electricity market. In the beginning we proposed two approaches to solve the stochastic dynamic programming, and they are a Monte Carlo simulation method and a finite difference method to derive the solution of a partial differential equation of the total procurement cost of electric power. Finally we discussed the influences of the price uncertainty on optimal strategies of power procurement.

  7. Quantitative imaging of subcellular metabolism with stable isotopes and multi-isotope imaging mass spectrometry

    Science.gov (United States)

    Steinhauser, Matthew L.; Lechene, Claude P.

    2014-01-01

    Multi-isotope imaging mass spectrometry (MIMS) is the quantitative imaging of stable isotope labels in cells with a new type of secondary ion mass spectrometer (NanoSIMS). The power of the methodology is attributable to (i) the immense advantage of using non-toxic stable isotope labels, (ii) high resolution imaging that approaches the resolution of usual transmission electron microscopy and (iii) the precise quantification of label down to 1 part-per-million and spanning several orders of magnitude. Here we review the basic elements of MIMS and describe new applications of MIMS to the quantitative study of metabolic processes including protein and nucleic acid synthesis in model organisms ranging from microbes to humans. PMID:23660233

  8. The relationships of eccentric strength and power with dynamic balance in male footballers.

    Science.gov (United States)

    Booysen, Marc Jon; Gradidge, Philippe Jean-Luc; Watson, Estelle

    2015-01-01

    Unilateral balance is critical to kicking accuracy in football. In order to design interventions to improve dynamic balance, knowledge of the relationships between dynamic balance and specific neuromuscular factors such as eccentric strength and power is essential. Therefore, the aim was to determine the relationships of eccentric strength and power with dynamic balance in male footballers. The Y-balance test, eccentric isokinetic strength testing (knee extensors and flexors) and the countermovement jump were assessed in fifty male footballers (university (n = 27, mean age = 20.7 ± 1.84 years) and professional (n = 23, mean age = 23.0 ± 3.08 years). Spearman Rank Order correlations were used to determine the relationships of eccentric strength and power with dynamic balance. Multiple linear regression, adjusting for age, mass, stature, playing experience and competitive level was performed on significant relationships. Normalised reach score in the Y-balance test using the non-dominant leg for stance correlated with (1) eccentric strength of the non-dominant leg knee extensors in the university group (r = 0.50, P = 0.008) and (2) countermovement jump height in the university (r = 0.40, P = 0.04) and professional (r = 0.56, P = 0.006) football groups, respectively. No relationships were observed between eccentric strength (knee flexors) and normalised reach scores. Despite the addition of potential confounders, the relationship of power and dynamic balance was significant (r = 0.52, P power correlates moderately with dynamic balance on the non-dominant leg in male footballers.

  9. Hydrogen isotope separation for fusion power applications

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R., E-mail: robert.smith@ccfe.ac.uk [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); JET-EFDA, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Whittaker, D.A.J.; Butler, B.; Hollingsworth, A.; Lawless, R.E.; Lefebvre, X.; Medley, S.A.; Parracho, A.I.; Wakeling, B. [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); JET-EFDA, Culham Science Centre, Abingdon OX14 3DB (United Kingdom)

    2015-10-05

    Highlights: • Summary of the tritium plant, the Active Gas Handling System (AGHS), at JET. • Review of the Water Detritiation System (WDS) under construction. • Design of the new Material Detritiation Facility (MDF). • Review of problems in fusion related to metal/hydrogen system. - Abstract: The invited talk given at MH2014 in Salford ranged over many issues associated with hydrogen isotope separation, fusion machines and the hydrogen/metal systems found in the Joint European Torus (JET) machine located near Oxford. As this sort of talk does not lend itself well to a paper below I have attempted to highlight some of the more pertinent information. After a description of the Active Gas Handling System (AGHS) a brief summary of isotope separation systems is described followed by descriptions of three major projects currently being undertaken by the Tritium Engineering and Science Group (TESG), the upgrade to the Analytical Systems (AN-GC) at the AGH, the construction of a Water Detritiation System (WDS) and a Material Detritiation Facility (MDF). Finally, a review of some of the challenges facing fusion with respect to metal/hydrogen systems is presented.

  10. Enhanced Microgrid Dynamic Performance Using a Modulated Power Filter Based on Enhanced Bacterial Foraging Optimization

    Directory of Open Access Journals (Sweden)

    Ahmed M. Othman

    2017-06-01

    Full Text Available This paper presents a design of microgrid (MG with enhanced dynamic performance. Distributed energy resources (DER are widely used in MGs to match the various load types and profiles. DERs include solar PV cells, wind energy sources, fuel cells, batteries, micro gas-engines and storage elements. MG will include AC/DC circuits, developed power electronics devices, inverters and power electronic controllers. A novel modulated power filters (MPF device will be applied in MG design. Enhanced bacterial foraging optimization (EBFO will be proposed to optimize and set the MPF parameters to enhance and tune the MG dynamic response. Recent dynamic control is applied to minimize the harmonic reference content. EBFO will adapt the gains of MPF dynamic control. The present research achieves an enhancement of MG dynamic performance, in addition to ensuring improvements in the power factor, bus voltage profile and power quality. MG operation will be evaluated by the dynamic response to be fine-tuned by MPF based on EBFO. Digital simulations have validated the results to show the effectiveness and efficient improvement by the proposed strategy.

  11. Intergroup Prisoner’s Dilemma with Intragroup Power Dynamics

    Directory of Open Access Journals (Sweden)

    Christian Lebiere

    2011-02-01

    Full Text Available The Intergroup Prisoner’s Dilemma with Intragroup Power Dynamics (IPD^2 is a new game paradigm for studying human behavior in conflict situations. IPD^2 adds the concept of intragroup power to an intergroup version of the standard Repeated Prisoner’s Dilemma game. We conducted a laboratory study in which individual human participants played the game against computer strategies of various complexities. The results show that participants tend to cooperate more when they have greater power status within their groups. IPD^2 yields increasing levels of mutual cooperation and decreasing levels of mutual defection, in contrast to a variant of Intergroup Prisoner’s Dilemma without intragroup power dynamics where mutual cooperation and mutual defection are equally likely. We developed a cognitive model of human decision making in this game inspired by the Instance-Based Learning Theory (IBLT and implemented within the ACT-R cognitive architecture. This model was run in place of a human participant using the same paradigm as the human study. The results from the model show a pattern of behavior similar to that of human data. We conclude with a discussion of the ways in which the IPD^2 paradigm can be applied to studying human behavior in conflict situations. In particular, we present the current study as a possible contribution to corroborating the conjecture that democracy reduces the risk of wars.

  12. Isotopes in aquaculture research

    International Nuclear Information System (INIS)

    Ayyappan, S.; Dash, B.; Ghosh, A.S.

    1996-01-01

    The applications of isotopes in aquaculture research include areas like aquatic production process, nutrient cycles and food chain dynamics, fish nutrition, fish physiology, genetics and immunology. The radioisotopes commonly used are beta emitters. The use of different radioisotopes in aquaculture research are presented. 2 tabs

  13. Power system dynamics and control

    CERN Document Server

    Kwatny, Harry G

    2016-01-01

    This monograph explores a consistent modeling and analytic framework that provides the tools for an improved understanding of the behavior and the building of efficient models of power systems. It covers the essential concepts for the study of static and dynamic network stability, reviews the structure and design of basic voltage and load-frequency regulators, and offers an introduction to power system optimal control with reliability constraints. A set of Mathematica tutorial notebooks providing detailed solutions of the examples worked-out in the text, as well as a package that will enable readers to work out their own examples and problems, supplements the text. A key premise of the book is that the design of successful control systems requires a deep understanding of the processes to be controlled; as such, the technical discussion begins with a concise review of the physical foundations of electricity and magnetism. This is followed by an overview of nonlinear circuits that include resistors, inductors, ...

  14. Stable isotope-resolved metabolomics and applications for drug development

    Science.gov (United States)

    Fan, Teresa W-M.; Lorkiewicz, Pawel; Sellers, Katherine; Moseley, Hunter N.B.; Higashi, Richard M.; Lane, Andrew N.

    2012-01-01

    Advances in analytical methodologies, principally nuclear magnetic resonance spectroscopy (NMR) and mass spectrometry (MS), during the last decade have made large-scale analysis of the human metabolome a reality. This is leading to the reawakening of the importance of metabolism in human diseases, particularly cancer. The metabolome is the functional readout of the genome, functional genome, and proteome; it is also an integral partner in molecular regulations for homeostasis. The interrogation of the metabolome, or metabolomics, is now being applied to numerous diseases, largely by metabolite profiling for biomarker discovery, but also in pharmacology and therapeutics. Recent advances in stable isotope tracer-based metabolomic approaches enable unambiguous tracking of individual atoms through compartmentalized metabolic networks directly in human subjects, which promises to decipher the complexity of the human metabolome at an unprecedented pace. This knowledge will revolutionize our understanding of complex human diseases, clinical diagnostics, as well as individualized therapeutics and drug response. In this review, we focus on the use of stable isotope tracers with metabolomics technologies for understanding metabolic network dynamics in both model systems and in clinical applications. Atom-resolved isotope tracing via the two major analytical platforms, NMR and MS, has the power to determine novel metabolic reprogramming in diseases, discover new drug targets, and facilitates ADME studies. We also illustrate new metabolic tracer-based imaging technologies, which enable direct visualization of metabolic processes in vivo. We further outline current practices and future requirements for biochemoinformatics development, which is an integral part of translating stable isotope-resolved metabolomics into clinical reality. PMID:22212615

  15. Conceptual definition of a technology development mission for advanced solar dynamic power systems

    Science.gov (United States)

    Migra, R. P.

    1986-01-01

    An initial conceptual definition of a technology development mission for advanced solar dynamic power systems is provided, utilizing a space station to provide a dedicated test facility. The advanced power systems considered included Brayton, Stirling, and liquid metal Rankine systems operating in the temperature range of 1040 to 1400 K. The critical technologies for advanced systems were identified by reviewing the current state of the art of solar dynamic power systems. The experimental requirements were determined by planning a system test of a 20 kWe solar dynamic power system on the space station test facility. These requirements were documented via the Mission Requirements Working Group (MRWG) and Technology Development Advocacy Group (TDAG) forms. Various concepts or considerations of advanced concepts are discussed. A preliminary evolutionary plan for this technology development mission was prepared.

  16. Dynamic analysis of Boushehr Nuclear Power Plant in connected to grid system

    International Nuclear Information System (INIS)

    Karimi Fard, A.

    1999-01-01

    Models of generating with the pressurized water reactor (PWR) have been developed for simulating. the plant dynamics under system disturbances. These models include power plant, energy sources, turbine, transmission system and control system such as Avr and govern and other local control devices. Simulink toolbox of Matlab software is used for simulations. The study is mainly based on the Bushehr Nuclear Power Plants (BNPP) parameters. Assuming that BNPP is connected to infinite bus with double tie line. Four cases are studied to examine the internal dynamic behavior of BNPP. First and second cases are used to load following studies in nuclear power plant. Another cases are used to study the dynamic behavior after short circuit fault and line outages in transmission systems. The results discussed in the thesis

  17. Hydraulic Power Plant Machine Dynamic Diagnosis

    Directory of Open Access Journals (Sweden)

    Hans Günther Poll

    2006-01-01

    Full Text Available A method how to perform an entire structural and hydraulic diagnosis of prototype Francis power machines is presented and discussed in this report. Machine diagnosis of Francis units consists on a proper evaluation of acquired mechanical, thermal and hydraulic data obtained in different operating conditions of several rotary and non rotary machine components. Many different physical quantities of a Francis machine such as pressure, strains, vibration related data, water flow, air flow, position of regulating devices and displacements are measured in a synchronized way so that a relation of cause an effect can be developed for each operating condition and help one to understand all phenomena that are involved with such kind of machine. This amount of data needs to be adequately post processed in order to allow correct interpretation of the machine dynamics and finally these data must be compared with the expected calculated data not only to fine tuning the calculation methods but also to accomplish fully understanding of the influence of the water passages on such machines. The way how the power plant owner has to operate its Francis machines, many times also determined by a central dispatcher, has a high influence on the fatigue life time of the machine components. The diagnostic method presented in this report helps one to understand the importance of adequate operation to allow a low maintenance cost for the entire power plant. The method how to acquire these quantities is discussed in details together with the importance of correct sensor balancing, calibration and adequate correlation with the physical quantities. Typical results of the dynamic machine behavior, with adequate interpretation, obtained in recent measurement campaigns of some important hydraulic turbines were presented. The paper highlights the investigation focus of the hydraulic machine behavior and how to tailor the measurement strategy to accomplish all goals. Finally some

  18. Stable isotope ratios in hair and teeth reflect biologic rhythms.

    Directory of Open Access Journals (Sweden)

    Otto Appenzeller

    Full Text Available Biologic rhythms give insight into normal physiology and disease. They can be used as biomarkers for neuronal degenerations. We present a diverse data set to show that hair and teeth contain an extended record of biologic rhythms, and that analysis of these tissues could yield signals of neurodegenerations. We examined hair from mummified humans from South America, extinct mammals and modern animals and people, both healthy and diseased, and teeth of hominins. We also monitored heart-rate variability, a measure of a biologic rhythm, in some living subjects and analyzed it using power spectra. The samples were examined to determine variations in stable isotope ratios along the length of the hair and across growth-lines of the enamel in teeth. We found recurring circa-annual periods of slow and fast rhythms in hydrogen isotope ratios in hair and carbon and oxygen isotope ratios in teeth. The power spectra contained slow and fast frequency power, matching, in terms of normalized frequency, the spectra of heart rate variability found in our living subjects. Analysis of the power spectra of hydrogen isotope ratios in hair from a patient with neurodegeneration revealed the same spectral features seen in the patient's heart-rate variability. Our study shows that spectral analysis of stable isotope ratios in readily available tissues such as hair could become a powerful diagnostic tool when effective treatments and neuroprotective drugs for neurodegenerative diseases become available. It also suggests that similar analyses of archaeological specimens could give insight into the physiology of ancient people and animals.

  19. A Dynamic Programming based method for optimizing power system restoration with high wind power penetration

    DEFF Research Database (Denmark)

    Hu, Rui; Hu, Weihao; Li, Pengfei

    2016-01-01

    and relatively low cost. Thus, many countries are increasing the wind power penetration in their power system step by step, such as Denmark, Spain and Germany. The incremental wind power penetration brings a lot of new issues in operation and programming. The power system sometimes will operate close to its...... stable limits. Once the blackout happens, a well-designed restoration strategy is significant. This paper focuses on how to ameliorate the power system restoration procedures to adapt the high wind power penetration and how to take full advantages of the wind power plants during the restoration....... In this paper, the possibility to exploit the stochastic wind power during restoration was discussed, and a Dynamic Programming (DP) method was proposed to make wind power contribute in the restoration rationally as far as possible. In this paper, the method is tested and verified by a modified IEEE 30 Buses...

  20. Transmission probability-based dynamic power control for multi-radio mesh networks

    CSIR Research Space (South Africa)

    Olwal, TO

    2008-09-01

    Full Text Available This paper presents an analytical model for the selection of the transmission power based on the bi-directional medium access information. Most of dynamic transmission power control algorithms are based on the single directional channel...

  1. Nonlinear Dynamic Model of Power Plants with Single-Phase Coolant Reactors

    International Nuclear Information System (INIS)

    Vollmer, H.

    1968-12-01

    The traditional way of developing dynamic models for a specific nuclear power plant and for specific purpose seems rather uneconomical, as much of the information often can not be utilized if the plant design or the required accuracy of the calculation is desired to be changed. It is therefore suggested that the model development may be made more systematic, general and flexible by - applying the 'box of bricks' system, where the main components of a nuclear power plant are treated separately and combined afterwards according to a given flow scheme, - a dynamic determination of the components which is as general as possible without taking into account those details which have a minor influence on the overall dynamics, - providing approximations of the more rigorous solution sufficient to meet the user s requirements on accuracy, - proper use of computers. A dynamic model for single-phase coolant reactor plants is established along these lines. By separation of the nonlinear and linear parts of the system, application of Laplace transformation and proper approximations, and the use of a hybrid computer it seems possible to determine the (nonlinear) dynamic behaviour of such a plant for perturbations which are not so large that phase changes of physical parameters occur, e. g. fuel does not melt. The model is applied to a steam cooled fast reactor power plant

  2. Nonlinear Dynamic Model of Power Plants with Single-Phase Coolant Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Vollmer, H

    1968-12-15

    The traditional way of developing dynamic models for a specific nuclear power plant and for specific purpose seems rather uneconomical, as much of the information often can not be utilized if the plant design or the required accuracy of the calculation is desired to be changed. It is therefore suggested that the model development may be made more systematic, general and flexible by - applying the 'box of bricks' system, where the main components of a nuclear power plant are treated separately and combined afterwards according to a given flow scheme, - a dynamic determination of the components which is as general as possible without taking into account those details which have a minor influence on the overall dynamics, - providing approximations of the more rigorous solution sufficient to meet the user s requirements on accuracy, - proper use of computers. A dynamic model for single-phase coolant reactor plants is established along these lines. By separation of the nonlinear and linear parts of the system, application of Laplace transformation and proper approximations, and the use of a hybrid computer it seems possible to determine the (nonlinear) dynamic behaviour of such a plant for perturbations which are not so large that phase changes of physical parameters occur, e. g. fuel does not melt. The model is applied to a steam cooled fast reactor power plant.

  3. Personalized keystroke dynamics for self-powered human--machine interfacing.

    Science.gov (United States)

    Chen, Jun; Zhu, Guang; Yang, Jin; Jing, Qingshen; Bai, Peng; Yang, Weiqing; Qi, Xuewei; Su, Yuanjie; Wang, Zhong Lin

    2015-01-27

    The computer keyboard is one of the most common, reliable, accessible, and effective tools used for human--machine interfacing and information exchange. Although keyboards have been used for hundreds of years for advancing human civilization, studying human behavior by keystroke dynamics using smart keyboards remains a great challenge. Here we report a self-powered, non-mechanical-punching keyboard enabled by contact electrification between human fingers and keys, which converts mechanical stimuli applied to the keyboard into local electronic signals without applying an external power. The intelligent keyboard (IKB) can not only sensitively trigger a wireless alarm system once gentle finger tapping occurs but also trace and record typed content by detecting both the dynamic time intervals between and during the inputting of letters and the force used for each typing action. Such features hold promise for its use as a smart security system that can realize detection, alert, recording, and identification. Moreover, the IKB is able to identify personal characteristics from different individuals, assisted by the behavioral biometric of keystroke dynamics. Furthermore, the IKB can effectively harness typing motions for electricity to charge commercial electronics at arbitrary typing speeds greater than 100 characters per min. Given the above features, the IKB can be potentially applied not only to self-powered electronics but also to artificial intelligence, cyber security, and computer or network access control.

  4. Preinflationary dynamics in loop quantum cosmology: Power-law potentials

    Science.gov (United States)

    Shahalam, M.; Sharma, Manabendra; Wu, Qiang; Wang, Anzhong

    2017-12-01

    In this paper, we study the preinflationary dynamics for the power-law potential [V (ϕ )∝ϕn] with n consideration and compare our results with the ones obtained previously for different potentials.

  5. Robust filtering for dynamic compensation of self-powered neutron detectors

    International Nuclear Information System (INIS)

    Peng, Xingjie; Li, Qing; Zhao, Wenbo; Gong, Helin; Wang, Kan

    2014-01-01

    Highlights: • Three dynamic compensation methods based on robust filtering theory are proposed. • Filter design problems are converted into linear matrix inequality problems. • Rhodium and Vanadium self-powered neutron detectors are used to validate the use of these three dynamic compensation methods. • The numerical simulation results show that all three methods can provide a reasonable balance between response speed and noise suppression. - Abstract: Self-powered neutron detectors (SPNDs), which are widely used in nuclear reactors to obtain core neutron flux distribution, are accurate at steady state but respond slowly to changes in neutron flux. Dynamic compensation methods are required to improve the response speed of the SPNDs and make it possible to apply the SPNDs for core monitoring and surveillance. In this paper, three digital dynamic compensation methods are proposed. All the three methods are based on the convex optimization framework using linear matrix inequalities (LMIs). The simulation results show that all three methods can provide a reasonable balance between response speed and noise suppression

  6. Mathematical modeling of the static and dynamic behavior of the operational parameters of isotopic separation cascades composed of ultracentrifuges

    International Nuclear Information System (INIS)

    Portoghese, Celia Christiani Paschoa

    2002-01-01

    Several different mathematical models that make it possible to plan, design and follow the operation of uranium isotopic separation cascades using the gaseous ultracentrifugation process are presented, discussed and tested. Models to be used in the planning and conception phases use theoretical hypothesis, making it possible to calculate approximate values for the flow rate and isotopic composition of the cascade internal streams. Twelve theoretical models developed to perform this task are discussed and compared. The theoretical models that have greater applicability are identified. Models to be used for the complete dimensioning of a cascade, before its construction, called semi-empirical models, use experimental results obtained in ultracentrifuges individual testes combined with theoretical equations, allowing to calculate accurate values for the flow rate, pressure and isotopic composition of the cascade internal streams. Thirteen semi-empirical models developed to perform this task are presented, five of them are widely discussed and one of them is validated through comparison with experimental results. In order to follow the operation of a cascade, it is necessary to develop models to simulate its behavior in operational conditions other than the nominal, defined in the project. Three semi-empirical models to make this kind of simulation are presented and one of them is validated through comparison with experimental results. Finally, it is necessary to have tools that simulate the cascade behavior during transients. Two dynamic models developed to perform this task are presented and compared. The dynamic model capable to simulate results closer ti the real behaviour of a cascade during three different kinds of transient is identified, through comparison between simulated and experimental results. (author)

  7. Current scaling of axially radiated power in dynamic hohlraums and dynamic hohlraum load design for ZR

    International Nuclear Information System (INIS)

    Mock, Raymond Cecil; Nash, Thomas J.; Sanford, Thomas W. L.

    2007-01-01

    We present designs for dynamic hohlraum z-pinch loads on the 28 MA, 140 ns driver ZR. The scaling of axially radiated power with current in dynamic hohlraums is reviewed. With adequate stability on ZR this scaling indicates that 30 TW of axially radiated power should be possible. The performance of the dynamic hohlraum load on the 20 MA, 100 ns driver Z is extensively reviewed. The baseline z-pinch load on Z is a nested tungsten wire array imploding onto on-axis foam. Data from a variety of x-ray diagnostics fielded on Z are presented. These diagnostics include x-ray diodes, bolometers, fast x-ray imaging cameras, and crystal spectrometers. Analysis of these data indicates that the peak dynamic radiation temperature on Z is between 250 and 300 eV from a diameter less than 1 mm. Radiation from the dynamic hohlraum itself or from a radiatively driven pellet within the dynamic hohlraum has been used to probe a variety of matter associated with the dynamic hohlraum: the tungsten z-pinch itself, tungsten sliding across the end-on apertures, a titanium foil over the end aperture, and a silicon aerogel end cap. Data showing the existence of asymmetry in radiation emanating from the two ends of the dynamic hohlraum is presented, along with data showing load configurations that mitigate this asymmetry. 1D simulations of the dynamic hohlraum implosion are presented and compared to experimental data. The simulations provide insight into the dynamic hohlraum behavior but are not necessarily a reliable design tool because of the inherently 3D behavior of the imploding nested tungsten wire arrays

  8. Isotopes in action

    International Nuclear Information System (INIS)

    1987-01-01

    For most people the obvious application of nuclear technology is in power generation. But there are many other uses for radioactive materials or for products made with their help. They are found in our factories, hospitals, offices and homes. ''Isotopes in Action'' looks at the many applications of radioisotopes in our society. (author)

  9. Exponential power spectra, deterministic chaos and Lorentzian pulses in plasma edge dynamics

    International Nuclear Information System (INIS)

    Maggs, J E; Morales, G J

    2012-01-01

    Exponential spectra have been observed in the edges of tokamaks, stellarators, helical devices and linear machines. The observation of exponential power spectra is significant because such a spectral character has been closely associated with the phenomenon of deterministic chaos by the nonlinear dynamics community. The proximate cause of exponential power spectra in both magnetized plasma edges and nonlinear dynamics models is the occurrence of Lorentzian pulses in the time signals of fluctuations. Lorentzian pulses are produced by chaotic behavior in the separatrix regions of plasma E × B flow fields or the limit cycle regions of nonlinear models. Chaotic advection, driven by the potential fields of drift waves in plasmas, results in transport. The observation of exponential power spectra and Lorentzian pulses suggests that fluctuations and transport at the edge of magnetized plasmas arise from deterministic, rather than stochastic, dynamics. (paper)

  10. Hybrid Approximate Dynamic Programming Approach for Dynamic Optimal Energy Flow in the Integrated Gas and Power Systems

    DEFF Research Database (Denmark)

    Shuai, Hang; Ai, Xiaomeng; Wen, Jinyu

    2017-01-01

    This paper proposes a hybrid approximate dynamic programming (ADP) approach for the multiple time-period optimal power flow in integrated gas and power systems. ADP successively solves Bellman's equation to make decisions according to the current state of the system. So, the updated near future...

  11. Incorporation of a Wind Generator Model into a Dynamic Power Flow Analysis

    Directory of Open Access Journals (Sweden)

    Angeles-Camacho C.

    2011-07-01

    Full Text Available Wind energy is nowadays one of the most cost-effective and practical options for electric generation from renewable resources. However, increased penetration of wind generation causes the power networks to be more depend on, and vulnerable to, the varying wind speed. Modeling is a tool which can provide valuable information about the interaction between wind farms and the power network to which they are connected. This paper develops a realistic characterization of a wind generator. The wind generator model is incorporated into an algorithm to investigate its contribution to the stability of the power network in the time domain. The tool obtained is termed dynamic power flow. The wind generator model takes on account the wind speed and the reactive power consumption by induction generators. Dynamic power flow analysis is carried-out using real wind data at 10-minute time intervals collected for one meteorological station. The generation injected at one point into the network provides active power locally and is found to reduce global power losses. However, the power supplied is time-varying and causes fluctuations in voltage magnitude and power fl ows in transmission lines.

  12. Application of expert systems to heat exchanger control at the 100-megawatt high-flux isotope reactor

    International Nuclear Information System (INIS)

    Clapp, N.E. Jr.; Clark, F.H.; Mullens, J.A.; Otaduy, P.J.; Wehe, D.K.

    1985-01-01

    The High-Flux Isotope Reactor (HFIR) is a 100-MW pressurized water reactor at the Oak Ridge National Laboratory. It is used to produce isotopes and as a source of high neutron flux for research. Three heat exchangers are used to remove heat from the reactor to the cooling towers. A fourth heat exchanger is available as a spare in case one of the operating heat exchangers malfunctions. It is desirable to maintain the reactor at full power while replacing the failed heat exchanger with the spare. The existing procedures used by the operators form the initial knowledge base for design of an expert system to perform the switchover. To verify performance of the expert system, a dynamic simulation of the system was developed in the MACLISP programming language. 2 refs., 3 figs

  13. Isotopic Thermionic Generator

    International Nuclear Information System (INIS)

    Clemot, M.; Devin, B.; Durand, J.P.

    1967-01-01

    This report describes the general design of a thermionic direct conversion space generator. The power source used is a radioisotope. Two radioisotopes are considered: Pu 238 and Cm 244. The system is made up of a heat pipe concentrating the thermal flux from the isotope to the emitter, and of a second heat pipe evacuating the waste heat from the collector to the outer wall used as radiating panel. Calculations are given in the particular case of a 100 electrical watts output power. (authors) [fr

  14. Disentangling drought-induced variation in ecosystem and soil respiration using stable carbon isotopes.

    Science.gov (United States)

    Unger, Stephan; Máguas, Cristina; Pereira, João S; Aires, Luis M; David, Teresa S; Werner, Christiane

    2010-08-01

    Combining C flux measurements with information on their isotopic composition can yield a process-based understanding of ecosystem C dynamics. We studied the variations in both respiratory fluxes and their stable C isotopic compositions (delta(13)C) for all major components (trees, understory, roots and soil microorganisms) in a Mediterranean oak savannah during a period with increasing drought. We found large drought-induced and diurnal dynamics in isotopic compositions of soil, root and foliage respiration (delta(13)C(res)). Soil respiration was the largest contributor to ecosystem respiration (R (eco)), exhibiting a depleted isotopic signature and no marked variations with increasing drought, similar to ecosystem respired delta(13)CO(2), providing evidence for a stable C-source and minor influence of recent photosynthate from plants. Short-term and diurnal variations in delta(13)C(res) of foliage and roots (up to 8 and 4 per thousand, respectively) were in agreement with: (1) recent hypotheses on post-photosynthetic fractionation processes, (2) substrate changes with decreasing assimilation rates in combination with increased respiratory demand, and (3) decreased phosphoenolpyruvate carboxylase activity in drying roots, while altered photosynthetic discrimination was not responsible for the observed changes in delta(13)C(res). We applied a flux-based and an isotopic flux-based mass balance, yielding good agreement at the soil scale, while the isotopic mass balance at the ecosystem scale was not conserved. This was mainly caused by uncertainties in Keeling plot intercepts at the ecosystem scale due to small CO(2) gradients and large differences in delta(13)C(res) of the different component fluxes. Overall, stable isotopes provided valuable new insights into the drought-related variations of ecosystem C dynamics, encouraging future studies but also highlighting the need of improved methodology to disentangle short-term dynamics of isotopic composition of R (eco).

  15. Modeling and simulation of dynamic voltage restorer in power system

    International Nuclear Information System (INIS)

    Abdel Aziz, M.A.A.M.

    2012-01-01

    There are many loads subjected to several Power Quality Problems such as voltage sags/swells, unbalance, harmonics distortion, and short interruption. These loads encompass a wide range of equipment which are very sensitive to voltage disturbances. The Dynamic Voltage Restorer (DVR) has recently been introduced to protect sensitive loads from voltage sags and other voltage disturbances in addition to this, it mitigates current harmonics distortion. It is a series connected power electronic based device. It is considered as one of the most efficient and effective solutions. Its appeal includes smaller size and fast dynamic response to disturbances. This work describes a proposal of the DVR to improve power quality distribution (medium voltage) system. The control of the compensation voltage and harmonics cancellation in the DVR is based on Adaptive Noise Canceling (ANC) technique. Simulation results carried out by PSCAD/EMTDC to investigate the performance of the proposed method.

  16. Thermal Equilibrium Dynamic Control Based on DPWM Dual-Mode Modulation of High Power NPC Three-Level Inverter

    Directory of Open Access Journals (Sweden)

    Shi-Zhou Xu

    2016-01-01

    Full Text Available In some special applications of NPC three-level inverters, such as mine hoist, there exist special conditions of overloading during the whole hoisting process and large overload in starting stage, during which the power-loss calculation of power devices and thermal control are important factors affecting the thermal stability of inverters. The principles of SVPWM and DPWM were described in this paper firstly, based on which the dynamic power losses of the two modulations of hoist in single period were calculated. Secondly, a thermal equilibrium dynamic control based on DPMW dual-mode modulation was proposed, which can switch the modulation dynamically according to the change of dynamic power loss to realize dynamic control of power loss and thermal equilibrium of inverter. Finally, simulation and experiment prove the effectiveness of the proposed strategy.

  17. Quantitating subcellular metabolism with multi-isotope imaging mass spectrometry

    OpenAIRE

    Steinhauser, Matthew L.; Bailey, Andrew; Senyo, Samuel E.; Guillermier, Christelle; Perlstein, Todd S.; Gould, Alex P.; Lee, Richard T.; Lechene, Claude P.

    2012-01-01

    Mass spectrometry with stable isotope labels has been seminal in discovering the dynamic state of living matter 1,2 but is limited to bulk tissues or cells. We developed multi-isotope imaging mass spectrometry (MIMS) that allowed us to view and measure stable isotope incorporation with sub-micron resolution 3,4 . Here we apply MIMS to diverse organisms, including Drosophila, mice, and humans. We test the “immortal strand hypothesis,” which predicts that during asymmetric stem cell division ch...

  18. Distributed continuous energy scheduling for dynamic virtual power plants

    International Nuclear Information System (INIS)

    Niesse, Astrid

    2015-01-01

    This thesis presents DynaSCOPE as distributed control method for continuous energy scheduling for dynamic virtual power plants (DVPP). DVPPs aggregate the flexibility of distributed energy units to address current energy markets. As an extension of the Virtual Power Plant concept they show high dynamics in aggregation and operation of energy units. Whereas operation schedules are set up for all energy units in a day-ahead planning procedure, incidents may render these schedules infeasible during execution, like deviation from prognoses or outages. Thus, a continuous scheduling process is needed to ensure product fulfillment. With DynaSCOPE, software agents representing single energy units solve this problem in a completely distributed heuristic approach. Using a stepped concept, several damping mechanisms are applied to allow minimum disturbance while continuously trying to fulfill the product as contracted at the market.

  19. Radiator selection for Space Station Solar Dynamic Power Systems

    Science.gov (United States)

    Fleming, Mike; Hoehn, Frank

    A study was conducted to define the best radiator for heat rejection of the Space Station Solar Dynamic Power System. Included in the study were radiators for both the Organic Rankine Cycle and Closed Brayton Cycle heat engines. A number of potential approaches were considered for the Organic Rankine Cycle and a constructable radiator was chosen. Detailed optimizations of this concept were conducted resulting in a baseline for inclusion into the ORC Preliminary Design. A number of approaches were also considered for the CBC radiator. For this application a deployed pumped liquid radiator was selected which was also refined resulting in a baseline for the CBC preliminary design. This paper reports the results and methodology of these studies and describes the preliminary designs of the Space Station Solar Dynamic Power System radiators for both of the candidate heat engine cycles.

  20. Closed Cycle Engine Program Used in Solar Dynamic Power Testing Effort

    Science.gov (United States)

    Ensworth, Clint B., III; McKissock, David B.

    1998-01-01

    NASA Lewis Research Center is testing the world's first integrated solar dynamic power system in a simulated space environment. This system converts solar thermal energy into electrical energy by using a closed-cycle gas turbine and alternator. A NASA-developed analysis code called the Closed Cycle Engine Program (CCEP) has been used for both pretest predictions and post-test analysis of system performance. The solar dynamic power system has a reflective concentrator that focuses solar thermal energy into a cavity receiver. The receiver is a heat exchanger that transfers the thermal power to a working fluid, an inert gas mixture of helium and xenon. The receiver also uses a phase-change material to store the thermal energy so that the system can continue producing power when there is no solar input power, such as when an Earth-orbiting satellite is in eclipse. The system uses a recuperated closed Brayton cycle to convert thermal power to mechanical power. Heated gas from the receiver expands through a turbine that turns an alternator and a compressor. The system also includes a gas cooler and a radiator, which reject waste cycle heat, and a recuperator, a gas-to-gas heat exchanger that improves cycle efficiency by recovering thermal energy.

  1. DYNAMIC PROGRAMMING – EFFICIENT TOOL FOR POWER SYSTEM EXPANSION PLANNING

    Directory of Open Access Journals (Sweden)

    SIMO A.

    2015-03-01

    Full Text Available The paper isfocusing on dynamic programming use for power system expansion planning (EP – transmission network (TNEP and distribution network (DNEP. The EP problem has been approached from the retrospective and prospective point of view. To achieve this goal, the authors are developing two software-tools in Matlab environment. Two techniques have been tackled: particle swarm optimization (PSO and genetic algorithms (GA. The case study refers to Test 25 buses test power system developed within the Power Systems Department.

  2. Stochastic Dynamic AC Optimal Power Flow Based on a Multivariate Short-Term Wind Power Scenario Forecasting Model

    Directory of Open Access Journals (Sweden)

    Wenlei Bai

    2017-12-01

    Full Text Available The deterministic methods generally used to solve DC optimal power flow (OPF do not fully capture the uncertainty information in wind power, and thus their solutions could be suboptimal. However, the stochastic dynamic AC OPF problem can be used to find an optimal solution by fully capturing the uncertainty information of wind power. That uncertainty information of future wind power can be well represented by the short-term future wind power scenarios that are forecasted using the generalized dynamic factor model (GDFM—a novel multivariate statistical wind power forecasting model. Furthermore, the GDFM can accurately represent the spatial and temporal correlations among wind farms through the multivariate stochastic process. Fully capturing the uncertainty information in the spatially and temporally correlated GDFM scenarios can lead to a better AC OPF solution under a high penetration level of wind power. Since the GDFM is a factor analysis based model, the computational time can also be reduced. In order to further reduce the computational time, a modified artificial bee colony (ABC algorithm is used to solve the AC OPF problem based on the GDFM forecasting scenarios. Using the modified ABC algorithm based on the GDFM forecasting scenarios has resulted in better AC OPF’ solutions on an IEEE 118-bus system at every hour for 24 h.

  3. Multiple-isotope separation in gas centrifuge

    International Nuclear Information System (INIS)

    Wood, Houston G.; Mason, T.C.; Soubbaramayer

    1996-01-01

    In previous works, the Onsager's pancake equation was used to provide solution to the internal counter-current flow field, which is necessary to calculate solutions to the isotope transport equation. The diffusion coefficient was assumed to be constant which is a good approximation for gases with large molecular weights, and small differences in the molecular weights of the various isotopes. A new optimization strategy was presented for determining the operating parameters of a gas centrifuge to be used for multiple-component isotope separation. Scoop drag, linear wall temperature gradient, the feed rate ant the cut have been chosen as operating parameters for the optimization. The investigation was restricted to a single centrifuge, and the problem of cascading for multiple-isotope separation was not addressed. The model describing the flow and separation phenomena in centrifuge includes a set of equations describing the fluid dynamics of the counter-current flow and the diffusion equations written for each isotope of the mixture. In this paper, an optimization algorithm is described and applied to an example for the re enrichment of spent reactor uranium

  4. Solar dynamic power systems for space station

    Science.gov (United States)

    Irvine, Thomas B.; Nall, Marsha M.; Seidel, Robert C.

    1986-01-01

    The Parabolic Offset Linearly Actuated Reflector (POLAR) solar dynamic module was selected as the baseline design for a solar dynamic power system aboard the space station. The POLAR concept was chosen over other candidate designs after extensive trade studies. The primary advantages of the POLAR concept are the low mass moment of inertia of the module about the transverse boom and the compactness of the stowed module which enables packaging of two complete modules in the Shuttle orbiter payload bay. The fine pointing control system required for the solar dynamic module has been studied and initial results indicate that if disturbances from the station are allowed to back drive the rotary alpha joint, pointing errors caused by transient loads on the space station can be minimized. This would allow pointing controls to operate in bandwidths near system structural frequencies. The incorporation of the fine pointing control system into the solar dynamic module is fairly straightforward for the three strut concentrator support structure. However, results of structural analyses indicate that this three strut support is not optimum. Incorporation of a vernier pointing system into the proposed six strut support structure is being studied.

  5. Thermodynamics of calcium-isotope-exchange reactions. 1. Exchange between isotopic calcium carbonates and aqueous calcium ions

    International Nuclear Information System (INIS)

    Zhang, R.S.; Nash, C.P.; Rock, P.A.

    1988-01-01

    This paper reports the authors results for the direct experimental determination of the equilibrium constant for the calcium-isotope-exchange reaction 40 CaCO 3 (s) + 44 CaCl 2 (aq) reversible 44 CaCO 2 (s) + 40 CaCl 2 (aq). The reaction was studied in electrochemical double cells without liquid junction of the type shown in eq 2. The experimental value of the equilibrium constant at 295 +/- 2 K is K = 1.08 +/- 0.02. The experimental value for K is compared with the values of K calculated for various model reactions according to the statistical thermodynamic theory of isotope effects. The isotopic solid carbonates were modeled according to both the Debye and Kieffer theories. No structured models of solvated isotopic aqueous calcium ions yield calculated equilibrium constants in agreement with their experimental results. This conclusion is in agreement with published molecular dynamics calculations which show that the aqueous solvation of Ca 2 =(aq) is essentially unstructured

  6. Generation of artificial earthquakes for dynamic analysis of nuclear power plant

    International Nuclear Information System (INIS)

    Tsushima, Y.; Hiromatsu, T.; Abe, Y.; Tamaki, T.

    1979-01-01

    A procedure for generating artificial earthquakes for the purpose of the dynamic analysis of the nuclear power plant has been studied and relevant computer codes developed. This paper describes brieafly the generation procedure employed in the computer codes and also deals with the results of two artificial earthquakes generated as an example for input motions for the aseismic design of a BWR-type reactor building. Using one of the generated artificial earthquakes and two actually recorded earthquakes, non-linear responses of the reactor building were computed and the results were compared with each other. From this comparison, it has been concluded that the computer codes are practically usable and the generated artificial earthquakes are useful and powerful as input motions for dynamic analysis of a nuclear power plant. (author)

  7. The ground testing of a 2 kWe solar dynamic space power system

    International Nuclear Information System (INIS)

    Calogeras, J.E.

    1992-01-01

    Over the past 25 years Space Solar Dynamic component development has advanced to the point where it is considered a leading candidate power source technology for the evolutionary phases of the Space Station Freedom (SSF) program. Selection of SD power was based on studies and analyses which indicated significant savings in life cycle costs, launch mass and EVA requirements were possible when the system is compared to more conventional photovoltaic/battery power systems. Issues associated with micro-gravity operation such as the behavior of the thermal energy storage materials are being addressed in other programs. This paper reports that a ground test of a 2 kWe solar dynamic system is being planned by the NASA Office of Aeronautics and Space Technology to address the integration issues. The test will be scalable up to 25 kWe, will be flight configured and will incorporate relevant features of the SSF Solar Dynamic Power Module design

  8. Dynamic simulation of combined cycle power plant cycling in the electricity market

    International Nuclear Information System (INIS)

    Benato, A.; Bracco, S.; Stoppato, A.; Mirandola, A.

    2016-01-01

    Highlights: • The flexibility of traditional power plants have become of primary importance. • Three dynamic models of the same single pressure HRSG are built. • The plant dynamic behaviour is predicted. • A lifetime calculation procedure is proposed and tested. • The drum lifetime reduction is estimated. - Abstract: The energy markets deregulation coupled with the rapid spread of unpredictable energy sources power units are stressing the necessity of improving traditional power plants flexibility. Cyclic operation guarantees high profits in the short term but, in the medium-long time, cause a lifetime reduction due to thermo-mechanical fatigue, creep and corrosion. In this context, Combined Cycle Power Plants are the most concerned in flexible operation problems. For this reason, two research groups from two Italian universities have developed a procedure to estimate the devices lifetime reduction with a particular focus on steam drums and superheaters/reheaters. To assess the lifetime reduction, it is essential to predict the thermodynamic variables trend in order to describe the plant behaviour. Therefore, the core of the procedure is the power plant dynamic model. At this purpose, in this paper, three different dynamic models of the same single pressure Combined Cycle Gas Turbine are presented. The models have been built using three different approaches and are used to simulate plant behaviour under real operating conditions. Despite these differences, the thermodynamic parameters time profiles are in good accordance as presented in the paper. At last, an evaluation of the drum lifetime reduction is performed.

  9. Balance of power theory meets Al Qaeda : dynamics of non-state actor balancing in postinternational politics

    OpenAIRE

    Denk, Aytaç

    2008-01-01

    Ankara : The Department of International Relations, Bilkent University, 2008. Thesis (Master's) -- Bilkent University, 2008. Includes bibliographical references leaves 196-207. The bulk of studies on the balance of power, which constitutes balance of power theory, suggest that only states are involved in balance of power dynamics. This thesis maintains that exclusion of non-state actors (NSAs) from balance of power dynamics constitutes a significant gap in balance of power t...

  10. Assessment of groundwater pollution from ash ponds using stable and unstable isotopes around the Koradi and Khaperkheda thermal power plants (Maharashtra, India)

    Energy Technology Data Exchange (ETDEWEB)

    Voltaggio, M.; Spadoni, M. [CNR — Istituto di Geologia Ambientale e Geoingegneria, Via Salaria km. 29.300, 00010 Montelibretti, Roma (Italy); Sacchi, E. [Dept. of Earth and Environmental Sciences, University of Pavia and CNR-IGG, Via Ferrata 1, 27100 Pavia (Italy); Sanam, R.; Pujari, P.R.; Labhasetwar, P.K. [CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur 440020 (India)

    2015-06-15

    The impact on local water resources due to fly ash produced in the Koradi and Khaperkheda thermal power plants (district of Nagpur, Maharashtra — India) and disposed in large ponds at the surface was assessed through the study of environmental variation of ratios of stable and unstable isotopes. Analyses of oxygen and hydrogen isotopes suggest scarce interaction between the water temporarily stored in the ponds and the groundwater in the study area. Data also highlight that the high salinity of groundwater measured in the polluted wells is not due to evaporation, but to subsequent infiltration of stream waters draining from the ponds to the local aquifer. {sup 87}Sr/{sup 86}Sr values, when associated with Sr/Ca ratios, demonstrate the dominant role of waste waters coming from tens of brick kilns surrounding the pond sulfate pollution. Uranium isotopic analyses clearly show evidence of the interaction between groundwater and aquifer rocks, and confirm again the low influence of ash ponds. A new conceptual model based on the study of the isotopes of radium is also proposed and used to estimate residence times of groundwater in the area. This model highlights that high salinity cannot be in any case attributed to a prolonged water–rock interaction, but is due to the influence of untreated waste water of domestic or brick kiln origin on the shallow and vulnerable aquifers. - Highlights: • Ash ponds have wide environmental and social impact in India. • Isotope ratios can be used as tracers for possible pollution of groundwater. • Isotopes of O, H, Sr, U and Ra have been used to investigate the area of Koradi. • Salinity of groundwater is not due to fly ash but linked to local brick kilns. • A model for the residence time of water based on Ra isotopes is described.

  11. Interrogating trees for isotopic archives of atmospheric sulphur deposition and comparison to speleothem records

    International Nuclear Information System (INIS)

    Wynn, P.M.; Loader, N.J.; Fairchild, I.J.

    2014-01-01

    Palaeorecords which depict changes in sulphur dynamics form an invaluable resource for recording atmospheric pollution. Tree rings constitute an archive that are ubiquitously available and can be absolutely dated, providing the potential to explore local- to regional-scale trends in sulphur availability. Rapid isotopic analysis by a novel “on-line” method using elemental analyser isotope ratio mass spectrometry (EA-IRMS) is developed, achieving sample precision of <0.4‰ using sample sizes of 40 mg wood powder. Tree cores from NE Italy show trends in pollution, evidenced through increasing concentrations of sulphur towards the youngest growth, and inverse trends in sulphur isotopes differentiating modern growth with light sulphur isotopes (+0.7‰) from pre-industrial growth (+7.5‰) influenced by bedrock composition. Comparison with speleothem records from the same location demonstrate replication, albeit offset in isotopic value due to groundwater storage. Using EA-IRMS, tree ring archives form a valuable resource for understanding local- to regional-scale sulphur pollution dynamics. - Highlights: • Sulphur isotopes from tree rings are analysed using ‘on-line’ EA combustion. • Isotopes differentiate modern growth influenced by pollution from pre-industrial growth. • Biogeochemical cycling imparts minimal delay in sulphur incorporation into tree rings. • Trends in pollution are replicated between speleothems and trees from the same location. - Sulphur isotopes extracted from tree ring records are used to identify twentieth century pollution dynamics at the local- to regional-scale

  12. Dynamic cost control information system for nuclear power plant construction

    International Nuclear Information System (INIS)

    Wang Yongqing; Liu Wei

    1998-01-01

    The authors first introduce the cost control functions of some overseas popular project management software at present and the specific ways of cost control of nuclear power plant construction in China. Then the authors stress the necessity of cost and schedule control integration and present the concept of dynamic cost control, the design scheme of dynamic cost control information system and the data structure modeling. Based on the above, the authors can develop the system which has the functions of dynamic estimate, cash flow management and cost optimization for nuclear engineering

  13. Nuclear power technology requirements for NASA exploration missions

    International Nuclear Information System (INIS)

    Bloomfield, H.S.

    1990-01-01

    This paper discusses how future exploration of the Moon and Mars will mandate developments in many areas of technology. In particular, major advances will be required in planet surface power systems and space transportation systems. Critical nuclear technology challenges that can enable strategic self-sufficiency, acceptable operational costs and cost-effective space transportation goals for NASA exploration missions have been identified. Critical technologies for surface power systems include stationary and mobile nuclear reactor and radio-isotope heat sources coupled to static and dynamic power conversion devices. These technologies can provide dramatic reductions in mass leading to operational and transportation cost savings. Critical technologies for space transportation systems include nuclear thermal rocket and nuclear electric propulsion options which present compelling concepts for significantly reducing mass, cost or travel time required for Earth-Mars transport

  14. Simulation of dynamic response of nuclear power plant based on user-defined model in PSASP

    International Nuclear Information System (INIS)

    Zhao Jie; Liu Dichen; Xiong Li; Chen Qi; Du Zhi; Lei Qingsheng

    2010-01-01

    Based on the energy transformation regularity in physical process of pressurized water reactors (PWR), PWR NPP models are established in PSASP (Power System Analysis Software Package), which are applicable for calculating the dynamic process of PWR NPP and power system transient stabilization. The power dynamic characteristics of PWR NPP is simulated and analyzed, including the PWR self-stability, self-regulation and power step responses under power regulation system. The results indicate that the PWR NPP can afford certain exterior disturbances and 10%P n step under temperature negative feedbacks. The regulate speed of PWR power can reach 5%P n /min under the power regulation system, which meets the requirement of peak regulation in Power Grid. (authors)

  15. DYNAMICS MODEL OF MOISTURE IN PAPER INSULATION-TRANSFORMER OIL SYSTEM IN NON-STATIONARY THERMAL MODES OF THE POWER TRANSFORMER

    Directory of Open Access Journals (Sweden)

    V.V. Vasilevskij

    2016-06-01

    Full Text Available Introduction. An important problem in power transformers resource prognosis is the formation of moisture dynamics trends of transformer insulation. Purpose. Increasing the accuracy of power transformer insulation resource assessment based on accounting of moisture dynamics in interrelation with temperature dynamics. Working out of moisture dynamics model in paper insulation-transformer oil system in conjunction with thermodynamic model, load model and technical maintenance model. Methodology. The mathematical models used for describe the moisture dynamics are grounded on nonlinear differential equations. Interrelation moisture dynamics model with thermodynamic, load and technical maintenance models described by UML model. For confirming the adequacy of model used computer simulation. Results. We have implemented the model of moisture dynamics in power transformers insulation in interrelation with other models, which describe the state of power transformer in operation. The proposed model allows us to form detailed trends of moisture dynamics in power transformers insulation basing on monitoring data or power transformers operational factors simulation results. We have performed computer simulation of moisture exchange processes and calculation of transformer insulation resource for different moisture trends. Originality. The offered model takes into account moisture dynamics in power transformers insulation under the influence of changes of the power transformers thermal mode and operational factors. Practical value. The offered model can be used in power transformers monitoring systems for automation of resource assessment of oil-immersed power transformers paper insulation at different phase of lifecycle. Model also can be used for assessment of projected economic efficiency of power transformers exploitation in projected operating conditions.

  16. Full scale dynamic testing of Paks nuclear power plant structures

    International Nuclear Information System (INIS)

    Da Rin, E.M.

    1995-01-01

    This report refers to the full-scale dynamic structural testing activities that have been performed in December 1994 at the Paks (H) Nuclear Power Plant, within the framework of: the IAEA Coordinated research Programme 'Benchmark Study for the Seismic Analysis and Testing of WWER-type Nuclear Power Plants, and the nuclear research activities of ENEL-WR/YDN, the Italian National Electricity Board in Rome. The specific objective of the conducted investigation was to obtain valid data on the dynamic behaviour of the plant's major constructions, under normal operating conditions, for enabling an assessment of their actual seismic safety to be made. As described in more detail hereafter, the Paks NPP site has been subjected to low level earthquake like ground shaking, through appropriately devised underground explosions, and the dynamic response of the plant's 1 st reactor unit important structures was appropriately measured and digitally recorded. In-situ free field response was measured concurrently and, moreover, site-specific geophysical and seismological data were simultaneously acquired too. The above-said experimental data is to provide basic information on the geophysical and seismological characteristics of the Paks NPP site, together with useful reference information on the true dynamic characteristics of its main structures and give some indications on the actual dynamic soil-structure interaction effects for the case of low level excitation

  17. Dynamics and control in nuclear power stations

    International Nuclear Information System (INIS)

    Butterfield, M.H.

    1992-01-01

    This volume presents a wide view of aspects of control of nuclear power stations by taking into consideration the plant as a whole and the protection systems employed therein. Authors with worldwide experience consider all aspects of dynamics and control in the context of both fast and thermal power stations. The topics discussed include the methods of development and applications within the analysis of plant behaviour, the validation of mathematical models, plant testing, and the design and implementation of controls. There are 27 papers all of which are indexed separately; steady states and model evolution (5 papers), control and protection systems (5 papers), transients (7 papers), testing and data (3 papers), model validation (6 papers) and commissioning and operation (1 paper). (author)

  18. Field experimentation in isotope-aided studies

    International Nuclear Information System (INIS)

    Zapata, F.

    1990-01-01

    Isotopic-aided studies involve the application of isotopically labelled fertilizer as tracers for the quantitative and precise determination of the fate of specific nutrient elements in the soil/plant system. The planning of isotopic-aided studies requires a different approach from that followed in the design of normal fertilizer trials because of the cost and supply of isotopically labelled materials, the use of highly specialized equipment and the need for skillful trained staff in the use of isotope techniques both in the field/greenhouse and the laboratory. This report is intended to highlight the main points to be considered while applying those techniques in the field or greenhouse. It has been well established that nuclear techniques are a powerful tool in agricultural research. One should take advantage of the use of such techniques if the following criteria are met: The isotope method is the only way to solve a particular question or to obtain a specific piece of information. There are other methods available for such a purpose but the nuclear method provides a direct and quick means to obtain the needed information resulting in higher economic return

  19. Possible application of laser isotope separation

    International Nuclear Information System (INIS)

    Delionback, L.M.

    1975-05-01

    The laser isotope separation process is described and its special economic features discussed. These features are its low cost electric power operation, capital investment costs, and the costs of process materials. (Author)

  20. A Dynamic Wind Generation Model for Power Systems Studies

    OpenAIRE

    Estanqueiro, Ana

    2007-01-01

    In this paper, a wind park dynamic model is presented together with a base methodology for its application to power system studies. This detailed wind generation model addresses the wind turbine components and phenomena more relevant to characterize the power quality of a grid connected wind park, as well as the wind park response to the grid fast perturbations, e.g., low voltage ride through fault. The developed model was applied to the operating conditions of the selected sets of wind turbi...

  1. A simple dynamic model and transient simulation of the nuclear power reactor on microcomputers

    Energy Technology Data Exchange (ETDEWEB)

    Han, Yang Gee; Park, Cheol [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    A simple dynamic model is developed for the transient simulation of the nuclear power reactor. The dynamic model includes the normalized neutron kinetics model with reactivity feedback effects and the core thermal-hydraulics model. The main objective of this paper demonstrates the capability of the developed dynamic model to simulate various important variables of interest for a nuclear power reactor transient. Some representative results of transient simulations show the expected trends in all cases, even though no available data for comparison. In this work transient simulations are performed on a microcomputer using the DESIRE/N96T continuous system simulation language which is applicable to nuclear power reactor transient analysis. 3 refs., 9 figs. (Author)

  2. A simple dynamic model and transient simulation of the nuclear power reactor on microcomputers

    Energy Technology Data Exchange (ETDEWEB)

    Han, Yang Gee; Park, Cheol [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    A simple dynamic model is developed for the transient simulation of the nuclear power reactor. The dynamic model includes the normalized neutron kinetics model with reactivity feedback effects and the core thermal-hydraulics model. The main objective of this paper demonstrates the capability of the developed dynamic model to simulate various important variables of interest for a nuclear power reactor transient. Some representative results of transient simulations show the expected trends in all cases, even though no available data for comparison. In this work transient simulations are performed on a microcomputer using the DESIRE/N96T continuous system simulation language which is applicable to nuclear power reactor transient analysis. 3 refs., 9 figs. (Author)

  3. Comparison of experimental measurements of power MOSFET SEBs in dynamic and static modes

    International Nuclear Information System (INIS)

    Calvel, P.; Peyrotte, C.; Baiget, A.; Stassinopoulos, E.G.

    1991-01-01

    In this paper a study to determine the Single Event Burnout (SEB) sensitivity for burnout of IRF-150 Power MOSFETs in both static and dynamic modes in terms of LET threshold and cross section is described. The dynamic tests were conducted with a power converter which was designed for actual space application. The results were compared with static measurements which were made during the exposure to the heavy ions. The data showed that the dynamic mode was less sensitive than the static by two orders of magnitude in cross section. It was also observed that ions with a range less than 30 microns did not produce destructive burnout in the dynamic mode even when their LET exceeded the threshold value. The extent of physical MOSFET damage in the destructive, dynamic tests appeared to correlate with the ion LET and source-drain voltage

  4. Methods for removing radioactive isotopes from contaminated streams

    International Nuclear Information System (INIS)

    Hoy, D.R.; Hickey, T.N.; Spulgis, I.S.; Parish, H.C.

    1979-01-01

    Methods for removing radioactive isotopes from contaminated gas streams for use in atmospheric containment and cleanup systems in nuclear power plants are provided. The methods provide for removal of radioactive isotopes from a first portion of the contaminated stream, separated from the remaining portion of the stream, so that adsorbent used to purify the first portion of the contaminated stream by adsorption of the radioactive isotopes therefrom can be tested to determine the adsorbing efficacy of the generally larger portion of adsorbent used to purify the remaining portion of the stream

  5. A stochastic MILP energy planning model incorporating power market dynamics

    International Nuclear Information System (INIS)

    Koltsaklis, Nikolaos E.; Nazos, Konstantinos

    2017-01-01

    Highlights: •Stochastic MILP model for the optimal energy planning of a power system. •Power market dynamics (offers/bids) are incorporated in the proposed model. •Monte Carlo method for capturing the uncertainty of some key parameters. •Analytical supply cost composition per power producer and activity. •Clean dark and spark spreads are calculated for each power unit. -- Abstract: This paper presents an optimization-based methodological approach to address the problem of the optimal planning of a power system at an annual level in competitive and uncertain power markets. More specifically, a stochastic mixed integer linear programming model (MILP) has been developed, combining advanced optimization techniques with Monte Carlo method in order to deal with uncertainty issues. The main focus of the proposed framework is the dynamic formulation of the strategy followed by all market participants in volatile market conditions, as well as detailed economic assessment of the power system’s operation. The applicability of the proposed approach has been tested on a real case study of the interconnected Greek power system, quantifying in detail all the relevant technical and economic aspects of the system’s operation. The proposed work identifies in the form of probability distributions the optimal power generation mix, electricity trade at a regional level, carbon footprint, as well as detailed total supply cost composition, according to the assumed market structure. The paper demonstrates that the proposed optimization approach is able to provide important insights into the appropriate energy strategies designed by market participants, as well as on the strategic long-term decisions to be made by investors and/or policy makers at a national and/or regional level, underscoring potential risks and providing appropriate price signals on critical energy projects under real market operating conditions.

  6. Real-Time Reactive Power Distribution in Microgrids by Dynamic Programing

    DEFF Research Database (Denmark)

    Levron, Yoash; Beck, Yuval; Katzir, Liran

    2017-01-01

    In this paper a new real-time optimization method for reactive power distribution in microgrids is proposed. The method enables location of a globally optimal distribution of reactive power under normal operating conditions. The method exploits the typical compact structure of microgrids to obtain...... combination of reactive powers, by means of dynamic programming. Since every single step involves a one-dimensional problem, the complexity of the solution is only linear with the number of clusters, and as a result, a globally optimal solution may be obtained in real time. The paper includes the results...

  7. Time-dependent view of an isotope effect in electron-nuclear nonequilibrium dynamics with applications to N2.

    Science.gov (United States)

    Ajay, Jayanth S; Komarova, Ksenia G; Remacle, Francoise; Levine, R D

    2018-05-21

    Isotopic fractionation in the photodissociation of N 2 could explain the considerable variation in the 14 N/ 15 N ratio in different regions of our galaxy. We previously proposed that such an isotope effect is due to coupling of photoexcited bound valence and Rydberg electronic states in the frequency range where there is strong state mixing. We here identify features of the role of the mass in the dynamics through a time-dependent quantum-mechanical simulation. The photoexcitation of N 2 is by an ultrashort pulse so that the process has a sharply defined origin in time and so that we can monitor the isolated molecule dynamics in time. An ultrafast pulse is necessarily broad in frequency and spans several excited electronic states. Each excited molecule is therefore not in a given electronic state but in a superposition state. A short time after excitation, there is a fairly sharp onset of a mass-dependent large population transfer when wave packets on two different electronic states in the same molecule overlap. This coherent overlap of the wave packets on different electronic states in the region of strong coupling allows an effective transfer of population that is very mass dependent. The extent of the transfer depends on the product of the populations on the two different electronic states and on their relative phase. It is as if two molecules collide but the process occurs within one molecule, a molecule that is simultaneously in both states. An analytical toy model recovers the (strong) mass and energy dependence.

  8. Coulomb excitation of neutron-deficient polonium isotopes studied at ISOLDE

    CERN Document Server

    Neven, Michiel

    The polonium isotopes represent an interesting region of the nuclear chart having only two protons outside the Z = 82 closed shell. These isotopes have already been extensively studied theoretically and experimentally. The heavier isotopes (A > 200) seem to follow a "regular seniority-type regime" while for the lighter isotopes (A < 200) a more collective behavior is observed. Many questions remain regarding the transition between these two regimes and the configuration mixing between quantum states. Experiments in the lighter polonium isotopes point to the presence of shape coexistence, however the phenomenon is not fully understood. A Coulomb excitation study of the polonium isotopes whereby the dynamic properties are investigated can provide helpful insights in understanding the shape coexistence phenomena. In this thesis $^{202}$Po was studied via Coulomb excitation. The $^{202}$Po isotope was part of an experimental campaign in which the $^{196,198,200,206}$Po isotopes were studied as well via Coulomb...

  9. Dynamics of metal-humate complexation equilibria as revealed by isotope exchange studies - a matter of concentration and time

    Science.gov (United States)

    Lippold, Holger; Eidner, Sascha; Kumke, Michael U.; Lippmann-Pipke, Johanna

    2017-01-01

    Complexation with dissolved humic matter can be crucial in controlling the mobility of toxic or radioactive contaminant metals. For speciation and transport modelling, a dynamic equilibrium process is commonly assumed, where association and dissociation run permanently. This is, however, questionable in view of reported observations of a growing resistance to dissociation over time. In this study, the isotope exchange principle was employed to gain direct insight into the dynamics of the complexation equilibrium, including kinetic inertisation phenomena. Terbium(III), an analogue of trivalent actinides, was used as a representative of higher-valent metals. Isotherms of binding to (flocculated) humic acid, determined by means of 160Tb as a radiotracer, were found to be identical regardless of whether the radioisotope was introduced together with the bulk of stable 159Tb or subsequently after pre-equilibration for up to 3 months. Consequently, there is a permanent exchange of free and humic-bound Tb since all available binding sites are occupied in the plateau region of the isotherm. The existence of a dynamic equilibrium was thus evidenced. There was no indication of an inertisation under these experimental conditions. If the small amount of 160Tb was introduced prior to saturation with 159Tb, the expected partial desorption of 160Tb occurred at much lower rates than observed for the equilibration process in the reverse procedure. In addition, the rates decreased with time of pre-equilibration. Inertisation phenomena are thus confined to the stronger sites of humic molecules (occupied at low metal concentrations). Analysing the time-dependent course of isotope exchange according to first-order kinetics indicated that up to 3 years are needed to attain equilibrium. Since, however, metal-humic interaction remains reversible, exchange of metals between humic carriers and mineral surfaces cannot be neglected on the long time scale to be considered in predictive

  10. Laser spectroscopy and laser isotope separation of atomic gadolinium

    International Nuclear Information System (INIS)

    Chen, Y. W.; Yamanaka, C.; Nomaru, K.; Kou, K.; Niki, H.; Izawa, Y.; Nakai, S.

    1994-01-01

    Atomic vapor laser isotope separation (AVLIS) is a process which uses intense pulsed lasers to selectively photoionize one isotopic species of a chemical element, after which these ions are extracted electromagnetically. The AVLIS has several advantages over the traditional methods based on the mass difference, such as high selectivity, low energy consumption, short starting time and versatility to any atoms. The efforts for atomic vapor laser isotope separation at ILT and ILE, Osaka University have been concentrated into the following items: 1) studies on laser spectroscopy and laser isotope separation of atomic gadolinium, 2) studies on interaction processes including coherent dynamics, propagation effects and atom-ion collision in AVLIS system, 3) development of laser systems for AVLIS. In this paper, we present experimental results on the laser spectroscopy and laser isotope separation of atomic gadolinium.

  11. Particle and radiation simulations for the proposed rare isotope accelerator facility

    Energy Technology Data Exchange (ETDEWEB)

    Remec, Igor [Oak Ridge National Laboratory, Oak Ridge, P. O. Box 2008, TN 37831-6172 (United States)]. E-mail: remeci@ornl.gov; Gabriel, Tony A. [Oak Ridge National Laboratory, Oak Ridge, P. O. Box 2008, TN 37831-6172 (United States); Wendel, Mark W. [Oak Ridge National Laboratory, Oak Ridge, P. O. Box 2008, TN 37831-6172 (United States); Conner, David L. [Oak Ridge National Laboratory, Oak Ridge, P. O. Box 2008, TN 37831-6172 (United States); Burgess, Thomas W. [Oak Ridge National Laboratory, Oak Ridge, P. O. Box 2008, TN 37831-6172 (United States); Ronningen, Reginald M. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Blideanu, Valentin [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Bollen, Georg [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Boles, Jason L. [Lawrence Livermore National Laboratory, P. O. Box 808, L-446, Livermore, CA 94550 (United States); Reyes, Susana [Lawrence Livermore National Laboratory, P. O. Box 808, L-446, Livermore, CA 94550 (United States); Ahle, Larry E. [Lawrence Livermore National Laboratory, P. O. Box 808, L-446, Livermore, CA 94550 (United States); Stein, Werner [Lawrence Livermore National Laboratory, P. O. Box 808, L-446, Livermore, CA 94550 (United States)

    2006-06-23

    The Rare Isotope Accelerator (RIA) facility, planned to be built in the USA, will be capable of delivering diverse beams, from protons to uranium ions, with energies from 1 GeV to at least 400 MeV per nucleon to rare isotope-producing targets. High beam power-400 kW-will allow RIA to become the most powerful rare isotope beam facility in the world; however, it also creates challenges for the design of the isotope-production targets. This paper focuses on the isotope-separator-on-line (ISOL) target work, particularly the radiation transport aspects of the two-step fission target design. Simulations were performed with the PHITS, MCNPX, and MARS15 computer codes. A two-step ISOL target considered here consists of a mercury or tungsten primary target in which primary beam interactions release neutrons, which in turn induce fissions-and produce rare isotopes-in the secondary target filled with fissionable material. Three primary beams were considered: 1-GeV protons, 622-MeV/u deuterons, and 777-MeV/u {sup 3}He ions. The proton and deuterium beams were found to be about equivalent in terms of induced fission rates and heating rates in the target, while the {sup 3}He beam, without optimizing the target geometry, was less favorable, producing about 15% fewer fissions and about 50% higher heating rates than the proton beam at the same beam power.

  12. Optimal power and performance trade-offs for dynamic voltage scaling in power management based wireless sensor node

    Directory of Open Access Journals (Sweden)

    Anuradha Pughat

    2016-09-01

    Full Text Available Dynamic voltage scaling contributes to a significant amount of power saving, especially in the energy constrained wireless sensor networks (WSNs. Existing dynamic voltage scaling techniques make the system slower and ignore the event miss rate. This results in degradation of the system performance when there is non-stationary workload at input. The overhead due to transition between voltage level and discrete voltage levels are also the limitations of available dynamic voltage scaling (DVS techniques at sensor node (SN. This paper proposes a workload dependent DVS based MSP430 controller model used for SN. An online gradient estimation technique has been used to optimize power and performance trade-offs. The analytical results are validated with the simulation results obtained using simulation tool “SimEvents” and compared with the available AT9OS8535 controller. Based on the stochastic workload, the controller's input voltage, operational frequency, utilization, and average wait time of events are obtained.

  13. Stable isotopic composition of East African lake waters

    International Nuclear Information System (INIS)

    Odada, E.O.

    2001-01-01

    The investigation of stable isotopic composition of East African lake waters was conducted by scientists from the Department of Geology, University of Nairobi, as part of the International Decade for the East African Lakes (IDEAL) project and in close collaboration with the scientists from Large Lakes Observatory of the University of Minnesota and the Isotope Hydrology Laboratory of the IAEA in Vienna. The Research Contract was part of the IAEA Co-ordinated Research Programme on Isotope Techniques in Lake Dynamics Investigations, and was sponsored by the Agency. Water and grab sediment samples were obtained from East African Lakes during the month of January and February 1994 and July/August 1995. Water samples were analysed for oxygen and deuterium isotopic composition at the IAEA Laboratories in Vienna, Austria. In this final paper we report the results of the study of oxygen and deuterium isotopic composition from the East African lake waters. (author)

  14. Dynamics and Collapse in a Power System Model with Voltage Variation: The Damping Effect.

    Science.gov (United States)

    Ma, Jinpeng; Sun, Yong; Yuan, Xiaoming; Kurths, Jürgen; Zhan, Meng

    2016-01-01

    Complex nonlinear phenomena are investigated in a basic power system model of the single-machine-infinite-bus (SMIB) with a synchronous generator modeled by a classical third-order differential equation including both angle dynamics and voltage dynamics, the so-called flux decay equation. In contrast, for the second-order differential equation considering the angle dynamics only, it is the classical swing equation. Similarities and differences of the dynamics generated between the third-order model and the second-order one are studied. We mainly find that, for positive damping, these two models show quite similar behavior, namely, stable fixed point, stable limit cycle, and their coexistence for different parameters. However, for negative damping, the second-order system can only collapse, whereas for the third-order model, more complicated behavior may happen, such as stable fixed point, limit cycle, quasi-periodicity, and chaos. Interesting partial collapse phenomena for angle instability only and not for voltage instability are also found here, including collapse from quasi-periodicity and from chaos etc. These findings not only provide a basic physical picture for power system dynamics in the third-order model incorporating voltage dynamics, but also enable us a deeper understanding of the complex dynamical behavior and even leading to a design of oscillation damping in electric power systems.

  15. Soil drying effects on the carbon isotope composition of soil respiration

    Science.gov (United States)

    Stable isotopes are used widely as a tool for determining sources of carbon (C) fluxes in ecosystem C studies. Environmental factors that change over time, such as moisture, can create dynamic changes in the isotopic composition of C assimilated by plants, and offers a unique opp...

  16. Ultratrace Uranium Fingerprinting with Isotope Selective Laser Ionization Spectrometry

    International Nuclear Information System (INIS)

    Ziegler, Summer L.; Bushaw, Bruce A.

    2008-01-01

    Uranium isotope ratios can provide source information for tracking uranium contamination in a variety of fields, ranging from occupational bioassay to monitoring aftereffects of nuclear accidents. We describe the development of Isotope Selective Laser Ionization Spectrometry (ISLIS) for ultratrace measurement of the minor isotopes 234U, 235U, and 236U with respect to 238U. Optical isotopic selectivity in three-step excitation with single-mode continuous wave lasers is capable of measuring the minor isotopes at relative abundances below 1 ppm, and is not limited by isobaric interferences such as 235UH+ during measurement of 236U. This relative abundance limit approaches the threshold for measurement of uranium minor isotopes with conventional mass spectrometry, typically 10-7, but without mass spectrometric analysis of the laser-created ions. Uranyl nitrate standards from an international blind comparison were used to test analytical performance for different isotopic compositions and with quantities ranging from 11 ng to 10 (micro)g total uranium. Isotopic ratio determination was demonstrated over a linear dynamic range of 7 orders of magnitude with a few percent relative precision and detection limits below 500 fg for the minor isotopes

  17. Isotopes in environmental research

    International Nuclear Information System (INIS)

    Bowen, G.; Rozanski, K.; Vose, P.

    1990-01-01

    Radioactive and stable isotopes have long been considered a very efficient tool for studying physical and biological aspects of how the global ecosystem functions. Their applications in environmental research are numerous, embracing research at all levels. This article looks at only a few of the approaches to environmental problems that involve the use of isotopes. Special attention is given to studies of the Amazon Basin. Environmental isotopes are very efficient tools in water cycle studies. Tritium, a radioactive tracer, is especially useful in studying dynamics of water movement in different compartments of the hydrosphere, both on the local and global scales. Heavy stable isotopes of hydrogen and oxygen (deuterium and oxygen-18) provide information about steady-state characteristics of the water cycle. Isotope methods, some relatively new, have a major role in site-specific studies. Some indicative examples include: Studying turnover of organic matter. Changes in the carbon-13/carbon-12 isotopic ratio of organic matter were used to determine the respective contributions of organic carbon derived from forest and pasture. Studying biological nitrogen fixation. One of the ways nitrogen levels in soil can be maintained for productivity is by biological nitrogen fixation. Studying nitrogen availability and losses. The experimental use of nitrogen-15 is invaluable for defining losses of soil nitrogen to the atmosphere and to groundwater. Studies can similarly be done with stable and radioactive sulphur isotopes. This article indicates some potential uses of isotopes in environmental research. While the major problem of global climate change has not been specifically addressed here, the clearing of the Amazon forest, one focus of the IAEA's environmental programme, may have serious consequences for the global climate. These include substantial reduction of the amount of latent heat transported to the regions outside the tropics and acceleration of the greenhouse

  18. Determination of isotopic composition of uranium in microparticles by secondary ion mass spectrometry

    International Nuclear Information System (INIS)

    Veniaminov, N.N.; Kolesnikov, O.N.; Stebel'kov, V.A.

    1992-01-01

    Aerosol particles including uranium in their composition are specific atmospheric polutants. Uranium is used as nuclear fuel in atomic power stations and in spacecraft power units, and also as a component of nuclear warheads. In order to monitor the discharge of uranium-containing aerosol particles to the atmosphere, they must first be identified. As an example, one may cite an investigation of the elemental composition and radioactivity of particles formed in the accident at the Chernobyl atomic power station. One of the most informative indicators of the origin of uranium-containing aerosol particles is the isotopic composition of the uranium. Secondary ion mass spectrometry (SIMS) offers unique possibilities for the measurement of isotope ratios in individual microscopic objects. At the same time, a measurement of isotope ratios of sulfur in microsection of galenite PbS 2 has shown that the application of SIMS for these purposes is seriously limited by the difference in yield of secondary ions for isotopes with different masses. These discrimination effects, in the case of light elements such as boron, may result in distortion of the isotope ratios by several percent. In the case of heavy elements, however, the effect is less significant, amounting to about 0.5% for lead isotopes. 13 refs., 3 figs., 1 tab

  19. Dynamic modeling and simulation of power transformer maintenance costs

    Directory of Open Access Journals (Sweden)

    Ristić Olga

    2016-01-01

    Full Text Available The paper presents the dynamic model of maintenance costs of the power transformer functional components. Reliability is modeled combining the exponential and Weibull's distribution. The simulation was performed with the aim of corrective maintenance and installation of the continuous monitoring system of the most critical components. Simulation Dynamic System (SDS method and VENSIM PLE software was used to simulate the cost. In this way, significant savings in maintenance costs will be achieved with a small initial investment. [Projekat Ministarstva nauke Republike Srbije, br. III 41025 i br. OI 171007

  20. Dynamic baseline detection method for power data network service

    Science.gov (United States)

    Chen, Wei

    2017-08-01

    This paper proposes a dynamic baseline Traffic detection Method which is based on the historical traffic data for the Power data network. The method uses Cisco's NetFlow acquisition tool to collect the original historical traffic data from network element at fixed intervals. This method uses three dimensions information including the communication port, time, traffic (number of bytes or number of packets) t. By filtering, removing the deviation value, calculating the dynamic baseline value, comparing the actual value with the baseline value, the method can detect whether the current network traffic is abnormal.

  1. Optimal dispatch in dynamic security constrained open power market

    International Nuclear Information System (INIS)

    Singh, S.N.; David, A.K.

    2002-01-01

    Power system security is a new concern in the competitive power market operation, because the integration of the system controller and the generation owner has been broken. This paper presents an approach for dynamic security constrained optimal dispatch in restructured power market environment. The transient energy margin using transient energy function (TEF) approach has been used to calculate the stability margin of the system and a hybrid method is applied to calculate the approximate unstable equilibrium point (UEP) that is used to calculate the exact UEP and thus, the energy margin using TEF. The case study results illustrated on two systems shows that the operating mechanisms are compatible with the new business environment. (author)

  2. Dynamic wind turbine models in power system simulation tool

    DEFF Research Database (Denmark)

    Hansen, A.; Jauch, Clemens; Soerensen, P.

    The present report describes the dynamic wind turbine models implemented in the power system simulation tool DIgSILENT. The developed models are a part of the results of a national research project, whose overall objective is to create a model database in different simulation tools. The report...

  3. On effeciency of isotopes application in industry

    International Nuclear Information System (INIS)

    Yankovskij, L.

    1979-01-01

    The final results of the long term work in the field of research, projecting and pilot production are: the technology; methods and instruments of the isotope technique and their applications in the peoples economy, especially in industry. Effectiveness of isotope technique and especially its economic effectiveness depends on the scale of application of these techniques (instrument, method, technology) in different branches of the peoples economy. Comparing expenses on istope and radiation researches with total economic effectiveness of the isotope techniques application in some countries, the total economic effectiveness of the isotope researches has been determined. The main content of the paper is the analysis of structure and dynamics of the efficiency factor for the isotope technique application in separate countries for long period of time. Determination of the total economic efficiency of the whole branch of researches, conducted according to the methodology developed by the author, on the example of isotope research in some countries, permits to make a conclusion about the state and development tendencies of these researches in the international scale and can be a good base for making decisions in the field of the scientific policy of countries [ru

  4. Determination of groundwater characteristics and water budget in the Edremit Plain by means of isotopes

    International Nuclear Information System (INIS)

    Onhon, E.

    1983-08-01

    Detailed field investigations with environmental isotopes (O-18, D, T, C-14 and C-13) have been conducted to study the replenishment process and flow dynamics of groundwater system in Edremit plain, which is an area of 200 m 2 size located in the eastern part of Turkey. Along with conventional hydrogeological and hydrochemical data collected from the study area, results of environmental isotopic analyses performed on water samples systematically collected from the area, enabled to delineate the source and origin of recharge to the shallow groundwater aquifers and as well provided information on various dynamic parameters of groundwater flow. In addition to basic flow dynamic characteristics of the shallow aquifer in the study area, environmental isotopes were used to investigate the hydraulic interconnections between deeper thermal groundwater system and the upper shallow aquifers. Results of all the environmental isotopic analyses and their interpretation are given

  5. Brome isotope selective control of CF3Br molecule clustering by IR laser radiation in gas-dynamic expansion of CF3Br - Ar mixture

    Science.gov (United States)

    Apatin, V. M.; Lokhman, V. N.; Makarov, G. N.; Ogurok, N.-D. D.; Ryabov, E. A.

    2018-02-01

    We report the results of research on the experimental control of CF3Br molecule clustering under gas-dynamic expansion of the CF3Br - Ar mixture at a nozzle exit by using IR laser radiation. A cw CO2 laser is used for exciting molecules and clusters in the beam and a time-of-flight mass-spectrometer with laser UV ionisation of particles for their detection. The parameters of the gas above the nozzle are determined (compositions and pressure) at which intensive molecule clustering occurs. It is found that in the case of the CF3Br gas without carrier when the pressure P0 above the nozzle does not exceed 4 atm, molecular clusters actually are not generated in the beam. If the gas mixture of CF3Br with argon is used at a pressure ratio 1 : N, where N >= 3, and the total pressure above the nozzle is P0 >= 2 atm, then there occurs molecule clustering. We study the dependences of the efficiency of suppressing the molecule clustering on parameters of the exciting pulse, gas parameters above the nozzle, and on a distance of the molecule irradiation zone from the nozzle exit section. It is shown that in the case of resonant vibrational excitation of gas-dynamically cooled CF3Br molecules at the nozzle exit one can realise isotope-selective suppression of molecule clustering with respect to bromine isotopes. With the CF3Br - Ar mixtures having the pressure ratio 1 : 3 and 1 : 15, the enrichment factors obtained with respect to bromine isotopes are kenr ≈ 1.05 ± 0.005 and kenr ≈ 1.06 ± 0.007, respectively, under jet irradiation by laser emission in the 9R(30) line (1084.635 cm-1). The results obtained let us assume that this method can be used to control clustering of molecules comprising heavy element isotopes, which have a small isotopic shift in IR absorption spectra.

  6. A highly sensitive RF-to-DC power converter with an extended dynamic range

    KAUST Repository

    Almansouri, Abdullah Saud Mohammed

    2017-10-24

    This paper proposes a highly sensitive RF-to-DC power converter with an extended dynamic range that is designed to operate at the medical band 433 MHz and simulated using 0.18 μm CMOS technology. Compared to the conventional fully cross-coupled rectifier, the proposed design offers 3.2× the dynamic range. It is also highly sensitive and requires −18 dBm of input power to produce a 1 V-output voltage when operating with a 100 kΩ load. Furthermore, the proposed design offers an open circuit sensitivity of −23.4 dBm and a peak power conversion efficiency of 67%.

  7. A Low-Power High-Dynamic-Range Receiver System for In-Probe 3-D Ultrasonic Imaging.

    Science.gov (United States)

    Attarzadeh, Hourieh; Xu, Ye; Ytterdal, Trond

    2017-10-01

    In this paper, a dual-mode low-power, high dynamic-range receiver circuit is designed for the interface with a capacitive micromachined ultrasonic transducer. The proposed ultrasound receiver chip enables the development of an in-probe digital beamforming imaging system. The flexibility of having two operation modes offers a high dynamic range with minimum power sacrifice. A prototype of the chip containing one receive channel, with one variable transimpedance amplifier (TIA) and one analog to digital converter (ADC) circuit is implemented. Combining variable gain TIA functionality with ADC gain settings achieves an enhanced overall high dynamic range, while low power dissipation is maintained. The chip is designed and fabricated in a 65 nm standard CMOS process technology. The test chip occupies an area of 76[Formula: see text] 170 [Formula: see text]. A total average power range of 60-240 [Formula: see text] for a sampling frequency of 30 MHz, and a center frequency of 5 MHz is measured. An instantaneous dynamic range of 50.5 dB with an overall dynamic range of 72 dB is obtained from the receiver circuit.

  8. Cyber Physical System Modelling of Distribution Power Systems for Dynamic Demand Response

    Science.gov (United States)

    Chu, Xiaodong; Zhang, Rongxiang; Tang, Maosen; Huang, Haoyi; Zhang, Lei

    2018-01-01

    Dynamic demand response (DDR) is a package of control methods to enhance power system security. A CPS modelling and simulation platform for DDR in distribution power systems is presented in this paper. CPS modelling requirements of distribution power systems are analyzed. A coupled CPS modelling platform is built for assessing DDR in the distribution power system, which combines seamlessly modelling tools of physical power networks and cyber communication networks. Simulations results of IEEE 13-node test system demonstrate the effectiveness of the modelling and simulation platform.

  9. Modeling of the dynamics of wind to power conversion including high wind speed behavior

    DEFF Research Database (Denmark)

    Litong-Palima, Marisciel; Bjerge, Martin Huus; Cutululis, Nicolaos Antonio

    2016-01-01

    This paper proposes and validates an efficient, generic and computationally simple dynamic model for the conversion of the wind speed at hub height into the electrical power by a wind turbine. This proposed wind turbine model was developed as a first step to simulate wind power time series...... for power system studies. This paper focuses on describing and validating the single wind turbine model, and is therefore neither describing wind speed modeling nor aggregation of contributions from a whole wind farm or a power system area. The state-of-the-art is to use static power curves for the purpose...... of power system studies, but the idea of the proposed wind turbine model is to include the main dynamic effects in order to have a better representation of the fluctuations in the output power and of the fast power ramping especially because of high wind speed shutdowns of the wind turbine. The high wind...

  10. Generator coordinate method for triaxial quadrupole collective dynamics in strontium isotopes

    International Nuclear Information System (INIS)

    Bonche, P.; Dobaczewski, J.; Flocard, H.; Heenen, P.H.

    1991-01-01

    We discuss the algebraic structure of the generator coordinate method for triaxial quadrupole collective motion. The collective solutions are classified according to the representations of the permutation group of the intrinsic axes. Our method amounts to an approximate angular momentum projection. We apply it to a study of the spherical to deformed shape transition in light even strontium isotopes 78-88 Sr. We find that triaxial configurations play a significant role in explaining the structure of the transitional isotopes 80-82 Sr

  11. Trajectory Calculations for Bergman Cyclization Predict H/D Kinetic Isotope Effects Due to Nonstatistical Dynamics in the Product.

    Science.gov (United States)

    Doubleday, Charles; Boguslav, Mayla; Howell, Caronae; Korotkin, Scott D; Shaked, David

    2016-06-22

    An unusual H/D kinetic isotope effect (KIE) is described, in which isotopic selectivity arises primarily from nonstatistical dynamics in the product. In DFT-based quasiclassical trajectories of Bergman cyclization of (Z)-3-hexen-1,5-diyne (1) at 470 K, the new CC bond retains its energy, and 28% of nascent p-benzyne recrosses back to the enediyne on a vibrational time scale. The competing process of intramolecular vibrational redistribution (IVR) in p-benzyne is too slow to prevent this. Deuteration increases the rate of IVR, which decreases the fraction of recrossing and increases the yield of statistical (trapable) p-benzyne, 2. Trapable yields for three isotopomers of 2 range from 72% to 86%. The resulting KIEs for Bergman cyclization differ substantially from KIEs predicted by transition state theory, which suggests that IVR in this reaction can be studied by conventional KIEs. Leakage of vibrational zero point energy (ZPE) into the reaction coordinate was probed by trajectories in which initial ZPE in the CH/CD stretching modes was reduced by 25%. This did not change the predicted KIEs.

  12. Theoretical parameter histories of dynamic tests during power commissioning of Mochovce units power level up to 100 % Nnom

    International Nuclear Information System (INIS)

    Jagrik, J.; Mraz, M.; Rapant, M.; Stefanovic, P.; Kotasek, J.; Gieci, A.; Macko, J.; Mosny, J.

    1998-01-01

    Theoretical histories of selected parameters for dynamic tests carried out in the course of power commissioning of the Mochovce Unit 1 at the power level 100% N nom are shown in the report. The expected histories given were developed based on calculations performed by means of simulator in Nuclear Power Plants Research Institute Trnava, Inc., simulator in EGU Praha and simulator at the Mochovce plant, as well as based on similar tests at both Bohunice and Dukovany plants

  13. Power-Controlled MAC Protocols with Dynamic Neighbor Prediction for Ad hoc Networks

    Institute of Scientific and Technical Information of China (English)

    LI Meng; ZHANG Lin; XIAO Yong-kang; SHAN Xiu-ming

    2004-01-01

    Energy and bandwidth are the scarce resources in ad hoc networks because most of the mobile nodes are battery-supplied and share the exclusive wireless medium. Integrating the power control into MAC protocol is a promising technique to fully exploit these precious resources of ad hoc wireless networks. In this paper, a new intelligent power-controlled Medium Access Control (MAC) (iMAC) protocol with dynamic neighbor prediction is proposed. Through the elaborate design of the distributed transmit-receive strategy of mobile nodes, iMAC greatly outperforms the prevailing IEEE 802.11 MAC protocols in not only energy conservation but also network throughput. Using the Dynamic Neighbor Prediction (DNP), iMAC performs well in mobile scenes. To the best of our knowledge, iMAC is the first protocol that considers the performance deterioration of power-controlled MAC protocols in mobile scenes and then proposes a solution. Simulation results indicate that DNP is important and necessary for power-controlled MAC protocols in mobile ad hoc networks.

  14. Direct heuristic dynamic programming for damping oscillations in a large power system.

    Science.gov (United States)

    Lu, Chao; Si, Jennie; Xie, Xiaorong

    2008-08-01

    This paper applies a neural-network-based approximate dynamic programming method, namely, the direct heuristic dynamic programming (direct HDP), to a large power system stability control problem. The direct HDP is a learning- and approximation-based approach to addressing nonlinear coordinated control under uncertainty. One of the major design parameters, the controller learning objective function, is formulated to directly account for network-wide low-frequency oscillation with the presence of nonlinearity, uncertainty, and coupling effect among system components. Results include a novel learning control structure based on the direct HDP with applications to two power system problems. The first case involves static var compensator supplementary damping control, which is used to provide a comprehensive evaluation of the learning control performance. The second case aims at addressing a difficult complex system challenge by providing a new solution to a large interconnected power network oscillation damping control problem that frequently occurs in the China Southern Power Grid.

  15. Dynamic Wireless Power Transfer for Logistic Robots

    OpenAIRE

    Marojahan Tampubolon; Laskar Pamungkas; Huang-Jen Chiu; Yu-Chen Liu; Yao-Ching Hsieh

    2018-01-01

    The prospect of using robots in warehouses or supply chain processes is increasing due to the growth of the online retail market. This logistic robot is available in the market and uses a battery as energy storage device. However, this battery is large and heavy. Therefore, it needs a long recharging time. Dynamic Wireless Power Transfer (DWPT) can be an alternative to the conventional charging system because of its safety and flexibility that enables in motion charging. DWPT reduces the batt...

  16. Isotopes in global change science: from isotope analytics to Earth system research

    International Nuclear Information System (INIS)

    Oeschger, H.

    1998-01-01

    The aim of this paper is to emphasize some of the studies of Jean Charles Fontes and his role in our scientific community. Isotopes represent a powerful tool for the understanding of the Earth's past environment and defining the envelope of natural environmental variability within which we can assess anthropogenic impact on the Earth's biosphere, geosphere and atmosphere. The reconstruction impacts of past climatic change on the Earth's system are a basis to validate models of the possible impacts of future climate change. Oceanic sediments, polar ice caps, continental sedimentary sequences and groundwater are archives of past climate. Their quantitative study is developed within the IGBP (International Geosphere-Biosphere Program) - Pages project, which strongly emphasizes an optimum use of isotope tools. (author)

  17. Temporal and spatial distribution of isotopes in river water in Central Europe: 50 years experience with the Austrian network of isotopes in rivers.

    Science.gov (United States)

    Rank, Dieter; Wyhlidal, Stefan; Schott, Katharina; Weigand, Silvia; Oblin, Armin

    2018-05-01

    The Austrian network of isotopes in rivers comprises about 15 sampling locations and has been operated since 1976. The Danube isotope time series goes back to 1963. The isotopic composition of river water in Central Europe is mainly governed by the isotopic composition of precipitation in the catchment area; evaporation effects play only a minor role. Short-term and long-term isotope signals in precipitation are thus transmitted through the whole catchment. The influence of climatic changes has become observable in the long-term stable isotope time series of precipitation and surface waters. Environmental 3 H values were around 8 TU in 2015, short-term 3 H pulses up to about 80 TU in the rivers Danube and March were a consequence of releases from nuclear power plants. The complete isotope data series of this network will be included in the Global Network of Isotopes in Rivers database of the International Atomic Energy Agency (IAEA) in 2017. This article comprises a review of 50 years isotope monitoring on rivers and is also intended to provide base information on the (isotope-)hydrological conditions in Central Europe specifically for the end-users of these data, e.g. for modelling hydrological processes. Furthermore, this paper includes the 2006-2015 supplement adding to the Danube isotope set published earlier.

  18. Strontium isotope geochemistry of groundwater in the central part of the Dakota (Great Plains) aquifer, USA

    International Nuclear Information System (INIS)

    Gosselin, David C.; Edwin Harvey, F.; Frost, Carol; Stotler, Randy; Allen Macfarlane, P.

    2004-01-01

    The Dakota aquifer of the central and eastern Great Plains of the United States is an important source of water for municipal supplies, irrigation and industrial use. Although the regional flow system can be characterized generally as east to northeasterly from the Rocky Mountains towards the Missouri River, locally the flow systems are hydrologically complex. This study uses Sr isotopic data from groundwater and leached aquifer samples to document the complex subsystems within the Dakota aquifer in Nebraska and Kansas. The interaction of groundwater with the geologic material through which it flows has created spatial patterns in the isotopic measurements that are related to: long-term water-rock interaction, during which varying degrees of isotopic equilibrium between water and rock has been achieved; and the alteration of NaCl fluids by water-rock interaction. Specifically, Sr isotopic data distinguish brines from Kansas and western Nebraska from those in eastern Nebraska: the former are interpreted to reflect interaction with Permian rocks, whereas the latter record interaction with Pennsylvanian rocks. The Sr isotopic composition of groundwater from other parts of Nebraska and Kansas are a function of the dynamic interaction between groundwater and unlithified sediments (e.g., glacial till and loess), followed by interaction with oxidized and unoxidized sediments within the Dakota Formation. This study illustrates the power of combining Sr chemistry with more conventional geochemical data to obtain a more complete understanding of groundwater flow systems within regional aquifer systems where extensive monitoring networks do not exist

  19. International symposium on isotope techniques in water resources development and management. Book of extended synopses

    International Nuclear Information System (INIS)

    1999-05-01

    The papers presented at the symposium dealt with environmental isotope measurements and tracer techniques in studies on sedimentation, groundwater recharge, dynamics and pollution; discussed isotope data interpretation; and presented recent advances in analytical techniques for isotope hydrology. This document contains 139 extended synopses; each of them was indexed individually

  20. Investigation on the dynamic behaviour of a parabolic trough power plant during strongly cloudy days

    International Nuclear Information System (INIS)

    Al-Maliki, Wisam Abed Kattea; Alobaid, Falah; Starkloff, Ralf; Kez, Vitali; Epple, Bernd

    2016-01-01

    Highlights: • A detailed dynamic model of a parabolic trough solar thermal power plant is done. • Simulated results are compared to the experimental data from the real power plant. • Discrepancy between model result and real data is caused by operation strategy. • The model strategy increased the operating hours of power plant by around 2.5–3 h. - Abstract: The objective of this study is the development of a full scale dynamic model of a parabolic trough power plant with a thermal storage system, operated by the Actividades de Construcción y Servicios Group in Spain. The model includes solar field, thermal storage system and the power block and describes the heat transfer fluid and steam/water paths in detail. The parabolic trough power plant is modelled using Advanced Process Simulation Software (APROS). To validate the model, the numerical results are compared to the measured data, obtained from “Andasol II” during strongly cloudy periods in the summer days. The comparisons show a qualitative agreement between the dynamic simulation model and the measurements. The results confirm that the thermal storage enables the parabolic trough power plant to provide a constant power rate when the storage energy discharge is available, despite significant oscillations in the solar radiation.

  1. Object-oriented simulator of the dynamics of Embalse nuclear power plant

    International Nuclear Information System (INIS)

    Boroni, Gustavo A.; Cuadrado, M.; Clausse, Alejandro

    2000-01-01

    LUDWIG is an object-oriented simulator of the dynamics of the CANDU Nuclear power plant Embalse Rio Tercero. The tool consists in a numerical plant analyzer by means of a model of the plant dynamics during normal operation, and a graphic environment for configuration and visualization of results. The simulator was validated against plant transients occurred in the plant and recorded in the past. (author)

  2. Dynamic performance of a novel offshore power system integrated with a wind farm

    DEFF Research Database (Denmark)

    Orlandini, Valentina; Pierobon, Leonardo; Schløer, Signe

    2016-01-01

    Offshore wind technology is rapidly developing and a wind farm can be integrated with offshore power stations. This paper considers as case study a futuristic platform powered by a wind farm and three combined cycle units consisting of a gas turbine and an ORC (organic Rankine cycle) module....... The first aim of this paper is to identify the maximum amount of wind power that can be integrated into the system, without compromising the electric grid balance. The stability of the grid is tested using a dynamic model of the power system based on first principles. Additionally, the dynamics...... of the system is compared with a simplified plant consisting of three gas turbines and a wind farm, in order to identify benefits of the installation of the ORC system. The maximum allowable wind power is 10 MW for a nominal platform load of 30 MW. The results show that the presence of the ORC system allows...

  3. Dynamic performance of a novel offshore power system integrated with a wind farm

    DEFF Research Database (Denmark)

    Orlandini, Valentina; Pierobon, Leonardo; Schløer, Signe

    2016-01-01

    of the system is compared with a simplified plant consisting of three gas turbines and a wind farm, in order to identify benefits of the installation of the ORC system. The maximum allowable wind power is 10 MW for a nominal platform load of 30 MW. The results show that the presence of the ORC system allows......Offshore wind technology is rapidly developing and a wind farm can be integrated with offshore power stations. This paper considers as case study a futuristic platform powered by a wind farm and three combined cycle units consisting of a gas turbine and an ORC (organic Rankine cycle) module....... The first aim of this paper is to identify the maximum amount of wind power that can be integrated into the system, without compromising the electric grid balance. The stability of the grid is tested using a dynamic model of the power system based on first principles. Additionally, the dynamics...

  4. Nitrogen dynamics in subtropical fringe and basin mangrove forests inferred from stable isotopes.

    Science.gov (United States)

    Reis, Carla Roberta Gonçalves; Nardoto, Gabriela Bielefeld; Rochelle, André Luis Casarin; Vieira, Simone Aparecida; Oliveira, Rafael Silva

    2017-03-01

    Mangroves exhibit low species richness compared to other tropical forests, but great structural and functional diversity. Aiming to contribute to a better understanding of the functioning of mangrove forests, we investigated nitrogen (N) dynamics in two physiographic types of mangroves (fringe and basin forests) in southeastern Brazil. Because fringe forests are under great influence of tidal flushing we hypothesized that these forests would exhibit higher N cycling rates in sediment and higher N losses to the atmosphere compared to basin forests. We quantified net N mineralization and nitrification rates in sediment and natural abundance of N stable isotopes (δ 15 N) in the sediment-plant-litter system. The fringe forest exhibited higher net N mineralization rates and δ 15 N in the sediment-plant-litter system, but net nitrification rates were similar to those of the basin forest. The results of the present study suggest that fringe forests exhibit higher N availability and N cycling in sediment compared to basin forests.

  5. Coupled sulfur isotopic and chemical mass transfer modeling: Approach and application to dynamic hydrothermal processes

    International Nuclear Information System (INIS)

    Janecky, D.R.

    1988-01-01

    A computational modeling code (EQPSreverse arrowS) has been developed to examine sulfur isotopic distribution pathways coupled with calculations of chemical mass transfer pathways. A post processor approach to EQ6 calculations was chosen so that a variety of isotopic pathways could be examined for each reaction pathway. Two types of major bounding conditions were implemented: (1) equilibrium isotopic exchange between sulfate and sulfide species or exchange only accompanying chemical reduction and oxidation events, and (2) existence or lack of isotopic exchange between solution species and precipitated minerals, parallel to the open and closed chemical system formulations of chemical mass transfer modeling codes. All of the chemical data necessary to explicitly calculate isotopic distribution pathways is generated by most mass transfer modeling codes and can be input to the EQPS code. Routines are built in to directly handle EQ6 tabular files. Chemical reaction models of seafloor hydrothermal vent processes and accompanying sulfur isotopic distribution pathways illustrate the capabilities of coupling EQPSreverse arrowS with EQ6 calculations, including the extent of differences that can exist due to the isotopic bounding condition assumptions described above. 11 refs., 2 figs

  6. Target-fueled nuclear reactor for medical isotope production

    Science.gov (United States)

    Coats, Richard L.; Parma, Edward J.

    2017-06-27

    A small, low-enriched, passively safe, low-power nuclear reactor comprises a core of target and fuel pins that can be processed to produce the medical isotope .sup.99Mo and other fission product isotopes. The fuel for the reactor and the targets for the .sup.99Mo production are the same. The fuel can be low enriched uranium oxide, enriched to less than 20% .sup.235U. The reactor power level can be 1 to 2 MW. The reactor is passively safe and maintains negative reactivity coefficients. The total radionuclide inventory in the reactor core is minimized since the fuel/target pins are removed and processed after 7 to 21 days.

  7. Impurity effects of hydrogen isotope retention on boronized wall in LHD

    International Nuclear Information System (INIS)

    Oya, Yasuhisa; Okuno, Kenji; Ashikawa, Naoko; Nishimura, Kiyohiko; Sagara, Akio

    2010-11-01

    The impurity effect on hydrogen isotopes retention in the boron film deposited in LHD was evaluated by means of XPS and TDS. It was found that the impurity concentrations in boron film were increased after H-H main plasma exposure in LHD. The ratio of hydrogen retention trapped by impurity to total hydrogen retention during H-H main plasma exposure was reached to 70%, although that of deuterium retention by impurity in D 2 + implanted LHD-boron film was about 35%. In addition, the dynamic chemical sputtering of hydrogen isotopes with impurity as the form of water and / or hydrocarbons was occurred by energetic hydrogen isotopes irradiation. It was expected that the enhancement of impurity concentration during plasma exposure in LHD would induce the dynamic formation of volatile molecules and their re-emission to plasma. These facts would prevent stable plasma operation in LHD, concluding that the dynamic impurity behavior in boron film during plasma exposure is one of key issues for the steady-state plasma operation in LHD. (author)

  8. Hydrology of Bishop Creek, California: An Isotopic Analysis

    Science.gov (United States)

    Michael L. Space; John W. Hess; Stanley D. Smith

    1989-01-01

    Five power generation plants along an eleven kilometer stretch divert Bishop Creek water for hydro-electric power. Stream diversion may be adversely affecting the riparian vegetation. Stable isotopic analysis is employed to determine surface water/ground-water interactions along the creek. surface water originates primarily from three headwater lakes. Discharge into...

  9. Stable isotope measurement techniques for atmospheric greenhouse gases

    International Nuclear Information System (INIS)

    2002-01-01

    The technical requirements to perform useful measurements of atmospheric greenhouse gas concentrations and of their isotope ratios are of direct relevance for all laboratories engaged in this field. A meaningful interpretation of isotopes in global models on sources and sinks of CO 2 and other greenhouse gases depends on strict laboratory protocols and data quality control measures ensuring comparable data in time and space. Only with this precondition met, the isotope techniques can serve as a potentially powerful method for reducing uncertainties in the global CO 2 budgets and for tracing pathways and interaction of terrestrial, oceanic, and atmospheric pools of carbon. This publication provides four contributions describing methods for the determination of the isotopic composition of trace gases in atmospheric air and in ice cores. These contributions have been indexed separately

  10. Isotopic and chemical characterization of coal in Pakistan

    International Nuclear Information System (INIS)

    Qureshi, R.M.; Hasany, S.M.; Javed, T.; Sajjad, M.I.; Shah, Z.; Rehman, H.

    1993-11-01

    Stable carbon isotope ratios (delta/sup 13/C PDB) and toxic/trace element concentration levels are determined for Tertiary coal samples collected from seven coal fields in Pakistan. No systematic isotope effects are found in the process of coal liquefaction from peat to Tertiary lignites and sub bituminous coal. Similarly, no age effects are observed during the Tertiary regime. The observed variations in the carbon isotopic composition of coal obtained from 'Sharigh coal field' and the 'Sor-Range/Degari coal field' in Baluchistan are attributed to the depositional environments. More sampling of stable carbon isotope analysis are required to validate these observations. Significant concentrations of toxic elements such as S, Cr, Cd and Pb in Makarwal coal may pose environmental and engineering/operational problems for thermal power plants. (author)

  11. Separation and preparation of "6"2Ni isotope

    International Nuclear Information System (INIS)

    Ren Xiuyan; Mi Yajing; Zeng Ziqiang; Li Gongliang; Tu Rui

    2014-01-01

    Micro nuclear battery is the perfect power of space craft equipment. "6"3Ni is the core operation material of the "6"3Ni battery. It can produce radioisotope "6"3Ni while high abundance "6"2Ni is irradiated in the reactor. In order to meet the requirements of the abundance and the purity, research of the separation for "6"2Ni isotope was developed. The magnetic field and beam transmission status were simulated. The improvement designs of the ion source and the collector pocket were carried out. The process flow of high abundance "6"2Ni using electromagnetic separation method was established. The experiment of "6"2Ni isotope was developed by using electromagnetism isotope separator. The results show that the enrichment of "6"2Ni isotope is more than 90%. (authors)

  12. Isotopic composition of fission gases in LWR fuel

    International Nuclear Information System (INIS)

    Jonsson, T.

    2000-01-01

    Many fuel rods from power reactors and test reactors have been punctured during past years for determination of fission gas release. In many cases the released gas was also analysed by mass spectrometry. The isotopic composition shows systematic variations between different rods, which are much larger than the uncertainties in the analysis. This paper discusses some possibilities and problems with use of the isotopic composition to decide from which part of the fuel the gas was released. In high burnup fuel from thermal reactors loaded with uranium fuel a significant part of the fissions occur in plutonium isotopes. The ratio Xe/Kr generated in the fuel is strongly dependent on the fissioning species. In addition, the isotopic composition of Kr and Xe shows a well detectable difference between fissions in different fissile nuclides. (author)

  13. Laser isotope separation studies in JAERI

    International Nuclear Information System (INIS)

    Arisawa, Takashi; Shiba, Koreyuki

    1986-01-01

    For uranium enrichment, Japan Atomic Energy Research Institute (JAERI) has been studying atomic vapor laser isotope separation since 1976, in addition to such separation methods as gas diffusion, chemical exchange and gas-dynamic techniques. Studies carried out to date in JAERI is briefly summarized in the first part of the report. Then, some major separation techniques which have been studied in JAERI are outlined, and typical results obtained are presented. A large part is devoted to the multiple-photon photoionization technique, which is commonly known as the atomic laser isotope separation method for uranium enrichment. It has such advantages as 1) very high spectral selectivity for the relevant isotope and 2) highly improved photoionizing effect by means of two- and three-step resonance photoionization processes. Here, the atomic laser isotope separation method is discussed in detail with respect to the evaporation process, energy levels, photoionization, selectivity, photoionization schemes, ion recovery, separation in macroscopic amounts, and separation of trace amounts of isotopes. Typical observed and claculated results related to these subjects are shown. In addition, the report briefly describes some other separation processes including laser induced chemical reaction, multiple photo-dissociation, multiple-photo excitation and UV dissociation, laser induced thermal diffusion, and laser centrifugation. (Nogami, K.)

  14. Penguin Proxies: Deciphering Millennial-Scale Antarctic Ecosystem Change using Amino Acid Stable Isotope Analysis.

    Science.gov (United States)

    Michelson, C.; McMahon, K.; Emslie, S. D.; Patterson, W. P.; McCarthy, M. D.; Polito, M. J.

    2017-12-01

    The Southern Ocean ecosystem is undergoing rapid environmental change due to ongoing and historic anthropogenic impacts such as climate change and marine mammal harvesting. These disturbances may have cascading effects through the Antarctic food webs, resulting in profound shifts in the sources and cycling of organic matter supporting higher-trophic organisms, such as penguins. For example, bulk stable isotope analyses of modern and ancient preserved penguin tissues suggest variations in penguin feeding ecology throughout the Holocene with dramatic isotopic shifts in the last 200 years. However, it is not clear whether these isotopic shifts resulted from changes at the base of the food web, dietary shifts in penguins, or some combination of both factors. Newly developed compound-specific stable nitrogen isotope analysis of individual amino acids (CSIA-AA) may provide a powerful new tool to tease apart these confounding variables. Stable nitrogen isotope values of trophic amino acids (e.g., glutamic acid) increase substantially with each trophic transfer in the food web, while source amino acid (e.g., phenylalanine) stable nitrogen isotope values remain relatively unchanged and reflect ecosystem baselines. As such, we can use this CSIA-AA approach to decipher between baseline and dietary shifts in penguins over time from modern and ancient eggshells of Pygoscelis penguins in the Antarctic Peninsula and the Ross Sea regions of Antarctica. In order to accurately apply this CSIA-AA approach, we first characterized the trophic fractionation factors of individual amino acids between diet and penguin consumers in a long-term controlled penguin feeding experiment. We then applied these values to modern and ancient eggshells from the Antarctic Peninsula and Ross Sea to evaluate shifts in penguin trophic dynamics as a function of climate and anthropogenic interaction throughout much of the Holocene. This work develops a cutting edge new molecular geochemistry approach

  15. Detection of counterfeit antiviral drug Heptodin and classification of counterfeits using isotope amount ratio measurements by multicollector inductively coupled plasma mass spectrometry (MC-ICPMS) and isotope ratio mass spectrometry (IRMS).

    Science.gov (United States)

    Santamaria-Fernandez, Rebeca; Hearn, Ruth; Wolff, Jean-Claude

    2009-06-01

    Isotope ratio mass spectrometry (IRMS) and multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) are highly important techniques that can provide forensic evidence that otherwise would not be available. MC-ICP-MS has proved to be a very powerful tool for measuring high precision and accuracy isotope amount ratios. In this work, the potential of combining isotope amount ratio measurements performed by MC-ICP-MS and IRMS for the detection of counterfeit pharmaceutical tablets has been investigated. An extensive study for the antiviral drug Heptodin has been performed for several isotopic ratios combining MC-ICP-MS and an elemental analyser EA-IRMS for stable isotope amount ratio measurements. The study has been carried out for 139 batches of the antiviral drug and analyses have been performed for C, S, N and Mg isotope ratios. Authenticity ranges have been obtained for each isotopic system and combined to generate a unique multi-isotopic pattern only present in the genuine tablets. Counterfeit tablets have then been identified as those tablets with an isotopic fingerprint outside the genuine isotopic range. The combination of those two techniques has therefore great potential for pharmaceutical counterfeit detection. A much greater power of discrimination is obtained when at least three isotopic systems are combined. The data from these studies could be presented as evidence in court and therefore methods need to be validated to support their credibility. It is also crucial to be able to produce uncertainty values associated to the isotope amount ratio measurements so that significant differences can be identified and the genuineness of a sample can be assessed.

  16. Tin isotope fractionation during magmatic processes and the isotope composition of the bulk silicate Earth

    Science.gov (United States)

    Wang, Xueying; Amet, Quentin; Fitoussi, Caroline; Bourdon, Bernard

    2018-05-01

    Tin is a moderately volatile element whose isotope composition can be used to investigate Earth and planet differentiation and the early history of the Solar System. Although the Sn stable isotope composition of several geological and archaeological samples has been reported, there is currently scarce information about the effect of igneous processes on Sn isotopes. In this study, high-precision Sn isotope measurements of peridotites and basalts were obtained by MC-ICP-MS with a double-spike technique. The basalt samples display small variations in δ124/116Sn ranging from -0.01 ± 0.11 to 0.27 ± 0.11‰ (2 s.d.) relative to NIST SRM 3161a standard solution, while peridotites have more dispersed and more negative δ124Sn values ranging from -1.04 ± 0.11 to -0.07 ± 0.11‰ (2 s.d.). Overall, basalts are enriched in heavy Sn isotopes relative to peridotites. In addition, δ124Sn in peridotites become more negative with increasing degrees of melt depletion. These results can be explained by different partitioning behavior of Sn4+ and Sn2+ during partial melting. Sn4+ is overall more incompatible than Sn2+ during partial melting, resulting in Sn4+-rich silicate melt and Sn2+-rich residue. As Sn4+ has been shown experimentally to be enriched in heavy isotopes relative to Sn2+, the effect of melting is to enrich residual peridotites in relatively more compatible Sn2+, which results in isotopically lighter peridotites and isotopically heavier mantle-derived melts. This picture can be disturbed partly by the effect of refertilization. Similarly, the presence of enriched components such as recycled oceanic crust or sediments could explain part of the variations in Sn isotopes in oceanic basalts. The most primitive peridotite analyzed in this study was used for estimating the Sn isotope composition of the BSE, with δ124Sn = -0.08 ± 0.11‰ (2 s.d.) relative to the Sn NIST SRM 3161a standard solution. Altogether, this suggests that Sn isotopes may be a powerful probe of

  17. International symposium on isotope techniques in water resources development and management. Book of extended synopses

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    The papers presented at the symposium dealt with environmental isotope measurements and tracer techniques in studies on sedimentation, groundwater recharge, dynamics and pollution; discussed isotope data interpretation; and presented recent advances in analytical techniques for isotope hydrology. This document contains 139 extended synopses; each of them was indexed individually Refs, figs, tabs

  18. Combined electrolysis catalytic exchange (CECE) process for hydrogen isotope separation

    International Nuclear Information System (INIS)

    Hammerli, M.; Stevens, W.H.; Butler, J.P.

    1978-01-01

    Hydrogen isotopes can be separated efficiently by a process which combines an electrolysis cell with a trickle bed column packed with a hydrophobic platinum catalyst. The column effects isotopic exchange between countercurrent streams of electrolytic hydrogen and liquid water while the electrolysis cell contributes to isotope separation by virtue of the kinetic isotope effect inherent in the hydrogen evolution reaction. The main features of the CECE process for heavy water production are presented as well as a discussion of the inherent positive synergistic effects, and other advantages and disadvantages of the process. Several potential applications of the process in the nuclear power industry are discussed. 3 figures, 2 tables

  19. An unusual isotope effect in a high-transition-temperature superconductor

    International Nuclear Information System (INIS)

    Gweon, G.-H.; Sasagawa, T.; Zhou, S.Y.; Graf, J.; Takagi, H.; Lee, D.-H.; Lanzara, A.

    2004-01-01

    In conventional superconductors, the electron pairing that allows superconductivity is caused by exchange of virtual phonons, which are quanta of lattice vibration. For high-transition-temperature (high-Tc) superconductors, it is far from clear that phonons are involved in the pairing at all. For example, the negligible change in Tc of optimally doped Bi2Sr2CaCu2O8 (Bi2212) upon oxygen isotope substitution (16O to 18O leads to Tc decreasing from 92 to 91 K) has often been taken to mean that phonons play an insignificant role in this material. Here we provide a detailed comparison of the electron dynamics of Bi2212 samples containing different oxygen isotopes, using angle-resolved photoemission spectroscopy. Our data show definite and strong isotope effects. Surprisingly, the effects mainly appear in broad high-energy humps, commonly referred to as ''incoherent peaks''. As a function of temperature and electron momentum, the magnitude of the isotope effect closely correlates with the superconducting gap--that is, the pair binding energy. We suggest that these results can be explained in a dynamic spin-Peierls picture, where the singlet pairing of electrons and the electron-lattice coupling mutually enhance each other

  20. Power system dynamic state estimation using prediction based evolutionary technique

    International Nuclear Information System (INIS)

    Basetti, Vedik; Chandel, Ashwani K.; Chandel, Rajeevan

    2016-01-01

    In this paper, a new robust LWS (least winsorized square) estimator is proposed for dynamic state estimation of a power system. One of the main advantages of this estimator is that it has an inbuilt bad data rejection property and is less sensitive to bad data measurements. In the proposed approach, Brown's double exponential smoothing technique has been utilised for its reliable performance at the prediction step. The state estimation problem is solved as an optimisation problem using a new jDE-self adaptive differential evolution with prediction based population re-initialisation technique at the filtering step. This new stochastic search technique has been embedded with different state scenarios using the predicted state. The effectiveness of the proposed LWS technique is validated under different conditions, namely normal operation, bad data, sudden load change, and loss of transmission line conditions on three different IEEE test bus systems. The performance of the proposed approach is compared with the conventional extended Kalman filter. On the basis of various performance indices, the results thus obtained show that the proposed technique increases the accuracy and robustness of power system dynamic state estimation performance. - Highlights: • To estimate the states of the power system under dynamic environment. • The performance of the EKF method is degraded during anomaly conditions. • The proposed method remains robust towards anomalies. • The proposed method provides precise state estimates even in the presence of anomalies. • The results show that prediction accuracy is enhanced by using the proposed model.

  1. Handbook of environmental isotope geochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Baskaran, Mark (ed.) [Wayne State Univ., Detroit, MI (United States). Dept. Geology

    2011-07-01

    Applications of radioactive and stable isotopes have revolutionized our understanding of the Earth and near-earth surface processes. The utility of the isotopes are ever-increasing and our sole focus is to bring out the applications of these isotopes as tracers and chronometers to a wider audience so that they can be used as powerful tools to solve environmental problems. New developments in this field remain mostly in peer-reviewed journal articles and hence our goal is to synthesize these findings for easy reference for students, faculty, regulators in governmental and non-governmental agencies, and environmental companies. While this volume maintains its rigor in terms of its depth of knowledge and quantitative information, it contains the breadth needed for wide variety problems and applications in the environmental sciences. This volume presents all of the newer and older applications of isotopes pertaining to the environmental problems in one place that is readily accessible to readers. This book not only has the depth and rigor that is needed for academia, but it has the breadth and case studies to illustrate the utility of the isotopes in a wide variety of environments (atmosphere, oceans, lakes, rivers and streams, terrestrial environments, and sub-surface environments) and serves a large audience, from students and researchers, regulators in federal, state and local governments, and environmental companies. (orig.)

  2. Sustainability from the Occurrence of Critical Dynamic Power System Blackout Determined by Using the Stochastic Event Tree Technique

    Directory of Open Access Journals (Sweden)

    Muhammad Murtadha Othman

    2017-06-01

    Full Text Available With the advent of advanced technology in smart grid, the implementation of renewable energy in a stressed and complicated power system operation, aggravated by a competitive electricity market and critical system contingencies, this will inflict higher probabilities of the occurrence of a severe dynamic power system blackout. This paper presents the proposed stochastic event tree technique used to assess the sustainability against the occurrence of dynamic power system blackout emanating from implication of critical system contingencies such as the rapid increase in total loading condition and sensitive initial transmission line tripping. An extensive analysis of dynamic power system blackout has been carried out in a case study of the following power systems: IEEE RTS-79 and IEEE RTS-96. The findings have shown that the total loading conditions and sensitive transmission lines need to be given full attention by the utility to prevent the occurrence of dynamic power system blackout.

  3. Examining “Elite” Power Dynamics in Informant–Research Relations and Its Impact on Ethnographic Data Construction

    Directory of Open Access Journals (Sweden)

    Jana Declercq

    2017-04-01

    Full Text Available This article explores how power dynamics between informants and field researchers shape ethnographic data construction, drawing on fieldwork at a pharmaceutical company. Pharmaceutical companies are considered elite settings, and often assumed to be powerful in relation to the researcher and dominating the data construction. However, such a view conceptualizes power in terms of fixed categories, in which there is a superior and subordinate position. We reconsider the impact of elite informants in the light of a constructivist, interactionist view on power, in which power is dynamic and not necessarily entailing domination. We answer the following research questions: (1 How can we observe power dynamics, as conceptualized in a constructionist and interaction orientation, in ethnographic research? and (2 How can we reflect on what these power dynamics mean for data construction, based on our experiences in elite settings? To do so, we make use of discursive and interactional analytic methods and propose three levels of analysis: (1 the level of conversation, (2 the level of ethnography, and (3 the level of the organization in society. They respectively shed light on power in relation to (1 what is said and how, (2 the meanings attached to the ethnographic events, and (3 the meaning of the ethnography in relation to the discourses on the organization in society. With this article, we aim to provide researchers with a methodological tool to approach and to reflect on the significance of power relations in the context of ethnography and interviewing and its impact on data construction.

  4. Long-term WWER-440 dynamics in cyclic power output changes

    International Nuclear Information System (INIS)

    Petruzela, I.

    1989-01-01

    Xenon poisoning is one of the main factors limiting the operation of a nuclear power plant with a WWER-440 reactor in the variable load mode, when long-term dynamics applies to cyclic power output changes. An analysis of the xenon poisoning linearized transfer shows that a phase shift of 180deg takes place between the summed-up reactivity change due to a power change and the reactivity change due to xenon poisoning, this for a sine-wave power change with a period of 24 hours. Thus, the requirements are minimized for the change in reactivity of the control elements, and the maximum value can be achieved of released reactivity that can be utilized before the end of the campaign. (B.S.). 6 figs., 4 tabs., 9 refs

  5. Dynamic vulnerability assessment and intelligent control for sustainable power systems

    CERN Document Server

    Gonzalez-Longatt, Francisco

    2018-01-01

    Identifying, assessing, and mitigating electric power grid vulnerabilities is a growing focus in short-term operational planning of power systems. Through illustrated application, this important guide surveys state-of-the-art methodologies for the assessment and enhancement of power system security in short-term operational planning and real-time operation. The methodologies employ advanced methods from probabilistic theory, data mining, artificial intelligence, and optimization, to provide knowledge-based support for monitoring, control (preventive and corrective), and decision making tasks. Key features: Introduces behavioural recognition in wide-area monitoring and security constrained optimal power flow for intelligent control and protection and optimal grid management. Provides in-depth understanding of risk-based reliability and security assessment, dynamic vulnerability as essment methods, supported by the underpinning mathematics. Develops expertise in mitigation techniques using intelligent protect...

  6. Cost-Effectiveness Comparison of Coupler Designs of Wireless Power Transfer for Electric Vehicle Dynamic Charging

    Directory of Open Access Journals (Sweden)

    Weitong Chen

    2016-11-01

    Full Text Available This paper presents a cost-effectiveness comparison of coupler designs for wireless power transfer (WPT, meant for electric vehicle (EV dynamic charging. The design comparison of three common types of couplers is first based on the raw material cost, output power, transfer efficiency, tolerance of horizontal offset, and flux density. Then, the optimal cost-effectiveness combination is selected for EV dynamic charging. The corresponding performances of the proposed charging system are compared and analyzed by both simulation and experimentation. The results verify the validity of the proposed dynamic charging system for EVs.

  7. Oxygen isotopic fractionation during bacterial sulfate reduction

    Science.gov (United States)

    Balci, N.; Turchyn, A. V.; Lyons, T.; Bruchert, V.; Schrag, D. P.; Wall, J.

    2006-12-01

    Sulfur isotope fractionation during bacterial sulfate reduction (BSR) is understood to depend on a variety of environmental parameters, such as sulfate concentration, temperature, cell specific sulfate reduction rates, and the carbon substrate. What controls oxygen isotope fractionation during BSR is less well understood. Some studies have suggested that carbon substrate is important, whereas others concluded that there is a stoichiometric relationship between the fractionations of sulfur and oxygen during BSR. Studies of oxygen fractionation are complicated by isotopic equilibration between sulfur intermediates, particularly sulfite, and water. This process can modify the isotopic composition of the extracellular sulfate pool (δ18OSO4 ). Given this, the challenge is to distinguish between this isotopic equilibration and fractionations linked to the kinetic effects of the intercellular enzymes and the incorporation of sulfate into the bacterial cell. The δ18OSO4 , in concert with the sulfur isotope composition of sulfate (δ34SSO4), could be a powerful tool for understanding the pathways and environmental controls of BSR in natural systems. We will present δ18OSO4 data measured from batch culture growth of 14 different species of sulfate reducing bacteria for which sulfur isotope data were previously published. A general observation is that δ18OSO4 shows little isotopic change (kinetic effect during BSR and/or equilibration between sulfur intermediates and the isotopically light water (~-5‰) of the growth medium. Our present batch culture data do not allow us to convincingly isolate the magnitude and the controlling parameters of the kinetic isotope effect for oxygen. However, ongoing growth of mutant bacteria missing enzymes critical in the different steps of BSR may assist in this mission.

  8. Sci-Fri AM: Imaging - 09: Serial estimation of cross-talk for correction in dual-isotope imaging with dynamic tracers.

    Science.gov (United States)

    Wells, R G; Lockwood, J; Wei, L; Duan, D; Fernando, P; Bensimon, C; Ruddy, T D

    2012-07-01

    The recent radioisotope shortage has led to interest in non-Tc99m-based tracers. We have developed a novel I-123-labelled myocardial perfusion imaging tracer. We compare the I123-tracer to the clinical standard of Tc99m tetrofosmin in vivo in a rat model using a small-animal SPECT/CT camera. SPECT distinguishes different isotopes based on the different energies of the emitted gamma rays and thus allows simultaneous comparison of two tracer distributions in the same animal. Dual-isotope imaging is complicated by cross-talk between the energy windows of the isotopes. Standard energy-window-based correction methods are difficult to employ because of the proximity in energy of Tc99m (140keV) and I123 (159keV). Imaging the second tracer's energy window prior to its injection provides an estimate of the cross-talk. However, this estimate is only accurate if the tracer distribution is static. We use serial imaging prior to the introduction of the second tracer to estimate the dynamics of the first tracer and interpolate the cross-talk images to provide a more accurate correction. We used rat models of myocardial disease (n=3). I123 tracer was injected and imaged for one hour at 20min intervals. The Tc99m tetrofosmin was then injected and 30min later, a dual-isotope image was obtained. The impact of this approach is assessed by comparing the differences in the Tc99m-tetrofosmin image using this method with correction by simple correction for physical decay. The interpolative approach improves the accuracy of the correction by 2%-5% and thereby enhances the comparison of the two tracers. © 2012 American Association of Physicists in Medicine.

  9. Research on Power Producer’s Bidding Behavior Based on the Best-Response Dynamic Model

    Directory of Open Access Journals (Sweden)

    Jingqi Sun

    2014-01-01

    Full Text Available As China’s electricity market is facing many problems, the research on power producer’s bidding behavior can promote the healthy and sustainable development of China’s electricity market. As a special commodity, the “electricity” possesses complicated production process. The instable market constraint condition, nonsymmetric information, and a lot of random factors make the producer’s bidding process more complex. Best-response dynamic is one of the classic dynamic mechanisms of the evolutionary game theory, which applies well in the repeated game and strategy evolution that happen among a few bounded rational players with a quick learning capability. The best-response dynamic mechanism is employed to study the power producer’s bidding behavior in this paper, the producer’s best-response dynamic model is constructed, and how the producers would engage in bidding is analyzed in detail. Taking two generating units in South China regional electricity market as the example, the producer’s bidding behavior by following the producer’s best-response dynamic model is verified. The relationships between the evolutionarily stable strategy (ESS of power producer’s bidding and the market demand, and ceiling and floor price as well as biding frequency are discussed in detail.

  10. On order reduction in hydrogen isotope distillation models

    International Nuclear Information System (INIS)

    Sarigiannis, D.A.

    1994-01-01

    The design integration of the fuel processing system for the next generation fusion reactor plants (such as ITER and beyond) requires the enhancement of safety features related to the operation of the system. The current drive for inherent safety of hazardous chemical plants warrants the minimization of active toxic or radioactive inventories and the identification of process pathways with minimal risk of accidental or routine releases. New mathematical and numerical tools have been developed for the dynamic simulation and optimization of the safety characteristics related to tritium in all its forms in the fusion fuel processing system. The separation of hydrogen isotopes by cryogenic distillation is a key process therein, due to the importance of the separation performance for the quality of the fuel mixture and the on site inventory, the increased energy requirements for cryogenic operation, and the high order of mathematical complexity required for accurate models, able to predict the transient as well as the steady state behavior of the process. The modeling methodology described here is a part of a new dynamic simulation code that captures the inventory dynamics of all the species in the fusion fuel processing plant. The significant reduction of the computational effort and time required by this code will permit designers to easily explore a variety of design and technology options and assess their impact on the overall power plant safety

  11. The US national isotope program: Current status and strategy for future success

    International Nuclear Information System (INIS)

    Rivard, Mark J.; Bobek, Leo M.; Butler, Ralph A.; Garland, Marc A.; Hill, David J.; Krieger, Jeanne K.; Muckerheide, James B.; Patton, Brad D.; Silberstein, Edward B.

    2005-01-01

    Since their introduction in the 1940s, peaceful use of stable isotopes and radioisotopes in the United States has expanded continuously. Today, new isotopes for diagnostic and therapeutic uses are not being developed, critical isotopes for national security are in short supply, and demand for isotopes critical to homeland security exceeds supply. While commercial suppliers, both domestic and foreign, can only meet specific needs, the nation needs a consistent, reliable supply of radioactive and stable isotopes for research, medical, security, and space power applications. The national isotope infrastructure, defined as both facilities and trained staff at national laboratories and universities, is in danger of being lost due to chronic underfunding. With the specific recommendations given herein, the US Department of Energy may realign and refocus its Isotope Program to provide a framework for a successful National Isotope Program

  12. Static and dynamic high power, space nuclear electric generating systems

    International Nuclear Information System (INIS)

    Wetch, J.R.; Begg, L.L.; Koester, J.K.

    1985-01-01

    Space nuclear electric generating systems concepts have been assessed for their potential in satisfying future spacecraft high power (several megawatt) requirements. Conceptual designs have been prepared for reactor power systems using the most promising static (thermionic) and the most promising dynamic conversion processes. Component and system layouts, along with system mass and envelope requirements have been made. Key development problems have been identified and the impact of the conversion process selection upon thermal management and upon system and vehicle configuration is addressed. 10 references

  13. Urban water - a new frontier in isotope hydrology.

    Science.gov (United States)

    Ehleringer, James R; Barnette, Janet E; Jameel, Yusuf; Tipple, Brett J; Bowen, Gabriel J

    2016-01-01

    Isotope hydrology has focused largely on landscapes away from densely inhabited regions. In coming decades, it will become increasingly more important to focus on water supplies and dynamics within urban systems. Stable isotope analyses provide important information to water managers within large cities, particularly in arid regions where evaporative histories of water sources, vulnerabilities, and reliabilities of the water supplies can be major issues. Here the spatial and vertical understanding of water supporting urban systems that comes from stable isotope analyses can serve as a useful management tool. We explore this research frontier using the coupled natural-human landscape of the Salt Lake Valley, USA, with its greater than one million inhabitants. We first provide data on the stable isotope ratios of the hydrologic system's primary components: precipitation, incoming surface waters, and terminus waters in this closed basin. We then explore the spatial and temporal patterns of drinking waters within the urban landscape and the new opportunities to better link isotope ratio data with short- and long-term management interests of water managers.

  14. Determination of lead isotopes in Arctic and Antarctic snow and ice

    International Nuclear Information System (INIS)

    Rosman, K.J.R.; Chisholm, W.

    1994-01-01

    The development of high sensitivity mass spectrometry to measure Pb isotopes in Arctic and Antarctic snow and ice has provided a powerful tool for identifying sources of global Pb pollution. The combination of isotope abundance information with concentration measurements adds another dimension to analytical chemistry. (authors). 11 refs., 4 figs

  15. A Dynamic Approach to the Analysis of Soft Power in International Relations

    Directory of Open Access Journals (Sweden)

    Chi Zhang

    2013-12-01

    Full Text Available This article discusses soft power in international relations and the soft power of China’s foreign policy in recent years. After presenting a critique of the soft power theory developed by Joseph S. Nye, the paper provides an alternative interpretation of soft power. The author proposes a dynamic analysis of soft power in international relations, and argues that whether a power resource is soft or hard depends on the perceptions and feelings of various actors in specific situations. Due to the varying degrees of acceptance, power can be divided into hard power, soft power and bargaining power. An analysis should look at the soft or hard effectiveness of a power resource from three perspectives–horizontally, vertically and relatively. Recently, the soft power of China’s foreign policy and international behavior has mainly been manifested in multilateralism, economic diplomacy and a good-neighborly policy.

  16. Transient Dynamics of Electric Power Systems: Direct Stability Assessment and Chaotic Motions

    Science.gov (United States)

    Chu, Chia-Chi

    A power system is continuously experiencing disturbances. Analyzing, predicting, and controlling transient dynamics, which describe transient behaviors of the power system following disturbances, is a major concern in the planning and operation of a power utility. Important conclusions and decisions are made based on the result of system transient behaviors. As today's power network becomes highly interconnected and much more complex, it has become essential to enhance the fundamental understanding of transient dynamics, and to develop fast and reliable computational algorithms. In this thesis, we emphasize mathematical rigor rather than physical insight. Nonlinear dynamical system theory is applied to study two fundamental topics: direct stability assessment and chaotic motions. Conventionally, power system stability is determined by calculating the time-domain transient behaviors for a given disturbance. In contrast, direct methods identify whether or not the system will remain stable once the disturbance is removed by comparing the corresponding energy value of the post-fault system to a calculated threshold value. Direct methods not only avoid the time-consuming numerical integration of the time domain approach, but also provide a quantitative measure of the degree of system stability. We present a general framework for the theoretical foundations of direct methods. Canonical representations of network-reduction models as well as network-preserving models are proposed to facilitate the analysis and the construction of energy functions of various power system models. An advanced and practical method, called the boundary of stability region based controlling unstable equilibrium point method (BCU method), of computing the controlling unstable equilibrium point is proposed along with its theoretical foundation. Numerical solution algorithms capable of supporting on-line applications of direct methods are provided. Further possible improvements and enhancements are

  17. Power cables thermal protection by interval simulation of imprecise dynamical systems

    Energy Technology Data Exchange (ETDEWEB)

    Bontempi, G. [Universite Libre de Brussels (Belgium). Dept. d' Informatique; Vaccaro, A.; Villacci, D. [Universita del Sannio Benevento (Italy). Dept. of Engineering

    2004-11-01

    The embedding of advanced simulation techniques in power cables enables improved thermal protection because of higher accuracy, adaptiveness and. flexibility. In particular, they make possible (i) the accurate solution of differential equations describing the cables thermal dynamics and (ii) the adoption of the resulting solution in the accomplishment of dedicated protective functions. However, the use of model-based protective systems is exposed to the uncertainty affecting some model components (e.g. weather along the line route, thermophysical properties of the soil, cable parameters). When uncertainty can be described in terms of probability distribution, well-known techniques, such as Monte Carlo, are used to simulate the system behaviour. On the other hand, when the description of uncertainty in probabilistic terms is unfeasible or problematic, nonprobabilistic alternatives should be taken into consideration. This paper will discuss and compare three interval-based techniques as alternatives to probabilistic methods in the simulation of power cable dynamics. The experimental session will assess the interval-based approaches by simulating the thermal behaviour of medium voltage power cables.(author)

  18. Cold regions isotope applications

    International Nuclear Information System (INIS)

    Perrigo, L.D.; Divine, T.E.

    1976-04-01

    Pacific Northwest Laboratories (PNL) started the Cold Regions Isotope Applications Program in FY-1975 to identify special conditions in the Arctic and similar geographic areas (Cold Regions) where radioisotope power, heater, or sterilization systems would be desirable and economically viable. Significant progress was made in the first year of this program and all objectives for this initial 12-month period were achieved. The major conclusions and recommendations resulting for this effort are described below. The areas of interest covered include: radiosterilization of sewage; heating of septic tanks; and radioisotope thermoelectric generators as power sources for meteorological instruments and navigational aids

  19. Simulation language of DSNP: dynamic simulator for nuclear power-plants

    International Nuclear Information System (INIS)

    Saphier, D.

    1978-09-01

    The Dynamic Simulator for Nuclear Power-plants (DSNP) is a system of programs and data sets by which a nuclear power plant or part thereof can be simulated at different levels of sophistication. The acronym DSNP is used interchangeably for the DSNP language, for the DSNP precompiler, for the DSNP libraries, and for the DSNP document generator. The DSNP language is a set of simple block oriented statements, which together with the appropriate data, comprise a simulation of a nuclear power plant. The majority of the DSNP statements will result in the inclusion of a simulated physical module into the program. FORTRAN statements can be inserted with no restrictions among DSNP statements

  20. Natural stable isotopic compositions of mercury in aerosols and wet precipitations around a coal-fired power plant in Xiamen, southeast China

    Science.gov (United States)

    Huang, Shuyuan; Sun, Lumin; Zhou, Tingjin; Yuan, Dongxing; Du, Bing; Sun, Xiuwu

    2018-01-01

    In this study, samples of 18 wet precipitations (WPs) and 38 aerosols were collected around a coal-fired power plant (CFPP) located in Xiamen, southeast China, which was equipped with a seawater flue gas desulfurization system. Total particulate mercury (TPM) in aerosol samples, and total mercury (WP-TM), dissolved mercury (WP-DM) and particulate mercury (WP-PM) in WP samples were analyzed for the natural isotopic compositions of mercury. For the first time, both mass dependent fractionation (MDF) and mass independent fractionation of odd (odd-MIF) and even (even-MIF) isotopes of WP-DM and WP-PM were reported and discussed. Both WP-TM and TPM displayed negative MDF and slightly positive even-MIF. Negative odd-MIF was observed in TPM and WP-PM, whereas positive odd-MIF was observed in WP-TM and WP-DM. It was found that the mercury budget in WP-PM samples was mainly controlled by atmospheric particles. Potential sources of mercury in samples were identified via analysis of mercury isotopic signatures and meteorological data with the NOAA HYSPLIT model. The results showed that TPM and WP-PM in solid samples were homologous and the isotopic compositions of WP-TM depended on those of WP-DM. The ratios of Δ199Hg/Δ201Hg resulting from photochemical reactions and positive Δ200Hg values (from -0.06‰ to 0.27‰) in all samples indicated that the mercury coming from local emission of the CFPP together with long-distance transportation were the two main contributing sources.

  1. Multi-column chromatography and the use of isotopes in the study of steroid metabolism

    International Nuclear Information System (INIS)

    Sayegh, J.F.; Vestergaard, P.

    1978-01-01

    Multi-column liquid chromatography is demonstrated to be a technique well suited for isotope experiments involving administration of labelled cortisol. It has potential for secretion rate determinations, for dynamic studies of cortisol metabolism and for work with stable isotopes. (author)

  2. Centennial evolution of the atmospheric methane budget: what do the carbon isotopes tell us?

    Directory of Open Access Journals (Sweden)

    K. R. Lassey

    2007-01-01

    Full Text Available Little is known about how the methane source inventory and sinks have evolved over recent centuries. New and detailed records of methane mixing ratio and isotopic composition (12CH4, 13CH4 and 14CH4 from analyses of air trapped in polar ice and firn can enhance this knowledge. We use existing bottom-up constructions of the source history, including "EDGAR"-based constructions, as inputs to a model of the evolving global budget for methane and for its carbon isotope composition through the 20th century. By matching such budgets to atmospheric data, we examine the constraints imposed by isotope information on those budget evolutions. Reconciling both 12CH4 and 13CH4 budgets with EDGAR-based source histories requires a combination of: a greater proportion of emissions from biomass burning and/or of fossil methane than EDGAR constructions suggest; a greater contribution from natural such emissions than is commonly supposed; and/or a significant role for active chlorine or other highly-fractionating tropospheric sink as has been independently proposed. Examining a companion budget evolution for 14CH4 exposes uncertainties in inferring the fossil-methane source from atmospheric 14CH4 data. Specifically, methane evolution during the nuclear era is sensitive to the cycling dynamics of "bomb 14C" (originating from atmospheric weapons tests through the biosphere. In addition, since ca. 1970, direct production and release of 14CH4 from nuclear-power facilities is influential but poorly quantified. Atmospheric 14CH4 determinations in the nuclear era have the potential to better characterize both biospheric carbon cycling, from photosynthesis to methane synthesis, and the nuclear-power source.

  3. Assessment of groundwater pollution from ash ponds using stable and unstable isotopes around the Koradi and Khaperkheda thermal power plants (Maharashtra, India).

    Science.gov (United States)

    Voltaggio, M; Spadoni, M; Sacchi, E; Sanam, R; Pujari, P R; Labhasetwar, P K

    2015-06-15

    The impact on local water resources due to fly ash produced in the Koradi and Khaperkheda thermal power plants (district of Nagpur, Maharashtra - India) and disposed in large ponds at the surface was assessed through the study of environmental variation of ratios of stable and unstable isotopes. Analyses of oxygen and hydrogen isotopes suggest scarce interaction between the water temporarily stored in the ponds and the groundwater in the study area. Data also highlight that the high salinity of groundwater measured in the polluted wells is not due to evaporation, but to subsequent infiltration of stream waters draining from the ponds to the local aquifer. (87)Sr/(86)Sr values, when associated with Sr/Ca ratios, demonstrate the dominant role of waste waters coming from tens of brick kilns surrounding the pond sulfate pollution. Uranium isotopic analyses clearly show evidence of the interaction between groundwater and aquifer rocks, and confirm again the low influence of ash ponds. A new conceptual model based on the study of the isotopes of radium is also proposed and used to estimate residence times of groundwater in the area. This model highlights that high salinity cannot be in any case attributed to a prolonged water-rock interaction, but is due to the influence of untreated waste water of domestic or brick kiln origin on the shallow and vulnerable aquifers. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Pulsed CO laser for isotope separation of uranium

    Energy Technology Data Exchange (ETDEWEB)

    Baranov, Igor Y.; Koptev, Andrey V. [Rocket-Space Technics Department, Baltic State Technical University, 1, 1st Krasnoarmeyskaya st.,St. Petersburg, 190005 (Russian Federation)

    2012-07-30

    This article proposes a technical solution for using a CO laser facility for the industrial separation of uranium used in the production of fuel for nuclear power plants, employing a method of laser isotope separation of uranium with condensation repression in a free jet. The laser operation with nanosecond pulse irradiation can provide an acceptable efficiency in the separating unit and a high efficiency of the laser with the wavelength of 5.3 {mu}m. In the present work we also introduce a calculation model and define the parameters of a mode-locked CO laser with a RF discharge in the supersonic stream. The average pulsed CO laser power of 3 kW is sufficient for efficient industrial isotope separation of uranium in one stage.

  5. Methods and models for accelerating dynamic simulation of fluid power circuits

    Energy Technology Data Exchange (ETDEWEB)

    Aaman, R.

    2011-07-01

    The objective of this dissertation is to improve the dynamic simulation of fluid power circuits. A fluid power circuit is a typical way to implement power transmission in mobile working machines, e.g. cranes, excavators etc. Dynamic simulation is an essential tool in developing controllability and energy-efficient solutions for mobile machines. Efficient dynamic simulation is the basic requirement for the real-time simulation. In the real-time simulation of fluid power circuits there exist numerical problems due to the software and methods used for modelling and integration. A simulation model of a fluid power circuit is typically created using differential and algebraic equations. Efficient numerical methods are required since differential equations must be solved in real time. Unfortunately, simulation software packages offer only a limited selection of numerical solvers. Numerical problems cause noise to the results, which in many cases leads the simulation run to fail. Mathematically the fluid power circuit models are stiff systems of ordinary differential equations. Numerical solution of the stiff systems can be improved by two alternative approaches. The first is to develop numerical solvers suitable for solving stiff systems. The second is to decrease the model stiffness itself by introducing models and algorithms that either decrease the highest eigenvalues or neglect them by introducing steady-state solutions of the stiff parts of the models. The thesis proposes novel methods using the latter approach. The study aims to develop practical methods usable in dynamic simulation of fluid power circuits using explicit fixed-step integration algorithms. In this thesis, two mechanisms which make the system stiff are studied. These are the pressure drop approaching zero in the turbulent orifice model and the volume approaching zero in the equation of pressure build-up. These are the critical areas to which alternative methods for modelling and numerical simulation

  6. Dynamic testing of nuclear power plant structures: an evaluation

    International Nuclear Information System (INIS)

    Weaver, H.J.

    1980-02-01

    Lawrence Livermore Laboratory (LLL) evaluated the applications of system identification techniques to the dynamic testing of nuclear power plant structures and subsystems. These experimental techniques involve exciting a structure and measuring, digitizing, and processing the time-history motions that result. The data can be compared to parameters calculated using finite element or other models of the test systems to validate the model and to verify the seismic analysis. This report summarizes work in three main areas: (1) analytical qualification of a set of computer programs developed at LLL to extract model parameters from the time histories; (2) examination of the feasibility of safely exciting nuclear power plant structures and accurately recording the resulting time-history motions; (3) study of how the model parameters that are extracted from the data be used best to evaluate structural integrity and analyze nuclear power plants

  7. Energy and ancillary service dispatch through dynamic optimal power flow

    International Nuclear Information System (INIS)

    Costa, A.L.; Costa, A. Simoes

    2007-01-01

    This paper presents an approach based on dynamic optimal power flow (DOPF) to clear both energy and spinning reserve day-ahead markets. A competitive environment is assumed, where agents can offer active power for both demand supply and ancillary services. The DOPF jointly determines the optimal solutions for both energy dispatch and reserve allocation. A non-linear representation for the electrical network is employed, which is able to take transmission losses and power flow limits into account. An attractive feature of the proposed approach is that the final optimal solution will automatically meet physical constraints such as generating limits and ramp rate restrictions. In addition, the proposed framework allows the definition of multiple zones in the network for each time interval, in order to ensure a more adequate distribution of reserves throughout the power system. (author)

  8. Full-scale dynamic structural testing of Paks nuclear power plant

    International Nuclear Information System (INIS)

    Da Rin, E.M.; Muzzi, F.P.

    1995-01-01

    Within the framework of the IAEA coordinated 'Benchmark Study for the seismic analysis and testing of WWER-type NPPs', in-situ dynamic structural testing activities have been performed at the Paks Nuclear Power Plant in Hungary. The specific objective of the investigation was to obtain experimental data on the actual dynamic structural behaviour of the plant's major constructions and equipment under normal operating conditions, for enabling a valid seismic safety review to be made. This paper gives a synthetic description of the conducted experiments and presents some results, regarding in particular the free-field excitations produced during the earthquake-simulation experiments and an experiment of the dynamic soil-structure interaction global effects at the base of the reactor containment structure. Moreover, a method which can be used for inferring dynamic structural characteristics from the recorded time-histories is briefly described and a simple illustrative example given. (author)

  9. Optical isotope shifts of sup(80,82)Sr from coincidence laser spectroscopy

    International Nuclear Information System (INIS)

    Eastham, D.A.; Walker, P.M.; Smith, J.R.H.; Griffith, J.A.R.; Evans, D.E.; Wells, S.A.; Fawcett, M.J.; Grant, I.S.

    1986-01-01

    The isotope shifts of radioactive sup(80,82)Sr have been measured by a new, ultrasensitive, laser fluorescence technique. The results have been used to calculate changes in nuclear charge radii. The values, together with those of nearby stable isotopes, are discussed in terms of changes in the static and dynamic nuclear deformations. (author)

  10. Radioactive and stable cesium isotope distributions and dynamics in Japanese cedar forests.

    Science.gov (United States)

    Yoschenko, Vasyl; Takase, Tsugiko; Hinton, Thomas G; Nanba, Kenji; Onda, Yuichi; Konoplev, Alexei; Goto, Azusa; Yokoyama, Aya; Keitoku, Koji

    2018-06-01

    Dynamics of the Fukushima-derived radiocesium and distribution of the natural stable isotope 133 Cs in Japanese cedar (Cryptomeria japonica D. Don) forest ecosystems were studied during 2014-2016. For the experimental site in Yamakiya, Fukushima Prefecture, we present the redistribution of radiocesium among ecosystem compartments during the entire observation period, while the results obtained at another two experimental site were used to demonstrate similarity of the main trends in the Japanese forest ecosystems. Our observations at the Yamakiya site revealed significant redistribution of radiocesium between the ecosystem compartments during 2014-2016. During this same period radionuclide inventories in the aboveground tree biomass were relatively stable, however, radiocesium in forest litter decreased from 20 ± 11% of the total deposition in 2014 to 4.6 ± 2.7% in 2016. Radiocesium in the soil profile accumulated in the 5-cm topsoil layers. In 2016, more than 80% of the total radionuclide deposition in the ecosystem resided in the 5-cm topsoil layer. The radiocesium distribution between the aboveground biomass compartments at Yamakiya during 2014-2016 was gradually approaching a quasi-equilibrium distribution with stable cesium. Strong correlations of radioactive and stable cesium isotope concentrations in all compartments of the ecosystem have not been reached yet. However, in some compartments the correlation is already strong. An increase of radiocesium concentrations in young foliage in 2016, compared to 2015, and an increase in 2015-2016 of the 137 Cs/ 133 Cs concentration ratio in the biomass compartments with strong correlations indicate an increase in root uptake of radiocesium from the soil profile. Mass balance of the radionuclide inventories, and accounting for radiocesium fluxes in litterfall, throughfall and stemflow, enabled a rough estimate of the annual radiocesium root uptake flux as 2 ± 1% of the total inventory in the ecosystem

  11. Dynamic gradient descent learning algorithms for enhanced empirical modeling of power plants

    International Nuclear Information System (INIS)

    Parlos, A.G.; Atiya, Amir; Chong, K.T.

    1991-01-01

    A newly developed dynamic gradient descent-based learning algorithm is used to train a recurrent multilayer perceptron network for use in empirical modeling of power plants. The two main advantages of the proposed learning algorithm are its ability to consider past error gradient information for future use and the two forward passes associated with its implementation, instead of one forward and one backward pass of the backpropagation algorithm. The latter advantage results in computational time saving because both passes can be performed simultaneously. The dynamic learning algorithm is used to train a hybrid feedforward/feedback neural network, a recurrent multilayer perceptron, which was previously found to exhibit good interpolation and extrapolation capabilities in modeling nonlinear dynamic systems. One of the drawbacks, however, of the previously reported work has been the long training times associated with accurate empirical models. The enhanced learning capabilities provided by the dynamic gradient descent-based learning algorithm are demonstrated by a case study of a steam power plant. The number of iterations required for accurate empirical modeling has been reduced from tens of thousands to hundreds, thus significantly expediting the learning process

  12. Subcellular SIMS imaging of isotopically labeled amino acids in cryogenically prepared cells

    International Nuclear Information System (INIS)

    Chandra, Subhash

    2004-01-01

    Ion microscopy is a potentially powerful technique for localization of isotopically labeled molecules. In this study, L-arginine and phenylalanine amino acids labeled with stable isotopes 13 C and 15 N were localized in cultured cells with the ion microscope at 500 nm spatial resolution. Cells were exposed to the labeled amino acids and cryogenically prepared. SIMS analyses were made in fractured freeze-dried cells. A dynamic distribution was observed from labeled arginine-treated LLC-PK 1 kidney cells at mass 28 ( 13 C 15 N) in negative secondaries, revealing cell-to-cell heterogeneity and preferential accumulation of the amino acid (or its metabolite) in the nucleus and nucleolus of some cells. The smaller nucleolus inside the nucleus was clearly resolved in SIMS images and confirmed by correlative light microscopy. The distribution of labeled phenylalanine contrasted with arginine as it was rather homogeneously distributed in T98G human glioblastoma cells. Images of 39 K, 23 Na and 40 Ca were also recorded to confirm the reliability of sample preparation and authenticity of the observed amino acid distributions. These observations indicate that SIMS techniques can provide a valuable technology for subcellular localization of nitrogen-containing molecules in proteomics since nitrogen does not have a radionuclide tracer isotope. Amino acids labeled with stable isotopes can be used as tracers for studying their transport and metabolism in distinct subcellular compartments with SIMS. Further studies of phenylalanine uptake in human glioblastoma cells may have special significance in boron neutron capture therapy (BNCT) as a boron analogue of phenylalanine, boronophenylalanine is a clinically approved compound for the treatment of brain tumors

  13. Subcellular SIMS imaging of isotopically labeled amino acids in cryogenically prepared cells

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, Subhash

    2004-06-15

    Ion microscopy is a potentially powerful technique for localization of isotopically labeled molecules. In this study, L-arginine and phenylalanine amino acids labeled with stable isotopes {sup 13}C and {sup 15}N were localized in cultured cells with the ion microscope at 500 nm spatial resolution. Cells were exposed to the labeled amino acids and cryogenically prepared. SIMS analyses were made in fractured freeze-dried cells. A dynamic distribution was observed from labeled arginine-treated LLC-PK{sub 1} kidney cells at mass 28 ({sup 13}C{sup 15}N) in negative secondaries, revealing cell-to-cell heterogeneity and preferential accumulation of the amino acid (or its metabolite) in the nucleus and nucleolus of some cells. The smaller nucleolus inside the nucleus was clearly resolved in SIMS images and confirmed by correlative light microscopy. The distribution of labeled phenylalanine contrasted with arginine as it was rather homogeneously distributed in T98G human glioblastoma cells. Images of {sup 39}K, {sup 23}Na and {sup 40}Ca were also recorded to confirm the reliability of sample preparation and authenticity of the observed amino acid distributions. These observations indicate that SIMS techniques can provide a valuable technology for subcellular localization of nitrogen-containing molecules in proteomics since nitrogen does not have a radionuclide tracer isotope. Amino acids labeled with stable isotopes can be used as tracers for studying their transport and metabolism in distinct subcellular compartments with SIMS. Further studies of phenylalanine uptake in human glioblastoma cells may have special significance in boron neutron capture therapy (BNCT) as a boron analogue of phenylalanine, boronophenylalanine is a clinically approved compound for the treatment of brain tumors.

  14. Isotopic Thermionic Generator; Generateur thermoionique isotopique

    Energy Technology Data Exchange (ETDEWEB)

    Clemot, M; Devin, B; Durand, J P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-07-01

    This report describes the general design of a thermionic direct conversion space generator. The power source used is a radioisotope. Two radioisotopes are considered: Pu 238 and Cm 244. The system is made up of a heat pipe concentrating the thermal flux from the isotope to the emitter, and of a second heat pipe evacuating the waste heat from the collector to the outer wall used as radiating panel. Calculations are given in the particular case of a 100 electrical watts output power. (authors) [French] Ce rapport decrit la structure d'un generateur spatial d'electricite a conversion directe du type thermoionique. La source d'energie est un radioisotope. Deux isotopes sont envisages: le Pu 238 et le Cm 244. Le systeme comporte pour l'emetteur un caloduc concentreur de flux thermique et pour le collecteur, un caloduc evacuateur vers l'enveloppe du generateur utilise, en panneau rayonnant. Les calculs ont ete conduits dans le cas particulier d'une puissance convertie de 100 watts electriques. (auteurs)

  15. Isotopic Recorders of Pollution in Heterogeneous Urban Areas

    Science.gov (United States)

    Pataki, D. E.; Cobley, L.; Smith, R. M.; Ehleringer, J. R.; Chritz, K.

    2017-12-01

    A significant difficulty in quantifying urban pollution lies in the extreme spatial and temporal heterogeneity of cities. Dense sources of both point and non-point source pollution as well as the dynamic role of human activities, which vary over very short time scales and small spatial scales, complicate efforts to establish long-term urban monitoring networks that are relevant at neighborhood, municipal, and regional scales. Fortunately, the natural abundance of isotopes of carbon, nitrogen, and other elements provides a wealth of information about the sources and fate of urban atmospheric pollution. In particular, soils and plant material integrate pollution sources and cycling over space and time, and have the potential to provide long-term records of pollution dynamics that extend back before atmospheric monitoring data are available. Similarly, sampling organic material at high spatial resolution can provide "isoscapes" that shed light on the spatial heterogeneity of pollutants in different urban parcels and neighborhoods, along roads of varying traffic density, and across neighborhoods of varying affluence and sociodemographic composition. We have compiled numerous datasets of the isotopic composition of urban organic matter that illustrate the potential for isotopic monitoring of urban areas as a means of understanding hot spots and hot moments in urban atmospheric biogeochemistry. Findings to date already reveal the critical role of affluence, economic activity, demographic change, and land management practices in influencing urban pollution sources and sinks, and suggest an important role of stable isotope and radioisotope measurements in urban atmospheric and biogeochemical monitoring.

  16. Seasonal variations in the nitrogen isotope composition of Okinotori coral in the tropical western Pacific: A new proxy for marine nitrate dynamics

    Science.gov (United States)

    Yamazaki, Atsuko; Watanabe, Tsuyoshi; Ogawa, Nanako O.; Ohkouchi, Naohiko; Shirai, Kotaro; Toratani, Mitsuhiro; Uematsu, Mitsuo

    2011-12-01

    To demonstrate the utility of coral skeletons as a recorder of nitrate dynamics in the surface ocean, we collected coral skeletons of Porites lobata and determined their nitrogen isotope composition (δ15Ncoral) from 2002 to 2006. Skeletons were collected at Okinotori Island in southwestern Japan, far from any sources of terrestrial nitrogen. Nitrogen isotope compositions along the growth direction were determined at 800 μm intervals (˜1 month resolution) and compared against the skeletal carbon isotope composition (δ13Ccoral-carb), barium/calcium ratio (Ba/Ca), and Chlorophyll-a concentration (Chl-a). From 2002 to 2004, ratios of the δ15Ncoral varied between +0.8 and +8.3‰ with inverse variation to SST (r = -0.53). Ba/Ca ratios and Chl-a concentrations were also observed to be high during seasons with low SST. These results suggested that the vertical mixing that occurs during periods of low SST carries nutrients from deeper water (δ15NDIN; +5˜+6‰) to the sea surface. In 2005 onward, δ15Ncoral and Ba/Ca ratios also had positive peaks even in high SST during periods of transient upwelling caused by frequent large typhoons (maximum wind speed 30 m/s). In addition, low δ15Ncoral (+0.8˜+2.0‰) four months after the last typhoon implied nitrogen fixation because of the lack of typhoon upwelling through the four years record of δ15Ncoral. Variations in the δ13Ccoral-carb and δ15Ncoral were synchronized, suggesting that nitrate concentration could control zooxanthellae photosynthesis. Our results suggested that δ15Ncoral holds promise as a proxy for reconstructing the transport dynamics of marine nitrate and thus also a tool for estimating nitrate origins in the tropical and subtropical oceans.

  17. Stable isotope ratio measurements in hydrogen, nitrogen, and oxygen using Raman scattering

    International Nuclear Information System (INIS)

    Harney, R.C.; Bloom, S.D.; Milanovich, F.P.

    1975-01-01

    A method for measuring stable isotope ratios using laser Raman scattering was developed which may prove of significant utility and benefit in stable isotope tracer studies. Crude isotope ratio measurements obtained with a low-power laser indicate that with current technology it should be possible to construct an isotope ratio measurement system using laser Raman scattering that is capable of performing 0.1 percent accuracy isotope ratio measurements of 16 O/ 18 O in natural abundance oxygen gas or 14 N/ 15 N in natural abundance nitrogen gas in times less than two minutes per sample. Theory pertinent to the technique, designs of specific isotope ratio spectrometer systems, and data relating to isotope ratio measurements in hydrogen, nitrogen, and oxygen are presented. In addition, the current status of several studies utilizing this technique is discussed. (auth)

  18. Evaluation of Dynamic Channel and Power Assignment for Cognitive Networks

    Energy Technology Data Exchange (ETDEWEB)

    Syed A. Ahmad; Umesh Shukla; Ryan E. Irwin; Luiz A. DaSilva; Allen B. MacKenzie

    2011-03-01

    In this paper, we develop a unifying optimization formulation to describe the Dynamic Channel and Power Assignment (DCPA) problem and evaluation method for comparing DCPA algorithms. DCPA refers to the allocation of transmit power and frequency channels to links in a cognitive network so as to maximize the total number of feasible links while minimizing the aggregate transmit power. We apply our evaluation method to five algorithms representative of DCPA used in literature. This comparison illustrates the tradeoffs between control modes (centralized versus distributed) and channel/power assignment techniques. We estimate the complexity of each algorithm. Through simulations, we evaluate the effectiveness of the algorithms in achieving feasible link allocations in the network, as well as their power efficiency. Our results indicate that, when few channels are available, the effectiveness of all algorithms is comparable and thus the one with smallest complexity should be selected. The Least Interfering Channel and Iterative Power Assignment (LICIPA) algorithm does not require cross-link gain information, has the overall lowest run time, and highest feasibility ratio of all the distributed algorithms; however, this comes at a cost of higher average power per link.

  19. Using stable isotopes to assess surface water source dynamics and hydrological connectivity in a high-latitude wetland and permafrost influenced landscape

    Science.gov (United States)

    Ala-aho, P.; Soulsby, C.; Pokrovsky, O. S.; Kirpotin, S. N.; Karlsson, J.; Serikova, S.; Vorobyev, S. N.; Manasypov, R. M.; Loiko, S.; Tetzlaff, D.

    2018-01-01

    Climate change is expected to alter hydrological and biogeochemical processes in high-latitude inland waters. A critical question for understanding contemporary and future responses to environmental change is how the spatio-temporal dynamics of runoff generation processes will be affected. We sampled stable water isotopes in soils, lakes and rivers on an unprecedented spatio-temporal scale along a 1700 km transect over three years in the Western Siberia Lowlands. Our findings suggest that snowmelt mixes with, and displaces, large volumes of water stored in the organic soils and lakes to generate runoff during the thaw season. Furthermore, we saw a persistent hydrological connection between water bodies and the landscape across permafrost regions. Our findings help to bridge the understanding between small and large scale hydrological studies in high-latitude systems. These isotope data provide a means to conceptualise hydrological connectivity in permafrost and wetland influenced regions, which is needed for an improved understanding of future biogeochemical changes.

  20. Isotopic method of testing the dynamics of melt flow through a sedimentation tank

    International Nuclear Information System (INIS)

    Bazaniak, Z.; Chamer, R.; Stec, J.; Przybytniak, W.

    1981-01-01

    The isotopic method of a simultaneous measurement of copper matte and slag flow parameters is discussed. For marking Cu-64 and Zr 95/97, isotopes characterized by various gamma radiation energy are used. The chemical form of copper and zirconium compounds was chosen from the viewpoint of assuring a selective solubility in the tested phases. To interpret the results of isotopic tests, the Wolf-Resnick model was made. The obtained results have confirmed the hypothesis of a possible occurrence of the copper matte flotation effect. In order to reduce of copper uplifted with the shaft slag, a redesigning is suggested of the sedimentation tank that would assure a reduction of the ideal mixing participation and an increase of the zone characterized by the piston flow. (author)

  1. What can Fe stable isotopes tell us about magmas?

    DEFF Research Database (Denmark)

    Stausberg, Niklas

    the differentiation of magmas from the perspective of Fe stable isotopes, integrated with petrology, by studying igneous rocks and their constituent phases (minerals and glasses) from the Bushveld Complex, South Africa, Thingmuli, Iceland, Pantelleria, Italy, and the Bishop Tuff, USA. The findings are interpreted......The majority of the Earth’s crust is formed by magmas, and understanding their production and differentiation is important to interpret the geologic rock record. A powerful tool to investigate magmatic processes is the distribution of the stable isotopes of the major redox-sensitive element...... in magmas, Fe. Fe isotope compositions of magmatic rocks exhibit systematic differences, where the heaviest compositions are found in rhyolites and granites. Understanding of these systematics is complicated by a lack of constraints on Fe isotope fractionation among minerals and liquids under magmatic...

  2. Design of dynamic power quality monitoring and fault diagnosis system of ship-power system based on Ethernet

    Directory of Open Access Journals (Sweden)

    HU Hongqian

    2018-02-01

    Full Text Available [Objectives] According to situation that the ship power information exchange system based on the traditional field bus has been unable to meet the needs of modern ship power system for informatization, automation, intelligent and safe operation. [Methods] This paper proposes the use of industrial Ethernet Modbus/TCP to make up for lack of field-bus. Then, the data center is established by collecting the inherent data of the field bus of the combined ship power system and collecting the real-time data from the online measurement device based on the Modbus/TCP. Correlation theory and neural network intelligent algorithm are used to analyze big data to complete the dynamic power quality monitoring and fault diagnosis of ship power system. [Results] Finally, the man-machine interface is designed with LabVIEW. [Conclusions] The feasibility of the software and hardware implementation of the scheme is verified by the laboratory platform.

  3. Variations of lead isotopes and airborne particulate concentrations from the Kozani basin, West Macedonia, Greece.

    Science.gov (United States)

    Charalampides, G; Manoliadis, O; Triantafyllou, A

    2002-03-01

    The spread and variation in 206Pb/207Pb ratios make Pb isotopes a powerful tool when it comes to detecting trends in airborne particulates originating mainly from power plants. This study was conducted to determine the source of pollution in Kozani area, an affected industrial area. Lead isotopic ratios of air filters under certain meteorological conditions were compared to Pb isotope analyses sampled from lignite mines, but also to Pb isotope analyses of cultivations in soil originating from the reclamation of old abandoned lignite-mines. The particles taken into consideration have an aerodynamic diameter less than 10 microm (PM10). The measurements were carried out in a central part of the town of Kozani, West Macedonia, for one year observation period. The lead isotope values of air filters and of wheat in the Kozani area are between the values of lignite Pb and of Greek gasoline.

  4. Measures of static postural control moderate the association of strength and power with functional dynamic balance.

    Science.gov (United States)

    Forte, Roberta; Boreham, Colin A G; De Vito, Giuseppe; Ditroilo, Massimiliano; Pesce, Caterina

    2014-12-01

    Age-related reductions in strength and power are considered to negatively impact balance control, but the existence of a direct association is still an issue of debate. This is possibly due to the fact that balance assessment is complex, reflects different underlying physiologic mechanisms and involves quantitative measurements of postural sway or timing of performance during balance tasks. The present study evaluated the moderator effect of static postural control on the association of power and strength with dynamic balance tasks. Fifty-seven healthy 65-75 year old individuals performed tests of dynamic functional balance (walking speed under different conditions) and of strength, power and static postural control. Dynamic balance performance (walking speed) was associated with lower limb strength and power, as well as postural control under conditions requiring postural adjustments (narrow surface walking r(2) = 0.31, p balance tasks. Practical implications for assessment and training are discussed.

  5. Frequency Splitting Elimination and Cross-Coupling Rejection of Wireless Power Transfer to Multiple Dynamic Receivers

    Directory of Open Access Journals (Sweden)

    Narayanamoorthi R.

    2018-01-01

    Full Text Available Simultaneous power transfer to multiple receiver (Rx system is one of the key advantages of wireless power transfer (WPT system using magnetic resonance. However, determining the optimal condition to uniformly transfer the power to a selected Rx at high efficiency is the challenging task under the dynamic environment. The cross-coupling and frequency splitting are the dominant issues present in the multiple Rx dynamic WPT system. The existing analysis is performed by considering any one issue present in the system; on the other hand, the cross coupling and frequency splitting issues are interrelated in dynamic Rx’s, which requires a comprehensive design strategy by considering both the problems. This paper proposes an optimal design of multiple Rx WPT system, which can eliminate cross coupling, frequency splitting issues and increase the power transfer efficiency (PTE of selected Rx. The cross-coupling rejection, uniform power transfer is performed by adding an additional relay coil and independent resonance frequency tuning with capacitive compensation to each Rx unit. The frequency splitting phenomena are eliminated using non-identical transmitter (Tx and Rx coil structure which can maintain the coupling between the coil under the critical coupling limit. The mathematical analysis of the compensation capacitance calculation and optimal Tx coil size identification is performed for the four Rx WPT system. Finite element analysis and experimental investigation are carried out for the proposed design in static and dynamic conditions.

  6. Thermal energy storage for organic Rankine cycle solar dynamic space power systems

    Science.gov (United States)

    Heidenreich, G. R.; Parekh, M. B.

    An organic Rankine cycle-solar dynamic power system (ORC-SDPS) comprises a concentrator, a radiator, a power conversion unit, and a receiver with a thermal energy storage (TES) subsystem which charges and discharges energy to meet power demands during orbital insolation and eclipse periods. Attention is presently given to the criteria used in designing and evaluating an ORC-SDPS TES, as well as the automated test facility employed. It is found that a substantial data base exists for the design of an ORC-SDPS TES subsystem.

  7. System Dynamics Modeling for the Resilience in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Florah, Kamanj; Kim, Jonghyun [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2013-10-15

    This paper aims to model and evaluate emergency operation system (EOS) resilience using the System Dynamics. System Dynamics is the study of causal interactions between elements of a complex system. This paper identifies the EOS resilience attributes and their interactions by constructing a causal loop diagram. Then, the interactions are quantified based on literature review and simulated to analyze resilience dynamics. This paper describes the use of system dynamics to improve understanding of the resilience dynamics of complex systems such as emergency operation systems. This paper takes into account two aspects; the strength of resilience attributes interactions and the quantification of dynamic behaviour of resilience over time. This model can be applied to review NPP safety in terms of the resilience level and organization. Simulation results can give managers insights to support their decisions in safety management. A nuclear power plant (NPP) is classified as a safety critical organization whose safety objective is to control hazards that can cause significant harm to the environment, public, or personnel. There has been a significant improvement of safety designs as well as risk analysis tools and methods applied in nuclear power plants over the last decade. Conventional safety analysis methods such as PSA have several limitations they primarily focus on technical dimension, the analysis are linear and sequential, they are dominated by static models, they do not take a systemic view into account, and they focus primarily on why accidents happen and not how success is achieved. Hence new approaches to risk analysis for NPPs are needed to complement the conventional approaches. Resilience is the intrinsic ability of a system to adjust to its functioning prior to, during, or following changes and disturbances, so that it can sustain required operations under both expected and unexpected conditions. An EOS in a NPP refers to a system consisting of personnel

  8. System Dynamics Modeling for the Resilience in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Florah, Kamanj; Kim, Jonghyun

    2013-01-01

    This paper aims to model and evaluate emergency operation system (EOS) resilience using the System Dynamics. System Dynamics is the study of causal interactions between elements of a complex system. This paper identifies the EOS resilience attributes and their interactions by constructing a causal loop diagram. Then, the interactions are quantified based on literature review and simulated to analyze resilience dynamics. This paper describes the use of system dynamics to improve understanding of the resilience dynamics of complex systems such as emergency operation systems. This paper takes into account two aspects; the strength of resilience attributes interactions and the quantification of dynamic behaviour of resilience over time. This model can be applied to review NPP safety in terms of the resilience level and organization. Simulation results can give managers insights to support their decisions in safety management. A nuclear power plant (NPP) is classified as a safety critical organization whose safety objective is to control hazards that can cause significant harm to the environment, public, or personnel. There has been a significant improvement of safety designs as well as risk analysis tools and methods applied in nuclear power plants over the last decade. Conventional safety analysis methods such as PSA have several limitations they primarily focus on technical dimension, the analysis are linear and sequential, they are dominated by static models, they do not take a systemic view into account, and they focus primarily on why accidents happen and not how success is achieved. Hence new approaches to risk analysis for NPPs are needed to complement the conventional approaches. Resilience is the intrinsic ability of a system to adjust to its functioning prior to, during, or following changes and disturbances, so that it can sustain required operations under both expected and unexpected conditions. An EOS in a NPP refers to a system consisting of personnel

  9. The clumped-isotope geochemistry of exhumed marbles from Naxos, Greece

    Science.gov (United States)

    Ryb, U.; Lloyd, M. K.; Stolper, D. A.; Eiler, J. M.

    2017-07-01

    Exhumation and accompanying retrograde metamorphism alter the compositions and textures of metamorphic rocks through deformation, mineral-mineral reactions, water-rock reactions, and diffusion-controlled intra- and inter-mineral atomic mobility. Here, we demonstrate that these processes are recorded in the clumped- and single-isotope (δ13 C and δ18 O) compositions of marbles, which can be used to constrain retrograde metamorphic histories. We collected 27 calcite and dolomite marbles along a transect from the rim to the center of the metamorphic core-complex of Naxos (Greece), and analyzed their carbonate single- and clumped-isotope compositions. The majority of Δ47 values of whole-rock samples are consistent with exhumation- controlled cooling of the metamorphic complex. However, the data also reveal that water-rock interaction, deformation driven recrystallization and thermal shock associated with hydrothermal alteration may considerably impact the overall distribution of Δ47 values. We analyzed specific carbonate fabrics influenced by deformation and fluid-rock reaction to study how these processes register in the carbonate clumped-isotope system. Δ47 values of domains drilled from a calcite marble show a bimodal distribution. Low Δ47 values correspond to an apparent temperature of 260 °C and are common in static fabrics; high Δ47 values correspond to an apparent temperature of 200 °C and are common in dynamically recrystallized fabrics. We suggest that the low Δ47 values reflect diffusion-controlled isotopic reordering during cooling, whereas high Δ47 values reflect isotopic reordering driven by dynamic recrystallization. We further studied the mechanism by which dynamic recrystallization may alter Δ47 values by controlled heating experiments. Results show no significant difference between laboratory reactions rates in the static and dynamic fabrics, consistent with a mineral-extrinsic mechanism, in which slip along crystal planes was associated

  10. Application of computational fluid dynamics for the simulation of cryogenic molecular sieve bed absorber of hydrogen isotopes recovery system for Indian LLCB-TBM

    Energy Technology Data Exchange (ETDEWEB)

    Gayathri Devi, V.; Sircar, A.; Sarkar, B. [Institute of Plasma Research, Bhat, Gandhinagar, Gujarar (India)

    2015-03-15

    One of the most challenging tasks in the design of the fuel cycle system lies in the effective design of Tritium Extraction System (TES) which involves proper extraction and purification of tritium in the fuel cycle of the fusion reactor. Indian Lead Lithium cooled Ceramic Breeder Test Blanket Module (LLCB-TBM) would extract hydrogen isotopes through Cryogenic Molecular Sieve Bed (CMSB) adsorber system. A prototype Hydrogen Isotopes Recovery System (HIRS) is being developed to validate the concepts for tritium extraction by adsorption mass transfer mechanism. In this study, a design model has been developed and analyzed to simulate the adsorption mass transfer kinetics in a fixed bed adsorption column. The simulation leads primarily to effective design of HIRS, which is a state-of-the-art technology. The paper describes the process simulation approach and the results of Computational Fluid Dynamics (CFD) analysis. The effects of different operating conditions are studied to investigate their influence on the hydrogen isotopes adsorption capacity. The results of the present simulation study would be used to understand the best optimized transport phenomenon before realizing the TES as a system for LLCB-TBM. (authors)

  11. On the problems of separation work unit for the laser isotope separation

    International Nuclear Information System (INIS)

    Wang, Lijun

    2008-01-01

    The concept of separation power or separation work, which is widely used in Uranium isotope separation industry is introduced historically for the weak separating machine and so-called 'ideal cascade'. Therefore, when this concept is applied to a laser isotope separation facility, which is deeply different from a cascade in structure and in mechanism of separation, some confusions may occur. By comparison the costs of SWU of laser isotope separation facility and an ideal cascade we come to a conclusion: the concept of separation work is not applicable for laser isotope separation. In order to compare the economics of laser isotope separation technique with diffusion or centrifugation techniques an equivalent cost of SWU is suggested in this paper. (author)

  12. Isotopic quantum correction to liquid methanol at -30 C

    CERN Document Server

    Benmore, C J; Egelstaff, P A; Neuefeind, J

    2002-01-01

    Hydrogen/deuterium (H/D) substitution of molecular liquids in neutron diffraction is a powerful tool for structure determination. However, recent high-energy X-ray studies have found observable differences in the structures of many H and D liquids at the same temperature. In some cases this isotopic quantum effect can be corrected for by measuring the D sample at a slightly different temperature to the H sample. The example of hydroxyl isotopic substitution in liquid methanol at -30 C is presented. The magnitude of the quantum effect is shown to be significant when compared to the size of the first-order isotopic neutron-difference function. (orig.)

  13. Efficiency Enhancement of an Envelope Tracking Power Amplifier Combining Supply Shaping and Dynamic Biasing

    DEFF Research Database (Denmark)

    Tafuri, Felice Francesco; Sira, Daniel; Jensen, Ole Kiel

    2013-01-01

    This paper presents a new method to improve the performance of envelope tracking (ET) power amplifiers (PAs). The method consists of combining the supply modulation that characterizes the envelope tracking architecture with supply shaping and dynamic biasing. The inclusion of dynamic biasing allo...

  14. Power system observability and dynamic state estimation for stability monitoring using synchrophasor measurements

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Kai; Qi, Junjian; Kang, Wei

    2016-08-01

    Growing penetration of intermittent resources such as renewable generations increases the risk of instability in a power grid. This paper introduces the concept of observability and its computational algorithms for a power grid monitored by the wide-area measurement system (WAMS) based on synchrophasors, e.g. phasor measurement units (PMUs). The goal is to estimate real-time states of generators, especially for potentially unstable trajectories, the information that is critical for the detection of rotor angle instability of the grid. The paper studies the number and siting of synchrophasors in a power grid so that the state of the system can be accurately estimated in the presence of instability. An unscented Kalman filter (UKF) is adopted as a tool to estimate the dynamic states that are not directly measured by synchrophasors. The theory and its computational algorithms are illustrated in detail by using a 9-bus 3-generator power system model and then tested on a 140-bus 48-generator Northeast Power Coordinating Council power grid model. Case studies on those two systems demonstrate the performance of the proposed approach using a limited number of synchrophasors for dynamic state estimation for stability assessment and its robustness against moderate inaccuracies in model parameters.

  15. High performance monolithic power management system with dynamic maximum power point tracking for microbial fuel cells.

    Science.gov (United States)

    Erbay, Celal; Carreon-Bautista, Salvador; Sanchez-Sinencio, Edgar; Han, Arum

    2014-12-02

    Microbial fuel cell (MFC) that can directly generate electricity from organic waste or biomass is a promising renewable and clean technology. However, low power and low voltage output of MFCs typically do not allow directly operating most electrical applications, whether it is supplementing electricity to wastewater treatment plants or for powering autonomous wireless sensor networks. Power management systems (PMSs) can overcome this limitation by boosting the MFC output voltage and managing the power for maximum efficiency. We present a monolithic low-power-consuming PMS integrated circuit (IC) chip capable of dynamic maximum power point tracking (MPPT) to maximize the extracted power from MFCs, regardless of the power and voltage fluctuations from MFCs over time. The proposed PMS continuously detects the maximum power point (MPP) of the MFC and matches the load impedance of the PMS for maximum efficiency. The system also operates autonomously by directly drawing power from the MFC itself without any external power. The overall system efficiency, defined as the ratio between input energy from the MFC and output energy stored into the supercapacitor of the PMS, was 30%. As a demonstration, the PMS connected to a 240 mL two-chamber MFC (generating 0.4 V and 512 μW at MPP) successfully powered a wireless temperature sensor that requires a voltage of 2.5 V and consumes power of 85 mW each time it transmit the sensor data, and successfully transmitted a sensor reading every 7.5 min. The PMS also efficiently managed the power output of a lower-power producing MFC, demonstrating that the PMS works efficiently at various MFC power output level.

  16. Improvements in RIMS Isotopic Precision: Application to in situ atom-limited analyses

    International Nuclear Information System (INIS)

    Levine, J.; Stephan, T.; Savina, M.; Pellin, M.

    2009-01-01

    Resonance ionization mass spectrometry offers high sensitivity and elemental selectivity in microanalysis, but the isotopic precision attainable by this technique has been limited. Here we report instrumental modifications to improve the precision of RIMS isotope ratio measurements. Special attention must be paid to eliminating pulse-to-pulse variations in the time-of-flight mass spectrometer through which the photoions travel, and resonant excitation schemes must be chosen such that the resonance transitions can substantially power-broadened to cover the isotope shifts. We report resonance ionization measurements of chromium isotope ratios with statistics-limited precision better than 1%.

  17. Separative power of an optimised concurrent gas centrifuge

    Energy Technology Data Exchange (ETDEWEB)

    Bogovalov, Sergey; Boman, Vladimir [National Research Nuclear University (MEPHI), Moscow (Russian Federation)

    2016-06-15

    The problem of separation of isotopes in a concurrent gas centrifuge is solved analytically for an arbitrary binary mixture of isotopes. The separative power of the optimised concurrent gas centrifuges for the uranium isotopes equals to δU = 12.7 (V/700 m/s)2(300 K/T)(L/1 m) kg·SWU/yr, where L and V are the length and linear velocity of the rotor of the gas centrifuge and T is the temperature. This equation agrees well with the empirically determined separative power of optimised counter-current gas centrifuges.

  18. An efficient approach to the evaluation of mid-term dynamic processes in power systems

    Energy Technology Data Exchange (ETDEWEB)

    Zivanovic, R M [Pretoria Technikon (South Africa); Popovic, D P [Nikola Tesla Inst., Belgrade (Yugoslavia). Power System Dept.

    1993-01-01

    This paper presents some improvements in the methodology for analysing mid-term dynamic processes in power systems. These improvements are: an efficient application of the hierarchical clustering algorithm to adaptive identification of coherent generator groups and a significant reduction of the mathematical model, on the basis of monitoring the state of only one generator in one of the established coherent groups. This enables a flexible, simple and fast transformation from the full to the reduced model and vice versa, a significant acceleration of the simulation while keeping the desired accuracy and the automatic use in continual dynamic analysis. Verification of the above mentioned contributions was performed on examples of the dynamic analysis of New England and Yugoslav power systems. (author)

  19. New processes for uranium isotope separation

    International Nuclear Information System (INIS)

    Vanstrum, P.R.; Levin, S.A.

    1977-01-01

    An overview of the status and prospects for processes other than gaseous diffusion, gas centrifuge, and separation nozzle for uranium isotope separation is presented. The incentive for the development of these processes is the increasing requirements for enriched uranium as fuel for nuclear power plants and the potential for reducing the high costs of enrichment. The latest nuclear power projections are converted to uranium enrichment requirements. The size and timing of the market for new enrichment processes are then determined by subtracting the existing and planned uranium enrichment capacities. It is estimated that to supply this market would require the construction of a large new enrichment plant of 9,000,000 SWU per year capacity, costing about $3 billion each (in 1976 dollars) about every year till the year 2000. A very comprehensive review of uranium isotope separation processes was made in 1971 by the Uranium Isotope Separation Review Ad Hoc Committee of the USAEC. Many of the processes discussed in that review are of little current interest. However, because of new approaches or remaining uncertainties about potential, there is considerable effort or continuing interest in a number of alternative processes. The status and prospects for attaining the requirements for competitive economics are presented for these processes, which include laser, chemical exchange, aerodynamic other than separation nozzle, and plasma processes. A qualitative summary comparison of these processes is made with the gaseous diffusion, gas centrifuge, and separation nozzle processes. In order to complete the overview of new processes for uranium isotope separation, a generic program schedule of typical steps beyond the basic process determination which are required, such as subsystem, module, pilot plant, and finally plant construction, before large-scale production can be attained is presented. Also the present value savings through the year 2000 is shown for various

  20. Tool for a configurable integrated circuit that uses determination of dynamic power consumption

    Science.gov (United States)

    French, Matthew C. (Inventor); Wang, Li (Inventor); Agarwal, Deepak (Inventor); Davoodi, Azadeh (Inventor)

    2011-01-01

    A configurable logic tool that allows minimization of dynamic power within an FPGA design without changing user-entered specifications. The minimization of power may use minimized clock nets as a first order operation, and a second order operation that minimizes other factors, such as area of placement, area of clocks and/or slack.

  1. On-line stable isotope measurements during plant and soil gas exchange

    International Nuclear Information System (INIS)

    Yakir, D.

    2001-01-01

    Recent techniques for on-line stable isotope measurements during plant and soil exchange of CO 2 and/or water vapor are briefly reviewed. For CO 2 , these techniques provide means for on-line measurements of isotopic discrimination during CO 2 exchange by leaves in the laboratory and in the field, of isotopic discrimination during soil respiration and during soil-atmosphere CO 2 exchange, and of isotopic discrimination in O 2 during plant respiration. For water vapor, these techniques provide means to measure oxygen isotopic composition of water vapor during leaf transpiration and for the analysis of sub microliter condensed water vapor samples. Most of these techniques involve on-line sampling of CO 2 and water vapor from a dynamic, intact soil or plant system. In the laboratory, these systems also allow on-line isotopic analysis by continuous-flow isotope ratio mass spectrometry. The information obtained with these on-line techniques is becoming increasingly valuable, and often critical, for ecophysiologial research and in the study of biosphere-atmosphere interactions. (author)

  2. Thermal Conductivity of Nanotubes: Effects of Chirality and Isotope Impurity

    OpenAIRE

    Gang, Zhang; Li, Baowen

    2005-01-01

    We study the dependence of thermal conductivity of single walled nanotubes (SWNT) on chirality and isotope impurity by nonequilibrium molecular dynamics method with accurate potentials. It is found that, contrary to electronic conductivity, the thermal conductivity is insensitive to the chirality. The isotope impurity, however, can reduce the thermal conductivity up to 60% and change the temperature dependence behavior. We also study the dependence of thermal conductivity on tube length for t...

  3. Isotope separation process

    International Nuclear Information System (INIS)

    Kaldor, A.; Rabinowitz, P.

    1979-01-01

    A method of separating the isotopes of an element is described, which comprises the steps of (i) subjecting molecules of a gaseous compound of the element simultaneously to two infrared radiations of different wavelengths, the first radiation having a wavelength which corresponds to an absorption band of the compound, which in turn corresponds to a mode of molecular motion in which there is participation by atoms of the element, and the second radiation having a power density greater than 10 6 watts per cm 2 , thereby exciting molecules of the compound in an isotopically selective manner, this step being conducted in such manner that the excited molecules either receive a level of energy sufficient to cause them to undergo conversion by unimolecular decomposition or receive a level of energy sufficient to cause them to undergo conversion by reaction with molecules of another gas present for that purpose; and (ii) separating and recovering converted molecules from unconverted molecules. (author)

  4. Dynamics of global supply chain and electric power networks: Models, pricing analysis, and computations

    Science.gov (United States)

    Matsypura, Dmytro

    In this dissertation, I develop a new theoretical framework for the modeling, pricing analysis, and computation of solutions to electric power supply chains with power generators, suppliers, transmission service providers, and the inclusion of consumer demands. In particular, I advocate the application of finite-dimensional variational inequality theory, projected dynamical systems theory, game theory, network theory, and other tools that have been recently proposed for the modeling and analysis of supply chain networks (cf. Nagurney (2006)) to electric power markets. This dissertation contributes to the extant literature on the modeling, analysis, and solution of supply chain networks, including global supply chains, in general, and electric power supply chains, in particular, in the following ways. It develops a theoretical framework for modeling, pricing analysis, and computation of electric power flows/transactions in electric power systems using the rationale for supply chain analysis. The models developed include both static and dynamic ones. The dissertation also adds a new dimension to the methodology of the theory of projected dynamical systems by proving that, irrespective of the speeds of adjustment, the equilibrium of the system remains the same. Finally, I include alternative fuel suppliers, along with their behavior into the supply chain modeling and analysis framework. This dissertation has strong practical implications. In an era in which technology and globalization, coupled with increasing risk and uncertainty, complicate electricity demand and supply within and between nations, the successful management of electric power systems and pricing become increasingly pressing topics with relevance not only for economic prosperity but also national security. This dissertation addresses such related topics by providing models, pricing tools, and algorithms for decentralized electric power supply chains. This dissertation is based heavily on the following

  5. Nitrogen balance and dynamics in corn under different soil fertility levels using “1“5N isotope tracer technique

    International Nuclear Information System (INIS)

    Rallos, R.V.; Rivera, F.G.; Samar, E.D.; Rojales, J.S.; Anida, A.H.

    2015-01-01

    Nitrogen (N) Fertilizer plays a vital role on the growth and development of any crop. The inefficient N fertilizer utilization contributes to poor crop productivity and environment pollution. This study used the 15N isotope tracer technique to understand the nitrogen balance and dynamics in corn grown during the wet and dry season for low, medium and high N soils in Northern Luzon. The experiments were laid out following the randomized complete block design (RCBD) potassium requirements were applied at optimum level on solid chemical analysis and fertilizer recommendation. The study was able to separate the source of N from applied fertilizer and from the soils, traced using 15N during the 30 days after planting (DAP), 60 DAP and at harvest. Result show that, more than half of N in the plant came directly from added fertilizer during the early stage, which decreased towards harvest period. Fertilizer N yield use efficiency showed negative relationship with the rate of N application and soil fertility levels. Of N fertilization in different soil fertility levels were also established using isotope tracer technique. (author)

  6. Room temperature Sieving of Hydrogen Isotopes Using 2-D Materials

    Energy Technology Data Exchange (ETDEWEB)

    Hitchcock, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Colon-Mercado, H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Krentz, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Serkiz, S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Velten, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Xiao, S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-09-28

    Hydrogen isotope separation is critical to the DOE’s mission in environmental remediation and nuclear nonproliferation. Isotope separation is also a critical technology for the NNSA, and the ability to perform the separations at room temperature with a relatively small amount of power and space would be a major advancement for their respective missions. Recent work has shown that 2-D materials such as graphene and hexagonal boron nitride can act as an isotopic sieve at room temperature; efficiently separating hydrogen isotopes in water with reported separation ratios of 10:1 for hydrogen: deuterium separation for a single pass. The work performed here suggests that this technique has merit, and furthermore, we are investigating optimization and scale up of the required 2-D material based membranes.

  7. Using stable isotopes to characterize groundwater recharge sources in the volcanic island of Madeira, Portugal

    Science.gov (United States)

    Prada, Susana; Cruz, J. Virgílio; Figueira, Celso

    2016-05-01

    The hydrogeology of volcanic islands remains poorly understood, despite the fact that populations that live on them rely on groundwater as a primary water source. This situation is exacerbated by their complex structure, geological heterogeneity, and sometimes active volcanic processes that hamper easy analysis of their hydrogeological dynamics. Stable isotope analysis is a powerful tool that has been used to assess groundwater dynamics in complex terrains. In this work, stable isotopes are used to better understand the hydrogeology of Madeira Island and provide a case-study that can serve as a basis for groundwater studies in other similar settings. The stable isotopic composition (δ18O and δ2H) of rain at the main recharge areas of the island is determined, as well as the sources and altitudes of recharge of several springs, groundwater in tunnels and wells. The water in tunnels was found to be recharged almost exclusively by rain in the deforested high plateaus, whilst several springs associated with shallow perched aquifers are recharged from rain and cloud water interception by the vegetated slopes. Nevertheless some springs thought to be sourced from deep perched aquifers, recharge in the central plateaus, and their isotopic composition is similar to the water in the tunnels. Recharge occurs primarily during autumn and winter, as evidenced by the springs and tunnels Water Lines (WL). The groundwater in wells appears to originate from runoff from rain that falls along the slopes that infiltrates near the streams' mouths, where the wells are located. This is evident by the evaporation line along which the wells plot. Irrigation water is also a possible source of recharge. The data is compatible with the hydrogeological conceptual model of Madeira. This work also shows the importance of cloud water interception as a net contributor to groundwater recharge, at least in the perched aquifers that feed numerous springs. As the amount of rainfall is expected to

  8. Rapidly Assessing Changes in Bone Mineral Balance Using Natural Stable Calcium Isotopes

    Science.gov (United States)

    Morgan, J. L. L.; Gordon, G. W.; Romaniello, S. J.; Skulan, J. L.; Smith, S. M.; Anbar, A. D.

    2011-01-01

    We demonstrate that variations in the Ca isotope ratios in urine rapidly and quantitatively reflect changes in bone mineral balance. This variation occurs because bone formation depletes soft tissue of light Ca isotopes, while bone resorption releases that isotopically light Ca back into soft tissue. In a study of 12 individuals confined to bed rest, a condition known to induce bone resorption, we show that Ca isotope ratios shift in a direction consistent with net bone loss after just 7 days, long before detectible changes in bone density occur. Consistent with this interpretation, the Ca isotope variations track changes observed in N-teleopeptide, a bone resorption biomarker, while bone-specific alkaline phosphatase, a bone formation biomarker, is unchanged. Ca isotopes can in principle be used to quantify net changes in bone mass. Ca isotopes indicate an average loss of 0.62 +/- 0.16 % in bone mass over the course of this 30-day study. The Ca isotope technique should accelerate the pace of discovery of new treatments for bone disease and provide novel insights into the dynamics of bone metabolism.

  9. Phosphorus dynamics of representative volcanic ash soils through the use of conventional and isotopic techniques

    International Nuclear Information System (INIS)

    Pino, I.; Parada, A.M.; Luzio, W.

    2002-01-01

    In Chile, the total extension covered by volcanic ash soils including recent and old volcanic deposits is around 5,244,400 ha. This study was carried out in 'La Araucania and Los Lagos' regions (IX and X Regions of Chile respectively), which cover approximately 2,350,000 ha. The main chemical characteristics of these soils are: very low available P (Olsen); a high P retention capacity and a high quantity of aluminum (Al) associated to a high amount of short-range order minerals. The main objective of this study was the characterization of the P dynamics of representative volcanic soils through the use of conventional and isotopic techniques. In the X Region (Los Lagos) of Chile samples from the arable layer (0-20 cm) of eleven soils (Ultisols and Andisols) were collected. Four entire soil profiles were sampled in the IX Region (Araucania). The characterization of soils was made utuilising conventional and isotopic analyses. The P retention was over 85% in all soils, except for the Metrenco soil series (Paleudult). Nevertheless, the P retention of this soil, from 72% to 79% can be also considered high for a non-volcanic ash soil. In the same way, the Al+1/2 Fe (ox) in all profiles showed high values for non-volcanic ash soils. These results indicate the great difficulty in increasing the available P in these soils, even when high rates of phosphate fertilizers are applied. The principal P-limiting factor in both regions was the P intensity factor. (author)

  10. Nuclides and isotopes. Twelfth edition

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    This explanatory booklet was designed to be used with the Chart of the Nuclides. It contains a brief history of the atomic theory of matter: ancient speculations, periodic properties of elements (Mendeleev table), radioactivity, early models of atomic structure, the Bohr atom, quantum numbers, nature of isotopes, artificial radioactivity, and neutron fission. Information on the pre-Fermi (natural) nuclear reactor at Oklo and the search for superheavy elements is given. The booklet also discusses information presented on the Chart and its coding: stable nuclides, metastable states, data display and color, isotopic abundances, neutron cross sections, spins and parities, fission yields, half-life variability, radioisotope power and production data, radioactive decay chains, and elements without names. The Periodic Table of the Elements is appended. 3 figures, 3 tables

  11. Reassessment of the NH4 NO3 thermal decomposition technique for calibration of the N2 O isotopic composition.

    Science.gov (United States)

    Mohn, Joachim; Gutjahr, Wilhelm; Toyoda, Sakae; Harris, Eliza; Ibraim, Erkan; Geilmann, Heike; Schleppi, Patrick; Kuhn, Thomas; Lehmann, Moritz F; Decock, Charlotte; Werner, Roland A; Yoshida, Naohiro; Brand, Willi A

    2016-09-08

    In the last few years, the study of N 2 O site-specific nitrogen isotope composition has been established as a powerful technique to disentangle N 2 O emission pathways. This trend has been accelerated by significant analytical progress in the field of isotope-ratio mass-spectrometry (IRMS) and more recently quantum cascade laser absorption spectroscopy (QCLAS). Methods The ammonium nitrate (NH 4 NO 3 ) decomposition technique provides a strategy to scale the 15 N site-specific (SP ≡ δ 15 N α - δ 15 N β ) and bulk (δ 15 N bulk  = (δ 15 N α  + δ 15 N β )/2) isotopic composition of N 2 O against the international standard for the 15 N/ 14 N isotope ratio (AIR-N 2 ). Within the current project 15 N fractionation effects during thermal decomposition of NH 4 NO 3 on the N 2 O site preference were studied using static and dynamic decomposition techniques. The validity of the NH 4 NO 3 decomposition technique to link NH 4 + and NO 3 - moiety-specific δ 15 N analysis by IRMS to the site-specific nitrogen isotopic composition of N 2 O was confirmed. However, the accuracy of this approach for the calibration of δ 15 N α and δ 15 N β values was found to be limited by non-quantitative NH 4 NO 3 decomposition in combination with substantially different isotope enrichment factors for the conversion of the NO 3 - or NH 4 + nitrogen atom into the α or β position of the N 2 O molecule. The study reveals that the completeness and reproducibility of the NH 4 NO 3 decomposition reaction currently confine the anchoring of N 2 O site-specific isotopic composition to the international isotope ratio scale AIR-N 2 . The authors suggest establishing a set of N 2 O isotope reference materials with appropriate site-specific isotopic composition, as community standards, to improve inter-laboratory compatibility. This article is protected by copyright. All rights reserved.

  12. Linear Dynamics Model for Steam Cooled Fast Power Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Vollmer, H

    1968-04-15

    A linear analytical dynamic model is developed for steam cooled fast power reactors. All main components of such a plant are investigated on a general though relatively simple basis. The model is distributed in those parts concerning the core but lumped as to the external plant components. Coolant is considered as compressible and treated by the actual steam law. Combined use of analogue and digital computer seems most attractive.

  13. Dynamic power behavior of a PWR type nuclear reactor

    International Nuclear Information System (INIS)

    Moreira, F.J.

    1984-01-01

    A methodology for the power level evaluation (dynamic behavior) in a Pressurized Water Reactor, during a transient is developed, by solving the point kinetic equation related to the control rod insertion effects and fuel or moderator temperature 'feed-back'. A new version of the thermal-hydraulic code COBRA III P/MIT, is used. In this new version was included, as an option, the methodology developed. (E.G.) [pt

  14. On-power verification of the dynamic response of self-powered in-core detectors

    International Nuclear Information System (INIS)

    Serdula, K.; Beaudet, M.

    1996-01-01

    Self-powered in-core detectors are used for on-line safety and regulation purposes in CANDU reactors. Such applications require use of detectors whose response is primarily prompt to changes in flux. In-service verification of the detectors' response is required to ensure significant degradation in performance has not occurred during long-term operation. Changes in the detector characteristics occur due to nuclear interactions and failures. Present verification requires significant station resources and disrupts power production. Use of the 'noise' in the detector signal is being investigated as an alternative to assess the dynamic response of the detectors during long-term operation. Measurements of reference 'signatures' were obtained from replacement shutdown system detectors. Results show 'noise' measurements are a promising alternative to the current verification method. Identification of changes in the detector response function assist in accurate diagnosis and prognosis of changes in detector signals due to process changes. (author)

  15. Dynamic analysis of combined photovoltaic source and synchronous generator connected to power grid

    Science.gov (United States)

    Mahabal, Divya

    In the world of expanding economy and technology, the energy demand is likely to increase even with the global efforts of saving and increasing energy efficiency. Higher oil prices, effects of greenhouse gases, and concerns over other environmental impacts gave way to Distributed Generation (DG). With adequate awareness and support, DG's can meet these rising energy demands at lower prices compared to conventional methods. Extensive research is taking place in different areas like fuel cells, photovoltaic cells, wind turbines, and gas turbines. DG's when connected to a grid increase the overall efficiency of the power grid. It is believed that three-fifth of the world's electricity would account for renewable energy by middle of 21st century. This thesis presents the dynamic analysis of a grid connected photovoltaic (PV) system and synchronous generator. A grid is considered as an infinite bus. The photovol-taic system and synchronous generator act as small scale distributed energy resources. The output of the photovoltaic system depends on the light intensity, temperature, and irradiance levels of sun. The maximum power point tracking and DC/AC converter are also modeled for the photovoltaic system. The PV system is connected to the grid through DC/AC system. Different combinations of PV and synchronous generator are modeled with the grid to study the dynamics of the proposed system. The dynamics of the test system is analyzed by subjecting the system to several disturbances under various conditions. All modules are individually modeled and con-nected using MATLAB/Simulink software package. Results from the study show that, as the penetration of renewable energy sources like PV increases into the power system, the dynamics of the system becomes faster. When considering cases such as load switching, PV cannot deliver more power as the performance of PV depends on environmental conditions. Synchronous generator in power system can produce the required amount of

  16. Futuristic isotope hydrology in the Gulf region

    Science.gov (United States)

    Saravana Kumar, U.; Hadi, Khaled

    2018-03-01

    The Gulf region is one of the most water-stressed parts in the world. Water in the region is very scarce, shortage of supply and lacking of renewable water resources, while the demand for water is growing day by day. It is thus essential to implement modern approaches and technologies in addressing water-related issues. In this context, isotope hydrology will provide invaluable aid. Some of the most important areas of futuristic applications of isotope hydrology include evaluation of aquifer recharge, storage and their recovery system, understanding of dynamic changes due to long-term exploitation of the groundwater, development and management of shared groundwater aquifers, fresh groundwater discharge along the Arabian Gulf, identification and quantification of hydrocarbon contamination in groundwater; soil moisture and solute movement in unsaturated zone, paleoclimate reconstruction, etc. Literature survey suggests, in general, not many isotope studies on the above have been reported.

  17. Understanding H isotope adsorption and absorption of Al-alloys using modeling and experiments (LDRD: #165724)

    Energy Technology Data Exchange (ETDEWEB)

    Ward, Donald K. [Sandia National Laboratories (SNL-CA), Livermore, CA (United States); Zhou, Xiaowang [Sandia National Laboratories (SNL-CA), Livermore, CA (United States); Karnesky, Richard A. [Sandia National Laboratories (SNL-CA), Livermore, CA (United States); Kolasinski, Robert [Sandia National Laboratories (SNL-CA), Livermore, CA (United States); Foster, Michael E. [Sandia National Laboratories (SNL-CA), Livermore, CA (United States); Thurmer, Konrad [Sandia National Laboratories (SNL-CA), Livermore, CA (United States); Chao, Paul [Carnegie Mellon University, Pittsburgh, PA (United States); Epperly, Ethan Nicholas [Livermore Valley Charter Preparatory High School, Livermore, CA (United States); Zimmerman, Jonathan A. [Sandia National Laboratories (SNL-CA), Livermore, CA (United States); Wong, Bryan M. [Univ. of California, Riverside, CA (United States); Sills, Ryan B. [Sandia National Laboratories (SNL-CA), Livermore, CA (United States)

    2015-09-01

    Current austenitic stainless steel storage reservoirs for hydrogen isotopes (e.g. deuterium and tritium) have performance and operational life-limiting interactions (e.g. embrittlement) with H-isotopes. Aluminum alloys (e.g.AA2219), alternatively, have very low H-isotope solubilities, suggesting high resistance towards aging vulnerabilities. This report summarizes the work performed during the life of the Lab Directed Research and Development in the Nuclear Weapons investment area (165724), and provides invaluable modeling and experimental insights into the interactions of H isotopes with surfaces and bulk AlCu-alloys. The modeling work establishes and builds a multi-scale framework which includes: a density functional theory informed bond-order potential for classical molecular dynamics (MD), and subsequent use of MD simulations to inform defect level dislocation dynamics models. Furthermore, low energy ion scattering and thermal desorption spectroscopy experiments are performed to validate these models and add greater physical understanding to them.

  18. Understanding Dynamic Model Validation of a Wind Turbine Generator and a Wind Power Plant: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, Eduard; Zhang, Ying Chen; Gevorgian, Vahan; Kosterev, Dmitry

    2016-09-01

    Regional reliability organizations require power plants to validate the dynamic models that represent them to ensure that power systems studies are performed to the best representation of the components installed. In the process of validating a wind power plant (WPP), one must be cognizant of the parameter settings of the wind turbine generators (WTGs) and the operational settings of the WPP. Validating the dynamic model of a WPP is required to be performed periodically. This is because the control parameters of the WTGs and the other supporting components within a WPP may be modified to comply with new grid codes or upgrades to the WTG controller with new capabilities developed by the turbine manufacturers or requested by the plant owners or operators. The diversity within a WPP affects the way we represent it in a model. Diversity within a WPP may be found in the way the WTGs are controlled, the wind resource, the layout of the WPP (electrical diversity), and the type of WTGs used. Each group of WTGs constitutes a significant portion of the output power of the WPP, and their unique and salient behaviors should be represented individually. The objective of this paper is to illustrate the process of dynamic model validations of WTGs and WPPs, the available data recorded that must be screened before it is used for the dynamic validations, and the assumptions made in the dynamic models of the WTG and WPP that must be understood. Without understanding the correct process, the validations may lead to the wrong representations of the WTG and WPP modeled.

  19. Development of Dynamic Spent Nuclear Fuel Environmental Effect Analysis Model

    International Nuclear Information System (INIS)

    Jeong, Chang Joon; Ko, Won Il; Lee, Ho Hee; Cho, Dong Keun; Park, Chang Je

    2010-07-01

    The dynamic environmental effect evaluation model for spent nuclear fuel has been developed and incorporated into the system dynamic DANESS code. First, the spent nuclear fuel isotope decay model was modeled. Then, the environmental effects were modeled through short-term decay heat model, short-term radioactivity model, and long-term heat load model. By using the developed model, the Korean once-through nuclear fuel cycles was analyzed. The once-through fuel cycle analysis was modeled based on the Korean 'National Energy Basic Plan' up to 2030 and a postulated nuclear demand growth rate until 2150. From the once-through results, it is shown that the nuclear power demand would be ∼70 GWe and the total amount of the spent fuel accumulated by 2150 would be ∼168000 t. If the disposal starts from 2060, the short-term decay heat of Cs-137 and Sr-90 isotopes are W and 1.8x10 6 W in 2100. Also, the total long-term heat load in 2100 will be 4415 MW-y. From the calculation results, it was found that the developed model is very convenient and simple for evaluation of the environmental effect of the spent nuclear fuel

  20. Preliminary Failure Modes, Effects and Criticality Analysis (FMECA) of the Brayton Isotope Power System (BIPS) Ground Demonstration System. Report 76-311965

    International Nuclear Information System (INIS)

    Miller, L.G.

    1976-01-01

    A Failure Modes, Effects and Criticality Analysis (FMECA) has been made of the Brayton Isotope Power System Ground Demonstration System (BIPS-GDS). Details of the analysis are discussed. The BIPS Flight System was recently analyzed in an AIRPHX report. Since the results of the Flight System FMECA are directly applicable to the BIPS to be tested in the GDS mode, the contents of the earlier FMECA have not been repeated in this current analysis. The BIPS-FS FMECA has been reviewed and determined to be essentially current

  1. Stable water isotopes suggest sub-canopy water recycling in a northern forested catchment

    Science.gov (United States)

    Mark B. Green; Bethany K. Laursen; John L. Campbell; Kevin J. McGuire; Eric P. Kelsey

    2015-01-01

    Stable water isotopes provide a means of tracing many hydrologic processes, including poorly understood dynamics like soil water interactions with the atmosphere. We present a four-year dataset of biweekly water isotope samples from eight fluxes and stores in a headwater catchment at the Hubbard Brook Experimental Forest, New Hampshire, USA. We use Dansgaard's...

  2. The power dynamics perpetuating unsafe abortion in Africa: a feminist perspective.

    Science.gov (United States)

    Braam, Tamara; Hessini, Leila

    2004-04-01

    Tens of thousands of African women die every year because societies and governments either ignore the issue of unsafe abortion or actively refuse to address it. This paper explores the issue of abortion from a feminist perspective, centrally arguing that finding appropriate strategies to reclaim women's power at an individual and social level is a central lever for developing effective strategies to increase women's access to safe abortion services. The paper emphasises the central role of patriarchy in shaping the ways power plays itself out in individual relationships, and at social, economic and political levels. The ideology of male superiority denies abortion as an important issue of status and frames the morality, legality and socio-cultural attitudes towards abortion. Patriarchy sculpts unequal gender power relationships and takes power away from women in making decisions about their bodies. Other forms of power such as economic inequality, discourse and power within relationships are also explored. Recommended solutions to shifting the power dynamics around the issue include a combination of public health, rights-based, legal reform and social justice approaches.

  3. Dynamic performance of power generation systems for off-shore oil and gas platforms

    DEFF Research Database (Denmark)

    Pierobon, Leonardo; Breuhaus, Peter; Haglind, Fredrik

    2014-01-01

    %) arises on the prediction of the rotational speed of the high pressure shaft, while the largest deviation (average relative error ~20%) occurs in the evaluation of the pressure at the outlet of the low pressure turbine. As waste heat recovery units (e.g. organic Rankine cycles) are likely...... to be implemented in future off-shore platforms, the proposed model may serve in the design phase for a preliminary assessment of the dynamic response of the power generation system and to evaluate if requirements such as minimum and maximum frequency during transient operation and the recovery time are satisfied......On off-shore oil and gas platforms two or more gas turbines typically support the electrical demand on site by operating as a stand-alone (island) power system. As reliability and availability are major concerns during operation, the dynamic performance of the power generation system becomes...

  4. Small disturbance voltage stability assessment of power systems by modal analysis and dynamic simulation

    International Nuclear Information System (INIS)

    Amjady, Nima; Ansari, Mohammad Reza

    2008-01-01

    The introduction of liberalized electricity markets in many countries has resulted in more highly stressed power systems. On the other hand, operating points of a power system are acceptable in the feasible region, which is surrounded by the borders of different stabilities. Power system instability is critical for all participants of the electricity market. Determination of different stability margins can result in the optimum utilization of power system with minimum risk. This paper focuses on the small disturbance voltage stability, which is an important subset of the power system global stability. This kind of voltage stability is usually evaluated by static analysis tools such as continuation power flow, while it essentially has dynamic nature. Besides, a combination of linear and nonlinear analysis tools is required to correctly analyze it. In this paper, a hybrid evaluation method composed of static, dynamic, linear, and nonlinear analysis tools is proposed for this purpose. Effect of load scenario, generation pattern, branch and generator contingency on the small disturbance voltage stability are evaluated by the hybrid method. The test results are given for New England and IEEE68 bus test systems. (author)

  5. Isotopic power materials development. Quarterly progress report for period ending March 31, 1976

    International Nuclear Information System (INIS)

    Schaffhauser, A.C.

    1976-06-01

    The second in a series of quarterly reports for Technology and Space Applications materials programs conducted by the Metals and Ceramics Division of Oak Ridge National Laboratory for the Nuclear Research and Applications Division of ERDA is presented. These quarterly reports replace the monthly and annual reports previously issued on this work. The areas of research covered include high-temperature alloys for space isotopic heat sources, physical and mechanical metallurgy of heat source containment materials, isotope Brayton system materials support, and space nuclear flight systems hardware

  6. A new multi-objective reserve constrained combined heat and power dynamic economic emission dispatch

    International Nuclear Information System (INIS)

    Niknam, Taher; Azizipanah-Abarghooee, Rasoul; Roosta, Alireza; Amiri, Babak

    2012-01-01

    Combined heat and power units are playing an ever increasing role in conventional power stations due to advantages such as reduced emissions and operational cost savings. This paper investigates a more practical formulation of the complex non-convex, non-smooth and non-linear multi-objective dynamic economic emission dispatch that incorporates combined heat and power units. Integrating these types of units, and their power ramp constraints, require an efficient tool to cope with the joint characteristics of power and heat. Unlike previous approaches, the spinning reserve requirements of this system are clearly formulated in the problem. In this way, a new multi-objective optimisation based on an enhanced firefly algorithm is proposed to achieve a set of non-dominated (Pareto-optimal) solutions. A new tuning parameter based on a chaotic mechanism and novel self adaptive probabilistic mutation strategies are used to improve the overall performance of the algorithm. The numerical results demonstrate how the proposed framework was applied in real time studies. -- Highlights: ► Investigate a practical formulation of the DEED (Dynamic Economic Emission Dispatch). ► Consider combined heat and power units. ► Consider power ramp constraints. ► Consider the system spinning reserve requirements. ► Present a new multi-objective optimization firefly.

  7. Collective many-body dynamics in the vicinity of nuclear driplines

    International Nuclear Information System (INIS)

    Volya, Alexander; Zelevinsky, Vladimir

    2007-01-01

    The Continuum Shell Model is a powerful theoretical tool for analysis of many-body dynamics embedded in the continuum. Here we formulate the method and use an example of a realistic shell model calculation for oxygen isotopes to demonstrate the seamless transition from bound states to resonances and cross sections in continuum within the same framework. The coupled dynamics of intrinsic states and continuum is traced further to the regime of continuum dominance that implies the decay width collectivization and onset of super-radiance. The coexistence and interplay of internal collective motion, such as giant resonances, and decay are of particular interest. Schematic and realistic calculations illustrate changes in the strength distribution and the natural appearance of the so-called pygmy mode

  8. Isotopic composition of rainfall and runoff in a small arid basin with implications for deep percolation

    International Nuclear Information System (INIS)

    Dody, A.

    1995-08-01

    The aim of this work was to characterize the isotopic composition of potential recharge in an arid rocky watershed. Unique field observations were obtained from an arid watershed in the Negev Highlands, Israel, through utilization of the dynamic variations in the isotopic composition of rainfall and runoff. The hydrological system's inputs are rainfall and its isotopic composition. Rainfall and runoff were sampled in eight storms. High variability in the isotopic composition of rainfall was observed during any single rainstorm. The isotopic distribution in the runoff at the outlet of the basin appeared often not to be correlated to the isotopic patterns of the associated rain storm. A new mathematical model was developed to describe these physical processes. The model called A Double-Component Kinematic Wave Flow and Transport Approach, was designated to assess the dynamic isotopic distribution in arid rain storms and runoff. This model simulates the transport of rainfall into overland flow and runoff in an arid rocky watershed with uniformly distributed shallow depression storage. A numerical solution for the problem was developed, to estimate the depression storage parameters. The model also reflects the isotopic memory effect due to the depression storage between sequential rain showers. A good agreement between the observed and computed hydrograph and the change of the δ 18O values in runoff in time confirms the validity of the model. (author) 138 figs., 125 refs

  9. Model-based dynamic multi-parameter method for peak power estimation of lithium-ion batteries

    NARCIS (Netherlands)

    Sun, F.; Xiong, R.; He, H.; Li, W.; Aussems, J.E.E.

    2012-01-01

    A model-based dynamic multi-parameter method for peak power estimation is proposed for batteries and battery management systems (BMSs) used in hybrid electric vehicles (HEVs). The available power must be accurately calculated in order to not damage the battery by over charging or over discharging or

  10. Benchmarking burnup reconstruction methods for dynamically operated research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Sternat, Matthew R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Charlton, William S. [Univ. of Nebraska, Lincoln, NE (United States). National Strategic Research Institute; Nichols, Theodore F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-03-01

    The burnup of an HEU fueled dynamically operated research reactor, the Oak Ridge Research Reactor, was experimentally reconstructed using two different analytic methodologies and a suite of signature isotopes to evaluate techniques for estimating burnup for research reactor fuel. The methods studied include using individual signature isotopes and the complete mass spectrometry spectrum to recover the sample’s burnup. The individual, or sets of, isotopes include 148Nd, 137Cs+137Ba, 139La, and 145Nd+146Nd. The storage documentation from the analyzed fuel material provided two different measures of burnup: burnup percentage and the total power generated from the assembly in MWd. When normalized to conventional units, these two references differed by 7.8% (395.42GWd/MTHM and 426.27GWd/MTHM) in the resulting burnup for the spent fuel element used in the benchmark. Among all methods being evaluated, the results were within 11.3% of either reference burnup. The results were mixed in closeness to both reference burnups; however, consistent results were achieved from all three experimental samples.

  11. Nuclear structure of Uranium isotopes in the frame work of two parameter formula

    International Nuclear Information System (INIS)

    Vidya Devi; Gupta, J.B.

    2017-01-01

    We studied the power law, ab formula and SRF which are applicable for both deformed and soft nuclei. The formula is particularly successful in soft rotor and deformed nuclei with 2:8≤ R 4/2 3:3. The power law gives good fit of the data for b and a derived either from 2 + , 4 + or 6 + , 8 + energy levels. This study help to understand the structure of isotopes of Uranium and useful to find some new energy level of these isotopes theoretically

  12. Thermal transport across solid-solid interfaces enhanced by pre-interface isotope-phonon scattering

    Science.gov (United States)

    Lee, Eungkyu; Luo, Tengfei

    2018-01-01

    Thermal transport across solid interfaces can play critical roles in the thermal management of electronics. In this letter, we use non-equilibrium molecular dynamics simulations to investigate the isotope effect on the thermal transport across SiC/GaN interfaces. It is found that engineered isotopes (e.g., 10% 15N or 71Ga) in the GaN layer can increase the interfacial thermal conductance compared to the isotopically pure case by as much as 23%. Different isotope doping features, such as the isotope concentration, skin depth of the isotope region, and its distance from the interface, are investigated, and all of them lead to increases in thermal conductance. Studies of spectral temperatures of phonon modes indicate that interfacial thermal transport due to low-frequency phonons (transport. This work may provide insights into interfacial thermal transport and useful guidance to practical material design.

  13. Passive sampling for the isotopic fingerprinting of atmospheric mercury

    Science.gov (United States)

    Bergquist, B. A.; MacLagan, D.; Spoznar, N.; Kaplan, R.; Chandan, P.; Stupple, G.; Zimmerman, L.; Wania, F.; Mitchell, C. P. J.; Steffen, A.; Monaci, F.; Derry, L. A.

    2017-12-01

    Recent studies show that there are variations in the mercury (Hg) isotopic signature of atmospheric Hg, which demonstrates the potential for source tracing and improved understanding of atmospheric cycling of Hg. However, current methods for both measuring atmospheric Hg and collecting enough atmospheric Hg for isotopic analyses require expensive instruments that need power and expertise. Additionally, methods for collecting enough atmospheric Hg for isotopic analysis require pumping air through traps for long periods (weeks and longer). Combining a new passive atmospheric sampler for mercury (Hg) with novel Hg isotopic analyses will allow for the application of stable Hg isotopes to atmospheric studies of Hg. Our group has been testing a new passive sampler for gaseous Hg that relies on the diffusion of Hg through a diffusive barrier and adsorption onto a sulphur-impregnated activated carbon sorbent. The benefit of this passive sampler is that it is low cost, requires no power, and collects gaseous Hg for up to one year with linear, well-defined uptake, which allows for reproducible and accurate measurements of atmospheric gaseous Hg concentrations ( 8% uncertainty). As little as one month of sampling is often adequate to collect sufficient Hg for isotopic analysis at typical background concentrations. Experiments comparing the isotopic Hg signature in activated carbon samples using different approaches (i.e. by passive diffusion, by passive diffusion through diffusive barriers of different thickness, by active pumping) and at different temperatures confirm that the sampling process itself does not impose mass-independent fractionation (MIF). However, sampling does result in a consistent and thus correctable mass-dependent fractionation (MDF) effect. Therefore, the sampler preserves Hg MIF with very high accuracy and precision, which is necessary for atmospheric source tracing, and reasonable MDF can be estimated with some increase in error. In addition to

  14. Laser Isotope Enrichment for Medical and Industrial Applications

    Energy Technology Data Exchange (ETDEWEB)

    Leonard Bond

    2006-07-01

    Laser Isotope Enrichment for Medical and Industrial Applications by Jeff Eerkens (University of Missouri), Jay Kunze (Idaho State University), and Leonard Bond (Idaho National Laboratory) The principal isotope enrichment business in the world is the enrichment of uranium for commercial power reactor fuels. However, there are a number of other needs for separated isotopes. Some examples are: 1) Pure isotopic targets for irradiation to produce medical radioisotopes. 2) Pure isotopes for semiconductors. 3) Low neutron capture isotopes for various uses in nuclear reactors. 4) Isotopes for industrial tracer/identification applications. Examples of interest to medicine are targets to produce radio-isotopes such as S-33, Mo-98, Mo-100, W-186, Sn-112; while for MRI diagnostics, the non-radioactive Xe-129 isotope is wanted. For super-semiconductor applications some desired industrial isotopes are Si-28, Ga-69, Ge-74, Se-80, Te-128, etc. An example of a low cross section isotope for use in reactors is Zn-68 as a corrosion inhibitor material in nuclear reactor primary systems. Neutron activation of Ar isotopes is of interest in industrial tracer and diagnostic applications (e.g. oil-logging). . In the past few years there has been a sufficient supply of isotopes in common demand, because of huge Russian stockpiles produced with old electromagnetic and centrifuge separators previously used for uranium enrichment. Production of specialized isotopes in the USA has been largely accomplished using old ”calutrons” (electromagnetic separators) at Oak Ridge National Laboratory. These methods of separating isotopes are rather energy inefficient. Use of lasers for isotope separation has been considered for many decades. None of the proposed methods have attained sufficient proof of principal status to be economically attractive to pursue commercially. Some of the authors have succeeded in separating sulfur isotopes using a rather new and different method, known as condensation

  15. Laser Isotope Enrichment for Medical and Industrial Applications

    International Nuclear Information System (INIS)

    Leonard Bond

    2006-01-01

    Laser Isotope Enrichment for Medical and Industrial Applications by Jeff Eerkens (University of Missouri), Jay Kunze (Idaho State University), and Leonard Bond (Idaho National Laboratory) The principal isotope enrichment business in the world is the enrichment of uranium for commercial power reactor fuels. However, there are a number of other needs for separated isotopes. Some examples are: (1) Pure isotopic targets for irradiation to produce medical radioisotopes. (2) Pure isotopes for semiconductors. (3) Low neutron capture isotopes for various uses in nuclear reactors. (4) Isotopes for industrial tracer/identification applications. Examples of interest to medicine are targets to produce radio-isotopes such as S-33, Mo-98, Mo-100, W-186, Sn-112; while for MRI diagnostics, the non-radioactive Xe-129 isotope is wanted. For super-semiconductor applications some desired industrial isotopes are Si-28, Ga-69, Ge-74, Se-80, Te-128, etc. An example of a low cross section isotope for use in reactors is Zn-68 as a corrosion inhibitor material in nuclear reactor primary systems. Neutron activation of Ar isotopes is of interest in industrial tracer and diagnostic applications (e.g. oil-logging). . In the past few years there has been a sufficient supply of isotopes in common demand, because of huge Russian stockpiles produced with old electromagnetic and centrifuge separators previously used for uranium enrichment. Production of specialized isotopes in the USA has been largely accomplished using old ''calutrons'' (electromagnetic separators) at Oak Ridge National Laboratory. These methods of separating isotopes are rather energy inefficient. Use of lasers for isotope separation has been considered for many decades. None of the proposed methods have attained sufficient proof of principal status to be economically attractive to pursue commercially. Some of the authors have succeeded in separating sulfur isotopes using a rather new and different method, known as condensation

  16. Comparison of dynamic compensation methods for delayed self-powered neutron detector

    International Nuclear Information System (INIS)

    In, Wang Kee; Kim, Joon Sung; Auh, Geun Sun; Yoon, Tae Young

    1993-01-01

    Dynamic compensation methods for rhodium self-powered neutron detector have been developed by Banda and Hoppe to compensate for the time delay associated with detector signals. The time delay is due to the decay of the neutron-activated rhodium and results in delayed detector response. Two digital dynamic compensation methods, were compared for step change of neutron flux in this paper. The inverse kinetics method gave slightly better response time and noise gain. However, the inverse kinetics method also showed overshooting of neutron flux for the step change. (Author)

  17. Water isotope systematics: Improving our palaeoclimate interpretations

    Science.gov (United States)

    Jones, M. D.; Dee, S.; Anderson, L.; Baker, A.; Bowen, G.; Noone, D.

    2016-01-01

    The stable isotopes of oxygen and hydrogen, measured in a variety of archives, are widely used proxies in Quaternary Science. Understanding the processes that control δ18O change have long been a focus of research (e.g. Shackleton and Opdyke, 1973; Talbot, 1990 ; Leng, 2006). Both the dynamics of water isotope cycling and the appropriate interpretation of geological water-isotope proxy time series remain subjects of active research and debate. It is clear that achieving a complete understanding of the isotope systematics for any given archive type, and ideally each individual archive, is vital if these palaeo-data are to be used to their full potential, including comparison with climate model experiments of the past. Combining information from modern monitoring and process studies, climate models, and proxy data is crucial for improving our statistical constraints on reconstructions of past climate variability.As climate models increasingly incorporate stable water isotope physics, this common language should aid quantitative comparisons between proxy data and climate model output. Water-isotope palaeoclimate data provide crucial metrics for validating GCMs, whereas GCMs provide a tool for exploring the climate variability dominating signals in the proxy data. Several of the studies in this set of papers highlight how collaborations between palaeoclimate experimentalists and modelers may serve to expand the usefulness of palaeoclimate data for climate prediction in future work.This collection of papers follows the session on Water Isotope Systematics held at the 2013 AGU Fall Meeting in San Francisco. Papers in that session, the breadth of which are represented here, discussed such issues as; understanding sub-GNIP scale (Global Network for Isotopes in Precipitation, (IAEA/WMO, 2006)) variability in isotopes in precipitation from different regions, detailed examination of the transfer of isotope signals from precipitation to geological archives, and the

  18. Incorporating Semantic Knowledge into Dynamic Data Processing for Smart Power Grids

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Qunzhi; Simmhan, Yogesh; Prasanna, Viktor

    2012-11-15

    Semantic Web allows us to model and query time-invariant or slowly evolving knowledge using ontologies. Emerging applications in Cyber Physical Systems such as Smart Power Grids that require continuous information monitoring and integration present novel opportunities and challenges for Semantic Web technologies. Semantic Web is promising to model diverse Smart Grid domain knowledge for enhanced situation awareness and response by multi-disciplinary participants. However, current technology does pose a performance overhead for dynamic analysis of sensor measurements. In this paper, we combine semantic web and complex event processing for stream based semantic querying. We illustrate its adoption in the USC Campus Micro-Grid for detecting and enacting dynamic response strategies to peak power situations by diverse user roles. We also describe the semantic ontology and event query model that supports this. Further, we introduce and evaluate caching techniques to improve the response time for semantic event queries to meet our application needs and enable sustainable energy management.

  19. Particle and radiation simulations for the proposed rare isotope accelerator facility

    Science.gov (United States)

    Remec, Igor; Gabriel, Tony A.; Wendel, Mark W.; Conner, David L.; Burgess, Thomas W.; Ronningen, Reginald M.; Blideanu, Valentin; Bollen, Georg; Boles, Jason L.; Reyes, Susana; Ahle, Larry E.; Stein, Werner

    2006-06-01

    The Rare Isotope Accelerator (RIA) facility, planned to be built in the USA, will be capable of delivering diverse beams, from protons to uranium ions, with energies from 1 GeV to at least 400 MeV per nucleon to rare isotope-producing targets. High beam power—400 kW—will allow RIA to become the most powerful rare isotope beam facility in the world; however, it also creates challenges for the design of the isotope-production targets. This paper focuses on the isotope-separator-on-line (ISOL) target work, particularly the radiation transport aspects of the two-step fission target design. Simulations were performed with the PHITS, MCNPX, and MARS15 computer codes. A two-step ISOL target considered here consists of a mercury or tungsten primary target in which primary beam interactions release neutrons, which in turn induce fissions—and produce rare isotopes—in the secondary target filled with fissionable material. Three primary beams were considered: 1-GeV protons, 622-MeV/u deuterons, and 777-MeV/u 3He ions. The proton and deuterium beams were found to be about equivalent in terms of induced fission rates and heating rates in the target, while the 3He beam, without optimizing the target geometry, was less favorable, producing about 15% fewer fissions and about 50% higher heating rates than the proton beam at the same beam power.

  20. Interplay Between Energy-Market Dynamics and Physical Stability of a Smart Power Grid

    Science.gov (United States)

    Picozzi, Sergio; Mammoli, Andrea; Sorrentino, Francesco

    2013-03-01

    A smart power grid is being envisioned for the future which, among other features, should enable users to play the dual role of consumers as well as producers and traders of energy, thanks to emerging renewable energy production and energy storage technologies. As a complex dynamical system, any power grid is subject to physical instabilities. With existing grids, such instabilities tend to be caused by natural disasters, human errors, or weather-related peaks in demand. In this work we analyze the impact, upon the stability of a smart grid, of the energy-market dynamics arising from users' ability to buy from and sell energy to other users. The stability analysis of the resulting dynamical system is performed assuming different proposed models for this market of the future, and the corresponding stability regions in parameter space are identified. We test our theoretical findings by comparing them with data collected from some existing prototype systems.

  1. Dynamic model reduction: An overview of available techniques with application to power systems

    Directory of Open Access Journals (Sweden)

    Đukić Savo D.

    2012-01-01

    Full Text Available This paper summarises the model reduction techniques used for the reduction of large-scale linear and nonlinear dynamic models, described by the differential and algebraic equations that are commonly used in control theory. The groups of methods discussed in this paper for reduction of the linear dynamic model are based on singular perturbation analysis, modal analysis, singular value decomposition, moment matching and methods based on a combination of singular value decomposition and moment matching. Among the nonlinear dynamic model reduction methods, proper orthogonal decomposition, the trajectory piecewise linear method, balancing-based methods, reduction by optimising system matrices and projection from a linearised model, are described. Part of the paper is devoted to the techniques commonly used for reduction (equivalencing of large-scale power systems, which are based on coherency, synchrony, singular perturbation analysis, modal analysis and identification. Two (most interesting of the described techniques are applied to the reduction of the commonly used New England 10-generator, 39-bus test power system.

  2. Isotope hydrology: Investigating groundwater contamination

    International Nuclear Information System (INIS)

    Dubinchuk, V.; Froehlich, K.; Gonfiantini, R.

    1989-01-01

    Groundwater quality has worsened in many regions, with sometimes serious consequences. Decontaminating groundwater is an extremely slow process, and sometimes impossible, because of the generally long residence time of the water in most geological formations. Major causes of contamination are poor groundwater management (often dictated by immediate social needs) and the lack of regulations and control over the use and disposal of contaminants. These types of problems have prompted an increasing demand for investigations directed at gaining insight into the behaviour of contaminants in the hydrological cycle. Major objectives are to prevent pollution and degradation of groundwater resources, or, if contamination already has occurred, to identify its origin so that remedies can be proposed. Environmental isotopes have proved to be a powerful tool for groundwater pollution studies. The IAEA has had a co-ordinated research programme since 1987 on the application of nuclear techniques to determine the transport of contaminants in groundwater. An isotope hydrology project is being launched within the framework of the IAEA's regional co-operative programme in Latin America (known as ARCAL). Main objectives are the application of environmental isotopes to problems of groundwater assessment and contamination in Latin America. In 1989, another co-ordinated research programme is planned under which isotopic and other tracers will be used for the validation of mathematical models in groundwater transport studies

  3. A wearable wireless ECG monitoring system with dynamic transmission power control for long-term homecare.

    Science.gov (United States)

    Wang, Yishan; Doleschel, Sammy; Wunderlich, Ralf; Heinen, Stefan

    2015-03-01

    This paper presents a wearable wireless ECG monitoring system based on novel 3-Lead electrode placements for long-term homecare. The experiment for novel 3-Lead electrode placements is carried out, and the results show that the distance between limb electrodes can be significantly reduced. Based on the new electrode position, a small size sensor node, which is powered by a rechargeable battery, is designed to detect, amplify, filter and transmit the ECG signals. The coordinator receives the data and sends it to PC. Finally the signals are displayed on the GUI. In order to control the power consumption of sensor node, a dynamic power adjustment method is applied to automatically adjust the transmission power of the sensor node according to the received signal strength indicator (RSSI), which is related to the distance and obstacle between sensor node and coordinator. The system is evaluated when the user, who wears the sensor, is walking and running. A promising performance is achieved even under body motion. The power consumption can be significantly reduced with this dynamic power adjustment method.

  4. The ruthenium isotopic composition of the oceanic mantle

    Science.gov (United States)

    Bermingham, K. R.; Walker, R. J.

    2017-09-01

    The approximately chondritic relative, and comparatively high absolute mantle abundances of the highly siderophile elements (HSE), suggest that their concentrations in the bulk silicate Earth were primarily established during a final ∼0.5 to 1% of ;late accretion; to the mantle, following the cessation of core segregation. Consequently, the isotopic composition of the HSE Ru in the mantle reflects an amalgamation of the isotopic compositions of late accretionary contributions to the silicate portion of the Earth. Among cosmochemical materials, Ru is characterized by considerable mass-independent isotopic variability, making it a powerful genetic tracer of Earth's late accretionary building blocks. To define the Ru isotopic composition of the oceanic mantle, the largest portion of the accessible mantle, we report Ru isotopic data for materials from one Archean and seven Phanerozoic oceanic mantle domains. A sample from a continental lithospheric mantle domain is also examined. All samples have identical Ru isotopic compositions, within analytical uncertainties, indicating that Ru isotopes are well mixed in the oceanic mantle, defining a μ100Ru value of 1.2 ± 7.2 (2SD). The only known meteorites with the same Ru isotopic composition are enstatite chondrites and, when corrected for the effects of cosmic ray exposure, members of the Main Group and sLL subgroup of the IAB iron meteorite complex which have a collective CRE corrected μ100Ru value of 0.9 ± 3.0. This suggests that materials from the region(s) of the solar nebula sampled by these meteorites likely contributed the dominant portion of late accreted materials to Earth's mantle.

  5. Application of isotope hydrology related to limnological investigations in India

    International Nuclear Information System (INIS)

    Saravana Kumar, U.; Navada, S.V.

    2007-01-01

    Among the various hydrological environments, lakes are often well suited to investigate using isotopic tracers, environmental or injected. Lakes are systems, which although complex, are generally accessible to all points for sample collection, tracer injections and in-situ measurement. The various types of isotope applications in lake studies (limnology), reported in various literatures include; i) Lake dynamics investigations, interaction between lakes and adjacent water bodies (springs, river, groundwater etc) and the related water balance computations, ii) Lake sedimentation processes, iii) Gas exchange between lake water and the atmosphere, iv) Paleo-hydrologic and paleo-climatological problems etc. In this article, a few Indian case studies covering some of the above types of isotope applications in limnology are briefly summarized. (author)

  6. Dynamic Balanced Scorecard for companies in the business field of power supply; Dynamic Balanced Scorecard fuer Unternehmen im Geschaeftsfeld der dezentralen Energieversorgung

    Energy Technology Data Exchange (ETDEWEB)

    Hollmann, M.; Roy, I. [Paderborn Univ. (Germany). Lehrstuhl fuer Nachhaltige Energiekonzepte

    2006-06-19

    Due to deregulation and liberalisation of the power market and due to the opting out of the nuclear energy, the decentralized power supply increasingly gains in importance in comparison to the classical power supply. Thus, the entrepreneur who wants to engage in the decentralized power supply needs a management tool for conversion and supervision his strategy. A pertinent means for this already is the Dynamic Balanced Scorecard. By means of an evaluation of a simple balanced scorecard, the entrepreneur realizes his vision and strategy in order to determine the success-critical factors. These success-critical factors are related together in a causal chain. By this, the entrepreneur can recognize, what has to be done in order to act successfully on the market, and in order to secure the success on a long-term basis. The modelling of the Dynamic balanced Scorecard enables the examination of the corporate strategy, before it is implemented in the enterprise. Thus, the entrepreneur saves time and minimizes the corporate risk.

  7. A free-air system for long-term stable carbon isotope labeling of adult forest trees

    Science.gov (United States)

    Stable carbon (C) isotopes, in particular employed in labeling experiments, are an ideal tool to broaden our understanding of C dynamics in trees and forest ecosystems. Here, we present a free-air exposure system, named isoFACE, designed for long-term stable C isotope labeling in...

  8. Isotopic evaluations of dynamic and plant uptake of N in soil amended with 15N-labelled sewage sludge

    International Nuclear Information System (INIS)

    Kchaou, R.; Khelil, M. N.; Rejeb, S.; Gharbi, F.; Henchi, B.; Hernandez, T.; Destain, J. P.

    2010-01-01

    Field experiments were conducted to evaluate the use of a novel 15N isotope technique for comparing the dynamics of N derived from sewage sludge applied to sorghum to the dynamics of N derived from the commercial fertilizer, urea. The treatments included a control, sludge applied at three rates (3, 6 and 9 t/ha, or 113, 226 and 338 kg N/ha) and N-urea applied at three rates (150, 250 and 350 kg N/ha). Recovery of 15N -labelled sludge was similar for the different nitrogen rates applied , with a mean value of 27%. However, the recovery of 15N -urea decreased as the rate of N application increased (from 38% to 27%). Approximately 22% and 19% of the 15N from sludge and urea, respectively, remained in the 0-60 cm layer of soil, most of which was present in the 0-20 cm layer. Furthermore, losses of 15N -labelled fertilizer were not affected by the N fertilization source, and the greatest losses, which were measured in response to the highest N application rate, were 59%. (authors)

  9. Modelling the dynamics of the cogeneration power plant gas-air duct

    Directory of Open Access Journals (Sweden)

    Аnatoliy N. Bundyuk

    2014-12-01

    Full Text Available Introducing into wide practice the cogeneration power plants (or CHP is one of promising directions of the Ukrainian small-scale power engineering development. Thermal and electric energy generation using the same fuel kind can increase the overall plant efficiency. That makes it appropriate to use CHPs at compact residential areas, isolated industrial enterprises constituting one complex with staff housing area, at sports complexes, etc. The gas-air duct of the cogeneration power plant has been considered as an object of the diesel-generator shaft velocity control. The developed GAD mathematical model, served to analyze the CHP dynamic characteristics as acceleration curves obtained under different external disturbances in the MathWorks MATLAB environment. According to the electric power generation technology requirements a convenient transition process type has been selected, with subsequent identification of the diesel-generator shaft rotation speed control law.

  10. Fuel reprocessing data validation using the isotope correlation technique

    International Nuclear Information System (INIS)

    Persiani, P.J.; Bucher, R.G.; Pond, R.B.; Cornella, R.J.

    1990-01-01

    The Isotope Correlation Technique (ICT), in conjunction with the gravimetric (Pu/U ratio) method for mass determination, provides an independent verification of the input accountancy at the dissolver or accountancy stage of the reprocessing plant. The Isotope Correlation Technique has been applied to many classes of domestic and international reactor systems (light-water, heavy-water, and graphite reactors) operating in a variety of modes (power, research, and production reactors), and for a variety of reprocessing fuel cycle management strategies. Analysis of reprocessing operations data based on isotopic correlations derived for assemblies in a PWR environment and fuel management scheme, yielded differences between the measurement-derived and ICT-derived plutonium mass determinations of (- 0.02 ± 0.23)% for the measured U-235 and (+ 0.50 ± 0.31)% for the measured Pu-239, for a core campaign. The ICT analyses has been implemented for the plutonium isotopics in a depleted uranium assembly in a heavy-water, enriched uranium system and for the uranium isotopes in the fuel assemblies in light-water, highly-enriched systems

  11. LACAN Code for global simulation of SILVA laser isotope separation process

    International Nuclear Information System (INIS)

    Quaegebeur, J.P.; Goldstein, S.

    1991-01-01

    Functions used for the definition of a SILVA separator require quite a lot of dimensional and operating parameters. Sizing a laser isotope separation plant needs the determination of these parameters for optimization. In the LACAN simulation code, each elementary physical process is described by simplified models. An example is given for a uranium isotope separation plant whose separation power is optimized with 6 parameters [fr

  12. Isotope correlations for safeguards surveillance and accountancy methods

    International Nuclear Information System (INIS)

    Persiani, P.J.; Kalimullah.

    1983-01-01

    Isotope correlations corroborated by experiments, coupled with measurement methods for nuclear material in the fuel cycle have the potential as a safeguards surveillance and accountancy system. The US/DOE/OSS Isotope Correlations for Surveillance and Accountancy Methods (ICSAM) program has been structured into three phases: (1) the analytical development of Isotope Correlation Technique (ICT) for actual power reactor fuel cycles; (2) the development of a dedicated portable ICT computer system for in-field implementation, and (3) the experimental program for measurement of U, Pu isotopics in representative spent fuel-rods of the initial 3 or 4 burnup cycles of the Commonwealth Edison Zion -1 and -2 PWR power plants. Since any particular correlation could generate different curves depending upon the type and positioning of the fuel assembly, a 3-D reactor model and 2-group cross section depletion calculation for the first cycle of the ZION-2 was performed with each fuel assembly as a depletion block. It is found that for a given PWR all assemblies with a unique combination of enrichment zone and number of burnable poison rods (BPRs) generate one coincident curve. Some correlations are found to generate a single curve for assemblies of all enrichments and number of BPRs. The 8 axial segments of the 3-D calculation generate one coincident curve for each correlation. For some correlations the curve for the full assembly homogenized over core-height deviates from the curve for the 8 axial segments, and for other correlations coincides with the curve for the segments. The former behavior is primarily based on the transmutation lag between the end segment and the middle segments. The experimental implication is that the isotope correlations exhibiting this behavior can be determined by dissolving a full assembly but not by dissolving only an axial segment, or pellets

  13. Power-law Growth and Punctuated Equilibrium Dynamics in Water Resources Systems

    Science.gov (United States)

    Parolari, A.; Katul, G. G.; Porporato, A. M.

    2015-12-01

    The global rise in population-driven water scarcity and recent appreciation of strong dynamic coupling between human and natural systems has called for new approaches to predict the future sustainability of regional and global water resources systems. The dynamics of coupled human-water systems are driven by a complex set of social, environmental, and technological factors. Present projections of water resources systems range from a finite carrying capacity regulated by accessible freshwater, or `peak renewable water,' to punctuated evolution with new supplied and improved efficiency gained from technological and social innovation. However, these projections have yet to be quantified from observations or in a comprehensive theoretical framework. Using data on global water withdrawals and storage capacity of regional water supply systems, non-trivial dynamics are identified in water resources systems development over time, including power-law growth and punctuated equilibria. Two models are introduced to explain this behavior: (1) a delay differential equation and (2) a power-law with log-periodic oscillations, both of which rely on past conditions (or system memory) to describe the present rate of growth in the system. In addition, extension of the first model demonstrates how system delays and punctuated equilibria can emerge from coupling between human population growth and associated resource demands. Lastly, anecdotal evidence is used to demonstrate the likelihood of power-law growth in global water use from the agricultural revolution 3000 BC to the present. In a practical sense, the presence of these patterns in models with delayed oscillations suggests that current decision-making related to water resources development results from the historical accumulation of resource use decisions, technological and social changes, and their consequences.

  14. Dynamic population artificial bee colony algorithm for multi-objective optimal power flow

    Directory of Open Access Journals (Sweden)

    Man Ding

    2017-03-01

    Full Text Available This paper proposes a novel artificial bee colony algorithm with dynamic population (ABC-DP, which synergizes the idea of extended life-cycle evolving model to balance the exploration and exploitation tradeoff. The proposed ABC-DP is a more bee-colony-realistic model that the bee can reproduce and die dynamically throughout the foraging process and population size varies as the algorithm runs. ABC-DP is then used for solving the optimal power flow (OPF problem in power systems that considers the cost, loss, and emission impacts as the objective functions. The 30-bus IEEE test system is presented to illustrate the application of the proposed algorithm. The simulation results, which are also compared to nondominated sorting genetic algorithm II (NSGAII and multi-objective ABC (MOABC, are presented to illustrate the effectiveness and robustness of the proposed method.

  15. Controls of Isotopic Patterns in Saprotrophic and Ectomycorrhizal Fungi

    Science.gov (United States)

    Isotopes of nitrogen (δ15N) and carbon (δ13C) in ectomycorrhizal and saprotrophic fungi contain important information about ecological functioning, but the complexity of physiological and ecosystem processes contributing to fungal carbon and nitrogen dynamics has limited our abil...

  16. Finite mixture models for the computation of isotope ratios in mixed isotopic samples

    Science.gov (United States)

    Koffler, Daniel; Laaha, Gregor; Leisch, Friedrich; Kappel, Stefanie; Prohaska, Thomas

    2013-04-01

    Finite mixture models have been used for more than 100 years, but have seen a real boost in popularity over the last two decades due to the tremendous increase in available computing power. The areas of application of mixture models range from biology and medicine to physics, economics and marketing. These models can be applied to data where observations originate from various groups and where group affiliations are not known, as is the case for multiple isotope ratios present in mixed isotopic samples. Recently, the potential of finite mixture models for the computation of 235U/238U isotope ratios from transient signals measured in individual (sub-)µm-sized particles by laser ablation - multi-collector - inductively coupled plasma mass spectrometry (LA-MC-ICPMS) was demonstrated by Kappel et al. [1]. The particles, which were deposited on the same substrate, were certified with respect to their isotopic compositions. Here, we focus on the statistical model and its application to isotope data in ecogeochemistry. Commonly applied evaluation approaches for mixed isotopic samples are time-consuming and are dependent on the judgement of the analyst. Thus, isotopic compositions may be overlooked due to the presence of more dominant constituents. Evaluation using finite mixture models can be accomplished unsupervised and automatically. The models try to fit several linear models (regression lines) to subgroups of data taking the respective slope as estimation for the isotope ratio. The finite mixture models are parameterised by: • The number of different ratios. • Number of points belonging to each ratio-group. • The ratios (i.e. slopes) of each group. Fitting of the parameters is done by maximising the log-likelihood function using an iterative expectation-maximisation (EM) algorithm. In each iteration step, groups of size smaller than a control parameter are dropped; thereby the number of different ratios is determined. The analyst only influences some control

  17. DESIGN OF DYNAMIC VOLTAGE RESTORER TO ENHANCE POWER QUALITY RELYING ON RENEWABLE SOURCE

    Directory of Open Access Journals (Sweden)

    Haider M. Umran

    2018-05-01

    Full Text Available Power quality improvement of low voltage grid is a great challenge that confronts the sophisticated power applications, because their performance is highly sensitive to the quality of power supply. Dynamic Voltage Restorer (DVR used widely as an efficient and skillful device to adjust electrical disturbances of the distribution grids. This paper introduces an overview of the components of the 3-phase dynamic voltage restorer and design its own control circuit. The performance of DVR was developed on the basis of the appropriate selection of Photovoltaic (PV module instead of the present conventional designs. Through this design, the need of series converter (DVR for the current from an electrical grid will end and the problems of power losses will curb. The PV-module is selected to meet the requirements of the DVR during voltage sag/swell on voltage line. The proposed system is mimicked in MATLAB software/Simulink and the findings are presented to prove the success of the design in terms of: Full congruence of the load voltage waveform with source voltage waveform, attaining 0.77% of THD analysis for the load voltage and the waveforms of PV system.

  18. Dynamic analysis of compact helical system power supply and designs of its upgrade

    International Nuclear Information System (INIS)

    Tanahashi, S.; Yamada, S.

    1991-09-01

    Computed dynamic waveforms are compared with measured ones for the power supply of the Compact Helical System (CHS) during 1.5T operation and found to be in good agreement. On the basis of these results, designs for the upgraded power supply for 2T operation are discussed in the two cases, with and without power consumption for additional heating. In the former case, the additional heating power is supplied from the ac generator that powers the CHS coils. Electric voltages and currents in the electric circuit are shown for both cases. These designs show the possibility for 2T operation by addition of some components without changing the ratings of existing components. (author)

  19. Dynamic response of the high flux isotope reactor structure caused by nearby heavy load drop

    International Nuclear Information System (INIS)

    Chang, Shih-Jung.

    1995-01-01

    A heavy load of 50,000 lb is assumed to drop from 10 ft above the bottom of the High Flux Isotope Reactor (HFIR) pool at the loading station. The consequences of the dynamic impact to the bottom slab of the pool and to the nearby HFIR reactor vessel are analyzed by applying the ABAQUS computer code The results show that both the BM vessel structure and its supporting legs are subjected to elastic disturbances only and, therefore, will not be damaged. The bottom slab of the pool, however, will be damaged to about half of the slab thickness. The velocity response spectrum at the concrete floor next to the HFIR vessel as a result of the vibration caused by the impact is obtained. It is concluded, that the damage caused by heavy load drop at the loading station is controlled by the slab damage and the nearby HFIR vessel and the supporting legs will not be damaged

  20. Framework for optimal power flow incorporating dynamic system security

    International Nuclear Information System (INIS)

    El-Kady, M.A.; Owayedh, M.S.

    2006-01-01

    This paper introduces a novel framework and methodologies which are capable of tackling the complex issue of power system economy versus security in a practical and effective manner. At heart of achieving such a challenging and far-reaching objective is the incorporation of the Dyanamic Security Assessment (DSA) into production optimization techniques using the Transient Energy Function (TEF) method. In addition, and in parallel with the already well established concept of the system security, two new concepts pertaining to power system performance will be introduced in this paper, namely the concept of system dynamic susceptibility, which measures the level of systems weakness to a particular contingency and the concept of system consequent restorability, which measures the extent of contingency severity in terms of the required subsequent system restoration work should a particular contingency occur. (author)

  1. Evaluation of the plasma hydrogen isotope content by residual gas analysis at JET and AUG

    Science.gov (United States)

    Drenik, A.; Alegre, D.; Brezinsek, S.; De Castro, A.; Kruezi, U.; Oberkofler, M.; Panjan, M.; Primc, G.; Reichbauer, T.; Resnik, M.; Rohde, V.; Seibt, M.; Schneider, P. A.; Wauters, T.; Zaplotnik, R.; ASDEX-Upgrade, the; EUROfusion MST1 Teams; contributors, JET

    2017-12-01

    The isotope content of the plasma reflects on the dynamics of isotope changeover experiments, efficiency of wall conditioning and the performance of a fusion device in the active phase of operation. The assessment of the isotope ratio of hydrogen and methane molecules is used as a novel method of assessing the plasma isotope ratios at JET and ASDEX-Upgrade (AUG). The isotope ratios of both molecules in general shows similar trends as the isotope ratio detected by other diagnostics. At JET, the absolute values of RGA signals are in relatively good agreement with each other and with spectroscopy data, while at AUG the deviation from neutral particle analyser data are larger, and the results show a consistent spatial distribution of the isotope ratio. It is further shown that the isotope ratio of the hydrogen molecule can be used to study the degree of dissociation of the injected gas during changeover experiments.

  2. Fractional-order leaky integrate-and-fire model with long-term memory and power law dynamics.

    Science.gov (United States)

    Teka, Wondimu W; Upadhyay, Ranjit Kumar; Mondal, Argha

    2017-09-01

    Pyramidal neurons produce different spiking patterns to process information, communicate with each other and transform information. These spiking patterns have complex and multiple time scale dynamics that have been described with the fractional-order leaky integrate-and-Fire (FLIF) model. Models with fractional (non-integer) order differentiation that generalize power law dynamics can be used to describe complex temporal voltage dynamics. The main characteristic of FLIF model is that it depends on all past values of the voltage that causes long-term memory. The model produces spikes with high interspike interval variability and displays several spiking properties such as upward spike-frequency adaptation and long spike latency in response to a constant stimulus. We show that the subthreshold voltage and the firing rate of the fractional-order model make transitions from exponential to power law dynamics when the fractional order α decreases from 1 to smaller values. The firing rate displays different types of spike timing adaptation caused by changes on initial values. We also show that the voltage-memory trace and fractional coefficient are the causes of these different types of spiking properties. The voltage-memory trace that represents the long-term memory has a feedback regulatory mechanism and affects spiking activity. The results suggest that fractional-order models might be appropriate for understanding multiple time scale neuronal dynamics. Overall, a neuron with fractional dynamics displays history dependent activities that might be very useful and powerful for effective information processing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Various analytical techniques used for the measurement of isotopic purity of heavy water at Madras Atomic Power Station

    International Nuclear Information System (INIS)

    Satyanarayanan, V.; Umapathy, P.; Bhaskaran, R.; Nagarajan, J.; Pradeep, Jeena; Ayyar, S.R.

    2008-01-01

    The paper deals with the various techniques used for the measurement of isotopic purity of heavy water samples received from different sources viz. reactor systems, heavy water upgrading plant and fresh consignment from heavy water production plants. Heavy water is used in PHWRs as moderator and primary coolant. Isotopic Purity is an important parameter to be monitored/analysed regularly for both the systems. There is a minimum isotopic purity level to be maintained in the moderator system due to neutron economy/fuel burnup and in the case of coolant system the measurement is of paramount importance due to its safety considerations. The selection of the method of analysis depends on the isotopic range. The techniques used to measure the isotopic purity of heavy water are a) Infrared Spectrophotometry b) Refractometry c) Densitometry. Infrared spectrometer uses the property of molecular absorption of IR radiation by HOD species and the absorbance is the measure of isotopic purity. This technique is generally used for measuring high isotopic (80-99.98%) and low isotopic samples. Refractometer uses the property of refractive index of heavy water. The difference in refractive indices of light water and heavy water is 0.0048. A 1 % change in D 2 O concentration would thus equal to 0.000048 refractive index units. This method is used for determining the approximate isotopic value of a sample. Density meter uses the property of difference in densities of light and heavy water. The difference in density of 99.999% D 2 O and light water is 0.107540 which covers the whole range of interest. The experience gained with these techniques in the measurements of isotopic purity of various samples are presented in this paper. (author)

  4. Nonlinear Slewing Spacecraft Control Based on Exergy, Power Flow, and Static and Dynamic Stability

    Science.gov (United States)

    Robinett, Rush D.; Wilson, David G.

    2009-10-01

    This paper presents a new nonlinear control methodology for slewing spacecraft, which provides both necessary and sufficient conditions for stability by identifying the stability boundaries, rigid body modes, and limit cycles. Conservative Hamiltonian system concepts, which are equivalent to static stability of airplanes, are used to find and deal with the static stability boundaries: rigid body modes. The application of exergy and entropy thermodynamic concepts to the work-rate principle provides a natural partitioning through the second law of thermodynamics of power flows into exergy generator, dissipator, and storage for Hamiltonian systems that is employed to find the dynamic stability boundaries: limit cycles. This partitioning process enables the control system designer to directly evaluate and enhance the stability and performance of the system by balancing the power flowing into versus the power dissipated within the system subject to the Hamiltonian surface (power storage). Relationships are developed between exergy, power flow, static and dynamic stability, and Lyapunov analysis. The methodology is demonstrated with two illustrative examples: (1) a nonlinear oscillator with sinusoidal damping and (2) a multi-input-multi-output three-axis slewing spacecraft that employs proportional-integral-derivative tracking control with numerical simulation results.

  5. Isotope labeling for NMR studies of macromolecular structure and interactions

    International Nuclear Information System (INIS)

    Wright, P.E.

    1994-01-01

    Implementation of biosynthetic methods for uniform or specific isotope labeling of proteins, coupled with the recent development of powerful heteronuclear multidimensional NMR methods, has led to a dramatic increase in the size and complexity of macromolecular systems that are now amenable to NMR structural analysis. In recent years, a new technology has emerged that combines uniform 13 C, 15 N labeling with heteronuclear multidimensional NMR methods to allow NMR structural studies of systems approaching 25 to 30 kDa in molecular weight. In addition, with the introduction of specific 13 C and 15 N labels into ligands, meaningful NMR studies of complexes of even higher molecular weight have become feasible. These advances usher in a new era in which the earlier, rather stringent molecular weight limitations have been greatly surpassed and NMR can begin to address many central biological problems that involve macromolecular structure, dynamics, and interactions

  6. Isotope labeling for NMR studies of macromolecular structure and interactions

    Energy Technology Data Exchange (ETDEWEB)

    Wright, P.E. [Scripps Research Institute, La Jolla, CA (United States)

    1994-12-01

    Implementation of biosynthetic methods for uniform or specific isotope labeling of proteins, coupled with the recent development of powerful heteronuclear multidimensional NMR methods, has led to a dramatic increase in the size and complexity of macromolecular systems that are now amenable to NMR structural analysis. In recent years, a new technology has emerged that combines uniform {sup 13}C, {sup 15}N labeling with heteronuclear multidimensional NMR methods to allow NMR structural studies of systems approaching 25 to 30 kDa in molecular weight. In addition, with the introduction of specific {sup 13}C and {sup 15}N labels into ligands, meaningful NMR studies of complexes of even higher molecular weight have become feasible. These advances usher in a new era in which the earlier, rather stringent molecular weight limitations have been greatly surpassed and NMR can begin to address many central biological problems that involve macromolecular structure, dynamics, and interactions.

  7. Semiempirical method to determine the uranium isotopic compositions

    International Nuclear Information System (INIS)

    Tegas Sutondo

    2008-01-01

    In a nuclear reactor design calculation, some variations of U 235 enrichment are commonly needed. This will affect the isotopic compositions of the 3 main uranium isotopes i.e. U 234 , U 235 and U 238 for the respective enrichment. Due to the limited compositions data available, it is urgent to make an approximate way that can be used to determine the compositions of the 3 isotopes, for the desired enrichments. This paper presents the theoretical background used for constructing a semi empirical formula to estimate the composition of the 3 uranium isotopes as a function of U 235 enrichment, obtained based on the measurement data available. Based on the available data, and the lack of compositions data within the enrichment range between 3.5 % and around 12 %, it is concluded that 2 separate linear equations i.e. for ≤ 3.5 % and ≥ 3.5 % might be needed for U 235 isotope. For the U 234 isotope, a polynomial equation of 4 th order is well suited to be used for the whole range of enrichment between 0.711 % and 20 %, whilst for higher enrichment (> 20 %), a power function seems to give a better approach. The composition of U 238 can then be determined from the U 235 and U 234 composition at the desired enrichment of U 235 . (author)

  8. The isotopic composition and content of sulphur in soils of Kansk-Achinsk fuel power generation complex

    International Nuclear Information System (INIS)

    Grinenko, L.N.; Grinenko, V.A.

    1991-01-01

    In the 1970s the first phase of a large coal-burning power complex was brought into operation in the Kansk-Achinsk region of the Soviet Union. The target consumption for this complex is 50 x 10 6 tonnes yr -1 and most of this is supplied from local open-pit mines. The emission of SO 2 from this plant caused concern as to its impact on the local environment and prompted a study of the sulphurous depositions. Monitoring the areal extent and distribution of the deposited S and its fate in the environment can be a mammoth task involving continual measurement of many biological and physical factors including atmospheric concentrations, wind speed, emission rates, and forms of S in soil, plants, and animals. A possible alternative for evaluating the amount, distribution, and fate of the emitted S in the ecosystem is stable sulphur isotope analyses since different coals and SO 2 from their combustion often have δ 34 S values differing from those of soils and plants in the region. The study reported here was initiated to see if the δ 34 S values for emissions differed significantly from the natural environment. Assuming that the difference was sufficient, a second objective was to document changes that have occurred in the sulphur isotope compositions of the environmental receptors over time. Soil samples from 23 sites were collected and analysed for S content and δ 34 S values. Coal, cinder and ash collected from furnaces and SO 2 from the combustion products were similarly analysed. Figs and tabs

  9. The second wave of earthworm invasion: soil organic matter dynamics from the stable isotope perspective

    Science.gov (United States)

    Chang, C.; Szlavecz, K. A.; Bernard, M.; Pitz, S.

    2013-12-01

    Through transformation of plant litter into soil organic matter (SOM) and translocation of ingested organic material among different soil depths, soil organisms, especially earthworms, are one of the major factors affecting SOM dynamics. In North America temperate soil, historical human activity has lead to invasion of European earthworms into habitats that were previously earthworm-free or inhabited only by native species. By consuming leaf litter and SOM, burrowing, and casting, invasive earthworms have been known for reducing the understory vegetation and leaf litter layer while increasing the thickness of organic soil, causing changes in the soil habitat and the distribution of SOM. Recently, another group of invasive earthworm, namely Amynthas from Asia, has been reported invading habitats already dominated by European species, causing a 'second wave of invasion' where the soil ecosystem, already modified by European species, is going through another transition. The mechanisms through which these functionally (ecologically) different species affect C and N transformation could be better understood by tracing the carbon and nitrogen derived from 13C- and 15N-labeled leaf litter into earthworm tissues and SOM. The objective of this study is to understand how earthworm species that differ ecologically, including the Asian Amynthas, interact with each other and how these interactions affect SOM dynamics. We hypothesized that 1) species feeding on different food resources will have different isotopic signature and their tissue 13C and 15N values will change due to facilitation or interspecific competition on food resources, and 2) the short-term fate of litter-derived carbon differs depending on the presence or absence of different earthworm species. These hypotheses were tested by field sampling and lab mesocosm experiments using 13C and 15N double-enriched Tulip Poplar leaf litter (mean 13C = 124‰, mean 15N = 1667‰) produced from tree saplings growing in an

  10. Application of the isotopic index in isotope geochemical investigation

    International Nuclear Information System (INIS)

    Schuetze, H.

    1982-06-01

    A method is described which allows to calculate approximately isotope exchange equilibria between different crystalline silicates. The algorithm uses a newly introduced isotopic index. It is defined using isotopic increments of the variant types of silicatic bonds. This isotopic index gives a quantitative measure of the ability to enrich 18 O or 30 Si, respectively. The dependence of isotopic fractionations on temperature can be calculated approximately by means of the isotopic index, too. On this theoretical base some problems of magmatism and two varieties of an isotope geochemical model of the evolution of the Earth's crust are treated. Finally, the possibility is demonstrated to give prognostic statements about the likelihood of ore bearing of different granites. (author)

  11. Isotopic composition of rainfall and runoff in a small arid basin with implications for deep percolation

    Energy Technology Data Exchange (ETDEWEB)

    Dody, A [Ben-Gurion Univ. of the Negev, Beersheba (Israel)

    1995-08-01

    The aim of this work was to characterize the isotopic composition of potential recharge in an arid rocky watershed. Unique field observations were obtained from an arid watershed in the Negev Highlands, Israel, through utilization of the dynamic variations in the isotopic composition of rainfall and runoff. The hydrological system`s inputs are rainfall and its isotopic composition. Rainfall and runoff were sampled in eight storms. High variability in the isotopic composition of rainfall was observed during any single rainstorm. The isotopic distribution in the runoff at the outlet of the basin appeared often not to be correlated to the isotopic patterns of the associated rain storm. A new mathematical model was developed to describe these physical processes. The model called A Double-Component Kinematic Wave Flow and Transport Approach, was designated to assess the dynamic isotopic distribution in arid rain storms and runoff. This model simulates the transport of rainfall into overland flow and runoff in an arid rocky watershed with uniformly distributed shallow depression storage. A numerical solution for the problem was developed, to estimate the depression storage parameters. The model also reflects the isotopic memory effect due to the depression storage between sequential rain showers. A good agreement between the observed and computed hydrograph and the change of the {delta}{sup 18O} values in runoff in time confirms the validity of the model. (author) 138 figs., 125 refs.

  12. The isotopic contamination in electromagnetic isotope separators; La contagion isotopique dans les separateurs electromagnetiques d'isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Cassignol, Ch [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    In the early years of isotope separation, and in particular electromagnetic isotope separation, needs for rapid results have conducted to empiric research. This paper describes fundamental research on the electromagnetic isotope separation to a better understanding of isotope separators as well as improving the performances. Focus has been made on the study of the principle of isotope contamination and the remedial action on the separator to improve the isotope separation ratio. In a first part, the author come back to the functioning of an electromagnetic separator and generalities on isotope contamination. Secondly, it describes the two stages separation method with two dispersive apparatus, an electromagnetic separation stage followed by an electrostatic separation stage, both separated by a diaphragm. The specifications of the electrostatic stage are given and its different settings and their consequences on isotope separation are investigated. In a third part, mechanisms and contamination factors in the isotope separation are discussed: natural isotope contamination, contamination by rebounding on the collector, contamination because of a low resolution, contamination by chromatism and diffusion effect, breakdown of condenser voltage. Analysis of experimental results shows the diffusion as the most important contamination factor in electromagnetic isotope separation. As contamination factors are dependent on geometric parameters, sector angle, radius of curvature in the magnetic field and clearance height are discussed in a fourth part. The better understanding of the mechanism of the different contamination factors and the study of influential parameters as pressure and geometric parameters lead to define a global scheme of isotope contamination and determinate optima separator design and experimental parameters. Finally, the global scheme of isotope contamination and hypothesis on optima specifications and experimental parameters has been checked during a

  13. Dynamic stability calculations for power grids employing a parallel computer

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, K

    1982-06-01

    The aim of dynamic contingency calculations in power systems is to estimate the effects of assumed disturbances, such as loss of generation. Due to the large dimensions of the problem these simulations require considerable computing time and costs, to the effect that they are at present only used in a planning state but not for routine checks in power control stations. In view of the homogeneity of the problem, where a multitude of equal generator models, having different parameters, are to be integrated simultaneously, the use of a parallel computer looks very attractive. The results of this study employing a prototype parallel computer (SMS 201) are presented. It consists of up to 128 equal microcomputers bus-connected to a control computer. Each of the modules is programmed to simulate a node of the power grid. Generators with their associated control are represented by models of 13 states each. Passive nodes are complemented by 'phantom'-generators, so that the whole power grid is homogenous, thus removing the need for load-flow-iterations. Programming of microcomputers is essentially performed in FORTRAN.

  14. Innovative lasers for uranium isotope separation

    International Nuclear Information System (INIS)

    Brake, M.L.; Gilgenbach, R.M.

    1993-07-01

    Copper vapor laser have important applications to uranium atomic vapor laser isotope separation (AVLIS). We have investigated two innovative methods of exciting/pumping copper vapor lasers which have the potential to improve the efficiency and scaling of large laser systems used in uranium isotope separation. Experimental research has focused on the laser discharge kinetics of (1) microwave, and (2) electron beam excitation/pumping of large-volume copper vapor lasers. Microwave resonant cavity produced copper vapor plasmas at 2.45 GHz, have been investigated in three separate experimental configurations. The first examined the application of CW (0-500W) power and was found to be an excellent method for producing an atomic copper vapor from copper chloride. The second used a pulsed (5kW, 0.5--5 kHz) signal superimposed on the CW signal to attempt to produce vaporization, dissociation and excitation to the laser states. Enhanced emission of the optical radiation was observed but power densities were found to be too low to achieve lasing. In a third experiment we attempted to increase the applied power by using a high power magnetron to produce 100 kW of pulsed power. Unfortunately, difficulties with the magnetron power supply were encountered leaving inconclusive results. Detailed modeling of the electromagnetics of the system were found to match the diagnostics results well. An electron beam pumped copper vapor system (350 kV, 1.0 kA, 300 ns) was investigated in three separate copper chloride heating systems, external chamber, externally heated chamber and an internally heated chamber. Since atomic copper spectral lines were not observed, it is assumed that a single pulse accelerator is not capable of both dissociating the copper chloride and exciting atomic copper and a repetitively pulsed electron beam generator is needed

  15. Isotopically modified compounds

    International Nuclear Information System (INIS)

    Kuruc, J.

    2009-01-01

    In this chapter the nomenclature of isotopically modified compounds in Slovak language is described. This chapter consists of following parts: (1) Isotopically substituted compounds; (2) Specifically isotopically labelled compounds; (3) Selectively isotopically labelled compounds; (4) Non-selectively isotopically labelled compounds; (5) Isotopically deficient compounds.

  16. Dynamic Optimal Energy Flow in the Integrated Natural Gas and Electrical Power Systems

    DEFF Research Database (Denmark)

    Fang, Jiakun; Zeng, Qing; Ai, Xiaomeng

    2018-01-01

    . Simulation on the test case illustrates the success of the modelling and the beneficial roles of the power-to-gas are analyzed. The proposed model can be used in the decision support for both planning and operation of the coordinated natural gas and electrical power systems.......This work focuses on the optimal operation of the integrated gas and electrical power system with bi-directional energy conversion. Considering the different response times of the gas and power systems, the transient gas flow and steady- state power flow are combined to formulate the dynamic...... optimal energy flow in the integrated gas and power systems. With proper assumptions and simplifications, the problem is transformed into a single stage linear programming. And only a single stage linear programming is needed to obtain the optimal operation strategy for both gas and power systems...

  17. Metal Stable Isotope Tagging: Renaissance of Radioimmunoassay for Multiplex and Absolute Quantification of Biomolecules.

    Science.gov (United States)

    Liu, Rui; Zhang, Shixi; Wei, Chao; Xing, Zhi; Zhang, Sichun; Zhang, Xinrong

    2016-05-17

    The unambiguous quantification of biomolecules is of great significance in fundamental biological research as well as practical clinical diagnosis. Due to the lack of a detectable moiety, the direct and highly sensitive quantification of biomolecules is often a "mission impossible". Consequently, tagging strategies to introduce detectable moieties for labeling target biomolecules were invented, which had a long and significant impact on studies of biomolecules in the past decades. For instance, immunoassays have been developed with radioisotope tagging by Yalow and Berson in the late 1950s. The later languishment of this technology can be almost exclusively ascribed to the use of radioactive isotopes, which led to the development of nonradioactive tagging strategy-based assays such as enzyme-linked immunosorbent assay, fluorescent immunoassay, and chemiluminescent and electrochemiluminescent immunoassay. Despite great success, these strategies suffered from drawbacks such as limited spectral window capacity for multiplex detection and inability to provide absolute quantification of biomolecules. After recalling the sequences of tagging strategies, an apparent question is why not use stable isotopes from the start? A reasonable explanation is the lack of reliable means for accurate and precise quantification of stable isotopes at that time. The situation has changed greatly at present, since several atomic mass spectrometric measures for metal stable isotopes have been developed. Among the newly developed techniques, inductively coupled plasma mass spectrometry is an ideal technique to determine metal stable isotope-tagged biomolecules, for its high sensitivity, wide dynamic linear range, and more importantly multiplex and absolute quantification ability. Since the first published report by our group, metal stable isotope tagging has become a revolutionary technique and gained great success in biomolecule quantification. An exciting research highlight in this area

  18. Fractionation of mercury stable isotopes during coal combustion and seawater flue gas desulfurization

    International Nuclear Information System (INIS)

    Huang, Shuyuan; Yuan, Dongxing; Lin, Haiying; Sun, Lumin; Lin, Shanshan

    2017-01-01

    In the current study, fractionation of mercury isotopes during coal combustion and seawater flue gas desulfurization (SFGD) in a coal-fired power plant using a SFGD system was investigated. Fourteen samples were collected from the power plant. The samples were pretreated with a combustion-trapping method and were analyzed with a multi-collector inductively coupled plasma mass spectrometer (MC-ICP-MS). Compared with the raw coal, the bottom ash was enriched with lighter mercury isotopes with δ 202 Hg values ranging from −0.45 to −0.03‰. The fly ash was enriched with lighter mercury isotopes with δ 202 Hg values ranging from −1.49 to −0.73‰ for Chinese coal and from −1.47 to −0.62‰ for Indonesian coal. The δ 202 Hg of fresh seawater and desulfurized seawater was found to be −1.32 and −0.32‰ respectively. These δ 202 Hg values indicated that the desulfurized seawater was enriched with heavier mercury isotopes. Based upon the calculated results obtained from the mass balance equation, it was suggested that the stack emissions were enriched with lighter mercury isotopes. Mass independent fractionation was observed in most of the samples with a Δ 199 Hg/Δ 201 Hg ratio of approximately 0.96. The results help in improving the understanding of mercury isotope fractionation during coal combustion and SFGD, and are also useful in tracing the mercury emissions from coal fired power plants. - Highlights: • Spread of 1.5‰ was observed in δ 202 Hg values of raw coals and coal related samples. • The δ 202 Hg values were more negative in fly ash than those in the raw coal. • The flue gas had a significant Hg fractionation after desulfurization. • The stack emissions were enriched with lighter isotopes compared with the raw coal.

  19. Isotope effect and isotope separation. A chemist's view

    International Nuclear Information System (INIS)

    Ishida, Takanobu

    2002-01-01

    What causes the isotope effects (IE)? This presentation will be centered around the equilibrium isotope effects due to the differences in the nuclear masses. The occurrence of the equilibrium constant, K, of isotope exchange reactions which differ from the values predicted by the classical theory of statistical mechanics, K cl , is explored. The non-classical K corresponds to the unit-stage separation factor, α, that is different from unity and forms a basis of an isotope separation process involving the chemical exchange reaction. Here, the word 'chemical exchange' includes not only the isotope exchange chemical reactions between two or more chemical species but also the isotope exchanges involving the equilibria between liquid and vapor phases and liquid-gas, liquid solution-gas, liquid-liquid, and solid-liquid phases. In Section I, origins of the isotope effect phenomena will be explored and, in the process, various quantities used in discussions of isotope effect that have often caused confusions will be unambiguously defined. This Section will also correlate equilibrium constant with separation factor. In Section II, various forms of temperature-dependence of IE and separation factor will be discussed. (author)

  20. Aerodynamic isotope separation processes for uranium enrichment: process requirements

    International Nuclear Information System (INIS)

    Malling, G.F.; Von Halle, E.

    1976-01-01

    The pressing need for enriched uranium to fuel nuclear power reactors, requiring that as many as ten large uranium isotope separation plants be built during the next twenty years, has inspired an increase of interest in isotope separation processes for uranium enrichment. Aerodynamic isotope separation processes have been prominently mentioned along with the gas centrifuge process and the laser isotope separation methods as alternatives to the gaseous diffusion process, currently in use, for these future plants. Commonly included in the category of aerodynamic isotope separation processes are: (a) the separation nozzle process; (b) opposed gas jets; (c) the gas vortex; (d) the separation probes; (e) interacting molecular beams; (f) jet penetration processes; and (g) time of flight separation processes. A number of these aerodynamic isotope separation processes depend, as does the gas centrifuge process, on pressure diffusion associated with curved streamlines for the basic separation effect. Much can be deduced about the process characteristics and the economic potential of such processes from a simple and elementary process model. In particular, the benefit to be gained from a light carrier gas added to the uranium feed is clearly demonstrated. The model also illustrates the importance of transient effects in this class of processes

  1. Isotopic and molecular distributions of biochemicals from fresh and buried Rhizophora mangle leaves†

    Science.gov (United States)

    Smallwood, Barbara J; Wooller, Matthew J; Jacobson, Myrna E; Fogel, Marilyn L

    2003-01-01

    Rhizophora mangle L. (red mangrove) is the dominant species of mangrove in the Americas. At Twin Cays, Belize (BZ) red mangroves are present in a variety of stand structures (tall >5 m in height, transition ~2–4 m and dwarf ~1–1.5 m). These height differences are coupled with very different stable carbon and nitrogen isotopic values[1] (mean tall δ13C = -28.3‰, δ15N = 0‰; mean tall δ13C = -25.3‰, δ15N = -10‰). To determine the utility of using these distinct isotopic compositions as 'biomarkers' for paleoenvironmental reconstruction of mangrove ecosystems and nutrient availability, we investigated the distribution and isotopic (δ13C and δ15N) composition of different biochemical fractions (water soluble compounds, free lipids, acid hydrolysable compounds, individual amino acids, and the residual un-extractable compounds) in fresh and preserved red mangrove leaves from dwarf and tall trees. The distribution of biochemicals are similar in dwarf and tall red mangrove leaves, suggesting that, regardless of stand structure, red mangroves use nutrients for biosynthesis and metabolism in a similar manner. However, the δ13C and δ15N of the bulk leaf, the biochemical fractions, and seven amino acids can be used to distinguish dwarf and tall trees at Twin Cays, BZ. The data support the theory that the fractionation of carbon and nitrogen occurs prior to or during uptake in dwarf and tall red mangrove trees. Stable carbon and nitrogen isotopes could, therefore, be powerful tools for predicting levels of nutrient limitation at Twin Cays. The δ13C and δ15N of biochemical fractions within preserved leaves, reflect sedimentary cycling and nitrogen immobilization. The δ15N of the immobilized fraction reveals the overlying stand structure at the time of leaf deposition. The isotopic composition of preserved mangrove leaves could yield significant information about changes in ecosystem dynamics, nutrient limitation and past stand structure in mangrove

  2. Isotopic and molecular distributions of biochemicals from fresh and buried Rhizophora mangle leaves†

    Directory of Open Access Journals (Sweden)

    Jacobson Myrna E

    2003-12-01

    Full Text Available Rhizophora mangle L. (red mangrove is the dominant species of mangrove in the Americas. At Twin Cays, Belize (BZ red mangroves are present in a variety of stand structures (tall >5 m in height, transition ~2–4 m and dwarf ~1–1.5 m. These height differences are coupled with very different stable carbon and nitrogen isotopic values1 (mean tall δ13C = -28.3‰, δ15N = 0‰; mean tall δ13C = -25.3‰, δ15N = -10‰. To determine the utility of using these distinct isotopic compositions as 'biomarkers' for paleoenvironmental reconstruction of mangrove ecosystems and nutrient availability, we investigated the distribution and isotopic (δ13C and δ15N composition of different biochemical fractions (water soluble compounds, free lipids, acid hydrolysable compounds, individual amino acids, and the residual un-extractable compounds in fresh and preserved red mangrove leaves from dwarf and tall trees. The distribution of biochemicals are similar in dwarf and tall red mangrove leaves, suggesting that, regardless of stand structure, red mangroves use nutrients for biosynthesis and metabolism in a similar manner. However, the δ13C and δ15N of the bulk leaf, the biochemical fractions, and seven amino acids can be used to distinguish dwarf and tall trees at Twin Cays, BZ. The data support the theory that the fractionation of carbon and nitrogen occurs prior to or during uptake in dwarf and tall red mangrove trees. Stable carbon and nitrogen isotopes could, therefore, be powerful tools for predicting levels of nutrient limitation at Twin Cays. The δ13C and δ15N of biochemical fractions within preserved leaves, reflect sedimentary cycling and nitrogen immobilization. The δ15N of the immobilized fraction reveals the overlying stand structure at the time of leaf deposition. The isotopic composition of preserved mangrove leaves could yield significant information about changes in ecosystem dynamics, nutrient limitation and past stand structure in

  3. Estimates of water source contributions in a dynamic urban water supply system inferred via a Bayesian stable isotope mixing model

    Science.gov (United States)

    Jameel, M. Y.; Brewer, S.; Fiorella, R.; Tipple, B. J.; Bowen, G. J.; Terry, S.

    2017-12-01

    Public water supply systems (PWSS) are complex distribution systems and critical infrastructure, making them vulnerable to physical disruption and contamination. Exploring the susceptibility of PWSS to such perturbations requires detailed knowledge of the supply system structure and operation. Although the physical structure of supply systems (i.e., pipeline connection) is usually well documented for developed cities, the actual flow patterns of water in these systems are typically unknown or estimated based on hydrodynamic models with limited observational validation. Here, we present a novel method for mapping the flow structure of water in a large, complex PWSS, building upon recent work highlighting the potential of stable isotopes of water (SIW) to document water management practices within complex PWSS. We sampled a major water distribution system of the Salt Lake Valley, Utah, measuring SIW of water sources, treatment facilities, and numerous sites within in the supply system. We then developed a hierarchical Bayesian (HB) isotope mixing model to quantify the proportion of water supplied by different sources at sites within the supply system. Known production volumes and spatial distance effects were used to define the prior probabilities for each source; however, we did not include other physical information about the supply system. Our results were in general agreement with those obtained by hydrodynamic models and provide quantitative estimates of contributions of different water sources to a given site along with robust estimates of uncertainty. Secondary properties of the supply system, such as regions of "static" and "dynamic" source (e.g., regions supplied dominantly by one source vs. those experiencing active mixing between multiple sources), can be inferred from the results. The isotope-based HB isotope mixing model offers a new investigative technique for analyzing PWSS and documenting aspects of supply system structure and operation that are

  4. Direct mass measurements of neutron-deficient xenon isotopes with the ISOLTRAP mass spectrometer

    International Nuclear Information System (INIS)

    Dilling, J.; Audi, G.; Beck, D.; Bollen, G.; Henry, S.; Herfurth, F.; Kellerbauer, A.; Kluge, H.-J.; Lunney, D.; Moore, R.B.; Scheidenberger, C.; Schwarz, S.; Sikler, G.; Szerypo, J.

    2002-01-01

    The masses of Xe isotopes with 124≥A≥114 have been measured using the ISOLTRAP spectrometer at the on-line mass separator ISOLDE/CERN. A mass resolving power of 500 000 was chosen resulting in an accuracy of δm∼12 keV for all isotopes investigated. Conflicts with existing mass data of several standard deviations were found

  5. Isotope instrument FD-138 for the hydrologic parameter

    Energy Technology Data Exchange (ETDEWEB)

    Rukuan, Zheng; Zengxin, Wu [Instituts of Enviromental Protection, Beijing, BJ (China); Heyi, Huang [Beijing Nuclear Instrument Factory, BJ (China)

    1988-07-01

    In order to determine the hydrologic parameters, such as filtration velocity, flow direction and dispersity, {sup 131}I isotope is used as tracer in the groundwater aquifer. This method has advantages over traditional methods in respect of power saving, and is simple, quick and economical.

  6. Isotope instrument FD-138 for the hydrologic parameter

    International Nuclear Information System (INIS)

    Zheng Rukuan; Wu Zengxin; Huang Heyi

    1988-01-01

    In order to determine the hydrologic paraemters, such as filtration velocity, flow direction and dispersity, 131 I isotope is used as tracer in the groundwater aquifer. This method has advantages over traditional methods in respect of power saving, and is simple, quick and economical

  7. Dynamic Assessment of COTS Converters-based DC Integrated Power Systems in Electric Ships

    DEFF Research Database (Denmark)

    Francés, Airán; Anvari-Moghaddam, Amjad; Diaz, Enrique Rodriguez

    2018-01-01

    , power electronics play a key role in linking the different elements of the power architecture. Moreover, the transition towards a dc distribution, which has already been established in other applications, is being regarded as a promising alternative to ease the integration of renewable sources......-level controllers, design protections or assess the compliance of the system dynamics with the standards. Experimental results are included in order to validate the proposed method....

  8. Dynamic Analysis of Fluid Power Drive-trains for Variable Speed Wind Turbines : A Parameter Study

    NARCIS (Netherlands)

    Jarquin Laguna, A.; Diepeveen, N.F.B.

    2013-01-01

    In the pursuit of making wind energy technology more economically attractive, the application of fluid power technology for the transmission of wind energy is being developed by several parties all over the world. This paper presents a dynamic model of a fluid power transmission for variable speed

  9. Dynamic evaluation of the levelized cost of wind power generation

    International Nuclear Information System (INIS)

    Díaz, Guzmán; Gómez-Aleixandre, Javier; Coto, José

    2015-01-01

    Highlights: • Conventional levelized cost of energy is static and does not consider flexibility. • This paper defines a dynamic version by means of stochastic programming. • A penalty for early exercising is proposed to differentiate static and dynamic. • Results show the effects of feed-in tariff support in low wind sites. • Policy implications are derived on the basis of the static and dynamic measures. - Abstract: This paper discusses an alternative computation method of the levelized cost of energy of distributed wind power generators. Unlike in the conventional procedures, it includes time of commencement as an optimization variable. For that purpose, a methodology from Longstaff and Schwartz’s dynamic program for pricing financial American options is derived, which provides the ability to find the optimum time and value while coping with uncertainty revenues from energy sales and variable capital costs. The results obtained from the analysis of wind records of 50 sites entail that the conventional levelized cost of energy can be broken down into an optimum, minimum (time-dependent) value and a penalty for early exercising, which can be employed to define investment strategies and support policies

  10. 13C metabolic flux analysis: optimal design of isotopic labeling experiments.

    Science.gov (United States)

    Antoniewicz, Maciek R

    2013-12-01

    Measuring fluxes by 13C metabolic flux analysis (13C-MFA) has become a key activity in chemical and pharmaceutical biotechnology. Optimal design of isotopic labeling experiments is of central importance to 13C-MFA as it determines the precision with which fluxes can be estimated. Traditional methods for selecting isotopic tracers and labeling measurements did not fully utilize the power of 13C-MFA. Recently, new approaches were developed for optimal design of isotopic labeling experiments based on parallel labeling experiments and algorithms for rational selection of tracers. In addition, advanced isotopic labeling measurements were developed based on tandem mass spectrometry. Combined, these approaches can dramatically improve the quality of 13C-MFA results with important applications in metabolic engineering and biotechnology. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Experimental and Theoretical Dynamic Study of the Aagesta Nuclear Power Station

    Energy Technology Data Exchange (ETDEWEB)

    Bliselius, P A; Vollmer, H; Aakerhielm, F

    1969-12-15

    The report presents a final review and summary of all dynamic investigations of the Aagesta nuclear power station. Special attention is paid to the final and unpublished experiments performed in 1965-66. These experiments are discussed and compared to the theoretical predictions. Transfer functions and step responses were measured by perturbations in reactivity and steam load. Three methods were used for transfer function measurements: step functions, trapeze waves and multifrequency functions based on the pseudo-random binary sequence (PRBS). From the frequency analysis we found that the different perturbation methods led to quite consistent results. For the Agesta application the PRBS method is demonstrated to be an accurate and practical method for obtaining experimental transfer functions. The step technique did not give satisfactory results for frequencies above approximately 0.01 Hz. From the static check of the model we may conclude that the experiments agree fairly well mutually and with theory. The measured reactivity coefficients tend to be smaller than the predicted ones. The predicted transients compare well with the measured ones. However, there is a tendency to more peaked power transients from the model. This is believed to be due to the assumption that the moderator could be regarded as one channel. The dynamic experiments carried out at the Agesta nuclear power station demonstrate both the inherent stability and the safety of this plant.

  12. Determination of the isotopic coefficient for x2N using a dimensional analysis of the Schroedinger equation

    International Nuclear Information System (INIS)

    Pali, R.; Coss, R. de; Mustre de Leon, J.

    1999-01-01

    The adimensionalization of equations which govern the dynamics of a physical system can be very useful when studying the qualitative behavior of any variable involved in those equations. In a dynamic system like a particle moving in an effective potential, the isotopic coefficient measure the degree of anharmonicity of the potential. In general each eigenstate has a different coefficient. In this work, we determined the isotopic coefficients for potentials of the form V(x) ∝ x 2N (N=1,2,3,...) through the adimensionalization process of the Schroedinger equation. We found an analytic expression for the isotopic coefficient which depends only of N but not on the eigenstate. The isotopic coefficient value starts at 1/2 for N=1 (harmonic potential) and gradually converges to 1.0 when N increments. This reflects the fact that the potential is more anharmonic for increasing N. (Author)

  13. New aspects of uranium isotope separation

    International Nuclear Information System (INIS)

    Leonhardt, W.; Mueller, G.

    1979-01-01

    The need of 235 U enrichment capacity is discussed on the basis of the requirements for nuclear power in the next 10 ... 20 years. In this connection, the performance of gas diffusion, of the gas centrifuge and of the separation nozzle method are compared with each other, and an evaluation of the optical methods of isotope separation is given. (author)

  14. Microwave dynamic large signal waveform characterization of advanced InGaP HBT for power amplifiers

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Lixin; Jin Zhi; Liu Xinyu, E-mail: zhaolixin@ime.ac.c [Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029 (China)

    2009-12-15

    In wireless mobile communications and wireless local area networks (WLAN), advanced InGaP HBT with power amplifiers are key components. In this paper, the microwave large signal dynamic waveform characteristics of an advanced InGaP HBT are investigated experimentally for 5.8 GHz power amplifier applications. The microwave large signal waveform distortions at various input power levels, especially at large signal level, are investigated and the reasons are analyzed. The output power saturation is also explained. These analyses will be useful for power amplifier designs. (semiconductor devices)

  15. Excitation functions and isotopic effects in (n, p) reactions for stable nickel isotopes from reaction threshold to 20 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Lalremruata, B. [Department of Physics, University of Pune, Ganeshkhind, Pune-411007, Maharashtra (India)], E-mail: marema@physics.unipune.ernet.in; Ganesan, S. [Reactor Physics Design Division, BARC, Mumbai 58 (India); Bhoraskar, V.N. [Department of Physics, University of Pune, Ganeshkhind, Pune-411007, Maharashtra (India)], E-mail: vnb@physics.unipune.ernet; Dhole, S.D. [Department of Physics, University of Pune, Ganeshkhind, Pune-411007, Maharashtra (India)], E-mail: sanjay@physics.unipune.ernet.in

    2009-05-01

    The excitation function for (n, p) reactions from reaction threshold to 20 MeV on five nickel isotopes viz; {sup 58}Ni, {sup 60}Ni, {sup 61}Ni, {sup 62}Ni and {sup 64}Ni were calculated using Talys-1.0 nuclear model code involving the fixed set of global parameters. A good agreement between the calculated and measured data is obtained with minimum effort on parameter fitting and only one free parameter called 'Shell damping factor'. This is of importance to the validation of nuclear model approaches with increased predictive power. The systematic decrease in (n, p) cross-sections with increasing neutron number in reactions induced by neutrons on isotopes of nickel is explained in terms of the proton separation energy and the pre-equilibrium model. The compound nucleus and pre-equilibrium reaction mechanism as well as the isotopic effects were also studied.

  16. Real-Time Dynamic Simulation of Korean Power Grid for Frequency Regulation Control by MW Battery Energy Storage System

    Directory of Open Access Journals (Sweden)

    Tae-Hwan Jin

    2016-12-01

    Full Text Available The aim of this study was to develop a real-time dynamic simulator of a power grid with power plant and battery model. The simulator was used to investigate the frequency control characteristics of a megawatt-scale high-capacity energy storage system connected to the electric power grid. In this study, a lithium-ion secondary battery was chosen as one of the batteries for a grid-connected model. The dynamics of the model was analysed in both steady and transient states. The frequency control system of the battery model plays a role in regulating the grid frequency by controlling the power of energy storage systems according to process variables and grid frequencies. The power grid model based on the current power network of South Korea, included power plants, substations and power demands. The power supply is classified by the type of turbine generator as thermal, nuclear, hydro power, pumped power storage, combined power plants, and batteries, including high-capacity energy storage systems rated for a maximum of 500 MW. This study deals with an installed capacity of 87.17 GW and peak load of 77.30 GW in the Korean power grid. For 24 hours of operation, the maximum and minimum power outputs were simulated as 61.59 GW and 46.32 GW, respectively. The commercialized real-time dynamic simulation software ProTRAX was used. The simulation was conducted to observe the operation characteristics of the frequency control system during a breakdown of power plants, as well as under governor-free operation, auto generation control operation, and with the battery energy storage system connected. The results show that the model is valid for each power plant breakdown simulation. They also confirm that the output power and frequency controls of the battery operated well during simulations.

  17. Dynamics of clean coal-fired power generation development in China

    International Nuclear Information System (INIS)

    Yue, Li

    2012-01-01

    Coal-fired power technology will play an important role over a long period in China. Clean coal-fired power technology is essential for the global GHG emission reduction. Recently, advanced supercritical (SC)/ultra-supercritical (USC) technology has made remarkable progress in China and greatly contributed to energy saving and emission reduction. This study analyzes the dynamics of SC/USC development in China from an integrated perspective. The result indicates that, besides the internal demand, the effective implementation of domestic public policy and technology transfer contributed greatly to the development of SC/USC technology in China. In future low carbon scenario, SC/USC coal-fired power technology might still be the most important power generation technology in China until 2040, and will have a significant application prospect in other developing countries. The analysis makes a very useful introduction for other advanced energy technology development, including a renewable energy technology, in China and other developing countries. - Highlights: ► The US/USC technology is the key clean coal-fired power technology in current China. ► The domestic policy and technology transfer largely contributed to their development. ► This makes a useful introduction for the development of renewable energy in China.

  18. Application of isotopic information for estimating parameters in Philip infiltration model

    Directory of Open Access Journals (Sweden)

    Tao Wang

    2016-10-01

    Full Text Available Minimizing parameter uncertainty is crucial in the application of hydrologic models. Isotopic information in various hydrologic components of the water cycle can expand our knowledge of the dynamics of water flow in the system, provide additional information for parameter estimation, and improve parameter identifiability. This study combined the Philip infiltration model with an isotopic mixing model using an isotopic mass balance approach for estimating parameters in the Philip infiltration model. Two approaches to parameter estimation were compared: (a using isotopic information to determine the soil water transmission and then hydrologic information to estimate the soil sorptivity, and (b using hydrologic information to determine the soil water transmission and the soil sorptivity. Results of parameter estimation were verified through a rainfall infiltration experiment in a laboratory under rainfall with constant isotopic compositions and uniform initial soil water content conditions. Experimental results showed that approach (a, using isotopic and hydrologic information, estimated the soil water transmission in the Philip infiltration model in a manner that matched measured values well. The results of parameter estimation of approach (a were better than those of approach (b. It was also found that the analytical precision of hydrogen and oxygen stable isotopes had a significant effect on parameter estimation using isotopic information.

  19. Pollution and Climate Effects on Tree-Ring Nitrogen Isotopes

    Science.gov (United States)

    Savard, M. M.; Bégin, C.; Marion, J.; Smirnoff, A.

    2009-04-01

    Georgian Bay reflect deposition of NOx emissions from cars and coal-power plants, with higher proportions from coal burning in Georgian Bay (Savard et al., 2009b). This interpretation is conceivable because recent monitoring indicates that coal-power plant NOx emissions play an important role in the annual N budget in Ontario, but they are negligible on the Quebec side. CONCLUSION Interpretations of long tree-ring N isotopic series in terms of effects generated by airborne N-species have been previously advocated. Here we further propose that the contrasted isotopic trends obtained for wood samples from two regions reflect different regional anthropogenic N deposition combined with variations of climatic conditions. This research suggests that nitrogen tree-ring series may record both regional climatic conditions and anthropogenic perturbations of the N cycle. REFERENCES Savard, M.M., Bégin,C., Marion, J., Aznar, J.-C., Smirnoff, A., 2009a. Changes of Air Quality in an urban region as inferred from tree-ring width and stable isotopes. Chapter 9 in "Relating Atmospheric Source Apportionment to Vegetation Effects: Establishing Cause Effect Relationships" (A. Legge ed.). Elsevier, Amsterdam; doi: 10.1016/S1474-8177(08)00209x. Savard, M.M., Bégin, C., Smirnoff, A., Marion, J., Rioux-Paquette, E., 2009b. Tree-ring nitrogen isotopes reflect climatic effects and anthropogenic NOx emissions. Env. Sci. Tech (doi: 10.1021/es802437k).

  20. Development of fast-release solid catchers for rare isotopes

    Science.gov (United States)

    Nolen, Jerry; Greene, John; Elam, Jeffrey; Mane, Anil; Sampathkumaran, Uma; Winter, Raymond; Hess, David; Mushfiq, Mohammad; Stracener, Daniel; Wiendenhoever, Ingo

    2015-04-01

    Porous solid catchers of rare isotopes are being developed for use at high power heavy ion accelerator facilities such as RIKEN, FRIB, and RISP. Compact solid catchers are complementary to helium gas catchers for parasitic harvesting of rare isotopes in the in-flight separators. They are useful for short lived isotopes for basic nuclear physics research and longer-lived isotopes for off-line applications. Solid catchers can operate effectively with high intensity secondary beams, e.g. >> 1E10 atoms/s with release times as short as 10-100 milliseconds. A new method using a very sensitive and efficient RGA has been commissioned off-line at Argonne and is currently being shipped to Florida State University for in-beam measurements of the release curves using stable beams. The same porous solid catcher technology is also being evaluated for use in targets for the production of medical isotopes such as 211-At. Research supported by the U.S. DOE Office of Nuclear Physics under the SBIR Program and Contract # DE-AC02-06CH11357 and a University of Chicago Comprehensive Cancer Center/ANL Pilot Project.

  1. The isotopic contamination in electromagnetic isotope separators; La contagion isotopique dans les separateurs electromagnetiques d'isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Cassignol, Ch. [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    In the early years of isotope separation, and in particular electromagnetic isotope separation, needs for rapid results have conducted to empiric research. This paper describes fundamental research on the electromagnetic isotope separation to a better understanding of isotope separators as well as improving the performances. Focus has been made on the study of the principle of isotope contamination and the remedial action on the separator to improve the isotope separation ratio. In a first part, the author come back to the functioning of an electromagnetic separator and generalities on isotope contamination. Secondly, it describes the two stages separation method with two dispersive apparatus, an electromagnetic separation stage followed by an electrostatic separation stage, both separated by a diaphragm. The specifications of the electrostatic stage are given and its different settings and their consequences on isotope separation are investigated. In a third part, mechanisms and contamination factors in the isotope separation are discussed: natural isotope contamination, contamination by rebounding on the collector, contamination because of a low resolution, contamination by chromatism and diffusion effect, breakdown of condenser voltage. Analysis of experimental results shows the diffusion as the most important contamination factor in electromagnetic isotope separation. As contamination factors are dependent on geometric parameters, sector angle, radius of curvature in the magnetic field and clearance height are discussed in a fourth part. The better understanding of the mechanism of the different contamination factors and the study of influential parameters as pressure and geometric parameters lead to define a global scheme of isotope contamination and determinate optima separator design and experimental parameters. Finally, the global scheme of isotope contamination and hypothesis on optima specifications and experimental parameters has been checked during a

  2. Dynamic simulation of a direct carbonate fuel cell power plant

    Energy Technology Data Exchange (ETDEWEB)

    Ernest, J.B. [Fluor Daniel, Inc., Irvine, CA (United States); Ghezel-Ayagh, H.; Kush, A.K. [Fuel Cell Engineering, Danbury, CT (United States)

    1996-12-31

    Fuel Cell Engineering Corporation (FCE) is commercializing a 2.85 MW Direct carbonate Fuel Cell (DFC) power plant. The commercialization sequence has already progressed through construction and operation of the first commercial-scale DFC power plant on a U.S. electric utility, the 2 MW Santa Clara Demonstration Project (SCDP), and the completion of the early phases of a Commercial Plant design. A 400 kW fuel cell stack Test Facility is being built at Energy Research Corporation (ERC), FCE`s parent company, which will be capable of testing commercial-sized fuel cell stacks in an integrated plant configuration. Fluor Daniel, Inc. provided engineering, procurement, and construction services for SCDP and has jointly developed the Commercial Plant design with FCE, focusing on the balance-of-plant (BOP) equipment outside of the fuel cell modules. This paper provides a brief orientation to the dynamic simulation of a fuel cell power plant and the benefits offered.

  3. Electron-capture Isotopes Could Constrain Cosmic-Ray Propagation Models

    Science.gov (United States)

    Benyamin, David; Shaviv, Nir J.; Piran, Tsvi

    2017-12-01

    Electron capture (EC) isotopes are known to provide constraints on the low-energy behavior of cosmic rays (CRs), such as reacceleration. Here, we study the EC isotopes within the framework of the dynamic spiral-arms CR propagation model in which most of the CR sources reside in the galactic spiral arms. The model was previously used to explain the B/C and sub-Fe/Fe ratios. We show that the known inconsistency between the 49Ti/49V and 51V/51Cr ratios remains also in the spiral-arms model. On the other hand, unlike the general wisdom that says the isotope ratios depend primarily on reacceleration, we find here that the ratio also depends on the halo size (Z h) and, in spiral-arms models, also on the time since the last spiral-arm passage ({τ }{arm}). Namely, EC isotopes can, in principle, provide interesting constraints on the diffusion geometry. However, with the present uncertainties in the lab measurements of both the electron attachment rate and the fragmentation cross sections, no meaningful constraint can be placed.

  4. Discrimination of ginseng cultivation regions using light stable isotope analysis.

    Science.gov (United States)

    Kim, Kiwook; Song, Joo-Hyun; Heo, Sang-Cheol; Lee, Jin-Hee; Jung, In-Woo; Min, Ji-Sook

    2015-10-01

    Korean ginseng is considered to be a precious health food in Asia. Today, thieves frequently compromise ginseng farms by pervasive theft. Thus, studies regarding the characteristics of ginseng according to growth region are required in order to deter ginseng thieves and prevent theft. In this study, 6 regions were selected on the basis of Korea regional criteria (si, gun, gu), and two ginseng-farms were randomly selected from each of the 6 regions. Then 4-6 samples of ginseng were acquired from each ginseng farm. The stable isotopic compositions of H, O, C, and N of the collected ginseng samples were analyzed. As a result, differences in the hydrogen isotope ratios could be used to distinguish regional differences, and differences in the nitrogen isotope ratios yielded characteristic information regarding the farms from which the samples were obtained. Thus, stable isotope values could be used to differentiate samples according to regional differences. Therefore, stable isotope analysis serves as a powerful tool to discriminate the regional origin of Korean ginseng samples from across Korea. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. The role of sidestream recycle in hydrogen isotope separation and column cascade design

    International Nuclear Information System (INIS)

    Sherman, R.H.; Taylor, D.J.; Yamanishi, T.; Enoeda, M.; Konishi, S.; Okuno, K.

    1994-01-01

    Sidestream recycle combined with sidestream equilibration is important in hydrogen isotopic distillation processes because it offers a means to reduce the number of columns required for the extraction of pure homonuclear species. This directly implies simpler systems, reduced control problems, and reduce material inventories. Measurements were recently completed for a single distillation column using feed compositions (∼50--50 D-T) and product flows similar to those expected in an ITER type device wit recycle of an equilibrated sidestream withdrawn from the column. Dynamic studies were conducted with flowrates changing as might be expected for typical Tokamak operations. These experimental results are compared with computer simulations of the dynamic process. The impact of these sidestream recycle studies on the design of isotope separation systems is discussed, especially with respect to column design, tritium inventory, dynamic performance, stability, and system control

  6. Selenide isotope generator for the Galileo mission

    International Nuclear Information System (INIS)

    Goebel, C.J.; Hammel, T.E.

    1978-01-01

    A significantly improved thermoelectric generator has been developed to provide electric power for NASA's Galileo Mission in 1982. Nominal power requirements for Galileo will be about 450 watts at BOL (Beginning of Life), and this will be furnished by two Selenide Isotope Generators (SIG) each powered by a Multi Hundred Watt (MHW) radioisotopic heat source. A Ground Demonstration System (GDS) of a nominal 100 w(e) features a 3M - produced selenide ring module around a shortened MHW-dimensioned electrical heat source, newly developed axially-grooved heat pipes on a disc-shaped radiator, and other innovations which will allow a full-sized generator's weight to be held at about 90 lbs

  7. Isotope powered Stirling generator for terrestrial applications

    International Nuclear Information System (INIS)

    Tingey, G.L.; Sorensen, G.C.; Ross, B.A.

    1995-01-01

    An electric power supply, small enough to be man-portable, is being developed for remote, terrestrial applications. This system is designed for an operating lifetime of five years without maintenance or refueling. A small Radioisotope Stirling Generator (RSG) has been developed. The energy source of the generator is a 60 watt plutonium-238 fuel clad used in the General Purpose Heat Sources (GPHS) developed for space applications. A free piston Stirling Engine drives a linear alternator to convert the heat to power. The system weighs about 7.5 kg and produces 11 watts AC power with a conversion efficiency of 18.5%. Two engine models have been designed, fabricated, and tested to date: (a) a developmental model instrumented to confirm and test parameters, and (b) an electrically heated model with an electrical heater equipped power input leads. Critical components have been tested for 10,000 to 20,000 hours. One complete generator has been operating for over 11,000 hours. Radioisotope heated prototypes are expected to be fabricated and tested in late 1995

  8. Level-one modules library for DSNP: Dynamic Simulator for Nuclear Power-plants

    International Nuclear Information System (INIS)

    Saphier, D.

    1978-09-01

    The Dynamic Simulator for Nuclear Power-plants (DSNP) is a system of programs and data sets by which a nuclear power plant or part thereof can be simulated at different levels of sophistication. The acronym DSNP is used interchangeably for the DSNP language, for the DSNP precompiler, for the DSNP libraries, and for the DSNP document generator. The DSNP language is a set of simple block oriented statements, which together with the appropriate data, comprise a simulation of a nuclear power plant. The majority of the DSNP statements will result in the inclusion of a simulated physical module into the program. FORTRAN statements can be inserted with no restrictions among DSNP statements

  9. Stable Isotope Mapping of Alaskan Grasses and Marijuana

    Science.gov (United States)

    Booth, A. L.; Wooller, M. J.

    2008-12-01

    The spatial variation of isotope signatures in organic material is a useful forensic tool, particularly when applied to the task of tracking the production and distribution of plant-derived illicit drugs. In order to identify the likely grow-locations of drugs such as marijuana from unknown locations (i.e., confiscated during trafficking), base isotope maps are needed that include measurements of plants from known grow-locations. This task is logistically challenging in remote, large regions such as Alaska. We are therefore investigating the potential of supplementing our base (marijuana) isotope maps with data derived from other plants from known locations and with greater spatial coverage in Alaska. These currently include >150 samples of modern C3 grasses (Poaceae) as well as marijuana samples (n = 18) from known grow-locations across the state. We conducted oxygen, carbon and nitrogen stable isotope analyses of marijuana and grasses (Poaceae). Poaceae samples were obtained from the University of Alaska Fairbanks (UAF) Museum of the North herbarium collection, originally collected by field botanists from around Alaska. Results indicate that the oxygen isotopic composition of these grasses range from 10‰ to 30‰, and broadly mirror the spatial pattern of water isotopes in Alaska. Our marijuana samples were confiscated around the state of Alaska and supplied to us by the UAF Police Department. δ13C, δ15N and δ18O values exhibit geographic patterns similar to the modern grasses, but carbon and nitrogen isotopes of some marijuana plants appear to be influenced by additional factors related to indoor growing conditions (supplementary CO2 sources and the application of organic fertilizer). As well as providing a potential forensic resource, our Poaceae isotope maps could serve additional value by providing resources for studying ecosystem nutrient cycling, for tracing natural ecological processes (i.e., animal migration and food web dynamics) and providing

  10. Dynamic Active Power Control with Improved Undead-Band Droop for HVDC Grids

    DEFF Research Database (Denmark)

    Vrana, T.K.; Zeni, Lorenzo; Fosso, O.B.

    The earlier developed control method using a piecewise linear droop curve, with different droop values for the different segments, has now been optimised for dynamic performance. Non-linearities at the junctions of two linear droop sections have been adressed. Also non-linearity of power based DC...

  11. Use of isotopes in fisheries research

    International Nuclear Information System (INIS)

    Ayyappan, S.

    2001-01-01

    Fisheries is an interdisciplinary science, incorporating not only different aspect of biology like anatomy, physiology, ecology, etc., but also oceanography, biochemistry, biotechnology and such emerging areas in the recent years. Isotopes are being employed for a variety of studies like quantification of aquatic production processes, nutrient cycles and food chain dynamics (primary production, bacterial activity, sediment-water nutrient interactions, nitrification, fertilizer use efficiencies, organic mineralisation, amino acid uptake in algal-bacterial assemblages, hydrological studies including water transport and budgeting, partitioning of trophic pathways), fish nutrition (feed utility and digestibility), fatty acid metabolism, compartmentalization of food spectra in different species of fish and shellfish), fish physiology, genetics and immunology (radioimmunoassay, enzyme assays, evaluation of hormone levels, gene markers -DNA labeling and plasmid incorporation, immuno diagnostics), fish health management and pollution (host-parasite interactions chemical/pesticide uptake and accumulation), etc. Radioisotopes commonly used in ecological studies are beta emitters like 14 C, 3 H, 32 P and 35 S, while a stable isotope like 15 N is used in quantifying nitrogen fixation rates in water and sediment media. Results of some of the studies and potential applications of isotopes in fish research are presented. (author)

  12. Dynamic wind turbine models in power system simulation tool DIgSILENT

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, A.C.; Jauch, C.; Soerensen, P.; Iov, F.; Blaabjerg, F.

    2003-12-01

    The present report describes the dynamic wind turbine models implemented in the power system simulation tool DIgSILENT (Version 12.0). The developed models are a part of the results of a national research project, whose overall objective is to create a model database in different simulation tools. This model database should be able to support the analysis of the interaction between the mechanical structure of the wind turbine and the electrical grid during different operational modes. The report provides a description of the wind turbines modelling, both at a component level and at a system level. The report contains both the description of DIgSILENT built-in models for the electrical components of a grid connected wind turbine (e.g. induction generators, power converters, transformers) and the models developed by the user, in the dynamic simulation language DSL of DIgSILENT, for the non-electrical components of the wind turbine (wind model, aerodynamic model, mechanical model). The initialisation issues on the wind turbine models into the power system simulation are also presented. However, the main attention in this report is drawn to the modelling at the system level of two wind turbine concepts: 1. Active stall wind turbine with induction generator 2. Variable speed, variable pitch wind turbine with doubly fed induction generator. These wind turbine concept models can be used and even extended for the study of different aspects, e.g. the assessment of power quality, control strategies, connection of the wind turbine at different types of grid and storage systems. For both these two concepts, control strategies are developed and implemented, their performance assessed and discussed by means of simulations. (au)

  13. A nonlinear dynamics approach for incorporating wind-speed patterns into wind-power project evaluation.

    Science.gov (United States)

    Huffaker, Ray; Bittelli, Marco

    2015-01-01

    Wind-energy production may be expanded beyond regions with high-average wind speeds (such as the Midwest U.S.A.) to sites with lower-average speeds (such as the Southeast U.S.A.) by locating favorable regional matches between natural wind-speed and energy-demand patterns. A critical component of wind-power evaluation is to incorporate wind-speed dynamics reflecting documented diurnal and seasonal behavioral patterns. Conventional probabilistic approaches remove patterns from wind-speed data. These patterns must be restored synthetically before they can be matched with energy-demand patterns. How to accurately restore wind-speed patterns is a vexing problem spurring an expanding line of papers. We propose a paradigm shift in wind power evaluation that employs signal-detection and nonlinear-dynamics techniques to empirically diagnose whether synthetic pattern restoration can be avoided altogether. If the complex behavior of observed wind-speed records is due to nonlinear, low-dimensional, and deterministic system dynamics, then nonlinear dynamics techniques can reconstruct wind-speed dynamics from observed wind-speed data without recourse to conventional probabilistic approaches. In the first study of its kind, we test a nonlinear dynamics approach in an application to Sugarland Wind-the first utility-scale wind project proposed in Florida, USA. We find empirical evidence of a low-dimensional and nonlinear wind-speed attractor characterized by strong temporal patterns that match up well with regular daily and seasonal electricity demand patterns.

  14. Pb and Sr isotopic compositions of ancient pottery: a method to discriminate production sites

    International Nuclear Information System (INIS)

    Zhang Xun; Chen Jiangfeng; Ma Lin; He Jianfeng; Wang Changsui; Qiu Ping

    2004-01-01

    The discriminating of production sites of ancient pottery samples using multi-isotopic systematics was described. Previous work has proven that Pb isotopic ratios can be used for discriminating the production sites of ancient pottery under certain conditions. The present work suggests that although Nd isotopic ratios are not sensitive to the production sites of ancient pottery, Sr isotopic ratios are important for the purpose. Pb isotopic ratios are indistinguishable for the pottery excavated from the Jiahu relict, Wuyang, Henan Province and for famous Qin Terra-cotta Figures. But, the 87 Sr/ 86 Sr ratios for the former (about 0.715) are significantly lower than that of the latter (0.717-0.718). The authors concluded that a combined use of Pb and Sr isotopes would be a more powerful method for discriminating the production site of ancient pottery. (authors)

  15. Isotopic dynamics of C, O and U in soils and their relation to climate

    OpenAIRE

    Oerter, Erik

    2015-01-01

    The development of soil is driven by environmental conditions, and soil properties are reflective of those conditions. Pedogenic carbonate is widespread in arid and semi-arid soils and its stable C and O isotope composition is often used as a paleoclimate indicator. However, questions remain about the precise meaning of those signals, and most importantly the season(s) that the isotopic composition most closely reflects. Chapter 1 examines the soil conditions that lead to carbonate formation...

  16. The effect of pressure, isotopic (H/D) substitution, and other variables on miscibility in polymer-solvent systems. The nature of the demixing process; dynamic light scattering and small angle neutron scattering studies. Final report

    International Nuclear Information System (INIS)

    Van Hook, W.A.

    2000-01-01

    A research program examining the effects of pressure, isotope substitution and other variables on miscibility in polymer solvent systems is described. The techniques employed included phase equilibrium measurements and dynamic light scattering and small angle neutron scattering

  17. Theorical and experimental analysis of nitrogen-15 isotope enrichment by nitrogen monoxide and nitric acid system

    International Nuclear Information System (INIS)

    Ducatti, C.

    1985-01-01

    Nitrogen-15 isotope enrichment by chemical exchange in NO/HNO 3 system was studied using two different theories. The isotope fractionation factors obtained by the countercurrent theory was compared to those estimated by the isotope equipartition theory were confronted through a model. A column in countercurrent was built at laboratory scale and parameters such as: number of theoretical plates, height equivalent to a theoretical plate, type of packing, total height of column, production of H 15 NO 3 /week, obtained under isotope dynamic equilibrium conditions, were studied in comparison to those in the literature. (Author) [pt

  18. Dynamical barrier and isotope effects in the simplest substitution reaction via Walden inversion mechanism

    Science.gov (United States)

    Zhao, Zhiqiang; Zhang, Zhaojun; Liu, Shu; Zhang, Dong H.

    2017-02-01

    Reactions occurring at a carbon atom through the Walden inversion mechanism are one of the most important and useful classes of reactions in chemistry. Here we report an accurate theoretical study of the simplest reaction of that type: the H+CH4 substitution reaction and its isotope analogues. It is found that the reaction threshold versus collision energy is considerably higher than the barrier height. The reaction exhibits a strong normal secondary isotope effect on the cross-sections measured above the reaction threshold, and a small but reverse secondary kinetic isotope effect at room temperature. Detailed analysis reveals that the reaction proceeds along a path with a higher barrier height instead of the minimum-energy path because the umbrella angle of the non-reacting methyl group cannot change synchronously with the other reaction coordinates during the reaction due to insufficient energy transfer from the translational motion to the umbrella mode.

  19. Using cosmogenic isotopes to measure basin-scale rates of erosion

    International Nuclear Information System (INIS)

    Bierman, P.R.; Steig, E.

    1992-01-01

    The authors present a new and different approach to interpreting the abundance of in situ-produced cosmogenic nuclides such as 36 Cl, 26 Al, and 10 Be. Unlike most existing models, which are appropriate for evaluating isotope concentrations on bedrock surfaces, this model can be used to interpret isotope concentration in fluvial sediment. Because sediment is a mixture of material derived from the entire drainage basin, measured isotope abundances can be used to estimate spatially-averaged rates of erosion and sediment transport. Their approach has the potential to provide geomorphologists with a relatively simple but powerful means by which to constrain rates of landscape evolution. The model considers the flux of cosmogenic isotopes into and out of various reservoirs. Implicit in model development are the assumptions that a geomorphic steady-state has been reached and that sampled sediment is spatially and temporally representative of all sediment leaving the basin. Each year, the impinging cosmic-ray flux produces a certain quantity of cosmogenic isotopes in the rock and soil of a drainage basin. For a basin in steady state, the outgoing isotope flux is also constant. They solve for the rate of mass loss as a function of isotope abundance in the sediment, the cosmic ray attenuation length, the isotope half life, and the effective isotope production rate. There are only a few published measurements of cosmogenic isotope abundance in sediment. They calculated model denudation rates for sediment samples from Zaire and central Texas. The denudation rates they calculated appear reasonable and are similar to those they have measured directly on granite landforms in Georgia and southeastern California and those calculated for the Appalachian Piedmont

  20. Low power test architecture for dynamic read destructive fault detection in SRAM

    Science.gov (United States)

    Takher, Vikram Singh; Choudhary, Rahul Raj

    2018-06-01

    Dynamic Read Destructive Fault (dRDF) is the outcome of resistive open defects in the core cells of static random-access memories (SRAMs). The sensitisation of dRDF involves either performing multiple read operations or creation of number of read equivalent stress (RES), on the core cell under test. Though the creation of RES is preferred over the performing multiple read operation on the core cell, cell dissipates more power during RES than during the read or write operation. This paper focuses on the reduction in power dissipation by optimisation of number of RESs, which are required to sensitise the dRDF during test mode of operation of SRAM. The novel pre-charge architecture has been proposed in order to reduce the power dissipation by limiting the number of RESs to an optimised number of two. The proposed low power architecture is simulated and analysed which shows reduction in power dissipation by reducing the number of RESs up to 18.18%.